LN

*l National Library *

Bibliothéque nationale

of Canada du Canada \ ‘ , .
. Canadian'Theses Service Service des théses canadienness ’
,Ottawa, Canada B PN
K1A ON4 K ‘ ‘
s : - “ H‘ 4
(? ' ¢
® - -

NOTICE

The quality of this microform¥ heavily dependent upon the
quality ?' the original thesis submitted for microfilming.
Every effort has been made to ensure the highest quality ot
reproduction possible. '

If pages are missing, contact the university which granted -

the degree. -

originalfpages were typed with a poor typewriter ribbon or

Some fges may have indistinct print especiallg it the
P
if the university sent us aminferior photocopy.

Previously copyrighted materials (journal articles, pub-
lished tests, etc.) are not filmed.

Reproduction in full or in part of this microform is governed
by the Canadian Copyright Act, R.S.C. 1970, c. C-30.

>

NL-339 (1. 8/04)

F)

AVIS

La qualité de cette microforme dépend grandement de la
qualité de la thése soumise au microfilmage Nous avons
tout fait,pour assurer une qualité supérieure de reproduc-
tien.

S'il ‘manque-des pages, veuillez communiquer avec
I'université qui a conféré le grade.

dékirer, surtout si les pages originales ont été dactylogra-
phies a I'aide d'un ruban usé ou si l'université nous a fait
parvenir une phatocopie de qualité inférieure.

> \ - .
Les documents qui font déja l'objet d'un droit d'auteur
(articles de revue, tests publiés, etc.) ne sont pas
microfilmés.

Lz(§:alité d'impression de certaines pages peut laisser a

¢’
La reproduction, méme partielle, de cette microforme est
soumise a la Loi canadienne sur le droit d'auteur, SRC
1970, ¢. C-30. :
e

/

Vs

Ae

Database Access Using Voice Input and Menu-Based

Natural Language Understanding

— e e

) ..
Ian Menzles

—

- - A Major Technical Report ’
‘ in) ‘ ‘
The Department
of

Computer Science

i
&,

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science
Concordia University
Montréal, Québec, Canada

. September 1988

&

——*—@ . Tan Menzies, 1988

Canada

copies of the film.

o

The 'author (copyright owner)

may be printed or otherwise
reproduced without his/her

written permission.

. ISBN

»

Permission has been granted
to the National Library of
to microfilm this du
thesis and to lend or aell

L'autorisation a &té accordée
3 la Bibliothéque natiorale
Canada de microfilmer
cette thése et de préter ou
de vendre des exemplaires du
film.

L'auteur (titulaire du droit

has reserved other d'auteur): se réserve les
publication rights, and autres droits de publication;
neither the thesis nor ni la thése ni de 1longs
extensive extracts from i§ extraitgs de' celle-ci ne

doivent @&tre imprimés ou
autrement réproduits sans son
autorisatid écrite.

‘

0~315-44839-3

Ry

ABSTRACT | , \

—

Database Access Using Voice Input and Menu—Baé;d
Natural.lLanguage Understanding

hd

L

Ian Menzies

0

'Thié report reviews . the problems facing the
development of natural 1language interfaces to database
systems. In qui%cular it reﬁiews three natural language
interfaces to database systems that have been i&plementedl
Speech recognition systems are glso discussed, and ;various'
commercially available speech recognizérs reviewed.

A natural language interféce to a da£abase system ﬁging
voige input haé been developed. ' This system is based on a .
menu driven n;tural language interface, and ihiégrates
several different software and hardware compbnentshfhat are
available for persogal computérs.J The system uses, a
VoiceScribe speech recognizer, managed by progréms writtep
in Microsoft C and Arity Prolog, in order‘to provide an éas&
to use, . affordable, and easil; adaptable natural languagéu , . (

o3
interface to a small relational database environment.

T LTy ™
Nt SR R A

IRTTIE
el
'

-

A o -
ta . /
A (B
\ N
ACKNOWEDGEMENTS |
» ' @
I Vou{@ like to thank the following peoplifgziﬁg?ut whom
the completion of this report would not. have been possible:
' * e

Dr. T. Radhakrishpan, for his unwavefing faith #gnd support;
>l : ‘)
! .
my parents, Marge/& George Menzies, for all their prayers
"
and assistance; ariam, for showing me it could be done;

Sonia, for her undetstapding and encouragment; . Mame and

Malone, for always being there! I would also 1like to

\ X
gratefully acknowledge the financial support provided for

this work by the Canadian Workplace - Automation Research

Centre (CCRIT).

-

° Tabel of Contents
— . ’ Q
Chapter 1: Natural Language Interfaces

.0 ' Introduction

1

1.1 Natural Language Understanding

1.3 Implemented NL Interfafes to Databases

1.4 The LADDER/LIFER System

1.5 The COOP Systen , 3 : , :
1.6 The NLMenu System o

Chapter 2: Speech Recognition

2.0 Introduction)
Problems of Speech Recognition
Speech. Recognitign Systems

+ Isolated-Word Recognition Technlques
Commercially Available Systems
Desirable Characteristics of a Speech
Recognizer

MM&NM
[~ W0 B SN

Chapter 3: Systej Technologies and Integration

3.0 , .

3.1 - The Computer = -

3.2 The Natur Language Understanding System
3.3 The Speech Recognition System

3.4 Software/Consideration (

3.5

System Integration .
N : / o s

. \ |
Chapter 4: / Implementation of NLMenu- Interface Using
Voice Input

Introduction
" The/Database Description
The¢ Screen Design '
Language Grammar Design
nguage Training .
ystem Implementation
he System Coordinator
System Initialization, ,
Recognition
System Performance and Limitations
0 Adaptation to Another Database Domain

.Y

-
M~JAUTd W O

4,
4,
4,
4,
4,
4,
4
4,
4,
.4,
4

IS 4

26
. 26
27

35
36

40
40
41
42

48

e Tabie of Contents (Continued)

Chapter 5: Cohclusiqns

References ' o ’
Appendix 1: NLMenu Grammar

Appendix 2: System Exampléé

Appendix 3: Performance Statistics

[N

B
e

¢

page 81
83"
85
88
93

e X

i ‘ chapter T - -

Natural Language Interfaces) '

’

1.0 Introduction

e "The proliferation of personal ‘computers and the
advaapes in communication technologies over the last decade
have placed vast amounts of informasion within the reach of
aq ever growing segment of the populatlon In splte of the
technological advances, the need to master one or several
database query languages, or to hire trained computer
technicians, has placed much of this information beyond the
practicai-reachgof many potential computer users. While the!

development of man; so—called' "user-friendly" software
packages has alleviated the problem someuhat, these packages
are usually quite iimited in their scope and capabilities
and often do not resﬁond to the on—-going needs df theif

N usefs. If computers are to become truely usable by ° the B

casual ’ user,' the user must be able to use a language that

.

-.resembles the natural human language. The computer musk be
o c . . .
able to understand and act upon commands given. in natural

language. The .development of workable natural 1language
1 .
understandgﬁg: systesms, usually as frontehds or interfaces
to database systems, 1is an ongoing ehallenge to computér
¢
{

professionals[in the areas of database management and

artificial intelligence. ,,Thie chapter will 1oek at the

-~

PRrs T ET D e e 4y e
R - ~,
§
P

4 i . ® .’

/

variety . df () problems that myst be overcome in order to '
develop natural language understanding. We review some
selected hatural 1éhgauage - database query ' systems

particularly those which have been implemented.

1.1 Natural Language Understanding i

, ' Natural lanéuage understanding (NLU) by cqmputers in
the éontext of. databases 1is :a process of parsing,

interpreting and responding appropriatly to a query made in
a natufal language such as English. Parsing is a process in
which the input sentence is checked in or@éi~ to determine
whether or not it is syntactically correct §C6ording to the
grammatical rules of the language, and if it is, to assign
éome sort of structure to it, _usually a parse “tree. To
parsé a sentence it i1s necessary to use a ‘grammar“\that
describes the structure of legal sentences in a particular
laﬁguage. Figure 1.1 gives a grammar for a .small subset of
English, breaking down a legal sentence into its grammatiéal
components, such as nouns, verﬁs, and determiners. Figure
1.2 shows the parse tree generateq'for the sentence "Tﬁe man

eats the apple", which is a legal sentence defined by the
grammar. Sincer this grammar. uses syntax only to define a

legal sentence, it 3qg%d also accept sentences like "Thg

apple eats\gpe man", 'and "The apple sings". ‘ Clearly,-this

\

’

) C : . - : L
is not a very good grammar of Engl;shé

1
7

<. , :
SENTENCE -> NOUN_PHRASE, VERB_PHRASE. _
NOUN_PHRASE ~> DETERMINER; NOUN. _
VERB_PHRASE '~> VERB | VERB, NOUN_PHRASE.
DETERMINER ~> the. | :
NOUN -> apple | man.
VERB -> eats | sings.

/

A}

Figure 1.1 'A Simple Grammar for a Subset of English

Natural lapéuages-are}» uhfortunatly, very complex and

not easily déscribable by a iimited set of grammatical

rules. In any NL there are a myriad of ways to convey ohe
A . N "

thought or cdoncept. For example, "Do you'have the time?",

"Could you tell me the time?", "Could I see your watch?",

and "What time is it?" all express the same desire to know
the current time, but exhibit four different syntactic
stuctures. This is _an example of a many-to—one mapping
between syntax and meaning that fs a common tra%t of natural
languages. Onefto—many mappings are also’possible in. NL, as
;ﬁ\ the sentence "John saw the boy in the park with a
telescope"., Did John see with the telescope;l was lthe
/ telescope with\ the boy, 'or was it the park that had the

telescope? - Another example is "They are¢ flying planes",

which can have four seperate interpretations. Sentences

such as this are often referredgto as being 'sfntactically

.

ambiquous, since they can be parsed correctly in more than

one way, and sytactic'corregtness'alone is not sufficient in

- \ ‘

]

t

order to interpret them.

The complex syntactic rules of natqral languages pose a
major pfoblem to\’the development . of ' natural language
understandiﬁg (NLU). The semantics of naturai language
present another problem. Semantics refer to the meaning of
words, and in natural. languages the meahing of a particular
word may change from one context to another. \The’ question
tHo& many Canadiang live in Mon£real?", for example,® may

i

have different meéhings, depending ?n whether one is

requesting census inférmation, discussing political
affiliations, ,or refering to a hockey team.\\SentenceE\éueh\;
as these are vague, or semantically ambiguous, and can be
difficult to interpret eventhough they are iquite clear from

-

a syntactic point of view.

A
SENTENCE
NOUN_PHRASE - VERB_PHRASE .
\ | \\\\\\\Qli \
DETERMINER \ NOUN RB ' NOUN_PHRASE
5 ‘ the man © eats . DETERMINER NOUN

N ‘) ’ the apple

3

-

¢ "Figure 1.2 “§3rse'tree for "The man eats the apple"

R

4

Fortunatly, most NLU systems‘ used in the database

context do not require a complete description of the syntax
9

v and semantics of an entire natural language. ‘They.deal with

T

a limitedA subset of the language covering the partiéﬁlar

>

domain of 1nformation contained in a database system For a
given - database system it is possible to define a grammar
that will_ include a class of query or sentence structures
sufficent for addressing the'application at hand. If 'the
language{ is well designed we can kope to allow' a fairly
wide range of straight forward, naturally foimulated queries
,’ in correct‘English. Limiting the subset of NL used in the
sysfem limits} bﬁt does not ~eliminate, the-ipotential
problemsxpresented by the different forms_of ambiguity; If
the size of 'the 1language being wused is -sufficently g
. restricted,xhowever, many potential souiceS»of ambiguity can.
be forseen, and mechanisims developed to‘handle them.

s
] -

y In designing a NLU, two areas 'of knowledge are normally
. Fl ' ’
used: ‘world or global knowledge .and domain—specific

knowledge. World knowledge referp to the knowledge of the
K natural language, its syntax and meaning, and how .people
‘interpret the language. .Such knowledge is'used continuaf!y
by people, usually unconsiously, to disambiguate sentences

"It draws: upon our understanding and perception Sf tﬂe world

vin which we live. For example, most people would have . ho ;

-2

Xt

oA

« A

L]

“difficulty understanding "The man drove down the street in
the car". +Few . would coflsider “that it might be the street
that %s inbfhe car, even thougb this is a peffgc&ly valid -
.syntactic interpretation. People are not'likley to confuse
the meanings of "basebal}ldiamond",-"diamond ring", and "the
ace of diamonds", eventhough "diamond" is' present 'in each-of
th; exampfgs. World kpowledge is learned by eople' from
ch%idhood and relies upon a lot of purelyphumgjgﬁkxperience.
Apart from the basic syntax of the language, world knowledge

is hard to buildyinto a NLU system. M§s§ NLU systems

‘ therefore ~ rely heavily on domajn-specific knowledge to
" interpret: queries and hﬁndlé ambiguity. Doméin—specific
. kmoyledgé' is drawn from the wordg and pﬁraées that are
com%only used in referring to a datab@se system and the data
contained in 1it. The names of the databages and the fields

in them ‘can be built.into the grammar of a NLU system,
resultiﬁg in a.language for the gpg;ication that is tailor
made for' the specific database and "its users. A NLU
inteif;ce to a university database need not concern itself
with the knowledge necessary for a medical da%abase,u and'in
the’ context of a baseball database, the word "Qiamond" need
not~be‘am£§ghous. ¢

. . . 1 Lot 5 v

- ~

gL P e 0,
.
-
s

o e s .. K ‘““"'}?5}}3?3‘5?;:5:1. L
- oA .

1.2 - Implemented NL Interfaces to DataBases

Since the mid 1970's, many attempts have‘been made to
' deveidp natural language interfaces-to database systems.
While it is not possible here to review mény of ' these
systems, we w{ll review three that are of particular
inteiest. The 'first one to be reviewed was one of the
earliest implemented systéms,' and uses an approach based
primari;y.on domain—specific knowledge. The second system
to be diséussea, developed in thelmid‘1980's, relies more
on , world knowledge. These ‘two systems represent two
different, byt traditional, appréaches:to NLU. The third
system -represents a rather Nnovel and non—t;aditional

approach to the problems of‘natural language understading.

