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ABSTRACT
NEURAL NETWORK APPLICATIONS IN THE CONTROL OF POWER
ELECTRONIC CONVERTERS
Allan Insleay

Attempts have recently been made to apply Neural Networks to control sysicms
where they are to deal with any modeling uncertainties that may exist. This thesis
proposes the Neural Network controller as a viable alternative to the conventional and
widely used PI regulator for the regulation of Power Electronic converters. Neural
Networks may be used to both control of and identification in a system In general, one
assumes that the mapping performed by the Neural Network can adequately represent the
system’s behavior over the desired operating range. PI regulators being designed for a
specific load or operating point, cannot compensate for any significant change in the
system parameters. This thesis presents a few applications of Neural Network control to
power converters. It shows its feasibility as a current control element in dc to dc buck
converters. Furthermore, the operation of an on-line Neural Network controller to
waveshape the input line currents and force unity power factor operation in a voltage
controlled PWM rectifier is demonstrated. Finally, for a three phase current source PWM
rectifier a Neural Network controller is used to waveshape the input line currents and
maintain unity power factor operation. For all three applications, this thesis presents
theoretical foundations of the use of Neural Network controllers and the design
considerations and guidelines for the power and control circuits. Simulation results
confirm the viability of the proposed Neural Network controller and demonstrate very

good performance.
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CHAPTER 1

INTRODUCTION

1.1 Power Converter Control Aspects

Power electronic systems are principally concerned with controlling energy.
Energy is transformed from that which is supplied from a source to that required by the
load. Power converters may be as simple as a buck regulator or as complex as a
controlled rectifier. Two typical power converter systems are shown in Figs. 1.1 and 1.2.
No matter how complex the converter, the aim of the controller remains the same, to
control a specified output or input quantity, usually by means of feedback. The
controller’s goal is therefore to sample a portion of the output or input, compare it witha
reference and generate a control signal.

The numerous converter topologies, in order to operate at specific operating
points, must have some type of controller or regulator. The function of a regulator is to
ensure the converter operation is stable. The general regulator control scheme is shown
in Fig. 1.3.

Traditional control methods, such as the PI controller, enjoy widespread use in the
regulation of dynamical systems due to their ease of design and simplicity. For some
systems however only by poor or inaccurate models are available. A regulator which
includes the ability to sense its environment, process the acquired information thus
reducing uncertainty, plan, generate and execute a given type of control action under

normal or extreme situations defines an intelligent control system. Intelligent schemes




have to deal with system complexity, non-linearities within the system as well as
uncertainties and still provide for stable operation. Learning controllers can incorporate
different adaptive algorithms, reference models or performance criteria. In addition,
intelligent controllers can be made to remember the optimum control parameters

corresponding to the various operating points of the system

QO wo

Q9 ¢

Fig. 1.1 General ac to ac power converter topology .

Control problems can be divided into two classes 1) regulation and tracking
problems, in which the objective is to follow a reference trajectory and 2) optimal control
problems, in which the objective is to find a function of the controlled system’s behavior
that is not necessarily defined in terms of a reference trajectory. Reinforcement learning
is based on the common sense idea that if an action is followed by a desired reaction or an
improved reaction then the tendency to produce that action is strengthened. Thus by
combining methods for estimating the long term consequences of actions, reinforcement

learning methods can be devised that are applicable to control problems.
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Fig. 1.2 General direct ac to dc power converter topology .

Referece

; +

(glgstuct)r —{ )—rregulator @ load
k-

variable)

feedback

Fig. 1.3 General regulator controller topology .

The NN controller, using the Backpropagation-(BPN) algorithm, uses reinforcement type

learning to self tune its parameters to allow it to follow a specified trajectory.




Since there exists substantial prior information about the various subsystems of
the control system in many practical control problem. In modeling these subsystems via
NN, it is desirable to incorporate this prior knowledge into a NN. Thus the NN may be

trained to accurately represent a plant.

1.2 Intelligent Control Schemes

Intelligent control schemes are intended to maintain closed loop performance over
a wide range of operating circumstances, taking into account the complexity of both the
plant and the performance objectives, and in the presence of uncertainty. These
complications may- arise from non linear or time varying behavior, poorly modeled plant
dynamics, imperfect measurements or other abnormal operating conditions. Each of
these effects must be addressed if the system is to operate reliably in an autonomous
fashion.

Intelligent control, using NNs for example can be applied to complex dynamical
systems. Many attempts have been made to apply NN to the control field where they
may be used to deal with non-linearities and any uncertainties that may arise within the
plant (system) dynamics [6,7,8,9,10]. In [6], an on-line NN is used to control the tracking
in an industrial drive. The controller consists of four units, a preprocessor, a classifier, a
look-up table, and a servo drive unit. Here measurements of output and input values once
classified by the NN are used to generate the appropriate signals for the proper control of
the drive. A NN consisting of time delay elements and a fuzzy logic learning method was
employed as a robotics motion controller in [8]. This technique boasted increased

learning speed and improved convergence when dealing with non-linear dynamic



systems. Another approach uses the NN as an emulator that identifies the system’s
dynamics and one as a controller that tracks the dynamical process [3]. The parameters
of both the emulator and the controller were determined via the inherent learning
properties of the NN. A NN controller was used in [9] to control the operation of an
inverter. An on-line training technique using sinusoidal currents as references forces the
output current of the inverter to track these references. It was found that the NN
controller exhibited improved characteristics when compared with conventional control
methods. In [26] An adaptive feedforward control system, including a NN emulator, was
designed for a PWM boost converter. The NN emulator was used to identify the
converter parameters and characteristics.

Current source type PWM rectifiers are used as the front end ac/dc converter in
power electronic systems. The load can be a CSI driven induction motor requiring
regulated dc current or a load operating on regulated dc voltage. Direct interfacing with
the ac mains imposes stringent specifications on the rectifier such as (a) low input current
harmonics and (b) high input power factor. In standard schemes, the current source
PWM rectifier is operated with off line pattems which result in slow transient response,
with discontinuous control of modulation index [11,12]. Also, in order to avoid current
oscillations during starting and transients, a sufficient amount of damping resistance must
be provided in the input filter circuit. This reduces the overal! system’s efficiency and
filter effectiveness [13]-[15]. These schemes control the input current oscillations by
inserting damping resistors or with complicated feedback loops. As a result the stability

region may be limited and the system requires a precise design of the control



components. NN technology has the ability to improve the control of power electronic
systems [6,9,15,16,17].
1.3 Scope and Contributions

This thesis proposes the software implementation of a NN controller as a viable
alternative to traditional control schemes particularly PI type controllers. The NN
controller while demonstrating its self tuning capabilities as well as its ability to adjust to
changes in system parameters, has been incorporated in the control of the following
power conversion systems:

(a) A dc to dc buck regulator, where the function of the NN is to adapt to
changing load conditions, where the PI controller is the traditional choice.

®) Voltage controlled PWM rectifiers, where the function of the NN is to
waveshape the input line currents, force unity power factor operation and damp the low
frequency operation of the input filter,

(c) Current controlled PWM rectifiers, where the purpose of the NN is to
obtain unity power factor operation, effectively damp the low frequency resonance of the
input filter, and inject minimal levels of harmonic current into the ac mains.

Specifically, two types of NN controllers will be considered: (a) the off line

trained and (b) the on line NN regulator.

1.4 Summary of Thesis
The contents of the thesis have been organized in the following manner. Chapter

2 provides an introduction to the concept of NNs. Also the basics of Backpropagation is

discussed with emphasis on learning algorithms and weight updating techniques.




Chapter 3 describes the application of NN regulators to the control of dc to dc
buck converters. Here, the purpose is to demonstrate the advantages of the NN controller
compared to the traditional PI controller.

Chapter 4 details the implementation of a NN controller for voltage controlled
PWM rectifiers. Here, an on line NN controller waveshapes the input line currents
forcing unity power factor operation and damping the low frequency resonance of the
input filter. Sensitivity to load and parameter variations, are investigated. System
performance is verified through computer simulation.

In Chapter 5, the NN controller is applied to current controlled PWM rectifiers.
Here the task of the NN controller is to waveshape the input line currents while
attempting to achieve unity power factor operation.

Finally, the summary and conclusions of the thesis are presented.

The appendices contain information about the software tools and methodologies
and a proposed practical implementation discussing the use of a digital signal processing
station as the controlling tool. Block diagrams of the proposed system topology are

included.




CHAPTER 2

NEURAL NETWORK TOPOLOGY AND PRINCIPLES OF OPERATION

2.1 INTRODUCTION TO NEURAL NETWORKS

This chapter presents a general overview of Neural Networks, the BPN technique
and some of its variations. The present field of Neural Networks links a number of
closely related areas, such as parallel processing, connectionnism and neural computing,
these being joined with the common goal of attempting a self learning computing system
[21]. Common to all neural network technologies is the neuron. Neurons are the
processing elements of neural networks. These simple elements are connected by a

variety of topological classes, trained by yet another class of learning algorithm.

22  BACKPROPAGATION PRINCIPLES OF OPERATION

The BPN neural network belongs to the class of feedforward networks. This
implies that information flows in one direction only - from input to output. The
multilayered feedforward neural network can learn a mapping of any complexity. The
network’s leaming of a particular pattern is based on repeated presentation of the data set.
This type of neural network has a propagate - adjust cycle allowing the neural network to
learn an entire data set. The data set is presented to the inputs of the neural network and
the information travels through the hidden layer to the output layer. This action
constitutes the propagate phase. The adjust stage entails the comparison of these outputs

to desired outputs, and the error information is used to modify the weights of the neural




network. This error BPN is the basis for the training algorithm used to train a

multilayered feedforward network.

