: * National Library Biblicthéque nationale

Youu e Volre rdldrence

Our hle Notre télivrence

of Canada du Canada
Acaquisitions and Direction des acquisitions et
Bibliographic Services Branch des services bibliographiques
395 Wellington Street 395, rue Weillington
Ottawa, Ontano Ottawa (Ontario)
K1A ON4 K1A ON4

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c¢. C-30, and
subsequent amerdments.

Canada

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la thése soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S’il manque des pages, veuillez
communiquer avec !'université
qui a conféré le grade.

La qualité dimpression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont été
dactylographiées a l'aide d'un
ruban usé ou si l'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses amendements subséquents.

Cooperative Problem Solving
and the Game of Distributed Blackbox

Kristina Pitula

A Thesis
in
The Department
of
Computer Science

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science at
Concordia University
Montreal, Quebec, Canada

June 1990

® Kristina Pitula, 1990

I*l National Library Bibliothéque nationale
ol Canada du Canada

Your hle Voire reMvence

Ow b Notre rélécence

L'AUTEUR A ACCORDE UNE LICENCE
IRREVOCABLE ET NON EXCLUSIVE
PERMETTANT A LA BIBLIOTHEQUE

Acquisitions and Direction des acquisitions et
Bibliographic Services Branch des services bibliographiques
385 Wellington Street 395, rue Wellington
Ottawa, Ontariv Ottawa (Ontano)
K1A ON4 K1A ON4

THE AUTHOR HAS GRANTED AN

IRREVOCABLE NON-EXCLUSIVE

LICENCE ALLOWING THE NATIONAL

LIBRARY OF CANADA TO

REPRODUCE, LOAN, DISTRIBUTE OR
SELL COPIES OF HIS/HER THESIS BY
ANY MEANS AND IN ANY FORM OR
FORMAT, MAKING THIS THESIS
AVAILABLE TO INTERESTED
PERSONS.

THE AUTHOR RETAINS OWNERSHIP
OF THE COPYRIGHT IN HIS/HER
THESIS. NEITHER THE THESIS NOR
SUBSTANTIAL EXTRACTS FROM IT
MAY BE PRINTED OR OTHERWISE
REPRODUCED WITHOUT HIS/HER
PERMISSION.

NATIONALE DU CANADA DE
REPRODUIRE, PRETER, DISTRIBUER
OU VENDRE DES COPIES DE SA
THESE DE QUELQUE MANIERE ET
SOUS QUELQUE FORME QUE CE SOIT
POUR METTRE DES EXEMPLAIRES DE
CETTE THESE A LA DISPOSITION DES
PERSONNE INTERESSEES.

L'AUTEUR CONSERVE LA PROPRIETE
DU DROIT D'AUTEUR QUI PROTEGE
SA THESE. NI LA THESE NI DES
EXTRAITS SUBSTANTIELS DE CELLE-
CINE DOIVENT ETRE IMPRIMES OU
AUTREMENT REPRODUITS SANS SON
AUTORISATION.

ISBN 0-315-97704-3

Canadi

Abstract

Cooperative Problem Bolving
and the Game of Distributed Blackbox

Kristina Pitula

Distributed Problem Solving (DPS) consists of a set of
distributed expert systems or agents, that cooperate with
each other to solve a single, complex problem. Cooperative
problem solving studies how agents in a DPS system coordinate
their activity by pursuing a common goal, and thus cooperate
with each other. The difficulty of studying coordination and
cooperation in an abstract context make experimental work an
essential aspect of DPS research. In this thesis we examine
the issues involved in applying a cooperative problem solving
approach through the agency of a game called Distributed
Blackbox (DBB). DBB's suitability as a testbed for
experimental research is brought out through an extensive
comparison with the well known Distributed Vehicle Monitoring
Testbed (DVMT). The comparison reveals that DBB is much
simpler than DVMT, but provides a rich variety of problem
situations in which cooperation can be studied.

As a forerunner of DBB, we have designed, implemented, and
evaluated a single expert system to solve the game of
Blackbox. In the course of the design, we have developed an
appropriate knowledge representation for the problem. We
analyse the DBB problem, and propose a design for a DBB
prototype wherein agents coordinate their activity in a way
analogous to that used by people in human organisations. The
design incorporates a number of other features to facilitate
experiments. The characteristics of the DBB problem and the
features of the proposed design, make DDB appear eminently
suitable for studying many current issues in Distributed
Problem Solving.

iii

Acknovwledgements

I would 1like to thank everyone who aided, abetted, and
otherwise contributed in getting this production out. I would
like to give particular thanks to Dr. Radakrishnan, for his
patient guidance, pertinent questions, and for reading all
the first drafts. To John, who had the flush of inspiration,
and is still hot on the trail. To Carol and Thomas, who both
got swept into DBB with no forewarning. To Cliff, who was
there from the beginning, passed through all the intermediate
turmoil, and who may still have to live with Blackbox. To
Chef Mbage and Professor Hutton, who explained why, one
crocodile who got the whole thing rolling, and Mary, who says
she wants to read this for entertainment??? To the future Dr.
B., who enjoyed playing the game (a personalised copy in
colour), and to Capt. P, who learnt everything in a much
tougher school. To the family, who kept up the chicken soup
when the wolves were howling, (am I educated now?). And a
special *ACK* to Fre, who lived with all this for the past
few years even though it wasn't in the contract.

iv

"The researches of many commentators have already
thrown much darkness on this subject, and it is
probable that, if they continue, we shall soon

know nothing at all about it."
Mark Twain

contents

1. An Expert System Approach to Problem 8olving
1.1 Outline of the Thesis
1.2 Expert Systems
1.3 The Structure of an Expert System
1.4 Knowledge Representation
1.5 Reasoning Models and Strategies
1.6 Characterisation of Problems
1.7 Knowledge Engineering
1.8 Performance Evaluation

2. Cooperative Problem Solving
2.1 Reasoning Paradigms for Complex Problems
2.2 Distributed Problem Solving
2.3 Control and Coordination
2.4 Cooperation and Communication
2.5 Organisations of Intelligent Agents
2.6 Evaluation of a DPS System

3. A Comparative study of Two Testbeds for DPS
3.1 Desirable Characteristics of the Testbed

3.2 Advantages and Limitations of Existing
Testbeds

3.3 DVMT: The Distributed Vehicle Monitoring
Testbed

3.4 DBB: The Distributed Blackbox Testbed
3.5 A Critical Comparison of DBB and DVMT
3.6 Research Issues for which DBB is Suitable

4. The Blackbox Expert System

4.1 An Overview of the Problem and Our
Objectives

4.2 Overview of the Blackbox System
4.3 The Blackbox Solution Process

vi

23
24
29
33
41
50
54

56
57
59

67
72
77

80
80

85
91

4.4 Knowledge Representation in Blackbox
4.5 Reasoning Strategies within Blackbox
4.6 Evaluation of Blackbox

5. A Distributed Blackbox Expert System
5.1 An Organisational Model for DBB

5.2 Description of the Multiple Agent Blackbox
Problem

$.3 The Testbed Environment

5.4 The DBB Solution Process

5.5 Organisation of the DBB System

5.6 Two Alternative Organisations for DBB
5.7 Evaluation of the DBB Organisation

References

97
111
118

125
125
130

141
149
160
164
ile8

172

List of Figures and Tables

Fig. 2.1.1 8Six basic forms of organisation 27
Fig. 2.3.1 Trends i~ distributed computing 37
Fig. 2.4.1 The Prisoner's Dilemma 43
Fig. 2.4.2 An ambiguous situation 46
Fig. 2.4.3 Different states of knowledge 47
Fig. 2.4.4 Chaating Husbands 49
Fig. 2.5.1 Organisational roles within basic 51
organisations
Fig. 3.2.1 Prototype problems attempted in DAI 60
Fig. 3.3.1 Four sensor configuration in DVMT 64
Fig. 3.4.1 Example of beam behaviour in the game 68
of Blackbox
Fig. 3.4.2 Distributed Blackbox (DBB) 71
Fig. 3.6.1 Possible organisations for DBB 79
Fig. 4.1.1 Games that require guessing 83
Fig. 4.1.2 Firing order affecting a beam's 84
contribution
Fig. 4.2.1 Overview of the system's structure 85
Fig. 4.2.2 Session component 86
Fig. 4.2.3 Session specification menus 88
Fig. 4.2.4 Overview of the game component 89
Fig. 4.2.5 Screen display 91

Fig. 4.3.1 cControl choices in the solution process 93
Fig. 4.3.2 cConditions and affected control choices 93

Fig. 4.4.1 Ball configurations that affect beam 98
trajectories

Fig. 4.4.2 Direction of a beam on the board 98

Fig. 4.4.3 Representation of a beam's trajectory 100

Fig. 4.4.4 Representation of the grid 102

Fig. 4.4.5 Situation in which a ball vicinity is 103
defined

Fig. 4.4.6 Ball object 104

viii

Fig. 4.4.7
Fig. 4.4.8
Fig. 4.4.9
Fig. 4.4.10
Fig. 4.4.11
Fig. 4.4.12
Fig. 4.5.1
Fig. 4.6.1
Fig. 4.6.2
Fig. 4.6.3
Fig. 4.6.4
Fig. 5.1.1
Fig. 5.2.1
Fig. 5.2.2
Fig. 5.2.3
Fig. 5.2.4
Fig. 5.3.1
Fig. 5.3.2
Fig. 5.4.1
Fig. 5.4.2
Fig. 5.4.3
Fig. 5.4.4
Fig. 5.5.1
Table 2.1.1
Table 5.2.1

Possible shots on the board
Representation of possible shots
Representation of evaluated shots
Representation of an unsolved beam

Representation of a partial trajectory
hypothesis

Overview of the interrelationship among
the objects

Alternative trajectory hypotheses for
a beam

Performance measurements

Maximums and minimums obtained by the
expert system

Problem complexity

Comparison between the expert system
and a human player

Structure of an agent in an organisation
Overlapping regions shared by agents
Transparent beans

Inaccessible area within an agent's
gquadrant

Simultaneous firing of the same shot
Screen displav for one agent
Agent within the testbed

Problem solving activities of a DBB
agent

Local and negotiated shots

Problem state conditions and their
implications

Representation of the problem state
in DBB

Structure of a DBB agent within
the system

The advantages and disadvantages of
group decisions

Information requirements

ix

106
106
107
108
108

110

114

119
120

121
122

12¢
121
132
133

138
144
148
150

157
158

159

le62

28

135

Chapter 1
An Expert System Approach to Problem 8olving

Artificial Intelligence is concerned with creating models of
the human reasoning process that can be employed to solve
problems using computers. The problems considered generally
involve searches over very large search spaces. The
combinatorial explosion that can occur within even the most
seemingly trivial search space has lead to the development
of special techniques to handle these searches, based on the
methodc veople employ when reasoning in similar situations.
These methods rely on knowledge about the problem domain, and
domain related strategies to guide their searches. The
methods generally succeed, but they may sometimes fail. This
is a consequence of the ill-defined nature of the problems,
and the incompleteness of the reasoning models.

The symbolic knowledge employed by these systems is often
difficult to formulate using conventional approaches. This
has lead to the development of specialised AI languages, and
specialised software environments known as expert systems.
Both provide facilities for representing and manipulating
symbolic knowledge in a non-procedural fashion. Rather than
using mathematical computations and relationships, they use
the associations between knowledge and action to transform
the current state of the problem solver into a state which
"appears" closer to that of the desired solution. The
resulting systems differ significantly from non-AI systems
in the way they behave, in the way they are described, in the
type of problems they address, and in the way their
performance is evaluated.

1.1 oOutline of the Thesis

In this thesis we examine how an expert system approach can

be applied in a distributed environment in order to increase
the complexity of the problems that can be solved. Such
Distributed Problem Solving (DPS) systems would consist of
a set of semi-autonomous agents that cooperate with each
other to solve a single problem. The difficulty of studying
cooperation in a purely theoretical context makes experi-
mental work an essential aspect of DPS research. We propose
the game of Distributed Blackbox (DBB) as a suitable testbed
for experimenting with many current DPS issues. DBB's
advantages are brought out through an extensive comparison
with the well known Distributed Vehicle Monitoring Testbed
(DVMT) . The comparison reveals DBB's relative simplicity, and
a richness of problem situations in which cooperation can be
studied. A single expert systen to solve the game of Blackbox
is presented. A design for a DBB prototype is then progused.
These topics are covered in the following chapters.

Chapter one briefly describes how an expert system operates,
the different ways in which knowledge can be represented, the
reasoning strategies with which an expert system handles
uncertainty, and the work that the development of an expert
system entails. The latter covers the acquisition of
knowledge, the development of reasoning strategies, and
performance evaluation.

Chapter two explores the concept of cooperative problem
solving, and draws an analogy to the paradigms that people
use when reasoning about complex problems. The roles of
control, coordination, cooperation, and communication within
a DPS system are considered, with an emphasis on coopera-
tion. The various coordination schemes that have been
proposed for DPS systems are briefly surveyed, and a scheme
in which DPS agents employ "organisational" knowledge is then
examined more closely.

Chapter three describes the game of DBB, and the reasons
which make DBB appear a suitable problem for DPS research.
DBB's advantages and the DPS issues for which it is suitable
are brought out by comparing DBB to DVMT, and determining
DBB's similarities and differences.

Chapter four describes the game of Blackbox, and the expert
system that has been implemented to solve the problem. The
description cove s the representation of knowledge, the
solution process, the facilities for performance evaluation,
and the actual performance measurements obtained by the
Blackbox expert system.

The DBB problem is analysed in chapter five. A design for a
DBB prototype is proposed wherein agents employ "organisa-
tional" knowledge to coordinate their activity and cooperate
with each other. The design includes a number of other
features that promise to facilitate development and experi-
mentation with DBB. Chapter six contains the conclusion.

1.2 Expert Systems

Expert systems are a distinct class among AI systems because
they rely on domain knowledge in addition to general purpose
inference techniques. Rather than follow a fixed processing
sequence that systematically examines the entire search
space, the "solution process" varies according to the current
state of knowledge, choosing those actions which appear the
most promising. It is here that domain knowledge and human
expertise enter the picture, as the most appropriate action
to take may not be apparent from the available information.
Uncertainty arises because the problem is ill-defi.ed, and
the knowledge to solve it is incomplete. The ability to vary
the solution process according to the state of knowledge, and

3

to make decisions in spite of uncertainty about that state,
distinguishes expert systems from other approaches. A
consequence of this ability is that expert systems have
< ;highly variable and unpredictable processing patterns,
related to the amount and type of uncertainty in the problem.

Uncertainty is an inherent characteristic of the problems
addressed. The problems may be either ill-defined, or well-
defined but intractable due to processing complexity. A
problem is ill-defined because of: (a) inadequate or
inaccurate problem descriptions, (b) incomplete knowledge
about how to derive solutions, and (c) possibly no way of
determining whether the solutions actually found are
acceptable. Medical diagnosis is an application domain that
encompasses all three. In the case of well-defined but in-
tractable problems, the excessive processing requirements of
the solution model make the model effectively useless. The
travelling salesman problem is a classic example of this.

How this uncertainty is dealt with is highly dependent upon
the nature of the problem, and what end users consider an
accepntable solution. Many problems will have more than one
path to arrive at a solution. Certain problems will have more
than one solution, with no means of determining which is the
optimal one. Some way of approximating which solution or
solution path is the best is necessary in all cases. This
introduces inaccuracy at various points in both the solution
process and in the solution itself. Reducing inaccuracy will
increase processing complexity. As a consequence, accepta-
bility generally involves a tradeoff between timeliness and
accuracy.

How successful the solutions are will depend upon how well
the developer's definition of acceptability corresponds to

the vuser's expectations. This is highly dependent on both
the application domain, and its intended use. Given that the
number of problem instances is generally open-ended, there
is no a priori way of predicting the optimal solution path
for all cases. The reasoning model used by the expert system
may only be suitable for a subset of problems within the
problem domain. Establishing how well the systen's
performance fulfills the user's expectations is part of
evaluation. In this case, evaluation must not only verify
the logical correctness of the implementation, but must also
establish that the chosen subset of problems is represent-
ative of the domain, and that the system will perform
consistently for all problems that lie within this subset.

1.3 The S8tructure of an Expert System

An expert system consists of three basic components: a
knowledge base, a working memory, and an .inference engine,
that operate in the following way. The knowledge base
contains the knowledge pertaining to the problem domain. The
working memory contains a description of the current problem
solving state. The inference engine drives the reasoning
process. It analyses working memory, and applies the
corresponding knowledge in the knowledge base. The applica-
tion of knowledge transforms the contents of working memory,
leading to its reanalysis, and the application of more
knowledge, or termination. The state of the problem at any
stage determines the set of applicable knowledge. The
structure of the domain knowledge, combined with the order
of access defined by the inference engine, determines what
specific knowledge is applied at any given point during the
reasoning process.

The basic operating structure of an expert system is in

5 -

itself highly procedural. All non-procedural aspects to its
reasoning are supplied entirely by the developer. The
system's reasoning capabilities reside in its ability to
choose the next action from a set of possible alternatives,
and to undo the effect of this action and attempt an alter-
native action if the first one is considered unsuccessful.
It is the developer's responsibility to determine what
actions are valid alternatives, and to define the order in
which they are attempted. Specifying this flow requires an
understanding of how the knowledge encoded by the developer
interacts with the system's inference mechanisms when the
system chooses an action.

The knowledge base contains domain specific knowledge,
structured according to the needs of the solution process.
This knowledge consists of descriptions, procedures, and
relationships that identify, transform, and otherwise 1link
the symbols representing the problem. A generic unit of
knowledge can be described as a description associated with
an action that advances the solution in some way. The
description contains attributes that describe a problem
state, and may include preconditions that define when it can
be applied. An action may itself be composed of descriptions
pertaining to other actions at different 1levels. The
structuring of Kknowledge within the knowledge base
corresponds to the problem's decomposition for processing.

Working memory is the area in which the description of the
current problem solving state is maintained. This area is a
central data repository for the system, and is constantly
accessed during execution. The data it maintains consist of
a representation of the evolving solution, along with all its
intermediate states, and the information necessary to restore
any of these intermediate states if the current solution

proves to be wrong. All these representations must
necessarily relate to the descriptions defined in <the
knowledge base.

The inference engine drives the reasoning process by applying
the knowledge that corresponds to the problem state
maintained in working memory. Its basic functions consist of
pattern matching and scheduling. Pattern matching is the
process by which data in working memory is matched to
descriptions in the knowledge base in order to establish the
set of applicable knowledge. This involves constraint testing
when descriptions incorporate preconditions for their
activation. Scheduling consists of ordering the actions
within the set of valid alternatives. The order may be
explicit within the knowledge, or involve conflict resolution
if more than one action is equally applicable. Conflict
resolution may devolve to a system default, or lead to the
application of more knowledge. And when some chosen action
fails, the engine "backtracks" to the last decision point,
restoring all previous states along the way. It then
schedules an alternative action from the set of actions
available at that point.

The above provides a brief description of how an expert
system reasons. In addition to this, operational systems will
have a man-machine interface through which problem descrip-
tions can be entered, and solutions displayed. The display
may become relatively complex if system requirements include
a trace of the reasoning behind the solution, justifying its
correctness. Other support functions interpret the actions,
manage the knowledge base, and provide a development
environment. A development environment can be considered an
integral part of most systems, as they are generally
developed incrementally. These are the accessories with which
the expert system approach to problem solving is applied.

7

1.4 Knowledge Representation

Knowledge representation consists of expressing a human
expert's knowledge in a form that is suitable for processing
by an expert system. Given the many forms that human
knowledge can assume, no single form has proven adequate.
This has 1lead to the development of a large number of
formalisms. Each domain of application has its own, preferred
method of expression. The suitability of any knowledge
representation method will depend upon how easy it is to
model the domain knowledge using that method. It will also
depend upon the developer's skill in structuring the
knowledge to obtain the maximum benefit from the inference
mechanisms available in the expert system.

Broadly speaking, knowledge representation consists of (1)
assigning symbols to describe some body of knowledge, and
(2) defining the relationships between these symbols that are
necessary to solve the problem. The symbols are then inserted
into a knowledge base, whose access is controlled by the
system's inference rules. Within the knowledge base, the
symbols are stored in well-defined data structures asscciated
with specific operations and interdependencies. Access to any
structure leads to the corresponding associations. The
knowledge representation methods provide a framework for
structuring different types of knowledge into a form suitable
for creating a knowledge base.

Two general categories have emerged for classifying
knowledge: descriptive and procedural [1,2]. The former
emphasises the use of descriptions to represent such things
as concepts, facts, and problem states, and their inter-
relationships. The latter emphasises the procedural aspect
of reasoning, expressing knowledge as the process by which

"intelligent" operations transform a problem into a solution.
Most approaches incorporate aspects from both.

Systems that are considered descriptive employ constructs
such as "frames" and "semantic nets". They describe
conceptual objects in terms of attributes, component objects,
or interdependencies with other objects. The descriptions may
be associated with operations, and possibly include
information about the required order of access. The order may
be implicit within the interrelationships, or explicitly
provided.

When descriptions relate to operations, they can be
considered procedural. "Scripts" incorporate aspects from
both categories, as they generally provide plans for
interpreting the objects associated with them. "Production
systems" express knowledge as "rules". These incorporate
descriptions, preconditions, and operations, all of which
identify when and how they should be applied, and what they
will produce. Rules are further subdivided into "goals" and
"data", which correspond to descriptions and actions.

The large amount of knowledge and complex interdependencies
within a Kknowledge base must be structured to promote
comprehension and efficiency. This structure can be provided
by "levels of abstraction" or "areas of applicability" that
focus, constrain, or otherwise limit the amount of knowledge
that must be considered at any moment. When knowledge relates
to knowledge, it is known as "meta-level" knowledge [1].
Meta-levels can be built onto any level of knowledge, by
using layers to deal with successive levels of detail. Thus
the system may reason about the appropriateness of some
action before actually pursuing it, and that action may
itself concern reasoning about other more detailed aspects.

While levels of abstraction correspond to decomposing the
representation, areas of applicability relate to the division
of tasks. In both cases, modularity makes the knowledge
easier to express, easier to understand, and may result in
a more compact representation.

The data structures within a knowledge base correspond to the
conceptual objects used to represent the problem domain. The
interdependencies among these data structures express the
associations between knowledge that transform the objects and
drive the reasoning process. One aspect of knowledge
representation is concerned with choosing a set of symbols
that adequately expresses the domain's conceptual cbjects and
operations. This is the "knowledge engineering" problem,
which is described more fully later. The second aspect is
concerned with defining appropriate data structures and
relationships to store the objects in, and link them together
into a coherent whole.

1.5 Reasoning Models and strategies

Reasoning is the process by which new facts or premises are
inferred from those that are believed true. This simple
definition of purpose glosses over much of the perplexity
associated with the reasoning process, as our knowledge about
how people actually reason is extremely inconclusive and
often controversial [3,4). The "reasoning" performed by an
expert system is a highly stylised version of this process.
Expert systems employ only a limited subset of the possible
reasoning models, and these are principally concerned with
devising stratagems that reduce the total amount of time
spent on searches. The nature of the problem dictates what
stratagems are suitable, while the mechanisms provided by the
system determine how they are implemented.

10

People reason in order to integrate their experience into a
world view, which then provides a model for "rational"
interaction with the world. Several broad divisions have been
established to classify the forms that reasoning can assume.
These divisions are based on the subject's awareness of the
process, and the methodology by which it is realised [5]. Our
discussion will not enter the debate about the nature of
awareness, and whether a computer program can attain it [6].
Nor will we examine the reasoning methodologies in detail.
Our principal interest resides in the <convenient
classification labels these divisions provide us with.

Awareness is the quality of being cognizant of one's actions.
It is measured from its two extremes, with introspective at
one end and reflexive at the other. They describe to what
extent the subject is aware of the stimuli to which he is
responding. With introspective reasoning, the subject
integrates stimuli into his world view, and his response is
a deliberate consequence of that integration. At the other
extreme, the subject's response is reduced to a reflexive
reaction to the stimuli received, with no deliberation
involved. In an expert system, the degree of awareness
describes to what extent the system "deliberates" (integrates
its stimuli into a world view) before choosing an action.

All reasoning methodologies assume some initial premise(s)
from which the conclusion is inferred. The methods differ in
what they assume, and the way their conc’ usions are derived.
Intuitive reasoning derives conclusions by insight rather
than formal logic. Its conclusions must therefore be accepted
on faith. Both deductive and inductive methods rely on
logical inference to support their conclusions, but differ
in the nature of the conclusions drawn. Conclusions inferred
by deduction convey no additional knowledge beyond that

11

advanced in their premises. Their validity depends on the
validity of the individual premises, and that of the
inference rules. Conclusions inferred by induction draw
general propositions from the available evidence. Although
the premises support the conclusion, it does not necessarily
follow from them, and its implications exceed those that
could be drawn from the premises themselves.

Most human knowledge comes from inductive methods operating
in inconsistent systems, and is often guided by intuitive
leaps of inspiration [7]. This is particularly true of much
of the knowledge that expert systems attempt to model.
Current expert systems have extremely 1limited 1learning
capabilities, which effectively curtails their ability to
reason inductively (i.e., formulate general propositions from
a given set of premises). However, this does not prevent thenm
from employing inductive techniques -- in this case reasoning
from the particular to the general -- once the propositions
have been established and are assumed true. Deductive
techniques are straightforward to envision as the chaining
of premises according to inference rules. And although no
documented system has ever been "inspired", certain types of
intuitive knowledge can be captured in the form of
heuristics.

Many problem domains involve more than one type of reasoning
interwoven throughout the problem solving process. In others,
any one of the reasoning methods could be applied with equal
success. In most domains, the knowledge does not come
prepackaged and ready for use, but must be shaped into the
desired form. Nor does the knowledge neatly fit into the
models described. In many cases, establishing what reasoning
model is to be used will depend upon the perspective from
which the system is viewed. Whatever the chosen reasoning

12

methodolgy is, in most expert systems its implementation is
based on deductive techniques applied in a reflexive manner.

In an expert system, reasoning can be reduced to the process
of searching through its knowledge base to find a sequence
of actions that transform the initial problem state into a
solution state. Under most circumstances an exhaustive search
is infeasible, and therefore heuristic strategies are used
to prune the search space. The heuristic strategies attempt
to decrease the length of the search by (1) reasoning in the
direction of the least number of possibilities; (2)
eliminating impossible alternatives at an early stage of the
search; and (3) following the most promising paths first.
Each of the three increases the likelihood of finding a
solution quickly, but does not guarantee success. This is due
to the fact that even after pruning, the system may still
retain a high number of alternatives.

The number of possibilities that the system must consider
often depends on the direction in which the search is
performed. Possible directions consist of top-down, bottom-
up, and bidirectional [1]. The first two define two distinct
approaches, whereas the last combines both in an opportun-
istic fashion. They describe the reasoning methodology for
solving the problem, and the way it is implemented by the
system's inference engine. Each may employ a different
approach within the same system. However, the suitability of
any approach is highly dependent upon the problem itself.

With a top-down strategy (otherwise known as goal driven, or
backward chaining), the system reasons backwards from some
final, desired "goal". It establishes whether it can reach
that goal by determining if it can satisfy the conditions
associated with it. These conditions may themselves be

13

subgoals, which require the satisfaction of further subgoals
in a recursive fashion that brings them back to the original
problem statenment.

With a bottom-up strategy (also known as data or event
driven, and forward chaining), the system reasons forward
from the current problem state to the solution. It exanmines
the current state of data or events to determine what
conditions have been satified, then activates the corre-
sponding rules in the knowledge base. This process is
repeated until the solution is found.

For many problems a single strategy is insufficient. Instead,
they combine both top-down and bottom—-up reasoning in a
bidirectional fashion, employing either one according to
which seems the most promising. This can be applied either
during the problem's decomposition, or during its execution.
In the first case, certain subgoals are resolved using one
approach while others employ the alternative approach. In the
second, if the problem does not succumb to one approach, the
alternative one is attempted.

Whenever possible, the search must be selective in its
choices. However, very often it is difficult to evaluate the
alternatives, and determine which is optimal. There are
various means of dealing with uncertainty about which cheoice
is “pest™, and obvious consequences to their use. The
simplest methods consist of backtracking and postponing
decisions. When these are inappropriate, then probabilisitic
methods can be employed.

