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ABSTRACT

Conncctedness of the Attractor of an Iterated Function System

Farid Sandoghdar

We will study the action of a finite family, {F,}™,, of contractive mappings on a
compact subset of a complete metric space. The family {F}2, is known as an
iterated function system (IFS). Although many of the results presented here can be
generalized to an arbitrary complete metric space, we will restrict ourselves to the
melric space (R", Euclidean distance). Using the notion of Minkowski sausages, we
will define a distance function, h (the Hausdorff distance), on the space of all compact
subsets of R™ denoted by H(R™). The pair (H(IR™), k) forms a complete metric space
in which we will establish the existence of a unique "point” A (cornpact subset of R™)
satisfying the equation U2, F.(A) = A. We will explore various characterizations of

the compact set A which is referred to as the attractor of the I[FS {F}2,.

'The topological properties of an attractor depend on the contractive mappings con-
stituting the corresponding IFS. The main purpose of this study is to investigate con-
ditions under which an attractor will have certain connectivity properties. Among
these properties will be considered total disconnectedness, connectedness and arcwise
connectedness. We will see that in fact, the notions of connectedness and arcwise
connectedness coincide in the case of an attractor. Some other topological properties
of attractors including property S, local connectedness and semi-local connectedness

will also be discussed.
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1 Preliminaries in topology and analysis

In this chapter we will briefly review some well-known notions of topology and real
analysis. Note that we have selected only the concepts that we will need 1 the
following chapters. Eventhough we will consider the general concept of topological
spaces in Section 1.1, we will be almost merely dealing with metric spaces throughout

our discussion.

1.1 Topological spaces

Let X be a set. We say that a family 7 of subsets of U defines a topology on .\
provided that

o 0 and X belong to 7,
e The union of any collection of sets of 7 is in 7,
e The intersection of any finite number of sets of 7 is in 7.

The pair (X,.7) is called a topological space. When there is no ambiguity as in the
topology chosen on X, the set X itself is referred to as the topological space The
elements (sets) of J are called open sets. A set F (U is closed if X'\ F is open,
Proposition 1

e The wintersection of any collection of closed sels s closed.

o The union of any finite collection of closed sets 1s closed.

Although there is no ambiguity in the above definition of an open set; one needs Lo be
careful when using the term "open subset”. In fact, we have the following definition

to distinguish between the two notions:

Let M be any subset of a topological space V. A subsel D of M is said to be open

in M or open relative to M provided that there exists an open set Voo A such that

!



D= MnV. So, by saying that D is open in M, we do not necessarily mean that D

.s a member of the topology defined on &

The following lemma gives another characterization of a set which is open relative to
another sct, but we will first have to introduce the concept of a neighborhood of a

point:

[iet X be a topological space. Any open set containing the point = € X is called a

netghborhood of z.

LLemina |
Let M be a subset of a topological space X. Let K C M and suppose that for any
point x € K, there ezists a neighborhood V; of  such that MNV, C K. Then, K is

open in M.

’roof:

Since there exists a neighborhood V; of z such that M NV, C K for every z € K,
UMnV,CK
zcK

which implies that

MnlJV.cK
zeK

On the other hand, for any z € K, we have
cteM and z€V,

so that K ¢ M NU,ex Ve Therefore, M N cx Vo = K. But Uycx Ve is @ union of

open scts and is thercfore open. So, K is openin M. &

We say that a collection C of sets covers a set E if E C Upee @. In this case, the
collection C is called a covering of E. lf cach O € C is open, we call C an open covering

of . If € contains only a finite number of sets, we call C a finite covering.



A topological space A’ is said to be compact if every open covering of .\' contains a

finite subcovering of .V

1.2 Metric spaces

We will be interested in topological spaces with a special structure, namely, metric

spaces.

A function d: X x ¥ — R is called a metricon a set V' if for all z,y and z in .V,

e d(z,y) >0, and d(z,y)=0iff z =y,

o d(z,y) = d(y,z) (symmetry),
e d(z,z) < d(z,y) + d(y, z) (triangle inequaiity).

The real number d(z,y) is called the distance between the points @ and y, relative to
the metric d. The pair (&, d) is called a metric space. When there is no confusion

about d, we denote the metric space (X, d) simply by .\’

We will now list the following definitions concerning a metric space (\V,d). Note
that some concepts such as open and compact sets have already been defined in a
topological space. However, for the purpose of our discussion, we will more often

adopt their characterizations in a metric space, as stated below.

1. A §-neighborhood of a point € A’ is a ball Bs(z) with radius § centered

at x:

Bs(z)={yc V

d(z,y) < 8}
2. Aset OC .Yis open if
Vz € O, 36 > 0 such that Bs(z) . O.

3. The distance between a point £ € X" and a set £ C X' is defined as

d(z, E) = inf d(z,y).

ye B
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. The diameter of a set E C X is defined as

diam(E) = sup{d(z,y)| = € E, y € E}.
Let £ C X. Then ¢ € X is called a iimit point (point of accumulation
or cluster point) of E if

V8 >0, (Bs(z)\{z})NnE #0.

The closure of a set E C X, denoted by E or CI(E), is defined by

E = EU{limit points of E}
= {zeX|VE§>0, Bs(z)N E # 0}.
A point z € E is called a point of closure of E. Therefore, every limit
point of E is also a point of closurc of E. Notice that F is closed if and

only if E=E.

The #nterior of aset £ C X, denoted by Int(E), is defined by X\ X'\ E.
The set BA(E) = EN X\ E is called the boundary of E.

A sequence {z,}2, C A is said to be convergent if
dy € X' such that nILrgo d(zn,y) = 0.

We say that {z,}2, converges to y and write lim; ooz, = ¥, or
Tn .~ Y. The point y is called the limit of {z,}3,.

n—o0

A sequence {2,}2, C XV is called a Cauchy sequence if
Ve >0, N suchthat Vn > N, VYm2> N, d(zn,z,) <e
It follows that every convergent sequence is a Cauchy sequence.

If every Cauchy sequencein A" is convergent, then X' is called a complete

metric space.



11. Let EC X. Then z € E is an isolated point of E if
36 > 0 such that Bs(z)NE = {z}.

Equivalently, € € E is an isolated point of E if it is not a limit point

of E.

12. A set E C X is perfect if E={limit points of E}.
In other words, E is perfect if and only if E is closed and contains no

isolated peint.

13. A set K C X is compact if and only if it is sequentially compact; i.c.,

if every sequence in K has a convergent subsequence in K.

1.3 Continuous functions

A function f : X — X is said to be continuous at x ¢ X if
Ve >0 38§ >0 suchthal d(z,y) <6 == d(f(x), f(y)) <
We say that f is continuous if it is continuous at cach = C V.

Theorem 1

The following are equivalent:
o [: X — X is continuous.

o If{z.}32, is a convergent sequence,

then f(liMpooo Tn) = liMp_o f(Zn).

o IfO C X is open, then [~1(O) is also open.

Theorem 2
Let f: X — X be continuous. If K C X is compact, then f(K ) 15 also compact.

(4




Lemma 2

Let K be a compact subset of a metric space X and let © € X. Then there ezists a
point y € K such that d(z,y) = d(z, K).

Proof:

Since d(z, K') = inf{d(z,y)| y € K}, we can choose a sequence of points {yn}32, C K
such that lim, e d(z,yn) = d(z, K). Since K is compact, {yn}2, has a subsequence
{yn, }ro=1 which converges to a point y € K.

Finally, by continuity of the distance function d, we get

d(z,K) = lim d(z,yn)

n—oo

= lim d(z,yn,)

= d(z, lim y,;)
nJ—DOO
= d(z,y). &

A function f: X — X is called a homeomorphism on X if it is bijective (one-to-one

and onto) and both f and /! are continuous.

Proposition 2
Let f : X — ' be a homeomorphism on X and let O be an open subset of X'. Then

f(O) ts also open.

Proof:

Since f~!is a conlinuous function and © is open, by Theorem 1, (f~!)~*(Q) is open.

But, (f )"1(0) = /(0). #



2 Connectedness

One can study different topological properties of a given set. Among those, the
concept of connectedness is one of the most intuitive ones. There are several types

of connectedness. In this chapter we will study the main properties of a few of them

(see [22], [23], [14]).

2.1 Connected sets

A separation of a set M is a pair Oy, O; of open sets such that
e O NO,; =0,
o M C O, UQ,,
e MNO;#0 ad MNO,#0.

