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Abstract

Control of a Flexible-Link Manipulator

Howard Geniele

This thesis focuses on the tip-position control of a single flexible link which rotates in the
horizontal plane. The dynamic model is derived using a Lagrangian assumed modes
method based on Euler-Bernoulli beam theory. The model is then linearized about an
operating point. An output feedback control strategy that uses the principle of
transmission zero assignment achieves tracking for this nonminimum phase linear time-
invariant system. The control strategy consists essentially of two parts. The first part is
an inner (stabilizing) control loop that incorporates a feed-through term to assign the
system’s transmission zeros at desired locations in the complex plane, and a feedback
term to move the system’s poles to appropriate positions in the left-half plane. The second
part is a feedback servo loop that allows tracking of the desired trajectory. Two
controllers that use variations of this method are developed, one of which is implemented
on an experimental test-bed. The performance is compared with that of a third controller

based on pole placement state feedback.
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CHAPTER 1

Introduction

1.1 The Flexible Manipulator Control Problem

Traditionally, robotic manipulators are designed and built in a manner that maximizes
stiffness to minimize vibration and allow for good positional accuracy with relatively
simple controllers. High stiffness is achieved by using heavy materials that limit the rapid
motion of the manipulator, increase the sizes of the actuators and boost energy
consumption. Conversely, a lightweight manipulator is less expensive to manufacture and
operate. The reduced inertia results in safer operation and faster response. Weight
reduction, however, incurs a penalty in that the manipulator becomes more flexible and
more difficult to control accurately. The control difficulty is caused by the fact that since
the manipulator is a distributed system, a large number of flexible modes is required to
accurately model its behaviour. Further complications arise because of the highly
nonliniear nature of the system. In addition, the system is nonminimum phase since the
sensor at the manipulator’s tip is not colocated with the actuator at the hub.

For a rigid manipulator, the tip trajectory is completely defined by the trajectory
of the joint. Effective control of the joint is synonymous with good control of the tip. The
situation is not as straightforward for the flexible manipulator. Several possible control
objectives exist. One objective consists of (i) tracking a reference joint trajectory while
(ii) reducing the elastic arm deflections. This approach rests on the assumption that the
motion of the system consists of the elastic displacements of the arm superimposed on
the nominal path (the rigid body motion of the manipulator). The two part control system
effectively partitions the system into a rigid subsystem and an elastic subsystem (the

flexible arm). If the second part of the controller is effective in reducing the elastic




_ deflections, the behaviour of the closed loop system approximates that of the rigid
manipulator. As in the case of the rigid manipulator, the tip trajectory is then defined by
the trajectory of the joint which is determined by the first nart of the controller. Another
objective involves regulating the tip about a desired steady state position. The controller
acts by causing the tip to move from a start position to a specified destination position
without regard to the path it must follow. Yet another possibility involves having the tip
actually track a given trajectory as it moves from its start position to its destination.

In an effort to reduce the complexity, many of the works on flexible manipulator
control perform a local linearization of the equations of motion and truncate the number
of flexible modes. Canon and Schmitz (1984) applied linear quadratic Gaussian (LQG)
control by designing an optimal controller that assumes the availability of all the states
of the system. Since the states are not directly measureable, they must be reconstructed
from the available input (the applied torque at the hub) and outputs (the hub velocity and
the tip position). By assuming that all measurement errors and disturbances have Gaussian
probability density functions, an optimal estimator was then used to reconstruct the states.
Sakawa et al (1985) used linear quadratic (LQ) control to dampen the flexible modes
while tracking the hub reference angle. An observer was used to reconstruct the system
states, neglecting measurement errors and disturbances. Wang et al (1989) used output
feedback PD control to design a regulator around a target point that d. mpens the flexible
modes. Wang and Vidyasagar (1990) chose the reflected tip position as the output and
devised an output feedback point-to-point linear control based on passivity of the model’s
transfer function. Siciliano and Book (1988) applied singular perturbation theory to
decompose the flexible manipulator into slow and fast subsystems. This procedure only
partially linearizes the flexible manipulator model: although the fast subsystem is linear,
the slow subsystem is nonlinear. A noniinear control was developed for the slow
subsystem, while a linear state feedback control was used for the fast subsystem. The
result was a composite controller that dampens flexible modes while tracking a desired
hub angle trajectory.

Most of the foregoing control strategies are designed for models of the flexible

manipulator that are linearized about a particular operating point, that is, for a given
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(nominal) set of hub angle and elastic mode.positions and velocities. The greater the
variation of these positions and velocities from the operating point, the greater is the
variation of the linearized model from the actual system. This variation becomes more
prenounced for high performance control systems since high performance implies rapid
motion and therefore large departures of the hub angle and elastic mode positions and
velocities from their nominal values. System performance and stability will degrade unless
the situation is addressed. To overcome this problem, various researchers have developed
nonlinear controllers incorporating the principle of nonlinear inversion. De Luca and
Siciliano (1988) used the input-output inversion algorithm (Hirschorn 1979) to develop
two controllers. One controller defines the output as the joint angle and asymptotically
tracks it. The other controller defines the output as the position of a point along the arm
and tracks a trajectory specified for that point. As the location of the point nears the tip,
in an attempt to achieve tracking of the tip itself, the zero dynamics of the system become
unstable and the control becomes difficult. Madhavan and Singh (1991) also used the
Hirschorn algorithm to design a nonlinear controller for a two link flexible manipulator.
They also specified the output to be a point along the arm, but not at its end, to prevent
the occurence of unstable zero dynamics. The location of the point, however, is
sufficiently close to the arm’s tip so that the closed-loop system is marginally stable.
Once the trajectory nears its steady-state value, (and the dynamics of the manipulator are
almost linear), a linear stabilizer control loop is closed. This linear stabilizer dampens the
vibrations and ensures asymptotic tracking of the reference trajectory. Madhavan and
Singh (1992) applied the theory of sliding modes to design a controller that tolerates a
wide range of payload uncertainty and thus exhibits a certain robustness. (Sliding mode
control strategies belong to the class of variable structure control systems (VSS) and are
characterized by structures that are switched abruptly to achieve a control objective.) As
in Madhavan and Singh (1991), the output is chosen to be a point near the arm’s tip to
avoid unstable zero dynamics. The separate linear stabilizer control loop is also retained.

Shifman (1990) designed a controller that asymptotically tracks a desired erid point
trajectory without truncating the series of elastic modes. This is achieved by defining the

desired trajectories of (i) the end point, (ii) the hub angle, and (iii) ,, the torque applied
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to the hub. An error space is then specified, in which the actual values of the three
foregoing quantities are subtracted from their desired trajectories. The partial differential
Euler-Bernoulli equation that describes the motion of the manipulator is then rewritten in
terms of the error space. A composite control signal T is designed such that t=t1+17’,
where T’ is a linear contro! that acts on a function defined in the error space and
minimizes the perturbations of the hub angle and the end point from their desired
trajectories.

The foregoing control schemes are designed according to a specific flexible
manipulator model. If the model accurately describes the actual manipulator, the controller
will perform as expected. Problems can occur due to discrepancies between the model and
the actual system. Such discrepancies include the effects of truncated higher order elastic
modes, unmodeled friction and backlash effects and, for linearized models, system
nonlinearities. The control schemes exhibit varying degrees of performance and stability,
(that is, robustness), in the face of these uncertainties. Yuan et al (1989) have designed
a robust adaptive controller that attains a specific level of robustness for a model with a
prescribed amount of uncertainty. This is achieved by separating the system into a
nominal part that has been linearized about a particular operating point, and a nonlincar
part that accounts for uncertainty in the linear model. Model reference adaptive control
is used together with a full state robust observer.

The approach taken in this thesis involves linearizing the nonlinear equations of
motion to simplify the design of the controller. The controller consists of two parts. An
outer (servo) control loop yields the desired tracking of the reference input. An inner
(stabilizing) loop incorporates a feedforward term, which addresses the nonminimum
phase behaviour, and a feedback term that stabilizes the overall closed-loop system.

The design of the controller is based on the work of Patel and Misra (1992). The
original contribution of this thesis lies in the design and construction of an experimental
test-bed to implement and assess the performance of the controller. The simulations
presented in Geniele er al (1992), and the experimental results shown in Patel er al (1993)

are extended to provide a more in-depth analysis of the controller’s performance.




It is important to note that the control theory discussed in this thesis is not
restricted to the flexible-link manipulator, and may be applied to a largsr class of

nonminimum phase systems.

1.2 The Flexible Manipulator

To reduce the complexity of a multiple degree of freedom flexible-link manipulator
operating in three dimensional space, and yet capture the essence of the control problem,
a single-link flexible manipulator has been constructed. As shown in Figure 1.1, the 1.2
m long manipulator rotates in the horizontal plane to minimize the effects of gravity. It
consists of a central stainless steel tube with annular surface corrugations. Aluminum
blocks are bolted to the tube, and two thin parallel spring steel strips slide freely within
slots cut into the blocks. Since the tube resists torsional flexure, and the steel strips resist
vertical flexure, the resulting structure is lightweight (1.45 kg), strong and horizontally
flexible. This approach attempts to reduce the coupling between the horizontal and the
vertical and torsional modes of vibration. A high performance drive was assembled
consisting of a pulse width modulated amplifier that operates in current feedback mode,
a brush-type permanent magnet DC servo motor and, to eliminate backlash, a Harmonic
Drive speed reducer. A combination of two sensors is used to measure the position of the
manipulator’s end point with respect to an inertial reference frame: (i) a photodetector,
located at and revolving with the hub, monitors an infrared emitting diode located at the
tip and (ii) an incremental optical encoder mounted on the motor shaft measures the
position of the hub. The digital controller samples the sensor outputs and computes the

desired torque required from the servo motor.

1.3 Organization of the Thesis

Chapter 2 discusses the modeling of the flexible manipulator. The derivation proceeds
step-by-step from the simple static cantilever beam (fixed at one end and free at the other)
through to the dynamic rotating flexible manipulator. Concepts from static beam theory,

(the study of bearn deflection under static loads), are presented so that the reader may
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gain a thorough comprehension of the basic theory defining the flexible beam model. The
section proceeds with the dynamic beam problem that incorporates the dimension of time
to yield the Euler-Bernoulli partial differential equation. Lagrange’s equations generate
the final nonlinear equations of motion of the rotating flexible manipulator which are
linearized to yield a simpler representation of the system about a particular operating
point. The section concludes with measurement of the actual manipulator parameters, and
validation of the model by comparing the responses of the actual flexible manipulator and
the model to a given input.

Chapter 3 describes the design of the control systems. The principle of
transmission zero assignment, which forms the basis for the design of two distinct
controllers, is explained. Chapter 4 presents computer simulations of the controllers and
compares the results. Chapter 5 describes the actual flexible manipulator test-bed and
implements one of the controllers designed in Chapter 3. Conclusions and suggestions for

further work are discussed in Chapter 6.
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Figure 1.1 The flexible manipulator.
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Chapter 2

The Model

2.1 Introduction

This section develops the model for the flexible manipulator from basic concepts that
begin with the static deflection of beams as described by elementary beam theory.
Expressions for the deflection of a beam are derived as a function of distance along the
beam and the boundary conditions of moment and shear force.

The dynamic deflection, i.e. vibration, of a beam is then explored. A partial
differential equation (PDE) known as Euler’s beam equation is used to model this
distributed parameter system, yielding an expression for the deflection that is a function
of both time and distance along the beam. Using the separation of variables method,
Euler’s beam equation is expressed as two ordinary differential equations (ODE’s).
Frequencies of vibration and the role of boundary conditions are analyzed. Lagrange’s
equation yields the equations of motion of the vibrating beam. The effects of damping are
explored. A simplified dynamic model that neglects higher frequencies of vibration, the
assumed modes model, is examined.

The preceding theory is then extended to the case of ini.cest - the flexible
manipulator rotating in the horizontal plane. Lagrange’s equation is used to yield the
equations of motion of tiie manipulator. This model is linearized to yield the simplified
equations of motion.

Finally, the experimental manipulator’s parameters are measured and are
incorporated into the model. The accuracy of the model is verified by comparing its

response with that of the experimental manipulator.




2.2 Static Beam Theory

2.2.1 Fundamentals

The objective of this section is to determine the static deflection of a beam caused by an
applied load. Several concepts that are fundamental to the field of statics will now be
explained. The modulus of elasticity, or Young’s modulus (E), relates the elongation
(strain, £) of a material to the applied stress (force per cross sectional area of the material,
O) by the expression 6=Ee. E defines the stiffness or rigidity of the material.

Different portions of a beam are in tension and compression when subject to a
bending moment. There exists a neutral axis within the beam along which elements of the
beam are in neither tension nor compression. The radius of curvature of the neutral axis
is defined as p.

The area moment of inertia about the neutral axis, /, is a measure of an object’s
resistance to bending solely as a result of its geometry. For example, a long bar of
rectangular cross section bends more easily about its thinner dimension than about its
thicker dimension.

The stiffness factor EI will appear regularly and is a measure of the stiffness of

an object that takes into account the object’s material and its geometry.

2.2.2 The Cantilever Beam

Consider the cantilever beam (fixed at one end and free at the other) in Figure 2.1.
The beam is of constant cross sectional area, length A and mass m. Gravitational
acceleration g acts in the negative W direction, creating a load p(x) = -mg/h distributed
uniformly along the length of the beam (p(x) has dimensions of force per unit length).

An upward or reaction force, R=mg, occurs at the fixed end x=0. R is equal and
opposite to the gravitational force acting on the beam F,=-mg. Force F, produces a
moment M, that is, a tendency to cause rotation of the beam in the clockwise direction.
Reaction moment M, occurs at x=0 in a counter-clockwise direction. M, is equal to F,
multiplied by the distance from its point of application. The point of application of the

force caused by a uniform load is at the beam’s centre of mass, at x=h/2. M, is therefore
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Figure 2.1 Cantilever beam with uniform load.

equal to -mgh/2. Both R and M, counteract the effect of load p(x) and keep the cantilever

beam in an equilibrium or static state.

Beam Deflection - Uniform Load

If the external forces and moments acting on the beam were the only quantities of

interest, the problem would now be solved. Determination of the beam’s deflection,

however, requires analysis of the internal forces and moments in the beam.

As shown in Figure 2.2, shear
force tends to break the beam
perpendicular to its longitudinal axis.
Shear force is calculated at a specific
location x along the beam by summing all
external forces on either the left side or
the right side of x. The convention used
for this analysis is to consider the forces
to the left of x. Upward forces are positive
while downward forces are negative.

The shear § and bending moment

M at the boundaries of the beam, (x=0 and x=h), will now be determined. R is the only
force acting to the left of x=0* (an infinitesimal distance to the right of x=0). Hence,

S(0)=R. The forces to left of x=A include R and the downward force -mg (found by

) 4

Positive Shear

L T

Negotive Shaor

1

Figure 2.2 Positive and negative shear,

0




integrating load p(x) from x=0 to x=h). Therefore, S(h)=R-mg=0.

A negative bending moment M
tends to flex the beam so that the upper
portion of the beam is in tension w
(stretched) while the lower portion is in Positive Bending

compression (see Figure 2.3). The bending

moment at location x equals the sum of § Q

the moments of the forces to the left of x.

Negative Bending
At x=h, the moment M, equals the sum of

the negative reaction moment M, the Figure 2.3 Positive and negative bending

positive moment produced by R, and the moments.

negative moment produced by F, acting at the centre of mass. That is,
h
M, =M,+Rh +Fg5

_mgh mgh

2

+mgh -

=0.

At x=0*, the moment is simply M,

Shear force and bending moment are related by the equation

s=9M Q.1
dx

In the case of a distributed load the relation may be written

s _d*M
—_— = =p(x). (2.2)
i p(x)
It can be shown (Shigley, 1983) that the curvature of a beam undergoing a bending
moment is
1.4 2.3)
p EI

The curvature of a plane curve is specified as

11




1__d widx? (2.4)
P [1+(dw/dx)')?

where w is the deflection of the beam at any point x along its length. The slope of the

o
am s -2,

dx
If the slope is very small, the denominator of Eq. (2.4) is approximately unity, and Eq.

(2.3) can be rewritten as

M_dv (2.5)
El dx?
Noting Egs. (2.1) and (2.2) and repeatedly differentiating Eq. (2.5), we get

where El is assumed to be constant and, as before, p is the load intensity with dimensions
of force per unit length.

These relations are normally displayed in a group as:

4
El% = p(x) (load intensity) (2.6)
3y
Elidx_?a_ = S(x) (shear) 2.7)
d*w _
El —T " M(x) (moment) (2.8)
% = 0(x) (slope) 2.9
w=Rx) (deflection). (2.10)

To solve the problem of the cantilever beam under a uniform load, integrate Eq.

(2.6) with p = -mg/h. Then integrate Eq’s. (2.7) through (2.9), solving for the constants

12




of integration with the boundary conditions:

d3w(x=L) _ _
El_—dx’ = §(L)=0
Erdwe=l) _ yay=0

dx2
dw(x=0)
EI = =
- EI6(0)=0
Elw(x=0) = 0.

The expression for the beam’s deflection is,

mgx?
24EIlh

(4hx-x%-6h?).

Figure 2.4 shows the loading, deflection, shear and moment diagrams.

w
h
(a) CIIL_LIIDI S W v S
Mo
te
s
(b) T
M
(e) / *

Figure 2.4 (a) Loading and deflection, (b) shear and (c) moment diagrams for the cantilever beam

with uniform loading.

Beam Deflection - Uniform Load Plus Concentrated Load At Free

End

Consider the cantilever beam with uniform loading p(x) = -mg/h and the addition of a

concentrated force -F at the free end as shown in Figure 2.5. Such a concentrated force

can result from a point mass located at the free end in the presence of gravity.

Reaction force R, at x=0, is equal and opposite to the sum of the gravitational

force acting on the beam (F,=-mg) and force -F: R = mg + F. Reaction moment M, is

13




p ]
h
| P
C1I1114_1__=u311 %
MO
R

Figure 2.5 Cantilever beam with uniform load and concentrated force.
equal to the sum of the moments caused by F, and -F: My = -mgh/2 - Fh.

The shear forces and moments at the boundaries of the beam, (x=0 and x=h), will
now be determined. R is the only force acting to the left of x=0*. Hence, S(0)=R. The
forces to the left of x=h include R and the downward force -mg (found by integrating load
p(x) from x=0 to x=h). Therefore, S(h)=R-mg=F.

At x=h, the moment M, equals the sum of the negative reaction moment M,, the
positive moment produced by R and the negative moment produced by F, acting at the
centre of mass. That is,

M, = M,+Rh +Fg.;l

= (-ﬂ.;ﬁ-—i"h}*(mg +F)h—ﬂ§_h_

=0.
At x=0%, the moment is simply M,.
To solve the problem of the cantilever beam under a uniform load and
concentrated force, we integrate Eq. (2.6) with p = -mg/h. Then we integrate Eq’s. (2.7)
through (2.9), solving for the constants of integration with the boundary conditions:

S0) =R Sth) =F
M©O) =M, Mh) =0
6(0) =0
w(0) =0,
The expression for the beam’s deflection is,

. x? (mg+F)x_mgx2_mgh_Fh
2E7 3 12k 2 ‘
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2.3 The Dynamic Beam Problem

2.3.1 The Euler-Bernoulli Equation

The Euler-Bernoulli beam equation is one of the simpler expressions describing the
transverse vibration of beams, and may be derived from Eq’s. (2.6) through (2.9). All
quantities now feature two independent variables: time, ¢, as well as horizontal distance,
x. It is assumed that rotary inertia, (the inertia associated with rotation of the beam in the
x-w plane), and deformation of the beam due to shear forces may be neglected. El is
assumed to be constant. The derivatives in Eq’s. (2.6) through (2.9) may then be replaced

with partial derivatives as follows:

o*w 9§
EISY -9 _pxt 2.11)
=7 3 p(x,t)
’w oM
EI°Y = %% - sa, (2.12)
dx®  ox &)
EI2Y = M) 2.13)
ox?
¥ o) (2.14)
ox
W= ) . (2.15)

Consider the differential beam

element of length dx shown in Figure 2.6.

L

The mass of the beam per unit length is v px,t)dx
M MedM
specified as v, and the acceleration of the C 1 D
differential beam element is d2w/dr2. The | gsm x
L- x-L— d'—'

loading per unit length of the beam, p(x.!), Figure 2.6 Forces and moments acting on
is equal to the sum of the inertia load per differential beam element dx.
unit length, Y0?w/or?, and the lateral external force per unit length, p(x,?).

The equation of motion for the element in the vertical direction is given by

15




Newton’s second law as

~(S +dS) —p,(x,)dx +S = ‘de.ézi.

o

Since dS = 95 ar,
ax

oS *w (2.16)
~p.dx = e |ldx = Y| .
- ()i - {22

Substituting Eq. (2.11) into Eq. (2.16), we obtain the Euler-Bemoulli equation for

constant EJ
o*w ow
EI—— + — = x,t . (2'17)
e ¥ =3 p,(x.1)

For the case of free vibration, p,(x,))=0, and Eq. (2.17) becomes

El d'w + *w =0. (218)
Y dx* or?

