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A ~ DATA FLOW ANALYSIS o \
Juan-Jose Barroso - : _—

Data Flow Analysis techniques are being péed by the

compilers to‘optimize the object code. This report presents
a systeﬁatic. SurVey of Data .Flow Analysis‘ for. code
optimiza%igh in compilers. . The .different methods used to
gather program data flow information are discussed and \a
compérison of’thé performahceeand easiness’of'implémentation
of the éifferent data flow analysis tech;iqueg- is also
preéénted. Some of the new areag of applications of d;ta

~

"flob énalysis:techniqueé are listed.
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CHAPTER I

INTRODUCTION

' 1.1 Motivation . . ,

q

A ‘compiler tra¢slates source programs usually written

in a high level l#nguage to object programs in a low level

l

language. The object code- generated by a straighforward

code generation in a compiler is usually inefficient and an

. optimization phaSefis required during the compiling process

to improve the cqﬁe. The main objective of optimization is

to increase the/ run-time efficiency of the generated
programs while ﬁreserving the program equivalence. ‘We
should note that by optimization of the code we don't mean
finding , of thél best program since there could be na best
program; but fipdingA of an improved equivalent one
[Blum67,AlleBl]). )
Although '~ some improvement can be doﬁe siﬁply by

scanning the program as, for example, constant value

_substitution, most of the optimizations require a knowledge

. 0f the definition and vuse of the different variables

throughout a program or other relevant information to a

particular optimization. Gathering _the necessary

\



information is known as data flow analysis which is the
central topic of this study.

Data flow analysis’ consists of determining statié
eharacteristics of a program and it is usually performed -on
some intermediate form of the compiled program -such as
"three address" statements. Dafa flow analysis assumeé that
all paths of the érogram control flow can rebresent actual
execution even though #t is not always the case. Ths';esult
of data flow analysis is an approximate description of the

static characteristics of a program. Two reasons can be

given, however, for the use of tHis method [Chars8l]. The

first one is that distinguishing .the paths which répresent

actual execution from those which do not is in general an

undecidable problem. The ' second reason is that such an:

approach allows simple algorithms and simple data structures
to gather data flow information.

Code optimization was already a preoccupation when the
first compilers were designed in 1950's. The scarce central
_memory and the 1low speed of the compu;e}s of that period

explains the need of code optimization. Following the

account of Backus [Back8l], the FORTRAN compiler which was

written from 1954 to 1957, implemented -several optimizing‘

3trénsformations. Common subexpressions elimination, motion
‘of code out of the loops and register allocafion were among
such transformations. An analysis of the data flow of the
program was performed bx the compiler to allow these

transformations. Code optimization received additional
;
J
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attention during the 1960's when  several optimiziﬁg
compilers were produced (_Pﬁ/I, ALGOL, FORTRAN ). It becgme
apparent that‘soﬁe optimizatfon technigues are_applicable to
several programming languaées and that they require the
knowledge of data flow in a program. ' Thus, general
principles of optimi;ation'techniqués_and éhe related data
flow analysis started. to be 1investigated as a séparate
topic. Such a systematic understanding of the optimization
methods made them generally applicabie to anyl compiler.
Today the literature on code optimization and data,flow
analysis is qufte gxtensive. aAn oveiview of some techniques
of data flow analysis can be found in
[Hech77,Aho77b,Kenn8l].

In this report we will presént a systematjc survey of
data flow analysis and a cbmparison of theiéérformace and
eqfiness' of implementatien of the different data £flow
aqalysis‘ techniques. As part of this introductory chapter, .
a summary of the main types 'oé optimizations done by
compilers are presented. A Srief discussion of control flow
concepts follows. We then 1list typical ~known data flow
analysis problems. which arise in the optimization process.
Finally, we name the different methods uséd to solve data
flow analysis problems.

In Chapters 2 and 3 we preﬁent the traditional methods
of data flow analysis, namely iterative and interval

analysis. Although these methods can be considered as

particular cases of the more general method to be presented’



A -

in Chapter 4, their explanation:will make the understanding

4 .

of the general method easier. ’ - .
¢ .

In Chépter 4 we‘bresentadata flow analysis frameworks

4

which constitute a unified approach tdgpdat
B . N Y v
The known data flow analysis problems can be modeled by this

“* general methodas Chapter 4 is therefore central to this

¢

report.
; Interproce&ural‘and hiéh level data-'flow .analysis | is

introduced in Chapter 5. .
In the last Chaﬁter we will give a comparison of data

flow anélyiis algorithms along with some concluding remarks.

1.2 Program Optimization. ' "

v *

Several transformations can Pe done Eo improve the
éxeéution ‘time of compiled programs. A survey of such
transforméﬁions cén be found‘ig [Alle72] and .a more conciée
enumeration in [Kenn8l]. Those program transformations can
be divided in two main categorieé: local, which consider
only straight lines of code without branching, and non-local
transférmations in which the knowledge of.control filow of a
program is required. :The topic of this report be?ng data
fléw{analysis, we will bg mainly intereéted in non-1local
transformations. These) non-ioéal’ transformations can be
divided into three categories: global, 1loop, and machine
dependent transformations. We define now the most typical
program transformations in these three, categories.

L

-.4 - ‘ '
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(i) ‘Global transformations. - , "
. o -, . - ) ’
PR N ) . . L Ve L] . Y 1'
P, w* . (a) Redundant subexpressidn elimination. An,eipression

I3
- -

A op B may be ellmlnated if its value is already avallable,
that’ is, if the expression A op b has “ been prev1ously

computed and the operands A or B-have not been redefined

.

(thelr value has not been changed) . N

- N\

. .., - expressions by their value when all the operands are

copstants or -names whose values are fixed. These

expressions may be evaluated at compile time.

" ] (c), Dead code elimination: As a result,of constant

™ N * L] -

propagatlon, some instructions may become -"dead" because-

. H
their /results are never used or they cannot be ‘reached.

- 3 Vv
“a -

(d) variable prqpagatlon. Instructions of the form

A:=B niay be eliminated if the subsequent uses of A can be
. . »
replaced by B. ‘ o

(e) Procedure integration. This optimization is

performed at the subprogram linkage level. In an
r "open-linkage" the called routine replaces the call

statement in the caller. In a ‘"semi-open linkage" the

N ¢

7 called routine is compiled together ywith its; caller which
. . ' . 7

\ avoids the ,overhead associated with the standard linkage

- J

(close linkage), where no information of the called routine

-

is available during the compilation of the caller.

(b) Constant propagation. This optﬁﬁizatlon replaces.

L.

Dead code elimination detects and deletes such 'instructions.
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(ii) Loop transformations. . ¢

zh\‘tr ' ' ' . ’

(a) Code motion. Expressions whose value doesn't
- - ¢

change ingide a ioop may be moved out of the loop to avoid

. computing them at each loqop iteration. - \ .

- ; . \ . ) .

(b) Strength reduction. This transformation replaces
o B .o - vy .

slow operations by faster operations. \This may be done in

r t

T

4

instructions that ~depend on the the variable used for loop

\ - )

, iteration (induction’ variable). . For example, if the
induction varigble varies linearly, a reference to an array
element could be éomputéd by thé additionjofva constant to
thé "previous reference addressfiﬁstead qﬁ using the general
formula . to - cémpu£e ~an ,array agdress which inciudgs a
multiplicéiion.v P

V4

. (c) Lindar test replacement. After performing strength

v

A

reduction, the o@ly wuse "of the induction vatiable is -

frequently in the test which cofitrols the loop- iterations.

Linear test'replécement replaces such induction variable by
PR o ‘

k]

v

an induced temporary variable. Instructions involving the

~

induction variable become useless-and théy will Dbe -deleted
by dead, code.elimination. ' s
— . 7 N S

N o
-
.

v

i v
(iii) Machine-dépendent transformations. .

. »

. . 3

»
1 ’

(a) Register allocation. This optimization tries to,

" make efficient,, use of the registers by decidim® which

-

variables should reside in registers and to which register
o . " s ‘ *

. L

v v . o
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. -each variable shbuld -be }ssfgned. . Optimized ifegisfter

allocation can eliminate’ some loadrand-store instructions.

Y

, (b) Instruction séheduling.*‘ Instructions can be

scheduled to take advantage of.the machine architecture to
. 4 ' ‘
improve -the execution time. This can be very important in

o 1

computers with pfbelined arithmetic units.

o) Storabe _mapping. This transformation seeks to

reduce . the amount‘oj active memary space used by a program

»

by reusing the space occupied by variables - whose value is
not anymore needed and, in computers with pagihg, it tries

to map together the code which is going to-be used ' at the:
rd . e

same time. -

(d) Detection of parallelism. For machjnes with

multiple units or vector machines, it is desirable to detect
\ g

operations which may be executed in parallel.
-

' ” N K

-

1.3 Control Flow Analysis.

- Lt . ., ' e

-~

In geneiai, data flow analysis of a étogram is precedea

by the "control flow analysis". The purpose of control flow

analysis is to subdividé the program'into "basic blocks" and

o,

to find all possible'transfets from one block to another
block. A "basic Dblock™ 1is a straight line of statements

with only one entry (top) and one exit (bottom) and which
[T :
will be executed in sequencev The control flow of a program
, A : .

may be represented by a_ngph whose nodes are basic blocks

and the edges represent possible'tfansfers between nodes.

'
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The resulting graph is called the "flow graph".

‘Eotmal&y,“a flow graph [Alle70,Aho76] is a triple G

-
®] '

(N,E,s) where

I
4

(i) N is a finite set of nodes.
\ e
(ii) E is a set of edges which is represented by pairs

of nodes connected by them. An'edge (x,y) is from the node
x to the -node y and we say that x is a "predecessor" of y

and y is a "successor" of x. .

' -

. " (iii) s is the initial node. and there is a path from & y

to-every node x- in N. ’ . ;
l(iv) A path of G is a sequence x1, x2, Y xk such

that (xi, xi+l) € E fo; 1<=1i<k.

N
[ S
+

Figqure 1.1 ilustrates the basic blocks of a Pascal-like
program- and Figure 1.2 shows "the ‘flow graph of such a

[

progrém.
v 3
For most program optimizations local . data flow
information is first obtained at each‘noae of its flow graph
N s -
and then this information is propagated. through the flow

graph. Data flow inside each basic block can be represegﬁéd

by a directed acyclic graph (DAG) [Aho77b),~ and local
. ‘? - -

information can.be obtained by an anlysis of the DAG. A DAG.

is a directed graph with no, cycles which shows how the

values *computed by each statement in a basic block aré used

, - . . ’ ~
by the subsequent statements in the basic block.:

Considering a ‘three address statement code, the DAG of a

< . R _' 8{_

-t




E Max := naXint )
1 ! .
\ ! Min := -maxint ! ) (L)
. i B 1 .
! Flag =1 i vy ' .
j i Cc:=0 E ‘ .
U U g UL G R |
. N . N
repeat i
' read (N) ! ‘ (2)
. ! 1f N = 0 'then .
.L'___‘________!_______‘. o ) . Yo
Nt >+ Flag i=0 ! T : (3)
] Lemrcccam = PRI T
else ) .
. % ol ki i .
7 C:=C + 1 E (4)
' ] N
' . [
’ ¢+ 1f N < Min then ' -
L Min =\ r S . 5
else
- r ------------- 1‘ '
, + 1€£ N > Max then (6)
~ . l__' _________ J_.,| N .
N , i Max = N | {7
L —mrm e m e —- i o= 1, i
tuntil Flag = 0 | T (8)
*a . l"'"“-"';-'°--ﬂ'-"~'--"'; . .,
. twrite ( C, Min, Max) | .. " (9)
R PP, U SR
Fiqure 1.1 - Program and its basic blocks. ‘
. ‘// . ., i . . -
" basic block may be codnstructed as follows:
. ) - a) The ieaves are the statement qperands, .that is,'the
" variable names and con3tants._ .
: ’ ) ' ,
. _ b) Thre interior nodes are labeled with the operators.
_— ’ . - ‘ :
. . ¢) Interior nodes may be additionnally labeled by the
Jcomputed values they represent. IR '

- . hd . ‘a ’
- ' . . x ¢ L lad 9—" . B
. ~ M . = 'F.
. v * ! ' .
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Figure 1.2 -\Flow graph ;f thé proéram of figurevl.l.