A set M is connected if there exists no separation of M. A compact connected set is

called a continuum.

Example 2.1.1

Any closed interval in R is a continuum. ©

A set U is called a component of a sel M if U is a connected subset of M which is

not contained in any other connected subset of M.

Example 2.1.2
On the real line R, consider the set M = (0,1) U (2,3) U {4}. Then, the components
of M are the intervals (0,1) and (2,3) as well as the singleton {4}.

The following useful results on connectedness are well-known:

Theorem 3  (See [14])
Let M be a connected set. If M C B¢ M, then B is also connecled.



Theorem 4 (Sce [14])

The union of a collection of connected sets that have a point in common is connected.

‘Theorem 5

Let f: X — X be continuous. If M C X is connected, then so is f(M).

2.2 Locally connected sets

A set M is locally connected at z € M if for every neighborhood U of , there is a
neighborhood V' of & such that V C U and each point of M NV lies together with =
in a connected subset of M NU. If M is locally connected at each of its points, it is

said to be locally connected.

IExample 2.2.1
The topologist’s sine curve (Fig. 1),
1
{(e,sind)l = > 0} U ({0}  [-1,1]),

is locally connected everywhere except at the points belonging to {0} x [~1,1]. ©

Figure 1: The topologist’s sine curve.



Example 2.2.2

The "deleted comb” (Fig. 2),

(0,11 x ) U ({ = x [0, 1) U ({1} x (1),

is locally connected everywhere except at the point {1} x {1}. ©

0 172 1

Figure 2: The deleted comb.

Example 2.2.3

Any open set O, as well as its closure O are locally connected. @

Let M be a set. A connected set R C M is called a region in M if it is rclatively

open in M.

Theorem 6

A set M is locally connected if and only if for each point z € M and cach neighborhood

U of z, there exists a region R in M containing = and lying in U. Equivalenily, in o

melric space, each point of M lies in an arbitrary small region in M.

Proof: (See [23])

(=):

Suppose that M is locally connected. Let z € M and let U be a neighborhood of z.

9



Let K be the component of M N U which contains z. We claim that K is a region in
M. Indeed, KC M NU C M and K is connected. We only have to show that K is
open relative to M. Now, by the local connectedness of M, there is a neighborhood
Vi of z such that V; C U and M NV, lies in a connected subset of M NU. But then,
M NV, must be contained in K; otherwise K would not be maximal. We conclude
that M NV, is an open set in M and satisfies z € M NV, C K. Since this is true for
cvery z € M (and so, for every z € K C M), by Lemma 1, K is open in M. In fact,
K is the desired region since K C MNU C U.

(<¢==):
Suppose that for each £ € M and any neighborhood U of z, we can find a region R

satisfying the above conditions. Since R is open in M, there exists an open set V

such that £ = M N V. Now, consider the open set W = V N U. We have
exzc R=MnNV and ¢ < U; therefore, z € W.
e WCU.
e MNW=MN(VAU)=(MNV)NU=RNU CR.
¢ By the hypothesis, R is a connected subset of M N U.

Therefore, M is locally connccted at = which implies, by arbitrariness of ¢ € M, that

M is locally connected.

2.3 Property S

A set M is said to have property S provided that for each € > 0, M can be written as

a finite union of connected sets each of diameter less than e.

Example 2.3.1
The set M = {{3} x [0, }]}32, U ([0,1] x {0}), has property S (see Fig. 3). ©

‘n

10
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1/2 1
Figure 3: A set with property S.

Example 2.3.2

The topologist’s sine curve (see Example 2.2.1) fails to have property S. ¢

Theorem 7

If a set has property S, then it is locally connected.

Proof: (See [22))

Let M be a set with property S. So, given € > 0, we can write M = J* | M,, where
M. is a connected set with diam(M,) < £ for i =1,..,n. Let z € M and let K be
the union of all those M,’s which either contain z or have z as a limit point. So, hy

Theorems 3 and 4, K is connected. Also, diam(K) < ¢, since for p,q ¢ K, we have

d(p,q) < d(p,z)+ d(z,q)

< -+

N
N

= €.

It follows, from the definition of K, that z cannot be a limit point of M\ K. Therefore,
d(z, M\ K) > 0. This implies that for every € > 0, there exists a § < ¢ such that
Bs(z)N (M \ K) = 0. In other words, Bs(z) " M = Bs(z) N K.

So, we have shown that for every e-neighborhood of z, there exists a §-neighborhood

of  such that

11



e Bs(z) N M is connected, since by Theorem 4, Bs(z) N K is connected,
e Bs(z)N M C Bs(z) C B(z).

Since © was an arbitrary point of M, it follows that M is locally connected. &
The converse of this theorem need not be true. Table 1 provides such an example.

2.4 Semi-locally connected sets

A connected set M is said to be semi-locally connected at z if for any € > 0, there
exists a neighborhood V of z of diameter less than € such that M \ V has only a
finite number of components. The set M is semi-locally connected if it is semi-locally

connected at each of its points.

Example 2.4.1
The topologist’s sine curve (see Example 2.2.1) is semi-locally connected everywhere

except at the points belonging to {0} x [-1,1]. ©

Example 2.4.2
Let 1" be the triangle with vertices (0,0), (1,0) and (0,1). For each integer 1 > 1,
lel S, be the segment with endpoints (1/1,0) and (0,1). The set M = T UUR, S, is

semi-locally connected (see Fig. 4). ©

There are many examples where a connected set which has property S is also semi-
locally connected (for instance, see Example 2.3.1). However, we were unable to prove
this true in general or disprove it with a counterexample. Therefore, we will make

the following conjecture:

Conjecture 1

If a connected set has property S, then it is semi-locally connected.

12



0 172 ]
Figure 4: A semi-locally connected set.

2.5 Arcwise connected sets

Let z and y be elements of a set M. A continuous function I': [0,1] -—-» M is called
an arc in M from z to y provided that I'(0) = z and I'(1) = y. We sometimes denote
thisas'=z ~y.

Lemma 3

IfT' is an arc in M from z o y, then there emsts an arc in M fromy to .

Proof:
Indeed, the function A : [0,1] — M defined by

A(z) =T(1 - z)
isanarcin M fromytoz. &

Lemma 4
IfT and A are arcs in M from z to y and from y to z, respectively, then there ezists

an arc in M from z to z.

Proof:

We are given that I' and A are continuous functions form [0,1] to M and
F0)=z TQ1)=A0=y A(l)=-=

13



Take A : [0,1] — M to be

_ ) (%) if 0<z<1/2
A(x)_{A(zz—U if 12<z<1.

The function Aisan arcin M fromz toz. &

A set M is said to be arcwise connected if for every z,y € M, there exists an arc from

z to y. Note that every arc is arcwise connected.

Lemma 5
Let M be an arcwise connected set and let f be a continuous function on M. Then,

J(M) is also arcwise connected.

Proof:

Let y, and y, be any two points in f(M). There exist points z; and z; in M such
that f(z;) = y1 and f(z2) = y,. Since M is arcwise connected, there exists a
continuous function T : [0,1] — M such that I'(0) = z; and I'(1) = z,. Therefore,
f(1'):{0,1] — f(M) is continuous,

f(T(0)) = f(=1) =91 and  f(T(1)) = f(z2) = 2.
Hence, f(I') is an arc in f(M) from y; toyz. W

Example 2.5.1

A square in IR? is arcwise connected. <

The following relationship between the notions of connectedness and arcwise connect-

edness is a well-known result. Its proof can be found, for instance, in [14].

Theorem 8

If a set is arcwise connected, then it is connected.

The converse does not necessarily hold as shown in the next example.

14



Example 2.5.2

The topologist’s sine curve (see Example 2.2.1) is connected but not arcwise con-

nected. ©

However, a partial converse of Theorem 8 can be obtained as states the next theorem.

To see a proof of the latter we refer the reader to [23].

Theorem 9

Let X' be a metric space. Every locally connected continuum in.\" 1s arcunse connected

2.6 Totally disconnected sets

A set is totally disconnected if its only nonempty connected subsets are one-point sets

(singletons).

Example 2.6.1
The set of rationals Q is totally disconnected. ©

Table 1 provides some more examples of scts with various connectivily propertics.
The properties considered are connectedness, property S, local connectedness, senmn-

local connectedness and arcwise connectedness.