To obtain a solution for Eq. (2.18) by the separation of variables method, we

theorize that the beam always maintains a fixed shape ¢(x) and that only the amplitude
varies with time. That is, we assume a solution of the form
wix) = $O)q(). (2.19)
Eq. (2.19) leads to the two equations
P d%
ox*  dx*
and

dw _ d3>q _ .
5 g

Substituting the above into Eq. (2.18) gives
—_— = 0§
T 04
Dividing both sides of this equation by the product ¢g yields

16




Eld%1 _ _§
Y d'd ¢

Since the expression on the left involves functions depending only on x and the

(2.20)

expression on the right involves functions depending only on ¢, both expressions must be

equal to a constant, say 0’. Thus

El d% 1 - _4 - w?
Y dx*d q
This yields the two ordinary differential equations
G+w’q =0 (2.21)
and
40 _pey =0 (2.22)
dx4
in which
= O (223)
El
The solution of Eq. (2.21) is
g(t) = Acoswt +Bsinwt. 224
Eq. (2.22) is of the form
B(®) = AC(9) (2.25)

where B and C are linear differential operators and ¢ is a function of x only. This
particular form constitutes an eigenvalue problem for which the number A is an
eigenvalue and ¢(x) is an eigenfunction. It can be shown (Thomson, 1988 and James,
Wolford and Whaley, 1989) that the solution of Eq. (2.22) is

¢o(x) = C coshkx + Dsinhkx +E cos kx + F sinkx . (2.26)

17




The solution of Euler’s beam equation is written as
w(x,t) =(Ccoshkx +D sinhkx +Ecos kx +F sinkx) q(1) 2.27)
in which g(¢) is given by Eq. (2.24).

2.3.2 The Cantilever Beam With An Inertia Tip Load
A complete solution of the cantilever beam problem with an inertia tip load consisting of
point mass M, requires solving for the constants C through F in Eq. (2.27). These

constants are calculated using the following boundary conditions:

Atx=0 Atx=1L
2
-0 M=EI2Y - o
dx2
dw =0 d? o*w(h
& S=E12Y -y WD)
dx? P or?
2
The condition on S follows from the fact that M, causes concentrated force MP.‘;_‘:_) to
t

act on the beam at x=h. Substituting these boundary conditions into Eq. (2.27) leads to

the transcendental equation

Mk
I _(sinkhcoshkh - coskhsinhkh) - coshkhcoskh - 1 = 0. (2.28)

For M =0, Eq. (2.28) reduces to
coshkh coskh +1 =0. (2.29)

From Eq. (2.23), the natural frequencies of vibration are

, = G ky | EL
vh*
An infinite number of values of kh exists that satisfy Eq. (2.28), each of which
corresponds to a natural frequency of vibration. That infinitely many natural frequencies
exist is to be expected due to the continuously distributed mass and elasticity of the beam.

Specifying the position of each particle in the beam requires an infinite number of

18




coordinates or modes, and the beam is said to possess an infinite number of degrees of
freedom.

Table 2.1 lists numerical L ]

values of (k,h) for a beam of n (i
(M,=0) (M,=0.03kg.)
length 1.2 m and mass 1.42 kg.
The results are tabulated for (i) 1 3516 3.376
2 22,035 21.213
M,=0 kg and (ii) M,=0.03 kg. Note 3 61.700 59.529
4

the smaller values corresponding to 120902 116.893 |

: s S .
M,=0.03 kg. Since the natural Table 2.1 (kh)* for a cantilever beam with and without

frequencies are proportional to inertia load M, at the free end.

(k,h)?, introduction of an inertia load at the tip decreases the natural frequencies.

Solution of the Dynamic Beam Problem
To each of the natural frequencies ®,, corresponds a specific mode shape function ¢,(x)
and a specific amplitude function or normal coordinate q,(r). A single solution to the
deflection problem may be written
w1 = ¢,(x) (1) .
The single solution w,(x,f) will not usually satisfy the initial conditions for
position, w(x,0), and velocity, w(x,0). Since Eq. (2.18) is linear and homogeneous, the

principle of superposition holds that the sum of infinitely many solutions w, is a solution
of (2.18). That is,

woo) = 3 6,000,00. (2.30)

nw}

Eq. (2.30) may be interpreted as a consequence of the eigenvalue problem defined
by Eq. (2.22). As previously explained, the set of functions {§,(x), n =1,2,...,0} is the set
of eigenfunctions of Eq. (2.22). The eigenfunctions of a continur=-.~  ;tem are orthogonal
and can be normalized to produce an orthonormal set of functions. Such an orthonormal
set of functions can be used to uniquely express any arbitrary function fix). At any

instant of time t=f, the function w(x,p) can therefore be uniquely expressed as a linear
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combination
wiB) = a,0,00) +a,0,(x) +... + a,0,(x) (2.31)
where a, is constant and N tends to infinity. As w(x,f) varies with time, it can be
expressed in the form of Eq. (2.31) by choosing the values {a,} to be time varying, that
is
wx.f) = q,()6,(x) + g, 9, (x) +... +qy(1) 0y (x)

where N tends to infinity.

Eigenfunction Determination
To determine ¢,(x), begin with Eq. (2.27)

w(x,f) = (Ccoshkx + Dsinhkx + Ecoskx + Fsinkx) g(f) (2.27)
and the boundary conditions
1) w0, =0
2) w0.) _
ox
2,
3) *w(h,t) =0
ox?

Pwhy) _ M, Fw(h)
ox’ El o

4)

Substituting the boundary conditions into Eq. (2.27) yields the following

expression for ¢(x):

0x) = -D | sinkx ~sinhkx - (SIKA*SINKR) (o ctx—coshikn) |, (232)
(coskh +coshkh)

The individual mode functions ¢,(x) are found by substituting the values &,

determined from the transcendental frequency equation, Eq. (2.28) and by substituting the

coefficients d, for -D:

(sink,h +sinhk A)
(cosk,h +coshk h)

o) =d, [sinknx -sinhk x - (cosk x -coshknx)} (2.33)
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&
Finally, the ¢,(x) are normalized by choosing d, to satisfy fq):(x)dx =1. Figure

. . . o . . . 3
2.7 shows some typical mode shape functions for a cantilever beam with an inertia tip
load.

Mode 1

Mode 3

Moda 2

Mode 4

-1.8

N
.

\

4.3

\
-
\

\
\

q

Figure 2.7 The first four mode shape functions for a cantilever beam with an inertia load at the

free end.
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As described in Thomson (1988), the normal coordinate g,(f) may be found from
Lagrange’s equation by first determining the kinetic and potential energies. Lagrange’s

equation is written as

d{oK |_odK _dU _ H (2.34)
dt| 9q, dg, dgq, "
The kinetic energy is
K = _;_ Y M g 2.35)
n=1
where the generalized mass M, is
M, = [ 0ovdx+ M,030) . (2.36)
The potential energy is
U= %i K g 237)
n=l

where K, is the generalized stiffness given by

K, = ["ENo," w¥dx. (2.38)

To account for the forcing function p(x,r) the generalized force is defined as

H, = ['pc00,ds. 239)
After substituting into Lagrange’s equation, the differential equation for ¢, is

written as

h
M4, +Kg,= fp,(x,z) 0,(x)dx. (2.40)
0

Dividing both sides of Eq. (2.40) by M, yields
. 2, _ 1
g, +0lq, = W _I; p,(x,0) ¢, (x)dx . (2.41)
where w,’=K,/M,. For the case where p(x,?) is separable in the form

P
Py0d) = —p, 08 (2.42)
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Eq. (2.41) may be rewritten as

P
j, + ©2q, = =T, g 2.43
q, h dn 72 . 8D (2.43)
where
1 (»
r,= -,;L P(x) §,(x)dx (2.44)

is the mode participation factor for mode n. The solution of Eq. (2.43) is

q,( =q,0)cosw,t + _(:an(O) sinw ¢
P :
+ [.1‘_4.9(.”_"2_};\"‘[: g(€)sinw_ (¢t -E)dE .

2.3.3 The Assumed Modes Method

Equation (2.30) states that an exact solution to the Euler-Bernoulli PDE requires an

(2.45)

infinite number of modes. The assumed modes method approximates the exact solution
by using a finite number of modes,

N
wxh) =Y ¥,0q,0

=i
where the y,(x) are any functions that satisfy the boundary conditions. Choosing a finite,
i.e. N, number of modes has the effect of approximating the continuous system by means
of an N degrees of freedom discrete system. If the functions y,(x) are selected to be a set
of polynomials in x, as is frequently the case, the resulting frequencies of vibration :re
only approximations to the actual natural frequencies of the system. If the functions y,(x)
are chosen to equal the eigenfunctions ¢,(x), the frequencies of vibration equal the natural
frequencies of the system. The deflection of the cantilever beam can therefore be
approximated by
N
wix) =Y 0,004,0).

23




Mode Selection

It is important to remember that some of the idealizations used to derive the Euler-
Bemoulli equation include: (i) perfectly elastic material, (ii) uniform cross-section and
density, (iii) small deflections, and (iv) negligible rotary inertia and shear deformation.
Furthermore, the concept of infinitely many modes is inherently false since it implies
infinitely large natural frequencies, and that the particles in the structure move faster than
the speed of light. In view of this argument, one may interpret Eq. (2.30) as implying that
the actual beam consists of a very large, but finite, number of modes. This assertion begs
the question, "How many modes are required?". Hughes (1987) attempts to answer this
question by deriving three model error indices based on a set of "modal identities". For
example, the first error index, €,, is based on the modal identity

2": P =yh (2.46)

nw]

where P,, the modal coefficient of momentum about x=0, is

h
P, = yfq)ndx .
0
Equation (2.46) leads to the relation
0=1-4Y v« (247)
n=]

where v, =ym,2,h */El and x, =(sinhv, -sinv,)/(coshv_+cosv,). If only the first N modes
are retained, Eq. (2.47) has a non-zero value. Defining this value to be €,(N), Eq. (2.47)
becomes

N
W) =1-4Y vl (2.48)

n=l

Index €, is therefore a measure of the error related to the modeling of P. Error
index €,(N) corresponds to the error related to H, the modal coefficient of angular
momentum about x=0. €,(V) is a measure of the error involving both H and natural
frequency ,. All three indices equal unity for N equal to zero, and a'l three tend to zero

as N tends to infinity. Plots of the indices show that they decrease rapidly for increasing
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N. For N=4, for example, g,=0.10, €,=0.0065, and &,<0.00001
Although these indices relate to P, H and w,, it is not clear how they relate to the
actual deflection, w(x,?). In spite of this deficiency, this approach is meaningful since it

does quantify the mode selection process.

2.3.4 Damping

Damping is present in most physical systems and the cantilever beam is no exception.
Both structural and Coulomb damping are present. To have a tractable mathematical
model, the net damping effect is modeled by viscous damping. All three types are now

examined.

Viscous Damping
The viscous damping force for the n’th mode is proportional to §,, the derivative of the
normal coordinate, and is written

F =cq, (2.49)
where c, is the viscous damping coefficient. The equation of motion for vibration of the
n’th mode has been derived in Section 2.3.2 as

Mg,+Kgq,=H,

where H, is the n’th generalized force. For the undamped system, H, is a function of

forcing function b,(x,t). For the damped case, however, H, also consists of the

(nonconservative) damping force F,:

h
H, = [p(xo@dx -F, . 2.50)

The damped equation for free vibration of the n’th mode is written by setting
p{x,0)=0 in Eq. (2.50), yielding
Mg +cq, +Kgq,=0. (2.51)
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The general solution of Eq. (2.51) is

1

g =Ale(-§ 0(;’-1)’)0»_: +A2e(-§ —(C’-l)’l)w_l (2.52)

where { is the damping ratio and A, and A, are constants determined from the initial

conditions. For underdamped systems £ < 1 and the solution, Eq. (2.52), becomes

g,(n =0 cos( 1-Cat- Q) (2.53)

where O, and 2 are constants determined from the initial conditions. For initial conditions

qn(O) =¢, and t‘]n(O) =4,

-

2 qﬂ * Cwnqo

0,= |49, +
1-Co,
Q =tant [ 2005 I-CZ\I
4y +C(ano)

Equation (2.53) describes a sinusoid of frequency o)n\/l -{* and an amplitude that

decays ccording to the factor Q e ™.

Energy Loss
The expression for energy loss due to viscous damping in one cycle of vibration is found

by integrating the viscous damping force with respect to the normal coordinate, that is,

AW = §c.g,dg, . (2.54)
Noting that dq, =4, dt, Eq. (2.54) is rewritten
mw,)
AW = f c,qldt (2.55)

0

where 0, = y1-C? is the frequency of damped vibration.
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Substituting Eq. (2.53) into Eq. (2.55) gives
AW =n0c O} . (2.56)
A graphical interpretation of the energy dissipated per cycle by the damping force
can be made by considering the case of steady-state forced vibration in which generalized
force H, is a harmonic function with frequency .. The energy dissipated by the damping

force is supplied by the excitation. Assume that g, exhibits a simple harmonic response

of the form
q,=0,cos(w, 1-Q). 2.57)

The expression for the viscous damping force is found by substituting Eq. (2.57) into Eq.
(2.49)

F,=cg,=-c,00, sin(0-9Q). (2.58)
Egs. (2.57) and (2.58) can be combined to yield

Fo 1.9 ). (2.59)
C"(l) Qn Qn

When plotted, the relationship Fr

between damping force and displacement
yields a curve referred to as a hysteresis

loop. The hysteresis loop resulting from

Eq. (2.59) is an ellipse in the g,-F, plane o

as shown in Figure 2.8. The energy lost in

one cycle of vibration is given by the area

enclosed by the ellipse. Figure 2.8 The energy dissipated by viscous

damping equals the area enclosed by the ellipse.

Structural Damping

Solid materials, especially metals, exhibit a type of damping caused by internal friction
within the material called structural or hysteretic damping. Experiments have shown that
for structural damping, the energy dissipated per cycle of vibration is approximately

proportional to the square of the amplitude and is independent of frequency:
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AW = anQ: (2.60)

where o, is a constant.

A typical structural damping
hysteresis curve depicting energy loss for
steady state forced vibration is shown in

Figure 2.9. It is difficult to incorporate

Fn
/ An
structural damping directly into the Q/

equations of motion because, unlike

viscous damping, it is a nonlinear function

of displacement and is defined in terms of Figure 2.9 The energy dissipated by structural
damping equals the area enclosed by the ellipse.

energy loss.

Coulomb Damping

Coulomb damping occurs when sliding contact exists between components of a system.
As explained in Section 1.2, the flexible manipulator is a composite structure that
incorporates two thin, parallel spring steel strips that slide freely within slots cut into
aluminum blocks. This sliding action is a source of Coulomb damping. The magnitude
of the damping force F, is equal to the product of the coefficient of friction, u, and the

normal force beiween the contact surfaces, f
F,=yf.

Coulomb damping is accounted for in the differential equation of motion by noting
that it opposes the direction of motion, that is, its sign is opposite that of ¢, . For the case
of free vibration, the equations of motion are written

Mg +uf+Kg,=0 for §,>0
Mg -uf+Kg,=0 for 4,<0.
Coulomb damping is nonlinear due to the abrupt transition of F, as the sign of ¢,

changes.
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For the case of free vibration, Coulomb damping is characterized by a linearly

decaying harmonic function of time, as shown in Figure 2.10.

The frequency of oscillation

is unaffected by the damping.
Contrast this behaviour with that of
viscous damping where the amplitude

of the oscillation decays

,AMPLITUDE

exponentially with time and the

frequency of oscillation is reduced by

the factor y1-8% .

25 3 35 4

2
TIME

Figure 2.10 Free vibration with Coulomb damping.

Equations of Motion
The final equations of motion for the cantilever beam using the assumed modes method

and approximating structural and Coulomb damping by viscous damping are written

h
Mg, +cg, +K\q, =fp(x,t)¢,(x)dx
0

h
M, + i, +K,a, = [pCeno,dx
0

h
M, + ey +Kgy = [poowdx

0

(2.61)

h
Mgy +cngy+Kyay = fl’(x")%(x)dx
0
where M), is given by Eq. (2.36) and K, is given by Eq. (2.38).

The analysis of the cantilever beam is now complete. The next phase involves
extending this theory to the flexible-manipulator problem.
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2.4 The Flexible Manipulator Model

The preceding theory describing the dynamic behaviour of the cantilever beam is now
extended to the flexible-link manipulator. In this configuration the beam is no longer fixed
but is free to rotate in response to the application of a torque exerted at the hub. The
strategy used to write the equations of motion of the system is the same as for the
cantilever beam; once the kinetic and potential energies of the system are determined,
Lagrange’s equations yield the equations of motion. These nonlinear equations will then

be linearized to facilitate the development of a control law in subsequent chapters.

2.4.1 Lagrange’s Equations

Yo

Y
Flexible Arm

<

T

Figure 2.11. Schematic of the flexible link.

Figure 2.11 defines the position of any point along the link y(x,)=x8()+w(x,1). As
for the cantilever beam, the effects of rotary inertia and shear deformation are ignored by
assuming that the cross-sectional area of the link is small in comparison with its length
h. Euler-Bernoulli beam theory and the assumed modes method can be used to express
the deflection of a point located at a distance x along the arm as

N
wix) = Y 0, g1 (2.62)

where g,() is the generalized coordinate of the i’th mode. As defined in Wang and

Vidyasagar (1989), ¢,(x) is the normalized, clamped-free eigenfunction of the i’th mode.
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Energy Relations

In the case of the cantilever beam, the coordinate frame used to express the deflection w
at a position x along the arm is itself an inertial or base frame. For the flexible
manipulator, however, w and x are expressed with respect to the rotating X-Y frame. As
explained in Wang and Vidyasagar (1989), the vector P(x) defines the deflection and

position of a point on the arm with respect to the inertial X,-Y, frame as follows,

xcos0 - wsin®
P(x) =

xsin® + wcosO

and
P‘P = x202 + w2 + 2y'vxe + W 262 . (263)
The kinetic energy K is written as
1 1 I
- 2 Y] < . 6
K =216 !P Pdm + =M PGPk (2.64)
where
P'(P(h) = h20" +w2(h) + 2w(h) kO +wi(h) . (2.65)
Since dm = ydx for the uniform beam, the integral term in Eq. (2.64) is rewritten
as

h h
_l.fl"'f’dm = lff"l"dx . (2.66)
24 24
Substituting Eq. (2.63) into Eq. (2.66) yields

h h
Y[PPax = L [(0x7 +w2+ioad + wit)ax. 2.67)
2 24

N N
Since w(x.t) = ¥ 9,(x)g,(f) and w(x,t) = Y ¢,(0)¢,(0), the three integrals

n=l n=]
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involving these terms in Eq. (2.67) are solved as follows:
h Y kv N NN h
) fwzdx - f(2¢nqn)2dx - f}: T00,q.4,d= TEq4, f(p,q)jdx.
V] 0 0 0

ne} i=] j=l =] j=]

The ¢,’s are orthonormal, i.e.,

hf . 0, i#f
o¢‘¢j ) 1, i=sf
and
k N N
fwzdx - Eqizfq):zdx - Zq‘?. (268)
° izl ° i=]
h h h N N h
(ii) wx@dx = 0 |wxdx = 6 [xXg ¢.dx = 6Xg, [xodx. (269
Jibac = 8fixds = [x2s,0.x = 623,
h h N h NN
(i) fw’dx - f(Eq;,.q,)de = (S04 g4
° ) =] oi-li-l (270)
NN h N,
= 2Zq,q,f¢i¢jdr =Xqg/ .
=] j=1 0 1=}

Making the appropriate substitutions, Eq. (2.64) is rewritten as

PRI LRI U d
K = 3 16"+ }6_92 + %20;2 +'ye§lq‘. ofxq;‘dx + -;-GZEq,-z +

isl i}

2.71)

M,, 242 N s N2 y s 2 N 2
- h" +(Zo g, +2h6§¢,.(h>q.. +0°(Xomg,)? |.
i i=]

in}
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The potential energy U is

-_fEI[ ]dx— E’f{: (Z‘TT ”;IJ'XN:ZNM,% .4 ¢

0}" k=]
q;
21-1 k=] "qk dAz dx2

k

d?
Since f ¢"dx = ( for jzk,

E 2]’ d2¢ E J‘(q)// Y 2.72)
1=l 0 ltl
2
where ¢,” = .d_?_‘
dr?

h
It can be shown that (q> " Ydx = Kt -._'1. Equation (2.72) can therefore be
o
0

rewritten as

U= 72 RO (273)

The Lagrangian, L=K-U, is written as

= ¢ +’Yh3 y Y + +

L= "2-(1;. T"'YEQ; ] 2q 7654ﬁ¢.dx
M . N N , X (2.74)
Zelh6 s (o + 20Z00g, 6 (Soay -

l)N: g o’

, -
=]
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Lagrange’s equations are

d|dL dL
—_—|— |~ =H
dt[aeJ a0 o

d[BLJ__a_E =H. j=l,2,...,N .