1,3 The LADDER/LIFER System -

One natural language interface to a database that was
develdbped in the mld-1970,s was the LADDER (Language Access
‘to Dlstrlbuted Data with Error Recovery) system, . developed
at SRI International for use as a managment aid to U S. Navy
[1]. LADDER,:allows a user to query the nav;l database in
English, and applies all of the 1exica1 and syntactic
information necessary to provide thevénswer, The dgfahase
uged in the LADDER system Qas made up of about £4 files with

over 100 data fields loacated at various remote sites, but

+ -
o ’ °

from the point of view of the user it was simply a general
informatioh database LADDER freed the user from the
necessdty 'of underétanding the underlying structure ofK the
database system, and from the néed to learn and use‘ a
structured database'querf language.
- LADDER was built using three' major compohents, the
first of which wae'INLAND (Informal Natural Language Access
~ to Navy Data) INLAND accepted the user oueries in a
restricted subset of English and produced one or more
queries to the overall‘naval database. INLAND's queries
were then . sent to LADDER's second component, IDA
(Intelligent -Data Access), which broke them down inte a
sequence of queries.against 1nd1v1dual fields " located on
various machines distributed at various sites.’ This
sequence of queries were then shipped to the third '
component, FAM (file access manager), which located the

various files, queried them, .and-passed the response back

through the system to the user's sites. ,

LADﬁER's natural language component INLAND, was
developed withln the framework of a.'natural language
processing package called LIFER (Language Interface Facility
with Ellipsis ahd_Beohrsion). 'LIFER:Supplied basic parsiné

- procedures and allowed the system developer to create the

interfaces 1in an interactive manner. It also contilned

. ' ‘ -

R St
o ; >

certain user-oriented features, such as spelling cofrection,
the processing of incomplete inputs (elliﬁsis), ’apd
mechanisims which allowed the user to paraphfase his/her
q"eries ,.The interactive procedures for developing <the
1anguage specification made use of semantic grammars,\ which
grouped words together according to their semantic roles,
rather thgg_according to their syntagtic roles. Words such
as NAUTILUS and DISPLACEMENT were not grouped into a single
<{NOUN> cateéory, but rather into <SHIP-NAME> and <ATTRIBUTE)>
categories, respectivly. Spegific sentence structures were
then 'builf, giving grammar rules such as "What 1is the
{ATTRIBUTE> of <SH;P>", rather than {NOUN-PHRASE>, SVERB-
PHRASE> . For each such pattern an expression was supbliéd
by “the language designer for cofputing the interpretatioﬁs

of instances of the pattern, resulting in production rules

such as that in Figure 1.3. LIFER maintained lexicons of

\
individual words and fixed phrases that were associated with’

each of the metasymbols present in the production rules,

such as {PRESENT> and (ATTRIBUTE> The lexicon entries fof

Lhe- metasymbol <PRESENT> consisted of words such as PRINT,

LIST, SHOW ME, and WHAT ARE, while <ATTRIBUTE> would have-

associated with it CLASS, FUEL, LENGTH, etd.>Qnce all of

’

the production rules had been specified by- the }anguaée

designers, they wéﬁé' built into a transition tree, a

simplificgtion of an'augﬁented transition network. . If the.

+

—TLIFER grammar was defined by the four éroductions in figgre_
1.4, where LTG stands for LIFER TOP GRAMMAR, and the el, e2,
e3 and e4 are the expressions associated with each of the
patterns, the transition tree Suilt from it would be- that
;hown'in Figure 1.5. When a query was presen;ed by the user,
LIFER's, parser started at tﬂé beginning of the transition
tree, attempting to move towards the response expreésions on -
thebfiggg, working top-down, left-to-right. Literal words
could be matched only by themselves, while a metasymbol such
as <ATTRIBUTE> ,6could be matched‘wiér one of the words'

associated with if in .the lexicon.

The variety and complexity Qf queries‘thét can be built

Sl o

. into a NLU system by LIFER are limited(only by the time and

N—
effort put into the design,. . and by the. time and .space

PN T

' restrictions of the computer being ‘used. In the case- of
LADDER, the types of queries allowed were quite broad,
P permitting queries . of the type "List the current position

and heading of the US Navy ships in the Mediterranean~ every

' | 4 hours" and "What US ships faster than the Gridley are in

‘ ' ﬁorfolkf. LIFER's special features, such , as spelling

; . correction, thé use of ellipsis, and allowing the ﬁser to

redéfine or paraphrase queries, made. LADDER's. natural
& : : .

language component both helpful and palatable from the’

user's'point of view. ,

. <PRESENT> the (ATTRIBUTE> of (SHIP)
(IDA (APPEND <SHIP> (ATTRIBUTE)))

.]
Figure 1.3 LIFER Production Rule
LTG -> <PRESENT> the <ATTRIBUTE> of ¢SHIP> | el C,
LTG -> (PRESENT) {SHIP's> <(ATTRIBUTE> I e2
LTG —> How many <SHIP> are there | e3
LTG => How many <SHIP> are there with <PROPERTY> | ed
Figure 1.4 LIFER Sample Grammar
[N
the -> <(ATTRIBUTE> -> of -> (SHIPY --> el
(PRESENT . = ﬂ “ ~i
A \\\\\\;s _ ‘ . :
. .®<SHIP'S>, => <{ATTRIBUTE> --> e2 , -
LTG— | . ‘ ’
>
| | \) = -
v’ ’/////”

- How —> many —-> <SHIP> -> are -> there

\
L4

with => (PROPERTY> -->ed

s ' -
Figure 1.5 LIFER Transition Tree

1l

| /
a
A} t

While LADDER was quite robust in its handling of NL-
queries, it. did suffer from several limitations. LIFER
provided no general'mechanism for dealing with the omission
of words at arbitrary %ointé in a sentence, soiwould treat
"What Lafayette and Wéshington class éubs are tpere within
SOO mile of Gibralter" as "What Lafayette class subs are
there", and "What Washington class sﬁbs are there". In
order for LIFER to prpperly interpret the éuery,\ it would//
\ - have had to have been entered ag‘"What Lafayette class su2§/
are there w&thin"SOO miles of Gibf@lter and what Washington
class subs are there within 500 miles of HGibraltéZ".
Eventhough LIFER's grammar can, in theory, have any pe of
= . . sentence strgcture built into it, in practice only limfted
number can be formulated, often resulting in /irregular
covgragé that can be irritating and confusing to the user.
For example, the system might accept "The Ksﬂgedy is owned
by whom" " and "Who commahds the: Kennedy"h//bﬁt *not "The
Kennedy is commanded by whom". The use f‘wel;ipsis also
suffered from irregularity. LADDER's gelliptical processor
was based on syntactic analogies, sg/&ould ‘easily " handle

YA

"How many cruisefq are there?" folldwed by "cruisers within

o

500 miles of the Knox?". . Since tﬁé second phrasé is a noun

. y
. phrase that is analogous to the noun phrase ‘'"cruisers" in
the first query, ellipsis willxwork. However, if the second

' phrase had,_ been "within 506 miles of the Knox", ellipsis

would have failed, since this 1is a modifier with no

analogoug part in the firép'qdery.

LIFER provided no mechanisms for dealiﬁg’ with either
semantic or syntactic ambiguity. Rather, the system wa;
based on the ;ssumption the the users had a very good idea
§f what was in the undg?lying database, knew how differnt
© bits of information were related, and would avgid usiﬁg long
and complicated ;enténce.constructions, since most of the
users disliked +typing at a keyboard. Apparently these
assumptions were fairly well founded, and ambiguous
sentences were rare occurences; wheﬁ they did occur, LIFER
accepted the first legal parse of the seﬁte;ce as being the

only interpretaticn of the query.

o

Many of the shorﬁéomings\of the LADDER/LIFER system can
be attributed to fhe fact tha% the éesign of its linguistic
component was based solely oh ,dom;ih—specific knowledge.
» Althougﬁ a good .deal o} domain-specific knowledgé is needed

to design any NRU system, it’'is not in itself sufficent to
deal with tr;:;z:mee linguistic phenomena such as syntactic
and “semantic ambiguity. In oréér to handl® such:phenomena it
is " necessary to have recourse to a certain amount of .more
general wérld kﬁowledge. An‘ over reli§nce on domain-
specific knowledge also results in a NLU system tha£“~%s

" bound to one particular database domain, and cannot be
W
13

,,,,,

easily moved to. another domain of Xn&Wtedge without a

£

substantial recoding effort. Such recoding can be costiy

and time consuming, and reduces the cost effectivness of

. domain-specific systems.

1.4 The COOP Systenm

“While the LADDER/LIFER system demonstrates the domain-
speciffc approach to NLU, anotﬁer sysftem, COOP, was designed
with more of an emphasis on world kno 1e§ge [2,3]. The main

premise behind the development of COOP\was that language-

. driven inferences should be distinguished from domain-drivén

inferences 'in the designing of a NLU system. Most NLU
systems base the "understanding" of & query on inferences

drawn from the underlying domain of the database - these are

domain-driven ' inferences. Language—driven inferences, on

the other hand, are based An'the knowledge of the language

itself, and upon the language related conventions ﬁhat
people -use when éommuﬁicgting with gééﬁ other. A . story,
dialoguej of question, is a description, and the description
itself contains certain useful propertiés that are not
associated with the domain being described. Words such as
"forme?", "latter", and "resﬁectivly" make use of the linear
naturg of the lénguage,to convey their ﬁeaning, akd from a

statement such as "John didn't know that the exam was

LY

s

14 o

S | ,
1 »

v ‘
|

. ' b - _ —
yesterday" one can infer that the exam-was yesterday, ahd
- A ‘

that John may have missed it.

When dealing wih questions, language-driven inferences

can allow one to address the presumptions that are inherent
: ‘ . ’

in the question, and to respond appropriatly. For.instance,

the question "Did John pass Comp2l0?" carries with it the

information that the questioner believes there is a Comp210~

and that John took the course. Giving a direct answer of
either "yes" or "no" is oniy approptiate‘in the case where
there 1is a Comple‘which John took. If, however, 'the
ouestion is based on one or more. false presumptions, a
directl answer of "no"™ would not be appropriate, since it’
would‘ only serte to reinforce ' the guestioner's
misconceptions Ia such a case, an indirect response such

as "there is nd Comp210" or "John didn't take Comp2l0" is

more appropriate and helpful, since it corrects _ the

questioner's false beliefs.

" The COOP NL ' query- system was designed -with two.
.hypotheses in mind. The first. of these was that language-

driven inferences are sufficent to run procédures which

detect the need for a cooperative indirect response, and

select an appropriat one. The\second hypothesis was that:

the domainrspecific knowledge needed to handle a significant

. class of NL queries already exists in a standard way in most

15

\ "

[
®

database systems and .need only be augmented with a suitably[
encoded lexicon. u.‘The mechénisims used to ;prodqée
cooperative . indirect responses are therefore) dom;in
‘transparent and can be transfered to new database dqﬁains

with relativly little effort.

. ' '
COOP computed the need for corrective indirect

. responses din the foliowing manner. The user's jquery in
naturai/'language was transformed into an i#iermeaiate !
represéntation} called the Meta Query Language (MQL). The

MQL was a graph structure where the nodes represent the sets
- given by the user, -and the edges represent binafy relétions
defineé on those sets. ‘The nodes and edges are based on the
lexical and syntactic structure of the user's quety, ;nd are
therefofe domain indepéndent. " For example, the'quefy "Which
students‘got F's in engineeriné courges" would be ?epresentd
by Moﬁ as shown in figure £.6t Each‘of the subgraphs in
‘the MQL representation correséondé to a presumption the user

* has made concerning the domain of the database. Should the

-

actual query to the database return a null set, . each of the
user's presumptions éould be cbecked agafnst'the database
for non-empg;ness, and if a pfesumtion was, found to be
incorrect, an appropriate corrective response would be .

generated. It is n§téworthy that the computatibn of the

‘ l
user's presumptions was totally language-driven, .and that

access to domdin-specific knowlédge was needed only to

16

TN RS S I
Sl e .
It - - .
"y
.
. B
S
-
.

bWt ,f/.—J_\

select aﬁ,appropriate response.

r

e o \ got
5*5;;3 STUDENTS > Fs
o s 1 - . . 2
. ‘ \V in
" ENGINEERING |<€—— e / COURSES
yEeRs | | o)
¢ -
A ’ ”

Figure 1.6 Meta Query Language Representation of
"Which students got‘Fs in engigeering courses?"

COOP was designed to be more than jusf cooperative - it
'was also meant to be,alpbrtable NL query system, While the
prdcedures‘ 'which determine the need for correcti;e
’résponses are completly languaée—driven, domain-specific
knowledge is requi;g§ for .parsing, interpretation and
translation of NL queries in£b database queries.' Since it
is the need for domain-specific knowledge that limits the
portability of NLU éystems,‘CQOP’s sources of such kﬁowledge
were ‘limiteq to‘sources that were“implicit in Ehe database

system, well defined in scope,. and did not require aylarge

<«

Y

s
P
",

- Jg&lﬁ‘iﬁ

N

N

coding effort. Theié sources were the database sche&a, the
database contents, and the lexicon, the first two of which
are already present in any database application, and
therefore don't requirela major coding effort. The coding
of the lexicon alone required a substantial effort. The
lexicon consisteé of three tybes of entries; general,
stuctural, and Qolatéle. General entries were verbs such as
"to be" and prepositons like "in" and "from", which are
iargely *domain inde endent and required llttle mo;e than
fine-tuning 'to apply to a new domain. Volatile entries
refer to the actual database confents, and were not
explicitly coded in COOP. ' The majority of coding was
therefore for the structural entries, vwhich were g;neralxy;

nouns’ that referred to specific data fields, and verbs that

were used in the particular domaln

Unlike » the LADPERALIFERv system, COOP included
mechenisms for resolving the different types of ambiguity
that pop up in NI, queries.f S;ntactic_ambigﬁity most often
' arises' vhen a modifying clause has more than ene po£ential0
noun head, as in‘"John saw the boy in the park with the
pelescope“. Coop employed three doﬁain transparent &
-heuristics for ranking the variodus potential head nouns for
a particular modifief. ' The first was based on the distance

back in the query to the head, with the head nearest to the

modifying clauée“reqeiving the highest rank. The second
. L ') 18-
A

Fn

[

<
. .
/ ’

heuristic was based “on the predictive valueg of varipus

words 1n the modifying clause A verb such ds "sponsors',

[

for example, makes a strong prediction that its. subject is a

] S~ Il

— [

k) :
sponsor, while a verb like "1s" has little predictive value..

"The third heuristic was to measure the distance between the

L3

modifier and its potential heads in the 'database' schema.

Y i . : ;
»Since semantically related terms tend to be near each . other

in the schema, this simple heurrstlc was often very useful

for disambiguation. For example, in the questiom "Which‘

professors teach courses ih Digital Design that are in the

CoﬁpSci Department?f the modifier, "that are in the CompSci

L]

Department", has two possible heads, “prqfessors" and

"

"courses". If the database scheaa showed that ' professors
o e
were - organized . into departments, while courses were

-organized by areas-of-interest, "prbfessors"” would bevchosen

“as the appropriate head.. Hav1ng applied the three heuristic

measures, COOP calculated the scores of the potential heads,

and chose the one with the- highest score.