2.2.1 BACKPROPAGATION STRUCTURE AND COMPONENTS

The BPN is one of the many existing neural network topologies. It is composed
of a number of nodes at which point computation takes place. This node or neuron is the
basic building block upon which the neural network structure is built. It is intended to

simulate a biological neuron.

input

Xl ¢ connection

& weights
w. / output
xi 1 ——

w node nonlinearity

X, bias

Fig. 2.1 Neuron model.
The neuron model of the BPN shown in Fig. 2.1 has multiple inputs and one output.
Each input flows through a connection weight w, . The output is a function of the input,

the weights, a bias term and a squashing function ( node non-linearity ) [1]-
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Fig. 2.2 General BPN NN structure.

The basic backpropagation structure is composed of layers of these interconnected
neurons as shown in Fig. 2.2. The network is made up of three distinct layers. The input
layer serves as an interface with the connecting system. It directly feeds the hidden layer
via a network of connection weights. Since the hidden layer is built from the neuron
model it takes the sum of all the inputs and a bias. This sum known as neth is then passed
through a non linear function. This result flows through the interconnecting weights to
the output layer where the summing process starts all over again. The error terms
between the desired output and the network output is calculated and used to adjust the

output weights and then propagated back to contribute to the process for all the hidden

10




layer weights. The net continues in this propagate-adjust manner until all patterns are

learned.

2.2.2 BACKPROPAGATION GOVERNING EQUATIONS

The equations governing the operation of the BPN shown in Fig. 2.2 will now be

presented. The input to the hidden layer is

2.1

N
.= L Ex
nethp i‘zi,l(whﬂ xpz) + Ghj

The weight connections between the input and the hidden layer are denoted as whij and

6hj; is a bias input. The use of the bias input is optional. These are then processed by a

squashing function
ij = th( neth i ) (2.2)
The outputs of these hidden nodes become the inputs to the output layer. Thus

(2.3)

L
netopk =j§_1(wolg. *ij) +90k

where the connections between the hidden layer and the output layer are denoted as wog;
and 6oy, is the bias input. These outputs must also be treated by a squashing function.
This results in an output of

O, = Fo, (netopk) 249

The next step will be to describe the delta update rule. The backpropagation algorithm
performs a steepest descent minimization on a surface in weight space whose height at

any point is equal to the error.

11




The error between the actual net output and the target is defined as

B, =(d,-0;)

2.5)

In order for the network to learn this error must be minimized and used in some way to

update the weights in the output layer as well as those associated with the hidden layer.

The following error is defined

and
JE Onet
Po_r -0 ek Tk
awokj pk pk o"netopk 5wo]q.
Jneto
pk Jd . .
o"wolg. —é?wo]q. ?(wo,g. Ypf+00k)
°E
p Lt -0 ) dFo, ey
2wo K pk pk”  Oneto k D

The above equation allows for a weight update rule of the following form
- * — *Fn *

wolg.(t +1)= wolg.(t) +n (Tp,c Opk) Fok(netok) Yj

letting

5opk = (Tpk - Opk) * Fok(netopk)

we have for the output layer

= * xy .
wolq.(t+l)—-wo,g.(t)+77 Jopk ij

12

(2.6)

@7

2.8)

2.9)

(2.10)

(2.11)

(2.12)




and similarly for the hidden layer

Sh_. = Fh.(neth *Z(a ) (2-13)
b = j(netpj) opk*WhIq'

whﬁ(t+l)=whji(t)+r]*5hpj*Xi ~ (2.14)

where the derivative of the squashing function is needed for both the hidden layer as well
as the output layer. Here we can see the algorithm's dependency upon the error terms
computed for the output layer as well as the hidden layers. The above described
equations are a basis for the following study of some modifications on the generalized

delta rule backpropagation networks [20].

2.3  BACKPROPAGATION ALGORITHMS

The backpropagation algorithm is a popular technique used to find the optimum
weights of multilayer networks. The algorithm learns slowly and tends to converge to a
solution slowly as well. The performance of the backpropagation algorithm is sensitive
to many initial parameters. Thus it is not possible to guarantee a successful outcome.
Some of the parameters that the BPN is sensitive to are the initial weights, the initial
biases, the learning rate, momentum, the steepness of the slope of the activation function

as well as is type etc. Here, five independent learning algorithms are discussed.

2.3.1 GENERALIZED DELTA RULE USING SIGMOID FUNCTION

The generalized delta rule as previously described is implemented using the

sigmoid function as the node non linearity. The equation for the sigmoid is

13




1 (2.15)
l+exp(—s*x)

F(x) =

where s is the slope steepness constant [21]. The derivative of the sigmoid function is
required in terms of the output of the network and is as follows

oy L s*exp(—s*x) (2.16)
F(x)—(1+exp(—s*x))2

which can now be transformed into a more useful representation in terms of the output of

the net as

F'(x)=s*F(x)*(1- F(x)) @.17)

The weight update equations using the delta rule become

wokj(t+1)=wolg.(t)+%77*5ok *ij (2.18)

wh(t +1) = wh,(t) +Zn*Sh *x, (2.19)
J

where
o is the output of a node (i.e. hidden layer node or output layer node)
and the deltas are the error signal vectors for a specific layer
dok = s(target-output)output(l-output)

Shk = sij (1- ij ) X (bok wok )

2.3.2 GENERALIZED DELTA RULE USING TANSIGMOID FUNCTION

The generalized delta rule as previously described is implemented using the

tansigmoid function as the node non linearity. The equation for the sigmoid is

14




3 l—exp(—s*x) (2.20)
Flx) = l+exp(—s*x)

where s is the slope steepness constant [21]. The derivative of the tansigmoid function is
required in terms of the output of the network and is as follows

' 2*s*exp(-s*x) 2.21)
F(x)=
(1+ exp(—s* x))?

which can now be transformed into a more useful representation in terms of the output of

the net as

F'()=3*(1-F(x)?) @22
The weight update equations using the delta rule become
wolg.(t+1)=wo,q.(t)+%q*5ok *ij (2.23)
whi (e +1) = wh (1) + Zn*5h; *x, (2.24)

J
where the error terms will have new forms

o is the output of a node (i.e. hidden layer node or output layer node)
Sok = s/2(target-output)(1 -output2 )

Shk = s /2(1- i) X (Sok wok )

2.3.3 VARIABLE SLOPES METHOD USING TANSIGMOID FUNCTION

There exists an optimal value of s (slope constant) for each node thus allowing the
algorithm to converge after a short number of iterations. Since it is not possible to

calculate these optimal values apriori, they must be determined adaptively. This implies

15




that the error should be minimized with respect to the slopes. Using the tansigmoid as a

node non linearity.

l—-exp(—s*x) (2.25)

1+exp(—s*x)

F(x,s)=

where s is the slope steepness constant [21]. The derivative of the tansigmoid function

required in terms of the slopes is as follows

Fx'(x, s)= % *(l ~F? (x, s)) (2.26)

' 2.27
Fs (x,s)=§*(1—F2(x,s)) (2.27)

The gradient of the error will be minimized with respect to the slopes. Where ¢ is the

target vector and o is the output of the net

E=2*S(~0) (2.28)
3(E) 0(E), a() (o) (2.29)
() 8@ () 2(s)

300 (2:30)
a(s) E\'(x's)

o) 1 (2.31)
d(0) F;(x,s)

2(E) o(E) *(F;(x,s)) (2.32)
d(s) ~ a() \F(xs)

The weight update equations remain unchanged however the slope equations for both the

hidden layer and the output layer will get updated using the delta rule as follows

16




A(See+1)) =Sce)+ B*(a(Sc1)))+ p*(S(t)-S(r-1))

where

4(8) = J(E) J2(E) *(F;(x,s))

3 (s) IO F.(x,s)

if the node to be updated is an output node then

F,(x,s))

F,(x.s)

A (S)=(t—o)*(
if the node to be updated is a hidden node then

A(S) = Fy(x,9) D60k * Woly)

(2.33)

(2.34)

(2.35)

(2.36)

where the values of beta and rho in equation 2.33 are between 0 and 1. The slope update

equations are the only steps added to the generalized delta rule [21]. The computational

complexity is increased slightly since now the term As must be computed as well as the

derivatives with respect to the siopes.

2.3.4 SATURATING LINEAR SOFT LIMITING ALGORITHM

This technique uses a different type of node non linearity. It is defined as follows

f (x)={1 if x<—1-}
)
f(x)={sx if|x|<§}

f(x)={—1 ifx<'—1}
Y

The function has the form shown in Fig. 2.3.
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input

-1 4

Fig. 2.3 Saturating soft limiter function.