3 Contractive mappings

In this section we will study a particular class of transformations on metric spaces,
namely the contractive mappings (contractions). We will see that in a complete
metric space, iterative use of a contractive mapping on any set results in ”shrinking”
that set to a unique point of the space. The metric space we deal with is the space of
all compact sets of R®. Our main interest is to consider the simultaneous action of a

finite number of contractions on a given point (a compact subset of R™) of this space.

3.1 Contractions

Roughly speaking, the term contraction means that points are moved closer together

when one contraction is applied. The precise definition is given below:

Let (X, d) be a metric space. A mapping f : X -— X is said to be contractive or a

contraction provided that its Lipschitz constant,

Y — e (@), S())
Llp(f) - I;ﬁl: d(m,y) )

satisfies Lip(f) < 1.

Example 3.1.1

i) f(z) = /T is a contraction of the metric space ([1,00), Euclidean

distance) since

Af2),J@) _ Va-yi_ 1
d(z,y) zT—y VT + /Yy

for all z,y € [1,00). So, Lip(f) < L.

<1
2

i1) g(x) = x is not a contraction of (R, Euclidean distance). In fact,

Lip(g) = 1 since for all z,y € R,

d(g(z),9(y)) z-y _
d(:l:,y) —m_yﬁ—l. @
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Proposition 3

FEvery contraction of (Y, d) s continuous.

We can find contractions in different classes of functions. Although we will discuss
contractions in general, there is a particular type of mappings, namely similitudes,
which will appear regularly in our examples. We define similitudes through affine
transformations. A function f : R™ — R" is called an affine transformation provided
that f(z) = Az + B, where A and B are n x n and n x 1 matrices, respectively. The

matrix B is called the translation vector.

The nature of an affine transformation is determined by the matrix A. Below are some

examples of A in IR? as well as the action of the corresponding affine transformation:

o Rotation about the origin, through an angle of 6:

A= (cos6’ —sine)

sinf cos#

We sometimes denote the above rotation matrix by f2.

o Reflection about the z-axis:

L0
a=( )

o Reflection about the y-axis:
-1 0
A= ( 0 1)'
e Projection on the z-axis:
10
A= ( . 0) .
e Projection on the y-axis:

0 0
A ‘(0 1)'

17




e Shear in the z direction with factor k:

=i 1)

e Shear in the y direction with factor k:

Lk
A:(O 1)

If A = pT for some orthogonal matrix T and p € R, p # 0, then f is called a similitude
or a similarity transformation. If 0 < p < 1, the similitudeis contractive. A similitude
transforms every subset of R" to a geometrically similar set through a composition of
a translation, a rotation and perhaps a reflection. Note that a similitude maintains

angles unchanged.

3.2 Minkowski sausages
For ¢ > 0, the Minkowski e-sausage of a set E is defined as
E(e) = {z|d(z,E)< ¢}
= U Be().

zEE

We will use the Minkowski sausages to define the Hausdorff distance between two sets
in the next section. We will now list some of the properties of E(e). Further details

as well as the proof of the following properties can be found in [17].
1. If £ is a compact subset of R™, then E(e) is compact.
2. B\ C Ey = Eq(€) C Ey(e).
3. E(e1)(e2) C E(ey + €2).
4. (E1 U Ey)(¢) = Ei(€) U Ea(e).

If f:R"™ —» R" is a contraction with Lipschitz constant L, then

J(£(e)) C J(E)(Le).

(41
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6. If {€.}22, is a sequence of positive numbers converging to 0, then

E =Mz, E(e).

Lemma 6
Let M be a closed subset of a metric space X'. Then, M is not connected if and only

if there exist closed sets Cy C X' aad C3 C .\ such that
e C;NC; =10,
e M CCiUCQC,,
e MNCi#0 and MNC;#0.

Proof:

(=)

Let C; and C; be closed sets as described above.

Let € = min {d(z,y) | z € C1, y € C;}. Then, the interior of the Minkowski ¢/4-

sausages of C; and C, form a separation of M. Indeed, if
Or = ICi(3) and  0p = nyCa( ),

then O, and O, are two open sets such that:

01N 0, =0 (by definition of c),

McCUC,C O,UQ0,,

MNO, #0 since MNC, +# 0and C, C O,
e MNO; #0 since MNCy # 0 and Cp C O,.
(=):
Suppose that M is not connected and let O and O, be a separation of M. Let
M, — Mn C)] and M2 - Mn C)2
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Since O; and O, are open, we have
0,N0;=0 and O,NO,=0.
We will show below that one can set C; = M; and C, = M.
e We first show that M; N M, = 0. Since M is closed, we have

MCcM=MCM=M,

and

M, C M= E C —M— =M.
Therefore,

Mﬂﬁ/f—g CM=M1UM2
Now,

MiNM, = (M;NnM)nN(MUM)
= (MiNnM;Nn M;)U (M N M, N M)
= (M NM;)U (M, N M,)
C (O1N0)U (0, NO,)
= QU0
= 0.

o Next, notice that M = M, U My C M, U M.

¢ Iinally, My ¢ MN M, so that MNM,; # 0. Similarly, MNM, #0. &
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3.3 The Hausdorff distance between compact sets

Let X be a complete metric space. The set of all nonempty compact subsets of .1 is

denoted by H(X'). We will restrict our attention to the case where . == R™.

We will equip H(RR™) with a distance function & : H(R") x H(R") - - R delined as
follows:

For any Kj, K, € H(R™),
h(Ki, K») = inf{e > 0| K; C Ky(€) and K, C K,(c)}.
This definition is equivalent to the more popular one:
h(K1, K;) = max{sup{d(z, K,)| z € K.}, sup{d(z, K;)| = € K,}|.

Since the latter definition is usually difficult to use in practice, we will adopt the
former one in most of our discussion. It can be shown that the so defined & is indeed
a distance function for the space H(R"). The pair (H(R"), k) is called the Hausdor|f

metric space and h is referred o as the Hausdorff distance.

In other words, two compact sets K; and K, are within Hausdorfl distance » of cach
other if every point of K is within distance r of some point of K,, and every point

of K, is within distance r of some point of K;.

Example 2.3.1

1) Let K, be the square ABCD where A = (0,0), B - (1,0), ¢ (1,1)
and D = (0,1). Let K, be the diagonal BD (see Iig. 5). Then,
MKy, K;) = V2/2.

ii) Let Dy and D; be two discs centered at (0,0) with radii 1 and 3, re-
spectively (see Fig. 5). Then, h(D;,D;) =2. ©Q
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Figure 5: Illustration of the Hausdorff distance
(see Example 3.3.1).

Lemma 7

Let A, and B, be compact sets fori=1,...,m. Then,

WU A, UB) < max h(A, B.)

1=1 =1

Proof:

We will prove this result by induction:

Set m = 2. Let € = max{h(A;, B1), h(Az, Bz)}. Then,

A] C Bl € 1
o ¢>h(A,B) = { B, C Algeg §2;
A2 C B2 € 3
o €> h(A,, By) = { B, C Agéfg §4g

From (1) and (3) it follows that

A1 U Ay C Bi(€) U Ba(€) = (B1 U By)(e).
Also, from (2) and (4) we conclude that

B, U By C Ay(€) U Az(€) = (A1 U Az)(e).

Therefore, € > h(A, U 43, B, U By).
Next, supposet that



Now,

k+1 k+1

k k
MUA, UB) = WU AUAen, B UBw)
=1 =1

1=1 1=1

k k
max{h (U A. ) U Bl) ) h(AkHaBk+l)}

<

1=1 1==1
< pmax{h(A, B), Ak, Biin)}
= 135%1’1(’4"3’)' o

Theorem 10 (See [3])

The metric space (H(R™), ) is complete.

Moreover, if {K,}32, C H(R") is a Cauchy sequence, then

limp o Kn = {z € R"| There ezists a Cauchy sequence {z,}*., with x, ¢ K,, such
that limg, o0 z, = z}.

3.4 The attractor of a contraction

Let f: X —— X be a map. A point p € X for which f(p) — p is called a fized
point of f. We will denote the set of all fixed points of f by I'ix(f). However, if Fix

(f) = {p}, we can write Fix (f) = p where no ambiguity may rise.

Theorem 11 (Banach Fixed Point Theorem)
Let (X,d) be a complete metric space. If f : X -— X 15 a contraction, then [ has o

unique fized point.
Applying the Banach fixed point theorem to the complete space H(R™) we obtain:

Proposition 4

Every contraction F : H(R™) —» H(R™) has a unique fized point A.