% |y

(2.75)

The generalized force H, consists of the applied hub torque t(s) and the hub
frictional and damping torque Fy , and is written as H, = () - F,; Fy is the sum of the
viscous damping torque, b® and the Coulomb friction torque, €.t sgn(9):

,sgn(G). (b and c.,,, are the coefficients of viscous damping and Coulomb

cou

F,=b0+c
friction, respectively). The generalized forces H; consist simply of viscous damping forces
F,thatis, H, = -F = -,

We write the equations of motion by substituting Eq. (2.74) into Eq. (2.75):

\

N
B+ (X mg) || +

3 N
o1, + Y o yTgt e M
3 P 1=] )

=)

" NN ) (2.76a)
0 21294, + M, X X 0,0,@,9,, +ch'1,,,)) +
N ]
b6 +c_  sen(0) + Ec‘j,[yftbixdx +Mphq),(h)] = ()
=] 0
h N
é[v 0, xdx + M, ¢,.(h>)+ V4, + M, 0,0, + ¢4, -
° (2.76b)

h N
[é’v-El JI4 )zdx]q,- - ME4mWIetkg; = 0.
0 -
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Equation (2.76) may be written in the matrix form

0
M(q)[e] +C<q,q)(°)+x<e)[°]+ [Cm'sg“( )] . [‘“’] 2.77)
q ' q q 0 0

with the net tip position output
e
y =[h &0)]
q

D) = [¢,(h) o) ... ¢W)] .

where

Matrix M(g) may be partitioned as

T
Mg =| } 2.78)
m, M
where
PR N
my = 4, + L ey3 g} M Lh7+(F 0,004)?] @.79)
=] in}

A h k
m," =['Yf¢1"dx +M ho,(h) yfq)zxd_x +M_ho (k) ... 'yfq)"xdx +M_hoy(h) (2.80)
] o 0

and

— -

Y+M01(R) Mo (o, (h) . Mo, (hdy(h)
Mo R,k Y+MR) .. Mo (k) 2.81)

| MO0, (h) M om0, .. Y+MaR) |

The term C(q,§) may be partitioned as

c, 0
. (2.82)
Clq.9) [0 Cz]
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where
N N N
C| = b *272 qgi +Mp2 E ¢k¢m(qkqm+q"q'")
=] k=]l mwml
and
¢ 0 .. 0
C, = G 0
0 . ¢

The term K(8) may be partitioned and rewritten as follows:

0|0 000
KO =10 x,[%0 &,

where
® 0 0
0 o .. 0
K =y
0 0 . w
and

T+M 01 M o(Wo,() .. M. (M) (h)

Mo (o) Y+Mx(h) .. Mo, (h)oy(R)

| MO0 MoWo,(h) .. Y+Mu(h) |
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Model Nonlinearities

Equation (2.77) is the set of nonlinear equations that models the rotating flexible
manipulator. In addition to Coulomb friction at the hub, the following nonlinearities

occur:

e Inertia matrix M (q):
m, contains terms involving products of the type ¢ and q.q; where i#j. These

terms are variations of the rigid body inertia of the manipulator introduced by

deflection of the arm.

« Coriolis, and viscous damping matrix C(q,q):
When multiplied by 6, the terms in C, involving ¢,¢, and q,g,, where k=1,2,...N
and m=1,2,...,N are Coriolis forces.

» Marrix K,:

Forming the product BZKz ¢ yields the vector of centrifugal forces.

All nonlinear terms noticeably influence the behaviour of the manipulator only
when they become significant in relation to their neighbouring constant terms. In m,, for
example, the nonlinearities are significant only when they approach the value of
LAYR' I3+ M.
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2.4.2 Parameter Evaluation
With the structure of the model having been established in the previous section, all that
remains is the evaluation of c,,,; and the parameters that appear in the matrices M, C, and

K. The parameters are grouped into 2 categories: hub parameters and arm parameters.

Hub Parameters
Inertia J,. /, is the sum of the encoder, motor, coupling and speed reducer inertias and is

referred to the output of the speed reducer. Using the manufacturers’ data, 7,=0.30 kg-m>,

Viscous damping coefficient b and coefficient of Coulomb friction ¢ .. Since the

component manufacturers do not supply friction data, these parameters must be
determined experimentally. A constant current /, is delivered to the motor armature. The
motor then develops a constant torque T,=K/,, where the torque constant K=0.1175
Nm/A. The speed reducer, in turn, transmits a constant torque T=GT,, to the hub, where
the gear ratio G=50. Under the application of constant torque T, the hub will rotate and
accelerate to a constant velocity. At this point the inertial torque is zero and the only

torques that oppose T are due to viscous damping and Coulomb friction. A set of known

armature currents /, are applied and the resulting steady state hub velocities @ are plotted.

The speed-torque curve shown in Figure 2.12 is fitted to the experimental data points.

2} : ]
Eof. A ] s wdieceend b e ..
2t : i

68 .06 04 -02 0 02 04 06 08
Radians/Second

Figure 2.12 Hub viscous damping and friction torque vs. hub velocity.
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Coulomb friction is the frictional force in the system when Bl is just slightly
greater than zero. The Coulomb friction coefficients for both positive and negative hub
velocities can therefore be found from Figure 2.12. Note the friction values of +5.58 Nm
and -5.64 Nm that correspond to zero velocity. These values are due to stiction and
represent the torque required to begin rotation. The effects of stiction are neglected in

order to simplify the model. For <0 c,,,=4.77 Nm and for >0 c_,~4.74 Nm. The

coul

viscous damping coefficient b is simply the slope of the speed-torque curve. For 6<0

b = 1.29 Nm/R-s” and for 6>0 b = 1.45 Nm/R-s"'. The values for b have been
obtained by fitting a first order polynomial to experimental data and are necessarily
approximations. Furthermore, the Coulomb friction coefficient is also dependent on the
hub position. The experimental values given are averaged over several ranges of hub

position.

Arm Parameters
Length h. The arm length is 1.2 m.

Uniform mass per unit length ¥. <y is found by dividing the arm’s mass M by the length
h. M is the sum of the masses of the central annular tube, the two parallel spring steel
strips, the three aluminum bridges and the infrared emitting diode at the tip, (M = 1.45
kg). Y = 1.45 kg/1.2 m = 1.208 kg/m. Since the lumped masses of the bridges and the

diode are included in M, <y only approximates a uniform density.

Stiffness factor El. EI is measured by applying a known force to the tip with a spring

scale and measuring the resulting deflection. EJ = 1.94 Nm?.

Inertia tip load M,. To simplify the model, the 0.030 kg mass of the infrared emitting
diode is neglected: M,=0.

Natural frequencies of vibration w,. The hub is clamped and an impulsive force is applied

to the arm. Analysis of the frequency spectrum of the ensuing tip vibrations reveals the
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following values for the first four natural frequencies: w, = 3.0 rad/s, , = 19 rad/s, w;=

52 rad/s and w, = 102 rad/s.

Constants k.. The k,’s are found by substituting experimentally determined values for #,
El, w, and y into Eq. (2.29b) and solving for k, yielding k, = 1.5387, k, = 3.8734, k;=
6.4062 and &, = 8.9721.

Eigenfunctions ¢.(x). The ¢,(x)’s are calculated by substituting h and k, into Eq. (2.33)
and normalizing to determine the coefficients d,: d, = 0.6861, d, = 0.9431, d, = 0.9375
and d, = 0.9353. The first four eigenfunctions are plotted in Figure 2.13.

] 1.: —_
s ’ A D74 NN
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g / = X
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Figure 2.13 Eigenfunctions corresponding to the first four modes.

Damping coefficients ¢,. To determine c,, the hub is clamped. The arm is then given an
initial displacement that corresponds to eigenfunction ¢,(x), (so as to excite only the
fundamental frequency w,), and is then released. The envelope of the resulting oscillations

yields ¢;; ¢, ¢; and ¢, are difficult to determine using this procedure because of the
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problems in achieving the more intricate initial displacements. As described in Hastings
and Book (1987), though, the first two modes exert a greater influence on the accuracy
of the model than do the higher modes. It may be argued, then, that precise estimation
of the higher modes is not critical for an accurate model; ¢,, ¢, and c, are set to values
that ensure that the response of the model agrees with that of the test-bed when botl. are

subjected to a given torque input t(¢), ie., ¢, = 04, ¢, =4.0, ¢; =20 and ¢, = 5.0.

2.4.3 Model Validation
The validity of the model represented by Eq. (2.77) is tested by simulating the model’s

response to two different torque signals. The same torques are applied to the actual test-
bed. If the model is accurate, its responses should agree with those of the test-bed. (The
simulations were conducted on a SUN 4/370 using MATLAB).

Torque 1,(t) and its responses are shown in Figures 2.14 through 2.17, while
torque T,(¢) and its responses appear in Figures 2.18 through 2.21. Each response figure
includes the simulation plot (solid line) and three experimental plots. The Coulomb

friction coefficient values used for the simulations differ from the values of Section 2.4.2.

Specifically, for 8<0, c,,, has been reduced by 0.5% to 4.75 Nm and for 6>0 c,,, has

oul '
been increased by 5% to 4.98 Nm. These amendments are required because the original
values are averaged over a range of hub angles and therefore yield imprecise responses
when compared with the test-bed responses, particularly for the hub position.

A single set of Coulomb friction coefficients could not be found that yield good
agreement between the model and the test-bed for both T,(r) and t,(f). The amended
values are therefore compromises that attempt to reduce this disparity.

The essence of the problem is that the use of a single set of Coulomb friction
coefficients leads to an inaccurate model because of the variation of actual Coulomb
friction with hub position. Neglecting stiction also contributes to inaccuracy. This
dependence on hub position is demonstrated by differences among the three experimental
hub position plots for each of the applied torques. These differences are caused by very
slight variations of the initial hub positions. The inaccuracy is particularly significant
when the value of the applied torque approaches that of the Coulomb friction. The

erroneous hub position predicted by the model results in a substantial error at the output.
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Figure 2.14 Applied torque t,(9). Figure 2.15 Simulated (solid) and experimental
hub angles 6(s).
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Figure 2.18 Applied torque 1,(1). Figure 2.19 Simulated (solid) and experimental
hub angles 6(s).
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Figure 2.20 Simulated (solid) and experimental Figure 2.21 Simulated (solid) and experimental
tip deflection w(h,1). net tip position A0() + w(h,b.

One method of compensating for model errors that cause hub position inaccuracies
is to redefine the model such that the input is no longer hub rorque, but rather hub
position. This redefinition begs the question: exactly how are these arbitrary hub positions
achieved? The solution is to design a control loop that positions the hub as required.
Figures 2.22 and 2.23 illustrate the concept. If the position controller of Figure 2.22 is
perfect, in that the commanded and actual hub positions are identical, then the schematic
of Figure 2.23 results in which the control loop is omitted. This strategy forms the basis

for a modified version of the flexible-link model, described in the next section.

] ° S | reviseD | Y _
%o CONTROLLER [ ORIGINAL R MODEL

Figure 2.22 Schematic illustrating concept of Figure 2.23 Revised model with perfect hub
revised model. position control.
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2.4.4 Revised Model
Assuming that the hub position control action is ideal, the revised nonlinear model of the
flexible manipulator will now be derived. Eq. (2.77) is expanded as follows:

m, M, |\§ 0 G4 0K |lag (2.88)

|0 0 lle] |c.,sen®) ()
- e + = .
0K, iq 0 0
Equation (2.88) is rewritten as:
m8+mT§+CO+c_,sgn(®) = 1() (2.89a)
mzé +M,§ +C2q' +Klq -Oszq =0 (2.89b)
with the net tip position output
6

y=[h ®h)] [q] : (2.8%)

It is important to understand the physical significance of Eq. (2.89) before
proceeding with the derivation. Equation (2.89a) describes the various torques acting upon
the hub. In the context of the implementation of an ideal position control loop, T(?) is the
control torque generated by an appropriate controller, and 0(¢) is the actual hub position
(which equals the desired hub position trajectory, 8,(#)). This idealized situation is
facilitated by the use of a speed reducer that minimizes the coupling effect of the term
mz' ¢ in Eq. (2.89a). Equation (2.89b) models the various forces that act upon the flexible
arm. Since (1) is now considered as a system input, the terms 6(¢) and () are
obviously the first and second derivatives of the input. With ideal hub position control,
the equations of motion are written by rearranging Eq. (2.89b) such that the variable ¢(r)
and its derivatives appear on the left, and the derivatives of the input 6(¢) appear on the
right:

M,j+C,g+K,q = 6’K,g-mb . (2.90)

To facilitate simulation of the response of Eq. (2.90) to a given trajectory 6,(¢),

it is advantageous to transform Eq. (2.90) to a form in which 0(#), and not its derivatives,
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explicitly appears. To this end, choose as state variables:

zZ, =¢
B (2.91)
z, = 3 +M; m,9
Substituting Eq. (2.91) into Eq. (2.90) yields
. -1
2, =2,-M; m,0 (2.92)

= My (-K,z,-Cyz, +C2M3"m20+Kzz‘92)
The net tip position is written
y = he + [¢,(h) ¢2(h) oo ¢N(h)]z] J (2'93)

Equations (2.92) and (2.93) constitute the state-space form of the revised nonlinear

model. Note the appearance of the first den vative of input 6(¢), rather than the input itself.
This inconsistency occurs because the nonlinear term 2(t) makes it difficult to choose

a set of state variables that would allow the irput, and not its derivative, to explicitly
appear. In spite of this alteration, simulation of the response of Eq’s. (2.92) and (2.93)
to a specific input trajectory 6(s) is readily achieved using MATLAB’s SIMULINK
block concept. (A differentiation block inserted prior to the block representing the above

system transforms 6(f) to 6(r) as required by Eq. (2.92)).

2.4.5 Local Linearization of the Revised Equations of Motion

Local linearization may be used to derive a linear model when nonlinearities are
not severe. This linear model is an approximation of the nonlinear system in the
neighbourhood of an operating point. Since the accuracy of the approximation deteriorates
as the range of operation increases, the linearization is therefore local to its operating
point.

Local linearization of the equations of motion described by Eq. (2.90) is performed
to facilitate the controller design task, as will be explained in Chapter 3. The linearization
is achieved using a Taylor series expansion of each term (see Appendix A for details).

Only the linear parts in the expansion are kept. Specifying the operating point §,=8,=0

and g,=4,=¢,=0 simplifies the calculations and essentially approximates the nonlinear
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system as a manipulator that does not deflect, (a rigid manipulator), and whose hub
velocity and hub acceleration are zero.

The linearized equations of motion are:

M,5§ +C,8G +K g = -m,80 . (2.94)

where 8¢, 8¢, 8¢ and 88 denote small perturbations in ¢, ¢, § and 8, respectively, about
the operating point. The relationship between a variable, its operating point and its
perturbed value is demonstrated for the case of 8(z) as follows.
Let
6 = 8,+88(» . (2.95)
Premultiplying both sides of Eq. (2.94) by M,” yields
8 +M;'C,8q +M;'K ,8q = -M;'m,86 . (2.96)
Substituting the state variables v, =8¢ +M,"m289 and v, =V, +M3"C26q into Eq. (2.96)
yields the perturbed state-space form:

v -M;'c, 1,\|v,| (M;'CM;'m,

. + 00
) | -MS'K 0, \V2 ] (MR M,

(2.97)
4!
(D) 0,1 |+(h-DU)M;'m,)56 .

¢}

dy

Note the appearance of 80 in Eq. (2.97). This term occurs as part of the
linearization process and does not appear in the original, nonlinear equation of motion
(Eq. (2.90)). Requiring 66 to be small (as for the previous perturbed variables) constrains

the system to operate about a single hub position. A controller based upon this restrictive

scenario will obviously have limited usefulness; increasing the range of permissible values
of 80, however, will degrade the validity of the linearization.

The variables 80 and 88 appear during the linearization procedure: 86 does not
occur. It is therefore postulated that the linearization will remain accurate for all values
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of 80 that result in acceptably small ranges of operation for 80 and 88. To sum up. it

is theorized that the linearized model remains valid for large ranges of hub angle as long

as the hub velocity and hub acceleration are not excessive.

Analysis of the Linearized Equations of Motion
To facilitate the use of frequency response methods of analysis, the linearized perturbed
state-space equations of motion in Eq. (2.97) are transformed to the transfer function
representation

Gs) =AY _ P (2.98)

AB(s)  q(s)

where p(s) and ¢(s) are polynomial functions of the Laplace variable s, and AY(s) and
AO(s) are the Laplace tranforms of 8y(r) and 80(r), respectively. The zeros and poles of
G(s) are simply the roots of p(s) and g¢(s), respectively. For the parameter values
determined in Section 2.4.2,

p(s) = 0.22850s%+1.2385s 7 +1.7828x10% © +3.7317x10% 5 4 2.3179%10%s *
~7.9107x10% * - 1.2344x10% 2 +5.1552%10% +1.0980x10"" 2.99
g(s) = 5%+9.434557 +1.3507x 10" ® +7.8467x10% 5 +3.3112x10"s *

+1.1497x10% * +1.0497x10"%s 2 +4.2960%x10°s +9.1498x10" .

The zeros and poles of G(s) are shown in Table 2.2 and are plotted in Figure 2.24.

50 » - ¥ 1
i o e e 3
£ : ' : "
+102.0i Lo D C L
400F - < ¢ I A N P
P T 0 T TR
Table 2.2 Poles and zeros of G (s). Figure 2.24 Pole-zero map of G ().
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The Bode plot of G (jw) appears in Figure 2.25. The peaks in the magnitude ploi
correspond to the poles, while the valleys correspond to the zeros. Note the sharpness of
the valleys for frequencies above 40 rad/s which is caused by the proximity of the

relevant zeros to the imaginary axis.
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Figure 2.25 (a) Magnitude and (b) phase plots of G,(jw).

Minimum Phase and Nonminimum Phase Systems
Transfer functions without zeros in the right-half s-plane are termed minimum phase

transfer functions. Transfer functions possessing zeros in the right-half s-plane are called
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nonminimum phase transfer functions. The presence of right-half plane zeros identifies
G/(s) as a nonminimum phase transfer function. For a minimum phase transfer function
with numerator and denominator polynomials of degrees m and n, respectively, the phase
angle at infinite frequency equals -90°(n-m). The phase angle at infinite frequency differs
from this value for a nonminimum phase system. For G(s), n=m=8. For G(s) to be
minimum phase, its phase angle at infinite frequency would have to equal -90°(n-m)=0".
This is clearly not the case as can be seen in Figure 2.25b: the range of phase angle is
not minimum and so the system is nonminimum phase.

Nonminimum phase is defined in the context of a system’s frequency response.
The excessive phase lag characteristic of nonminimum phase systems typically slows the
transient response.

The reason for the nonminimum phase behaviour of G(s) is that the flexible
manipulator is a non-colocated system; the location of the actuator (at the hub) is not the
same as that of the sensor (at the tip).

Zero Dynamics
The concepts of minimum phase and nonminimum phase linear systems are subsets of the
more general notion of zern dynamics that applies to nonlinear systems. Consider the

single input, single output nonlinear system with input u, output y and state vector 2

2 = flzu) (2.100)
y = g(z.u)

The zero dynamics are found by setting y = 0. This constraint, in turn, restricts u
and z. The dynamical system of Eq. (2.100) can be rewritten to describe the behaviour
of the states when the output is forced to be zero by input u. This behaviour is termed the
zero dynamics of the system. Depending on their initial values, the states may be unstable
even though the output remains zero. In this situation the system is "internally” unstable

and is said to have unstable zero dynamics.
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Validation of the Linearized Model

A key factor during the derivation of the lii-earized model of Eq. (2.97) is the assumption
that implementation of an ideal hub position control loop allows 6(t) and its derivatives
to be considered as inputs. As an input, 9(?) is not influenced by the "disturbance" effects
of the terms in Eq. (2.89a). Ideally, then, the dynamics of Eq. (2.89a) do not affect Eq.
(2.89b). The behaviour of the flexible manipulator is therefore described by a nonlinear
reduced-order model that involves only Eq. (2.89b). To more formally justify this line of
reasoning, we begin by modeling the Coulomb friction by using a modified sigmoid

function instead of the function ¢ __sgn(). That is,

coul

Coulomb friction = c_, 2 ~-14. (2.101)
1+

Unlike the signum function it replaces, the slope in the vicinity of @ =0 is finite.

This characteristic facilitates the approximation of Coulomb friction using a Taylor series
expansion. The modified sigmoid function is plotted for various values of k in Figure
2.26.

Nonpalized Coulomb Friction {Nm)

0
Hub Velocity (radians/second)

Figure 2.26 Modified sigmoid function used to model Coulomb friction.
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Equation (2.89) is rewritten, substituting Eq. (2.101) for the Coulomb friction term.

mlé +m21"1' + CIO +C“""[1 +2e-k9 -]) = 7(t) (2.102a)
m,8+M,4§+C,q+K,q -6'K,g =0 . (2.102b)

Consider the Taylor series expansion of Eq. (2.102) about the operating point
q,=4,=4,=0, 0, and 8, (see Appendix B). Unlike the previous linearization in Section
2.4.5, the nominal hub velocity and acceleration are not set to 0. The nominal system that
corresponds to this particular choice of operating point is an arm that rotates with hub

velocity 6, and acceleration 8, but undergoes no deflection, hence, a rigid arm,

As a result of its Taylor series expansion, Eq. (2.102) can be partitioned into a
nominal equation of motion (Eq. (2.103)) and a set of linear perturbed equations of
motion (Eq. (2.104)).

bo,+c.,, 2_-q|= 1, (2.103)
1+e™
: 2%c, e
(g0 +m78G +b30 + ek 5 = &t (2.1040)
(1 +e oy
m® + M3 +C,5¢ +Kdq -6,Kdq = 0. (2.104b)
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Equations (2.103) and (2.104) can be used to develop a scheme for the control of
the hub angle position. Figure 2.27 illustrates the strategy.