Backtracking is among the easiest ways of dealing with

uncertainty. It consists of attempting one alternative, and
if <that one doesn't succeed, restoring all changes and

14

attempting another. Although its simplicity makes it
attractive, it is not always possible to apply. It can only
be used if the attempt does not result in any irrevocable
changes being made to the problem data. Postponing decisions
until all the necessary information is available is an
alternative choice. However, it also has its limitations,
and requires that delays be tolerable, and do not become

indefinite.

various techniques exist for incorporating probabilities into
the decision process. Certain types of probabilistic
knowledge can be obtained from the expert and expressed in
heuristics. Other methods assign probabilities to the
different possibilities, then propagate these values down the
various paths. Belief systems [5] extend the notion of
probability by calculating the "plausibility" of their
choices. This expresses the value of both the supporting
evidence, and the non-refuting evidence. Many other
variations exist. Although all are useful, a common
difficulty is the problem of assigning some gquantitative
value to a qualitative attribute.

Many real-world problems cannot be resolved using any single
approach, but require the use of several approaches, possibly
applied simultaneously. Such problems are said to employ
"multiple 1lines of reasoning". When these are employed in
different areas of applicability, interaction between the
areas can be limited by careful decomposition of the problen.
A divide and «conquer strategy, or a hierarchical
decomposition are two possible strategies for partitioning
the problem. When different lines of reasoning are applied
to the same problem area, each constitutes an alternative
strategy that could henefit from the information obtained by
the use of the others. In all cases, a certain amount of

15

interaction is necessary to integrate the results obtained.
Establishing what form this interaction could take is one of
the issues examined in chapter 2.

1.6 Characterisation of Problens

The nature of the problem plays a major role in determining
what form the expert system will assume. The type of
uncertainty present in the problem, and the way it is handled
are two critical factors in this choice. Both the type of
problem, and its specific characteristics will affect the
choice of knowledge representation and reasoning methodology.
The nature of the desired solution will have an additional
impact. All these factors will be important in determining
the system's problem solving structure, and its capabilities
and limitations.

The problems that expert systems are designed to solve can
be divided into two categories: classification problems, and
construction problems [8). Diagnosis, analysis, and inter-
pretation, are typical classification problems, while design,
prediction, and planning are generally considered construc-
tion problems. Each category employs a different approach for
representing and transforming the problem. With classifica-
tion problems, all possible solutions are specified at the
beginning. Reasoning about a given problem case is
principally concerned with mapping input data into the
solution set. In construction problems, each problem case
produces a unique solution, constructed from a unique
combination of the Lasic conceptual objects employed. With
these problems, the number of solutions involved makes it
impossible to specify all solutions a priori. Certain
problems will involve tasks from both categories.

16

There are four general categories for classifying systems
according to the characteristics of their searches:
monotonic, partially commutative, commutative, and non-
commutative [2]. In a monotonic system, the application of
one rule does not prevent the application of another that
could have been applied when the first was chosen. In a
partially commutative system, if the application of a
particular sequence of rules produces some state, then any
"meaningful"” permutation of this sequence will produce the
same result. A commutative system combines the properties of
both, whereas a non-commutative system has the properties of
neither.

Each of the above categories has implications on how the
search strategy must deal with uncertainty. In a monotonic
system, backtracking is possible. In a partially commutative
system, the order in which the solution is constructed is not
critical. A commutative system will combine the advantages
of both, benefiting from both the ability to backtrack, and
a non-critical processing order. The same will not be true
of a non-commutative system, which must commit itself to a
single solution path once its choice is made. As a conse-
guence, non-commutative systems are obliged to evaluate their
options much more carefully beforc making any decisions.

The size of the problem space, the ease with which it can be
represented, and its factorability will affect the problem's
decomposition and the choice of search strategy. The
strategy's complexity will largely depend on the amount of
interaction introduced by the decomposition, the character-
istics of the initial input data, and of the intermediate
solutions. All of these will contribute to the uncertainty
the system must handle. Interaction will affect the number
of alternatives available. Unreliable data increases

17

processing complexity, and time varying data introduces
processing constraints. The stage at which partial solutions
are evaluated, and the efficacy of evaluation will influence
the amount of uncertainty present at that stage in the
solution. Another factor to consider is whether the
uncertainty remains isolated, or is propagated throughout the
system. Each will add its flavour to the search requirements.

The nature of the solution, and the form in which it is
expected will have an equally important impact on the choice
of strategy. Certain problems will have only one solution,
while others may have several. If several solutions are
possible, is any solution acceptable, should the best one be
found, or are all solutions necessary? With some problemns,
the existence of at least one solution is guaranteed, while
other problems may not have a guaranteed solution. This will
have a significant impact on knowledge requirements, as it
is critical to have some timely way of determining when to
abandon futile searches. It may be necessary to structure the
reasoning strategy so that it is understandable to the users
of the system. All these factors must be considered when a
strategy is selected.

1.7 Knowledge Engineering

Knowledge engineering is the process of acquiring the
knowledge necessary to solve problems in a given domain, and
creating an expert system with it. The knowledge engineer
must not only capture the relevant knowledge, but must also
represent it using a structure that optimises the system's
problem solving abilities. Although general methodologies
exist, there is no prescribed method for accomplishing this.
Each problem will have a combination of characteristics that
make it unique, and each system will be a unique response to

18

that problem's requirements as perceived by the knowledge
engineer. The success of any system will largely depend on
the engineer's perspicacity and skill.

The expert system development cycle is generally described
as an iterative process which passes through several refine-
ment cycles. The nrocess involves acquiring the knowledge,
developing a suitable representation for it, structuring the
search strategies, and observing how the resulting systen
performs. Feedback from the performance tests will indicate
what improvements are necessary, leading to further
refinements of the system. This iterative process is repeated
as often as necessary until either the system objectives are
attained, or the system is abandoned.

In many systems the knowledge acquisition phase is considered
one of the most difficult and time consuming aspects of
development. This can be attributed to the amount of time
reguired to thoroughly understand the problem. Familiarisa-
tion with the problem domain is necessary before the problenm
can be analysed. Its analysis requires careful consideration
of how subproblems interact, and what knowledge is relevant.
Even when the knowledge engineer is familiar with the domain,
has an idea of the relevant knowledge, and has an expert at
his disposition, the "expert" knowledge he wishes to obtain
is generally difficult to extract.

The knowledge representation phase involves similar
difficulties. There is no prescribed method for mapping
abstract concepts into symbols. The proposed representation
formalisms must be adapted to the specific requirements of
the problem. The actual representation must have a structure
appropriate for implementing the chosen strategies with the
available inference mechanisms. In addition to this, it may

19

be necessary to represent what knowledge the system does not
have, and otherwise close its definitions. This is not always
obvious, and thus adds to the difficulty.

Developing the search strategies must proceed together with
the other phases, as all have an impact on each other. The
choice of strategy is influenced by the characteristics of
the problem. At the same time, the available knowledge
determines what strategies can be implemented, and their
effectiveness. Determining what strategy will be the most
suitable for a given problem is not simple, even when the
problem's characteristics are relatively well kriown, and its
representation has been established. The initial choice is
often based on intuition, and requires substantial refine-
nent before the expected performance is attained. Nor can
this performance be guaranteed unless all possible problem
occurrences have been considered.

Knowledge engineering can be viewed as the art of reducing
some open body of knowledge into a consistent symbol system
that models a subset of that knowledge in a way that permits
its processing on a computer. It requires skill, perspica-
city, intuition, and time on the part of the developer, with
no guarantee that the amount of effort put in will preocduce
a comparable result. Few, if any, systems attain the level
of reasoning complexity that researchers would like to claim
these systems are capable of achieving. The reason for this
is that although it is easy to collect facts, understanding
how the mind combines these facts to derive solutions in a
timely way is an open issue. For this reason, designing
expert systems remains an art, as opposed to a methodological
science. The system's intelligence resides in the associa-
tions that the developer builds into the knowledge base
rather than in the facts themselves. It is these associations

20

that drive the solution process, and determine the system's
problem solving intelligence.

1.8 Performance Evaluation

Evaluation can be defined as the process of verifying and
validating the system's problem solving abilities. Verifica-
tion consists of demonstrating the system's consistency,
completeness, and correctness, while validation involves
establishing that the system attains the objectives which it
was designed for. As attaining the problem solving ability
of a human expert is impossible with current technology, the
goal is reduced to one of finding acceptable solutions within
some narrowly defined problem domain. This requires defining
what is considered acceptable, and the limits of the domain.
Defining the limits of the domain of applicability requires
determining the range of problems for which acceptable
solutions can be found.

Evaluating the performance of an expert system is a critical
aspect of its development. Yet, it is often one of the most
rushed phases during which many crucial factors are easily
overlooked. The difficulty associated with evaluating an
expert system arises because the expert system is not only
a program, but also a model that can only approximate its
real-world equivalent [9]. Thus its performance will
necessarily differ from that of its real-world counterpart.
Determining what these differences are is an important aspect
of the evaluation process, necessary to establish the
system's . abilities and 1limitations. However, these
differences are often difficult to establish due to the
nature of the systems, and the subjective evaluations
involved.

2l

One of the most difficult aspects of evaluation is seperating
the bugs in the program from the errors in the model. The
difficulty arises because there is no way of guaranteeing
that the system contains no bugs, yet proving the correctness
of the model relies entirely on the system. Even though the
model may appear to work correctly, there is no way of
establishing how it will work under unforeseen circumstances.
We can only assume that what holds for the observed examples
can be generalised into a statement about the model itself.
The chosen examples must therefore be representative of all
the problems the system may encounter. Yet the number of
possible examples is generally large, and it is the
unforeseen examples which are precisely those omitted from
the set of representative problems used to judge the system.

22

Chapter 2
Cooperative Problem Bolving

The expert system model is a powerful tool for solving many
problems that contain uncertainty. Its principal limitations
reside in the resource constraints of a single machine, and
the developer's analytic skills. Cooperative problem solving
examines how the model can be extended to take advantage of
the benefits that distribution offers. Here, the problem
solving expertise is distributed among a set of intelligent
agents that operate autonomously, but cooperate with each
other to construct a single soiution. The agents' concurrent
activity reduces processing time and allows the simultaneous
pursuit of multiple lines of reasoning. However, along with
these advantages, distribution introduces additional
complexity, and raises the major issue of how control should
be implemented.

The terms "control", "coordination", and "cooperation" all
refer to directing the activity of a group. Each term carries
connotations on the nature of the direction present. Control
simply refers to directives, and does not make any allusion
to their collective meaning, nor to the gquality of the
direction they provide. Coordination has collective
significance, and implies a non-conflicting combination of
activity. Cooperation conveys additional significance in that
all members work for the benefit of the group. The following
definitions are used:

Def" Control: Control refers to the exchange of implicit
or explicit directives that govern what goals each
member of the group pursues.

Def" Coordination: Coordination refers to the combined
activity of the group wherein the goals of the

individual members do not adversely affect the goals

of the other members of the group.

-

Def" Cooperation: Cooperation refers to the combined
activity of the group, wherein all members' goals
are coordinated, and all members pursue a common
goal.

A system in which control is exerted is not necessarily
coordinated, nor do coordinated agents necessarily cooperate.
On the other hand, a group must have some form of control in
order to coordinate the activity of its individual members,
aid cooperating agents must also coordinate their combined
activity if their activity 1is to be cooperative.
Communication is an essential factor in all three cases, in
order to unite the disparate agents into a group.

Within a DPS system, agents make control decisions which
determine what local actions or interactions the agents will
undertake. These control decisions must be coordinated so
that the agents work together as a coherent team, and do not
choose activities which conflict with each other's goals. The
central issue is how global coherence can be maintained with
a minimum amount of communication and without sacrificing the
individual agents' autonomy and concurrency. The metaphor
"cooperation" expresses how autonomous agents interact using
"intelligent" communication policies that allow each to
influence the others' behaviour, and thus converge onto a
globally consistent solution. This type of behaviour can be
equated to that found in human organisations.

2.1 Reasoning Paradigms for Complex Problems

The problems considered by cooperating agents are those which
are intrinsically difficult due to their size, their
complexity, and their real-time response requirements. Their
difficulty resides in the complexity of their information

24

requirements [10], and the “bounded rationality" of the
agents that process the information [11]. Bounded rationality
is defined as the limitation on an individual's capacity to
process information in order to arrive at ‘"rational"
decisions. Information complexity arises because of the
amount of information required to solve the problem, its
diverse origins, and the interdependencies within it that
make it difficult to partition into smaller more manageable
units. Yet, partitioning is necessary, as an agent's bounded
rationality places a limit on the amount of information that
one agent can assimilate, and the amount of control that it
can exert within a given time period. People have avolved
various ways of handling such problems on both the individual
and social 1level. Understanding these methods is useful
before attempting to model them.

Theories about human cognitive processes generally agree that
pecple employ two basic paradigms when reasoning: the
sequential (or 1logical) paradigm, and the parallel (or
gestalt) paradigm [5]). Both paradigms rely on decomposing
the problem into more tractable subproblems to reduce
complexity, but they differ substantially in the way the
resulting subproblems are solved and reintegrated. The
sequential approach decomposes problems into relatively
independent subproblems which involve only a limited subset
of the available data at any moment. The subproblems are then
solved independently, and <their partial solutions are
integrated into a final result. The principles involved in
the parallel paradigm are much more difficult to grasp.
Somehow, the significance of all the available data is
simultaneocusly considered and integrated. And this occurs
inspite of the very real bounds on the amount of information
that a single agent can assimilate at one time.

25

The sequential and parallel paradigms pervade all human
activity, whether it occurs at the individual 1level in
fundamental activities such as vision, motion, and creative
thinking, or on a larger scale, in social organisations that
address problems beyond the scope of a single person.
Applying the sequential approach is relatively straight-
forward. Given that subproblems involve little interaction,
they can be solved either sequentially or concurrently,
depending on their temporal relations. Problems that fall
into the second category cannot be solved so simply. The
solution to any subproblem is dependent on all the others.
This interdependency dictates that processing must proceed
in parallel and with cross reference if any solution is to
be found. Accomplishing this effectively requires some
mechanism that focuses on the relevant information, and
provides a global overview with which subproblem processing
is guided. One approach to this problem is that of
considering the system as an "organisation of intelligent
agents" [12].

An organisation is the structure that identifies the flow of
communication, the 1locus of decisions, and the sphere of
influence of the different task centres involved in solving
a given problem. Its purpose is the division of tasks to
respect the <constraints of an individual's bounded
rationality. The organisation's structure differs according
to the complexity and uncertainty present in the problenm,
and has an equally important impact on the organisation's
effectiveness. Fox has identified six basic forms of
organisation, each of which has distinct advantages and
disadvantages that make it appropriate for certain
environments while totally unsuitable for others [11). These
organisational forms are described in Figure 2.1.1.

26

(1) A single member organisation ls the least complex of all, with no communication
requirements, and a simple control structure that is easy to realise. However, its restricted
resources place a limit on the problem complexity that it can handie.

(2) A team organisation overcomes this limitation by providing more resources. Each member is
assigned a subtask in the problem. Members work on their individual tasks, but share a common
goal. Each member can readily access the information and resuits produced by the others.
Coordination is achieved through some form of consensus among the members. The organisation
reaches its limits when the probiem’s complexity makes collective decision making more time
consuming than beneficial.

(3) A simple hisrarchy Is an alternative way of providing additional resources. Here, a single
decision maker handles decisions for the group, assigning specific tasks to each member. He
must therefore have all the information necessary to make valid decisions. Although suitable for
many problems, centralised decisions create a bottieneck when uncertainty is encountered. This
form is inadequate when the problem's complexity makes a single decision maker insufficient.

(4) A multilevel hierarchy constitutes the next stage of problem solving ability. Authority here is
distributed within a tree structura. Members within the same leve! are only responsible for part of
the information, decision making, and control. Authority is shared within a level, while it is exerted
over lower levels, and must yield to directives received from above. Individuals have well defined
tasks, responsibilities, and communication requirements. Inspite of this, control is complex and
bureaucratic overioading may occur, with top levels swamped under high uncertainty.

(5) A decentralised organisation overcomes this limitation, but introduces other disadvantages.
Here, top level member are organisations themselves, responsible for all resources and decisions
within their "division". Top levels are more concerned with long term strategies, while lower gvels
deal with the more detailed aspects of daily operation. The problem here is that integration is
difficult as no direct mechanism is available to coordinate activity and promote cooperation among
the divisions.

(6) A market organisation employs an alternative coordination scheme. The market consists of a
set of autonomous organisations, with each responsible for its own resources and decisions. Each
organisation has the choice of performing tasks iocally, or contracting them out, with cost the
major factor in the decision. The inherent difficulty with contracting mechanisins is how to establish
the true market value of services, a critical factor when deciding how tasks should be handled.
Constructing a global overview of the market's state may be time consuming.

Figure 2.1.1: Six Lasic forms of organisation

There is room for much diversity within these six frame-
works. Although they describe the locus of responsibility,
they do not prescribe how decisions are actually made. The

27

decision procedure used, and the source of information for
the decision, have a critical impact on the behaviour of an
organisation. Decisions are generally made by either
consensus or decree. The former involves group participa-
tion, while the latter relies on a single person to make
decisions for the group. A comparison of the advantages and
disadvantages is provided in table 2.1.1. The decision
process in most organisations rarely occupies either extreme.
The source of information may add another skew to it. If the
supplier filters the iniormation on which the decisions are
based, he has a major impact on these decisions even though
their maker may not be aware of this. The combination of
decision procedure and source of information make each
organisation unique.

Table 2.1.1
The advantages and disadvantages of group decisions. {13]

Advantages:

Groups can accumulate more knowledge and facts.

Groups have a broader perspective and consider more alternative solutions,

Individuals who participate in the decision are more satisfied and more likely
to support it.

Group decision processes serve an important communication function, as well
as a useful political function.

Disadvantages:

Groups often work more slowly than individuals.

Group decisions involve considerable compromise which may lead to less than
optimal decisions.

Groups are often dominated by one individual or small clique thereby negating
many of the virtues of group processes.

Overreliance on group decisions may inhibit management's ability to react
quickly and decisively when necessary.

28

Another important characteristic of organisations is that
they evolve. Complex organisations do not suddenly appear.
They either evolve from a simpler form, or result from a
split with a parent organisation, which already has a fully
developed structure. An organisation's evolution allows it
to handle problems of increasing complexity. At the same
time, it increases the complexity of the coordination task.
As the organisation evolves, it must adapt its control
structure to its changing needs, often passing from one form
to another. Thus, organisations are dynamic solutions that
evolve in response to changes in the nature of the problem
addressed, and their environment.

Organisations are solutions to problems whose complexity
exceeds the scope of the individual. Certain researchers
believe that an analogous model can be applied to the
individual's cognitive processes [12]. The organisational
forms in current use have historical roots, and continue to
evolve as survival needs change [14]. The formal structures
described by organisational theory are not complete models
of the organisational phenomenon. It 1is a generally
recognised fact that all the formal structures are
necessarily complemented by informal structures in order to
function [15,16). Organisations exhibit similar character-
istics to other reasoning processes in that although their
manifestation is visible, how they actually function is
largely unobservable.

2.2 Distributed Problem Bolving

Distributed artificial intelligence (DAI) is concerned with
studying how a group of intelligent agents can combine their
resources to vroduce a problem solving potential greater than
the sum of the individual agents' intelligence. Thus, it is

29

directly concerned with gestalt reasoning. Distributed
broblem solving (DPS) examines the issues involved in getting
a group of semi-autonomous agents to interact cooperatively
while solving problems in a distributed computing environment
[17]). The individual agents are sophisticated problem solvers
constructed using standard AI techniques, and they cooperate
because of the bounded rationality of any single agent.
However, the way this is realised is constrained by the
limited bandwidth available for communication. The crucial
issue is how these agents can coordinate their activity
without introducing a high overhead that would effectively
cancel any of the benefits that could be obtained from
multiple agents.

The distributed environment in which these agents operate is
characterised by the following three criteria [18]:

(a) The distributed agents communicate with each other
only by passing messages; (agents are autonomous).

(b) Agents do not share any common physical clock;
(agents operate concurrently and at their own speed).

(c) The channels connecting the agents are reliable FIFO
channels, but they introduce arbitrary delay in
delivering messages; (nondeterminism).

This type of environment offers definite advantages in terms
of parallelism and fault <tolerance. However it also
introduces the additional complexity of coordinating global
activity under increased uncertainty due to nondeterminism.
The bounded rationality of the agents and the limited
communications bandwidth dictate that coordination must be
accomplished in a decentralised fashion with a minimum amount

30

of communication. Given that the agents must cooperate
together at the same time that they operate asynchronously,
they must communicate in a sophisticated way. A consequence
of this is that the agents in DPS systems must be capable of
introspective reasoning about their actions and reactions,
in addition to having their basic problem solving
intelligence.

DPS systems seem eminently suitable for AI applications which
are inherently distributed. A geographic distribution based
on the intrinsic properties of the problem produces one
partitioning, while a decomposition based on the functional
aspects of the system produces another. Further partitioning
along hierarchical and temporal lines is possible. Air
traffic surveillance, cooperating robots, and understanding
of spoken natural language are examples of application
domains [17]). Problem partitioning is equally beneficial for
problems whose complexity exceeds the understanding of a
single individual. Furthermore, DPS systems offer a way of
solving problems that involve gestalt reasoning.

An ideal ©problem decomposition produces functionally
independent, but 1logically related subproblems that must
concur to pro'uce a global solution. The difficulty of
coordinating the global problem solving process arises from
the fact that the natural distribution of data within the
problems does not coincide with that required to make
effective control decisions. Furthermore, the overhead
associated with collecting the necessary information from
the distributed sources would degrade the systenm's
performance to unacceptable 1levels. The coordination
mechanism within these systems must exploit the functional
independence and the 1logical interdependence between
subproblem partitions to constrain processing and converge

31

on solutions in spite of incomplete knowledge and
uncertainty.

The agents in a DPS system cannot be totally autonomous.
Their individual activity is related by the interdependencies
that link them together into a single problem solving system.
Agents are given the autonomy to react "opportunistically"
to changes they "perceive" in the problem state. However,
what they perceive is determined by the policies that govern
their interaction with other agents. By varying the type of
permissible interactions among the agents, the system's
behaviour can be modified to provide individual agents with
varying degrees of autonomy and influence on global
behaviour.

The relaxation of tight synchronisation requirements in a
loosely coupled environment implies that agents must be aware
of what is expected from them, and of what is occurring
elsewhere, particularly when no communication is forthcoming.
This introduces the need for agents to have a planning
function that integrates their activity with what they
perceive of the global system. The amount of autonomy an
agent can assume without compromising system performance will
depend upon the validity of its local planning decisions. The
correctness of these decisions will depend upon the agent's
planning knowledge and local view of global activity. This
is both a knowledge engineering and communications problem,
in which the communications and resource reguirements must
be balanced against the timeliness and accuracy necessary to
produce acceptable solutions within the context of some
specific problem.

The type of response possible with any given system config-
uration will be highly problem dependent. The granularity,

32

frequency, and expected validity of the individual agents'
decisions will determine the amount and type of interaction
necessary. This, in turn, will affect the agents' accuracy,
sensitivity, and autonomy. Similarly, the way control is
implemented will determine how serialised the agents'
activity is, whether it has a global focus, and how this
focus can be modified to take advantage of local opportu-
nities most effectively. All are unresolved questions that
are difficult to answer in a general context.

2.3 Control and Coordination

The characteristics of a distributed environment dictate that
global system control must be implemented in a decentralised
and asynchronous fashion in order to maintain an acceptable
level of overall performance [19]. The characteristics of DPS
problems dictate that individual agents must be aware of what
is occurring elsewhere in the problem solving network, and
adapt their activity accordingly if their individual activity
is to remain globally coherent. As stated earlier, the terms
"control" and "coordination" both refer to directing the
activity of a group. "Control" simply refers to the
directives by which the activity of individual members is
guided. "Coordination" implies a harmonious combination of
activity, whereby all agents pursue non-conflicting goals.
The term “coordinati.n" is more appropriate than "control"
for describing the way in which a group of DPS agents would
direct their combined activity.

Within a DPS system, communication is the crucial factor
that determines how agents coordinate their activity. The
degree of autonomy, and the extent of any agent's influence
will be determined by: the nature of the information
communicated; the number of agents affected; how the exchange

a3

is initiated; and the type of response its receipt elicits.
The way in which individual agents arrive at local decisions
that are globally optimal is a question of choice. Research
in this area has come up with a variety of schemes. that
result in distinct types of behaviour appropriate for
different problem environments.

Communication among the agents serves a dual purpose. It
circulates problem specific information between the different
processing centres, and conveys the information by which the
agents' activity is coordinated. The circulation of
information corresponds to a "production model", whereby any
system transforms its raw materials into a finished product.
The need to convey information concerning coordination arises
because of the nature of Al systems, where a great deal of
intermediate uncertainty may occur before a solution is
found. Deft handling of this wuncertainty is essential,
without which the system would flounder in an undirected
search. A certain amount of information concerning
coordination is implicit within the problem data. However,
its clarity rapidly decreases as problem complexity and
uncertainty grow. In this case, the agents must explicitly
communicate information related to coordination if they are
to retain a common focus and cooperate rather than simply
complement each other's processing.

The agents communicate to resolve inconsistencies and arrive
at compatible decisions. The information communicated is
highly problem dependent and must necessarily be concise. At
the same time, conciseness may lead to the loss of detail,
which must |Dbe compensated for. Another important
consideration is the timeliness with which information is
communicated. This also leads to a tradeoff in which the
information's accuracy is affected. Meeting the requirements

34

of conciseness and timeliness will contribute to <the
uncertainty that the agents must deal with.

The actual information communicated consists of data and
directives. There is no hard distinction between these two,
as their nature will depend upon how the inform.tion is
represented, and how the agents react to it when it is
received. Partial solutions, hypotheses, alternative
hypotheses, constraints, goals, unresolved goals, and tasks
are all obviously problem oriented, and can be considered
data. However, if the systenm's operation tends more towards
a production model, they can be considered directives, which
trigger the desired action by their appearance. The infor-
mation related to coordination will only differ in the aspect
of the problem it addresses. Whether it is considered data
or directives will depend upon how the individual agents

arrive at decisions.

There are various ways of focusing the system's attention on
desirable activities. Along with the basic data and goal
driven strategies described in section 1.4, either a
knowledge driven or island driven approach can be employed.
The knowledge driven approach focuses on the sources of
knowledge in the problem solving process, while the island
driven approach places the focus on specific hypotheses among
the available alternatives. With the data driven approach
described earlier the agents principally react, while with
a goal driven approach they provoke. A knowledge driven
approach concentrates on determining which agent has the
relevent knowledge, while an island driven approach attempts
to identify arnd expand promising hypotheses or "solution
islands". Certain problems that involve multiple sources of
uncertainty may require the simultaneous use of different

approaches.

35

The communication policies employed directly affect system

behaviour. Agents may exchange information voluntarily, on
reguest, or through a mixed initiative. Their response to
communication can range from the reflexive to introspective,
depending upon the amount of coordination intelligence
possessed by an agent. This will largely depend upon where
and how the decisions are made, and who is involved.
Decisions can be made by consensus or decree, with all the
advantages and disadvantages stated earlier (section 2.1).
The choice will depend upon where the necessary information
is located, and the cost of transmitting it compared to that
of the consensus process and its possible benefits.

A highly reflexive system will function with few decisions,
requiring 1little or no coordination knowledge. As the
problem's complexity increases, decisions become more
critical, and therefore require more introspective reasoning
on the part of the agent. Under certain circumstances the
agent may need to vary the way it responds, in which case
considerable knowledge may be necessary.

Highly reflexive systems generally function in a tightly
coupled manner. Hearsay-II is a typical example [10]. They
employ a centralised data space in which individual agents
collect their information and post their results. The systen
relies on a close association between "pattern' and "action"
to drive the agents, while the shared data space provides the
global overview with which activity is focused. Although this
approach 1is suitable for certain problems, the agents'
limited intelligence about coordination restricts the use of
this model, nor can the way in which the agents interact be
considered truely "cooperative'([18].