LQueries such as "who advises students in 641" are
semantically ambiguous, -since it is not clear who "who"

refers to, and the meaning of "641" is not precise. When

N
COOP came across such a Query, it develops a set of

/ 2 RN
condidate’ meanings for the various ambiguous words,' ‘and

then “ﬁppl}ed two hedristrcsrborrowed from the syntactic

1

-
-

S

g —rb:-r‘,:f Lantc e R it
e

lknowledge, so had to mi

*

disambiguation process to constrain the possible meanings of
the word. The first heuristic was‘no.nse the predictive

value of the words in the query. ' The word "advises" makes a

) “,
strong prediction that its subject is an advisor, while "in"

might predict a course, depaftment, or room. The second
neﬁuistic then examined the schema. 1In a universtiy schenma,
it 1is 1likely that "students" would be closer to "courses"
that to "departments" or "rooms", so COOP would infer that

"641" was probably a course number.

.

} " LADDER and COOP are the products of two diffefenf
approaches to NLU query systems, developed with different
goals in mlnd, and for different types of users. LADDER vas
de51gned for use on a partlcular database, to be 'used by
pedple who wene aware of the contents of the database‘ and

the types of questions it could answer, With these

considerations in mind, the domain-specific approach was
. M A & N

well suitdd to LADDER, and the absence of mechanisims for
resol&ing ambiguity was not a major drawback It was not
de51gned with portablllty as a ma]or consideration, and
would, as a result,' be dlfficult to port to another database
domain. COOP, on the other hand, was des1gned for a less
experienced nsen, and to easily portable to any domain of.

niZize _the need for domain~specific

<

data, and ' -concentrate on the use of language—driven

inferencing. coop did not. make the assumption thap its

users would be apetre of the precise congeﬂts .0of the
database; nor did it assume that its users would ask only
clear, unambiguous queries. Because of this, COOP had to
provide cooperative responées, and have mechanisims for

dealing with ambiguity. Y A

" While both LADDER and COOP worked quite well within the
frameworks of their respective design, a study of the users
of NLU query systems found that there were severai problems

[

inherent to most systems of this type. One of the most

-7

basic problems is that many users cannot type or spell véfy
well, resulting .in a lot of misspellings in the input’
querieg. This problem can be accen;uétéd by the fact that
man; users are nQ} comfortable with computeré, 'and have
difficulty ar fﬁ?%ting their queries,. The néxt major
problem was,wiZ: the scope of the natural language. Users
often asked questions that £hg system could not understand,
but could have understood if formulated in'anotHFr way. Due
to this, users oftgn' retfeat, to very simple query
structures, and do not learn or use/the sygtem to its °fuil
linguistic potential. Another problem related to the

ccaceptual toverage of the system was witﬁ‘usgra asking fér

information that was not contained in“the database system.

7

. There are several traditional approachéb to overcome

A\’the préblems inherent in NLU query systems. One is to give

Al N B
21) ,L

&

IR N

3

.

all users sufficieﬁt training and insé?détionv.ig the
linguistic and cbnéeﬁtual coverégé,of the ‘system 'so ihat
they: do not ask questions that cannot be answered.
Unfortunatly, this wouig make systems<unaVai1ab£e to the
‘truly casual use;, and even.tféined gééfs qigﬁirzgt'réhember
all of their trainind from one session to the next. Another
possible solution is to expand the linguistic coveraggw to
cover all possible queries. Even if this were possible,’it
would bé~very»time consuming, result in systéms that were
v highly démain' dependeﬁt, .énd not solve the probléﬁ of
exceeding the cGhEeptual coverage of the system. A third "’
solution 1is to engage the useidin,some sort of clarifying
dialogue " when prbblems arise; as COOP,6 did for user

misconceptions. This, however, only works if all possible

problems can be forseen, and mechanisms developéd to deal

t

with them. o

1

1.5 The NLMenu‘System

LADDER ‘and COOP used a variéty of methods in an effort .

i

to overcome some of the above mentioned problems. LADDEh
assumed experienced users, and employed spglling'correction
for those who couldn't type or spell, while COOP handled the

problem of conceptual coverage with cooperative .responses,

and used several heuristics for hand}ing unclear queries. A
. . - 1' ’

S
4

4

third system,, NLMeny, overcame the problems of NLU by
‘employing a completly different approach [4,5,6]. NLMenu
was designed to incorporate all of the advantages of natural
language, while elimihating the need for -training, makiné
, the ‘1inguistic and conceptual coverage of the systeﬁ highlyﬂ
fapﬁérent to the user, and providing a 0% failure rate.

-

- NLMenu‘ works in the«following manner. The user is
presented with a screen‘containing a series of menus, each
fof which contains several words or phrases representing the
various. components of ‘a natural language query. The user
may choose any word or phrase from an active menu; using
either the keyboard arrow keys or a pointing device. . As the
user picks words, the partial input query is parsed, and
based on this, the next eet‘ of menus are activated,
preEentihg " the user only with those options that mahe sense .
under the current context If the next sensible entry is a

database velue, " NLMenu presents one of 1ts "expért" menuaJ.
containihg' specific database values from which the user may‘
choose. In this way the user can formulate a complete query

a

in' natural 1anguage that the system 1is guaranteed to

[}

understand. ~ ’ ' N

The. beauty of the NLMenu coﬁcept is 1te clarity- and
simplicity. The user can see what typesfof queries can be

formulated and the domain. of information contained in the

.
. . !
- . -

2

- d@ifficult to mold into.the menu framework.

~ .
system. just from looking at the screen. Since the user does

not have to type, the problem of misspelling does not exist.

Since- the user is restricted to choose from the active

. menus, only queries that can be understood can 'be

.constrﬁcted, eliminating all souyces 6}{ ambiguity. By.
displaying pérticular'databasg'v es thfé{gh the "expert"

menus, the need to maintain‘'a 1lexicon of database

- descriptors 1is ‘removed, and the contents of the system is

always up to date.

LY

~_T—i\e structure of NLMenu also makes it easily portaple
from one détabase domain to ahotPer. Starting with a small
core grammar and lexicon, all that is needed to build an’
interface is a deséription of the names of ¢the relations in
the database, tﬁeir attributes, and’ﬁhe characteristigs of
the attributes. Based on this'infofmation, an interface can
be éenerated automatically, or the user can generaie a new
inéerface by choosing from a menu the set of relations to be
coveredl Since NLMenu only piovides one way to phrase any

given query, the task of building an interface is not open-

‘ended, and can be done by the end user.

One’ of .the' main drawbacks of NIMenu is ;93 size

limitiation imposed by the screen. A large ‘ database

system, with many relations, attributes and

LIS

-

line screen could not hold more than fifteen or so lines of

text if there is to be enough room for the menu frames on

the SCreen.u A high :gsolution screen might allow smallér'

letters and more text, but would be hard on the ejes and
~ would preseﬁt the user with a confusing number of options to
choose from. ,Scrollable menus, or overlapping menus, might

?

pro€1de a.partial solution, but would reduce the clarity and

simpligity of the screen menus. Still, for,a small qumber

of relatioms, not.more than tw§nty, the NILMenu approach to
NLU seems to provide a relativly robust and expressive way
for casual users to access database information, and one
whigh is particulafly well suited for use on ;he omnipresent

personal computer.
\

- ek
i <

~ Chapter II ‘ |
Speech Recognition

4

2.0 Introduction

. L
The goal of natural language interfaces to database

systems is to allow casual users to query a database in ;5
fashion with which they are familiar. Most traditional NL
interfaces, however, rely on keybo;;é‘input of user querieg.
The advent of relativly low cos£ speech iécognition hardﬁare
may now make it possible for casual users to query databases
in the most nat&ral form possible, namely using spoken
natural language. This chapter reviews fhe_hajor problems
gnvolvéd in speech recognition, the different types of
speech recognizers, and looks briefly at some of the

N
commercially available systems.

a

2.1 Problems of Speech Recognition

"

'Just as NLU faces several inherent problems, there are

"

problems encountered by all types of speech recognition

systems [7,10]. First of all, no two people talk in exactly

the same fashion,” and no two People sound alike. A

-

" practical speech recognition’ system must be able to

distinguish between speaker dependent variables, such as
accent or pitch, and‘phonetic information, in order to

understand more than @ne person. Speech iecognition— must -

’ ' l’

26 ’

also deal' with the problem of phonetic ambiguity, since
sounds do not, map one-to-one onto pponemic .variables . or
words. Humans deal with this by drawing on their knowledge
of the language and context, but such knowledge is difficuit
to buildk into a Eomputer. A third problem-is-. that the

speech patterns of individuals vary from one day to the

. next, and can be effected by factors such as fatique, and-

- psychological or emotional stress [12]. People do not
+ always speak clearly, often reducing short words to

'monosyloabic grunts and running syllables and words

together. The duration of a sﬁbken word may vary over time,.

as may the dccents placed on different syllébles, and a
speech recognition 'system must be able to deal with these
variations in speech. Finally, a speech recognition system
must be able to distinguish a speaker's voice from
backdiéund noise and interference. While speech in a quiet,
cpntrolled environment poses fewer problems in this respect,
. a practical work environment may producg a lot of background
noise, such as closing doors, ringing tqkephoneQ, and people
talking. ‘

)

2.2 Spéech Recognition Systems’

Speech recognition ' systems can be divided 4into ' four

catagories," in order of increasing difficulty. The least

27 .

-

complex ' form of recognition is 1solatéd-word recognition.

L}

‘Here the unit of recognition is the .woré, with words

separated by clear pauses in speech.' CFéUSES between words

simplify ﬁhe defection of the.start and endpoints of each
word. While this form of speech is not natural for people,
.isolatgﬁ words are genérally pronounced more.carefully'than
words in continuous speech, and are therefore easier toy
recognize. In commercial systems isolated-word recogniéién
is the most common form of recognition, and will‘ be

discussed in greater detail later on in this chapter.

@

The second type of_recogn;tion is word-spotting, or the

g .

Qdetectior of occurrences of a particular word in continuous
ot

speech. Each word to be recognized ‘is represented by a

template or model and the recognizer attemps to match these

templates with the incoming speech stream. Unlike isolated-

:

word recognition, there are no distinct pauses between the

words in the speech stream, so the iecognition process must 4e?
. .

be independent'Gf starting and end points of utterances. The
»

process must therefbre treat each sample of incoming speech
as a poﬁential starting point for a word, and attempt to
match the successive 'épeech signals with the known word

{

, templates. ‘ ‘ ' 5

The third type of recognition is continuous-speech

°

recognition. ' Because it is not praétical to recognize an

¢ ¢
’

28

%Y@'Fr&?—:"! ERC
SRR,
i

%

. . a4 - r + T ’ -‘ e T ‘7“: g -?’";;‘F“:-’?aﬁ-‘%lu:
- . .] ["\ ARG AESTA
~ N - C . .

. ?
entire phrase as a unit, .the process for continuous-speech .

recognition must ‘be able to break or segment the s8peech
stream into smaller parts, and to recognize word boundaries.
Usually the unit of recognition is either the word or the
phonemes that make up words.c Word-based continuous-speech
recognition can be built upon the techniques used for word
spotting, but ‘such an approach is only practical for tasks
with very -small vocgbularies, such as .digit ;ecognition.
Phoneme ba§ed rebognizers, on the other hand, attempt to
recogni;g individual phonemes, and then to idgntify worés as
collections of phonemes. ' The word matching procesé is
usually based on phonetic rules, vocabulgry'and syntax ruleé'
that specify fhe legal sequence o6f phonemes and words. -
These ruleés are often in the form of grammars, much 1like

thoseuused for parsing sentences in NLU systems.

. ’
The fourth, and most ambitious form of speech
recognition. is speech understanding. The goal of such

systems is to be gple to understand continuous speech using
~the ‘same processes thag humans do. Such systems must be
~able to ignore noise_'and irrelevant speech, understand
context, resolve ambiguities, and handle ungrammatical or
incomplete sentences. 1Ideally, a speech recognition system
should also be able, to understand any person. (Some of the ‘
teqhnléues used for achieving speaker-independance will ' be

discussed 1later in this chapter.) 1In speech understanding

29

2

«

it is more important to understand the meaning of speech

mthan to recognize individual words.i As with ¢ontinuous-
speech recognition, speech understanding systens use
phopetic identification and word matchiﬁg. Rather than
relying only on ;yntactic rules, ho@éver, the word-matching
" process must also use le#ical, semantic ind world knowledge
in order to "understand" tﬁe speech [11]. The problems of
speech - understanding systems aré not only those of
continuous-speech fecoghition, but also those of knowledge

representation and artificial intelligence.-

2.3 Isolated-Word Recognition Techniques

4
.

As mentioned above, isolatéé-word recognition is - the ¢

most common and least complex of the four types of
recognizers. As a result, many of the processes used for

recognition in the other three recognizers are built upon

techniques developed for isolated-word recognition. The -

" first® step in developing any speech recognition system 1is
setting wup a‘' library of word patterns‘or templates.for the
Wwords to be recognized. This is done by having a |user
repeat a given word disfinctly several times, and theréby
tfain the sféteﬁ. | The features of the spoken word are then

used to build a template for that word. Which features are

eﬁtracﬁed from the wadnin order to build the template: may

’

30

vary from system to system, but typicaL features are:
1) Amplitude versus time,.
2) Zero-crossing rate,

3) Highﬂfrequency versus low-frequency energy,
4y Fine spectral details.

Using such features, patterns are constructed based either
on some sort of feature-by-feature segmentation of the word,
or on time functions which span the whole{?brd 'The latter

approach is the most common for isolated-word recognition.

‘

After the word templatee have been established, they
are used for recognizing incoming speech. For isolated-word
recognition the pauses between spoken words simplify the
process,. but ‘EB not remove all ambiguity. A word eeid
duriﬁg recogqition ‘is rarely said.in exactly the same
féshion as during training. Generally,‘the utterences will
not -be of. the saTe duratioh, nor’ will -thé Qspacing of
phonetlc events be consistent Furthermore, 'hany speakers
will end a word by trailing off the intensity of the word,
or with a short breath ‘noise that can result in the
.misidentificatiop of the word. It is therefore ;mportant

for the recognition process to be ‘able to accuratly ide tify

the eﬁdpoints of the word. Normally ampljitude is used

identify endpoints, - with the start’ of the word being the

point where the energy of’ the word exceeds some threshold.

value, and the end being the point where the energy drops

below the threshold The endpoint recognition process must
3 .

31

t
. 3
& ‘
o, . N .

also be able to filter out random noises that may exceed the
energy thr;shold and be able to handle breath noises that
may obscure the precise endpoint of a\word.