Nominal Feedforward Element

2
beo +ccoul [1+€.0° '—1] =T

Nonlinear Plant

T | m,(@8+mhg+C, (2.4)0+C o0y senl@)=T | y

| Kp+Kd 3
PrRCat

e 2
mo +Mag+Cpq+K, q9— 6 Kpq=0

Linear Controller
Designed For Perturbed 9
Linearized Model

Figure 2.27 Control scheme based on the nominal and linearized perturbed equations of motion.

The control torque T applied to the plant is the sum of the nominal control torque
T, and the perturbed control torque 8t. The nominal control torque T, is computed by
specifying the desired trajectory for 6, in Eq. (2.103). In the absence of any perturbed
plant dynamics, T, would cause the actual hub angle, 6, to precisely track the nominal
trajectory 6,. To achieve good tracking control in the presence of the plant perturbations
(approximated by the linear model of Eq. (2.104)), a linear controller is implemented.
This controller, (shown as a proportional plus derivative control in Figure 2.27), acts on
the tracking error (-88) and generates a perturbed control torque &t that drives the
tracking error to zero in a prescribed fashion. This scheme will only succeed when the
range of operation of the nonlinear system is restricted to a region close to the operating
point, because of the linearized approximation of the perturbed plant dynamics.

The motivation for developing the control scheme of Figure 2.27 is that it will be

used to demonstrate the validity of Eq. (2.97). Specifically, if the coefficients in Eq.

(2.104a) satisfy certain criteria, (which are defined below), and for 90 =0, it will be
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shown that the equations describing the closed-loop system of Figure 2.27 simplify to Eq.
(2.94), the linear equation of motion upon which the state space representation of Eq.
(2.97) is based.

As described above, the PD controller has been designed for the linearized
perturbed dynamics of the nonlinear plant, and drives the perturbed hub angle to zero.
The equations of motion for the perturbed closed-loop system will now be computed.

From inspection of Figure 2.27, torque &t is written
ot = -K 80 -K 36 . (2.105)
Substituting Eq. (2.105) into Eq. (2.104a) and rearranging terms yields the closed-loop

equations of motion

2%e o™ ,

ml(qn)56 +m2r8ﬁ +|b+K, +__CL“Z_’_ 0 +Kp59 =0 (2.1064)
(1 +e %)

m8 + M Sj +C5¢ +|K, -0 K,15¢ = 0. (2.106b)

Substituting 6, =0 into Eq. (2.103) yields t,=0. Equation (2.106) is rewritten as

m 88 +m; 04 + [b+K,+f,,]80+K,80 =0 (2.107a)

m, 58 + M85 +C.84 +KSqg = 0 (2.107b)

where f, ,=0.5kc_,, and the explicit dependence of m; on g, has been suppressed for
brevity.

The closed-loop system of Figure 2.27 is described by Eq. (2.107) for §, = 0. The
next phase is to demonstrate that the closed-loop system can be described by Eq. (2.94),
that is, to verify the progression from Eq. (2.107) to Eq. (2.94). This verification requires

justifying that &0 and its derivatives may be considered as inputs. This assumption
implies that the rigid body modes, (corresponding to 80 and 80), are not influenced by

the flexible modes, (corresponding to 8¢ and 8§). In other words, the rigid body mc les

and the flexible modes must t2 decoupled.
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Rigid Body Dynamics

The numerical values for the parameters m,, m,” and b of Eq. (2.107a) are
determined from the parameter values of Section 2.4.2. Gains K|, and K, were determined
experimentally by applying a reference hub angle input to the closed-loop system. The
gains were adjusted so that the hub angle output response was slightly overdamped. These
specific values of K, and K, therefore result in good tracking of the reference hub angle
trajectory and are able to decouple the rigid body modes from the flexible modes. Of the
two parameters required to compute f.,,;, C.,,, is found in Section 2.4.2. In accordance with
the experimental observations, the constant & was computed so that the eigenvalues
corresponding to the rigid body modes of the linearized closed-loop system of Eq. (2.107)

are slightly overdamped. The numerical values for these parameters are shown below.

=099  m,=[0.903 0.181 -0.016 0.097)"
1.37 f,,=3325 k=140 K,=25 K =3000

n s

b

To investigate the conditions for which the assumption of decoupling is justified,

we begin by substituting f =(b+K +f ) in Eq. (2.107a) to get

m 80 + m; 8§ +f,56 +K30 =0 . (2.108)

It is obvious from Eq. (2.108) that the system is decoupled if the magnitude of the term
mzr&i , (the inertia torque exerted on the hub by the flexible syste.r modes), is
sufficiently small with respect to the other terms. To quantify the situation, we introduce
the positive scaling factor e« 1 and rewrite the parameters m, f, and K, as functions of

€ as follows:

Tn‘l
mre b

ol

¥k - % (2.109)
84
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Substituting Eq. (2.109) into Eq. (2.108) yields

..m_'SG + mjog + 556 +-E_;59 =0. 2.110)
€ ) pr

Multiply both sides of Eq. (2.110) by &* to give
83W,89 + e“m,’&j + 780 + K80 = 0. Q.11D
If € is chosen so that m, f, and K are of t.e same order of magnitude, all terms of

order €* and higher in Eq. (2.111) are significantly smaller than the lower order terms.

Equation (2.111) is approximated by
em o0 + 780 + K30 = 0. (2.112)

Equation (2.112) is the scaled rigid body dynamics and can also be derived by

multiplying Eq. (2.108) by €* and subsequently discarding terms of order €* and higher.
What makes the particular format of Eq. (2.112) useful is that it quantifies the
approximation process by portraying the coefficients of the perturbed state variables as
products of a constant and a power of €. Since all the constants are of the same¢ order of
magnitude, the decision as to which terms to neglect is based cn €. Furthermore, the
accuracy of the approximation improves as the magnitude of € is decreased.

The Laplace transform of Eq. (2.112) is
e°m, (5 ?A0(s) - 586(0) - 86(0)] + €%F,[sAB(s) - 36(0)] + K AB(s) = 0 (2.113)
where AG(s) is the Laplace transform of 86(f). Solving for AO(s) gives

36(0) (e'm.s + £*F,) . 30(0)e>m,

357 ¢ 2 3 3T ¢ 2 2
emst+efs+K,  e€ms?+efs+K

AO(s) = (2.114)

The roots of the denominator polynomial of Eq. (2.114) are the eigenvalues of the system
of Eq. (2.112).

55




Choosing € =0.1351 and using the previously determined numerical values for m,,

f, and K, in Eq. (2.109) results in the following values for m,, f_ and K :
m; =0.1346 F = 10882 K; = (0.9994 . (2.115)

Note that f, and K, are both of order 1 magnitude while m, is of order €. This disparity
occurs because of the relatively small magnitude of m,. Although the accuracy of the
approximation is diminished, the analysis is continued because it will yield some useful
results.

Solving for the roots of the denominator of Eq. (2.114) using € =0.1351 and Eq.
(2.115) yields the poles of the rigid body dynamics of the decoupled system that
approximates Eq. (2.107)

s, = -29.9146.0i .

Flexible Dynamics

Assuming that the rigid body modes and the flexible modes are decoupled, the
flexible dynamics do not affect the rigid body dynamics. The term mzﬁé in Eq. (2.107b)
can then be considered as an input and brought to the right side of the equation. The
resulting expression is equal to Eq. (2.94), the linear equation of motion upon which the
state space representation of Eq. (2.97) is based. The poles of the flexible dynamics equal
the poles of transfer function G(s) listed in Table 2.2 and are repeated here for

convenience;

s, = -2.07£102.0i, -0.83+52.0i, -1.66+18.9/, -0.174£3.0i

Accuracy of the Decoupled Approximation of Equation 2.107
The full-order system of Eq. (2.107) has been approximated by decoupling the

rigid body and flexible dynamics, yielding two reduced-order systems. The accuracy of

this approximation can be assessed by measuring the similarity of the poles s, and s, to

the eigenvalues of Eq. (2.107).
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Table 2.3 Poles of the full-order system of Eq. (2.107) and its decoupled appmxnmauon

System of Eq. (2.107) *secoupied

Approxlmatlon

-277 £ 101.9 -2.07 £ 102.0i
Flexible Modes -0.83 1 52.0i -0.83 £ 52.00
-1.66 + 18.9i -166 % 18.9i

-0.17 £ 3.0i -0.17 £ 3.0i
l Rigid Body Modes 299 + 46.(J

Table 2.3 reveals that the flexible modes are in relatively close agreement with the

-121.7 -86.8

only noticeable discrepancy occuring for the real parts of the highest order modes. The

rigid body modes, however, exhibit a gross deviation. Obviously, approximating the

system of Eq. (2.107) by neglecting the coupling effect of the term m,” 8§ does not yield

an accurate description of the rigid body dynamics.

It is instructive to examine further the effect of m, on the accuracy of the
approximation. Table 2.4 displays the poles of the full-order system of Eq. (2.107) for
various values of m,. As the magnitude of m, decreases, the poles of the full-order

system approach the poles of the reduced-order flexible and rigid body systems.

Table 2.4 Poles of the full-order system of Eq. (2.107) for various values of m,,

-2.76£101.9 f| -2.38+102.1i || -2.12+102.0i }j -2.07£102.0i
-0.83152.0i -0.83152.0i -0.83£52.0i || -0.83+52.0i
-1.66+18.9i -1.66£18.9i -1.66£18.9i || -1.66t18.9i

-0. 1713 0i -() 17+3.01 -0.17£3.0i I -0.1713.0i

Rigid Body -121 Vi -49 8150.5i -33.2147.4i -30.0146.01
Modes -86.8

Since m,r is proportional to ¥, (the density of the arm), the accuracy of the approximation

Flexible Modes
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improves as the magnitude of y decreases.

In view of the fact that the poles of the reduced-order rigid body system are
substantially different from the rigid body modes of the full-order system, it may appear
that there is no justification for decoupling the system and that Eq’s. (2.94) and (2.97) are
invalid. The significant factor is that although the approximation underestimates the
magnitudes of the real parts of the rigid body poles and exaggerates their imaginary parts,
the magnitudes of the real pa-ts are still more than ten times those of any flexible mode.
This means that the rigid body modes decas much more rapidly than the flexible modes,
and are insignificant with respect to the transient response of the complete system. The
full-order system can therefore be accurately approximated by the dominant, (i.e.,

flexible), modes of the system.

Inexact decoupling, however, may have a disturbance effect that can excite the
flexible modes. If this disturbance effect is not suppressed by the controller, the result nay

be a degradation of control performance.

Further Verification Using Simulated and Experimental Data

Further verification of the model of Eq. (2.97) is achieved by demonstrating that:
(i) it accurately approximates the complete nonlinear model of Eq. (2.89),
and
(i1) its response agrees with that of the test-bed with hub position control,

when both are subjected to the same hub angle trajectory.

Comparison of the Simulated Responses of Equations (2.89) and

(2.97)
Step (i) is achieved by solving Eq. (2.89) for a reference input torque T(¢) and

recording the resulting hub angle and the output (the net tip position) trajectories. The hub
angle trajectory is used as input 80 in Eq. (2.97), which is then solved for the linear

output trajectory. A good agreement between the linear and nonlinear output trajectories
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indicates that Eq. (2.97) is a good approximation of the full-order, nonlinear model.

Figure 2.29 is the hub angle trajectory that results from solving Eq. (2.89) for the
torque t(#) shown in Figure 2.28. Figures 2.30 and 2.31 compare the net tip positions
obtained from solving Eq. (2.97) and Eq. (2.89), respectively. The excellent agreement
is evidence that Eq. (2.97) is a good approximation of Eq. (2.89).
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Figure 2.28 Input torque 1(s) applied to Eq. Figure 2.29 Hub angle 0(¢) trajectory obtained

(2.89). from solving Eq. (2.89) and applied to Eg.
(2.97).
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;’IME (ucood:) é'IME (uconc:)
Figure 2.30 Net tip position 8y = h80(r) + Figure 2.31 Net tip position y = h0(1) + w(h,1)
ow(h,r) obtained from solving Eq. (2.97,. obtained from solving Eq. (2.89).

Comparison of the Simulated Response of Equation (2.97) With
Experimental Data

Step (ii) involves verifying the accuracy of the model by comparing its response

with that of the experimental test-bed using hub position control. Implementation of the
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control scheme of Figure 2.27 on the test-bed with the specific time varying trajectories
6,(n) and Oo(t) requires on-line computation of the feedforward element to generate T,.
An accurate value for 1, is difficult to achieve because c,,,, is not known with any degree
of certainty. Another factor that complicates the direct realization of the controller is that
the perturbed linearized model can no longer be considered a time invariant system, since
it is a function of the time-varying quantity 6,(r). Gains K, and K, must, therefore, also
vary with time in order maintain the system’s poles at their desired locations. Although
gain scheduling reduces the computational burden by storing gain values off line, the
system’s nominal trajectories must be known a priori. For the present application, the

objective is to control the position of the tip. Trajectory y, A1) is therefore known, but
0,(1) is not, and gain scheduling is not a viable option.

A simplifying assumption involves specifying 6,(¢) =0 in Figure 2.27. The
linearized perturbed system is then time-invariant, (resulting in constant gains K, and K ,),
and the nominal feedforward element is zero. The schematic diagram of Figure 2.32

illustrates the test-bed’s PD hub position control system.

o
Kp
6o(t) t~~\T_|Nonlinear] Y
+ + System
4 |
Kddt

Figure 2.32 Test-bed hub position control system,

Effects of A Time-Varying Trajectory 6 )
The simplifications inherent in Figure 2.32 may appear unreasonable because they

are based on the assumption that 90(‘) =0 which implies that 8,(¢) is constant. As will

be explained in Chapter 3, () cannot be directly specified a priori because it is
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generated by an external control loop. No prior assumptions can therefore be made

concerning O, (f), except that its first and second derivatives will be nonzero. It is

therefore of interest to examination the ramifications of the nonzero trajectories 6,(f) and ©,(r)

for the control system of Figure 2.32.

From inspection of Figure 2.32, control torque t(¢) is written
) = K [8,(8) -0(0] +K,[6,(n -0(] . (2.116)

Assuming that 6() and 0(s) track 6,(r) and O,(?), respectively, with small
perturbations, Eq. (2.116) becomes

) = -K,86() - K,80(r) . (2.117)

As described in Appendix B, each term of the model of the nonlinear system of

Figure 2.32, (Eq. 2.102), may be approximated as the sum of a nominal term and a linear,

perturbed term. (Even though only 6,(f) and its derivatives are expressly defined in
Figure 2.32, their existence implies the existence of nominal trajectories g,(f), g,(#) and

G,(1). The relationship between the nominal trajectories is defined by Eq. (B.11)). From

Eq’s. (B.11) and (B.12), the approxirnate equations of motion for the nonlinear system,

(with M, =0), are:

2ke,

m,(g,)30 +m; 8§ +|C (q,,4,) * 6 +26,yq, 8¢

(1+e )2

. ) . (2.118)
+ 27(60407 * eoq(’:')aq "'ml(qo)éo +miqu0 + Cl(qﬂ’ qo)eﬂ

+ Ccoul 2 -] =1
1+e ™
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m, 56 + M, 85 - 20,K,g,50 +C,8¢ + K, - 6;K,15¢ (2.118b)

. . 2
+m@, + o, +Cd, + K g, -6,K,9,= 0

Substituting Eq. (2.117) into Eq. (2.118a) and rearranging terms yields the

following expression for the closed-loop system of Figure 2.32:

m,(g,)50 +m] G +£(0,,9,4,)50 + 20 yq, 59 +2y(8,9, +6,4,)5¢

I+e¢ ™

) (2.119a)
+ KP89 = - ml(qo)éo + mzrqo + Cl(qo’ q.o)eo + ccoul[ 173 - 1]}

M,8j +C, 8¢ +[K, -0 K,15¢

(2.119b)
= 20,K,,50 -m 58 -[m,B, + M g, +C,4, +K,q, - ez K,
where
£.0,.90d,) =K, +C,(q,4,) + 2KC e ™
(1+e7*)?

Following the same procedure as for Eq. (2.107a), Eq. (2.119a) may be scaled if

the magnitudes of the coefficients m,(q,), £,(6,.9,.4,) and K, are sufficiently large. Using

the positive scaling factor e« 1, rewrite Eq. (2.119a) as follows:

e, (q,)80 +€27(8,.q,.4,) 56 + g'm. 84 + 2€* quor 8 +2ey(8,q0 + Goq: )dq

) (2.120)
+K,80 = - (g8, ‘84[m340+0.<qo'4°’°° ““’“’[ 2 IH
I+e™™
where, as before,
_m, T, _Kk, 2.121
m = "E‘ fv = '8'5' Kp - _8; @ )
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Discarding all terms of order €' and higher yields

£, (4,08 +€7(0,,4,,4,) 80+ K80 = -’ (g8, - (2.122)

Equation (2.122) demonstrates that the closed-loop rigid body dynamics are
decoupled from the flexible dynamics. The fact that the equation is nonhomogeneous,
however, means that 60 and its derivatives are nonzero. The hub angle 0(f) will not track
the nominal trajectory 6,(f) with zero error, except when Gn(t) =(. Nevertheless, this
error can be made small by restricting the magnitude of éo(t).

Coefficients m, and J, are functions of the *ime-dependent nominal trajectories
q,(0), and Go(t), q,(1) and g,(f), respectively. Thus, Eq. (2.122) is time varying and the
locations of the closed-loop poles of the rigid body dynamics change with time. Since the

gains K, and K, have been designed for a time invariant system, the closed-loop hub

angle tracking perforimance will not be consistent.

To examine the effects of the nonzero trajectories 6,(r) and 8,(r) on the flexible

dynamics, note that the bracketed term on the right-hand side of Eq. (2.119b) equals zero
(as defined in Eq. (B.11b)). Assuming that the rigid body and flexible modes are
decoupled, Eq. (2.119b) is rewritten as

M3 +C,8§ +[K, -0K,18¢ = 26 K,g,00 ~-m,58 . (2.123)

This expression differs from Eq. (2.107b) by the coefficient —G(Z,K2 and the input
term 26,K,q,60. In the context of the closed-loop system of Figure 2.32, the term
20,K, 4,00 acts as a disturbance input whose effect is minimal if the magnitudes of 8,(r)
and g, are small. The coefficient -Gzl(z exerts a time-varying influence upon the
eigenvalues of the flexible dynamics. As the magnitude of 6,(r) increases, these

eigenvalues become less damped and, ultimately, become unstable. This behaviour occurs
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when the magnitudes of the elements of the centrifugal force vector —G(Z)Kzﬁq are larger
than the magnitudes of the corresponding elements of the stiffness foice vector K 8¢. For

the parameter values of Section 2.4.2, instability of the lowest order flexible mode occurs

for ©,(r) 23.0 radians per second.

To recapitulate, when a time-varying nominal trajectory Go(t) is input to the
closed-loop system of Figure 2.32, accurate tracking of the hub angle is possible only for:
(i) large values of the coefficients m,(q,), fv(e,qo, 4, and K, and (ii) small magnitudes

of the nominal trajectory ©,(f). Furthermore, the rigid body dynamics become time-
varying and the constant gains K, and K, will not yield uniform tracking performance. As

a result of centrifugal forces acting upon the arm, the flexible dynamics also become

time-varying. For sufficiently large Go(t), the flexible dynamics eventually become
unstable, An input disturbance force proportional to the product 8,(1)¢,(r) is also present.
From this discussion, it is obvious that as the magnitude of 6,(f) increases: (i) hub angle

tracking performance degrades, and (ii) the accuracy of the model of Eq. (2.107b), (and
therefore Eq. (2.97)), declines.

Simulated and Experimental Results

The reference position trajectory, 9,(f) (see Figure 2.33), consists of a set of linear
paths with parabolic blends. Neither 6,(f) nor ©(r) possesses any discontinuities, so
éo(t) remains finite as does the control torque, t(f). Appropriate selection of controller

gains K, and K, as well as 6,(¢) for the various parabolic blends ensures that torque

saturation does not occur. A proportional gain K, of 3000 and a derivative gain K,
equalling 25 ensure slightly overdamped tracking of 6,(2).

Figure 2.33 illustrates the close agreement between the simulated and experimental
hub angles, thereby confirming the precision of the PD hub controller. The tip deflection

is shown in Figure 2.34. Note that until ¢ = 75 the peak amplitudes of the experimental
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curve are greater than those of the simulated plot. This behaviour is a result of the
linearly decaying response that is characteristic of the Coulomb friction present in the
test-bed and of the exponentially decaying response characteristic of the viscous damping
used in the model. Good agreement for the output is demonstrated in Figure 2.35. The
main reason for the relatively minor disparity is once again due to the different effects
of Coulomb friction and viscous damping. The control torque t(f) is shown in Figure

2.36 and is within the saturation limits of +34.7 Nm.

ouzm _

o
H
t

1

o

8
H
*
I

HUB POSITION (radians)
o -]
2 38
P
1
TIP DEFLECTION {meters)

o
o
o

o

) 2 8 10 %0 2

4 8
TIME (seconds)

4 [
TIME (seconds)

Figure 2.33 Desired hub angle 6,(r) (dashed) Figure 2.34 Simulated tip deflection dw(h,r)
and experimental hub angle 8(s) (solid). (dashed) and experimental tip deflections w(h,1)
(solid).
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Figure 2.35 Simulated net tip position 8y Figure 2.36 Experimental control torque 1(?).
(dashed) and experimental net tip position y
(solid).