The derivative of the saturating linear soft limiter with respect to the net output is

S (o 5)={s if x|<=1/s } (2.40)
S s)={e if | >1 /s } (2.41)
The derivative of the saturating linear soft limiter with respect to the slope is

£ (x5)={x if s<=|1/x| } (2.42)
fi (x.5)={e if s>1/x } (2.43)
This technique is similar to the variable slope method previously described. Each node
will have its own slope associated with it. This allows for the slopes to approach near
optimal values, since they will be adapted at each iteration. The slopes are adapted using

the delta update rule.
(S(z + ) = S(t) + B*(A(S()))) + p* (S ~ St - 1)) (2.44)

where the value of As for an output node is

A(S) =t -0)*(F, (x.9)) (2.45)

if the node to be updated is a hidden node then

18




A(S) = F'5(x,8) D (60t * Wiy (2.46)

The weights are updated in the following manner

(wet+1)) = wie) + B*(a (w(r)))+ p*(w(t) - w(t-1)) (247)
if the node to be updated is an output node then
Alw) = (Fx'(x,s)) *(t-o) (2.48)

if the node to be updated is a hidden node then

AW = F'(x,5) (0t * Woig) (2.49)

where the values of beta and rho are between 0 and 1. The slope update equations are the
only steps added to the generalized delta rule. The computational complexity is increased
slightly since now the term As must be computed as well as the derivatives with respect

to the slopes [2].

2.3.5 ADAPTIVE LEARNING RATE

The information used by the backpropagation algorithm is based on local gradient
information. This forces the learning rate to be a small value so that the step size doesn't
allow the algorithm to jump to undesirable areas of the weight space. The idea is to have
the learning rate be large enough to move quickly across plateaus in the error surface and
decrease as a minimum is approached. The delta bar delta algorithm does just this. It
makes use of gradient information to increase or decrease the learning rate. When the

gradient
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3 (E) (2.50)
5,=
$ 9 (WJ)

has the same sign for many iterations the rate is increased and it is decreased when 5ij

flips signs for several steps. We have the following rule.

n; (e+D)=n; (1)+4an,; () (2.51)
where
Anij={x if 8y (t+1)*&3(1) > 0} (2:52)
Anij={-¢*nij Gjj(1+1)*&y(t) <0} (2.53)
Anij={0 otherwise} (2.54)
and

5, @)=(1-6)*s, ))+6*5, (t-1) (2.55)

The actual values for x;, ¢, and 8 are quantities specific for each application. They are in

general small values between 0 and 1 [3].

2.4  ALGORITHM PERFORMANCE COMPARISON

The structure of the network for the comparison of the different algorithms was
kept the same. It consists of three layers, the input layer, the hidden layer, and the output
layer. The input layer and the output layer contain 25 neurons each. The hidden layer
contains 15 neurons.

The performance comparison took a network used for data compression and
changed the learning algorithms. Five different techniques were implemented, each

resulted in a different performance.
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First, the size of the network’s layers affects the system performance, if the input data set
is too large, and the number of hidden neurons too small, the network may not converge.
For example, in the basic generalized delta rule algorithm, if the number of hidden
neurons is six, the network cannot learn more than three different patterns. Here “learn”
implies that the network has the ability to store and recall all the patterns shown. Now, in
the network used for the performance comparison test, there are 25 input, 25 output and

15 hidden neurons, therefore the network has the ability to learn more patterns as shown

in Table 2.1.
Table 2.1
The Number of Patterns Learned by Different Algorithm
ALGORITHM # OF PATTERNS LEARNED
Generalized Delta Rule 5
Tansigmoid 9
Variable Slopes Tansigmoid 13+
Saturating Linear Soft Limiting 9
Adaptive Learning Rate 9+

From Table 2.1, for the same network size, it is seen that the Variable Slopes Tansigmoid
algorithm has more learning capacity than the others. The convergence of the network is
sensitive to the initial weights (for all the algorithms). The initial weights are the starting
point of the network on the error surface. If the starting point is near or tends to a local
minima, then the network may not converge. It could get stuck at this local minima.
Therefore, the choice of the initial weights is very important. In this network (for all the

algorithms) the initial weights are set randomly to small values between -0.5 and +0.5.
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Here, trial by error is applied, as the network converges, the initial weights are used for
the next run, thus reducing the convergence time.

The performance of a given algorithm is evaluated based on least mean square
(LMS) vs epoch. An epoch is defined as a presentation of the entire data set to the
network. The quantity to be minimized during training is the mean squared error over the
entire data set given by
E, = éE; 2.56
This requires that the weights be held fixed during an epoch and only one updated per
epoch. The weights are minimized in the direction of minimizing equation 2.6. The
weights are updated after each presentation and the error is calculated for the set. The
network is said to have converged after this error is within acceptable limits. The

simulations, were run using Matlab 4.0 on a Sun Sparc 1px station.

Table 2.2
The Comparison of LMS and Epoch of Different Algorithm with 9 Patterns

ALGORITHM LMS(goal) EPOCH
Generalized Delta Rule Tansigmoid 0.3 1400
Variable Slopes Tansigmoid 0.3 320
Saturating Linear Soft Limiting 0.3 575
Adaptive Learning Rate 0.3 75

22




140

1204
LMS
21 \N

0 —_ .,

0 400 800 1200 EPOCH

Fig.2.4 Generalized delta rule tansigmoid learning algorithm.
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Fig. 2.5 Adaptive learning rate.
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Fig. 2.6 Tansigmoid learning algorithm.
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Fig. 2.7 Variable slope tansigmoid learning algorithm.
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Fig. 2.8 Saturating linear soft limiter learning algorithm.

Table 2.2 shows the error and epoch values for four different algorithms with nine input
patterns. It can be seen from the data that the adaptive learning rate algorithm is the
fastest to converge at 75 epochs. The adaptive learning rate algorithm starts with a high
value of error in the beginning and decreases rapidly Fig. 2.5.

The variable slopes tansigmoid algorithm was the next at 320 epochs Fig. 2.7.
This technique has a nice smooth curve indicating minimal bouncing back and forth
while searching for the minima. The generalized delta rule tansigmoid and the saturating
soft limiting algorithms are the longest to converge at 575 and 1400 epochs respectively,
Fig. 2.4 and 2.8. Their curves are similar however the saturating linear soft limiting is a
little less stable as opposed to the generalized detla rule tansigmoid and the variable
slopes tansigmoid. This may be due to the continuity of the derivative in the tansigmoid
case as opposed to the saturating linear soft limiting. The variable slopes tansigmoid
converges much faster than the saturating linear soft limiting. They are similar in that

both have variable slopes, however we observe a much smoother curve for the tansigmoid
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variation. Since for saturating linear soft limiting algorithm the derivative is either a
value near zero or a function of the ramp. Whereas in the variable slopes tansigmoid
algorithm there is a more gradual change from the slope to the plateau section of the

tansigmoid function.

08 +

neurory
slope

0214

0 100 200 Epoch on output layer

Fig. 2.9 Slope in one neuron vs. epoch on output layer.

1.2 1

0.9+

neuron
slope

0.31%

100 200 Epoch on output layer

o

Fig. 2.10 Slope in one neuron vs. epoch on hidden layer.
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The variation of the slopes, for the variable slopes tansigmoid algorithm, in the hidden
layer is shown in Figs. 2.9 and 2.10. It is seen that as the error begins to decrease, the
slopes start from their initial random values and increase as the network approaches it's
error goal. This shows that the algorithm adapts the slopes to make the network learn
faster. Since as increased slope values tends to make the tansigmoid function appear as a

hard limiter, which helps in the convergence process.

2.5  CONCLUSIONS

Differences exist among the different topologies and operation of the NN, but the
neurons fundamentally operate in much the same manner. The BPN training algorithm
allows experimental acquisition of input / output mapping knowledge within multilayered
networks. Once an input pattern has been applied to the nodes on the input layer of a
three layer network, the information is processed and propagated to the hidden layer and
on through to the output layer to generate an output pattern. This output pattern was
compared to the desired output pattern thus generating an error signal. This error signal
was then used to generate appropriately scaled error signals at each layer. The weights on
the output layer were adapted using the error information. The error signal was modified
and then employed to adapt the hidden layer weights. This process of comparison of
output and target values continued until all patterns in the data set were learned to within
the specified error. The classical algorithm known as the generalized delta rule suffers
from the fact that most of the parameters governing it's learning rate, momentum, slope
bias etc. are fixed and thus cannot contribute during the learning process. The simulation
results presented here show that significant improvements in the backpropagation
algorithm are possible. The tested modifications are worth while in that convergence
time is reduced through some parameter adaptation (other than weight update) or node

non-linearity.
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CHAPTER 3

REGULATION OF DC TO DC BUCK CONVERTERS

3.1 _INTRODUCTION

This chapter proposes the neural network controller as a viable alternative to the
PI controller used in dc to dc converters of the buck type for voltage regulation. The PI
controller, although robust and simple, requires a priori knowledge of the system
characteristics and once designed for a specific load, its parameters remain fixed. The
neural controller, in the on line mode has the ability to learn from experience, thus
eliminating the need for a priori knowledge of the system dynamics. The neural network
can adapt to variations in the load, and still allow the system to track a specific reference
without redesign. Performance comparisons made with the standard PI regulator clearly

show the neural network regulator as a viable alternative.

3.2 SYSTEM REQUIREMENTS

The main goal of this section is to show that the NN controller is a viable alternative to
the PI controller. The various proposed regulator topologies are depicted in Figs. 3.1 -
3.4. The remainder of this chapter will be organized in the following manner. Section
3.2 will describe details of the implementation of the BPN algorithm. Section 3.3
provides simulation results of the proposed regulator schemes and finally, conclusions are

summarized in Section 3.4.
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Fig. 3.2 Off line training method.
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Fig. 3.4 On line NN regulator.
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33 IMPLEMENTATION

The BPN shown in Fig. 3.2 will perform the least square minimization based on
equation (3.1). This performance index will generate the update rules for the weights.