-

LY X '
Once an utterance has been detected, the recognition
it}

process must attempt to match it with one of the stofed word '
templates. Due to the differences between words sp;ken ' i’
duriné training and those spoken for '}eCOgnitiony’ exact
matches ars not likely. In fact, the unkhown utterance may
‘appear as different from the correct template as it does

from those that are incorrect. This discrepancy between the
unknown utterance and the templates ishusually handled by1~ﬁ\ |
some sort of tima normalization process. ‘Time normalization

was originally simpiy to stretch or compress the unknown
uniformly to make it the same lenght as. the template. The
accuragy of this process depended on' accurate endpoint
detection, something , that is not easy to guarantee. A
process known'as "time warping" is now frequently used for
nomalizationl Time warping is a process whereby ths time

axis of ‘the .unknown utterance is distorted, or warped,ain a
nonunlform way 19 order to aligne its features w1th those of -

the template. Figure 2.1, taken from Parsens [7], gives and
example 5f time warping. The two contours to be’natched, A

and B, are shown along the axes, and the wavy diagonal line,

XY, shows the mapping between tngm.' If the mapping fuction

passes through point (i,j) the ith sample of contour A is

—

32

o~ PN . L. p . /":g
3 . . -
o ‘ -

5 - . . - ‘ ' o -7
, ' . O .
aligned- Gith the jth sample of B. If theqa"ﬂchihg was onlyl‘
. ‘a uniform expanSLOn or compression, the line shown would be
straight. Time warping is exceptionally powerful and has

greatly improved ‘the accuracy of recognition systems.

T) e}
A A .

¢

Figure 2.1 Timé Warping

: Speech recooqition of any kind works best with a single
.speaker. ' Several etratagies havé been oeveioped: however, s
to allow for speaker-independent recognitioo. . One stratagy ¢
is to select featﬁree for the word tempiate that are stable
between | speakers. Since sﬁoh» features must repreeent-

. ‘ ‘ relativly broad phonetic categorizatiohs, such as vowels and . .
consonants, this approach is only practical for very small
vocabularies. A second approach is to maintain \pultiple (

' tempiates for eaot word, one per word for.each speaker. For

_this approach’to be practical, the templates. must be grouped
in such a way as'to avéid a prohibitivley large pattern

33 o, . °u‘

®

library. A third approach 1is to average the speech
patterns obtained durﬂ@g training to give one general
template for all speakers. Irrespective of the approach

L] - N s,

taken .for training speaker—independence, some sort of

4 «

formant frequency normalization must be carried out during
the reébgnition process,. since ’ different'- speakers hgve
different formant frequencie§“jor the same vowels ([13].
This'type of nérmali;ation is of;en done using simple linear
scaling that normalizes the speaker's formaﬁt frequencies
ﬁith those of the t?mplates,__or with a non-linear warping

process similar to’ time-warping.

While much :wofk has beep done in the -development of
'speeéh recégnition technology, the state of the art is not
‘yet at the point where sgeech provides a truly practical

interface between.a comphfér and a gasual user. Isclated-
word systems are thé most common and reliable, but isolated-
ﬁord speech would not be considereé natural by the casual-
usép. Speaker—dependent systems can provide high levels of
recogniéion:\especially Iﬂ a controlled environmgnt. Speaker
ipdependen?e, would be necessary for the casual user,
However, speaker—independence, exeept for very- small

"vocabularieSV‘ is «%if%gcult to ag@}eye. The ﬁroblems of

environmental noise must also be considered.with a casual

-

‘user in a realistiq,working .environment. Despite these -

LY

34

g Ll)
e

N * ' Iy
problems, many speech recognitien“é?éﬁems have been made

commercially available 1in ‘recent vyears. In the - next

section, wil will take a brief look at %QSanition systemé

now available on the market.

4

” . be
/ .

~ 2.4 Commercially Available Systems ‘ '

-

" There are over 30 speech recognition systems now
available on the harkét, ranaging in price from a few

- hundred dollars to close to $100,000CDN [8]. These products

can be grouped into three cétego;ies: a)‘single chip or.

A
chipysets, b) single circuit-boards, and c) complete systems

(incorporating computers, displays, and remote control
. N . .
boxes). Of these three categories, single circuit-boards

 are becoming the most popular. There h'as-:lso been a growing

<

trend to -develop and market speech recognition software for

[, .
use with recognition hardware.

i
a

To ' accurately combare the relative perfqzmance of

v

‘various recognizers, one would have to consider. various

features, such as speaker dependency, noisé handling, the

form of speech permitted, cost, and error - rate.’

Unfortunately, very little information is available on

recognizer performance. Furthermore, data on the internal

?

features of the recognizers, which would be wuseful for

evalvation,p is generally not provided, in order to protect

35

)

]

proprietary rights. There does seem to be, however, a
fairly close correlation between cost and error rate, with

higher cost aségfiated with lower érror rates.

while it is difficult to accurately characterize the

of & particulat recognizer, it is possible to ‘

performanc
say what recognizers in general cannot do. Current devices
. cannot easily Thandle continuous speech, speaker

independance, large vocabularies, high noise levels, or
environmental conditions such as vibration, speaker stress,

fatigue, or emotion. Device manufacturers rarely provide
-)

" clear guidelines for the design of a good vocabulary,’ or

describe "applications for which their devicg articulary

not suited. In general only a small fraction of\ what 1is
known about speech production, accoustics, human hearing and
pérception,‘ and lipgu@stids is incorporated in any existing
sbeech recognition deviée. |

L

2.5 Desirable Characteristics of a Speech Recognizer
' ' o

What are the desirable qualities that a recognizer
shqpld posses? 1In par;icula: we will look -at qualitigs that
would >aid¢"in the design of database query systems using
isolated-word recognizers. One of the most necessary
qualities that a recognizer should possess is that it is

easily intégratable. Being integratable has two _asgfcts.

he : 36 .

~

First, a recognizer must be easily integratable from a

hardware point of view. A circuit board that can be fit

into the ekpansion slot of a personal computer is an example -

of fhisl‘ while one reqdiring more complex connections ig
not. Given Ehe popularity of personal c?mpufers, it is also
. important that a recoénizer be compati?le with existing 'PC
technologies 1if it is to survive in the marketplace. A
recognizer should ‘also be integrétable at a reasonable
price, while offering a-high recognition rate. As a-rule of

thumb, a recégnizer should not cost more than the PC itself.

The gsecond éspsct. of integratability deals with
sqftware. Given the popula;ity‘éf software packages'such;xs
LOTUS-123 and Dbase III, it is important that a-recognizer
be able to woék with such packageé,'/either directly or
indirectly. In order to be able to do tgis, the device
driver for the recogﬁizer‘must be small enough that, once it
has been loaded, sufficent memory remains for other
applications. Apart from software packages, a reéogniier
should also be integratable with some .of the more well known
programming languages, such aé PASCAL, BASIC or :-C-Language,
and should permit direct accgss‘ to the recognitién
‘processes. This type of integratabiiity allows for the
develépment of fairly specialized recognition systems that
would be beyond the scope of packages such as Dbase 'or

LOTUS.

37

~ 7»:?‘».51:5‘?{?'1:', S

¢
f

" Another desirable quality of a recognizer is that it

should be faifly‘easf to learn and use. - This does not mean
that a;complete novice should be able to master the system

in a few hours. It does mean, however, that someone should

be abie to get a good feeling for the ‘recognizer's'
_capabilities in a day or so without being an expert in

spéech technology. In order- to possess this quaiity, a

recogﬁizer should be accompanied by a clear and ‘well
documented usér's guide, easy to use demonsi;rations, and
dogd development tools and utili£ie§. The ease of use,
however, shouldﬁhot be restrictive. It shouié be possible
for a qualified programmer to develop his/her own routines
for use during recognition, and not to have to rely soley on

the existing development tools. This can be made possible

énly through a high ;1év€1 of integratability with

‘programming languages, * and a good development manual for

advanced users.

A further aspecE of ease of use is ease of traidinga A

recognizer should come with a training utility that pérmits

the end user to tréin the vocabulary withoét necessarily .

understanding the training process. Since a user's voice
may. change over time, the word templates created by the
training process should be adjustable, so that the templétes

can be updated from time-to-time. Advanced users should have

38

»

the option df‘deéelopihg their own training routines to meet
their own particular needs. ‘The quality of homemade
trainingA rouéines depends,, to a certain degree, on the *\
"quﬁlityv of the programher, and on the eﬁse with which the’
recognizer can be manipulated b& pfggramming languages.

Yet another gharacﬁeristic that a recognizer should
have is f;eiibility; A gobd recognizer shou%d be usable for
any»number of different applicétiops, in any given 1anguage,'
and in variable Qgrk environments. It should be able to
adju;t— the recognition parameters to takq\ into accohﬁt//
different levels of backgréund noise. A good recognizer
must ‘be flexible enough to permit different ﬁypes'”éf
microphénes, or input from a telephone‘or tape recorder.
The recognizer should work equally well with small and
fairly large vocabularies, and fpr verxysmalllvocabularies,
should allow for use by multiple speakers. Finalz;:\“!\\\
‘ recognizer should be able to make use of expanded -memory,

beyond the 640K limitation of DOS, when expanded memory is

* available.

|

39

Chapter IIIL

System Technologies and Integration
? . .

«

3.0 Introduétion

In the 1last two chapters we looked at the problems
facing ;;ZBral language understanding and the.various types
of speech recognition technologies. While unrestricted
natural language or speech understanding is beyond the(scope
of current technologies, it is possible to use 1imited'ﬁLU
and spéech recognition to provide more natural interfaces
for the casual user. The next chapter willAlook at a small
system that combines speech recognition with the‘ NLMenu
approach to natural language in£erfaces. In this chaptef we
will discuss the technologies that were used in the system;

why they were chosen, and how they were integrated.
3.1 The Computer

The primary .goal of this project was to develop a
simple,‘and yetqnon-trivial, natural language interface to a
database using speech recognition. Since the project was
undertaken with the casual user in ming, i% was importénf
from .the outset to use technologies and systems with which
the user would be familiar, and to develop the s&stem at a
reasonable cost. The best choice for the computer system

n

was Cl?iily the ubiquitous personal computer, sinte they-

40

have become relativly inexpensive, and aré probably the most
famil%ar‘compute; in current use. +¥Furthermore, thére is a
large variety of software programming languages and
commercial data management systems available for the PC, ;nd
a number of relativly inexpensive speech recognition systems
for the PC are available. The computer actually used in thé
.development of the system was’ initially a PC-XT clone with
640£?vi The system was later moved to a PC-AT in order to
improve the system's overall épeed and allow for the future .

growth and development of the system. - A o
3.2 The Natural Language Understanding System

Development of a system for the ‘casual user using
speech recognition also placea restrictions on the type' of
NLﬁ interface to be used. As mentioned earlier, users of
traditional NLU systems often exceed the the conteptual or
linguistic ‘coverage of the system. When voice 18 addeqd,
another problem afises, that of exceeding the phonetic
coveraggv'of £hé system, or saying something that the
reccognizer cannot recognize. The NLMequ approach to NLU
seemed to be the most amenabie - for user with speech
;ecpgnitioﬁ.‘ Just as NLMenu removed. the problems of
linguistig and conceptual over-reach, it seemed to offer the
best " way of eliminating the possibility of phonetic

overreach. Since NLMenu leads the user through the

a .
41 ‘

D,

Ty € ATV B S el
5] s . *

construction of a query by highlighting tpe next set of
posgﬁble words, the user would not be expected to say a word
thaé was not included in the recognizer's pattern library.
Equally important was the fact that the highlighting of the
next possible words in NLMenu takes just 1long enough to
force tﬁe user to pause between words. Since isolated-word
recognifion is being used, the pause beteween the words is.
very important for accutAte recognition. The small size of

the NLMenu system also makes it practical for use on a PC.

3.3 The Speech Recognition System

v

Cost restrictions - elimininated the possiblilty of
using a continuous speech recognition sfstém, so 1isolated-
ébeech recognition was chosen. Several reasonably §riced
isolated word fecognizers are available on the market for
uée with PC's. The recognizer used for the system was the
Voicescribe 1000 speech board. The VoiceScribe recognizer
meets most of the requirements of a desirable 'recoénizer

outlined in the previous chapter. First of all, it nmeets

the cost requirements, selling for less than CDN $1700. The

VoiceScribe system also meets the ease of installation

requirement. ' The recognizer's hardware is contained in a
single circuit .board, -and can be installed in a PC by simply
inserting the board into one of the PC's expansion slots.

Installation of the -‘recognizers's software can be done

42

.

. N ’ .
automatically by running an installation program, or

manually in a few minutes by someone who is famiiiar with a

PC.

* VoizeScribe is aléo quite easy to learn to use. The

system comes with a well documented training utility, called

Dragoniab, that’allows a user to go through the reébgnition
process in a step—by—steb‘ manner, loading the language
files, +training the words, and then recoghizing them,
Throughoﬁt the DragonLab pfocedures, the user is - given
fgedback concerntng amplitude levels, confidence factors,

and other variables pertinant to the recognition process.

Whiﬂe’ DragonLab does not-te§g£ the user everything there is

to know about deveéloping a speech recognition system, it

does demonstrate the various steps and toncepts that the

-user must consider when’developing a recognition system.

VoiceScribe uses a language compiler, called VOCL, to

transform a language description into a structure similar to -

the ATN. In order to develop a system, the user first
designs the 1angua§e to be used, describing the language in
a grammar similar é% those more commonl} Uused for
continuous-speeéﬁ recognition.. This grammar is then
transformed iﬁtb a network of productions and states. As
the user speaks, thé network moves from one state to the

next, . restricting the choice of possible words at each

a

43

-

RN

statei This formalism improves the ' recognition rate by
restricting the words that éan be said at any given sgtate,
and parallels quite closely the highlighting of words in
NLMenu. , . .

Aﬁother VoiceScribe development utility is DragonKey.
Once activated, DragonKey c¢an run in background while
another application is being used. The utility also
provides .pop—ué menus that allow the user to train' and
recognize §ords from within another application, or to see
which words c¢an be recognized at any given point in the
application. DrdagonKey comes - with several ready-to use
language descriptions for use with DOS, DBASE, or LOTUSi
When used witﬂ&a;agonxey,' these languége files allow the
user to speak certain DOS or Dbase commands rathern than
tjbing them. ° This utility can be very useful for applying
Yoice in K limited f&éhion to the more popular commercial
data management packages. DragonKey, however, is not very
-flexible, and occupies almost 200K of the 1limited memory
available to a PC.

1

While DragonlLab and DragonKey prévide the user with “an
easy way to learn and apply'voicé' fecognition, they are
limited in what they can do and not easily modifiable.
VoiceScribe, however, also has a library of low-level voice

board functions, known as the Speech Driver Interface (SDI),-

‘e 44

o ,_,‘..5,’!5

- . .

that can be accessed by either MicroSoft C or Laytice C.
These functions allow a software deéigner to develop
customized speech r;cognition packages by mangging the
speech driver directly from within a program writéen in C.
The SDI functions allow a designer to manipulate the
recognition process as nécessary, build speciglized training

~

routines, or modify the system's paramaters in order to

improve perforinance. For example, VoiceScribe's default

_level of confidence for recognition is set at 50%. For very

small vocabularies of dissimilar words a confidence level of
40% might be more approériate, while 60% or more might be
Gbettef for larger vocabularies with similar wor@s. While the
confidence level can be set as high as 100%, such a level.
would never in practfbe be used, since it would result in a
very low *recognition rate. ﬁsing the SDI functions,
confidence levels for recoginition can be set at levels most'
appropriate.for a particular appliéation, or modified during
the course of an application to optimize recognition:
Access to the speech board's récognifion paramaters also
makes‘ it possib;e for an applic:tion to monitér the
recognition process, and . provide helpful feedback to the
user as necessary. This ability to control the speech
driver's recognition process greatly increases the number of

possible applications to which VoiceScribe can be applied.