The above analysis demc istrates that Eq. (2.97) reasonably approximates the
actual system and is a suitable model for the design of a controller, which is the subject

of the next chapter.
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Chapter 3

Controller Design

3.1 Introduction

Development of a successful controller requires a sound understanding of the system to
be controlled. To this end, the nonlinear model of Eq. (2.90) and its linearized perturbed

form (Eq. (2.97)) will be analyzed from the standpoint of control system design.

Approximations Inherent in the Nonlinear Model
As discussed in the preceding chapters, numerous approximations have been made
throughout the derivation of Eq. (2.90). Use of the Euler-Bernoulli PDE to model the
vibration of the flexible arm restricts the magnitude of the deflection and neglects the
lumped masses of the aluminum bridges and the diode mounted at the tip. Rotary inertia
and shear deformation are ignored. The assumed modes method truncates the number of
modes and discretizes the continuous model yielded by the Euler-Bernoulli PDE.
Structural and Coulomb damping are modeled by viscous damping. Furthermore, although
the hub position controller is good, it is certainly not ideal.

The accuracy of the nonlinear model is therefore not perfect and is a function of

the accuracy of the preceding approximations.

Linear Versus Nonlinear Control

The concept of control design based on the nonlinear model is, initially, an attractive one.
Working directly with the nonlinear model, after all, eliminates the task of linearization.
Furthermore, a controller based on a locally linearized model will not perform as intended

unless the range of operation is restricted to a region close to the system’s operating
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point. Nonlinear systems, though, are usually difficult to treat mathematically. A large
number of techniques exist for the design and analysis of linear systems. For these
reasons, the controllers designed in this chapter use the linearized model of the flexible

manipulator.

Local Versus Global Linearization

As previously explained, the linearization performed is local in nature. Feedback
linearization, on the other hand, is a nonlinear control technique that features the use of
state space coordinate changes and control dependent coordinate changes to transform the
nonlinear system into one that is globally linear, that is, it behaves in a linear fashion over
its entire range of operation. Powerful linear control design techniques can then be
applied.

Typically, the input signal is generated by feeding back al! of the system’s states.
Consider the nonlinear plant with single input u and state vector z described by 2z = f(z,u).
Inpui-state linearization is demonstrated in Figure 3.1 where Z = f(z,u) is transformed into
the equivalent linear time invariant form X =Ax +bv by using the state transformation
x=w(z) and the input transformation wu=g(z,v). The inner loop achieves the linear
relaticnship between the new input v and the transformed state vector x, while the outer

loop implements a linear pole placement control using gain vector k.

—=w(zq)]

Inner Linearizing Control Loop

K

Outer Pole Placement Control Loop

Figure 3.1 Input-state linearization.

Consider the scalar output y defined for the previous nonlinear system by the
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expression y =s(z). If it is desired to track a desired output trajectory y, and if this
trajectory can be defined in terms of a corresponding state vector trajectory z,, then input-
state linearization accompanied by linear pole placement as shown in Figure 3.1 will be
successful. If it is not possible to generate the vector z,, a direct, linear relationship must
be found between a new input v and output y (or a higher order derivative of y). This
method is termed input-cutput linearization. The output y is then furnished directly by the
linearization process, and is available for use by an appropriate linear tracking controfler

as shown in Figure 3.2,

Inner Linearizing Controi Loop

Outer Tracking Control Loop

Figure 3.2 Input-output linearization.

Input-output linearization typically requires repeated differentiation of y to yield
an equation that includes u, a higher order derivative of y and terms involving the
system’s states (some of which are nonlinear). The nonlinear terms can be cancelled by
choosing u to be an appropriate function of the states and a new input v, that is,
u =g(z,v). The input v may then be designed using linear control techniques so that y
tracks y, The procedure is illustrated in Figure 3.2 for a system requiring
differentiation of y twice to yield a direct relationship between j and u. (The system is

said to be of relative degree two).

Full state feedback is required to generate the input transformation u =g(z,v) and
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to compute y. A part of the nonlinear system’s dynamics may be rendered unobservable
during the input-output linearization; these dynamics cannot be discerned from the
equation relating v and y. These internal dynamics must be stable for the input-output
linearization to succeed.

Some insight into the stability of the internal dynamics is acquired by investigating
the special case of the internal dynamics when the control input v is such that y is zero
(i.e., the zero dynamics). Motivation for studying the zero dynamics is due to the fact that
although the stability of the internal dynamics may depend upon the control input, the
zero dynamics are an intrinsic property of the nonlinear system and are therefore much
easier to obtain and evaluate. The limitation of analyzing the zero dynamics is that their
stability implies only local stability of the internal dynamics. Only local stability can
therefore be concluded for closed-loop systems based on input-output linearization, even
though the zero dynamics are globally stable. One may then question the significance of
input-output linearization when linear control techniques based on linearization and pole
placement will also yield a locally stable closed-loon system. The value of input-output
linearization is illustrated by the problem of stabilizing a nonlinear system about an
unstable or marginally stable equilibrium point. Using a linear control approach, the
nonlinear system is linearized about the equilibrium point, and pole placement is used to
locally stabilize the system. This method will not succeed if the linearized system contains
any uncontrollable modes that are marginally stable. If, on the other hand, the zero
dynamics of the nonlinear system are asymptotically stable, pole placement of the external
dynamics of the input-output linearized system will achieve local stabilization. A pole
placement strategy based on the input-output linearized system will therefore succeed
while pole placement based on the linearized approximation that contains uncontrollabie
but marginally stable modes will fail.

De Luca et al. (1988) have demonstrated that the stability of the zero dynamics
of a simplified nonlinear model of a single-link flexible arm varies according to the
position of the point along the arm defined as the output. The zero dynamics remain

stable as the output position is shifted along the arm from the hub towards the tip until
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a certain location is reached. As the output position is shifted beyond this critical point,
the zero dynamics become unstable. Input-output linearization is therefore not feasible for
the flexible manipulator if the output is chosen to be the tip position. Precise tracking
control of the tip using this method cannot be achieved. (If the output is redefined to be
a location along the arm that results in stable zero dynamics, precise tracking control of
this location can be attained. A finite error for the tip position will of course be present.)

A potential difficulty concerning both types of feedback linearization techniques
is the requirement for full state measurement. For the flexible manipulator, for example,
the states are not all directly measurable. Construction of a state observer will solve this

problem at the cost of additional complexity.

Nonminimum Phase Systems

A nonlinear system with unstable zero dynamics may yield a linearized system that is
nonminimum phase. Such is the case for Eq. (2.97). Straightforward application of
constant output feedback to this system will lead to system instability for a sufficiently
large gain. Nebot et al. (1988) encountered this difficulty when applying proportional plus
de: ivative control to the flexible manipulator control problem. The closed-loop system
became unstable with small increases of the controller gain. To illustrate this behaviour,

consider the constant output feedback control system shown in Figure 3.3.

U(s) + Tk - 6(s) Y(S_)_

Figure 3.3 Cutput feedback control system.
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Plant G(s) = N(s)/D(s), where

N(s) =s”+as™ +...+a,_s +a,

and

D(s) =s™ +bs™ +...+b _s+b,_ .

G(s) is stable and nonminimum phase, the roots of D(s) are all located in the left-half
plane and N(s) has one or more right-half plane roots.The transfer function of the closed-

loop system is written

Ys) . GG _  NG) . (3.1)
Uis) 1+KGGs) KN(@s)+D()

The poles of the closed-loop system are the roots of the denominator of Eq. (3.1). As K
becomes very large, this denominator can be approximated by KN(s). Since the roots of
N(s) are the zeros of plant G(s) the roots of the closed-loop system gradually approach
the zeros of the plant. Since G(s) has right-half plane zeros, some of the closed-loop

system poles migrate to the right-half plane causing instability.

3.1.1 Controller Constraints

The preceding discussion has identified certain properties of the nonlinear and linearized
models of the flexible manipulator that affect the design of a controller. Specifically, a
linearized model will be used to develop a controller because, (a) a wealth of methods
exist in the literature that deal with linear systems and, (b) the nonlinear system is
difficult to handle mathematically. Moreover, the linearization will be local in nature
because global linearization requires the use of state feedback which is hampered by the
requirement of access to the system’s states. The application of input-output feedback
linearization is also impeded by the unstable zero dynamics. The unavailability of the
states motivates the use of an output feedback control strategy. The control design will

hzave to deal with the fact that the locally linearized model is nonminimum phase.
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3.1.2 Controller Design: Objective and Strategy

Based on the previous constraints, the objective is to design a controller that

(i) tracks a constant or step reference y,,(t) (set-point tracking), and
(i1) ensures that the closed-loop system remains stable in spite of the destabilizing

influence of the open-loop right-half plane zeros.

This two-fold objective leads naturally to a two-part controller, in which one part
stabilizes the system while the other achieves set-point tracking. Figure 3.4 illustrates the

topology of the proposed controller.

Ferl) 4+~ e(t) [ servo a(t)+ y(t)

COMPENSATOR | A PLANT

stapuzing | YY)
| COMPENSATOR _l

Figure 3.4 Proposed two-part controller. The outer (servo) loop achieves set-point tracking while
the inner (stabilization) loop stabilizes the system.

The outer loop controller compares output y(t) with y, #). The servo compensator
acts upon the resulting error e(f) and produces output 2(f) which drives e(t) to zero in a
prescribed fashion. The inner loop consists of the system defined from input 4(¢) to output
y(1) and includes the plant and a stabilization compensator. One way to design the
compensator is based on assigning the transmission zeros of the system defined from
input #(#) to output y(#), to desired locations in the cornplex plane. Although the system
under discussion is SISO, the control theory being applied was originally deveioped for
multiple-input and/or multiple-output (multivariable) systems. When the inner loop is
closed, (with a specified feedback gain), the inner loop poles approach the assigned
transmission zeros. In this manner, by assigning the transmission zeros to appropriate
locations in the left-half plane, the pole locations of the inner loop may be placed further

within the left-half plane than the poles of the plant. When the outer loop is closed and
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the poles of the complete closed-loop system begin to migrate toward the right-half plane
zeros of the plant, the added margin of stability generated by the inner loop ensures the

stability of the closed-loop system.

3.2 Design of the Inner Stabilization Loop

Two approaches for designing the inner loop using transmission zero assignment are

considered. For comparison, a third method using state feedback is also developed.

3.2.1 Transmission Zero Assignment Using Feedthrough
Compensation

Consider the inner loop block diagram of Figure 3.5.

§ A® AY
O T _
* +
1) :

K2 Y

Figure 3.5 Inner control loop using feed-through compensation.

As defined in Eq. (2.98), G(s) is the transfer function representation of the linear

perturbed state space equation of motion,

G(s) = A . P (2.98)
AO(s)  q(s)
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)
T(s) is the feed-through compensator and K, is a constant gain. Let T(s) = I_’(_ﬂ_ and

q.5)
define the augmented plant G(s) as
q,(s)p(s) +p (5)9(s)
q,(5)9(s)

G(s) = G(s) +T(s) =

Let
AYs) _ G©®
Us)  1-K,G(s)

G =

(3.2)
q(s)p(s)
q5)q(s) —K,[q (s)p(s) +p ()g(5))

The objective is to design T(s) such that some or all of the transmission zeros of
G(s) are at desired locations in the complex plane (Patel and Misra, 1992). When the
inner loop is closed with an appropriate value for gain K,, the poles of G (s) are further
within the left-half plane than the poles of G,(s). Equation (3.2) is simplified by choosing
q(s) = q(s):

G (s) = ps) : (3.3)
q4(s) -K,lp(s) +p ()]

Table 3.1 shows the pole-zero locations of plant G,(s), augmented plant G(s) and

the inner loop system G,(s). These values are based on the values of p(s) and ¢(s) that

Table 3.1 Pole-zero locations.

ZEROS POLES
Gy(s) -1.8 1.1 -20.1 80 | 143 2.1 08 -17 0.2
+77.0i | +47.9i +4.0i B +102.0i | +52.0i | £189i | +3.0i
G(s) -8.0 -8.5 -8.0 -11.0 2.1 08 -1.7 0.2
+102.0i | £52.0i | +19.0i +3.0i +102.0i | £52.0i | £189i | +3.0i
G(s) -1.8 -1.1 -20.1 80 | 143 -7.95 844 | 797 | -108
+77.0i | +47.9i +4.0i +£52.1i | £19.1i
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have been defined in Eq. (2.99) and for K, = -100. The polynomial p(s) is selected so
that the roots of p(s) + p(s) (the zeros of G(s)) are as shown in Table 3.1.

p(s) = 7.7150x107"'s8+6.9762x10's 7 +1.3894x 10% ¢ +7.7362x10%s 5

+4.7886x1075 4 +1.4632x10% * +3.0882x10'% 2 (3.4
+33931x10"s +1.4959%10"

The decision to select a particular set of zero locations for G(s) is influenced by
the pole locations of G,(s) as follows. The imaginary parts of the zero locations of G(s)
are set equal to the imaginary parts of the poles of G (s), while the magnitudes of the real
parts of the zeros of G(s) are greater than the muagnitudes of the real parts of the poles
of G (s). This arrangement ensures that the poles of G,(s) are adequately damped and that
the demanded control torque is not excessive. A large shift of the closed-loop poles away
from the open-loop locations results in a large amplitude of the coutrol signal that is
applied to the plant. This large amplitude may result in actuator saturation and excessive
wear of the system components. Note that the poles of G,(s) are more heavily damped

than those of G,(s). As expected, the zeros of G,(s) are the same as those of G,(s).

Internal Stability
It is obvious that the transfer functions in Table 3.1 are stable. In the context of

l D
A +
U + X1 A® + X2 AY

C P
+
) m—— X3 + N

Figure 3.6 Basic feedback control loop.
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the basic feedback loop shown in Figure 3.6, however, nine transfer functions exist that
relate each of the three inputs (reference U, disturbance D and sensor noise N) to the
internal signals X/, X2, X3, A©, AY and V. The blocks P, C and F are the transfer
functions representing the plant, controller and feedback element, respectively.

It is possible for the transfer function describing the input-output behaviour of the
system (AY/D) to be stable, and one or more of the eight remaining transfer functions may
be unstable (Doyle, Francis and Tannenbaum, 1992). For internal stability, the following

two requirements must be satisfied:

1) The transfer function 1+PCF has no zeros in Re §20. and

2) No pole-zero cancellations occur in Re s20 when PCF is formed.

Before applying these requirements, the block diagram of Figure 3.5 (repeated for
convenience in Figure 3.7) must be reduced to the form of the basic feedback loop of
Figure 3.6. This procedure will allow for the identification of expressions that equate to

the transfer functions P, C and F. Figures 3.7 through 3.9 illustrate the reduction process.

U+~ AG | AY

< &>

Figure 3.7 Inner control loop using feed-through compensation.
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A® AY

c»>
+
+

— KR T(s) =—

K2

Figure 3.8 Partial reduction of Figure 3.7 to the form of Figure 3.6.

U + 1 AY
1-K2T(s)[ G{s) -

—K& =

Figure 3.9 Control loop of Figure 3.5 reconfigured in the format of the basic feedback control
loop of Figure 3.6.

Inspection of Figure 3.9 yields

P = G,(S)=£_(i). C = 1 = q(S) F = <K
q(s) 1-K;T(s)  q(s)-Kp (5)

The product PCF can be written as

pcF = P©) o 4(s) K, .
4s)  q@)-Kp(s)

Requirement 2 is therefore satisfied.

78




The wansfer function 1+PCF can be written as

q() -K,[p(s) +p ()]
q(s) -K,p (s)

1 +PCF =

The zeros of 1+PCF are the roots of the numerator polynomial. Using the

expressions for p(s) and p,(s) given in Eq’s. (2.99) and (3.4) and for K, = -100, the zeros
of 1+PCF are

[-8.0£102.0/ -8.4%52.1i -8.0%19.1i -10.843.2i] .

Since all zeros of 1+PCF are within the left-half plane, the first requirement is

also satisfied and the inner control loop is internally stable.

3.2.2 Transmission Zero Assignment Based On Redefining the
Output
Consider the linearized model of Eq. (2.97).

v | (-My'c, I,)v,| (M;'CM;'m,

= + 00

o -MK 0\ (MK M, 2.97)
vl

By = [®(h) 0,1 |+ (h-DH)M;'m,)36 .
14

2

Define the system matrix A, the input vector b, the output vector ¢ and the input-

output interaction scalar d as:

-M;lCz IN MJ-ICzMg-lmz
A= b = 35)
"Ma_lKl ON M;lKlMJ-lmz .
c={dh) 0,1 d=(h-dWM;'m,)
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By substituting Eq. (3.5), we can write Eq. (2.97) as
v=Avy +b86 (3.6)
Oy = cv +ddo
where v =[v,” v,7]" and v =% v,7} .
The objective is to design a modified system whose transmission zeros are freely
assignable (see Misra, 1992). Figure 3.10 illustrates the procedure. Define pseudo output

¥y as

$ =év+ddh . )

The dynamics of the modified system are written as
v=Av+b&0 (3.832)
$ = év +d80 . (3.8b)

linearized plant

|
!
|
{
I
6o |
!
|
)
|
!

r

1 K2 =

Figure 3.10 Inner control loop design based on redefining the output.
The zero dynamics of the modified system are found by setting 9 = 0 in Eq. (3.8b)
and solving for 80 in terms of v:
80 = -d'év . (3.9)
Substituting Eq. (3.9) into Eq. (3.8a) yields the zero dynamics of the modified system:

v =|A-bde)v . (3.10)
[4-bae]

The transmission zeros of (A, b,é d) are the eigenvalues of [A -bc?"c"] and can be
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specified by solving a state-feedback eigenvalue assignment problem to choose
appropriate values for & for a given value of d (see Appendix C). Choose d=1 for
simplicity and let the desired transmission zero locations be as specified for G(s) in Table

3.1. The vector ¢ is found to be

¢ =[20.677 5.467 -16.099 0.833 3910 0.082 -0.361 0.012] .

Choosing K,=-100 then yields an inner stabilization loop with the same dynamics as
transfer function G(s).

This approach requires access to the states of the system to generate y. Since the
states are not available, a practical implementation dictates the use of an observer to
obtain an estimate of the states (see Appendix D for details of the observer design).
Choosing the eigenvalues of matrix Etobe -[15 155 16 165 17 175 18 18.5]
ensures that the observer dynamics do not significantly alter the dynamics of the system.

Figure 3.11 illustrates the implementation using a full-order observer to generate x, an
estimate of state vector v.

{4}
—14J

full-order obaserver

linearized plant

[}
R =]
a + - 08 + ¥ v + A3
_—-l}_-QJ 1k 2
- +
A
-~
=1
“Ld]
%ol
(K2~

Figure 3.11 Practical implementation of the inner control loop using a fuli-order observer.

From Figure 3.11, § is expressed as

)

Sy +d80 +éx -cx -d 8o (3.11)
c(v-x)+éx+dd0

In the limit, as x approaches v, Eq. (3.11) approaches Eq. (3.7).
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3.2.3 Stabilization Via Pole Placeman! State Feedback

Figure 3.12 illustrates the use of state feedback to place the poles of the system defined
by input 4(t) and output dy(?).

linearized plant

)
| +
O
(<+]
———-

=

Figure 3.12 Inner control loop design using state feedback pole placement.

The closed-loop svstem equation is
v = (A-bk)v +bfit
Oy = (c-dk)v +dfa
where k is the feedback gain vector that determines the closed-loop pole locations and f

(3.12)

is a scalar gain. The transfer function representation of Eq. (3.12) is
(c-dk)Adjls1, - (A-bk)1bf +dfA(s)
A(s)

where n is the order of the system, and A(s) is the characteristic equation. From Eq.

(3.13)

H(s) =

(3.13), it is evident that f determines the gain of the transfer function H(s). The object is
to choose k and f so that the gain and poles of H(s) match those of G (s). The vector k
and the gain f are found to be

f =0.0099

k =[20.472 5413 -15.940 0.824 3.871 0.081 -0.357 0.012] .
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Figure 3.13 illustrates the practical implementation of the state feedback approach
with an observer to obtain an estimate of the states. The observer parameters are identical

to those specified in section 3.2.2.

linearized plant

L '
i +~ 0o 4+~ v E] +$" oy

full-order observer

lor

[bi

+ 7+

(k]
L2

Figure 3.13 Practical implementation of the inner control loop using a full-order observer.

3.3 Design of the Outer Servo Loop

The overall closed-loop system is represented as shown in Figure 3.14, where S(s) is the
transfer function of the servo compensator that must be determined. For the operating
point 6,=6,=0 and g,=¢, =§,=0, the inner loop is characterized by the transfer function

G,(s) regardless of which of the three inner loop design methods is used.

a Oy
S(s) G (s) -

SERVO
COMPENSATOR

o)

Yef +

Figure 3.14 Overall closed-loop control system.