Since, in general, 4 = F/(A) is notl a singleton of R", it is not convenient to call it a
fixed "point”. So we will refer to A as the attractor of F'. The following result states

three important characterizations of the attractor of a contraction in H(R™).
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Notation: For any natural number n, the n-th iterate of a given function F is

denoted by F°",

Proposition 5 (See [17])
Let I : H(R™) — H(R") be a contraction whose attractor is A. For any K € H(R™),

1. h(A, For(K)) —.0.

2. A= {z € R"|z is a limit point of some sequence {z,}2, where

zn € F(K)}.
3. ‘A = nzl(Uz‘;l FOH(K))‘

Proof:

Let K ¢ H(R").
1. It follows at once from the Banach fixed point theorem.

2. (C):
Let £ ¢ A and let n > 1. Since F is continuous, F°*(K) is compact.
So, by Lemma 2, there exists a point z, € F°*(K) such that
d(z,z,) = d(z, F**(K)). So we can write

d(z,z.) = d(z, F(K))
< sup{d(a, F(K))| a € A)
< maxfsup{d(e, F"(K))| a € A}, sup{d(y, A)| y € F**(K)}]
= WA, F(K)).

But h(A, F°"(K)) =2, 0. Therefore, d(z,z,) ;=2 0 which means

n—oo

that & = lim,_ o0 @n, where z, € F°*(K).

(2):

Let @ be a limit point of a sequence {z,}32, where z, € F**(K). So,
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{zn}s2, has a subsequence {z,, }32_, such that = = limy, _.c0 &n,. Now,

for any point a € A, we have

d(z,A) < d(z,a)

< d(z,y)+d(y,a) for anyy.
Since a € A is arbitrary, we get, for any y:

d(z,A) < d(z,y)+ ixelf‘d(y,a)
< d(z,y) + d(y, A).

In particular, for each k = 1,2,..., we can take y = z,, € IF°"*(K) to

get

IA

d(z, A) d(x,z,,) + d(zn,,A)

d(z,zn,) + sup d(z,,,A)
Zn, €I (K)

< d(z,zn,) + R(F™(K), A).

IN

Now, d(z,z,,) nk_:’oo 0 since £ = limy,, - .00 €n, - Also, from Part | we

have h(A, F°o*(K)) — 0. Thercfore, d(, A) — 0. But A is compact

TLk-—'OO

and therefore closed. Hence, z € A.

3. (C):
Let z € A. So, there exists a sequence {z,}22, converging to = where

z, € F(K). Now, let 2 > 1 be fixed. For any j > 1, we have

:cJ c FO](K) C U an(K) 's U F-on(K).

n:] na=t

In other words, {z,}72, C URZ, F°"(K); therefore, z € uee, FFon( ).

This is true for any 7 > 1, so that z ¢ N=,(U%, F(K)).

So, A C N2, (UsZ, Fo™(K))-



(2):
Let z € N2, (U2, F(K)). So, z € Upz, Fo°(K) for all i > 1. We
claim that there exists a sequence {yn, }32; such that for alli > 1,

® n, S M4,

® yn, € F'(K),

o d(yn,z) < ;3—'

We will use the principle of induction to justify this claim:

Since z € U®, F°n(K), there exists a sequence {z!}2, C UZ, F°(K)
such that :1:1 "o, & Then, for sufficiently large 7, we have d(z},z) < 1

where z! € F°"‘(K) for some n; > 1. Let y,, = z].

Next, suppose that a sequence {n,}~, is obtained such that n, < n,,
forall1<i< L, and

o yﬂl e Fon‘(K),

b d(yn‘,.’c) < ,_11_,

1

foralll1 <:< L.

Since z € U2, F°r( K), there exists a sequence

n=npg,

{mlel oolc U Fon )

n=npy,
such that z**! oo - Then, for sufficiently large 2, we have

1
L+

d(zf*2) <

13

where 2! ¢ Foreni (K) for some np4q > ny,.

L+1

7. This completes the inductive argument.

Let yn,,, =«
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Now, for n € {ny,n2,n3,...}, let y, be any element of F°*(K). The se-
quence {yn}il; = {¥1,¥2,-.,¥ny, - ¥ng, ...} has a subsequence, namely
{Yn1s Yng) Yny, --- } which converges to z. Hence, z is a limit point of the
sequence {yn}52, where y, € F°*(K) for each n > 1. So, z C A.
Therefore, N2, (U, Fo(K)) C A. &

3.5 Iterated function systems (IFS’s)
3.5.1 Some contractions of H(R")

1. Let f be a contraction of R™ with Lipschitz constani L and let X be a
compact set. Define F(K) = f(K). Then F is a contraction of ‘H(R")
with Lipschitz constant L. The attractor of such a contraction consists

of a single point in R".

2. Any constant function on H(IR™) is a contraction of H(R™) with Lips-
chitz constant 0. In this case, the attractor is obviously the constant

image of the contraction.

3. More interesting contractions can be obtained from combining several
contractions of H(IR™) as follows:
Let Fy, F,,..., F be contractions of H(IR™) with Lipschilz constants
Ly, Ly, ..., L;m, respectively. The application ' : H(R™) - » H(R")
defined by
F(K) = | Fi(K)

1=1

is a contraction of H(IR™) with Lipschitz constant L — max{L,}™,. To

see this, let K, and K, be two compact subsets of R®. Then,

ME(G), B = MU (k). U R(K)

1=1

< max h(F(K,), Fi(K2)) (by Lemma7)
< lr(nax L,h(Kl,Kz)



3.5.2 Increasing contractions

A contractive mapping F : H(R™) — H(R™) is said to be increasing provided that
Ky C K, implies F(K,) C F(K,). Increasing contractions are also referred to as

isotone contractions (sce [9]). Note that whenever a contraction I satisfies
F(KiUK,)=F(K\))UF(K;) VK, K; e H(R"),
I 15 increasing. Indeed,

VK., K, € HIR™), F(K)) C F(K\)UF(K,)
= F(K,UK)).

Now, if Ky C K, then K, U K, = K.
Hence, F(K,) C F(K>).

Remark: Contractions defined in section 3.5.1 are increasing.

Proposition 6
Suppose that F is an increasing contraction of H(R™) with attractor A, and let K be

a compact subset of R™. Then, foralli > 1,
1. K C F(K) =% A=U,, For(K). In particular, K C A.
2. F(K)C K = A=y, I"°(K). In particular, A C K.
Proof:
1. Let K C F(K). Since F' is increasing, we have
K ¢ F(K)C F3K)C..C FP'(K)

for all n > 1. This implies that for all 2 > 1,

U For(K) = | Fo(K).
n=1 n=1
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Therefore, by part 3 of Proposition 5,

Fen(K))

38
C8

A=A Frry) =

1=1 n=t

il
3
i

I,‘on

i
18

I
CS

For(KY)  foralls ™~ 1.

n

1

2. Let F(K) C K. Since F is increasing,
K D> F(K)D F3(K)D .0 FK)

for all » > 1. We conclude that for all z > |,

U F™K) = FK) and () F*(K) = () F(K).
n=1 1=1 n.

Once again, by part 3 of Proposition 5,

oo

A Fon —

Cs
3
=

v
h
—

1=1

2
il

)

i
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1
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Proposition 6 is a useful tool to show that a given set is included in or contains the
attractor of a contraction. We will see one of its applications in the following section

(see Example 4.2.1).

3.5.3 Iterated function systems (IFS’s)

Let F\, F,,..., F,, be contractions of a complete metric space (\\',d). The fammly
{F\, Fa, ..., Fi,} is called an aterated function system (1FS)on (', d) Inour discussion,
we will use the nomenclature "Iterated Function System” to refer to an 11°S on the

metric space (R™, Euclidean distance).
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Given an IFS {F,}2,, the mapping F : H(R™) — H(R") defined by
F(K) = ) F(K)
1=1

is a contraction of H(R") with Lipschitz constant L = max{L,}™,, where L, is the
Lipschitz constant of I, for 1 < 7 < m (see Section 3.5.1). The attractor A of F is

known as the attractor of the IFS.

Proposition 7

Let I, Fy, ..., I, be contractions of R™ and consider the IFS {Fy, Fs,..., Fn} with
attractor A.

For every point a € A, there exists a sequence {j}2, C {1,...,m} such that

aC I oF,o..0F,(A) foral k > 1.

