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This thesis investigates the suitability of using
involutory matri¢es over 2, as crypébgraphic keys. The -
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_exact size of the key space, and the structure of such
. matrices-are obtained. These results are significant in
.
o the complexity analysis of a cryptosystem that, uses
. . . ‘ Q\ o L3 4
‘ : " involutory matrices as keys. A proposal is being-made to -

“
b

use involutory matrices in a network, both as individual

secret keys, and .as communication keys.between participants.

It is shown that the security of communication in‘sych a
network rests upon certain properties related to noncommu-
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tative involutory matrices over- Z, .
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. | . . . CHAPTER I I ‘.
4 b y

. Introduction o N k
‘ t

Jpe—

N D;ta secur:Lty in general 1nformat10n systems related

!

¢ to_both sc:.entl‘flc and business appflcatlons is one of the k
most growing concerns of the modern era. An information %
‘processing system that collects, stores, shares, processes, ' '
and interprets /data must assuxe the confidentiality and

privacy of the/,pa'rticipants in that system. The pox;ler of
! |

/ ’
modern compute’rs is not the root cause of the data security

4

problem, but the w1despread demand of computlng on a large
! (
amount of centrallzed mformatlon, and attractive factors of

'speed and ever decreasing cost of computing have compounded

‘ the ~pr051em. The incz:*eased uee of telecominunication
facilities as‘ a mode of operation in modern ccmpute;‘ .
applications is. a secondary .reason for the increased concern

over data security. In fact, mnost of the business trans-

' - {

actions, and any kind of sensitive high- level government ‘ :

transactlons have increasingly come to be conducted through

o electronlc systems., The fear that there is a good chance of

eavesdropping and forgery, is growing dramatically in such

3
‘ .

computer controlled €lectronic communications. One method of
preventing eavesdropping and forgery is to transform the ‘ N

message (or data) so thatit ismade unintelligible to a person

PR TR,

, who is not authorized to know the message (or data). We call

-

such a transformation an encryption.

1
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This thesis addres§és itself to an encryption method.

to provide private éeéugity, not only to send messaées in
electronic communicatighs, but also to store iarge volumes
of information such as personal data baﬂks, medical data
bases in hOSpiéals,’aqd credit records in banks. 1In general,
it éeemé that encfyption-is-thg only method to protect both'’
static and dynamic data. Although the ydegree of security
offered may vary from one encryption mqtﬁZd to anéther, ’

absolute security is not guaranteed by any of the encryption

methods.igUsually, the encipherment of daxa is made so

’
-

complicated, both in sforage and during transmission, that
it becomes extremely time consuming and uneconomical to
revérse the process. Almost all encryption methods have

/ .
roots, and hence derive tools from mathematics. Hence, the

//degree of security offered by an encryptidn method depends

highly on the power of the tools employed.

-

In order to establish that a cryptosystem offers

o

absolute security, it thus becomes essential to prove that

A

‘ \ ,
%be pénetration - i.e., reversal of a transformed text by a

. person who is not legally entitled to know the plain-text -

is‘éither impossible or is inherenfly hard. We use this term
'hardtin,the sense of complexity theory. A mathematical
'proble% that is either unsolved or whose solution is computa-
tionally intractable is an excellent candidate to develop an
encryptién method. 1In ﬁhis thesis, the encryption method
that we discuss is classical (see [3]). However, the

results of our investigation relating to complexity analysis,

'y R .

T
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A

and hence the basic results on ;hich the analysis is built

is new, We also show how this cizésgcal conventional

encryption method that we study cag/be adapted with ease,

\-felegance, and ﬁower to communicate in networks. |

Secure communication in a large ne£work invblving\a

number of parﬁicipants,depgnds p;imarily upon the method
used, to encrypt the mess;ge that is to be cohmunicated
betweeﬁ the participants. It is essential that the personal
idéntification keys of the participants, @s,well as the keys
that are used in encrypting the messages in communications
re not eésy to be détermined, either by an exhaustive
search of the key space or by a systematic cryptanalysis.

. There is always a potential possibility of an intruder inter-
posing in communiéation paths, énd hence Z;pying, or
altering, or replaying, or falsifying the messages that are

/ passing through those paths. Such a possibiiity should not
be ruled out AS an extreme view; for only under such
assumptions can a basic encryption method be evaluated

‘satisfactorily. ’

It has’been pointed out by several people, fof
éxample, see (2], that a conventicnal cryptosysfem is not
that suitable for protecting informations that are trans-
mitted over insecure communication channels in a network.

It was also pointed out originally that the requirement of
key distribution, and authertication of messages are not

easy tasks in a network based on conventional encryption

methods. However, Popek and Kline (see [14]) have




commented that a public-key cryptosYstem offers no

r advantage in - terms of communiocation protocols over

-

. ~ conventional enCryptlon’methods.- Every 1dent1f1ab
/

that can be recognized in a network communication

performed with some ease, either by a conventional

)

! pubiic-key cryptosystem. Hence, a ¢hoice between

conventional and a public key cryptosystem solely
\ the strength of the security offered. -

. v
This thesis is organized as follows:

contains some basic definitions, and some elementa

that are necessary to develop furth?r materials,
i

a

'Chapter II

the
le task o
can be

or by a

rests on

results

We also - . -
L |

. e
PRERSSTAL L et M

‘discussed there.

give some notations that would o//héed throughout this .

thesis. A brief account of some conventlonal, and some

public=key cryptosystém,methods is given in Chapter III,

motivating our encryption mefhod based on involutory

*e

matrices over the ring of -integers. In Chapters IV and v,

we give new results on the structure of involutory matrices,

and also on the size of the involutory matrix space. These

results provide tools for our analysis. Chapter VI contains

\

a possible cryptanalysis. Finally, io Chapter VII, we show
the adaptatlon of our encryptlon method to communlcatlons in
a oetwork. ‘The: security of this possible adpptatlon is alSO'
Some open -problems are-méﬁtloned in

Chapters V, VI and VII. .. . .

N
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| o Notations and Basic Results’

S ' C : '
We introduce here the notations that we' follow in B

- -

later chapters. Unless, otherwise nrinentl:)ioned, they will have . A
“the same meaning thrépghoutiﬁ:he thesis. We also give some
basic definitions and standa;d results that would be used

later.

. g

o " . Encryption process transforms an intelligible text P

B

e

R

>
4

SRR T T o R ER B
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(known as plain-text) into an ﬁnintelligib;e text (known as- °'
cipher-text). Both the plain-text and the cipher-text are
composed of elements from a finite s4et'of symbols called an
alphabet. Somle examples of alphabets e{re:

T (i) all upper case English letters A,B,...,Z.

_ (id) all upper and lower case English letters ‘
S .
A,B,...,2,a,b,...,2. ¢

(iii) all upper and -lower case English letters

Al

augumented with digits and. some .punctuations.

(iv) the set of all musical notes. . ;

Av) the set of all binary sequences of fixed

o]

- length, say 6.

000000, 000001, ....., 111110, 11111l. .~ o

Al

t An element of an alphabet is called a letter.

.

An alphabet is always denoted by V. The number of *

elements in V is denoted by m. Let V = {p,,P,, ""?m-i}"
Consider the cartesian product VxV = {(Pi,Pj):O <i,j<m-1}. .

This can be identified with V2 ={P,P.:0 <i,j <m-1}.~

N

o . . -, - e
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Elements of V2 are ordered paiis of elements from V.  We o7

call elements of V? as 2-grams or di-grams. Similarly, we

can form V3 = {PlPJP2 :0.¢ i,j,2 <m - 1}‘and elements of V?

are called 3;grams or tri—gxaﬁs. More generally, for ahy

p051t1ve 1nteger n, we can form v" and elements of V are\\\\

called n-grams. Of course, an l-gram is an element in V.

Definition 2.1.1 X ? . 9

- C

A sét' R with two operations + and - (usually known

as addition and multiplication) is said to be a 1ng if it -

satlérles the following set of propertles.

: (1)) (i) a+b €Rfor all a,b in R. -
. . - :
(ii) (a +b) +c=a2a+ (b +c) for all:

Id

a,b,c in R.
(iii) a + b =Db + a for all a,b in R.
(iv) There is an elemept denoted by 0 in R

“~ . 0

such that a + 0 = a for‘all a in R.

i) .
A N (w) Given a in R there is an element denoted
o by (-a) in R such that a + (-a) = 0.
(2) (1) a*b € R for all a,b in R. '

(ii) ' (a-b)-c = a- (b-c) for all a,b,c in R.

(3) (i) a-(b + c) a-b*+ a-c for all a,b,c in R.

(ii) (a + b)-c arc + b-c

o

') Definition 2.1.2 , .

" (i) A ring R is sald to be a commutatlve ring if

" " a-b =b-a for all a,b in R.
. . -
(ii)- A commutative ring issaid to have unity if there

is *an element, denoted by 1, in R such that




€
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a*l = a forrall a in R.

(1ii) An element b in a commutative ring R with

ﬁnity is said to have a multiplicatife

N
’ -1
o inverse if there is an element denoted by b
- in R such that pb~ ! = 1.
oo ) .
Definition 2.1.3

~
A}

A commutative ring R with unity is called a field if
it has the proggrtiathat’every nonzero element in R has a

multiplicatiye inverse in R. . S

‘\‘ N ‘:l .0
Example 1 -  ° - o
. .
For a positive integer m; let Zm denote the integers
modulo m, i.e.,,zm = {0,1,2,...,(m - 1)}. The addition

operation can be defined as-a + b = a + b '(mod m). That is,

.

a

to add Ei:/}§ﬂzh, first add them'as integers and then compute °

the remaipder of (a + b) divided by m.

Example 2 o i - ':y

. The set of all real numbers with usual aédition and .,

multiplication form a field. ' . '

Example 3 ’ .

, For any prime p, Z, is’a field.

¥).a is i B
The set {(al,az,.....,an).ai is in Zm‘, 1 -1 <n}

of all n-tuples with each of its components in z, is an
N ‘ )

. AY
example of an algebraic system called a vector space. of

‘dimension n over a ﬂing. (Sometimes it is called a module

over a ring.) We denote this set by 2 '

. . :

in z_  is called a vector. Fhe vector whose components are
7’ ~ . -

v

- LS
mh and an element
, .

all zeros is denoted by 0 . ) 4

Il
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For an n-tuple Yal,dz,...,an) of integers, we define

(al,aé,...,an)(mod m) = (a, (mod m),a, (mod m),...dh(mod m)),

.

ctor in 2 . -
a vecto m,n

A

'Now, we define addition in 2

. For any two.vectors
L _mn -

u = (ul}uz,.é.,un) and v = (VI'V?""'Vn) in Zm n , define

!

“ \ . .
u+ve=(u +v,u + Voyreseru t Yn)(mod m) in Zm,n .

Scalar multiplication is defined a§\§ollows: for any a in

zm, and any v = (vi,vz,..:,vn), the scalar multiplication .
of a and v is av = (avl,avz,f..,avn)(mod'm).in Zon The
following ‘results are easy to verify. )

Proposition 2.1.4

For any u,v,w in:zm n and any a,b in Zm we have: . .
. [ , .

-

(i) u+v=vga4u (modm).

(ii) u+ (v+w =(u+v)+w (mod m) .

au + bu (mod m) .

(1ii) (a + b)u

(iv) a(u + v)

au + av (mod m)'.

A vector v in 2
“m;n

is said to be . a linear combination
14 . -

L

of the set {v,:i=1,2,...,2%)} of vectors in 2 , if
i m,n .

v =a,v, + agv2'+ v *tayvy with a; in Zm for i =l,?,...,2.

A set of vectors {v.,:i =1,2,...,2} in Z is said
i m,n

to be linearly independent over Zn if the' following condi-

171 LR
3 =0, for i = },2,...,10.

tion holds: a.v, + ... + a v, =0 (ﬁod m) if and only if

»

"A set of vectors {v.,:i = 1,2,...,2} in 2 are said
i m,n

to span Z_ _., if 'every vector in Z_. is a linear
m,n m,n

’

combination of vectors VyrseorV

Rf -

is said

. A set {Vi,:l = 1;:i.,2} of vectors in Zm,n

——

AN
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to be a basis for Z: iﬁ?the§-are iinearly indg endent over
- ’ s s -

n
t .
[ . ‘a R L)

and span Z

e m,h ' ' ' i
' ¢ The following theorem is well known. o
E " . Theorem 2.1.5 ’
. 3 .
. (1) ¢Every basis of Zm n'contains exactly n vectors.
14
(ii) Every. set of n vectors in 2o n which are. '
H R ’ N v s
’ hd 'l‘ - * 3
. ’, 1inear1xbzndependent,over 2, is a basis for
’ ' [
. . -m,n . .
\ (iii) . Every set 'of (n + 1) vectors in Z, i
. [
) linearly dependent over Z, -
: T w . ’ - . 3
. 3 A mapping T:Zm,n > zm,n is said to be ;1near if
T(au + bv) = aT(u) + bT(v) (mod m) for. any a,b in Zm and . ‘1
’ . o . t
- any u,v in Zm,n . \ ‘ 3 ’ |
‘: Proposition 2.1.6 : ' T x i
. (1) Every n xn matrix over Zm is a linear mapping
AN ) ’
~ , from zm,ﬁ'* Zm,n . - . .
(ii) Every linear mapping T:Z + 2 can be
- , ; m,n m,n
3 fon represepted by an n xn matrix over Zm . /
‘ - ’ Due to this fact, we deal mostly with n x n matrices i,
' 7 . .
o ) instead of linear mappings. :
| . The determinant of an'n xn matrix A over Zoon is , :
\ . r %
defined in the usual manner, i.e., the determinant of A is
I ) :
;, "7 computed as if it is a matrix over integers and then
" T ' * ' . ‘
! reduced (mod m).. For example, if m = 8, n = 2, and °
i , .
) 4.5 A ,
' . A= 7 4 then determinant of A is 5°. ¢ :
: C - An n xn matrix A over 2, is said to have 'an inverse

.~

P oL ke e . «



.as the rank of A. We state the following well known

10

. L . -1 '
if there exists an n xn matrix A over zm such that
!’ . t,
An~! = 2a7'a = I (méd m), where I is the n'xn identity matrix
over Zz .+ In this case we say A is invertible over’ 2. .-

Theorem 2.1.7 L
) -~ .
Let A be an n xn matﬁix over Z . Then, the

’

following are equivalent: ‘ n
(1) "A is invertible.
(ii) The determinant of A i<\re1ative1y prime*to m.

(iii) All column vectors of A are linearly indepen-.
dent over Z, . |

/(iv) All the row veetors of A are linearly
independént qQver Zm .

If A is an n xn matrix over Zm' then

AN ]
{(vez _:Av=0modm} is ‘called the hull space of A . It

is obvious that if Al = 0 (mod m) and Av = 0 (mod m) , then

A(au + bv) =0 (mod m) for all a ,b in Zm . ’

v

The set {v € Zm'n:there is a u in Zm n such~that

!
A

Au = v} is called the image space of A. It is obvious
that if u,v are in image space of A, then au + bv is aﬁéo
in the image space of A .

The dimension of the null space of A is known as ‘the

nullity of A% and the dimension of the'image'bf A is known

theorem:

‘Theorem 2.1.8

Let A be an n xn matrix over z - Then,
N .
(i) ° nullity of A + rank of A = n

!

o

e
-
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and (ii) A is invertible iff rank oftA = n.

N .

For an n xn matrix A over 2, the determinant of

(A - AI) is a polynomial in A of ‘degree n. It is known as,

' the characteristic polynomial -of A . The roots of this

polynomial are called the eigen values of A. -~

Proposition 2.1.9

A is an eigen value of A if and only if there is a

nonzero vector v in Zm n such that Av = Av (mod m)
I 4

Consequently, for every eigen.value A , there is at
: t 4 -

least one nonzero vector v in Zm h such that Av = Av (mod m).
14

Such a vector is called an eigen vector og_A corresponding

to the eigen value‘of A. If EA=={v in Zm

IfAv=xv(m54m)L
then El‘is the null space of A - AI, and is known as the

’

. . : !
eigen space of A corresponding to the eigen value A . 7

Proposition 2.1.10

' -
)

A is n xn matrix over Zyo P is prime. Tﬁén, ’
(i) A has at most n eigen values.
(ii) .If Al,kz,.,.}kn are the n eigen valpes((not
necessarily distinct) then
(a) determinant of A = AIAZ...{n {(mod p)

[

(b) trace of A = A; + X, + .:. + A (mod

.

An n xn matrix A over Zn is said to be a diagonal

matrix if all off diagonal elemehts are zerbs. °
[

Two n xn matrices A and B are said Ho be similar if

there is an invertible n xn matrix S such that A = S_IBS.

v

A matrix A is said to be diagonalizable if it is simila¥ to

a diagonal matrix.

. i\.m‘;.m_‘m S A o MR Lo 3. Sk PR
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" Theorem 2.1,11 - L
Let A be an n xn matrix'overfzp where p is‘a prime
-- number. Then, A 1s diagonalizable 1fﬁgnd enly if thé;e is -
"a basis for Zp con51st1ng of the eigen vegEors of A.
Theorem 2.1.12 (Cayley-Hamilton)

> . & )
"Let A be n xn matrix over o and 1et X(A) =

determinant (A -~ AI) . -Then, X(A) = 0 (mod m).

. . A
Next, we give results concerning product of rings.

Let m, and m, be two p051t1¢; 1ntegers.' Consider the

'qarte51an\product, Zmlx Zmz-{(a Jbliaez p €2 J of Zml

o,
Rﬁnd Z,+ We can define addition and ﬁultlplicatlon as: ,
2

(a;,b;) + (a,,by) = (a; + a, (mod m;), b, ¥ b, (mod m,)).
(aj,b)) + (a,by) = (a2, (mod my), byb, (mod m,)).
Then, it is easy to verify all the conditigné,that‘are to be
satisfied to be a commutative ring. Thus, 2 xzm is a
: 1 2
commutative ring with unity, and it is called the product of
Vri '
the ‘\rings Zm1 and Zmz'
More genérally, for positive integers m;,My,ee.,M

9,'
JE can define the product ring 20 XZ‘) X wee ¥ Z’k.
m,  m, m
Two rings R; and R, are said to be isomorphic if
there is a one-to-one'and onto function f:R; + R, such that
f(a +'b) = £(a) + £(b),

o

and f(ab) = f(a)+f(b) for all a,b in R, .

The folloewing theorem is useful to Qur discussions in,

-

later-chapéegg,

Theorgm 2.1.13 (Chinese Remainder Theorem)

If‘ml and m, are redatively prime numbers, then the

“\
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. In other wo{?g, if mi,..i,mz are pairwise relatively prime

numbers, then the linear system of eguations

has unigque solution infzm where m = n, ...M .

product ring Z m, xzm2 and ,the ring Emlm

Inageneral, xf ml,mz,...,m

are isomorphic.
2 Sk :
. is a set of pairwise

relaflvely prime integers, then the product rlng .

Zm1><... x Zo is }somorphlc to jhe ring Zm‘whqre m=m...0".

)

- X ='a; (mod m,) i=-1,2,00002
1 l1 -

. ¢ '

Summarized below are the notations that we would be

t

using throughout this thesis. | i

m,n,t :’positive integers .
) é,q : odd prime numbers .
Z, ' : ring of integers mbdulo m '
; Zﬁ'n' : set of all n-tuples with entries in Zm
‘ ’ and with usual aﬂdltlon and scalar
- multiplication ) N \
A,B . : nxn matrices over Zm . o E
. : an alphabeét having m letters d
. : a one—to -one mapping from V to Z
) 4 . : the Euler functlon, i.e., ¢(m) iy th“”‘““—*“‘ —~—Lﬁ'
n number of p051t1ve lntegers which are J
less than-m , ané relatively prime to m - .{
’ In : identity matr}x over Zm . (Ve may write %
i instead of'In if there is no ambiguity.) .
Mn(m)/ : theﬁgg;Aof all nxn matrices over Z,
G, (m) : {A:A’In M tm) arnd A is invertible} l
Sn(m)“ :- {A:A in M (m) and A? = I }

( Tn o z
. . . . /\
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![ “ o Tén)(p) : {A:A is in Sn(p) with the dimensiop
S

s -~

of the eigen space of A correspeﬁa-

a

, - ing to 1 is k} : X .

For t > 2, we defihe,

Téf)lpt)= {A:A is in Sn(pt) and A‘(modpt"l)}is in Ténhpt-l)}J
b ‘ s . !
Note that the definition is reéursive on t-. Whenever there

is no ambiguity we may omit the’superscript n and write »

VEk(p) and Tk(pt) iqstgad of Tén)(p) and Té")(pt3 . Tk(2)

and Tk(Zt) are also defined in;similar manner.

o
For positive integers s and t, let Kzs(2t) be the o

2s x 2s matrix over 2

, which is the direct sum of s
2 -
'Y .

2.1 1

"matrices of the form (
’ 0o 1

) (mod 2%y . o

Examples

(i) s = l,t=1 K2(2)z=

(mod 2)

(ii) s (mod 4)°

[}
'._l
t
]
)
)

N
N
]

RECS D SR
at

g
[
e
[
~
w0
]
~N
ot
"

3 K, (8) = (mod 8)

o N O ©
- O O

Let % <k«<n,s=n-%kandr =2 - n. Then;
v I 0
; - . t r l t
N deflni\Dk(z ) = (mod 2°) . Further, for
. - t
. | o | x,,05

Rt GRSt 22 T
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For any set X, let |X| denote the cardinalig& of X .~ .

- s\;‘(.‘-a:\ - ' ' /
“ Let; g, (m) = }Gndwjl,and s (m) = |s_(m)]|. /
. ' ' The following result is requiredggrom Chapter IV .
7 onwards. ° S

:
Proposition 2.134

gn(p) n=1

.}pn‘- l)(pn - p)...(pn’- o) )

(pn - pi)

n
i

I =1

1 ' *
1

' Proof |
We know thatzA is in Gg(p) ¥f and only if all the
‘3 columﬁs of A are independent over Zp . The first column of
‘AA'can be any nonzéro element@of Zp,n . hence has pn -1
choices. The second column should be any vector which is ,' "

independent of. the first column vector, hence has.pz‘- P -

chbices. Similarly, the third column has én - p?% choice$,

‘ C n-1 o .
etc. Thus,.ail columns of A have: | (pn - pl) choices.
i=1 ) ,
This proves the result. . ) . ‘
b J : L o)
n K
] // "

. e T 1
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: . . CHAPTER III

A Brief Survey of Cryptographic-Methods

/ ) «

In this Chabter, we briefly discuss and reéigw

gonventional and public-key cryptosystems. Referltol[ 61,

& s

[ 7] and [18] for more details.

~»

Tﬂ}oughoﬁt this Chapter, let V denote an alphabet-‘

N

" with m letters’ from which a plain-text is built. Let f

K denote a one-to-one and onto mapping from V to zm'

SSupposing that V is the alphabet of the English language,

then f can be taken as £(A) = 0,f(B) = 1,...,£(2) = 25.

A plain-text (or message) P with alphaheF V is a finite

/ .
sequence P,P,...P, with P, in V for 1 </i < ¢ . For a plain-

text ' P in the apove form, let £(P) denote the sequence ‘
f(Pl)f(Pz)..ﬂf(sz . a

A cipher-system can be viewed as a set of transfor-

- .

. ~-mations which produces a cipher-text when applied to a’

plain-text. The particﬁlar transformation used at any'time
is controlled by a parametér called key.‘ Let Ek denote an
encrygtion pfocess using a key k. ' "
In general, an encryptioﬁ/decryption algorithm uses
two keys, say K and K' , one to encrypt the plain-text and
the other to decrypt the cipher-text. A‘cipher—system in
"which either K = K' or one of K and K' can be easily
cémputed from thé knowledge of the other, is known as a

symmetric system. Therefore, it is essential to kedp the

.

keys secret for a secure system.

\




A 2 . - £
A R

[P AT st

17

If the keys K and K' are such that one of K and K'
cannot be easily computed from the knowledge of the other,

then the system 4is called an asymmetric system. As a

particular case of the asymmg;ric system, Diffie ahd'
Hellaman [ 1] have introduced pUblic-key_cryp£o§ystem.
fublic—key cryptosystem was formulated by the
inventors as a two-way communication channel. JIf E is tﬂe
encryption process with encryption key Kt}and-Q7is the
decryption process with key K', then we should have
(i) for any message M, D(E(M,K),K') =M and
E(D(M,K'),K) = M, ™

i
i

(ii) Both E and D are fast to compuée,"

. ~N
and N

(iii) Computing K' from the knowledge of E,D and K
e ) N ’ ! | B
is computationally intractable.
In this communication systém, a subscriber can

produce his own encryption and decryption methods. Let Ep

and DA respectively denote the encryption and decryption

‘method of a subscriber A. All the subscriber has to do is

to make his encryption process public by listing E, in a

A
public directory. Suppose a subscriber B wants to send &

message M to A, B first looks in the public directory for

the encryption process EA of A. Then, he computes the

encrypted message S = E, (M), and then sends g to A. Since

A has tgﬁ decrybtién process DA’ A decrypts the message as
DA(EA(M) )} = M,

. It is also possible tpb employ public-key cryptosystem

-

(.

