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This studv addresses itself to the development of a tgéph{ng—

- 3
learning scheme for first degree equations in one unknown and to the

examination of the way in which students think about and undergtand the

concepts involved, during the actual teaching process.

' W
r

. . - . '
The teaching-learning schgmé?igesed on learning theories of

ﬁiaqet, Sgeffe, Hérscovics, and Bruner, attempts to guide the student
/“{: c;nstructinq meaning for thé new algebraic foim (an equation)} on the

basis of his existing arithmetic knowledge by introducing "arithmetic
identities" and transforming them (by hiding a number) into equation;.
It focuses on three main ébnstrugtions: extending the notion of the
equal sign, cons£rhctinq meaning for the concept of equation, con- |
k;trUCtinq meaning fog the rule, "Do the same thing to both sides."’
(Solution processes are beyond the scope of this study).-

The methodology used, a versiop of the Soviet "tearhing experi-

ment," studies teaching and learning processes simultaneously. Six
14

students of various abilities from grades 7 and 8 are interviewed' .

N ‘ f
jndividually. The two sessions with each subject are audio-taped and

transcrihed completely for purposes of analysis. The analysis, which

comprises the majo} part of this thesis, examines the subjects'

2
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- . » . \ . ,
* thinking about the copcepts,,focuses on their reactions to the pre-

[

. .

on, compares their fésponses (both written andAverbgl).'and

f
/

presents common thinking patterns. . '
o > r /

. 7 The an%l&?is shows that all subiects are able to construct mean-

.

iﬁg for the concepts iﬁvolved. Unexpected, results lead to a‘new

perspective of .the operationaf’naturé of-the students' thinking. .

-
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‘ ‘ INTRODUCTION ‘ .

I
a0
Having been a mathematics teacher at the secondary level for eight

~

years, a department head, and also a consultant at the elementary level,
I thought, as I was beginning this study, that I knew many of the peda-
v {f N

_ gogical. problems associated with both the'teaching and the learning of

" school mathematics. However, having spent a year and a half on this

-

L ]

project, I can now say that I am only just beginning to become aware of
the enormous dimensions of these problems.? *E%
The difficulties that junior high school children can experience

in tryving to understand certain algebraic concepts,-which Ig*;ve in the
. . . !
past sometimes taken for granted-as being simple or even trivial,

proved not only to be greater than expected but also included problem

2 v

areas which had never occurred to me before. One of the more glaring

examples of this was the demand that I had often placed on my former

spudents to manipulgte algebraic expressions without having provided
b

them with the means to construct sufficient underlying mearing not only ’

for the formal language but also for the concepts involved. .
Havind acquired, as a result of doing this research, a neﬁ aware-

nesshpf the cognitive problems faced by jugior high school students

with resvect to algebra, I feel stfbnqlv about sharing it with cher;i

'

Thus, it is hoped that this thesisjmav shed some light on both, the

4 N

teaching and learning of equations and Qill help other teachers, as I

have been Helped, so that togéther we may work towards making algebra
\ ‘

\

&
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'wore meaningful for students.

lauthor). . ' ' .

-0f equation and the use of algebraic symbolism. An evaluation of some

to thesg difficulties is included.

Following is an ovYerview of each chapter of this thesis. (N.B.
Whenever the pronoun "we" is used in the thesis, it refers to the
Chapter I points,out the widespread learning difficulties- experi-
enced by many high school students with algebra. Recent research is ° -

cited which shows that they have problems understanding both the concept

factors (i.e., textbook approaches and teachers' notions) contributing

s

4

Chapter II introduces the theoretical framework used in developing

an alternate approach to the teaching of equations. These theoretical

considerations relate the construction of meaning to Piaget's theory of

)
equilibration, describe the various modes of understanding involved, \\

- ~
relate these modes of understanding to Bruner's modes of representation, ™~

..

and describe the teachinag-learning model "Didactic Reversal."
Chapter TII suggests a teaching-learning scheme for first-degree

equations in one unknown based on the theoretical notions described in

the previous chapter. The teaching-learning,scheme focuseg on three :
. .
basic cdnstructions: extending the student's notion of the equal sign,

constructing meaning for the concept of equation, constructing meaning -

.
L]
N

for the rule, "Do the same thing toc both sides." !
Chapter TV describes the methodology and procedures used in the
study. .This includes an examination of several research qethodologies

and the justification for choosing the Soviet "teaching experiment' as

the methodology most appropriate for this investigation. The chapter

- .
T
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contgins also a description-of the procedures

subjects and in &arrying out the experiment, .

’question? which were presented to the subject

. / 5
Chdpter V analyzes the protocols of the

.

the six subjects. It presents an examination

. ) R
followed in selecting the

including a list of the

14
s dufing the study.
individual interviews with

of the way in which each |

learner was thinking about the new material during the actual teaching

.

process. It also provides a ‘comparison of th
responses of the students involved,‘includinq
common thinkimg patterns which emerged.

Chaptexr VI presents'% summary (of the f

©

e written and verbal

a description of the

irst four chapters), draws

conclusions (both experimental and general), and suggests some peda—h
¥

gogical implications and areas for further research.

2 s e it
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STATEMENT OF THE. PROBLEM e

This chapter attempts to identifyv the pedagogical problems '
. N .

. involved in the teaching and learning of the conceot of equation at the

' -
junior high school level 1doKing at spomé recent research studies,
=\ . ‘ LW *
teachers' notions and teadhinggyethod%, and current textboq} presenta- 2
&5 .
tions. . : -
Y ’ ©

Some Research Findings

Leading mathematics eéuc&tors have drawn our attention to the
existence of serious pedadgogical problems involved in fﬁe introduction of
algehra. Easley has pointed out that "there are many high ;chool
students for whom the study of algebra presents immense learning prob-
lems ... many children don't understand the meaning of equations."l f
Davis has also referred to the q;gaé ;ognitiVE demands involved in the
understanding of eauations.2 However, little research has been done in

this area. As Weaver and Suydam have 6oknted out, "Rarely was there

related research (on meaning and uhderstandinq)'within the context of

f

‘
“

l =z
Jack Easlev, personal communication, Fehruary 20, 1979,

v

2 . cas
Robert R. Davis, "Cognitive Processes Involved in Solving
Simple Algebraic Equations," The Journal of Children's Mathematical
Behavior, Vol. 1, No. 3 (Summer, 1975), p. 27.
- ey . *
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: secbndarv-school mathematics."” This has been confirmed by our computer
" - . > . cog
search of the research lﬁferature. '

-
3

\ . Among theé fewfstudleq done on the SUb1ect is one by Wagner whlch
points out the widespread learning difficulties experienced by high
.* school students in understanding the concept of equation.2 As part of -

the research for her doctoral dissertation, Wagner presented 72 indi-

vidual students with two equations, -

' W 7TXw+22=109 and 7 x n + 22 = 109, <o ‘
N . . . ! ' . \ k
. and asked whicﬁ?solution would he larger, w or n. Some.of the answers

. ., -
AN

! she received included, "the solution of the first .equation is greater

A , ’
than the second one because w.comes later than n in the alphabet”;

. - o -

- G 3
"Mecan't tell until both equations are solved"; "of course, the solution
- . L A

e

is the same." 'A student who responded that hoth solutions would -

/ . .-
necessarily be theswsame was said to "conserve eguation,

whereas a

- student who believed that either w or n would be larger was clasgified - s
as a-*nonconsegver of eauation." Fiftv percent of the l2-year-olds and

twenty percent of the l7-year-olds interviewed did not "conserve  equa- ¢ i

g

tion." These results point out the difficulties that many students have
| !

with one of the very bhasic notions in algebra. . /‘ .
ot ' In another study done in Nottingham in 1975, D. E. Firth tested, {\
L /; \ ) . ,
17 pupils, aged 14 and 15 vears, on their ability to handle the symbolism \ .
T 1

J. F. Weaver and M. N. Suydam, Meaningful Instruction in Mathe-
matics Education (Columbus, Chio: ERIC Center for Science, Mathe- !
. matics, and Environmental Education), 1972, EDN68329%, p. 2.

. zqfarld Wagner; “Conservation of Eguation, Conser‘gtlon of Func-’
i . tion, and Their Relationship to Formal Operational Thinking,"
Unpublished dbctoral dﬁssertation, New York University, 1977. y

.
. A °

tw



of alqebra.1 one of the questions he asked was:

\ . X is anv number
' . - . ] ~ " ! “
a) Write the number which is 3 more than x ...
b) Write the number which is 5 less than X o
N " ¢) Writerthe number which is twice as big as x ...
d) Write the number which is 50% bigger than x ... .

e

4 1 . 1
The percentages of wrong answers were 41%, 35%, 47% and 59%

respectively. It is interesting tc note that .in part a) five of the
seventeen pupils had each chosen a varticular value for x and had given
- an answer three biagger than the value chosen. All five continued to use

the same value for the remaining three parts oﬁ the qgestion. The

results of this study would seem to indicate that mahy“students have
o . ,

A
very little grasp of algebraic symbolism and that they also lack con-

fidence in the use of algebraic terms.

Because there have been so few studies done which focus oﬁ the .

! student's understanding of algebraic concepts and his meaning for sym-

) bols, very little is known ' about how students learn, do, and understand
{ . ) . ’ )
f algebra. As a result, teachers very often underestimate the learning ;

difficulties encountered by students beginning the study of algebra.

R They also have some misconcentions about the thinking and understandings
I ] - L. . :
which students bring with them into high school. .

-

/ . .
Some Commeofi Misconceptions . . S

L N ////é;e such miséonception centers on the student's notion of the '
» - . -

aning of the equal sign. That pupils interpret’ symbols differéntl§ ’

.

L3

Pl

/////f ' lD. E. Firth, "A Study of Rule Dependence in Algebra Unpublished

g M. Phil. thesis,’ University of 'Nottingham, 1975. o

] I

| £ ‘ -
¢
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a

. from adults has been shown by Ginsburéjl From his work with younger

children, he points out that children's understanding of symbols refers
to actions: Children do not view 3 + 5 = 8 as an arithmetic equival-

qncé/but rather operationally as their reading "3 and 5 make 8"

N
indicates. ARcarry—over from this is evidenced amaong many seventh and

' -
L}

eighth graders who cénsider that the right hand ézhe of such éritﬁmetic
statements is for the answer only‘.2 \

Another study déne ianrenoble. France, by Laborde (1978) alsoi
bears wikness to‘t%e operational nature éf the thinking ;f 12 and 13
vear olds. Ldborde found‘ﬁhat students preferred to express the re}a-
tiom "n est le nombre de chiffres'de.a" in the.form “Ohén& on compte les
chiffres. qui forment le n;mbfe a, on obtiént n."3 This obvious prefer-
ence'of the pupils for a "dynamiq" rather than a "static" expression of
the relationh is explained in the following-way by Laborde: . "a et n ne
sont plus inéépendents du temps; n n'existe qu'apres a, ca; il faut

el 4 s
compter le nombre de chiffrés de a pour trouver n." This preference,

" even among high school students, for the dvnamic rather than the static

approach is something many teachers are not aware of.

Another misponception some teachers have regarding the previous

4
t

-

1 1o . . |
Herbert Ginsburq, Children's Arithmetic (New York: D. Van

Nostrand Lo., 1977}, p. 90.

2 . . ' . .
‘ N. Herscovics and C. Kieran, "Constructing Meaning for the Con-
cept of Equation,"” Thé Mathematics Teacher, accepted subject to minor
revisions. .

4

3C. Laborde, "Relations Arithmétiques ~-- Aspect Statique --

Aspect Dynaminue,” Educational Studies in Mathematics 9 (1978), p. 41.

°

41pid.
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knowledge of their new high school students is the presumption thaf these
children have a good grasp of the concept of an unknown. Even though
these .children have learned to handle in elementarfmgchool such problems

as 2 +00 = 7 or [l ®x 3 =6, their view of the empty box is nothing more

than a blank -- a space in which to write the solution. The box acts as

a placeholder, and the student writes the solution to the equation in thé
boxq rather than'equal to the box.I

Some te§chers also mistakenly interqret the pupil's abili?y to,
solve 243 =" 18 as an indication of an algebraic procegs skill. 1In fact,

4

the student is merely plugging in the correct number by using the arith-
metic facts stored in his memory. That no algebraic process is involved
shows un later when the same child cannot solve similar egquations con-

taining larger whole numbers, integers, or rational numbers. Any solu-

tion'process which is dependent on the numbers used canfiot be considered

"an algebraic process, ' for according to Petitto, "in contrast to arith-
/ -

S . . - , ' . .
metic, algebra is not a matter of learning new manipulations of numbers

but involves, rather, the formulation and manipulation of formal state-

. 0] ) ] s |I2
ments whose numerical content is relatively incidental.

3
However, it is precisely this “manipulation of formal statements"

referred to by Petitto which causes many of tLe cognitive problems of

’J

—
- v

1Sigrid Wagner, “Conseryation of Equation and Function and Its
Relationship to Foxmal Operational Thought," Paper presented at the
annual meeting of the American Educational Research Association, New
York City, 1977, p. 4.

- .

%andrea Petitto, "The Role of Formal and Non-Formal Thinking in
Doing Algebra," Paper presented at the.annual meeting of thé American
Psvchological Association, Toronto, 1978, p. 1.

!
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- " high school students who are just being introduced to algebra. For the

* « @

,most part, algebra s taught formélly in the sense that students are

expected to gain understanding by manipulating algebraic forms which are

' still meaningless to them. Gertrude Hendrix has taken issue with "the ‘ ‘
L d .

| current practice that the way to develop a concept is to show example

after examole of the thing, at the same time repeating a word for the

| thinq.“1 One has only to look at some of the textbooks currently in use

fo see that this is so. . -

. .. / 4

Some Current Textbook Approaches

\ .
One common approach to the teaching of equations is'based on the

assumntion that through the manipulations involved in solving equations,

the student will be able to construct some meaning for the algebraic .

form. In a widely used textbook, Modern Algebra, Book 1, which we view

as representative of the ones in current use, the authors, after defin-

[\

ing "variable" and "open expression" (i.e., 7 x n), approach equations in !
u \
— _ the following wav: . l
An equation, such as x + 4 = 6, which contains one or more vari- 1
ables is called an open senténce. An open sentence is a pattern 4
for the different statements -- some true, some false -- which 'j
you obtain by renlaqinq each variable by the names for the ' |
different values of the variable .... The set that consists of
~ the members of the domain of the variable for which an open ' |
sentence is true is called the truth set or the solution set of
- > the open sentence over that domain.?2 .

These definitions are followed by several exercises, such as: "Solve

{
- 1Gertrude Hendrix, "Prerequisite to Meaning," The Mathematics "
Teacher (November 1950), p. 335. . oo

v 2M. P. Dolciani and W. Wooton, Modern Algebra, Book 1 (Boston:

ﬁbughton Mifflin Co., 1970), p. 44.

e S A T P T RS s om e 2
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- 10 - ‘
each open sentence over the qivendéet;" or "Substitute the members of the
given replacement sets in the open sentence and tell whether the result-
ind statements are ‘true or félse."l N
TIs it possible fof anv but a few students to derive afty meaning
2 from such a cresentation? Not onlv is the concept defined Fnd given a

name before the student has develoned any awareness of it, but the entire

3

presentation is excessively formalistic and unnecessarily overloaded with
s

unfamiliar and nremature terminologv. Rather than trying to create in the
student some m@aning for the new mathematical f0§m of x 4+ 4=6, thé‘auiﬁérs
seem to hooe that, bv giving the student the name for and several examples
of equationqx they can create understandinag through practice. Yet Ausubel

n

; has stated that "much more can obviouslv be apprehended and retained if
the learner is required to assimilate only the subétange of ideas rather

}
, . . .2 . .
than the verbatim language used in expressinag them.' This technique of

remetition and vractice in order to teach a concept, while it may be

effective with some students, with others, will amount to meaningle%b
' ’ i ‘ 0]

manioulation of meaningless symbols.

v

Another common approach to making algebra meaningful is the "word

/ problem' anproach whereby the student is expected to gain understanding

of equations bv working with "word problems." But here we must dis-
tinquish between "meaninq'and "relevance." "ord problems may give rele-

vance to eauations, but they don't necessarilv give meaning. 1In a recent

lIbid-. pp. 45-47. '

’

; - 2David P. Ausubel, "Facilitating Meaningful Verbal Learning in the
Classyoom," Mathematics Teaching and Learning, ed. Jon L. Higgins Y

{Worthington, Nhio: Charles A. Jones Publishing Co., 1973), p. 203. '

.

4 - /

N -
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study done at the University of-Massachusetts, Clement, Lochhead, and
T .
Soloway found that even science-ariented college freshmen have a great

E}

deal of difficulty translatinag word nroblems into equations. In one of
s

their test questions: "Write an eauation using the variables S and P to
/ .
represent the following statement: ‘There are six times as many studgﬁts

3

as professors at this university'," 37% answered incorrectly. ‘Since such
college freshmen, whHom we can nrésume know,what an equation is, have
difficulty translating simple word problems into equations, this implies
the ‘existence of coanitive problems varticular to the translation pro-
cess. Thus to trv and construct meapinq for the concept of equation
through word proglems mav create relevance, but is also likely to com-
pound the difficulties encountered by the high school student in the

/

acquisition of the concept of equation. |

I i

Anéther difficulty which arises with the "word problem" appréach
is the "Let's use the letter x to georesen? khe number" aspect. Some
students séem to have difficultv thinking this way, as has alreédy been
nointed out bv Firth. Further evidence has been provided by Davis in
his recounting of an interview with a very bright seventh-grader who was

not recoanizina that "x Was some number."z\\ygp Engen also has pointed

S~

out that "the symbol x represents a class of numﬁgfgxyhich may cause

+

lJohn Clément, Jack Lochhead, and Elliot Soloway, "Translating

- Between Symbnl Systems: Isolating a Common Difficulty in Solving

Algebra tigrd Problems" (Coanitive Development Proiect), Unpublished
manuscript, Universitv of Massachusetts, 1979.

2 . ' . . . .
) N Davis, "Cognitive Processes Involved in Solving Simple Algebraic
Eguations,” p. 17: ‘ ' ’
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considerable difficultv”” to many algebra students. When we say, "let's 1

\ .

use thé\}g;ter X to represent the number,"” we are confronting the
\ 4 b4
students Q%th a mathematical form totally new to them. Stanley Bezuszka

a

has recounted the exnerience of one teacher saying to his class; *"Let x|

be any number,”" and a student responding with, “Sir, is that the same as

2
saying, 'let 3 be any letter'?"

. .
w |

Another method of nresensation sugaested by some textbooks is the
) . .

A
teaching of lst deqree enuations within the framework of functions.

For example: Given the function a: /4 —> 42

x>

X

+3

If the image of this function §-+ 3 is 0, find the
solution of this e?uation.
Perhaps this method is attractive to some teachers because of its

mathematical elegance, but it can be disastrous for the students. To

follow this amproach, the -junior high school student must first under-

stand furnictions hefore learning about equations. ' RBecause.the concept of

. - ) ) 4 .
function involves a higher level of abstractioh than equation, this-

1Henry Van Engen, "The Formation of Concepts," The Learning of
Mafhenatics, Its Theory and Practicé, Twenty-First Yearbook of the
National Council of Teachers of Mathematics (Washington: National
Council of Teachers of Mathematics, 1953), p. 95.

2Stanlev Bezuszka, “Mathematics Literacy -- A Must or a Myth?"
Communication, Mathbec '77, Montreal, Concordia University, May 1977.

3benis LaBoissonnidre, Cécile Lévesque and Reynaldo Rivard,
Equation du 1®F Degré 3 une Inconnue, Book in preparation, 1978.

°

4Siqrid Wagner, communication to N. Herscovics, December 1977.

-
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approach may he unnecessarily detriment,all for .all but those who can follow

s

such a formal approach.

v

" Not every textbook fails to present equations meaningfully. There

* ’ v
.are some’exceptions which have addressed ‘themselves to some very basic
questions. One s/}lCh text which seems to recognize some of the cognitive

problems which students face with algebra is Stretchers and Shrinkers,

written by Braunfeld and the University of Illinois Committee on School
Mathematics and mentioned in the NACOMiS regort for its "pedagogical

: : ul

innovations." | . »
§

THIS 15 CALLED an EQUATION.

WERE SUPPOSED TO SOLVEIT.

WHAT DO you MEAN, SOLVE T
) IT? AND WHAT'S THAT X 7 r

;-x%

-

In the above illustration from Stretchers and S’hrinkel:s,2 we can ?
- - 1
see that the authors of this qrade 7 course recoqnize that many children ‘ﬁ

have difficulties with letters and even with the word "solve.! But even

:

. lOverview and Analysis of School Mathematics Grades k-12, %
National Advisorv Committee on Mathematical Education (Washington:
Conference Board of the Mathematical Sciences, 1975}, p. 32.

2Peter G. Braunfeld, Stretchers .and Shrinkers (New York: Harper /
and Row, 1969), p. 71. ’ .

1
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this text sidesteps asking or ‘answering the question, "But what is an
on?".

Most textbooks, by and large, fail to come to terms with the cog-

nittve difficulties encoqntered by students when they are faced with a

new mathematical .form. Thomas Kieren points out that:

Most curriculums in mathematics ... were not developed using
_an analysis of how children or adolescents 'thought' about the
subjects at hand or how they could go about building up system-
" atic mechanisms for developing desired skills, concepts or
abilities.l
However, it is not only the textbooks which are deficient.

\\(\ -
T

,-.: Some Teacher—-Related Aspects of the Problem

it

. . 2

We asked some high school tegchers (80) attending a workshop on
,the teaching of equations how they would respond to a student asking the
question, "But what is an equation?” Here are some of their answers:

1. C'est la symbolisatién de 1la comparaison de termes équivalents.
2. C'est une formule qui permet 4é rééoudre des problémes concrets en
mathématiques.

© 3., C'est l'affirmation de 1° egalite de la valeur de deux énoncés
- .mathemathues contenant des lettres.
4. C'est un systéme ol il y a une inconnue dont on doit trouver une
valeur numérique pour rendre véridique 1'é&galité.

5. C'est une fagon de représenter une situdtion en état d'équilibre.

One cannot help but notice the formalistic expressions that most

used for their answers. The same question was posed to a class of

1

‘ /
;Thomas E. Kieren, "The Rational Number Construct -- Its”Elements
and Mechanisms,"” Working Paper, p. 11.
2GRMS Conventlon (Groupe des Responsables en Mathématique au
Secondaire), Sherbrooke Quebec, June 1978

'
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mathematics teachers (22) at a local university who were taking colrses

|
i
a L

in order to obtain a postgraduate degree in the teaching of mathematics.

Here are some of the typical responses:

1. There are two kinds of sentences ope can encounter -~ open and
closed. . A closed sentence (4 + 3 =7, 4 + 3 = 43) may be true or
false. It is an example of an equation. An open sentence (n + 1 = 4)
leaves the individual®to determind what values he may use to make the
open sentence either true or false. An open sentence is also an
equation. -

2. An equation is a puzzle.
N
3. An equation is a sentencé in the language of mathematics in which you
have to fill in the blank [i.e., an equation in one variablel.

4. I try to compare an equation with a see-saw and try to describe the
balance structure in an equation. After introducing variables I
show the equation as a statement which involves a combination of
variables and constants that make a balance. I also\compare an
equation as a sentence structure with an expression, and point out
that the main difference is a verb.

5. An equation is an algebraic statement involving known and unknown
quantities. The known quantities are called constants; the unknown
quantities are called variables. Our task is to flind a value for
the variable which will make the statement true.

o

The above two samples of teachers' answers to the student's ques-

tion: YBut éhat is an equation?" give further indication of the scope

of the problem. High school mathematics teachers hanJﬁathematical

abilities enabling them to achieve relatively easily a formal level of -

4

understanding. ' However, having acquired this level, it seems to be quite

difficult for them to shift to a non-formal method of teaching, which may

~

" explain why so many topics are taught formally, even at the junior high

school level. There is the added problem that once a mathematical con-
cept has been understood, it has a teﬁdencv to seem trivially simple.-
This can prevent the teacher ftom seeing why his pupils don't understand

’

something which‘he sees as being obvious., The above two problems explain
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why teachers cannot always evaluate properly the obstacles confronting
. i f ! ~ -

the learner nor communicate at a level accessible to the learner.

Summary ]
Though there has been little research thus far on the high school
student's understanding of algebraic concepts, EPose studies whigh have
been done {néicate that the conceptual difficulties involved in learning
a;gebra‘are greater and more widespread than is’ commonly believed.

The problem is not simply a reflection of students' intellectual

abilities, for as Skemp points out, there are many "pupils who, tthgh
. . v /
intelligent and hard-working, ‘'couldn't do mathematics'.“l It is kather

a reflection of the way they are taught.~ Teachers and textbook writers
are, on the whole, simply noé aware of the cognitive obstacles coqfront;

'ing the learner. They have not addressed themselves to the question of
what it means to under%tand an equation. Many high school mathematics
teachers, to whom conceptual understanding comes fairly easily, fail to
see why their students don't understand. They insist on very formal
presentations, even at the junior high school 1level, Tﬂey presume that
the student entgrinq high school has a good grasp of mathematical sym-
bolism and notation, and fail to take ‘into coﬁsideration the operational
nature of many students' thinking. '

. Most of the Fextbooks currently in use simply don't deal with the

prbblem. Their presentations, though théy may be mathematicallylelegaht,

are lost on very many students because of their excessive fofmalism and

a

g

1Richard R. Skemp, The Psychology of Learning Mathematics
(Harmondsworth, England: Penguin Books, 1971), p. 15.

g
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unwarranted mathematical jargon. The authors' needs to "state things '

correctly the first time around" and,to be as éeneral as possible in
order to cer; éll future situations causes them to introduce pre-
maturely terms such as "variable,"” when "unkno&n" would be more cog-
nitivélw appropriate.l They also define a concept and give it a name,
before creating an awareness for it }n the student.2 It\doeslnot'take

very long for some students to "turn off" mathematics, for they feel

they are pushing‘arouné meaningless symbolg. The approach of most texts
that, through manipulations, the student will be able to construct somg
meaning for the 4lgebraic form simply does not work for.many students.
It is our conten?ion that'a formal' approach to the ?éaghigg of algebra
leads to an "instrumental understanding,” which»skemp defines as "rules

N

without reasons,"3 and will be meaningful to only a small number of
students. jl : )
In this study we propose an alternate approach to. the Eeabhing of |

first degree equations in one unknown based on the student's need to

. 4 -
" construct meaning for the concept of equation. - ‘
- ; p .o
v ¢ B @ e
. 3 . . ‘ —— - - 8 ~
- ! |
) 1D. E. Kuchemann, “The Understand;ng of Numerical Variables by - |
Childten Aged 12-15," Unpublished manuscript, March 1977. - s, ‘ '
— 2 ", . e . : . >
Hendrix, "Prerequisite to Meaning," p. 335. . ro
| ‘L ' Co 3Ribhard R. Skemp, "Reiational Understanding and Instrumental
: . Understanding," Mathematics Teaching No. 77, December 1976.
. ) : . \ \
. * > . A 9 . . . 'I
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THEORETICAL FRAMEWORK | T

This chapter will describe the theoretical framework of the

‘teaching-learning scheme which We propose as ap alternate approach to the

«

teaching of first-degree equations in one unknown. These theoretical

v

3 . . 1 . - . e
considerations will 1) relate the construction of meaning to Piagete's

, .
theory of equilibration, 2) describe the variocus modes of understanding

involved using an expanded,version of the Tetrahedral Model of under-
standing, 3) relate these modes of understanding to Bruner's mofles ' of

representation, and-'4) introduce “Didactic Reversal,‘(arteaching-

learning model which-integrates these theories.

3

' How Does One Construct Meaning?

’ :

v

~ Thomas Kieren distinguishes between meaning and understanding in

e !

the following way: "meaning” applies to the process of building up or

Nl

. . .
developing concepts, whereas "understanding" applies to the development
and maintenance of interconﬁections and applications of ideas back to

the realm of facts in which they are rooted, in order to be constantly

1 N . , .
tested. However, the construction of meaning fog algebraic concepts

e b

rests on a fair amount of previously acquired mathematics and requires

the constant going back and forth between the new concepts and the facts
o ’ O
(the arithmetic construpts) upon which they are built. Thus, in the

Ve

lKieren, "The Rétional Number Construct -- Its Elements and
Mechanismsg," p. 3. . ° ; ¢

3 - -~
, - 18 -




) .
- i !
“ . * i1
° i j . !
.
B

- 19 -

.

/, e N

(a . 3
the "construction of meaning"

) . 4 - context of our work, involves both the

! o
development of concepts‘and their interconnections or, in Kieren's words,

both "meaning" and "understanding."

4

v

Piaget wrote in°To Understand is to Invent that "every new truth
L) 3 0

J .
to be learned must be rediscovered or at least reconstructed by the

. . 1 .
student, &nd not simply imparted-to him." But how does one construct

¥ , : .
meaning for a concept? This question must be answered within the frame- .

work of cognitive grdwth. Piaget has identified the major factors con-

. tributing to the'development of cognitive growth of children as includ-
ing: 1) maéuratién, 2) experience, 3) 1anqd§qe, aéd 4) equilibration.

, /

*
i}
§
I
i
1
H
|
{
<
¢
}i
i
H
H
i

E

Of these four factors, "Piaget considers equilibration to be the most

3
——

RN

]

S

2\ fundamental to the growth of mathematical concepts."2

S v

ﬁlavell, eaﬁilibration

accommodation into balanced coordination.

—

According to

::‘h&eyproceSSUOf bringing assimilation and

(

Assimilation refers to the
+ :

.

,process by which new events are integrated into existing mental struc-

.

The complemehtary.proceés of accommodaéion concerns the resu}t—

tutes.

.

ing changes in -these mental structures. - - -

v

! Thus Steffe has_definedilearninq, in this context, as.the process

by whic¢h new information is assimilated into available cognitive struc-

tures-and to the modification of those structures. "In fact learning is

» o

conceived of as being possible orily when there is active assimilation ' .
- . ) < :

LIS <
’ . v

Jean Piaget, To Understand is to Invent (New York:
. Press, 1973),.p. 15. °©

s

The Viking

LY

, 2Leslie P. Steffe and Charles D. Smock, "On a Model for Learning . _ . 7
"*énd Teaching Mathematics," Research on Mathematical. Thinking of Youhg

Chlldren. ed. Leslie P. Steffe {Reston, Vltginla' National Council of
Teaqhers of Mathematlcs, 1975), p. 10. . _ '

g—

“vg
v.
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and accommodation.”” Emphasis is on the activity of the leagner. How- -

- . - -
« . . - N

ever, one factor to bear in mind is that- the learner can agsimilate only -

o

-

those things which past experiencesg have prepared him to aseimilate.

v 1

new, the new obiect cannot he assimilated. "In this-sense learning is

;

- ) !

Flavell states further that if there is a gap between the old and -the o i
1

]

i

i

i

. q

possible whenever the more complex structure to be learned is based on
e 3 - ©. -

availabhle, simpler structures." -

¢

'

1f a learner is confronted with a new event which he cannot link,

up with what he knows, a certain number of modifications will have to be

made to the existing mental structures in order for the leei'ner‘ to

» .
assimilate the new information. . ; - i C
‘ 2 - .

When a subject says, "I do not’ understand', he means that the new
object in front of him is too complex for him to adjust; or is I
presented to him in such a manner as not to enable him to proceed
easily to an adjustment while the expression, 'Now I understand',
means ,that the avpropriate modlflcatlons have been made and the
subject is able to inteqrate the pnfernlllar object. 4’

<,

o As has been pointed out above, a learner may sometimes have
difficultv in linking up- a new event with his existing knowledge -because
Lo VT o . / / : ‘
/Z}::(EW material has not been presented to the learner in a manner easy ) .

- T L

' ' <« e b N - N * .7 !

1 . . o T .. . . - R ’ . (

Leslie P.. Steffe, "Constructiyist Models for Children's Learning ) '
in Arlthmetlc," Paper q;wen at the Res arch WOrkShop on Learnlnq Models,
,Durham, New- Hampshlre, 1977, p. 5. B *

., John H. \Flavell The Develognental PsxcholOJ of Jean Piaget
(New York D Van Nostrar)d Co. R 1963), p. 50.