Conversely, for every sequence {3:}+52, C {1,...,m}, there ezists a point € A such
28 y seq Jkf k=1 3oy ) p

that a ¢ Fy o Fy,0..0F, (A) for all k > 1.

Proof:

Let o ¢ A. We will construct, using induction, a sequence {jx}32, C {1,...,m} such
that a ¢ I} o F), 0...0 F, (A)for all £ > 1.

Since A — UL, Fy(A), there exists 71, with 1 < 31 < m, such that a € F, (A). Now,

C3

F]l(A) =

o

(U F(4))

I
-

T

Fy (F(A)).

H
-

1

i

Henee, a ¢ 1 (F),(A)) for some 1 < 32 <m. Similarly, for any nat:-ral number k, if

a0k, 0l 0 1) (A)), where {71, ..., 5k} C {1,...,m}, we can write

F,oF,0..0F,(A) = F,o0F,0..0 ij(U F(4))
1=1

= U Fy 0 Fy, 0. 0 F), (F(A)).
1=1
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In other words, a € F; 0 Fj, 0..0 F}, o F,, . (A) for some jisq, where 1 < Jepr < m.
Continuing this way, we obtain the desired sequence.

Conversely, let {5}, C {1,...,m}. Then, since F,,(A) C A for any k > 1, we get
AD Fy(A)D FyoFy(A)D .. D F 0 Fp 0.0 Fy. (A).

On the other hand, if L = max{L,}™,, then

1=1?
diam(F), o... 0 F,(A)) < L*diam(A).
Since L < 1, the right hand side of this inequality tends to zero, which implies that

diam(;Z, Fy 0 ... 0 F;,(A)) = 0. In other words, N2, F,, 0 ...0 F, (A) - {a} for
some a € R™. Since F) o...0 F(A)C Aforall k> 1, wehave c ¢ A. &

Remark: Given a point a € A, a sequence {Jx}§2, as described in the above Propo-
sition 1s called an address of the point a. It specifies a route one can follow to get,
from any given point of A to a via smaller and smaller copics of A. This route is not

necessarily unique as illustrated in the following example.

Example 3.5.1
Let {Fy, Fy, F3} be an IFS on ‘H(R?) with attractor A where

Fl[(;)] = (1(/)2 1?2)(5)
A = (5 ) (G (7).
Fa[(:)] = (1(/)2 132)(;)" (\/14;4)

where z,y € R. The attractor A is known as the Sierpinski gaskel (sce Fig. 6.).

The sequences {1, 2, 2, 2, ...} and {2, 1, 1, 1, ...} are two different addresses for the

point (162> € A. Indeed,

: . 101 A% ) 1 ] l 2
lim By o F(A) = Fi(lim Fe(A) = REin) - Bl ) (1),
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Figure 6: The Sierpinski gasket.

and

lim 3 0 Fy(A) = Py lim Fy(A)) = F(Fix(R) = B[] = (1/2) Lo

Ti- 400 n-—o00 0 0

Proposition 8
Suppose {F.}2, is an IFS with attractor A. Let {F, ::":1 (m' < ) be a subset of
{I},. Then, the attractor A’ of {F, :;‘f__l satisfies A' C A.

1=1"

Proof:

Let K € H(R™). Let

P(K) = () R,(K) and F(K) = (J R(K).

1,=1
Then, F/(K) C F(K), and hence,
N(U Fe~(K))

1=1 n=3

¢ N0 F))

= A &

AI

I
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Proposition 9

The attractor A of an IFS {Fy, Fy,..., )3} can be characterized as
A=Cl{Fix(F,, oF,0..0F ) r>1,1<i,<m, | <j<r}.

Proof:
Let ® = {Fix(F,, 0 F,0..0F ) |r>1,1<4¢<m, 1 <5<}
We want to show that A = ®.

(2):

Let ¢ € ®. Then, ¢ =Fix(F, o...0 F,) for some integer r > | where | < i, ~ .
Let {1} =Fix(F). We have {z:} = Fi({z1}) C U, A({z:}) ~ F({x:}); s0, by
Proposition 6, A = U,>; For({z1}).

Note that for any compact set K and any natural number p,

FPK)= | Fio..0F,(K),

1’1,<m

where 1 < 7 < p. Therefore, (£}, o...0 F, )°P({z}) C FoP"({x,}). Consequently,

O(r, oo my i) ¢ Urmiga)

p=1

c G F({2})

C U P({z.})

;A.

Hence, U2, (F, o...0 F, )°?({z,}) C A C A since A is closed. Now, I, 0.0 I, isa

contraction of the complete metric space R™ and {z,} is compact. So, by the Banach

fixed point theorem,

(Fi, 0.0 F,)P({z:}) 2 Fix(F, 0...01,) - ¢.

p—o0
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Therefore, ¢ € UL (F, o...0F,)°?({z:}) C A. This shows that & C A which
implies ® C £ = A

(<)
Let o € A and let {2,}52, be an address of . Then,

a€ F,oF,0..0F, (A)

for any 7 > 1. On the other hand, we showed that & C A; so, given r > 1, we have
Fix(Fy, o...0 F,)) € A, where 1 < 7, <m. This implies that

Fix(F,0...0F, )= F,o..0 F (Fix(F,,0...0F,)) € F,0...0F,_(A).

Let L = max{L,}%,. Since, L < 1, given € > 0, we can choose r so large that

L7diam(A) < ¢. Hence,

d(e, Fix(F,, 0...0 F,.)) < diam(F, 0...0 F, (A))

A

L'diam(.A)

< €.
Therefore, Fix(F;, 0...0 F,) = a; thatis, a € ®. Consequently, A C 9. &

Remark: The composite function F, o F,, 0 ...0 F, (1 <14y,...,3, < m) is sometimes

referred to as a "word” of length r.
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4 Connectedness of the attractor of an IFS

We are now ready to take on the principal part of our discussion, the connectedness of
the attractor of an IFS. We will once again focus on IFS’s composed of contractions of
IR™. Qur goal is to predict some of the topological properties (mostly connectedness)

of the attractors of such IFS’s by studying the contractive mappings forming them.

4.1 Totally disconnected attractors

To start this section, we would like to draw the readers’ atiention fo the notion of
a "totally disconnected IFS” considered by Barnsley in [3]. He defines an 1I°S to be
totally disconnected if each point in its attractor possesses a unique address. We
will show (see Example 4.1.4) that according to this definition, a totally disconnected
attractor does not necessarily result from a totally disconnected 1I°S. For this reason,
we will avoid using the concept of a totally disconnected II'S and instead refer to
a totally disconnected attractor. By the latter we mecan an attractor whose only

nonempty connected subsets are singletons (usual definition in Topology).

Theorem 12 (See [19])
Let A be the attractor of the IFS {I, ..., F,,} and let L, denote the Lipsclutz constant
of F, fori =1,...m. If Y70 L, < 1, then A is totally disconnccled.

Proof:
Step I: There exists a closed and bounded set X (therefore, compact in R™), such

that A C K.

Proof (of Step I):
Let d, = d(Fix(F1),Fix(F,)) and choose ¢ > 0 such that L,(c t &) t d, -~ « fou
t=1,..,m. Let K = Cl [B, (Fix (1))]. We will first show that [\(K)« K for cach

1=1,..,m.



Let y be any point in F,(K) and let z € K be such that F,(z) = y. We have

d(y,Fix(F\)) < d(y,Fix(F.)) + d(Fix(F.), Fix(F))
= d(y,Fix(F))+ d,
< L, d(z,Fix(F)) + d,
< Li(c+d)+d,

< €.

Therefore, y € K and so F,(K) C K. It follows from Proposition 6 that 4 C K.

Step II: Let W, consist of all words (sce Remark in Section 3.5.1) of length r. Then,
for each € > 0, there exists an integer r such that

Y diam(w(K)) < ¢

weW,

Proof (of Step II):
Let w= F,o0F, o..0F,_, where i,...,i, € {1,...,m}. We have

3 1

diam(w(K)) < L,, L,,...L, diam(K),

so that,
) diam(w(K)) < ) L, ...L, diam(K)
weW, all possible arrangements of L, ’s

= (Li+ L+ ...+ L) diam(K).
Now, since 3772, L, < 1, we can choose r so large that ()12, L,) diam(K) < e.

Step I: For every integer 7,

AC K.,

where K, = Uyecw. w(K).