36

Researchers have developed a variety of schemes for
coordinating activity in the different scenarios that occur
in DPs systems. The schemes differ in the locus of decisions,
in the agents' responsibilities towards each other, in the
timeliness of the exchange, and in the communication
overhead. All the schemes rely on an exchange of information
that results in some form of either implicit or explicit
decree or consensus among the agents. The agents' decisions
involve varying degrees of introspection according to how
critical the decision is, its complexity, and the amount and
type of uncertainty present. Durfee et al. have identified
gix trends in coordination schemes [20], outlined in figure
2.3.1. The fact that there is no DPS system in daily usage
today demonstrates that these ideas are not yet fully
developed.

Negotiation: Using dialogue among nodes to resolve inconsistent views and to reach
agreement on how the nodes should work together to cooperate effectively.

: Overcoming inconsistency by exchanging
tentative results to resolve errors and converge on problem solutions.

: Using common knowledge about general problem
solving roles and communication patterns to reduce the nodes' uncertainty ahout
how they should cooperate.

: Sharing information to build a plan for how agents should work
together, then distributing this plan throughout problem solving.

Sophisticated Locgl Control: Integrating reasoning about other agents' actions and

betliefs with reasoning about local problem solving so that coordination decisions are
part of local decisions rather than a separate layer above local problem solving.

Theoretical Frameworks: Using mathematical models of agents, their beliefs, and
their reasoning to understand the theoretical capabilities of cooperative DPS
neiworks.

Figure 2.3.1: Trends in distributed computing

37

Negotiation corresponds to a team or market structure,
depending upon the subject negotiated. It generally employs
an explicit consensus process, with all the associated
benefits and disadvantages. The agents require the knowledge
necessary to establish the relative merit of the different
proposals being negotiated, and mechanisms by which they can
influence the choice. It differs from the other forms in that
dissatisfied agents are free to disassociate themselves from
the group's decision.

Functionally Accurate Cooperation (FA/C) relies on the
exchange of intermediate solutions between affected members
to corelate partial solutions. The intermediate results are
not necessarily accurate or consistent, but their timeliness
focuses activity and prunes searches at an early stage. It
corresponds to a form of consensus between agents, based on
the information they relay to each other rather than on a
formal negotiation process.

Organisations pervade all possible schemes, as any system
with more than one agent will have some implicit or explicit
relation defined between its agents. When the relation is
explicit, agents may employ knowledge about this relation to
improve their interaction with other system members.
Organisations of agents have many of the features discussed
earlier. The implications of using organisational structuring
in DPS systems are discussed more fully later.

Multiagent planning arises from the need to be aware of the
other agents' intentions, to respond flexibly, and to not
expend extensive time in negotiating. With this model, agents
first negotiate a plan of mutually compatible activities,
which is then distributed, and followed by the individual
agents. The plan is established either by consensus or by

38

decree. With the latter, a chosen agent is sent all the
relevant information and formulates the plan. This model
accomodates problems in which team membership and roles
change dynamically. It differs from negotiation in that
agents are bound to the group's decisions.

With sophisticated local control, agents are capable of
reasoning about their role in relation to that of the other
agents, and of integrating the information they receive in
order to construct a local wview that allows them to
coordinate their activity with the other agents. With this
form, the coordination problem is considered an integral part
of the ©problem, and reasoning 1is as concerned with
coordination as with the problem itself.

Theoretical frameworks view cooperation and its implications
in an abstract manner, constructing models based on logic or
game theory. These models examine what knowledge is available
to the agents, and what knowledge must be communicated to
them in order to resolve conflicts. The models examine under
what conditions cooperation is possible, and the different
ways in which the necessary information could be propagated.

The above paragraphs provide a brief overview of the various
directions that have been or are being pursued. There are
further subdivisions within these categories, often used to
describe the individual twists of particular systems. What
all these schemes have in common is the basic objective of
promoting effective communication between the agents. If the
system is to function both effectively and efficiently, the
effects of disruption, distraction, and local idleness must
be considered [21). Their description follows.

39

Pisruption occurs when an agent is interrupted from some
useful activity to fulfill another function. Although the
second activity may in itself be useful, swapping between

the activities will simply increase processing time.

Distraction occurs when an agent is flooded with
information that distracts the agent from the relevant
information it is processing, and results in additional
work with no positive contribution. Even if the only
activity associated with receiving this information
consists of establishing the information's irrelevance,
this will still require processing by the agent.

Local jdleness concerns how an agent should occupy itself
when it has no immediate work to perform. If the agent
simply continues producing alternative hypotheses,
assigning tasks or calling meetings, it will increase the
amount of disruption and distraction occurring in the
system, degrading overall performance.

The appropriateness of a coordination scheme for agents in
a DPS system will depend upon how well the chosen strategy
fits the characteristics of the problem solving process. A
large number of factors are involved in the scheme, many of
which can have undesirable side effects if not carefully
considered. The problem, and the knowledge engineer's skill
in analysing the problem, in choosing a scheme, and in
integrating the scheme into the problem solving process will
affect the scheme's efficacy. The choice of scheme is often
guided by the knowledge engineer's preconceptions, and
personal experience with group dynanics.

40

»——_f

2.4 Cooperation and Communication

Cooperation is a form of group interaction whereby individual
members work together towards a common goal, and sublimate
their personal interests in favour of those of the group.
When agents cooperate, they choose individual goals that have
the greatest benefit for the group as a whole. The members
of the group must have certain qualities for their behaviour
to be cooperative; they must (1) share a common objective;
(2) be capable of independent choice; and (3) be rational.
The common objective provides the agents with the basis by
which they judge the relative merit of their individual
goals. The ability to choose implies that the agents are
capable of sublimating their individual priorities when this
is necessary for the benefit of the group. Their rationality
allows the agents to relate their individual goals to the
common objective, and make reasoned decisions about the
"best" action to take. Making an optimal decision requires
that the agents be aware of the choices available to the
group as a whole. In a distributed environment, communication
is the only means by which the agents can establish what
choices are available.

The agents in a DPS system cooperate for a variety of
reasons. The objective may be to decrease total processing
time by deriving partial solutions in parallel, to increase
the scope of the search by considering more alternatives, or
to arrive at more timely solutions by exchanging constraints
and focusing each other's attention. In certain cases, the
objective will be to avoid redundant activity, while in
others, redundant activity will be encouraged in order to
increase confidence in proposed hypotheses, or ; rovide fault
tolerance. A primary objective in DPS systems is to decrease
communication requirements by providing agents with the

41

ability to reason about system activity and make local
decisions that are globally optimal. It is here that the full
implications of cooperation are involved.

Cooperation has different meanings when it is applied to
people, in game theory, or to agents in a computer systenm.
The first examines the philosophical issue of how "rational"
beings can cooperate when they have divergent interests. The
second attempts to develop a formal framework that defines
the states of knowledge necessary for cooperation, and the
resulting communication needs of the participants. The third
is principally concerned with how the concept of cooperation
can be used to reduce the amount of communication necessary
to coordinate the activity of a set of distributed agents.
Here, the relation between knowledge, action, and communica-
tion can be exploited. Communication assumes another facet
whereby not only is the message important, but the act itself
conveys information. This can be used to construct "knowledge
based protocols" with which the system's state of knowledge
can be changed.

In all three cases, cooperation requires that the agents be
awvare of each others' existence, of the fact that their own,
individual activity has an impact on the activity of the
others, and that the others' actions have an impact on their
own. All agents are considered "rational", with a "rational
being" broadly defined as one who attempts to optimise its
"pay-~-off" when deciding what course of action to take.
Globally optimal decisions are not possible among agents who
are purely rational, logical, and self-interested. This is
illustrated in figure 2.4.1 vwhich describes the classic
"pPrisoners’ Dilemma” [22]. In addition to being rational,
agents must be aware of a collective goal, and have
assumptions about the other agents' behaviour and intentions.

42

If this is true, then by knowing what others know, and
knowing what their actions imply, it is possible to derive
knowledge about overall system activity with 1less
transmission of explicit information.

Prisoner's Dilemma

*You and your accomplice have been charged with having committed a crime and are
now prisoners, sitting in separate cells, unable to communicate, and awaiting trial. The
prosectutor offers a deal to persuade you to confess: “There is enough circumstantial
evidence to convict both of you, so even if you both remain silent you will both be
convicted and locked up for ayear. But if you admityour guilt and help convict your silent
partner, you will go free and he will be locked up for ten years. The reverse happens, of
course, if he confesses and you remain silent; and if you both confess, then

unfortunately, you will both getnine years. *

The other prisoner
doesn't confess does confess
cg%?etss 1 year 10 years
You
do 0 years 9years
confess

(1) Either the other prisoner will confess or he will not.

(2) If he does confess, then confessing is better for you than not confessing.

(3) it he does not confess, then (again) confessing is better for you than not
confessing.

Therefore, in both cases confessing is better for you than not confessing. If the
other prisoner doesn't confess and you do, then you don't get a prison sentence,
while i he also confesses, you only get a nine year sentence.

Whether communication is possible or not, if both prisoners are rational, logical,
and purely self-interested, they will choose to confess -- which is locally optimal,
rather than not confess -- which would be the globally optimal choice.

Figure 2.4.1: The Prisoner's Dllemma

43

The example of figure 2.4.1 succintly reveals why rational-
ity, logic, and self-interest are inadequate for inducing
cooperative behaviour when individual preferences diverge.
As presented, the choices are causally independent, and
individual rationality is insufficient for resolving the
dilemna. Ginsberg [23] argues that if agents are to cooper-
ate, their choices must be guided by "common rationality".
Here, each agent knows the rationale of those it interacts
with, and employs a "collective decision procedure". The
agents' decisions are not considered independent, and
cooperation is possible. Furthermore, under these conditions,
agents need only communicate their situation rather than
their intentions, thus reducing communication requirements.

Ginsberg examines the situation where a single, common goal
is replaced by several local ones whose successful comple-
tion is contingent on how the others are completed. Rather
than considering the agents' actions, he considers their
decision procedures. A decision procedure is the process by
which an agent chooses a rational course of action. These
procedures must be such that all agents would have the same
order of preferences when faced by the same choices.

The individual procedures are gathered together into a
collective decision procedure whereby the agents make a joint
decision. These decision procedures are referred to as
"unbiased" if any shuffling round of the others' decision
procedures does not affect the choice a given agent would
make. In this case, the decisions are assumed independent,
and the agents behave "uniformly". It is then possible to
establish collective pay-off functions, and the likelihood
of any given decision occurring.

44

The possible pay-offs are then determined and maximised, and
all “irrational" decision procedures are eliminated; only
those that optimise the pay-off are retained. To be
“rational', an optimal pay-off is not necessary in all cases,
but the pay-off must never be suboptimal. The remaining
decision procedures will be “globally rational", and result
in uniform, unbiased decisions, referred to as "“uniform
rationality" by Ginsberg.

If the agents' Adecisions are not independent, which occurs
in the "prisoners' dilemma", the agents can arrive at
globally optimal decisions by having knowledge about each
others' strategies. This introduces the notion of "common
rationality", where agents that interact are equipped with
matching decision procedures. This resolves the prisoners'’
dilemma nicely. Each prisoner knows that the other will use
the same decision procedure, and will make the globally
optimal choice, which in this case will be to not confess,
and both prisoners will get one year. Thus common rationality
makes cooperation possible.

However, common rationality fails when the optimal choice
requires contrary decisions in a symmetrical decision matrix.
Tris is known as an “ambiguous" situation, and is illustrated
in figure 2.4.2. Here, both agents are faced with an
identical choice. However, the optimal decision requires that
one agent choose 'A' while the other choose 'B' in order to
maximise the global pay-off. Common rationality, with its
matching decision procedures, does not allow for this.
Therefore, it can handle only situations that are ot
ambijuous. However, in a totally disambiguated decision
space, it would produce a unique, globally rational decision.
If this is so, agents would not even have to be aware of the
interdependence of their Jhoices in order to cooperate. They

45

would only have to agree upon a globally disambiguated pay-
off function, after which no further communication would be
necessary.

Agent 2
A B
A 0 1
Agent 1
B 1 0

To obtain an optimal pay-off in this situation, agent 1 must choose ‘A’ and agent
2 must choose 'B', or vice-versa. However, both agent 1 and agent 2 face exactly
the same situation, and have exactly the same decision procedure. Thus their
decisions will be identical, and both must choose either ‘A’ or ‘B’ together, which
is a suboptimal choice.

Figure 2.4.2: An ambiguous situation

Although Ginsberg provides a formal proof that cooperation
is possible when agents have common rationality and work with
disambiguated pay-off functions, applying his theory to real
life problems is not straightforward. Determining globally
rational collective decision procedures that are
disambiguated for all possible cases is a highly problematic
venture. It is easier to state in theory than to accomplish
in practice, particularly when the decision procedures are
heuristic in nature. An alternative way of looking at the
problem of cooperation is to examine what knowledge the
agents have, what knowledge they require, and how they can
obtain it "intelligently".

In a distributed system, the purpose of communication is to

augment available knowledge by giving the agent information
that it will eventually use to choose its actions. An agent

46

ray derive additional knowledge by observing the behaviour
of other agents in the system. By knowing certain facts about
the other agents, the rationale behind their actions, and the
communication policy employed by the observed agents, an
agent can augment its own knowledge and nake better
decisions. This approach for conveying informaticn among a
group of agents is known as a "“knowledge based protocol"
[24). Here, the act of communication or its absence, can in
itself convey information that will change the state of
knowledge in a system. The success of a group's collective
action may very well depend on the state of knowledge that
the group as a whole is capable of achieving.

Knowledge here is defined as some fact which is known to be
true. The different states of knowledge that an individual
or a group can achieve are given below, with each a subset
of the succeeding one.

1. An individual has Implicit knowledge of some fact if, given the relevant
information it could derive that fact.

2. Someone in the group knows the fact.

3. Everyone in the group knows the fant,

4. Everyone in the group knows that everyone knows the fact. This canbe
repeated according to the number of people that know that everyone
knows ... some fact.

5. The factis common knc wiedge. Everyone knows it, and everyone in the group
Is aware of this,

Figure 2.4.3: Ditferent states of knowlicdge.

47

In a system where a certain amount of common knowledge is
available, where assumptions can be made about how others
would act, and where it is possible to establish what others
know and possibly don't know, this knowledge can be
successfully employed to change everyone's state of
knowledge. The "“Cheating Husbands" example [25] of figure
2.4.4 illustrates this. However, achieving common knowledge
makes two basic assumptions about the communications medium
and the environment: (1) all messages are guaranteed to
arrive; (2) all members are capable of acting simultaneously.
These conditions cannot always be guaranteed. However, not
all members may require common knowledge, and it is possible
to define time windows in which actions are considered
simultaneous.

The authors go on to examine the '"Cheating Husbands" story
through various scenarios which modify the story's outcome
considerably [25]. Where applicable, this type of protocol
could reduce communication requirements significantly.
However, it requires an in depth understanding of the nature
of the problem, of the participating agents, and of the
communications medium. The participants must have the
necessary "self-awareness" to be able to reason about their
interactions in order to derive the maximum amount of
knowledge from them. The problem of managing such a system
may prove to be as ill-defined as that which the system
addresses in many domains. The sophisticated type of control
necessary will require a formal structuring of the system
that can be provided by organisations.

48

Chesating Husbands

The queens of Mamjorca have always opposed and actively fought the male infidelity
problem. One day the queen resolves o dea! with it definitely. She summons all women,
both married and unmarried, and makes a declaration. Using common knowledge, the
declared facts, and a known protocol, the women are able to eliminate all unfaithful
husbands with almost no communication conceming the subject.

Common knowlsdge:

All women are perfect reasoners.

All women are always obedient to the queen.
Ali women hear all shots that are fired.

All queens are always truthful.

Facts declared by the queen to all women:

One or more of you have unfaithful husbands,
Before being told, you do not know about your own husband's fidelity.
However, each of you knows which of the other husbands are unfaithful.

Constraints Imposed by the queen:
You shall not discuss this with anyone.
Action that the women will take:

You will shoot your husband at midnight of the day you discover his infidelity.

Having heard this, the women went home, and watched and listened. Thirty-nine silent
nights went by, and on the fortieth, shots were heard.

How many unfaithful husbands were shot?
How many unfaithful husbands were there?
How did the cheated wives learn of their husbands' infidelity?

The solution to this is simple. The wives know that there is at ieast one unfaithful
husband, and that they know about all unfaithful husbands apart from their own. if there
is only one unfaithful husband, his wife will not see any. She will immediately conclude
that it is her own husband that is unfaithful, and shoot him at midnight. If there are two
untaithful husbands, each cheated wife will see one, who is the other's husband. She will
listen for shots that night. If no shots are fired, she will conclude that the other cheated
wife also sees some unfaithful husband, in this case her own. Both wives will shoot their
husbands the following midnight. This is true for any number of unfaithful husbands. The
cheated wives will discover their own husbands’ infidelity after 'k’ silent nights, with 'k’
being the number of unfaithful husbands they themselves see.

F.gure 2.4.4: Cheating Husbands
49

2.5 Organisations of Intelligent Agents

The idea of viewing a DPS system as an organisation of agents
is attractive because it coincides with the organisational
model used by people for resolving complex problems. An
organisational model provides a convenient way to describe
the agents' problem solving abilities, and to define the
communication policies which the agents incorporate into
their 1local decisions. This type of common knowledge is
necessary if agents are to reason about their individual
activity in relation to that of the other agents. However,
the fact that it is common knowledge, shared by all agents,
makes organisations costly to form. As a consequence,
organisations must remain relatively static once they are
established. This may conflict with the goal of providing
agents with the ability to react flexibly and take local
initiatives =-- which are essential properties of an
"opportunistic" approach to problem solving. The
organisations must be structured in order to provide a
framework that does not inhibit the desired degree of
“opportunism".

The organisations described in section 2.1 constitute the
basic forms that can be adopted. Within these organisations,
three basic roles prevail: that of "peer", "“subordinate", and
"director" [26). Any of the proposed organisational forms can
be realised using these roles, as illustrated in figure
2.5.1. Agents can assume multiple roles, depending upon the
number of agents with which they interact, and their relation
to them. More complex organisational forms, such as
multilevel hierarchies, and decentralised or market
organisations, are constructed in this way. Responsibility
for decisions is implicit within the assignment of roles,
while an agent's influence on others is determined by the

50

*ﬁ —

method used for making decisions. The resulting organisations
will behave very similarly to their human counterparts,
displaying many of the same advantages and handicaps.

director

Hierarchy Team

peer
director

peer
director

Muitilevel hierarchy

Figure 2.5.1: Organisational roles within basic organisations.

The modes of decision making remain the same -- decree and
consensus, with an implicit correspondence between role and
mode: directors “decree" while peers "negotiate", and

subordinates "comply". This relatively strict definition
produces various different types of interaction, depending
on the nature of the agents' responsibilities and

communication policies. The combination is instrumental in
determining to what degree an individual agent is
independent, subservient, or relies on the group.

The agents' responsibilities and communication policy

establish (1) what information is communicated, (2) who takes
the initiative, and (3) what the expected response is. The

51

different possibilities for each category are outlined below.
The complexity involved is highly variable, according to the
arount of reasoning associated with it. This may be consider-
able if a knowledge based protocol is used.

(1) The information communicated includes everything that
the agents may wish to convey to each other.

(2) The agents (a) may volunteer information, (b) they may
provide it upon request, or (c) they may systematically
produce it. The agents may send information to specific
individuals, or broadcast it to the group or a subgroup.

(3) The agents may respond (a) immediately, (b) at the first
opportunity, (c) eventually, or (d) never, depending
upon their responsibilities and priorities. The agents
may employ a mixed approach, or change it as the
solution evolves.

If communications involves knowledge, the agents must be
aware of each other's roles, and of the role communication
plays in the system. They must understand what they can
expect from the others, and what the others expect from them.
Agents may produce -solutions, propose hypotheses, pass
constraints, define goals, or signal that radical events have
occurred. The agents may expect immediate responses, an
eventual response, or the possibility that no answer is sent.
They may wish to order their messages, to respond differently
under different conditions, or to modify their relation with
others. All of this requires an expanded definition of the
agents' organisational roles and expectations.

A large number of factors are involved in determining an
appropriate organisation for a given problem. The bounded

52

rationality [11] of an agent places a limit on any agent's
capabilities. The bottleneck effect [19] 1limits the
capabilities of a director, while consensus may introduce
significant delays. If agents are given too much
independence, their work may diverge, while too much
subservience or compromise will result in less opportunism.
The cost of communication and the need for asynchronism must
also be considered. The timely communication of relevant
information will have an impact on problem solving quality.
At the same time, thought must be given to the consequences
of disruption, distractior and local idleness.

As stated earliier in section 2.1, the forms of decision
making available to an organisation consist of consensus and
decree. The choice between decisions by consensus or decree
will largely depend upon which is the most advantageous.
Groups have a Dbroader perspective, consider more
alternatives, and are more likely to produce decisions that
satisfy each member's view. Furthermore, each member's
activities and goals become visible to the group. However,
groups also work .more slowly, may involve considerable
compromise, may be dominated by certain members, and may
inhibit the individual's ability to react quickly when
opportunities present.themselves. On the other hand, although
individuals are able to react more quickly and opportunistic-
ally, their efforts may be misdirected because they lack the
broader perspective available to the group, and the more
detailed aspects of specific situations visible to others.
A balance is often necessary between reliance on the group,
and an individual's inderendence, or subservience to others.

The specific form an organistion of DPS agents assumes is

highly problem dependent. Both the requirements of the
problem and the designer's perception of them are deciding

53

factors in the organisation's structure. This raises an
interesting question. Given that an expert system is
generally developed in an incremental fashion, will its
organisational structure evolve in the same way? It is quite
possible that as the DPS system evolves from a skeletal
prototype to its full stature, the organisation's needs will
evolve similarly. Unless the problem's needs are fully
anticipated from the beginning, it is quite possible that a
chosen organisational form will become inappropriate as
greater complexity is added to the problem solving process.

There are many open guestions related to using organisations.
Is it possible to establish criteria by which the "goodness"
of an organisation can be judged? What is the best way of
developing an organisation for a given problem? Are there
any "best" organisations for certain types of problems? And
perhaps most critical of all, can organisations provide a
cost-effective way of coordinating activity, or will their
overhead prove too heavy a burden?

2.6 Evaluation of a DPS System

Evaluation of a DPS system involves all the difficulties
associated with evaluating an expert system, magnified by
the problem of evaluating a coordination strategy in a
distributed environment. Coordinating a conventional
distributed system is an ill-defined problem in itself [19].
Monitoring distributed systems is a research area of its own.
Observing how a given coordination strategy operates will
introduce delays that will change the way in which it
performs. This will make its verification and validation
extremely difficult. Yet it is essential if we wish to draw
even tentative conclusions about the performance of different
coordination schemes.

54

Evaluation of a DPS system is not only concerned with
validating the individual agent's competence, but must also
ensure that the organisational structure used permits the
agents to exert their competence effectively. A critical
aspect is the number of factors that affect fhe systenm's
operation. The agents' roles, their intelligence, and the
communication policies they employ are all involved, making
it difficult to assign credit or blame to any specific
aspect. Good communication policies combined with "dumb
decisions", or good decisions combined with bad communica-
tion policies will both have a negative impact on overall
performance. Similarly, a good organisation applied to an
unsuitable problem may perform very poorly for non-obvious
reasons. Evaluating organisations and pinpointing their
weaknesses is in itself a difficult problem.

Evaluating the relative merit of different organisation
schemes is difficult because they all pesf>rm differently
according to the problem's complexity. The different
organisational forms described earlier are all designed to
handle different types of complexity (size, interdependence,
and uncertainty), in different types of environments (fixed
or rapidly changing). In certain problems timeliness is not
critical, while in others it will be the decisive factor in
determining the solution's acceptability. These differences
make it difficult to draw comparisons between the possible
crganisations at large. Some form of categorisation will be
needed to establish the suitability of the different
organisations for the different types of problems.

55

Chapter 3
A Comparative Study of Two Testbeds for DPS

The primary objective in developing a DPS testbed is to
provide an environment in which it is possible to explore how
different organisations of agents perform. The nature of the
problems addressed, the number of factors involved in their
solution, and the possible sources of unexpected interactions
in the overall system make experimental work an essential
aspect of DPS research. Testbeds are necessary to observe,
validate, modify, expand, and most importantly, comprehend
the implications of the models that have been proposed. They
are particularly important if we wish to judge the relative
merit of these models, and establish what kind of problems
they are suitable for. All the coordination schemes described
in the previous chapter evolved in conjunction with specific
testbeds designed to solve specific problems. The DVMT
testbed (17,21, and 29-33] is among those which have
contributed significantly to DPS research.

We have carefully studied and assessed the virtues and
shortcomings of the various testbeds described in DAI
literature. The characteristics of the problem and the
facilities available to the user both have a significant
impact on the range of DPS issues for which the testbed is
suitable. We propose a testbed that is based on a game called
Distributed Blackbox (DBB). We compare DBB to the well known
DVMT testbed, and bring out the advantages of using DBB.
Knowledge engineering, verification, and performance
evaluation of the underlying expert systems involve 1less
labour in DBB than in DVMT, while most of the richness of the
problems to be solved is still retained. The nature of DBB
provides a scenario in which a large number of issues related
to coordination and cooperation can be directly observed.

3.1 Desirable Characteristics of the Testbed

The chosen testbed must reconcile our research objectives
with our resource constraints in order to be viable. The
testbed environment will establish what issues can be studied
at what cost. A low cost and the need for incremental
development are crucial factors in determining whether a
testbed is feasible. The nature of the testbed problem will
affect both the knowledge engineering task, and the range of
experiments that can be run on the testbed. Care in its
selection can significantly reduce the amount of effort
involved in the testbed's development and subsequent usage.
The problem must cater to a wide range of DPS issues and not
require excessive analysis to be useful. This will pronote
rapid understanding of its operating principles, and the
underlying issues it addresses.

Researchers normally employ one of the following approaches
to support their propositions: (1) Model the problem under
study using abstract mathematical structures and
theoretically study certain selected aspects; (2) Simulate
the behaviour of the system at an appropriate 1level of
abstraction and study the system based on the simulation
results; or (3) Construct an experimental prototype of the
system and study it in a controlled environment. These
approaches are not mutually exclusive, and each has its own
merits and limitations.

Mathematical structurcs often reveal the attainable 1limits
of the model, but generally work in ideal universes that are
difficult to realise. Simulations reveal what kind of
behaviour can be expected under the different conditions that
arise during the model's ‘"normal" operation. However,
cornstructing the simulation may involve considerable work,

57

and verifying its operation must validate the simplifying
assumptions that it makes. Prototypes are useful because they
provide a more detailed and realistic view of how the model
behaves when the characteristics of a problem or class of
problems are considered.

An experimental prototype requires a test environment which
normally has several conflicting requirements: the test
environment should provide rich insight into the system but
not be too complex; the data required by it should be easy
to obtain but not be too trivial; operating the prototype
with the test data should reveal "more than" obvious
behaviour of the system, but it should not be too expensive;
implementing the prototype should not require an undue amount
of resources (manpower, equipment, tools, time, and space)
but at the same should reveal those aspects of the system
which cannot be studied through simulation or abstract
analysis.

Choosing a sample problem that the prototype can use to
examine DPS issues is difficult. Any problem that will
encompass the issue of cooperation among multiple agents must
possess sufficient complexity to justify the need for
cooperation. The complexity of the problem should be easily
controlled, allowing agents to be observed in many different
situations. The problem domain must be rich in possible
decompositions, allowing agents to participate in a variety
of "meaningful" organisations. The problem must be amenable
to the use of different solution strategies that enta.i
different coordination schemes and communication policies.
In addition to this, the prototype system must allow for easy
modification of the agents' roles without requiring extensive
modification to each agent's knowledge base and heuristics.
Finally, the basic problem must be simple for users to learn,

58

e —

as their primary interest is not the problem itself, but the
study of cooperation among the agents.

The difficulty encountered when choosing an appropriate
testbed is the immense effort involved in developing any
system that displays the required degree of complexity. This
complexity will be reflected in the nature of the searches
and lines of reasoning used to solve the problem. The way
these are structured will directly affect what information
is communicated, how it is exchanged, and the degree of
opportunism possible during the solution process. The
different situations that can occur in the overall system
are a direct consequence of all these factors. The observable
situations will determine what DPS issues the testbed is
suitable for, and the scope of the study. Ideally, the
testbed should provide a platform in which a range of issues
can be examined.