The steepest descent gradient search will be applied to (3.1) to compute an update rule for

the output layer weights.
: 2 3.1
E=;'(vref -vout)
JE ( ) 3V out (3.2)
Bvoy Vow S0 Jnet (3.3)
dw, - d0 .o"net'o"wo
SE ( ) Es F ()i (3.4)
aw— Vref—vo 'v ' . net ‘Ij
carrier
JE (3.5)
w (t+l)=w (t)+
oj oj ow .
9
2 (3.6)
l Es
E—Z- Vref_o y '
carrrier
70 30 Jdneto Fij 3 neth (3.7)
ﬁwh —ﬁneto. aij .5neth'5wh
JE ' (3.8)
——=F(nel)-xj-z,5o.-w )
a"wh i 0
JE 3.9)

whj(t +1)= whj(t)+ S
hj
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These equations show that some knowledge of the system is needed in order to

completely define the weight update rules.[5]
34 RESULTS

A typical DC to DC buck topology was designed to operate at a frequency of 2
kHz a DC bus of (V) 380 V and rated power of 8 kW into a 0.8 Q load Fig. 3.5. The
converter was controlled in turn by each of the three previously discussed regulators. The
three controllers were subjected to step changes in the reference voltage shown in fig.
3.6. It can be observed that the PI controller always exhibits similar overshoot response
for each step change in the reference. The off-line trained NN has similar characteristics,
whereas the on-line NN controller has minimal overshoot and fast dynamic response.

Table 3.1 illustrates the performance characteristics of each of the three regulators.

\
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Fig. 3.5 Dc to Dc buck converter system.

32




100
PI

)

On-Line NN

601 Off-Line NN

voltage

201

0 5 10 15 20 25 30 time (ms)

Fig. 3.6 Response to step changes in the reference voltage
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TABLE 3.1

Performance Indices Evaluation

CONTROLLER % overshoot % overshoot % overshoot

TYPE start up at 70V at 90V
PI 5 9.71 4.79
off-line NN 2 89 235
on-line NN 1.68 0.7 1.6

Each regulator performed to the best of its ability however, their physical
limitations were reached when the load was dropped from its initial value of 0.8Q to a
value of 0.1Q and then increased to double its original value. Their responses are shown

in Fig. 3.7.

The system with the on-line NN in place was tested with the natural frequency
held constant while the damping ratio was varied. The training time is defined as the
settling time of the output response. It may be observed from Fig. 3.8 and Table 3.2 that
once the on-line NN has acquired a base value for its weights during start up, its response

to subsequent variations in the reference is rapid and dependent of the load connected.
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Fig. 3.7 Response to step changes in load resistance, P1, Off-line and On-line NN
controllers.
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TABLE 3.2

Training Time Evaluation For on-Line NN

load load load
r=0.4Q r=0.8Q r=1.6Q
start up 3.2mS 2.3mS 1.8mS
11% step down 3.4mS 2.4mS 2.3mS
25% step up 1.4mS 1.3mS ImS
100
80 }
\ on-line NN
R=0.4
60 L on-line
NN
Rl?0.8
on-line
vo(l\t/a)ge NN
R=1.6
20
0 LI LI 4: L) L] LB
0 5 10 15 20 25 30 time (ms)
Fig.3.8 Training times for On-line NN controller.
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Fig. 3.9 Frequency response R=0.8Q2 a) PI controller, b) Off line NN controller

¢) On line NN controller

The bandwidth of each system was tested and their response is shown in Fig. 3.9.
They were fed with a reference upon which a sinusoidal signal was overlaid. The
frequency of the sinusoid was varied from 100Hz to 1kHz. The bandwidth of the PI
controller in general is restrained by the cut-off frequency of the design which is
dependent on the resonant frequency of the system. The off-line trained NN has a
bandwidth similar to that of the PI controller. Whereas the gain of the on-line NN is near
unity throughout all the test frequencies. Furthermore, these bandwidth figures change

substantially with load for the PI and the off-line NN but not for the on-line NN.
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3.5 CONCLUSIONS

The simulation resuits show that the NN controllers offer stable response and
good output regulation. The buck system is linearized about a single operating point to
complete a PI controller design. The training set for the of the off-line NN was based on
this design. Its training was lengthy and dependent upon the size and the quality of the
data set. However good results were obtained. The on-line NN required the least effort
in terms of design time and provided the most accurate and uniform results under
changing load conditions. Finally, the NN offers fast dynamic response and enhances the

performance of DC to DC buck converters over the conventional PI regulated converters.
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CHAPTER 4

VOLTAGE CONTROLLED PWM RECTIFIER

4.1 INTRODUCTION

This chapter proposes a NN implementation for a voltage controlled PWM current
source rectifier, used as a general purpose dc voltage source. The simplest method of
operating three-phase PWM rectifiers is based on the use of off-line PWM patterns.
However, in this scheme the input power factor may be less than unity since it varies with
the rectifier operating point due to the presence of the input LC filter. Furthermore, the
response to transient conditions is slow and large current oscillations may occur due to
the resonance of the filter. Here an on-line Neural Network controller, is proposed to
waveshape the input line currents, force unity power factor operation and damp the low
frequency resonance of the input filter. The proposed controller is insensitive to
load/parameter variations thus resulting in a robust system. The performance of the

proposed NN controller is verified through simulation.

4.2 POWER CONVERTER AND CONTROL REQUIREMENTS

Current-source type PWM rectifiers are used as the front-end ac/dc converter in
power electronic systems (Fig. 4.1). The load in Fig. 4.1 can be a CSI driven induction
motor requiring regulated dc current or a load operating on regulated dc voltage. Direct
interfacing with ac mains often imposes stringent specifications on the rectifier such as:

(a) low input current harmonics and (b) high input power factor. In standard schemes, the




current-source PWM rectifier is operated with off-line patterns which result in slow
transient response, with discontinuous control of modulation index [11],[12]. Also, in
order to avoid current oscillations during starting and transients, a sufficient amount of
damping resistance must be provided in the input filter circuit. This reduces the overall
system’s efficiency and filter effectiveness. Recently, on-line pattern generators have
been proposed [13]-[15]. In these schemes the control of input current oscillations is
achieved by inserting damping resistors or using complicated feedback loops. As a result
the stability region may be limited and the system requires a precise design of the control
loop components. Preliminary investigations have shown that NN technology has the
potential to improve the control of the power electronic systems [5,6,9,15,16,17]. A NN
controller is proposed as a means to solve the problems introduced by non-linearities in
the power converter topology, and to obtain a rugged controller. NNs have self adapting
capabilities which makes them well suited to handle non-linearities, uncertainties and
parameter variations which may occur in a controlled plant.

In this chapter, the task of the NN controller is to waveshape the input line currents of the
PWM rectifier. The input line currents of the rectifier are controlled in a closed loop
fashion. The purpose is to obtain unity power factor operation and effectively damp low
frequency resonance of the input LC filter. Also very low levels of harmonic current are
injected into the ac mains and fast response to transient conditions are obtained. The
overall system is robust since, the NN has self organizing capability and is insensitive to

load/parameter variations.
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43 PWM RECTIFIER SYSTEM EQUATIONS AND OPERATION

The voltage source and the current source PWM rectifiers including the power
section is shown in Fig. 4.2 and Fig. 4.3. The rectifier system shown in Fig. 4.4,
comprises the system upon which the control is based. The rectifier is described by the

following differential equation:

& 4 X+BU
o A X+ B @.1)
where;
T

X=[1, 1, 1, V. V. V. I, V., *-2)
u=[y, v, v. 0 0 0 0 0o (4.3)
p [l 1] @

ol [0l

where Ij; = line currents, V= filter capacitor voltages, Jjgc = dc inductor current and
Vedc=dc capacitor voltage. As can be seen from the Appendix C, matrix A includes time
varying parameters (S7 , S2 , S3). These are the line-to-line switching functions that
dictate the shape of the input rectifier current. The gating signals of each switch must
satisfy the typical requirements of a current-source rectifier. The gating generator is not
shown in Fig. 4.4 and is discussed in [15]. Also, it is seen that the state variables of the
system include inductor currents and capacitor voltages. Since, the three capacitor
voltages are not controlled directly, the input currents may oscillate. However, a tight

control over the inductor currents with minimal damping resistance in the filter circuit
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can effectively damp these oscillations. The NN controller provides this necessary
control. The control circuit consists of (a) the NN current controller for generating the
current pattern and (b) a standard dc loop for output voltage regulation. Alternatively,

output current control can be implemented for the outer loop.

44 THE NN CONTROLLER

The NN structure is shown in Fig. 4.5. Each neuron in the back propagation
neural network (BPN) has multiple inputs and one output. Each neuron's output is a
function of the input, the weights associated with that layer, a bias term and a node
activation function. The NN consists of three distinct layers. The input layer, which is
used to establish connection points to transfer the input signal to the nodes in the hidden
layer. A hidden layer which begins the learning process and an output layer continues the
learning process and provides outputs.
Once the signal ¢j flows through the connection weights associated with the hidden layer
(Wh) it is combined with a bias term (B) and fed through the node non-linearity. This
signal becomes the input to the output layer, (/; ), flowing through connection weights
(Wo), to be combined with bias term (B,) and then processed by the output layer to

provide the gating signals to the rectifier.
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The equations associated with the signals flowing from each layer to the next are:

Ij =f(WTh, ’€T+BTh) (4.5)
0, =f(W", -1" + BT,) (4.6)
where, J; = the input to the output layer, O; = the output of the NN, f = the sigmoid non-

linearity, ej= the input to the hidden layer and Bj= bias term for each layer.
Gradient descent minimization is used to optimize the weights on each layer such that the

output of the NN will approach the desired trajectory. Thus the error between the target

and the net output will be minimized. The weights associated with each layer will be
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updated using the following equations:

W, =W, + n-Gy -€ 4.7)
W, =W, +n-0, 1 (4.8)
where, wy = weight on the input layer, e = error between the reference current and the
measured current (iref - imeasured)> 1= learning rate, Jpj = error signal term associated
with the hidden layer, W, = output layer weights, /; =output of the hidden layer (i.e. input
to the output layer) and, &, = error signal term associated with the output layer of the net
and the desired target. The control objective of the NN structure will be to provide the

required gating to force the PWM rectifier to have a constant output dc voltage while

maintaining unity power factor on the input side.