-«

»
’ 45

¥y o,oo»

2

”~ L3

¢

* VoiceScribe possesses a few other desirable qualitiéé.
The speech board can be easily édjuéted to accept input from
a variety ‘gf different séurces, including differént
microphones, telephones, headsets, and tapes. While
designed primarily for use with one user at a time, the word
models are adaptable, so 'do allow for the pogsability of a
certain level of qgé}'indepeﬁdence. When: word models are
fixed in form, they can be built from only one person's
voice patterns, and cannot Ee modified once- they have been
created. Adaptable models, oh the other hand, c¢an be bﬁilt
originally usifg one person's voice, and then modified to
include other peoples' patterns. The'adaptafion of the word
templafe averages the different voice patterns, creating

<

one overall model for the word. For small voéabulariés,
adaptive models can be used to develop speﬁker independent
recognition systéms.ﬂ Adaptive models are also uéefui for
singie user systems. Since a user's speech patLerns *will
change gradually over time, fixed word models may lead to a
gradual deterioration in the recognition process. - Witﬁ
adaptive mo@els, periodic retraining of the words can be
done in order to maintain an up-to-date model of the user's
voice. ' Neither Dragonkab nor DragonKey are designed for
adaptive training, but adaptive training réuxines- can¢bbe
built ﬁsing the SDI functioms. hThe SDI functions also ?llow

for a limited use of expanded memory if it is available.

5

LI

3.4 Software dopsidefatiens

[
[

The choice of -programming languages for the sysdéem was
restricted to a ée).:tain deg;:'ee by the hardware being used.
VoiceScribe's development utilities, DragonLab and

DragonKey, did not ‘provide the low level of control needed,

for the/, system's implementation, while the Speech Driver

Interface, SPI, did. In order to make use of SDI's
functions, Microsoft C was chosen. "C" 'is a powerful
' language used freque‘gtly for - system development.

Unfortunatly, itj does not possess a high level of sc.reeg,
‘mamagement facilities, and is not easily integrated with the
more - popular databarse management systems used on PCs.
Another programming language, L Arity Prolog, was therefore’
chosen to provide the screen managment .and database
interface capabilities. Prolog’ is a predicate calculs based
la'nguage that is very popular for use with natural language
systems. Arity s implementation of Prolog was particularly*
useful because of its~’flexibi»li£y. Arity Prolog comes with
both an interpreter and a comﬁiler. The Arity system allows
“ for functions 'w;itltéln in other programming lanéuages, ‘ such
as C, Pascal, or lissembler, to be added to the 1hter;areter.
In this way, uséful l:‘\ltnctio’ns that do not already exist in
Prolog, such as those for the speech driver interfac'e,' can
be built into Prol‘og " Arity Prolog also possessep a fairly

ﬂgigh level of screen management capabilities, and interfaces

&

: 47 _ o

T with several data managment paqkagesv

Ll
'

Qb

> One of the more interesting things about"Prolog is that
M + ¢

P { '

there 1is no physical or conceptual separation between a

- Prolog program and a Prolog database. A program in Prolog
P -

consists of a collectiog of clauses and predicates[f A

database . in Prolég consists of a :collection of clauses,

which can be accessed and manipulated directly by'tﬁe Proloé’
" program. ‘ The clauses in a Prolog database closely resemble

e

the . structure of a réiatiodal database. Because of this

’ sihilarity, it is possible_toguiewHaWﬂBre%eg~dé£ébase—asouu

extension. of the relational model, and to develop interfaces

between Prolod and relational systems. Arity Prolog mékes

F -

use of this similarity to provide interfaces to both SQL -and
,)]

DbaseIII, two of_the more popular relational systemns:

RS

3.5 System Integration ') lﬁ\\v/ . '

The system‘bein§ devqloped‘consisteg of a PC;AT, the,
VoiceSgribe recognizer,?‘ Microsoft C, and Arity Prolog. The.

Garieus elements of the system were integrated in the
fbllowihg fashion. In order to allow for the "direct

? »

ménipulétion of the speech recognizer from within Prolog,

'ff‘

low'leyel épeech drivexﬁﬁdnctions'were writtgp:inic[making

a
use of VoiceScribe's SDI library. These functions were then

compiled, ahd added to the Pxélog interpreter, using Arity's

L
P

o

4

C interface. .The screen manaéemgnt routines, the heart of
the NLMehufsyétem, ’weré written in Prolog. . The database
used in the initial system'p:ototype was a Pro}dg database,
al?hough the data cohtained in it could have been imported

from either SQL or from DbaseIII.

A conceptual diagram of the %ystem's main components is - .
given in Ejgure 3.1. | The syétem's major component is the
system coordinator, or kernel. Written in Prolog,//ﬁhis

module controls the voice board's movement through its ATN,

'L..iﬁ__MBEQEE_EBEN9_§HE§ELQB§“§hat-Eere added to Prolog. As_the user -

speaks, the kernel monitors the speech board's recognition

‘e

process, accepting words that surpass a minimun confidence

-

level, and diéplaying them on the NLMenu screen. If a word

ot

is not ;ec%gnized, the kernel examines the information

, prgvided by the recognizer, and displays an appropriate

megsage on the screen. ‘As words are recognized, the kernel

moves the voice board's ATN to its next state.

(The . system coordinator also looks after the
h%ghlighting;pf the NIMenu scxeeﬁ, syncronizing the menu and
the voice board's ATN. ﬁhen the NLMenu system signals the
. reed for an "expert" menu, the system coordinator extracts
| the required data from €ﬂ§“§atabase, and presents it on-the
screen. When a complete query has been éntered,. the system
coordinator converts the natural language query into 'a

v .
* .

¢
;

49

.| Data

Prolog, Dbase,

oucteed

TR g ¥ g R

R 4

Figure 3.

Base or SQL DBMS
P\
Query
Evaluation
System
. Coordinator
(Kernel) .
————a—
C* Prolog
/. .
Voice-~ NLMenu
Scribe - - System
¢ y,

Query Response
and Feedback

User

. Conceptual Diagram of System

50

-~

Tt .

% 4y

~

» C ; '
database query,, and sends the query to the database. The

response to the query is then presented to the user on the
screen. If at any point during the formulation of the query
the user decides to modify the query, s/he can simply say
"BACKUP" . When the(kernel recognizes this word, rt will move
the ATN back to its previous sta‘t;e,"P move the'highlighting of
the NLMenu screen back to its corresponding prior state, and

3

remove the last word from the displayed query

‘ ’ . N) ° «

-

s/

) . Chapter '1IV
Implementation of NLMenu Interface Using Voice Input

L)

4.0 Introduction »

In the last chapter we looked at the. different hardware
and software'technologies.that were used in the developmént
of a voice driven NLMenu based interface to a database. The
reésons for choéing*each of the varioﬁs components were

discusséd, along with the approach taken to integrating them

—

Rt

into one coherent system. In this chapter we will discuss
the\¥ actual design ané implementation of -the system
prétotype. 'The4 considerations and techniques involved in
the design process will be reviewed. The contents. and
structufe of the different modules of the co?ceptuqlddiagrém
'(Fiéure 3.1) will be discussed, and examples of a typical
interaction with the syétem given. Finaléy, we will
‘consider the steps that would be required in order to adapt
éhe current system to another qatabase. g

o

4.1 The Database Description

¢

While the database contents is not crutial ‘to the
‘functioning of the system, the database structure is used
heavily during system Bevelopment, so knowing the domain

used in the prototype will help clarify the examples and

52

discussions that follow. The database domain used in the
development of the system was a small subset of a university
database dqmain. In particular, the database contains’data
concerning instructors, ‘éourses, and topics in a Computér
Science Graduate Studies programme. ' The database consists

PN

b} e . R)
of seven relations. The three primary relations are those

containing the data for the instructors, courses, and

Ay

topics, while the four remaining relations describe

relationships existing in the domain. The structure and"

b

attributes~ of the seven relations are giQen in Figure 4.1.
Conceputglly, any relational database system could have been
used for setting up the databases. Fﬁf reasons . of
simplicity, however, they were actdally implemented as sets
of Prolog clauses. Examples of these Prolog database

clauses are given in Figure 4.2.

4.2 Screen Design

A &

The NLMenu screen 1is a set of boxes containing the
different words and phrases that make up valid natural
language queries over the database domain. For the system

prototype that was developed, the screen menu is made up of

six different boxes, representing commands, attributes, |

nouns, connectors, modifiers, and specific database values

" (the "expert" menus). All queries in the system end with a

53

.Relation Name

inst
crs

topic .

Attributes ‘

instructor #
instructor name
phone #

office % .

&
course #
cburse name
hour

tobic #
topic name

)

Comments

Database containing
the main infermation
concerning

~instructors.

Database contining

the course number,

name, and starting
hour.

Database contining
topic number and
name,

“teach
int

rel

preq

Figure 4.1 .

course # *
instructor #

o

instructor #
topic #

course #
topic #

course #
prerequisite #

1

54

e«

Database linking
courses and
instructors.

Database linking
instructors and their
research interests.

Database linking
courses and topics.

Database linking
courses and their
prerequisites.:

Description of Databases

b
.
adi

PO
< x:ayiré

]
| /\ . CRS
TEACH ¥
Name \\\\\///// Name)
"|0ffice Hour ,

‘Phone
g
TOPIC /

© ’ ’
Name .

Figure 4.3 Entity-Relationship Model of Database

< ‘

: : . whose :
: A A prerequisites
\ re
INST 1 who teach ‘s o |_CRS
. ‘ , M) < -
Name < S Name |_ -,
Office which are taught by . Hour |=—]
Phone . \ which are
- prerequisites
_ ‘ of
whose which’ are -
interests : related
to v
which- ‘ which
are are ‘
interests covered ¥
" of by
TOPIC . ~
¥
Name

-
. ‘r ‘: 0

' v 4

Figure 4.4 Annotatgé'Entity-Relationship Diagram

-
3 e~
-

56 \ - L

ot 3 F R TR T - e e e
St INERTRAS - v T R s L N
‘ ‘ LI M

1) o
inst(01,Alagar,848-1234,H961)
inst(02,Atwood,848-2345,H961)
inst(03,Boom, 848-3456,H961)

. crs(Comp627,Microprocessor System Arch,16:00)
crs(Comp675, Intro to Man—-Machine Comm,18:00)
crs(Comp773, Seminar in Man-Machine Comm,20:30)

topic(0l1,Computer Systems)
topic(02,VLSI Architecture) |,
topic(03,Database and Information Systems)

Pl

L ooh TETRA RN ¥ ol R N A PR RN e N

teach(Comp627,18) preq(Comp627,Comp525)
teach(Comp773,22) preq(Comp773,Comp772)

Kf' rel(Comp627,01) int(01,12)
rel(Comp675,15) int(02,04)

e

-

Figure 4.2 Sample Prolog Database Clauses’

specific database value. The actual process of screen/z

design can be decomposed into three steés:

-

1) define all valid queries to be used in the database;

2)., break the queries into their constituant parts;

=y

e IR I P IALTSWE FI KA TIN5, S, A U T LT AR TR XA, o
i e i Lot i 12 o e .
) & i e ") iy e o

3) place these parts in the appropriate box on the screen.
These three steps can be done quite easily by viewing the-
database from the perspective of entity-relationship (ER)
modeling. When viewed as an‘ER model, £he three primary

%

relations 1in the database used in this system becom¢, three
entities, while the four remaining relationﬁfjgpecome

. L
relationships between the entities. An ER model for" the

database is given in Figure 4.3.

55

<

once the ER model of the database is done, all of the
valid queries can be enumeratgd by simply describing each of)
the relationsh%ps in natural language. For example, fhe
relation teach represents a relationship between the

entities instructors and courses. This reIationship can be

described as either "instuctors who +teach courses", or

"courses which are taught by instructors", with | the

s

relationship descriptors underlined. By continuing this

proceés for all of the relationships in the ER model,

relationships such as "courses which are related to topics"

and "topics which are interests of instructors" can_ be

S Y
descrjibed. Figure 4.4 gives the annotated ER diagram for

the database. From this we can ennumerate queries such as

"Find instuctors who teach <(specific course>"; or "Find

courses which are related to <specific topic>".

. After - all of the relationships have been described in
natural language, the various boxes of the NLMenu screen can
be filled in. In general, the names of the entities are
placed in the NOUN box, and the relationship descrip£ors go
in the MODIFIERS box. Natural language synonyms of any non-
key - attributes of tﬁe entities are placed in the _ATTRIBUTE
box. The "expert" box represents specific instané;s of the
entities, so the entity names are placed in this box.

Commands such as "list", "print", or "find" are placed in

the COMMAND box. . Finally, connectors such as "and" are

L]

57 ‘

Ty M
”g_"‘_é&

1

~

placed in the CONNECTOR box if more than one attribute is to
be requested in a query. The NIMenu screen bulilt from the

ER diagram (Figure 4.4) is shown 'in Figure 4.5.

COMMAND NOUN MODIFIER XPERT
. instructors | whose Interests are <spacific instructors>
JF‘"" courses who teach W <specific courses>

" | topics which are taught by <specific topics>

o which are’related to ;
ATTRIBUTES CONNECTOR | which are coverad bg B

which are interests ¢f “

office number and

phone number | . whose prerequisite§lare ™
pYerequisites which are prerequisites of
of v

SYSTEM COMMANDS : Backup, Enter, Continue, Done ,
) t

Figure 4.5 NLMenu Screen /,,

\ 7

4.3 Language Grammar Design

~

" The NLMenu screen presents the user of the system with
al.l of the words and phrases that can be used in
constructing queries about the database in use. In order to
allow the user to speak his/her query, a parallel grammar

must Dbe developed for use with the VoiceScribe recognizer.

58

-\\
The VoiceScribe documentation clearly explains the grammar

rules that are used _for writing languhges for the
recognizer, so these rules and techgiqpes will not be
repeated here. In br;ef, the grammar written for use with
the NLMenp wystem allows the user to form only those queries
thé; are permitted by the screen, and movément through the
different states of the grammar parallels exactly thg
movement through the NIMenu screeﬁ. The. complete

VoiceScribe giammar used for the 'system prototype 1is

T3y
t L e

presented in-Appendix 1.