Data £low analyﬁis“local to a basic block is easily
performed. = During the construction of a DAG/, common
subexpressions, for example, can be aqﬁématically detected
through the labels representing computed.value§ attached to
. the interior nodes. These c;mmpn sﬁbexpre;sions can be
eliminated by cangldering only logél‘data flow information.
Using the notion of basic block we can define local and
'gldbal optimization more :preéiéely as foilé&s$ whén the
impr03qyent transformations are obtainéd‘by considering only
‘data flow at the interior of a basic block, we call ‘it

)

'~ 10 =
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" and these problems are called "forwar

"backward" flow problems.

'local optaﬁization'. 'Global optimizations' require the
J. .

analysis of the flowwgraph [Aho77b]. In the next s@ction we

_enumerate the most typical data flow analysis prollems.

e

1.4 Data Flow Analysis Problems.

"A list of possible transformations to improve compiled

programs was given im section’l.2. We will consider now the:

problem of how these transformations may .be carried aut.

-This must be done by a data flow analysis of the program.

B

For example, to eliminate redundant -subexpressions all such

subexpressiohs ,must be found. Each type of transformation
requires diffe;ent data flow . igformation.'and, therefore,
différent techdiqﬁes. are used to gather .such information.
Inlélobal optimizatioﬁs, we find two classes of problems
depending on when the information is‘required at a given
point in the program flow graph: before control reaches that
point (top of a node for example) or after control leaves.
that point (bott?m of a node) [Kennél]: In the . first case
the information is gathered by following  the control"
represented by;the flow géaéh from the root to ghe leaves

3

" flow problems., ' In

the second case, the information is gathered backwards and

" the problfgs requiring such technique are usually called

- Gathering the information about data flow consists of

finding " the 1largest or smallest

\‘f

solution to a system of

- 11 <
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s;multaneods datg flow equations. The ;ystém of --data « flow
equationé to be Bolved for specific p;obleﬁs is presented in
the following chapters. We\now describe some typical data

.flow analysis problems.

! 1

+

(i) _Forward flow problems.

2

-

(a) Reaching definitioqg,‘ We “find out which

definitions reach the tbp‘bf a node in a flow graph. A
variable or expression is said to be defined at a point p in
the flod graph if it appears at Ere left side of an
assignment, that is, if its value is changed. Information
agﬁout reaching definitions is useful to severé;
optimizations such as redundant subexpression elim}nation,

constant propagation, and variable propagation.

(b) Available expressions. An expression A op B is.

available at a point p in a flow graph if every path that

-

the program may take to p, evaluates A op B after the last
s - : .

definition of A or B. Finding available expressions is

useful to redundant subexpression eliminatién.

.

(c) Copy propagation. This data flow-analysis problem

will look for-assignments of the form A:=B.- Together with
reaching definitions, éopy propagation will allow vatriable

§

propagation optimization. : -

1o
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(ii) Backward flow problems. ' -

»

% ' ' * -
>~
&

(a) Live variables. We say that a variable A is live

at a point p in the flow graph if the value of A, at .p is

going to be used forward in some path starting in p. Live

variables information allows furtlher register allocation
¢’

©
optimization.

(b} Very busy expressions.. An expressioS.A op B is

very busy at point p in the flow graph if the ;ame
expression is evaluated along evéry path ?rom Q~before any
redefinition of A or, B. Finding very busy expressions
allows code hoisting transformations which consist in moving
the busy expression to the poin£ lp, and haJ}ng _ one

computation of A op B only. . ‘ ‘

¢
(iii) Data flow analysis problems for loop optimization.
S
_(a) Loop : invariant computations. Using’ reaching

definitions information, this problem consists in marking

those instructions which are invariant inside é“looﬁ?"‘gpﬁp’

invariant computations may be wused to do code motion

' . )
transformations.

¢

(b) Detection of induction variables. Finding “the

induction variables in a- loop 'allows induction variable

elimination and strength reduction optimizations.

For example, to find available expressions at node xiof

e

-



.

&

N ) )

, L i
a flow graph, the intersection over the set of available

expressions at the exit of every, predecessor, of x is
calculated.\ Live‘variableé, on thq‘other hand, require set
union oper?tion over the set of live variaéles at-the top of
the successors of x.

which the information is- propagated and on the operator used

Thus, depending on the .direction in

over the paths of the flow graph, we have four types of aata

flow . analysis problems ([Ullm75,Aho77b,Hech77] as -ilustrated

»

Set intersection Set union |

Forward flow Available Reaching
{problems éxpressions deginifions
Backward flow Very busy . Live
pfobiéﬁé expressions variables

Figuxé 1.3 - Types bf'data flow analysis probiems.

”

!

by Figure 1.3.

.- o . L

1.5 Data Flow Analysis MetHods.

<

The data flow analysis methods described in the

literature have been <classified in three main categories:

iterative, interval analysis‘and global data flow analysis

_ frameworks (Ullm75, He¢h77]. A brief description of them

follows.

- 14 -
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(a)\Iterative [Aho77b, Cock70, Grah76, Hech75, Kam76,
Kenn7l1, Kenn75, Kenn76, Kou77, Sh§r78, Taj76, Ullm73]. This
method ¢onsigts in iterating through the nodes of the flow
graph and applying the appropriate daté flow e&hations until
a fixed point is reached 1in the flow: of ‘information.'.
Itérgtive methods are discussed in Cbépter 2.

-

(b) 'Interval analysis [Alle76, Hech72, Hech74, Hech75,

Kenn76, Tarj74]. A flow gréph may be partitioned ;n regions
called intervgzé. These intervals become the nodes of a new
flow graph which may be partitioned again. Repeating this
process, a derived sequence of flow graphs may be found with
the last graph in thg sequence eventually consisting of a
single node.{ The interval analysis method uses these

reduced control flow graphs~to a fast gathering of data flow

.information. The propagation of information is a two-phase

process. The first phase processes the derived sequence
from the 1low order to the high order graph. The second
phase reverses the process. This method is presented in
Chater 3.

(c) Global Data Flow Analysis Frameworks [Fong75,

Kam77, Kild73, Rose78]. This method was first considered by’
Kildall (Kild731 . as a@ attempt to solve the data flow
problems in'an unified way. It is Lased "in a finite
semilattice ‘framework. Some problems which cannot be

represented by structures used in the two previous methods

a

. can be solved by this method. It is discussed in Chapter 4.



CHAPTER I1

ITERATIVE METHOD

The iterative method is considered the simplest to

- implement and is also simple conceptually. This .fact seems

/

to make it popular among the préctitioners. Several
variations of the method have been discussed‘ in the
literature. Although we will discuss several versions of
the'iterative method in the last chapter for: time-complexity
comparison, Hn,this chapter we will limite the disﬁussion to
the r0und-robin'versioﬁ applied to "available expressions"
and "live vari;bles" problems. A good exposition of the
iterative algorithms may be found in [Hech77]. OtheE good
references are [Aho77b] ‘and [Kenn8l].

The information or data to be proéagated through the
flow graph is usually fepresented by bit vectors (bit vector
problems ~can also be modeled by a semi}attice theoretic
framework as discussed in Chapter . 4). A bit vector is
associated with, each node of the flow graph. The bit

positions represent variables or expressions of the program.

" The existence of an'attributé for a variable or expression

hS

at a particular node will be indicated by setting up the
corresponding bit of the associated bit vector. We will now

focus our discussions on the available expressions problem.

- 16 -
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2.1 Available Expressions.

We say that an expression A op B is "defined"™ ‘at a
given point if the expression is computed at that point.
The expression A op B is “killed“ if any or either 'of its
operands is redefined. An expression A op B 1is then
"available" at a point p of the flow\-graph G=(N,E,s) if

every possible executable path leading ‘to p contains a

definition of such expression after the last definition of A

ey
|13 o
or B. -t

. N
‘.0

o
'Available expressions problem is a forward problem and

its solution will provide information necessary to the
elimination of redundant computations. To gather this
information we will use a bit vector AVA;L(x) for each node
X in N. This bit vector will contain a oné at the position
i if the expression i is available entering node x. We also
need the vectors NKILL(x) and DEF(x) to keep local
information to each node x. NKILL(x) will contain the set
of expressions not killed in node x, and DEF(x) will contaiﬁ
the set of expressions defined in node x. The length of the
vectors is m where m is the number of exbressions.

Since we want a safe solution and we assume that every
path may‘,be possibly executed, the sgt of avéilablé

+

expressions entering node x is obtained by the intersection
of AVAIL(y) for every y in N which is a predecessor of x.
This leads to the following system of equations to be

solved:

-17 -
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AVAIL (x) = \r) (DEF(y) | (AVAIL(y) () NK:Lg(y)))'
y in sz) '
whére P(#) is the set of predecessors"of\ node x.
AVAIﬁ(y)fW NKILL (y) qives the set of available expressions
ﬁtesetqu through gode y to which set the new definitions. in
node y ,DEF(y), are.added. -

We, present now an algorithm tb ‘compute "available
expressions. ‘Because Qe want the largest possible solution,
that is, to know ‘the maximun number of available expressions
at each node of the flow graph, the aigorithm starts wiéh
"tﬁe assumption that ali the expressiéns are available at
each node except entering the initial node where no
éxpressions are available. The Qolution is obtained by
iterating through the nodes of% ghe flow graph and
elfminating only those'expressions‘found not available along

«

some path. )

ALGORITHM 2.1 — Computes wvailable expressions,
. - & ~

& -

-

Input: - a flow gtaph G=(N, s s). -

~ Bit vectors DEF(i) and NKILL(i), 1<=i<=n»

o

Qutput: Bit vectors AVAIL(i), 1l<=i<=n,

- Method: Procedure AVAILEX.

- 18 -~




Rposto der is a useful ordering. of the nodes of the flow ' L

v . 4 . . .

Procedure AVAILEX ‘
" AVALL (1) 1 all 0's T R
for i:=2 to n do AVAIL(i):= all 1's endfor x } }i
- ‘CHANGE: = true |, . 4 o s
while CHANGE do ' : ' TR
| CHANGE:= false ~ v
‘for j:= 2 to n (* in atbiﬁrary o;der *)
do )
previous:=AVAIL (j)
AVAIL (3) := [ ] (DEF () U (AVAIL (k) [} NKILL(k)))
kEB () .
if previous = AVAIL(j) then L
°  CHANGE:= true
endif
endfor , S e
endwhile ' | '~

endAVAILEX A C .