Proof (of Step 111):
We will first prove that the fixed point of any word of any length belongs to K, for
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each r. Fix r and let w’ be a word of length 7/, If ' > 7, then v' = w o w" where w

has length r. Hence,

w'(K) = w(w"(K))
C w(K).

The last inclusion holds since we showed, in Step 1, that F\(K) ¢ K for cach 1

consequently, w"(K) C K for each word w".

On the other hand,

Fix(w') ¢ A (by Proposition 9)

C K (by StepI),
so that, Fix(w') = w'(Fix(w')) € w'(K). Therefore,

Fix(w') € w'(K)
C w(K)

¢ K.

Notice that Fix(w') = Fix(w'ow'o...ow’). Now, if 7' <7, the word w'ow'o...ou'

(r times) is of length at least r. Therefore, by above (case r' > r), Fix(w') ¢ K,.

Recall that, by Proposition 9, the attractor A is the closure of the fixed points of all
words (see Remark after Proposition 9). So, it follows from above that A ¢ K, for
every 7. But K, is a finite union of closed sets and therefore closed. Hence, A ¢ K, .

This completes the proof of Step 111

Now, let € > 0 and choose an integer r such that ), cw, diam(w(K)) < ¢ (see Step
II). Let M be any nonempty connected subset of 4. So, M ¢ A . Upew, w(K).
Consider the set 7' — {w(K)n M| w e W,, w(K)'M /£ 0}. Let us enumerate the

clements of this set as €2y,Q,, ..., Q,, where t is the cardinality of 7. Note that £ < m/'
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since there are m" words w of length r. So, we can write

M = OQ.(I().

=1

But M is a closed subset of the compact set A and so it is compact. Consequently,
there exist z,y € M = U, Q,(K) such that diam(M) = d(z,y). On the other hand,

by Theorem 3, M is also connected; so, we may relabel £,’s in such a way that

z€ N(K), y€ QK) and OQ,(K) N O Q.(K) # 0,

=t/ 41

for every t' € {1,...,t}. This is possible since if for some ¢’ we had

then since UL, (K) and Uty Q.(K) are closed (finite union of closed sets), by
Lemma 6, M would not be connected. Hence, we can choose a "chain” of points

{p.}}_, such that

pr=2C W(K), pp=y € U(K) and p, € Q,1(K)NQ(K),
for every z € {2,...,t — 1}. So we have

diam(M) = diam(M) = d(z,y)

= d(p1,pe)

< d(p1,p2) + d(p2, p3) + ... + d(pi-r, i)

< diam(€4(K)) + diam(Q;(K)) + ... + diam(§,_1(K))
< w;v,diam(w(K))

Since € was arbitrary, this implies that diam(M) = 0. Therefore, every nonempty

connected subset of A is a singleton; i.e., A is totally disconnected. &
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Example 4.1.1
Let {Fy, F;} be an IFS on H(R) with attractor .4 where

1 1
Fl(a:) = E(E and Fg(:l!) = 3(12 -} i

for z € R. The attractor A is called the (triadic) Cuntor sct (see T'ig. 7).

0 |
0 1/3 2/3 I

0 179 219 113 23 79 819 |

Figure 7: Initial steps in the construction of the Cantor set.

If L, and L, are Lipschitz constants of F, and Fj, respectively, we have

1 1 2
Li+Ly =-4 7 =-<1.
1+ L2 3 | 373
Therefore, by Theorem 12, the Cantor sct is totally disconnected. Notice that the

same conclusion would hold if we chose Fy(z) =}z t a forany a / 0,a ¢ R.

Example 4.1.2
Consider { i, F;}, an IFS on ‘H(R®) with attractor A, where

|
Fi(z) = 51330(2),

9 11/20
F(z) - 26”(11/20)’

By Theoremn 12, the attractor A is totally disconnected since

for z € R* (see Fig. 8).

9
[Jllllzté-l'ia —-E(-)< 1,

where L, and L, are Lipschitz constants of # and I, respectively. @
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Figure 8: A totally disconnected attractor.

The following example illustrates a case where Theorem 12 is inconclusive. Although
it consists of a small variation in the IF'S of the preceeding example, we are unable

to decideon the connectedness of the new attractor.

Example 4.1.3

Let { F1,F} be an IFS on H(R?) with attractor A, where
Fi(z) = Ru(2),
i - (1),

for 2 € R? (sve Fig. 9).

Figure 9: Is this attractor connected or totally disconnected?

Since the sum of the Lipschitz constants of F; and F, is equal to 1, Theorem 12
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cannot be applied here. We will see later (Corollary 2) that this attractor must be

either connected or totally disconnected.

Theorem 13

Let A be the altractor of the IFS {Fy, F,, ..., F.} and let K be a compact set such
that

* UL FA(K)CK,
. Fl(K) n F](K) =0 foralli# ;.
Then A is totally disconnected.

Proof:

Let 7" be any subset of A containing at least two points and let ¢ ==diam(7"). et
L = max{L,}}, where L, is the Lipschitz constant of F, for 1 — 1,...m. Decfinc
F(K) = UZ, F(K). By the hypothesis, '(K) C K. llence, by Proposition 6,
TC AcK.

We claim that F**(K') is cornposed of m" disjoint compact sets each of diwmneter less
than or equal to L"diam(K). We will show this by induction:

The truth of this statement for n = 1 follows at once from the hypothesis. Suppose
that it holds for » = p. In other words, suppose that I*?(K) — U, C,, where

C,'s are disjoint compact subsets of K each of the form F,, o F,, 0 ...0 F, (K for

{i1,22,..,5} C{1,2,...,m}, and diam(C,) < LPdiam(K)for all j -- 1, ..., mP.

Now, for {z,{} € {1,...,m}and forall 5 =1,..., m? the set I'(C,) ¢ K is compact and
F(C;)NF(C;)=0if 2 #1. So, IP*1(K) = F(F*(K)) is composed of m.mP — m?!!
disjoint compact sets each of the form F, o Iy, 0... 0 I, (K) with diameter less
than or equal to [P*'diam( K), where {i1,22, ...,3p;1} C {1,...,mm}. This cornpletes

the proof of the claim.
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Next, let N be a natural number such that L¥diam(K) < e. The set T intersects at
least two of the disjoint compact sets which formm F*¥(K'). Let C be one of them.

Then, FoN(K) \ C is the union of m” — 1 compact sets and so it is compact. Now,

T c A
F°¥(A)  (since Aisthe fixed point of F)

c F°MK) (since AC K).

Hence, C and Fo¥(K)\ C are two disjoint compact sets covering T'. Therefore, by
Lemma 6, T is not connected. Since T was an arbitrary subset of A with at least two

points, we have shown that A is totally disconnected. #

Corollary 1
Let A be the attractor of the IFS {F,..., Fy,}.
If F(A) N F(A) =0 for alli# 7, then A is totally disconnected.

Proof:

Take K = Ain Theorem 13. &

"The converse of this result need not be true as shown in the next example.

Example 4.1.4
Lel {Fy, I}, I3} be an [FS on 'H(le) with attractor A, where

Fi(z) = §R120(2)+(9/010),

2 )+ ( 3/10)
5 ~120( Vij5)
3 17/40
B = g2t (17\/_/40)
for z € R? (see Fig. 10).

We have Ly + Lz + Ly = 2/5+2/5+3/20 =19/20 < 1; so, by Theorem 12, A is

totally disconnected. On the other hand, Fix(F;) = (%?2> € A. Therefore,

}?I(FiX(F:;)) c F](A) and Fg(F]X(F;;)) c FQ(A)
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0 112 1

Figure 10: A totally disconnected atiractor where
not every point has a unique address.

But, Fy(Fix(F3)) = Fa(Fix(Fy)) = (1(/)2 ) so that 1{(A) N 14(A4) /0.

This example also illustrates a case where the attraclor of an 1F'S is totally discon
nected but yet, not every point in the attractor has a unique address (sce Lthe opening
paragraph of this section). Indeed, the sequences {1,3,3, 3,..} and {2,3,3,3,...} are

both addresses of the point (1(/]2). ©

4.2 Connected attractors
Theorem 14

Let A be the attractor of the IFS {Fy, Fa}. If IN(A)NIR(A) /O, then A s connected,

Proof:
Suppose that A is not connected. We will show that I\(A) N F(A)  §. Let
F : H(R") — H(R") be defined by

F(K) == Fl(K)U IFQ(K)
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with Lipschitz constant L = max{L,, L.}, where L, and L, are the Lipschitz con-
stants of Iy and F;, respectively. Since A is not connected, by Lemma 6, there exist
two disjoint closed sets Cy and C,, such that A C C1UC,, ANC; # 0and ANC; # 0.
Let

§ = inf{d(z,y)| z € Cy and y € C,}.