3 .
Steffe. “Conqtructlmst Models for Childcen s- Learnmg in g -
Arxthmetlc," p. B. - . . ’

Gerald Noelting,- "Construct;w:.sm as a Model for Cogm.tive
Development and (Eventually Learning," Paper presented at the Second
International Conference for the Psthologv of Mathematlcs Educatlon, )
Osnabruck, Seotember 1978, pp. 205 206.. ST L
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to assimilate. In this connectioé, Herscovijcs has distinghished between

0

two possible approaches for introducing new material: “Starting from

the new topic, one can transform it to reach the student's cognition, or
. , ;

< starting.from the student's cognition, one can transform it to reach the

new topié."l Ag -an example of "transforming the new topic to reach the’

-

Student'glcognitign;f

1

we can look at the way,equations are treated inc

~

most textbooks: the student just beginning the studv of equations is
confrontedNWith a ngw mathematical form, such as 3x + 2 = 17, which he

must manipulate in order to find the solution x = 5. It is only after

the verification\process when he sees 3:5 + 2 = 17 that there is any

!

-attempt made to connect equ7tions (3x + 2 = 17), the new topic,with the

student's old knowledqe, arithmetic identities (3:5 + 2 = 17). Such an
- ” 2 3 tg . : "2
approach seems "heavily weight#®d fowards accommedation and, as such,
is ,often the cause of the student's inability to construct meaning.c
‘ -
On' the other hand, one can choose the alternate approach of
"transforming the gtudent's cognition" by beginning with the arithmetic

identity, 3.5 4+ 2 = 17, a concept which already exists in his coénition,

and constructing from it, by means of gradual transfqrmations performed

[y
I3

on the student's ‘cognition, the concept of equation. is approach, which

~will be described in detail in the next chépter, hay_be seen as—showinq

"a r?lative preponderance of the assimilative component (of

.

i
.

- : N s

-/

'

'

. 1Nicolas Herscovics, "A Dearning Model for Some Algebraic Con-
cepts," Explorations in the Modeling of the Learning of Mathematics,
ed. K. Fuson and W. Geeslin {Columbus: ERIC Clearing House for Science,
Mathematics, and Ervironmental Education, 1979), in print.’ . :

+

2Flavell! The Developmentai Psychology of Jean Piaget, p. 49.

3
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equilibration).” It allows the student'go construct meaning for the

new conceﬁt because it buii@s qpén a simpler or equivalent idea in the

sfudent's existing-mehféi.structureSxand transforms them in such a way
that there are no gaps between the old and the new material.

As has already been mentioned by Flavell, it is the pfgsepce of

agaps which prevents new material from being assimilated. Sometimes ' .
these qaps are content<+related, sometimes they are form-related, some-

times both. By the process of constructing meaning for a concept, we

o
N

are attemptiné to bridge the gaps in content and at the same time give

n

meaning to the form (notation and symbolism). However, the order in
. .

which this is done can be of crucial importance for the acquisition of Lo e

learning.

Modes of Understanding and Modes of Representation . ’ /
The pedagogical imolications of distinquishing'between’content

:

and form have been pointed out by Byers: "Teaching for understanding ..’

requires that the continuity of mathematical content béldemonstréted'tg TT

the, student during, and orior to, the introduction of new mathematical

,

2. ' . ' / ‘ ’ '.,,;

forms . " , . T
1

e
’

Bruner has also discussed the futility of\ireﬁature formalism: " .

But it is futile to attempt ... formal:@ explanations distant from : oY
the child's thinking ,... or the child learns not to understand _ '

%

 Ybia, . o :

2 ‘ ) 3 3 . L1 Y : ’
Victor Byers, "Essgays in Mathematics Educationh, Part 2, ‘ v
Unpublished/manuscript.. - e ‘ ' |

o
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... but rather to apply certain devices or recipes .without under-
standlng their 51gnlflcance or connectednets.l

John Biggs too refers 4o the same problem:

I€SChildren are‘presenﬁed.with symbols before they have abstracted
the concepts that the symbols, or the operations upon the symbols,
represent, the only way they can deal with them is by rote.?

. o ‘ Biqqs further states that: . Q& '

In algebra the‘child is dealing with symbols that are one or
several stades removed from the facts to which they are related
... and ... unless he knows what concepts the symbols stand for
... and'understands the logicdl structure of his operations,

and is aware of their conventional notation, there is clearly
no connection between the top row of squigdles and the bottom
row. No amount of symbol manipulation can establish the linkage
between notational and logical relationship5.3

In this reqgard, Dienes has suqggested that, since it is very easy

to forget what the symbols stand for, we should be going back and forth

¢ more often between symbol and svmbolized. He, further recommends that,
in order to avoid situations where symhol manipulating takes the place

v

of understanding, "we need to make sure that at every stage there is a

possibility of feedback into the original experiences from which these

4
structures were abstracted."

vt

. . 3B .
N . ' , This going back‘anq forth betweén the symbol and the symbolized

Jerome S. Bruner, The Proces§§§f qucatlon (New York: Random
House, 1963), ». 38. :

2John quqq, “The Psychopathology of Arithmetic,” New AgprOQChes

i * to Mathematics Teaching, ed. F. W. Land {ILondon: Macmlllan and quq-
- .1963), p. 61.

3Ibid., p. 63.

4
Z. P. Dlenes, "Research in Progress," New Approaches to Mathe-

. matics Teaching, ed. F. W. Land {London: Macmillan and Co., 1963),
[ - p. 49. , . T

.( . o ’ y ' %3
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can be considered in terms of seeing. the’ relationship between the con-
tent and éhe form, between the idéa and the notation. The relationship
between the two has been described in some detail by By;ré ana
Herscovics in their Tetrahedral Mode; of unde’rstanding,1 which is based
on Bruner's distinction hetween intuitive and analytic thinking and on
Skemo's definition of instrumental and relational understanding. Bvers
Fnd Herscovics define "formal" understanding as the ability 1) to con-
nect mathematical symbolism amd notation with relev;nt mathematicél
ideés, and 2) to combine these ideas into chains of logical reasoning.
However, only the first part of their definitisdn is relevant to our
work., sinee the second part applies maiglb to prooés. Thus when we

speak of formal understanding, we mean understanding. of form, i.e., the

connection of the symbol with the idea.
In addition, the authors define three other modes of undexstand-

ing, "“instrumental," "relational,” and "intuitive," all of which are

relévant‘to this study. Their definition of "instrumental” understand-

N J
ing: the ability to apply an appropriate remembered rule to the sofu7

\ PN

tion of a problem wit@out knowina why the rule works,is a restatement
of.ékemp's deginition, “rules withodt teasons."2 An example of this
type of upde;standiﬂq would;pe the child whé can manipulate symbols but
’who lackg anv' awareness of the under}yinﬁ ideaé\?r félationships.

The third mode of understandiryg, “relational” understanding, an

-

AY

/. ' . . -

N

/

}Victor Byers and Nicolas Herscovics, "Understanding School
Mathematics," Mathematics Teaching, 81 (December 1977}, pp. 24-27.

‘
!

2Skemp, "Relational Understanding and Instrumental Understanding.

/

-
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- expansion of Skemp's "know{nq'what to do and why,"1 is defined by Byers

and Herscovics as the_abilitv to deduceASpecific rules of procedures

fr'om more general mathematical felationships. However, we feel that

there is & need, for the purposes of our study, to extend this defini-

tion slightly. We believe that it ought to include the ability to

r ’

establish relationships between concepts and to make connections

I

The fourth mode of understanding defined in the Tetrahedral Model

%s "intuitive" understanding: the ability té solve a problem without
prior analvsis of the problem. This definitien is restricted to
problem—sol&ing and we wish to extend it to concept formation. Just as
in problem-solving, the intuitive understanding involved in the con-

°

struction of a concept involves prior experience since such a construc-

tion is based on previously acquired knowledge. Intuitive understand-

ing of a concept implies the ability to visualize and leads to a global

perception. However, as has been pointed out, a premature use of sym-

H

bolism mav create obstacles to a global perception since it may detract
from the "continuity of content” by focusing on the symbolism'instead of

the concept it represents. This continuity of content thus involves non-

symbolic modes of representation,

Bruner has described three modes of representation: enactive
{ i
(acting out through concrete overations), iconic (involving images), and

.

svmbolic.2 when related to modes of ugderstanding, the enactive and

N

Lhid. e

2Jeroqg S. Bruner, Toward a Theory of Instruction (Cambridge= ‘
Harvard University Press, 1966), p. 11l. ’ " ) N

b e e Sk
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icnbic modes can he associated with intuitive understandiné and the sym-

bolic with formal understanding. In the.usual course of a young child's

development, he moves through the'three representations in this order.
. e

However, it has heen our experience that at the junior ﬂigh school level,

many students need to go through these three stages in order to develop

meaning for the symbolic mode of revresentation.
We now introduce a teaching-learning model, "Didactit Reversal,"

which attempts to achieve accommodation through assimilation by integrat-

ing the various modes of understanding and reoresentation.

"Didactic Rewversal"

1

* "Didactic Reversal” is a teaching-learning model originated by
Herscovicsl w£ich incorporates tﬂe preceding theoretical considerations
and it will be used to a large extent ag a ;odel for our study.

According to this model a teaching scheme must identify fi?st and
foremost the essence of whatever concgét is to be écquired and then
determine the level of ghe student's cognition, since it must always be
the sta?ting noint of any coﬁstyuction. .

This is then followed by deterhining a seauence of intermediate

.

subconcepts which will expand the student's cognition and evgntuallv

~
|

link up with the new concept. 1n order to hghn the learner in this con-

struction, each intermediate subconcept must be analyzed in terms of its
relative assimilative nature. ‘These assimilative questions may involve

an extension of content or a problem of representation. However, at -

' .
o

lHérscovics, "A Legrninq Yodel for Some Algebraic Conceﬁts."
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, each intermediate step, -the intuitive modes of representation precede

the symbolic one, thus encouraging intuitive and relational modes of

understanding and leading to the formal mode. Thus the formal mode

.

acguires a representative character since every intermediate subconcept

is first,expressea in other forms. Of course, this can apply to the

i

main new gbncept if it involves a new matbematic$1 form. It is only
when this new mathematical-forﬁ has acguired meaning through this con-
struction that the process is reversed {(whence the name "Didactic
Rgverqal") and that the learner is encouraged to find tﬁe‘form which.

s

existed previously, thus relating the new mathematical form béck'to the

«

concept upon which it was built. i ‘ ' '
The principies of "Didactic Reversal" can bé applied to the
teaching of equations. As has already heen péinted out, standard pre-
sentations of the teaching of equationg Beqiﬁ with an equatiog, such as
Ix + ? = 17, a new and possibly m$aninqléss aléegra}c form, which
through manipulation produces thg/solﬁtion, X = 4.' Then‘through verifi-
cation, which yields the arithmet;c ;qUalitQ,'3-4 + 5 =17, th; student
ends up with a simplér known’ form, the érithme?ic.eqqality. This.
beginning with the new %ormAcan cause a péqniiive disequilibrium.
Attempts to make the new form meaninaful by relating'it back, after the
Facé} tb the old known form can prodgée a huge accommodation problem for
some gstudents. "Didactic' Reversal"” suqgests starting the other way:

beginning with the known form which exists in the student's cognition,

the arithmetic equality (3.4 + 5 = 17), and gradually bhuilding up to the

v

. N . : , . . s
new algebraic¢ form {3x + 5 = 17) by means of a set of assimilative inter-

mediate subconcepts., When the new algebraic form, the equation, has

N
~
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)

acquired meaning, the sfddent‘qan then work with it (i.e., solve it) and

relate it back to its arithmetic form.' The learning of equations is

‘thus no longer an accommodation problem, but rather a process of

. . i . 1
"accommodation through assimilation."

The next chanter will inteqgrate all of the theoretical consider-

’

ations, which have been herein described, into a teaching-learning

stheme for first-degree equations in one unknown. s . ‘

A » , )

'
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CHAPTER III

A TEACHING-LEARNING SCHEME FOR EQUATIONS

4

. & Following‘is a teaching-learning scheme which attempts, in Part 1, “

to construct meaning for the concept of equation, and, in Part 2; to lay
the gtoundwork for the eventual iustificagigﬁ/gf the algebraic operations
.h\\ used in the solution of equations. The development of both of these aims

will be based on the theoretical considerations discussed in the previous

chapter.

- v

PART I: Constructing Meaning For the Concept of Equation

.

Preliminary Considerations

In order to construct-meaning for the, concept of equation, we

begin by 1) identifying the essence of the concepf,to be acquired,. and

" ; © 2) determining the level of the student's cognition relative to the con-

; cept involved. Thus we firét ask ourselves, "What is a first-degree
equation in one unknown?" ,and then, ;What is the student's level of &og—
nition in this area?” ‘

. An answer to the first qﬁesti&n might be the folléﬁing: An

.. , algebraic equation is a mathematical form which involyes the notions of
. _equality and un}nown.‘ However, it is a new mathematical/form for most

junior high school students -- new because of the presence of an unknown,

and new because of the extended sense of the equal sign. Even if the

-

-
Pt S .
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students have seen letters in equalities beéore at the elementary level,
their megninq_of the letter (as placeholder) mgy not at all correspond
to the algebraic inéerpretation of the unknown, as‘bointeé out by
;Vaqnerl and Davis‘.2 Secondly, their sense of the equal sign is rather
priﬁitiye, according to Ginsburg,3 Davis,4 Herscévics ané Kieran,s and
as such may be insufficient to allow them to attach any meaning to
equations such as 3x + 4 = 6 - 10x, where the right hand side doesn't
give merely a single-number result. )

Thus one must find a way to link up the students' existing mental
structures with the new concept of equation. They are familiar with
arithmetic equalities of the form, 3 x 9 =270r 10 + 2 = 12, whereas
.they are not familiar with algebraic equalities of the form 3x + 4 =
6 - l0x. waever, there is a relationship between ghe two: the
algebraic form can be yiewed as another representation of the arithmetic
forh. Thus by means of appropriate transformations performed on the

arithmetic form, the algebraic form can be integrated into the student's

mental structures.

"

) N,
1Waqner, "Conservation of Equation and Function and Its. Relation-

ship to Formal Operational Thought," p. 4. \

2Davis, "Cognitive Processes Involved in Solving Simple Algebraic
Equations,” p. 17.

3Ginsburq.'Children's Arithmetic, p. 90.
|

A4Davis, "Cognitive Processes Involved in Solving Simple Algebraic
BEaquations," pp. 18-19.

.

5Herscovics and Kieran, “Constructiﬁé Meaning for the Concept of
Equation." i , : ‘ .
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Extending the Notion of the Equal Sign

. The first transformation that must be made is the expénsion of

the student's notion of the equal sign. Robert Davis has pointed out

that "the ability to use the equal sign in several different ways is one

"of the cognitive dgmands“l of working with equations at the high'school

.

. level: . : . >

For most students entering junior high school, their notion of

ghe equal sign is fairly primitive.- As has already been pentib?ed, if /
sgudents are'ésged toﬁquelan examéi; ;f'an equality, several will give
one with an operatidn 6nAone side and tﬁé result on the other.~ This is

- carry—ovef from the way they viewed the equal sign in elementar&
school. From his work with younger children, Cinsburq points out that
.children's,understandinq of symbols refers to actions. As stated in

~ Chapter I, the? do not viewl3 + 5 = 8 as an .arithmetic equivalencé but
raéher operationally, as their reading, "3 and 5 éggg_at indicateé.

__ Ginsburg also found that many elementary school children, when asked how

to read, [l = 3 + 4, would answer: "Blank equals 3 plus 4," but then

add: "It's backwards!". They would then change it to 4 + 3 =(] and say:

. "You can't go, 7 equals 3 plus 4."2 Ginsburg also found that ‘many
. . . i R - T
children "cannot read'sentences'that express relationships like 3 = 3 or
3 . " ‘ .
4=4." ) .

-

* ! .
N {

. -1Davis, "Cognitive Processes Involved in Solving Simple Algebraic
Equations,” p. 2% - ’

' 2Ginsburg. Children's Arithmetic, p.:Bd.

3bid.; p. 85. | - .
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Davis also refers to the same problem when he says thatneleﬁen-
Q \

tary school language considers 3 + 5 to be a problem or a question and

8 to be the anéwer. By contrast, standard high school algebra language

considers that 3 + 5 is "both an indication of a process" and also "a -

name of the answer." He states that many students who are still using

o

elementary .school language in high school are not prepared to accept 6x

as "a namé for the answer of what vou get when you multiply 6 by x,"

but only as a stateément of the task that "6 is supposed to be multiplied

1 .
by x."" He comhents further that, looked at cognitively, the egual sign

changes meaning as children pass from kindergarten to grade 9. Both

N

éinsburg and Davis state that, at firgt, the equal sign is not symmetpic,

1

but ‘is part of the statement of.a question, so that primary grade child-

ren feel comfortable with 3 + 5 = 8 but not with 8 = 3 + 5 nor with -

¢

3+ 5= 3% 5. According to Davis, "what ‘is necessary is reinterpreting

8 as 'a name of a number' and 3 + 5 as 'a name of a number' and 3 + 5

.

= 8 as ﬁéying that 'both 3 + 5 = B-name the same number‘."2 -
Althouqh it is neeessarv to extend thelmeaning of the equai sign,
this "renamina" of "3 + 5," within thé trivial context of "3 + 5 =»8,"
may. seem somewhat‘artificigﬁ to a ;tudent who is focusing on the arith-
metic operation, especiall; when the result is staring him in the faee.

Our experience indicates that junior high school students do not look at

¢

"6 x 4+ 3 as "another name for 27."
Bl

a

Davis, "Cognitive Processes Involved in Solving "Simple Alqébraic,

Equations," p. 18. . AT

]

21bid., p. 19. ' o

/
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iu;\: . . We suggest that any first extension of the meaning of the equal

sign must take into account the operational nature of the student's
e .

thinking and needs to be introduced in a non-trivial context, that is,
>

withnarithmeézb egualities which do not contain the "answer" on either

3

‘'side. With at least one operation on each side, this allows for the

“ D

.+ .dnterpretation of the equal sign to mean g - -
. . e

P

~ ‘ ' BOTH SIDES YIELD THE SAME VALUE.

r

. fuch an approach will also allow for the construction of mdaning
2 - v ]\
. s . -
for a much broader class of equatidns ghan those limitéq to a single
- - .

: operation. In fact, by extending the ﬁeaping of the egual sign to '

& . —_ . - « o
. include multinle(operations on each side, the students will be able to
. , X C

give meaning to equations involving multiple operations, eig., ax ¥ p

=‘cidx. . . © !'_
. S WA ‘ ' -

N , Thus this extension of the student's notiénvof the equal sign

5

¢ . !
¥ P " . ' |

would begin by asking him (her) to give an equality with an operation on
- N " B . i
H

P g both sides. ,The possible cognitive disequilibrium caused by this ques—.

.

tion would be resolved Qhen the studeht notices éhat both opergﬁioné on s
1 - the left and rig?t side yielded the same number.{;Furthef extensions of

: this notion would be aghieved by hﬁving the stident constr&ct equalit{eg
withta differént ooe}ation on each side (if the first answe; had

. ‘ involved the same operation on each side), with two operations on each .

.

Eidg, and so on, leading up to multiple and different operations on eqeh

side,"e.q., 6 x 3 + 10 - 4 = 48 < 2. i LN

)

& ‘ i s
' . : PR
\/ ’ After the students have constructed several of these mulefz . . {

- dbération equali;ies and have thus extended their concept of the equal ;
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.

sign, the name "arithmetic identity" would.be éivgn.to these arithmetic:
equalities in-order to distinguish them from those equalities containing

©

an unknown which will be called "equations." Some texts use the term
"equation” interchangéably for both algebraic and aiithmetic equalities,

but this can lead to some confusion for the students. Even though'we do

v

not want to introduce any

— ~

"unnecessary" new vocabulary, we feel that -

these arithmetic equalities should be given a specific name for they are

" such an integral’ part of the process Gf7Gonstructing meaning for the
- .

. concept of equation. 6Giving a specific-name will also help anchor the

‘ concept.

¢

The name "arithmetic identity" reflects the.arithmetic nature -

~

of the equalities and the identical value borne by both sides.

[ + o

g :
other new term which represents a concept should be introduced until

L4 -
after the

concept has been acquired. This principle will also be

5

adhered to later when introducing "equation" and "unknown," for as

Ginsburg pointed out, "The child needs first ... to develop basic math-

»

ematical ceoncepts; only after this has been done is there a need to

iN

. . v 1
introduce the relevant vocabulary, notation, etec.”

Max Beberman also

époke of .the same need "that the student become aware of a concept

*

N . 2
before a namé has been assigned t¢ the concept.”
o~ .
N

B @

. <

" However, we don't feel that the term "arithmetic identity"-or any . - -

i

a

Y~ < i .

Herbert Ginsburg, "The Case of Peter:

g}étroduction and Part'1l,"

. < The Johirnal of Children's Mathematical Behavior, Vol. 1, No. 1 (Winter,

1971>-72), p. 67.

7
z

i

°

. 2Jerome S. Bruner, On Knowing (New York:

\

Atheneum, 1965)°, p. 102.
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' Introducing the Conctept of Equation

'

. .Having extended the student's notion of the equal sign by means

v

f

of arithmetic'identities involving multiple operations, we now use this’

. new knowledge as a basis for introducing the concept of equation. The

‘concent of equation is introduced as

4

v

+ AN ARITHMETIC IDENTITY WITH A HIDDEN NUMBER.

f

We must at this point take one of the student's arithmetic iden-

tities and hide a number. This\biding will be Hone in three stages

- which approximate Bruner's three modes of representation. . By building

up to the concept of equation- from arithmetic identities, we are main-°

taining, "continuity in the mathematical content" while constructing
meaning for the new algebraic form.

The figgt s%aqe in the process of hidind.é number of an arith-

metic identity involves covering a number with one's finger. At this °

stage the learner is actively involved; he is acting-out the hidinq‘ofl:

] . s
the number in accordance with Bruner's "enactive" mode of representa-

" tion. This level may also be compared with the first step of Van

Engen's suggested sequence in concept formation: "action-picture--

1 . i , , .
- symbol." The name "eguation" is now used to describe the arithmetic

identity with-a hidden number. However, the student's understanding Qf'

A

the concept.of equation is still at the intuitive level in view of the

. o ,
' . L
.

The second_stage of the hiding process inyolves<hiding the/nﬁmﬁér

R

Van. Engen, "The Formation of Concepts," p. B6.

'
.

I3
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v

v

with a box instead of one's finger. -This second mode of representation

!

méy be compared with Brﬁnerfs "iconic" phase oy™¥an Enéen's "picture"
stage in concept formation. Even though students are familiar with the
box %dea; it is not as a nlaceholder or blank that they are seeing it
now, but rather'as something whgch is hiding a ‘number. Their under-
standing of the concept of equation is still intuitive; however, it is
at a higher level‘gecause the mode of representation has moved a little
closer to the éymbolig. ° '
The‘third'hiding staqe in the process of constructing meaning for
the concept oﬁqeouatién entailsg hidiné a numbexr by a letter of the alpha-

bet rather than a box. This symbolic representation of the hidden number

. brings the learner to a level of formal understanding, for he has con-

'~ structed meaning for a new mathematical form. His understanding of the

algebraic form is anchored in his arithmetic, for equations are conceived
of as being ari¥hpetic identities with a hidden number. , .

That the lebter is hiding some number is obvious to the learner

v .

when this approach is followed.‘ Students who are subjected to more
standard presegbations do not always have this éwareness, as an excerpt
from one of Davis' interviews wiil indicate:

"It Now, we multiply the right hand side by x. What do we get?

[

Henry: How can we multiply by x when we don't know what x is?"1

»

According to Davis, "It seemed clear that Henry was not recoghizing thak

. : 2
X was, in fact, some number."

! " ) ——
1Davis. "Cognitive Processes Involved in Solving Simple Algebraic
Eguations,” p. 17. o K . U S ot

‘ -

24 “ , " ' -
Tbid., p. 22. P o : ,
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— Tn our construction one begins with an arithﬂ%tic‘identity, hides

/

a nuﬁber, and thus obtains an equation.‘ Since the letter ig hiding some
‘number, this construction of meaning carries inherently withvit the
notion of solution, which is obtained by uncovering thé number hidéen by
fhe letter. When the l;tter is replaced by the number it is hiding, we
have recovered the arithmetic“identity.l There is a reversal possible,

that is, a going to and fro between arithmeéic identity and equation and

<

between equation and arithmetic ‘identity. Thus the learner acquires a

relational understanding of the concept of equation in the sense that he

N L
has established a relationship between two mathematical forms. He can

\now conceive of some kind of "equivalence" betﬁ%en these different

v

mathematical representations.

Our approach which gradually formalizes the student's intuition

allows him to confront mathematical  concepts before they are hidden in -

a new symbolism. Bruner has stressed the need of understanding ideas .
intuitively first:

It is only when such basic ideas. are put in formalized terms as
equations or elaborated verbal concepts that they are out of
reach of the young child, if he has not first understood them
intuitively .... Unfortunately the formalism of school learning
has somehow devalued intuition .... It may be of the first
importance to establish an intuitive understanding of materials
before we expose our students to the more formal methods .l

Another aspect of our constructivist apprdach is its operational

flavor. This is shown in the way that the ﬁeaning of the equal sign

' 1 B

has been extended ih accordance with the student's way of thinking. In

addition, our definitions are dynamic rather than static (in’'the sense

'
N -

P
K - N r
" - ' M N

1Bruner, The Process of Education, .pp. 13, 58, 59. . - K

\
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described by Laborde), that ié. rather than stating "An equation\is an

i

arifhmetic identity with a hidden number" (static), we define an

equation: "“wWhen we hide a number in an arithmetic idéntity, we get an
s
equation" (dynamic).

| . —~

. N v
' ' .

Giving a Name to the Letter .

At this point we can give a name to the letter used in an equa-

tion. We question, however, the need at this stage of introducing the : o
term "variable." Though it seems to be the cu:renEltrend in most text-

books to use "variable" even for first-deqree equations .in.one unknown,
~dec q

this usage may be premature and. thus cognitively unsound. The cencept

of "variable" %s of a higher orxrder of abstraction than the concept of

"unknown" and mav be an extremely difficult concept for some junior high
school students to grasp. Wagner has said that "a developmental factor

may -account for some students' failure to understand the full meaning of

variables."l

Further research in this area has been‘doné by Kuchemann who gave
a 51-item algebra test to 3000 English sécondary’school children in

2
order to identify the way children interpret letters in mathematics.

- .

From the results of this test, he has identified. five different levels
e N

-

‘of interpretation at which students function when working with letters:

\

a) ‘Letter Ignored. . o / .

b) Letter as Object (at this level, letters can be manipulated without

o ‘ ’
. . .

1 . R
Wagnetr, communication to N. Herscovics.

‘
v

‘ZKuchemann, "The Understanding’of<Numerica1‘VariébLes by Children
Aged 12-15."" - ) . )

[
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- same time asking him to explain how he is building them. This gives us
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1

being f1rst evaluated, but are, thought of ag representing
.objects rather than numbers)

‘
X

¢) Letter as SpelelC Unknown (at this 1evei,the letter is regarded
as a specific, albeit unknown, number which can be operated
upon without first needing to be evaluabed)

~

o d) 'Letter as r‘enez:alz,zed Number (at thlS level the letter ls seen as

being able to take, and as representlng a ‘group of wvalues
rather than one value onlyj. =~ . .

v

e) Letter as Variable., .o SR S
& ) o L '
An interesting aspect of this description is that even when
children see letters as representing,numbers, there are three distinct

levels of understanding. However, his most telling results'describe the

> N A Vs

difficulties that the students had with those items where éhé letter was

N
¢

to be used as a variable. 1In an example oﬁzene such irem'where the
$tudents were asked; "Which is larger, 2n or n + 2?" the rate of success

was as follows: 4% for 2nd year secondary.students, 2.3 fer 3rd year,

‘

10%, for 4th year and 30% for 5th y(ear.l

- Thus, in view of Wagner's and Kuchemann's'findings, we feel that

‘

at the junior hlqh school level the term. "unknown" is far more conceptu-
ally adequate than q?rlable and also corresponds more closely to the

‘idea of a hidden number.

I

Examination of the Student's Interpretations

\ -

e
Having introduced the concept ofﬁequation, we must now examine

»

ﬁhe student's interprefation of this concept. This can be aone within

~

the contexé of having the student build several equations and at the.

" . . '

e o et e S e e e - e e w
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the ooportunity to ses,how the learner is thinking about the new

'
! x 2t > -

material.

This phase of the teéchin&-learginq scheme must be ;elativelv
unstructuned<in oréer fo give the student fbom to'express hislo;n ideés/
and, at ‘the same time, to qi;ewés<the flexibility to question each
individual studént on the particular exaﬁplesxhe or ghe has p;esentgd./ ' Co

One should encourage the student to give a variety of examples in order

x

‘to trv to discover the student's thought processes and also to see

-

whether or not he is placing anv unnecessary restrictions on the concept

of equation. ‘ ) - v

There are many possible unnecessary restrictions that should be -

4

watched for. Some §tudents.may cgive examples where the unknown is
always on the left side lor right side), or alwayslat the beginning (or
end). Others mav have a tendenev to use alwdys the same letter. This
may. o%ly mean that the student is more coﬁfortablé with one particular
. :
letter. Névertheless, it should be verified, in Qiew of Wagner's find-
ings, whether or not the student is hconserving equatiqn" by asking hiﬁ
about an'eauation with a different letter hiding the same number.
. One may also at this time ask the studeqt if it's‘ppssible to

" make more thap one equation from the one arithmetic identity. Some

students may sugqest hiding a different number. Others may ask if it's

X ’

pdssible to hide more than one number (either the same number or

7 i

different numBers). They should not be discouraged from any 9f these
alternatives (although it would have to be ‘pointed out that if one hides
the same number twice, one-uses the same letfer,'whereas if one hides )

different numbers, one uses different letters). . '

T e AR § S S

-~



L . R - 41 -

[+]
w *

. ) ) As a further indication of the student's interpretations of the
concepts involved, one can ,ask the student to explain in his own wordsg "
what an equation is. This same question and others related to it can be

asked again at a later time in order to determine what the student

a certain time lag.

part 1 of this chapter involves.constrﬁcting,meaning'for the con-
cept of equation bv starting Qith the existing mental structures of the
.learner and transférminq these to link up with the new material. This is
done by first expanding the student's notion of the equal sign. This
- achieves the integration of the intermediate subconcept of the arithmetic

s identity without requiring anv change in representation. The next step,

going from arithmetic identity to equation, includes both a transforma=-

b

L et T B A O IR AP T 4
x

tion in content and in form. This transformation involves the change of
the aithmetic identity into the equation, which is effected by follgw—

ing Bruﬁer}s three modes of representation. The diagram below outlines

4
\

,these transformations.

. .. |ARLTHMETIC f " PBRITHMETIC / EQUATIONS
' ‘ EQUALITIES| EXPANSION OF 5 |IDENTITIES TRANSFORMATION |
- ((Result on EQUAL SIGN (Intermediate] OF CONTENT
. - Right Side (No Change . |Subconcept) (3 Different
- ' . in Repre-~ ’ Modes of Repre-
« sentation) . . sentation of
/ > This Transform-
~ation) !

. L IO
understands and to see if there has been any change in his thinking after

Summary ! . : - .

Lika s akens s 2
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In Part 2 of this chapter, we will SC;; how the rules used in

the solution of equations'éan be induced from arithmetic identities.

PART 2: Laying the Groundwork .for the Eventuél stification

, of the Algebraic Operations Used in the Solution of
. Equations - '

N B f
’
+ -

Introduction ' _—_— ', o o

Solving equations ipvolves both the concépé of reversibility of
arithmetic operations and aléo the conceptlofﬁfdoihg\the sAme thing t9 '
both sides.”" We propose to lay the ground;ork for éhe.latter by having

the student perform certain operatiops on ‘arithmetic identities. The

usefulness of arithmetic identities is notfrestricted to the construc-

" tion of meaning for equations; they can also be used to’induce the rules

"used in solving equations.

»

Manv teachers introduce the idea of a ‘scale to justify the

algebraic operations used in solving equafiong. This may be a very éood,.

method to follow when one limits oneself to .the simple operations of

addition and subtraction of natural numbers.. ﬁgwever, the scale does

L

not lend itself readily to addition and subtraction of arbitrary rational

‘

numbers nor to the more complex operations of multiplication and

, .
division, for it is unlikely that high school students still think of N

these as repeated addition and subtraction.