" .The algorithm stops when' there is no éhange in a, whole

iteration through the ‘nodes of the flow graph. :
Algorithm 2.1 visits the nodes-of the flow '§r5ph ina«

arbitrary order. A more efficient algorithm can be found 1if

. \
the no\fs are visited 1in reverse postorder (rposterder). o

graph which is found by first, starting at the initial podé,
trying to visit podes as far away from the 1niti;iinode as

'quickly as possible (depth-~first search) and then, A

- v
!
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/% p ( . |
reversing the order iﬁ which éach node was last _visiteq
(5arj72¢ Aﬁo74, Hech?75, Ahoi7b, Hech77]. Tﬁé algorithm

. belb@('aéap;ed from [ﬁecﬁ?S], computes rpostof@gr. Trxing
to . make paths ‘as long as possible, the algorithm constructs

and traverses a - tree called "depth-first -spanning tree"

¢

(DFST). - Figure 2.1 gives oné example, of DFST and
- . . R4 \ i ‘ \
rpostorder. PO ‘
,,‘r\ o .. " .
! ALGORITHM 2.2 Computes rpostorder for the nodes of a flow
graph. . : ’

Input: A flow ¢graph G=(N,E,s) represented by a
-successor lists (SUC). Initially, the nodes odf G are
‘numbered arbitrarily from 1 to n. .

“ . %

+ . ’ .
Output: A numbering of the nodes of G from 1 to n in

I

) reverse postorder (in array rPOSTORDER).

, o

-

array rPOSTORDER([l:n]. .

- Initialize -a global -integer variable i to n’

o .

and all . nodes of G to "new".
. | - Call DFS(s). ., - : >

v

74
R
gl
P
v
'\i

. .- Method: - The output is stored im the global . integer- |




. call DFS(y)

,

Recursive procedure DFS (x
m;rk x "old" 7r)
While SUC(x) is not empty

o do : - '
select and'deiete a node y from SUC(x)

if y is marked “ne@“

then

end
[} 5
rPOSTORDER [x] : =i
ig=i-1
endDFS .

.

If (x,y) is an edge in a DFST, then x is a parent of y

Cooy ' ( L
and y is a child of x, axd rpostorder (y) > rpostorder(x).

end 7 , ) L

The rpostorder allows then to visit each node after all its:

.

predecessors have been gisited in thé’BfST.

. Using ipostordgr we can obtaip‘fast algorithms. Thé
while -statement of a}goi?éhm 2.1. for the computation of
available ' expressions will have an upper bound equal to the

number of nodes of the flow graph. Intuitively, we only
. ,

need to' consider cycle-free " paths to compute availablé,

expressions; the information is propagated forward' in the-

direction of the flow graph, and each node.is visited after

. its predecessors and follbwing the longest path whose upper

L3 [

e
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Preorder traversal: 1 2 45 421 31, o
_Last ocurrency 3 54231

; ,
"Reverse postorder : 1 3 2 4 5

Figure 2.1 - DFST and Rpostorder.

t
0

‘bouhd is the number of nodes of the flow graph.
. , T
Another property of rpostorder is that it helps to
, i - ) N ’
digcover an imbortant parameter of flow-:'graphs called
~ N » .

)

“hgpth“;x The aeéph of a f£low graph is defined to be 'the
largest number of . backward Jedges on any‘cycle-free path.
When constructing a depth~£i;st'spahning‘treg,,an edge (x,y)
of the flow graph 1is a ’backwa;d eége if and only if
rpostofder(x)>= rpostorder (y) . Int;itivély the depth of a
flow qra;L‘ié an indication of tge loqp‘nest{ng'in the graph
%pd it'is‘usualiy small (about 3 in  the average). ' The.
number of passes throuéh the while—lqop of the:algorithm 2.1

~will be limited to two more than the depth of the flow graph

) -

'
i B i)
J) N .
. . v . -
.
\
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; as defined above‘ kAhoZ7bl: We 'presenti now an improved
| qeréion of théyaigorithm zfl‘using rpqsto;der.

t . ' . " . ‘ X.
ALGORITHM. 2.3 - Qphputég avaiiable expressi;ns.

: Input: - A flow graph G=(N,E,s) with nodes:wnumbéred

.from 1 to n by rpostorder. Each node is referéd by its

.rpostorder number; 4 o .

- BLt vectors DEF (i) and NKILL(i),~1<=i§=n.

Outgut Bit vectors AVAIL(l), 1<=1i<=n.

e’” Method: Procedure AVAILEX.
Procedure AVAILEX . S AN
A’VAIL(l)’:= all o's S - : ‘
for i:=2 to n do. AVAIL(l)'= all L' s endfor'" ‘ " 3 T
CHANGE: = true ‘ -
\'whlle‘CHANG_E_do -
CHANGE:= false | |
Y for j:= 2 to.n do (* rpostotdet o I
previous:=AVAIL (j) e s
AVAIL(j) :4 [] (DEF (k) U: (AVAIL (k} [ NKILL (K)))
. o - | k €P(J) - . .
if previous 3= AVAIL(j) then
£ . CHANGE: = true ° ’ ‘
- - endif R
ij - endfor > ~l . )
',<endwhile ‘ ." o ¥ a .
endAVAILEX | | ‘ |
- 23 - ‘ ‘
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The.' algorithm terminates when the propagation of
a e ~ B /‘
information stabildizes. . : . /

-

2.2 Live Variables.

'Live variables problem is a typical backward data flow
.analysis problem. It is necessary' to determine if a
variable is going to .be used (needed) 1later on in, the

program before beihg.redefinéd. A solution of this problem

_allowé,an improved allocation of registers and helps in ioop

- optimization.  Formally, we. say that a variable 'x. is '1iveﬂ

at a point'p in the flow.graph G=(N,E,s)‘ if there is any

path from p to a use of x without redefinition of x after p.

s
!

" As " for _availablé expressions, live variables
information may be represented by bit wectors. Let LVTOP(x)

be the bit vector which contains the set of live variables

on entry to node x, and let LVBOT(x) be. the set of variables
.which. are 1live on exit of. nb@g x. To represent local
information, let USE(x) be the\&st of variables used in x

before any .possible definition in x and let TQRU(R) be the

set~ of ga;iables not defined 1in - X. We ‘have, then, the

\ ' S . ' .
following system of equations to be solved: - (
i / T ! ) " ]

b

LVBOT (x) = |J ((LVBOT(y) ﬂ THRU (y)) |} USE(y)
y € S(x) R |

~where S(x) is the set of successors of x. The iterative. -

algorithm presented below visits the nodes of the flow grhph

- 24 -
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B in rpostorder. It has beeh adapted from [Hedh?ﬁ].

b . ALGORITHM 2.4: - Computes live variables. - . -

Input: - A flow graEh G = (N,E,sl. The nodes are

numbered from 1 to n bly rPOSTORDER.

* 1

- Sets USE(i) and THRU(i), l<=i<=n represented

by bit vectors of 1length m where m is the number of

Id
R I3

; variables,

_ ‘Qutgugz Bit vectors EyBOT(i), l§=i<=p. _ 5
‘Procedure LIVEVAR - .
. - for j:=l1 to n do LVBOT(j):= all 0's end '

C CHANGE: = true
while CHANGE do

CHANGE := false

for j :=n té'y by -1 do

prevfous := LVBOT (j)

o o LVBOT (3) : = LJ((LVﬁOT(k)[j THRU (k) ) U USE (k))
- k €5(3) '
if previou%j:t LVBdT(j) then CHANG#’:= true end
- eﬁdfor . ' ’
" endwhile ”
enéLIVBVBR

.+, " Algorithm 2.4‘terminages if no LVBOT(j) is changed in
the iteration. The‘effﬂbiency of iterative algorithms will

:  be discussed in Chapter 6.
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. INTERVAL ANALYSIS

‘2;1 Reducibility by Intervals.

i

Interval analyéis is another approach to solve global
data flow analyéis éroblems. There 1is a class of flow
. graphs éalled 'reducible! flow graphs for which data flow
aﬁalysis is ';asily performed. These flow graphs can be

partitioned into regions called 'intervals'. Intuitively,

intervals' represent loops of the flow §raph. After

partitionning a flow graph into intervals, we can caqnstruct

another flow graph ’4hose nodes are the already found
intervéls, and there is an edge from interval I to intervdl

J if there is an edge from a node in interval I to a node in

interval J. By repeating this 'process we can obtain a

sequence of flow graphs whose nodes are basic’blocks in the
firft flow graph, inneimoat 'loops'’ (intervals) iﬁ .the
"secénd flow graph in the sequence and outer 'loops' are
found by partitionning tﬁe following flow -graphs in the
‘sequence. This way we.can find a nested structure of loops
‘and global data flow ana}ysis can be performed ‘efficgently.
Local data flow ‘informétion is propégated from innerm&st
'lgops' to outermost 'loops' and then' tpe ‘"process is

- 26 - ’
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reversed.
" Formally, in a flow'graph G = (N,E,s), an interval I

1Y

with header h, denoted I(h), is constructed as follows:
1. I(h) := {h} -
2. wWhile there is a node m <> s and m & I(h) and all

predecessors of m are in I(h), do 1(h) := I?h) LJ {m}.

Once a first partition of G has be found, the derived
flow graph I(G) can be constructed as follows:
(i) The nodes of I(G) are the intervals of G.

3

(ii) There is an edge from interval I to interval J if

there is an edge from a node in I to the header of J and

4

I = J.

(iii) The 'initial node of I(G) is Ifé%.

G is called the 'first order graph’ and I(G) the 'second

4

order graph'. I(G) may now be partitioned into 'second .

order intervals' and so on to obtain a 'derived seqﬁence' of
G« Formally, a sequence G = Gl, G2,...,Gk is called the
derived,‘sequence of G 1iff Gi+l, 6K = 1(Gi) for 0<= i<k,
Gk—l.:f Gk, and I(Gk) = Gk. Gk is called the 'limit flow
gfaphf of G [Hech74].

'A'graph G is said to be 'reducible' if and only if the

limit flow graph Gk consists of a single node. In such a

case Gk is called the 'trivial' flow graph. The flow graph

G is said to be 'irreducible' if the graph‘G does not have' a

limit flow graph consisting of a single node.

-27 =



Reducibility has many other in'tereé{:ing proper ties. It
7allows to find the 1loops o0f a flow graph unambiguosly.
These loops are defined by the backward edges of the flow
graph. In fact a flow graph G is rl:educible if and only if
the"edges of the floﬁ graph can be part'ioped in two classes:
forward edges which form an écyclic graph whose nodes can be

reached from the initial node of G, and backward edges whose

o

heads ‘'dominate' their tails' [aho77] (we say that a npde X
'dominates a node y if every path:from the ‘in'itial node of
the flow graph to y passes through x). ] |

If G=(N,E,s) is a flow graph and I(h) is an interval of
G then, .

a) Every edge entering a node of I (h) frox;\ the outside
enters the he'ader h, ‘that -is, . an interval has a single
entry.

b) ‘The header h dominates every other node in I (h).

c) Every cycle in an interval I(h) includes the header

d) The interval 1I(h) 1is unique for each h in G and
independent of the order in which candidates for m are

" chosen in the definition of interval.

Here we give an algorihm to partition a flow graph
into intervals. It was taken from “JAlle76]. Figure 3.1

ilustrates the derived sequence of a reducible flow graph.

‘
®

-~ 28 -
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ALGORITHM 3.1 - Interval partition.
* 7

Ingdt:'A flow graph G=(N,E,§?.

ey
N

Output: A set of disjoint intervals L.

!

Method: ‘ - .