. e



Y

\ [ . 18

for implementing an electronic mail ‘system and digital
(~ ' signature (see [17]). Needham and Schroder [13] have given
protocols for authentication in large networks usipé éublic—'
key cryétosystem.

The security of public—key—crygtosystqp lies on.the.
_requirement given in (iii) above. Therefore, in selecting
;he keys K and KXK', a trapﬁﬂoér function (a one-to-one ’
functionhf‘such that it is computational;y intractable to
fina f'-1 using the knowledge of f) is use@. So; it is
natural to employ a computationally hard prablem for
' selecting the kéys to be used in a public-key cryptosystéﬁ.
“» ’ A public-key cryptosystem based on thg kpapsack problem is
~ given in [ é]. ﬁivgst, Shamir and Adleman have proposed ay

public-key system based on the problem of factoring large
integgrs. We now proceed‘to expléin this method. For more
details see [17]. - ‘ -
. . Let n = P4, where p and g are two large primes.  let
e and d be two integers such that ed =1 (mod p(n)) whgre
¢ is the Euler furction, and ¢(n) = (p'- 1) (g - 1). The
4 public-key is the pair (n,e) and the secre? key is (n,d).
To enérypt a message, first the message is converted

3

into an integer M between 0 and (n - 1). Then, the

encryption is given by E(M) = M€ (mod n) and the decryption
is given by D(C) = Cd (mod n). Since ed = 1 (mod »(n)), we
T | have, D(E(M) = (M)? = ¥®? = M (mod n). Similarly,

E(D(C)) = cC.

Lo s
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It is to be menhtioned here that the security of this

system sblely ljes in the complexity of factoring a large numter.
_All the conventional crﬁptosystéms are symmetrie™
systems. We shall illustrate two classes of symmetric - ‘ \

/t -
systems based on éubstituq}pns and algebraiq‘transformatipns
reﬁpectively. J

( A simple substitution method is as follows: Let T

be a permutation on V. Then, a plain-text P = Pi...P, will

be transformed into a cipher text C = Cl"'cg with C, = MPi),

' .
1l <i < 2. Here, the key is'fhékﬁermutation M. Since there — 1

¢

are (m!) possible keys I, an exhaustive search is impracti- i

Al
-

cal. However, a statistical analysis based on the

frequency of occurrence of letters of V in a text, would v ]

@

reveal high redundancy, unless the frequency distribution is
uniform. Hence, it makes it easy to determine the key N. -

Since the product of two permutations of V is another

permutation of V, the above substitution method doés not

allow to have two or more levels of encryption to incregse

security. However, if {Hi:i =1,2,....1 is a sequence of

permutations, a plain=text P PIPZ...PQ~can be ciphered‘éé -
»

« ¢
C = Cl...C2 with Ci = Hi(Pi), 1 <i < . This system, is

called monoalphabetic substitution if Iy is the same for all
t - <

i=1,2,....;othervise, it is called polyalphabetic substi-

tution. In a polyalphabetic substitution cipher on a plain-

text with n letters, there are (m!}" possible keys. «It also

———

makes the language statiétics smooth. An example of thIE is

Vigenére~ty§e sYsEems (see [ 6]). " 'S - <

<
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. o 1f thg encryption of a plain-text is done letter-by- o
‘ .~ fetter\ it J.S known as a stream cipher. ' Oth rwise, the 1.

% plain- text is partltloned into blocks, and then encrypted - \

. block-by-block basis, and this type of encryption is known
¢,w‘i . as block cipher. For practiéal considerations, blocks are

e

. all asghmed to be of uniform length.. In fact, if n is ¢

—

the block length, then a block cipher «can be viewed as a. - .0

.

stream cipher qyver the alghabets‘vn. The'sqbstitution >
RN e .
‘method explained abaye is a stream cipher.

Transpositions is a particular case of block cipher. ' 1

;- Each block will be ciphered using the same key. For example, .

let the block length be 4 and i "be the permutation: ' . N

l 2 3 4 . ‘ : ) M -,
(2 4 1 3) . To ehcrypt the plain text CRYPTOGRAPHY, it
should be partioned iﬁto three blocks CRYP TOGR APHY each of
; length 4. Then, u51ng I we encrypt thls text as 2
. ‘ ) 3

YCPRGTROHAYP, They are varletles of transposition 01phers for 5

example, Rail—Fence Cipher System, Route,C1pher éystem. See

N [ 5] for more details. ,; ' ‘> ? ! o —
. : - 4
Since 01pher systems of transp031t10n type preserves ’

s L)

¢

SRR
S i o

ko 'the letter frequenc1es in the plaln—text, a statlstlcal -

% ’ , ‘ ‘approach would revéel the key. However, |lt destroys?the“’

% ;’" - ebvious patterns in the ﬁlain-text.‘ For this reason,

i K - transpositions are better tlvan. 51mple substitutions. /
i ; I The Data Encryptlon Stanaard (DES) is the off1c1al |

Q .
18 © scheme of .the Natlonal Burexu\of Standards (NBS) and is

used by federal department and gencies for'the crypto-
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- . graphic protection in communication.
This methodis a sopﬂisticated substifution permuta-
tion mechanism from one character setté another. In fact, ﬂ
it operates on binary coded data- obtained from a text and
_ uses a 64 bit key to encode an information of 64 bits. More
“ -specifically, the. key is divided into eigbt 8-bit bytes. 1In
- an 8—bit,5§te, 7 bits are used byathe encryption algorithm

L}

and the'eighth bit is used to maintain the odd parity for

> error detection. 8o, in effect, the key is of length 56 &\

» - » »

bits only.

The algorithm for encryption can be“viéwed as the
. s

following three steps: .

-

é (i) A transppsition operation, usually referred to

‘” . ‘ ‘ as the initial permutation (IP). Lo
//', (ii) A key—dependent compléx computation"consistiﬁg
{ . , of 16h}unctionally identical iterations on a
64~bit information. ;

/\

(iii) A final transposition operation, referred to

i
Stspaibucn scominas § Wranic

as the inverse permutation (IP ') which is
Vo ; , the actual inverse of IP used in step (i).-

L For the 16 functionally identical iterations, 16 keys Kji .

«

l < i< 16, each of 64-bits are used. -The algorithm for

‘one iteration is explained below. . » " i

5 \
-~

e, < The input to the i-th iteration of the key dependent

, ) computation is divided into two blocks Li__l and Ri_], each ‘

of 32-bits. L, contains the ”left“ 32 biés and R,
“ 1= ~ ' 1l~1

W

s - ' . A\ o
‘:ﬁ © contains the "right" 32 bits. L; and R, are the input to

G ’ 3
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\N‘the first iteration, which is formed after permutating

with IP.

If Ly, Ry is the output of the i-th iteration, then
1

L. = R, and Ry = L, _, @ £(R; ,,K;) where f is a complex.

1 1-1 1

b

function which is the heart of the scheme, and e denotes

(mod 2) addifion. Note that £(R;_,,K;) is 32-bit long, and
N §

is obtained as follows:

c

- ™
(i) Us%pg a selection process (independent of the™ |

~

key used) a 48-bit data Si is selected from

" bits in R;_ . | ' T
(ii) Using another sélecﬁionzprocess, a 48-bit data
- Ti is selected from the key Ki' a

(1ii) By adding’ S, and T, using (mod 2) addition,
another 48-bit data Qi is formed.

(iv) The 48-bit datg Q; is then partitioned into 8

. groups offﬁabits each. Using a substitution

?ipher each of these 6-bit groups is converted
into 4 bits, giving a total of 32-bits; say Xio o

(v) Xi is permutated using a simple transposition
cipher: The output of this is £(R;_ /K;)-

Decryption proéess is thé,exact reversal of the

encr}ption process using Ehecyeys in ;he reverse order

S I | .

L ‘fn considering ﬁhé.security of fhe DES, it‘shbuld be

noted that there are 2°° possible keys. Hence, détermining .

Y

a. key by an exhaustive seargh is impractical. Further,

:haintaining a'cgtalogue of the frequency ugage of blocks of

2
-




v

%
%
n

%

e EimViaweees vt

- 64-bits is also beyond the capacity of the opponent.

' consider the affine linear transformation T p from z  to -

23

L4

However, critics are commenting that the key size should be ;

increased to 128 bits, and the number of‘Feys used is not

adequate. See [ 7] for more details.

Now, we explain another cryptographic method known
i

as Caesar-substitution. For a pair of elemgnts a,b in Zm’

!

- . . ..\
Zm given-by Ta,b(x) = ax + b (mod m) for all x in [ ;%

a is relatively prime to m,,then a_-1 exists in Zm’ and

x-ﬁa-l(#-b)(mod m) is the inverse transform. * In encryption
each letter P in the alphabet V is transformed into a le£te;
C = f-llTa'b(ij))). In decryption, a letter C is trans- |
formed into £ '(a”'(£(C) - b) (mod m)). Thus, (a,b) is the
encryption key and (a_l,—b) is the decryption key.

Example

Suppose that the alphabets V are the English alpha-
bets. Then, m = 26. Let a = 3 and*b = 5. We want to

encrypt the plain-text CRYPTOGRAPHY using T

3,8° ) ;
The letter C iq the plgin—texf will.be replaced by i

the letter £1(T  £(C)) = £ (T, _(2)) = £'(11) = L. “
3,5 3,5 §
Similarly, we do so for other letters, and get the following H
mapping: | | g
Plain~-text: CRYPTOGRAPHY %
: Cipher-text: LEZYKVXEFYA 2 3
. The securit; of the above cryptographic method %
primarily depends on the following two factors: (i) deter- E

mining the key.(a,b), and (ii) determining the function £.

t
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The function £ is a permutation 'on m objects. Hence, £
can be chosen in (m!) ways.. Therefore, détermining £ by:an/
5 . ‘ /
exhaustive seadrch is impractical. However, some available
. -
information, 1like letter frequencies, might reveal f more

easily. From now. onwards, we assume that the function £

is made known to any one who is aware of this cipher-system.

Thus, the security .of this cryptosystem rests on one level,

~i.e.,-in'finding the key (a,b). ‘ .

~If an opponent is' granted the option of cﬁ%osing a
. J A

.plain-text (no restriction is placed on his choice of the.

plain-text) and is given the privilege of obtaining thg’

cipher-text of the chosen plain-text, then-a'cleye"(

opponent can choose the plain-text with 2 letters P; P, such

that P = £1(1) and P, = £ '(0). Let C,C, be the

.corresponding cipher-text. Then, for this choice, he can

solve for a and b; in Pact, b = f(Cé) and a = £(C;) - b.

Hence, he has the comple knowledge of the cryptosystem.
N : 4

- /
If the opponent is given some plain-text and its

corresponding plain-text, then aetermining a and b reduces

to solving the system of equations: j

i at; + b = s (mod m)

N
\
) at, + b = s, (mod m)

for a guiéable\plain~cipher pair t,t, and s;s,. =

%inally, we assume that the opponent has only some
cipher-téxt. -There are only m- ¢ (m) paifs (a,b) where ¢ (m) »
is the Euler's number. Heﬁce, it may be possible to l

determine (a,b) by an exhaustive search. For example, in
. i ~ .

|
|
1
|
|
A ‘ ‘ : i | ‘
I
f
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‘ 0 N I .
the case of English, where m = 26, there are only 338 pairsk

"of (a,b). The modern computer with its enormous power could

i

easily handle this search in a fraction of a second.

‘

In order to increase the tecurity of the cipher -
system by increasing the complexity of determining the keys,
Hill in [ 3] has proposed the use of matrices with entries
in 2 (instead of using just a)pair of elements frog Zo)
Below, we explain this method. -

Choose an nx*xn matrix A over Zm' and a vector b in

+ 2

HY/
m,n A,b"'m,n m,n

' C, , '
by T, b(v) = Av + b (mod m). If the determinant of A is
[ B . »

g . ~1 . :
relatively prime to m, then A exists and

jgxyﬁrl(x.~ b) (mod m) is the inverse .transform.

P
To encrypt a plain-text, the plain text is first

grouped into blocks of size n each. Each block is them

transformed into a vector in 20 n using the function f£.
. , : ,

Then, we apply TA b to this transformed vector. The result-
4 <

ing vec?or in Zm,n

is transformed back into a blo?kjof n
letters using f_l. More formally, if V is "the alphabet and
v? is the set of all n~grams, then the encryption process

EA b using the key (A,b) is summarized in the‘followiné'
’ . 2 :

o

diagram:

f
PP ————

Ll et s R
N
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n £
’ ] v > \’ Zm'n
! T
EA,b A,b
\v v
n P
v AN -1 zm,n
~ f ;
. =1, n
i.e., gA,b = f Jh,bf on V.
Example

Suppose that the alphabet V  is the English

alphabet, - Then m = 26. Let n =2, A = (2 5) and
. . 1 10

L3

3 R

using TA b*
X , .
The plain—uext‘is first grouped into blocks of size 2

as follows: CR YP TO GR #AP Hyg\ The block CR is

transformed into the vector v = ( 2\ in Z,¢ , using the
' ’ .

17)
function f. Then, Av = 2 5\ 2\ = 893 = (ll) (mod 25);
' 1 10/\17) 172) 16
Av + b = (14)(mod 26). This is transformed back to the block
21 .

OV using f*l. Similarly, we do so for the othgr blocks,
and obtain the following mapping:

plain-text: CR YP TO GR_AP HY
. cipher text: OV WX HI Y2z AZ HS.

@

£
‘
x
|
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The security of-this method dependé on determining
.the secret key (A,b). 1In éergxeral; for lar\ge values of n,

" the complexity of determining A dominates the compléxity of
determining b. Hence, fqr large n we can assumé b =20
without losing much security of“ tl{e system. Then, .
encryption key is e and decryption key is A" !, Note th\at
if A is known, then 2~ ! can be computed in O(n3) time using
Gaussian eli'mination. Thus, the proBlem of determining the
key ‘A ar\ld thé p:‘rbblem of determiningsthe key'z\._l , theoreti-

cally have the .same complelxity, and this leads us to assume

o
L

A = a"'. This assumptioon gives a practical advantage of

using the same procedufe for both ienoryption and decryption.
Of course, the number of keys (A,b) with A in Gn(m)

€
.and b‘ Z_m n

4

is greater than the number of keys A in Gn(m)
with 2 = a~%. . However, we prove in later chapters that the

“lois veryClarge when n .is

number of keS(s A with A= A
)1ar’g‘e. These results show that an exfla-ustive searc;h to
find the key A used in this cryptosystem is practically
impossible when n is large.

Levine [ 9], [i()] has systematicqlly investigated
tl'}e viabil‘ity of using such “matrices A with A% '= I (mod m)
as keys for cryptosystems. He has restricted hims;elf for ,
- the case»i\xh = 26 and n = 2,3. The cryptographic analysis
outlined in [10] are applicable only to the cases n = 2 and

n = 3, and a natural generalization to values n > 3 seems

not possible.
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' ’ Our results given in Chapter 1V are quite general,
. although not conclusive. We believe a more thorough
« R ! \ :
- cryptanalysis is necessary ‘before we can conclusively

¥

establish the superiority of using involutory matrices

with entries in 2y - See Chapter VI for more details.
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T _ CHAPTER IV
! ) ‘ <

Solutions of A2 = I (mod m)

In this chapter, we develop methods to count and
characterize the number of n xn matrices A over Zm for
which A2 = I (mod m) . Our characterization is completes for

any n and any prime power modulus. For any modulus m let

e: .
pi:L , the prime factorization of m. Then,
l“ .

m =
i

=t e

Theorem 4.1.3 establishes that sn'(m) can be computed from . .

. e} ' S
s (p,7), 1 =1,2,...,2 . Hence, in principle, we have a

n'vi
complete characterization for any modulus m. The knowledge
of the size of the solﬁtion space for A =II (mod m) enables -
5. critical éomplexity analysis that we discuss in Chapter VI.
Recall from Chapter III that the order n of a chosen
matrix characterizes the block length; and m is the size of -.
the‘ alphabet from véhich the plain-text is built. In ‘vievaw
of the results proved in Sections 4.1, 4.2 and 4.3, we
assert that there is abundant availability of cryptograPhic
keys to support .the texts written in any natural lenguage.
In Section 4.1:‘ we dévelop a formula for s,(m) where
m is any positive integer. In Section 4.2 and 4.3, we find
exact expressions for m = p , pt and 2, 2t respectiv_ély-_

4.1 Formula for sn(m)

~er

The probkem of finding sn(m) , the number of n xn
matrices over Zm with A? = I, can be reduced to |

/ . ' '
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. have (h(a,b))2 =1 (mod mlmz) .

)
wherem = 1 P,
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. ) x e
finding the number of n xn matrices with AZ2 = I (mod pil)

v

, the unique factorization of m. We -2
S §

need the followin;]\l‘emmas:

Lempa 4.1.1

Let m, and m, be relatively prime and let

2

h:2 x2_ » 2 be an isomorphism. Then, for a in 2

my my, - _mm, 1

o

and b in z, with a? =1 (modm;) and b? = 1 (mod m,) we
2 . C

Proof
Follows from the Chinese Remainder 'i‘heorem.

Lemma 4.1.2

Let m; and m, be relatively prime. Then,
' (i) The product ring M (m) xM_(m;) is isomorphic
to M_ (m m,) .
(1i) If h denotes such an isomorphism, then
lh(Sn(ml) X Sn(m7)) = Sn(mlm?) 2s
Proof l
(i) Letm = mm, . We know thag:“Mn (m) is a ring.
By an obvious, extension of the Chinese
Remainder Theorem, we establish the isomorphism \
| between Mn(ml)x M (m;) and M (mymy) .
(ii) Let A be in S (m;) and B be in .Sn(mé) . Then

(h(a,B))% = h(A,B) -h(A,B)

(3]

h((a,B) - (a,B))

. ="h(a%,8?)

¢ e ven — = - . P S s R AR bt
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then h(

have th

s e e mmaemar e wtameee RS AE.

K}
= h(I (mod m,),I(mod m,))
= ;(mod mm,).
Hence, the proof is complete. /
L ' ej
it is easy to see that ifm = m, where m., =P; o

i=1

S;(my) x «o. x Sn(ml)) = Sn(m). As a consequénce, we

e following theorem:

Theorem 4.1.3 . )

h

2 t
. Elsn(mi) .

ei .
If m = P then“sn(m) =

i

I=»

1

T

3

Now, it remains to find sn(pt), t > 1, for any prime

p. The following two sections are devoted to developing

an expression for sn(pt) .

4.2 Solution for sn(pt), t>2,p >2

]

m pt

n> 1.

-

In this section, p always denotes -an odd prime,
with t > 1, and n is a fixed positive integer with

: : P
We start Wth a simple proposition.

Proposition 4.2.1

© Proof

S, (p) has only two elements.

Note that Zp is a field. As n = 1, every element in

’Slgp)‘ is an element of 2, such that a? = 1 (mod‘p)l‘ This

equaﬁion has exactly two soclutions, namely 1 and p-1 in 2

matrix.
A Y

Eis w g i T, SN b s sy

From now onwards, we assume n > 2 and A is an nxn

p
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. ’ Proposition 4:2.2
' If A2 = I (mod p), then : ) S
(i) A has eigen values *1 (mod p), .
’ and (ii) A is diagonalizable. ' P
Proof .
5
(i) Since A* = I (mod p), the eigen values of A are
the roots of the equation x? -1 =0 (mod p).
- i.e., x = }1 (mod p) are the eigen values.
Yoo (id) Let. E,, ‘!and E_, be the eigen s dces of A
: corresponding tc; the eigehaﬁes ‘+1 aixd -1
respectively. Then for a vector v in zp,“n"
. , 'Av+vis inE_'_1 andAv—yisinE:l. i
Further, v = %[ (Av + v) - (Av - v)] gnod p). 1
- {: | Thus, every v in Zp,n c/an be written“as a sum
v : of vectors v, and v, with v, in E, and v, in -J) i
E_, - Hence by Theorem 2.1.11, we prove that A \ i
is diagonalizable. | | | j
Corollary 4.2.3 - . ° - |
. Let A be an nx n matrix over Zp such that A’ =1
. (mod p). Ifall the' eigeh values of A are +1 (-1), then
A= I (mod p)da = -I (mod B)).
Frclm our definitions in Ch'apter' I1, it folld@glthat
n :
(1) Sn (p) = V] Tk (p), and it is a disj_oint union.

k =0

~ (i1) Let I denote the s x% idenhtity matrix. Then,

/

every matrix in T,(p) is similar to

P
§
:

é.
W
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The following proposition gives a me thod to

compute |’1‘k ®)|. 5 ~ : ! -7

P}oposition 4.2.4°
- .
* , o) © 9, ()
For 0 < k<mn, [T (p)| =-
- r 1tk gk(p?gn_k(p

y with g,(p) = 1.

Proof
Let A be in Tk (p) .  Then, A is diagonali\zab,lg. |
Thgrefore, there is a P in Gn(p) such that A = E;DkP"l {mod p)
I, 0 . _
where{ Dk = 5 —In ) (mod p). Hfaweve?, pt:he co;Llectlon

{Pka‘l :P in G, (p) } has duplichtioné._‘ -
i .

a

k
Then, the first k columns of R indepehdent vectors are .

v

Let R be in Gn (p) such that RTp R = D) { mod p)'.‘

chosen from the space E_'_1 , and the remaining (n - k)

colu{pns are independent vectors chpsen from the space E_ -

) métriges R such that - . -

Thus, there are F]? (p)-gn_k {p

-1 _ ~ -
RDkR = Dk (mod /p) . ‘ ‘ ) 4

Now, £ix/a P in G, (p). Tet there be Q in Gn(ﬁ) such

that pD, P = Q@7

. (mod p). This gives, (0 P)p (¢TI H)7} =

. . -1 . '
Pk' i.e., withR.= Q P, we ?et 9, (P)* g, _% (p) matrices Q

such that P, P~ = 07 (mod p). . ' ’

¢

T T T T T T
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‘r ‘s, Thus, each element in’the,collecfion . ,
}P‘leP:P.in G, (p)} is guplicat?d'éxacily gk(p)-gn_k(p)

:
-

v " times. Hence the wesult.
’ 'd

N we biye'ﬁhe,fqrmula’for s (p) in the following

) theorem: ; )
A 4 . o ¢ . <@
o Theorem 4.2.5 i
J . s_(p) xf e h g, (p) = 1.°
‘ [ 8 APl = ) with g,(p) = 1.
. n= k=0 9 P9k (P) .
Proof |, a
: From our rem§rksfp§eceding Proposition 4.2.4 we have,
. & © Oy n // - N
\ Sn(p)'= U T, (pJ. Therefore, )
k=0 /p . —
. . . o/ . .
B ( ./ n .
T C o . sppde= | Ty (P |
. ., : . X k=0 . ;
; /A .0 g, (p) ) ‘
= from the above proposition.
/ Lo I, @ ProF

" " / ) - 1
! s " P : .
X : T ’ Spb, when the modulus is an odd prime p, we not only
. ‘ ‘ -
. «‘knqﬂ the number of matrices in Sn(p), but we”also know

O\NL?k(pfl, 0 <k <n.. W¢kcan generate matrices in Tk(p)"bYD

L g

STIDkS with § in G_(p). Oux interest now is to investigate
* & [ .

. the structure of Tk(pt), t > 2. Towards this, we need
‘ o

results extending the similarity property of the matrices

in T, (P). - ' ‘ | ’ ‘ ~H
1 i
We definetx:Mn(ptY ijn(pt—l)'by x(A) = A (mod pt-l)
- - ‘ ) t t=1. ' ¥
for t > 2, It is clear that x(S_(p )= 8S_(p ) and
v ¢ "'?' N . n n .
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in the following Theorem, we prove that there are P

[ -

x(r, (%) = 1, (pF!

Ty ).

©

We' say that Y in Tﬁ(pt) is an extension of X in

- . _1
'I‘k(pt 1) if x(Y) = X. Note that for a given X in Tk(pt )

>

*there may be more than one extension in Tk(pt). In fact,

2k (n=k)
. t
extensions of X to Tk(p ).

Theorem 4.2.6

Let t > 2. Then T

-

(1) Every element in Tk(pt-l) has exactly
ka(n-k) extension to Tk(pt).