The physical limitations involved with the scale can be avoided’

N
’

by the use of arithmetic identities. Arithmetic identities are a mathe-

Yot

, .
matical representation of the co}cept of equilibrium which is conveyed by

Ebe gscale. Unlike the scale, ‘however, arithmetic identities are not

‘subiéct to physical restrictions. IIn addition, any operation performed

[y A .
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on an arithmetic identity is immediately verifiable by the student.

Furthermore, since our students now define equations as arithmetic iden-

a

tities with a hidden number, the operations performed on arithmetic

identities can be transferred to operations on equations.

Inducing the Rules Used in Solving Equations

How can arithmetic identities be used to induce the rules
invoived in the solving of equations? We suggest beginning with one of
the sudent's arithmetic identities and asking him what would happen if
we added the number 2 to the right side. TIs it still an arithmetic-
identity? How could he make it into an aritﬁmetéc identity again? The
same questions are repeated with three different "add-ons." Following
this, the student'is asked if there seems to be some rule regarding the
addition of numberg to arithmetic identities and if he thinks this rule
would work with other different arithmetic identitieé.

We can then take the same arithmetic identity that we started
with above (or a different one) and multiply the left side by s;me

number. {It is understood that the student would have already learned

about bracketing and order of operations). We then ask the student what

7

has harvened to the arithmetic identitygﬁnd how we can make it into an
arithmetic identity again. These questions would be repeated with three

different multipliers, following which the student would be asked if

" there seemed to be some rule regarding the multiplication of arithmetic

identities by different numbers. BAgain he would be asked if he thought

-

. that this ru}e applied to all arithmetic identities and to give an

Al .
example. ‘

The same line of questioning is used for the operations of

ks b
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subtractior and division. After the student has performed the above

four operations on arithmetic identities and has come up with the rule
for each different operation, we ask him if he can make up one rule

which will cover the four separate rules. The student should be able to

- '
L]

\-induce the rule:

WHATEVER YOU DO TO ONE SIDE, YOU HAVE TO DO TO
THE OTHER SIDE ALSO.

This rule .can then be applied to eauations, since equations are
seen as arithmetic identiti?s wilh a hidden number. 1In thishway the\
student can acquire a relational understanding of the operations used
in solving eaquations, that is, he knows why he has to do the same thing
to both sides. g;This is not meant tokimply that the studenF musf keep
on‘;sina this mé&&hod when solving equations“and not take short cuts,
for, aé Skemp has pointed out, the student “aoes not ... have to derive
_:jthe rule) afresh everytime."l But having followed odr approach, if the
student later sees that transposing terms has the same effect, at least
he will know why he is transposing terms and why this "short cut" works.

However, in this study, we do not go into the solution.of
equatioﬂs. In this section we have only laid the groundwork for "doing
the same thing to -both sides" of an equation. The,studeﬁt Fust also
learn eventually some st;ateqv for solving equations. As with'all
problems whose solution involves multiple steps, a student may very well

be able to justify each individual step without achieving the overview

Le

1Skemp, "Re}etional Understanding and Instrumental Uﬁderstanding."
\ .

j
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needed to devélbp

strategies is beyond the scope of*th;é.dissettation. . ‘ .

¢ PN

N .

‘solution strategies}-JThe dé&elopment of solving"

i

- In the chapter following, we shall‘despribé the methodology of

our study and include an dﬁ;line of the questions (based on the

L
teachinq—lea;ning~

“students. ..

scheme aescribed in_ this chapter) which we asked our

v
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The Psychometric Approach

©
y

CHAPTER IV o

°

/ " METHODOLOGY

-

The analysis'of our teaching-learning scheme fé; equations

2 .

This demands the use of a methodology that allows us té look at the wa

the learner understands and thinks about specific content during the

a

actual ‘teaching process. Thus in the first part of this chapter we

N
3

{review the various research methoﬁologies available and justify our

_ choice. The second part of this chapter describes the procedures used

in our research. Car

- o

3

PART I: Various Methodologies ) ’

o

B
"

According to Séeffe, empirical studies in the tradition of

© «
¢

psvchometrics, research design, and statistics "have seldom dealt

directly with the dynamics of human mathematical learning."l When

mathematical behavior has been studied using these techniques, the focus

N

has not been on the individual, but rather on the product of his learn-

-

.399' that is, on the written responses of the ‘student.

Buch educational research has ‘¢entered on devéloping standard’

1Steffe, "Constructivist Models for Children's Learniné in
Arithmetic," p. 1. ! . :

+

s
q
]

requires that learning and instruction be considered simultaneously. (
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tests of mathematical achievement and on aséégging the effects of KY

*

various curricula on students' skills. Although such‘tésts may be valu-

able f&r providing norms or in predicting fairly well students' perform-

. .- , 1 s,
ance on other similar tests, according to Ginsburg  and Opper,2 their

iqperent,inflexibilitv prevents them from providing any ?etailed inform;

ation on children's mathematical learning or on thei? underlying mental

-~

structures. '

. . 1

v
.

Tn short, psychometric tests do not identify cognitive struc-

tures and processes. As pointed out.by Easley, %iaqeg stated that such
tes;s simply cannot grovide "enough information to decide‘whatAstruc-

-y s 3
tures are involved in'a child's thinkinq.“3 Easley further mentions

5

'

.

that Piaget and Tnhelder later charagterized such tesis as giving only

s

the "results of efficiency of menta activity without qraspin§ the psy~"

i * '

chological nperations in themqelves.“4 o - . i

Since our aim is to investigate the learning processes involved

iﬁ the acouisition of algebraic concepts, this partigular methodology- - -

v

is quite obviously unsujtable.

. : : . Ve

The ‘Analvsis of Errors Approach ' - ‘@gg -

\\

+ There i% a common misconception that the right answer iepreseqté'°

g .
t { ” .

,

lHerbert Ginsburg, "The Case of Peter: - Introduction and Part 1,"
p. 62. ° s . ) . . -

B - - £y .

. v

2Svlvia Opper, "“Piaget's Clinical Method," The.Journal of
Children's Mathematical Behavior, Vol. 1, No. 4 (Spring, 1977), p. 91.

r
\

L

J.. A. Easley, "The Structural Paradigm in Protocol Analysis,"
Journal of Research in Science Teaching, Vol. II, No. 3 (1974), p. 281.

3

\

4Ibid.
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— correct understanding and wrong, answers represent either misunderstand-

2 ing (if thev occur often and consistently) or carelessness (if they
. coa s , ( . ,‘1 P

s bpcur sporadically). However, this *is not necessarily so. Ginsburg has

‘noted "that errors are seldom if ever trivial and‘heaningless: most
/&8 Lo - ,
often. they feflect serious attempts to understand and are products of
— . . 1 K
(: ] / sensible approaches to a problem." Thus errors should not be dismissed

-

: ’
as merely the result of carelessness. On the other hand, right answers

&

are not alwavs indicative of correct understanding.

. Erlwanqer'ﬁas investigated the nature of children's math?ma§{cal
/
/

knowledge acquired in a program based on stressing "the right apswer."

, ,
" In describinag six case studies of children from érades 4, 5, and 6 in"an

" T.P.T. (Individual Prescribed Instruction) program, he stated that

»

. "teachers' evaluation and diagnostic procedures, which focused largely

¢ . . “
: ;{ °  on external mathematical behavior, were inadequate in.fevealing the
_children's underlying c;onceptiops."2 In aaditionf Erlwanger found that
the teachers often misﬁnderstood,and misjudged the nafure of the
it o children's understanding. and ﬁr&gress, and the adequacy of jLeir learn-
ing experience; That'one-shéuld view éven right answers with caution

has alsa: heen Dointed‘oﬁﬁ by Servais, who, as a result of working with

studénﬁs at the secondarv level, remarked, "As long as a student doe;

.

e

not alert us with a wrong answer, we -have only a presumption of correct

N ‘
. . U . .
* . @ .
- . . 4 . .
‘. N ‘ . . ¢ “
‘ . ’ N . .

’ M ' K

: -+ -'Ginsburd, ‘Children's Arithmetic, p. 68.

’2Stan1ey H. Erlwanqger, "Case Studies of Children's Concqpfions
of Mathematics -~ Part I," The -Journal of Children's Mathematxcal

+ Behavior, Vol. 1, No. 3 (Summex, 1975),. p. 158. . Co -

. . v

o
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understanding."l v T ‘

- As evidence of this proﬁleﬁ,’we can lookvat‘thg éubjecé of ohe
of Erlwanger's case studies, Bennv, in Gradelﬁ, who was iudéed by his‘
teacher to be one of her best pupils in matheméﬁics'and who was'making

much better than average progress through tQe I.P.T. program. Benny

would try several different methods in a trial-and-error "fashion until

he arrived at the one right answer of the I.P.I. key. RAltHough he knew

that an answer could be expressed in different ways,'baéed~on whichever
method one used ( 2 + .8 = 2T%’ or 2 + .8 = 1.0, or by the "picture"
way 2 + .8 =‘2.8)}“he also knew that gsome of these might be wrong by, the

"key," if he hadn't béen able to figure out which one was reguired for
‘the "kev." 1In any case, he firmly believed that all of his answers were
really correct, "no matter what the key savs."2 Because he had been

able to invent a multitude of techniques in order to get the right

answer for the "kev," he had in the process qeneraliied many of these ‘to

. form his own set of mathematical rules. Thus, although many of his own

ideas were wiong, he was still able to be successful on his Eests.

‘

. Benny's case indicates that a geeming "mastervy of content: and skills

3

.

‘does not imply und-erstandinq."'

g

lw. Servais, "Humaniser 1'Enseignement de la Mathématique,”
paper presented at Journée Internationale de l'Association des
Professeurs de Mathématiques des Ecoles Publiques, Rennes, ﬁfance,
September 1976, p. 50.

/ /

2Stanley H. Erlwanger, "Benny's Conception of Rules and Answers’
in TPI Mathematics," The Journal of Children's Mathematical Behavior, -
Vol. 1, No. 2 (Autwan, 1973), p. 15. o~

31bid., p. 12.
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A& a result of Erlwanqger's research, we can conclude that an

analvsis of the student's written work aibqé (both the T@éht and "the -

wfond answersf or the written work with only brief descripfion§ by the ,\\\g\

v

.children will not give us anv reliable indication of their understand-

d ¢

‘ing and as such is an inadecuate methodoloay to be used for studying ~

- s . v

. Ly L VO
their mathematical understanding and thinking.

Piaget's Clinical Thterview : ’ - .
Piaget developed the clinical interview as a method of exploring

. the thought processes of vhildren of different ages. . It has underqdhe

some changes since its earlv 'days and has,evolvéd to the partially

N

v LN N ’
standardized clinical method widelv used by Piagetian researchers today. /
N B

The essential character of the clidical method is that of a

i

dialogue or conversation held in an individual session between an adult,

/
the interviewer, and a child, the subject of studv. It is not a methnd

v
. : /
that can be used in group-testing. According to Opper, it is a

s

"hypothesis-testing situation, permitting the interviewer to infer

rapidly the child's competence in a particular asmect of reasoning hv -
‘ . . y . 1

means of observation of his performance atscertain tasks."

i
Tn order to allow for some comparability of results, the version

v . ' -
-

of the clinical method commonly uséd tpda&, particularly in replication

studies of Piaget's work, is a partiallv standardized one. . In this ver-

]

sion, according to Noper, the suﬁiect is presented with a standard

problem situation and is then asked a number of standardized questions.

.

1Opper, "Piaget's 91inica1 Méﬁhod," p< 93.

v N ~ .
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" the interviewer to discover the. learner's ‘cognitive processes. 1Its

. flexihilitv of appfdach«allows bn; to uncover patt;rns of thought which

1

| Cal

Once having presented these 1dent1ca1 situations and questlons, the
lntervtewer mav then conduct the experlment as he deems approprlate, thus

retaining some of the freedom of the clinical method. e

-

.. One 6f the advanfaaes-of the clinical interview is that it éllows

3

.

o
are inaccessible gben one uses standardized testing procedures.

Though standard Piagetian experiments deal almost exclusively
with informal mdthematics rather. than with the child's understanding of

academi¢ mathematics, this does not in anv_way detract from the value of

" the clinical interview as a Trésearch tool. It is an appropriate method

for our study in the sense that it ‘provides a way to discover how the

Astﬁdent.thinks and learns. . However, since Qe wish to, see hqw the child

learns a varticular mathematical topic within a specific teaching situ-.

ation,-we must- use a methodoloqy which incorporates the teaching com-

ponent into the framework of the 1nd1v1dual interview. Following is one

.
o <

such methodoloqy L . Kl

The Gov1et "Teachinq ngerlment" i
- . ' .' . . N ! = v v
1In thelr 1ntroductlon to Soviet Studies.in the. Psycholoqy -of

C

Learnlnq and Teaching}Mathematics, Vol I Kllpatrlck and WLrszup con-
\ .
trast the Plaaetians who do not assiqn very much siqnlfxcance to the role

L}

k  of 1nstruct10n in the develonment of the Chlld but rather to the spec1f1c

staqes in the development 6& the child's thinkinq, w1th SOViet

'
s N '
. N

e

> gt X
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psychologists who ascribe a leading role to instruction. The Soviet

pedagoques study the ‘development of thinkinq under the changing:con-

PRUVEIRRE

Y o Aditioﬁs'of instruction. This phiiosophy carries over into their
"research which.they constantly attempt to relate to the learning process
as it occurs in school. Further to this, Easley has pointed out that

"the curriculum, as it is, ... is accepted as the starting point of

- =
E kMt M M § A A T W B 4 Srd

e . ’ iy w2
reseaxrch. Improvements are sought within-it, not by replacement of it.

According to Menchinskaya, "Soviet ihsfructional;psychologv con-

. 7 -

.~ cerns itself with the characteristic of mental activity during instruc-

v ! 3 ' > ) 5 ‘ 1 ' 3
tion and with the principles of the learning process itself.™ In order“‘

'to .study the changes in mental activitv under the ihfluence -of instrug-" |

i o
: ' tion, Soviet didacticians devised the methodologv of the "teaching ~ . ) (1 .

- . 3

,experiment,“ . : 4 o
Undér one of itsnforms, "gxperimenﬁs of instrﬁctiop," itAiﬁvo%Vés

“ the introduction of pre%iminarv étages of study in which the initial
information, abilities, and skills ﬁeedéd to master the new material are

ascertained and arranged in a hierarchv. During phe~instr0ctibn which

'
. N ] - K
- i
i '

- [

- lJeremv Kilpatrick and Tzaak wifszup‘(éds:), Soviet Studies in
the Psychology of Learning and Teaching Mathematics, Vol. I: The
Learning of Mathematical Concepts.(Stanford, California: School
Mathematics Study Group, 1969), p. V. ' T

T inantd
N f

Lo ) . 23. . Easlev, "On Clinical Studies in Mathematics Education,”
Mathematics Education Information Report ({(Columbus: ERIC Science, ’
Mathematics, and Environmental Education Clearinghouse, 1977), o. 22.

. ! . ‘ . * ' : /,

, 3N. A. Menchinskaya, "Fiffy Years of Soviet Tnstructional ‘
Pgychology,” Soviet Studies in the Psychology of Learning and Teaching ;

. " - Mathematics, Vol. T, eds. Jeramy Kilpatrick and Tzaak Wirszup (Stanford,

. California: School Mathematics Study Group, 1969), p. 5. (Emphasis §
added) . y ) . S ' j
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follows this planning stage, the experimenter invéstigates*the learner's
, f )
thinking and seeks to discover'the/chbnges within one or two stages of

i
instruction. Menchinskava describes this form as being very advan-

tageous in that it allows the experimenter to follow the particular

‘

changes in ‘the'mental brocesses of the .same pupils on an iﬁdividual

‘basis. oy . L
‘dndef énother form,i"experiments of assessment," they investi-
" gate chiidr;ﬁ, who have alreadv mastered certain concepts, on their
ability teldse’them to solve prohlems. ' The same experimental task may

" be either given to students in different grades or given to students of

' one ‘grade bnlv, but at different stages of instruction.

":These two forms are egamp;és of the "experiencing" mode of the

teaching exveriment, where any one well-defined method of instruction

. ’ .

is used. TIn hoth of tHese forms, the investigator "seeks to observe

. . ‘ 1 .
* the 'dvnamics' of the ledrning process.” Another mode of the teaching

experiment is the ?testin?“ mode where the investigator tries to use

‘different methods to discover“which of these promotes the mos éffeétiQe

)
J .

mastery of inforhation.‘

' whgﬁ the, Soviet résearchers wish to look into the’child's pro-

cesé of mastering and using concents, they use the methodology of the

T

lindividuél experiment“,On the otherfhand, when they wish to confirm

. ‘ ,
the results of individual experimeénts on a wider quantitative basis,

- they use the‘colhecgéﬁe éxperiment and written work.

However, according to Kantowski, the statistical analysis of

’

1 ‘ L ‘
N. A.Mebchinskava, “The Psychology of Mastering Concepts:
Fundamental Problems and Methods of Research,” ibid., p. 89.

-/ g
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quantitative data is of.less concern than the falrly subjectlve analysis

’
i

1. P . oL
Qf qualitative data. Most studies'deallwith some aspect of the school

H

situation, with -the data often qatbefedaftom.a~sampling of "strong,"

"average,” -or "weak!: students who aré generally categorized and

N

selected with‘the‘aid of the classroom teacher. ' The dafq colleéted‘a:e

often qualitative, obtained in a ¢linical setting by recording verbal

protocols for future analysis. In addition, the ihvolveyenf with the: .
? ; ! R

same children can range over periods from about six weeks to the,

f

The "dvnamic" nature of the Soviet "teaching &xperiment® is one

_of its strongest points. Their method which is "primarily directed q;L

discloéinq and elucidé}ing the very process of learning, EE.iE takes

’

_place under the influence of gédagogv"z permits a researcher #o studQ'
changes in mental %ctivity as wefl as the effects of planned instruc; -
tion on such activity and té “"determine how instruétion can optimally .
.1nf1uence these processes. w3 Although the general "course" outline and

contént to be covered are determined in advance, the. experlmenter has’
4 )

the flexibilitv to plan a new instructional strategy for the following |

- Al " ’

session on the basis of what occurred during the previous session. He

é Mary Grace Kantowski, "The Teachlnq Experiment and Soviet
udles of Problem Solving,"” Mathematical Problem Solving: .Papers
from a Research Workshop, eds. L. Hatfield and D. Bradbard - (Columbus:

FRIC Science, Mathematics, and Environmental Education Clearinqhouse'_
in press). - '

~ -

2Menchinskaya, "The Psychology of‘Mastering Concepts:
Fundamental Problems and Methods of Research,” p. 89!

-
3Kantowski, "The Teaching Experiment and Soviet Studies of.
Problem Solvinag." ' 4/

! ' ' ' o
academic year. ' .

-
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also has the freedom to intervene; to inﬁroddce hints and

to offer the:

‘right hate;ial at the right time.. This methodology permits the

’ B

" researcher to observe how a subject 'is operating, to discover any

i eriongous concepts, and to determine levels of understanding rather

than mere numbers of- correct solutions.
The version of the Soviet "teachind experiment” which will be

t

appropriate for our research is the ™experiment of instruction,“ an

i t

examvle of the "exoeriencing'ﬁorm." ‘AbcoFdinq to this form, K as has
alreadv been describhed, one ascertains which subconcepts are required
in order to'acquire‘thé concept in queétion>anﬂ arféngés~them in a’ g
hierarchy. During the insﬁruct@on which.follovs,.the interviewer, by_
means of individual interviews, seeks to discover tﬁe cﬂanges within
the learner's thinking, and the gffectq of the plannéd instruction.
Although the instructional theme ié planned in advance, the inter-
viéwer'has the flexibility, whenever,K he deems it necessary, to alter
his plan og to pursue anvy unforeseen or iﬁterestinq responses which
‘may'come out during the interview. |
‘o N . : -
PART 2: Procedures .

- ?
-

i N -
i - ~

Selection of Subjects - . , "

The total number of students. involved in this stud& is six:

)

Barbara, Michel, freg, Caroline, Piero and Patricia.

Barbara and Michel were the first two subjects we worked with,

in November and early December, 1977. Barbara (Birth Date: March 10,

’

1965) was a qrade 7 student in a large comprehenéi&e high school in

Brossard. §ince she was a neighborhood girl known to the:interviewér.
’ :

L3

I3 - B -

e
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permission to do the experimental work with her was sought directly from
her parents.. Similérly, permission to work with Michel (Birth Date:
.July 5, 1964), ,a neighborhood hoy who was in grade 8 at a small private

hréh school in Montreal West, was granted by his parents.

According to the methodology of the Soviet "teaching experiment,”

‘the subjects chosen are generally categorized by their classroom teacher.
Since, there was no contact between the interviewer and Barbara's and

.. I
N -9
Michel's teachers, some other measure of their general mathemhtic%l

ability had to be used. Thus the parents were asked how their chgldren
i
. . - , 1
were doing in mathematics at school. As an added measure, the Hermon-

,Nelson Test of Mental Ability, Form B, 6-~9, was administered to all six"

. . . \

subjectg. . * v \

y'~ . . . ’ ‘ ¢ \
\ﬁ Michel was.judged by his parents to be generally quite weak in:
L ’ ’

his school subjects, although they felt that he was a little better at
mathémat{cs than he was with his other courses. His I.0., as rated by
the Henm6n~Ne1§on'Tes£; was 93. Barbara's I.0. was 129 and her parents
thought that she was déing extregely well in all her courses at school.
i Thgjnext two subjects were Greg (Birth Date: Oct. 1, 1563) and

Caroline (Birth Date: July 27, 1964), with. whom we worked during the

latter part of November and December} 1977. Greqg and Caroline were both‘

‘infthe same grade 8 mathematics class at Chambly County High School in

'

st

. ‘Lambert. Permission to work with these two students was obtpihed;
D . . : . -

.
3

by‘means of their teachgr, from, the Mathematics Department Head, the.

Schobl‘grincinél. and their parents. |, ) -

t ~

Though they were in the top stream mathematics class, their

teacher felt that they.were perhaps two of her weakesé'studentsﬁ ‘Tﬁﬁs

\ . . _ . : . :

Gt gt

v ot o
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- she considered them to be ef average ahiiity. The same Henmon-Nelson (F

‘Patricia (Birth Date: ~July 21, 1965), with whom we worked during January

-and February, '1978. Piero and Patricia were both in grade 7 at LaSalle

subijects, we had approached the mathematics teacher first to ask if she

Patricia who were rated at 123 and 96 respectively.

from four different'high schoalg, in wiqelv separated parts of metro-

e o - 57 -

Test of Mental Ability was administered to Greg and Caroline whose I.0.'s - ' {

were thereby rated at 106 and 113 respectively. ‘ ¥

The last two subjeéts were Piero (Birth Date: Dec. 21, 1964) and

s

Catholic Compréhensivé High School'in%}aSalle. As with our previous two '
' ' M -y

(SN

wouldn't mind qur. working with a couple of her students. She then

\

0

requested formal permigssion from the School‘Princibal and the students’

i

Piero and Patricia were both in the average stream grade 7 < :

e

parents. *

mathematics class. However, Piero.-was judged by his teacher to be quite

T

bright, whereas, Patricia was thought to be fairly weak. &s with our

other four subjects, we administered the same I1.0. test to Piero and

Thué our, six suhjects are representative not only of different ’

i ‘

abilities bhut also of fairly. diverse mathematical backqrounds, coming

g

R T RN T T e i

poiitan Montreal. . S .
Following is a table summarizing the above information on our

- b

subjects: ] : . @
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£ NAME " Michel Patricia Greg Caroline Piero Barbara

AGE AT lst !

INTERVIEW 13-4 12-6 14-1 13-4 13-1 . 12-8

GRADE 8 7 8 8 7. 7 g

TEACHER OR . \

PARENT i

RATING Weak Weak average average strong strong §
I.0. 93 96 106 113 123 129 :

We were primarily interested in having the teachers' (parents')
ratings in order to ensure a broad sampling of ability. Eventthough the
I.intest was given only as an added_megsure and was not to be con-
sidered as being any more valid or indicative of ‘abilitv than teacher
rating, it is interesting to note how closely the I.0.'s of our six

subjects related to the teacher or marent ratings.
o~ - <

Experimental Procedure

4

In our teaching-learning experimgnt with our ;ix subjects, we
used the individual interview. The first four s;bjects (Barbara, Michel, o
nsreq, Caro}i?e) had one interview session per week, yyereag the last two
subjects (Piero, Patricia) had two interview sessions per week.

The totai number of’sessions per §ubiéct varied fromhfiye to
eight, depending onkhis/her mathematiéal strength. It must be stated
here that onlv the first two sessions which deal with the construction
of meaning for the coécept of equation and the justification of the

rules to be used in the solution of equations will be described and

analyzed in this thesis. The remainder of the interview sessions are C e

.
.
'
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.the thinking of the subject, to get a better overall view of his learn-

part of another study, a pilot project on solution processes, and will

«

not be discussed herein. o
The interview sessions with Barbara and Michel were held in the

home of the interviewer during the weekends. The interviews with the

‘other four subjects were held in their respective schools either during

their mathematics period or during part of their lunch break. Each

session lasted from 25 to 45 minutes.

Each interview'was "audio-taped on a cassette-recorder following

4 mamanE b

which the tape was transcrihed in its entirety and then analyzed. The

analysis after each interview session allowed us to examine in depth

ing and to see difficulties or subtleties which may not have been so
-
I :
obvious during the actual interview session. Having a complete trans-

éription of the protocols also gave us the opportunity to compare the

various reactions of each of our subjects on a particular topic. In -
W : .
addition, it permitted us to discover certain areas of thinking which ‘

i

S

merited further exploration and gave us the chance to make those changes

Y R a

which could improve the next presentation with another suﬁject.
As a matter of fact we made a few significant changes in our line

6f questionin& as a result of the first sessions with Barbara and Michel.

These changes will be brought out in the analysi§ of the data. Another ]

0

variation that we tried during the course of the experiment was the

assignment of homework with our last two subjects, Patricia and Piero.

We wished to have another source.of information which could further

. . .
indicate the way our subiects were thinking and learning. i

Following are the questions which we asked our subjects during :

28
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each. interview session. The rationale fér the structuré of this

\

teaching-learning scheme has alréédy been described . in Chapter III. -

must be mentioned that every interview session‘ﬂecespitated some slight

Jv

deviation from the prepared questions in order to allow for individual

differences and to give the interviewer the flexibility to explore

Fo
o

further any interesting or unforeseen events. LT

Prepared Questions ) .- . Lo

W

'(a) Session .l )

Pretest: Have you seen eguations before9 L. (; &
-Can you explain what an equatlon 1s’> X !
P B Are you familiar with this sign (= )?

. o . Can you -tell me what the equal 51gn means S to you?
. Can you glve me sgome examples?

o Extending the Nption,of the‘Equal Sign:

“1f I look .at your. examples, on one side T &ee an

. opefation,'and on- the other side I see the reéult.

(Discuss the meanlnq of the word "operation").

- '

It

Can you use thé equal sign with one operation on each

side?
Can you give me some examples?
© Can you give an example where you have a different
‘ . operation on each side?

Can you give an example where you have more’ than one

¢ " operation on each side?
5 Have yqu learned the use of brackets?
Can you give me an example where you use brackets?

i

Giving a Name to the Equali?ies¢AbOVE:

oo , . Let's give a namé to all of. thesé equalities you've

written. Wwe're going to call them ARITHMETIC -
IDENTITIES.

“Are you familiar with the word -identical? . .

Tell me what it means when two things are identical.

Could you explain to me why it makes sensge to call
) - : these equalities arithmetic identities?

* Introducing the Concept of Equation:
. Let's take one of your arithmetic identities.

7 »
. f
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.** Let's hide one of the numbers of thié arithmetic

o / identity with our thumb. ‘
. : when I hide a number of an arlthmetxc identity, I then
have an EQUATION. 5
Let's use a box now for the hldden number instead of my
" ‘ thumb. (Repeat previous example with a box [!).
‘ Can you take an arithmetic identity and make it into an
. equation? - .

Let's use something else now in our equations instead
of boxes. Let's use a small letter of the alpha-

R . bet. This is the waf‘equation are normally
’ : J written. S :) '
: T Can you do it? e ;
A ‘Giving a Name to the Letter:

T o 0 The letter hides a number. This letter we will now’
' . . call an UNKNOWN. :
: Can you explain to me why it's, called an unknown?
o What is the unknown hiding?
What would we have if we uncovered the number hldden by
. > T the unknown’

-

. Examination of the Student's'Interpretayions;

; N ' " I would like you to build for me five equations. While

- (. 7. ., you're doing them, I would like you to explain to
* + * me how you are’ doing them, (In this relatively
‘ ) unstructured sequence, we would encourage varigty
and at the same time watch for any unnecessary
restrictions Bn the concept of equdtion).
- Does the unknown always have to.,be on the left side?
» (or right side, or at the end or beginning).

Dées the unknown always have to be the letter "n"? (or

. any other letter). '

o . Could you make more thah one equation from this arith-

. metic identity? - -
' ', Could you hide more than orid number (i.e., different
- ’ numbers)? -
. : Could you hide the same number twice?

T .’ What would happen if you hid the "5" on the left side
.. L and also the "5" on the right side? (or any other
- ’ ol number). ' ' '

- : In your own words can you explain to me what an

A , >
.« N equation is?

4 o
: ‘Homework: (Only for Piero and Patricia)

S s W%lte down 5 different arithmetic identities -~ some
- ’ ' . wifh mafly operations on both sides -- and then make an
“ - ‘ . equation from each arithmetic 1dentity&

.o . -
- R . . ~

©
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.(bi Session 2

. Review:

~

(Each .segskon wq‘ld begln with a review, both oral and.
written, in order to verify the understanding acquired
by the suhject in previous sesgion(s). This would also
be the time to examine any assigned homework).

Can you explain to me what an arithmetic identity is?
~-Can you give me an exampla?

Can you explain to me what is meant by an equation?
Can you give me an -example?

Can ‘you explain what. an unknown is? ,

Inducing the Rules'toﬂbe“Usedbin the Solution of Equations:

The siméiest arithmetic identitv is one with one opera-
tion on one side ar® the result on the other. Can
you zlve me an~examp1e?

We're now going to use your example to build new arith-
metic 1dent1tles~ What happens if I add 2 to the .
left side? * ’

‘Is it still an arithmetic identity? ' y

Using only addition, how can I make it an arithmetic
identity again?

What happens if T add 7 to the rlqht side?

Using only addition, how can I make it an arithmetic
identity again? (Repeat. .the last .two questions
with the numbers 13 and 20).

1f we can only use addition «in building new arlthmetlc
identities, is there any rule we have to follow?

- Will this rule be true ‘for all arithmetic 1dent1t1es?

Can you give me an example?

What happens if we multiply ‘the left 51de by 2? (Keep

’ in mind a possible problem with bracket1ng and.
order of operations).

Is it still an arithmetic identity?

' Using only multiplication, how can we make it an arith-
metlc identity again? (Repeat the last three ques-

. t;\gs using the numbers 7 and 13).

If we cah only use multipllcation in bulldlng new arlth*
metic 1dent1t1es. is' there any rule we have to
follow? -(Repeat the hbove sequence of questions for

~ the operations of subtraction and division).

"We now have a rule for addition, a rule for subtraction,

- one for multiplication, and one for division. Could
you make one rule that will cover all of these
operations?

Will it be true for all arithmetic 1dent1ties?

« Can you give me an example?

s
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’ . . CHAPTER'V -

o ANALYSIS OF INTERVIEWS ) ‘ :

In this chapter, we will be examining the protacols of the
individual iytervigws witﬁ our six subjects within the frame#oikléf,the":
, teaching—leérning scheme set out in Chapter III. We will attempt to
describe the thinking of thé‘le?rner while he is-in the process of

/ .
acquirin;'the concepts involved. In addition, we will point out any‘

changés in our own &ay of thinking or in our manner of presentation

>

which may have occurred as the result of one of the interview sessions.