Let k& be the smallest integer such that any sel of the form F, o ..o F, (A), with

{#1,...,%} C {1,2}, is entirely contained in either Cy or C; (bnt not in both). Note

that such a k& exists since

diam(F;, o...0 F, (A)) < L"diam(A)

< § (for sufficiently large ).

Nov., we claim that there exists a sequence {ji, ...,jk-1} C {1,2} such that the sets
Iy o0..0F, oF(A)and F, o..0F, _ oF,(A)donot both lie in the same C, for
v = 1,2. This is true because otherwise we could assume, without loss of generality,

that for any sequence {7, ...,2x-1} C {1, 2},

F,,o..0F

e -1

OFl(.A) C 01 and El 0...01’-‘,"_l OFz(.A)C 01.
But this would imply that

F.oo..0oF

1 th—1

(A) = IFH O"‘ORk—llFI(A)UFQ(A)]
= F,o0..0F,_, oF(A) U F,o..0F,_  oF(A)
c Cy,

contradicting the fact that k was the smallest integer with this property. This com-

pletes the proof of the claim.
Let us assume, without loss of generality, that

F,,o..oF

Tk—1

oFi(A)CCy and Fjo..0F,_ oF(A)C C,.
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We have

2
Fy 0o By (IR(A)NF(A)] € [ Fy oo By (F(A))
1=1
C ClﬂCQ

= 0.
This is possible only if Fi(A)N F(A)=0. &

The analysis of the connectedness of an IFS with only two contractions is considerably
simpler than that of one with three or more contractions. Indeed, from Corollary |

and Theorem 14 we obtain at once

Corollary 2
Let A be the attractor of the IFS {Fy, F3}. Then

o Fi(A)N Fy(A) =0 = A is totally disconnected.

o Fi(A)NF(A)# 0 => A is connected.

The following example exhibits the more complicated dynamics resulted by adding a

third contraction to the above IFS.

Example 4.2.1
Let

rg) = (% o)
) - (Y
F3[(:>] = (1(/)2 1(/)2)(;>+(1?2>’

where z,y € R. Let A be the attractor of the IFS { Fy, I, F3} and define the function
F: H(R?) — H(R?) by F(K) = U2, F.(K). Let K be the rectangle [ 1,1] ~ [0,1]
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(see Iig. 11). Observe that

F(K) = [0,1] x {0},
F2(K) = [—1,0] X {0}7

FS(K) = [—"1/2)1/2] X [1/2)1]

il

172

-1 -172 0 172 1

FFigure 11: Determining the connectedness of
an attractor (see Example 4.2.1).

We have F(K ) C K and hence, by Proposition 6, A C K. Alsc, by Proposition 8, the
atiractor A’ of the IFS {F,, F,} is contained in .A. Notice that the set [—1,1] x {0}
is the attractor (fixed point) of the function F’ : H(R?) — H(R?) defined by
F/(K) = F(K)U Fy(K). Therefore, A' = [—1,1] x {0} C A. We have

o F(A)N Fy(A) # 0, since
{0} = R(A)NF(A)
C F(A)NF(A) (since A C A).
o IN(A) N Fy(A) = 0, since
AN F(A) ¢ FR(K)N F3(K) (since A C K)

= 0.

Similarly,
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o [(A)N F3(A) =40.
We will show below that A is neither connected nor totally disconnected.
e A is not connected since, on one hand,
ACK = F(A)cC F(K)
= ACF(K) and F(K)is not connected,

and on the other hand, the points (1,0) and (0,1) which belong to
A (since they are the fixed points of Fy and Fj, respectively) are in
different components of F(K).

e Ais not totally disconnected since A' = [-1,1] x {0} Cc 4. ©

4.3 Attractors with other types of connectedness

Theorem 15 (See [17])

Let {F;}2, be an IFS with attractor A. Let F(K) = U, F,(K) for K ¢ 'H(R").
Suppose that there exists an arc I' C R™ such that

o I'C F(I"),

e F(T) is arcwise connected.

Then, A is arcwise connected.

Proof:
Let y and 2z be any two points in A. We have to show that there exists an arc in A

from y to 2. Notice that by Proposition 6,
F¢c¢FT)=1TIcCA

Let zo € I'. We will first construct an arcin A fromy to zy. Let {2,}52, be an address

ofy. So,y € l,,oF,0..0F (A)forallj>1 Letz, = F, oF,o0..0F (z). Now,

Tg c P C A = J:J E F” o] th 0...0 1"‘}(/1)
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Therefore, d(z,,y) < L?diam(.A) where L is the Lipschitz constant of F. This means

that z, j:go y. Now,
e zyc I' C F(IN),
e z, ¢ I (') C F(I),
e I(I") is arcwise connected.
Hence, there exists an arc I'g = zo ~ z; C F(I') C A. Next,
o z; ¢ F,,(I') C F,,(F(T)) (since T C F(I')),
o z; C I, o F\,,(T") C K, (F(T)),
e By Leinma 5, F,, (F(I')) is arcwise connected.
So, there exists an arc Ty = ¢ ~ z; C F,,(F(T")) C A. Similarly, for any j > 1,
oz, CF,oF,0..0F (I')CF, oF,o..0F(FT)),
ez, € F,oF,0.0F oF, , (I'YCF, oF,o..0F(F()),

e By Lernma 5, F,, o F, o ..o F, (F(T')) is arcwise connected.

Therefore, there exists an arc 'y =z, ~x,.1 C 5, 0 [y, 0.0 F, (F(I")) C A. Now,

consider the function v : [0,1} — A defined as follows:

v(0) =y and for all 7 >0, {
([J+2’ 7+1 )

|
We claim that v is an arc in .4 form y to zo. Indeed,

b 7(0) =

g 7(1) = To,

¥([0,1]) = {y} U, T, C A,
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e For any j > 0, the function 7 is continuous on the interval [#,j, J—:T]

and *7(;;1—5) = 2,41 € I, N T4, so that 7 is continuous on (0,1}.

We still have to show that v is continuous at 0. In other words, we need to show
that for any € > 0, there exists a § > 0 such that d(y(z),y) < ¢ whenever 0 < & < 6.
Notice that

IyCF oF,0..0F (F(T))C K o0k, o0..0kF(A)

therefore,

diam(T';) < L’diam(A) i 0

On the other hand, we showed that i, Jjo’o y where z, ¢ I';. So, we can find an

integer k such that for all 7 > &,

d(z;,y) <¢/2 and diam(T,) < €/2.

Let § = 7. So, whenever 0 < z < §, we have y(z) ¢ T, for some j > k and
therefore,
d(y(z),y) < d(v(z),z;) + d(z,,y)
< diam(1,) t d(z,,)
< € + €
2 2
= €

Hence, <y is continuous on [0,1].

Similarly, we can construct an arc in A from z to z¢ and thercfore, by Lemma 3,
there exists an arc in A from zo to z. Finally, by Lemma 4, there exists an arc in A

fromytoz. &
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Example 4.3.1

Consider the triangle ABC where A = (0,0), B = (1,0) and C = {1/2,v/3/2). Let
I, I5 and 1) denote the midpoints of the segments AB, BC and AC, respectively.
Let I' be the arc made by the union of the segments AB and AC (see Fig. 12). Now,
consider the IFS we used in Example 3.5.1 to introduce the Sierpinski gasket. We

have

e /(') is the union of the segments AD and AF,
o [%(T') is the union of the segments EF and FB,

e [%4(I') is the union of the segments CD and DE.

A

Figure 12: The arcwise connectedness of the Sierpinski gasket.

Therefore, F(I') = U, F,(T") is the union of the segments AC, AB, DE and EF.
So, I'(T") is arcwise connected and contains I'. By Theorem 15, the Sierpinski gasket

is arcwise connected. ©

Example 4.3.2

Let {I, F:, F3} be an IFS, where



F(z) = ;R so(z) + (162),
=) = é’ +(1(/]2)

for z € IR%. The attractor A of this IFS is shown in Fig. 13.

«f
& ’@g% xgﬁf\s»

-I%;'?s 45\ & m;}” !
¥ htd

Figure 13: An arcwise connected attractor.