. . -

s 2k (n=- -1 .

(1), Im %1 = p™ ) |p, 7Y ;

.

(iii) * All the elements of Tk(bt) are similar to

Proof

We use induction on . t./ So, let us first assume t =2,

4 (i). Let X be in ?k(p). Then, either

i

(mod p) or there exists an S.in
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. S A R
( o - D (p) = |——1T———] (mod p) and
T L ~
n-kJ
| k ) _
Dk(pz) =|—-4———| (mod p?). Note that
. :.? . 0 -In-kj "
. “ _ 2
Dy (p) = Dy (p°) (mod p).
' ° ‘ o o
Case 1l: X = Dk(p). ; - . _
If Y is any extension of X, then by definition -
_x({Y) = X. Therefore, Y =X+ PQ, (mod p?) for some
| in M . -
Q, o (P) ?
i.e., ¥ = D (p) + pQ, (mod p?)- . \ . .
’ | - 0 L ; '“1
( = + pQ,, (mod Pz)
RS (0| P - Wy
. ' . o .
: : (1, | o -\ (o I 0
= 5 - + A ,‘% . ]

z : ‘ + pQ; (mod p?)
E ' = D (p2) + pQ (mod p ).where ' '
f‘ ' v
) 0 l 0
¥ :
. Q=0 +
0 @ - T,
Y .
3 Thus,
H w2 2.2 2.2 ; N '
f_ ¥* = (D (p*))* + p%0Q° + gD, (P?)Q + QD (p?)) (mod p?)
z If Y-is in Tk(pz),.then Y2 = I (mod p2). Further,
: '(J ‘ (Dk'(pz’))2 = I (mod p?). ".}:'herefore, the above .

- N P ‘ vaa PSRN S N vt oo 0 iy A TR L R s i
e . - - . N
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A

*

B

[P P

equation gives,

I=1*+%

0 + pXD, (p?)Q + QD (p2)) (mod p?)

N e, Dk(pz) Q + QDk(pz) = 0 (mod p).

But, Dk(pz)(mod p) = Dk(p)imod p). ' - ,

Therefore,

}
Now, leé Q

g is k x (n

Dk(p)Q +QDk(p) = 0(mod pP).c... Ceeeenn (4.1)

a 8 «
( : ) where 2 is a k xk matridd,
Yy | .8 .

]

. . N ’
k) matrix, vy is (n - k) xk matrix, and

'§ is (n ~ k) x (n - k) matrix, over Zp.

Then, QDk(p) + Dkﬁp)Q = ( 0 _25)(mod-p). = :

From (4.1),

Q
Y 0

.

<
fl

. . 124
D, (p°)

chosen in p

‘Y‘ Therefore, Dk(p) in Tk(p) has ?

extensions.

Case 2: X = s']Dk(p)s with S in G_(p).
7
Then, S XS~

' has extensions of the: form Dk(pz) + pQ{mod pz) with

-

0| 8 -
( ) with B,y arbitrary. Thus, //) :

°

2a 0

-

we get a = 0 = ; (mod p). Hence ‘ -

0 B
+ p( ). Since ¢ and ¥ each can be
7T !

' ’ , : 3

k (n-k) ways, we ‘have ka(n-k) choices for

2k (n-k)

1 1

= D (p). Therefore, by Case 1, S Xs~

s W x £ Y krabes et s . e
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~ | 0| s _ ‘
' Q = ( )(mod p). i.e., SXS 1(mod p) has exactly
Y 0 ' .
pzk(n-k) extensions. Hence, X has exactly ka(n~k)

L)

extensions. 1In fact, exténsions of X are of the form

0 8

S—i(Dk(pZ) + pQ)S(mod p?) with 0 = ( )(mod p).

Y 0
This completes _the proof of (i).
(%})’ From (i) we have
2k (n-k :
|7, (*)] = p '(“ )]Tk(p)l.

, (1ii) In (i) we have proved that elements of'Tk(pz)

are of the form S—I(Dk(pz) + pQ)S with 8§ in’

‘ 0 B
(; , Gn(p) and Q = (——%——)(mcd p). Let
” Y 0 —_
‘ ' by ‘
. ' 1 0 -8 R
I Q' = 3 (mod p and R = I + pQ' (mod p2).
— - Y 0 .

Then R = I - pQ' (mod pz). We claim that

\ B . _R“ (D#(p?) + PQ)R = D, (p?) (mod p?).
To pro?e this, consider
i‘R“1 (Dk(pz) + PQ)R = (I - pQ')(Dk(p2) + pQ)
i} ‘ (I + pQ') (mod p?)
! )

(D (p%) + p - pQ'D, (P?)) (I + PQ*)
(mod p?)

A 3 <:.:
e

7/

[

/ L | D (%) + pID (p7)Q" = Q"D (P?) + Q)

O ‘ " (mod p‘)...'..(4.2)

9

©n e aman
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N]

- 0 -8
. -Now, D, (p2)Q' — | (mod p)
‘ k . -Y 0

" o'p, (p?) = X %1 f (mod p) . : H
, L W P

~

Hence, Dk(pz)Q' - Q'Dk(p?) = -Q(mod p).

i.e.; Dk(p2)o' + 0'D, (p?) + Q = 0(mod p).
Using this in (4.2)*we get v

R-le(pZ)R = Dk(pz)(mod p?).

Hence, the claim is proved.

, J
Any element ¥ in T, (p?) is of the form

<
Il

S'l(bk(pz) + pQ)S(moa 22) | i ‘ v

i

s"n‘l(ok(pz))ns (mod p?)

Hence, the proof of .(iii) for t = 2 is complete,
Thus, the theorem is proved‘for t = 2. To complete
the proof by induction, we virtually follow the same steps,

Any extension of Dk(pt-l) in*Tk(pt-l) can be proved to be of

t 0

- _ - - ‘ B
the form Dk(pt l) +p lQ (mod pt) with Q = ( )(mod p).

Y 0
L -1 t-1 : . t-1
Hence, any element X = S Dk(P )S with § in Gn(p ) has

t-1

extensions of the form S—I(Dk(pt) + p Q)8 (mod pt) with

0 | 8. o
Q= ( ‘) (mod p). It can be proved to~be similar to
y | O

Dk(pt) by choosing R = I + pt-IQ'(mod pt) and -

.
\ - . >




T N ’ '. °o » ‘O
- 0 _B . - '
‘ Q' == ——}-——- (mod p%). _
- ‘ Yy | 0
. < _ .
Thus, the theorem is proved.
° From the above theorem'and the fact that Sn(pt) =
4
Q n t .
U Tk(p ), we obtain our main result giving the expression
k=0 '
for s_(p%). ~Precisely we have,
n ol
1 - . !
Theorem 4.2.7 ' | ' . . [
Let 0 < k < n. ‘'hen, ' : ;
. - »

z(t-l)k(n-k)lTk(p) Il t > 1

1) |1 (Y] =p
p2(t—1)k(n—k)

T, (p)
0 l k l N

=
™
L]
=}
~—~
e
S
[
e~

k

" 2(t-i)k(n-k) ‘P
P g, (p) g (p)
0 k n-k

o_—,

$ I3

]
il 3

.’ k
Finally, we describe the generation of a matrix in -

Tk(pt) by characterizing its structure., We claim that if

elements of Tk(p) are generated successively, then we can

: : 3
g‘ generate the elements of Tk(pt) for t » 1. . §
' (0| s - , : %
Let _F(p) = :g is k x (n - k) matrix and v is . ‘
w Y10 . !
. ' € (n - X) x k matrix over zp . g
//// . & ’ . ! §
/ ' o ;
. Then, |F(p)| = pzk(n kY por o > 1, define . T
%" | . E ‘ [} L+1 r
Lo ‘ Gz = {B:B = I + p*Q(mod p ) where Q is in FKp)} ,
k - R g
? . We ‘'know that all the elements T#{pY are of the form
3 - *

-1 . .
S DkSp)S Ylth S in Gn(p).

A
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I : R

.' ' Choose Sj for j = 1,2,...,|Tk(p)| such that
0 -1 .
Tk(p{ = {Sj..Dk(p)Sj : 3= 1,2;...,|Tk(p)|}
Let Hy = {Sj(mod p):j =1,2, ...., Tk(p) as chosen above}
Define H, = {B:B = RS(mod p2?) with R in G, and § in H,}

©H =6,-H, L | -

- ‘43 {B:B = RS (mod pf) with R in G, and S in H,}

= Gz;Hz

n\\ . . b k_/ )
Ht = Gt—HHt-l for t > 2
Then, Tk(pt) = {B-le(pt)B(mOd pt):B is in Ht}'
(; Thus, starting with any element in Tk(p), we

generate an element in successive Hi's defined above. We
finally arrive as an element of Tk(pt). In fact,
generation of all the elements of Tk(pt) is simple, once we

know how to generate all the—elements in Tk(p).
- . .

i 4.3 Solution for sn(zt), t > 1

In this section, we characterize the solution of
matrices A? = I (mod Zt), t > 1, and also derive an
‘expression for sn(Zt). We first state and prove a basic
result.

Lemma 4.3.1 -

The equatibn x2 = 1 (mod 2t) with x in Zm, m= 2

‘é a has | S :

<o butink S s S W > ' L e e A b e e e




and
Proof

Case 1l:

Case 2:

Az =1

[

(1) exactiy one

solution if t =1

(ii)l\'exactly two solutions if t =

2,

(iii) exactly four solutions if t > 3.

For t =1, X = 1 is the only solution. For t = 2,

it,is clear that X =

Let .t > 3. The

as a solution only if a is an odd ihteger.

n

equation x? = 1 (mod 2t) has x = a

Pz

t] are the two solutionms.

fore, let a = 2% + 1 where & is an integer > 0.

Then, a? = 1 (mod Zt) impiies that

-2d

+

a8

422 + 42 = 0 (mod zt).
i.e., 22+ ¢ = 0 (mod 2577
ie., 2(s+1) =0 (mod 2%,
i.e., either 2t77 divides ¢ or 2%
i.e., either g = a2t-2 or ¢ = a2t—
. - . t=1
integer a, Then, either a = a2
or a = a2°! = 1 (moa 2%). Thus,

0 or l{ Hence,
a =21 (mod
solutions to 'x?
ythe lemma.

We first consider

(mod 2) when A is

a=™" {mod 2t) or

t

=1 (mod 2%) in 2z

b’

ivides 2 % 1
1 for some
1 (mod 2%)

hould be

27). Thus, there are only four

" This proves

the number of solutiTns to

a 2 x 2 matrix over

case, S, (2) has only four élements as liste

.l

. Por this

elow:

There~

42




JRERS below:

‘. ) a b c a . ’
' 1 0 0 1
0o 1 1 o )
1 1 o 1
106 1 o

It is not difficult to enumerate the matrices for

-~ m= 4 and n = 2. 85,(4) has exactly 28 matrices as listed

AN

[
w,
[
TN
aQ p
[sTEEN 3
j ——

\ a § c 4d
0o 1.1 o0
.0 .3 .3 o0
. 10 0 2
—— 1 0 2 U
: 1 2 0 1 )
/ 1 2 2 1 |
1 0 * 3 )
‘ 1 * 0o 3 ’
1 242 .3
N -2 1 1 2
k / > 3 3 2
w0t 3 2 2 1 Y .
3 p * 1
’ 3+ g 1 . )
3.0.0 3 )
30 2 3
3 2 o 3
3 2 2 3

*mearis any element in %, .

. -
|
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After eliminating duplicates in the list (that
might arisé when * }s substituted by an element of Z,) there
are only 28 elemenés. Our expression for sn(zt) givén
later agrees with this count for t'= 2, n= 2.

\First we calculate the number of matrices in Sni2)
and then proceed\to.calculate'the nuﬁhe; of elements in

Sn(Zt) for t > 2. The following.three lemmas play an

essential role in computing sn(2).

" Lemma 4.3.2

‘Lemmat4.3.3

Let A be an n *n matrix over Z, such that
A? = I (mod 2). Then, the eigen space E, of A corresponding

to the eigen value 1 has dimension at least n/2.

' Proof

Let V 4 and let V be a complement of E. in
Sn 2,n !

v. i.e., Vn

n E, ©V. Since A2 = I (mod 2), we have for

any v in Voo AV + v is in E;. Consider the linear map

A+ I:v » E,. 1In particular, consider the restriction of

A+ I toV. We claim thaf A + I restricted to V is injective.
For, if v in V is such that (A + I)v = 0, then

Av = v (mod 2), and hence v is'in El.l Since V N ﬁl = {0},

.

we have v = 0. Hence, the claim. Therefore, dimension of

V £ dimensions of E;. But, dimension of V + dimension of E,

4

= n. (Hence, dimension of E, > n/2, and the lemma is prove&.

n » ’ .
Let V_ = Zz,h and 7 < k < n. Let V be a subspace of

V, of dimension’k. Let d be the number of matrices in Sn(Z)

4,

PO Rty ot i P
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i{ with V as eigen space corresponding to the eigen value l.‘
Then, 4 is the caédinélity of set GL(n - k,k), where
GL(n - k,k) is the set of all k x (n - k) matrices over Z,
of rané (n - k).
Proof .
ﬁeg A be in Sn(Z) such that eigen space of A
éo)%é;pdnéing to 1 is V. Put B = A + I. Then,'
B2 =A2 + 2A 4+ I =2(A+ I) =0 (mod 2).‘ Let W be a com-
plement of V inV,. —i.e., V,=VeW. Since the null space
of B is V, and B2 = 0, we have B maps W into V and the
restriction map B:W + V'is injective. Hence, B(W) is an
(n - k) dimensional subspace of V. Hence, the number of ,/)
B's is equal to the number of k * (n - k) matrices with ra;k
{ (n - k) which is |GL(n - k,k)|. Since B = A + I, the
result follows.

S Lemma 4.3.4

For 0 < k < n, the number of k dimensional subspace

i o g (2)

Vo of Zabn is giyen by i

PR ’ ° .
9 (2)g,_, (2)72

(n - k) °

s Proof

L

Let V be a k dimensional subspace of Vn = 22 n
!

Consider a nonsingular/Mapping TV V such that T(V) = V.

) A A,

A matrix representation of T is of the form ( ) where
’ 0 | A3

Ay is in G (2), A; is G _, (2) and ‘A, is a k x (n - k) matrix

r

e S

-.over Z,. The total number of such matrices are

©

#
i

A
g

¥

L

O R e



9y (2)0g_ (2) 42

46

k (n-k)

Further, the number of k dimensional subspaces of Vn
is same as the number of nonsingular matrices S over Z, such

that S(V) # V, unless S = I (mod 2). Thus, the required-

e ST

agn(2)

9 (2)° n_k(g)-z

number is given by the quotient X(n-h *

J i
Now, we prove the following th oreﬁ which gives an

Y g

T

expression for sn(2).

P

Theorem 4.3.5 ;

2
Let k be a nonnegative integer, Then

(1) T ()] =04if 0 < k< 5.

g, (2)|6L(n - k,k)|

(11) |, (2)]

n-k if—z'iks_n.
g (2)g, (2) 2 P

gn(2)|GLQn - k,k)| C ‘
k (n=k)

(1ii) s_(2) = | ) ‘
Bken g (205, (2) 2

‘ \

Proof ‘ ’ \

i

Recall from the definition that TL(Z) is set of all
"' A

elements A in Mn(2) such! that A2 = I (mod 2) and the

dimension of eigen space E, corresponding to the eigen value
1 is k. \

By the Lemma 4l3.2,~Tk(2) is an empty set if

0 <k <35. This proves (i). ..

Lemmas 4.%,3 and Lemma 4.3.4 together give result (ii).

-

' * n
To prove (iii), we have sn(z) =

Y T, (2) and kaz) is

0

3
H
H
|
i
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N

. empty if 0 < k < 3. Thus, s (2) = ) |’§‘k(2'){.
. / n .

/ <k <

NS

. /'}
Stibstituting the value of ]Tk(2)| from (ii), the result K
follows. The proof ¢of the theorem is complete.

Example 4.3.6 N ' = .

.Let m = 2 and n = 2. Then, Tk(2) is not empty if
and only if 1 < k < 2., By the above theorem,

' . g,(2)|GL(1,1) ]|

' ' ¢ |&“
5 ) . ,= (22-1)‘(22-2)'l=; | -
1°1°2 - ) ’
r ’ ' -, H
: » - g, (2)|6L(0,2)] i
’ lT; (2)] = : : -

g, (2) g, (2)-2° | *

€ ST N

In fact, T1 (2) = {(0 l)'(l ' 1)1(1 0)} . i . '
] 1 0o/\o. 1/ \1 1 .
.4
l O ' '
and T, (2). = . : .
2 {(0 l)} v, : | /

(See the listing of S, (2) preceding Lemma 4.3.2.)

R B o

! ] . r.

e
bhon et

Example 4.3.7

. ¥ .
.o

Let m = 2 and n = 3.  Then, Tk_(z) is ﬁonempty i:f and

IR

5 § only if 2 < k < 3, : . 0

- » . . 3
T - From Theorem 4.3.5 (ii), we get«sz(Z).l = 21 and «_/
" lT,(2)| = 1. Therefore s, (2) =,32."

The matrices according ‘t‘p the dimension k of the

eigen space corresponéiﬁg to 1 are listed below: o
J‘ -

o , .\ - : | L,
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. .
v
£
x '
E
\
B
M a
i
e
3
£ .
AR
NS
N
R
. - v
»
x
3
La}
~ .
. 1..,
B
y
»
)
.
Nt
LY
£ !
b
‘{A
1
ke <
.
b

 cipher text.
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/7 . &
1 0 0
T3(2) =43{0 1 o . ‘ ‘
. 0 01
T,(): ~ . ,
vy : 1 0 0\(1 0 b, .
: - {b 1 0“){0 1oby |, . i
' \ c,'c, 1J\o o 1/.

o O
o
—

Q
—

H e O R O
-~ 0 O
SN—

- PR
o -
- o
T o

e S G SN — N ,.

.

| 1 o) /1 1 b
1o offo 1 o
. 0 ¢, 1)la o 1
: : 7
) 0 1. 1) {1 o o\f1 o o} -
’ , (o 1q.(1“o 1 /0 01
\i 1 o/\1 1 o)\o 1 of
“ . o 1 o) o o 1\11
' 1 o o0f,f1 1o o 1}.
- \o o 1/\1 0o/)\o 1 o

o P

where the b's and c¢'s are arbitrary in 7, .

Levine [10] has studied the suitability of

L

involutory matrices of order 3 with m = 26 for encrybtion.

In his study the matrice§ in §,(2) play an important role.
Since there are only 22 matrices in S,(3), Levine was able
to investigate their properties in depth and formulate

-

necessary conditions to detect the givep patterns in a

We comment, however, that such properties and
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.. . \
-techniques cannot be extended over either. to matrices of N

ordar n > 3 or m not equal to 2p with p an odd prime. We
further deal with this in Chapter VI. For now we shall try
to extend our theory for the case m = 2t, t > 2. n

Propogition 4.3.8

Let A be an n xn matrix Over 2z, such that

‘A2 = I (mod 2). Then, there exists two integers r and s

with 0 < r <nand 0 < 2s < n such that A is similar to

[

A -

funere I_is the rxr identity matrix, and K,

e e s W =

is a 28 x 2s matrix which-is the direct sum of s matrices of

R -

1 1

the form (
0 1

)(mod 2). 1In fact, if k is the dimension of ' :

the eigen space corresponding to 1, then s = n - k and | 4
r =2k - n, '
‘Let E, be the eigen space of A correspopding to 1

and let its dimension be k. ,Then from Lemma 4.3.2, we

know that k > % . Let {V1’v2"“’vk} be a basis for El‘:

By choosing as outlined below, we form a

¢

vk+1,vk+z"“'vn

i .31 o= .o .
béf ii‘{vl i 1,2, ,n} for 22'n

For any vector v in 2 n' Av + v is in E, . In

2'
|
particular, for a nonzero vector v not in E, , Av + v is a

nonzexo vector in E; . Hépce, we can choose a nonzero

vector v not in E1 such{that Av

K+1 + v = vi for some

k+1 k+1

iwith 1 < i< k. Since n - k < k, it is. possible to choose
’ -, '
vk+2,....,yn such that



¥

b T e T

BN 555 ™00 N oA T ST
" .

vlu-o,vr’ulpu2'00 -A,Uzs

-

and

(1).
v
(ii)

Put s

Av, . .

B -

B

+ v € {vi:i = 1,2,...,k} for

k+3j k+j
j=1,2,00..(n =~ Xk), -
Avk+i + Visi # Avk+j + vk+j if i # 3.

=n-kand r = k - s.

X

necessary, and relabelling, we can assume that

Thus,

Au

Av,
i

Au,

.

Au3
Auh

28-1

A
UZS

is a basis for Zz'n . and

’

=v i=l’2'.."r

[
MC
.+
[
X

6{34

\
= u .

-

the matrix of A with respect to this basis of

(1,

0 A

\

e O O O

Hence, the result

{mod 2).

0
0
1 1..
0

1..

s O O M o
O O O ©

/

is proved.

By combining Theorem 4.3.5 (ii) and the above

.P‘ . . " : .
proposition, we obtain the following corollary.

50
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By resequencing, if
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Corollary 4.3.9 ‘ ‘ A '
lr The number of matrices A in Mn(2) that are similar to
: ) : : ;
+ where r + 25 = n, is given by g
gn(z)lGL(n - klk)l . ( ¢
: with k = r + s.
g (2)g__, (2) 2°(7K) ]
Next we'findysn(d). Recall that a matrix)}A is in
N | ~ , .
Tk(4) if and only if A (mod 2) is in T, (2). An element Y
<2 k
in T, (4) is said to be an extension of X in T (2) if
X =Y (mod 2). The following theorem gives the count of §
such extensions., . ‘ i
. ' ]
~d Theorem 4.3.10 - ‘ o
(“ Let g §_£~§ n. Then,
. : 2 -k)?
) (1) Every element of Tk(z) has exactly ?k +(n-k)
Qb//7 extensions in Tk(4)' il .
(ii) IT (4)|‘ = 2k2+(n‘k)?lTir(2” )
k - ‘ k :
/ ' .
. . . \ ] - ;
N . ! 2 - 2 ) '
g - (1i1) s (4) = -] 2K o)) | |
. . ’ n ) . i
7k zn i
-~ “ ?
(Recall that the value Of lTk(Zrl is given in
Theorem 4.3.5.) '
Y Proof A <
_— : . .
, Proof of (i). Let Dk = (mod 2). Then,
A ‘ - ’ - :
: ':} we gnow'that X in TQWZ) is similar to D, - (See’ Proposition ,

F- 4

-

wn

b
et
s

/ @
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B .

I[ 4.3.8.) We treat thg case X = D (mod 2),and X is similar

to Dk separately. . ¥

Case 1l: Let X = Dk (mod 2).

If Y in Tk(4) is an extension of X, then there is a

Q, in M_(2) such that ¥ = X + 2Q (mod 4). Now /

(mod 2) with K25 as the direct sum of

PR

et v

1 1
0o 1

Al o

as a sum of two matrices K, (4) and 2Q' where -

‘8 matrices of the form ( ). It can be written

K, (4) is the direct sum of s matrices of the form * - o

i

31 .
(0 l)(mod 4), and Q' is the direct sum of s

matrices of the form (0 0)(mod 4. Hence, .

14

Y = + 20 (mod 4)

, 0 0| o ‘
+ 2 + 2Q, (mod 4)
0 | x,(4) o| @ .

Dy
Ir

]

D, (4) + 20'(mod 4),

I, ' 0 5 ’
. and
o‘[ K__(4)

where Dk(4)>=

o - {0 0
‘ . Q= + Ql(méd 2). Hence
" . 0 Q/ '

. 1
o

¥* = (D, (4))% + 2(QD, (4) + D, (4)Q) + 40* (mod T

.

A b e e Rt S 0
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Usigg the fact Y2 = I(mod 4) ané~(Dk(4)i5'= I(mod 4),
we have 2(QDk(4) + Dk(4)Q)'= 0 (mod 4)
i.e. QD (4) + Dy (4)0= 0 (mod 2)

i.e. @D+ DO = 0 (MOd 2),eceneecneenecss (4.3)

Now, D = (med 2)

0 0 o E
I + (mod 2) where W is the
n 0| W

. 01
direct sum of s matrices of the form (O 0). Put

o] o) . : .
U= ( ). Therefore, D£‘= I + U (mod 2).
ol .w _ n

Substituting in (4.3), we get that

QU + UQ = 0 (mod 25 ciereassaeseae (4.4)

0..[%

Let Q= ( ) where o is rxr matrix, B is r X 2s

y ¢

matrix, r is 2s Xr matrix, and § is 2s x 2s matrix

over Z,. Then, from 4.4, we get « is arbitrary, and

BW

0 (mod 2) ..eeevveeenaresase(4.5).