" In the ensuing excerpts, the coding system for identifying the

-

individuals involved .is as follows: 1I: TInterviewer, B: Barbara,

2

Pi: Piero, M: .Michel, G: 'é;eq, Pa: Patricia, C: Caroline. In

“
N s

addition, three dots . . . indicé‘e.a pause, whereas three dashes ~ - -

! hd - y - . . ) -
indicate that a certain pa;t'of the original protocol has been. omitted

Because of lack of siqnifiéanée to the discussion at hand.
Pretest : - /

A

The first pa?f of SeSSion‘l was devoted to trying to determine
the levels of cognition of our subjects. We wished;to discover what
were the students' existing idéas on equations and the equal sign.

L]

Have you seen .equations before?

uY O -

: Yeh. - .

: Yes. ,

a: Yeh, we've been doing them in class.

i: Yes, we're starting it with our teacher. ’

0
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* Can you explain what an equation is?

- 65 -

like'l + 2 =2+ 1.

C: It's when . . . well if two things . . .
G: Well . . . you mean how it works? - - - .
~ An equation is a problem, sort of. - - - Like something d1v1ded
by sbmething, or addition, or subtraction, or something times . ‘J
something else. You have to find the answer.. \
Pa:

Un . . . I don't know how to.say 1t, but I can glve examples - = .
like, n divided by 7 times 3 minus 4 equals, let's say, 245.

Pi: 1t's.the rule you go by.

You write down numbers, you add the

signs there and then you work it out.

o

v

B: aAll the multiplications, additlons, subtractlons, and lelSthS?
M:-  No.

Both Greg and Caroline thought that "equations" meant arithmetié

equalities. Greq indicated that it was something where "you have to

S ‘ . Co : . ’ .~ 3
find the answer." According to their teacher, they had not yet been

taught equations in t@éir algebra course. | e ’ ' '
. On the other hand,,Piérq and Patricia had just begun in school to

‘'work with and solve eqUatibns~6ﬁ'the‘type; ax + b‘= ¢, where the result

o
"

c,"swds always on the right hand side. Thev had been taught to solve

these by a process bftundoinq,from‘riqht to left, all in one step, that
".» c ~ b
‘i

S, X = . o
v a N

" Though we hadn't asked Barbara or Michel if they had seen equa-

!

tions hefore, when they were asked what an equatlon was, neither of them

f

knew. They indxcated ‘that they had not yet learned algebralc equations

nor had they attached the name “"equation" to arithmetic equalitles. ‘ | o
v / oo

Thus it seems that only Piero and Patricia had had some prior exposure .
: B ‘ : \
to algebraic equations-. ’ R \

We ngxt asked ,our suhjects about the meaning of the equai sign, “ o

which they verbalized as follows:

-

I: What does the equal sign mean jto you? N L
M:  The same thing. , ’ .
G: 1t means- what the answer is. o '

-
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_-Pit 6+2=8,8-2=6,8"2=15, 16

C: It is, like, after the equal siqgn is when . . . it's hard to say
- - ~ after the equal sign is the answer. T :
Pa: A total of numbers is going to come after that. .
Pi: You have to have two or more numbers before them and’ then they .
“work in some way with a sign, multiplication, or addition and then
whatever the sum or product is, the equal sign comes before it.
Meaning that whatever the two numbers mean with the sign, it
equals so and so. R .

1

I: Could you give me an example where you use the equal sign?
B: 6x 3=18, 9 + 17 = 26, o
M: 4+ 3= 7, '

G: At the end of an equation - -~ before your answer - - - 5 + 3 8
* = =~=-5x3= , ,
. C: | In multlpllcation, subtractlnq ---2x3= 6 - - -.{2 x 3 - l) =
. (3x1+ 2). ST T ’
Ea:~2+5*7-,-—4+3=7. : '

-

2 = 8.

One cannot help but notice the difficuity that Caroline had with

-

- verbalizing an answer to the question of what the equal sign meant to

her. " Patricia, also, in her answer to "Can you explaih what- an equation

"is?," said "I don't know how to say it, but I can give examples." This

problem can be partially exblained in terms of the preference. of

1
i

- gtudents to express. themselves by giving examples; Théy show that they

.

know-somethinq by their examples, even if they can't express a

definition verbally. It is somewhat akin to Laborde's distinction

between dynamic and static forms of a definition. As already mentloned.
she states that junior high school chlldren have a sensitivity for the

‘dynamic form of a definition which involves an operational explanation

!

of the evént with the snbevents leading np'to it deséribed in the order
in whlch'thev occur and usuyally . bv means of a spec1f1c example.
) From the examples glven in- th//excerpts above, it se;ms that ou;
‘subigtts are more'c?mfortable with the operations of addition and -
mnrtinliCatioﬁi Anbtner interesting obsetv&tion'is that when

" - N v . - -

- .

B
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it was at elementary school where, as has already been‘gq}nted out by

67 i

»
v

1 ' N ‘ ! ’ "‘
Patricia was asked for an example of an equation, she gave one involv-

ing an unknown; whereas, wheq asked immediately afterward for an

example showing the use of the equal s&gn,"she gave "2 + 5 = 7." It is
possible that the equal-sian is still anchored very strongly in her

arithmetic and that the links between the equal sign and equations are

’ /

: still soﬁéwhat tenuous.

However, the prime observation to be made in this 5ection involves
the notion that "after the equal sign is the answer." Five of our six
subjects expressed this idea in one form or another (Caroline was the

’

only one who, in her second example [of the use of the equal gign], men-

" tioned an equality which dxdn t have the answer on the right gide).

-Théirfthinkinq in this reqard does not, abnear to have changed from what

P
\

L .
Ginsbuxg, they looked_af equalities in an opegationa;,way“ As a matter

of fact, the following excerpt indicatES the difficulty'that some

students have with conside:inq an equality which doesn't have the

answer on the right side:

I: Do vou know what this means? (= siqgn).

M No. ' , ;
T: _How about - -~ - 4 + 3 = § + 1? /
M: That (the sign) is "equal to." - - - 'We don't do that kind of

thina (in school). We 1ust put 4 +'3 = 7.

-

Mlchel'q reluctance to accept 4+ 3 = 6°+ 1 points out the need
of expanding the studcnts' notlon of‘the equal sign to include, arith-

. :

-

metic equalities containing seyeralhopefations on both left and right

,sides‘simultanebuslv.' For if we don't do thié expaﬁsioh fiist,'thaﬁ

is, if the student brings with hin 1n€o the studv of aigebra;c equa-

tions the “result on the right ‘side"” interpretatlon of the equal sign, -

'
-
e ’
. 1y
. . «
. »
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© the misconception that the right side is for the, result only?

-

Extending the Notion of the Equal‘sign

s 5( n= 10" whicn will bé ‘meaningful, as will "x + 363 = 542" and,

_— - - 68 -
P o ) .NL‘ ’ s ' . 1
tneﬁ algebraic equations containing multiple operations on both sides

may‘be\meaningless‘to him.” For éxample, "5 x 2 = 10" will lead to .

"3x + 5 = 26," because the 5esult of the operat;on(s) is still clearly

.

v151ble on’ the rlqht side. But what'happens when the student is pre-

sented w1th an equatlon such as "3x + 5= 2x + 12 How can we exnect\

. . 8 .
t ‘

such an expre§sion tQ be meanianul when.the student is still under s

‘ ' - %

Not only is the presence of this multiple opération.on the ' right i
/ K
side Forelqn to hlm, but also seeing 1t for. the first time w1th1n ‘the - .

2

context of an alqebralc equation w;ll add to the coqnltxve straln..

Therefore, we ﬁeel that extending the notlon of the equal sign within
the framework of arithmetic equalities prior td the introduction of
equations will greatly aid in the construction of meaning for a broad

class of algebraic equations, including' those of the form, ax £.b =

+ : - e
cx =~ 4. . ) o

- v

t ' ‘ ¢ !

{a) One Operation on Bach Side "~ - . -~ . T )

The first phase in extending the notlon of ‘the equal -sign 1nvolved
. . .

the expansion of the concept of equalltv to include arlthmetic equal— N
ities with one operation on each side. ‘ /

I:. Now, if I look aé your example(s), I see one operation here on
_ this side, and on the right side, I see the answer or the result..

Can you use the equal sign with an operation on both sides? .
Pi: 64+ 2= 2 +'6. . <

‘Pa: 3+ 5=54+ 3, : : . »
‘C: 5%4=4x65. ‘ ‘ .

G: What do you mean? . . . ‘ ‘
! N
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+ It took a fair amount of effort for Greg to realize what.we were

asﬁing‘fbr, eben aftéx he‘knew what an opefaﬁion was: .
Which operatlon have’ vou used in* that equality (5 'x 3 - 15)?
: Multlpllcation.~ : . . ) '
And how many operatlons do” vou have wrltten Here?. -. .

Mhe . . . two'. . . 5x3. " 0 -

w)
o ee es

) -

on this side (right)? . . .
No. o o
is it possihle for vou to wrlte an equality w1th an operation on
each side? ’ . ‘
You mean like 5 ¥ 3 = 15 and ‘15 = 10 + 52
Would you write that down? r
5 x 3 =15 =10 + 5. s
‘You have two equal signs, -
'Yes. N - .
Is 1t possible to write the equal sign just once? An operation on
. one side, an operation on the other, with just one .equal 'sign.
G: You mean two operations with one equal sxgn” e
: I: Uh, hm.: B T
G: 5 x 3=10 + 5.

H(‘;)

@

nH
. e

-0 A

“

It is interesting to note that three of the four subjects, when

asked for an equality with an dperaiion on each .gide, reébonded with an

gxamp;e involving coﬂﬁutativi?y} Oq{ fourth subject, Greg, suggested
initially "5 x 3 = 15 and 15 = 10 + ?f" which led to "5 x 3 = 15 =

10 + 5" and then finally to "5 x3="10+ 5." Hi;’firét ;uggéstion!

"é x 3 - 15‘§ﬁd 15 = 10 + 5,; shows how difficult it was for him to get
awév from having the résplt on one side. E;en his writing, "5 x 3 = 15 /
= 10 + 5" indicates that he was still thinking that tﬁe result had to

)

he shown,somewhere:‘ After his last effort, "5 x 3 = 10 + 5," we asked

him i€ his equality was true, to which he responded: '"Yes, 'cuz the ‘\

-answer is the same.” Barbara and Michel had not been asked thg ques-

iy

-tion;concerning an equality witH an operation on each side. They had

been shown pne,'whereupon‘Miphel said that "they don't do that kind of

»

‘thing (in’ school)." ' S e

You have, two numbers, but one operation. Do you have an operation . '’

4 et b

o
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' We then asked some of our subjects who had responéed to the above

question ("Can you use the equal sign with an operation on both sides?")

’

I
with the same operation on each side the following question: "Can you
give me an example where you have one operation on one side and a Ce

different operation on the other side?" That even a very simple ques-

~

tion such as this can be misunderstood is shown by Patricia's response:

I: Can you give me an example where you have one operation on one side
and a different operation on the other side?

Pa:~ 6+ 3 =3 x6.

I: Is that true?

Pa: No, that's 9 (left side) and that's 18 (right side). g
: And what does the equal sign mean? -

Pa: The eqgual sign means that this number, no, thls problem here ls
‘ supnosed to be same as that one. 4 -

I: Uh, huh. So, if that's not trpe, can’ you flx it up so that it is

true?
Pa: . e . . ‘
I: You've used the same numbers. You've used a 6 here, a 3 here, and
a 6 here and a 3 here (pointing to the respective numbers). Do '
vou have to use the same numbers?
Pa: No.’
I: Well, let's leave the "6 + 3." ’ )
Pa: O.K. - ’
T: The "6 + 3" has a value of ?
Pa:. 9. ' . 3
I: . Now yvou have 9 on the left side. You want to have something that
) works out to bhe i / o
Pa: 9. . ! -
I: On the right side. !
Pa: 6+ 3 = 3 x 3. o .
I Good!

¢

Patricia seems to have théught at first that both sides had to
have the same numhers. Although she quickly realized that 6 +.3 =

3 x 6 was not true, she seemed temporarily blocked and was unable to ' ¢

_think of a suitable response. It was only when she was asked if one

had to use the same numbers that she was able to construct an equality
with_a different operation on each side. 2 ¢

When we asked Piero the same question, "Can you give me-an

1
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" equality with a different operation on each side?”, he showed none of
the difficulty experienced by Datri’cia‘, although i;: had occurred to him

also that we may have wanted an an%\wer involving the same numbers:
/ )

[

side? )

Pi: Yes. 5 # 5 =5 - 2. Unless you want the same numbers - I can do
it with /the same numbers.

I: 0.K. show me an example with the same numbers.

Pi: 0 +°0 7—‘ 0 - 0.

I: Very good!

)
I: Can you 7£ve me an equalitv with a diéferent operation on each

That some students think we may want the same numbérs used on both

’

sides when we ask the question, "Can you give me an example where you
have one operation on one side and ‘a different operation on the other
side?", can perhaps be explained in the following way. They ha{ve seen
examples involving the comrr;utative property of addition and multiplica-
tion in elementary school. This, i's obvious from their answers to the
above question. lHowever, these examples in’:rolvinq éd'nunutativity always

/
have the same numbers on both sides. Thus, many of our'gtudents have
only seen equalities with the result or the same numbers on the right

U

side. Consequently"'some of them have to be gquided in breaking their

vattern of thinking, as was.necessary with Patricia, in order for them

to cpnsider equalities with different numbers on each side.
o .

v

{b) Multiple Operations on Each Side

"

The next phase in extending the notion of the equal sign involved -~

/
the expbansion of the concept of equality to include arithmetic equal-

N

ities with more than one owperation on each side.

I: Can you give me an gxamplg, (of an equality) where you have more
than one operation on each side? ’

M: 3x4:2=2+4.

B: 74+2+3=5+3+3+4+1.

Pl
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1

. 1 1= 2+ 1.
b4 1 -3=3x2+%4. '
Pa: And that add to the same thing?
"3+ 5+ 4= ... Do you want

+ +

b th sides to be equal?

/ J
Of our six subjects, only Patricia and Greg seemed to be still a

little unsure of what thev were doing. Following are excerpts from

the interviews with Patricia and Greq which show that their probleﬁ

was of a temporary nature:

I: Can you give me an example (of an equality) where you have more
. than one aperation on each side? WA
Pa: And that add to the same thinqg? )

I: Sure, because it is still the equal sign in the middle.

Pa: O.K. 2+ 2+ 2=2x 2. ? .

T: You hgve 2 plus 2 plus 2 on the left side which, you know, comes
out to be ) ' .

Pa: 6. J ,

I: S0 the riaht side must come out to be 6 too.

Pa: 2+ 2+ 2=2x 3.
: Could you do two operations on both sides?
Pa: 1+ 3+5=2x2x2.
I: One plus three, which is?
Pa: NDhnol . . . oneminute . . . 0 + 3 +5 =2 x 2 x 2.

a

M ' b
And with Greq:

1: Can vou give me an example (of an equality) where you have more
than one operation.on each side?_ i

G: 3+5+4= .. . Do you want both sides to be equal? : '

I: Well, vou have written the equal sign there and what does the

equal sign mean?

Both sides equal. )

0.K. ' . ‘o

3+5+4=12 < 4 + 9. ,

What do we have on the left side there? - - -

12. ’

And what do we have over here? - - -

12.' Tt's O.K.

-

DO ~NQHD

In the equalities suggested by our subjects'up to this point,

all,.save one [Caroline's second example showing how one' can use the

“

; 2
equal sign: (2 x 3 - 1) = (3 x 1 + 2)] were devoid of brackets. More-

over, our-six subjects had all been taught bracketing and the conven-

tional ‘order of operations in class. As we proceeded into more

’ .
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"Pi: 2+ (1 x3) -2= (l X 3) ~ 2 +°2.

' *
o5 &
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complicated equalities, it hecame obvious that the topic of bracketing

could not be ignored. The following excerpts indicate what occurred

" wheri we asked some of our subjects about bracketing:

1: ., Could you give me an example where you have two different
operations on.’each side?

Pa: 2+ 3x5=3x5+ 2,

I: “hat is the value of the left side?

Pa: The left side ,~ 18 . . . no, 17, wait a minute . . . yeh, 17.

I: What are vou doing first? o -

Pa: I'm adding. No, I'm multbplylng.A No, « .

I: Have you learned the use of brackets?

Pa: Yeh, I have. (2 + 3) x5 = 3 x5 + 2.

~

She rushed right in with a pair of brackets without any thought

7

as to whether they were necessary or where to put them.

I: So that's 2 + 3, which is?

Pa: 5. . !
I: And 5 times 57

Pa: 25. - .

I: So, what do we have over here? (rlght 51de)

Pa: . . . that's wrong -'= -~ (2 +3) x 5= 3 x5+ 2 + 8.

I: So if I see "2 +.3 x 5," why do you put brackets?

Pa: . . . to show which one vou do fixsg; .

It's not at all sure that "2 + 3" was thd opdration that Patricia

had injtially thought of doing first. In view of her second response
above ("The left side - 18 . , . no,\17, wait a minute , . . yeh, 17")

«

it seems moré likély that she had wanted to multiply 3 by 5 .first and
theq add 2. She be‘cam‘e a little cox;fused only when we asked her which
operation she was déinq first.(%nd then.definitelv switched her think-
ing when we asgéd her if she had 1earne§'£he use of brackets.

A bhracketing sequence with Piero:

I+ How about different operationg and different numbers?
Pi: 2%x2+4=8-6+ 6.

I: Have vou learned the use of bracketg?
Pi: Yes. | .
I: Can you give me an example where you use brackets? )

a

5 -

g




Piero seemed to have the notion that one brackets the operation

/

of multiplication. He may have been éonfusing the use of bracketing

with the rule that multiplication takes precedence over addition.

Some other unusual ideas on bracketing were shown by Caroline. Though

" she was the only one who had used brackets in one of her .examples

prior to this phase of the questioning [i.e., (2 x 3 - 1) =

+

(3 x 1 + 2)], her use of them on that occasion had been merely to sg%

v

off one side from another. So we asked her specifically about bracket-

ing durinag this "multiple-operation" section of our interview:

I: How about an example where you have more than one operation on
each side?

C: 4x3+1-323x2+ 4. _ -
I: Have vou learned the use of brackets yet?
C: Yes. ' i .
I What if vou wanted to add 3 + 1 first? How would you show that 4
! you wanted to add 3 + 1 first? ’ . .
C: (3 + 14, NN 1
) I: 0.K. Now would you make an equality? Continue.
- C: With this? [‘i.e..’ with' (3 + 1)4]. ° L o |
L I: Yes. foe

C: Using the same amount of steps?
; I: Any combination you want. It doesn't matter.
;o C: (3+1)4 = (2 +2)4.

e ok

Caroline seemed to think that whatever operation one wanted to do

.
v

i first shduld not only be bracketed but should also appear first.‘ These .
: ‘

; g ‘s . :
various notions of Patricia, Piero, and Caroline on the use of brackets

v

- -—'—give ‘some indication of the inadequate grasp that students can have of .
this notation. Bracketing.and the order of operations was a broblem

which reoccurred often in later sequences with our students. A com-

\
<

I

, \ plete discussion of the hracketing difficulties which occurred through-

out all of our !ﬁterviews will be discussed later in this chaﬁter:

]

When all of our subjects seemed comfortable with equalities con- _

Iy

taining not only one oberation on each gide but many oparatidhs on each

[y
1
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side, we.felt that they were ready to be given a‘name for this new cori-

. -
. “ \ \ -

. cept. As has dlready beéen mgntione’d;‘Ginsburq and ‘Beberman have

N

fpointga out fhe importance of acquiring a concept before giving it a ,
N ; . . . § \ <

name.,

The next section of this chapter will: deal with«our attempt to
. - . . - .
‘give a suitable name to this newly-expanded class of arithmetic equal- ’

v

. . @

-
ities, < 6 0 & A . - .
\2 o N A - .o l A
° s . . 3 P 4 M : ’ \ : ’
_Finding a Suitable Name' for Arithmetic:Equalities . A

i

«

It seemed useful‘at this pc;ini:'tQ give a name to these strings , -

- - ~ L

of arithmetic operations joined b\& an equalhﬁsiqn. ‘Even though we did

not'want to introduge any '«'unne‘cessarv,j' new vocabulary, we felt that »
sim%e these ardthmetic equalities were so.fundamental to the. building

of the concept of, eq}latiorg they should be given a name in order to ; .

* f I

o

N
s

T
Y

e

i

‘beth sides.

)

7

ARTTHMETIC IDENTITIES

]

3 -

-~ .

3

' hélp in identifying the' concept,, We decided to call them ’

E thus leaving the name "équation” for those equalities having gn'

unknown. * It wds. thought that this nfime would reflect both the drith-

. e ) . oo,
- metic fature of the equalities, and also the identical value borne by

- .

K

\

" W . . )
“*  for our newly-expande s8 of arithmetic equalities. . ‘ .
. _tor J y-exp M equa . l .

-
7
. - v A
“ A ‘
3 N -

However, this f'namin'q" Jphase went through different stages.
N . N L i .

. -

L]

After tgi‘yinq qut the name "arifhntbtic identity™ with Mic‘}\él‘and .

o~ & . . .
Barhara (our first two subjects), we went through a phase of experi-

2 .

mentinq¥to sée 'if some other name might not be more sp'itable. " This s

. Y

-
»
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section of Chapter § outlines the path travelled ”(in‘findinq a name s ..
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, We begin by deecribing this "naming" phase as it occurred during

©

Session 1 with Michel 'and Barbara:
+

: Can you give me some examples of when you use the equal sign?

M: 4+ 3= 7—~—4+3 8 -1, :

:  You know what we ‘re going to call these. I'll write it out for

* 'you: ARITHMETIC IDENTITIES. Which means that what you have on

one side

: ~ Equals the same.

i

¥ I: Would you make me another arithmetic identity? "

M: 2+1=10-~ 17,

I: Alright. Can you think of one usinq the multlpllcat:l.on sign?

M: 6x 7= 42\. . . Can you use, like 42 £ 1? .6 x 7= 42 % 1.

Iy -Excellent!’ dure. Now if you were trymg to convince somebody
that that is an arithmetic jdentity, how would you explain to
them that that is an arithmetic identity?

M: Thev're both equal to 42.

I: Right. The left side is 42 and the right s:.de is 42.

M: We never learned that (m school) .

I: No? :

M: 1 never hea'rd of this (arithmetic identity).

. . -
1 v

We.continued working with more examples of arithmetic identities,
.n

¢

.

~

qraﬁually increasing the number of operations on eacll side. (The *
LN . Q._,;&
sequence of aquestioning for Barbara and Michel had been slightly

different than that for our other four shgiect;s. They-had been intro-
,duced to'the term "arithmetic identity" irnmed;iately after Beé‘ing
ea_ulal,it;ies with one oper‘ai:ion on each side) Michel was able to build

arlthmetic identities, but seemed uncomfortable when using the termin®

wly -

- n ~

ology: .~ . . - T .

\ -~

Is'it still an arithmetic identltv? . ; -

No. - T N B ’ i ’ ' N
The arithmetic ldentlty means what? . oo Y
‘Equals . R

I 4+\3=1Q}’+2—5. 'rh}s is called . . .7 .

M: Arith . . . metic . . (di,fficulty saying the word)

I: Arithmetic . . .

M: Identity. . b
I

M

- - Rd

I: And what is this [3 + (4 x 4) =30 + 2 + 2} called?
t Arlithmetic"identitv. It's hard to say. 'y ) T L
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That Michel was having no difficulty with the concept of arith-

A o

metic identity seemed clear. However, he was héving trouble with say~-

’

ing the words. This was not surprising: since Michel seemed, in
general, to have difficultv expressing himself verbally. On the other-
"

hand, Barbara, an extremelv brlqht girl who was capable both verbally

‘and m&thematically, had had no difgiculty using the term afithmetic
identity. However, it made us wonder‘if perhaps, gd!«‘he benefit of -
the n;n~vetbal child, we should not try to find some other easier name
than "arithmetic identity." Thus,, in light of Michel's difficulties,
we decided to see if the name "equality" wouldn't se?ve just as well

as "arithmeti]c identity." During Session 1 with Greg and Caroline,

our next two subjects, we did not use the term "arithmetic identity,"
( .
hut;instead, "equality": ‘ ) '
1: Can you give me another examole where you have one operation on
the left side and one operation on the right side?

G: 3+ 5=2x4. . .

I: And why 'is that true?

G: You get the same afswer in the equation. L

I: Perhaps we should not use 'the word "equation" just now. e '11
save the word "equation" for something which-is a little b1t ,
different. Let"s just call that an "equality. » T

23 0.K. . " . ' .

I: All of these are.equalities [(5 + 2)3.= 2 x 10 + 1, .
34+ 5+ 4=124% 4+ 9]. Uhat do you notice is true-about all: ’
these equalltles?

G: They're equal on bbth sides.. ‘ ¢ ’

1: Does it matter ‘how many operations vou have for an equality?

0

No. . N

-
~

And with Caroline: e ) v o .

Y+ Let's ‘look at what you have here: (2 x 3 -41)/; (3x 1+ 2). »
vhy ig this an egualitx? (First time interviewer used the word). .
Because the numbers <in each group have the same value. 5 s
Alright, these are all equallties [5x4=4x%5, 4%3+1-3=
3x 2 4, {3+ 1)4 = (2 + 2)4}. : oot * '

. . -~ B . .

“,.‘, 1 . , * \‘ - R b . ? . ; . © ’
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I: Can vou exnlfin what is meant by an equation?

—~—
~—

“ ’

~ While it had seemed that with Greg the use of the term "equality"
instead of "arithmetic identity" had been both functional and practical,

we hegan to have some doubts durin'gi the session with Caroline. She

3

seemed to be having some difficulty distinquishing between the wc;rds
Yequalitv" and :'eauatio;x" and wh‘en'she should use each (as evidenced' by
the following excérpt from Segsion 1 -~ after she had learned ,about
équationq: I: vhat is this called "4h = 2 x 8?" 'C: An eauahtz)

1t was dec1ded to look for further evidence of this problem durlng the

upcoming second session with both Greg and Caroline before coming to
anv final decision regarding the use or abandonment of the word
3

"equality" instead of "arjithmetic identitfy.“ .

We began Session 2 with a review of Session 1: .
]

I; Can you explain what is meant by an equation? (This had been

taught during a later part of Session 1. « As will be described

in the next section of Chapter V, an equation was defined for

Greq and Caroline as an equality with a hidden number). 3 s
G: It's got something to solve, you've got an equal sign, and

you've got to solve it.

I: Can you give me an example of dn eguatlon? )
G: 5 x 3= 15, ‘ ° ; .
I: Can you explain what is meant by an upknown? - . bl .
: The unknown part in this equation is 25.

I: Can you give me another? -
G: An equation? - y

1:. Yes, . . .
Gin .15 + = 3. - ) - -
I: And where is the unknown? '
G: ‘What 'was unknown was the 3. . -
: What do vou mean: wag unknown? °
G:, Now it's solved. - - o . . ,
Can you show it to me before it' s solved? R

I:

G: 15 4+ 5 = S ’
I: Just like that, w:.th noth:.nq written down on the tlght?

G: It's unknown.

d at the beginning of Qesslon 2 with Carolme. : &
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C: An'equation is when two different groups have the same value, like f
2 + 3and 4 + 1. They poth equal 5. < ’

I: Would you write down an example for me?

C: 4 +6=28+ 2. .

I: Can vou explain to me what is meant by an unknown?
- C: An_unknown is a letter which takes the place of a number.

I: When do vou see an unknown? )

c: ... '

I: %hen do vou: have ap unknown?

C: In an equation.

I: Now when T asked you for an equation, you put down 4 + 6 = 8 + 2.

C: Yeh. . '

I: So, is this (4 + 6 = B + 2) an equation?

C: No, it's . . . : .
1: Why is it not an equation?

C: Well, because there isn't an _ unknown. '

Tt was, by this time, quite clear that Caroline could not ¢

|
remember what name to give to strings like 4 + 6 = 8 + 2 even though
she had been quite aware of the different terminologies by the end of '
the first session. (I: 1Is there any difference between 5 + 4 = 7 + 2

“and S + 4 = x + 2?2 C: wWell, this one (5 + 4 =x + 2) is the equation

i

-

and this one (5 + 4 = 7 + 2) is the equality]. Greg, who had been

.

quite comfortable with both "eaquality" and "equation" during the fir%t !
session, seemed unable to remember the distinquishing characteristics

of each during the beginning of Session 2. We were, at this point, -

realizing that perhaps the term "equality," even though it was easier

to say than "arithmetic identity,” might be cqysing difficulties of
- Q M
another typoe. It seemed that the word "equality" was too szilar to

the word "equation." The concepts defined by these two terms were ,
, ! N 1.
being confused because tkeig names were not distinctively different /

enough. On the other hand, Michel who had had so much trouble saying J \
N 3\

"arjthmetic identity"” during ?is first session d4id not show such .

evidence of confusion Sefween the two concgpts during his sedond - . ‘

; N '
session: ’ "
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N . .
I: ;Ean you explain to me what an arithmetic identity is? 0

»

-

Z I HIH I I H

L T

And

1:

I:
B:
I:

:

Something equal to both sides.
Could wou give me an example?
4+ 3=11- 4. . .
Can vou explain what is meant by an equation? . ‘
Is that something with n - with a letter? e Y
Uh, hmm.  Can you give me an example?
4+n=11- 4. . - '
An eguation is made from what?’
Arithmetic identity. )
What's the difference between the two of: them? |, '
There's a letter in an equation.

»

- .
during Session 2 with Barbara:

Can you explain what is meant hv an equation?
It was an arithmetic identity which has had a number hidden.
Can vou give me an example?
Of an equation? _

Yes, please. : . )
2x9x6=2x (3xa)x 6. . ’
Alright, can you give me an example of an arithmetic identity?
3 x6=3x2x 3.

-~ B ‘//

The oytcome of the first two sessions with Michel and Barbarjfy

served to confirm ‘what we had suspected during the second session with

) D - .
Greqg and Caroline, that is, that "equality" is tooc much 1like

"equation,” whéreas "arithmetic identity" is very different from

w

"equation.” This distinction between the two names was helping the

student to clearly differentiate hetween hoth q% the concepts'invo;ved,

and alsn helving him to retaih them. Thus we decided that even though
, L]

the term "arithmetic identity" Tight be a mouthfulﬁ¥or some students,

it was so specific a term that it truly hélped to anchor in their

minds the concept of eauality of strings of arithmetic operations.

And so, during Session 2, Caroline and Greg were introduced to

the term "arithmetic identity."

With Caroline:

%
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I; So if this (4 + 6 = 8 + 2) isn't an equation because it doesn't
. have an unknown in it, let's call it by a special name - an
© -+ "arithmetic identity." Do you know what the word identical means?

Ci Yeh, when two things loo}the same, or are the same value.

I: So why do you think thatJ® + 6 = 8 + 2 is called an arithmetic
identity? ’

C: Because both 4 plus 6 and 8 plus 2 are equal to 10. Both sides-
equal 10. They're identical. [

I: Does an arithmetic identity have an unknown?

C: No.

I: Does an equation have an unknown?

C: Yes.

With Grea: Y

1: Last week when we were working on things like this {5 x 3 = 15, -
15 4+ 5 = 3), we called them egualities. But I think it would
help if we gave them a special name. We're going to call them
"arithmetic identities." Do you know what the word identical
means? g ®

G: Yes.

I: What? ‘ . ,

. : When spmething is the same.

I: So why do you think these are called arithmetic identities?

G: Because 5 x 3 equals the same as 15. ¢

I: fThese are very simple arithmetic identities. We just have one
operation on one side and the result or the answer on the other
side. Would you give me an example of an arithmetic identity
that is‘'not quite so simple? 0ne that has two operations.

G: 3 x5+ 3 =18,

"I+ Alright, can you give me another arithmetic identity where you
have an operation on the ‘left side of the egual sign and an
operation on the right side? }

Gt 3 +6x2=9+6. . ? /

I: So, what are these called? '
G: Arithmetic identities.
What was required at this voint was to verify during the next
session with Greqg and Caroline (Session 3) whether or not they had
& become aware of the clear-cut distinction between an "arithmetl‘c
’ identity” and an "equation," which distinction had been lacking for
thg most part hetween an "equality" and an "equation." T

.

At the beginning of Session 3 with Greq:

-

J

4
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I: Can you explain to me what is an arithmetic identity? »
G: It's, uhm, where each side is equal to one another.

I: 0O.K. Give me an examvle.

G: 5x 3+ 2=7+10.

I: That's fine. Can you explain what is meant by an equation?
G: Tt's when something is unknown. ' )

I: Alright, give me an example.