The testbed's research objectives add to its design
requirements. In addition to having the basic intelligence
necessary to solve the problem, the testbed must have
facilities that allow the user to observe its operation and
measure its performance. These are critical to both validate
the system's problem sSolving abilities, and evaluate how well
a given organisation of agents operates in comparison to
others. The amount of time it takes the user to familiarise
himself with the system's operation, and the ease with which
he can run experiments, analyse results, and modify the
system, will all have a major impact on the project's
progress.

3.2 Advantages and Limitations of Existing Testbeds

Although the desirable qualities of a testbed are easy to

59

enumerate, finding a problem that satisfies them is not as
simple. Few problems exhibit the desired levels of simplic-
ity, and complexity in coordination requirements. Further-
more, It is often difficult to establish what issues the
testbed is suitable for until a significant amount of effort
has been invested in the problem's analysis. The difficulty
also resides in acquiring the relevant, domain specific
expertise. And even when suitable problems are found, they
often contain more complexity than necessary, needlessly
adding to the design task. Many of the prototype systems
attempted thus far in DAI have been too complex, restricting
their portability to other environments. Some of the problems
that have been attempted are outlined below in figure 3.2.1.

Hearsay-lI: A natural language speech understanding system that responds to spoken
commands in a restricted domain [10)].

Crysalis: Determines the structure of proteins given their amino-acid sequence and x-ray
diffraction data [10].

OPM: Models human cognotive processes in an errand planning scenario where errands
have different priorities and require goning to different places in some "town". The plan
must optimise displacement and time in a "travelling =alesman” type problem 10).

Scene Understanding: \dentifies and labels objects in an aeriai photograph of a suburban
area [10]. .

Contract Net. Air or ocean surveillance with negotiation among agents using contracting
mechanisms in a market form of organisation [27].

DVMT : Land tratfic surveillance using a functionally accurate cooperative (FA/C)
approach to coordination [21].

Negotiation In Air Traffic Control Systems. Modifying flight plans among planes entering
a crash situation. The concerned planes form a team, and negotiate a crash avoidance
plan [28).

“Reds and Blues" A scenario in which four "biue” agents attempt to encircle a signal
emitting "red” agent on an infinite, two-dimensional grid. The agents have set moves, and

all agents move in a cycle. The red agents are structured into various organisations for
performance comparisons {26).

Figure 3.2.1: Prototype prob~ms attempted in DA}

60

As can be seen, the possible application domains are quite
diverse, and include many current research areas in AI. The
systems mentioned above introduced many of the ideas that
characterise current DPS approaches. The difficulties that
they encountered constitute an important source of
inspiration for subsequent systems. The first four systems
decompose knowledge into knowledge sources, and examine the
resulting problem with successively more complex coordination
mechanisms. The relatively tight coupling they employed made
it difficult to extend their ideas into a distributed
environment, introducing the need for more sophisticated
local control, and the concept of cooperation. The Contract
Net, DVMT, and Air Traffic Control are the testbeds in which
negotiation, FA/C, and multiagent planning were developed as
coordination schemes, while "Reds and Blues" examined the
formali ..s of organisations.

What is noticeable about these problems is that many involve
considerable domain specific expertise in areas which are
considered distinct application fields in AI (natural
language understanding and vision). Some of them involve
realtime monitoring. The need for domain specific expertise
has the obvious drawback of increasing the complexity of
knowledge requirements, while monitoring has the dis-~
advantage of regquiring realtime signals, or an effective
simulation of them. Modeling the data will itself become a
complex problem if we wish to ensure the data's integrity,
and provide a rich variety of situations. This still leaves
a wide range of possible problems from which one can choose.

The disadvantages of choosing a real 1life problem are
obvious. Its implementation would involve a considerable
amount of knowledge engineering, understanding its operation
would require domain specific expertise, and once completed,

61

experimenting with alternative designs would be both
expensive and difficult. Thus, we are left with the option
of either designing a problem to satisfy our requirements,
or simplifying a real problem. There are certain difficulties
associated with both options. Inventing a gencric problem
that is complex, nondeterministic, and internally consistent
is a major creative effort. The alternative of simplifying
a real problem carries some inherent drawbacks. For one, the
original problem must be understood in order to obtain an
accurate simplification of it. For another, there is always
the danger of oversimplifying the problem, or of contriving
it to fit our assumptions about how it should behave.

Instead of going for either alternative, we have combined
the two approaches by adapting a game to support multiple
cooperating players. Games have certain properties that make
them interesting candidates for study. They provide a
structured task in which it is easy to measure success and
failure. They generally involve a highly stylised represen-
tation of some global situation in which more than one
element is involved. Although the elements' interaction may
be complex, their individual behaviour is determined by a
small set of well-defined rules. Knowledge about a game is
much easier to acquire than the expertise of a real world
expert. However, the chosen game must be neither too simple
as in "Reds and Blues", nor too complex as in chess. The only
remaining difficulty is that of finding a game that involves
cooperation rather than competition. Competitive games
constitute a distinct class of AI problem in which we are not
currently interested. A cooperative game is obtained by
decomposing a one player puzzle called "Blackbox" into a game
that can be solved by several players: "Distributed
Blackbox".

62

Although a lorge number of prototypes do exist, few if any,
have ever been extended to examine the full range of issues
that their operation involves. Many face unresolved obstacles
to making this transit.on, and some of them have reached the
limits of their utility as testbed environments. The choice
of testbed must reside on the issues for which it is
intended, and the ease with which it can be developed and
employed. The Distributed Vehicle Monitoring Testbed (DVM1)
is a well documented testbed that has provided much insight
into the issues involved in DPS systems. Distributed Blackbox
(DBB) is the alternative that we advocate here. Although DBEB
does not display the same type and degree of complexity as
DVMT, we believe that DBB will permit us to study many
interesting research issues within a "shorter" time period.

3.3 DVMT: The Distributed Vehicle Monitoring Testbed

The Distributed Vehicle Monitoring Testbed (DVMT) simulates
a network of problem solving agents so that approaches for
DPS can be developed and evalunted. It addresses the problem
of monitoring a two-dimensional geographic area to identify
all passing vehicles and track their displacements. DVMT is
composed of a set of semi-autonomous agents, and employs a
functionally accurate cooperative (FA/C) approach for
coordination. The agents work together to solve the global
problem by individually solving interacting subproblems and
integrating their partial solutions to arrive at an overall
solution.

DVMT collects data via a set of distributed sensors that
capture acoustic information about the type and velocity of
vehicles pasesing within their range. The problem has a
natural spatial distribution, and involves a considerable
amourit of data that must be abstracted to produce a dynamic

63

map of area traffic. Vehicles are recognised based on the
frequency classes of the sensed data. A two-dimensional
square grid represents the monitored area. A hypothesis as
to where vehicles are located is represented at several
levels of abstraction. Sensor signals are aggregated into
signal groups, which are combined into vehicle types. The
displacement of a recognised vehicle at discrete time
intervals produces a vehicle track, which has some spatial
relationship to the other vehicles that have been detected.
Hypotheses about vehicles are interdependent in both space
and time, as there is an overlap in the sensors' range as
the vehicles move into physically adjacent areas. (Figure
3.3.1).

sensor 1 sensor 2

¢ overiap

sensor 3 I. : sensor 4

<>
overlap

[[] Represents the overtapping region between sensors.

—e—e 110 d12 represents a vehicle track passing through
sensorareas 3, 1,and 2.

Figure 3.3.1: Four sensor configuration in DVMT

64

In DVMT the problem becomes more complex due to the following
facts: communication between the agents is subject to the
random loss of entire messages; sensors can fail to detect
a signal; sensors may detect a non-existent signal; a vehicle
may be incorrectly identified or located; sensors, agents,
or communication channels may fail without warning. The
proble:: of locating vehicles is commutative, as the map of
vehicle tracks is incrementally constructed and revised. The
coordination problem is non-commutative, as the solution's
goodness is measured in terms of its timeliness, and is
detrimentally affected by the choice of inappropriate
activities which irreversibly consume limited resources and
time.

The global solution is derived from the partial hypotheses
constructed by each agent. Uncertainty and errors in the
input data reguire that agents correlate their partial
hypotheses in order to reinforce and confirm intermeuiate
results, or to eliminate incompatible alternatives. Agents
exchange data, or control information called goals. The
information exchanged describes hypotheses, or the intent to
create hypotheses, and serves to resolve uncertainty and
coordinate activity. Agents must perform a correct ordering
of local activity to obtain an acceptably accurate and timely
solution. Note that if perfect input data were available, the
agents are designed so that they are capable of deriving
their individual solutions independently.

The hierarchical nature of the hypotheses combined with the
temporal and spatial aspects of the problem provide a wide
range of problem decompositions appropriate for a variety of
organisational structures among the agents. In addition to
varying the accuracy of the agents' individual intelligence,
their functional abilities can be easily modified to

65

experiment with different problem solving strategies. The
proklem's complexity is controlled by varying the density of
vehicles, the similarity between their patterns, and the
error and uncertainty in the input data. The complexity of
the problem will affect the system's computational and
communications load, and the amount of uncertainty the system
must handle.

For the sake of prototyping, the problem is simplified in
various ways. Both the network and the agents are simulated,
and input data that includes belief values is used to simu-
late the signal analysis that would otherwise be performed
by the sensors. Vehicles are represented by a small number
of frequency classes. The agents' problem solving intelli-
gence is statistically simulated. The agents' ability to
detect local consistency and inconsistency among hypotheses
is based on the belief values assigned to the hypotheses.
Agents generate plausible hypntheses; an oracle with access
to the acturl solution modifies their belief values in order
to reflect the level of intelligence of the agents. Thus it
is possible to vary the agents' problem solving intelligence
without modifying their basic knowledge.

The DVMT testbed environment provides - number of facilities
for ¢. serving the system's behaviour, manipulating inter-
mediate operations, and measuring performance. The evolving
soluticon can be compared to the correct one at any stage of
processing. The potential effect of message transmission can
be examined during execution. Performance is measured
according to the accuracy of information, the time required
to derive a solution, the amount of interagent communication
involved, and the network's robustness in the face of
communication errors. In the experimental protctype, front-
end subsystems have been added to reduce the effort required

66

to create the desired input data, specify the system's
architecture, and analyse results.

The issues examined by the researchers of DVMT include how
the communication policies and coordination schemes affect
the systen's performance. Disruption, distraction, and local
idleness emerged as three critical issues. The authors'’
results reveal that the performance of different organisa-
tions of agents varies significantly according to the amount
of inaccuracy and uncertainty in the input data and communi-
cations channels that must be dealt with.

The designers of DVMT report that they would have liked to
explore larger configurations composed of 10 to 20 agents.
Howeva2r, the time required to set up and run these experi-
ments was prohibitively long, and only a few test cases were
run., This was due to the complexity involved in specifying
the system’s structure, and creating the corresponding input
data with the desired degree of uncertainty and error. The
manpower expended in this project is estimated at 15 to 20

man years.

3.4 DBB: The Distributed Blackbox Testbed

Blackbox is a game that consists of a square, two-dimensional
grid in which a number of balls are hidden. At the beginning
of the game, the player is informed of the number of hidden
balls. The objective of the game is to find the locations of
the hidden balls by firing beams into the grid along its
sides, and observing how the beam trajectories are affected
by the hidden balls. A beam, when it encounters a ball, is
reflected (turned 180°), deflected (turned 90°), or absorbed
by the ball when it encounters a ball head on. (See figure
3.4.1). A player plays the game interactively with a

67

computer. He fires a beam, &nd the computer reveals where the
beam emerges from the grid, if it is not absorbed. The player
hypothesises about the possible locations of balls from the
information he obtains from the fired shots, and then chooses
the next beam to fire. The player's objective is to determine
the location of all hidden balls with a minimum number of
shots.

b a ¢
P 1
e |
e Il
paangmen d
@
H
d
® @
b R ¢

a-c: Defiected beams.
R: Reflected beams.
H: Absorbed beams.

Figure 3.4.1;: Example of beam behaviour in the game of Blackbox

One way of measuring the player's expertise is to count the
number of shots fired in order to find all the hidden balls
for a given game configuration. The player's score provides
a weighed sum of the number of shots taken. Beams that are
absorbed or reflected are valued at one point, while beams
that exit from the grid are assigned two points. This
corresponds to the number of edges which the beam provides

68

information about. Other performance measurements can be
derived based on the amount of time it takes the player to
complete a game, and the number of errors in his final
hypotheses about board configurations. These measures can be
averaged for a series of games to give an average measure of
the player's problem solving performance. In the computerised
version of the game, the human player is replaced by an
expert system or agent. Unlike human players, these agents
will play consistently if they repeat the same game. Under
these conditions, changes to the solution strategy will be
easy to evaluate by comparing the observed measures for a
series of representative games.

Although the problem has a finite solution space, its size
(2.4 x 10° possible board configurations for a 10 x 10 grid
containing six hidden balls) makes the search involved non-
trivial. The search's complexity varies according to the grid
size, the number of balls, and their relative locations on
the board. The basic solution process is commutative. The
solution is developed incrementally by applying knowledge
about the relation between beam behaviour and grid contents
to construct a board configuration that produces the observed
beam behaviour. The objective of determining the correct
configuration with a minimum number of shots introduces a
non-commutative aspect to the problem, as the utility of any
shot depends entirely on the current state of the solution.

Different strategies must be employed as the game progresses
from start to finish in order to make the search tractable.
At the beginning of the game, the amount of uncertainty
associated with any beam makes a "least-commitment" approach
the most suitable. With this, tentative hypotheses are
formulated, but no commitment is made until their validity
is proven. As the solution evolves, the amount of uncertainty

69

decreases, making a more exhaustive search €easible. At this
stage of the game, an attempt is made to integrate the
tentative hypotheses from several beams in order to define
the contents of the region they pass through.

Distributed Blackbox (DBB) is a modified version of this
g-.ie. In DBB, the game grid is divided into four equal
quadrants, with each gquadrant assigned to a different player.
Thus the guadrant of each agent consists of two external
edges, and two internal edges which border the quadrant of
another agent. The internal edge constitutes an overlap
region, since the contents of this region will affect
trajectories in either quadrant. Agents may only fire beanms
into the grid along their external edges. All information
about their internal edges must either be derived, or
obtained from the agent's neighbour. (Figure 3.4.2).

The formulation of hypotheses representing ball locations
and bean trajectories requires that agents exchange a variety
of information for the following reasons. A single beam may
pass through several gquadrants in the course of its
trajectory. Explanation of beam behaviour involves multiple
partial hypotheses distributed among the agents and
interrelated by the beam's possible transit points into
adjacent quadrants. Agents are also interrelated by the
overlapping region between their quadrants. The number of
balls that remain to be located provides additional strategic
information. The need to share all this information when
deriving non-trivial hypotheses, obliges the agents to
communicate and cooperate with each other. Communication
implies that the agents may have an inconsistent view of this
information.

70

b a c
a . -
| ’
R
H
d

b R c
=me External boundary aiong which agents can fire.

Shaded area represents overlapping region shared
by adjacent agents.

Figure 3.4.2: Distributed Blackbox (DBB)

The order in which shots are fired affects the aggregation
of knowledge and progress of the game. The order in which
unresolved trajectories are analysed, and the strategies that
are applied, have a similar effect on the solution's
progress. Agents fire shots to acquire additional information
about their individual quadrants. At the same time, these
shots must be planned at the global level to minimise the
total number of shots taken, and optimise the information
obtained from each shot for all agents. A decision at this
level 1is non-commutative. The organisational structure
employed will have a direct impact on the ordering of shots

71

and progress of the solution.

As knowledge about the quadrants and the firing of shots is
distributed, there is no compelling reason to centralise the
planning process. This inherent distribution provides
opportunity for studying wvarious models of cooperative
behaviour, and of observing how the agents cope with
uncertainty. The ability of an organisation to maintain a
global focus for agent activity will depend upon what
information is exchanged by the acents, and how often. The
agents' consistency and symmetry, and the ease with which
they can be scaled, will facilitate the task of comparing
the performance of different organisations. Any variations
in the observed measures can be directly related to the
communication policies and coordination schemes employed.

3.5 A Critical comparision of DBB and DVMT

The problem dependent nature of DPS systems makes it
difficult to integrate the results obtained by different
research groups. As a consequence, the benefit that could be
obtained from others' experience is generally not exploited
to its full potential. Because these systems address non-
deterministic AI problems, there is no absolute measure for
evaluating their performance. Each system has its own
criteria for determining the validity of initial prenmises,
the expected accuracy of its final solution, and an
acceptable response time. Although it is easy to compare the
performance of two systems that address an identic.l problem,
comparing the performance of systems that address completely
different problems entails a subjective evaluation of the
relative complexity of their individual domains.

The problems addressed by both the DVMT and DBB system

72

involves situation assessment and planning. They both employ
a geographic decomposition of the problem space, with a
further functional decomposition that introduces alternative
levels of abstraction in the hypotheses. The basic nature of
both problems is commutative, whereas the control aspect is
not. Cooperation is necessary at all levels of hypothesis
formulation in order to deal with uncertainty in the problem.
As a consequence of this, there is a large amount of bi-
directional interaction among the agents and between the
different levels used to represent a hypothesis.

Planning within DVMT is principally concerned with ordering
activity to achieve timely solutions. Agents are subject to
their sensor data, and do not control the collection of
information. Planning kncwledge within the system is related
to the problem's distribution and the type of uncertainty it
must handle. Timeliness will be set by the sensing rate,
which will also ¢ .termine the amount of information available
to the agents at any time. Dealing with uncertainty in this
context implies balancing the sensing interval with the
corresponding signal processing requirements to obtain some

desired degree of accuracy.

Planning in DBB must deal with uncertainty due to incomplete
knowledge about the problem state when ordering the activity
of the agents. Each activity involves a choice of strategy
that is applied according to what stage the game has reached.
The agents in DBB have the choice between firing shots, and
analysing unresolved beams. In the first case, they must
determine which shot to fire. In the second, they must choose
an unresolved beam to analyse. In both cases, they must deal
with incomplete knowledge about the board. This incomplete-
ness is a property of the problem itself, as opposed to noise
in the input data. It is resolved by the choice of activity

73

made by the agents,

The agents complete their knowledge about the board by firing
shots to acquire additional data. The agents are actively
involved in determining when they require more information,
and in seeking it by choosing what shots are fired. In this
context,; handling uncertainty involves determining what is
known, what isn't known, and the best way of acquiring the
missing information. This requires greater introspective
reasoning by the agents in DBB than in DVMT about how the
global solution is evolving. Timeliness here is not a
constraint imposed by the input rate, but rather a factor
that influences the sequence in which shots are fired, the
order in which informatinn is aggregated, and the total
number of shots taken.

Communication noise, error, and failure have a different
effect on the reliability of hypotheses in DBB and DVMT. In
DVMT, the monitored vehicles are independent from each other;
the only interrelationship between vehicles is that they
cannot occupy the same location at the same time. Communica-
tion noise and error concerning the vehicles' location can
be resolved by interpolation and prediction, supported by the
arriving sensor data and established hypotheses. If an agent
fails, it can recover at any subsequent time by simply
resuming the sensing of data, whose degree of uncertainty is
not affected by the failure. Furthermore, the degree of
uncertainty in the other agents' input data remains
invariant, whether an agent has failed or not. The sarce is
true for communication noise and error.

In DBB, beam trajectories are interdependent, as they must

coexist on the grid. Establishing a trajectory hypothesis
relies on the hypotheses that have already been established.

74

Any errors introduced by communication noise and error will
be propagated throughout the evolving solution. Detecting
and correcting communication er -ors is more difficult in DBB.
The failure of an agent implies that knowledge about the
region it represents will remain incomplete, and the
surviving agents will be obliged to search for alternative
plans that do not require cooperation with the failed agent
to complete their own knowledge. They will accomplish this
by choosing and firing an alternative sequence of shots.
Thus, although failure reduces the choice of activity
available in both systems, in DBB the agents devise alter-
native plans to complete their hypotheses, whereas in DVMT
they must simply accept a higher degree of uncertainty.

In the case of both DBB and DVMT, the need for cooperation
between the agents exists. In DVMT, this occurs between two
agents whenever some vehicle exists in the overlap between
their regions. The agents have no influence over this, as it
is dictated by the input data. In DBB, the nature of multi-
guadrant beams requires that all agents involved interact in
determining their trajectory, and agents can influence with
whom they interact by their choice of beam. Where coopera-
tion in DVMT is limited to determing the optimal order in
which to interpret sensor signals, cooperation in DBB encom-
passes more than establishiny the transit location of beam
trajectories. The agents also cooperate to define the grid
contents in the areas they share, Lo determine what search
strategies are appropriate for the current stage of the game,
and to choose shots that minimise the score and optimise the
a.quisition of knowledge. This range of choice provides a
much larger arena for examining cooperation in DBB.

A highly significant difference between the two systems is
the ...anpower required for prototype development. This

75

difference is largely due to the fact that DVMT is a
simulated prototype whereas DBB is a game. The knowledge
engineering involved in constructing a DBB agent is much
simpler. Rather than searching for external expertise, users
can acquire it rapidly by playing the game themselves.
Familiarisation with the system's operation is easy, as
intermediate results are immediately visible in a form that
is intuitively simple to grasp. Game configurations (the
locations of balls) :an be randomly generated, providing a
large set of problem cases. In DVMT, using the system
requires understanding of the underlying signal analysis
task. The set-up of experiments is a tedious and error-prone
task due to the need to specify input data that simulates
sensor output with the desired degree of uncertainty [22].

Another area in which the two systems differ substantially
is in the approach we have chosen for providing DBB with the
flexibility it requires to assume different organisational
structures. Within DBB, the agents' organisational roles
will be explicitly specified. Rather than opting for a fully
parameterised testbed environment such as DVMT, we have
decided to facilitate modifications at the programming level.
This decision was based on the fact that although DVMT had
a large number of parameters that could be varied, the inter-
relation between these parameters made the specification of
different organisations a highly complex task [22]. Instead,
modification of the program structures of the agents in DBB
is planned using an object oriented approach. 1In this
environment, respecifying the structure of an organisation
consists of specifying the interrelation and type of inter-
action between the agents and related "objects".

76

3.6 Research Issues for which DBB is Suitable

The nature of the problem in DBB gives us a scenario in which
we can study a variety of DPS issues related to coordination,
cooperation and organisations. Possible problem decomposi-
tions produce different communication requirements that can
be satisfied in several ways. These give us situations in
which agents can assume Gifferent roles that are realised
through differe1t organisational structures. This will give
us the possibility of studying various coordination schemes
and communication policies when applied to the same problen,
which in this case is the same hidden ball configuration.
Furthermore, the nature of the problem allows us to compare
the performance of our system to that of human players. This
ability to observe people playing provides us with additional
information about the game, a rapid proving ground for our
ideas, and a source of insight into what cooperation implies.

Although we have chosen a geographic decomposition for our
initial design, the problem also supports a functional
decomposition in which the choice of shots to fire, the
choice of beams to analyse, and the actual analysis can be
distributed. A second way of viewing the problem is to have
individual agents assigned solution islands to develop and
expand over the global board. With this, the most knowledge-
able agent in the context of some specific subproblem assumes
responsibility for solving that subproblem. A third approach
would be to have agents modify the size of the quadrant for
which each is responsible according to the amount of
knowledge each has. Alternatively, agents could assume
organisational roles according to what they know about the
solution, or their individual work l.ads. These are but a few
examples of the different ways in which the problem can be
tackled. Within the geographic decomposition that we have

77

chosen, there are several issues to deal with:

(1) When should an agent focus on its own quadrant
instead of firing shots or analysing trajectories to
help reduce the uncertainty faced by another agent?

(2) Deciding which shot to fire next. Should the
decision be centralised, or decentralised, and in
that case how should it be realised?

(3) What information should be shared among the agents?
Should an agent's confirmed or tentative hypotheses
be available to the others? What communication
policy will be used for the exchange? Will the
communication policy achieve a balance between
information overload and the uncertainty faced by an
agent due to the lack of information?

The organisation in which the agents participate will define
how these issues are handled. Two obvious organisational
forms for decisions concerning shots are a simple hierarchy
and a team (figure 3.6.1). The hierarchy will centralise all
pertinent information whereas the team employs some consensus
process whereby each member arrives at a compatible decision
-- a situation in which cooperation, and knowledge based
protocols can be explored. The information exchanged in the
course of trajectory analysis will have an equally
significant impact on the solution. Various communication
policies can be applied at this level. These policies will
vary the amount of disruption, distraction, and 1local
idleness that occur. The organisations can remain static for
the duration of a game, or change according to how the beam
trajectories lie on the board. It is also possible to allow
agents to form two, three, or four member teams associated

78

with analysing individual beam trajectories in a multiagent
fashion.

director

=
T ST

Team

subordinate

subordinaio

Hierarchy

F ygure 3.6.1: Possible organisations for DBB

The availability of a DBB "playground" for people is an added
bonus to our work [34]. In this version of the game, four
human players playing on seperate workstations replace the
agents. Experiments have already been run with this version,
using three different teams of players [35]. Although there
are several ways in which a group of humans differ from a
group of expert systems, these experiments have provided us
with valuable insight into the nature of DBB, and may provide
useful results for evaluating the performance of the expert
system version of the game that we propose to construct.

79

Chapter 4
The Blackbox Expert System

Understanding the nature of the underlying problem is
necessary for distributed problem solving. In this chapter,
the design of an expert system for the Blackbox game is
presented. The design employs a modular decomposition of the
reasoning process to allow for the system's eventual
extension into a multicomputer environment. The design
includes facilities which make it easy to monitor and measure
the system's problem solving performance for a large number
of games. These measurements serve to evaluate the expert
system's performance by comparing it with that of human
players or other references.

The single expert version of Blackbox was developed on a
Macintosh SE-30 in BNR Prolog. It is a 400k system that took
approximately five months to develop. This time was more or
less equally divided among the knowledge acquisition, imple-
mentation and evaluation phases of development. Although a
certain amount of knowledge was acquired by watching others
play, the major part was acquired by analysing the game rules
and observing myself play. The system's implementation
involved considerable intermediate evaluation and refinement
of the knowledge. The system's final evaluation is based on
measurements obtained from over 150 games. The observed
measurements reveal the nontrivial nature of the game, and
the limitations of a single agent.

4.1 An Overview of the Problem and Our Objectives

Our primary objective in constructing a single expert version
of Blackbox is to obtain an expert system whose problem
solving ability is thoroughly understood. By this we mean
that when the expert system makes certain decisions during

the solution process, we know how these decisions affect the
solution, and why they were made. This requires that the
expert system be observed and measured in a large number of
different game situations. The ease with which game
situations can be observed has - significant impact on the
amount of time spent debugging, evaluating, and refining the
system. Blackbox includes a facility that runs and measures
a series of games for the user. This facility has permitted
us to collect many days' worth of measurements at next to no
cost in time to the user.

Our performance objectives for the expert system are to
develop a system capable of finding "acceptable" solutions
for ‘'reasonably" difficult games. Our definition of
"acceptable" and "reasonable" ar. based on the results
obtained bv people playing the same or similar games. With
an acceptable solution, the score, the number of errors, and
the time required to solve the problem are comparable to that
of people. A reasonably difficult game is a game in which the
solution is not found by random chance, but requires some
thinking on the part of the player. It the player's problem
solving skill is largely dependent on luck, his performance
will be directly related to the game boards he plays rather
than his problem solving ability. The game must contain a
minimum amount of complexity to ensure that resolving
uncertainty involves deliberate reasoning by the expert.

In Blackbox, the complexity of the problem is determined by
(1) the size of the grid, (2) the number of balls, and (3)
the location of these balls relative to each other on the
grid. A game which consists of one hidden ball is not very
complex. To find the ball, the player siwply fires beans
until a deflection occurs, at which point the ball is
located. The number of shots fired will depend upon the

81

location of the ball and the method the player uses to choose
shots. The same method will produce widely differing results
depending upon where the ball is located. A comparison of
these results will reveal 1little about the expert's
reasoning. The games we are interested in observing must
involve uncertainty that is resolved by deliberate reasoning
rather than random chance. The uncertainty we examine occurs
in games that consist of five, six, or seven balls hidden in
random locations on a 10 x 10 grid.