WY =0 (MOA 2) vevevnenasecavsas (4.6)

W6 +# 6W =0 (MOd 2) eeevvneennnasa(4.7)
(4.5) gives all the odd columns of B are zeros, and

(4.6) gives all the even xows of vy are zeros.
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, 3
B . /%1 %12ttt s f
(’ .  per 6= 2 22 2,28 | ppus, (4.7) gives
a,s,1 8,2 " 3.8, 28 ,
(31, 22 R S T )
" v a5, e TR T B
” § = a31 a32 a33 e a3,23 ...(4.8)
‘ 0 31 . 33 a3, 28~1
, . ' k 0 a23—1,1 0 ...\..:. h?s-l,ZS}
o with a's arbitrary ) ' 6

= “ Thus, Y = D,_(4) + 2Q (mod. 4)

a B Y
Dk(4) + Z(Y 6) {mod 4) with «o

. * .
arbitrary r xr matrix over'Z?. B is an ¥ *2s matrix

( .with odd columns having zeros. vy i$ an 2s Xr matrix
with even rows having zeros. § is an 2s x2s matrix

having the form given in (4.8). We can choose « in

2 . . r .
2r ways, B in 2rsAways, Y in 2% ways and ¢ 1in

252

2 ways. Thus, Y can be chosen.

4

k.2+(n-k)2

: . y 2 2
; r+s) +
. . 2( s)4s . _ 2 ways.

Case 2: Let X be similar to Dk.'

} Then, there is an .S in Gn(2) such that

Y . . L4
? " X = s"IDkS (mod 2). ,

¥ i.e. . gxs™! = Dy (mod 2).

L.

§ 1 kz'_"(n"k)z

By Case (i), SXs  has 2 extensions to

)

N LATRA R et & = i \
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- K2+ (n-k)? .
_ ‘ 'l‘k'(4). i.e. X has 2 extensions to Tk(4).
This proves (i). _
Proof of (fi). By -(i) each element of Tk(2) has
z )2 ’
// 2k +(n-k) extensions to Tk(4). Hence, the' result follows.
Proof of (iii). Recall that S_(4) = " U T, (4).
- ] n Dck<n X .
' 2" ="
» ) ‘
Tperefore, sn(4).= . |Tk(4H
%<k <n .

2, 2
+ -
L ETY
%ik <n S
Hence, the proof of the theorem is complete.\\\
. 5

For developing our theory further, we éaapt the

‘
+
. B .
¢
K3

following‘notations{in this section: : 3
F(1) () =
Let X (2) ML(2), o
Féz)(Z) = {B:# is a rx2s matrix over 2, with all ‘ y
: ' odd columns as zeros},
i -
. i

F3)(2) .

Y:y is a 28 x ¥ matrix over 2, with all
| -

even rows as zeros}

L ' ‘ ‘
Fé )(2) = {k:é is a 28 x2s matrix over 2, with the ~
! form given in (4.8)}

| , | H P . N " ' 1
and " FL(2) = {(Pl Pz):Pi6 Fél)(Z)y itz 4} |
A ' 3 Ty ' - .

8

3

e

B
¢

' . 2 : .
Note that [F{ ()] = 27 , [F{P 2y = |FP @)] = 2™,

] ¢ .
¥ «

WE A . aty A s WAL %
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' 2 . 2,02 24 (nak) 2
‘ |F)£l')(2)| = 22" and |Fk(2)| = o(r+s)“+s® _ .k j»(n'k)
. The extension of a matrix in Tk(Z) £o a matrix in-
( Tk(4) is established in the last theorem. Any extension
of,Dk in Tk(Z) to Tk(“ is of thei form Dk(4) .+ 20 w1th.('2
in F, (2), and any extension of S—leS(mod 2) in T, (2) to
* .

T,(4) is of the form S~ (D, (4) .+ 20)S(mod 4) with Q in \

H

F(2).

‘ Proposition 4.3.11

v

. Pl P2 . B ‘ ' v
| ‘Let Q = ﬁ% bg in'Fk(Z). Then, Dk("d) + 20 is . 1
. P, | 0} ’ -
similar. to Dk(4) + 2Q1 where Q, = —F (mod 2). 7 )
o 1o - ;i :

N

C Proof i
We want to show that there is an R in Gn(4) such . ;h
- that - | ( ‘ '

R"‘(Dk(4) + 2Q)R = D, (4) + 2Q; (mod 4)..... .(4.9)

It is sufficient to show that there exists an X in Mn(Z) S0

g

that R=1I + 2X (mod 4) and satis.fie.;: (4.9). First observe

that if R = I + 2X (mod 4), then R™' = T + 2X (mod 4). 1
Therefore, (4.9) is equiv‘alent to

: (nk(4) + ‘ZQ)R = R(Dk + 20,) "(mod 4) | )

% | i.e. " D.(4) + 2D {4)X + 20 = (D, (4) + 2XD, (4) + 20,) (mod 4)
: “i.e. Dy (4)X + Q= XD, (4) + Q (mod 2)

AL

l.e. . Dkx +1‘Q

XDk + Q](mod 2)

(:? i.e. _ DX + XD = Q + Q, (mod 2)

R UUUUUP SRS U . . -
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, .7 \Py | P

’ 0 | P, .
‘_ , 4 =( )(mod 2) trierieraasess (4.10)
? " l’ 3

We claim that such an X satisfying (4.10) exists.

Recall that if W is the direct sum'of s matrices of the form

}

' ~ ™
(O 1) and if U = (0 O), then Dk = In + U. Then,(4.10) /

0:0 0| W

is equivalent to

where X;) is rxr matrix, X

g is rx2s

mat/rix,‘ X; is 2s x r matrz:.x,and X, is 2s5x 2s matri.x over Z,.
‘: ~ Then, (4.11) gives
) XoW=Py, (mod 2) vevuvennnnnnes (4.12)
WX; = P3 (mod 2) ........c.000. (4.13)
B XWW + W, = P, (mOd 2) ...uveun.... (4.14)
- ' Recalling the’ structure P;,P;,P,, it is easy to see thz:\t
X,,X; ,X, exist, énd X, is arbitrary. Hence, the

proposition is proved.

Corollary 4.3.12

Every element in Tk(4) -is similar to the

Dy (4) + 2P (mod 4) for some P in F (2) with
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, {
J Proof

t "The_ proof follows from tHe above prdposition and the
following two obsérvations: ‘
(1) An extension of D in Tk(2) to T, (4) is of the
from Dk(4) + 2Q with Q in Fk(Z).

!

kS (mod 2), then any extensioh‘of‘

"X to Tk(4) is of the férm

.. , -1
s (ii) If X =5 "D

/

1

s‘l(Dk(4) +20)s™ (mod 4) with Q in F,(2). .

-—

.

Exa@ple 4.3.13 . ‘ o 3

Let m = 2 and n = 2. Then, Tk(2) is not empty if

and only if 1 < k < 2. Ifk=1, then s = 1 and r = 0, !

. 11 11 - . 1
(; Ko =10 1 (mod 2), and D, ={o 1]+ But, T, (2) contains -
all matrices which are similar to D,. Hence, ‘ ,i

{'1 1Y /1 o) /0 1 } ‘
T, (2) = o 1/\1 l/' 1 0))° If k = 2, then r = 2,

- 1 0 1 0\ '
s =0, and D3 = 0o 1/° Hence, T7(2) = 0 l} .

Consider the extensions of elements in T,(2) to T, (4).

' 1 1\ . ‘ . 3 1 “ b
.ExtenS}ons of 0 1 are of the form 0 1 +2 0 a (mod 4),

(:f 0 3.0 'fa 0
extens;ons of 1\\1 are of the form 1 1 +2 b a (mq? 4),

, 0 1 0 1 0 3 2 1
,  and extensions of 1 0 are 1 0/ {3 o/ L1 2}

2 .
(; rz)(mod 4), where a , b are arbitrary in Z,. In tetal,

‘:} there aré 12 matrice$, and hence |T;(4)]| = 12,

3

v
ey i o . 4
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Consider the extensions of elements in T, (2) to
T,(4). Since k = 2, we have r = 2 and s = 0. Thus, the

(l 0 1 0 a b 4’
extensions of. 0 1 are of the form 01 f-2 c d (mod &)

with a,b,c,d arbitrary in Z,. Theré are 16 sjgh matrices.

Thus, s, (4) = 12 + 16 = 28. This agreés with the
result for s, (4) obtained by the listing of S, (4) preceding
Lemma 4.3.2, and hence illustrates that our extension is
cor:ecﬁ. In fact, the extension is correct and cén be
verified for all values.

Although our method 6f extension is quite similér
to our earlier'method, we remark that all matrices in Tk(Z)
extendable ?o matrices in Tk(4), whereas not all matrices
in Tk(4) will have an extension in Tk(é). For example, if
k'= n, the identity I in T, (2) has extensions in T, (4) which

are of Xhe form I + 20 (mod 4) with Q arbitrary in M_(2).

Any exfension of this to T, (8) mdst\be of the form
I+ 2Q+4R (mod 8) with Rin M (2), and (I + 2Q + 4R)? =
=1 (mod 8).

i.e. 1\2 + 40 + 16R* + 40+ B8R + 8(QR * RQ) = I (mod 8). .

i.e. . . 4(Q% + Q) = 0 (mod 8).
ie. | Q° + Q=0 (mod 2).
i.e. ‘ , Q% = Q (mod 2).

Thus, if Q2 is not equal to Q (mod 2), then I + 2Q (mod 4)
in‘Tkﬂd) does not have an extension to Tkﬂ8). Below, we
give a necessary and sufficient condition for an element in

’Tk(4) to have an extension in Tk(B).

-
R
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Proposition 4.3.14

Let % < k < n. Then,h

o

(i) The matrix D, (4) +°2P in T, (4) with

in Fk(2) has an extension to

Tk(B) if and only if Pf = P, (mod 2), and the

extensions are of the form Dk(B) + 2P + 4Q

(mod 8) with Q in Fk(z)“.

(ii) If X = s ! (D, (4) + 2P)S (mod 4) in T, (4}, i

/Py | 0
with P ='k : in F,_(2), theh X has

0 0
’ extension to T, (8) if and only if P! = P, and

the extension is of the form

S™1 (D, (8) + 2P + 40)S (mod 8)-withQinF, (2).

Py (iii) If an element X in Tk(4) has an extension to
' \ 2 Ly 2
Tk(8), then it has 2ﬁ‘+(n k)* extensions.
Proof L

Let X = Dk(4) + 2P (mod 4) and Y be an extension of

. L ’ ’ - '
X to T, (8). Then, Y = X + 4Q; (mod 8), with @ inM_ (2).
i.e., ¥ =D, (4) + 2P + 40 (mod 8) = D, (8) + 2P + 4Q (mod 8)

with Q in M (2). Since ¥* = I (mod 8), we hgve
2 2 ) ' °
Pk + 4P¢ + 2(PDk + DkP) + 4(DkQ + QDk) '

=I (qu 8)--.-----‘010‘4.15)

- - s VLR 0§t S5t O SO G - TEome m ,
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‘ But D}i = I (mod 8), and PD, + D, P = 2P (mod 8) 3
Therefore, (4.15) gives ,
: ' 4(P% + P) + 4(DQ + QD, ) = 0 (mod 8) .
@ i.e. ‘Pz + P + D}(Q + QDk =0 (mod 2) ..... .e..(41.6)
Q, Q, L .
Let Q = where Q@ is r xr matrix, Q, is r x 2s .
" Q3 Qq . ’
4 - .
’ matrix, Q, is 2s *xr matrix, and Q, is 2s x2s matrix over 2,.
0 ' sz A . »
s [ 4 . - T
: \\ Then, DkQ + QDk = (mod 2) where”W is the
WQ, | WQ, + QW .

) : 0 1 .
R direct sum of s matrices of the form (0 0). Further, since’

i , P, | o \ ’ ,
(~ P = we have P? = Hence, from (4.16) we
' 0o 4
2 .
P? + P r QW
have =0 (mod 2), and Q, is arbitrary.
Q3W | wQ, + QW

This giVeé that Pi,+ P, =0 (mod 2), and Q € Fk(2). Thus

2
&

_ proof of (i) is complete.

1

Ty

(ii) If X = s'l(Dk + 2P)S, then SXS = =D, + 2P(mod 4).

k

¢t

'Row, X has an extension to T, (8) if and only if

~ Ld —1

. SXS = Dk + 2P has an extension to~Tk(8),'and this

happens if and only if Pf‘= P (mod 2). By (i), any .

extension of SXS ' is of the form D, (8) + 2P + 4Q

A
%;
X
»
{
p
i
1
‘\
i

(jf ' mod (8) with Q in F, (2). Hence, the extension of X

L]

. i L T R R s e e —
P Y i
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4 ’ is of the form s"(nk(e) + 2P + 4Q)S (mod'8) with

Q in Fk(Z,. _ .

(iii) Follows from the fact that le(Z)I =

e
" k?+(n-k)?
The proposition of proved.

The following theorem gives an expression for sn(a). -

4

Theorem 4.3.15

Let % denote the number of matrices Fh-in Mr(2) with

a

i . the property that Pf = P, (mod 2). We let 2, = 1. Then,

2 o
— n e
lTk(8)|— 2 ErITk(Z)I. Cons§quent1y,

1

2

. - N :

o i :
R s, (8) . L2, T (@], .
: ‘ n . fik:n !

‘; ) Proof
SR : RS . X2+ (n=k)?

L ’ The matrix Dk(2) 1nka(2) has 2 extensions
) in T, (4). These extensions are similar to Dk(4) + 2P (mod 4)

h
in F,(2). For given P, , tHere are

28 (r+s) _ ,2(n-k)k ‘ !

2F8 4+ 2% =< 9 matrices which are

similar to'D, (4) + 2P (mod 4). If P{ =P, (mod 2), then

° k2+(n-k)"

each of these mdtrices in fk(4) has 2 extensions

to Tk(8). Thus, if 2 is the number of P, such that \

P = P, (mod 2), then element Dy (2) in' T, (2)’ has

-

2k (n-K) . K2+ (n-k) 2, , 2 -
22k (n=k) 2k (n F) ‘e = 2? iy extensions to T, (8) . Since

1
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AT SO, A

. This has the following 8 sqQlutions. 1

Thus, ‘ 2, = 8.
Hence, S |T,(8)] = 24-8-|T, (2)]
' . | = 24.8
|T)48) | = 2%-25]T, (2)] .
.o = 2%:3
Therefore, . 52(8’ = 11.2% .

{ ‘ , . 63

all the elements in Tk(z) are similar to Dk(2), we have

n2 ' ‘ o
T, (8) = 2 lrlTk(Z)I where r = 2k - n. Further, since
' ®

v 2 *
U T, (8), we have s (8) = y 2P 2o 1 Ty (20 ]
%<k<n %:k

5,(8) =

Hence, the proof is complete. ) ' N S

Exalmple.4.3.16

Let m =8 and n = 2. Then, k = 1 or 2 and r = 0 or

2 actordingly. We know £; = 1. Let us.calculateéxz.

a by l a b\> (a b
Let - {mod 2) be such that = a
(o . [o] '

+d d o]

(mod 2). i.e., - ‘ n

& -
. a2+ bc =a (mod 2)
| : (a + d)b = b (mod 2)-
L B \\(a + d)c = ¢ (mod 5)
a2 + bc =4 (wod 2)

b D6 DEDC D DCIEDED -

The following proposition for m = 8 can be proved in a
manner similar to Proposition 4.3.11 and Corollary 4.3.12.

% _err.
I e

itz



Proposition 4.3.17 . S

Let % < k < n. Then,
Lkn N
P, | O
b V4 l
& (i) The matrix Dk(8) + 2P + 4Q (mod 8) where P = (———+——)
0 0
1 Q| Q).
-~ in Fk(2) with P2 = P_ (mod 8), and Q = in
1 1 ; :
) Fi (2), is similar to D, (8) + 2P + 4Q' (mod 8) where
v (R O
Q = in Fk(z).
o |0/ 7 _
(ii) Any matrix in‘Tk(B) is simllar to Dk(B) + 2P + 4Q
. Py 0 Q 0"
(mod 8) where P = , Q= J in Fk(2) and ,
0 0 0 0
)‘\ P = P, (mod 2).
- The following theorem gives necessary and sufficient
conaitions for the extension from Tk(zt) to Tk(2t+l), t > 2.
Theorem 4.3.18
Let t > 2, and 3 < k < n. Let
R ,
t+1 tsl 4 t ot
x =0, 2% + T 2%, (moa 2%) be in T (2%) with
k . i k
i=1 *
o ai 0
% P, = ( ) where o, is in M_(2) for 1 < i < t - 1. Then,
i ol o i r . - " =
3 t+1, L. .
(1) X has an extension to Tk(2' ) if and only if .
( “ $ i-1 E % i+5-2
: | I 2% 4 1 7 2M37% p. = 0 (moa 2%)...(4.17)
i=1 i=13=1 , 13 .

- I
for o= 1,2"0-,(t - 1)0 \

e

e e F 5 e e o e R
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' : ' : t+: : ‘
\ " ' (iiS If X has an extension to ?k(2 1), then it is of the
' | g | o
form X + 2% (moa 2%*!) with g = ( 1 ?) in F (2)
- Q Q
3 Ly

. and is similar to X + 2tQ' (mod 2t+l) where

, Q .| 0) .
Q = - \1n'Fk(2).

¢ 00 /
We prove using inducfion on t. 5
Propositions 4.3.14 and 4.3.17 give the theorem for

' t = 2. . .
Assume the reéult holds for the extension from _
- ¢ ) t-1 t . - =
ka(z ) to Tk(2 ). i.e., we have proved, K
C ' £-1 ts2 t-1 |
- Y = Dk(z Y + . £12 P, (mod 2 ‘) has an extensdon to

’

“+3
..

—~

N
rf

(=8

Hh

Fh

b

A

f ]

¥
~1
[ 8]
[
- :
g
[N
+
I &

2i+j-—2
1l

N~

Pip' = 0 mod 22

13 J

g, >
AL

£OX £ = 1,2,00u,t = 2 tveriinnnnnnecnannanae(4.18)

AR

. t=l .
- Now, let X = Dk(Zt) + 2 2'P, (mod 2%) be in Tk(Zt).

a ) i=1

v -

“~: t-1 . t-1 ) s

+ Then, X (mod 2 ) is in Tk(z ). Hence, by induction,
£ ,/ -

Q.

F

Y hypothesis (4.18) holds. Therefore, we are left with

proving (4.17) for'f-.= t - 1.

o
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ion of X to Tk(Z

t+

x + 2%(Q")  for somg Q" in M_(2). di.e., of the form :

66

) is of the form

P, + 289" (moa 2%*!) .

) (mod 2). Since this extension is' in

t=1 \ 2
] (2t+1), we have (D (2t+1) + L 2%p, +2tQ) =TI (mod 2t+lf.
n k i=1 i

We write Dk for Dk(?

+

Since Pi =

and Pka

P

t+1

) with no ambigﬁity. Then,

1

2 t‘fl‘i . t
Dk + L 2 (kai + Pipk) + 2 (DkQ + QDk)

i=1

t-1 . t-1 . )
¥ 2%'p, Vo2'p, |+ 2°%Q° +
i=1 /\i=1 2

I (mod 2t+l )%

t-1

»

t

i

-1 .
i+t
Z 2775 (pQ +QP,)

1

i ‘ t '
I+ :a'(ka‘i + P;D) + 27(D, 0 + QD)

i=1

t-1t=1

y ¥ 21+jRin +0+0=1 (mod 2%ty

i=13j=1

Y

o, 0
( = ) and D; =
0 0

t ,
+ 2 (DkQ + QDk) +

-~

r 0 '
o . « we have kai = Pi

28

i+ Hence, we have

t-1t-1

)

i=13=1

2

i+j

t+1
P.in = 0 (mod 2 ' )
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Q | 2
For, if Q = then DkQ-f-QDk =
‘ Q3 Q K,5Q;1Q, |Kszu+Q K,

67

: ~ t=1ts
} - - -2
227e + 2" P oo+ I ] Liri, Py =0
' . i1i=1 3-1 '

(qod'z ) cesessesses (4.19)
) t-2 . t-1
We claim that 2 (DkQ + QDk) =0 (mod 2% "),

00|00,k

0 Q +'Qszs
t-2 S I
Therefore, 2 (DkQ + QDk) = 2

K,693 104 "Kzsou'*ouxzs

: a, | 0 .
i
Further, all Pi are of the form (——4——). Hence, from
' ‘ 010

(4.19) and (4.20), we have

ta1l ,_ s
Z o1 P + Z X 21+3 ’p, {Ps =0 (mod 2571y (4.21)
i=1 i=13=1 3 .

Q, is arbitrary in Mr(2),
Q, + K 0, =0 (mod 2),

and e (4.22)
Ksz3 + Q 0 (mod 2),

3

K,gQ * QK =0 (mod 2).
(4.21) is condition (4.17) for & = t°- 1. -The set of

equations in (4.22) implies, Q, is in Féz)(z), Q; is in

‘ Féz)(2)~aéd Q, is in Fg“)(z). Hence, Q is in F, (2).

Sufficiency follows similarly.

T e AR o i e SR o
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"¢(ii) While proving'(i), we have proved that any extension

of X is 'of the form X + 2%0 (mod 2%%!) with Q in

Fk(Z), The similarity property can be proved as in

o

the proof of Proposition 4.3.11 with the help of
induction. h

Corollary 4.3.19

Matrices in Tk(ztﬁa) are similar to one of the : :

: . £, , o
matrices of the form Dk(2t+1) + 2iPi (mod 2t+1) with
‘ i=1 '
o, 0
Pi = and a; in Mr(2) for all i = 1'2"f'ft' and
0 0 :
. L 2 L.,
] 2t 1Pi + ) y 21+J'2PiP. = 0 (mod 2%) for
i=1 i=13=1 ] 4 f
2=l'2,...’t"'lo
Proof ‘ g

‘For t = 0, the result is well known. For t = 1, the
- result is given by Proposifion 4.3.11. 'For t = 2, it is
Proposition 4.3.11. From the above theorem and induction on . .
t, the result follows for any t > 2. ’ q

Remark 4.3.20

The condition given in Theorem 4.3.18 (i) makes the

" calculation of l'l‘k‘(zt+1

)l t > 2, very hard. _In'general,

the choice of P, depends on the choice of P, choice of P,
depends on the choices of P, and P,, etc. Further, for each
choi?e of P, there may be many choices of P;, for each choice

“of Phe pair (PI'PZ) there may be‘many choices of P3, and so

.
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on. However, it is interesting to note that if P, is the
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zero matrix then all the Pi's are zero matrices, and if P;.

is the identity matrix then all the Pi's are identity
matrices. The proof is given below:

Proposition 4.3.21

Let P, in M_(2) i=1,2,...,(t - 1) satisfy the

2171 4
b R

1 i

il 0

il ~e

2

i 49— L

condition ) 21+3 2PiP. =0 (mod 2 )
Cd 1 j=1 J

fOr Z=1’2,ooo,t"l-

Then,
(a) if P, = 0, then P, = 0 for all i such that
R l <i<t-1,
and X (b) if P, = Ir' the r xr identity matrix, then
P, = I, for all i such that 1 < i <t - 1.
Proof '

We will use induction .to prove the result.

' . . 2
(a) Let & =1 in the condition. Then, we have P, = P,.

(mod 2) and this is satisfied by Pl.= 0 (mod 2). Let
£ = 2 in the condition. Then, we have

Py + 2P, + P} + 2P;P, + 2P,P, + 4P = 0 (mod 4).

i.e. Py + 2(P, + PP, + P,P;) + P- = 0 (mod 4). 1f
P, = 0, then 2P, = 0 (mod 4). i.e. P, = 0 (mod 2).