5: 5 +n = 10.

And at the beainning of Session 3 with Caroline:

I: Can vou explain to me what an arithmetic identity is?

C: 1It's when both -sides have the same value, like 2 times 3 plus 5 is
the same as 6 plus 5. Both sides equal 11.

T: 0.K. Can vou explain what ig meant by an equation?

C: An equation is, uhm, like when eh, there is 2 times 3 and that
equals 6. 6 is on the other side of the equal sign. Like . . .

I: Show me. '

C: Uhm. 4 + 5+ 3 = 12. - ‘

I: And that's called an equation to you, is it? Actually, .that's not
quite right. This (4 + 5 + 3 = 12) is called an arithmetic
identity. . ’ ‘

C: Oh, right! O0.K. An equation is when there's an ‘unknown.

I: O.K. Would you give me an example then of an equation?

C: 4+ a= 8.

‘The ahove excerpt from Session 3 with Greqg served to reinfogce
our decision to keep the term "arithmetic identity.“ However, our work
with Caroléne, though it indicated that she seemed to know what an -
arithmetic identity was, pointed put something else, thiﬁ is, how very
difficult it can be to discard old definitions and to relearn new ones. \
On beginning Session 1, Caroline had told us that she thought an equa-
tion was something like 1L + 2 = 2 + }. Aftgr gPing through the learn-
ing experience of Session 1 and bein; taught that an equation had an
unknown as one of its components, she retﬁrned the following week for
Session 2, only to give as an example of an equation, 4 + 6 = 8 + 2.

Tﬁis occurred again ;t the heqinﬁinq of Session 3 when ghe gave as an

_example of an equation, 4 + 5+ 3 = 12, However, Caroline was not
- 1 V’Lb . .
( s .
alone in giving evidence of this problem. Greg had also begun

W
-
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I: Can you give me an example? . .
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Session 1 with the notian that "equation" was another name for an , /
arithmetic statement and héd kept this idea even after peing taught in .
Session 1 that equations had a letter.

At the beqgihning of Session 1: ;

[’
~

Have you ever seen equations before? )
Yes. -

Could you explrain what an_equation is?

An equation is a problem, sort of. «

Perhaps you can give me an example of what you mean.

Like something divided by something, or addition, or ,subtraction.

or something times something else. You have to find the answer.

What does 'theaedual sign mean to you? :
It means what the answer is.

Where do you use the equal sign?

At the end of an equation. .

Could vou be more specific? -

Before your answer.

. Perhaps using some numbers. o %
5+ 3= 8. , _

And at the beginning of Sesgion 2: . . *

)

QHQOQHQH

. s

2+ we oo es

»

s

Can you explain what is meant by an equation? ,
G: 1It's got something to solve, you've got an equal sign, and you've
got to solve it. : ’ /

i Of an equation?
I: Yes.
G: 5x 3= 15." :
I: Can you explain what is meant by an unknown?
G: The unknown vart of this equation is 15. : '

E

As can be seen from the ahove excerpt from the beginning pf

Session 2, it became necessary to review with Greg what constituted an

equation. I£ is not sure how much of Q;s confusion can be attributed

~

to his old notion of "equation" and how much, to our failure to use

. P4
with him (and Caroline) a more distinctive term than "equality" to
describe the equal striﬁgs of ‘arithmetic operations. 1In any case, we -

introduced him to the term "arithmetic identity™ during the second )

session (as with Caroline) ang as .has glready been seen in a previous
. [ P N :

-
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excerpt from Session 3, he had no further -difficulty in distinguishing

between atithmgtic identities and equations. -

Our last two subjects, Piero and Patricia, were also introduced .
to the term "arithmetic identity," but without going through any

expéfimentgl period. They were given the "name" during Session 1 after

they had acquired the concept involved. Following are some excerpts .

dealing with this aspect: ‘
[ o
I: Alright, now we're going to give a name to all of these things
(e.0., 2+ 3 =4+ 1, etc.) you've 'written down: ARITHMETIC .
IDENTITY. They're all examples of arithmetic identities. Are
vou familiar with the word identical?
., Pa: (she shook her head "no").
I: Have you heard of identical twins?
Pa: . . . Y
I: No? Alright, the word identical means two things are the same.
So, why do you think it's a good idea for these to be called

arithmetic identities? * .
Pa: Because some of the numbers aren't (2??) the same? *
I: The numbers aren't the same, but what is the same?
Pa: The total.
I: on? . . . The total on?
. Pa: Both sides. .o “

s Is the same. So that's why they're called identities. Because
the word identical means the same, that is, when two things are -
the same. So this 51de has the same?
Pa: As that side. v . ' °
I: The Same value. It doesn t hdave to have the same appearance, but
it has the same value. So they're called arithmetic identities.

And during Session 1 with Piero:

I: Alright, let's give a name to all of these equalities (2.x 2 + 4 = ’
8 - 6 + 6, etc.) that you've written down. We're going to call

them ARITHMETIC IDENTITIES. I'll write it out for you. Are you
familiar with the word “"identical?"

Pi: Yes. » ’ '

I: What does it mean to vyou? . -
Pi: The same. - )
I: When two or more things are the samg. So why does it make sense
. to call. these ‘equalities identities: ' |

Pi: QSQause they're the same. Both sides. v ’ ' 1
|
It seemed that Piero had understood what was meant by the term

"arithmetic identity." ngevef, this might not have been the case, in R

"
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" view of what occurred later during the same session (after he had been

taught what an equation was):

I:

Pi:

I:
Pi:
I:
Pi:

I:
Pi:

Pi:
I:
s : Pi:

i

! exhibited great variety in his examples. However, as soon as the

I want you to build for me S eqhations.

a+2=4+ 2.

From which arithmetic identity did you make that eguation?
I just made it up. (He continued to write}: b -8 =8 - 8,
What are you thinking of while you're doing thesge?

I'm mostly thinking of equaling both of them, having them
identical.

Is it necessary? Y

Yes. Or 'you don't need this. (As he points to the equal sign in
b-8=28-8).. ' o
But is it necessary to have "-8" here (on left side) and "-8"
there (on right side)? ) °
Yes. *

What if you had this arithmetic identity, "6 - 2 = 8 + 4"?

-You could say that, but it's not identical as much as "b - 8 =
8'- 8," because they don't have the same operation.

So you wouldn‘t call this (6 - 2 = 8 + 4) an arithmetic identity?
Not really. . ~— ’

Then T'll have to make something clear. To have an arithmetic

)

identity, both sides have to have the identical value. They don't

have to look the same. You don't have to have something like
"10 - 8 =10 ~ 8." That is an arithmetic identity, but so is
this: 6 + 2 =8 + 4. As long as both sides have the same value,
it's an arithmetic identity. Alright, would you make me an
arithmetic identity?

12 - 8= 90 + 6.

N.K. Now make an equation from that. v

c - 8=090+ 6. J |

When Piero "had been constructing multi-operation arithmetic

equalities (prior to_their being named "arithmetic identities"), he had

t ’

sequalities were pegged with the name "arithmetic identity," he somehow

a9

.+ +
assumed that this name referred only to the a - b= a - b type. Since

equations were formed from arithmetic identitigs,“all his equationé‘

were of the x ks b=a : b type. This restriction on équations coulé

Rossibly have been prevented if we had asked for several more examples

¢

‘of arithmetic identities {E&ed@ately after exposing him .to tﬁg term

"arithmetic identity." We would thus have seen earlier, befofe going
P * / N

4 1

. . .
2 4 ‘.

[ N *
. - . . ' Vs

o
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into equations, whether or not he was plgping any. limitations on his
3 ! Lo,

‘
~

concept of arithmetic identity.

v.Ehe next section of this chapter will deal with the acquisition
of the concept of equation. However, the vocﬁbulary used will not be
the same across our six subjecps, for, as has been described herein,

Greg and Caroline were using thé term ”eq;ality" rather than "arith-

metic identity" when they were introduced to equations.

The Concept of Equation

{2a) Introducing the Concent

Having extended the notion of the equal sign and given the name

"arithmetic identities"” to this extended class of arithmetic eqﬁhl—

: a

ities (Breg and Caroline were at this point still using the name

"equalities"), we were ready to introduce the concept of equation.. We

wished ‘to introduce it by a three-step representational process.

For the first step, we would cover up with a finger one, number of

an arithmetic identity. Thus the notion of an equation as
AN ARITHMETIC IDENTITY WITH A HIDDEN NUMBER

would first be presented in a concrete manner. -Again, as with "arith-

metic identities," the name "equation" would not be given to the

N 1

student at .the out

s .

get, but only after he had seen part of an arithmetic

identity being, covered up. :
’

For the second step, the covering-up 'of ‘a number would be done by

_a bok. This hiding of the number with a box would . be an intermediate

step in the gradual process of developing meaning for tﬁe new mathemat-

ical form. - o S

h Y
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The third step in the construction of meaninq'fog the concept of

\Q

equation would involve the hiding of a number in the arithmetic’iden-
tity bv means: of a letter. Thus, it would only be after the student

had acquired the concent of equation, intuitively that he would be led

°

to a more formal understanding (undérstanding of zorm) involving the
use of letters. Thot is, by the first two steps we would express the'
mathematical idea involved in the concept of eauotion without resorting
to nnnocessary formalism. Only after meaning had been écquifeq“by
means‘of these preliminary steps would the symbolic representation of

equation be presented.

®

Following is a sequence of excerpts dealing with the introduction

' “

of equations.

With Patricia:
T:  Alright now, let's take one of your arithmetic identities. Let’s.
takegthis one: 0 + 3 +5=.2x 2 x 2.
I'm gqoing to hide one of those numbers. I'Il just hide it with my
finger for now. Let's say I hide the 5. (Hiding the number:5):
When I hide a number of an arithmetic identity, then it's called
an EOUATION. An equation ‘has something hidden, Now it's very
difficult to go around always hiding numbers with your finger, 'so
we might see it hldd&ﬂ with a box: 0 + 3 + C] 2x2x 2,
Pa: Or probably an "n.
T: Or an "n. You've seen™it with an “n,“'have you?
‘0+34+4n=2x2x 2.
This is the most common way of writing an equation. We' usually

o use a letter of the alphabet. Does it have to be "n"? .
. ' Pa: No, it can be "y." Tt.can be "a" - any letter. . '

I:* And we usually write it with the small letters of the alphabet and

not the capltal letters, e, o

o - Patricia had alreadv been 1ntroduced to formal equations in ‘class’

before these sessions Bégan, thus explaining her interieqtion,‘”Or

’

Al

3 . probablv‘an 'n'." She knew‘nlso that there was a choice of l;ﬁterur//

e
~
’

T - Ah 1mportant aqpect of this introduction to the concept of ‘egua-

. -

- tion was the choice of arithmetic’ identity used to'illustrate the




transformation into an equahion. We selected one o# the student's ’

arithmetic identities, preferably one with at least one operation on

4 o

each, side of the equal sign. Any time_we wanted to demonstrate some-
thing, we used one of their examples. And if a suitable example of

theirs was lacking, we asked them to try to construct one. For if the

students were to create meaning for the concept of equation, they had
= \
to be activelﬁ involved. This included constructth thefiwown“arith—a

metic identitiés,and ‘their own equations. Tt’also provided us with the
N , ’ :
onoportunity to study the types of examples thev were inventing.

% . A . . v. 4

T: Let's take one of vour arithmetic identities. Let's take this one:
5+ 5=5"+ 2. Let's hide the number 5, perhaps the first one.
(Hiding the first 5 with finger): When I hide a number of an
arithmetic identity, I then have an EQUATION. So if I hide that
(the first 5), we have: SOMETHING + 5= 5 * 2. 1It's called an
equation when a number is hHidden: Now we're not always going to

‘use a thumb or finger to hide a number. We could use a bpx. :
(1l +5=5. 2. Something + S=5 -+ 2. That ({J+ S5=5 - 2) is
called an equation. Can-you take an arithmetic identity and make
it into an equation? : . : ° T

WitH Piero:

Q

Pi: .6 +2=2+6 . < e
L1 +2=2+6 ’
6+l =2+6 /
6+2=101+%6 )
6+ 2=2+1[1
I: Very qood! Alright, let's use something new in our equations

*  instead of boxes.’ Let's use a small letter of the alphabet. This
.is*“the way'equationz are usually written. So instead of OO+ 5 =
'S - 2wecouldusea + 5425 2o0rb+5=5"-2. Any letter of
the alphabet, usually small letters and not capital letters, will
do. Would you take an arithmetic 1dent1ty and make it into an
equation uysing a letter of the alphabet,
Pi: n +:2 =6 + 2. -

Plero, “Who, like Patticia, had already seen in class formal edua-

a 4

tions of the form ax * b = c, surprised us nonetheless. Hig rapid\run-

«

o

off of. four equations with the box in all the Bbssible 1ocation§ showed

" that he had not pl@igd any unnecessary restrictions on fﬁe pbsition‘of
. ® .

T . 0

-

;

LDdon
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the hidden number, despite the,fé@t that the egquations he had worked .
)

s

. "
with in class had alwavs contaﬁned‘a letter, "n," and that the letter

\
had invariably been placed first in the equation. {
. A :
On the other hand, &Greq, who{haq not done any prior work with

i - N « " . R
equations in class, was not at’ all sure if the hidden number could be

\
e v, 4
. 4

on either side: |

- A

I: ~.- - Now, we're not always qgoing to be using a finger or a thumb
to h$de the number. Sometimes we use a box to hide-a number.
Suppose we take this last equality of vours (5 x 2 # 5 + 2 + 3).
Let's rewrite it using a box to hide any nimber.

G: On which side? N
I: {f doegn‘t matter.
G: 5 x ¥=5+ 2+ 3. ) . .

We then went on with Greg to Steﬁ 3 of the hiding process, that

is, hiding by, using a letter of the alphabet. Greg gave as his example

'

of an eoqapion tvhere'a letter hides a number:- 5 x n=5 + 2 + 3Z He

also seemed to he fond of the letter "n,"™ as Patricia and Piero were.
With Michel, as with the others, we first hid a number of an

1) —_—

arithmetic identity with a finger and then made a move to go on to the
more practical(representations:

I: - - - Now we're not always going to be using our finggers or thumbs
to hide a number. .

M: You're going to cross it out? i

I: No, we'ge aoing to use a box for the time being.

"I +3=10 + 2 - 5,

M: Nh, I've done that. ‘

I: You have done this? s / Ce

M: And then a 4 goes there. . .

I: Richt. But we're not going to be figquring out just yet what goes
into the box. Alright, would you write down another arithmetic
identity. : )

M: 3+ (1.x 4) =10 % 2 + 2,

I: Make now an eguation for me - using the box.

M: [ 1+ (lx 4) =10+ 2+ 2. ! .

I: Alright now, let's go one step further. We won't alwa use boxes
- - -~ Ye're going to uge small letters of the alphabet i ead of
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the box. Rather than having [1+ 3 =10 + 2 - 5, you'll see gome-
thing like x + 3 = 10 + 2 - § : 2
M: -That's algebra. (Sounding.a’little glum). c !

I: Right. We're going to use small letters of the alphabet. HNow, it
doesn't have to be x. It could be a + 3 = 10 + 2 - 5. :

x

‘-

When Michel saw the boxes, Step 2 of the hiding process, he * °*

-

became quite pleased. Were was something familiar. He had seen boxes

v
vt
e Wi, § e e AL RIS

as placeholders qurinq his vears X? elementary school and apparently *

had felt quite comfortable with them. Thus he was reassured by seeing . :

—

something familiar which he knew he could handle.

However, as soon as
. -

P "

we beqgan hiding a.number with a letter, he seemed to become a li%tle‘

-

N

- . 3 L
disappointed. He became aware that we were ‘beginning algebra ("That's

algebra.") and his comment reflected the fear that many children have

o
about it. : ~

"

{(h) Giving a Name to the Letter

After having introduced the concept of equa;ion by hiding aJ
number of-an arithmetic identity, we decided to give a name to the
letter which was useg. We selected the name "unknown" rathér than ’
"variable," since "unknown" corresponds more closely to the idea of a
hidden number. In addition, as has already been menéioned, "unknown'

# .
involves a lower level of abstraction than "variable" (Wagner,

Kuchemann) .

'

Following' are the responses oi‘our six subjects to the introiyc—

tion of the name "unknown": y )
. ‘ ™~
T: We're going to give a name to this letter. Any letter that hides
a number is going to be called ‘an UNKNOWN. Why ‘do you think we're \

calling that letter an unknown?

C: Because yéu don't know what the letter is, what the number is,
what number it represents.

f i

’ B
PN
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Pi: Cause it's anknown. Nohody knows what it is. !

Pa: Til you have to find the numher that's missing there.

G: Because, it hasn't-been solved? .

B Because you don't know it. And you have to find out. -

M: Because there's no number. . Tt

-

As can he seen, our six students could readily find justification
for the letter'being callep an unknown. From these same responses; we ‘
also noticed that three of our subjects (Greq, Barbara, and Patricia)

referred to the notion of solvina ecuations. Even though we hadn't

* \ .

spoken ahout solving equations or even the need to solve equatiens, it
' . s

Y
seemed thét some of our students felt that this was, in some way, an

essential vart of working with eguations. As a matter of fact, it was

N

quite natural 'for them, even at the construction-of-equations stage, to

.

’E

look at/an equation and mentally try to slot in the required number .

Michel showed evidence of this as soon as he began to construct equa-

tions:

T: We'de going to try a box for the time being. ' ' ) .
Py % 3 =10 4+ 2 - 5,

M: 0h, TI've done that. )

I: You have done this? - -~

M: And then a ¢ goes there.

His spontaneous reaction seemed to illustrate that the operat}onal

process of hiding a number carries inherently .the rdverse process of

-

uncovering. Another indication of the intuitive Hesponse of our

subjects with respect to the uncovering compone was shown when we

asked Greqlandggarol{;e the following question:
With Caroline: , . o . ’ i
T: Let's look at these two examples (2 x a = 10; 3 X a= 24). If I

replace the "a" by the correct number, what will I have back again?

C: The equality (arithmetic identity). ‘

«
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And with Greg: e ' ’

Ir: Why do you think we're éalling that letter an unknown?
« G: Because it hasn't been solved.

T: And what if we put 6 in place of that "n" (3 x 5 < §=6 x 3
what uld we be back at?* )

- * G: The equality (arithmetic idéntity). .

) ! ¢

Their answers indicated not only that they had the notion of

T n),

uncovering (i.e., solving), but also that this uncovering would bring

back the arithmetic identity: This awareness seemed to occur quite °

, naturallv. They had acquired the notion q‘_éolution as a result of the

1

-

way they had constructed meaning for enuations. Thus our students -

realized that ndt only could they go from the arithmetic identity to

the equation, but also from, the equation back to the arithmetic iden-

titv (if they knew the hidden number).

.
)

]
B . .

(c) Examination of the Student's Interpretations

-~ -
‘< -

Having introduced the concept of equation and the te "unknown, "

v

-~

wd next wishgd to examine the student's Jinterpretations of the concept.

v

o ’ ’ -
This would be done within the context of having the student build

several equations and at the same time asking him to explain how he was

building them.

)

This would qive us an opportunity 5p see how the -

learner was thinking about the new material.

'

%]

Discussion '6f this phase will center om four topics: 1) the

2

various aporoaches used bv our subjects in building their own equa-
tions, ii) the misconceptions that students may develop in acquiring

the concept of equation, iii) the e}ténsion of the concept by some of
o, .

‘ our subiects to include equations with more than one letter, iv) 'the

explanation in their own words of the meaning of equation.

‘.
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i} Various Approaches Used by Subjects in BuildingﬁEquations

; R . ) . ‘
Greg's Method: c. . ' . - .

A

T: Can you give me -three or four examples of equations’ and tell me
what you're thinking of ‘while you're making your equations?

G: Both sides have to be equal. ‘

I: O0.K. Let's try one. Think out loud. Tell me what you're thinking

while vou're writing these.down.

Just trying to make one side equal, .and the other 51de,qut a

letter tq represent a number. 2 x 5 % 2 = 2 + n. .

I:, Alright, what were vou thinking of while you wefe makihg that

[

equation’

G: Well, T got the answer to thlq side (left).

T:" Which whs what’ . !

G: 5, and T just’ put something plus something would equal 5, and T put
2 and n for the number. s

I: 0O.X. That's fine.. Give me another equatlon now.

G: 6% 3xXx6=6 4 - n.

I: Alright now, whit were yg hinking of in that equation?

G: e e, % 0

T: What 8id you make un first in our head? Before\§;\‘wfote this

equation?

G: 6+ 3is 2, times 6 is 12. 6 x is 24, minus something.

L: Now, in these two examples, you/have three numbers on the left
side; your unknown at the end,/and you used "n" in both cases.
Does*that mean 'that the unknoyn always has to be -at the end?

G: No.

I Does it always have to be thejlett

G: No, just used a lot.

I: Give me another example. . .

G: 3xn+3=3x3. " :

I: What were you thinking heré? - . : \

G: 3 times n, which would be 2, is 6, plus 3 is 9. Tt's the same as
3 times 3. ) ’

lln“? .

Greqls first two’efforts consisted in writing the left side of an

eaquation using numbhers onlv, calculating its value, putting an equal

! N . /

sign, and then numbers with an unknown on the right. He was not begin-
ning by writing out a complete arithmetic ‘identity and then rewriting

it with a number hidden. He would start with the left side of some

‘arithmetic identity, and then, thinking of some equivalent form for the
-

same value, he would use an unknown for the las} number of that

.

equivalent expression on the right side. Tt was only after he was

"
4
¥
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asked if the unknown had to he at the end, ‘that he came Mp with

- 94 - - . '

’
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° v

~

3xn+ 3=3x 3. Hefe he had thought of 3 x 2 and covered up the 2,

" then added 3 to come up with a valye of 9 on’'the left side. 'Thus he

\

! M

.placed 3 x 3, an equivalent of ‘9, on the right side.

s

<
Greq was not the only one to build equations without first writing

A i

down a complete -arithmetic identitv. Piero did likewise, however, his {

equations were all of a trivial ‘nature. ‘

4

Piero's Method:

Pi:

Pi:

Pi:

S . tos

I want vou to build for me five eguations.
a + 2 =4+ 2,

From which arithmetic identity did you make that equation?

I just made it up. . )
b~8=28- 8.

What are vou thinking of while vou're doing tHese? !

1'm mostly thinking of equaling both of them, having them -
identical.

Is it necessary?

Yes, or you don't need this. (%s he points to the equal sign in

h~8=28 - 8).

But is.it necessary to have -8 here (on left side) and -8 there

(on right side)?

Yes. . gﬁg )

What if you had this arithmetic identity, 6 * 2 = 8 + 4?

You could say that, but it's not identical as much as b - 8 = 8 - 8,
because they don't have the same operation.

So you wouldn't call this (6 * 2 = B + 4) an arithmetic identity?
Not really. *

THen I'll have to make something clear. To have an arithmetic
identity, both sides have to have the identical value. They don't
have to look the same. You don't have to have gomething like

10 - 8 = 10 - B. That is an arithmetic identity, but so is this:

6 - 2=18+ 47 \As long as both sides have the same value, it's an
arithmetic identity. Alright, wduld you make me an arithmetic
identity? ’

12 - 8 =90 + 6.

0.K. Now make an equation from that.
c * 8= 9080 + 6,

Is it necessary for the small letter of the alphabet to come first?
No.

(]

Piero's equations (a + 2 =4 + 2 and b - B = 8 - 8) were built on

the erroneous notion that arithmetic identities, from which equations

<N



"cept of arithmetig identity and could have corrected it sooner.

L . .

were constructed, were all of the form a *p=atp. Thus all his

<

equaFionq were of the x £ b = a ¥ b form. ‘As has already been men-
. s 4
tioned in the previous sqcﬁion, this‘;é?triction on equations could

possibly have been prevented if we had asked him for several more

!

d
examples of arithmetic identities immediatelv after exposing him to th§\\\\

-

term "arithmetic identitv."” We would thus have seen, before going into

r 3 3 I} I3 1] .
equations, whether or not he was placing any limitations on his con- ,
13

Another interesting feature of Piero's equation-building showedQ

1

itséff durinag fession 2. He had been asked at the end of Session 1 to

do a little assignment -- to create five arithmetic identities and

- ‘

from them, five equations. This is what he’ prepared:
4 . :

N K

I\ A
Pi: | ARITHMETIC IDENTITIES EOUATIONS
N 5]
. 54+42=24+5 ’ 1+ 2=2+5 ’
"10-6=8-4 10 -Fi=8-4 '
4
2 x 2 =2+ 2 T2 x 2=0+2 )
10 +5=221 . 10§ 5=220 !
3x 3x3=9%x3 3 x3x[1=9%x3 . -
] ’ .
| , s

. v L

I: Now T noticed you used boxes for your 'eguations. %

Pig VYes. t ’ X

I gs there any particular reason? ‘g

Pi: No. T just thought, I like remembering old times when we used Co
yppxes. ) ., .

I: ~ We will be using small letters of the alphabet now though.

Pi: O.K. .

Piero 1§k¢d using hoxes to hide his numbers. Even though we had N

passed through this phase &n Session 1 and had qgone on to using letters,

hé went_back to the box stage when doing his assignment. It might be

. ¢ 8 !
13 * *
« ~ ,
1}
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rememberéd that, during Step 2 of the covering-up prgéess, Michel also

.
. 2

liked very much the idea of using boxes. It was familiar ground; it

was a reminder of "old timesg" accordihg to Piéro.

~

Caroline's Method: \ . 3

: - Caroline used vet,a dlffeqfnt approach when she was constructlnq
her equations. ) ) /
. ’ r.

T: Mow what T'd like vou to de is make un’ five equations and as you're
making them up, I want you to’ explain to me what you're thlnklnq

while vou're making up thege equations. .
C: 2% a=10..What times. 2 equals 10? ,
~ 3 x a = 24. What times 3 aives you 24? -

-

Before continuing with Caroline,.it is interésting to note how

' FaNN )
she read the two equdtions above. Rather than "2 times what equals 10?",

1 a ! . %

she said "what-timés 2 equals 10?" It is possible'thaf her knowledge of

» -

s

the éommutative property (as already shown) gave her the freedomqto

7

re-express verbally an equation in whatever order she was most comfoqt—

able with. However, since she was not €onsistent in altering the order
v
— whenever the unknown apdeared as the operator {as will be seen in the

! N ] ! [ s

examples below), we cannot come to any conclusion.
, .

. N Now in both of your examples you have just. Qne operation on the left

N side and one number on the right. 'You have used the letter "a" both
» times. Wowld you dive me in your next example of an equation, some-

. thing where you don't have just one number on the right side?

i C: 4xb=2x8-4 times what will give vou 2 x 8? ,
T: Now you've got vour unPnown on the left side three times. Does itﬂ

always have to bé on the left side? ’
c No. e . .
I:. Show me oné where you have vour unknown dn the right si8e.
Cc 3%x7=7x% a. Three times seven is eaqual to seven times somethlng
1 What equallty (Arithmetic Identity) were you thlnklng of when dqu

made up that equation? . -

C: 7 x 3. S ' " 2

I: And what did vou do when you wrote it down? o
C: 1 reversed it and then I substitute the number by a letter.
: 0.K. Let's trv one more equatyon where vyou have\two operations on
each side.

.
. ' i °
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¢: 6x5+1=ax5+1. v

I: 0.K. "There you've got pretty well the same thing on both sides.
How about one where it doesn't look quite so much the same on both
side§? .

C: 6x 4 +2=8x10+2.

I: Now T notice that you put a box down for your unkno&n.

c: 0b!6§c4‘+2=8xa+2. . |

o

raroline, in a similar fashion to Greg and Piero, was not build-

.

’ing her equations bv\§tartinq off with a written arithmetic identity

. \
and then hiding' any number. The arithmetic identity stage was being

done mentally. Her equation-build@ing bedgan in a vergfgimple way:

’

2 xa=10, 3 x a= 24, i.e., a single operationh on one side (multipli-

\

cation) and the resultaon the other. When asked for an example with
. 4 =
more than one number on the right side, she gave 4 x b = 2 x 8. Again

the unknown was on the left $ide, in contrast to Greg, whose first
examples all‘hqd the unkﬁown on the right. It was enly when asked‘to
have the unknown oﬁ the riéht side tha;‘she came up with 3 x 7 =
7 X a. . . . . - .
pPutting the‘ukknown on the'right seemed to he a little difficult
for Caroline, for not orly was she av?idinq it in her first examples,
but also when asked for such an example she chose one of the simoiestf
tvpes -~ an illustration of‘ﬁhe commutative, property. She\invented an
operation for:her left side, "revégsed" it for the right side and sub-
stituted one of theAnumbers on the right by a 1e££er. .This method L
helpéd her to avoid any mental effort that miqht have been required in
building some more-complicated arithmetic identity. It elihiqgted‘the
need to keep track of any numbers.or even to compute the wglue of thep

left side. Then, when urged to give an equation with two Oferations

on each side, she produced somethiné simpler still than 3 X 7=172%x a.
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. o
She wrote the same thing o{ both sides and merely hid one number:
A R . € . ~

6x5+1=axb5+1. And when asked for an eékample where the two

‘ o€
sides were not quite solsimilar, she structured th sides the same
:

1

way (6 x 4 +'2 = 8 x [T+ 2), though with 6 x 4

8 xf] . We noticed also the Fxtent to whicb sh
of multiplication in her examples.

. Rarbara show?g a similar tendency to favor the operation of

multiplication.

N . .

, Barbara's Method: - -

v

I: Can you give me an examnle of an equation?

B: 2x9x6=2x (3 xa)x 6. no "i»
I: Can you give me an example of an arithmetic identity?

B: 3x6=3x2x3. ‘ o

I: I noticed you used multiplication again. Is there any particular

reason? . ' -
B: It's easier. ’

’

3

. Rarbara used the operation of multiplication often because she
found it edsier. It was perhaps for this reason that multiplica&ion
was popular with several of our other subiects. It may also have been
the case that some students were using only multiplication in their .
equétions in order to avoid, either coﬁsciouslv or unconsciously,
those ambiguous e%amples with multiolicatior following addition,'wheré
bracketing would be required. FExamples of this nature héd arisen

duringthe previous work on building arithmetic identities, and, as
\" \ v

has alreadv been pointedﬂout, caused problems for some of our subiects,
Something else which we noticed about Barbara's equation-building
was the wav in which she broke down a number from the left side into

two faﬁtors, one of which she covered by a letter, on the right side

l at
[2x9%x6=2% (3xa)x6)]. she followed thg same approach of

’
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\ splitting a number into its factors when constructing arithimetic iden-

tities (3 x 6 = 3 x 2 x 3).
~ . . K
This subsection has dealt with the approaches of four of our
: . s

.

subijects to equation-building: The thinking of Michel and Patricia

(the two remaining subiects) will bhe examined in another context later

) B

iﬁ this‘secg}on. It is quite intéresting to note that each sf.our four
éubieét;, when asked to huilstevéral equations, gave examples which
thev constructed‘mentallv without first writing down an arithmetic
identity and Qubqequentlv hiding sdhe number in it. They followethhe
same anproach gevarél times in:iater gessiéns. However, in these later
sessions, if they had heen asked first to give an éxample of an arith~
metic identity and then an example of an eauation, they invariably used
the arithmetic identity which was there, hiding one of its numbers.
But if they had not been asked just prior for an ariﬁﬁmetic identity,
most of them would construct an ecuation from the.mentalwpictufe of an
Frithmetic identity. The resulting eauations; hoth as seen in later
sessions and in the example; shown above, were thus fairly 1imited in
their complexity. ,
Grea's method of construction origiqally consisted in %riting
the left side with numbers onlv, calculating its value, thé@ building
the righ; side containing an unknown. Piero's equation-building, all’

.

of the x * h = a ¥ b tvpe, had been founded on the erroneous npﬁion
that arithmetic identities were of the form a fp=atp., caroline's
examples tended to have both left and right sides looking alike

(6 x5+ 1=ax54+ 1), presumably for the sake of convenience.