There are three sources of uncertainty in the problem: (1)
the expert does not know the contents of the grid apart from
the total number of hidden balls, (2) the expert has no sure
way of predicting the behaviour of a beam passing through an
unknown area on the grid until the beam is fired, and (3) the
trajectory of a fired beam has several alternative routes
that it could follow to justify its observed behaviour. The
problem's complexity will determine the amount of uncertainty
the system must resolve. Although the number of hidden balls
and grid size are variable, the expert system is designed to
operate optimally when solving six ball games on a 10 x 10
grid. This configuration was chosen because almost all
problem instances involve the desired level o' uncertainty
from all three sources. This would not be guaranteed with a
smaller number of balls or grid size, while larger games
would involve more uncertainty of the same type.

Only one solution is considered correct in any game. This is
:che solution that corresponds to the actual game board.
However, it is not always possible for the expert to find
this solution. Certain ball configurations will prevent beams
from passing through certain areas of the grid, while some
games can be explained by alternative boards. This is
illustrated in figure 4.1.1. The final solution in this type

82

of game can only be found by guessing. Our expert guesses at
the solution when he encounters these situations. The
expert's ability to guess permits the expert to play randomly
generated games without requiring the user to analyse each
game beforehand to ensure that it can be solved.

RHRHRHRH RHRHRHRH

A EE |
-

2 2 21 2
; 3 3 3 3
4 4 4 4
I 5 5 5 5
6 6 6 6
H I H H H

1 HRHRHRH 1HRHRHRH

(=) Inaccessible area (b) Alternative game boards with identical shots

In figure (&), no shot can provide any information about the shaded area. If some ball is hidden
within this area, its location must be guessed. In figure (b), all fired shots exhibit the same
behaviour even though the two boards are different. In this case finding a solution requires
guessing which board is the correct one.

Figure 4.1.1: Games that require guessing

The expert reduces his uncertainty about the grid by choosing
and firing shots. The beam's behaviour allows the expert to
define the contents of the grid along the beam's trajectory.
If there 1s only one trajectory that the beam could follow,
no uncertainty is involved. However, if several alternative
trajectories are possible, the expert must establish which
trajectory is the correct one. He may fire an additional beam
to obtain more information about the grid. The expert's
objective of minimising his score requires that he choose
shots which will provide the most information. Determining
which shot is optimal requires that the expert perform a
heuristic assessment of the current state of the game. This
involves evaluating available shots in relation to what is
already known about the board and the beams which have been

fired.

83

The expert determines the structure of the board by combining
the information he obtains from fired beams. A different
series of shots will produce alternative information
describing the same board. One solution is considered better
than the cother if (1) its score, (2) the amount of time it
takes to derive the solution, or (3) the number of errors it
contains is lower. Changing the order in which a series of
beams are fired will not affect the total amount of
information obtained from the beams. However, it will affect
the amount of information that an individual beam provides.
In certain cases, firing one beam before another will make
the second less profitable. This is illustrated in figure
4.1.2. In such cases, the expert will alter the series of
shots he fires.

(8) Fire "R" first (b) Fire “1* first

Figure (a) and (b) illustrate two shots on the same board. In figure (a), the firing of "R" only
provides information about the two squares immediately ahead of the firing point. This shot
does not provide any information about the shaded area in the figure. In figure (b), shot™1*
is fired before shot "R". Shot "1" provides information that defines the contents of the two
top rows. In this case, it is no longer necessary to fire shot "R", as its behaviour is aiready
defined.

Figure 4.1.2: Firing order affecting a beam'’s contribution

A large part of the knowledge required to sclve Blackbox is
procedural in nature. It is based on the rules which define
how a beam's trajectory is affected by the contents of the
area through which the beam passes. Procedural knowledge

84

alone is insufficient for finding acceptable solutions. The
player must also decide when exhaustive searches are
feasible, when more information is necessary, and which shot
to fire. When humans play the game, this choice is based un
a visual assessment of the game board, and is guided by
intuition. In the case of the expert system, the visual
assessment is implemented by a systematic examination of the
board which is neither as rapid nor as selective. The expert
system uses a simple heuristic that does not express the full
flavour of a human player's intuition.

4.2 oOverview of the Blackbox System

The Blackbox System consists of a session component which
controls a game component that contains the actual problem
solving expertise. The session compornent presents a menu to
the user through which the user enters specifications about
the game session and the performance measurements to collect.
The game component constitutes the expert system that solves
Blackbox. An overview of the system's structure is given in
figure 4.2.1. A detailed description follows. One can observe
the expert's operation by watching the game evolve on a
screen display.

Session Component

1. Initialise game session.
Game Component <€—1- 2. Rungames.
3. Calculate session statistics.

A. Planner
B. Choose
C. Fire shot
D. Analyse beam

Figure 4.2.1: Overview of the system's structure.

85

B8ession component: The session component provides the inter-
face through which the user defines how the game session will
progress, and what performance measurements will be collect-
ed. Once the specifications are entered, the session compo-
nent controls execution of the game session. Its functions
consist of (1) setting up each individual game, (2) calling
the game component to solve the game, and (3) saving all the
game's measurements. At the end of the session, the session
component calculates the session averages, and terminates.
The session component is summarised in figure 4.2.2.

1. Initialise session

1.1 Define game session.
1.2 Delfine performance measurements.

2. Run games

2.1 Setup game.
2.2 Call Game Component.
2.3 Collect game results.

3. Calculate session statistics

3.1 Campute session results.
3.2 Save session results.

Figure 4.2.2: Bession component

The user has the following options when entering specifica-
tions for a session. The user can choose to run sessions in

86

either automatic mode or step mode. When the session is run
in automatic mode, the system will play a specified nuvmber
of games and then terminate with no intervention on the part
of the user. When run in step mode, the system will pause
before each game. The user can then (1) view the game, (2)
proceed to the next game, (3) let the game be played, or (4)
quit the session. The user also specifies whether game boards
are (a) read from a file, or (b) randomly generated. If read
from a file, the system provides the user a listing of avail-
able files. If game boards are randomly generated, the user
specifies the number of hidden balls, and the size of the
grid. The user specification menus are given in figure 4.2.3.

The user identifies which performance measurements to
collect, and a file name in which the data will be saved
through a menu interface. By default, the save option
collects the following for each game:

(1) the game board

(2) the number of shots

(2) the score

(4) the time in minutes

(5) the number of errors in the solution
(6) the order in which shots were fired.

At the end of the session, the averages for 2, 3, 4, and 5
are calculated. As it stands, the system does not collect
any other intermediate data. This does not seem necessary as
the reasoniny process that lead to a particular solution can
be reconstructed from the information saved. Reconstructing
the solution seems preferable to saving large amounts of more
detailed data that would rarely be used. However, if anyone
does wish to save more data, the necessary hooks are
available in the system.

87

Specify game session source
o
, ,’;ﬂ,{g f‘,ﬁ‘%{ffﬁ?‘ 4 ;” £ 45

Random

y

Directory Random game specifications
Drive

file2.bbox
file3.bbox Number of games 10

.....

A

Grid size 10

file1.bbox I number of balls 5
NS

® automatic

O step mode
-

Do you wish to save intermediaie results?

Yes (No)
Y

Choose desired save options.

Session statistics
board contigurations
errors

shots

intermediate solutions

&
Y

Directory similar to above
Enter save file name.

Figure 4.2.3: Session specification menus
88

Game conmponent: The game component contains the actual
problem solving expertise. The expertise is functionally
decomposed into modules. An overview of the game component
is provided in figure 4.2.4.

a. Planner

a.1 Determine stage of game.
a.2 Choose activity.

b. Choose shot

b.1 Evaluate shots.
b.2 Choose "best” shot.

c. Fire shot

c.1 Compute shot's real trajectory.
¢.2 Establish shot's behaviour and id.

d. Analyse beam

d.1 Analyse beam.

d.2 Check invalidated hypotheses.
d.3 Integrate hypotheses.

d.4 Guess ball locations.

Figure 4.2.4: Overview of the game component

The highest 1level module (&) controls the progress of the
game. It evaluates the current state of the problem, and

89

calls one of the other modules accordingly. The lower level
modules can be called in any order. The lower level modules
(b) evaluate and choose the "best" shot to fire, (¢) compute
the trajectory of the fired shot and establish the behaviour
of the resulting beam, and (d) analyse the unsolved beams to
determine the hidden contents of the board. The invoked
module performs its reasoning, and then returns control to
the control module. Each 1lower 1level module is further
decomposed to handle the different strategies required at
different stages in the game. These strategies are discussed
in detail in the following sections.

The user observes the game's progress on the screen. The
screen displays (1) which game in the series is being played,
(2) the number of hidden balls, (3) the current score, (4)
the state of the grid, (5) what shots have been fired, their
behaviour, and their identification, (6) the expert system's
current activity, and (7) the end of the beam on which it is
focused if performing analysis. The display is modified each
time a shot is fired, a change is made to the board's
contents, or the system changes its activity. The screen
display is illustrated in figure 4.2.5.

The state of the board and the identity of the beam being
analysed allow the user to reconstruct the reasoning process
the system is performing. The user can determine whether the
action is successful by the changes that appear on the
screen. The user's ability to reason about the problem at the
same time that the expert system is running allows the user
to compare his decisions to those of the expert and question
any differences. This visual interaction with the system
makes the system's reasoning easy to trace. This facility for
on-line comparisons is preferable <to analysing large
guantities of data after execution.

90

Backbox
Total games: 10
2 1 lay mode: auto
Grid size: 10
1ARRERREAN e
11 ® Objects: 6
Game no: 1
2
® score. 5
E Analyse
H
[]

The screen display during progress of a given game provides; sesslon information: the total
number of games in the session, the play mode, the grid size, and the number of hidden objects;
game Iinformation: the game number in the session, and the current score; and the grid.

Black squares Ml indicate empty squares, circles ® indicate balis, and blank squares O
indicate that the contents is unknown. Each end of an exiting shot is marked with an integer,
reflecting shots are marked "R", and absorbed shots are marked "H". The dot e indicates which
end of a beam is currently being analysed.

Figure 4.2.5: Screen display

4.3 The Blackbox Solution Process

Reasoning in Blackbox is performed by the game component
(figure 4.2.4). The system attempts to obtain the maximum
amount of information from available sources before firing
another shot. This is reflected in the priorities that the
control module applies when determining what actioa to
perform next. The modules for choosing shots and analysing
beams perform either a cursory or exhaustive search depending
upon the state of the solution. The module that fires shots
simply calculates a shot's behaviour on a given board
according to the game rules. The firing module is not

91

considered further as it does not involve any reasoning.

The solution process consists of deciding where to shoot,
firing the shot, and then analysing the point at which the
beam enters the board. Analysis establishes a hypothesis for
a beam by applying the rules that relate how a bean's
trajectory is affected by the contents of the board. The
board's contents are derived by determining where the beam
could pass, and where it cannot pass in order to produce the
observed behaviour. Changes made to the contents of the board
during analysis are checked to see if they affect any hypoth-
eses about beam trajectories. Hypotheses that are invalidated
by the changes are reanalysed. Reanalysis of hypotheses may
produce further changes, invalidating more hypotheseés. These
are reanalysed until no more information can be gained. The
solution process is repeated until a solution is found.

The control module examines the current problem solving state
and determines which reasoning module to activate. It has the
choice of continuing analysis of currently available informa-
tion, or of firing another shot. If it chooses to continue
analysis, the system must determine which beam hypothesis or
hypotheses to examine. If firing is chosen, the system must
determine where to fire the shot. Choosing an "optimal" shot
will or will not involve evaluating the potential contribu-
tion of "available shots", depending upon how many changes
have occurred since the last evaluation. In certain cases,
available shots cannot provide any additional information,
while in others the available information appears sufficient
for finding the solution. In either case the system attempts
an exhaustive analysis during which it integrates what it
knows about all unsolved beams. The system "guesses" at ball
locations when no other strategy is applicable. Figure 4.3.1
describes the available control choices.

92.

Control cholces
Fire Anglyse
1. Evaluate available shots. 1. Analyse beam hypothesis.
2. Chz::e shot. 2. Check invalidated hypotheses.
3. Shoot. 3. Integrate hypotheses.
4. Guess ball locations.

Figure 4.3.1: Controf choices In the solution process

The problem solving states in the game are distinguished by
a number of conditions, labeled Cl1 to C7. These conditions
indicate which reasoning module can be applied, and what
stage the game has reached. The conditions and their relation
to control choices are given in figure 4.3.2.

Conditions

C1. All balls have been located.

C2. The number of balls equals the number of unknown squares.
C3. Only one bail remains to be found.

C4. Board changes have occured.

C5. Invalidated hypotheses are present.

C6. No more information can be derived from current sources.
C7. Remaining shots can provide no additional information.

Conditions
Control Choice C1 €C €3 C4 C5 C6 c7

TERMINATE X X

FIRE X

1. Evaluate X X
2. Choose
3. Shoot

ANALYSE

1. Analyse P .o o ™ x
2. Invalidate X
3. Integrate X
4. Guess

x

Flgure 4.3.2: Conditions and affected control choices

93

The occurrence of Cl1 signals that the game is over. C2
indicates that the game is over once the remaining unknown
squares are filled with balls. €3 is the condition indicating
that the game is in its final stage, and an exhaustive search
can be attempted. The occurrence of C4 and C5 indicates that
additional information might be obtained by analysing hypoth-
eses about unsolved beams. In the case of C4, the hypotheses
should be checked to determine if any have been invalidated
by the changes, while C5 indicates that invalidated hypoth-
eses remain to be analysed. C6 results from the absence of
conditions C4 and C5, and indicates that another shot should
be fired in the absence of Cl and C2. C7 indicates that all
remaining shots are useless. When combined with Cé6é and the
absence of C1 and €2, it indicates that finding the solution
involves either an exhaustive search or guessing.

8hot evaluation: The principal difference between the two
strategies available for evaluating the potential contribu-
tion of shots is the depth of their search. Both rely on a
systematic examination of each available shot. The value
assigned to the shot is based on the shot's predicted behavi-
our and the number of unknown squares on its hypothetical
trajectory. The first strategy is cursory in that it only
considers a single trajectory for each shot. The second
strategy is exhaustive. It examines each alternative trajec-
tory that the beam could follow, and bases its value on a
count of the unknown squares and of the different types of
behaviour that the beam could exhibit. This eliminates many
useless shots whose behaviour would not provide any informa-
tion at the end of the game. The utility of applying it any
earlier is overwhelmingly offset by its time complexity.

The process associated with evaluating shots consists of (1)
establishing the point at which the shot actually enters a

94

region on the grid whose contents is unknown, (2)
hypothesising a trajectory from that point, (3) counting the
unknown squares along that trajectory, and (4) determining
the behaviour which would result if the shot followed that
trajectory. The point at which a given shot enters an unknown
region is maintained for each shot and used to eliminate
shots whose behaviour becomes totally defined without firing.
The hypothesised trajectory assumes no balls are located in
any of the unknown squares. The count distinguishes between
squares which are situated on the trajectory, and those which
are adjacent to it. If the hypothetical beam exits, its exit
location is noted.

Beam analysis: A similar choice between either a cursory or
exhaustive search occurs in analysis. The strategy may be
applied to a single beam, or in resolving several beans
together. The inappropriateness of applying an exhaustive
search at the beginning of the game is obvious. When little
or nothing is known about the grid, an exhaustive search on

a single beam may take over four hours'

. Thus, an attempt is
made to avoid exhaustive searches in the initial stages of
the game. As more knowledge is gained about the board, the
number of alternative trajectories that any single beam could
follow diminishes. A more exhaustive search that attempts to
integrate alternative trajectories from several unsolved

beams becomes feasible.

The basic reasoning process applied when analysing single
beams consists of the following five steps:
1. When a shot is fired, an initial hypothesis is
established for it.

'This was noted during one debugging session. It is
neither a maximum nor a limit.

95

2. This hypothesis and the board are then analysed in
order tec make changes to the board's content and the

hypothesis.

3. All other beam hypotheses are then examined in order to
establish which hypotheses have been invalidated by the
changes.

4. The beams with invalidated hypotheses are assigned
priorities for analysis.

5. The beam with the highest priority is reanalysed. If
its hypothesis can't be revalidated, (2) is repeated.
If the hypothesis is revalidated, then (5) is repeated
for the remaining beams.

Whenever changes are made to the board, beam hypotheses are
checked (3). Invalidated hypotheses are reanalysed (4 and 5)
until no more information can be gained.

The analysis by which several beams are integrated employs
the same basic reasoning as that applied to single beams. It
considers several alternatives for each beam and compares
them to those available for other beams in order to eliminate
all alternatives which cannot coexist. In certain cases the
elimination of alternatives establishes the contents of the
grid. When this occurs, the basic reasoning process described
in the previous paragraph is applied. The stage at which this
exhaustive strategy is appropriate varies from game to game.
It is employed when possible shots cannot provide any
additional information, and it is deliberately attempted when
only one hidden ball remains to be located.

96

4.4 Knowledge Representation in Blackbox

The way in which knowledge is represented in an expert system
is related to the information requirements of the reasoning
strategies. In our case, the domain specific knowledge is
represented in a procedural manner to keep the representation
concise. The solution is represented by a set of conceptual
objects that also provide a description of the current
problem solving state. The reasoning process manipulates
these objects to transform them from an initial problem state
to a final solution state. The "significant" states are those
which affect control decisions (see figure 4.3.2). Control
decisions relate to analysing beams or firing shots, and all
associated subactivities.

The domain specific knowledge required to solve Blackbox is
contained within the game rules, which describe how a beam
moves over the board. These rules describe how the trajec-
tory of a beam is affected by the contents of a 3 x 1 area
adjacent to the location through which the beam passes. This
area is named the "vicinity" of a location along a beanm's
trajectory. As ccated earlier (section 3.4) the contents ot
the beam's vicinity can “absorb", "refle-t", or "deflect" the
beam in either of two directions. The effects of the
vicinity's contents on the beam's trajectory are illustrated
in figure 4.4.1. These are the basic rules by which the
behaviour of any beam can be explained.

The beam's orientation on the board in relation to the
vicinity determines how the beam's trajectory is affected by
the vicinity's conteats. A beam is considered travelling
inwards from its entry point towards the centre of the grid.
The relevant vicinity is the area perpendicular to the bean's
direction and immediately ahead of the beam's currently known

97

location. If the contents of the vicinity are known, then the
beam's next location is known. If the vicinity's contents are
unknown, then three alternative locations are possible,
corresponding tuv deflect left, deflect right, and no
influence, as illustrated in figure 4.4.1. The beam's current
direction is identified by the unique direction which
identifies the beam's preceding location rather than its next
location. The labels "up", "down", "left", and "right" on the
board identify the current direction in relation to the
preceding location. This is illustrated in figure 4.4.2.

g J &
P> >lE| -
-:" £ - :
No effect. Deflact left Deflact right Absorb Reflect

The above are the basic ball configurations that affect a beam's trajectory. An empty
vicinity has no effect on a beam's trajectory. Deflect feft or right indicates the direction in
which the beam is deflected. The beam is absorbed when it ancounters a ball head-on.
When a beam s reflected, it reemerges at the same point that it entered the grid. A
reflection at the edge is a deflection that prevents the shot from entering the grid.

Figure 4.4.1: Ball configurations that affect beam trajectories.

up

v

ot > < right

A

down

Figure 4.4.2: Direction of a beam on the board

98

The beam's next location is determined by combining its
current location and direction with the deflection produced
by the contents of its vicinity. A beam may be deflected
several times before it reaches the target configuration that
produces the behaviour exhibitec by the beam. Each of these
deflections results in a change of direction for the
trajectory of that beam. A beam's trajectory is uniformly
represented by decomposing the trajectory into a sequence of
partial trajectories corresponding to each deflection that
occurs in the trajectory. Each part.ial trajectory is
described by:

(1) An entry location and the direction of t’ie beam.

(2) An area through which the beam moves in one
direction.

(3) The location of a ball which changes the beam's
direction.

The next direction and location resulting from the bean's
deflection correspond to the entry location of the next
partial trajectory. If the beam is absorbed cr reflected,
the last partial trajectory will contain the required ball
configuration. If the beam exits from the grid, the last
location in the area will correspond to the beam's exit
location. Thus the trajectory of any beam can be represented
by a sequence of partial trajectories. The number of partial
trajectories will vary according to the number of deflections
that nccur in the trajectory. This is illustrated in figure
4.4.3.

99

al

Figure (a): Representation of a beam

The representation of a beam entering at @81 and exiting at 82. The beam's immediate vicinity is
oJtlined in black. The beam’s entry point is the square preceding it. Each beam is represented
by a sequence of partial trajectories that describe the beam's route over the board. The
ilustrated beam consists of two partial trajectories resulting from two defiections.

Figure (b): Representation of a partial trajectory

A partial trajectory is represented as: an entry point (=), an empty region (shaded area D)
and a ball location (@). The last partial trajectory may contain no ball location, a "hit" ball, or
two balls corresponding to a reflection, depending upon the beam's behaviour.

Figure 4.4.3: Reprezentation of a beam's trajectory.

100

The state of the solution process, or the problem state, is
represented by a quintuplet of objects as follows:

B: <G, N, P, B, U >
where:

1. G: the grid.

2. N: the number of hidden balls that remain to be located.
3. P: possible shots.

4. E: evaluated shots.

5. U: unsolved beans.

The five objects are interrelated by the aspects of the
solution they describe and manipulate. The state of each
object is relevant in determining the current problem state
and in deciding which action to perform next. A detailed
description of each object follows.

The grid <G> is represented as an ordered sequence of (X,Y)
locations and their contents. The possible contents of a
given location are unknown, empty, or ball. At the beginning
of the game all .iocations are initialised to wunknown.
Whenever the grid's contents are modified, the location and
its change are marked. These markings are used in invalidat-
ing trajectory hypotheses. The markings are maintained
between each invalidation check. The type and number of
changes determine whether or not the potential value of shots
should be reevaluated. The type and number of changes are
maintained from one evaluation until the next. When the
number of unknown squares is equal to the number of hidden
balls, or N = 0 (all balls have been located), the game is
over. The information contained within the grid |is
illustrated in figure 4.4.4.

101

RN

grid: (X.Y) location and content.
changes: (X,Y) location and change.
type: Number of changes to empty, and changes to ball.

The contents of the grid are unknown EJ, empiy [J, and ball @ .

The number of unknown squares can be determined for any specified
row, column, or area on the grid.

Figure 4.44: Representation of the grid

The number of hidden balls <N> is initialised at the
beginning of each game. Each time a ball is located on the
grid, its insertion is made through the "ball object", which
decrements 'N' accordingly. The object that describes hidden
balls is slightly more complex than a simple counter. It
ensures that more than one ball is not inserted into the same
location, and distinguishes between actual and available
balls.,

Actual balls provides the total number of balls that remain
to be located in the game. Available balls describes the
number of balls that can be used in the construction of a
particular trajectory hypothesis. The number of actual balls
and available balls will differ according to what is known
about the trajectories and the board. The explanation
follows.

102

At certain points during the solution process it is possible
to identify "ball vicinities" on the grid. A ball vicinity
is a 3 x 1 vicinity on the grid in which at least one ball
exists, but the exact location of the ball is not known. A
ball vicinity is established during analysis of some unsolved
beam. This implies that everywhere outside that vicinity
there is one less ball available for constructing trajectory
hypotheses. Whenever the analysis component hypothesises
about a ball location, it accesses the ball object to
determine if a ball is available. Whenever the hypothesised
location is not within a vicinity, there is one less ball
than that which would be available if the location were in
the vicinity. Figure 4.4.5 illustrates a situation in which
a ball vicinity is defined.

- - ,‘. |

>hi
™ L.

'n." t'c'.'l'l"'..‘

"

a1) 3 0 I
T

R

:

..

ot L
.:.'. “.

iyl

oo
E X)X
e aclofe o
IR (E X3 I
o s off o Be oo
e 8 1. .
Ak hipie & DA SAAA
adedensg ferochocede
X T I 1 B3R I

| 3 B | | R R LR

The beam entering at a1 must be deflected either left orright by the contents of its
vicinity (outlined in black). if the beam is not defiected, and continues straight on, then
the beam would be absorbed by the ball known to be located immediately ahead. As
being absorbed contradicts with the beam’s known behaviour, a ball vicinity is
established. This ball vicinity must contain one ball in either of the locations indicated
with & in the vicinity.

Figure 4.4.5: Situation in which a ball vicinity is defined

103

Ball vicinities may overlap. In this case, one ball could
account for the overlapping vicinities. The ball object
establishes the number of balls available when all vicinities
are taken into consideration. A description of the ball
object is provided in figure 4.4.6.

Actual balls: Total number of balls that remain to be located.
Avallable balls: Actual balls /ess all balls within inaccessible ball vicinities.
Ball vicinities: A vicinity on the grid which must contain at least one ball.

A ball vicinlty is represented by [(X:,Y1), (X2,Y2), (Xs,Y5)], with at least two, and possibly
three of the locations marked as potentially containing balls.

Actual balls Available balls

o009 00® = o000 + e ¢

bali vicinities

Figure 4.4.6: Ball object

Possible shots <P>, evaluated shots <E§, and unsolved beams
<U> are different representations of the same object as it
is transformed during the game. A possible shot represents
a potential trajectory that could provide information about
the grid. An evaluated shot places a value on the informa-
tion which that potential trajectory could contribute. An
unsvulved beam is the result of firing a possible shot. The
shot fired is that with the highest value among the evaluated
shots. Once fired, the shot is eliminated from possible and
evaluated shots. Once resolved, the beam is eliminated from

104

unsolved beams as no additional information can be gained
from it.

Possible shots <P> are initialised at the beginning of each
game by creating a record for each firing location on the
grid. Each shot is identified by its entry location outside
the grid, and its current direction and location, which
describe the point at which that shot encounters an unknown
region on the grid. At first, the shot's current location is
identical to that of its entry 1location. As the game
progresses and the grid's contents become defined, its
current point will change according to what becomes known.
In certain cases, the shot's entire trajectory will become
defined. Shots that become defined are eliminated from the
set of possible shots. Possible shots are illustrated in
figure 4.4.7. The structure of possible shots is given in
figure 4.4.8.

Evaluated shots <E> are created by accessing each possible
shot, and assigning a value to its potential contribution.
The evaluation object maintains a set of evaluated shots,
which are recreated whenever evaluation is considered
necessary. This object is accessed to obtain the shot with
the maximum value. Evaluation is based on a count of unknown
squares and the shot's predicted behaviour. If the shot's
hypothetical trajectory leads that shot out of the grid, its
exit location is noted, and the possible shot that
corresponds to that exit location is not reevaluated. Thus,
although each evaluated shot corresponds to a possible shot,
there is not a one to one correspondence between them. All
evaluated shots that correspond to a fired shot are
eliminated when the shot is fired. The structure of evaluated
shots is illustrated in figure 4.4.9.

105

EIEIEIRT

YIS

AlATA

AAIA] [®

AAAAAAAA D
v|Y
52 AAAAACR

TAAAN T TE Y

The entry locations of possible shots are marked with =>» on the board.
The current location and direction of possible shots is marked by =,

The figure illustrates possible shots after beams a, b, ¢, and d have been analysed. As
can be seen, the current location of a possible shot advances as the contents of the
grid become defined. Possible shots s7, 82, and 83 can provide no information, and
are therefore eliminated. The remaining shots will provide varying amounts of
information, depending upon their current location and direction, and what is known
about the contents of the grid beyond that point.

Figure 4.4.7: Possible shots on the board

Possible shots: [(Xe,Ye) (Xc,Yc) Direction]

(Xe,Ye) Coordinates of entry location at the edge of the grid.
(Xe,Yc) Coordinates of current focation.
Directlon Current direction specified as [up, down, lefl, righ).

The object initialises all possible shots at the beginning of the game, and maintains them
throughout the course of the game. Whenever the shots are evaluated, their current
location and directionare updated. Shots that are fired, or which become defined are
eliminated from the set. An empty set implies that no more shots are available.

Figure 4.4.8: Representation of possible shots
106

Evaluated shots: [(Xe,Ye) {Xo,Yo) Hits Defiects Value Behaviour]

(Xe,Ye) Entry localion identifies the shot.
(Xo,Yo) Identifies hypothetical exit location of the shot.