4.5  THE PATTERN GENERATION SCHEME

The target pattern generation scheme is based on the ramp comparison technique
and is described by:

if e ) carrier Target =1 (4.9)
else Target =0

The output of the NN is continuous and follows the targets defined above. It must be
digitized to obtain the necessary gating signals for the rectifier, resulting in near constant

switching frequency. The digitized gating pattern is the output of the NN passed through

the hard limiter given by:
if 005 O0=1 (4.10)
else 0=0
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4.6 THE DC VOLTAGE REGULATION LOOP

A standard voltage loop with a PI regulator is used initially to vary the output
voltage according to the load demands. The characteristics of the PI regulator and the
limitation of the performance of the proposed scheme are discussed in the next section.

An alternative design will also be presented.

4.7  DESIGN CRITERIA

In this section, the effect of different control parameters both inside and outside
the NN controller on the performance characteristics of the PWM rectifier is studied. The
dq transformation is used as a tool to transform the ac values to dc values in the rotating
(dqo) frame tied to the ac mains. This enables one to observe and study the step response
of the system more clearly. In each case the output dc voltage and the q-axis current are

shown. The d-axis current (not shown) is zero, since unity power factor is achieved.

4.7.1 NUMBER OF NEURONS IN THE HIDDEN LAYER

The number of neurons in the hidden layer was chosen considering the
convergence time. The NN for the control scheme shown in Fig. 4.4 required a minimum
of two for neurons in the hidden layer, while that shown in Fig. 4.11 needed a minimum
of 18 to achieve good results. Fig. 4.6 indicates that increasing the number of neurons
does not necessarily improve the convergence time. The effect of number of neurons on
the step response of the system design with the PI regulator is depicted in Fig. 4.7. Itcan
be seen that the transient response of the system is not significantly affected by an

increase in neurons.
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be seen that the transient response of the system is not significantly affected by an

increase in neurons.

4.7.2 OUTPUT PI REGULATOR

The dc voltage loop regulates the output voltage according to the load demands.
The voltage loop uses a PI to vary the amplitudes of the current references. These
currents are then compared with the actual line currents and the three current errors are

the input to the NN controller.

1000 \\
N —— -
7501 / /
without PI with PI

number of
iterations

250 +

0 t :
0 10 20 number of neurons
Fig. 4.6 Effect of number of neurons on the convergence time, ac current control.
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The PI regulator was designed based on the overshoot in the step response of the system.
The three phase ac currents are transferred to the rotating frame to show the effect of the
PI components more clearly. It is seen that increasing the proportional gain or reducing
the time constant of the PI may result in a oscillatory system (Figs. 4.8, 4.9). The Pl is
designed to obtain satisfactory response time and limited overshoot during transient

conditions.

4.7.3 DAMPING RESISTORS

The system under consideration always needs a minimum damping especially for
low modulation indices. This fact is obvious from Fig. 4.10. Where the damping
resistors are decreased, current oscillations appear for low modulation index operation.

The damping required is the same as that in reference [15].

4.74 ALTERNATIVE DESIGN

An alternative design is to replace the PI regulator with another input to the NN
controller. The overall system is shown in Fig. 4.11. The new NN block has four inputs
and four outputs and is shown in Fig. 4.12. The fourth output of the net (O ,) obtains the
input current amplitude reference required to achieve the demanded dc voltage. This
design requires more neurons in the hidden layer for the algorithm to converge (in this
case 18). The effect of number of neurons on the number of iterations was shown in Fig.

4.6.
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4.8 RESULTS

4.8.1 STEADY STATE

The starting and steady state performance of the PWM rectifier with NN
controller is shown in Fig. 4.13. The rectifier has a better starting and a wider range of
operation as compared to [15]. The controller provides good tracking of the reference
waveforms and unity power operation is achieved. The input displacement factor as a
function of rectifier operating point is shown in Fig. 4.14. For the purpose of comparison
the case of a rectifier with off-line SPWM pattern is also included. This figure clearly
shows that the proposed NN controller provides unity displacement factor over its entire
operating region. The harmonic distortion of the input line current is very low. This
means that the overall input power factor remains near unity. The frequency spectra of
the line current and switching function (S,) are depicted in Fig. 4.15. It is seen that the

dominant harmonic is around the switching frequency (2160Hz).

4.8.2 DC BUS TRANSIENTS

The response of the system is studied under various transient conditions. The
reference dc voltage is changed from 100V to 200V while in another step the load
resistance is doubled. The results for the two designs shown in Figs. 4.4 & 4.11 are
shown in Fig. 4.16. The NN controller successfully replaces the PI. The proposed
rectifier exhibits excellent transient response. There are no low frequency oscillations in

the currents due to the closed loop control. Power factor remains near unity.
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4.9 CONCLUSIONS

An on-line Neural Network is proposed to waveshape the input line currents of a
PWM rectifier and provide unity power factor operation. The Neural Network obtains a
robust system since it is insensitive to load/parameter variations. Low frequency
resonance of the input filter is effectively damped through closed loop control. Excellent
steady state waveforms and a fast response to transient conditions are obtained.

Theoretical considerations were verified through simulation.
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CHAPTERS

THREE PHASE CURRENT SOURCE PWM RECTIFIER

5.1 INTRODUCTION

This chapter presents a NN implementation of a current controlled current source,
to be used as a front end for a current source inverter in applications such as adjustable
speed ac drives. Three-phase current source PWM rectifiers are generally operated with
off-line PWM patterns. This results in non-unity input displacement factor and possible
large inrush current due to the presence of the input LC filter. Moreover, the input
displacement factor is dependent upon the operating point and response to transient
conditions is slow.

The overall system is robust since, the NN has self organizing capability and is
insensitive to load / parameter variations. Therefore the task of the NN controller is to
waveshape the input line currents of the PWM rectifier. The input line currents of the
rectifier are controlled in a closed loop fashion. The purpose is to obtain unity power
factor operation and effectively damp low frequency resonance of the input LC filter

without the insertion of damping resistors.




52 POWER CONVERTERS AND CONSTRAINTS

Current-source type PWM rectifiers are used as the front-end ac/dc converter in
power electronic systems (Fig. 5.1). The generalized three phase current source PWM
rectifier system is shown in Fig. 5.2, and the three phase PWM voltage source rectifier is
shown in Fig. 5.3. Direct interfacing with ac mains often imposes stringent specifications
on the rectifier such as: (a) low input current harmonics and (b) high input power factor.
In standard schemes, the current-source PWM rectifier is operated with off-line patterns
which result in slow transient response, with discontinuous control of modulation index
[11]. Also, in order to avoid current oscillations during starting and transients, a
sufficient amount of damping resistance must be provided in the input filter circuit. This
reduces the overall system’s efficiency and filter effectiveness. Recently, on-line pattern
generators have been proposed [13]-[15]. In these schemes the control of input current
oscillations is achieved by inserting damping resistors or using complicated feedback
loops. As a result the stability region is limited and the system requires a precise design
of the control loop components. Preliminary investigations have shown that Neural
Network (NN) technology has the potential to improve the control of the power electronic
systems [6,7,17,18,19]. A NN controller is proposed in this paper as a means to solve the
problems introduced by non-linearities in the power converter topology, and to obtain a
rugged controller. NNs have self adapting capabilities which makes them well suited to
handle non-linearities, uncertainties and parameter variations which may occur in a

controlled plant.
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5.3 DESCRIPTION OF THE PROPOSED PWM RECTIFIER

5.3.1 SYSTEM EQUATIONS AND OPERATION

The complete rectifier system is shown in Fig. 5.4. The control circuit consists of
the NN current controller and a NN current loop for output current regulation. The NN
current loop is used to vary the amplitudes of the current references. The current
template is obtained from the capacitor voltages. This results in effective damping of the
input currents during starting and transients. Thus the damping resistors (Ry) in the filter
capacitor branch are considerably reduced as shown in Table 5.1. Hence the overall
efficiency is improved. However, since there is a phase shift between the capacitor
voltages and the ac mains Fig. 5.5, the power factor at the source will be less than unity.
The power factor will decrease as the current increases, since the angle between the
capacitor voltage and the ac mains increases. Therefore, a phase shift is necessary to
improve the power factor, especially for high load currents. The required phase shift
depends on the rectifier operating point and the filter components and is given by the
following equation:

(01,1, 5.1)

yn1)
m m

tang =
(

where V), = phase voltage amplitude, R = line resistance and L = line inductance and I,=

line current amplitude.
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Fig. 5.5 Phasor diagram and reference axis of the modulating signal.

5.3.2 CONTROL OF THE LOAD CSI
To simplify the analysis the motor CSI operates with an off-line SPWM gating

pattern and a fixed modulation index (0.91 in the design example).