4.4 Language Training
Once the grammar for the NIMenu screen is written, it

is compiled into a finite state machine similar to an ATN,

giving a Language Description File (LDF) that is used by the

' recognizer. Before.thé‘system can be used all of the words
in the language must be trained, - and the.user's word models
stored in a vocabulary file. Thé training,can be done using
either of VdiceScriSe's d;yelopment'utilities, Dragohpab or
DragonKey, or with a separate training routine that Qe had

written in C for use with the s&stem prototype.

4.5 System Implementation

In-the~brevious section the design ofy the NLMenu screen
o
and the VoiceScribe grammar were discussed, both based on

the domain of the database beiné used with the system. In

59

i

L TR~ I e 1 BY Ly
T S TFR ff hold ft?“"a;- i"‘«?iﬁo

. .

this section ~ the implemehtatiqn of the complete workfng
systeﬁ wili be considered, and the managehen; of the various

system modules discussed. ‘ o AP

4.6 The System Coordinator‘

The System Coordinator, or kernel, is the hgaft of the
system. Written - in Prolog, with added C functions for
manag;né the recognizer, it is respénsible for the-

initialization of the system, managemeirt of both the screen

and the voice board, and calls to the databasé management

system. Each of these kernel functions are outlined below.

4.7 System Initialization

The system initialization cénsists of several steps.
The fifst ’is to prepare the voicirboard for nrecognitién.
This is done by creating a task .for the voice boardg’
allocating memory for uge of the recégnizer,';nd loading the
language d?scription and voggbulary file§ “into r the
recognizer's . memory space. Since this is é single user
system, the user is asked for the ﬁame'of his/her vocabuia;y
file. If the file does not exist, or if all of the words
have not yet been trained, the syséem initialization ‘is
terminated and the wuser told to train the words before

continuing.
Once the recognizer has been successfully initialized,

60

5
i
H

v
ey

.

the kernel sets up the NLMenu screen. The information and ,

_routines necessary for drawing the screen are not contained

3 p

within the system coordinator, so are loaded from a seperate

Prolog file named BOX. , This file contains the screen

coordinates .of the NLMenu boxes, character strings
cén%aiﬁing the'qugg_and'phrases that appear on the screen,
“the screen - coorflinates of these words, and the Prolog

predicates used for implementing pop-up windows. The system
e ’ 4

" coordinator wuses this information to present the initial
< |

menus on the screen, and then removes most of the‘ code

contained in BOX from the system's memory space.

The system coordinator then prepares the pop-up
"expert" windows thqt arélused'during the fo£ﬁulation of
dqueries, These - windows present the user with the key
attributes of allxinstances of the database entities, such
as course number and name.or instructor number. and name.
Rather than rretrieving this information from the database
management system whenevgf an expert menu is called for, the

kegnel loads the clauses for the three gatabase entitieg,

into the Prolog work space, 'and stores the key attributes in.

Prolog database form. Once the key attributes have been
recorded, the clauses for the three entities are a%sp

femoqu from the work space.

A

.

The kernel then lvpads the information .needed for the

e
~

_queries. Since the movement of the ,§creen h)ghlighting must *
h

- A D FE TS ot e e Y

Trmemy Do en o T FRRIRRT . S
s Yy L

* - - * l,‘ ' 1 ’ u

» "’, ' . } ‘ oL

\
‘ -

highlight ng of the active words during the formulation of

parallel exactly the movement through t recognizer's

3

r ,
grammar, this information is stored in a series of Proleg

e

clauses that associate the screen coordinates for the first ¢

letter of each word with the corresponding state number from
‘the recognizer's ATN. Since there can bel a fai‘r number of
states in the ATN, the screen coordina‘tes _for each wo'rd are
recorded in a Prolog B—-tree “?ording to the state mumber,
in oxder to "allow for more rapid retrieval.’ Once the B-tree

o

has been set up, +the Prolog clauses containing the . screen 7

' coordinates are unlqaded. . ' , ,

4.8 \Recognitio
After thé*' System Coordinator ,has successfully .o

1n1tiaJ.LZed the system, it is ready to begin the reoognition
y

"of the user's query. Recognition §starts at the lnlt;@rl

e.tate of..the ATN, with the first letter of the first word,
FIND, highiighted on the screen. ’{he user then formulates
the query word by word,' following thev highlightihg of words . b
'on the screen, until a camplete que(ry has been entered. > As

‘the system prepares to recognize a word, the system ' g
coordinator takes the current Ste}te number from the '‘ATN, an@

searches the *Q—tree for the screen’coordinates of/ the - words . ;

to, hléﬁfight. After highlighting the appropf ate words on ’ ~
&

62
, L 4
> 4

S

thé screen, the kernel sends a command to the recognizer to
bggin listening, 'and calls the recognize function. ~Th£s
functfon is sent fhe number of the state in the ATN . to . be
recognized, and returns the word that w?é recognized, the
next state on the ATN, and flags that indicate errars or tﬁg
end of a query. After r;cognrzing a word, the- 1i§tening‘
process is suspended. If the word that was ;ecognL@ed is
not "BACKUP", the system coordinator writes the ﬁord to-the
: . screen. The B-Tree !.‘ then searched again for the"-
.coordlnates of the words from the state just recognized, and
the hlghllghting removed from the screen. If the word
.recognized is "BACKUP", the system céordinatofuerases the'
last ' recognized word, frem the screen, ;eméves the ,
highlighting, and retrieves the previous stabe number from -a.
stack. ,This previous state now bécomes the new state.ﬁ The
entire highlightiné and recognition process is tﬁen.repeated

. s)]
for the new state.

1
r

After each word has been wecognized, the systenm
o ¢ i o . ™~
coordinator looks ahead, in the ATN to see.if the next state » \
) 1 / ‘

reqiiires expert window.. .As mentioned. before, the

"expért? winhdow presents the user with the key attributes of

’

‘instances of the ‘database entities. Because database

13

‘entries- can cﬁfnge .quite frequently, . the system is not
designed :‘to recognize the actual names of {nstructor§ or

course titles. Instead, the user chooses the. desired

-

- 63 v

} '

F

database. value by saying the number associated with the
hame. In order to see if the next state is an "é&pert" |
siate, the kernel simply examines the ATN to see if the next
¢ words to be recognized include numeric values. If the next
state does include 'numbers, the coordinator calls the
routines to pop-up the appropriate "expert" menu. While an
expert menu is on the scfeen, the system coordinator looks
ahead in t@é ATN f§r the end of the expert .states. When the
\coérdinator sees that the next state on the ATN is not an
expert state, a routine -is ca}led %o un-pop the expert

1

window and restore the initial screen.'

-

The recognition process continues, word by word, until

Ny the ATN reaches a final state. When a final state is.

1 ’ enpounterea, the system éoordiqator reads the course; topic
) or instructor number from the écreen,‘ and replaces it with
the corresponding cqurse, topic or instructor name. At this

point a compiete query has been entered by the user. The

A3
user is then presented with three dptions: send the query to
\
the DBMS, enter a new ‘query, or terminate the session. If

n the user chooses to have the query evaluated, the system

coordinator loads the Prolo§ file DéMS, which contains the
q .

c

database clauses, and the predicates used to evaluate the
f' ' query. Since the query at this point is in natural

o languagg“ it must be transformed ;n;o“”Prolog query before"

/’{
A f ¥
R .

o

. L. 64

pe
the query can be evalhateé. This process has two basic
steps. The first is to issue a call to a speech board
function that checks the 1£st of coqpleted ATN productionsﬂ
This function returns to the DBMS the number 6f any modifier
that was used in the query, and a flag indicating whether or
not an éttribute is present.in the qhery. The next step in
the query transformation process is to search the natural
language query for acgual attribute names, if any were used,
and to extract the database key value from the end of the
query: At this point the various components of the query
aré known.to the DBms; and are put together to form a Prolog
query. This Prolog query is-then evaluated, and the answers
presented to the user on the screen. After the-user's'query
has been answered, the system coordinator unloads the entire
DBMS from the system's memory space. The user may then
enter another query, ‘or terminate the session. Examples of
the utilizafion of the system @grototype are given in

2
Appendix 2.

/
p

4.9 System Pgrformancé and Limitationé

In earlier chapters some of the,problems encountered by
tra&liional natfiral languége interfaces were discussed.
Among these problems were linguistic and conceptual
over;each. When speech recognition is added to an NLU
. system a related problem, that of phonetic overreach, can

D : g ,
‘ 63

1 S-S ST sl
R :",\:l'rs

\
also be encountered. ‘One'of‘the main ideés behind the
. development of NILMenu ﬁas that présepting the user with a
: clear picture of 'all.possible iqdéry formulations would
eliminage to a large degree the various problgms of
overreach. IA order to see whether or not this hypothesis
was true, a series of informal tests ‘were carried out using

ten subjgcts‘and the NLMenu profotype. The form and results

of these tests are summarized below. /

The first step in the testing was to develop .a

t vocabulary file for each subject. This was dong usihg the
training utility, written in C, that wés developed for use
with the system prototypé. The next step in the test was to
ask . each user to formulate queries using three sepé}été'

’

" versions of the prototype. The first version offered’ the

e

user no assistance 1in query formulation, presenting a
completely blank screen. Before the subject attemped to ask
queries using this version ‘'of the prototype, +the query and

database structures were explained, and examples of wvalid

N\

AR TR AW T Uy LT, e Y

queries were given. The second version of the system gave
N %

the user a clearer idea of proper query formulation by
pregenging the initial NLMenu screen, but without any
hiéhlighting of words. The third version used‘ﬁas the whole
gLMenu system, with screen, highlighting, and pop-up menus.
As each subject attempted to ask a query, the confidence

level for each utterance was recorded, and an average

\

66

. 07\\'

é%nfidence ‘ level was .calculated for each query; A
confidence level of zero was given to any utterance that did

not match an active word at any given state in the grammar.

The testing showed that the problem of overreach was
most noticeable with the first version of the prototype.
Common errors included the use of articles such as "the"

before attributes, or the use of "professor" insteaq of

" "instructor"~ In general, formulation of valid queries

without the screen menus was not easy, with average

confidence levels for queries ranging from 40% to 69%, with
an average for +all subjects of about 58%. i Overreach was
also found during the testing of tie second version of the
systemn. Despite the presentat;on of the menus, without

highlighting queries such as "find courses which are

interests of..." were attempte#, eventhough courses are not

considered "interests" of instructors in the database

domain. Howev%r, the. confidence levels for guerieé were
. A

considerably higher when the menu ‘was displayed, ranging
from 62% to 82%, with an overall average of about 68%. When
highlighting was gaded for testing of the final version the
é;gﬁlem of overreach became negligable, and none of the ten
subjects had difficulty forming queries. QOnfidence levels

ranged from 80% to 95%, with an a&erage for all subjects of

85%. While +he tests carried out cannot be considered

67

S

T e

ST

[V S
TRE Y

statistically 'riéorous, they clearly demonstrate that the
use of the NLMenu approach, with highlighting of active
“words, :does eliminate’many of the problems of traditibna;
natural ianguage interfaces, even when voice is used as-fhe
method. of query input. The averages for the ten subjects,

and the overall averages are presented in Appendix 3.

While the NIMenu approach to natural language ldatébase
access *‘may indeed resolve some of the problens encountered
by traditional natural }anguage interfaces, it is not a
panacea for all of the prqbi?ms faced by NLU, NLMenu
suffers from several inherent ﬁroblems of its own that
severely réstrict its applicability to a major portion of
existing database installations. . One of the major
limitations of the NLMenu épproach is the restriction placed
on the size of the intérface by the screen aisplay. Since

the idea behind the NLMenu approach is to present the user

~with a a clear view of all possible query formulations, only

a small database domain can be accesséd using‘this type of
interface. Apart‘from the restriction on domain size, ' the
screen. also restricts the number of tuples that can be
reasonably represented in an expért window. The scrollable
expert windows wused in the system prototype can alleviate
this problem s9mewhat for small-numbers of tuples, but would

»

not be practicle for presentation of a database containing

hundreds or thousands éf tuples. «

T 68

-

¢

- t

The primary benefit Bf addihg voice recognition to the
" NLMénu interf;ce is that it providesh"keyboqfd—free" input
of queries; making the interface ggsier to use for many
users. _ The \se of voice also presents several problems, the
foremost of which is the need for traihing, since only
trained users can use the system. Training itself can be a
problem. During the tesping of the system, many of the
subjects found the training process very long and dull, even
thougﬂ'training of the entire vocaﬁulany took " less than five
miﬁutes" to complete. The limitations imposed by training
';ould perhaps be overcome by development'of user-independent
vocabularies for inﬁerfaces, Egt this would only be
practical for small roabularies, ‘and could even further

restrict the size of the database domain.

4.10 Adaptation to Another Database Domain,

In Chapter 1 the issue of portability of natural
langyage systems to new database domains was discussed. One
system discussed, LIFER/LADDER, was not easily portable
ﬁbecauseﬂits natural %anguage component was domain dependent:
The COOP éystem,’on £he other\hand,‘was more easily portable
‘due to the high level of domain independance of its natural

language component. Like the LIFER/LADDER system, the

natural language component of the NLMenu s}stem prototype is

ps
¢

veri domain dependent. The NLMenu screen’ designed 1is

primarily - based/ on the database structure, 1§d~ the
corresponding grammar for speech recognition isr based
entirely on the screen contents. In the case of the NLMenu
prototype, however, the domain dependance of the system does
not mean that the system'cannot be easily adapted totanother
database domain. Due to the small size and 1limited
complexity of thérsystém, adaptation to another domain can
be carried out without too much difficulty. The steps
necessary to adapt thg NLMenu interface to 2 new database
environment are discussed below, using the database and
contents of the original system as a reference. Thesg}steps
do not include any changes that will be required to the
actual database evaluation process. In the original
proﬁotYpe the database and DBMS were both written in Prolog,
and managed the translation and evaluation of the query when
called by the System Coordinator. This app%oac@ was chosen
because of iés ease and simplictity, rather than for reasons
of practicality. A more. useful approach may have beenlto
have the queries translated for use by a separate DBMS, such
as SQL or DBASE, that would héve been responsib}e for the

actual query evaluation.

Adapting the NLMenu interface to a new database domain
P n
basically consists of redesigning the system's screen and

VoiceS¢ribe's grammar, and making minor modifications to the

70 T

°. O

System Coordinator and to a few of ‘the recégnize;
functions. The redesign of the screen an‘d‘g'rammar follows
the same methodology as the initial screen and grammar
design discussed previously. Assuming la relational database
nﬁan“aggment system such as 'SQL or Dbase, ., or a Prolog
database, the ‘first step in redesigning the screen is to
build an entity-relationship model of the database domain.

An ER model for a database ca;x be easily designed be viewing
. the major database relations as entities,‘ ‘and the relations
that 1link them as relationships, as described above in

Section 4.2. A complete description of ER .modeling

techniques can be found in Chen (9).