Barbara in a similar fashion constructed her equations in such a way

»

&
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'

.

that one.bf the numbers on the left side was broken‘into two faétors

on the right side, one of which would he hidden by a lette%;
. The next topic in this section on ‘student's %nterpretations of
4 .
/ |
equations addresseg itself to some of the possible misconceptions

students can -have regarding the unknown.
i1

s

ii) Looking Out For Misconceptions

N

) Two quite common misconceptions that students can have with
v 4
respect to the unknown in an equation concern the guestion of whether

or not the khidden number is the same—if-the letter of the equation is
G

A

changed (Wacgner), and the notion of whether or not the unknéwn must

[}

always be on one particular side. While our six students were building
[ ]

their own equations, we: encouraqged them to give a variety of examples

+ and also asked certain nuestions in order to see if they had started

with or develoned either of these, or any other, misconceptions.

To check for the presence of the first misconception mentioned

above, we asked our students the following questions:
‘ LY
With Patricia:
T: - - - This is the most common wav of writing an equation; we

usually use a letter of the alphabet. (As opposed to using a
finger or a box). Does it have to be "n"?

pa: No, it can be "y." Tt can be "a" - any letter.

wWith Caroline:

I: - - - Would you like to try to write this equation (3 xC = 9 x 3)
using a small letter of the alphabet instead of a box?

,C: Sure: 3 xa=9x 3.

I: Could you do the same equation, but with a different letter of the
alohabhet? ' K
C: Sure: 3 xc=9x 3. ©

with Greg:-

I: Would vou write it (5%xn=5+24+ 3) a%ain, using a différent

€
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letter of the alphabet? ' ' P
G: S5xy=05+2+ 3. .
and with Michel: ) v *

I: Could you use any other léttgr besides "n" here? *
4 +n =11 - 4).
M: Yes. v B
I: No matter what letter you use, is it still going to be hiding the *
same number? ) N ' ¢
M: Yes.

In view of Wagner's "conservation of equation" our students were
asked to write the same e twice using different letters to hide
\
tha same number. As se bove, they realized that the hidden number

- »
"was the same, no matter Wthh letter was used. The second misconcep-

tion we checked for involved the question of whether or not the unknown

of the equation had to bhe on one side or the other or at the beginning

-

el X

or end. 3
L] gl
. L. . - 4 e
viith Patricia: - 3
) 5 . #
T: Can vou take an arithmetic identity and make it into an.equation ;
for me? ’
Pa: Any of them? . ] .
I: Uh, huh . . . Which one would vyou like to take? ‘ i
Pa: 6 +-3 = 3 x-3. . . ’
I: Alright, make it into an equatfon. ;

-

Pa: 6 + vy =3 x 3.

T: \poes the” letter have to be on the left side?

Pa: Yes.

T: No, it doesn't have to be. Let's take the arithmetic -identitv:
: 2 +#2°+2=22x 3., Let's say I waAt to hide the number 3. You

iy

can wrlte 22+ 2+ 2=2x .. . s
Pa: a‘ N
T: Or "c¢" or "d." Go-this is an equation; 2 + 2 + 2 = 2 x a.

Pa: And that's an equation: 6 + v = 3 x 3.

. -
' i " ¢ . 4

It was not surprising that Patr%cia had thought that the letter .
had to he on the left side, since in her brief exposure to formal
equations in class, the only ecuations she had seen were those with a

letter on the left side. Nevertheless, Piero who was in the same class
2
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X .
" as Patricia had no misconceptions about which side the letter could be * .

-

on:’ - ’ ' ' ' 5‘ S {
¥ . . — ‘ ‘ oo e ?
‘Lz Alright, would you make me an. arlthmetlc identity? . o -
Pi: 12 - 8 =90 + 6. . —
I¢ 0.K. Now make an equation from that. " ' ' .
Pi: ¢ - 8 = 90 + 6. ’
"I: Is it necessary for the small letter of the alphabet to come first?
Bi: No . . .9 ¢ 9 =n. 4 . . '
Our other four subjects (Michel, Barbara, Greg, Carollne) were

also free of -this migconception as "evidenced by/ the following two

>

cr Ak rodant

excerpts which are representative of the four subjects. .
b " ‘ i : * '
With Greg: o] ' : ﬂ ’ : .

-~

I: «In these “two examples (2 Xx5<+2=2+n,6%3x%x6=6x4-n),

your unknown lS at the end Does the unknown always have to be at -
the end? _ N o * , . o T
G: No. ‘ ) : G : " , .
I: Give me an example where you change your style a bit.”
G: 3xn+ 3= 3%3, TN
And with Caroline: . S . - - K c

“I: Now in your last three examples (4 x b=2x 8, 3 x a = 24,

3 xc=19x 3), the letter is on the left side. Does it glways

have to be on the left side?’ . . ) !

_C: No. , -, ' oo '

I: Show me an example where you have it on the rlght side. @ 7

C: 3x7=7xa, . : _ i ‘ !
Thus, with the éxceptioﬁ of Patricia (who seemed to have -started

< ¢
’ 4 . B
.

with the misconception regarding the'locat&on of “Xhe ﬁnkhown). all of
: o . /
3, . S /
our subject$ h3d been ahle to avoid developing the.two common MmiscoR-~

ceptions described herein. The riext subsection will deal with the

extension of the concebt of equation (by some of our subjeéts) to " (/ﬂ>

\

include equations with Mgre than one letter. -
c\' . -

PN e e 20

\ - N - : .,
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. iii) Extending the Concept to Include Equations With
More Than One lLetter

B
PUARDRRE

" ; ;H*the course of building equations, the question of hiding more
than one number was discussed with three of our subjects.
h - el . &
! With Patricia: .
I: Would you build for me five equations and tell me how you're doing _f
them? i :
Pa: 3+n+2=.. . Can T'put two letters on the two sides? No,
eh! it's qoing to be difficult to find the answer.
I: Before I. answer vour question, why don't ‘you start with the arith-
’ ——_\\\\\R\ metic identity first. Then underneath it put an equation.
a: (3 +5) x2=4x2 + 8. . .
~ (n+5) x2=4x2+8. C -
I: Now vou asked if you could put a letter on
Pa: Both sides. . /
@ I: You can, on one condition. What number is "n" hiding here? T
- Pa: 3. . . “ /’/" \‘\< o :
I: You cap put an "n" on theﬂggﬁer side, if "n" is hiding the number *
' 3 on the other side too.
Pa: T see,/vah.
I: You can't have "n" hiding t number 3 on this side, and the same
- "n'" over here hiding a‘diﬁf@rent number. VYou'd have to put a
. different’ letter, if vou want to hide a differen} numbey. - - - T
But if vou see two letteys’that are the same in an equation, they
R - are both hiding the same \number. <Alright would you give me another
example? j : . e .
Pa: 2 +2=2x 2. - \\\ ' ' .
2+n=nx 2. B - ~ " < ,
Tt was not sure if Patricia was referring to an equation with two .
different letters (Diophantine) or simplv an equation with.the same J
- >
o . ., , . .
letter occurring twice, when she asked her nuestion ﬁ%n I put two
. - . -
, . letters on the. two sides? No, eh! it's going to be diff%cult to find :
re o ) LT -
B - the answer.™ 1In any case, we€ pointed out the convention that the same
. v N o
' * . , 1
letter could he used in/é;/;quation more than once,-as long as it was
used to hide the safe number, otherwise one had to use two different
: L “ r
o letters. 7 , ' : . ' ¢

’ . -
Ve X . o

lé/siiqhtiv different situation axose with Michel when he came

€i9é/;0 face with a quadratic equation:: '

a

B * f e
e d .
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I: Now give me an arithﬁetic identity and thén an equation using a
small letter of the alphabet.
M: 3 + (1 x4) =10 < 2 + 2.
b+ (1x4) =10+ 2 + 2.

o {
I: 1Instead of hidina the 3, could you hide something else?
M: Yes. 3+ (1 x4) =,10%2+ 2.

3+ (1 x4) =10 *+ 2 + c.

I: What if yon used "c" to hide the other 2 also?\\\*ﬁz .
M: 3+ (Lx4) = 10 % c + c. But now it's going to harder.

I: Yes. ‘ )

M: But you could have 10 + 5 + 5 (4lightly disturbed). --

‘\

e were surprised by Michel's quick thinking of a second replace-

mént for "c." Tt brouaght out a verv nice example of a quadratic equa-

-

tion. We felt that since the students were involved in the building-

process, there didn't seem to be any need to restrict them to con-

. . ' (] ’ \
structing first degree eguations.

However, Michel wasn't very happy with the Yealizatidn that, in,

3+ (1 x 4) =10 % c+ ¢, the "¢" could he- veplacgd not only by 2,

~

‘which was the number he was hiding in.the aritfmetic identity, but also

by 5. Tt seemed that for the stuaent, at/this stage, it was one thing

to have an equation with/two letterE (the same) where both were hiding
one and on%y one number, hut it was something guite different to have
an equation with two l;tters“(the same) where thé‘replacement for the
letters dnuld)%e somelhinq other than the number that was hidden in the
original arithmetic‘identity!-/There seemed to be a concern not only
over the fact that there was more than one "richt answer," but also
over thé difficulty that one ;ould have in finding out these answers.
As Michel expressed it: "But now it's going to be harder." Patricia

had also remarked: "Tt's going to be difficult to find the answer."

Michel's concern over the fact that there was more than one "right
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answer" was,reflected by our next subject, Piero.

Piero too showed this same reluctance to consider an equation , ~
“ ) t

where the unknown could have more than one replacement:

I: You're hiding here the number 5 (L] + 2 = 2 + 5 -- reviewing his
homework after Session 1). Here there's also a 5 {on right side).
So you could hide both of them at the same time. You cou;d have

P+ 2 =2 4171 o

Pi: But then it could be any number in the . . . you could make it;

1000000 + 2 = 2 + 1000000. .

I: Yes. B

Pi: 8o, yeu're always trying to find usuvally one number.

I: *“Ves. - .

Pi: <o, vou only box one number and leave the rest. , .

T: 1f it's an arithmetic identijy like 5+ 2 = 2 + 5, yhere you have
the commutative pronerty shown, then it's true that by hiding 5
in both cases (n + 2 = 2 + n}; "n" ceould be anv one of an

, infinite number of choices. That is because of the special kind

of example you have.chosen . - - - But "n" is hiding the same
number on both sides of this equation (n + 2 = 2 + n). -

\

—

Piero's immediate solution to this situation in which the unknown -
{occurring twice) could be replaced by "any number" was t? "only box

one number." Thus one would avoid this problem."

-

In extendiriq the concept to include eqd%tipns w%th more than one
letter, we Tzfe that in the C;Qe of Patricia this extension occﬁrred
Roontaneouslv.: However, hoth Patricia and Michel realized that the
presence of two letters would make the equatign "harder," which is
further evidence of the notion of scolution being inhereqt in.ou) con-
Anspruction. Tt is also quite remarkahle that Michel "saw" the second

solution of the quadratic, but then expressed the same fears as Piero.
Both felt uncomfortable with equations having moxe than one solution.

Piero's answer was to "box only one numher" and thus avoid the

"problem."
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iv) Student's Explanation of the Meaning of Equation

N L3

Had our students, who represented a fairly wide range of..
abilities, been able to construct meaning for the concept of equation?

How were we to judge this, save-by the student's ability to explain

1

what an equation was and by his' capacity to'construct,equations by him-
M ¢ N

-

self? N “

I: Can you explain in your own words what an equation is?

Pa: An equation is . . . an equation is when a letter is hiding a. /
number.

Pis It's a bunch of numéers with an operation, at least two numbers,
an equal sign, and an unknown number. Or, T should say, an
operation, a numbeyr, an edual sign, and an unknown.

,An equation is when there's an unknown involved in the numbere.
There's an unknown number. - v

: . Something hidden.

It was an arithmetic identity which has had one number taken out
ané’replaced by a Tetter.

m XN

1
As indicated above, all our students were able to verbalize what

.

they meant bv an eaquation, their definitions being expressed in their

own wérds rather than merely repeating our own. In addition, we have

LY

seen in the nrevious pages how they were-able to construct their own -

N I -
equations.

The questions thev asked and the answers the& gave us are further

"evidence of their mental constructs. Their questions showed that they,

were attempting to determine the boundaries of this concept, as siani- ®

fied by: "Can T nut two letters on the two sides%", "Do you have to

hide hoth of them?", "Can we have more than one letter in this?", '"Does
. 1

it alwavs have to be an arithmetic identity?"
In this section‘weihave introduced the concept of equat/ion using

three different represenéations and given a name to the letter. Tn the

subsequent’examiAation of the students' interpretations, we have seen

»

-
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their tendency to shortcut the construction process by building egua=
tions directly without first writing down an arithmetic identity. Some
common misconceptions have been avoided. One of our subjects spon-
taneouslv extended the cqncept to "hiding more than one‘number,"

whereas others felt uncomforéable towards equations with more than one

iy .

solution. All were able to explain in their own words what they meant.

by an eguation. These results seem to ind%gs:i that t?%s construction
was accessible to all our students, since it coul :bg readily assim-
ilated into their existing cognition.

The next section of this chapter will show how arithmeéic iden-
tities can be used to induce the rules involved in solving equations.

Y

Operating on Arithmetic Tdentities

Having gquided our students in acquiring an explicit meaning for
the concept of equation, we then prepared the groundwork for the
eventual justification of the alaebraic operations used in the solu- .
tion of equations. Even though solution processes are beyond the scépe
of this study, we will show how arithmetic identitigs can be used tg
induce the rules ("what you do to one éidec do to the other side also")
involved in solving equations.

To +justify these alqebgaic’operétions, many teachers ihtroduce
the idea of a scalé. This may be a very good way to justify these pro-
cesses when limited to ghe simple operations of addition and subtrag-
tion of natural numbers; however, the scgle does not lend itself re;dil

to addition and subtraction of arbitrary rational numbers. Nor is it

very helpful for the mpre'complex operations of multiplication and

.

division, for it is unlikely that high school students still think of =

-
.

\
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these in terms of repeated addition and suhtraction.

’

The physical limitations invblved with the scale can be avoided

by the use of arithmetic identities for these arithmetic representa-

» / N N
) o . tions of the concept of equilibrium are not suBject to physical

| restrictions. 1In addition, any operation péerformed on an arithmetic

hl >
identity is immediately verifiable by the student. Furthermore, since
i - r . , !
’&}ﬂ our students now define equations as arithmetic identities with a

'

hidden number, the operations performed on arithmetic identities can

be transferred to operations on equations.

'

e

“This is not meant to imply that the student must keep on "doing

rr .

a the same thing to both sides" when solving equations and not take

shortcuts, such as "transposing terms." In fact, he may even come to

see by himself that it has the same €ffect. However, unless a fair

¥

amount of 'time is spent on solving by "doing the same thing to both

*

sides" prior to "transposing terms," the student may easily overlook
. L]
the reasons behind his transpositions. '

.

Following is an analysis of the¢ two sessions with Michel and

-
o

Barbara (our first two subjects) which h;lped us evolve a line of
questioning that co%}d induce from the students the desired conclu-
sions. As will be seen from the excerpts, certain changes were
reguired in our aporoach in view of Barbara's and Michelis unforeseen _
L, reactions. The second part oE this section incorporates these changes

with our four remaining subjects. . '

(a) Initial Approach

With Michel:

. I: We're going to operate on arithmetic identities. Do you know what
' I mean when 1 say "operate'?
. /
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N

This is an operation sign (+); this is an operation sign (x);
so are division and subtragtion. There are four operations i
that we are going to be using. Suppose we take the arithmetic
identity: 10 + 7 = 4(4) + 1. What happens if I add 2 to the
left side? (10 + 7 + 2 = 4(4) + 1). ’
They're not going to be the same after.

“hat do I have on the left side, now that I've added 27 g

19. And here <is 17 (on right side).

Iy

Is there anything that we can do? .

Make this areater (i.e., change the "equal" sign to a "greater
than" sign). 10 + 7 + 27~ 4(4) + 1.

Alright, but without using "greater than." Let's stay away from
the "greater than" and "less than" symbols.. We will only work
with the egual sign. Is thePe anything that we can do to make
that an arithmetic identity? * .

Add 2: 10 + 7 + 2 = 4(4) + 1°+ 2. .

As can be seen above, it was necessary to expldin what was meant

by the word "operation." Perhaps ﬁpis might have been avoided by

rephrasing the questiop to: "From your arithmetic identity, we're

\ going to build another arithmetic identity." Michel's first reaction

\&o the addition of "2" on the left was simply to changelthe equality

symbol to an inequéiity. Our suggestion to remain with the equal sign

4

brought the response, "Add 2" (on the right). This led us to believe

v

thai he woulé be coming up with the "rule" quite quickly,; however, this

z

.

was not the case: S

I:

0.

K. Let's take another arithmetic.identity: 4 + 2 = 9 - 3.

Multiply the right side by 2.

.

.. 4+2=9-3x2.
(His notation on the right' side will be discussed later).

Is it an arithmetic identity now?

No. la -
What n we do to make it into an arithmetic identity again?
Add 67, 4 + 2 + 6 z{Q - 3)2.

¥

1
i

The ndtion of arithmetic identity was certainly clear, but it was

4
[

! . , ,
obvious that our questioning was not leading to the rule, "Do the same

tling to both gides." Any operation that yielded an arithmetic

identity was considered acceptable by- Michel. As is obvious, all of

! +
v

[ 34
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his suggestions thus far had been mathematically correct. That they

. . -
did not correspond to the expected responses may be attributed to his

1
v

, previous work on arithmetic identities where a variety of operations

had been encouraged and also to the open and general natire of our

‘@
questions. '
I: ,Another way? ’ -
M: Times 2. -
I: Right. Is it an arithmetic identity now? !
M: Yeh. '
I: Let's take 4 + 2 = 9 ~ 3 again and divide the left side by 2.
M: 4 +2 % 2=29 - 3,
I: wWhat do we have on the left side when we givide by 2?
M: 3. N
I: 1Is it still an arithmetic identity?
M: No. - - -
I: How can we get an arithmetic identity? ¢
M: Minus 3. 4+ 2 +2=9 ~ 3 - 3.
I: Another way?
M:

Divide by 2.

Here again we see Michel bringing his arithmetic identity back
into equilibrium using diffefent operations on both sides. Since his
arithmetic identities contained fairly small numbers, it is possible

that this made it easy for him to see alternate ways of balancing the

L

arithmetic identities.

I: Alright, let's try this arithmetic identity agdin (4 + 2 =9 - 3).
Subtract 3 from the right hand side.

M 4 +2=9 -3 - 3.

I:. What can I do to the left gide to make it have the same value?

M: Subtract 3. 4+ 2 -3=9 -~ 3 - 3,

I: If you subtract 3, what do you have on both sides?

M 3. :

I: Alright, can you reach any conclusion?

M: R

Since he did not seem to reach anv conclusion, we decided to

review with him his previous examples to see if he might recognize a %

D , ,

pattern:

\
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" I: We've beén operating here on arithmetic identitlies. We started

with an identity. 1In the first example [10 + 7 = 4(4) + 1], what
did we dov?

M: We added 2. | 7

I: We added 2 to the left side. And what did we do to the right side?

M: We added 2. .

I: Then we took 4 + 2 = 9 - 3 and we multiplied

M: By 2. ) !

I: We multiplied the rlght side by 2. And what did we do to the left
side? Con
‘M: Mudtiplied it by 2 Pt

As can be seen above, Michel dlp not bother with all the alter- °~

ﬂnatlves and indicated that he was aware of the rule we were trying to

induce” However, our questioning was not specific engugh to enable
3

Michel to focus on the de%iled conclusion. Consequently we altered

our guestioning:

I: If.you do something to one side, how can you make it into an
arithmetic identity again? N

M: By doing the "same thing on the other side.

I: Does that always work?

M: Yes. = N

Michel was able to verbalize his conclusion and genegplize it to

e s
-

all arithmetic identities, despite the confusion caused by the vague-

ness of our aguestions throughout this phase. However, we were

w

_reluctant to change immediately our line of questioning on the basis of
one experience. Nor did we wish to "feed the answer." Thus we

repeated the same approach with Barbara whoqrespon&éd in essentially

- |

the same manner as Michel with those arithmetic identities which
invoelved small numbers. n
We tried with Barbara an example involving! larger numbers:

I: Can you think of another one. (arithmetic identity), a little more
complicated than the last one?

B: 72 x 3= (9 x 8) x 3. @

I: Alright, let's divide the right 51de by 3.

B: (9 x 8) x 3

3 (she wrbte) '

3
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We ekbected Barbara to suggest dividing the left side by 3, for

she had been doing so in the previous examples. However, since she

a

-

did not, we tried to bring to her attention the result of dividing the

right side by 3:

I: wWhat do we have on the right side if we divide by 3?
9 X8 x 3 _ 72

I: Why did you put "=72"?

B: Well, that's the answer. «
I: You want to have the equal sign in front of "9 x 8 x 3" as it was

B:

\

before. - - ~ Divide by 3 - - - Keep the ue of the right side

in'your head. '
B: 72 x 3 = —21§li§)
I: What is it we have on therTeft side? — , )
B: 216. .\ . >
I: And on the right side we hava,just 72.- - - And what are you going .

to do to the'left side so thak you have an arithmetic identity?
B: . . . . .

J .

iOuite obviously, all we achieved with this line of questioning

was ' to confuse her. Perhaps we should have asked, "What can we do to

the left side to make it an arithmetig identity?"” rather than "What do

we have on the right side divide by 3?" We proceeded to

review in order to clarify the situation:

/
I: This' is what we have so far: 72 i 3 = 2i§li2l

B: . . . ) . - J/ .

72 x 3 9(8) (3)

Divide it by 3: T = T3 e .
I: What is the value of the left side now? .
B: '72.
I: And the right side?
B: 72. '

NN

a

One more example involving a subtraction on both sides was suf-

ficient to bring her to the desired conclusion: . ‘

I: So can vou come to anv conclusion when vou operate on an arith-
metic identity? « : .

B: 1f your first arithmetic identitv has. the same value, and you do
another one, and you add or subtract or multiply or divide 4 :
number, it'll be the same on the other side.
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Although our two subjects reached the desired conclusions, it is

, i

&

obvious that our questions were not sufficiently specific to avoid
t . confusion. We wanted the students to become aware of and be able to
verbalize the rule, "Do the same thing to both sides." However} it

- B

seemed that Michel and Barbara had been temporarily sidetracked by -~

having the choice of at least two operations that would bring the
. -

arithmetic identity back into equilibrium. Thus, we decided to try

restricting the line of guestioning.

\

We would take one of their arithmetic identities and after adding

some small number to one side, we would ask them, "Using only addition,

is there énythinq that you can do to make it an arithmetic ié;ntity
again?" We would not ask them to compute the value of each side unless
they were unable to answer the previous question. This procedure would
be repeated four times in all with progressively larger numbers,

followina which we would ask the student if there seemed to be any rule

s : that one could follow when building new arithmetic identities, using

o addition. _If any student begah to add on to both sides spontaneously,

We would then apply the same process, but this time subtracting a

number from one side and asking, "Using only subtraction, is there any-

.Yy

we would ask for the "rule" without going through any further examples. ' 4
L
1

thing that you can do to make it an érithmetic identity again?" After
,using the same method for multiplication and division, we would ask ' “
them if they could ﬁake up one rule thcﬁ would cover the four separate

rules.‘ ’

! «
By using these directed questions, we felt that our s¥bjects

+would be able to induce the rule, "Whatever you do to one side, do to
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. the other side alsq." Thus we proceeded to try the above ne of ‘gdes~

S

tioning on our remaining four subjects: Piero, Caroline,fGreg, an
’ 4

Patricia.

(b} Revised Questioning - >

i) Addition ¥ : :

.
With Piero:

3
]

We're going to use this example of yours (3 - 3 = 9) to build a
new arithmetic identity. What happens if I add.7 to the right
hand side? d

i: It doesn't come out to an arithmetic identity.

So, if we put down 3 * 3 = 9 and I add 7 to the right side, using
addition 'is sthere any way I can make it into an arithmetic
identity? '

T -3+ 759+ 7. - .

I: Whwt if T add 13 to the left side? 1Is it an arithmetig illentity?
Pi: No. . ‘

I: Usind addition, how can I make it an arithmetic identity?

Pi: 3 ‘“+ 13 =9 + 13. ’

I: If I d 20 to the right side, how can I make it an arithmetic
identity? ' . . i

Pi: 3 ¢ 3 4 10 + 10 = 9 + 20. 3

I: Does there seem to be any rule that you have to follow when you're
building new arithmetic identities? '

Pi: VYes. o , i

I: Using addition, what does the rule seem to be?

Pi: The number that you added on the right side, you can equal it by

any two numbers ,of three numbers, or you could put the same

number on the left side. .
I: Do you suppose that would be the case for all arithmetic identities?
Pi: Using addition? ? .
1: Yes (using addition).
Pi: Yes. .

7 .

Piero indicated jmmediately an awareness of the way to bring an

D '

w©

arithmetic identify'back into equilibrium bv means of doing the same

operation on both sides. He did not seem to be calculating any right
. / - '
or left side values, but] rather “matched" both sides. He even added

.

o . b)
his own special variation to the "rule", when he suggested that the

I

number, added on the other side could be under another form and which
s ! . ' )

B ek
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’ ove when he added "10 + 10" on tHe left (
- owever., not” all of our ' §
2 bther subjects were able td\grasp the essence of e above as easily as
Piero, as will be seen in the next excerpt. -
r J-\‘.'Q k
With Caroline: T ) L7 1
-4 1
I We're going tp use vour examble {2 x 5 =10) to build new-arith- ) o
. . g
metic identities. What happens if I add 2 to the left side? :
C Here? (to the 2 x-5). 2 ' . . : e
° I: Yes., oL “ ’ . ' .
C: You'd have 12. "
I: Is it an arithmetic -identity now? ]'
c No. ~ ¢ - , v .
. | 1: Using only addition, is there anything that you can do tp make it .
. an arithmetic identity again?
’ C: Uh? .
A ° Caroline did not seem te grasp what it was we wanted. But since
. &
her immediate reaction to our adding "2" on the left side was to give
: - & »
the new value of that side, we tried having her compare the-values of
. both sides of the arithmetic identity to see if this would help her to
- . answer our question.
“s. I: Me added 2 here (on the left side). What have we got on the left X
side? ‘ C
c: 12. . , o |
K I: What have ‘we got on the right side? . 1
— ° . [ ]
, C: 10. “ e R J
§ 1: 1Is it an arithmetic identity? . . . ’ {
G: No. - . ” ) ' hid
I: WHat can we do to this (2 x 5 + 2 = 10) to make it an arithmetic |
. identity again -- using addition? . . -
4 C: Can we change it on th right side? ) o !
I: Right! ) :
e Ci 2 X 54 2= 10+ 2. . J ~ .
I: So vou'"ve added 2 to the right side, and it's now an arithmetic
identify again, right? ' ’ .
. C: (Nods, yes). .
o \ The hrsakthrough seemed - to come when she asked, "Can we change it .
- on the right side?", However, her difficulties weren't over, for when
, C, 2 ’ I 3
T we continued with a different "add-on": ‘,
o f N > @ R
' v % ‘ v n )

.
- -
.
. ¥ [ _
p—— .- B N . e .
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. I: What happens if I add 7 to the right side?
. €: 2x 5= 10n+ 7. Then it's not an arithmetic identity because
- "2 x 5 is 10 and 10 + 7 is 17. -
L I: Alright, what can we do to that to make it an arithmetic 1deptity,
o I using only add@®tion? e i )
. . C: To the rlqht side? /jﬁj ¢ i -
' , . I: whatever you tiink.
~ . Using addition? ‘ .Y
' :  Yes. . . . C ,
C: 2+5+10=10+7. : .

o We observed that in the procéss of re-egtablishing the arith-

- . metic identity, Caroline changed the left side.,
‘ I: What‘did you do there? o
; o C: 2+ 5 is 7, plus 10 is-17 and 10 plus 7 is 17. !
} I: What if we stick to this? (2 x 5 = 10 + 7)
. . c: Add 7. . . o
| ' -
i oo * We next proceeded to our thitd example of adding a number to one
. ¢ side of the arithmetic identity. We were wondering if, when we
e :i‘ . N . . , . ) .
s suggested addinq&to one side, Carolinecwould, propose adding it gn to
¥ . .
& both sides on her own, without our intervening questions. .However, '
! L sthis did not occur: )
2 ‘ ’ . . © ' ' . M
i ‘ oo I: Let's write 2 x 5 = 10-:again. What happens if I add 13 to.the left
% - ' side?, . . . wOuld you add 13 to the left side? .
C: 2x5+ 13 = 10. Y
4 - I: 1Is it an.arithmetic 1dent1ty? ] . oL
; ’ C:’r No. [ ' .
' > . *I: What can I do to that, (2 x 5 + 13 = 10), using only addition; to
i make that an arithmetic identity? .’
i C: v ., . ' i ' ’ ¢
b - * N
! ; T ) !
E Y

She did nbt:'seem to be aware of what had been done in, the two
A d \ N

_previous examples. <

/ I: What do we have ‘on the left,side? (2 x5 + 13 =10). '
C: 23. .o : !

) I: What do we have on the riqht side? .
r ~ ¢: 10. S s

- I:{ 1Is there anvthing that we can do, using addltlon, without
‘ . . rewriting this, to make it an arithmetic 1dent1ty?
. C:, Yes, add 13. 2 x.5 + 13 = 10%+ 13! . i
N i‘_ © I: Is it an arithmetic identity? . - /
1 C: ¥ah! - . s ’
' .

R R ' o o e e ey = s ~ ¢

r
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N\ - ” before building on it, she proposed as another counterexample:

N 2 x3 44+ (2x10)=2x4+2+ (4x5).

; -1 - ‘ .

'
-

Caroliné suddenly seemed to grasp what she was doing.
I: Again, let's use 2 x 5 = 10.
side? .
C: It's not an arithmetic identity: 2 x 5 = 10 + 20,
I: Whdt do we have on the right side?

C: 30.

"1: What do 'we have on the left side?

c: 1lo. ’ , )

I: Usipg only addition, how can I make this statement into an arith-
metic identity? . o ¢

Ccf 'Add 20. ~ -

Her answers had bequn to come much _faster and with more certainty.

So we' ‘then decided to ask for a "rule":
I: Tf we can only use addition in building new arithmetic identities,
is there any rule that we must follow? . .
C: Yes. Both sides have to be identical; they haVe to have the same
value. ' ) : '
T PR
This, however, was only a defiditidn of af arithmetic identity.

She was saying nothing about what one added tc the arithmetic identity.
So we then asked her to review what had been done in the last four

examples. This seemed to be sufficient to elicit from her:

I: Is there any rule then that you think must be followed when you
start with one arithmetic identity and build a new one from it?

C: Yeh. What you do to one side, you have to do to the other side.

»

Caroline had tome up with the rule, but it had required a much

- *

qreatér effort than it had with Piero. _ﬁle then proceeded to ask:

Will that (rule) be true' for all arithmetic identitiee?
"C: Uhm . . . no. ’ j .
I? Can’ you give me an example? )

C: 2x3+4=2x4+ 2.

N

She was trying to shgt;f that here was an arithmetic identity

where' 4, had been adde&~on one side and 2 on the other. After we had

\ ' .

4 s K B
reminded her that one must start #off gi*tﬁ an‘{rithmetic identity .

‘
AN

She saj:d she was not

[l t. . ;

what happens if I add 20 to the right -

-
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» adding the same thing to both sides, yet it was still an arithmetic '
identity. She had thought that what was added to both sides had to be
identical in appearance. We can contrast this with Piero who, as has

been seen, spontaneously added to the ‘other side a different form of

Ahe same number. @ ! .
With Greg: - . . ‘
I: We're going to use this example (3 + 3 = 6) to build a new arith-

the

"

Y

. - s
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t

+

T

metic identity. What Rappens if T add 2 to the left side?

It would become 8. . ,
- N 1
Is it an arithmetic identity now? ' I
No, it's not. . -

Using addition, is there any way that we can take this and make it

into an arithmetic identity? ;
Just addition? : ’
Just addition. i /
Well, we can add 2 on the other side. ;

As can be seen above, we did not have to 6ZSk.‘Greq to calculate
value of each side in order for him to -answer the question,

Is there any way that we can ... make it into an arithmetic

identity?", as we did with Caroline. As a matter of fact, by the time /

we reached our fourth example, Greg was adding on to both'sides k ‘

simultaneously: 3 J
I: .what happens if T add 20 to the right side? : |
G: To make it an egual arlthmetlc identity, we have to add 20 to the 4
. other side.
I: Is there any rule that vou can give me that we must follow. if we |
' start with an arithmetic J.dentlty and we want to build a new one,
Just using addition? Iy
G: If vou do something to. the left side, you've got to do it to the
right, the same thing. T .
I: . Is that going to be true for all arlthmetlc ddentities?
G: Just addition?
I: Yes. . ) ' - T !
G: VYes. ’

Will you show me that the rule works for a more complicated T
arithmetic ‘ideptity too? -

4

»
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v

G: 3 x5+ 3=13+2. .