To eliminate any confusion caused by the appearance of the perturbed variable

dy(r) at the output, recall that dy(r) can be written as
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Sy(t) = hdB(r) +D(h)dq . (3.14)
As explained in section 2.4.4, there is no restriction on the magnitude of 30(t). In fact,
the linearized perturbed model of Eq. (2.97), (upon which the design of G_(s) is based),
remains valid for any value of 86(¢) that results in acceptably small regions of operation
for 88(r) and 86(r). With no restriction on the magnitude of 50(f), we are free to let 50(f)
equal the actual hub angle 6(f). Bearing this in mind, 8y(¢) is a perturbed variable strictly
as a result of the influence of 3¢(#): 8y(¢) does include the full rigid-body range of motion
h8(z). For small deflections, the variable 8y(f) therefore closely approximates y(f).

Outer Control Loop Design Objectives
The inner control loop has improved the stability of the plant. The purpose of the outer

servo loop is to track a constant or step reference y, (f) with no overshoot.

Asymptotic Tracking

As shown in Figure 3.14, the tracking error é(¢) is defined as
&) = y,[0 - 8y .
Realistically, perfect tracking, i.e., é(f) =0 V r20, is not in general achievable. A more

reasonable specification is asymptotic tracking, i.e., é(f) = 0 as t — oo, To quantify the

problem, define the steady-state error as
é, = limé@) .
1=yoo

From Figure 3.14, the Laplace transform of the error is
£is) = ) (3.15)
1 +1(s)
where the loop transfer function L(s) = S(s) G,(s). The transfer functions S(s) and G (s)
are ratios of coprime polynomials, i.e., polynomials with no common factors, and no pole-

zero cancellations occur in Re s20 when the product S(s) G (s) is formed.
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The final value theorem yields the following expression for the steady-state error

& = limé) = limsE(s) = lims 1" (3.16)

t—poo 50 s=0 1 +L(S )

where sE(s) must not have any poles in Re s=0.

To continue the design of the servo compensator S(s), we write L(s) and ¥, (s) as

Li) = 2O G.17)
q,(s)
and
p,[5)
Y =_Te . (3.18)
SofS) ¥

Assume that both L(s) and Y,(s) are proper. Although ¥, (s) will later be restricted
to the Laplace transform of a step function, the current analysis uses the more general
form of Eq. (3.18). Substituting Eq.’s (3.17) and (3.18) into Eq. (3.16) yields

6 =tim SPeS)  US (3.19)
¥ g0 ps)+qus)

Eq. (3.19) must be interpreted in light of the restriction that sE(s) must not have
any poles in Re 520. The poles of s E(s) are the roots of the denominator of Eq. (3.19),
that is, the roots of q",(s) [p,(s) +q,(s)]. The polynomial p,(s) +q,(s), however, is the

denominator of the error transfer function . By definition, the error dynamics

+L(s)

must be stable, so all the roots of p,(s) +q,(s) must therefore be in the left-half plane.

The remaining factor in the denominator is g,.As) which has roots on the imaginary axis
for many reference signals of interest. If, however g,(s) also contains these same roots,
these roots cancel and sE(s) has no poles in Re s20. Furthermore, the numerator of

sE(s) then contains the factor s and in the limit, when s—0, s £(5)>0. In other words,
q,(s) must contain those roots of q",(s) in Re 520 to ensure that é =0.

The preceding results are now applied to design S(s). For a reference step input
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of amplitude Y,,,, Y, (s) is written as

Y
Y () = L. (3.20)
A}

Let G,(s) be as specified in Eq. (3.3):

G - p (S ) ) 3.3
O = KO P G5

We proceed by letting the denominator of Eq. (3.3) equal g (s). Equation (3.3) is

then rewritten as
G(s) = 29 (3.21)
q,(s)

Write S(s) as the ratio of polynomials

si) = P9 (3.22)

qs)

Substitute equations (3.20), (3.21) and (3.22) into Eq. (3.19):

Y v
é = 1lim § e o q.(5) g,(s)

3 , (3.23)
s s pLs)p(s) +g,5)q,s)

As shown in Table 3.1, the eight roots of polynomial g,(s) occur as complex
conjugate pairs in Re s<0. From the preceding discussion, g,(s) should therefore be
specified so as to cancel the pole at the origin in Eq. (3.23). Initially, this appears
unnecessary since this pole is already cancelled by the factor s that occurs in the

numerator. If both p(s) and g,(s) are properly chosen, then, Eq. (3.23) has no poles in Re

520. However, due to the fact that L(s) (and therefore : l( )
+L(s
(3.23)) is proper, &, is infinite or, at best, finite, but definitely not zero. To ensure that

, the second term of Eq.

é.=0, g.(s) must cancel the pole at the origin. The simplest polynomial that achieves this

cancellation is g,(s)=s. With g,(s) known, p,(s) remains to be specified to complete the
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design of S(s). To accomplish asymptotic tracking, p,(s) must be chosen to ensure that the
roots of p,(s)p(s) +q,(s) g, (s) are within the left-half plane. However, the selection of p,(s)

also influences the transient response of é(t), a topic that will be addressed in the

following section.

Transient Response

Servo compensator S(s) has been designed so that the steady state error is zero for a
reference step input, that is, dy(f) tracks Yr(t) With no error as t —yeo. Constraints must
also be placed on the transient response to ensure that both the amplitude and the time
duration of the transient response are kept within tolerable limits. The transient behaviour
of 8y() can be assessed by analyzing the poles and zeros of the closed-loop transfer

A¥(s) . From Figure 3.14, the expression for A}}s)
s

re; re

function is written as

AY(s) _ £
m () S(5) G (5) . 3.29)

Substituting Eq’s. (3.15), (3.21) and (3.22) into Eq. (3.24) and choosing g,(s)=s yields

Y, £8)sq(5) . p(s) « PG) _ Y, () p(s)p(s) . (3.25)
pS)p(s) +5q,(5) 5 q,s) Pps)p(s)+sq,[(s)
The closed-loop transfer function is

AY(s) =

AY(s) _  PB)PGs) (3.26)
Y (5)  ps)p(s)+s5q,(s)

By choosing the simplest possible form for p(s), that of a constant, (say X;,), Eq. (3.26)

becomes

AY(s) . KpGs) _ omstensT 4 +ngs+ng

= (3.27)
YA}  Kip(S)+sq(s)  ds®+d,s®+...ds+d,,
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As shown in Figure 3.15, plotting the root-locus for the system of Eq. (3.27)

100

50

Imag Axis

-50 -40 -30 -20 -10 0 10 20 30
Real Axis

Figure 3.15 Root-locus for the closed-loop system of Eq. (3.27), illustrating the effect of K, on
the pole locations.

shows the effect of gain K, on the pole locations. As K, is increased from 0, the closed-

loop poles move from the open-loop pole locations toward the open-loop zero locations

(the open-loop transfer function is _l.xGo(s)). This pole-shifting behaviour has been
5

described in Section 3.1. For 0sK,<8330, the closed-loop poles are in Re s<0. For
K 28330, however, the complex conjugate pair of poles corresponding to the first elastic

mode crosses the imaginary axis into the right-half plane, resulting in an unstable system.
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Pole Placement Design

Poles that are situated well within the left-half plane produce transient responses that
decay relatively quickly. Poles that are located close to the imaginary axis in the left-half
plane (dominant poles), however, yield transient responses that decay relatively slowly.
The design process can be simplified by choosing K, so as to limit the number of
dominant poles and to place these poles in locations to achieve a desired transient
response.

Choosing K, = 1850 results in the closed-loop pole-zero locations plotted in Figure

3.16 and shown in Table 3.2. The dominant pole is located at s=-1.62 s and the transient

response is essentially that of a first order system with a time constant equal to 63 .
100} - - r .......... ' ........... ‘x_ .‘ ..................... ‘ ' ...........
o
50_ ............ SRR x ........ ey A SRR ............
< ix °
g, (0] 3 @ ceeerecentar seeniaas gx O rere geeee e R R R LR R R P 3
= x
BN s ] T T ggeerrrenderenn e il
o
00k« - e s b, SFUUTNE OIS SRS S RO .
-25 -20 -15 -10 -5 0 5 10 15
Real Axis

Figure 3.16 Pole-zero map of closed-loop system for K;=1850.

Table 3.2 Closed-loop pole-zero locations for K;=1850.

POLES

-9.35 | -1.62
+5.4i

-8.71
+101.%
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The closed-loop numerator and denominator polynomials are shown in Eq’s. (3.28) and

(3.29), respectively.

K p(s) = 4.229%x10%*+2.291x10% 7 +3.298x10% ¢ +6.904x10°s *

+4.288x10% * -1.463x10°s * -2.284x10'25 2 (3.28)
+9.539x10"2%5 +2.03 Ix10*

K, p(s)+sq(s) = 1.010x10%5 °+7.532x10%s ® +1.584x10% 7 +8.111x107s * +5.060x10°s *

+1.506%10"s*+2.974%10'%s 3 +3.217x10"s 2
+1.702x10"s +2.031x10" . (3.29)

Effect of Zeros on the Closed-Loop System
Equation (3.27) can be expanded as

AY(s) _ n, . Ngs .
Y )  ds®+d,s®+..+d, ds°+d,st+...+d (3.30)
n,s? ns"
9 8 Teee® 9 8
ds’+d,s*+...+d,, ds’+d,s*+...+d,,

For a given input y, (t), let the response of the output that corresponds to the first

term on the right-hand side of Eq. (3.30) equal dy,(r). The output dy(f) can be written as

2 8
8y(0) = By,(0) +_’_l_§_){d8yl(t) +ﬁxd 6y,() +...+ﬂxd 8y, (1)
ng dt ny dt 2 ", 7’

Although the pole at s=-1.62 s is dominant for the system of Eq. (3.30), the remaining

(3.31)

poles influence the transient response to some extent, particularly for short time durations

after discontinuities in y,(¢). For a transfer function containing a pair of complex

conjugate poles situated at s = -a.+jw, for example, oscillations in the transient response

occur with a frequency w and decay at a rate proportional to ¢™*. As shown in Eq.

(3.31), 8y(t) equals the sum of dy,(t) and its higher derivatives, weighted by the

n 1yt .
coefficients L, i=1,2,...,8. Since &y,(¢) contains rapidly decaying oscillations, its
n,
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higher-order derivatives are characterized by extreme fluctuations. Although the
amplitudes of these fluctuations are reduced by the small magnitude of the coefficients,
(ny is at least an order of magnitude larger than the remaining polynomial coefficients of
Eq. (3.28)), dy(s) will still exhibit some high frequency vibrations in response to abrupt
transitions of y, (0.

Once the rapidly decaying oscillations of 8y,(f) have died out and its variation
becomes more gradual, the lower-order derivative terms, (whose coefficients are of larger
magnitude than the higher-order terms), play a predominant role in influencing &y(¢).
Specifically, the derivative terms with positive coefficients act to decrease the rise time
of 8y(f), while the derivative terms with negative coefficients (a result of the right-half
plane zeros) serve to increase the rise time of dy(t). For the system of Eq.’s (3.27) and
(3.28) the magnitudes of negative coefficients _:.‘i and %Z. are smaller than the magnitude

- . n . 9 9 .
of positive coefficient —2. It is therefore theorized that, once the high frequency

n
vibrations have decayed, tﬁe net effect of the zeros is to decrease the rise time of Sy(s).
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Chapter 4

Simulations

4.1 Introduction

This chapter presents three sets of closed-loop simulations, each set corresponding to one
of the three inner stabilization loop configurations described in the previous chapter. The
outer servo loop parameters are identical for each case. Any differences in the results are
therefore caused by different characteristics of the inner loop configurations.

Chapter 5 displays experimental results for the closed-loop system that
incorporates an inner loop designed using feedthrough compensation. Consequently, the
simulations corresponding to this particular inner loop compensator are more extensive
than for the two remaining types.

All simulations are conducted using SIMULINK.

4.2 Closed-Loop System With An Inner Loop
Design Based On Feedthrough Compensation

The control system has been designed based on the linear plant model with ideal hub
position control of Eq. (2.97). To assess the inevitable degradation in performance when
the control system is applied to the nonlinear model with PD hub position control, three
different series of simulations are performed. Each series incorporates a different plant

model. The models used are:

(i) the linear plant model with ideal hub position control of Eq. (2.97),
(ii) the nonlinear plant model with ideal hub position control of Eq. (2.92), and
(iii) the nonlinear plant model of Eq. (2.89) together with the PD hub position

controller.
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Varying the plant model highlights those plant characteristics primarily responsible

for performance degradation.

yfef (t) =0.1 m

Figures 4.1 through 4.6 show the responses to a reference step input Y,y (8) =0.1m.

The net tip position for the linear plant model of Eq. (2.97) appears in Figure 4.1a.
Its value is initially negative, then positive as it attempts to follow the step input. This
behaviour is a result of the excessive phase delay characteristic of nonminimum-phase
systems. Since the phase delay becomes larger with increasing frequency, the transient
portion of the plot, (which contains the highest frequency components), experiences the
maximum effect of the delay.

As discussed in Section 3.3, the time constant corresponding to the dominant pole
is ._]2. s. When Figure 4.1a is compared with the 0.1 m step response of a first order
systelm with the same time constant, the first order system’s reponse is faster. This
observation appears to contradict the prediction of Section 3.3 that the effect of the zeros
on the closed-loop system is to decrease the rise time. This discrepancy is due to the
negative-going excursion shown in Figure 4.1a that effectively delays the response by
0.205 s. If the plot of Figure 4.1a is shifted to the left by this amount of time and
subsequently compared with the first order system’s reponse, the predicted decreased rise
time is observed.

The main feature that differentiates Figure 4.1b from Figure 4.1a is a damped 3

rad/s oscillation. To investigate the probable cause of this oscillation, refer to the hub

velacity of Figure 4.4b and the tip detlection of Figure 4.5b. The hub velocity 6(f) ranges
from 2.16 rad/s to -0.18 rad/s during the first 0.26 s of the simulation. The tip deflection,
and therefore the vector ¢(#), also reach their maximum magnitudes during this same time

interval. Since both 6(f) and g(f) are relatively large, the effect of *he nonlinear

centrifugal force vector —Gzl(zq is no longer negligible. The design of the controller,
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however, is based on the linearized plant model for which Oo(r)=0. As explained in
Section 2.4.5, as 0,(r) varies, the term --9:',(t)l(2 exerts a time-varying influence upon the
eigenvalues of the flexible dynamics. These eigenvalues become less damped as the
magnitude of ,(f) increases.

In a similar fashion, the flexible dynamics of the nonlinear plant become less

damped as 6(s) increases. As shown in Figure 4.5b, the tip deflection, (which is a

function of the flexible dynamics), is the source of the oscillation. Specifically, the lowest

flexible mode is the cause since its natural frequency of 3 rad/s equals that of the
oscillation. Presumably, the relatively large magnitudes of 0(¢) caused by the step change

in y,,(f) cause a reduction in the damping of the flexible dynamics, especially for the

lowest flexible mode. The controller has not been designed for the reduced damping: this
incompatibility manifests itself as an oscillation of the tip deflection that also appears in
the net tip position. Another way of considering this situation is as a closed-loop system
whose linear plant model contains damping coefficients that vary with time. The
controller, however, has been designed for the linear plant model that is time invariant,
From the controller’s standpoint, the damping coefficient variation causes a disturbance
effect upon the tip deflection.

Note that the controller does not respond quickly to eliminate these oscillations
in the output and that they therefore decay relatively slowly. This can be corrected by

designing the servo compensator to suppress disturbances from the tip deflection to the
output, in addition to achieving its principal objective of tracking a step reference Y,y

with no overshoot.

Figure 4.1c shows the effects of the PD hub position controller on the net tip
position. The same decaying 3 rad/s oscillation observed in Figure 4.1b is also present,
although its amplitude is slightly larger. At approximately 7 s into the simulation, the
amplitude increases. These amplitude differences are due to hub position tracking errors.

Figure 4.3c shows the commanded and actual hub positions for the time interval from ()
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to 1 s. In spite of the relatively high gains of the PD controller, the large amount of
Coulomb friction introacces a steady state hub tracking error. PID control would suppress
this steady state error at the cost of slowing the response. The hub error most likely
results in an increased disturbance effect upon the tip deflection, and consequently, upon
the net tip position.

This hub tracking error persists until approximately 7 s at which time the integral
action of the outer control loop causes the hub to move. This motion causes the amplitude
of the tip deflection oscillation, which up to this point has been decaying, to suddenly
increase. Essentially, the imperfect hub tracking due to Coulomb friction results in limit
cycling of the hub, tip deflection and net tip position.

Figure 4.6 displays the contro! torques for the three plant models. All three plots
exhibit discontinuities at the beginning of the simulation due to the step reference input.

The steady state torque value for the linecar plant model of Figure 4.6a is zero.

This is to be expected since the nonlinear Coulomb friction has been approximated by the

k
Ccoul 86 .
2

In Figure 4.6b, once the transients have decayed, the torque value for the nonlinear

linearized perturbed term

plant model remains constant at a value slightly greater than 4.75 Nm. This allows the
hub position to just overcome the effects of Coulomb friction and gradually approach its
steady state value at a rate governed by the single dominant closed-loop pole. The abrupt
transitions between +4.75 Nm and -4.75 Nm that begin to occur at approximately 8.5 s
into the simulation are caused by simulation errors rather than by the actual dynamics of
the system. The numerical integration proceeds at small but finite time steps and
essentially approximates the continuous time system by a discrete time system. This
discrete time approximation results in small discontinuities for the calculated hub position
values. Since the hub velocity is generated by numerically differentiating the hub position,
a certain amount of "noise” is caused by the discontinuities. When the mean value of the
hub velocity is clost to zero, which occurs toward the end of the simulation when the hub
position nears its steady state value, the hub velocity noise dominates. Since the control

torque is computed using Eq. (2.89a), small variations in the sign of the velocity result
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in large swings of the control torque due to the term ¢, sign(8). (Since the plant input
is hub position and not torque, these torque variations do not influence the dynamics of

the simulation.)

From 0 to 7 s, the plot of Figure 4.6¢ is similar to that of Figure 4.6b. The hub

position error, which has been relatively constant at 1.7x107 radians from 2 to 7 s, has
resulted in a mean net tip position error of 2 mm for this same time interval. At 7 s, the
integral action of the servo compensator has increased the commanded hub position to a
value that, in turn, causes the PD hub controller to increase the control torque. The torque
increase results in overshoots of both the hub position and the net tip position, and has
a disturbance effect upon the tip deflection. This disturbance effect is the cause of the
increased amplitude of the 3 rad/s oscillation of the net dp position in Figure 4.1c. The
servo compensator then responds to the overshoot of the net tip position by decreasing
the commanded hub position which, in turn, causes a decrease in the control torque. The

net result is a limit cycle.

Yier (=02 m

Figures 4.7 through 4.12 show the responses to a reference step input y, () =0.2m.
The plots corresponding to the linear plant model and the nonlinear plant model
with ideal hub position control are very similar to their counterparts for y, (¢) =0.1m, the
major differences being a doubling of magnitudes for all quantitities. (This is to be
expected since the reference input has been increased by a factor of 2.) The increased
magnitudes of q(1), §(¢), §(t), and 6() compromise the performance of the controller

since they involve a greater departure of the plant from the operating point.

Some notable differences occur for the nonlinear plant model that includes PD hub
position control. The actual hub position overshoots the commanded position during the
first 0.3 s of the simulation, as shown in Figure 4.9c. No such overshooting occurs for

the 0.1 m input. The frequency of the hub position limit cycle observed beyond 5 s in
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Figure 4.8c is greater than for the limit cycle in Figure 4.2c.

Yier (=03 m

Figure 4.13 shows the responses to a reference step input y, (1) =0.3m for the nonlinear

plant model of Eq. (2.89) with PD hub control. Note the increased amplitude of the 3
rad/s oscillation for the net tip position compared to that for the 0.2 m reference input of
Figure 4.7a. This is most likely due to the increased disturbance effects of greater hub
tracking overshoot and a larger hub velocity magnitude. The maximum magnitude of the
tip deflection approaches 0.2 m, which may conflict with the Euler-Bernoulli requirement
for small deflections. (Such a conflict will lead to simulation results that will not agree
with the actual test-bed responses).

A further increase in the magnitude of the reference input will result in an even
greater increase in the overshoot of the commanded hub position. This overshoot will
have a greater disturbance effect upon the tip deflection and further increase the amplitude
of the 3 rad/s oscillation observed at the net tip position. As the reference input becomes
even larger, the combined effects of decreased damping of the flexible dynamics caused
by large values of hub velocity, and increased hub position overshoot and larger
deflections will probably lead to instability. (Eventually, the magnitude of the deflection
will rise to a level that will be in gross violation of the Euler-Bernoulli constraint and will

render the simulation meaningless).
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4.3 Closed-Loop System With An Inner Loop
Design Based On Redefining The Output

This simulation illustrates the performance of the closed-loop system with an inner loop
designed according to Section 3.2.2. The inner loop configuration is as shown in Figure

3.11 and uses a full-order observer to obtain an estimate of the states.