5.3.3 THE NN CONTROLLER

As shown in Figs. 5.4 and 5.6 there are six inputs to the NN Unity Pf. Control
Circuitry block. Three of the four inputs to the NN are current errors while the fourth is
the actual dc link current. The control objective of the NN structure will be to provide the
required gating to force the PWM rectifier to have a constant output dc current while

maintaining unity power factor on the input side. The derivation of the current template
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is shown in Fig. 5.6. Note in particular the implementation of the modulating signal

gating signals

phase shifter.
I
Ve /? ac actual
/
+
phase ac current NN
shifter template _ i/ps 1,2,3
b
I
dc ref
i'p4
+ PI
[
dc actual
Fig. 5.6 NN unity power factor control circuitry, software implementation.

The NN structure is shown in Fig. 5.7. Each neuron in the back propagation neural

network (BPN) has multiple inputs and one output. Each neuron's output is a function of

the input, the weights associated with that layer, a bias term and a node activation

function. The NN consists of three distinct layers. The input layer, which is used to

establish connection points to transfer the input signal to the nodes in the hidden layer. A
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hidden layer which begins the learning process and an output layer to continue the

process and provide outputs.

hidden layer output layer
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Fig. 5.7 NN structure, input and output current control.

Once the signals from the inputs flow through the connection weights associated with the
hidden layer (Wp) they are combined with a bias term (Bp ) and fed through the node
non-linearities. These become the inputs to the output layer, /; , flowing through

connection weights (¥, ) to be combined with bias term (B, ) and then processed by the
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output layer to provide the gating signals to the rectifier. The equations associated with

the signals flowing from each layer to the next are:

1; = f(W7s, -e" + BT4) (5.2)

7

0; = (W™, - 17+ BT,) (5.3)
where, /; = the input to the output layer, Oj = the output of the NN, f = the sigmoid non-
linearity, ej = the input to the hidden layer and B; = bias term for each layer.
Gradient descent minimization is used to optimize the weights on each layer such that the
output of the NN will approach the desired trajectory. Thus the error between the target
and the net output will be minimized. The weights associated with each layer will be
updated using the following equations:
W, =W, +1 -ﬁ,,l -e; (5.4)
w, =W, +1:4, -1, (5.5)
where, wy = weight on the input layer, e = error between the reference current and the
measured current (iref - imeasured), 71 = learning rate, 6y = error signal term associated
with the hidden layer, wp, = output layer weights, /; = output of the hidden layer (i.e.
input to the output layer) and , dy;j = error signal term associated with the output layer of
the net and the desired target.
5.3.4 THE PATTERN GENERATION SCHEME

The target pattern generation scheme is based on the ramp comparison technique

and is described by:
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if e > carrier Target =1 (5.6)
else Target =0

The output of the NN is continuous and follows the targets defined above. It must be
digitized to obtain the necessary gating signals for the rectifier, resulting in near constant

switching frequency. The digitized gating pattern is the output of the NN passed through

the hard limiter given by:
if 0>050=1 (5.7)
else 0=0

These NN outputs (shown in Fig. 5.7) are the phase switching functions. The actual
switch gating signals must be obtained generating the line to line pattern and adding the

short circuit pulses to ensure a path for the dc link.

5.4 DESIGN EXAMPLE AND RESULTS

5.4.1 DESIGN CONSIDERATIONS

The system is designed for a 15 kVA motor drive operating on a 3 phase, 208 V,
60 Hz ac mains. A common 2 kHz switching frequency is used, suitable for IGBT switch
technology. The rectifier input filter is designed to yield a line current THD of less than
5% in a conventional design with a break frequency of 347 Hz. The dc bus filter inductor
yields a dc bus voltage THD of less than 5% [4]. The NN parameters are the result ofa
compromise between computational time, convergence and accuracy [6]. The design

characteristics are summarized in Table 5.1.
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542 STEADY STATE

The steady state performance of the PWM rectifier with NN controller is shown in
Fig. 5.8, with rectifier input current, motor current and input / output terminal voltages.
The controller provides good tracking of the reference waveforms and unity power
operation is achieved, the output inverter operates with a fixed modulation index of 0.91.
The frequency spectra of the input / output waveforms are depicted in Fig. 5.9 and
medium switching frequency operation is achieved (1980 Hz) for both input and output
converters. The effects of dc link current regulation on the input current total harmonic
distortion and on the input displacement factor (IDF) are shown in Fig. 5.10. The cases
of a rectifier with off - line SPWM pattern and an on - line controlled PWM rectifier
without the phase shifter are included. It is seen that the IDF is always near unity for the
proposed scheme but is very low for the off - line pattern (compare curves i and iii in Fig.
5.10). The effect of the phase shift introduced in the modulating signal is not significant
for low dc link currents, it results in a deviation from unity at higher current demands
(curve ii in Fig. 5.10). The THD of the input line currents for these three schemes are
also shown in Fig. 5.11. The proposed system always obtains unity power factor within

the limitations of the power circuit, which is dictated by the input filter.

543 DYNAMIC BEHAVIOR

The response of the system is studied under various transient conditions. The
output dc current is increased by 50%. The system responds, Fig. 5.12, within a quarter
of a cycle (4 ms). The proposed rectifier therefore exhibits excellent transient response.

This is confirmed by the 200 rad/s bandwidth, Fig. 5.13 corresponding to a response time
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of about 5 ms. This compares favorably with a high performance analog implementation.
There are no low frequency oscillations in the currents due to the closed loop control.

Power factor remains near unity, even under transient conditions.

200
motor
0 -
motor
-200
200
0
-200 , : N . ‘ ;
20 22 24 26 28 30 32  time (ms)
(b)
Fig. 5.8 Steady state performance, (a) Motor current, I, (A), motor voltage

Voo (V) , (b) DC link current I, (A), input line voltage V, (V), reference
current I (A) and rectifier input current I (A).
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TABLE 5.1

DESIGN PARAMETERS

Rated Inputs Line voltage, V, 208V
Line current, I, 69.4 A
dc inductance, L, SmH
RECTIFIER Input filter capacitance, C; 300 uF
Input filter inductance, L 0.7 mH
Input filter damping resistance, R; 0.1Q
Input line resistance, R, 0.05Q
Switching frequency, F,, 1980 Hz
Inductance, L 1.2 mH
INVERTER MOTOR Capacitance, C 200 uF
Resistance, R 095 Q
Switching frequency, F,, 1980 Hz
PI gain, k 0.25
CONTROLLER PI time constant, T 0.001
number of hidden layers 1
18

number of neurons in hidden layer
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Fig. 5.9 Frequency spectra, a) Rectifier input current, b) CSI output current,

c) Input rectifier phase voltage, d) CSI output phase voltage.
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Fig. 5.12 Transient response of the system to a step increase of output dc current of

50 %, dc bus current [, (A), input phase voltage V_(V), line current I, (A).

82




3 o
10 0 X
2 : X
10 X
10 T
Gain ’ Phase
1 — -
X
-1 ]
10
- 0
10 2 L -360
5 S
1 10 1 10
Frequency in rads/s Frequency in rads/s
Fig. 5.13 Closed loop frequency and phase response of the rectifier dc current loop
system.

83




5.5  CONCLUSIONS

An on-line Neural Network was proposed to waveshape the input line currents of
a PWM rectifier and provide unity power factor operation. Theoretical considerations
were verified through computer implementation. Low frequency resonance of the input
filter is effectively damped through closed loop control. Excellent steady state
waveforms and a fast response to transient conditions are obtained, while low levels of
harmonic current are injected into the ac mains. The Neural Network results in a robust

system insensitive to load / parameter variations.
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CHAPTER 6

SUMMARY AND CONCLUSIONS

6.1 SUMMARY OF THE THESIS

Power converter control aspects and intelligent regulator schemes were reviewed.
Chapter 2 outlined the overall concept of Neural Networks. The basics of
Backpropagation was discussed with emphasis on learning algorithms and weight updating
techniques. Performance evaluation of the various training algorithms were discussed.
Chapter 3 described the application of NN regulators to the control of dc to dc buck
converters. Here, the purpose is to show that the NN controller is a viable alternative to
the traditional PI controller. Chapter 4 demonstrated the implementation of a NN
controller for voltage controlled PWM rectifiers. The on line NN controller waveshaped
the input line currents forcing unity power factor operation and introducing damping of
the low frequency resonance of the input filter. The proposed controller insensitivity to
load and parameter variations was investigated. In Chapter 5, the NN controller was
applied to current controlled PWM rectifiers. The task of the NN controller was to
waveshape the input line currents while attempting to achieve unity factor operation.
Appendix A discusses a possible experimental setup to test the behavior of the NN
regulator. The setup requires a TMS320C30 DSP module a PC and acquisition and

interface hardware. The hardware system and the software flow chart are outlined.




6.2 _ CONCLUSIONS

A control system that treats every distinct operating point or situation as a novel
one has limited performance capabiliies. @~Whereas a system that correlates past
experiences with past situations, and that can recall and exploit those past experiences is
capable of learning. Learning control schemes operate by optimizing over a relatively
large set of parameters to construct a mapping that captures the plant’s peculiarities
throughout the desired operating range.

The NN controllers used are composed of three layers an input, a hidden and an
output layer. Each layer has its own specific purpose. The input layer receives its
information from the normalized input vector, the hidden layer sees these weighted inputs
and processes them based on an activation function. These weighted outputs are then sent
to the output layer to pass through a similar activation function to become the output of
the NN.