‘ Assuming|that e have proved,Pi = 0 for

i=1,2,...,(2 - 1), we will prove that P, = 0. If we

use the fact P, = 0 for 1 < i < (& - 1), the condition

I

reduces to 2'2-1P2 A\2£+2_2P: = 0 (mod 2%).

~~~~~~ o g b e aapes 4 iR 1%

i




- i.e. R J 22‘“'”P§ = 0 (mod 2%).
ie. . 2''p, + 0 =10 (moa 2%) as 2 > 2.
i.e. A Py = 0 (mod 2). i.e., Py = 0.

Hence, (a) is-proved.

(b) Let 2 =1 in the condition. We get, Pf = P, (mod 2)
and P, = I satisfies this equatién. Let £ = 2 in the
condition. Then, P; + Pf + 2(P, + PP, + P,P;) =0
(mod 4). 1If Py = I, £hen I+ I+ 2(3P,) =0 (mod 4).
i.e. I + P, =0 (mod 2), which implies P, = I (mod 2).

Assuminq tﬁat we have proved that Pi = I,
1 <4i=< -1, we will prove that P, = I. If we use

the fact Pi = I, then the condition reduces to

H\

-1 g-1 =1 . . -1
z 21—1I + 22—121 + X y 21+]—21 + y 21+£-,-2P1
i=1 i=13j=1 i=1
-1 .. .
v 23R 4 270732 2 g (moa 2%).
j=1
£ 2= - -1
,; | ice. (277 - nz e 2 e + 2 -7
E + 272 - 1p, = 0 (moa 2%).
P i.e. 212" - 11w P = 0 (moa 2%
; - -1
. N i.e. (2 - 1)I+ P, =0 (mod 2).
; : i.e. PL = I (mod 2). Hencé, (b) is proved and the
? proof of the proposition is complete.
4 Remark 4.3.22
Note that in Thebrem 4.3.10 we have shown that
2 fety 2 »
‘(:} ITk(4)| = 2k +(n-k) 'Tk(z)l‘ While extending our results

)

T T S vp——
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from Tk(4) to Tk(8), we have proved that every extension is

' ‘a. 0
.. \ i i
Dk(B) + 2P1 + 2P, {mod 8) where Pi =

similar to
0 I 0

with @, is in Mr(Z), i = 1,2 such that Pf = P, (mod 2). It

i . ) .
seems complicated to enumerate all such matrices P, satis-

K

fying the above condition. Even if an enumeration for m = 8
is possible, the nonlipear matrix equations (4.17) seem
formidable to soiVe and enumerate exactly,'for-higher

values of t. However, it is easy to see.that Pl = 0 (hence

I 0 I 0 .
P, =0 for all i) and P, = (hence P, = - for
‘ 010 , 0O

11 i) are two extremé sOluEion. oo et

o 0 .
) with o in Mr(Z), there

¢

Further, for fixed P = (
‘ o} o0

are 22k (n-k) matrices, which are similar to

t=1. -
Dk(2t+1) + L 2'p. + 2% (mod 2**}!), where P, =
=1 i i

with oy in M_(2) for i = 1,2,...,t - 1, and satsify the

coridition (4.17). Therefore, we have the following results.

Y

, . .»2k(n=k) |,
| T (812 227 I, @)1,

v -

.22k (n-k)
|z, (16) ] > 2°2 lmy (221,

. I" .

Ty (253 ] > 2.2087202K0K) g o)) por ¢ > 3,

4-43 ' |

o m——— it
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Consequently, |sn(2t)| >2 ¥ (t-2)2k(n-k)lTk(2)L4
- k

Mﬁ

]

Let us summarize the main results of this section in
the following theorem:

Theorem 4.2.23

Let n and t be positive integers, and‘sn(zt) be the
set of all nxn matrices A over Z_t such that A? = I (mod2%).

Let Tk(z)} for 0 < k < n, denote the set of all the matrices
| - ~.
A in Sn(Z) with dimension of the eigen space corresponding fﬁvf

to 1 as k. Tk(2t) is a subset of Sn(2t) such that a matrix
t . -

A is in T, (2%) if and only if A (mod 2*7') is in T, 2%,

t 2 2. Then, the following are true:. -

(i If0< k < 2, then T, (2%) is empty for all t > 1.
= 2 k \ >

g9,(2) *|GL(n - k,k)|
K 0=k} where GL(n - k,k) -

(11) |7 ()]
o o

© gy (2)0gy y (2)2

is set of all (n -~ k) xk matrices of rank (n - k);

l(iii). lsn(z)l = . ) ITk(2)|. :
Eikin ’ '
( .  J
2, (112

(i) Is ()] =0 ] ok + (n-k) |7, (2)]
%ikin ‘

v) s 2% » 2.y 2(E2KOTK) g o)) gor ¢ 5 3.

ziken

~

Since the proofs glven here are all constructive,

they are extremely helpful in generatlng a matrix in S, (m) .

.1t would be interesting to know the exact value of sn(2 )
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o~ . )
" ~ for t > 3, Theorem 4.3.18 can be taken as the first step in
e this direction. In the next chapter, we would give the
' t
structure of sz(zt) , and hence Qhe exact value of 52(2 ).
-~ ' '
/,/
H »
L4 D
’ :
C - - -
- ¢ * -
.)‘ - ¢
< . /
\ <’ 5
: ‘ ‘ . .
) 1 . .
. .
B Ead ‘ L] ° ~ i
[ h e - . ) :
—— "_/‘ L ’ ) . ! - . .




( CHAPTER

Structure of Matrices in S,(m)

_For an odd prime p, the structure of the matrices in
Tk(pt), t > 1, is,given in Theorem 4.2.6. Also The;;em
4,.2.7 gives the number of matrices in Sn(pt). When p = 2,
the major results are summarized in Theorem 4.2.25. However,

. We do not have the exact number of matrices in sh(zt) for ‘
// t > 3. In this chapter we discuss the special c;se n=2,
and compute sz(pt) for any prime p (even or odd), by
characterizing the structure of matrlces in S (p ).
Section 5.1 deals with the‘classification of matrices
; in Sz(ﬁt) based on certain structure, for an odd prime p and
(~ "t > 1 (see Theorem 5.1.2). Section 5.2 deals with the same
when p = 2, As a consequence we derive the exact value of
sz(zt). t >1 (sée Theorem'5.2.5). In section 5.3, we b -

comment on some significant results when,m = 2p and n = 2,

where p is an odd prime.

5.1 8Structure of matrices in Qg(pt), t > 1, pNS 2

Throughout this section, let p denot,/ an odd prime,
= p® with t > 1, and n = 2. The main resg};éabncerning

the ‘number of 2 x2 matrices A satisfying the equation A% = I

8,

! (mod pt) is contained in the results of section 4§2. The
. structure that we obtain in Theorem 5.1.2 for such matrices,

will be ‘helpful for practical purposes. a

T etk e 5 o NSRBI TR AL A DA L A
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As n 2, an nxn matrix A over Zpt can be written

in the form A = (a b) with a,b,c,d in Zpt .!Sigce A2 =1
c d : : .

(mod ptL, we have

) | ' L aZ +bc=1 (mod p5) vevennnn Ceeeen (5.1)
(a + d)b = 0 (mod p) ..... (-5.2)

‘ , (a + d)c =0 (mod PF) vevvnn. civeena(5.3)

df +be =1 (mod p) .evuannnn Teeenn (5.4)

! This system of four equations will be referred to as the

H

s primary system of equations. We begin with a lemma.

Lemma 5.1.1

¢

The primary system of equations imply that a = 1ad

£

v (mod pt) . -3 )
¢ Proof | .. . | -

, From (5.1) and (5.4) we have a? = d* (mod pb. ie.,

‘ (a -~ d)(a + 4) ?o (mod pt). Hence, there are integers -

k,t,r,s withr >0, s >0, r + si t, k and 2 are rela¥ively \\/

prime to p such that

; N -

é - a+d=kp' ciiiiiitiiiiieiian.(5.5)

§' g ) a-d=2" ........ TR - N
é - ' . We claim that either r 3_“ tor s> t. To provde the

.% claim, let us assume-that both r -« t and s‘ <t. Ifr =290,

%? then r + s > t implies that s > t. Similarly, if s = 0 then

4 . T > t. Therefore, let 0 <r <t, and 0 <s < t. Using (5.5)

el

A A
.

in (5.2) and (5.3),'we get b = xp*™F ana ¢ = ypt"" for some

G »~ integers x and y. Further, from (5.5) and (5.6),

) B
\ "

[}
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- ‘ 2a = kpr + zpsa. Therefore, ,
4(a® + bc) = (2a)? + 4bc
. o . ) - - k2p2r + szzf + 2kkpr+§ + 4xyp2t-2rw—
. e -
" ‘ Reducing .this to (mod pt), and using (5.1) and the fact that
.qg r + s > t, we have >
i - ,2_2r 2 28 2t-2r t
4 =k%p + L°p + 4xyp (mod p7).

Since 0 < rt\s < t, the expressidnlon the right is divisible

) by p;, and hence does not have an inverse in zpt. But the
element 4 on the left is invertible in zpt, a contradiction.
Therefore, our assumption that ‘both r < t and s < t is
‘incorrect. Thereforé; either r > tors> t. Hence, the
claim is proved. - |

(. AIf r >.t then a = -d (mod pt); and if s ::t‘fgen

a=4da (mod ptoi« In either éase; we have a = *d (mod pt).
Hence, the lemma is proved.

Next,* we give'a classification of matrices in Sz(pt).

iw ..

Theorem 5.1.2 ‘ *

Let p be ad 0dd pnime, and t >, 1. Thén, \f

~

(1) Elements of Sz(pt) can be classified into two distinct

B i s AL s S

' types.
P type 1 = {(a b) :a’ +.bc = 1 (mod pt)}, ‘
‘ \e -a : ~
% ' o . . f ‘ - £
P and  type 2 = i(a 0) :a = *1, (mod pt)}. g
£ ) bl
i lo a .
2. v , o
(ii) There are p*t ' (p + 1) matkices in type 1, and 2
O matrices in type 2.',Hence, sz(pt) = plt_{(pi+ 1) + 2.
"
- a

i




Proof

a b

Let A=(
c d

) in Sz(pt). By Lemma 5.1.1,a = 4
%

(mdd pt). We prove the first part of the theorem by discuss-

ing these two cases separately.
Case (i) Let a = -d (mod pt).
Then, from the primary equations we get b and c¢ are

arbitrary such that a? + bec =-1 (mod pt). Therefore, the

/

a b

matrix must be of the form (
- c -a

) with a’ + bc = 1 (mod pt).

Hence, it is of type 1.
: Case (ii) Let a = d (mod pt).
. : Then, (5.2) and (5.3) give 2ab = 0 (mod p°) and

. 2ac = 0 (mod pt). Since 2 is invertible in th, we get

¢ . , |
L | Gb = 0 (med pY) ..even.... ceeeeaa(5.7)
and / ' .
i . t ~
' ac =0 (mdp) «..oo. sevesssaeasas (5.8)
We separate the discussion intthhe'following three
subcases:, - '

Case (iia) Let a be invertible in Zpt'

‘Then (5.7) implies b = 0, and (5.8) implies ¢ = 0.
Hence, 15.1)‘gives a? = 1 (mod pt). Therefore, the matrix
B N . # N

"is of the form (a. 0) with a® = 1 (mod pt). Since a? = 1
' 0’ a

Il (mod pt). Thus, the

i}

(mod pt) has only two solutions, a

ﬁatrix is in type ?.

I
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Case (iib) Let a = 0 (mod pt).

Then, from (5.1), we get bc ='1 (mod pt). Equations
*(5.7) and (5.8) imply that c = b !, and b is an arbitrary
invertible element in Zpt. "Hence, the matrix is of the form
' r
( 91- b),~which is type 1. '
» \b 0

Case (iic) Let a # 0*and a is not invertible in Zpt-

s

Then there are integers k and r with 1 < r « t such
‘that a = kp®. Hence, (5.7) and (5.8) imply that b = xpt-r
and c = ypt-r for some integers x and y. Substituting the
values of a,b and c in (5.1), we get k’p°% + xyp?t %% =1
kmod pt). The expression on the left is divisible by p and
'hence not invertible in Zpt , whereas the 1 on the right is
inver%}ble in zpt .  Thus, we have a contradiction. Hence,
there, is no matrix in Sz(Pt) satisfying the conditions of
this subcase. N
To prove the second part of the theorem, note that
‘n = 2, and hence Sz(pt) = ﬂo(pt) U Tl(gf) U Tz(ptﬁ. Recall
that’To(pt) contains only -I (mod pt), and Tz(p§) contains
-~ only I (mod pt). In fact, these are thedmatrices of type 2.

Hence, the number of matrices of type 1 is the same as the

number of matrices in Tl(pt)h By“Theorem 4.2.6,

7, (%) = p? " 2 (p) |

- pz(t..l) g?(P) \ f
g,(p)g, (p) ~ -7

= ) ey

» '
- . .
L4 . 1 £
' g v

-

-~




4 = p?¥ lp 1) .
. {k y"_

Hence, type 1 has p2t!

(p + 1) matrices. Consequently,
y .sz(pt) = pZt-l(p + }) + 2. Thus., the proof of the theorem
is complete.

-

Remark 5.1.3

t

It is possible to prove that type 1 has p2 -l(p + 1)

matrices just from the primary equations, without any

reference to the results of the previous chapter. We omit

/ the details of this proof. However, we remark that a
14 similar technique is used in the next section to gompute
\
t
8,(27).

5.2 Structure of matrices in 52(2t),~t > 1

(j. N
In this section, we give a complete classification
and enumeration of matriges in Sz(Zt), t > 1. ‘ .
As before, we assume that a matrix A in Sz(zt) is of
; the form A = (a b) (mod 2t). The corresponding primary ‘
{ c d . .
% equations are: -
% 2 t
IE * ' a +bc=l (mOdZ ) Otvii‘-itccvcot(SOQ)
3} ‘—\ ' t .
i (a+d)b=0 (mOdz ) ........'-.-..(5.10)
(a+ dc=0 (mod 2% .....uiiu...(5.10)
’ ‘ . .
2 tJ f : B
d +bc=l (modz) .-.......-..-(5.12)
. We begin with a“lemma. . , &




Lemma 5.2.1

The primary equations imply that either (i) 4 = *a
(mod 2%) or (ii) a is odd, and. d = 2%7! #a' (moa 2%).
(Consequently d is also odd.)
Proof

We will prove that if d is not equal to *a (mod 2t)
then d = 2% '+a (mod 2t). From (5.9) and'(5.12),vwe get
a2 - a2 = 0 (mod 25). i.e., (a + d)(a - d) = 0 (mod 2%).

Hence, there are integers r,s,k,% with 1 < r, s < t,

r + s> t, and k,% odd integers, such that ) *
) a+d=k2" ...i.iiiiiieiaae..(5.13)
a—‘bd= 9.25 oa‘n.u-o.;ncl-'n--n(5-14)
We discuss two cases: o .
Case (i) let r =t - 1. ) -
rase (1) N '
\” -1 t=~1
Then, from (5.13) d = k2 - a=2%"-a (mod 2%).

Case (ii) Let r < (t - 1).

Then, we will prove that r = 1. From (5.13)
a’= k2¥ - d (mod 2%), and hence a’ = kf2?% + a? - ka2®"!
(mod Zt). Reducing this equation to (mod 2t) and using the

fact a? = q° (mod 2t), we get

k22%F - ka2™' = 0 (moa 2%). )
i.e. k2! - d = 0 (mod 2¥°F7})
i.e. d = k2" (mod 27T L..........(5.15)

Using (5.13) ip (5.10) and (5.11), we have b and c are even

1ntegerq. . Hence, (5.12) implies that d is an odd integér.

s Mo W g O s 3 dn
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Therefore, from (5.15) we get xr = 1.
Since r + 8 > t, r = 1 implies s > t - 1. If s > ¢,

then a = d (mod Zt). Hence, s = t -~ 1. Therefore, from
t-1 t-1

(5.14) we obtain d = -k2° ! + a = 2! + a (mod 2%).

Thus, in any case d = 25! +a (moa 2%). Hence, the

-

lemma is proved.

Recall that the eqﬁation x* -~ 1 = 0 has exactly 2
solution§ in Zzt‘if t £ 2, and exactly 4 solutions if t > 3
| (see Lemma 4.3.1). ’

The next theorem gives a classification of matrices
in 5,25, £ > 3.

Theorem 5.2.2

The elements of Sz(2t), t > 3, can be classified into

the following four distinct types:

type 1 ﬂt{(a b):a2 + bc =*l {mod Zt)},
c -a

t=-1" 22 _ t
type 2 = ( a  x2 ): a’ =1 (mod 2%, '
th-1 a x = 0,1, and y = 0,1. .
eype 3 = (a b ).'a2 + bc = 1 (mod 2%y,
¢- 21 - a) b and ¢ are even.
type 4 = a x28 ! .az = 1 (mod 2t),
’ y2t—l 2t:3 -a) X< 0, and y = 0,1.

Proof

a by ;o ' 3
Let A = ( ‘d) be in SZ(Zt). Then, by the previous
c \
: \

lemma, @ = fa (mod 2%) or d = 2! *a (moa 2%) . we prove

-4
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the theorem by discussing these four cases separately.

Case (i) ILet d = -a (mod 2%).
Then, from the primary equations, we get that b and
¢ are arbitrary such that a¢ + bc = 1 (mod 2t). Therefore,

a b

the matrix must be of the form (
c =-a

) with a2 + bc = 1

(mod 2t). Hence, it is of type 1.

Case (ii) Let d = a (mod 2%).

Then, the equations (5.10) and (5.11) reduce to

2ab =0 (mod 2%) ........... e (5.16)
and
2ac = 0 (mod 2%) ... ... ...l (5.17)
We consider three subcases arising from the values
of a.

Case (iia) Let a = 0 (mod 2t).
Then, from (5.9) bc = 1 (mod 2%). i.e., c.= b~ !

modr2%). Thus, a

f

‘»
( ?1 b) (mod 2t), and A is in type 1.
b 0

~

28! (moa 2%).

]

Case (iib) Let a

Then, from (5.16), (5.17), and (5.9) wf get bc =1

"1 p

-1 t-1

{mod 2t). Hence, A = (
b 2

) {mod 2tf which is also

of type 1.
Case (iic) Let a not equal to 0 or 2% ! (med 2%).

We claim that a is odd. Since 2a is not equal to 0
, >
‘ (mod th, from (5.16) and (5.17) we get b and c are even

&

T TRy
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integers. Hence, (5.9) implies that a is an odd integer?: -
Therefore, a has an inverse in Z,t » Thus, (5.16) a%xd
(5.17) yield 2b = 0 (mod 2T), and 2c = 0 (mod 2%). Hence,

b = x2"! (mod 2%) with x = 0,1, and ¢ = y2¥7! (moa 2%) witn

y = 0,1. Consequently, bc = 0 (mod Zt) as t > 2, and a27—~ 1
¢ ‘ ( a x2t~l) N ‘

(mod 27). Therefore, A = yzt—l a (mod 2°) with

a? =1 (mod 2t), X =0, andy = 0,1. Hence, A is of type 2.
=1 3 (moa 2%).

In this case we know that both a and 4 are odd
t-1

(mod 2%) in (5.10) and (5.11),

we..get 2%y = 0 (moa 2t) , and 2= 0 (mod 2t) . Thus,

integers. Usinga + d= 2

b and ¢ are even integeré, and satisfy the equation (5.9).

Therefore, A = (a ¢ le ) such that b and c are even, and
c 2 - a . :

a2 + bec = 1 (mod 2t).: Thus, A is of type 3.

' t-1

l
Case (iv) Let d = 2 + a (mod ?_t).

Then, from (5.10) we have, (2a + 2t_l)b = 0 (mod Zt).‘

i.e., (a +2" %)b = 0 (moa 2%"'). since a is odd, a + 2%7?

is an odd integer, and hence is invertible in Zzt_1 .

1). t-l

Therefore, b = 0 (mod 2% i.e., b = x2 (mod 2%) with

t-1

x =0,1. Similarly, c= 2 " (mod Zt) with y = 0,1.

Consequently, bc = 0 (mod 2t) and a’ = 1 (mod Zt) .. Thus,

a X2 o
) £= (mod 27) with a? = 1 (mod Zt),

A
y2t1 oty

x =0,1, and y = 0,1. Hence, A is of type‘'4, and this

completés the proof. -
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A

‘, L Note that, if t > 3 there are 16 matrxices in each of
' type 2 and type 4. Thefefore', to find the value of sz(zt),
it is sufficient to know the number of matrices in each of

type 1 and type 3.

Proposition 5.2.3

There are 3.2 27!

matrices of type 1 in S, (_2t), t > 3.
« Proof '

If A is a matrix in Sz(Zt) and is of type 1, then

A = (a b) (mod 2t) with a® + bc = 1 (fod 2t). We prove the
c -a .

proposition by discussing the following three separate cases:
Case (i): a? =1 (mod 2t).
- Case (ii): _ a? #1 (mod &%) and b~ ! exists.

( - ‘ Case (iii): a? # 1 (mod 2t) and b_1 does not exist.

case (i) lLet a?= 1 (mod 2%). This implies bc'= 0 (mod 2%).
. If b= 0 (mod 2t), then ¢ is arbitrary in Zzt' and

hence ¢ can be chosen in 2t ways." Similarly, if ¢ =0

(mod 2t) , then b can be chosen in Zt ways. But the choice

b =0 and ¢ = 0 is counted twice. Hence, there are 2t+1 -1

)

choices of pair (b,c) with one of them zero in 2 .

b e n -
R

Let us assume that both b and ¢ are not zero (mod 2t).

#

i

¥
N

Then the equation bc = 0 (mod 2t) ;;ives that b = x2F (mod Zt)
for some o0dd integer 'x and 1 < r < t. Therefore, c = yzt_r‘
(mod 2t‘)‘. The possible values of y are 1,2,...(2¥ - 1).
Thus, for a fixed a,b and r, t{\ere are (2r - 1) choices of
c. For a fixed r, the number of choices for b is the saje as

(f the number of odd number x such that 1 < x < 2t-r’ Hence,

s,

-~ o }

D ime e et - e sAn mrmas VR
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b can be chosen it 2%7T7!, Thus, for fixed a,r, we have

2t—r-—1(2r - 1) choices of the pair (b,c). —

Now, r can take any value from 1 to t - 1. !There-

fore,\ when a is fixed such that a2 = 1, -then we have
-l ferm1,.x :

2 (2° - 1) choices of (b,c). On simplifying, we
r=1

-1

get 27 (t - 2) + 1 choicesyof (b,c).

Therefore, when a is fixed

have (2t+ .

(b,c) with bt

1) + 28 e~ 2) +1

= 0 (mod 2t). \But,

& Hence, in total case (i) corrtains

matrices.

with a2 = 1 (mod 2t) we

t

= 2% (¢t + 2) choices of

there are 4 choices of a.

t+1

425" e +2)) =21+ 2)

i

Case (ii) Let a2 # 1 (mod 2%), and let b™! exist in 2 £
— 2

Then, bc = (1 - a?) (mod 2t), and ¢ = b" {1 - a?)

(mod 2t) . Thus, for a fixed a,b there is a unique choice

t-1 choices for b and (2% - 4)

choices for a. Hence, .in total there are Pk (2t - 4)

of c¢. However, there are 2

matrices in this case.

]
¢

Case (iii) a? 74 1 (mod Zt), and b is not invertible in 2 £
e . 2
t
Then, b = x2r for some odd integer x and 1 < r < ¢,
Since bc = (1 - a?) (mod 2%), we have 2¥ givides (1 - a?),

and hence a is an odd integer.

We claim that either 27 ' divides (a -~ 1) or 2F°!

divides (1 + a). Now, 2° divides (1 - a?) = (1 - a)(l + a),.

Hence; there are integers k,%,i,j such that a -1 = k2j'

(mod 2?‘) and a + 1 = 2.2j n(mgd 2t) with k,\ﬂ odd integer,
\ .

ary " g \ . ' ‘
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1.i,j<r and i +3 > r. Thus, 2a = (k2" + 227) (moa 2%).

i-1

i,e., a=k2 + 22770 (moa 2% Since, a is odd we

have either i = 1 or j = 1, not both, If i = 1 then j =xr-1,

and 2¥7! divides a + 1. Similarly, if j = 1, then 2%7}

divides a - 1. Hence, the claim is proved.
We further divide our discussion of this case into

three subcases.

_ Case (iiia). Let r > 3.

r-1 4

Then, by the above claim, a = y2 + 1 (mod zt) for

2%y (mod 2%y,

»

some ‘odd integer y. Thus, 1 - a’ = __y222r—2 n

1

Therefore, !

be = (-y22?F72 1 2%y) (mod 2%). ’
i.e. x2%c = (-y’2°T~% 1 2%y) (mod 2%).
i.e. xec = (-y%2"72 7 y) (mod 2ty

-

i.e. ¢ =y, (mod 2¥°T) where Yy, = x~ ! (—y?2E"?

T y) (mod 2%y,

i.e. c =y; + u2¥ % moa 2%) where 0 <u < 2. -

Thus, for a fixed a,b, and r there are 2% choices of c. For

a fixed r, there are 27! Choices for b, and 2028°F* U g
choices of a. Thus, for a fixed r > 3, we have .
2T BTl (R8T | oy L o1 oY _ ) choices of (a,b,c).

(/

Therefore, 'in total there are
§°°
t+1

-2
= 2 .(Zt - t + 1) matricdes in this subcase.

t=-1
E 2t+l(2t—r - 1) =

Case (iiib). Let r = 2,

Then, b = 4x (mod Zt) and a is odd. As before, we
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‘E, can ﬁrove that for fixed a,b there are 4 choices of c. 7
. M@reover, there are 2% choices of b, and (2t - 4)
choices of a. Thus, we have 4:2°7% (271  4) =21 (%% Ly

- matrices in this subcase.

w$\\- Case (iiic). ©Let r = 1. ’

i 0 -

Then, b = 2x, and a is odd. It follows that there

. are 272 choices of b, 2%=1'_ 4 choices of a, and for fixed

-

a,b there are 2 choices of c. Thus, there are

1 Tttt L t-3

2'2t-2(2t- - 4) = 2 (2 - 1) matrices in this case.

~

Therefore, in total, case (iii) contains

2t+1(2§-2 -t + 1) + 2t+1(2t—3 - 1) + 2t+1(2t—3 - 1)

= 2% %! Dt - 1) matrices.
, " ‘Finally, adding the’ counts in all the three cases,
(: \ we get 3.22%! patrices in sz(zt) of type 1. This completes
the proof.

/
Recall the result in Theorem 5.1.2 (ii) for type 1

matrifgs in Sz(pt) with p an odd prime. With p = 2; what
H : : .
we haVe just shown for type 1l matrices of S‘{it) agrees with -

R T S

-

the result in. Theorem 5.1.2 (ii). We remark “that p = 2
-— .gives rise to some additidh@l types of matrices that cannot
arise when p is an odd prime.

Next we proceed to calculate the number of type 3

Il e T S R LR

matrices in Sz(zt), t > 3.

Proposition 5.2.4

There are 3.2°%77 matrices of type 3 in Sz(zt), t » 3.

1




PRe—

qr2% o1 4 28l (e=2) ¥ 1) = w2

B Y  wean wmae e < e e A e en J— [ .

Y
Q Sé
Proof
Let A be in 5,(2%) of type 3. Then, A is of the
form ( te1 ) (mod 27) with b and ¢ even and
c 2 - a
a? + bc = 1 (mod Zt). We prove the theorem by discussing'
the foilowing two cases: v
case (i): a? =1 (mod 2%). -
Case (ii): a2 # 1 (mod 2%). o
éase (i) Let a2 =1 (mod 2%y, o
. Then, bc = 0 (mod 2%). If b = 0° (mod 2%), then c is
arbitrary and even, and hence there are 2t"! choices of ci
Similarly, if ¢ = 0 (mod Zt) then there are 2t-! cﬁzices of ‘
b. But, the choice b = 0 and ¢ = 0 is counted twice. ‘
Therefore, there are Zt -\1 choices of (b,c) with one of ) \\\\\!

them zero and the other even. . i
Let us assume that botb b and é are not zero (mod Zt).
Then, as discussed in the proof of the previous propositich,

we have Zt-l(t - 2) + 1 choices of (b,c) when a is fixed.

Since there are 4 choices for a, we have
t+1 . . .
matrices in this case.

. -

Case (ii) Let a? # 1 (mod 2t).

As b is even, we have b = x2F (mod th,for some odd