I: What did we'do here (for 3 + 3 = 6)? :
1 We kept on adding. < Pt

I: O.K.

G: Now multiplvy?

I: No, add. We're only building now with addition.

G: 2 +3 x5+ 3=13+ 24+ 2,

‘

This last minor confusion may have been avoided if we had origin-
ally begun withc;n arithmetic identity which did.ﬁot involve the opera-
tion of addition.

Wwith Patricia: ( ' , -

I: We're going to use your example' (12 x 11 = 132) to build a new

arithmetic identity. Vhat happens if I add 2 to the left side?
Pa: A 2 over here? e ® . )
I: . Yes. ’

I: Well, keep the "12 x 11" as it is and put "+ 2."
Pa: O.K. 12 x 11 + 2 = 132, _ o

.
A

Had we written down the adding-on of 2 for Patricia, she might
% Y
have been able to aveid the above difficulty.
1: Is it still an arithmetic identity?

Pa: N§.

I: Using addition, show me what has to be done to make it an arith-
metic identity again. . .
Pa: With this problem here? (12 x 11 + 2 = 132). .
I: . Yes. . -
Pa: . . .
I: On the left side, you have how much?
Pa: 134. : o S
I: And on the right side? " ) 4
Pa: 132 . . . I have to make this part here (right side) equal to f
that one? .
I: VYes, using addition. * .
Pa: 12 x 11 + 2 =,132 + 2.
Patricia seemed to have an idea of what was required when she .
. -
asked, "I yave‘to make this part here equal to that one?" We went’
1 4

through a similar sequence of questions and answers for the second and

third add-oné during which time she alwayé calculated the new value of

) ¥

el S 7

ke

e



one side before adding the same number on the other side.’ By the : \\
- : . b ‘ ‘ o,
fourth example, she added on to both sides simultaneously, as Greg . ‘, -’
, also had done. \ '
- I: what if I add 20 to the right side? . ‘
_ . Pa: .Add 20 (to the left side): (12 x 11) + 20 = 132 + 20. 3
w I: Can you tell me 1E there's any rule that has to be followed? -
¢ Pa: Yes, you have to follow the rule that both sides have to be ' Q
" equal to the same amount. . 3
I: And, how do you- make both sides equal to the same amourrty . . . H
- Pa: . . . Let's say you' have only 132 here and over here youl have
. 152. You have to add a number to make it equal to the same ;'
side’, to make it equal to the right side. ' ’ . . s
I: - - - Now do you suppose that's true for any arithmetic
identity? - - - t
g’a: Yes. N v

K

- Our four subjects were able to verhalize the "addltmn rule, !
rsome of them requiring more effort than others. Our new ljine of ques- “
-tioning avoided the previous confusion and mdde us aware of some minor 1
improvements, such a;s t};e use of examples pot involving addition to
- . | induce the “addition rule" and the need to write down what was being
added to one side. However, as will be seen below, it was the ease
with which t.hree of our four subjects were able to induce equivalent
rules for the other operations that 1ndlcated the effect o&aour revised
‘ - line of questlonlnq. . ‘ - :
- N : ' ' ' R : 1

ii) Remaining Operations \

We planned to repeat the previous work with the gel{ operations
. ~ ’
(subtraction,‘multiplication, division) and expécted to use\four

- . AN

examples’ in each case. Following are some excerpts from our seséi&‘ﬂ’ T
; .

with Caroline: ) \

I: 'Let's start with another arlthmetlc identity."
Any«,one?
I: Yes. : -

(@]

L #



C: We have to subtract 4 from the right side for it to be an,arlth-

. 'but she wrote down "- 4" on both sides immediatehy without any direct-

tion rule to subtraction. Tt was obviously not going to take four
K

f 121 - ‘- ‘

C: 4x6=12x 2. ¢ . 4.
I: What happens if we subtract 4 from the left side? :

metic identity. 4 x 6 - 4 = 12 x 2 - 4.

-

Immediately Caroline knew what had to be done to bring the arith- /

metic identity back into equilibrium. Not only did she verbalize it,

B T

o 2

/ / , :
/
iveé from us. She did no calculations. &he had transferréd the addi-

.

.
i ) -

I ., ) .
examples to induce the subtraction rule. R '
I: Do vou think that that is true for all arithmetic identities?

C: Yes. . X . N
I: What is the rule then, using subtraction? !
C: Whatever you subtract on one side, you have to’subtract on the

other side. . -

i

We decided to move immediately into examples involving biuilding

by multiplication and division. As with subtraction, it took only one
example for her to come up with the rule for multiplication and the °

rule for division. .

. - \
Just as Caroline had been operating simultaneously on both sides

of  the arithmetic identity f6r the remaining three operations, so did

"Greq and Pier¥o. However, this was not the case with Patricia. Even

o

though she had added on simultaneously to both sides of her fourth
addition example, ,she did-not transfer this immediately to the remain-
ing operations as our other subjects had done:

B el
1: What happens if I subtract 2 from the right-hand side?

v

(10 - 7 = 3). )
Pa: ~-- 10 ~ 7 = 3 ~ 2. ) -
I: Now is.that an arithmeti identity? . .
Pa: No. ‘
T: « Why not? » Co j ’
’yPag Because that's e to 3 (left side) and that's equal to 1 (right
side). '
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I:J Alright, what can I do, u'sing subﬁraction, to make it an arith-
metic identity?

Pa: =~ ~ - Minus 2.

I: Take 10 - 7 = 3 and subtract 1 from the left side.

Pa: (10 - 7) - 1= 3.~

I: Ts that an arithmetic identity?
Pa: No. Co. .
I: What do we have to do to it so that it is an arithmetic identity?

Pa: (10 - 7) - 1=3- 1.

’
1

The above seéquence involving another subtraction example was
repeated with Patricia. Though she was not subtracting simultaneously\
on both sides, she was able to verbalize a; "slubtraction" rule. During
her first two multiplication examples which followed, it was still
necessary to ask "What do we have to do to: the other side, using mul-
tiplicatic;n, to make it an arithmetic-iagntity?" on her ‘thirci mul-

tiplication example:

I: Let's multiply this side by 5.
Pa: 4 x 3 x5 =12 x 5.

“

\
s

She had done it simultaneously on both sides. It carried over to’

the operation of division:- . , J
I: . Let's take this side, and divide_ by 9.
Pa: (9 x 8) = 9 =72+ 9.

.
’

Three of our four subﬁécés were able to induce the rule for the

»

three remaining 6perations on the basis of one exa.mplAe per operatién. i

}

Patricia, one of our, weaker students, needed a few more examples for

subtraction and multipl_i/cation, but became as efficient as the others

(
1

for the last operation,¢division.

iiil) Generalization

After inducing individual rules for the four.basic ope::at’}bns,

N

our subjects were asked if they could give one rule which would be a

- - 3

—_
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generalization of the four separate rules._ ;

1] —

A

I:" ,Now we have a rule for addition, agrule for subtraction, a rule
for multiplication, and a rule for division. Let's make one rule
to cover everything. : . .
C: Whatever you do, whether you add, subtract, or multiply on the
. left, you have to do the same operation on the right.
Today we were building new arithmetic identities using addition,
, using subtraction, using multiplication, and using division. Is
there any one rule that you can give me for everything?
Pa: They all have to be . . like when one side is, let's say, 23;

the other side has to be 23. They have to be the same amount on
both sides.

1: Ts there one rule we can make that will be good for addition,
subtraction, multivlication, and division?

G Whatever you do to the left side, you do to the right side.

I:

So when-starting with any arithmetic identities, if you want to
build new ones, what seems to be the rule?

Pi: VYou make another operation.
It must be the same as the other.

Thus thev were' all able to conclude that:

WHATEVER YOU DO TO ONE SIDE, YOU MUST DO TO
. THE OTHER SIDE ALSO

In summary, our initial line of duestioning involved four _
examples, each with a different operation,. after which we expected

Barbara and Michel to generalize and conclude "what you do to oney side,

’

you do to the other." Although wé succeeded, our questions were too
, q

— '

~

general and created some confusion. Furthermore, since our'scEfme was

too condensed, it forced our two subjects to induce a global awareness

N
1

of the rule without constructing the intermediary concepts.’ Thus our

revised sequence of questions with the four remaining subjects was an

* attempt to overcome these shortcomings.

w

We considered as iptermediary concepts the four separate rules,

one for each operation, which were’elicited using operation-specific

'
9

Add another operation to either side.

S
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examples. In each case we decided that the subﬁect*tbﬁld be asked for
y !

. e . , | :
. the rule when he was performing spontaneously the identical operation

-

on both sides. Only after the student had induced the four individual

‘ ¢

rules, was he required to generalize.

.

In working with the examples leading to the addition rule, we

restricted our duestion to, "Using only addition, is there anything that
A Y ny

you can do to make ‘it an arithmetic identity again?”, thus avoiding the
previous- confusion that occurred with our. first two subjects. With all

four subijects, four examples or less were sufficient to elicit the
]

" desired rule. Thus we avoided the purely instrumental approach of

3

giving the rule and having the students merely verify it by means of

several examples.

For the remaining operations we used the same restricted line of

questioning. Three of our four subjects could see the analogy with the

previous work on addition, as evidenced by the facility with which they

induced the remaining rules. In fact, one example was sufficient for .

each operation, since they were operating spontaneously on both sides

of their arithmetic identity. THe fourth subject was able to induce

these rules but required a few more examples with subtraction and mul-
tiplication before operating spontaneouslv on both sides with division.
It was but an easy step for our four students to reach the next
level of abstraction, that of considering the individual rules as
gxamples of a more global .one. This was achieved on the basis of the

students' intuitive notions of arithmetic and their ability to think

inductiQely.
- v

. i .

In this last section, we have prepared the ground for "doing the
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same thing to both sides" of an equation by operating on arithmetic

identities. In the next section, we shall be discussing a problem
which arose intermittentlv during.several phases of the experiment
and "especially during this last section. The problem concerns the

difficulty which our students had with bracketing and the conventional

hierarchv of operations. : |

)

Difficulties With Bracketing and the Conventional
Order of Nperations

(a) Introduction

’

Every one of our six subjects had been taught in class, at some

R ]

time prior to working with us, the use of bracketing and the conven-

| s

tional drder of operations. At first glance, a reading of the excerpts

3
-

¢ .
below would indicate that some gstudents had forgotten the rules, others

had either mislearned them originally or were remembering them
incorrectly. However, we discovered that the root of the problem lies
much ‘deeper. . . - .

The standard textbook presentation of this topic shows the neeq
for some convention by introducing a question believed to be ambiguous;,
such as, "h%at is the value of 2 + 5 x 4?" The student is asked, "Is
it 287 Ié it 22?" He is then informed that "mathematicians have agreed
on the following steps to simplify such expressions,“l according to the
following order:

1. perform the bracketed operations;

2. perform the multiplications and divisions in order from left to
- right;

lbolciani and Wooton, Modern Algebra, Book 1, p. 41.

v
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Q

3. finally, do the additions and subtractions in order from left to
right:—

The student is then asked to evaluate strings of operations, such
as, 5+ (4 - 1) + 2 x 3. Though he may very well be able to do these
exercises at the time, we have evidence to suggest that these conven-

tional rules for the order of operations run counter to the student's

way of thinkifhg. Thus it should come as no surprite that he seems to

forget or discard these "rul without reasons.”
“a
i

We discovered dﬁ}ing the teaching experimé;l, while our éubjecté

. v \ \«/"/
;z\e constructing and operating/on arithmetic identities, that they

were thinking operationa For example, our students would not see

2 + 3 as the same operation as 3 + 2. Though the result is the same,
in the first case one stahts with 2 and adds on 3, which 15 not the

'd )

, same as bheginning with 3 ajd adding on 2. Thus the written sequencing

of their operations An a certain order reflects the order in which they

are thinking about t se.operations. Furthermore, their evaluation of

such a string of operationg (i.e., 4 + 3 x 12 £+ 4 + 2) begins with the

#  first operation on the left apd continues sequentially from left to

right until the last operati is performed to yield a result of 23.

<

This left-to-right tenden also reflects our cultural tradition in

writing and reading.

c

In constructing their arithmetic identities (of which each side

is a string of operations), our subjects were writing them down,

operation by operation, as they were thinking of them, and were keeping
a running total as they went along. They were not thinking of the con-

ventions while constructing or evaluating their own strings. To then

-

be asked to evaluate them according to the conventions conflicted with

s
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the more natur?i tendency of evaluating them in the order in which they
were written, which was the order in which they had been conceived. 1In
fact, the evaluation according to the conventions, at times, yielded a
value different from what the student had intended. Whenever this
occurred, we suggested bracketing certain operations in order not to

violate the established conventions. * .
In the excerpts below, we shall examine the éifficul&ies which
our suhjects experienced with bracketing and the order of operations,
1) while they were constructing arithmeticqidentities, and 2) while
thev were operating on arithmetic identities. The problemé encountered

while operating on arithmetic identities were of a slightly different

nature from those met while constructing arithmetic identities.

{(b) while Constructing Arithmetic Identities

This sectién is subdivided accordina to the following three
topics: i) the tendency of our subjects to evaluate their arithmetic
identities in a left-tc-right order, ii) the effect of this tendency on

bracketinag, 1iii) other individual notions on the use of brackets.

i} The Tendenéy to Evaluate Arithmetic
Identities in a Left-to-Right Nrder

While our subjects were constructing arithmetic identities, we

N
?ften asked them to give the value of one side or the other. It soég\

became obvious that all of them were evaluating their arithmetic N
i
identities in a left-to-right sequence. This practice, which mani-

fested itself repeatedly, is illustrated in the following two excerpts

which are indicative of the thinking of our six subjects.

a
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With Greqg: ’ Ct ; . °

‘ ¢ . :
G: 5+ 2x 3 =. . ’ ] . N
T: wWhat is the value of that left side?. X
G: 21. . - . : «
T: So vou're adding the 5 and 2 first, are you? ' ,
G: Yes. '

.

‘With Michel:

Would you write down an arithmetic identity?
5+ 10 + 3 =4 x 2 - 3. ) : .
I: UWhat is being done first on this side (left side)}?

~ Is it the 5 + 10? ) ‘
M:  Yes. ’

When asked to evaluate a side of their arithmetic identity, all

2 s

responded with a value arrived at'by calculating from left to right.
In fact, they were writing down their arithmetic identities, one

oreration at a ‘time, as they were thinking of .them, keeping track of,

the total as they went along. Though they had all worked in the past
with hracketed ekpresqions, even at elementary school, none of them
used hrackets in constructing their arithmetic identities. Only one
studént, Greq, remeﬁbered the conventional otrder of opg;ations, But
this was after he had first done a left-to-right calculation:
I: So you're adding the 5 and 2 first, are vou? (5 + 2 x 3,3 R | o
G: Yes - . . Ch! you have to do the multiplication first. ' 3j
5+2x3=1=%x 10 + 1.

When we noticed tpat none of our students were fé(iowing the - ‘

conventional order oﬁ operations‘(except Greq), we suqqested the use

of brackets to overcome this problem. . o -

ii) Some Effects-of the Left-to-Right . ] .
Tendency on Bracketing

Because the tendency to evaluate an arithmetic identity from left
1

to right was, so predominant, our suggestion to Michel to bracket the

operation which appeared first seemed an unnecessary one to him. Mighel

+
.
. - 'y
1 ! - - =
.
K4
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\didn't see .the need of hracketing the first 6bération on the'{éft of
each ,side since these were the ones he was calculating first anyway.

- . :

Though he acquiesced to our suqqéstion, as seen in the first excerpt

’
P i AT A I s« N 2R farip e ST

0

{ : .
below, he did not use brackets in anv successive arithmetic identities

©

execept when asked for them, as seen in the second excerpt below:

T1: What is heing done first on this side {(left side)? ’ ’
(5+ 10 ¢+ 3=4x2-3). Isit the5 + 10? s

.- M: Yes. ) ' o -
I: So, do you want to put that in brackets? '
M: (54 10) + 3 = (4 x2) - 3. ' . Vo . .
5
I3

And duging another session:

o

: Could you give: me an example wliere vou don't have just one number, -
E - the result, onr ‘this side? . - -
M: 3+ 23 x.2=26x2. . ' e
I: What is the value of the left side? o
M: 52. - . .o

-

— - @

Vot cy s
Since 3 + 23 has to be added first, you put it in brackets.
{3 4 23) x 2= 261x 2.

2 H

‘ o

Though Michel didn't see that brackets made any difference in-the

)
o -

two examples above, he seemed more inclined to see their usefulness in

the next example:

.
- , :

;. ‘Since you want td do that flrst, let's out it in brackets.
3+ (1 x4) =104+ 2+ 2. \

T: Would you write down another arithmetic identity? o

M: 3 +1x4=10< 2+ 2. - .

I: What is the left side? . b
M: . . . 7. . . (but seemed puzzled). ’ ’
T: What do you want to do first?

M: 1 x 4. ’

®

M:

It's obvious why Michel seemed puzzled. The tendency to evalpate
his written arithmetip identity “in a left-to-right ordef was very

strong, What had haﬁ%bned here was that Michel had’ thought of .an

arithmetic identity(with a left side of "3 + 4". However, since we had~”

a

been- encouraging examples with mulpiple operations, he had written  down

\
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-

3+#+Y%x4=.,.. Thus when he, was asked to evaluate the left side of

5
L

iﬂ:\i x4=10% 2 + 2, there was a.copflict between the intended valte *

pf“"7" and the value of "16" arrived at by his left-to-right method..

. Therefore, brackefing for this kind of example, where one wished to

keep intact some operation other than the first one, seefied to make’

(3

sense to Michel. o ca

' “
- .

The influence of the left-to-right tendency on bracketing was
' ’ ‘l( - . I;('q
seen also with Caroline. We did not ask her about bracketing an -

operation which appeared at the extreme left of either side .of the

"arithmetic gﬁentity. However, when questioned about the bracketing of
. ’ ‘

some operation other than the first one, Caroline not(only inserted

" 3
é " ' il
brackets around it but also rearranged the arithmetic identity so that

n # . > .

the bracketed operation appeared first:

C: 4%x3+1-3=3x2+4. oo o ‘
I: HaVe you learned the use of brackets yet?

C: Yes. R )

I: What if you wanted to add RN+ 1 Firste A

C: (3+1)4=(2+ 2)4. | _
- o
Caroline's approach implied that ‘wha;f:‘e‘ver opératign was to be

. . . Pt . ' .
done first should be Elaced firgt at the extreme left of 'each.side.

We aiso noticed that Caroline Ehanqed not only the right side, but also_ .

i .

. dropped the "-3" from the left side of the arithmetic identity when

-
- 3 .

"

v
' doing her "rearranging." ¢
i D ’ e -

Patricia was another student who seemed to think that whatever

was bracketed was not only to be done first but also to be placed

first. The following sequence indicates Jhat took place prior to our

first questién about bracketing: . ;o

LS
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. .. ’ v
. Could you‘?ave me an example where you have two operatlons on- .
each side/ but they're not both the same? ; P

-

Pa: 2+ 3 x5=3%x54+ 2. ’ , . . -

&

We observed that this particular example of Patricia's was

different from several of her previous ones in that it involved com-

- 3

13
mutativity. To continue:

T

‘o _
arithmetic identity, 3 + 1 x 4 =

-

What is the value of thé left gide?

17. -

What arée-you doing first?

I'm adding. No, I'm multtplying. No, . . .

A conflict was noticed here (very similar to Michel!s with the’

[

10 + 2 + 2) between what was intended,

SR R e A

"17", and tﬁe tendency to evaluate‘the left side from left to right.

Ratrlcma was bgcoming confused. To conti;ue: p i

I: Have you lear;ed the use of brackets? -

ba: veh, I have. (2+3) x5=3x5+ 2. L .
N - She immediaéely put brackets arocund "2 + 3", the first opefation,

without any thinking about the effect on her arithmetic identity. We

had thought that she might bracket %3 x 5" to maintain her arithmetic

%
i
identity. ’ v : i
. i
i
It So that's 2 + 3 which is? = 3
Pa: 5. ) i
I: And 5 times 5? ;
Pa: 25. g
I: 0.K. So, what do we have over here (right side)? h
+
Pa: . That S wrong. - : .
I: Why do ybu'put brackets?
Pa: To .show which one you do first.

F

Thus evén though she had wanted tb.ao "3 x 5" first, the tendency

* to evaluate the written arithmetic identity fr9£/1eft to right and the

i

notion that it is the first operation which is bracketed cépsed her to

i

bracket "2 + 3" rather than "3 x 5." S -
1Y .
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Y . We f£ind in mosa elementary algebra textbooks the rule: . "Any-
. o T

examples are clear indications of how this can be misinterpreted. 1In

their examples they show that the bracketed.operaéion must not only be

3 : done first but also appear first. Other children, such as Michel, do

not make this mistake. _In fact, they do not see the need of bracketing

until they ‘construct an arithmetic identity which when evaluated (from
o . left to right) conflicts with their mental construct.

We have seen the effect of the 1eft—to-fight,ﬁendency in the

v

evaluation of an arithmetic identity and its subsequent influence on

. - .
© ¢

bracketing. We now examine some other ideas which.our subjects had on

bracketing.

. *iii) Other Bracketing Ideas

{ v )
In this section we will obsgrve 'spme unconventional uses of
bracketing by three of our subjects, Caroline, .Barbara, and Piero.

«_ In addition to the uses already cited, Caroline sometimes

*  employed brackets to set off one side of an arithmetic identity (or

1
. L4

equation) from anothér:

/ , . ‘
/ T+ Let's try one more equation where you have two operations on 'each
side, with an unknown hiding one of the numbers.
s, C: With brackets?
I: If you'd like.
A ,C: (6x5+1)=(ax5+1).
: ) ‘ ' In another different type. of example, Caroline used brackets to
’ indicate alternate ways of expressing the same number, 2 x 3+ 4+
! -~
o . (2x10) = 2x 4+ 2+ (4 x5). Here she was not implying that these

bracketed operations should be done first, otherwise they would appear
/ . ' ' .
first (as has been shown before). She was rather drawing attention to

[y

ko ———— e g "o T &

thing that is bracketed must be done first." Caroline's and Patricia's .

apesi e

s
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‘two different "replacements" of the same number, "20," in her arith-

metic identity.

-

Barbara used brackets in a-somewhat similar sense. She con-

’

structed several of her arithmetic identities by taking a number from
' /

_the left side and expressing it as a bracketed product on the right

) side: . . /

I: Make an arithmetic identity now, please.
Ba-72x 3= (93 x8) x 3.

Piero constructed his arithmetic identities without brackets and _

evaluated.them from left to right, just as our other subjects had done.
. . Je
However, when asked about the use of brackets, he remembered some "old"

4
rules: : -

I: How about an example with different operations and different
- RN

nymbers?
Pi: 2x2 +4=8- 6+ 6. -

I: Have you learned the use of brackets? | -
Pi: Yes. :

I: Can you give me an example
Pi: 2+ (1 x3)-2=(1x 3) -

here you use brackets? .

And in another session:

I: So if we divide the right side by 2?
Pi: 6x4 % 2=24%2... Shouldn't we put brackets around,
(6 x4) + 2s24+2 ‘ ‘

I Why?/ ' -

Pi: Because then you might get mixed up in . . . well, in this case,
it doesn't really matter because the multiplication is before
division. But in cases like "7 + (3 x 3)" you should always use
the brackets. N

I: To show which operation you want to be done first?

Pi: Yes.

«

hd 1

In learning the rule in school that multiplications and divisions

.

are done before additions and subtractions, Piero had somehow picked up

that multiplications take precedence over divisions. Furthexmore, he

had also mysteriously learned to associate bracketing with

LS

[ ST P
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multiplication. For Piero, not only did multiplication take precedenrce,

but it was also bracketed. 1In those examples where a multiplication

qoccurred first, one was free to bracket or not. Piero was still evalu-

ating his arithmetic identities from left to right, but was ensuring

N

that any multiplication was kept intact by the use of brackets.

Thus we can see from the examples of these threée students that

they will construct a variety of rules which may or.may not be
erroneous. , . ’ ¢

- 1

(c) while Operating on Arithmetic Identities

The vrevious section described the bracketing difficulties

: -8
_vencountered by our subjects while they were consétructing arithmetic

identities. This present section will describe the bracketing diffi-

culties encountered in a different context. Here the students were

operating on their already-comstructed arithmetic identities. Most of

our subjects merely tacked on the new operation at the right end of

each side, without using brackets. 1In doing so, they were consistent'

2

with their own intuitive conventions of calculating from left to right.
However, two of our subjects, Patricia and Michel, in doing this
"tacking on," experi‘énqed two different types of difficulties.

Patricia's problem occurred as soon as she was confronted with the

insertion of a second operation. In a previous example, 12,x 11 = 132,

when asked to add 2 to the left side, she had responded with "Oh, 14!",

)

having added 2 to 13‘. The same confusion is evident in the following

- excerpt:

I: vhat hapoens if we gubtract 2

from th‘ right side (10 - 7 = 3)?
Pa: - - ~-10-7 =3~ 2. C ’

[FURURNSE

A‘
|
!
i
:
§
:
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I: Now is that an arithmetic identity? ‘
Pa: No. ’ ‘

n

I: Alright, what can I do, using subtraction, to make it an arith-
metic identity?

Pa: -~ - - Minus 2.

I: You'd ligce to subtract 2?

Pa: Yeh, bjpt you can't take 2 away from 10.

ricia was focusing on the first number appearing on the left, -

A
—_—
Py T Ll

rather than the expression on the left. Therefore, we suggested that

" she .put brackets around 10 - 7 to show that it was the original opera-

tion on the left side. Although in the conventional sense the use of

brackets is unnecessary in this example, nevertheless it helped her.
1]

In fact, she continued on her own to insert brackets in subsequent

exémples'and did not experience again the difficulty described above.

With Michel, we were the prime source of his confusion. We made

i

a pedaqogiéal mistake which brought to the foreground the possible
effects of violating the student's natural thinking:

I: Let's take 4 + 2 = 9 - 3. Multiply the right side by 2. ‘o
M: 4 +2=9 - 3x 2.

I: You can put'the 9 - 3 in brackets. Then it's clear which operation .
is done first. 4 + 2 = (9 - 3)2, Co ' '

As has already been pointed out, Michel's left-to-right conven-

tion would not require bracketing in this type of example. To con-

tinue:
A

+
I: 1Is it an arithmetic identity now? B

M: No.
I: What can we do to make it an arithmetic identity again?

r

s

M: Times 2. Do I put it in front?

;

This question may have been prompted very simply by the lack of */
/ s
space between "4 + 2" and the equal sign. However, since Michel was, )

using brackets in this example, there didn't seem to be any need to

v s e e g e
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write the multiplier after the brackets. To continue:

I: Yes, you could. It 'doesn't matter if you put it in front or in
back. Let's put it in front then as you suggested.
M: 2(4 +2) = (9 - 3)2. ) ’

But this was not a good idea, as the excerpt. below will indicate.

We should have maintained a left-to-right sequencing of operations, -

.
« '

corresponding to Michel's natural tendencies. The blunder becomes

'
’

-

obvious in an eﬁgmple where we were not interjecting with the use of

brackets: T

I: Take this arithmetic identity (4 x 12 = 48 -~ 0) and build a new one
from it. . ‘ ‘

M: Plus 2? 2 + 4 x 12 = 48 - 0. '

I+ Is that still an arithmetic identity?

M: No. Put 2 on that side. 2 + 4 x 12 = qu- 0+ 2.

-

Michel had added on to the left side bQ placing the "add on™ at '

R \
the front (following the same pattern as was set in the previous

excerrnt}. Although he didn't notice the resulting discrepancy in this
example, he did in the next one:*

I: On the line below 4 + 1 = 10 - 6, show me how you build a new
arithmetic identity by doing some operation on 4 ¢+ 1 = 10 - 6.
M: 4x4~% 1 =4x 10 - 6. It won't go.

Michel had multiplied both sides by 4 and had placed the 4 at the

AN
beqinnf“ﬁ of each side. However, a quick evaluation (according to his

left-to-right convention) made it clear that "It won't go." We then

reminded him about bracketing the original operation on ?ach side.

" Though this suggestion enabled him to balance his arithmetic identity,

it was not getting at the koot of Michel's difficulties./ATacking‘on at
the beginning not only went against his method of evaluating, but also

created for him notational problems:
/

. /
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I: I would like you to build a new arithmetic identity from this bne,
(5+ 10) + 3= (4 x2) - 3. ‘ A
M: + 7(5 + 10) £ 3 =+ 7(4 x 2) -~ 3. /

+

Note how Michel has added 7 on both sides by preceding the

numeral with the operation symbol. This is possibly the best example

—~ 7 =

one can find to illustrate the operational nature of his thinking.

: Now what 'does the + 7 in front of the bracket mean to you?

Plus 7. AN
Oh, you're adding 7, are you? ’
After. i

Are you adding 7 and then dividing the whole thing by 3, or do you
want to do ‘all of this [(5 + 10)- 5 3} first, and then add the 77

: Add the 7 after. d

0.K. ’ , .

: Do I do. it after? '

R R

2 - 2

LS
\

We corrected this pToblem kv directing Michel to-add on 7 at the

end of each side and also suggested a‘second set of brackets to show
that the original expressions were to be evaluated beforenéerforminq
the new operation, [(5 + 10) £ 3] + 7 = [(4 + 2) ; 3] + 7. A week

after this session, Michel was operating on his arithmetic i@entities by
placing the new ooeration)to ?e performed at the right end of each ;ide.
Furthermoré,'he was ;;ntinuing to éonstruct and operate on arithmetic
identities without bracketing, and ;valuatinq'them according to his

left-to~right convention.

.

(d) Summary and Conclusions

-
L

We have shown in this section the difficulties which our subijects

experienced with bracketing and the conventional order of operations.

v

This prohlem, uncovered within the context of our teaching experiment,
- e N !

proved to beﬁpuch greater than exvected. Though we proposed bracketing

certain o;erations in some of their arithmetic identities to avoid

comkravening the conventional order of operations, our students (except
, 3

A

A
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Greql never seemed to be aware of a?y conflict and had to be showp
everv time such a conflict occurred.

Because our subijects were working with their own strings of
arithmetic operations, while focusing on the construction of arithmetic B
str¥ngs in the order in which thev weré written, whi;h was exactly the
same as the order in which they had been conceived. As a result, the
conventional order of operations (which they had all learned at some
prior time in school) seemed quite arbitrary and unnatural, and there-
fore was easily forgotten (as indicated by most of our subjects) or
remembered incorrectly (as indicated by Piero).