——

|

H:={s} (* H is the set of potential header nodes *)
while H not empty do
select and delete a node h from H
(* find I(h) from the definition of interval *)
I(h):z:="{h}
‘while there is an x in (S(I(h)) - I(h))
such that P(x) C: I(h) do
Ith) :=1(h) |J (x}
endwhile )
Li=n|J (1)}
He=8 . {J (8(1H) - 1(n)

endwhile -

The order in which nodes are added té an interval is
called ‘'interval order'. If the nodes of an interval I are
processed in 'interval order' then a node x in (I - {h})
will be processed 6nly after every prédecessox of x has Seen
processed. This ordér is important in data'flow.analysié:

The existence of irreducible flow graphs seemsi not fo
be a major problem to the application of thé interval method
to solve data flow anal§sis problems. Fortunately, most 'of
the flow‘grapﬁé for computer programs appear ﬁo be reducib;e

in practice. Knuth (Knut7l] found that in a sample of 50

- 29 -
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l‘éigure 3.1 -~ Derived sequence of a reducible flow
graph. ' ¢
HFORTRAN programs none was irreducible. With the use of

structured programming techniques, reducible programs are

\

.,no*hally obtained. .

Irreducible flow graphs are characterized, intuitively,
by having a loop 'wiéh_ th entries. This 1is the case
ilustrated by the ‘'paradigm irreducible flow graph' of
figure 3.2 (a). Neither node 2 nor node 3 dominates each
other.l Irreducible flow/ graphs can‘pe made reduciblevby
'node splifting'. Node splitting 1is a 'technique which

consists of making as many identical copies of a node as

- 30 -
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&
there are edges entering such a node (and no self~loop) .

Figure 3.2 (b) ilustrates an equivalent reducible flow graph

T

of the irreducible one:in (a) after node splitting./

(a)

Figure 3.2 - (a) The paradigm irreducible flow graph,

(b) reducible after splitting.

o

- e— Y

" . | o

»

Node splitting 1s used for analysfs of data flow and it -
does not implies.actual duplication of code. 1In section 3.3

we will discuss how the reaching definitions lalgorithm of

Allen and Cocke [Alle76] handles irreducible flow grapbs'by

,ﬁode splitting. Another way of ‘dealing with irreducible

flow graphs is by applying the iterative techniques

"' presented in the previous chapter to obtain data flow

. information from irreducible subgraphs.

"We finish this section by mentionning that Hecht and

-3 - .
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Ullman [Hech72] introduced two graph transformations known

as TL and T2 "and found that the class of reduciblé flow
graphs by intervals is exactly the class’'of reducible flow
graphs by the transformations Tl and T2.

Transformation T1 1is the removal of a self-loop, that
is, the removal of an edge from a node to it self,
Transformétion T2 replaces two nodes x and y of the flow
graph by a new node z if x is the only predecessor of y and
y is not the initial node. The application of these two
transformations to a flow graph until no longer possible,
And independent of the sequence, will result in a uniqué
flow graph. If this unique resuiting flow graph is the
triviai flow graph then éhe flow graph is reducible.

Reducibility by Tl and T2 is called 'collapsiﬁility'.

3.2 Data Flow Analysis Using Intervals.

Data flow analysis based on intervals usually, requires

two-pass algorithms. 1In fact, to propagate the information

about data flow prope{}y,‘ we need information about

predecessors (successors) as ‘'well as local information of

each node. The nodes are basic blocks in the first order
graph, but they are intervals in second order graphs and
higher order graphs. During the first pass, . local
information about each node }s collected. Once the
. information-is obtained for each basic block, the algorithm
Icollects inform;tion about first order interQals by

-~
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proc‘esSing the nodes in each interval in the interval order.
The information is then posted to the node representing each
interv;ﬂ in tﬁe second order derived graph. The procéss is
then repeated until 'local' informaﬁior} is available for the
trivial flow‘gra‘ph’.

During the second pass, the graphs of thbe' derived
sequence ar'e‘ processed “from high orxder to’lc;w order.

Since the ngdes of a derived flow graph are intervals,

there are different paths through the interval from its

header to possibly.different exits. Thus the information at

each exit may not be the same. The information 1is, then,

associated with the edges which leave each node and not with

the node as was the case in the iterative mgthod. For this

pur'pose,' an edge is assumed ieaving each leaf of the flow
graph. a

An excellent discussion of the interval method applied
to the problem of reaching definitions is found in [Alle76].

To ilustrate the method, we will present in the next

sections an algorithm to solve reaching definitions from

_ [A11’76] and another to solve live variables problem taken

from [Kenn81l].

A

3.3 Reaching Definitions Problem using_}nyrval’s.

o

’Reaching definitions 1is a forward data flow analysis

i’

problem. We ‘'want to know which definitions reach the top of"

each basic block of the flow graph. Let denote by Ri the

>~
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) | ; - . . v ; . : ,
o . ﬂ\ set °§ definitions which ﬂrealch'node ni. Let'DBj be.the m
‘ - of variable definitions from'the tail.gode edge j .and Iet
ﬁBj_tne ser-of definitions preserved through the 'tail node
' - of ‘edge' j. . We obtain the set of available defi! 1tions on
! ’;dge 3, Aj, by the formula7 ‘
| oA = RIN PR U DBI , ”
for each édge j with ta11 node 41 and _;U \
B CRi = - AF - . T 7
. for each entering arc .p to i 1<>s.1 . . - -

’ LD .
'We reproduce now the algorithm of Cocke and Allen,- in- -

its engllshnver51on, for solVing those equat1ons.
D \

o %

& R L : , . -

d - ‘ ’ . S
“\L’ ALGORITHM 3.2 -~ Reaching definitions using intervals. K
i - P ‘ : ;‘ ) k ‘ .' - - , , o
: . \\ R P - o ' X g .
. . ‘Inputs ‘ : . : ‘ i
< ' ~ .1y -The ordered set of graphs (Fl GZ,..,,Gn) determined

L by interval analysis,

L 8 -

- . 2. The intervals in each graph with their nodes given
. in interval ordet.

3.° bgginifions defined and preserved on each edge in

r

‘ the first order graph (DB and ‘PB ‘sets). ‘. -
' ., Outputs S N
v BUEEE ) .
~ . r + . ]
! l. A Set R of the definitions that reach each node. .
. 4 - . d v

2. A se€t Avof ihe definttions available on each edde:
- 4 vy




r' Steps ) ﬁ

4 o Phase I

~

»

- 1. For each graph, Gg, in the rorder 'Gl,GZ)...,Gn-L,

perform steps 2 and 3.

2. If Fhe current graph is not Gl then initialize the
PB and DB for the edges of the.graph.r This is done by
first identifying the edge iq Gg-1 to which eacg edgé
P in Gg corresponds (these will be interval exit edges).
‘ Then using the’information'gengrated dufing steé 3 for
Gé-l, for each:edge 1 in Gg’ with' co;responding ‘exit
_&dge x from interval with head h in Gg-l, set:

. 2.1. pBi

Px and

2.2. DBi

(Rh [} Px) YJ Dx

Sty tomm A b e e e e i
-

- * ! ‘
. ‘ 3. For each exit edge of each interval in Gg determine °
. . "

P, the definitions preserved on some path through the

intgrval to the exit; and D, -the definitioﬁs in the

{ntefval that may‘be available on the exit. These are

determined by finding P and D for eachcedge in-the

interval: - - . — )
. %
3.1. For each exit edge i of the header node:
. . /)
o T Pi=PBi ’
i . | Di = DBY
! N N .
A 3.2, PFor each exit edge i .of each node ' j (j=2,
\\{ 3,....3 in interval grder:. ) ’ '
‘ - L4 !
, Y, (gPp) N esi y

o pi.= ((Upbp) N PBi) U DBI for all p input
; J

g

edges to 'node j. R .




b ¢
While procesging an ‘interval dete;mine ‘the set of
defiﬁitions,’ Rh, that can -reach the interval head, H,
from the inside the interval by: -
Rh = l.lJ D1 | |
for all interval edges \1 which' enter h,(latchi;g
eéges). If there are none set Rh = empty set.

- Between phase I and II the R vector for the single node

in the nth order derived graph is initiated to the set

of definitions known to reach the program from outside.

e ~

——

perform steps 2 ana 3.

2. For each node i in Gg+l form Rh = Rh (J Ri where h

is the head of the interval in Gg which i represents }n>

Gg#l.
3. For‘eacﬁ interval prgbeSS ‘the n;des i; interval
/'“7,‘ order determining the definitions reaching each node
and available on each npde exit eége as follows:

3.1. For each exit edge i of the header node h

-AL = (Rh[) PBi) |J DBi

3.2. For each node j (j=2, 3,...) in interval Qfd&é

first form .

Rj = U ap for all input edges p to j -
. P . .
then for each exit edge i of j form
At = (Rj N pBi) U bpBi

End of algorithm

N °, .
.
‘ / 1 ,
/ - : . : '
\
. , :
(
. ‘ .
‘

l. For each graph, Gg, in the order Gn-1,...,G2, Gl,.

R 5 b e it b i it e =




The existence of irreducible flow graphs is transparent’
to'thé ab;ve algorithm.' The nodes of‘a irreducible subgraph
are treated as interval heads (each node 1is a unique
iﬁterval) and' the Phase I of the algorithm derive Pi and Di
for each edge. The- splitted form of this irreducible
subgraph is treated as a higher order graph in the dérived
. sequence.  In Step 2 vof ’Phase I the algorithm will
initialize DBi and PBi fo; the edges in the splitted higher

order graph -using P and D values as necessary, that is, if

i

(

Figure 3.3 - Irreducible subéraph and its equivalent

reducible. !

-

node , y has been splitted in y' and y" (see fiqure 3.3) and
there was an edge (y,z) in the irreducible flow graph, the

values P and D of th edge (y,z) will be picked -twice, one

for the edge (y',z) and other for the ‘edge (y",z) of the

T~
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splitted flow graph; - During phase 1II, étep 2 will find

reaching  definitions at the .top of node vy, that is,

Ry=Ry U Ry' and then Ry=Ry U Ry" giving the wanted result

Ry=Ry' U Ry" (Ry being initially null). ‘

3.4 Live Variables Problenm using Intervals

4 ¢

?

. The live variables problem was already defined in the

previous chapter. Since 1live va};ables is a "backward

problem, the propagation of data flow information 1is done:

from the . leaves of- the £low graph \to the root. The
information about live variables is once again represented
by bit vectors.

Let LVTOP(x) be the set of live variables on entry to
node x, Let THRU(X,y) be the set of variables not defined
(n;t ‘changed) in x on the path from x to 9 where y is a
successor éf X THRU (x,Y) représents lqcal information
which 1s in this case associated with the edges. We Seed
also the sét of variables used in x before any possible
definition in x. Let USE(x) contain such information. The
system of equations to be solved may‘ ﬁow be stated as
follows: o ' v

LVTOP (x) = USE(x) U U (THRu{x,y) (] LVTOP(y))

Y ES(K) | |
where S(x) 1s the set of successors of x. We give now the

algorithms to solve the equation systenm.

e
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3.4.1 An 'Interval Analysis Algorithm ' to Compﬁte Live

Variables.

(a) Pass 1. During“the first pass, lécal informatioq
USE and THRU is computea for each node. Starfing with the
first order flow graph G; USE and THRU are compuéed for each..
basic block. Then the algorithm is ‘applied to the nodesr
(iniervals) of the second ofder flow graph and so on tb the
Qtper flow graphs‘in the sequence until the quantitiﬁs hgye

been computed for the trivial flow gréph Gk .
ALGORITHM 3.3 - Pass 1 ' . ' : -

Input: - An interval I
- USE(x), for all x in I.

- THRU(x,y), for all x im I, for all y in S(3).

Output: - USE(I)

- THRU(I,J), for all J in S(I).