Figure 4.14 shows the responses to a reference step input Y,,() =0.1m for the

linear plant model with ideal hub position control of Eq. (2.97). Not surprisingly, the
responses are almost identical to those of the linear plant simulations for the feedthrough

compensator of Section 4.2. This similarity is to be expected because (i) the parameters

¢, d and K, have been chosen to yield an inner loop with the same dynamics as transfer

function G,(s), and (ii) the eigenvalues of the observer matrix E have been selected so
as not to significantly alter the dynamics of the closed-loop system. A notable difference
for the control torques during the transient portion of the simulations. The peak torques
for Figures 4.6a and 4.14f are 38.4 Nm and 50.9 Nm, respectively. The larger value of
Figure 4.14f is probably due to the transient effect of the observer.

When simulations are conducted using the nonlinear plant model of Egq. (2.89)
with PD hub position control, the responses immediately become unstable. The
simulations are repeated without the observer, using the actual states of the nonlinear
plant as shown in Figure 4.15, to determine whether or not the observer contributes to the

instability. (Nonsingular transformation W converts the nonlinear plant state variables

[0g7047] to the state vector v as described in Section 2.4.5. Thi. Tansformation is

required by the design procedure of Section 3.2.2.) The same instability is observed. If
the instability had ceased, the observer would obviously be the source of the problem.
Since the instability remains, however, the observer may or may not contribute to the
instability.

The question arises as to why instability should occur for this particular
configuration of inner loop compensation and not for the feedthrough compensator. The

reason is probably because the feedthrough compensator uses a dynamical system, T(s),
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in the feedforward path to help generate y. The poles of T(s) are the same as those of the

linearized plant G(s). The use of T(s) yields a set of zero locations for the augmented

plant G(s) that have a certain degree of robustness with respect to nonlinearities of the
open-loop plant. No such feedforward dynamical system is present, however, for the

system of Figure 4.15. Rather, static gain d and static gain vector & multiply 6, and v,
respectively. These products are subsequently summed to produce y. Obviously, the zero
locations for the system defined by input 0, and output § in Figure 4.15 are more
sensitive to open-loop plant nonlinearities than are the zeros of G().

Although simulation of the closed-loop system of Figure 3.11 yields unstable
results, the observer might be modified to correct the problem. The observer, after all, is

a dynamical system designed to estimate the states of the open-loop linearized plant.
Gains d and ¢é act upon these estimated states to yield §. Similarly, 7(s) incorporates the

poles of this same linearized plant, and has been designed to generate § as well. The only
difference between these two configurations is that T(s) has precisely the same poles as
the linearized plant, while the observer attempts to estimate the states of the system
characterized by these poles. The transient behaviour of the observer differs from that of
T(s). Since it is during the initial, transient, portion of the simulation that instability
occurs, it seems likely that the transient response of the observer contributes to the
problem. Although the observer was redesigned with poles located further within the left-
half plane to increase the rate at which the observer transients decay, the same instability

persisted. Application of robust observer design techniques may resolve the problem.
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design based on redefining the output. The linearized plant model of Eq. (2.97) is used.

107




Nonlinear Plant Model e

i + a + AT 1, (Q¥+TLY+C; (g D04 0e Ban(B)=T | ¥
s dgt T 1 (¥ +med+Cy 019) ool ,
+ ma¥+My §+CoftK g @ Kpq0

fog o’}

Figure 4.15 Inner loop configuration using the actual states of the nonlinear plant instcad of the
estimated states generated by the observer.

4.4 Closed-Loop System With An Inner Loop
Design Based On Pole Placement State Feedback

This simulation illustrates the performance of the closed-loop system with an inner loop
designed according to Section 3.2.3. The inner loop configuration is as shown in Figure
3.13 and uses a full-order observer to obtain an estimate of the states.

Figure 4.16 shows the responses to a reference step input Y,4(1) =0.Im for the

linear plant model with ideal hub position control of Eq. (2.97). The respons::s are almost
identical to those of the linear plant simulations of Sections 4.2 and 4.3. This similarity
occurs because (i) the parameters fand k have been chosen to yield an inner loop with
the same dynamics as transfer function G,(s), and (ii) the eigenvalues of the observer
matrix E have been selected so as not to significantly alter the dynamics of the closed-
loop system. As for Section 4.3, the peak control torque is larger than for the feedthrough
compensator during the transient period. Again, this is probably caused by the transient
effect of the observer.

As is the case for Section 4.3, the simulation becomes unstable when the
linearized plant model is replaced with the nonlinear plant model with PD hub position
control. Once again, the instability occurs during the initial (transient) period.

A possible cause of instability is the transient response of the observer. Plant
model nonlinearities and imperfect hub position tracking may cause errors in the
estimated states that, during the transient period, result in an unstable inner loop. As is
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suggested in Section 4.3, application of robust observer design techniques may resolve
the problem.
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Figure 4.16 Responses to 0.1 m step reference input for closed-loop system with an inner loop
design on pole placement state feedback. The linearized plant model of Eq. (2.97) is used.
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Chapter 5

Experimental Results

5.1 Introduction

This chapter consists of three sections. Section 5.2 describes the test-bed in detail. Section
5.3 converts the continuous-time control scheme designed in the previous chapter to a
discrete-time controller that can be implemented with the Spectrum C30 system card.

Section 5.4 presents the closed-loop responses to a variety of reference inputs.

5.2 The Test-Bed

Figure 5.1 is a schematic diagram of the test-bed and control system. The principal

components of the system are as follows:

Spectrum TMS320C30 Real-Time System Board

This board implements the control algorithm. It contains a Texas Instruments TMS320C30
Digital Signal Processor (DSP) chip that operates from a 33.3 MHz clock and achieves
a performance of 16.7 million instructions per second.

Two separate analog input and output channels are included. Each analog input
contains a fourth order lowpass filter to limit noise and provide anti-aliasing protection,
a sample and hold amplifier, and a 16-bit analog to digital converter (ADC). Each analog
output consists of a 16-bit digital to analog converter (DAC) and a fourth order lowpass
filter to smooth the otherwise stepped DAC output signal. The full scale analog input and
output ranges are 3 volts.

The board is mounted in a 16-bit expansion slot within the Compaq 386 20/e host
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Figure 5.1 Experimental test-bed.



computer. Data is exchanged between the host and the C30 board by 64K x 32 bit words
of dual-port RAM.

The TMS320C30 DSP chip includes an expansion bus that is used to connect to
a separate interface board. This interface board contains programmable timing circuitry
and high current sources that control the pulsed current which drives the infrared diode
mounted at the flexible arm’s tip. The interface board also incorporates circuitry that

decodes the motor position information.

Compaq 386 z0/e Host Computer
The host serves as a platform for the C30 board and allows the user to interact with the
control program implemented on the C30 board. Experimental data is transferred from the

C30 board to the host’s memory for subsequent analysis.

DC Switching Servo Amplifier
The Copley Controls Corp. Mode! 215 is a pulse-width modulated switching amplifier
designed to drive DC motors. The Model 215 is configured as a transconductance

amplifier for which a voltage v(1) at the input results in a proportional output current
i (£) =K _v(t) , independently of the output impedance. (An internal control loop senses the

output current and maintains the fixed proportionality factor K, = 2.0). The full scale
DAC voltage range of £3 volts results in a maximum current range of +6 amperes. The
3-dB bandwidth of the amplifier is 1000 Hz.

DC Servo Motor
As described in Section 24.2, the EG&G Torque Systems Model MH3310-055G!

permanent magnet, brush type DC servo motor develops a torque T (1) =K, i (1), where

K, =0.1175 Nm/A. With an armature current range of £6 amperes, the maximum torque

range generated by the motor is £0.705 Nm.
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Incremental Encoder
The Motion Control Devices, Inc. Model M21 is an optical encoder that provides
incremental resolutions of 500 cycles per revolution of the motor shaft on each of two

quadrature (A & B) signals.

Decoder

The Hewlett Packard HCTL-2020 is an integrated circuit that performs quadrature
decoder, counter, and bus interface functions. The two incoming quadrature signals from
the encoder are decoded. The resolution of 500 cycles per revolution is multiplied by a
factor of four to yield a resolution of 2000 cycles per revolution of the motor shaft. An
on-chip 16-bit binary up/down counter allows for software computation of absolute

position.

Speed Reducer

Since the motor is a high-speed, relatively low-torque actuator, it is geared down to
provide sufficient torque to drive the load. The HD Systems, Inc. Model RH20-CC
harmonic drive speed reducer connects the motor shaft to the flexible manipulator’s hub.
A gear ratio of 50:1 ensures that sufficient torque is available to accelerate the hub. The
speed reducer amplifies the motor torque by a factor of 50 and yields an output torque
range of +35.25 Nm. Harmonic drive gearing results in minimal backlash which is

essential for reducing position error at the manipulator’s tip. The positional resolution of
1

2000 cycles per revolution of the motor shaft is equivalent to 50x2000 =100000 cycles
per revolution of the speed reducer’s output shaft. However, the counter of the decoder
is limited to 16 bits, corresponding to a maximum count of 65535 cycles. With one

complete revolution of the output shaft equivalent to 100000 cycles, the decoder can

65535

accommodate x2x = 1.31% radians of rotation before overflowing.
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Infrared Emitting Diode

The positional resolution of the tip’s deflection is proportional to the signal to noise ratio
(S/N) of the received signal at the output of the UDT camera. One way of maximizing
the S/N is to use a high powered light source. The Opto Diode OD-50L Super High-
Power GaAlAs infrared emitting diode supplies up to 0.6 watts of peak optical power at
a wavelength of 880 nm. An infrared light source, when used with a camera that
incorporates a visible light blocking filter, reduces the interference from ambient light.
Due to thermal limitations, the maximum amount of power is attainable only when the
diode current is pulsed and its duty cycle is minimized. The current control circuitry on

the interface board allows adjustment of the peak current level and the duty cycle.

UDT Camera

The United Detector Technology Model 274 camera consists of a wide angle lens and a
lateral-effect photediode detector assembly. The 12.5 mm C-mount lens has a 55° field
of view and includes a visible light blocking filter. The lens focuses the image of the
infrared diode onto an SC-10D photodiode detector. The diode appears as a spot of light
on the detector’s surface and induces currents at each of the contacts of the detector.
Since the magnitude of the current at a particular contact is proportional to the contact’s
proximity to the spot of light, the relative magnitudes of the currents are used to
determine the absolute position of the spot. By an appropriate calibration procedure, the

absolute position of the infrared diode and the deflection of the tip are also calculated.

UDT Amplifier

The United Detector Technology Model 301DIV signal conditioning amplifier interfaces
the SC-10D photodiode detector to the ADC on the C30 board. The amplifier converts
the incoming low-level currents to a position-related analog output voitage. The amplifier
is adjusted so that maximum tip deflections of 0.25 m comrespond to output voltages of
+3 volts. The 55° field of view of the lens should allow measurement of tip deflections

in excess of 0.5 m. As the magnitude of the tip deflection increases, however, so does
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the magnitude of the slope of the arm evaluated at the tip, awgh, H . This slope causes
X

a rotation of the diode when viewed from the camera’s frame of reference. The increasing

slope, when coupled with the narrow beamwidth of the infrared diode results in a
reduction of the optical power received at the lens. Beyond a deflection of £0.25 m, the
diode cannot be accurately detected by the camera even though it is still within the lens’s
field of view.

Noise and nonlinearities within the photodiode detector result in a measurement
error of £2.5 mm within a deflection range of £0.01 m. As the deflection increases to a

maximum of $0.25 m, the error increases to £10 mm.

5.3 Digital Implementation of the Controller

Figure 5.2 shows the closed-loop system in which the inner control loop has been

________________________________ _.}
Bo(s) + AS = *T()l e Y(e)
1 o(s) + 0 B
1I-K2T(s) A AT
C(s) Kas {
]
e} ;
!
]
_______________________________ _

Figure 5.2 Continuous time closed-loop system.

reconfigured in the format of the basic feedback control loop cf Figure 3.6. The servo
amplifier, servo motor, speed reducer, plant, infrared emitting diode, UDT camera and
UDT amplifier constitute a continuous-time system. The DSP, on the other hand, is
discrete-time in nature. For implementation on the C30 board, the continuous-time
controller must be converted to a discrete-time controller.

As a first step toward implementing a discrete-time controller, write the open-loop

equation of the controller relating Y, (s), Y(s) and ©(s) to 1(s):
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(s) = {[(Y,,,(s)-Y(s))S(s) +K2Y(s)] C(s) -G(s)} .

Rewrite Eq. (5.1) by substituting C(s) = ._.q_(sz__ and S(s) = ﬁ:
q(s) -K, p(s) §

K,q() (K, +sK ]
s[q(s) -K,p(s)]

(s) = Y",(s)[ ] - G)(s)(Kp +s5K d) +

. [ [, K, +s (K K,-K.K,) -K.K,14(5) ] |

s[q(s) -K,p(s)]

In vector notation, Eq. (5.2) becomes

Y"/(s)
Us) = g(8)| O)
Y(s)
where g(s) =[g,(s) £,(s) &(s)], and
K,q(s)[Kp +sK ]

8,(s) =

slq@s) -K,p(5)]
8,(8) = - (K, +sK))

[s’K,K,+s(K K,-K K ) -K K 19(s)

( =
8:() ST90) - K,p )]

é.1n

(5.2)

(5.3)

(5.4a)

(5.4b)

(5.4¢)

The controller defined by Eq’s. (5.1) through (5.4) is a multivariable system with

the three inputs Y, (s), ©(s), and Y{(s), and a single output T(s).

The problem at hand is to emulate the system of Eq. (5.3) on the C30 board, a

task represented by Figure 5.3.
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Figure §.3 Transforming the continuous controller: (a) continuous design of Eq. (5.3); (b) z-
domain approximation; (c) digital implementation.

The bilinear z-transform is used to obtain a discrete-time equivalent of g(s) as
follows:

g2) = gs) 2 127

77 Tz

This transformation maps the left half of the s-plane, band limited by the sampling
frequency _717, into the unit circle in the z-plane. It is therefore important to choose a
sampling per;od T, sufficiently small so that all the s-domain poles are included. The
bilinear z-transform always generates stable poles in the z-domain if the original s-plane
poles are stable.

Nyquist’s sampling theorem requires that a signal be sampled at a frequency equal

to at least twice its highest frequency component. Subsequent ideal low-pass filtering will
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allow the recovery of the original signal with no loss of information. Since such an ideal
filter is not realizable, practical sampling is performed at frequencies higher than the

Nyquist frequency. In the context of the problem at hand, this means that the sampling

frequency, f, =7{., should theoretically equal at least twice the maximum closed-loop

frequency component. In practice, though, £, should be substantially higher.

In Section 3.3, the largest closed-loop frequency was found to be 101.3 rad/s (16.1
Hz). The closed-loop system, however, neglects the effects of the hub position centroller.
Analysis of the simulated hub position responses of Chapter 4 provides some indication
of the frequency components found in the hub position signal. The fastest hub response,
shown in Figure 4.13c, occurs for the case of a 0.3 m step reference input. The highest
frequency components occur during the portion of the curve with the fastest rise time, that
is, during the time interval from O to 0.058 s. During this interval, the hub position varies
from O to 0.107 rad. The rise time for this interval is defined as the time required for the
hub position to rise from 10% to 90% of its final value of 0.107 rad, and is calculated to
be 0.040 s. One criterion for sample period seiection is to choose T, to be less than one-
tenth of the system rise time, that is, less than 0.004 s.

The value selected for T, is 0.002 s. T, corresponds to a sampling frequency of 500
Hz which is more than thirty times greater than the largest closed-loop frequency of 16.1
Hz found in Section 3.3.

Direct application of the bilinear z-transform to the high order transfer functions
8,(s) and g,(s) is a numerically ill conditioned approach that may yield inaccurate results.
A better technique involves a partial fraction expansion of each transfer function. Each

partial fraction is then transformed into the z-domain.
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Expansion of g,(s) and g;(s) yields:

‘ as*+as+a, a

= 5 (5.5)
s S ———— + —— + a \
£, § s2+b,'s+b‘., 5 6
4 csi+cs+C. c
i i i [
)=y " 2+Zses+c,. (5.6)
80 g s2+b,s+b, s © 7

The second-order polynomials in Eq’s. {5.5) and (5.6) all have complex-conjugate
roots.

Note the occurrence of the derivative term s in Eq’s. (5.4b) and (5.6). At high
frequencies, the gain corresponding to this term becomes very large and leads to
amplification of high-frequency noise. A good approximation to the term s for signals

whose frequency contents are below i rad/s, that minimizes the noise problem is
s

S
T+sT/2

=

Introduction of the pole ¢t s = —..Tz_ s limits the maximum gain to %

Application of the bilinear z-transform to Eq’s. (5.4b), (5.5) and (5.6), with the

previous approximation to the term s, yields the following expressions for g,(z), g,(z) and

8:(2):
sod+dzl'+dz?  d +d 27!
gl(Z) - E Y 4 ) + 5+ 62 + d7 (5.7)
i l+ezl+ez? 1-z-1
K([1-z"
8,(2) = {xp sl — ]] (5.8)

i 1+ez71+e272 1-z-1 T
) 3

+f; . (5.9)

s
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Taking the z-transform of Eq. (5.3) yields

Y"j(z)
u2) = g2 | OQ) | - (5.10)
Y(2)
Expanding Eq. (5.10) gives
2) = g,(2)Y, (2) + 8,(2)O@) + g,(2) Y(2) . (5.11)

To implement the discrete time controller shown in Figure 5.3c, Eq. (5.11) is

expressed in the time domain as a series of difference equations that relate

y",(nTs), O(nT,) and y(nT,), (and their values at sample times (n-1)T, and (n-2)T,), to

©(nT)).

5.4 Experimental Responses

Except where otherwise noted, all responses are obtained using a controller that digitally
implements a continuous-time controller with the same parameters used to generate the
simulations of Figures 4.1 through 4.13. Specifically, K,=1850, K,=-100, K,=3000 and
K =25. The numerator and denominator polynomials of the feed-through compensator 7(s)
are as defined in Section 3.2.1.

The control torque plots represent the values demanded by the controller. When
within the saturation limits of +34.7 Nm imposed by the system hardware, the plots
accurately represent the actual torque applied to the hub. When the plots exceed the

saturation limits, the actual torque is restricted to +34.7 Nm.

Yior (1)=0.1m

Figure 5.4 shows the responses of the closed-loop system to a reference step input

¥,ft)=0.1 m. The simulated responses for the nonlinear plant with PD hub control are

included for comparison purposes, and are represented by the dashed plots. The net tip

120




position of Figure 5.4a reaches its steady-state value in slightly more than 2 s, which is
close to the value observed for the simulation of the nonlinear plant with PD hub control.
A major difference between the two plots, though, is that while the simulation exhibits
a 3 rad/s oscillation that persists well after 2 s, the experimental response does not.
Conversely, the experimental response contains a 19 rad/s oscillation during the first two
seconds, an oscillation that is not present for the simulation.

Examination of the hub position in Figure 5.4c reveals that for 0<7<0.05 s, the
hub position remains at 0 rad. This delay is caused by hub stiction. The integrating action
of the servo compensator causes an increase of the control torque. The net result is a
disturbance effect at the hub that introduces a 19 rad/s oscillation of the tip deflection
during first 2 seconds, (shown in Figure 5.4¢), an oscillation that appears in the net tip
position. This oscillation is caused by excitation of the second flexible mode that has a
natural frequency of 19 rad/s. No such delay occurs for the simulation, and therefore no
such oscillation is induced.

The absence of any oscillation in the experimental net tip position after 2 s is most
likely caused by the additional damping effect of Coulomb friction inherent in the flexible
arm. No oscillation appears in the experimental tip deflection during this time interval,
in contrast to the simulated tip deflection of Figure 4.5¢c. Since Coulomb friction in the
arm is not incorporated into the plant model, the oscillation is not suppressed in the
simulated tip deflection.

In contrast to the nominal steady state value of 0 mm for the simulated tip
deflection, a steady state experimental tip deflection of 6.6 mm is observed. This nonzero
value is caused by Coulomb friction in the arm. The controller compensates by
maintaining the steady state hub position at 0.078 rad instead of the value of 0.083 rad
for the simulated hub position.

Control torque saturation occurs, as evidenced by the maximum demanded torque
value of over 100 Nm in Figure 5.4f. A significant amount of noise is also present, which
is caused by the derivative approximation term in g;(z). By acting upon Y(z), which is a

function of the hub angle and the tip deflection, this term amplifies the noise inherent in
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:ne UDT camera and amplifier. Friction and inertia of the hut attenuate this high

frequency noise so that its effect on the hub position, tip deflection and net tip position

is minimal.

Yier (=02 m

The experimental net tip position of Figure 5.5a shows an faster rise time and an
increased amplitude of the 19 rad/s oscillation during the first 2 s than observed for
Figure 5.4a. This frequency is superimposed upon a 3 rad/s oscillation whose amplitude
decays to zero at approximately 3 s. The larger value for y, A, when combined with the
integral action of the servo compensator and the delay of the hub position response,
results in a larger peak value of the demanded control torque. Although the actual applied
torque is limited to a maximum of 34.7 Nm for both cases, integrator windup causes the
applied torque to remain at its saturated value for a greater period of time. This creates

a greater disturbance effect upon the tip deflection, (that excites the first two flexible

modes), than occurs for y"j(t)=0.l m.