Hits Number of unknown squares on the shot's hypothetical trajectory.
Deflects Number of unknown squares adjacent to the hypothetical trajectory.
Value Value assigned by the shot evaluation function.

Behaviour Behaviour that the shot would exhibit on its hypothetical trajectory.

The object maintains a set of evaluated shots derived from the set of possible shots.
Whenever shots are fired, the corresponding evaluated shots are eliminated from the set.
Evaluated shots are accessed to determine the shot with the greatest potential value.

Figure 4.4.9: Representation of evaluated shots

A description of an unsolved beam <U> is created when a shot
is fired. Figure 4.4.10 describes an unsolved beam. It
consists of a unique identifier, the beam's behaviour, its
current location and direction, and a description of the
hypotheses associated with that beam. An unsolved beam
description is associated with every beam, and with each end
of a beam if that beam exits from the grid.

The hypothesis description contained within the representa-
tion of an unsolved beam indicates what alternative trajec-
tory hypotheses are possible from that location. The maximum
is three trajectory hypotheses, corresponding to the three
deflections that could occur in that location's vicinity.
(see figure 4.4.1). The presence of a trajectory hypothesis
indicates the existence of a sequence of partial trajectories
with which a trajectory hypothesis is represented. Figure
4.4.11 shows the description of a partial trajectory
hypothesis.

107

Unsolved beam: [Iid End (Xc,Yc) Direction Behaviour Hypothesis]

K Unique identifier assigned the beam when it is fired.
End Identifies each end of an exitingbeam.
(Xe,Yc) Coordinates of the beam's current location.

Direction The beam's current direction.

Behaviour The beam's observed behaviour [exit, hit, reflect).

Hypothesis Indicates the presence of trajectory hypotheses associated with
the beam. The hypothesis representation is described below.

Hypothesis: [0/1 0/1 0/1)

The position and value within the hypothesis description indicate if a trajectory
hypothesis is associated with the location in question. The positions correspond to
left, centre, and right in the vicinity of that beam's current location. Each identifies a
trajectory hypothesis represented by a sequence of partial trajectory hypotheses,
whose representation is given in figure 4.4.11,

Figure 4.4.10: Representation of an unsolved beam

Partial trajectory hypothesis

{id End Branch (Xc,Yc) Direction (Xb,Yb) (Xu,Yu,Xd,Yd)]

Id Beam identifier.

End Identifies which end of the beam the hypothesis concerns.

Branch Identifies the hypothesis (left, centre, or right).

(Xc,Ye) Coordinates of the hypothesis‘entry point.

Direction The hypothesis' current ¢ ection.

(Xb,Yb) Coordinates of a hypothr: :cal all causing a deflection.

{Xu,Yu,Xd,Yd) Coordinates of the rectangular grid area through which the beam
passes.

This representation corresponds to a pariial trajectory hypothesis, as illustrated in
figure 4.4.3. The contents of {Xb,Yb) in the last partial trajectory hypothesisin the
sequence will differ when the beam is reflected, or exits without a deflection.

Figure 4.4.11: Representation of a partial trajectory hypothesis

108

There are obvious interrelationship between the five objects
described. The number of hidden balls must correspond to the
number on the grid, while the number of balls available
depends upon which location is being considered. Possible
shots correspond to firing locations on the board, while
their current location is determined by what is known about
the grid. Evaluated shots describe the number of unknown
squares and the predicted behaviour of a possible shot if
its trajectory is extended into the unknown region of the
grid. Unsolved beams describe hypothetical trajectories for
beams whose exact trajectory is unknown. The grid's content
and the number of balls available will determine whether the
trajectories are valid. Changes to the grid may invalidate
trajectory hypotheses, and the value of evaluated shots. An
overview of these interrelationships is provided in figure
4.4.12 on the following page.

109

Balis <€ > Possible shots
Actual Firing location
Available Current location
Ball vicinities Current direction
Board
Grid
Changes (to ballor empty).
Type of changes
Y,_._J
? ——
Unsolved beams "(l.. > Evaluated shots
Identification Firing location
Current location and direction Predicted exit
Trajectory hypotheses Predicted behaviour
Value

Invalidated hypotheses <

The above hicstrates the five objects used to represent the state of the Blackbox solution.
Possible shots are evaluated, and then fired to produce unsolved beams. This relation is
represented by il

The trajectories of unso/ved beams are constrained by the state of the board and the number of
balls. These constraints are used to eliminate impossible hypotheses, and change the contents of
the board. This relationship is represented by =saes,

The state of the board determines what balls and what possible shots are present, the value of
evaluated shots, the trajectory hypotheses that unsolved beams could follow, and the trajectory
hypotheses invalidated by any changes to the state of the board. (Note that invalidated
hypothese are simply invalid trajectory hypotheses for unsolved beams.) This relationship is

represented by ==p-.

Figure 4.4.12: Overview of the interrelationship among the objects

110

4.5 Reasoning sStrategies wWithin Blackbox

The reasoning strategies employed in Blackbox are bhased on
certain assumptions about the game: (1) The solution space
is nontrivial. (2) The location of balls is random. (3)
Information about the behaviour of a fired beam is always
reliable. These assumptions have an impact on the nature of
the reasoning strategies. The searches and strategies used
for shot evaluation and beam analysis are structured in
consequence:

a. Exhaustive searches are intractable. They are therefore
avoided until either highly constrained, or inevitable.

b. Balls have an equal chance of being hidden in any
unknown square on the board. Thus the same strategy can
be applied when analysing any size region containing any
number of balls.

c. Once a beam has been fired, there is at least one game
board that will produce the observed behaviour. This
ensures that eventually some solution will be found,
although it may have to be gquessed.

Shot evaluation: can be either cursory or exhaustive. A
cursory evaluation considers only one hypothetical trajec-
tory for a shot, while the exhaustive version considers every
possible alternative. In most cases, a cursory evaluation is
considered sufficient because (a) there is no accurate way
of determining the value of any shot before it is fired, and
(b) finding a solution generally requires a relatively even
distribution of beams over the board. An exhaustive evalua-
tion would not be more accurate than a cursory evaluation
when little or nothing is known. This is taken into account

111

in the heuristics used to evaluate possible shots, and the
values assigned to them.

The cursory form of evaluation assumes the simplest trajec-
tory for a possible shot and cocunts the number of unknown
squares on it. The simplest trajectory assumes that all
unknown squares are empty. This is a valid assumption since
balls have an equal probability of being situated anywhere
on the grid. Choosing shots according to the number of
squares they may provide information about ensures that shots
will be aimed at areas that contain the largest number of
unknown squares.

At the beginning of the game when the grid is relatively
unknown almost all evaluated shots will exit from the grid.
The shot associated with the exit location is not reeval-
uated. This effectively reduces the total number of possible
shots processed. With the entire grid unknown, only half the
shots are evaluated. The number of shots evaluated varies as
the specific game progresses. Shots are not reevaluated until
a significart number of changes have been made to the grid.
The loss in "accuracy" due to non-evaluation is considered
insignificant as evaluation itself is inaccurate. This
results in a substantial savings in time.

The value of a shot is based on the number of possible hits
and deflections that could occur in the course of its
trajectory. Shots which are more likely to be deflected are
favoured. Shots with a limited number of possible deflections
are assigned a higher value. Shots that are potentially
absorbed receive the lowest value since they provide the
least information. The heuristic used to assign values to
shots promotes (1) expanding the known regions on the grid,
(2) ensuring an equal distribution of beams through unknown

112

regions, and (3) avoiding shots that provide 1little
information about the grid.

A cursory evaluation is suitable in the initial and inter-
mediate stages of a game. At the end of the game when only
one ball remains to be located, the grid is relatively well
defined and the number of available shots is limited. A more
careful evaluation at this stage eliminates useless shots,
and favours shots which provide the most information, thus
minimising the game score.

Beam analysis: The reasoning applied when analysing a beam
relates the beam's behaviour to the vicinity ahead of its
current location. The contents of the vicinity are defined
according to what is known about the beam, the grid, and the
hidden balls. If the beam exited from the grid, then it can-
not be reflected or absorbed. On the other hand, a reflected
beam must encounter a configuration that produces a reflec-
tion, while an absorbed beam must hit a ball somewhere along
its trajectory. This knowledge allows us to eliminate certain
configurations from those possible in the unknown vicinity
ahead of the beam. The elimination process establishes what
the contents of the vicinity must be in order to produce the
observed behaviour. An intermediate step in the elimination
process consists of establishing a ball vicinity.

If the contents of the vicinity are unknown, three alter-
native trajectories are possible from that point: the trajec-
tory may be deflected left, right, or pass straight through
the cent.-e of the vicinity (see figure 4.4.1). An alternative
trajectory is possible if the observed beam behaviour can be
produced by following that trajectory. The beam is analysed
by examining each alternative trajectory to determine whether
it is valid. The alternative's validity is estakiished by

113

constructing a hypothetical trajectory on the current board
with the available balls.

A hypothetical trajectory consists of the sequence of deflec-
tions necessary to produce the observed beam. Each deflection
corresponds to a ball that exists, or could potentially be
located on the grid. This is illustrated in figure 4.5.1. The
hypothesis is at all times constrained by the contents of the
grid, and the number of balls available along its trajectory.
If a trajectory cannot be found, that alternative is elimin-
ated. The solution advances by eliminating alternatives until
only one trajectory remains. When this occurs, the contents
of the vicinity are defined, and the beam advances to the
next location.

3 P m',

a a1 1

13RI % X% 3 I
* * .. . * "
g 3 G
. o Re . 0
‘.9
e . .
0 N 5T 25 o
~ P P
M B . sfs
1 B
.b =100

Figure (a) Figure (b)

Two possible hypotheses for a shot entering atat and exiting at 82. The immediate vicinity is
outlined in black. The entry point is the square preceding it. Each hypothesis consists of a
sequence of partial hypotheses that describes a route that could be followed to reach the shot's
exit point.

Figure (a) represents a beam hypothesis composed of two partial hypotheses that would require
two balls. Figure (b) represents a beam hypothesis composed of four partial hypotheses that
would require four balls. A third beam hypothesis that would not be atfected by the vicinity is not
illustrated.

Figure 4.5.1: Alternative trajectory hypotheses for a beam

114

The analysis of a trajectory can be cursory or exhaustive.
Each vicinity on a given trajectory gives rise to three
possibilities associated to deflect left, right, and centre.
The number of possible trajectories makes it impossible to
consider all trajectories for a given beam unless the search
is highly constrained. Instead, the strategy attempts to
construct the simplest trajectory for each alternative. In
the case of exiting shots, a "hill-climbing" strategy is used
[2]; a hypothetical trajectory is found by trying to reduce
the distance between the beam's known entry and exit
locations. Trajectories for beams that are reflected or
absorbed are found using a "depth first" search [2]; the
search attempts to find the necessary configuration on the
most direct trajectory.

Although an effort is made to avoid exhaustive searches,
there is no guarantee that the search will not have to
consider every possible trajectory for an alternative in
order to validate or eliminate that alternative. In the case
of exiting shots, the number of trajectories considered often
depends upon which end of the beam is analysed first. There
are six heuristic rules associated with choosing the end, and
various strategies for constructing alternative trajectories
if the simplest hypothesis fails. The heuristics used are
described in detail in the program 1listing, which is
available on request.

When changes are made to the board, the change may invalidate
hypotheses about trajectories. Hypotheses are invalidated
whenever changes to the grid place a ball or ball vicinity
within an area that was hypothesised as empty, set a hypoth-
esised ball location empty, or exhaust all the balls avail-
able without proposing a complete trajectory. When this
occurs, the hypothesis is reconstructed from the point at

118

which it failed. If this does not succeed, the attempt is
repeated with preceeding partial hypotheses for that
trajectory. If the trajectory hypothesis cannot be recon-
structed, the alternative in question is eliminated. The
order in which invalidated hypotheses are examined may have
an impact on how rapidly the scolution advances.

There are seven levels of priority assigned to beams with
invalidated hypotheses. The priority reflects the number of
alternatives the beam has, and the number of alternatives
that have been invalidated. When no valid hypotheses remain,
there is a good chance that the vicinity they describe will
become defined. The number of invalidated hypotheses gives
an indication of the amount of work involved in their
reconstruction. The beams most likely to define a vicinity
with a minimum amount of work receive the highest priority.

During cursory analysis only a single beam is considered at
any moment. Although the search employed to establish alter-
native trajectories may be exhaustive, it will be limited to
establishing a maximum of three alternative trajectories; one
for each possibility in the vicinity of the beam's current
location. The exhaustive analysis performed at the end of the
game is not constrained in this way. It integrates what is
known about all unsolved beams, and establishes the set of
possible ball locations for all alternctive trajectories that
explain each beam without invalidating the others. The search
will find one or more solutions, ordered from the simplest
trajectories to the most convoluted.

An exhaustive search is employed when only one ball remains
to be found or gquessing is required. The search may establish
a single solution that will end the game with no further
shots. If it establishes several solutions, these solutions

116

will be employed to eliminate impossible alternatives, and
thus locate empty squares on the grid. This will reduce the
number of unknown squares and make the subsequent exhaustive
evaluation both wmore accurate and rapid. In the case of
guessing, the search may not be constrained by a single
hidden ball. I have observed the expert system locating three
hidden balls within an acceptable time frame when all other
sources of information were useless. When guessing, the
search stops at the first valid solution.

The strategy used to guide the exhaustive analysis orders the
unsolved beams according to the number of alternative
trajectories they have. Those with the 1least number of
alternatives are consicdered first because their invalidation
is more likely to result in changes to the grid. The unsolved
beams are analysed one by one. A trajectory hypothesis that
does not invalidate those already established, is construct-
ed. If no trajectory exists, the current hypothesis is
invalidated. Analysis backtracks, and establishes an alter-
native possibility that satisfies the preceeding unsolved
beams. This is repeated for every beam until a valid trajec-
tory is found for each. The time complexity of an exhaustive
search can be considerable, even when the process is highly
constrained by a low number of balls, a well-defined grid,
and a limited number of unsolved shots.

The Blackbox Expert System performs two reasoning activities:
(1) choosing shots; (2) analysing unsolved beams. Each of
these activities can be performed using either a cursory or
exhaustive search. In addition to this, when analysing beams,
the system must determine if analysis is possible, or whether
guessing is reqguired. The expert system must choose which
activity to perform, and which strategy to apply. The choice
depends upon the problem solving state, which is defined by

117

the gquintuplet of objects, S:<G,N,P,E,U> described in section
4.4. Although certain activities are associated with certain
"significant" states (see figure 4.3.2), the system must
establish that these states have occurred. Furthermore, the
relation between a particular state and the available
activities does not necessarily identify a single, optimal
choice of activity for the expert systen.

4.6 Evaluation of Blackbox

The evaluation of the Blackbox Expert System is based on
observations made during its development and measurements
obtained once the system was considered complete. As stated
earlier, the system's evaluation is based on the results
obtained by playing over 150 games. These results and our
observations allow us to draw certain conclusions about the
nature of the problem and the reasoning strategies used by
the expert system. The present version of the Blackbox Expert
System finds "good" solutions within an acceptable time frame
using deliberate reasoning strategies.

Much of our knowledge about the nature of searches in
Blackbox was obtained while debugging the system. One of the
first facts to emerge is that if exhaustive searches are
applied too early, they can take several hours to complete.
This lead to extensive refinement of the knowledge used to
determine when and how exhaustive searches are attempted. The
knowledge defined within the expert system is a substitute
for the visual assessment performed by a human player. Given
the difficulty of modeling this type of knowledge, it is
neither as accurate nor as complete. In spite of this, the
expert system achieves an acceptable level of performance,
as demonstrated by the results in figure 4.6.1 on the
following page.

118

grid balls games score shots errors time
7x7 5 20 16.25 11.4 0.1 4.19
7x7 6 19 16.95 12.25 0.0 585
10 x 10 5 20 19.85 12.95 0.05 13.45
¢ 10x10 6 98 2255 154 0.051 18.928
e 10x10 7 25 28.36 21.24 0.24 23.32
*15x15 6 7 28 16.571 0.0 104.429

(a) Expert system results exc/ude exceptional games

grid balls games score shots errors time
*10x10 6 101 22386 15525 0.059 26.218
*10x 10 7 26 28.538 21.192 0.0231 26.615
“15x 15 6 8 27625 1625 0.0 159.0

(b) Expert system results /include exceptional games

grid balis games Sscore shots errors time
10x10 6 105 22.253 na 0.1 na
10x 10 7 39 25.487 na 0.38 na

(c) Results obtained by human players

In the tables above, grid indicates the grid size, balls indicates the number of hidden
balls, games gives the number of games that were played, while score, shots, errors and
time (in minutes) are the averages obtained in these games.

Average results obtained by the expert system and by human players. The results in
figure (a) exclude exceptional games from the averages marked with ¢ . In figure (b), the
results marked with "' include games which took an exceptional amout of time to solve.
The averages in (c) were obtained by human players.

There were three games on the 10 x 10 grid with 6 hidden balls which took an exceptional
amount of time to solve: 174, 273, and 346 minutes. One game in the 7 ball series on a

10 x 10 grid took 109 minutes, while one game on the 15 x 15 grid took 542 minutes to
complete. Correct solutions were found in alf cases.

Figure 4.6.1: Performance measurements

119

The results displayed in figure 4.6.1 clearly reveal the
relation between the problem's complexity and the game
configuration. As the number of hidden balls increases from
five to seven, there is a corresponding increase in the
number of shots and the time regquired to solve the problem.
The differences between individual games are a consequence
of the relative ball locations. Figure 4.6.2 gives the
maximums (worst case) and minimums (best case) obtained by
the expert system with a 6 ball game on a 10 x 10 grid.

series games score ghots errors time
a) S7 10 13 8 0.0 56
b) S7 6 14 8 0.0 9
c) S6 7 22 13 0.0 4

(a) Minimums obtained with 6 balls on a 10 x 10 grid

a) The minimum score and shots obtained with a relatively high time.
b) Minimum shots with low time requirements.
¢) Minimum time requirements.

series games score shots errors time
a) S10 2 38 30 0.0 8
b) S8 8 35 29 0.0 38
¢ S 5 20 13 0.0 346
d) 1.0

(b) Maximums obtalned with 6 bails on a 10 x 10 grid

a) The maximum score obtained with the maximum number of shots. (Note that
if all shots were fired, the score would be 40).

b) The second highest score and number of shots. This is provided for
comparison. Note the difference in time requirements.

¢) The maximum time required to solve a game.

d) The highest number of errors in a final hypothesis. This indicates the
soundness of the heuristics used for guessing ball locations.

Figure 4.6.2: Maximums and minimums obtained by the expert system

120

The increase in errors with an increase in hidden balls is
due to the more common occurrence of ball locations that
require guessing. The large leap in time requirements with
a 15 x 15 grid indicates the non-linearity due to the
increase in possible alternatives on the larger board. These
results confirm the relation between complexity and
uncertainty we described in section 4.1. As stated, the
complexity of the problem is determined by the size of the
grid, the number of hidden balls, and the location of these
balls relative to each other on the grid. This relation is
illustrated in figure 4.6.3.

time time
110
100 : | 25
80 20
60 15
40 10
20 5
10 7
§ 7 10 15 grid size 12 3 45 6 7 hiddenballs
figure (a) figure (b)

Figure (a) plots grid size against the average time (in minutes) required to solve a six ball game
on a 7x7, 10x10, 15x15 board. As can be seen, the time requirements increase non-linearly as
the board becomes larger. The values are taken from figure 4.6.1 (a).

Figure (b) plots the number of hidden balls against average time on a 10 x 10 grid. in this case,
the increase in time appears linear. The values are taken from figure 4.6.1 (a).

Figure 4.6.3: Problem complexity

121

The definition of "acceptable" solutions provided in section
4.1 states that they should be comparable to that of human
players. It is difficult to establish a direct comparison
between the two because of (a) the difference in their
approach, (b) time measurements are not comparable, and (c)
a human's performance is highly variable. The human player
is impulsive whereas the expert system is systematic. The
expert system does not make errors due to oversight or
distraction, but it may spend an excessive amount of time
analysing possibilities that a human might uascard with one
glance. An accurate measurement of time requires a controlled
environment to ensure that human players are not otherwise
occupied. This is difficult to provide for a large sample.
Another consideration is that humans get bored if the game
is too complex or the session is too long, with direct
consequences on their performance. Figure 4.6.4 compares the
results of the expert with those of a person playing
identical games. (The human's results are taken from [36]).

player grid balls games score shots errors time
expert 10x10 6 3 19.667 13 0 9.67
human 10x10 6 3 21 13.37 0 7.33

This figure compares the results of the expert system and that of a human when playing the
same game configurations.

Figure 4.6.4: Comparison between the expert system and a human player

Validation of the expert system is straightforward. The
expert system was run on over 200 randomly generated games,
and measurements were retained for 151 games. (The measure-
ments for individual games are available on request). All

122

discrepancies between the expected performance and actual
measurements were examined to determine their cause, and
relate them to the expert system's decisions.

Our validation of the expert system's performance is based
on the fact that on average its results are equivalent to
those obtained by human players. The expert system found
solutions for all the games it attempted. Furthermore, the
solutions in which errors occurred involved guessing in all
the cases that were examined. We feel that the size of the
sample space used for testing provides a good case to ensure
that it is representative of the problem instances that can
be encountered. The exceptional cases are noteworthy in that
they reveal how time consuming an unconstrained search can
be when an inappropriate strategy is chosen.

our understanding of the Blackbox Expert System allows us to
make the following conclusions about its operation: If the
searches are not well constrained they become intractable.
The constraints are determined by reasoning. These
constraints are related to:

a. The state of the grid.

b. The actual and available number of balls.

c. The state of possible and evalu.ted shots.

d. The contents of the vicinity.

#. The number of alternative hypotheses for a beam.
f. The number of unsolved beams.

The expert system controls these factors by making a
deliberate decision about which activity it will pursue, and
when. Furthermore, it has a choice of reasoning strategies
for performing each activity. This choice has an impact on
performance. The decision involves a tradeoff between
accuracy and the time required to solve the problem. The

123

expert must weight the advantages of a more accurate inter-
mediate solution against the cost of a more exhaustive
search. These properties make Blackbox an ideal candidate for

the study of DPS issues.

124

Chapter S
A Distributed Blackbox Expert System

A design for the Distributed Blackbox Expert System (DBB) is
proposed in this chapter. The purpose of the DBB system is
to construct a testbed for studying coordination and
cooperation in a DPS system. One of the objectives of our
research team is to experiment with different organisations
of distributed agents, and to compare their problem solving
performance. This objective leads to three design require-
ments for the DBB testbed: (1) A problem solving structure
based on the organisational model; (2) An expert system
composed of multiple agents to solve the DBB problem; and
(3) A testbed environment, which provides facilities for
studying different ornanisations.

Although alternative organisations for DBB are considered,
only one organisation is discussed in detail. This consists
of a team of agents obtained by partitioning the Blackbox
problem geographically. Within its knowledge base, each agent
incorporates the Blackbox expertise described in the previous
chapter, augmented with the knowledge necessary to <olve the
problem in a distributed way. This knowledge governs how the
agents interact by relating the agents' expertise to their
role in the problem solving process. The DBB testbed system
provides the facilities for developing, observing, and
evaluating the performance of the distributed expert system.

5.1 An Organisational Model for DBB

In this section we propose a general framework for
implementing an "organisation" of DPS agents (see section
2.5). The framework provides a structure for representing
the knowledge related to coordinating system activity without
imposing any particular coordination scheme on the system,

apart from that of ‘“organisational structuring". An
organisation is created by defining an "organisational role"
for each agent within the system. An agent's role describes
the relationship between an agent's problem solving
activities, and its interactions with the other agents in the
organisation. The agents' combined roles define the
relationships that link the set of agents into a problem
solving whole. The modular structure used to represent an
agent's organisational knowledge makes it easy to experiment
with alternative coordination schemes and organisations.

An agent's organisational role relates its local problem
solving state to that of the organisation. It describes how
the agent reacts to the changes that it "perceives" in the
state of the organisation, and how the agent changes the
state of the organisation as a result of what it perceives.
This involves defining: (1) The changes, or conditions in
the organisation that are relevant to a particular agent;
(2) The agent's expected response when these conditions
arise; and (3) The way in which the agents convey the
information pertaining to these conditions among each other.
An agent's role is represented by its responsibilities and
its communication policy, which are discussed below.

An agent may determine the relevant conditions itself in the
course of its reasoning, or it may receive messages from the
other agents indicating the existence of these conditions.
An agent's reaction to the appearance of these conditions
will be defined by the agent's responsibilities. These will
identify what locally produced conditions are relevant to
which other agents in the organisation, and how the agent
responds to externally produced conditions that are
communicated to it by the other agents. Thus, an agent's
responsibilities will relate its individual activities to the

126

flow of information through the organisation, with outgoing
messages resulting from 1locally produced changes, and
incoming messages reflecting changes in the global problem
solving state produced by the other agents.

The actual exchange of messages among the agents is governed
by a communication policy. The communication policy defines
how an agent derives information from the messages it
receives, and how an agent conveys information through the
message.:: it sends. This distinction between "information" and
the actual transmission of messages makes it easy to
experiment with different protocols for the exchange. The
protocol will establish at what point the agent perceives the
information conveyed by the messages that it has received,
thus controlling disruption and distraction of the agent. The
protocol may construe "information" from some sequence of
messages, or their absence, if a "knowledge based protocol"
is used. The communication policy will also describe what
messages are sent when the agent wishes to convey information
to other agents.

An agent's responsibilities describe what control decisions
it is responsible for, and the type of decision process it
employs. Its communication policy describes how the agent
interacts with other agents in order to obtain the
information that it requires for making its decisions. Their
combination defines the specific flavour of the coordination
scheme being used. The scheme necessarily involves
organisational structuring with sophisticated local control,
of varying sophistication according to the agent's role.
Local control decisions are realised through negotiation,
multiagent planning, an FA/C approach, or by decree. (Figure
2.2.3).

127

Within an organisation, each agent integrates knowledge about
its organisational responsibilities and its communication
policy with the information at hand to derive a "view" of the
global problem solving state. This view incorporates local
state information with the information received from other
agents, and any additionai information that can be derived
from it. The agent employs a local planning function to
choose an ‘“optimal" activity based on this view. This
activity concerns transforming its local problem solving
state in accordance with what it "perceives" of the global
system, and transforming the global system state by
communicating any relevant changes in accordance with its
organisational responsibilities.

The requirements described above can be summarised as
follows. An agent has a local working memory in which it
maintains its local problem solving state. At the same time,
the agent maintains a view of the global problem solving
state, related to its local state and the information sent
to, or received from the other agent.. The agent chooses what
activity it will perform according to its organisational
respc.isibilities and its view of the global problem solving
state. The agent transforms its local problem solving state
by exercising its 1local problem solving abilities. It
influences the global problem solving states of the other
agents by communicating the information defined by its
responsibilties in the organisation. The communication of
information leading to transformations of the organisation's
global state is regulated by an agent's communication policy.
The actual transmission of messages over the network is
handled by a communications module. The framework for
implementing such an agent is given in figure 5.1.1.

128

Planner

a. Determine stage of problem.
b. Choose activity

{ ! ¥

Problem Solving Role Communication

Abilities

» responsibilities
communication policy

v ¥ v V¥

messages in

local state view of global state messages out

Figure 5.1.1: Structure of an agent in an organisation

129

5.2 Description of the Multiple Agent Blackbox Problem

As previously stated, DBB is obtained by partitioning the
Blackbox grid into four equal quadrants, and assigning one
agent to each quadrant (figure 3.4.2). Each agent solves its
Blackbox subproblem using the reduced field of view and
firing range that results from the partitioning. This
reduction limits the information that an agent can acquire
on its own within its quadrant. The agents must obtain the
information they lack by communicating with each other in
order to solve their individual subproblems. The agents'
combined partial solutions constitute the total solution to
DBB. The goal of finding a correct solution with a minimum
score as rapidly as possible implies that the agents must
coordinate their actions and interactions effectively.

The decomposition of the problem introduces several factors:

F1) An agent's view of the game grid is restricted to what

occurs within its own gquadrant.