Auxiliary: For each x in I, PATH(x) contains the set of
variables which are not defined (there is a clear path)

"from the entry of I to the entry of x.



Meth%d:
| begin o
UéE(I):= USE(h) (; h is the header of.I *)
PATH (h) : = set of all variables.
| for all x in (I L {h}) in interval order
~’ do
PATH (x) := U (PATH (y) ﬂ THRU (y,x))
y € P(x) .
USE(I) == USE(i) LJ (PATH (x) r]'USE(x))
J od \ .
. (* let z denote the header of J *)
S \ for J such that z is in 8{I)
do ( :
THRU (I,J) := U (PATH (y) N THRU(y,z)) -

Y Q,P(z)(] 1

end

(b) Pass . 2. The second pass propagates data flow

information from the_defived flow graph - of - highest order
(trivial flow grapb) to. the firs£ order E%ow graph. LVTOP
‘ié actuall& computed using the information obtained’ dPring
the firgt pass. The algorithm that follows procesges the
nodes of each interval in reverse interval order to solve
the system of equations given above in Section 3.3. This
order allows'the processing of each node after all its

*

successors have been processed.

3
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ALGORITHM 3.3 - Pass 2.

. Y
Input: - An interval I with header h,

. ~ USE(x), for all x in I‘,

THRU (x,y), for all x in I, for all y in S.(x).

LVTOP (1)
~ LVTOP(J), for all J in S(I).
Qutput: LVTOP(x), for all x in I.
Method:
begin
LVTOP(h)':S,LVTOP(IY
for all J in S(I)
do
. LVTOP (header of J):= LVTOP (J)
for all x in (I r'{hi) in tev?rsé interval order '
.  do ) . '
| LYTOP (x).:=usE(x) U LJ',(THRU(x,y) rW'Lvrpp(y))'
. Yy €5(x)
od
end - ( . ' . B
s . . a
The proof of termination .and -correctness ofighese .

algorithms is given in [Kenn75].
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.CHAPTER IV

An attempt to find a general approach to data flow

analysis was first considered by Kildall [Kild73]. 1In his

papér Kildall discusses the application of global data .flow ’

frameworks to constant propqéation and common subexpression
elimination problems. 'This method preéents the poésibili;y
of solving data flow anéiysis problems whosé data cannot be
represeﬁted bylbit vectors. One exahple‘of these pfoblgms
is type deterﬁination [Tene74]. . The bit-propagation

problems solved by the methods discussed in the previous

chapters can be also modeled by this method. The data flow

framework - was' stated by Kildall  using a finite-meet
semilattice and since then Ehe' same approach has' been
_considered by several other auﬁhdrs,[Fong75, Kam77, Hech77,
Rose?B, Kam?é/ Tene74,f Shar8l, Rqse81]. This general
approach to the solution of data flow analysis problems
gonstitutes a unif}ed method‘ and should be considered as

foundation for data flow analysis. Before going further, we

will give some notions about lattice theory.

GLOBAL DATA FLOW ANALYSIS ERAHEWOkKS ' p




i.l~Some Theofetical Notions About Lattices. . ’ -

need

To understand global data flow analysis frameworks we

to know some basic éohcepts of a branch of mathematics

called 'lattice theory'. Most of the definitions and

“u

ptoperties given in ;his“section have been taken from

.

[Hech77]. A good mathematical reference is [Grat7l].

®

on S
i)
i)

iii)

Let S be a set. A partial ordering on S is a relation.

denoted by = , which is:

Reflexive : for every a in 5, a=< a

Anti*symgt{ic : if a< b and b= a, then a = b. -

Transitive : if a=< b and b= c, then a=<c

—

A set S with a partial ordering = , denoted.by (S, =)

is ca;led a partial ordered set (or poset for short).

If a= b we say that a is included in b. If a=<b and

a*b we may write a <b. b=a means a=<b and b> a means

a <
A= 0B

prope

b. For example, if S is a collection of sets A, B,...,
means that A is a subset of B; A<B means that A is a

r subset of B.

"If (S,=< ) 1is a poset, then so is (5,= ). The poset

(S,= ) is called the dual of (S,<< ). .

If (S, =) is a poset, then < is irreflexive and

transitive. Conversely, if < is an \irreflexive and

transitive relation on S and x <<y is defined. by x<y or x=y,

then

(S,<< ) is a poset.

-~ 43 -



We say that a poéet (S, =) has a zero element if there ‘

is an'eLemept 0 in S sdch that 0 =<x for all. x in S.
Similarly, we say that the poset has a one element if there
exist an element 1 in S such that x =1 fo; all x in S,

If a< S or b= a we say that a,b are‘ comparable and
incomparable otherwise. A poset (S,:; ) in which there are
no incoﬁparable elementé is called a chain (also called
linear ordering)-. A chain on S = {sl, s2,..., sk} may be
denoted by s;<32{53<...<sk and we say thét it is of length

k . '

A joint (least upper bound) of a and b in the poset
(S,=) is an element ¢ in S such that a=<c and b=c " and
there is no x in S such that a<x<c and bsx<c. A
meet (greatest lower bound) of a and b is an eiement d in S
such. that d =<a and d =<b and there is no x in S such that
d<x<<aand d<cx <b. 'If the elements a and b of S have

a unique joint, it is denoted by aV b and if they have a

unique meet, it is denoted by a A b.
3

o

A lattice is a poset (S, =) such that any ﬁwo elements
a, b in S have a wunique joint and meet. A lattice is

usually denoted by the triple (S,\/ , A} which is an

algebra, that 1is, a set equipped with operations (in this

case two binary operations). The joirit and meet operatioﬁs

of a lattice (S, V ,/\ ) have the following propérties s

A .
‘-\‘_s;-
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For all x, y, 2 in S

pl

(a) x /\ X = x, xV x = x Idempotenéy
(b xVy=vyVx,x /\y = y A\ x Commutativity
- (c) xV (yV 2) = xV vV z, Associativity

x/\(y/\ z2) = (x/\y)/\ 4
(@ xV (xAy

x, x /\ (x\/ y) = x Absorption
(e) x V Y = Y. x/\ Yy = X, xX=y are equivalent,.

[
~

_A.set S a»nd- two binary 'operat_ions \/ and /\ on s is a
lattice if both V and /\ are idempotent, corﬁmu}:ative and
asgociétive. L -

We also say that a lattice (s,\V , /\), is

i) bounded 1ff it has both a O-and 1 element.

ii) of £inite 1length iff each chain in the lattiéé is
fipite.

iii) distributive iff for all x, y, z in S we have
xV (y A\ 2) (xVyy A (xV 2 and
 x AV = AV xA 2

v

. A semilattice is a pair (S,*), where S is a nonempty

set and I* is a binary operatian on gwith the properties
idempotent, commutative, ana associative. A pos;etl (s, <)
ig a joint-semilattice, denoted by (S, ), if any two
;lements a, b in S have a unique joint. :'Similarly, a poset

(S,=<<) 1is a meet—~semilattice if any two elements a, b in 'S

‘have'a imique meet. If (é,\/ » \N) is a 1lattice, then,

(s,\V ) and (S, A ) are both semilattices.
: )
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We also say that a semilattice (S,*),

i) has a z€ro element 0 if for all x in S, 0 * x = 0.
LY

ii) has a one element 1 if for all x in S, x * 1 = 1.
iii) 1is bounded if each chain in the semilattice is of

’

finite length.
A

Let (S, =< ) be a poset. n operation f: S =——~> S on S

is called monotonic 1iff for all x,y in S, x =y implies

f(x) < £(y).

[~4

* .
If £ and g are monofonic operations on a poset, then so

is fg. Monotonicity is preserved by composition.
A -sequence xl, %2, ... in a poset (S, <) of finite
length converges to an element it in S if and only 1if there

exist a k>=0 such that for all}i>=k we have xi = t. We- can

- state now a fixed point theorem%.
“ v N \

|
\ |

. ‘ - | )
Let f: § ~—=> S be a monotowic operation on a poset

(S, =) with a zero element 0 and finite length. The least

fixed point of £ sis £X(0), whel‘e'fo(x) £ x, £ =
, }

f(fi(xf) for 1i>=0, fk(b) = ﬁdfk(O)) and there is no j,
0<=3j<k such that £ (0) = £(£ (0)).| .

!

If (S,<) is a semilattice, an operation f} S~--~>S on

*

S -is called,

a) . Distributive (meet-endomorphism) if and only i f for

/ . i i . _,‘
all x, vy in s [£(xAy) = £(x) A E(v1}. ,

b) Monotonic if and only if for all x, y in s,
[(E(xAy) < £(0 A £(y)].
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The expression [£(x A y) = £(x) /\ £(y)] of condition b) .
is what Hecht [Hech77] calls the GKUW property {(for the
authors Graham, Kam, Ullman, and Wegman which obsefved it)
and it is equivalent to for all x,y ihnL, [x= y implies

f(x)= f(y)] which définqs the ménoticity, of a poset as

previously seen. ) ‘

4.2 Monotone Data Flow Analysis Framework.

A global data flow framework is defined to be a triplet

(ﬂ,,/\,F),.wherd’(L,/\ ) 'is a meet semilattice of data’ Flow

informatidn with the meet operation A . Fis.a space of

. B A
functions acting on L. The data flow “information to be

propagated .through a flow graph éonstituteg the elements of

L. The way in which such information is propagated along

‘the flow graph paths is described by F. Global data flow

frameworks modeled by a semilattice having the distributive
property are called distributive frameworks and they have
been studied by Kildall (Kild73]. But some data flow

problems are not distributive ([Kam75]. A more general
)

, approach have been studied by &am and ‘U}lman [Kam75] by

considering monotone frameworks. Monotonicity is a weaker .

cohdition than distributivity .and monotone frameworks seem
to _%odel the known data flow andlysis problems. The
. - s .‘ B

definition of monotone frameworks that follows comes from

[Kam75] .

v

[



v

A set of, functions 'F acting on a semilattice L of.

1
finite length with zero element, is ,said to be a "monotone
function space  assqciated with L" if the following

e conditions are satisfied:-

o

“that is,y for all x,y in L, and for all £ in F,

: Tt Ap = /N e L e
. ’ ' (b) There exigti an identity function éhin F, such that
s 5 R f9r all x in L, T e(x) = x ] . ‘, - ) " .
! ' (c) F gs ciosed under compdsition. That is, f,qg in F

iqplies fg inkg, ;here for, all 'x,y in L, [fg(x) = §(g(x))].
ia» L i§ eﬁual'to tﬂe ¢losure of 0 under the meet
operation.‘and application of functions in F. - That is, for
'meach x in L, thggevexisfs an £ }n F such that x = £(0).

y) \}‘ 1. .
*. {J ' ~ - b \

»

. . . .'A monotone data flow anaiysis framework is a triplet

(LI /\ 'F‘) I3 Where°
" & v
(1) (L,/\ ) is a bounded semilattice with meet‘“_ .