Since our students wrote down their arithmetic identitiés,

-

overation hy operation, as thev were thinkina of them, this had an
effect on the way they operated on them. Féom our work witg all our
subjécts, we found that they have a natural tendency to perform addi-
tional operation; in the order in which they are conceived. The prob-
lems caused by not following this natural order were especially evident
in the excerpts with Michel [e.qg., + 7(5 + 10) &£ 3 =+ 7T(4 x‘2) - 3]:

The use of bracketiﬁq, when proppsed to some of our students,
indicated problems associated with their{interpretation of the rule ,
that "whatever is bracketed should be done first." For Caroline and
Patricia, bracketed operations in arithmetic identities were not only
to be done first, but also to appear fiést. By way of contrast, other
students, such as Michel, saw no need at all for bracketing the first

operation. This was the operation thev would he performing first in

any case, since it reflected the beginning of the sequence of ‘their
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’

mentallv-const‘ructed operations. Such studler((g ,could‘se'e a need for
bracketing onily whén some {)neration other than the first happened to be .,
a wri‘.tten replacement for their mental construct of a single number, as
seen in the case of Michel's "3 + (1 x 4) = 10 3 2 + 2." ‘

These findings explain whv standard texthook presentations on

bracketing and the order of operations have little effect on_many

students whose left-to~right tendency nrevents them from seeinq any

- \
s

amhiguity in the evaluation o%\Z + 5 x 4. Our work suggests a more

compelling approach to the topic of bracketindg. By using an arith-

"

metic identity (such as 2 x 5 = 10) rather than a string of operations
N\

4 (such as 2 + 5 x 4), one can effectively establish an awareness of the -

’

need for bracketing. Taking 2 x 5 = 10 and subsequently replacing 5
by 4 + 1 viel'ds 2 x4+ 1 = 10. Since the 'left side must still have a
va;ue of 10, the child, whether he evali)ates bv his own left-to-right
method or by the st;lndard ordering gonventionﬂs, will come to see that
the onlv wav t'o maintain this arithmetic.iaent'ity is bv bracketing,
hence 2 x (4 + 1) = 10. It is only bv creating in the student"s mind

_a need for such a notation that he will accent it and thereby make use

of it.
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SUMMARY AND CONCLUSTINNS

Since ghis s;udb has addressea itself not only to the development e
of a teifhinq scheme for equations, but also to an examination of the

"way in which students téink about and erstand the conqépts involved
- during the actual teaching procesy, it would seem appropriate to divide

s+ this concluding ch;pter into three parts: ~a summary of the teaching -
outline anQ the ra£ionale hehind it, experimental conclusions .(based on

the individual interviews), and qeneral conclusions. ~ )

The summary covers the first four chabters: statement of the
brohlem,'theoretical framework, a teaching-learning scheme for equa-
tions,'methodoloqv. :

The experimental conclusions which are based on the analysis of

the protocols of the individual interviews as presented in the fifth

chapter include: pretest, extending the notion of the equal sign, the

‘concept of equation, operating on arithmetic identities, difficulties ~~

‘with bracketing and the conventional order\of operations. #" ) ‘ ‘
. [

, The general conclusions deal with the success of th;iexperimeht, ' \ s

the intuitive and éperational aspects of the constructions, the 9per§-

tional nature of students' thinking, pedagogical implications, and

suggestions for further research.

IS
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Summary
e a—m—t—

(a) Statement of the Problem

3

. 1 L2 .
Recent studies bv Wagner and Firth have pointed out the wide-
L . ‘

: . : spread difficulties experienced by high school students with algebra.

v Wagner has shown the existence of problems in understanding the ¢oncept

of énuation.\ Firth has fpund tha? manv students have vefy little qgésp
‘ of alaebraic symbols and find them difficult to use. However, their”
problems with algebra are not merelv a reflection of their intellgctual
abilities, as point?d out by ermp? but al;o a reflection of the way
thev are taught. . "
! A very common anbroach’ to the teaching of first-degree equations
in one unkﬁown introduces the t s "variable," "open sentence,'" "truth

get," etc., to define eauation and then proceeds to have the students . '

solve .these equations. Such an excessive use of terminology may prove
=

L

to be counterproductive and leave the student with the problem of having
to create meaning for eaquations through the manivulations involved' in
‘solvinq“them. However, the meaningless manipulation of meaningless
symgols mav not vield any understanding at all.
- Another ponular aﬁoroach uses word-problems to‘intfodﬁce equations.

. ) 4 . .
' However, the work of Clement et al implies thgt, though this may create 1

-
>

Waaner, "Conservation of Equation, Conservation of Functiqn,'and
' Their Relationship to Formal Operational Thinking." o .

2, : . .
Firth, "A Study of Rule Dependence in Algebra."

l 3Skemn, The Psychologv of Learning Mathematics, p. 15. L

4Clemenr’.'et al, "Translating Between Svmbol Systems: Isolating a ®
Common Difficulty in Jolving Algebra Word Problems." -

b A | |
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Q v -t
relevance, thé meaning of an eguation can be obscured by the cognitive

problems particular to the process ofttrénslating wordrproblems[;nto

v

i

equatiogs.

A third Presentation involves the teaching of first-degree equa-
tions within the framework of functions. However, Wagner has shown that

. o

the §oncept of function involves a higher level of abstraction than the @
concept of equationl and may thereby create unnecessary obstacles.

Thus we have sought an algernate approach to the teaching of
first-degree equations in one unknown which would allow the student both
to construct meaning for the concept of equation and also to lay the

»

groundwork for the eventual justification of the algebraic operations

N

used in the solution of equations. . )

3
(b) Theoretical Framework

The presentations currently in, use confront the student with a new

P .
mathematical form for which he has not,, as yet, developed anx\Teaninq.

Thus in the context of Piaget's theory of equilibration,” .this amounts
to a droblem of,accommodation.l In developing a new apgroach, we have

tried to transform this into a problem of assimilation. As pointed out

bv Steffe, this can he achieved whenever the new, more complex concept

to be learned is based on a simpler one existing in the learner's

Vs 3 R
cognition. . .

1 .
- Wagner, communication to N. Herscovics.

L]

2F‘Qlavel ./ The Developmental Psychology of Jean Piaget, p. 50.

w

3Steffe, "Constructivist Models for Children's Learning in °
Arithmetic," p. 5.
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In linking the new material with the ex;sting knowledge, one can

.either transform the new concept to reach the student's cognition or

v

- - 1 '
transform the student's cognition to reach the new concept.” | This

latter avproach is particularly important in developing meaning for a
. x & -
new'maghematical form, such as algebra. Such a construction, by/
necessity, avoids a formal presentation and must use an intuitive one

°

(applving Bruner's enactive and iconic modes), in order to achieve

. ) . ” \2 .- . .
"continuity of content,"  before introducing the new form. These (

intuitive presentations can then gradually .be transformed into more

. . . 3
formal ones to vield corresponding modes of understanding.

Y

¢ In developing a new approach to equations, we have used to a large

.’J' ". . a' . . 4 . .
//fr\\\\ extent the teaching-learning model, "Didactic ‘Reversal," which incor-

4

o

porates the above theoretical gonsiderations. By applying this model,
which stresses reversibility, it is possible to construct meaning not

onlv for the concept of equation but also for the concept: of the solu-

-

tion of an eguation.

- LY

(c) A Teachinq—Léarning Scheme For Equations

o

Based on the theoretical considerations summarized above, we

\

developed a teaching outline which aimed at 1) constructing meaning for

the concept of equation, and 2) laying the groundwork for justification

« ~

»

1 , . . )
* "Herscovics; "A Learning Model for Some Algebraic Concepts."”

‘\\
N

Byers, "Essays in Mathematics Education."

[RY

3Byers and Herscovics, "Understanding School Ma%hematics,"
pp. 24-27.

4 ! . .
Herscovics, "A Learning Model for Some Algebraic Concepts."

' o
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of the algebraic operations used in the solution of equations.

: . i

In order to have the student construct meaning for the['new math~

€

ematical form, using as austartinq point his already-acquire 'arith—

“ 9 metic knowledge, it was first neéessary to expand his notion of,ﬂﬂe

.

equal sign. This wag done by having the studént construct arithmetic
] ag ‘

o . . ) .
identities with several operations on each side. Thus he no longer saw

the equal sign as being‘a link between an operation on the left side

t ‘ Land the result on the right, but rather as a 'sign of the equilibrium

- “  between two sides "having- the same value." )

. .

The next, step, going from arithﬁgtic identitvy to equation,

. : - {
. included hoth a change in content and a change in form. 1In order to

B "

- lead the student gradually to the ac¢quisition of meaning for the new

form of an equaéigh, Bruner's three modes of representation were used.

A_number in one of the student's arithmetic identities was hidden first

) "
” ~

PR

bv a finger (enactive), then by a box (iconic), and finally by a letter

i

(symbolic). Thus an equation was defined as an arithmetic identitv

ekeen® cmtr mry e

A with a hidden number. In following these three stages the - student was

- able to acquire an intuitive understanding of the concept and then

@?Eza

»

e e e v e

gradually transform this to a formal understanding.

. ‘

Arithmetic identities were also used to establish the justifica-

¢ . tion of the rule ("whatever you do to one side, do to the other side.")

B . N <

SR . which would be used in the solution of equations (solution processes,

however, remain beyoné the scope of this study). By performing.an -

s

-, operation pn one side of an arithmetic identity, the student was able

v+ to see the need for performing an operation on the other side to restore

' ' k‘i\‘u'

+ the balance, When restricted to the use of the same operation, he was,

i

X
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led to doing the same thing on both sides.

. (@) Methédologz C . .
E "\
The methodology chosen for this study was a version of the Soviet

B

£'teaching experiment,” a meéthod which, according to Menchinskaya, "is

- .
.

directed at disclosing the very process of learning, as it takes place

. 1 M e
under éhe influence of pedagogy." The "dynaﬁic“ nature of this method-

.
.

ology allowed the researcher, by means of individual interviews, to
examine. the way that the  learner was thinking about and underétanding
specific conceots éurinq the actual teaching process. . ,/

The number of suhjects €or this study was six, three from'gréde 7
and three from qréde 8, -who represented a wide range in ability. The
individual interviews, which were 20-45 minutes in length, wef? all

audio~taped and transcribed in their "entirety for the purpose of_

ahalvsis.

Experimental Conclusions

This segqment of the chapter will present the thinking patterns
which we have been able ta discover through the section-by-section

analysis of the interviews.

(a) Pretest . . ) : ‘\h .
The obiject of'thg_qsetest was to determine the student's existing
/

¢

ideas on equations and the equal sign.

s o

. For, five of our six students, their notion of the equal sign was

’

v
»
»
u

_ nlMenchinskaya, "The Psychology of Mastering Concepts: Fundamental
Problemg and Methods of Research," p. 89.

ot e et A v bt i S

e o 7



oo

o DDA e PSR

et &

P

testricted to a single operation on the left side and the result on the

-

right. Their thinking in this regard seemed to be similar to that found

at the elementary level where, according to Ginsburg,  children look at

”

equalities in such an operational way. This pointed out the need for
» expanding the student's notion of the equal sign to include arithmetic

. ’ L ‘
equalities containing sevéral operations on both left and right sides

simultaneously.

Some of our students had difficulty in verbalizing what they meant

bv "eguation" and the equal‘sign. They didn't know how to say "it," but

could give examples. This confirmed Laborde’s findings that'junior high

[}

school students have a tendency to define "dynamically",2 that is, they

give an operational explanation of the event with the.subevents leading
! . ) 1 » / .
up to it described in the order in which they occur, and usually by

means of specific examples.

{b) Exteddinﬁ the Notion of the Egqual Sign '

s . The notion of the equal sign was extended to include multiple

operations on hoth sides. This expanded class of equalities was given !

the name "arithmetic identity," a term which reflected both the arith-

metic nature of these equalities and the identical value borne by both

i

sides.
) / . ' .
When asked for an equality with an ‘operation on each side, three

°

of the four subjects questioned (the othet two.subiects, Barbara and
/

1Ginsburq, Children's Arithmetic, p. 90.

ZLabordeQ "Relations Arithmétiques -- Aspect Statique -- Aspect
Dynamique,” p. 4l.
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Michel, had been shown such arithmetic identities) responded with an
example involving commutativ\ity. “hen asked for an equili.t)" with a
different operation <;n each sy‘ide, two students thought initially that
they had to uséj the same numbers on both sides. Our 51x students were
able to go on to construct arithmetic identities with m{xltiple opera-
tions on each side, the "value" of each side beigg the criterion for

equality. ' i

In these constructions yl our subjects wrote down their arith-

"metic identities, operation by operation, as they were thinking of them,

‘keeping track of the total as they went along. 'Thus. they viewed their

arithmetic identities sequentially (a sequence of operations which

yielded\a certain value) rather than globally (each side as “another
\
. . J
name for" the same number). : ;

{c) The Concept of qu‘lation :
By means of a three-step representational process, drithmetic

S
identities were transformed into equations.

A number in an arithmetic

’

identity was hidden first by a finger, then by a box, then by a letter.

“

In this way an equation was defined as an arithmetic identity with a

hidden number.

Nur six students could réadily find justification for the letter
being called an "unknown." From their responses, we also noticed that

three subiects (one of whom had seen equations in class) referred to

. the notion of solving equations. Even though we hadn't spoken about

solving equations or even the need to solve equations, it seemed that

' some of our students felt’ that this was, in some way, an essential part

of working with equations. As a matter of fact, it was quite natural

°

«

-
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for them, even at the construction-of-equations stage, to look at an

B

*equation and mentally try to slot in the required number. Their answers
indicated not only that thev had the notion of uncovering (i.e., solv-

‘ing), but also that this uncovering would bring back the arithmetic

identity. This awareness seemed to occur guite naturally. They had

acquired the notion of solution as a result of the way they had con-

#
structed meaning for equations. Tpds our students realized that not only

could they go from the arithmetic identitv to the equation, but also from

the equation back to the arithmetic identity (if they.knew the hidden

number) .

S Tt is quite interesting to note that, when asked to build equa-

tions, five of our six subjects did not follow the sequence of our con-

struction, i.e., starting with a written arithmetic identity and then
hiding a number, but instead wrote equations immediately (the sixth
student was instructed to write the arithmetic identity first). Thié
seemed to indicate that the concent of equation had acquired sufficient

meaning to allow our students to skip the intermediary step.

in looking for common misconceptions in their interpretations we

. ; 1
noticed that all our students were able to "conserve equation," and-
»

all (except one who had been taught equations in school) avoided

restricting the unknown to any one side.

?
Our results indicated that this method of constructing meaning

for equations was accessible to all of our students who represented a '
' . o ) i

]

Wagner, "Conservation of Equation, Conservation of Function,
and their Relationship to Formal Operational Thinking."

»
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wide range of abilities. They not only could construct their own equa-

tions but also were able to express in their own words what was meant by

~

an equation. 1In addition, we were unable to detect any significant
differences with resvect to the time required to acquire the concept of

equation or in the sophistication of their examples that could be

directly related to their varying abilities.

(d) nperating on Arithmetic Identities

. “Je did not use the scale to induce the general rule ("Do the same

thing to both sides") because of its limitation to addition and suh-

traction of natural numbers. Arithmetic identities were used instéad,
for these mathematical representations of equilibrium were not

restricted bv the physical limitations of the scale. Furthermore, any

operation performed on an arithmetic identity was immediately verifi-

'

able by the student. Thus, since our students now defined equations as

arithmetic identities with a hidden number, the operations performed on

arithmetic identities could he eventually transferred to operations on

equations.

Tn trving to induce the rule with the first two subjects, our
W
guestioning was found to be too vague, léading them to perform different’
operations on each side. Since we wanted our students to perform the
same operation nn each side, we restricted our line of guestioning with

the four remaining subjects in the following way: after adding a number

to one side of an arithmetic identity, we asked them, "Using only

addition, is there anything that you can do to make it an arithmetic

identity again?"

o o s S R B =
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Our four remaining subjects were able to induce the addition rule

(Add the same thing to both sides),'some of them requiriné more examples
than others. However,.it was the ease with/which Fﬁree of them were
able to induce equivalent rules for the other operations that indicated
the effect of our revised line of questioning. One of our weaker

X =

students needed a few more examples for subtraction and multiplication,
]
?
but became as efficient as the others for the last operation, division.
1t wasjbut an easv step for our four students to reach the next

level of ab;;;EEEIBET\ﬁhat/;E considering the individual rules as

examples of the general rule.

*y

&
. (e} Difficulties With Bracketing and the-
Conventional Order of Operations

Although every one of our six subjects had heen taught in class
‘the use of bracketing and the conventional order of operatiﬁhs,:thev
experienced difficulties in using them while constructing arithmetic
identities and also while operating on arithmetic identities.

In constructing their arithmetic identities’, our students were
writing them down (without brackets), operation by operation, as they
were thinking of them, and were keeping a running total as they wentt

y along. To then be asked to evaluate them according to th; conventions
conflicted with the more natural tendency of evaluating them in the

order in which they were written, which was the order in which they had
been conceived. The e&aluation according to the conventions at times
vielded a value different from what the student had intended. Whenever

this occurred, we suggested bracketing certain operations in order not

to violate the estahlished conventions.

.
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| The tendency to evaluate an arithmetic identity from left to right
, ) ;

‘ was so predominant that it gave rise to different and unexpected

[

responses to the use of bracketing. Michel was one student who didn't

B see the need of bracketing the first operation on the left of each side

since these were tHe ones he was calculating first anyway. Two other

students, Carnline |and Patricia, seemed to think that whatever was ' !

bracketed was not ohly'to be done first but was also to be placed first.

When operating\on their already-constructed arithmetic identities,

most of our subjects merely "tacked on" the new operation at the right 1

v

end of each side, withdqut using brackets. 1In doing so, they were con-

sistent with their own jntuitive conventions of calculating from left to

/ b right. The yesvonse of one of bur students provided striking evidence
of the sequential nature of his \thinking and of the problems which can
) arise as a result of not following this natural order. Michel, who was

told that he could add-on to either thé left br right end of each side,

.

wanted to add 7 to both sides of (§\+ 10) < 3 = (4 x 2) - 3 by writing

5+10) 3=+ 714 x2) -3 | | T

i The difficulties' experienced with bracketing have led us to » |

‘ su;best alternate approaches to the teaching.of £his topic, which shall

e-%iscussed under "Pedagogical Implications."

N

"
\ .
Ge& ral Conclusions

t '

;| (@) Success of Experiment

, L K This experiment was designed to investigate whether or not the
; {

v

==

'\ constructions involved were accessible to students representing a wide

)

. range of ahility. From the written énd verbal evidence of our six

v . subjects, we could conclude that all of them were able to construct

| - )
‘x ‘ ) ‘
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meaning for each of the main concepts: extending the meaning of the

equal sign; constructing equations; operating on arithmetic identities.

in the first two constructions there did not seem to be any sig-

nificant differences among the students' responses which could be

directly related to their varying abilities.

overating on arithmetic identities, Patricia required a few more examples

‘than the others in order to induce the rules.

any conclusion relating this to abilitv, because our other weaker student,

Michel, was subjected to a different line of questioning.

Tn assessing the reasons why all our students were able to build

meaninag for these concepts, we have identified the'two main factors tg

-~
be the intuitive and the operational aspects of,the constructions.
Though these two aspects are fundamentally interrelated, we will view

them separately for purposes of discussion. 4

(b) The Intuitive Nature of the Constructions

In descrihing the intuitive nature of the constructions, we shall
use the word "intuitive" as a general designation for the following:
the sudden insight, the spontaneous response, the iﬁductive leap, and
the global peyception of a probleml ——;all of these as evidenced in the

&

student. ~

To expand the meaning of the equal sign from the sense of "an
operation on the left and the result on the right", we asked four

subjects for an example with an operation on each side (the other two

.

A T T T R BTYTHEE I Pty e

'leers and Herscovics, ™Understanding School Mathematics,” p. 24.

e
°

In the third construction,

However, we could not draw

(%)

s P an
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" sign from an operation and its result to i different operation on each \
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subjects, Barbara and Michel, had been shown such an example). Three a

gave examples involvinq commutativity. When asked subsequently for af 2 !
example with a different operation on each siée, they responded spon-
taneously with an ekample. That\this can be interpreted as being an

intuitive jump at the conceptual level can be illustrated by contrasting

the above students with one who did not make the same intuitive jump,

M LT et bt o S i e Tt T

and who had to go through an intermediate step before making the trans-.

—
P

ition from a result to a different operation on the right side. When

Greq was asked for an operation on each side of the equal sign, he wrote

O

5x 3 =15= 10 + 5, and had to be aquided into dropping the middle step.

We feel that the transformation which occurs in the meaning of the equal !
o 1

side is an intuitive construction for it doés not seem to be taught in

school, as indicated by Michel's, "We don't do that kind of thing (in

school)." Expanding the concept further to include multiple operations

is merely a quantitative extension.

* In constructing meaning for the concept of equation, by hiding a

rd

number of an arithmetic identity firgt with a f}nger°and then with/i

box, Bruner's first two modes of representation (é;active} icodié; were

used to present the concept at a very concrete ‘level. Thus the student

acquired an intuitive notion of equation (i.e., a global perception of

what was meant by an equation) before being confronted with the symbolic -
|

form. ¢

In overating on arithmetic iden;ities, the intuiFive nature of the
» ¢ c ~
construction occurred on various levels. When one student began adding

spontaneously on to both sides of the arithmetic identity, without ever
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having doqp any verification, he showed an intuitive un§erstanding of

the equili?rium of the arithmetic identity. When on the basis of a few
examples our stgdents were able to induce the "addition rule," this

gave edidence of intuitive understanding. Furthermore, the ease with
which they came up with the rules for the other three operations and the
general rule ("Do the same thing to both sides") 'was additional\evidence
of their ability to think inductively -~ which at this level can be con-
sidered to Se an example of intuitive thinking. Thus the three con-
structions -- extending the meaning of the equal sign, constrge&{rq
equa%ions, operating éq arithmetic idgntities,--\were accessible tao the

a

student on an intuitive level.

a

(c) The Operational Nature of the Construcg‘gns s

" In describing the operational néFure of g;ese constructions, as a
factor contributing to the accessibility of the concepts involved, we
shall use the word "operational”, first, in the sense of the lgarner
transforminq, i.e., "operating on"™, his existing knowledge in order to

construct meaning for the new concepts, and second, in the sense of the

v -

learner performing, i.e., doing, operations, be they mathematical or
non-mathematical, in the process of constructing meaning,

The transformation of the learner’s existing knowledge was
evidenced in all three constructions. From the results ofdthe prétest,(
it waé clear that the student was accustomed to using the qual sign to
express an operation on the left side and the result on the right. By
asking him if he could use different operations on each side, we guideé
. . .

him in expanding his notion of the equal sign. This new meaning was

extended further to include multiple operations on each side. The

.
. .
o N . e e . B Y 2 -
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student thus acquired the notion of an . arithmetic identity which—in—turn —-—

was used to construct the concept of equation. This step-by-step pro-
cess insured that there was no break in the éantinuity of content, thus
avoiding qaps?which could orevent assimilation from occurring. The
student ;as also able to use his newly-acquired knowledge oﬁ arithmetic
identities to derive the general rule that would be used in sélvfnq
equations. At every stage the learner was operating on (transforming)
his existing knowledge in order to extend it further.

The second sense of the word "omerational," that of performing

operations, is self-evident in the case of extending the meaning of the

equal sign and in the case of operating on arithmetic identities since |,

both involved the use of arithmetic operations. In the construction of
meaning for the concept of équation, the act of hiding a number was

operational in the non-mathematical sense. Thus, durinq,these three

) .

.

"constructions the learner was actively involved not only in the physical

sense of "doina," but also in the sense of transforming his own cogni-
g o
tion, steo by step.

(d) Nrerational Nature of Students' Thinking

We often observed on different occasions with our subjects evi-
dence of a certain way of tHinking which could be called "operaticnal."

In describing this mode of thinking, we shall use the word "operational"

o

in three senses: first, in the sense of Laborde, that is, where pupils

descrihe a mathematical idea or expression "dynamically" (how to?)

. . 1 . .
rather than "statically" (what is?);  second, in the sense of Ginsbhurg,

1 . . o .
Laborde, "Relations Arithmetiques -- Aspect Statigue -- Aspect
Dynamique," pp. 41-50.
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that is, where children interpret mathematical symbols such as equality
X : . . 1 . . :
in terms of an arithmetic overation:” and third, in the sense of Kieran,

that is, where students view strings of arithmetic operationg sequen-

tially.>

“When asked in the pretest to give a definition of what they thought

. ) )
-an equation was or of the use of the egual sign, some of our subjects had -

b

difficulty verbalizing such an explanati ”and_offered to give examples

instead, This bears out Laborde's fjhdings that children aged 11-13

vears have,a tendency to define "dygamically,” that is, to give an

operational
i
described in the order in which they occur, and usually by means of

t with the subevents leading up to it

specific examples.

" ‘

. Yhen asked to give an example involving the equal sign, our sub-
jects qave an equality with an 2peration on the left and the result on
the right. bwhat Ginsburg found with elementary schoél children (i.e.,
that children view the ecuality symbol in terms of an overation and the
result) seems to hold also fof'{unior high school children.

When coﬂstructinq their arit;metic ideﬁtities, our students wrote
them down operation by operation as they were thinking of them, keeping
a running total ;s they went along. “henever they were asked to

evaluate one side or the other, they did so, from left to right, which

was the same order as that in which the operatioﬁé had been written. As

s

1 . ~ , ,
Sinsburg, Children's Arithmetic, ». 90.

r

2Carolyn Kieran, "Children's Operational Thinking Within the Con-
text of Bracketing and the Order of Operations," Proceedings of Third’
International Conference for the Psychology of Mathematics Education,
Warwick, England, July 1979, ‘ ) >

o
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N
has already been poin;ed out, this had an effect on the way they viewed
bracketing and the conventional order of overations. v .
When operating on their already-constructed arithmetic identities,
five out of six students tacked the new operation on at the right end of ‘ 1
each side, in keeping with their own notion of operating sequgntially‘ g
from left to riaht. - ‘ \ i
We have wondered if the operational aspect (i.e., "performing
operations”) of our method of construction encouraged our students to
think secuentiall; (coveration by operation). HéQever, on the basis of
their tendency Lo overlook the need for bracketing and the need for a con-
vention reqard&nq the order of overations, we must conclude that this is
their natural wav of thinkina. 1In fact, we would tend to believe that °

it was because of the operational (and intuitive) nature of the con-

structions that the'concepts were readily assimilated by our students.

(e) Pedagogical Implications

2 . . o
Tn reviewing the various introductions to algebra (see Chapter I),
we haved seen that most presentations were formal and made excessive use

of difficult terminology. We think that the teaching outline developed

in this study provides the teacher with an alternative approach which is-
both intuitive ;nd operational, and thus is accessible to students of )
various ability. Classroom use does not require any major adaﬁtation as
indicatea by our experience with a remedial alaebra class for adults.

By explicitly building algebra on the student's exisfing arith-
metic knowledge, the relationship between these two éathemacical sub~

[
jects is self-evident toé the learner. The algebraic concepts become S

more concrete and thus can be more readily assimilatéd by students. By
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\ . h éi&?hg meaning to algebraic forms such as equations, the student need
not manipulate meaningless symbols. The rules derived from operating on !

o T
arithmetic identities lay the ground for the eventual justification of

algebraic operations. It can also be stressed that these constructions

™

do not take any more classroom time than the more standard presenta-.
tions. . ' : f

»

e M

The standard ‘introduction to algebra presents equations as
- . . & v . ¢
expressions which mav &6r may not have a solution. This approach is
L - I * i * - -

- assurédly more general than ours, but overloocks the cognitive problems

Vs

R

‘0f the learner confronted with an equation that' has no solution. The
¥ ‘ .

distinction between® classes of egquations which have or do not have a |
‘r" -~

-

solution may be easier if one has first established meaning for solvable
» " N T
, equations. The construction of equations based on arithmetic identities

2 .

v provides the?student with equations that have a solution. Later, after

these have becomé familiar, the student can be introduced to equations

(

whic¢h don't have a solution, e.g.; 2x + 3 = 2x + 4. Since there is no
) v \ "
"possible arithmetic identity from which such an "equation" could have

. "been formed, it has no solution. Thus’ the notion of equation is . ;o

§

extended ‘to include any algebraic expression containing a Tatter.

[y t *

Equations with infinitely many solutions can also arise if a . 1

.

student constructs an equation from an arithmetic identity such as

, .
Wi
i

4 + 2 and wishes to hide the samesnumber twice, e.g.,.2 + a =
o . . ,

) 2+ 4

]

. a +.2. This context could present a goodroﬁportunify for discussion of

. "y . !
., the axioms of our number systems. Many students may never haveluneydl .

- Wt P

- stood the symbolism used to'e;press these'axioms and, in‘this'néﬁyframe

f
[T 7 N N o '

,. = of refefenc%f'these ndgtulates could become more'meahﬁrqful.

3 I 3
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-Another important pedagogical implication to arise from this. study

concerns the sequential operational thinking of students and the use of

°

brackets. As has already been pointed out, our students, in following
their natural left-to-right tendency for writinq‘and evaluating strings
"

of arithmetic operations, neither saw any need for the conventional’

order of operations nor forsthe necessit$ of bracketing certain opera-

tions to avoid contravening these conventions. However, our work

suggests one approach to the topic of bracketing wh{ch will help create

£ o

in the student's mind a need for such a notation. '

’

R 4

By using an arithmetic identity, sdch as 2 x 5 = 10, rather than

< 1’

a string of operations, sach as 2 + 5 x 4 (as axe found in standard
textbook presentations of the topic), one can effectively establish an
awareness of the need for bracketing. Taking 2 x 5 = 10 and sub-

sequently replacing 5 by 4 + 1 yiefds 2 x4+ 1=10. Since the left

©

side must still have a value of 10, the student, whether he evaluates

. . )
by his own left-to-right method or by the standard ordering conven-

tions, will come to see that the only way to maintain this arithmetic
identity is by bracketing, hence 2 x (4 + 1) = 10. 1In this context the

use of brackets does not seem superfluous, and, in fact, establishes

the need for this notation. J

“

Because this study was varried out on an individual basis, it
allowed us to identify modes of thinking which would have been

inaccessible in a group study. There were many,patterné observed which

1 B

" can"be expected to be found in a normal classroom situation. Thus we

v

believe that the findings of this study can assist a teacher in becoming

a

more aware of students' thinking in this. area, and as a result help

@

o e aba———n

P -



her/him in communicating these concepts. .

8

(f) Suggestions For Further Research

w

P ~

j The version of the Russian "teaching experiment" whichéwe used
was, we feel, a valuable methodology for exﬁmining the‘thinkingxand
understanding of the learner w?ile~he is in the process of forming new
concepts. Our version differed from that being used by Steffel who

4 . @ /
} teaches small groups of féur to eight children and then afterwards

5

. e aa s , L , 2
interviews’ on an individual -basis, and from that being used by Rachlin
who does not teach himself but who 'interviews some students individually

. " after they have been taught in a classroom situation by their teacher.

o

We tend to believe that our interpretation of this metﬁodology has the

advantage of proViding us with spontaneous responses, and furthermore

° i

! avoids the influence of gqroup interactions on the student’s thinking.

, One of the major problems we exberienced was striking the right ¢

halance between our teaching role and our.observing role. Too often we

a

were so intent on teaching that we missed important clues expressed by

the student. This would suggest that the presence of a second researcher
- — <
during each interview would help in picking up comments missed by the

o . . o

interviewer. Of course, this may create other bréblehs such as the dis-

continuities caused by the observer's interventions, the distraction

caused by his/her pfeseﬁce, and the fact that the learner may feel. less

. lLeslie P. Steffe, "Analysis and Critique of the Teaching Experi-
ment- as Exemplified by'a Particular Investigation," Paper- presented at

NCTM Convention, Boston, April 1979. .,
! /

<

2sid Rachlin, personal communication, April 19, 1979.

~ g 4
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comfortable in the presence of two adults rather th§n one. However, we
think that thesé disadvantages would be°outwéighed by the benefits
derived. In addition, we found that the difficulties involwved in
analyzing individual-interview nrotocols for common thinking patterns
are so great that we recommend that éhis kind of research be undextaken
by at least two researchers working toqeﬁher.

v Another advantage of this methodology was the flexibility it gave
us to alter’our original. teaching scheme when we saw that it was not

producing the predicted or desired effect. We have tried to include in

this dissertation all of these changes in our approach, for Easley has
4

suggested, "1t is regrettable that few writers of case or clinical

studies keep a tally of the kind of changes in perspective the researcher

: 1
is forced to make, by ‘the events of the clinical studies themselves."

Our research suggests many different areas for furthexr investiga-
tion. Tt would be interesting to study the effecg\of this method of

constructing meaning for equations on the development of solution

-

strategies for equations. Do children who have constructed meaning for

equations and who have laid the groundwork for doing the same thing to
: G
both sides of an equation approach the solution of eguations any

differen%ly from those children who have not constructed meaning for

equations by means of our scheme? ~ .

We have observed the very strong tendency of students to view

strings of arithmetic operations sequentially. How does this sequential

thinking effect the processes they use to solve equations?

lEasley, "On Clinical Studies in Mathematics Education," p. 4.
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Clement et al have pointed out the difficulties involved in trans-

lating word prgblems into equations.l wWill the prior construg:tion of

meani‘nq for, equations eliminate some of these problems? ~
. A - . & f

We think that these are interesting research problems with peda-

@

gogical implifatiods. In fact, any answers to these guestions will pro-

vide teachers \with the means of helping students overcome the major

mathematical obstacle they face in high‘school, namely algebra.

IR ‘ ’// -
/

.

J‘Clement et al, "Translating Between Symbol Systems: Isolating
Common Difficulty in Solving Algebra Word Problems." :

»
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