F2) An agent can only "see" shots that enter or exit the
grid along the two external sides of its quadrant.

F3) An agent can only fire shots into the grid from the
two external sides of its own gquadrant.

F4) Although an agent knows the total number of balls
hidden within the global grid, it does not know the
number of balls hidden within its own quadrant.

F5) An agent must communicate with the other agents in

order to obtain all other information concerning the
game.

130

F6) The agents must be synchronised so that they have a
more or less consistent view of the beginning and end
of each game.

An agent's view of the game is restricted to what occurs
within the quadrant it is assigned. Each agent also views an
overlapping region as shown in figure 5.2.1. This overlap is
defined because its contents affect trajectories on either
side. The overlap results in adjacent agents sharing
information about the contents of squares on either side of
the internal boundary that separates them. All agents share
information concerning the contents of the four squares at
the centre of the grid. Some definitions follow.

Def": An internal boundary delimits and separates the
quadrants of adjacent agents.

Def": The overlap consists of the two columns or rows of
grid squares within which the internal boundary
lies.

w\\ - Y

re L4 rll) L a4 d

N\

IR TR TN ;\:.\ k\\
NS .
\
N

-~ »# -7 |nternal boundary separating adjacent agents.
The overlap region shared by adjacent agents.

Each agent is responsible for the area contained within the internal boundary. In addition,
each agent can view and modify the overlap region adjacent to its infernal boundaries.

Figure 5.2.1: Overlapping regions shared by agents

131

An agent can only "see" beams that enter or exit its quadrant
through its two external sides. A single beam may pass
through several quadrants. Beams that originate in another
quadrant, and that are subsequently absorbed, reflected, or
transit through an agent's quadrant without exiting along one
of its external sides are not immediately visible to the
agent. An example is given in figure 5.2.2. An agent only
becomes aware of such beams when it is informed of their
presence by the other agents. The following definitions are

used:

Def": An external side is the side of a quadrant which is
not adjacent to another agent's gquadrant.

Def": A multigquadrant beam is a beam that passes through
more than one quadrant in the course of its

trajectory.

Def": A transparent beam is one segment of a multi-
quadrant beam that lies within one agent's
guadrant, and that does not exit from that agent's
quadrant through any of its external sides.

—_--
’
’
(4
® !
= /
- Ve > R
L J /
/
/
/] t2
r & L]

ey P ,i,J rold
H 1
wesmm E xternal side of an agent's quadrant.
His an absorbed beam, R is a refiected beam, and t1-t2 are the entry and exit points

of a beam that transits through the quadrant. All three beams are “transparent”, as
none exit through an external side of the quadrant.

Figure 5.2.2: Transparent beams
132

An agent may only fire into the grid along the two external
sides available to it. Certain board configurations may
result in the condition where an agent cannot reach all areas
in its quadrant by firing its shots alone. An example is
given in figure 5.2.3. Information about such inaccessible
areas can only be derived from transparent beanms.

|

I
IR

a—

r s s 'Il"‘ll‘ r & 4

A

information about the shaded area D can only be derived by having some other
agent fire the transparent beams indicated with ->

Asstaavavas

Figure 5.2.3: Inaccessible area within an agent's quadrant

Although an agent knows the total number of balls hidden
within the global grid, it does not know the exact number
hidden within its own gquadrant. However, it can infer certain
things. The number of actual and available balls within its
quadrant is based on the total number of balls in the board,
less all balls located outside its quadrant, including those
in external "ball vicinities". This is defined below. Thus,
if the total is three balls, and two other agents have
identified "ball vicinities", then the agent will have one
actual ball to locate.

133

Def": An external ball vicinity is a ball vicinity that

is located in some other agent's gquadrant from the
point of view of an agent.

Def": An internal ball vicinity is a ball vicinity

located within some agent's quadrant from that
agent's point of view.

An agent's restricted view of the grid has implications on
how the agent chooses shots and analyses beams. For both
actions, the agent has less information with which it can
reason. This fact increases the amount of uncertainty that
it must deal with. When choosing shots, an agent can only
evaluate that portion of a shot which lies within its own
quadrant. Thus it can only determine the local value of the
shot, and must communicate with the other agents in order to
establish the global contribution of its shots. The analysis
of beams is similarly limited. The agent only hypothesises
about the partial trajectory that lies within its quadrant,
and the point at which the beam transits into another agent's
quadrant. The agents must exchange information concerning
transit locations in order to establish a correct hypothesis.
How this information is exchanged will depend upon the
organisation.

Another practical consideration is synchronising the agents
so that they have a consistent view of the beginning and end
of a game. This is necessary so that individual agents begin
reasoning at approximately the same time. It 1is also
necessary for all the agents to know when the game is over.

The differences F1 to F6 described in the preceding

paragraphs, establish what information the agents must
exchange to solve the DBB problem. Given an agent's reduced

134

sphere of action, the agents must communicate with each other
to choose globally optimal shots, to request inaccessible
shots, and to determine what has happened when beams
disappear, appear, or transit through their quadrants
transparently. The agents must keep each other informed of
the number of balls left to locate in the game. Adjacent
agents automatically share information about the contents of
the overlapping region between them. The agents employ an
appropriate protocol to signal the beginning and end of a
game. The information requirements are summarised in table
5.2.1.

Table 5.2.1: Information requirements

a. The information necessary to establish the global contribution of locally
available shots

b. Shot requests for inaccessible shots.

C. Beams that appear or disappear from an agent's quadrant, to inform the other
agents of a beam's possibly transparent passage through their quadrant.

d. The transit location of beams that enter or exit an agent's quadrant along an
internal edge, to establish that beam's partial trajectory within the quadrant.

e. The contents of grid squares within the overiapping reglon shared by
adjacent agents.

—ty
.

The number of balls that remain 10 be located.

g. Synchronising the beginning and end of a game.

The decomposition of Blackbox into DBB changes the nature of
the game in several ways. The DBB system must accomodate -
situations that do not occur in the single player version of

135

the game. The way in which these situations are handled could
simulate different circumstances. We have a certain amount
of leeway in defining how the decomposition of the game
affects the problem. The circumstances that are simulated
will depend upon how DBB handles the situations outlined
below. In all three cases, there is a choice between
simplicity and realism, with realism requiring more domain
specific knowledge.

Pl. How do agents determine the behaviour of a shot?

P2. Eow are multiquadrant shots assigned a unique
identifier?

P3. How do agents avoid duplicating shots?

With the single player game, when the agent fires a shot,
the agent is immediately informed of the shot's behaviour by
the firing module. This constitutes part of the game's
definition; the agent knows the shot's behaviour with total
certainty because the shot's behaviour is defined as the
observable outcome of firing. The same is not true in the
distributed game. Although the agent can "“see" shots that
are reflected or that exit from the grid within its quadrant,
it cannot see shots that are absorbed or exit from another
quadrant. The agent is only aware that its shot has
disappeared. There are two ways of dealing with this partial
information: (1) Have the DBB firing module inform the agent
of the shot's behaviour the same as in Blackbox; (2) Consider
the partial information a consequence of distribution which
the agents must resolve. The first requires no additional
reasoning, whereas the second involves an exchange of
information using an appropriate message protocol, whereby
the firing agent establishes whether or not some other agent
has "seen" its shot. The first is simple, whereas the second
is more realistic.

136

Another consideration is the way in which agents identify
multiquadrant beams in order to relate their individual
partial hypotheses to the same beam. Once again we have a
choice between simplicity and realism: (1) Use a global
identifier for each beam, assigned within the quadrant of the
firing agent; (2) Have agents relate outstanding disappear-
ances to sudden appearances through reasoring. The first
requires no reasoning whereas the second may involve
considerable reasoning, particularly if more than one entry
or exit location is outstanding. If this is the case, then
the problem assumes an entirely new level of complexity.

The third consideration is the problem of duplicated shots.
This problem does not occur in the single player game because
an agent is only capable of firing one shot at a time. In
DBB, the unpredictable nature of beams makes it impossible
to avoid duplicated shots unless firing is serialised.
Without serialised firing, there is no way of ensuring that
two agents do not simultaneously fire the same exiting shot
from its opposite ends, as shown in fiqure 5.2.4. In fact,
the contrary is more likely, and corresponds exactly to the
"ambiguous situations" described by Ginsberg (figure 2.4.2).
The options are (1) Serialised firing, versus (2)
Concurrert firing. With the first, all duplicate shots are
avoided by using some form of mutual exclusion for the firing
privilege. With the second, the agents can fire concurrently,
but duplicate shots are possible. The choice can be based on
the relative cost of additional shots compared against that
of additional processing time.

137

a1 > [=|=[=[=]=|=[=

r---J

n o ‘ a2

It the agent in the top left-hand quadrant fires shot "a1" at the same time that the
agent in the bottom right-hand quadrant fires shot *a2", then both agents will fire
the same shot, thus duplicating it.

Figure 5.2.4: Simultaneous firing of the same shot

A problem decomposition in DPS raises the following issues
in DBB concerning how the multiple agents coordinate their
actions and interactions. The way these are handled will
determine how the overall system maintains a "common focus",
and the degree of "opportunism" possible.

81. How do agents choose what activity each will perform?

82. How do agents choose globally optimal shots?

83. How do agents exchange information related to
analysing beams?

Determining how agents choose individual activities that are
globally "optimal" is a strategic problem. The agents
evaluate their local options individually, and then somehow
communicate with each other so that only those activities
which are "optimal" for the entire group are performed.
Accomplishing this involves determining the best way of
propagating the necessary information through the system.

138

The flow of information is a function of the agents' roles
within the organisation. The agents' roles are defined by

the agents' responsibilities and communication policies,
which determine how the information is propagated.

Getting the individual agents to choose globally optimal
activities involves choosing an organisation that realises
a coordination scheme whereby individual agents arrive at
cooperative decisions.

In the system design, wherever possible I have chosen those
options which require the least domain specific knowledge
while retaining the interesting features of a DPS systen.
Where domain specific knowledge is involved, it can be added
at a later date. My initial design goals for the DPS system
may appear ambitious. I believe that it is easier to consider
the widest range of possibilities at the design stage, and
then reduce the agents' abilities rather than doing the
contrary. This has lead to the following choices for Pl to
P3, and S1 to S3:

Pl. The firing agent is informed of the shot's behaviour
by the firing module immediately after firing. This is
consistent with the rules of the original game, and
simplifies knowledge requirements.

P2. All beams are assigned a unique global identifier in
their quadrant of origin. The alternative requires too
much DBB specific knowledge.

P3. Agents may fire concurrently. This provides a greater

degree of concurrency, but requires establishing the
tradeoff between shots and processing time.

139

S1. The agents are organised in a team. The team imposes
the least restrictions when analysing the problem, and
the most flexibility during development. It is also
more easily implemented (agents are identical), and
intuitively interesting (many opportunities for
studying cooperation).

S2. The choice of shots is decentralised. This is
consistent with concurrent firing. If it subsequently
proves too costly, it can easily be modified by adding
a mutual exclusion mechanism.

S3. An FA/C approach is used for exchanging the
information concerning beams. This approach is
appropriate because the solution is found by
exchanging tentative hypotheses in order to eliminate
conflicting alternatives, and thus converge on the
correct solution.

The benefits that can be obtained by partitioning the problem
and solving the resulting subproblems in parallel are open
to discussion. The problem decomposition changes the nature
of the blackbox game, increasing the amount of uncertainty
present. Much of the information that a single agent uses in
solving the problem is no longer immediately available. The
interactions necessary to obtain the relevant information
introduce delays that do not occur in the single player
version of the game. The DBB expert requires additional
knowledge to deal with all this, and thus increases the
system's total processing requirements.

Oon the other hand, problem decomposition and distribution

have certain advantages. The smal..xr grid size and lower
nunber of balls within a quadrant correspond to a much less

140

complex game. The ability to analyse several beams simul-
taneously may reduce total processing time. The timely
exchange of intermediate hypotheses may lead to the earlier
elimination of incorrect alternatives. All of these are
potential benefits of using a DPS system.

DBB's performance will depend upon how effectively the
organisation exploits the DPS potential. Although the
additional overhead of an organisation may outweigh the
benefits on a 10 x 10 grid, the same is not necessarily true
for a larger board. The results obtained by a single expert
indicate that the expert's performance degrades in a non-
linear fashion as the problem becomes more complex (figure
4.6.3). DBB may be capable of finding "better" solutions for
such complex problems. Establishing at what point the DBB
organisation becomes a viable alternative to a single agent
is an issue of interest, to be explored.

5.3 The Testbed Environment

The environment in which the DBB system will ultimately
operate should provide facilities for developing, evaluat-
ing, and experimenting with alternative organisations. These
facilities would be identical to those required to debug,
finetun2, and validate an initial DBB prototype. They allow
the user to (1) run game sessions; (2) collect performance
measurements; (3) monitor intermediate execution; and (4)
intervene during execution if so desired. The first two ful-~
fill the same functions as the session component described
in the preceding chapter. Monitoring of execution is
concerned with how the user observes the system's operation.
The need for user intervention arises because few if any
development environments exist for constructing DPS systems.

141

Gane sessions: The ability to run game sessions will prove
to be as valuable in validating the performance of DBB as it
was for Blackbox. The DBB session component performs the same
functions as its Blackbox equivalent (figure 4.2.2): (1)
session initialisation; (2) control of game execution; and
(3) calculation of session statistics. In addition to
generating random boards and reading board configurations in
from a file, the system should allow the user to specify that
the system starts at an intermediate stage within a problem.
Thus, the user can restore some problem state and reattempt
execution. This will reduce debugging time considerably. Its
presence implies that the user must have some way of stopping
execution, and saving intermediate solutions for all agents.
This is discussed under interventions.

The game session is controlled by a single, designated agent,
who is called the session controller. It sets up each game,
sends the board or file information to the other agents, and
then broadcasts a "begi.1 message". Once an agent receives the
begin message, it starts working on its subproblem. Each
agent broadcasts a "termination message" when it has solved
its quadrant. The game ends when all agents have terminated
(i.e. each agent has received a termination message from all
the other agents). The session controller then polls the
agents to collect the game results.

Performance Reasurenments: Along with the performance
measurements described in chapter 4, (score, shots, amount
of time, and number of errors), the agent's idle time and
network traffic must also be measured. Idle time is the
amount of time an agent performs no problem solving activity.
Network measurements include line utilisation as an average,
at its reaks, and in relation to problem solving. The last
requires that messages be classified by type, and ordered in

142

relation to the agent's 1local decisions and activity.
Messages are classified as incoming, or outgoing, and divided
according to content. Messages relate to (a) choosing and
firing shots; (b) analysing beams; (e¢) the number of balls;
and (d) the contents of overlapping regions. It is possible
to have further subdivisions within each of these categories,
and measure the utility of messages by recording message
access and the subsequent changes to the solution.

Monitoring intermediate execution: The facilities available
for monitoring will determine how easily the user can
understand the operation of the system. There are two ways
of monitoring: (1) observing the screen display on-line, or
during execution; and (2) off-line, or post-mortem analysis
of data. The first is useful for keeping track of what is
happening, but i+ may be difficult fnr the user to
simultaneously follow the activity of all the agents. The
second method is useful for tracing the solution process,
but may involve considerable analysis by the user.

During execution, the quadrant of each agent is displayed
separately on the screen. The display for each agent consists
of its local problem solving state, and the global problem
solving state, as "perceived" by the agent according to the
messages that it has sent and received. The display is
similar to that used for a single expert with certain
exceptions due to the restricted field of view and the
addition of message traffic. The screen contents are outlined
below. The screen display for one agent is illustrated in
figure 5.3.1. The user can view all the guadrants together
by displaying them on the same screen.

143

DBB - quadrant 0

Game session
Agent status
Total games: 10

Actual balls: 3 AlA Play mode: auto
Score: 3 Grid size: 10
All Totalballs: 6

Game no: 1

2 User Intervention

EAN -
e halt execution
B Analyse i « serial execution
I o continue execution
L] o modify local state
o modify global state

EeJO0O 10O save intermediate state

Messages in Messages out
No. Type Origin [Content) No. Type Dest [Content)

The windows displayed on the screen for one agent are from left to right, and top down: the status
window, the grid window, the user intervention window, and the message window. The: explanation of
their contents follows.

The status windaw gives the number of actual balls available to the agent, the agent's score, the agent
Status - which indicates which agen' s are Active and Inactive in which quadrants (when all agents are ‘I
then the game is over), and the game session siatus - which informs the user about the session.

The grid window displays the agent's quadrant and the overlap region, and the agent's current
aclivity. Activities consist of Plan, Communicate (vhat), Wait (identifies what), Choose shot, Shoot,
and Analyse (beam id).

The user Intervention wind: - gives the user acces. lo the functions displayed by clicking on the
associated button and opening .t window. Highlighting is used when appropriate.

The message window displays incoming and ous,.ing messages in seperate menu windows that
allow the user to browse through them. All messages are assigned a number which gives their
local order relative to each other.

Figure 5.3.1: Screen display for one agent

144

The grid area displayed is limited to the agent's
quadrant and the overlapping region that it shares with
adjacent agents. The view of the overlap may be
inconsistent due to communication delays.

The number of balls expresses the number of balls
available to the agent for constructing hypotheses within
its own quadrant. This may vary within each quadrant due
to "ball vicinities" and communication delays.

The agent’'s current local score. It is counted as one
point for each fired beam that passes through one of the
agent's external sides.

The agent's current activity. Possible activities are
identical to those of the single expert, (evaluate,
analyse, invalidate, integrate, guess - figure 4.3.1)
with the addition of: communicate and wait. These are
explained in the following section.

. The identifier and behaviour of fired shots.

Incoming and outgoing messages. Incoming messages are
displayed on arrival. They are also displayed when they
are accessed by the agent for decision purposes. They
must be classified by type, and otherwise ordered so that
the user has a coherent view of network activity in
relation to local problem solving.

Care must be taken in choosing what data is retained for

analysis after execution, as a prodigious amount of raw data

could be produced. Indiscriminate data collection would

result in increased handling costs, and wasted time on the

part of the person attempting to interpret the data. The

145

objective of retaining data is to provide a trace of the
operation of the system. This can be realised by tracing the
local activity of an agent in relation to the messages it
receives and generates, for each agent in the system. The
messages are classified according to the categories used for
performance measurements. (Namely, incoming or outgoing, and
related to choosing shots, analysing beams, the number of
balls, or the contents of overlapping regions). Outgoing
messages are easy to place in relation to local activity, as
they are the result of a local decision. Incoming messages
are related to local activity by describing their point of
arrival, and the balls located, squares emptied, shots fired,
and beams analysed as a consequence of integrating the
messages into the agent's local planning process.

No attempt is made in our design to reconstruct an accurate
“snapshot" of the global problem solving state at one point
in time. This is considered irrelevant because the agents
operate in an imperfect world. (They do not have accurate
information, and the cost of collecting this information is
prohibitive.) The objective of the system is to determine
how the agents can employ the possibly inaccurate informa-
tion at hand to make "better" decisions more rapidly. Thus,
the proklem is traced from the perspective of each agent,
rather than that of an omniscient entity with an overview of
global system activity.

Intervention during execution: One reason for intervention
is to save intermediate problem states for subsequent
reexecution. Another is to provide the user with a totally
controlled execution environment. Most expert systenm
development shells include builtin debugging facilities that
allow the developer to "step through" the reasoning process;
modify the value of variables; backtrack; try alternative

146

solution paths; save intermediate states; and otherwise
contemplate how the solution is evolving. In DBB, although
each agent operates in such an environment, the interactions
between agents will disrupt the normal course of events. The
interactions can be controlled by using a serialised
"execution privilege" that would activate one agent at a
time. This would allow the developer to "step through" the
system in a controlled sequence of actions, interactions,
and reactions among the agents, with ‘the ability to save
intermediate states along the way.

The ability to control execution and save intermediate
results is provided by an interface for user intervention.
The interface allows the user to halt execution; modify the
local problem solving state; modify the global problenm
solving state visible to the agents (indirectly by modifying
the local state, or directly by passing messages); control
nessage transmission; modify the content of messages (sent
or received); save an intermediate state; continue execution;
or continue execution in a serialised fashion.

The facilities necessary to run game sessions, collect
performance measurements, monitor intermediate execution,
and intervene during execution are modularised in the design
of DBB. The structure of a DBB agent is illustrated in figuie
5.3.2. This structure provides the environment in which the
agents are developed, debugged, and validated.

147

DBB Game Session

1. Initialise game sassion
2. Control game execution
3. Calculate session statistics

User intervention

Screen Display

. Halt execution

. Serialise execution

. Continue execution

. Modify local state

. Modify global state

f. Save intermediate state

m

oaQan0C

a. Status window

b. Grid window

¢. User intervention window
d. Message window

v

Communication

message monitoring

Figure 5.3.2: Agent within the testbed

148

$S.4 The DBB Solution Process

The Blackbox solution process described in chapter 4 must be
modified to accomodate the interactions that will occur
between the agents in DBB. These interactions are necessary
to convey the information listed in figure 5.2.4. Further=-
more, the interactions are also largely unpredictable because
the agents are dispersed, and they work on different
subproblems at varying speeds. Thus, an agent's local
processing is regularly disrupted by the arrival of messages
from the other agents. The objective of this section is to
establish the "optimal flow of messages" in order to minimise
the negative consequences of "disruption" and "distraction",
and also to find the best uses for "local idleness". This
optimisation requires answering the following gquestions:

Sending Agent

"When should an agent send messages?"
"What messages?"
"To whom?"

Receiving Agent

"When should an agent use the received messages in its
reasoning process?"

"What messages?"
“"From whom?"
All Agents in Genexal
"What should an agent do if it receives no messages?"

"What should an agent do if it has no goals to pursue?"

These questions must be asked in relation to each aspect of
the solution process, viewed from the perspective of both the

149

individual agent and the group as a whole. In the case of an
individual DBB agent, the solution process involves the same
problem solving activities as the Blackbox expert systen,
with two additions: communicate, and wait. Communicate
describes how "information" is transformed into "messages",
and "messages" into "information". Wait indicates the absence
of all other activities. The activities of a DBB agent are
summarised in figure 5.4.1, and in the descriptions that

follow.

a. Pianner

a.1 Determine stage of game.
a.2 Choose activity.

b. Communicate S e c. Wait

b.1 Receive incoming messages. c.1 Sleep until event occurs.
b.2 Send outgoing messages.

d. Choose shot e e e. Shoot
d.1 Evaluate shots. e.1 Compute shot's trajectory.
d.2 Choose "best" shot. e.2 Establish shot's behaviour & id.
d.3 Requestinaccessible shot. 8.3 Communicate exit coordinates.
Y
. Analyse

f.1 Analyse beam.

f.2 Check invalidateu hypotheses.
.3 integrate hypothese:

1.4 Guess ball locations.

Figure 5.4.1: Problem solving activities of a DBB agen!

150

Planner: Planning consists of determining what stage the
game has reached, and then choosing an appropriate plan of
action or activity. The choice will depend upor what changes
the agent has made in its local problem solving state, and
what messages have arrived since the last plan was put into
action. These constitute the two sources of change in an
agent. Determining what stage the game has reached consists
of integrating the two to get a possibly inconsistent view
of the global problem sclving state of the system. The agent
then chooses an activity based on this view.

Communicate: Communication concerns the handling of incom-
ing and outgoing messages by the communications module. The
module provides the network services with which the messages
are transmitted. It performs the logical to physical, and
physical to 1logical transformations necessary to relate
network traffic to the problem solving process. It creates
messages from information, and derives information from
messages, based on message content, the temporal relation of
messages, and their origin or destination. The module sends
or broadcasts outgoing messages, receives incoming messages,
and performs all other intermediate storage, transforma-
tion, and classification functions. These include identify-
ing message types, ordering messages, and generating inter-
rupt signals on the arrival of specified messages, according
to the established communication policy.

Wait: Corresponds to an idle state of the agent, during
which the agent is not actively involved in problem solving.
An agent waits when it has no goals to pursue, or it is
waiting for communication. A waiting agent is awoken by an
external event. An agent enters the wait state when:

151

The agent has solved its quadrant, but the global
solution has not yet been found. When in this state, the
agent is awoken by (1) A request from another agent; (2)
A change in the global problem solving state (i.e.
termination or hypothesis change).

The agent is waiting for a message from another agent to
continue. In this case, the agent is awoken by (1) the
arrival of the expected message; (2) the arrival of an
overriding message. All other messages are ignored.

Choose shot: Performs all "reasoning" related to evaluating
shots and choosing which shot to fire in a decentralised
manner. The problem partitioning results in agents having
two types of shots to consider: (1) Shots that an agent can
fire itself; (2) sShots that an agent must request from
another agent. The evaluation of shots that ar agent performs
must resolve several strategic yJestions: When should an
agent fire a shot? When should an agent request a shot? How
should an agent respond to shot requests that it receives?
The knowledge required to deal with this is outlined below:

Determine the local value of shots. This is accomplished
using the evaluation strategies described for the
Blackbox expert system.

Determine the global value of shots. This covers two
aspects: (1) inform other agents about the local value of
a shot, and (2) derive the global value of a local shot
from the informatics ieceived from the other agents.

Choose the *best' shot. A number of additional factors
are involved in the choice: (1) tne type of shot (local,
to request, or requested by another agent); (2) the
hypothetical trajectory of the shot, (local or
multiquadrant); (3) the likelihood of duplicated shots;
and (4) whether the agent has any other outstanding shot

152

requests that have not yet been satisfied.

Request an inaccessible shot. When an agent chooses an
inaccessible shot, it must communicate its reguest to the
appropriate agent, and then await that agent's response.
The agents involved in such an exchange must (1) maintain
a record of requested shots, (2) relate these requests to
information about beams, and (3) have the ability to
cancel outstanding requests if so desired.

B8hoot: The DBB firing module has to concern itself with a
number of factors. The computation of a fired shot's trajec-~
tory is not distributed. The entire trajectory of a shot is
computed by the firing module of the quadrant in which the
shot is fired. If that shot exits in another quadrant, the
firing module is responsible for sending the shot's exit
coordinates to the remote quadrant. The firing module also
handles the inverse situation of receiving exit coordinates
from another gquadrant. Its functions are outlined below:

1. Compute the shot's trajectory over the board.
2. Establish the shot's behaviour and global identifier.
3. Communicate exit coordinates to another quadrant.

4. Receive exit coordinates from another quadrant.

Analysis: The DBB agents would employ the same reasoning
strategies as the Blackbox expert (analyse, invalidate,
integrate, and guess), with the difference that one or both
ends of some beam hypotheses may consist of a transit
location through an internal boundary. This will affect the
analysis of beams and the invalidation of trajectory
hypotheses in both their cursory and exhaustive forms. An
additional complication arises due to the need to inform an
agent about the number of balls available for constructing
a particular partial hypothesis.

153

Analyse: Analysis now has the goal of establishing a
beam's transit location when constructing an initial
trajectory hypothesis or reconstructing an invalidated
hypothesis for a multiquadrant beam. Integrate and guess
are similarly affected, as both employ analyse.

Invalidate: Along with the local reasons for hypothesis
invalidation (placing a ball in a square that was
hypothesised empty, emptying a square that contained a
hypothetical ball, and insufficient balls) there are
external reasons: (1) a change in the transit location of
a hypothetical trajectory; and (2) a change in the number
of balls available for constructing a hypothesis. The
source of the change and its credibility are considered
when assigning priorities for reanalysis.

The above constitute the activities available to a DBB agent.
Planning is decisive, as it determines which of the other
activities the agen:t will perform. The agent's choice is
guided by the previously stated principle: "obtain the
maximum amount of information from available sources before
firing another shot". The agent considers the needs of the
other agents when making its decisions by "providing its
neighbours with any information that they can use to improve
their solution, and its own solution in consequence". In all
cases, the choice is tempered by the modifiers stipulating
that an agent should not attempt an exhaustive search unless
(1) the search is highly constrained; (2) the search is
unavoidable; or (3) the agent has nothing better to do. The
last must be further qualified to ensure that an otherwise
"idle" agent does not "disrupt" or "distract" the others.
This leads to the following solution strategy described in
six steps. The steps are not necessarily executed in

sequence.

154

S8tep 1 - Analyse: An agent analyses as long as it has
possible sources of information. These sources are: (a) The
entry or exit location of a fired shot; (b) Changes to the
grid; (c) An insufficient number of balls; (d) The transit
location of a beam hypothesis. The last may be an initial
location, an invalid location, or an alternative to a
previous location.