(2) F is a monotone function space aésociatéd with L.
- Y, o
o L ‘ S - \
An "instance? of a monotone frafiework is a pair

L4 4
-

. I=(G,M), where P g <
. ! . ) 0 b
) (1) G = (N,E,s)*®is a flow graph.
- : 14 N ' N . i :
f o - (2) M: N ---> F'is a function which maps each node in N
' ‘to a function in F.
. < .
. - - o
b As an example of a monotone data flow analysis
iw ’ J ’ f ' “‘ ‘ - )

L. . (a) €ach £ in F satigsfies the monotonicity condition,,

3
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framework ‘we consider constant propagation which is a

" typical ‘problem discusséd in the literature [Kild73, Kam75,

Hech77]. The monotone data flow framework which models the
problem is a triplet (L, /\ (F) . Here L 1is a set of
functions from finite subsets of an to R, where

v={al, a2, A3, ...} is an infinite set of variables and R’

1

‘is the set of all real numbers. Therefore the elements of L

may be viewed as finite subsets of VxR. Intuitively, x in L

J
represents the information about variables which we may

assume at certain points of the flow graph. The tuplet

(A,r) in x meang'thap'variable A has value r. The meet

operation /\ in L is set intersection. L has a zero
- .

element which is the empty set. F is the function space

acting on L. Informally, the data fiow information to be

propagated may be represented by an ordered set of ‘tuplets
(A,r), where ‘A £ Vv anq r € R; Suych an ordered set -is then
associated with each node of th; ‘flow graph. These ordered
sets are the -elements of L; The meet opération over the
oréered seps prqpagates the ipformatiod along the ,paths of
the flow~graph; The functions in F ac£ing o; L ﬁay be seem
as -the effect of the nodes in the ordered sets of tuplets,

that is, if node n contains the statement A:=r, then we

denote its effecﬁ by the function <A:=r> which is apblied,to
- [} ‘-

'Ehe.asemilattice element x associated with n. By simplicity

4
we assume that the nodes of the flow graph contain only
assignment. statements of the form A:=r and A:=B op C. Then

v

there are functions denoted <A:=r> and <A:=B op C> in F, for
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each A, Band C in V, r in R and op in {+,-,*,/}. 1If x is

®

in L then <a:=r>(x)=y, where the new sef 0of tuplets
y = X L) {(a,z)} - (any otherAtuplef in x with A in the left

side). If the statement A:=B op C is found, then we will

have <A:=B op: C>(x) =y, whe;e, if (B,b) and (C,c) are in x,‘

then we 4o as in the previous cade but using the value of 'b
op c' for'f. If (B,b) or, (C,c) are not in x then B op C has
not a constant value and (Aa,r) is undefingd in y. Each node
of the flow graph may be mbdéled by the function composition
of the functions répresentiné statements within it.
1,
'A monotone framework (L,/\ ,F) is said to be

distributive if and only if

(VeEem(V xwen) t£xAp = 50 A £ 1

Distributive ° frameworks cénstftute a —subcléss of
monotone frame&orks./ The mgximum fixed point (MFP) solution
to distributive frameworks coincides with the fmeet over all
- paths' solution (MOP solution): intuit;;ely, the MOP
‘solution is the calculation of the maximum rélévant data
flow information for each node of Jthe flow graph. This
information ié obtained considering every possible execution
path from the initial node to each node of the flow graph;

Kam and Ullman ([Kam75] showed that constant propagation
ié not distributive. To show that it is not distributive, a

counter example may be used. Considering the flow graph of

figure 4.1, we have that <C:=A+B>(x/\ y) = (22 and

) B

i b b4t bt o b s ol o it 15 o bW At b o et ——m = o
'




- B 2 B :=1
x"'{(Arl)_ (B,Z)} - _ / Y={(A72) (Bll‘)},”

<C:=A+B>(x)/\ <C:=A+B>(y) = {(C,3)} éhen

<C:=A+B> (x \ y) £ <C:=a4B> (x) \ <ci=a+B>(y) -

AY

,

- 7
:

HE

C := A+B

-

Figure 4.1 - Distributivity counter example.

As an example of distributive . framework we car consider

.again the available expressions bit-vector problem discussed

in previous chapters. Let ‘AVAIL = (L, AM,F) be the
framework which models the p;oblem, where
(i) L is the set of 2™ m-bit- vectors (m = number of
expressions). \ -~
(ii) AND is the meet operation /\ . .
(1ii) F is the function space associated with L and wili

consist of kill and generate operations.

If a node x has k and g bit vectors for lkill and

[

.generate respectively, then the function can be ree:ssented
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by <k,g> and for all x in L, [<k,g>(x) = (x AND NOT k) 'OR
gl. The zér\o elem?nt of L is the vector of all 0's, and the
one element is the vector of all 1l's. It is easy to .show
that. for all x,y in L, ‘and for all £ in F, [f(x/\y) =
£ix) N\ £,

4.3 The Gene_r'al Iterative Algorithm.

In the previous section we have 'illﬁstrafed with two
:axamples how the data flow informat‘;ionlis propagated by the
.acf:ion of some functions on the elements qf a semilattice XY
and 1its meet operation. We can now present the system of
e‘qualtiqns to be solved.

Let I=(G,M) be an ins;:ance of a monot9r‘1e framev;lork
(L, /\ +F), where G\= (N,E,s) 1s a flow grapﬁ whose nodes are
numbered fro;n 1 to n by rpéstorder. The maximum fixed p{)int
solution of I is the maximum fixed point solution of the
following system of equations [Kild73,Kam75,Hech77)

X[1] = 0

X[i] = /\ fj(X[j]) for 2 =1i=n

j €ri) |
where B(i) is the set gf predecessors of i, and £ is the
operation aésoc_iaf:ed’ with node.J. '

Kildall's general itér\ative algorithm converges to the
MFP solution oflthe framework, inde,pe_ndent of the order __in
which, the nodes "0f the flow graph are visited. We give

below the round-robin version of Kildall's algorithm in
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"which the nodes are visited in rpostorder.. The algorithm .

has been adapted ffom [Kap?G];

ALGORITHM 4.1 - Forward affalysis iterative algérithm.
Input : An instance I=(G,M) of a monotone framewo;k
D=(i” /\ ,?), where G=(N,E,s) is a flow graph with the
nodes numbered from 1 to n by rpostdrder,\ |
Output: An array A{l:n] of semilléttice elements. .
Methodi - A[l:n) 1is a. global array »aﬁa A[j] Lis
associated with noéé i« » | | 4
- Riocedure GIA below. ¥

) . -

. Procedure GIA

semilattice element TEMP ‘ E '. ;'»/
‘ - in;eger j -

boolean CHANGE

(* initialize *)

A[l] :=0 ‘ —— o

' fér j:= 2 to n by 1 do. ’
YOI EERANAING'D _
‘ .9 € P*(])

’ " endfor - )

(* iterate *)
N4

CHANG#:z true'
‘'while CHANGE do
CHANGE: = false

for j:=2 to n by 1 'do
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TEMP: = /\ fcI(A(ql)
. aer@
. if TEMP 3 A[j] then
' CHANGE:= true s
A[j]:= TEMP
endif
endfor

) endwhile A ' \
return

The set of predeceSsor; of node j, P*(j),'is defined as
follows o
P*fj) = {q@ | g in P(j) and g<j in rpostorder}
If the semilattice L contains a 1 elemen&, then the
for-loop in the initialization of the procedure can be
changed to

for j:=2 to n do A[jl:= 1 endfor

Backward analysis problems can be similarly handled by
‘changing the order in which the nodes of the flow graph are
visited by the algorithm, that is, from n to i with the
nodes numbered in rpostorder. The live variables bit-vector
. problem is in this cateéory and can Be modeled by the data
flow framework LVBOT = (L,/\ ,F), where the elements of L
are m-bit vectors (m is the number of different variables),
the meet operation A\ is the'iogidal bit-vector opefafion

Sy

- 54 -




OR. The igrp element is the bit-vector of all 1's and the

one - element is the bit-vector of all 0's. The function

W 4~ SR NP

space associated with L will consist of functions of the

form <p,v>(x) = (x AND p) OR u, where x is in L, p is the
_set of live variables preserved by the 'node associated ~with
i x, and u is the set of variables used in the node associated

i with x.

4.4 Other Examples of Data Flow Frameworks.y

®

\ ©  Two examples 'of bit-vector propagation frameworks,

previous section to ilustrate our discussion. We have also

P T IR

o o b v

semilattice framé@ork. In this section we will mention some
other examples of data flow frameworks discussed in the
- ‘ literature.

| To solvé common .subexpﬁfssions‘ elimination, Kildall
{Ki1d73] uses an optimizing pool of exbressions-partitioned

into equivalence classes.  The meet operation is the

i intersection by ‘classes and the operations on’the pool
‘ coqsist of adding any expressfon to the partition which have
operands equivalent to the one at the node being considerea.
This process is calléd structuring..

The structuring partition épproach appliéd .to solve
léop invariant computations and indution variables have been

discussed in [Fong75].
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Typé determination for very high. level languages had
been modeled by Tenenbaum [Tene74]. The elements of the
lattice consist of sets of types which variables could
,as;sume. The 'meet operaltion is the union of sets of types

. and the functions associated with the nodes of the flow

graph reflect certain inferences about types derived from:

the syntactic rules of SETL language.

" -A formal. definition of the abstract interpretation of a
program using a unified lattice model <can be f’ound in
[Cous77a}. In later papers Cousot had used that approach

for the discovery of , invariant asertions of programs

[Cqus77b , Cousig].
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CHAPTER V
, ' /.

INTERPROCEDURAL AND HIGH LEVEL DATA FLOW ANALYSIS

5.1 Interprocedural Data Flow Analysis.

The giobal data flow analysis methods discussed ‘in the
‘previous chapters assume that no piocedure callg are
preseht; Thus, these methads are célled intraprocedural
data ,flﬁw analysis methods. 1In the presence of procedure
calls data-flow analysis becomes more complicated and new
techniques, called | interprocedural data flow analysis
techniques, are required. »Interprocedural data flow
analysis has been neglecfed in most of data flow analysis
papérs'bdt, in recent years, it has received increasing

attention [Aho77b, Alle74, Bart77, Bart78, Harr77, Hech?7,

N . \
" Lome?77, Rose79, ;Shar77, Shar8l, WheiBO]. Several reasons

‘may Jjustify such attention. The first reason, in our

opinion, is that intraprocedural daga flow analysis 1is by
how well wunderstood and we are ready to proceed to more
complicated problems. Second, interprocedural analysis has
become more impértant because of the current emphasis on
modularity on programs [Weih80]). Finally, the application
of datq’flow analysis to other areas than optimization such’

as program verification, gives additional importance to its



¥
' ’ {

study [éﬁarSL]. Here we will try to look at some of the

additional problems that procedure calls present to global

' ﬁatq flow aﬁalysis and to briefly enumerate SOmg approaches

to‘their solution.

Intfaprocéduralxdata flow analysis assumes' that the
semantiés of each program statément are immediately
available, but this is not true in the case of a procedhre
call statement. The effects of the called érocedufe on thq
variables are - not known without an examination of the

'procedure body. Traditionally, call statements have been
treated either as black boxes, or the 'worst assumptionsp
‘haQe been made about the procedure effects; in the first
case interprocedural analysis‘stops at any procedure call£
with the worst assumptions relevan; data flow information is
usually lost.

The aim of the interprocedural data flow analysis is to
make available the effects of each procedure cill to global
data flow anglysis. Usually a ‘summary' is associated with
each procedure call; this‘summary may contain the following
information [Bart77]: ‘

(i) variables which can be ﬁodified.

(ii) variables used.l

(iii) variables preserved.

_The calling relationship among procedures may be
represented by a directed graph named "call graph".
Formally, a call graph is a directed graph G =(N,E), where

Al
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each ﬂsde x in N represents a procedure of the program and
an edge (x,y) in E represents one or more references in the
procedure represented by‘node x of the procedure represented
by node y. Using the call graph, an optimizing compiler
should compute the summary information for eacﬁ procedu;e.

and then proceed to global data flow analysis.