' integer x and 1 <r < t. As we proved in the previous

.
proposition, we prove 2t-1 divides either a - 1 or a + 1.
[ "

Thus, a = yzr_l + 1 (moa 2%).
We divide our discussion into three sub&ases, acc?qg-

ingly as r i 3, r=2and r = 1.

. , / q | 4‘\‘
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Gase (iia)

i,e.

_Then, from be = (1 - a2} (mod 2%) we get

Let'r 131 hd ? ‘,L i

2,2X=2

x2%c =—y?2 + 2%y (moa@ 2%).

xc =—y22F7% ty (mod 2t~y

~ -

The expression on the right is odd if y is odd. ‘' 'However,

the expression on the left is even (since c is even). Hence,

y must

u with

be ewven.

L d

¢

c

-

-

v o+

Therefore a = u2® + 1 (mod Zt) for some

liua < Zt_xj and u # 27771, $herefore,

2r+ 1

x2%¢c =-u222r" + u (mod 2t)

(mod Zt'r) where v = x-l(—uzZr + 2u) (mod 2t"f) .

t-r

w2 (mod 2%) with w=0,1,...,25 - 1.

Thus, for fixed a,b,r, thergq are 2F choices of c. For a

~
fixed r, there are zt-r-l choices of b, and 2(2%7F - 2)

choices of a.

Hence, for a fixed r, there are

2T 26771 (3t _ gy = 281 (5tT1 L) crigices of (a,bc) g

But\‘-3 <r < t -1, Thus, summing over r, there are .

2871 (283 _ ¢ + 2) matrices in this subcase. . ] ‘

case (iib) Let r = 2. J b Q
Then, b = 4x (mod Zt),f and a is odc"i.\ It is gésy» to

see‘that{;' when a and b are fixed, therep‘é{‘re 4 choices of c.

Further, there are 2'™> choices of b and (2

. of a.

subcas

Thus, there are 2

e.

T

he

n, b

@

t-1 4') choices

t+l t-3 _

(2 1) matrices in this

N

Case (iic) Let r = 1.

= 2x (moa®§"), ‘and a is oad. For tixed a,b

.—-"";.

—y——n s



Further, there are 2 ch01ces for b and (2 - 4) choxqes
~ . 7
¥ ofﬂd?* Hence, there are 2t$1( t:?\- 1) matrices in this
N . subcase. F. ‘\\\\ | ’ T ' ~ N -
Therefore, ‘in toétal, case (ii) contains ‘ ’
o . . 2% s 2t ?_-'t) matrices. - ‘
v " Finalty, adding the countggthét\ﬁe have obtained in -
= » both cases, we get t2 + +u2t+1(3~'2t"3 7_f) = 3.22t—2 '
‘ matrlces of type 3 1n 82(2 ) . The ?roof‘?s comﬁlete. ' *
‘ ) On summar121ng our results we have‘the followxng
theorem: | ’

. - ,_ Theorem 5.2.5 . - ‘ ‘ h
~ fet s, (2$) be "the numbe; of 2 x2 matrices A over Z .
. ] . o, 28

(; such that A% = 1 {mod 2t), t > 1. Then, . i SN k™
) (1) 5,(2) = 4 )
O ) (i)  s,(4) = 28
‘\ (1ii) s, (2%) = 9.22%°% 4 32, -

— —— e

it:ls easy‘towprpve that there are 2’ choices for c.
t 2

Proof

For t = 1, the result is verified by looking at the
listing that precedes Lenma 4.3.2.; For t = %, the result
is verified using the Theorem 4.3.10. For t > 3, we have
proved in Theorem 5.2.2 that there are four distinct types .
of matrices‘in\$2(2t). We have a%geady oﬁserved that there
are ohly lGlmatrices in each of tyﬁe 2 and type 4. Propo-
sitlons 5. 2 3 andAS 2.4 glve the counts of type 1 and type 3

matrices respectively. Hence, summing up the counts in-all

the four types, we g’et3~22t-l + 16 + 3-22t-2 +.16 = |

-

b ey a4 e b e b
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= 9. 22t 2 4 32 matrlces in S (2 ) 'Hence the theorem is

r N
-

~

@roved S, J -

' AN : )
Remark 5.2.5 , S

Y

b t = 3; frém the. above theorem we get that
A

1 s,(8) = 11-2", which is already verified in gxéﬁple 4,3.16:
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5.3 Structure of'Matficeé'in Sz(ip), p > 2 : -

' in this section, ‘we characterize the structure of

¥ M
' matrlces S, (2p) where P is an odd prime. Such a characteri-
; - - ’ ro
\zatlon is 51gn1f1cant and useful in the cryptana1y81s of '
Engllsh text whose alphabet size .m is 26. ’ K
3 SEENL ©o
* By Theorem 4.1.3, weé have that s (2p) = 8 (2)s (p).

[}

¥
\‘/I\
If n = 2, then s,(2p) = s,(2)s, (p)" = 4. (p(p + 1) + 2). T

4p(p + 1) + 8. In particular; s, (26) = s (2° 13) =

4+13+(14) + 8 = 736, which was incorrectly mentioned as 740 °
a * . \ : . . ;
in [ 9], and later corrected in [10]. 7

e

. Further, the equatign_x2 = 1 (mod 2p) has only two .
solutions, namely x = X 1 (mod 2p). 0519g this fact, and
’/(follow1ng the cla551f1cat10n method given in the previous .

two sectiong, we can prove the following theorem:

¢

. ‘Theorem 5.3.1 ! B . ’ )
Let p be'an odd  prime. Tben; the elements of'Sz(zp)
A}

can be classified into the following two distinct types:

5

r ’  type 1 = a b : a2 + b= 1 (mod'zé) ’ . g
«[\c. -a . . |
£ ’ e L2 _ \. \
and . type 2 = (a é):.a * be 1 (med ?p), o
B - ¢ :é b =0,p and ¢ = 0,p )
) o R - s /l 1 ) ! ' v -
~ “ ‘) \' S
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matrices in S (2).

* independent of p.

~ ’ ~ t ' L3 ) , - &
" lthey. are enumerated below: i ' G N -
. , “a b C . .
\ . o 1 0 0\0 ,
T LN N
o - 1 p 0 o »
1 0 P’ T '/
“ 2p -1 0 0 “ '
' 2p -1 p 0
g 2p -1 0 P,
\' A ! 1Y
A -p + 1 P P :
. ¥ ~
p-1 o p .

T

. Note that for any matrix A 'in S, (2p) of type 2,

/fA (mod p) = *I (mod p), and A (mod 2) is any one’ of the four

€

The converse statement is also true. .

Moreover, the number of matrlces in S,(2p) of type 2 is

Hence, whenever a matrix in S (2p) is

4

used as a key in a cryptosystem, 1t is essentlal to choose

the matrix from type 1 in order to assume a certain degree

of security; otherwise, a fast and. simple exhaustlve search

of the: type 2 matrices would reveal the key matrix.
However, we caution that even an arbitrary choice of
e'key matrix chosen from type 1, does not assure security. .
In\tﬁe next chapter, we shall discuss some methods for
isolating and identifying a key matrix (assumed to'be

» . -

unknown to the user), used in a cryptosystem.
i ) ‘

.. Furthermore, there ;}éZoniy'S;matrices of type 2, and




. CHAPTER VI . ; EEE

CrYp'tana{ysis Techniques

In this-chapter, we disouss a possible cryptanalysis

“

technique ‘to decrypt and identify the contemfs from a cipher-
text“obta;ine‘d through an n'*xn invelutory. matrix A‘over,zm.
“ » ‘ - . . »

6.1 Introductior .

. v . -

P . ‘ p

~ This section describes u’xe envu‘onment in_which the

" . b

Kcryptanalysis is suppbsed to be undertaken. We assume that

\ .
the mapplng £ from the alphabet with m lettErs to Z is
w
known to, everyone using the system. K ' 1

The 'sec‘urity’ of ths system should be analysed under

o .

each of th‘e following environment: . , .

(i) ° The opponent can have the c1pher-text 4 any plain--
' . tex_t chosen by 1‘11m. Then, ' he w.mhes to find the
| ‘key matrix A. 7 ’ .. . )
'(ii) The opponent can have so‘me plein—text (not necessarily

his cfmo!ice\) and its cerrespo‘ﬁding cipher-text., Then, -

- he wishes to find the key matrix A. ‘ l\ .

(1ii) The opponent has only a cipher-text and wishes to find

the corresponding plain-text (not necessarily to find

- . coe ' t

the key matrix a).

(:Lv)' The opponen*i: has only some cipher-text. Then, he
. 4
. wishes to find the key matrix A.

Note that.(iv) is equivalent to (ii) and (iii) put together.

~ o o boee s n e kv A e i 53 . /
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' entries of the first column of A, and if e, =>
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1 - ‘ é
There 1s no’ securlty under (i) in @n algebralc - 7]

. . .
cryptdsystem.. For, by a sulgahje ch01ce of -a plaln—text, a

cleveroopponent can always find théﬁcq;umn'vgctors«of-A.
o ' - LA

g ‘ &

-

For example, if ey = (mod m) then Aelgwgulé givew the

OO

+ Ad 3

~

. . ,
- N
> - . . \ Jég
: - ‘u
. .

2
L4 - »

LA

. . “
™, .
' -or
- - e n . 14 . .
B .
-
. . . - S a

give the entries of the second_ &olumn of.- A, and so on. . Thus,
e ) '

OeesOHO

L il I

thé plain-text f '(L)£7'(0)...£ !'(0) would reveal the first

column of A, and the plain-text £ ' (0)£ '(L)f '(0)...£ "to)
4 . - \
would reveal the second column of A, and so, on. .
' o b % ot

- The security of the system under the environment (ii) -

depends to a great degree on the length of the text : e
involved. . Let there be n linearly indepéndent blocks,

PrsPosece, P each of length n‘in the plain-text. If

S
C, Cz,...,Cn are the correspondlng cipher-text blocks, then

. the system of equatlons AP = Cf (mod m), i —‘l 2,...,n, can
be unlquely solved to get the key- matrlx A. e

\Eor the env1ronment (ii) we give a probablllStIC‘

analysis under a rough assumption that the n~-grams are °

uniformly distributed. ,Then, for a random variable X taking
- ' N A _ - -n ) N . \ ]
values in zm,n'Pr(X = x) =m for all x in zm,n‘ Assume

that: we have found blocks Py,...,P, such/that they are-

L

5 .
linearly independent over Z, Since ere are m" vectors in

(N

2
>

. g

-
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\ . . . , 7
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e —-—

- ot A which are linearly' dependent on Plu..-. X we* have - -

’ ‘ m,n . . v .
) 5 s o : < : Co 0 -n
- ‘i o . Prob(X = x:x is linearly dependent on P!,..,,PQ) = m2 o
¢ Let r = ml_n.hThéréfore,'Prob(X = x:X is not dependent on ‘j

Fow ‘ ' Pl,..L,ﬁl) = 1 - r. Hence, the probability &of selecting an - /. 3
0 B ’ o x in the k th tr1a1 such that x is 1ndependent of, P ,...,Pl A L

- - . is k 1(l -.r). Therefore, the expected number of trials

) r“‘ ’ S - © ' Qf : 3
. , _ ] ‘ .

CT . is given by y krk 1(1 -r) = 1—%-; . Hence, the exgected ; §
N Cor Ty <« kK=1 _ & . ' ii

e o . e 7

~ . . ]

’ "Waiting time to get n linearly -independent blocks' is given '
- 's' , I . . 'Q&\ - . \ , '» . !:
“ n-1 1 . ‘

- by Z —————f—ﬁ whlch lies between (n - 1) and (n + l). . i

RN . PN 2'.-ll-"II‘ - . . . ~

- (( . Though our assumptaoés that the n-grams are uniformly

“ .

f ‘ ‘distrmbuted 1s not always true, this analy51s-gives an . t

° . :
' w ' v

~4~( approx1mat10n to this problem,- Due to this observation, the :
- . i N N

. . ;
.

’ 2 ° > 9 v N - 9 -
- environments (iii) and (iv) can ,be considered to be ‘
- . Y 1 M !

' equivalent. 'Hence, our main concern is the’' environment (iv), '
‘ ) " 4 ‘ » . * )
rd . - .

% though (iii) is also important &n ,practice,., A ) -
. . , .

) i 1

. ~—— ) ' One obvious method of finding the key matrix A is to toe .

" generate all poiglble key met\}ces, and then apply each. of .
PR R -
theése matrlces to the 01pner-qext.b The matrlx wnlcnn

B T Qe

. + produces a meaningful plaln-te*t w1ll be the requlredfkey.

WU

{;fthe keyd re’ cheeen at rando%\from thékhatrlces in S (m)} o
hen this method requlres Eﬁe genératlon of all matrices in

o
-’ . s
//

Sgim).- Since sn(m), ﬁhe number of matrices in Sn(m) ;s very

large for large n and m, this method %is practically
-\‘\/ f A

'impossible.«

~

e H R
f it
-—
I'4
v
.
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Another method known as the method df probable word

~

is wéil known. This method involves: the follow1ng three

)

steps.

(a) Choosing probable n-grams P,;,....,P,

' . present in the plain-text.

-

(b} For each Py somehow find an n-gram C; 'in the cipher-"

.

text such that AP, = Ci (mod m) i = 1,2,...,%.

(c) Solving for the key matrix A, from the system of

-

equat/lons AP = Ci (mod m),:i = 1,2,c..,%.

that would be

~ To choose probable n-grams that. would be present 1n

i
Ay

w

matter, For example, if the message is in English, a

hel,p. . | ‘ . . ) "‘

-

For a given Pi’ locatihé‘ a cipher-text block éi

the plain~text, one needs some knowledge about the subject

L ]

.fre~quencyf't;able of n-grams of Englisﬁ text would be of great

such

that AP, = C; (mod m) is complex. :r When'm = ép,with p .being

an odd prime,“ Léevine [ 8 ] has used "binary reduction method"

and pattern.matching techniques _for. cryptanalysis. We

describe this method in the next sectlon.

. After flndl ng

'

e Ci's in the ciphex-text, the

problem of solving f£or
of difficulty. If there a;

Pyi,ees 'Pn’ and if C,... 'Cn are rresponding blocks
[}

n linearly independent blocks

located in the cipher-text, then the system of equations

AP; = C; (mod m) can be solved to get ‘the key matrix A.

Sometimes, it may .even be possible to find P

, . proeeeBrsy

Qe key matrix A poses 'a great amount

v

o

°
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'\ S .- . I ¥
‘o c o independent ptobable n-grams and its correspd}\x\'dirig cipher- -
. ) . i . . ! . . L\ ) a
N ' blocks Cl' s e ® ,Cn/z"such that Pl Rl oo'Pn/zl ,Cl Ia\.ﬁ .;I.Cn/z are

_ [
linearly independent over Z, Then, the system of equations

3 ! ' , .
AN

o ) AP, = C .‘i =1,2,...,n/2 ot
J
' AC. = P. i=1,29...,n/2

\ . S i1 ‘

P
»
can be solved to get the key matrix A. o :
" .In ‘the.following sections, we describd, the methods
given by Levine for n ='2,3and m = 26. We comment more on

this method.and show ‘their extensign to m = 2p.

6.2 Analysis for n = 2. "

Let n = 2, and let the cipher-text be blockéd into

( ‘ blocks qof two letters as follows: C1D1C2D‘? . .C'iDiC‘i_i'\HDi:H_1 cenn,

Assume that the transformation of a probable piain-text with

three letters PQR under a hidden key matrix (to be found)
' : occurs in tgl'ie'cipher-text. Let us consider the_ following

-~
-

two cases: . . -

il‘ ?"" ' . . 3) . I* 3 a P .
; - - Case (i): PQR* is transformed to CiDiCi+1Di+1 . o

. -
B s 9 - * [} t D

Case (ii): *PQR is transformed to,ciDiciHDiH .
a b

c d)(mod m) be the key matrix. Then, in Case (i)

< we have, Ceo- : : .

: 8P + bQ=C, (mod m) ...evvrnnnnin. (6.1)

1

aCi+ bDi= P (moa m) .....-..‘.’.....(6.2)

- 1+1

c}‘ . . . ac, . + bb, "= R (mod M) ceeeneancie. (6.3)
1y . t - ’ Al >

-
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e

" we'get that the determinant,

i 98
t Y

-

ElimJ.natJ.ng a,b from these three equations, we get that the

determinant , o o,
. P Q Ci [ ‘
S . ‘ = d m) v (6.4)
‘Ci Di P hend 0 (mO m oo---.-n-\q - B
Ci+1\ I)i+1 Rl : - |

Similarly, in case (ii) we have

B 1
. cCi+dDi=P (mod"m) tessscesecsess(6.5)

| ceCyyy * dDi-H = R .(mod‘n:) Gesesermnesess(6.6)
i . . : .
cQ‘+ dR .= Di+1 (Mod M) “veeereeneeanas (B

Eliminating C,4d ‘fr'om, the equations (6.5), (6.6) and (6.7)

\,.

Ci Di
Ci+l ' Di+l R = 0 ‘(mod m) o0 .--..(6-8)
Q R D

i+]
Her?ce, we have proved the following theorem:

Theorem 6.2.1 (For n = 2 and any m.)

The block of letters PQR* (respectively *PQR) matches

" with _tﬁe cipher-~text C.D.C, then condition (6.4)

i7i7i+ i+1
(respectively (6 8)) holds s
. We remark that thls is a: 31mp1e generalization of
Theorem 1 in [ 9].
Thus, a general procedure would use a probable 3 ~-gram
PQR to test the condltlons stated in Theorem 6.2.1. If the

co%dg‘:tions are not satisfied, then we look for another block

|
.of ;fcipher—te'xt. If the conditions are satisfied for a

v

I I
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Vi

SITILE m,, -

\
:
g‘-
i
s

. m‘

\ o C; Py/F- »C\'l ‘ - /C. P
‘ nd hence A = B ( )Xmod m). Note that ( 1 ) is

O

I R AN e

. . ' P C.
s 4“ Since A’ = I (mod m) , tl\me equation A( ) = ( 11 (mod m)

" vectors in 2 th
ve to 1. m, 2’ en (

,invertible if and only if its determinant Qc, -'PDi is
vl

. select only those matrices A for which A* = I (mod m). Then o

F ) P
) o

- C. E
cipher-text, then we have A,(P) = L1 (mod m) in case (i),

Q/. Dy

Q C,

andvA(R) =] ¥ lmod m) in case (ii). Below we ,discuss the
s A Di+L ' ’
sitL{Qiion of case (i) - only, as the d'iscussio_n of case (ii) is
similar. n S B ,

¥

Q

’ C, /P)
implies that A( 1) = ( ) (mod m) . Therefore,

Q ”
+ Di ‘
g ]
‘ P Ci (‘:i' P ) ’ :
. A = \ ("fd m) o...,t."o..(6l9)
Q Di Di Q .
“\
' P Ci ' |
If the- wectors < ) and are two linearly independent
. ! Q ) D, ©
9 i

/P C,
i

(mod m) is an invertible matrix,
Q D, ’

D. Q)

i QDi D, Q

1

"

relatively prime to m.

. C., . - .
In case, (P) and | | are linearly -dependent over
: Q '

D.
i

LY

Zm, then there are several solutions for A from (6.9). We

©

we applj matrices to the cipher-text. The matrices wh‘lch" o

\ -

[P - - e s MG Ry
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SN
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Fal M N , .

produce meaningful plain-=text arj/retained.. (In fact, it is
I“ N ~ n

n ' -
enough to apply these matrices yo a small portion of the

/

cipher-text.) 1If necessary, we/may repeat the whole proce-

/
duye with other choices of prqbéble tri-grams.

-

When ™ =.26, or in genéral when m = 2p with p an odd
prime, the problem of f}ndin; a key matrix is much easier.

If the key matrix-is from the 2 matrices®of Sz(Zp) (see

section 5.3), then an exhadét%ye search would reveal A, 1If

)

the key matrix is chosen -from type 1 matrices of S,(2p) then
a b \

'we have A = (
c =-a

) (mod 2p) wiég,az + bc =1 (mod 2p). We
. ~ ’

. 4 v P C :
use this condition along with the equation A(Q)== 5 (mod 2p)
. B D :

1 \

to solve for A. 1In féct# (mod 2) solutions are found, and
. ' y /
then extended to (mod 2p) solutions.
See [ 9] for a detailed description for n = 2, m= 26.

K . ' \ Y
6.3 Analysis for n = 3

In this section, we first develop some results for

any n, and then discuss the particular case n = 3. Finally,

&

we comment on the case'm = 2p for an odd prime p. As a
particular case, we get the results of Levine [101].

First consider the case m = 2. Now, Zz n contains
L4

2" elements, and each is an n-~tuple with entries from

Z, = {0,1}..  Each of these n-tuples can be viewed'as a

binary representation of a decimal integer. Thus, elements

of Z2 n can be identified with elements in the set
1



n

/ - .
‘ 3;’/1;l = {(Q,1,2,...,27 - 1}. We can define anaaddltlon
,/ - —— ~

operation on Y . To add twé':elements in Y , first convert'

each_c&’f‘them into-binary number with n bits, then add them .

bit-by-bit (mod 20) . The resulting “hinary pmnbe;r is converted

‘back into an element .of Y . For exampie, if n =‘4, then

Y, = {0,1,2,...,15}. To co;x\p\\;‘t‘:e 7 + 9, we first convert

+7 = 0111 in binary, and 9 = 1001 in binary. Then, by bit-

C wis:: addition (mod 2) we have 0111 + 1001 = 1110. Now, 1110 .
‘ ig identified with 14 in Yu Therefore, 7 + 9 = ‘4 in ¥ .

Note that a -: a= 0 for all-a in \‘In. {

If A (mod 2).is an n*x n invertible matrix, thep A can

be viewed as an automorphism of 2, n° Hence, it induces an

14

n

automorphism on Y,. Since A% =1 mod 7, the induced auto-
(_ morphisrrn on Yn hasg the property that a is mapped to b if
N and only if b is mapped to a. We write (ab) to denote ais
Mnﬂaiopéd to b. Note that a i5 mapped to 0 if and. only ;.fé |
is 0. '
2 - We know that if 521- <k < n, then T, (2) contains all

. ..- C' * .
the elemepts _in '80(2) » which fixes a k dimensional subspace

- ) : P . .
of 22 Hence, if A is in Tk(2), then A fixes 2k‘~elements

,
R - SO

of 7, . Therefore, the automorphism produced by A fixes 23
. ’ . ‘ )
:’ . elements of Yn. Hence, the automorghism can be reptesented'
i as |
g - f

" (00) (flfl) (fzfz)'- ‘e (f' K 1f K 1) (9191) (9'39,)) .
27=1 2=
k g /b .
(§ 2n-3k— yn-zk -
O ‘ ‘

!

) ‘\
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whfere fi;‘s and g,'s are in Yo Forrexample, if n = 4, .and
| k = 2, Fhen .the, elements 'O.f.;Yq ‘can be written as |
{0, f1 ,f2 ,fa,g} r g, .glz) . and the ind‘uce‘d. automorp,hi:sm can
be represented,as (0,0)(f; £,).,. (f3£3) (9,92) (939, ) -++ (9,919} -
The follclwing theorem is a generalization of Theoren
3.1 of [10]. - The proof by L_e:vine is actually a verification
which has been made possible because of the small valué
+ n =3 a;nd bécause S3 (2)Jh]as only 22 elements., Here we.give

- ' v r -

a theoretical proof of this result.

Theorem 6.3.1

y .
. Let A be an n xn matrix over 2 ‘such that A2 = I

(mod 2). If A is in T _ (2); then the automorphism induced

2
. by Aon Y can be represented as . ’
E S (fofo)(flfl)-... £ - £ - (glhl) (gzhz)...(g - h - ;
R ’ 2Tl P PRl
where £'s, g's, and h's are in Yn’ and £, = 0. ,Furthef,
| S 1« % oDl
3. there Qxists a ¢ with 1l < 2 <2 --1 such that g, +h; =f£,
| for all i =1,2,...,2" %, ' A
Proof \
’ Since A is in T _ (2), the automorphism induced by A
< ‘ . n-1 . on-l
on Y, fixes 2 elements. Let them be‘{fi:o <i<2 -1}
) with £f; = 0. The remaining 2" ! can be paired as (g;h,)
‘i . with hi = Agi, i=1,2,... '2n-2 . Hence, the ivnduced auto- )
L morphism can be represented"as
i "9 '
£ (£ f) (£ £ o 0 € (g,h;) (g;h) ...l g h o
2; , | PRt SIPRRPS o L 1r e ,0"2 yn=2
f;'/{ ! L . , ) L .’ \ /
{ , - . 4 \




It remains to be proven that there exists a & with

« -

- 1 <t <2"! -1 such that g; + h, = £, for all
N : n-=2 N * -0 .
i=1,2,...,2 . Fix g,, and consider the set
n-1 7

(gl + £5:1 = 0,1,....,2"7" = 1), Also consider the set

°

. - B
R {gl'"'gznrz’hii""hQn-z}' We note that the elements iﬁ\\\\

‘eaéh one gf these two sets are distinct, each set has' 277!

* ‘elements, and noﬁe’pf the elements is fixed by the induced
, . automorphism. Hence, the above sets are identical. -There-
N N . 5 .
fore,\g§ven any i and j with'l < i.3 < 23_2, there exist
, r and s with 0 < r,s < 2n71 - 1 such that 9; = g1'+ fr and
R : g
\ .
. gi,= g, + fs.‘ Hence,. \ ) ’;,
C o "’
-~ M A D T
; = fr + fs, ?n Yn
,v A . Y [
IThus, Ag1I+ Afj = Afr + Afs - .
) N -
= fr + fs
i.e h, + h, =f_ + ¢ ‘
i 3j s ;o
“ S N | o
i.e. . 9 +Lhi =9y + hj %(as (mod 2) addition)v’
2 o for all i and j. Further, A(gi +~hi) = Ag; + Ahi = hi +tggn
)for all i. Therefore, gig+ hi is' fixed by A. Hence, there
) : - - 3 . .
exists an £ with 1 < 2 = y AL 1 such that g; + hi = £, for -
. n-2z il . -
‘:} . alli=11,2,...,2 . Thus, the theorem is proved.

a
- . . -
- . ” “ y
v

B s & SRR . . . . - )
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. L.
“T\\‘ We remark that ITn_l(2)| can be cbtained as a
conséquence of the above theorem. Moreover, if A is in

Tn(Z) then A is the identity automorphism of Yn'

Proposition 6.3.2 - . ' BT

Let A be a matrix in S,(2p) with p an odd prime.

“ k

Then, * )
c Ai (1) the determinant d of A is *1 (mod 2p), ’
' v i
.and . (ii) the trace t_ of R is either 3d or"-d (mod 2p).
'Proof’ ' o y A
2 K
\ Since A® = I (mod 2p),; the eigen values are the .

solutionéxof the polynomial equation x° 7 1 =’ 0 (mod 2p).
i.e., the eigen values are *1 (mod 2p). If x;,x,,X; are the
éigen values, then determifant d = x;X,x; = }1 (mod 2p) as

X; = 11 (mod 2p) for i ='1,2,3. Note also that the trace
. < T
t=x, + X3 + X (mod 2p). ke

Also, ghe characteristic equation could be written as
3 Q » ' - . [} )
ur 2 ,