8tep 2 - Communicate changes: An agent communicates all
relevant changes to affected neighbours whenever these
occur. The relevant changes concern (a) The contents of
overlapring regions; (b) The number of available balls;
(c) Transit locations.

8tep 3 - Receive changes: On receiving such information,
an agent incorporates the changes into its reasoning. The
contents of overlapping regions or (b), and the number of
available balls or (c¢), are incorporated immediately. If
"analysing", the agent should only consider a transit
location or (d), if it is analysing that particular
hypothesis at the moment that the message arrives. In that
case, it should abandon its search. If otherwise occupied,
the agent will "plan", from where it will proceed to check
invalidated hypotheses for reanalysis.

Step 4 - Invalidate beam hypotheses: Once an agent has
completed its analysis, it checks to see what trajectory
hypotheses have been invalidated by the changes produced
locally or received from other agents. The invalidated
hypotheses are assigned priorities for reanalysis as in
Blackbox. Special consideration is given to hypotheses
whose transit location is sent by an agent who '.~s
subsequently sent messages concerning the choice of shots.
This indicates that the agent in question has no more
sources of information, in which case it would be expedient
to provide it with one.

Btep 5 - Choose a shot: Once an agent has exhausted all
possible sources of information, it chooses a .ot with the
intention of firing it. As with the single expert, the

155

agent chooses the highest valued shot from the list of

evaluated shots that it maintains for its quadrant. The
choice involves performing a local evaluation of possible

shots if local changes warrant it. The agent's decision to
perform a global evaluation of multiquadrant shots is
guided by similar consideration of changes.

8tep 6 - Negotiate a shot: The agent "negotiates" its

choice of shot through the exchange protocol which it uses

to determine the global value of a multiquadrant shot.

Whenever an agent performs a local evaluation, it transmits
any changes in value to the agents which are affected. When
it has completed its local evaluation, it performs a global

evaluation, depending upon the "relevant changes" it
perceives. Relevant changes concern (a) the number of
balls; (b) hypothetical transit locations that coincide
with hypothetical shot trajectories through internal

boundaries; and (¢) changes to the global value of a shot

transmitted by the other agents. The negotiation process
for choosing a shot consists of the following steps:

1. An agent proposes a shot for global evaluation by
communicating that shot's transit location to the

agent whose gquadrant the shot will enter. The agent
cannot fire that shot until it receives a response.

2. The agent who receives the proposed shot determines
the value of that shot within its own quadrant. The
agent has the choice of either using an existing
value, or reevaluating the shot. The latter may
involve another exchange if the hypothetical
trajectory continues into another quadrant.

3. The agent in whose guadrant the shot appears to exit
returns the shot's cumulated valuz to its quadrant of

origin. An exception occurs when the shot's hypotheti-

cal behaviour is not exit, and the final agent is the
only one with firing access. Such a shot is requested
by the agent who initiated evaluation.

156

The strength of the above strategy resides in the ability of
any agent along the evaluation path to influence the time a
shot is fired. At the same time, the proposing agent is not
compelled to await the end of the exchange as it can propose
alternative shots, or decide to fire a shot that remains
within its quadrant, depending upon the responses it has
received. Thus "busy" agents can postpone the firing of shots
that pass through their quadrants while "idle" agents can
negotiate a shot with each other, or fire a shot that only
has local significance. Duplicated shots are minimised by
enforcing a "clockwise" firing privilege whenever two agents
evaluate the same shot. These ideas are illustrated in figure
5.4.2.

agent1 b agent2
L
a < 4
4
a 202204} 5 2
®
3 3 s c
i
ndevestecrkunnd nhesatebedutonnd
agent4 b agent3 ¢

‘a’ is a multiquadrant shot which involves all four agents. its cumulated value is 3 + 4 +2 + 5 = 14,
‘b’ is @ multiquadrant shot which involves only two agents, and it has a global value of 7. °c’ is not a
multiquadrant shot, it has a value of 3, and it has only local significance. if agent 2 is *busy", it may
not want shot ‘a’ to be fired. While waiting for agent 2 to evaluate ‘a’, agents 1 and 4 may evaluate
and fire 'b’, and agent 3 may decide to fire 'c'.

Figure 5.4.2: Local and negotiated shots

157

In all cases an individual agent chooses its activity based
view of the problem solving state. This view is
determined by the conditions which describe the agent's local
as defined in figure 4.3.2, and the conditions which
describe the agent's relation to the other agents in the DBB
These conditions and their implications on an

on its

state,

organisation.

agent's reasoning are summarised in figure 5.4.3.

C1.
cz.
Cc3.

C4.
Cc5
Cé.
(78
Cs.
C9.

C1.
c2.
r3.

cq.

Cs5.
Cé6.
C7.
cs.
cs.

Londitions

All agents have terminated.

All balis have been iocated.

The number of balls equals the number of unknown squares and all other
agents have terminated.

Only one ball remains to be found.

Boarg changes have occured.

Invalid transit locaticns received.

Invalidated hypotheses are present.

No more information can be derived from current sources.

Shot values received.

C10. Shot evaluation request received.
C11. Shot evaluation requests sent.
C12. Remaining shots can provide no additional information.

Implications

Game over. then the session controller assumes control.
Quadrant solved: Then the e gent broadcasts a termination signal.
Solve game: then the agent solves its quadrant (C2).

Last stage of game: then the agent employs exhaustive strategies, and
serialised firing may be enforced.

Local hypothesis invalidation possible. Local shot reevaluation necessary.
Local hypothesis invalidation possible. Local shot reevaluation considered.
Analysis

Choose shot.

Recompute global value of shots.

C10. Respond to shot evaluation requests.
C11. Consider responses when choosing an "optimal® shot.
C12. Integrate or guess.

Figure 5.4.3: Problem state conditions and Implications

158

The agent represents its local Blackbox problem solving state
using the guintuplet of objects defined in section 4.4,
namely 8:<G,N,P,E,U>. The agent reprosents its relation to
the other agents in the organisation using R:<T,Mi,Mo>. T
represents the termination state of the agents, and is used
by an agent to determine when the game is over. Mi represents
incoming messages, and Mo represents outgoing messages. M is
represented using M:<G',N',P'E',U'>. The descriptions are
given in figure 5.4.4.

Blackbox state: S:<G, N, P, E, U> where: .

The grid corresponding to an agent's quadrant.

The number of actual halls available to the agent.

Possible shots (distinguished as external side and internal boundary).
Evaluated shots (focal value and global value).

Unsolved beams (partial hypothesis within the agent's quadrant).

cm3zo

Organisational state: R: <T, Mi, Mo> wnere:

T: Termination state of the agents in the organisation.
Mi: Incoming messages.
Mo: Qutgoing messages.

Message gtate: WM:<G',N', P, E', U'> where:

G': The overlap area shared by adjacent agents.

N*: The number of balls within and gutside an agent's quadrant.
Mi<N’> decrements the actual balls within an agent's quadrant.
Mo<N'> decrements the actual balls available to the other agents.

P': Possible shots along an agents internal boundary.
E’: Local and ylobal values for <P'>.
Requests and responses to global evaluation attempts.

U': The transit locations of unsoved beams. These are further qualified as
initial, invalid, and alternative.

Figure 5.4.4: Representation of the problem state in DBB

159

There are obvious interrelationships between S:<G,N,P,E,U>
and R:<T,Mi,Mo>. The salient characteristic is that any
changes to S are reflected in R, and vice-versa, wherever S
and R coincide. Changes that the agent makes to S appear in
its Mo, while changes communicated to the agent appear in
its Mi. The interaction of the agents is controlled by
specifying when Mo is actually communicated and when the
receiving agent integrates the information contained in Mi

into its reasoning.

5.5 Organisation of the DBB 8ystem

The Blackbox problem can be decomposed in a number of ways,
and each decomposition could lead to a different type of
problem solving organisation, based on reasoning strategies
such as the island driven or knowledge driven approaches
described in section 2.3. For simplicity, a geographic
decomposition that remains stable throughout execution is
chosen. This decomposition has the advantages that it is easy
to describe, simple to administer, and straightforward to
implement.

The geographic partitioning produces four agents assigned to
four equivalent subproblems in geographically different
locations. The agents are organised as a team in which each

agent has an identical decision process but a distinct view
of the problem. A team organisation is chosen because each
agent. is identical, and each agent must perform all
activities involved in solving the problem. Such an agent
can easily assume different organisational roles by having
its "sphere of influence" modified. The team also provides
a situation in which cooperative decision procedures can be
studied. Furthermore, the team organisation appears the least
biased in terms of how the solution progresses. Based on all

160

these reasons, the team appears the most suitable
organisation for developing the prototype.

Each agent maintains its own view of the global problem
solving state derived from its 1local state and the
information it sends and receives from the other agents. The
agents individual views of the global state may be inconsis-
tent. Although a consistent global view could be a critical
requirement for solving certain distributed problems, it is
not critical in DBB. Resolving inconsistency is an inherent
part of intermediate solutions in DBB. Thus, the DBB agents
do not have to take extra measures to maintain a consistent
global view. Certain changes that an agent makes to its local
state will affect the global state, and they must be communi-
cated to the other agents. The :gent must also assimilate
changes to the global state communicated by the other agents
in a reciprocal manner. The agent's role relates its local
problem sciving state to the global one. It determines what
changes are relevant, how either state is affected, and what
responses are to be conveyed over the network.

A design structure for realising such an agent is illustrated
in figure 5.5.1. The proposed structure incorporates the
organisational structure of figure 5.1.1. with the DBB know-
ledge requirements described in figure 5.4.1. The agent's
general problem state is represented by its "Blackbox state"
S:<G,N,P,E,U>, and its "organisational state" R:<T,Mi,Mo>,
given in figure 5.4.4. The agent's role describes the agent's
responsibilities and communication policies. The first
relates the agent's orgarisational functions to the relevant
problem states outlined in figure 5.4.3, tbhus describing the
agent's expected reaction when specified conditions occur.
Thc second describes how the agent comminicates or
"perceives" these conditions, specifying the relation between

lel

network messages, and Mi and Mo. All the above are embedded
within the testbed compconent, which provides the user
facilities described in figure 5.3.2. This constitutes the
structure of an agent within the DBB system.

Testbed component

game session

screen display

performance measurements
message monitoring

user intervention

Communicate

message handling

A

Role

communication policies e
- rosponsibilities >

Planner l{
Y Y

S: <G,N,P,E,U> R: <T,Mi,Mo>

Problem solving
abllities

wait
communicate
choose shot
shoot
analyse

Figure 5.5.1: Structure of a DBB agent within the system

162

The following examples demonstrate the interrelationships
within the structure of figure 5.5.1. Suppose an agent is in
the process of performing analysis. In the course of its
analysis, it modifies the contents of the overlap region that
it shares with adjacent agents. This constitutes a locally
produced change in S that coincides with R. Such changes are
governed by the agent's responsibilities. Whenever such a
change occurs in S it is moved to R. Furthernore, as a change
occuring in the central squares concerns all agents rather
than one in particular, the comnunication policy may
establish that such a change be communicated with higher
priority.

Meanwhile, the other agents are sending various messages
resulting from their own activity. These messages are
received by the message handler, which performs a "cursory
analysis" to determine the message type, and place the
messages into appropriate message buffers. How a particular
message is handled will be determined by the communication
policy, according to the agent's responsibilities. This in
turn governs how the agent reacts to changes in the problem
state. For the sake of our example, let's assume that the
incoming message is a "shot value". As the agent is current-~
ly involved in analysis, it is not interested in evaluation,
and will therefore ignore the incoming message. Thus the
agent "shelves" the "shot value" until a later moment.

If, on the other hand the message were a "shot request", the
agent might employ a totally different modus operandi,
because shot requests indicate the sending agent's readiness
to fire. The communication policy may establish that all
consecutive shot requests should be counted. The agent's
responsibilites may establish that when the agent has
received e.c. three consecutive shot requests from one agent,

163

it should respond. Thus, once three requests have arrived,
they will be moved from the message buffer to R, where they
are visible to the agent. The agent will then consider these
requests-even though it is in the process of analysing beans.

The DBB design structure proposed in figure 5.5.1, uses an
"object oriented" approach to represent the knowledge for
realising the interactions described in the preceding
examples. A distinction is made between an agent's problem
specific knowledge, and its organisa.ional knowledge. The
problem solving state associated with each is encapsulated
within an "object", which maintains its representation
between invocations, and defines the operations that
transform the state, its constituent objects, and those to
which it is related. The layering provided by an object
oriented design makes the system easier to conceptuali.se,
and will facilitate modifications in the course of the
system's development.

5.6 Two Alternative Organisations for DBB

As stated earlier, one of the future goals of our research
team is to experiment with alternative organisations. The
team organisation described in the preceding sections
provides a good starting point from which the functionality
of the individual agents can diverge. This will occur
naturally during system refinement, analogous to the way that
a group of people redefine their roles in relation to each
other as they become familiar with the way each operates. The
organisations discussed in this section are offshoots of the
team organisation. They offer a solution for choosing
globally optimal shots at the cost of unbalancing the work
load and introducing new interdependencies among the agents.

164

One alternative organisation considered is based on a simple
hierarchy for making decisions related to the firina of shots
(figure 3.6.1). Within the hierarchy, one agent is assigned
the role of director, and has the responsibility of decreeing
shots for its subordinates. This implies that the director
must have the relevant information to choose "optimal" shots.
Below, I describe two ways of realising the relation between
a director and its subordinates, labeled hierarchy 1 and
hierarchy 2. With the first, the director is responsible for
evaluating the shots, and must therefore collect all the
necessary information. With the second, the director only
collects a subset of the information. In both cases the
decision process is centralised. The strategies differ in the
amount of information that the director must collect, and in
the way the director determines which subordinate is ready
to shoot.

In the case of hierarchy 1, the director is responsible for
evaluating shots, and must therefore collect and maintain
the necessary information. This consists of the contents of
the entire grid, all possible shots, and the number of actual
balls, corresponding to S:<G,N,P> in the problem state
representation of all the agents. The director collects this
information by having subordinates send all changes to the
contents of their quadrants, to the number of balls that
remain to be found, and to possible shots ccrresponding to
the exit locations of fired beams. The director performs its
evaluation <E>, and then chooses one or more "optimal" shots

to send to the concerned agents for firing.

The flow of information described above can be realised by
redefining the agents' responsibilities and communication
policies. Then all subordinates will send relevant changes
<N>, <P>, and <G> to the director. Also, subordinates are no

165

longer responsible for choosing shots. Instead they must wait
until the director sends them an evaluated shot <E> before
they can fire. This hierarchical st.ructure provides better
control over the firing of shots. However, it also raises
certain questions related to coordinating the director and
its subordinates. When should a director evaluate shots? When
should a director send a shot to an agent? Should the
subordinate passively wait until the director sends it a
shot, or should it indicate that it is ready to fire? The
flow of information does not provide any incidental knowledge
about the state of the agents.

With hierarchy 2, the director is only responsible for
choosing "optimal" shots, thus its representation of the
problem state is limited to <E> on the global board. Each
subordinate is responsible for determining the local value
<E> of possible shots <P> within its own quadrant <G>. It
then sends all evaluated shots <E> to the director. The
director combines the partial values <E> received from all
its subordinates to determine the glokal value of shots <E>.
It then chooses the "optimal® shot(s), and sends them to the
subordinates. This exchange is realised by redefining the
agents' reponsibilities and communication policies
accordingly.

The director in hierarchy 2 retains control over firing while
subordinates communicate much less information. The amount
can be reduced even further by having subordinates only send
changes in evaluated values. The exchange also carries
implicit information, since the director is aware that a
subordinate is searching for shots as soon as the director
receives evaluations from it. However, the implicit
information does not resolve coordination problems between
the director and its subordinates. Should the director

166

solicit evaluations from its subordinates, or should it
choose shots with the possibly inaccurate values that it has
at hand? And how do agents indicate that they are ready for
a sho* when they have no changed values to send?

Both hierarchy 1 and hierarchy 2 described above have an
obvious disadvantage due to the division of tasks. The
directors in both organisations must choose shots in addition
to solving their own dquadrants as their subordinates do. If
we assume a more oOr less equal work load for each agent, at
the moment that the director is ready to deal with its
responsibilities i.e. choose shots, its subordinates will
have also completed their work. Thus the subordinates must
wait until their director has completed its evaluation before
they can proceed. Hierarchy 2 will create less delays than
hierarchy 1 due to the director's 1lighter locad, but the
director will still have more work than its subordinates. One
way of overcoming this problem is to use a multiagent scheme
(figure 2.2.3) whereby an agent is designated director
according to its work load.

The above questions concerning how to coordinate the system
only scratch the surface of the issues involved. New
communication requirements will 1lead to new inter-
dependencies that will introduce more timing problems in the
agents' interactions. This is characteristic of the
coordination problem in any distributed system, and
particularly virulent in a DPS system where individual
processing time is so highly unpredictable. This makes it
difficult to foresee the full implications of any solution
until it is in operation.

167

5.7 Evaluation of the DBB Organisation

Evaluation will play a primary role in DBB, both during its
development, and in the subsequent comparisons that one wants
to make between the different organisations. However,
comparisons cannot be made until each organisation has been
thoroughly verified. Unanticipated coordination problems
could emerge when the problem solving expertise is in place
and the effect of undesirable interactions appears in
testing. Evaluation in DBB will involve several successive
stages, with the success of each depending upon the
thoroughness of the preceding one.

The first stage consists of verifying and validating the
agents' Blackbox expertise. Although we have validated the
expertise using the single expert described in chapter 4, it
is necessary to ensure that no errors are introduced during
its transition to the multiagent version. Ideally, the
performance of an individual agent should be identical to
that of the single expert when solvingy the same problem.
Thus, the performance measures obtained by the single expert
can be used to define limits for the solutions that can be
expected from the group. The limits will serve to identify
situations in which the group's performance differs
significantly from that expected.

The next stage consists of verifying the knowledge pertaining
to the agents' organisational roles. At this stage, the
agents' responsibilities and communication policies will be
observed and finetuned in an iterative fashion. This is where
the limits described above will be applied, to identify the
situations which require attention. The possible causes of
inferior performance will fall into three categories: (1)
errors due to bugs; (2) deficiencies in the knowledge related

le8

to the agents' responsibilities; and (3) deficiencies in the
agents' communication policies. Identifying which is the
cause may be difficult.

Once verification is complete, the organisation's perfor-
mance can be evaluated. In this case, establishing that the
organisation finds correct solutions is only one aspect, as
we also wish to determine why a given organisation behaves
in a certain way, and how its performance can be improved.
This will require identifying the organisation's weak points,
and finding alternative ways of resolving them. It is at this
stage that we can examine whether the agents "cooperate", and
how the organisation's structure can be modified to produce
better cooperation. Any modifications will necessarily
involve further verification, with the cycle being repeated
until a satisfactory result is obtained.

Establishing suitable measures for the performance of an
organisation is necessary in order to finetune a single
organisation, and to compare the performance of different
organisations. One measure is the "goodness" of the solutions
obtained by the organisation. This could be based on
measurements of the number of shots, the score, the number
of errors in board hypotheses, and processing time, as with
Blackbox. - Since concurrent firing is possible, it will be
necessary to establish the relative value of duplicated shots
against that of additional processing time due to more
controlled firing.

Another way of measuring an organisation's performance is to
measure its rate of convergence onto the solution and the
amount of communication involved. This will reveal more about
how the organisation operates, and why it behaves in the way
it does. The rate of convergence within the organisation will

169

indicate how well the organisation serves to focus and
coordinate the agents' individual activity. An organisation
with a good focusing strategy will reduce the amount of
"distraction" that occurs within the system. A well
coordinated organisation is one in which the agents interact
in a timely way, and thus avoid redundant work and delays.
Since "distraction" results in unproductive processing, it
can be measured by the amount of work that produces no
changes in the solution, performed in response to messages.
The "goodness" of coordination can be measured by the amount
of time agents spend oa finding identical solutions (i.e a
ball location within a shared area), and the amount of time
agents are "idle" while awvaiting information.

As in any organisation, effective communication is crucial
for optimal performance. The impact that communication has
on the system will deperd upon the granularity, frequency,
and amount of informati:on communicated, and the character-
istics of the communications medium. Since all the
organisations wil operate with the same medium, the
constraints it imposes are considered part of the problem.
How effectively the agents communicate can be measured by
(1) the number of messages exchanged; (2) the amount of
information that the messages convey; and (3) all delays
related to cxchanging the information. These will reveal the
"bottlenecks" and ocher sources of inefficiency that make
one orgznisation more suitable than another in a particular
situation.

Evaluating an organisation of expert systems involves
considerably more work than the evaluation of each expert
system within that organisation. Only after the constituent
experts have been thoroughly verified and validated on an
individual basis can verification of the organisation begin.

170

This must simultaneously establish both the validity of the
agents' interactions, and the impact of these interactions
on the organisation's performance. Finetuning an organisation
to its attainable optimum is necessary, as it would otherwise
be unfair to make comparisor.s between the organisations.

171

[1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(]

(10]

Bibliography

F. Hayes-Roth, D.A. Waterman, and D.B. Lenat, "Building
Expert Systems", Addison-Wesley, 1983.

E. Rich, "Artificial Intelligence", McGraw-Hill, 1983.

E. Cassirer, "The Problem of Knowledge ~ Philosophy,
Science, and History since Hegel", Yale University

Press, 1950.

D.S. Levine, "Survival of the Synapses", The Sciences,
New York, Nov/Dec 1988, pp. 46-53.

M.A. Fischler and 0. Firschein, "Intelligence: The Eye,
the Brain, and the Computer", Addison-Wesley, 1987.

J.R, Searle, "Is the Brain's Mind a Computer Program?",
Scientific American, Vol. 262, January 1990, pp. 26-31.

H.C. von Baeyer, "The Aesthetic Equation", The
Sciences, Jan/Feb 1990, pp. 2-5.

C. de Koven, "Survey of Automated Knowledge Acquisi-
tion", Technical report, Concordia University,
Montreal, fall 1988.

D. O'Leary and R. O'Keefe, "Verifying and Validating
Expert Systems", Tutorial program, 11th International
Joint Conference on Artificial Intelligence, Aug. 1989,

H.P. Nii, "Blackboard Systems - Part One: The Black~

board Model of Problem Solving and the Evolution of
Blackboard Architectures", pp. 38-53. "Blackboard

172

Systems - Part Two: Blackboard Application Systems and
a Knowledge Engineering Perspective"”, pp. 82-107, The
AI Magazine, Summer 1986.

[11) M.S. Fox, "An Organizational View of Distributed
Systems", IEEE Transactions on Systems, Man, and
Cyber—etics, Vol. smc-11, No. 1, January 1981.

[12] M. Minsky, "The Society of Mind", Simon and Schuster,
New York NY, 1986.

{13] R.M. Steers, "Introduction to Organizational Behavior",
pp. 242, Scott, Foresman and Company, 1981.

[14] K. Davis, "Evolving Models of Organizational Behavior",
pp. 4-14 in Organizational Behaviour, J.W. Newstrom and
K. Davis, McGraw-Hill, 8th ed. 1989.

[15)] N. Nyiri and J. Redekop eds. "Uses and Abuses of
Systems Theory, Perspectives", Interdisciplinary
Research Seminar, Wilfrid Laurier University, 1985.

[16] V. Sathe, "Culture and Related Corporate Realities",
Richard D. Irwin Inc., Homewood Ill. 1985.

(17) E.H. Durfee, "Coordination of Distributed Problem
Solvers", Kluwer Academic Publishers, Boston 1988.

(18] M.W. Alford, J.P. Ansart, G. Hommel, L. Lamport, B.
Liskov, G.P. Mullery, and F.B. Schneider, "Distributed
Systems - Methods and Tools for Specification - An
Advanced Course", Lecture Notes in Computer Science,
No. 190, Springer-Verlag, 1985.

173

(19]

[20]

(21)

(22]

(23]

[24]

[25)

W. Chu, L. Holloway, M. Lan, and K. Efe, "Task Allo-
cation in Distributed Data Processing", Computer, Vol.
13 pp.57-69, November 1980, reprinted in Distributed
Computing: Concepts and Implementations, P. McEntire,
J. O'Reilly, and R. Larson, IEEE Press, New York, 1984.

E.H. Durfee, V.R. Lesser, and D.D. Corkill, "Trends in
Cooperative Distributed Problem Solving", IEEE
Transactions on Knowledge and Data Engineering, Vol. 1,
No. 1, March 1989.

V.R. Lesser and D. Corkill, "DVMT: a Tool for Investi-
gation of Distributed Problem Solving Networks",
Blackboard Systems, R. Englemore and T. Morgan eds.,
Addisson-Wesley, 1988, pp. 355-386.

R. Campbell, "Background for the Uninitiated", in
Paradoxes of Rationality and Cooperation, R. Campbell
and L. Sowden eds, The University of British Columbia

Press, Vancouver 1985.

M.L. Ginsberqg, "Decision Procedures", in Distributed
Artificial Intelligence, M. Huhns ed, San Mateo, CA:
Morgan Kaufmann, 1987, pp. 3-28.

J. Halpern and M. Yoram, "Knowledge and Common
Knowledge in a Distributed Environment", Proceedings of
the 3rd ACM Symposium on the Principles of Distributed
Computing, 1984, pp. 50-61.

Y. Moses, D. Dolev, and J. Halpern, "Cheating Husbands
& Other Stories: A Case Study of K: ~wledge, Action, and
Communication", Proceedings of the 4th Annual ACM
Symposium on the Principles of Distributed Computing,
August 1985, pp. 215-223.

174

(26]

[27]

(28]

[29]

[30]

(31]

M. Benda, V. Jagannathan, and R. Dodhiawala, "On
Optimal Cooperation of Knowledge Sources - An Empirical
Investigation", technical report, Boeing Advanced
Technology Center, Boeing Computer Services, Seattle,
WA, July 31 1986.

R. Davis and R. Smith, "Negotiation as a Metaphor for
Distributed Problem Solving", Artificial Intelligence,
Vol. 20, 1983, pp. 63-109.

S. Cammarata, D. McArthur, and R. Steeb, "Strategies of
Cooperation in Distributed Problem Solving", Proceed-
ings of the 8th International Joint Conference on
Artificial Intelligence, Vol. 2, August 1983, West
Germany.

D. Corkill, V.R. Lesser, and E. Hudlicka, "Unifying
Data-Directed and Goal~Directed Control”, Proceedings
orf the National Conference on Artificial Intelligence
(AAAI), 1982, pp. 143-147.

V. Lesser, D. Corkill, J. Pavlin, L. Lefkowitz, E.
Hudlicka, R. Brooks, and S. Reed, "A High-Level
Simulation Testbed for Cooperative Distributed Problem
Solving", Proceedings of the 3rd International
Conference on Distributed Computer Systems, 1982, pp.
341-349.

D. Corkill and V. Lesser, "The Use of Meta-Level
Control for Coordination in a Distributed Problen
Solving Network", Proceedings of the 8th International
Joint Conference on Artificial Intelligence, 1983, pp.
749~756.

175

(32]

(33]

(34]

(35]

(36]

E. Durfee, V. Lesser, and D. Corkill, "Increasing
Coherence in a Distributed Problem Solving Network",
Proceedings of the 9th International Joint Conference
on Artificial Intelligence, 1985, pp. 1025-1030.

E. Durfee and V. Lasser, "Using Partial Global Plans to
Coordinate Distributed Problem Solvers", Proceedings of
the 10th International Joint Conference on Artificial
Intelligence, 1987 pp. 875-883.

C. De Koven, T. Wieland, and K. Pitula, "A Distributed
Version of the Game of Blackbox", Project Repourt,
Concordia University, February 1989.

C. De Koven and T. Radhakrishnan, "An Experiment in
Distribuvted Group Problem Solving", to be presented at
the IFIP Conference on Multi-user Interfaces and
Applications in Greece, Sept. 24-~26, 1990.

K. Pitula, T. Rhadhakrishnan, and C. Grossner,
"Distributed Blackbox: A Testbed for Distributed
Problem Solving", Proceedings of the Ninth Annual
Conference on Computers and Communications, Phoenix
1990, pg. 741-748.

176