5.1.1 Some Interprdgedural Analysis Problems.

Barth [Bart77} mentions three problems which make
gathering of summary information difficult:

{a) In nonrecursive programs, call levels can be
bandled by analyzing theiprocedures in ‘reverse. inyocatién
order' obtaining the summary of each talled procedure before
their calling procedure is analyzed. But there is no
ordering with such a property in the case of recursive
programs.

{b) The de;Erminationxof 'aliases' 1is not a trivial
problem. Aliases are variables which‘ share the same
location of memory ,and this problem may be found in
programming languages with name or reference parameters.

(c) Correct’  treatement of variables in recursive
programs also present difficulties since variables may be
modified at different‘incarnations of a procedur%,

. \\ (\\ ) -

Weihl [Weih8%{/giscusses tﬁé\fgiigwing situatgon which

adds difficulty to interprocedural flow analysis:
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(d) The presence of procedure variables requires

additional computation to find the call graph, and the

presence of label variables requires the computation of

their range for the construction of the control flow graph.

e

5.1.2 Some Approaches to Interprocedural Data Flow Analysis.

[4

Several approaches to deal with procedure calls in

2

global data flow analysis ma§ be considered. An enumeration

of su&h approaches is found in [Hech77]}.

(a) ,The worst case method which consits in making the

1

most pessimistic assumptions about the effects of call

statements on data flow information. Although some useful
information about data flow may be lost using this method,
it is app;icable in Ehe case of external procedures when
their summary is not available.,

(b) Procedure integration consists in incorporating the

called procedure body intd ‘the calling ﬁiocedure} renaming
local variables if necessary , and replacing formal
parameters by the actual arguments. Standard data flow

analysis can then be performed.rrﬁ

once, This approach makes extremely conservative 'worst
case' assumptions about the outside information reaching

each procedure since each one is analyzed before their
~ '

W™

(c) The one-pass methad analyzes each procedﬁre only:




“~

calling procedure.

. (d) The mul‘ti-pass method starts with an estimate of
’ v

the unknown in'formatioa about the effects of procedure calls’
and iterates it to make the required adjustements until the
information stabilizes.

-

(e} Symbolic flow analysis gathers summary information

by evaluating the expressions for each call in a symbolic

©

manner. : ‘ .

() Mixed-strategy method . uses a combination of the

£y
3

previ®us methods as  procedure  integration of short

procedures . and multi-pass method to solve the remaining
. . 4
calls,

a

Two more techniques are -discussed in [Sharsl]

¢

(g) Functional approach which considers procedures as

program blocks and the summary information is stablished

\through input-outpﬁt relations for each block. .

» . (h)  The call string appréach mixes together

interprocedural and ihtraprocedural flow analysis.,,
Interprocedural flow is made'-explicit bf( "‘tagging' tge
information with the history of the procedure calls

affecting it. . S

5.2 Very High Level Languages Optimization. . \

®

~

. Recently, several papers about. optimization: _of

. - . Y
5
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programming languages of very high level have appeared in

1

the literature. These papers 6 are  related to tHe SETL

. L

proje%t at New York University [Tenn74, Schw74, Fong76,

Fohg77]. SETL is a set-oriented language and its vision of

-

déta, as sets ané mappings arises new problems gromuthe:data
flow analysis‘point of view. To illustrate some of these
préblemé "we should mentionﬁtﬁe type determination pioblem
[Tene74]. In lanéuagegviwithqyt type declarations, type
dggérmination is u;ually an overhead run—timq task. The
déga flow anal&éi; ﬁay help to determine variables type -at
the compile timé and m to obtain a more efficient code.

i

. In [Féng??] an approach} to common subexpressién

elimination in set-oriented languages is presented. The

e

¥ .

usual answer ‘'yes'. or 'not' to the availability of an
& - ,

expreésion is not enough in very high leyel languages. For

example, . if after the computation of C=A|J B there is an

ﬁ‘néideﬁtal assignment" A=A LJ{x},'we ??n say that C is

-part}aLly available since C=C LJ{x} can be easily

recgpputed. We say, then, that C was 'incidentaly kill' or

'wounded" [RoseBl]. The idea is to keep information about -

]

the 'degree of availability', IAVAIL(n), of e?ch expression
R at each node n of the flow graph; The degree of
availability may take values in the interval [0,1] where 1
is- the deg;ee of availability after generation, and 0 after

killing. IAVAIL (n) is }, for an expression R if R is

.partially available' along each path m to,n and there is a

' v

Ts

bound in the number of wounds. £ IAVAIL(m) is 1, then

-
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healing the : wéunds, is cheaper than recomputing the
expre;sion fromlscratch. The IAVAIL information does not
fit the.standard semilattice~theoretic framework but'it may
be édapted té ;ork in the case of re%pcible flow graphs

[Fong77]. This problem is also discussed in [Rose8l].

-

5.3 ‘High Level Data Flow Analysis.

The methods discussed so far ‘assume .a low level
representation oj the program such as three address
intermediate code. Howeéer, some work has been done

recently about optimization at the source represéntation

" level. This is wuseful, fqr example, in source-to-source

program transfarmations. The data flow analysis which-
precedes such transformations is 'called 'high level data '
flow analysis'. This analysis is done on the parse tree

representation of the structures present in the source

‘program. One technique wused in high 1level datd flow

“

analysis is named 'method of attributes' [EﬁPi?S]. The
attributes associated with each nonterminal are propagated
along the parse tree by the coméﬁtation of semantic

equations associated with each programming language rule,
o
One advantage of 'high level data flow analysis ' |is

that a change in the program structure limjts the data flow

v

dpdating to the area where  the change actually ocurred

5

[Kenn8l]. Rosen -[Rosé??] envisages in the .method the,’

creation of a 'modern ambitious compiler' which could be

1

s
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,
used interactively for program definition. We will not
expand high ievel ‘data flow analysis any further here. A
discussion of ° the topic may be found in the already cited

references in this section.

~

F 3
. 5.4 Graph Grammars.

We will mention now a similér approach which also takes
advantage . of the program structure.The control flow graphs

of structured programs appear to fall in a restricted

- subclass of general graphs. Each flow graph generally is

”

.ﬁade up o Basic flow graphs representing the language
étateﬁents: This fact/ makes possible the construction of
’ lgraph gramﬁérs. The parsing of a flow graph ‘using grabh
gfammars\ rules allows to uncover loopslahd‘other control
ﬂstructugpé in\a mo:eiﬁatural”way . than >using the interval
,\ée;hod. Data f;ow ‘analysis is thed‘facilitated by this
abproach but its épplicability is 1imi£ed to certain classqé

of. flow graphé\{Kenn??, kgpnBl]. '

L3
[
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CHAPTER VI

METHODS EVALUATION AND CONCLUSIONS

-

The main ideas "about data flow analysis and the

‘éifferent methods to perform such analysis have been

diséussed in tﬁe previous chapters. However, nothing has
been said so far about the efficiency and suitability of
those methods to solve real problems. The most important
measure of compléxity of an algérithm is the

'time-complexity' which is the time needed to solve that

_problem¢-®xpressed as a function of the size of the problem

[Aho74]. “To specify that time, we may count the number of
B “ '

steps required by the algorithm to process a given input.

Time-complexity has . been determined for most of - the

algorithms discussed in thé'liferatdre, however, it 1is- not

-easy 'to draw a quick conclusion of these studies. Each of

the algorithms is limited to certain classes of problems or
classes .of flow graphs: The efficiency can also depend on

thg order in which the nodes of the flow graph are scanned.

In  this chapter we will present the time-complexity of.

certain algorithms along with some conclusions.
I e ! .

v
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" 6.1 Node Ordering and Algorithm Efficiency.

!
:

Depending on the order in which the nodes of the flow
graph are visited, differént versions of data flow analygis
algorithms have appeared. Since the efficiency of these
versions can differ, we give now a brief explanation of the
basic node orderings which are used by the algorithms.

Reverse postorder (rpostorder) and interval order were

already mentioned in Chapters 2 and 3 respectively. 'These

node orders are such that the algorithms wusing them . visit

each node after all its predecessors have been visited.
Each node appears ‘onliﬂ:once and Ethey are considered
jreasonabie' node orders [Hech77]. Iterative algorithms
visit each node at every iteration until the data flow
information stabilizes.

In [Kenn75] a node order \called node listing is

discussed. A node listing tells the data flpw analysis
algorithm to which nodes and'in which order an equation is
to be applied for data flow information propagation. A node
listing may have the nodes repeated, but the algorithm stops
_after all the listed néaes are yisited. Thus some possible
unnecessary visiﬁs of the ’pre§ious orders are eliminated
using node 1listing and faster' algorithms result. * Nodé
listing 1is |useful fér problems in which the information
needs only to be propagated aldng cyqle—free paths asl in

L]

reaching definitions, . live variables, and available
9

"expressions. But the computation of efficient node 1listing
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is nonobvious in gener514 [Héch??].l for\ reducible flow
graphs, Aho and Ullman ([Aho75] have shown that a nodé
listing of length proportionai to‘n’log n (i.e. O(n logln))
may be constructed in time O(n log n)lif the number:of edges

is of Ogn), where n is the number of nodes of the flow

graph.

6.2 Algorithms and their Time-complexity.

As mentioned above the time-complexity of an algorithm

'is specified by the number of steps, required Dby the

'

élgorithm to process a given input. What is considered as a
step depends on the operations performed by the algorithm.
Data \ flow analysis algorithms generally propagate
information by performing 1égical operations AND, OR, NOT on
bit vectors. Each logical 'bit vector operation' may be
considered as a step, gamed 'extended step'. Operations
involving finite amounts o; data and ordinary arithmetic
aperations are considered 'elemenﬁaty steps'. In £his
sense, a logical operaﬁidn on‘bi?lveqtors ?f length m tak;s
m elementary steps [Ullm73]. -

In, (Ullm73] we can find severai vé;sions‘of iterative

\

algorithms for the elimination of common  subexpressions.

First, a 'tabular' version is presented which requires O(me)

‘elementary steps, where m is the vector length (nhmber of

expressions),ﬂ and e is ‘éhe‘ number of edges in the flow

graph. This version requires O(mn) steps in the case of a

- 67 -



v

&

"érogram flow graph', tﬁat is , a flow graph with n nodes
and in which no node has mére than two successors. Using
bit vector operations, the algorithm takes O(ne) extended
steps in a flow graph and at most 0(n%) extended steps in a
lprogram flow‘graph.

Another algorithm using 3-2 balanced trees is dicussed

in the same paper. This algorithm is applicable to

reducible flow graphs and requires O(n log n) extended .

steps. l% different aléorithm, for the same class of graphs
andkwith the same bound,‘is discussed in [Grah75]. ,

In [ﬁeéh75], Hecht and\Ullman describe a 'rouﬂd-robin'
iterativeralgorithm which usgé 'rpostorder' node ordering
and (requires at most’(d+2{(e+n) extended steps, whefe d is
the largest numbér of back edges found in any cycle free
path 1in the‘ flow graph. Usiné 'extende&' basic blocks,
Kennedy [Kenn76] presénts a similar algorithm wh&ch requires
at most 2e(d+2) extended steps. These algorithms may
"require 0(n?) extendgd steps in the worst case. In fact, d
can be O(e), and e usually is O(n) [Hech?77].

Kennedy [Kenn75]  gives én iterative 'node listing'
algorithm which takes O(n\log n) steps to solve 'live
variébles problem.

Using the ' interval approach,. Kennedy [Kenn76) proves
that interval aigorithms generally require less bit vector
operafions than iterative algorithms, but it is still O(nz)

-

in the worst case.