Using an ER diagram of the new dgtabaée domain, the
next step is to describe the different -relationships in
natural language, and form}xate the natﬁrai languagé queries
-that will be presented on .the screen. Examples of this query
design process are also given in Section 4.2. It is helpfﬁl
‘to actually add the various word that are to be used in
' formulating the queries _1i:o the ER diag'I:arﬁ of the do.main, as
was . done in Figure 4.4. It is important at this point to
keep in mind that all' of the queries in t}gis system end v;ith
actual database values, a.nd to formuiate the NL ‘queriés
accordingly. This restriction allows queries such as "Find

<

students who are advised by <specific instructor>", but does

71 ’ ‘o /

RN

. e TR AT O T
[A v R T .0 Sl Mol A N
. . R

not permit the equivalent."Find students who have <§pecific
instructor> as their advisor". This restriction can be
removed from the system in order to allow different query
'formuiations, but the ﬁﬁdifications needed for changes are
‘beyond the scope of +this report. The relationship
descriptqrs, or modifiers, should also Se kept as short and
p;gcise as possible, since the size of‘peqpissible quefies
¢ 1is limited by the size of the screen meéd;. A query such as
M"Find, parts which are used in the coﬁstudeSH'of <(specific
object>" would not fit on the‘screen{ whgfeés the’equivalent
"Find parts which are components of <specific'object>" would

not exceed the screen limitations. The screen size also

limits the number ofcmodifiers that can be presented on the

screen to no ore than about fifteen. If the database

' domain contains ‘pore than fifteen relationships, it may be

necessary to depign more than one NLMenu interface for . the

domain, or to |/ not include all of the possible query ,

formulations on fthe screen.

After the relationships in the database domain have

been identified in natural language ang\ the corresponding
! . _
queries formulated, it is possible to put the screen

1
4 i

together. If the new database domain does not contain more: '

modifiers, nouns, or attributes than the initial systém
prototype, the size of the vaftious boxes that make yp the’

NLMenu screen will not have to be modified. On the othefo

N .

) ‘ " T 72

" file BOX, along with thei

hand, if the new domain has a larger humbé; of any
particular language component than the prototype, it may be
neceésary to expaﬁa the screen'; boxes. This can be done by
cﬁanging the screen coordinates of +be various boxes
contained in the Prolog pregram file BOX.ARI. The words
that are to appear on the ecreen are also contained in the

4/scfeen coordinates. Adapting the
various words and phreses that appear on the screen to
reflect the new domain can be done by editing the character

strings stored in the BOX pxogram file.

The actual positioning of the words on the screen 'can
be »detegmined from' their positiens on the a@hotated ER
diagram of the database domain. The entities presented in

the diagram represent thesnouns and.expert'values to be

displayed on the screen, so the specific entity names shquld

' be placed in the NOUN and EXPERT boxes. “ The - relationship

desgriptors from the diagram, such’as "who are advised by"

or "whichaare components of", are placed in the MODIFIER box
of the screen. The non—key atfiibutes of the entities are

naturally placed in.,the ATTRIBUTE box of the screen. Since

the key attributes of the entities are used for choosing o

particular database record through the .pop-up “expert"-

e

windows, they are not placed in the ATTRIBUTE box. All non-

key attribpteé are not necessarily presented on the screeq.

N , | | ,

73

¢ e A T ST AT

L4

)
Any - database attributes that are not of importance to the
queries being designed shogld nt;t be included on the séreen,
for the simple reason of efficiency. | Any connectors that
are to be use'd/ in the queries are placed 4n. the screen's

CONNECTOR box. Generally,” the COMMAND and SYSTEM COMMANDS

,boxes need not be changed when adapéing théd"screen to a new

database domain,

r~

Once the NLMenu screen has been redesigned to present

the™ natural 1lanquage quefies‘ for new domain, the
H ‘ . -
corresponding VoiceScribe grammar for the queries must be

designed. The -grammar for the original screen is contained

in | the file NLMEN&J.LAN, which can be accessed by’ any
standard t‘ext editing package. This grammar begin“s. w:i.th a
root production containing the word "find", *lelewed by a
series ?f non-terminal- sub—-productions representing the
various attributes‘, nouns, and modifiers found on the
screen. The end of the NLMENU.LAN file contains a series of
clauses that associate each terminal symbol, such as "one",
_with its’corresponding output string, "1" in this case. The
. output strlng is what will actually appear on ‘%he screen
when the word is recognized by VoiceScribe. The grammar for
the new screen can be written by .simpiy modifying the
various productions -contained in the original 1LaN. file.
Before, attempting this, however, it is advisable to read the

sections of the VoiceScrlbe user's manual tha{ deal with

74

.grammar writing using the VOCL compiler. It is,important to

remember that the new grammar must parallel exXactly the

queries presented on the NLMenu screen

LY

.The mritteh grammar for‘the/hew intesface mustdthen be
complled u51ng the VOCL compller If there are any errors
or ambiguities in the grammar, they will be dlsplafed on the
screen during the compilation of the grammar. Sucgessful

compilation of the grammar will result in the creation of

two . new files, with LDF’and ®ST extensions respectively.

, The LDF fil ' ‘or;}anguage description file, * contains the

ATN-like flnite state representation of the granar that
will be used ; VoiceScribe durlng recognition. The LST
file gives a state—by—state llstlng_of all transi'tione~ in
the»grammar. This rather le;gthy listing will be{necessary

for the,final system modifications. ~Before proceeding to

" these fnodifications, however, it-is important to train and

test the grammar. Training ¢an be most easily done using
the DragonLab utility. Following .traininé, the grammar
should be tested to.make sure that-all of the queries can be

formulated in the proper fashion, and that no other

formulations are permitted by the gremmargi Thie testiné can

also be done using DragonLab. \
. .t. / !

’

As mentioned earlier, 'the System Coerdinator - uses

information extracted from the recogg}ter's ATN to ‘manage

S .

r " .)
N E :) 4 as

‘ .

" those for the original grammar,
. LS

s) . ¢ \ e

- N ' \ °
certain system functions, such as popping up\ the expert
windows and contrnlling the’ screen highlighting. This
information is primarily in the_form of state numbers that

represent -particiilar locations in the ATNY

and can be most

compilation‘

Since

the

easily found Eiifiewing the LST file produced during the,
of

the VoiceScribé grammar file.

state numbers for the new grammar will not be the same//as’

+ t
q

the last steps needed to
: ‘.)

adapt the system to the new database domain %&yolve changing
to the-ATN state information in the System

any references -

Coordinator and- its ass001ate functions. The- " screen

highlightin/dffunctions depend ‘heavily-on state informhtion,

These modifications

so wil« require major modifications
are easy to do, but”may be timé consuming ® and rather
tedious. The~higﬁlighting information is stored in the file

_'DB.ARI in a set of state clauses of theR form:* .

. various’ NOU.N% and ATTRIBUTES

» <

o ~ state(l,4,4),
ﬁ : state(2,9,1). . o

state(2 10 r)

. @

For examgle, ‘the state 1 clause represents the word FIND,
q .
and highlights the letter at screen coordinates 4,4, while' '
. L *
" the st{te 2. clauses highlight the first letters of the

/
In order to adapt these

',

clauses to the new screen and g’ammar, one must work through

the state changes listed in the LST file while keeping track

- of the{corresponding screen coordinates of the words active

)

76 f

R P

~

a

3

clauseg have been ‘listed, they can be used to replace the
original clauses in DB.ARI. A quick v1ewing of the original
state clauses will reveal three clauses with a state number
of 999, These clauses do not correspond *to an actual state
number on the ATN. The? aré used simply to.store the screen

, +
coordinates of the system commands ENTER, CONTINUE, and

‘DONE. In tke umlikely event that the new ATN acéually
» , b

-

contains more than nine hundred d@nd ninety nine states, a
v .

different number will haG&kpo be used here. v
R '

»

Abért from the iqformation(;ecessary for high%i‘hting

the NLMenu screen,” there are a few other references'to the

~

ath used by the System .Coord%natbr " that require

modi fication. The' first of these can be ' found :i the

\ .
LOAD.ARI program, which makes up the bédyvqf the ' System

Coordinator. The LOOP predicate found in this<progr§m file :

contains a recognizer call, RECOG, that is us%d for,

recognizing the system commands ENTER, CONTINUE, ani ONE.

Sipcé these wordsl afe nbf’pari of the - grammaﬂws root
productlon, the recognizer must be prOV1ded w1th the adtual *
1dentif1cat10n number of the production in which they are ‘to

be found. 'In the original system prototype, this

‘identification number wa§'7i} The new identification number

for the system commands cafr be found in Eﬁe LST listing of"’

X :

13

llr L . . LR A

at each state. Once' all of ‘the new state/éoordinate-

v ——

?

i

r

J

7

the 'grammar at the very end of the section entitled SYSTEM :
INFORMATION, and should, replace the id number found in the

original RECOG function call. ', !

Production id numbérg are alfo used in determining when
the ‘"expert" pop—gg menus should be displayed on the screen
a;ak removed. As each word ig recognized by thé System
Coordinator, the _LOOKAHEAD1l predicate is called to see if
the ne#t production is an expert production. While there is
an expert windowuon the screen, LOOKAHEAD2 is called to

check fof Ehehena Qf'the expert production. Both of these

.predicates’ make use of a recognizer function LISTSYMS to

examine the next symbols on the ATN. TLISTSYMS is wxitten‘in
C, and can be fodnd'in the ICPRO.C program fi}e. LISTSYMS
checks the 'list of id numbers. for next symbols to be
recognized. If the list contains the id for the word COMP,

a value of 1 is returned to the LOOKAHEADl, signaling the

}eed %o pop up the course expeft window. . A value of 2 is

returned for instructors, and 3 for topics. If the list of
symbol id numbers does not contain the id's for any numeric -
symbols, the expert production isnfinished, and LISTSYMS
retginé a value of 4 to LOOKAHEAD2. To make the NLMenu

interface - function fQE\the new database domain, the® id

‘numbers that LISTSYMS looks for will have'to be modified

within the C function to. reflect the new grammar, Changeé

N

to the values returned by LISTSY%?A %nd to the Prolog code
. . 1

« 78 B

[<

e

v

that interpreés the’ values, may also bel neéessary,
depending on the number of entities in.the‘new domain.
P ’ ﬂ :

The only remaining modifications to be made are domain
depehdent, so cannot be outlined precisely. As discussed
earlier,/ the ‘clauses~contafhing the database entities are
loaded into Prolog's internal databdse during the system
initialization process for use in the pop-up windows. The
actual' loading‘ of the clauses is done by the LOAD_CRS,
LOAD_INST, ané LOAD_TOPIC predicates, which are contained in

the BOX.ARI program file. These. predicates will have to be

modifiea, replaced, or expanqed, as necessary, to accomadate
the entities présent'in the new database domain. Plong
similar lines, the CRS_UP, INST UP, and TOPIC_UP predicates

in 'LOAD.ARI, which are—called by LOOKAHEAD1l to initialize

+he pop-up windows; will have to be modified to fit the new

{

domain. Finally, the SWITCH. _INST and SWITCH TOP predicates,

which ‘replace the entity numbers with the eptity namés on

the screen, will require modification. These predicates can

: ' /

also be found in LOAD.ARI. ~ oy

After all of the necessdry modifications have been made
to the system, the adapted interface should be ready to

accept natural language‘queries that can be then sent off to

3

whatever DBMS is being used with the system for evaluation.

While the actual adaptation process may seem rather long and

-

L .
»

79 S R

BRSNS T

arduous, in fact it can be done i;(zllgtifly little time.
In one tfi%l adaptation, the original system prototype was
‘modified not only to work with another database domain, but
to also accept input in another language, Freﬁch. Due to
the change in nabural language, the NLMenu screen- and
.~ VoiceScribe grammar had to be severlyjmodified to reflect a
ne@ grammatical structure. The entire adaptation process,
?céar:ied out by someone with a good understanding of frolog,
but litﬁle'knowle§ge of either VoiceScribe or.C, todk 1é§i

©

‘ than three days to cémplete.

« Chapter 5

Conclusions
: }

In this report we have looked at some of the éeneral
problems facing the developmen of natural language
interfaces to datébase systems, and Feviewed several aspects\
gf currently available speea® recognition technollogy.
Neither natural language interfaces nor speech recoénition
systems have reached the level of development where“they can
provide easy and unrestricted access to databases for the
truely casuai user. It is, however, ﬁossible to couple

[

natural language interfaces and speech recognition syste .
- .
in order to provide a fairly easy method of data access for

the relativly casual user. SN)

The development of a natural language interface using
voice has been discussed. The NLMenu/VS system was built
with the goal of showing that existing NL interfaces could
be integrated with affordable speech recognizers to provide
a query system that ﬁas both easy to learn and to use. The
p;ototyge discussed 1in this paper is very limited in its.
scope, bﬁt was not designéd for®large database systems, and
can be quite easily ddapted for use with different databaée
doyains‘and various database management systems. The system
prototype has demonstrated the potential power of isclaFed'

word recognition in conjuction with menu based natural

S R .

g

pECy i Shr ode s G Rt e L

oOre, :;ﬁ ke WD IARLLE S "'."'h“':';'?

SRR IR Y TN T
[N ! ‘ * N

- SloE et ‘“f:{‘“ : (":'r' ’ e ! *
: J . , ‘b ' ' * ’)
N M » - ‘ R . .
k ’ language interfaces. Such a system is very practicalv' for)
- use with many :0f the small , database management systems
v available for use with personal computers. . _ '
L » 0))) . s .‘\’
. a o » R .)
R : L
“ - . - v "‘ 4 N . . N
‘ - I L Y }’
, s\ . . ' .
’ ’ e 4 ’ . > N -
2 . , ‘ . ' * { ‘
: .’ 14 ~ e g o) s o . LA i
. ' . N . . . s“\,\ . .
T M . 0 . .] . '- . . . ‘ "
. ' ‘e)) . . ‘ 7 ” . ’ .‘—‘ -
. . . . Lo - Y . . . o
. o - ,.. . ' . N . i s . ‘
. N . o, . ' ‘) . e } e "Jr
Y . R . » : - R .) . ' " ’
ARG . R ' . . . > . A,‘ . . ') ' . ‘ e ~:“,
. ' g 'y : - . - - L oo o
AT s N - - . o . e ’ . .
X ‘ ’ A A \ . toe LI)‘ ' ¢ f ' “ . P 5 e y ot . A LI 5y
2 s . v Lo ., Wl G O O L o
: o~

e

»

References
B f
1. Hendrix, G.G. "Developing a Natural Language Interface
to Complex Data". , ACM Transactions on Database Systems,

Vol. 3, No. 2, June 1978, pp. 105 - 147.

°

2. Kaplan, S.J. '"Designing a Portable Natural Language
Database Query System". ACM Transacgsons on Database

Systems, Vol. 9, No. 1, March 1984; 1 - 19.
"ﬁ A
3. Kaplan, S.J. "Appropriate Responses to Inappropriate

Questions". Elememts of &= Discourse Understanding,
Cambridge Press, 1981, -pp. 127 - 144.\°) , ‘

4 - . Tennant, H.R. "Menu-Based Natural Language L
Understanding"”. Proceedings of 2lst Meeting of the
Association for Computer Linguistics, 1983,
pp- 151 - 158. .