X7 o (X) +X, +x3)%X7 4+ (%)%, +X5X3 +X3%, )X~ X X,x3 =0 (mod 2p).

¥

i.e. | % - tx? + dtx - d = 0 (mod 2p) -
'i.e'./ ' oAl - t':AZ.-+ dtA’- dI = 0 (mod 2p) )
ie. | A= £I + dtA - dI =-é (mod 2pf

s i.es : (“zr & odt) = ‘(1': + d)I (mod 2p)
?aking trace on P'Eh sides we get,’

- ?flt dt) = 3{t + a) (mod 2p) .
ier . :—dtz‘{— ‘2‘;“_' 3d=0 ‘(modc 2p) 7 o
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~

0 (mod 2p) (as @2 = 1 (mod 2p))

it

i.e. (t + 4)(t - 3@)

i.e.. t = -d or 3d (m%d 2p).

Note that there is only one matrix ‘in S, (p) with

trace t = 3 (mod p), and only ope matrix in S, (p) with
[
. \ .
t = -3 (mod p). Also, S,(2) contains 22-plgments. Hence,

there are 2.22 = 44 matrices in S,(2p) with trace t = 3d

N

(mod 2p). ) . \\

Thus, 'if the key matrix in_Sg(ZP) has the property
that t = 3d (mod'ZP), then an exhaustive search would reveal
the key matrix.

An easier way is the following:

If Ais S,;(2p) with t = 3@ (mod 2p), then A = % I (mod p).
For each cipher block C, if P is the corresponding plain- -

text block then, P = AC = ¥C (mod p). 1i.e., P = IC + 2p

P,

with ¢ =0,1. Hence, P = $C or P+»= *C + p. Thus, forming
the four plain-text, *C, *C + p, one can look at them and
choose a meaniﬁgful plain-text. See [10] for more details.

If the kéy matrix A ig in 55;(2p) with tbe property
that t = -d (mod 2p),; then the method of determining A is
in two steps: first find the (mod 2) solutions, and then
extend them to (mod 2p) solutions. ‘ .

Every block of 3 1et£ers would be converted to an 1\
element }n Y;. Let § be the“one-to-one and onto mapping
from phé alphabets V to Zzp' Consider the induced mapping
£ fromVto z,. i.e., £1(A,) = £(A;) (mod 2) for all A,
in V. For a 3-gram PQR, £, (PQR) ='(fl(P)f](Q),f](R)) (mod 2)

iﬁ-zi 3.' The resulting element is identified with an
3. -~ .~
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element in Y.. 'Fér exqmple, let m = 26, and V be thg

i AN

English alphabets &nd f be the map £(A) = 0,£(B) = L,....

. £(2Z). 25. Consider the text CRYPTOGRAPHYAND.

’ (i) c R Y’ P T 0 G R A ) H Y. A N D°

(1i) 2° 17 24 > 15 .19 14 -6 17 0 15 7 24 0 13 3

\ (4i4)o 1 o 1 1 o0 0 1 o0 1 1 0 O0 1 1

-
i

P £ 1 6 Eh

- ’ ®
I'd

| ; - 5
L Here (i) is'the text to be transférmed, (ii)izs the
correéponding nuﬁber fepresentatiou obtained using the
’ mapping fi (iii) is the binary repfe§entatidn obtained using
the reduced mapping f,, and (iv) is the numbe ¥ rep;esentation

‘obtained by identifying each block with &an element in Y,.

i The probable-text is alsQ converted inté elements of

‘: ' ¥,. Then, we try to match this with the transformed cipher-_”
text. We need two Iémmas. that give necessary-condftions for
t*\g match.
§
Lemma 6.3.3

N A necessarf condition tﬁat a probable-text a;...ay
L

. matches with a cipher-text bl;,.bg is that the pairing

~

3o PTG ¥
.
e T

(a;b;) (azby)....(azb,) ‘should be consistent with at least -

R N et e L
3

. . " one of the automorphismé induced on Y, by elements of 5,(2).

-

i

Lemma 6.3.4 (Rank'Test)

-

! . ' .
; * If P and Q are two plain-text 3-grams and, C and D -

IS
¢
.
b
(3
Y
H
G

are céfkesponding cipher-text .3-grams, then the vectors ° N
' AC +dC, and AD + db are dependent. i.e., P + dC, and

Q + 4D are dependent. In other words, the aeterminant,

N ’
B . - N .
\ o .

~.

gy g

e 1
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P 4+ dc, P, +dC, P, +dcC,|. ,

o 23 3l =0 (mod 2p).

Q-+ dp, Q, +dD, Q, + dQ,
for @ = ¥1 (mod 2p). ©

‘ i . » . .
Proof P -~ : ‘ o R

’

S N
- Since trace of A is -4 (mod 2p) we have the eigen

values are l,l,—l-orwl,-l,—l accordiﬂg as 4. = -1 or +1

(mod 2p). In either case A + d4I has null space of dimenslon ‘

2. xHence, A + dI has rank 1. Hence, the lemma follows.

' Even if Q; is not known, the above lemma gives a

useful test, i.e., the determinant

/|p, +\‘dc"1 P, + dC, :
\ = 0 (mod 2p).

y 1@y +dp; Q, + dp, |

It is easy to observe that\;f 2 is the length of the .
7 \
probable text then the rank test is applicable for 2 > 6.

In #ome exceptional cases § may be < 6. Refer to [10] fo;

more details. i ‘ .
v ’ r‘

A comprehensive listing of tests that can be used -

when 5 < 2 < 8 is given on page 15 of [10).{ When ¢ > '8,

- we have at least 8 congruence equations to solve for the 9

unknowns. Along with the fact that the determinant is 1

we may be able to solve for A. It may be possible to solvé even
\ ;

i 1 | d

if ¢ = 4 under certain special circumstances. These are

explained in [10].-
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( 6.4 Probabilistic Algorithm for any m,n

: Although Levine has given some analysis for n = 2,3
and m = 26, his methods cénnot be extended for any m,‘except'

2p (where p is an odd priﬁb)'even for n = 2 or n = 3.

for m
It is obvious that increasing n gives more security
of the cryptosystem. Also, if we want to use this cfypto-

system for °different languages,. then it is essential that we

]

know the analysis for any m, the alphabet size.
As we have proved K;hrough'sn(m)) that an exhaustive

search’ for the key matrix dis impractical, the method of .

3

probable word seems to be the only alternative. We have

explained in section 6.1 the three main steps invﬂlued\in

\ L]

such a ‘method. ) ' : . h
(. T We propose-here a naiveprobabilistic approach which
we believe to be a general and appropriate method for crxypt-

5
4

. " analysis. . B

We assume that we have a frequency table of occur-
rences ofin-grams of the languagg used in the éfypto?ram.
It is' expected that the n~grams in this table with "high"
; o rglafive frequencies would ;écur in most of the sample plain- -
r texts{ It is also expected.ﬁhat in”a'épecific sample plain-

,
text, tdg n~gramg with high relative frequencies in, this

R ST

' text are in correspondence with the n-grams with high

relative frequencies in the taple. y
. " //
D) “Murther, since the matrix used satisfies th

A2 = 1 (mod m),.the relative fregquency of an n-gram U in a

R TR
«0;

plain—téXt is the same as the relative frequency 0f the

- . . P v [ e e deve enr Ay T \
- - . ) o, = av fasn
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* In general, for an intéger i
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n-graﬁ AU in the corresponding cipher-text. Hence, it is

expected that the n-grams with high relative frequencies in

the cipher—text are in correspondence with the n~-ggams with

high frequencies in the population ‘table. fThis is the basic
¢ 9

principle we rely upon. . ‘ .

s > $ n
' We order the n-grams of the population table in

‘ .
decreasing'order of their relative frequencies, and call

this otdered table as a populatlon table. Let a be the

hlghest value of the relative frequenc1es dé thls table.
For an € > 0 we cla551fy the populatlon table as follows.

. - Y
? all n—grams having relative frequencieh e
‘category 1 = % . "
in between a - :+ and u. 2 4

N

all n-grams having relative frequencies

category 2 . .
. in between a - 2g and a« - €. -

N 7

+

all n-grams having frequencies between
cateqory 1 = le - de an@ o - (i - D)c.
Note:thét there are enly a finite num#ét of such categories.
If . is cﬁosen too small some of the eategorieé may even;ﬁ?
empty. We assumenthat € is éhosen such that none of the .
categories is eméty. These categofies are -called population
categories.

N

Next we cogeider the ciphet-text and form a table of

frequeﬁcies of occurrences of the n-gramsfgrom'the cipher-
text. (This table 150f size at most mP. But in practice it
would be much less than m'.) We then form the relative

frequency table ffom/this table, and order the n~grams in

~

s b T aekvarh Al
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descending ordé; of their relative frequerties. This gablé

is .called a sample table. “We want to classify these n-grams

into, categories. We may group all the n-grams with the same’
< .

relative frequency into one category, -and thus form as many

categories as theréj;re different relative frequencies. 1If

[y

the cipher-text is large, we may end up with- too many

A}

categories. ' In that case, we form the categories based on

%

some ¢ > 0.as we-did befofe. 1In any case, the sample table
t .

i -

is partitioned into distinct categbries known as sample

categories.

o

Let Pl,Pz,:..yPr be the population’ categories, and -

SI,SZ,...,Ss be th gamplg cafegories. By-the'principle

,

that we have already explained, it is highly probable that

an'n-gram ih the category S; is mapped into an n-gram in the

category P, by the key matrix. Let P; = {u;,up,«..,u_ },

and Sl = {VI'VZ"""V } .

. 8
system of equations:

’

- \Aul

Av1

. ; A2

‘Consider a solution A to the system (6.10). We apply A to a

I
Then, consider the following
q

X4
vy, (mod m),

wult(mod‘m), y..........Q(G.lp)

NS

I (modm), , '

¢

sizabile portion of the cipher-text. " If it produces a

meaningful plain-text, then A is the key matrik;qofhegwisé,

we discard that solutiOn‘for A. We repeat this pfoceduré'

-

until we £ind the key matrix or all the solutions to (6.10)

are di;carded;

-
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If the key matrix has not yet been found, we solve

the following system:

v, . . Aui = vj (mod m) .
Avy = uy (mod m) } ...ieeuvenn.(6.11)
. ) A2 = I (mod m) )
’ ‘ ' N\ Q

for some i and j with 1 <i < rywand 1l < j < s8,., If we
have not found the key matrix even aftprisolying (6.11) for
all possible Eairs (i,j),ﬁWe repeat the process. with -
‘categories S, and P,. 1In géneral; we try with the pair.'
(Serg) whenothe pafr (Sl,Pl_l) does not give the sqlutién
%o the key matrix. After exhausting all Pi} if necegsary,
%e try with (Sz,Pl)[(Sz.Pz{,..... It seems that at most 4
or 5 category pa;rs need-+o be tried before finding the key
matrix. h¢§

o .

A formal algorithm to test these procedufes is given
below: . | ' -
(Ly {initialize}

. . . X ‘ / v -
i«1l; j«1 {used as indices}

e i i T

found + false {used as a flag toﬂ£¥fminate the
— procedure, if we have obtained the

P . kéy matrix}

» . e
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‘ ( ile (i < r) and not found do

{l ' P <« P, .{get the ngxt population category}
(3) |  While (j < s) and not found do |

S & Jl S « Sj' {get the next sample category}
(4) Rébeat :
. . u
1 PRt g }t n-gram in P~ )
(5) ‘k . Repeqt’
) v + next n-gram ig S
(6) : . .Solve the system:.
- Au = v (mod m) } '
(Av = u (mod m) L
C o 1 \ - A2 =.1 (mod m) oo
.. (7) : . B for the matrix A. ///

¢ '. , i ‘ Apply A to a sizable cipher-text.

(8) ‘ - If it produces meanfngful message,
& . then A is the key ﬁatrix‘and fou?d
’ ; + true;
‘ - until (foundf or (nomore n-grain left in 8)

a . until (found) or (no more n-gram left in P)

“ A9) - =g+

i . :

g end; {yhile} N

"" ' (10) i :=41 + 1; -

end; {while}

- li

~ i
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The complexity of this approach is mainly dominated
by the cost of the procedure that solves the sysﬁem of
equations (6.11). The worst case cost is very high for
lerge n. 'However, the average cost is of interes&_and
relevant to cryptanaly51s By ayerageucost we mean the
expected number of category pairs examined, and thé expected
number ofksequatlons to be solved before the key matrix is -
found.. We’ao not.have any theoretical results in this
direction, and hence it still remains an open preblem.

We have tested this ‘approach on several small sample

texts with n = 2, m = 27. The alphabet 1ncludes the blank’

character and the English alphabet. We used the frequency of

/
occurrence of 2-grams obtained from [19).. A random message

was encrypted using ( 5 3)' (22 4)’ and (22 2)'

19 22 21 5 15 5 «

# .
and three cipher-texts were obtained. The probabilistic
method given above required the solution of 37 different
systems of equations on the first text before finding the key

5 3

matrix
19 22

), 31 different systems of equations were

,

solved on the second text before finding the key matrix

(22 4), and 42 different systems were required to be solved
\21 5/ ) .

for the third cipher~text before finding the key matrix

(22 2) correctly. These results combined witﬁ the Levine's
15 -5 ,

results [10] do convince that the'security of the crypto-

system based on involutory matrices is weak for small values

- .

~
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SR ‘
‘ of n. Although our method is general, n-~gram frequencies
. \‘ for n > 4 are needed for an exhaustive festing, and this
. . / :
also remains to be done.
"Finally, we remark that if n = 2, then (6.11) may be
easily éolved .as explained in section 6.2.
. ‘ \ ¥
l;?j*
P "~ : '
- b ) '\\/
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' . o ' CHAPTER VII

-

Security-of Networks - An. Application .

-~

of Linear Algebraic Cryptography

. - There is ever 1ncreasing growth in the numbe: of
computer networks, and in the kinds of distributed computlng
appllcatlons available on those computer networks. Hence,

y . it is essential to have secure communicatlon facilities.

A general approach to the security problem in communi- N

“\ cation networks .is to use some encryption method to send the

> messages. Of course, the strength of such an approach relies
‘J\‘Qn the encryption methods.aveilable. : : ‘ k

In [13], Needham and Schroeder have presented network {

(;' 'X'protOCOls based on both conventional and public-key crypto- | -~

systems; Though initially it was believed that tﬁe network

Ve

f ' protocols based.on a public-key system would be more suitable

than the protocols based on conventional system, later it was

R - A -

observed that the public—key‘system does notfprovlde any

RN

VEignificant advantage 6ver the protocols based on the ;
; | codventional encryption methods. Hence, it has been . ; §
speculated that if st;ong conventionai algorithms are.eaéy 1 :
to develop, research would be better devoted to that area
rather than pubiic-key systems (see page 152 [15]).
In this chapter we describe in sectiog 7.1'the'

network protocols as presented by Needham and Schroeder (13].

SRR e S A e Sa

In section 7.2, we 1nvest1gate the sultabllity of matrix

¢ "

based convent\onal encryption method for communicatlons in

N e s e . - . - B e R i e I I T o -
w2y
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a network. .Clearly, the results that we have obtained in

the previous chapters play an essential role in this

»

. . . .
s, investigation. - —

/; ¥
7.1 Network Protocols -~ A Brief PReview
|
. * { f‘

’} A communication nzﬁwork should serve the following |

< - - . - ;
% . - s
- 4

three functions:(

1

w3

o : (1) Establiéhment of authenticated interactive

™Y

communication between two participants in the

¢
&

b ‘ network. — TN T 2 —~ .
; - (ii) An authenticated one-way communication oefween
':; V | ‘ two participants such as the electronic mail ~ ~
> B system. | ’ ’ |
(i - (iii) S;éped communication (i.e., digi;gﬁﬁsignaturéf
‘ in which the origin of a communioation, ande -

the “integrity of content can be authenticated .
\ .
. -
by a third party.

| By network protocols we mean the procedures explaining how

S T YT T

one more of the above three functions are done in a network

X

Considering the securlty of.a communication negwork
) *, .
N we classify the ma11c1ous activities disturblng the secure

.communication mainly into the'following types:
™ . . . Ny
: (a) Tapping of lines: This refers to recording of a

" - message passing through a cofmunigation line without

L]

detection by the sender or the ‘receiver.

(b) Introduction of spurious méssages:' This refers to ¢

‘:} * introducing invalid‘messages with valid addresses into’

o

.v-: ’ ' © ' ‘ ’ &,‘
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-
I

£
; ~
3 .
i
§ |
M /
3
..

\ /\ >
i . ‘: ‘ (c) Replay of messages:- Given that it is possible both to

L

“(4)

.damage to an operating network.

1

the communication lines of an operating network.

L

record and"’ 1ntroduce messages into communication lines
¥

of a network, it is therefore possible to retransmit a

\
copy of a previously transmltted message.
‘Disruption: It is p0551ble that the delivery of
selected messageg may be prevented, or portion of

messages may be altered, or even a complete blockage

-

of communication™path“may occur.
. . s

< .

Each of the precedirig threats can cause considerable
Tapping of lines leads to
loss of privacy in cohmunication; introauction of false

messages leads to suspect the authentic1ty of received

3\

messages; retransm1351on leads to confusion under certain

@

circumstances, and disruption leads to inconsistent messages.

o

When the security of a communication network is to be

measured, it is better for:it to be analysed primarily

against the above mentioned malicious activities. N

N . e .
We explain below the protocols necessary for a mutihal

authentication of two participants who wish to communicate

in the network. This is a’ process for a participant to’
‘(' .

assure himself of the identity of the other participant.

¢

whether the protocols are based on th conventionel encryption

~

method orx based,on public-key encrypt\on method, the

authentication involves the' secret keys of the participants.
Hence, there is a need for a centrai{authoritatiVe source of

The term\authentication

A

information about these keys.
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server (AS) is used for suchH a source, We Testrict our .

discussion to protocols based on the conventional encryption

—

algorithms.: A . .

N

- _ Each participant ‘in the -network has a secret key that

is known only to himself and the authentication server.

Sometimes we call these secret keys as identification keys. J

-

The essential step .in setting up a secure communication

7

»

between two part:i:cipants A and B with A as& the initiator is

-~

to generate a message with the following two properties:

(a) It must allow only B to., identify himself to A.

(b) It must be evident to B that it originates from

A, N &

)

For the sake of simplicity, let us first assume. that

both A and B have the same authenticgtion server AS. Let

] 1
Ly

. KA arid KB be the secret keys of A and B respectively. Let

A Eg (M) .denote the encryption of a message M with a key K.

The protocolé involve 5 steps. We summarize all the steps
involved with A as the initiator who wants to communicate

. with B,

Step 1 "
" A sends the message

Ml = (A,B,IAl) c..ivcedacenanas(7.1)

.
[

* tg the authentication server AS. The entry A;/in the message

-

identifies the initiator A to the AS, and the entry B
- F - -

identifies the participant with whom-A wnats to communicate.

The entry IAl is an identification chosen by A to be used

I’

- m*«“a"-
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only ins this message, and it is used only once. Its use
’ : would be more clear in Step 2.
Step 2 . ’ .

Upon receiving the message M1, the authentication .
N N\

e N Lty oo .

server identifies that the initiator is A and that he wants
to communicate with B. Then, AS looks up the secret keys KA
i 0 . and KB of A~and B regpéctively, and ‘then computes a communi-

cation key CK to be used as the encryptlon key for the
.\

.
e —

communication betWeen A and B. Then, AS sends the message:
M2 = Eg, (TA1,B,CK,E.: (CK,A)) ........Jk].z) o

, . - ?
- “l Note that M2 is the encryption of somd message that

N 8
contains the communication key. Upon'receivin the message . ‘\

.‘: from AS, A can decode it using hlS secret key KA. Then, he
& . ¢
checks for the correct name B w1th whom he wants to communi- . !

&

cate., He also checks for ‘the correct identification IAl to ;

o’fg‘

veriff that the meséa%e‘ﬁz is really a reply from AS to his
message in (7.1). This is .the reason why IAl should not be
. used more than once. . ‘ |
'g . ‘ Further,.both B and Ial should be present in the 3
E message (7.2); otherw18e an intruder could change the name

in the messege (7.1), say to X, then unknowingly A would have
* been communicating with X instead of°B, If the identifica-
; tion IAl is left out, then an intruder may replay a

prev1ously recorded message (from AS to A about B), and then

forcing A" to use a previously uysed communication key.

- . .
ol t \ \
( [ [ © . ¥
B .
. A !
. B .

¢ e Mmoo e, o T e
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t Oi Step 3 ' ‘

Aftér decoding M2, and making verification of B and

»

IAl, A retains the communication key CK to himself, and

L

sends the message .

M3=EKB(CK'A) ..-.nu.o..ooi...(7./3)"

. . i ° 4 N :

s along the communication line to B.
Note M3 is encryption of some message that contains
communicatidn key. On receiving the message M , B decrypts
. v . .
it using his own secret key KB, and understands that A -
wishes to communicate with him, and that CK is the communi>
A .

» ‘ catipn key selected by the AS. Howeﬁer, B must make sure

that the message is not a replay. i.e., the key CK is

4

‘: ’ ' ' originally from A, not from an intruder who is replaying the
B old message giving anﬂold key. On the other hand,-A is.
"\\R\\\\\\ guite sure that any communication from B is encrypted using
-~ CK and any message encr&pted using CK is“frqm B. .
L Step 4 ' o T
? . B sefids the following message to A:

.-‘ ) . . . ) p
M4—ECK(IBI) c..-oto...-.....(7.4).‘

‘ ' . ‘ e ,
< where IBl is an identification, say a number, chosen by B,

and‘is used only once. Thus, M4 is'used_aé.an'identifica-

tion pf B to A.

AY-1

3
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Step 5

To acknowledge the identification, Au sends, back the

message b

- Y

L4

M5= ECK(IBl- l) .---.--u....o.(7.5)

to B. If this message is satisfactorily received by B, then

the mutual confidence is established to enable the communi-

cation using the key CK,

In a practical communication network, it is naturai
and desirable to have multiple authentication sbrvers. See

[13] for details regarding protocols in such situations.

We wish to stress here that every message in a protocol .