1
'

- It was &lready mentioned that the speed of the
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algorithms may vary depending on the node ordering of the
‘flow graph and that they méy be restricted té a specific
class of graphé or problems. Other factors that we should
not forget are the programming complexity of the method and
the data structures required. The interval method, for
example, needs tP keep and update several tables. describing
the dérived seduence of the flow graph. A detailed
ilustration of such tables can be found in [Hech77]. To put
everything together, we reproduce here the summary gi&en by
Kennedy [Kenn81] adapted to our discussion. The letters &,
M, and C in the third column stand for simple, medium and
complex respectively. The éolumn header 'both ways', refers
to forward/backward propagation prbblems. -

Table 6.1 - Complexity of algorithms.

Method time com-|{ design ‘structure |graph both
plexity |complex.| required class ways
Iter.-'tabular'| = n? ) no all yes
" -'round-r.' n? s no all yes
" -'node-lis.'! n log n M ’ no redu. yes
W -'3-2 trees'| n log n C yes redu. no
Interval n M yes redu. yes
Grammar n M yes . |L(gram.) yes
High level n S yes parse-t. yes

A

As we can see, there is pot a general and best way to
solve data flow analysis problems., A reduction  in
time-complexity ustally requires‘additional‘data structures

and an increase in programming complexity.
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" 6.3 Optimization and. Compiler Environment.

As mentioned in chapter I, section 1.2, the

)

" transformations which can be done to improve a computer

program are numerous. The algorithms and methods to gather
information necessafy for such transformations are numerous
also. But we may ask ourselves how many of these
‘transformations are required of a compiler. There are
several important factors to be conéidered ~in order to
answer this question. Among the most important factors we
should mention: l -

- desired complex;ty of the compiler;

- environment in which t@e compiier is to operate;

-~ the type of prog;amming language;

- area of application of the programming language.

€

To produce better code requires a more sophisticated

compiler, thus, the desired complexity must be determined.

More sopﬁistication generally means a more complex design
and a slower compiler, Good optimization techniques fequi;e
to 'analyze the produced code which therefore does not allow
.fasf one-pass cgmpi;ation.

In’ an academic environment the compiler may face heavy
load, but.the érogramé are going ﬁo run on1§ once most of
. the time. Sucﬁ a compiler should be able t6 provide very

good error diagnostics but should not do much of code

optimization. This_philosophy may be fouhg'in the design of
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*the WATFOR compiler [Cowa70],‘the PL/C compiler [Conw73)]) and

DITRAN compiler [Mou167]f These compilers ‘emphasize more
error diagnosis ahd error recovery both during the compile
time and the ;un‘ time. In fact the programmer gederally
needs to make several tries before his program is error free
and in an acahemic enQironment the compilers handle most of
the time undebﬁgged student programs. dn the other hand,

programs which are used often should be optimized. At most

non-academic installations some programs are used’ very

heavily and they, therefore, should be improved by the

compiler.

" The optimizations required may depend on the source

language. Operator sfrength reduction, for éxamplé, is
impbrtant.in algebraic languages as FORTRAN, but may not be
necessary at all.in set-oriented languages.

System software such as compilers and opefating systems
written in a ﬁigh level languagg,is another example of. very
often 1used programs whose iject code should be optimized.

Similarly, programs used in real time operatiods should be

‘improved as much as possible and emphasis should be put on

the optimization phase of the compiler.
Another factor which will help in the des&gn of a .more"
efficient compiler is to have a knowledge of the nature of

the programs to be compiled. After studying a’ sample of

FORTRAN programs, Knuth [Knut7l] fohnd that most of the

programming is made of a small number of basic patterns and

that a small percentage of-a‘progfam {about 4 per cent),
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generally accounts for more than 50 per éent of its
execution time. The compiler thus could limit the expénsive
‘optimigations to a small percentage of the program. étill
aAother‘interesting result of Knuth's study is that programs
run four or five times faster when they are well optimized
compared to their tkanslation without optimization. This
improvement .was obtained making ,by hand, different types of

transformations including constant propagation, invariant

expression removal,strength reduction, test replat¢ement and

load-store moﬁion .as well . as machine-dependent
optimizations. - Knuth also concludes that the existing
optimizations techﬁiques ‘seem to be good eﬁough since an
attempt to optimize further is not worth while given the
little difference in code improvement.

Wortman, Khaiat and Laskar [Wort76) compared six PL/I
compiler%, Optimizer, PL/I (F), PL/C, CHECKOUT,: SP/K and
PLUTO, and found that the production compilers (Optimizing

and PL/I (F)) generate faster code than diagnéstic compilers

(PL/C, CHECKOUT, &P/K an PLUTO) and that, in general,

statements compiled by the Optimizing Compiler ran 20 per‘

cent faster. Another study of five ALGOL coﬁpilers [Wich72]
shows that the speed of the code generated py a compiler
- depends also on the architecture of the computer, .

The designer of a compiler then needs to take in
acﬁount the environment in'which the compiler 1is going to
run, In practice, the most popular'languages and their

compilers are used in any ervironment. The designer can

e e ot o s San e St & S A 2 =




always provide the global optimizations desired and allow to

.enable or to disable them by the setting of ;parameters at

the time of 'compilation. This 1s the case 'with the CDC

Fortran compiler {CDC81] and with the IBM PL/I (F) compiler

[IBM70]. With the CDC FORTRAN compiler, for example, the

user may choose the degree of optimization required by
setting up the parameter OPT with a value ranging from 0 to
3. Ifltge user chooses level 0 then the compiler evaluates
constant subéxpressions, eliminates redundant instructions
and expressions within a statement and determines critical
patﬁs "(PERT) to utilize the ﬁultiple functional units
efficjently. Level 1 does the transformatioms of level O
and local transformations. Global transformations are done
when OPT has a value of 2; among them are live analysis,loop
independent subexpressions moved out of the loop, operator
streng th reduction, array addresses and subscript
expressions kept 1in registers during loéﬁlexecution and
indexed array references prefetched after safety checks in
small léops. With level 3 the compiler will do unsave

optimizations such as prefetching indexed array references

. without safety checks and making\Fspti?istic assumptions

about the effects of external function execution on the the

contents of registers. In the case of PL/I (F) compiler the

user may control the optimization for a particular
&

qompilatiqn in a: similar way. Under level 2 the compiler

does loop and subscript optimization. With other existept'

compilers the user is only allowed to choose optimization,
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or no optimzation at all, by the use of a command switch at
the compilation time. Such is the case with the DEC Cobol
68 compiler [DEC79] aﬁd the Decsysteml0 FORTRAN compiler
[DEC77). When the optimization i§ enabled the FORTRAN
compiler does several global optimizationé; among those

optimizations are eliminatio%p_of redundant computations,

reduction of operator strength, removal of ~constant

- »

combutations from loops, constant propagation, removal of

inaccessible code, global register allocation, I1/0
optimization, uninitia}ized variag}e detection and test
replacement. The BLISS compilerl as described by Wulf
fWalf75] does also several improvement transformaéions
‘during the optimization phase (DELAY). Most of them are
machine dependent transformations. Among others, we can

mention: register allocation/by determining the evaluation

order of expressions, conversion of multiply to shift .

operations, and distribution of multiplications across

additions. It also performs constant propagation. .
To make the compiler task easier and obtain better
results, the programmer should be familiar 'with what the
compiler does to optimize the code and try to avoid cert;ih
constructs or bad programming habits. Thé best conceivable
code may ot be produced without cert;in interaction between
the programme{ and the compiler. Interactive editing,
frequency éounts, ‘'and tracing capabilities are ?lso very
desirable in a compiler.
‘ Befoﬁi finishing this section we should note that the

s/
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order of the optimizing transformations is ihpbrtant. Dead

‘code elimination, for example, should follow constlant

propagation since the last transformation may produce dead

instructions. Te analysis of data flow §hguld, then,

procede in the required order too., The choice of the data

L]

flow analysis method and algorithms dependsﬂ once again, on

different factors. De%ign complexity, type of optimization,

" language under consideration, and data flow analysis,;level

are among those factors. ) s

r . ‘ ¢

S B
6.4 Other Applications of Data Flow Analysis.
- ]

7 [

So far the aim of the discussion of data flow analysis

has been code optimization in compiling. . But there

are

"‘other .applications which may need data flow information and,

L SN
which will find data flow analysis techniques useful.

area which can take advantage of these techniques

'software engineering'. Although an analysis of

An

is

such

applications is not in the scope of this Treport, we mention

©

some of them to indicate a larger applicability of data flow

analysis., BAmong those applications are [Fosd76, Oste8l]

2
3

-(a) Program testing. This technique consists

. SQf finding errors in' a program. Data flow analysis allows

discover the static characteristics. of a° program.

in
to

By’

contrast with dynamic testing, program e}rors can be found

by data flow analysis without executing the progiém being
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tested. Variables never used (dead) after been defined, and

uninitialized vafiables, for example, may be detected by

I3 . -+
live variables data-flow analysis.

. : ]
{b). Program verificatio&}» Program verification is the
. =y SN

»

process of demostrating the absence of errors, and data flow

- P
-

. ‘. d A _— ‘g .
.analysis techniques offer also certain program verification

'capabglitieg. For ' example, we can assert'that a program
SRS N :
* '

does not have 'dead' variables if: there are no variables
which é:e’both defined and not live at any node of the flow
graph. . ‘ _ ~ 7

- q (c) Program documentation. Inform?tion al‘aout the

structure and the functioning of the program can be
5

' generated by software tools. This requires certain

! information of the control and data flow of the program and .

such information may be obtained by data flow analysis.

-
'
Ps

6.5 Conclusions

¢

pfRa flow analysis has receiveéd increasing attention
during the 1last ten years and a quite extensive literature
is already available about the subject. A brief overview of
the topic has been preseﬁiéd inLthis report, where after an
introductory chépteg, the different methods Wf data flow

analysis chave been discussed. The iterative method appears

to be the most popular because of its simplicity. The

, interval method may perform better than tRe iterative

-
- ’
]
’

method, but is more complex to implement because it requires
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. extra data structures and because of the existence of
3 " ‘ A .
'~ irreducible flow graphs [Hech75].

The attempt to find a unified approach to. data " flow

1

problems has led to the formulation of data flow analysis as

PR A

a semilattice-theoretic framework [Kild73] and a we}l
founded theory has appeared. \

. The main objective of data flow analysis ‘f to gafher
the information necessary to improve computer compiled
% . programs. In;raprochugal% data flow analysis is already
weil understood ana more gttention is now being directed to
interprocedural data flow analysis. Procedure calls make
.. "data flow analysis more difficult, however modularity and

structured pfograﬁming' is necessary in the development of
good software. Thus, interproé%dural data flow analysis is
now an urgené problem.’ ‘ —

The }SPecial problems of the propagation of data flow
. ‘ information presented by very hfgh level languages is
7/;&‘ . another area of recent research. Recent papers consider
E 5¥ * data flow analysis at high lével using the, parse-tree
representation of .khe program rather thamr a low level
repreééntation. Similarly,Bgraph\grammars is another high

level approach which makes use gf the basiq\construets“Ef/

R structured programming. ,

' ‘!Pr4* "  The use of data flow analysis in other applications : as
1\ software engineeriqg, has increased. the imporEance of the
topic. 'In~spite of all that.research, the problems to be

solved in data flow analysis axe still numerous. Many of

%

' d;} . ; . A -717 - £ Y
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/the(algorithms‘and solutions presented in the literatu;e é;e

restrictive and difficult to implement in practice, whera
‘the :prqgrams are Ymore complicated than the simplified

‘examples used in the literature [Rose8l].
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