The supervised learning models which are introduced in Chapter 2 have the
capability to adapt to system changes and create their own knowledge base about system
dynamics. Supervised control is employed to ensure that the NN is trained on a data base
that contains the correct control signals. When the NN controller is to be trained to
accurately represent or replace a system, the input data content and supervision of its
training are essential. The target output vector informs the NN controller that it is on
track or that it is not. The target vector is chosen to provide system stability. The NN
uses this vector to make the necessary changes to its parameters so that it may accurately

track. The NN controller attains its degree of knowledge primarily due to the amount of
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supervision during training. This implies that a richer data set will permit a more complete
training.

In this thesis, the NN controller is applied to various power converter topologies
and found to be a viable alternative to the traditional controllers particularly of the PI type.
The input training vector is based on an entire range of operating points of the Buck
converter. The NN controller is trained from this input vector to reproduce the
performance of a PI controller. It is found that the number of neurons necessary in the
hidden layer, for the NN controller varies from 2 to 18, as the system complexity
increases. As system complexity increases, the amount of information required in the
input vector to accurately represent the system also increases. The NN controller was
found to provide excellent steady state dynamics as well as fast response to transients to
varying loads.

It is demonstrated in Chapter 4 and in Chapter 5 that the NN controller has the
ability to generate appropriate control signals for the converter. Low frequency resonance
of the input filter is effectively damped. It was able to maintain near unity power factor
and provide excellent transient response.

Although the NN controller seems, at first glance to be a versatile and possibly
ideal controller for most applications, its practical implementation is quite involved. It
requires complex algorithms that must be resolved quickly. This requires the use of heavy
computational engines such as DSPs. The expense of a DSP system and the amount of
programming necessary to produce a complete system may not be warranted for relatively
simple systems. However the combination of the desirable properties of traditional control

techniques and NN show great promise as to the direction of intelligent control.
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63 SUGGESTIONS FOR FUTURE WORK
The use of the proposed NN regulator topology could be implemented using the
proposed practical implementation discussed in appendix A. If more than one variable has

to be controlled, the implementation of a parallel control system may be examined.
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APPENDIX A
PROPOSED PRACTICAL IMPLEMENTATION

A2 IMPLEMENTATION DESCRIPTION

The Texas Instruments TMS320C30 DSP evaluation module was selected to
implement the Neural Network controller shown in Fig. A.1. The TMS320C30 is a 32-bit
digital signal processor having four levels of pipe lining and capable of performing floating
point, integer and logical operations. The TMS320C30 has 2K words (32-bit) of on-chip
memory (4K words of ROM in the microcomputer mode) and a total addressable range of
16 million words (32-bits) of memory containing program, data, and input/output space.
Separate program, data, and direct memory access (dma) busses enable the TMS320C30
to perform concurrent read and write, plrogram fetches, and DMA operations. The
TMS320C30 has a 60-nS instruction cycle time, with most instructions requiring only a
single cycle. Hence it can execute 16.6 million instructions per second. Furthermore,
because many of the instructions can be performed in parallel, such as load with store and
multiply with add, the TMS320C30 effectively can execute up to 33.3 million instructions

per second.

BUCK
CONVERTER

4 HIMH D -

w

v

Fig. A.1 System block diagram.

The basic elements of the block diagram of Fig. A.1 are the NN controlier and the

dc to dc converter. The experimental setup requires many components. Figure A.2 shows




that in order to effectively regulate the dc to dc buck converter with a NN controller it is
necessary to have a pc, a DSP board, an analog interface board and the power system
itself. The purpose of the pc is to provide the end user with and interface from which
control information can be entered and displayed, as well as a host for the TMS320C30.
The analog to digital interface board is used to sample the data and to provide the correct
signal levels for the TMS320C30.

: Output : Load
[ Filter '
S/ ' AV ]
I Lf I
_— ; .
vde () T 3 Co | voi | LOAD
——e i
oo =
serial to
parallel
T ,
DSP 44D
TMS320C30 2 D/A

1L
I
| C3 7
| = e [l —
! N [ | ref, dc
i 3 [N — f
k _A-V’/ s
Fig. A2 The complete system including all necessary hardware and DSP interface.

The output voltage is sampled, and fed to the analog to digital interface board
which is then used to regulate the output. Thus the power section is controlled by the
duty cycle parameter d, which is generated within the DSP. The flow chart of Fig. A.3

details the user interface. The user inputs the reference voltage and the operating
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frequency through the pc interface to the DSP common memory locations. At this point
the system is setup and ready to go. The user will observe the parameters changing on the
computer display. The flow chart of Fig. A4 is the watch dog of the over sofware
system. It ensures that the proper variables have been initialized and enables the timer
systems. It then checks to see if any control parameters have been changed and responds

accordingly.

Main program running
inte the TMS320C30
Program running CQ
into the PC interface y
- variables !
- timers
install executable - A/D converters
file into TMS320C30 - serial port |
y
linearize complex
ey i
y
enable TIMER 0 (send Sw)
& TIMER 1 (sample,duty cycle
calculation and update)

modify parameter

into DSP common
area memory
'y
r v
end update data
Fig. A.3 User interface flow chart Fig. A.4 DSP initialization and user

interface protocol flow chart
The heart of the software control lies in the timer systems. They are set up in such

a way that timers 0 and 1 operate independently to control the operation of the dc to dc
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converter. Timer O has the relatively simple task of controlling the output of the duty
cycle d, to the serial port while timer 1 takes the rest. Timer 1 must sample the output dc
voltage, compute the error signal between it and the reference voltage, and compute the
duty cycle 4 and store it in a memory location. The error signal is fed into the NN
controller. It is here that the bulk of the computational time is spent. The NN generates

the duty cycle d, updates the weights and tests to ensure that the overall error is within the

desired boundary.
Sampling Routine
Timer 1
(oeon)
y
! sample dc voltage
v .
ol
4 =
. cous error Sending Routine
Timer 0
(_begn )
y
normalized input to NN store new period
TIMER 0
y
NN computation . ! 20
error verification
. i y
NN weight v send to serial 0 |
new gating signal |
1 |
PI controller \
PI=Pl+ K- Emor |+ K pEmor ) ( ed )
duty cycle update
d =4d
k+1 k
y
end

Fig. A.5 Sample and NN routine flow chart  Fig. A.6 Gating signal sending flow chart
routine
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APPENDIX B

MICROSOFT QUICK BASIC IMPLEMENTATION

B.1 Software Implementation of NN Buck Regulator

The following appendices contain example source code for the implementation of
the NN Buck Regulator. Section B.2 shows the system while it is in the learning stage.

Section B.3 shows the system in recall mode.

B.2 _ Microsoft Quick Basic Implementation Training Mode

DECLARE SUB tri (t!, y!)
DECLARE SUB PARAMETERS ()

NN PARAMETERS; NUMNRONS = 15

DIM THETAHONNUMNRONS), WO(NUMNRONS), WH(NUMNRONS), SLOPEH(NUMNRONS)
DIM DDELTAH(NUMNRONS), NETHINUMNRONS), DSHINUMNRONS), DELTAH(NUMNRONS)
DIM DELTASLOPEH(NUMNRONS), ZIPONUMNRONS), SLOPEHOLD(NUMNRONS)

//BIAS AND WEIGHT DEFINITIONS

FOR J =1 TO NUMNRONS; THETAH(J)=(2 *RND -1)* .5, WH()) =(2*RND - 1) * .5;
WO(J)=(2*RND - 1) *.5; SLOPEH(J) =RND * .1;
NEXT J

THETAO =(2 *RND - 1) * .5; SLOPEO = RND * .1; NETO = 0; ETA = .02; BETA = .02; RHO = .02;
Probe$ = "Y";
X()=0;X(2)=0;DX(1)=0; DX(2)=0

OPEN "BASIC.DAT" FOR OUTPUT AS #1
PRINT #1, 121228; PRINT #1, "TITLE"; PRINT #1, "IL", "VC", "tri", "D", "E", "NETO"; PRINT #1;

//ISET UP THE INITIAL CONDTIONS FOR EACH PARAMETER
KP = 1; KI = 888; ES = 100; R = 10; LF = 24 * .001; C = 10.55 * .000001; FS = 1000
VC = 0; VREF = 40; UOLD = 0; EOLD = 0; stp = .00001

//SUB TO INITIALIZE THE RUNGE KUTTA FUNCTION

CALL PARAMETERS

FOR L =1TO 3000; t=stp * L; TIME =t; E = VREF - VC,

GOSUB PI;, CALL tri(t, y);

IF U >y THEN; D = 1; ELSE; D = 0; END IF;

GOSUB RKQ; IL = X(2);, VC = X(1);

PRINT #1, TIME; " “ IL;" ", VC," ",y;" ";D;" "JE;" ", NETO
EOLD =E,;

NEXTL;
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FORJ=1TO 10; LMS=1; WHILE LMS > 001# L=L + [;
t=stp *L; TIME =t; E = VREF - VC,
GOSUB PI;, CALL tri(t, y);
I[FU>y THEN; D = |; ELSE; D =0; END IF;
GOSUB RKQ;
IL = X(2); VC = X(1);
PRINT #1, TIME; " “; IL;" "; VC," “y;" ";D;" ", E;" ", NETO
EOLD =E; ENN=1;
WHILE ENN > .001#;
GOSUB NN; ENN = (VC/ES) - NETO;
GOSUB ERRCALC; GOSUB WEIGHTADJUST; GOSUB SLOPEADJUST; WEND;
LMS = ENN * ENN/ 2; WEND; NEXT J,
CLOSE #1;
IF Probe$ = "Y" THEN;
CLS : LOCATE 10, 10: PRINT "Executing Filter ..."
SHELL "PSPICEDV.EXE BASIC.DAT"
CLS : LOCATE 10, 10: PRINT "Calling Probe... "
SHELL "PROBE BASIC.TXT"
END IF; END;