. requires at least one key, and different messages s'gt‘at

the same time or at different times require different keys

even for establishing ¢ommunication. *

’
v

L te
.,
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7.2 Network'Protocols -:\A Proposal'!Using Involutory Matrice

In .this section we )nvestigate the suitability of

'adépting the convént;ional encryption method Based on

involutory matrices in a communication .network. We follow

: . 3
the protocols that are explained in the previous section.

]

Recall that, if a participant wants to communicate
;rith anotherv participant, then he has to send a message to
tﬁe authen\tidati}cl)n server ‘requesting‘for an encryption key
to be used in the commurication. The authentication server

then computes a key for the communication and sends it to,

the requesting participant.



’

X—
. We shall discuss some suitable methods for .a key

“generation by an authentication server. Note that evéry
participant A in a communication network must have a unique
and secret identification key. In our discﬁssion, we denote
this identification key of A by A itselfﬁ Moreover, a
communication between any tw® participants requires a key
which is time varying. 1In geﬁeral,.it is desirable to have
. the keyé satisfying the,k following properties: N
(i) Keys of all the participants are distinct, and of the
~same -nature; i.e., if the keys are permutations, then
all thf par;icipantg will have a;stinct pe mutaéion
as‘secfet keys. <;

(ii) | If a participant A in a communication network wants

! -

/)/"to initiate a communication with énother participant
B in the same network, then the comflunication key \

genefated‘by the authentication server will be denoted
by A » B: This kemeust be of the same nature as A
and B. .Moreover, we require4that i; is a function Gf
A and B. V

(Eii) Suppose ;wo'pafpicip;nts A and B hre’comﬁunicating

‘wiﬁh a Epmmuﬂicatian key A + B; it should‘be gomputa-

"tionally iﬁtractable to find the.secret key A (the\ &

secret key B) from knowledgé of A + B and the'secret

ke& B (the secret key A).

kiv) Each communication key shail be used only once in its

ifetime,

. .
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. "We'remark that, if B wants to initiate the communica-
tipn-with}A (instead of A initiating the coﬁmuﬁicgtion with
B), then the key B +,A generated by the authentication
server need not be necessarily tﬁe samé-as A » B. , » L

Note that the secret keys of a paréicipant is gsed as
an encryption, key mainl§ in the communication béfween a
participant and thq:autheniication servér, Thus, property
(i) makes a uniform communicatien possible between any
participant and the authenticgtion server:

The efficiency of the requirement that a communication .

key be of .the same type as that.of the participants involved

¥

in such commuﬁications,,depends on the available hardware -

configuration, and.also oﬂ the software reqaired for the key

management. Requirin; that a commﬁnicatién key be depéhdent‘
on the keys vf the participants leads to the investigation
of functiéns with some desiréblé prop;rties, whiéh in turn

. S

may lead to the results of intractability and security.

Property (iii) is essential to’have privacy and
) s

security in communications between a pé?ticipant and the X
authentication server. Propeity,]i#f is desjired .because
this requirement prevents a replay of a previously'recorded

messages For example, if the network lines are vulnerable

to tapping and intrbduction of false messages, then the

use of the same key for more than one cqmmunicatibn may lead -

v

to the possibility of replaying an old message that has been

tapped in a previous communication where the same key is - -

“ T 2

used.

'

S e b e rre e e . a
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. l!. o Now, we iﬁvestigate several ways of implementing the

network protocols using involutory matrices as kéys. Let m

be the size of the alphabet that is used in a cSmmunication,
and let n be the -block length available in the existiné‘
hardware used in a communication. °

x

Strategy 1

LR

The authentication server manages.two files, The

file which contains the secret keys of the participants with

their addresses is'taLled prime-file. To-begin wit@, the -

‘authentication server generates a "large" number of.matrices

;n Sn(m), and stores them’ in a‘gecondarnyilé. °When a
ﬁarticipantjjoins‘his netﬁdfkh the agthentication éerver
selects randomly a matrix from the secondary-}ile, aﬂd ‘
(;- g as;igns this matrix as £he secret key pfhthat‘parﬁicipant.

He adds this kef into the prime~file, and deletes it from

Fhe secondary-file. Thus,-at any time, the ime=file

. contains the secret keys of the participants in the network,

A

and the secondary-file contains the matricegl$hét could be
used either as secret keys or.as communication keys.
If a participant requests for a gcommunication key to

N ‘
. communicate with another participant, the authentication . "

~
s

AL s i SR

server'picks up a'matrix at random from the.secondhry-file,‘;
% I and a;signs it as the communicéﬁion key, and then he deletes
fhis key from the secondary-file. ‘

.- By computing a random index as a function of the
secret keys of the participants, the key matrix identified '

‘by this index in the secéndafy-file can be allocated as the
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communication key. Hence, the authentication server has the’

overhead of not only the initial ',generation of matrices in

.

Sn (m), but also maintenance and updating the files every
. o

time a communication is initiated. It is eaéy to see that
all the properties except the intractability criteria are

sa}tisfied. In view of the order of magnitude of sh(m), we
comment that probabilisficallyf@he chances of a participant

computing or"inferring the secret key of the other partici-

—

pant are very slim. -

Strategy 2
Let A and B be two n xn matrices over Zm such that ~
A~2 = 32 = I (mod m), and AB # BA (mod m), Then define,
. '
2k :
F(A,B) = {(AB)" "A (mod m):k =1,2,3,...},
. _ fk . . '
and G(A,B) = {B(AB (mod m):k =1,2,3,...} .

r

Note that the matrices in F(A,B) aré all similar to A, and

o~

/
that the matrices in G(A,B) are all similar to B.

’

When a participant A wants to communicate with another

[

participant B, thé authentication, server chooses a random

integer k > 1, and then at random allocates the communication

L] l !
key A + B either from F(A,B) or from G(A,B). !

-

In this strategy, properties (i) and (ii) are

.obviously satisfied. However, we need further analysis to

est?blish the validity of properties (iii) and (iv). We

consider several cases in qrder.

‘

case (i) <
Assume that the communication key for partiéipants A )

and B at one time is chgsen from F(A,B) on the basis of a

N
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—fandom’ integer‘k, and at another ti}e‘ it is chosen from

G(A,B) on the basis of another random integer K. In this

situation B krows the communication keys C = (AB)?‘kA (mod m),

and D = B(AB)” (mod m) . Below, we analyse the complexity
involved in B finding the secret key of his communicatipn
p‘artner A, By symmetry, the amplysis of the cc;mplexity ’
involved in A finding the secx:et key of B is the same.
Note that elements of F(A,B) and G(a,B) have the
‘ involutory‘prope::-'ty. Rewriting C as A(BA)ZI< (mod m)x, | and

24i=1

observing that BDB = (AB) A (mod m), we have

a ) 2% a8) 24 7' (mod m)

CBDB = ..
' . (AB)F?'A'A(BA)“-I (mod m;
= ) X ) 2% ! (mod'm) i
! = a2 RN dam) e (7.6)

4.Suppose that k and ¢! are different; then (7.6) can
be written as X* = Y (mod m) where X = AB (mod m), Y = CBDB
(mod m), and r = 2(k - £) + 1, The participant B must then .
have to find an n xn mat({ﬁ x\; and an exponent r ;:ith
el > 3. At this stage, we are not aware of either the
existence or the enumeration of, such mat_ricés’i for such a
problem, even when the expohent r is known.

It seen;s that for the case when r is known and X'is
unknown, one can try to solve the ;educed equations for the
prime .power modulii occurring in the factorization of m, and

pry 3

~ .
then reconstruct X using the Chinese Remajinder Theorem.

'

Consider. the simple case when m = 2p with p an ocfci prime, |
' \ -

oy
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and assume that r is known. Then, by finding two matrices

X, and X, which are solutions of the matrix equations

_— ‘ ' P,

X, = ¥ (mod 2), and xf =Y, (mod p) where Y, =Y (mod 2) d

.
~— u A

and Y, = Y (mod p), one n‘la?solve the equation xF = vy

(mod 2p) for X. The apparently simple equation Xf =Y.

s

(mod 2) may itself be too difficult to solve. ' .

‘Summing up, we conclude that strategy ’2 can provide a
high degree of security in protection of confidentiality of
the identification keys in a network. However, more
complexity analysis is required before we declare that total
security is assured.

if L = k,. then from (7‘.-6) we have CBDB = (AB) (mod m).
Since B knows the keys C,D and his own identification key, '
he knows A. However, we foresee that the probabillity of
this e\ient to be very small for the following‘reasons‘:

Let e be the perioé of (ABi. i.e,, e is the smallest
positive integer such tﬁat (AB)e = I (mod m‘); Since

1

aB)>! = B™'A"! = BA ¥ AB, we have (AB)° ¥ I (mod m). Hence,

é _>_' ‘3. Observe that e divides gn(m), the number of nxn
/ ‘ ) l y .
nonsingular matrices over Zm. The probabilityiof\choosing

k and ¢ in the rénge 1 to -;— such that k # ¢ is 1 - é-. If
e‘is large, then this probability is close to 1, a‘ssufing
that almost‘all thel ti:ne £ and, k would be chosen differently.‘
The strength of _this'deﬁgnds on the answer to the question

whether there exists noncommutative involutory matrices "A

and B (modm) such that AB (as well as'BA) has a large period. ° )

[ 4

[
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.k and &. Then, C = (AB)zkA (mod m) and D
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Case (ii).
Assume that the communication keys allocated at two

different times are from F(A,B) based on two random integers /

(aB™ a (mod m)

are knownh to both A and B. Then CD = (ap) 2 (k=%) (mod m). \\\ ’
Henée, if B(A) wants to. find the key of A(B) by knowing C '
and D, then an equation of the form X°F = ¥ (mod m) has to

be solved for a given Y to find both X and r with |r| > 1

(k # 2). Analysis similar to Case (i) holds.:

Next, we considér the property (iv) for the strategy

*
¥ ~
2. It states that the communication keys should be differ-

ent at different times. of communication in the network.
First of all, consider two different communications bet&een

~

any two participants A and B. Let us assume the worst case:

~the first communication key be chosen from F(A,B) for some k,

and the second be also chosen from F(A,B) for some g2. The

question is whether (AB)zkA = (AB)ZEA (mod m), (k # 2). Note

2(k-2)

that it is equivalent to tle question, (AB) = I (mod m)"

with k # 2? Since AB is not an involutory matrix, it is not

. ") '/ '
Z(k ) I (mod m) for arbitrary k and 2. -

possible that (AB)
Further, if k and 2 are‘chosen in the range 1 to % (where e -
is the period of AB) then élk - | cannot be divisible by e.
Hence} (AB)Z(k_z) ; I }ﬂod m) /unless k = ¢. But, probability
of choosing % and k such that 2 & k is O(%) which is very

'sma}l when e is‘large. Hence, the probabilit&fof getting

two different keys from F(A,B) for two different communica-

tions remains large if e is large.

1
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Next, we comment on the abundance of aQailable keys

for digtribution, and on the probability of assigning .

distinct keys for. communications between distinct pairs of

»

participants. Let a pair A,B of participants communicate
kA

-

with a ke%‘ say (AB)2 ,» and another pair P,Q communicate

v . .
with a key, say (PQ)°*P, where A,B, P,Q are all distinct.
Then it is highly likely that the two communication keys are

distinct. We have insisted that the identification keys of '

participants are noncommutative in pair%;\agfﬁée, ;ﬁ'brder ...
to éstabliéﬂ‘an abundant availability of i entificaFion, it -’
is essential to investigate the size of the set of ndh-
commutative involutory matrices 6ve¥ Zm' At present, we
believe that it is an open p?oblem. A

-

Finally, let us comment on the security of communi-

‘cated méssage when the same message M is sent either in two

different communicat%on lines or in the same line at two

!

different times. Let K, and K, be the involutory matrices
that are used as keys in these communications. Assume that
an intruder has tapped both the'cipher-messaées KM and K,M;

-
and he knows that they are encrypted versions of the same

~message. Let Qi = K;jM and C, = K;M, By the involutory

property of K, and K,, we have K,C, = K,C, = M. Thus,

K,K,C, = C,. -Putting K = K,K,, we get KC, = C,. Note thqt,

the intruder knows C, and C,. Hence, it is probably&eésy

to solve for the matrix K, if the message has at least n’

!

letters, i.e., if it has'n blocks of length n each. Let o

Plh""Ph bé'n-blocks in C;, and let Ql;...,Qn be‘n-bloci:ﬁﬁsféaf'
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in C, such that o

kP, = Q, (mod ) , i = 1,2, 00D cuveneea(.7)

-

-

Then, (7.7) can be solved uniquely for K-if the blocks -
Pl,...,Pn (equivalently Q,,... ,Qn) aréglflnearly independent .
over Zm « Since the prol;ability of getting n independent
blocks in a sufficiently large me)ssage is close tg l, we may
say that K can be obtained with probability 1,

The hardest prob;em is to find the involutory
matrices K, and K, such that K = KK, (mod m). Since

K-! = K,K, (fiod m), we have KK,

K, = KIK"l (mod m) and

-] . .
KK2 = K2K1K2 = K2K (mod m). Thus, K1 and K2 r,are;two
- . ) 3 * -]
involutory solutions of the matrix equation KX = XK (mod m).
Solving this equation for.? all possible solutions X is .

equivalent to solving a system of n? linear equations over

[}

zm. Note that if X is a solution, then ¥ = KX (mod m). is

also a solution; further, if X is an involutory solution,

then Y is also an involutory solution, and ¥X = K (mod m),

~

Thus, every involutory solution g;ves a factorization of K
as a product -of two, invol\{tory ma;:x"ices. Hence, for a given
nonsingular matrix K, the problem ‘of finding two involutory'
matrices Rl and K, is equivalent to solving the matrix |

equation

°

1

“KX=XK- (mOd m) -o-c’o;onoon_quo..(7oa')'

S

-

with X an involutory matrix over Z .

1

"

@




' Let e be the period of K (i.,e., e is the smallest )

,

positive ‘integer such that K€ < I (mod m)). For any non- *

‘sihgular matrix QO we claim that the matrices Q,KQ,K2Q,..., -0

kK®1Q are distinct. For,.if K'Q = kK3Q (mod m) with Q\i’il ' g

e

j < ea i# 3 then,rqugi Q (mod m). Without loss of

generality wk may assume ¥ > j. Hence, the.above equatio . i
N N L J . Y : < 4

implies X*™J =8 (mod m), and hence the period of K dividzg i

i - j which is/impossible as 1 < i -~ j < e. Thus, if X, is
an involutory ’solution to (7.8) then the matrices

t ‘ i

e-] '
Xo oKX KoK, 0n o KETIX) il (7.9) 1

¥ ;o
are also iﬁvolutoqy solutions to (7.8) and they are distinct.
In Eabt, we call this set of e matrices as the czcle'induced
EX,XO.CThergfore, if we define an equivalence'fglation‘in :
‘Fhe Se£ of gll involutory sol£tio§s td.(7.8), then each of

o the equivalence ¢lasses is a cycle of lengfhje as given in

(7.9). T '/> : . ;
4 . : ]

L]
Example o ‘ ' |
K Let m = % and h = 2. Let the key matrices used be

t KI = 32 (méd 5) ’ and Kz = ¢ 3 {(mod 5). Tﬁen},
\' AL 2 _lo 1, ,
K = KK, = (0 4) (mod 5), and K™! = KK, = (2 1) (mod 5).

’ 4 0

=
3%

(a b) (mod 5). ' Then, KX = XK~' (mod 5)

Further, let X
' c d

implies .a = 4d {(mod 5) and'b = ¢ + 3d (mod -5). Hence,

x = (47 ¢ %39} (nod 5) Liinaa... (7.10)
c d i
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Now, this X is involutory if and only if c?2 + d2 + 3cd = 1
(mod 5). This eqﬁation has 10 sofutions for the pair (c,d)
with c,d\in Zg as liséed below: - '

(0,1)(0,4),(1,0),(1;2),(2{}),(2,3),(3,2),(3,4),(4,0),(4,3).\
Yote tpat ﬁhe pair (1,2) corresponds to K , and the padir
(0,1)-corresponds to K, .

It could be verified that the period of K is 5. Thus,
the above 10 involuéory solutions are decomposed into two:
disjoipt cycles of length 5. We give fhe cycles in terms df
the pairs (c,d). The aqtual matrices can be obtained from

l
Cycle 1: (1,2),(0,1),(4,0),(3,4),(2,3)

Ccycle 2:  (2,1),(3,2),(4,3), (0,4), (1,0) .
Note ‘that any two consecutive pair in éach cycle gives a

factorization of K. Thus, there are 10 such factorizations

- of K. However, we have used K, (the pair (1,2)) and K, (the

, 3 .
pair (0,1)) as our communication keys. Hence, :-even after

knowing the cycle structure of involutory solutions to '

1

KX = XK = (mod 5), in this case, the probability of getting

the actual matrices that are used 'is f%. -
We codmment that the amount of work involved in
general, in finding the involutory solutions and'the cycle

structh;enis not khown, The only result known in this

direction is the following theprem (see [11]):

Theorzx 7.2.1 o -
/! ~ ) :
‘ Let m'be a square free integer, and K be a non-

".singular-matr?x over Z . If two matrices K, and K, are

\

g Sl it
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are drawn at random with replacement from the set Sn(m),

then the probability that K;K; = K {mod m) is

u . .
.y . b N i
- (sn(m)) C (K)

\

where C(K) is the -number" of invertible solutions, and N(K) " %.
is the number of in;olutory solutions to the equation (7.8).
An exact value or a good bound of g%%%, for a'gfvgn
K is not known. The value of ratio’ip(sn(m))/lh(gn(m))Jis
shown in Table 7.1 for various prime values of m. These _ 1
values make us believe that sn(m) = O(!§;757). }
If the probability in (7.11) for a nonsingular matrix :
K is large, then we can conclude that there are a large | o
( number of involutory matrix pairs“whose product is K. In
such a situation finding the exact pairs K,;,K, useé in

!

communications may involve an enormous amount of work. On
N - " o‘

thé\géher hand, if the probability given in(7.11) is small, |
then we may conElude ghat there/aré only a few involutory
matrix pairs whose product is K. This implies that once a . .1
¥ ' factorization of K is found they are most likely to be the ‘
actual pair used as keys. We\ggmark that the actual process
; of identifying the keys is related to the enumeratlon of all
: o ‘ the cycles, as in (7.9). Further, it seems that the alloca- i
. ’j R tion of communication keys‘must be done ‘in such a way that é
>for every.pair-Ki,Kj of involiitory matrix keys, the product ' %

g KKy (equivalently KjKi) has large period. As remarked by-

\ig

~

us earlier, determining the period, and the éycle structure
/

FENTRCR R S - . Lot i R
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of a ‘produ'ét of noncommutative involutory matrices is an

open problem.
p p ’\\

: Table 7.1 -
T ) , ° /

o ) ! A Co
For a prime p and an integer n,-an entry in the'table .

A" . . . .
x(r)

is of the form |y(s) | and

. ‘ z {t)
bE ' “
g, (P) = x(r) = x-10%
s, p) = y(s) = y-10°
Ins (p) t .
‘ = z(t) = 2-10 '
| Ing, ) o
. . -
\. - i
e & "
-~
\u
- ]
{
/
. . R \ M
\ 1
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CHAPTER VIII

Conclusion

e

We have studied an effective conventional crypto-

a

graphic method for the security of both dynamic and static

.
- T et . AN I I e AT T DU - P e e

data. Our interest is to study, investigate, and propose a

cryptographic method arising out of a need for a strong
conventional encryption method usable in a communication -

network. The main contribution of this thesis is an exact

., enumeration and characterization of involutory matrices over

a ring of integers, and establishing their hsefulness as '
cryptographic ke&s.
15+-03 " _ ‘
Our methods’ in Chapters IVand V are completely
constructive. Hence, a key matrix of a desired structufe\

can easily be generated. Although it is known that a linear

. - / T -
algebraic transform such as the one we have considered seems

to‘obééure the statistics of frequency of occurrences of
word fragments, a more thorough statistical analysis than
théione proposed for n = 5,5 (see [9],[f01)”is required.

One of the major shortcomings of -the éufrently
practiced cryptography is the inability of proving the

absolute security of the cryptosystems. Nowadays, one

invokes the results in intractability to establish some

degree of security of the cryptosystem. The real challenge
is to provide rigorous assertions on the unbreakability of

»
the system. We have related the problem of security in a

communication network to algebraic problehs,‘both deter- ////*/
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ministically and probabilisticaliy‘ To rebal; one of our

[

results: we have shown that the qompiexity cftfinding the
two distinct key matrices used in two different coﬁmunication

channels transmitting the same message is the same as that -

,

of finding involutory matrix factors of an arbitrary non-

'

~singular matrix ~ over the ring of intégers zm .. To the -

1

)
.

best of 6ur knowledge, this. is an unsolved é}oblem. We
believe that f;nding all‘possiblé'factors and then idenﬁify-
ing the factors actbally used in t;ansmitting a'messaée |
through two diffefént chaﬁnels, islcoméutationally hard Qhen
- the size of the matrix is large. The reader is referred to
'~;[i], where it is cautioned againgt'regtiég the cryptocomplex- -
ity just upon tﬁejcomputational complexity. However; our
.suggested éryptbcomplexity rests on an-as yet unéq;ved
mathematiballproblem. ‘Bpth thé~éxistence and ﬁhe.éize of the
_solution space of the equation KX =XK~! (mod.m) would

' determine the extenf of the security affordable in the

. network.
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