To see that A is arcwise connected, let I' be the arc composed of the union of the

segments BD and DF (see Fig. 14). Then,
o Fi(T') is the union of the segments £ F and FG,
o [(T) is the union of the segments AB and BC,
¢ F3(T') is the union of the segments CD and DE.

Hence, F(T') = U2_, F(T') is the union of the segments AB, BD, DI and I'G and is
therefore, arcwise connected. Also, I' C F(I') so that by Theorem 15, the attractor

A is arcwise connected.

Theorem 16

Suppose that {F,}, is an IFS with attractor A. If A is connected, then il also has

property S.
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Figure 14: The arcwise connectedness of the
altractor shown in Fig. 13.

Proof:
Let F(K) = U~, Fi(K) for K € H(R") and let L be the Lipschitz constant of F.
Since A is the fixed point of F, for any k > 1 we have

A = F*A)
= U F, o..0F,(A).
1<1,<m

Now, diam(F, o ...0 F,(A)) < L¥diam(A) ;7> 0. So, given € > 0, we can choose
k so large that diam(F, o ...o0 F,,(A)) < e. Furthermore, each F;, o...0 F, (A) is
connected (by Theorem 5). Finally, since there are m* words of length k (see Remark
after Proposition 9), we have shown that A can be expressed as a finite union of

connected sets each of diameter less than €. Therefore, A has property S. &
Combining Theorems 16 and 7, we immediately get

Corollary 3

Suppose that {F\}, is an IFS whose attractor A is connected. Then, A is locally

connecled.
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Theorem 17

Suppose that {F\}]L, is an IFS whose attractor A is connected. Then, A is semi-

locally connected.

Proof:

Let z be any point in A. We would like to show that A is semi-locally connected at .
Let € > 0. By Corollary 3, A is locally connected. Thercfore, by Theorem 6, we can
write A = Uaea V(@) where V(a) is a region in A containing a with diam(V(a)) < «.
So, the collection of sets [V (a)]aca is an open covering of A. Since A is compact, soine

finite subcollection {W;i]P_, of [V(ct)]aca covers A where p > 1; that is, A = | ., W..

11
Now, z € W; for some 1 < 37 < p, and

J~1 P
A\W,=Uwu |J w.
1=1 1=3-+1
Hence, W, is a neighborhood of z with diameter less than € such that A\ W, is a

finite union of connected sets and therefore has a finite number of components (at

most p — 1). Since € > 0 was arbitrary, A is semi-locally connected al z. &

Corollary 4
Suppose that {F}, is an IFS with altractor A. Then A is connected if and only of

A is arcwise connected.

Proof:

(=):

By Theorem 8, any arcwise connected sct is connected.

(=>):
Suppose that A is connected. Then, by Corollary 3, A is locally connected and since
it 1s compact, we have that 4 is a locally connected continuum. Now it follows, from

Theorem 9, that A is arcwise connected. &
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Example 4.3.3

We saw in Example 4.3.1 that the Sierpinski gasket is arcwise connected. So, by
Corollary 4, it is also connected. Then, it also follows from Theorem 16, Corollary
3 and Theorem 17, that the Sierpinski gasket has property S and is both locally

connected and semi-locally connected. ©

4.4 Other properties of attractors

Theorem 18 (See [9])
Let A be the attractor of an IFS {F}, where F; is injective for 1 < ¢ < m. If

Fix(Fy,) # Fix(F,) for some p # q, then A is perfect.

Proof:

Suppose that Fix(F,) # Fix(F;,) for some p # ¢ and let F(K) = U, F,(K) for any
K ¢ H(R"). Let K = {Fix(F},), Fix(F,;)}. Then, since K C F(KX), by Proposition 6,

A= | F(K).

n>1
We will first show that the set A = {5, F°*(K) has no isolated point. Let A € A.

Then for some » > 1,
A € FU(K)
= U F,o0..0F

ir

(K).

1<y, <m

So, A\ € K, 0...0F, (K) for some sequence {i,}]., C {1,..,m}. Without loss of

gencerality, we can assume
A =F, o..0F (Fix(Fp)).

Now, Fix(F,) = lim,_,eo Fy"(C) for any compact set C. In particular, by continuity

of I, o...0F, , we have
Jim F, 0.0 F, o FP"(Fix(Fy)) = F,o0..0 F,.(lim F7"(Fix(F,)))
= F,l 0...0 F,'(FIX(FP))
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Note that F, o...0 F, o F2*(Fix(F,)) € F*™"(K) C A for all n > 1. This means

that A is the limit of a sequence in A. Moreover, since Fy, ..., F,, are injective, for all

n>1,

Fix(F,) # Fix(F,) = Fo(Fix(Fy)) # FM(Fix(F,)) = Fix(F,)

= F,o0..0F o F;"Fix(k)) £ F,o0...0 I (Fix(F))
= K, 0..0F, o [;YFix(f)) # M.

In other words, the sequence { F, 0...0 F, o Fg™(Fix(F,))}%, is a sequence in A which
converges to, but does not contain, A. Hence, ) is a limit point of A. Since A was
arbitrary, we have shown that A and therefore A have no isolated points. FFinally,

since A = A is closed, we conclude that A is perfect. &

Example 4.4.1
Consider once again the Cantor set, defined in Example 4.1.1. The two [unctions
Fi(z) = 3z and Fy(z) = iz + % are both injective. Also, Fix(Fy) - 0 whereas

Fix(F;) = 2/3. Hence, by Theorem 18, the Cantor set is perfect. ©

Theorem 19
Let A be the attractor of an IFS {F}*, where F, is a homeomorphsm of R* for
i=1,..,m. If Int(A) # 0, then A = Ini( A).

Proof:

(D):

Int(A) C A= Int(A) C A
= A (since A is closed).

(C):

Let z € A and let {14}, C {1,...,m} be an address of the point . This means that
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T =gz I, 0...0 F,,(A). Next, let O be an open subset of A and let z5 € @. For
every integer k > 1, let zx = F;, o...0 F,,(20). Notice that for all k& > 1,

OCA= F,0..0F,(0) C F,0..0F,(A)
c A

e Since the composition of homeomorphisms is itself 2 homeomorphism,

by Proposition 2, F, o...0 F, (O) is open.

Hence, zx € Int(A) for all £ > 1. On the other hand,

d(zx, z) < L*diam(A),

—

k—oo T

where L is the Lipschitz constant of the IFS {F,}™,. In other words, z;
which implies that & € Int(A). Therefore, A C Int(A). #

Remark: By the above theorem, when the contractions forming a given IFS are
homeomorphisms of IR™ (for instance, affine transformations with nonzero determi-

nants), the attractor A of that IFS

e cither has an empty interior (Int(A) = 0),

e or is the closure of an open set (A = Int(A)).
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Conclusion

In this exposition, characterizations and topological properties (primarily connected-

ness) of the attractor of an iterated function system were studied.

The attractor Aof an IFS {F,}]2,, where F)'s are contractions of IR™, can be connected
(e.g., the Sierpinski gasket), totally disconnected (c.g., the Cantor set) or neither one
(see Example 4.2.1). In the case of two contractions (m - 2), the attractor A is cither
connected or totally disconnected. If A is connected, then it has property S and s
both locally connected and semi-locaily connected. We also noted that the concepts of
connectedness and arcwise connectedness are equivalent for A. A sufficient condition
for arcwise connectedness of .4 is provided in Theorem 15. However, this result has
limited scope in the sense that it is only useful where A contains a segment of a
straight line; for instance in the case of the Sierpinski gasketl (sce Example 1.3.1) or

the attractor in Example 4.3.2.

To close our discussion, it is worth mentioning that the study of the connectedness
of an atiractor is still in its early stages. Indeed, as observed in Example 4.1.3, the
available methods are insufficient to decide on the connecctedness of the atiractor of

even some simple looking IFS’s.
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SET

GRAPH

PROPERTY*

1

2

3

4

5

Finite union of disjoint
intervals: (0,1) U (1,2)

v

v

Infinite union of disjoint
intervals: Upe,(n,n + 1)

The deleted comb (see
Fxample 2.2.2)

172

Union of the deleted
comb (see Example
2.2.2) with the segment

{1} x10,1]

Union of the deleted

comb (see Example

2.2.2) with the set

{(z, -nz)] — 1<z <0,
nc N}

0

172

* 1= Connected, 2= Property S, 3= Locally connected,
4= Semi-locally connected, 5= Arcwise connected.

Table 1: Connectivity properties
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