B.3  Microsoft Quick Basic Implementation Recall Mode

//RECALL THE WEIGHTS AND TEST THE PERFORMANCE OF THE ON LINE NEURAL NET
DECLARE SUB tri (1!, y!); DECLARE SUB PARAMETERS ();

OPEN "BASIC.DAT" FOR OUTPUT AS #1;

OPEN "c:\qb45\dat\WI1C.DAT" FOR INPUT AS #2;

OPEN "c:\qb45\dat\W2C.DAT" FOR INPUT AS #3;

OPEN "c:\qb45\dat\B1C.DAT" FOR INPUT AS #4;

OPEN "c:\qb45\dat\B2C.DAT" FOR INPUT AS #5,

PRINT #1, "121228"; PRINT #1, "TITLE"; PRINT #1, "IL", "VC", "TRI", "E"; PRINT #1,;
//SET UP THE NN PARAMETERS

NUMNRONS = 30;

DIM WI(NUMNRONS); W2(NUMNRONS); BIINUMNRONS); B2(NUMNRONS),
DIM NETH(NUMNRONS); DSHINUMNRONS);

DIM DELTASLOPEH(NUMNRONS); ZIPONUMNRONS); SLOPEHOLD(NUMNRONS);
J=1; DO UNTIL EOF(2); INPUT #2, W1(J); I =] + 1; LOOP;

J=1; DO UNTIL EOF(3); INPUT #3, W2(J); J =J + 1; LOOP;

J=1; DO UNTIL EOF(4); INPUT #4, B1(J); J=J + 1, LOOP;

INPUT #5, B2; CLOSE #2; CLOSE #3; CLOSE #4; CLOSE #5;

//ISET UP THE INITIAL CONDITIONS

Probes - "Y"

//P1 CONTROLLER CONDITIONS

KP = 1; KI = 888;

/ICIRCUIT PARAMETERS

ES = 100; VREF = 40; VC = 0; VCN = 0; X(1) = 0; X(2) = 0; DX(1) = 0; DX(2) = 0;
R = 10; LF = 24 * .001; C = 10.55 * .000001; FS = 1000; stp = .00001;

t=stp *L; TIME =t; E= VREF - VC,

GOSUB PI, CALL tri(t, y);

IF U>y THEN; D = 1; ELSE; D = 0; END IF,

GOSUB RKQ; IL = X(2); VC = X(1); EOLD = E;

//THIS PART WILL USE THE NET INSTEAD OF THE P1

IF L = 1 THEN; X(1) = 0; X(2) = 0; DX(1) = 0; DX(2) = 0; END IF;

E = (VREF - VC) /ES; EN=E;
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GOSUB NN; U= NETO * ES; CALL tri(t, y);
I[F U>yTHEN,; D = 1; ELSE; D = 0; END IF;
GOSUB RKQ; IL. = X(2); VC =X(1); NEXTL;
//ADD A SHORT AS THE LOAD
R=1; FORL =2001 TO 4000; t = stp * L; TIME =t; E = (VREF - VC)/ ES; EN = E;
GOSUB NN; U= NETO * ES; CALL tri(t, y);
IF U>yTHEN; D=1; ELSE;D =0; END IF;
GOSUB RKQ; IL = X(2); VC=X(1); NEXTL;
//ADD A STEP CHANGE IN THE REF VOLTAGE
R =10; FORL = 4001 TO 6000; t=stp * L; TIME =t; E = (VREF - VC)/ES; EN = E;
GOSUB NN; U= NETO * ES; CALL tri(t, y);
[FU>yTHEN; D=1;ELSE; D=0; ENDIF;
GOSUB RKQ; IL = X(2); VC=X(1),
NEXT L; CLOSE #1; IF Probe$ = "Y" THEN;
CLS : LOCATE 10, 10: PRINT "Executing Filter ..."
SHELL "PSPICEDV EXE BASIC.DAT"
CLS : LOCATE 10, 10: PRINT "Calling Probe... "
SHELL "ps BASIC"
END IF; END;
//SUBROUTINES COMMON TO BOTH PROGRAMS
RKQ:
FOR Ind% = 1 TO 10; WSC(Ind%) = 0; NEXT Ind%; FOR Jnd% =1TO 4
GOSUB DERIV; FOR Ind% = 1 TO 2; ZZ = A(Jnd%) * (DX(Ind%) - B(nd%) *
WSC(Ind%)); X(Ind%) = X(Ind%) + stp * ZZ; WSC(Ind%) = WSC(Ind%) + 3! * ZZ -
C(Ind%) * DX(nd%); NEXT Ind%; NEXT Jnd%; RETURN;
DERIV:
DX(1)=X(2)/C-X(1)/®R* C), DX(2) = (ES/LF) *D - X(1) / LF; RETURN;,
PI:
U=UOLD +KP * (E - EOLD) + (KI / 2) * (E + EOLD) * stp; UOLD = U; RETURN;
NN:
FOR I = 1 TO NUMNRONS; NETH(I) = WH(I) * D + THETAH(I);
//GET THE LIMITED VALUE FOR THE HIDDEN NODE
DSH(I) = SLOPEH(I) * NETH(I); NETH(I) = (1 - EXP(-DSH(D))) / (1 + EXP(-DSH(I))),
//IGET THE OUTPUT NODE VALUES
NETO = NETO + WO() * NETH(I); NEXT I, NETO = NETO + THETAOQ; DSO = SLOPEO *
NETO; NETO = (1 - EXP(-DS0)) / (1 + EXP(-DSQ)); RETURN;
ERRCALC:
//ICALCULATE THE ERROR TERMS
DELTAO = ENN * (1 - NETO * NETO) * SLOPEO/ 2;
FOR I = 1 TO NUMNRONS;
DDELTAH(I) = .5 * SLOPEH(I) * (1 - NETH(I) * NETH(I));
DELTAHQ) = DDELTAH(I) * WO(I) * ENN; NEXT [; RETURN,;
WEIGHTADJUST:
/[UPDATE THE HIDDEN AND THE OUTPUT LAYER WEIGHTS
FOR I = 1 TO NUMNRONS; WO() = WO(Q) + ETA * DELTAO * NETH(I);
WH() = WH(Q) + ETA * DELTAH(I) * D; NEXT I; RETURN;
SLOPEADJUST:
DELTASLOPEO = (SLOPEO/ 2) * ENN * (1 - NETO * NETO); FOR I = 1 TO NUMNRONS;
ZIP() = ENN * WO(T); DELTASLOPEH(I) = ZIP(T) * (SLOPEH(I) / 2) * (1 -
NETH() * NETH(I)); NEXT I, IF DELTASLOPEO <= .02 THEN,
DELTASLOPEO = .002; END IF; FOR I =1 TO NUMNRONS; [F DELTASLOPEH(I) <= .02
THEN; DELTASLOPEH(I) = .002;END IF, NEXT I; SLOPEO = SLOPEO + BETA *
DELTASLOPEO + RHO * (SLOPEO - SLOPEOLD); SLOPEOLD = SLOPEO; FORI =1 TO
NUMNRONS;
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SLOPEH(I) = SLOPEH(I)+BETA* DELTASLOPEH(I)+RHO* (SLOPEH(I) - SLOPEHOLD(D));
SLOPEHOLD(I) = SLOPEH(I); NEXT I; RETURN;

SUB PARAMETERS
SHARED A(), BO, CQ, stp; A(l) = .5: A(2) = .29289322# A(3) = 1.70710678#: A(4) =
.1666667#; B(1) = 2!: B(2) = 1!: B(3) = 1!: B(4) = 21; C(1) = .5: C(2) = .29289322#: C(3) =
1.7071678#: C(4) = .5; stp = .00001; END SUB;

SUB tri (t, y)
SHARED FS; TS = 1 /FS; DIV = INT(t/ TS); tt = t - (TS * DIV1); SELECT CASE tt;

CASEOTO1/(2*FS);y=(Q0*2*FS*tt)-10; CASE1/(2*FS)TO 1 /FS;
y=-(20 * 2 * FS * tt) + 30; END SELECT; END SUB;

APPENDIX C
CONTROLLED RECTIFIER SYSTEM MATRIX

The matrix A in the differential equation describing the controlled rectifier system shown
in Fig. 4.2. is given by:

(Rl + Rf) (Rf '51)
e — 0 0 1 o] 0 -_— 0
L L
(Rl + Rf) (Rf Sz)
0 - 0 0 1 0 0
L L
(Rl + Rt‘) (Rf 53)
0 0 - 0 0 1 0
L L
1 $y
- 0 0 0 0 0 - 0
(o] C
A= 1 SZ
0 - 0 0 0 0 - 0
C C
1 S3
0 0 - 0 0 0 - o
C C
S;-R ) (S - R ) (S R )
( 1'% 2 7y 2 7r) s s, s3 -R !
—————-(sl+sz+s3) -—
L L L L L L L L
dc dc dc dc de dc de dc
1 1
0 0 0 0 0 0 — -
C R C
- dc dc dc

where: R, = line resistance
R = filter resistance in the capacitor branch
L,C = ac side components
L. ,Cac = dc side components
S; = line-to-line switching function
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