Y,or (=03 m

As shown in Figure 5.6a, the amplitudes of the 3 rad/s and 19 rad/s oscillations
are even larger than for ynj(:)=0.2 m. Once again, integrator windup amplifies the

disturbance effect caused by stiction-induced delay of the hub response.

Yot (=02 m, K, =1150

From the previous discussion, controller performance degrades as the magnitude
of the step reference input increases. As a solution to this problem, consider reducing

servo gain K,. While such a gain reduction has the effect of increasing the rise time of
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the output, it should also bound the demanded control torque and curb the problem of
integrator windup.

Figure 5.7 shows the responses to a reference step input y, () =0.2 m for a servo

gain K, =1150. All other controller parameters are unchanged. The time to steady state
of the output in Figure 5.7a is about 4 s, approximately double that of the response to

¥,.A)=0.1m in Figure 5.4a. The amplitudes of the 3 rad/s and 19 rad/s are substantially

less than for y,_(f)=0.2 m and K, =1850. Note that the peak demanded control torque of
Figure 5.7f is slightly less than 100 Nm, while the peak torque value of Figure 5.5f is 200

Nm. Thus, integrator windup and disturbance effects are reduced.

A New Reference Input: Ramp To Constant Position
An important contributing factor to the problem posed by integrator windup and

disturbance effects is the nature of the reference input. The selection of a step signal for
Y, A1) implies an infinitely fast transient response of tl.c output that can result in large

demanded control torques. Selection of another type of reference input that does not
contain large step discontinuities reduces the torque requirement and improves the
performance.

Such an input is shown as the dotted curve in Figure 5.8a. It consists of a ramp
that increases to a value of (.5 m in 0.25 s, at which point it remains constant. The

objective here is not to track the ramp portion of the input, but rather to achieve set-point
tracking of ynj(t)=0.5 m.

The net tip position reaches and remains at the 0.5 m steady state value within 4
s. The largest amplitude reference step input that can be reached in this same amount of
time, with no subsequent deviation, is 0.2 m. As shown in Figure 5.8f, the peak demanded
control torque is 50 Nm which is less than half the value observed for a reference step

input of 0.1 m.
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Hub Conirol

For comparison purposes, Figure 5.9 shows the results of applying a step input to
a system that implements only a PD control of the hub position. The proportional and

derivative gains are identicul to those used for the hub position control loop implemented
as part of the net tip position controller: specifically, X , = 3000 and K ,=25. Such a

controller can be effectively used for a rigid arm since the net tip position is equal to the
hub position multiplied by the (constant) length of the arm. Good control of the hub is
therefore equivalent to good control of the net tip position.

Figure 5.9a shows that the overshoot of the net tip position response exceeds
100%. A steady-state value is reached at approximately 7 s. Figures 5.9b and 5.9¢ show
that the hub position overshoots its steady state value by 26%. Obviously, this behaviour
contributes to the net tip position overshoot. The significant fact is that the net tip
position controller is a significant improvement upon a controller that fails to compensate

for the nonminimum phase characteristics of the plant.

124




. — .
e
. i 1
i ]
i
" . . reorr ser av poune sert sae el on ’ : ! ! b

4 8 4 o
TIME (seconda) TIME (caconds)

(a) Net tip position. (b) Hub position.

OAO 1 l
TIME (veconds)

Oa o'e
TIME (ssconce)

() Hub position. (d) Hub velocity.

002F i riee o e e s B s a e e o
1 .

oo . ;
001p & Soget e owe s e e e ame de bee v b esee res e ored
! . ——
[} L s H
[ - e H i
oF | . “s."' B T P
H ' :

TIP DEFLECTION (meters)
5
1

oosl] e e e e

4 0
TIME (seconds)

. 0
TIME (seconds)

(e) Tip deflection. (f) Control torque.

Figure 5.4 Experimental responses (solid line) and simulated responses for nonlinear plant with

PD hub control (dashed line), to 0.1 m step reference input.
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Figure 5.9 Experimental responses of PD hub position control system to 0.083 rad step refercnce

input.
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Chapter 6

Discussion, Conclusions
and Future Research

6.1 Discussion and Conclusions

As outlined in Section 3.1.2, the objective of the research described in this thesis was to

clesign a controller that

(1) tracks a constant or step reference y, (t) (set-point tracking), and
(i1) ensures that the closed-loop system remains stable in spite of the destabilizing

influence of the open-loop right-half plane zeros.

The experimental results of Chapter 5 reveal set-point tracking with negligible
steady-state error for step inputs of 0.1 m, 0.2 m and 0.3 m. The amplitude of the damped
3 radfs oscillation superimposed upon the nominal steady state-output observed for
simulations using the nonlinear plant model is greatly attenuated in the experimental
results. This “improved tracking performance" evident in the experimental results is not
due to controller action, but is instead a result of the increased damping effect of
Coulomb friction in the arm of the test-bed.

Additional discrepancies between the simulated and experimental net tip positions
occur during the transient portions of the responses. These oscillations originate in the tip
deflection which, when summed with the product £8(z), appear in the net tip position.

The experimental transient responses contain 19 rad/s oscillations that do not appear in

the simulations. In addition, the experimental 0.2 m and 0.3 m responses contain 3 rad/s
oscillations during the transient periods that cause rapid rise times to initial peaks at

1.5 s and subsequent undershoots at 2.3 s. The commanded torque values at these times
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are well within the saturation limits. Clearly, the controller is unable to suppress these
unwanted oscillations.

The high peak commanded torque values at 0.06 s caused by integrator windup
apparently excite the first and second flexible modes. The problem of integrator windup
can be minimized by stopping the integral action when the commanded torque saturates.
Increasing the amplitude of the reference input causes a proportionate increase in the peak
torque and results in greater excitation of these modes.

Maodification of the servo compensator is required to prevent disturbances of the
tip deflection from appearing at the net tip position. These disturbances can be caused by
hub stiction which leads to integrator windup and actuator saturation as described above.
A worsening of these disturbances can be expected for cases of plant parameter variations
and inaccurate plant modeling.

Admittedly, a step is a rather severe reference input that can lead to actuator
saturation and excitation of high frequency modes. These effects can be mitigated by
decreasing the control gains, as shown in Figure 5.7 where K, has been reduced from
1850 to 1150. Alternatively, the reference input signal can be changed to reduce the
magnitude of its high frequency content.

Strictly speaking, the approach adopted in this thesis of specifying the gains K,,,
K, K, and K, to be constants yields good closed-loop performance for a limited region
about the singie operating point designated in Section 2.4.5. Applying a rapidly varying
reference input to the closed-loop system results in large variations of the plant’s states
from this operating point. An improvement in the closed-loop performance would be
expected by redefining the operating point as the states vary, linearizing the plant for the
new operating point, and updating the gains. For a reference input known a priori, these
calculations can be performed off-line to reduce the computational burden.

Consider the response of Figure 5.8a, which corresponds to a reference input that
ramps to a constant value of 0.5 m in 0.25 s. The response reaches steady state in slightly
less than 4 5, a performance comparable to the 0.2 m and 0.3 m step responses. Moreover,
at 50 Nm, the peak commanded torque for the ramp-to-step input is less than one-quarter

and one-eighth of the peak commanded torques for the (0.2 m and 0.3 m step responses,
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respectively. Furthermore, the high frequency content of the tip deflection response to the
ramp-to-step input is less than for the step inputs. This may indicate that since the
continuous time controller contains an internal model of the linearized plant poles, (the
poles of T(s) equal those of G,(s)), and because the frequencies corresponding to the
higher order poles do not appear in the response, the order of the controller may be
decreased and its design simplified.

The hardware features that most complicate the design and implementaticn of the
controller are the large amounts of stiction and Coulomb friction at the hub which
originate primarily within the motor. A certain amount of stiction and Coulomb friction
are inevitable with a brush type DC motor since commutation always involves friction
between the brushes and the commutator. Brushless servo motors, on the other hand,
feature electronic commutation. Without brushes, stiction, Coulomb friction and viscous
damping are significantly less than for brush type motors.

As an illustration, a particular brush type permanent magnet DC servo motor with
a peak torque rating of 0.71 Nm has a static friction torque of 0.0282 Nm. A specific
brushless servo motor that can supply 2.53 Nm of peak torque has only 0.0026 Nm of
static friction torque. The brushless motor supplies more than 3.5 times the peak torque
of the brush type motor, with a ten-fold decrease in the static friction rating.

Another potential hardware improvement involves replacing the flexible arm, a
composite structure that includes not just distributed parameter components such as the
two parallel steel strips and the central annular tube, but also discrete-mass parts such as
the aluminum bridges. For simplicity, however, the arm is modeled as a distributed
parameter system with constant mass per unit length. For this reason, an accurate
determination of the natural frequencies of vibration of the arm must be performed
experimentally rather than by computation using Eq’s. (2.23) and (2.28). A homogeneous
arm composed of a length of aluminum of rectangular cross-section that is either solid or
tubular would be more amenable to accurate modeling using a theoretical approach.
Moreover, since there are no moving parts, Coulomb friction within the arm is
nonexistent. A solid or tubular arm of rectangular cross-section that possesses the same

resistance to torsional flexure as the composite arm, however, also has a larger area
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moment of inertia /, and a corresponding increased stiffness factor El.

As noted in Section 5.2, photadiode detector noise and nonlinearities reduce the
accuracy of tip deflection measurements. Tip slope causes a rotation of the diode that
decreases the optical power received at the detector. Slope-induced power loss will
worsen with the introduction of a moment load, such as adding a second link. Boosting
the peak diode current in an effort to minimize the power loss will lead to electrical
interference that can generate false triggering of the ADC. High intensity infrared
radiation can cause irreversible retinal damage, and is a serious health hazard unless
appiopriate eye protection is used.

An alternate method of measuring tip deflection uses strain gauges. To understand
the principle of strain measurement, consider a beam undergoing negative bending as

shown in Figure 2.3. The upper surface of the beam is stretched and the lower surface is
compressed. Strain, €, is a measure of the amount of deformation per unit length or

fractional change in length. For a differential beam element of length dx undergoing a

deformation ds at a point x along the length of the beam, strain is expressed as
E(x) = —

It can be shown (Shigley, 1983) that the strain can be written as

cEM(x,1)

(6.1)
]

elx,t) =

where M(x,?) is the moment at x, / is the area moment of inertia about the neutral axis,
and c is the cross-sectional distance from the neutral axis to the point x on the surface of
the beam where the strain is being computed.

Now, applying Eq’s. (2.13) and (2.15) yields the following expression that relates
the deflection of the beam, w(x,f) to the moment M(x,?) as

g1 - o (6.2)
ox?
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aw(x,t)

Substituting Eg. (6.2) into Eq. (6.1) and solving for =7
x

yields

owi(x,f) _ ex1) 6.3)
ox 2 cE*

The assumed modes method of Section 2.3.3 can be used to approximate w(x,f) as the

finite sum
N
wir,t) = Y 0,004, . (6.4)
n=]
Equation (6.3) is rewritten as
N do?
> 97(0) a0 = ) (6.5)

}
n=l dxz CE2

The eigenfunctions ¢,(x) and their second derivatives with respect to x can be determined
according to the procedure of Section 2.3.2. The functions g,(tf) may now be determined
using Eq. (6.5) and the deflection may be found using Eq. (6.4).

Unfortunately, substitution of x=h. where h is the free end, into Eq. (6.5) in an
effort to evaluate the deflection at this point will fail because the boundary condition for
M(x,1) (and €(x,1)) at h is zero. Evaluation of g,(¢) therefore requires measuring the strain
at multiple points along the arm. In essence, the states of the system are being measured.
This procedure can be simplified if it is known a priori that the system can be accurately
described by only a few flexible modes. This limits the number of strain measurements
that need be made along the length of the arm. A potential source of error using the strain
measurement technique is that inaccurate calculation of the eigenfunctions will cause
erroneous deflection values. For a homogeneous arm, accurate eigenfunction calculation
may be readily achieved; for more complex structures, however, these calculations may

be complicated.
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6.2 Future Research

Important areas for further research are robust performance and robust stability, the ability
of a closed-loop system to meet performance and stability specifications in spite of plant

uncertainty (Doyle et al 1992, and Dorato 1987). Uncertainty can arise from:

* inaccurate measurement of the plant’s parameters

* parameter drift due to component aging

» variation of the locally linearized plant’s poles and zeros as the system's
range of operation increases

» unmodeled dynamics, and

¢ measurement noise.

Any realistic application of the flexible manipulator involves introducing a payload
at the tip. A time-varying payload substantially complicates the model and the resulting
controller. Examination of control strategies for this situation is of significant practical
interest.

An additional level of interest and difficulty involves the madeling of and control

synthesis for a multiple-link flexible manipulator.
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APPENDIX A

Taylor Series Expansion Of
Equation (2.90)

M,j+C,j+K,q = 'K,g-mB . (2.90)

Consider the Taylor series expansion of each term of Eq. (2.90) about the

operating point 8, =8, =0 and g, =4, = §, =0.

mb = mpB, + .i(mzé)kﬁé =m,50 (A1)
ob

M= Mg, + _%(M,q)mq =M 5i (A2)

C = Cyh,+ _%(C,q) |84 =C,8¢ (A.3)

Kg=Kgq,+ %(K,q)l)ﬁq =K oq (A4)

0 d
62qu = 902qu0 +-é§' (62"2‘1)'086 +.a_q.(92K1q)|08q

(A.5)
0°K,g ~ 0.K,g,+20,K,q,50 +0.K,5q

0°K,g =0 .
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The linearized equations of motion are written by substituting Eq’s. (A.1) through
(A.S) into Eq. (2.90):

M,3§ +C,8¢ +K,8q = ~m,58 . (A.6)

where 8¢, 8¢, 84 and 80 denote small perturbations in ¢, ¢, § and 9, respectively, about

the operating point.
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APPENDIX B

Taylor Series Expansion Of
Equations (2.102a) & (2.102b)

Consider the Taylor series expansion of Eq.’s (2.102a) and (2.102b) about the

operating point ¢,, §,. §,, 6, and 8,.

m,(q)é +sz‘-I' +Cl(q,¢i)9 * cc‘ml[ 2 _ _1] = 1(f) (2.102a)
] +e”
m® +M,j+C,g+K,q-6'Kq =0 . (2.102b)

Expand each term of Eq. (2.102a) by a Taylor series and discard all terms that are second
order or higher:
d 0
m(@)8 = m (g,)8, +.a_‘.l7(m,(q)9)|08q +53(m,(q)9)|080 B.1)
~ m (g8, +28,[vqq +(M D(h)g)D(1)15q +m,(q,)58

T, T, 0 Tonl sa
myg = mg, +a—ﬁ(mzq)|05q (B.2)

T Tooe.
=myq, + m28q
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C,(q,q)G = C,(qo’qo)eo +33—T[C,(q’q)e]l)8q
0 .0 .
—[C,(¢.9)01,3¢ + —[C,(¢.9)61,66
+ aqT[ 1(9.4)61,84 ae[ 1(.9)81,

= Cl(qoa 40)90 + Cl(qo’ q.o)se
+20[1g0 +M g5 (DT(WD(R))18¢

+26,[v4 +M 4o (BT(R)D(H))]3q

ke, o™
e 12 _pfec J2 1|+ € 59
Lve™ Tee™ ] (1ee™p

T=1,+dt.

(B.3)

(B.4)

(B.S)

Expand each term of Eq. (2.102b), neglecting terms that are second order and

higher:
0

mb = mp, +.5.6..(sz)[,089
= mB, +m,30

Mg = Mg, n%w,mlosa
= Mg, + M54

. R PP

Cq=Cg,+ -é'q.-(cz‘l)‘oSG

= Cy, + C,0¢

0
Klq = Klqo +'3q-(xlq)t)8q
= K,q, + K,09
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(B.6)

B.7)

(B.8)

(B.9)




0°K,q ~ 9°K,g.-2 (0%K,q)| 50 -2 (67K q)
2 o 829 30( b aq( IR (B.10)

= -0, K,9,-26,K,q,00 -0 K 59 .

The Taylor series expansions of Eq’s. (2.102a) and (2.102b) can each be
partitioned into a nominal part and a linear perturbed part. The nominal parts of Eq’s.
(2.102a) and (2.102b) are computed by equating the nominal terms in Eq’s. (B.1) through
(B.10) and are shown in Eq’s. (B.11a) and (B.11b), respectively.

m(gy) 8, +m]d, + C (44,8, +cm,[ 2_ - ,] = 1, (B.11a)
l+e ™
m,® + Mg, +Cyd,+Kq,-0’K,g, = 0. (B.11b)

The linear perturbed part of Eq. (2.102a) is computed by equating the linear
perturbed terms in Eq’s. (B.1) through (B.5) and is shown in Eq. (B.12a).

2kccnule -keo e

m,(qo)ﬁé +m21‘84 o (AR -0
(l +¢ n)2

+20,g0 [y +M D" (D (h))5¢ (B.12a)
+28, [ygs +(M D(h)g,)D(h)15q

+20,[¥d0 +M 4o (DT(RYD(1)15g = &t .

The linear perturbed part of Eq. (2.102b) is computed by equating the linear
perturbed terms in Eq’s. (B.6) through (B.10) and is shown in Eq. (B.12b).

mzﬁé + M5 - 26 K,4,60 +C,8¢ +[K, -ezl(z]aq =0 . (B.12b)
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Consider the operating point ¢,=4,=§,=0, 8, and O, For M_ =0, the
approximation to the equations of motion for this operating point is found by substituting

the appropriate nominal values into Eq’s. (B.11) and (B.12).

The nominal equations of motion are:

ml(qo)éo +b60 +Coput 2 — -11= T, (B13a)
1+e™
mp, = 0. (B.13b)

Constant m, is non-zero. Equation (B.13b) therefore implies that 6, =0. The

nominal equation of motion for the system is found by substituting 90 =0 into Eq.

(B.13a):

bG‘,+cm,[ 2 —1] =7, . (B.14)

1+e ™

The linear perturbed equations of motion for the system are found to be

..kgo
m,(g,)58 +mI84 + bSO LK s st (B.15a)
2
(1+e™™)
m80 + M B + C,5¢ +K,5q -8:K,59 = 0 . (B.15b)
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APPENDIX C

Transmission Zero
Assignment

The problem is to arbitrarily assign the transmission zeros of [A,b,é,d], which is
equivalent to arbitrarily placing the eigenvalues of [A -bd "'¢]. The transmission zero
assignment problem thus becomes an eigenvalue assignment problem which can be solved
by choosing & and d appropriately if the system [A,b,é,d] is controllable.

Using the parameter values specified in section 2.4.2, A and b are found to be

(0331 0 0 0 1000)

0  -3310 0 0 0100

0 0 -165 0 0010
L0 0 0 -4138 00 0 1
9000 0 0 0 0000

0 -361380 0 0 0000

0 0 2704 0 0000

| 0 0 0 -10404 0 0 0 0

-

b = [0.247 0.496 -0.021 0.331 6.727 54.148 -34.649 832.674]" .

146



The system [A,b,é,d] is controllzble and the transmission zeros of [A,b,é‘,&]

may be arbitrarily assigned.

As explained in Section 3.2.2, d is chosen to be 1 in order to simplify the

calculations. The vector ¢ determines the locations of the transmission zeros as specified

for G(s) in Table 3.1, where

¢ =[20.677 5467 -16.099 0.833 3.910 0.082 -0.361 0.012] .
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APPENDIX D

Observer Design

Consider the system described by Eq. (3.6):

vV =Av+bs0 (3.6a)
dy = cv +dd0 . (3.6b)

The objective is to construct x, an estimate of state vector v. The vector x is
generated by a dynamic system called an observer. The observer’s inputs consist of 60
and dy and its state is x.

The observer has the form
x = Ex+bd0+~gdy-gdd0 . (D.1)
Substituting Eq. (3.6b) into Eq. (D.1) yields
X =Ex+gcv+bd0 . (D.2)

Defining the error e as v-x, the error dynamics are obtained by subtracting Eq. (D.2) from
Eq. (3.6a):

é =v-X =Av-gev-Ex (D.3)
é = (A-gcv-Ex .

If E = A-gc, Eq. (D.3) can be rewritten as

é = Ev-Ex = E(v-x) (D.4)
é = Ee .
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If all the eigenvalues of E have negative real parts, the error equation (D.4) is

asymptotically stable. This means that e(f)—0 and x(f)—v(f) as t—co. If the system of
Eq. (3.6) is observable, a vector g can always be found to yield any arbitrary set of
desired eigenvalues for E.

The system [A,b,c,d] is observable and the eigenvalues of E may be arbitrarily assigned.

Choosing the eigenvalues of matrix E to be
[-15 -155 -16 -165 -17 -17.5 -18 -18.5]

ensures that the observer dynamics do not significantly alter the dynamics of the system.

If the vector g is
g =10.115 0296 -13.600 -104.151 0.074 6.275 -748.137 3676.619)

the resulting eigenvalues of E are

[-1499 -1556 -15.78 -16.44 -16.85 -17.56 -18.04 -18.51]

which are close to the desired values.
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