Y , ’ '
5. Thompson, ;C.W. *Building Usable Menu-Based Natural

Language Interfaces to Databases". '‘Proceedings of 9th '
Internetignal Conference on Very Large Databases, 1983,
pp. 43. — 55. ’ o

6. Tennant, H.R. "Menu-Based Natural Language . .

Understanding". Proceedings of AFIPS Conference, 1984,
pp\\ 631 - 635. . .

] . P4

o

7. Parsons, T. "Voice and,Speech Processing", McGraw Hill,
'1987.
8. Radahakrishnan, T. "Voice Inthry Systems",

Proceedings of 1988 Computer Society of India Conference,
. Madras, India, MacMillan Publishing. .

‘1:&) * ‘ é a
9. Chen, P. "Entity-Relationship Aﬁbroach te System)
Analysis and Desigp, North Holland, 1980. N

N3

14

10. Allen, J.
by Speech",
November 1985, pPp. 1541 - 1550.

11. Zue,
Speech Recognition",
x}, November 1985, pp.1602 - 1615.

A
12. Chen’ Yo
R
13. Stern, R.

H

Based Isolated Word Recognition", IEEE Transactions on

V.

"A Perspective on Man-Machine Communication

1

Proceedings of IEEE,,Vol. 73, No. ll,

L) is‘
"The Use of Speech Knowledge in Automatic

"Cepstral Domain Talker Stress Compensation
for Robust Speech Recognition',
Acoustics, Speech,
No. 4, .April 1988, pp. 433 - 439

<

Proceedings of IEEE, YVol. 73,

3

IEEE Transactions on

and Signal Processing, Vol 36,

"Dynamic Speaker Adaptation for Feature-

Acoustics, Speech, dnd Signal Processing, Vol. 35,

No. 6, June 1987, PP. 751 - 763.

84

hTY

-

v - . 4

Appendix 1

-

/% NLMENU.LAN L ,

1]

This is the ' grammar used 5y the NLMENU system

‘prototype.
It is compiled by VoiceScribe's VOCL Compiler, giving
a language description file, NILMENU.LDF. *The LDF'
filg contains the ATN-like finite-state machine used
by VoiceScribe during recognition. Compilation also
produces a listing of the ATN, NLMENU.LST.

*/ . .

1

#listing;

-
13

/* The root production, with 'backup' always active */

Q [backup] = find, (Ql, Q2, 03);
Q1 = ATTRIBUTE]; . '
Q2 = NOUN; »
Q3 = ATTRIBUTE2;

/* The nouns */
NOUN = (N1, N2, N3);
‘N1 = instructors INST_MOD;

N2 = courses CRS_MOD;
N3 topics TOP_MOD; . - .

¢/* The attributes */

ATTRIBUTEl = (INST_ATT1, CRS_ATT1) ;-

—

INST ATT1 = ((Al (ang a2)#), (A2 (and Al)#)) of EX_INST;
CRS’ATT1 = ((A3 (and 'A4)#), (A4 (and A3)#)) of EX_CRS;
ATTRIBUTE2 = (INST_ATT2 ,CRS ATT2);

INST_ATT2 = ((Al (and A2)#), (A2 (and Al)#)) of N1;
CRS_ATTZ = ((A3 (and Ad4)#), (A4 (and A3)#)) of N2;

Al office number;

A2 = phone number;
A3 = prerequisites;
= hours;

A4

./* The modifiers */ '

4
°

85

L

INST MOD = (M1, M2);, , B
CRS_MOD = (M3, M4, M7, M8); -
TOP_MOD = (M5, M6) ; .

‘M1 = whose interests are EX_30P; ‘

M2 = who teach EX CRS; - ¥)

b3 = which are taught by EX_INST; p
M4 = which are related to EX_TOP;

M5 = ‘which are covered by EX_CRS;

M6 = which are interests of EX_INST;

M7 ='whose prerequisites are EX_CRS;

M8 = which are prerequisitesiof EX_CRS;

,)
/* The numbers for the expert menus. */

a

' EX_TOP. = (one, zero, oh) DIGIT;

EX_CRS = comp (six, seven) DIGIT DIGIT;
EX_INST = (zero, one, two, oh) DIGIT;

DIGIT = (one, two, three, four, five, six, seven, eight,

nine, zero, oh);

~ N o

4 -
/* Production for°system command */ N

*SYSTEM = (enter, edit, continue, done);

-

/* Terminal symbols., The words in éuotes are the
output strings that are associated with the
terminal */

find "Find ";

e

instructors "instructors ";
courses "courses " ;
topics "topics "“;
office: "office ";
phone - "phone ";
number "number "; ~
prerequisites “prerequlsites ", .
whose "whose "; ' Lo
interests | "interests ";
‘are "are "; ~
who "who ";
teach "teach "; .
which "which "; . h
taught . ."taught ";
. by “by)|,. i
\ - /
- " 86 s,
.ﬁ“ . i .) s

>

a

-

PRz u';!wéw“ SAIRIG R s 4
AN .’\ v(w ‘r'.‘v__ ‘n(x ¥

\ 5 -t , ° f P

B

RS R i st L R e R S
. - e v '-_»'~,'4‘ < {’.l‘ _!"‘u‘:t AR :(}» K “u,’

. . . N

L P,
N 1
. .

related "related "; A . ,
+0 Mo M, . : i
covered "covered' "; B =
- . of . llof " I, i a, - s IS -
. comp "Comp" ; . . A) - b
one v, , - . ' .
v two Toon2n;) ’ i ‘ - : ’
. _three. . m3n, o . -
N N four " 4 " . , -
.five - ngn |
six ngn .) ‘ . 3
R seven .on 7 " N - . A N

- W,
N

-
'
*

~
3

eight ngn ; ' M
. ‘ nin‘e ngn ; 3 ~ '
: zero .. "o, : - .

oh non; . ™ . . N
backup 3‘-"backup¥; . “« : '
yes « "yes"; '
. no , * "no"; ’
. done "done"; '
hours "hours "; ' ‘ -
and 11 an " ; . .
or . . "or ";
.. enter "enter"; -, :
g edit Tedit"; : a
continue "continue"; .

¥

2
" : n
quit quit"; . ‘ . :
5] v i
S
LY »
-«
. .
- + ! -
¢ L B » .
. . . -
.
. s
B '
. . . .
. . |/
. f . - .
. .
. . + . 4 -~ .
3 - - . -
- . 0 » 0(‘
- . .
. ; . . * .
. _ L e
- = . B
?
. . . :
s
1
-
[— T
oo |
N 2
* -~
. N .
.
. " .
A - i
s .. - .
, . & \ f
. .
[had M
0 PO . »
‘ . . N
" Y, s B . '
I . . A 1
. . :
LT Y
A i _— L e . Y
v . *
T " N Y
l . - . . 3 . ’ v *
N B
¢ N

) o
R TR . B AL .

! . NI AT AR AR

AN S wdt g o, GRE L RTM patl b Jg el gl e 2

Yo

/ Appendix 2: System Examples
(- »

The follgwing pages show the screen movement during
the input of two sample queries The scree}n highlighting is
shown here by underlining. “The examples show the queries
formed by the following sequences of “utterances’:_’ ¢ o

. , s
"Find office number of irnstructors who teach Comp 6 5 1

’ [}

enter continue" and " Find courses whlch are prerequisites

backup taught by 0 2 enter"

-

COMMAND NOUN MODIFIER . EXPERT
T instructors | whose interests are | <specific inétructors>
Eind .courses who teach <specific courses>
' topics which are taught by. <specific topics> :
which are related to - \
ATTRIBUTES CONNECTOR | which are covered by ‘
office number and which are interests of ’ .
phone number whose prerequisites are |’ . ~
prerequisites : v»;hich are prerequisites of ’
v . o}
SYSTEM COMMANDS : Backup, Enter, Continue, Done

COMMAND NOUN MODIFIER EXPERT

. Instructors | whose interests are - <specific instructors>
Find courses who teach <specific courses>
fopics - which are taught by <specific topics>

3 which are related to
ATTRIBUTES | CONNECTOR [which are covered by

which are interests of
whose prerequisites are
-} which are prerequisites of

of
L3

office number and
phone number
Ererequisites

SYSTEM COMMANDS : Backup, Enter, Continue, :Done

[

Find

A O AN LIC AR L e e A N S L G SR e g g s TS e e e e X W e R g g
RS Y 2R : p RIS L ST SR R TE S R g

¢ [4 t N ! l
, . COMMAND NOUN . { MODIFIER . ' EXPERT ¢ f’
¢ ' Instructors] whose interedts are <s’pecific/ instructors> oo «
Find courses who teach ¢ | <specific courses> ° : '
topics " | which are taught by <specific topics>. .
a which are related to \ .
ATTRIBUTES CONNECTOR | which are covered by .
office:number | and . |whi¢h are’interests of : -
phone number whpse prerequisites.are e i’
' ‘prerequisites .| which are prerequisites of N o
) of ‘ .
SYSTEM COMMANDS : Backup, - Enter, Continue,* Done - ‘
N Find office number ‘ .
1
. I
COMMARD NOUN MODIFIE; Suaror .
01 Alagar . 1 o
-) lnstructors | whose in 02 Atwood .
Find courses | who teac 03 Boom .
topics - which ar4 04 Bui
office number and w:nch an o7 Ford : . e
Rhone number whose pl g8 Goyal .. - -
prerequisites - which art 99 Grogono R N
" ' ‘ ofs 10 Jaworske
SYSTEM COMMANDS : Backup, Enter, Chrmsierasand
I
Find office number of. R g .
COMMAND [NOUN ° |MODIFIER . .. EXPERT ,
) . " | instructors | whose interests are <specific ‘instructg‘rs> ’
Find . courses | who teagh . I <specific courses>
\ ' " , topy; -| which are taught by - <specific topics>)
’ i 4 +—— which are related to
¥ ATTRIBUTES | CONNECTOR | which-are covered by - «
office number and which, are interests of ¢ '
- phone number "e | whose prerequisites aré,*| . . /-
e, " | prerequisites wmare prerequislfes ol - S
. Ve
SYSTEM COMMANDS : Backup, Enter, Continue, Dome -
) Find office number .of instructors ‘ N
® 3
. ' ’ 69 , NG
. \ | 3 ‘ ' .
. » ‘ ‘ .
. s R | — -
" ~ . ‘ . ! ’
» ’) ‘ . o : > H “1 \ .

A

A

~

\ . \ -
o * o, \ i
COMMAND | NOUN MODIFIE J—cuncox
- Compb27 Microprocessor System Arch [
~ Eind instructors | whose in Comp628 Computer Systems Design
courses who teac Comps41 Compar Pdi' of Prog Langs
topics W::C'; ar{ Comps42 Compgzr Dasign
" | Which 8§ 6ompg45 Data Comm'& Comp Networks
ATTRIBUTES | CONNECTOR which arf Gompe46-Systen Software Design
office, number | and which arl Comps47 Software Design Méthods
* phana number whose pl compg51 DataBase Design ¢
prerequisites |, which art comp656 Information Retrjeval
‘ of Compé57 Office: Automation
¢ SYSTEM COMMANDS : Backup, Enter, G Comp658 Struct of Informatign System

Find office number of instructors who teach ™

‘L

\ \{

COMMAND NOUN MODIFIER EXPERT

instructors | whose interests are <specific insfructors>
Find courses who teach _ <specific courses>
topics which are taught by <speclfic topics>
which are related to
ATTRIBUTES CONNECTOR | which are covered by
office number and which are interests of

phone number
prerequisites

-

\

whose prerequisites are
which are prerequisites .0
of

SYSTEM COMMANDS : -Fiackup,

Enter, Continue, Done

o

Find office number of instructors who teach COMP(€\51
7’y

$hone numter
prerequisites

)

whose prerequisites are
which are prerequisites of
of

COMMAND NOUN MODIFIER "EXPERT
Instructors | whose interests are <specific instructors>
Find courses who teach <specific courses>
topics which are taught by <specific topics> R
which are related to
_ATTRIBUTES CONNECTOR | which are covered by
office number and which are interests of

SYSTEM COMMANDS : Backup,

Enter, Continue, Done

Find office number of instructors who {ieach Comp651

Instructors who teach Comp651: Sadri H961

«
/

/

f

90

MODIFIER

COMMAND * | NOUN EXPERT .
) Instructors | whose Interests are <specific Instructors>
F}"d' courses who teach . <specific courses>.
h L “fopics which are taught by -<specific topics>
- 4 which are related to o
office number | " and which' are intereste: of -
phone number whose prerequisites are
prerequisites ﬂfh.‘ch are prerequisites of
o0 N :
SYSTEM COMMANDS : Backup, Enter, Continue, Done
T T
Find courses .
COMMAND J NO\IN ' MODIFIER EXPERT
Eind ' ingtructors | whose interests are <specific Instructers>
W coursgs— - | who teach i <spacific courses>
N R 4 topics Which are faught by <specific .topicss -
N which are related tor Co
J_ATTRIEUTES | CONNECTOR |which are covered by '
office number | ° and which are interests of
phone number Y ~| whose prerequisites are
prerequisites wfhich are prerequisites of
0
SYSTEM COMMANDS : ‘Backup, Enter, Continue, Done
. Fird courses whjch are
COMMAND NOUN MODIFIER EXPERT
Find instructors | whose Interests are <specific instructors>
coursss who teach <specific courses>
topics w::c: are taL'Jaghtd by <specific topics>
which are related to
ATTRIBUTES CONNECTOR | which are covered by
office number and which are interests of
phone number whose prerequisites are
preraquisites which are ‘prerequisites of
of :
SYSTEM COMMANDS : Backup, Enter, Continie, Done .

~

Find courses which are prerequisites -

91

[

o, &

| COMMAND | NOUN MODIFIE L_cunzox
e 01 Alagar [~
-t _- instructors | whose i1 g2 Atwood
Find courses who teac| o8 Boom \
topics which ard 04 By
. 1 which arf 55 Chen -
ATTRIBUTES | CONNECTOR |whichan cg Faneut
» office number and \{ which ant 97 Ford
phone number whose pl 08 Goyal
prerequisites | which arl 99 Grogono
' of 10 Jaworske ‘
SYSTEM COMMANDS. : Backup, Enter, Chmioersonso— Kagvand - -
Find courses which are taught by
COMMAND NOUN MODIFIER EXPERT
L instruc\tors whose interests are +<specific instructors>
J~ Find courses Mo teach) <spegific coursess
‘ topics which are taught by <specific topics>
- which are related to
ATTRIBUTES | CONNECTOR | which are covered by |
office number ~ | which are interests of Pt

phone number
2| prerequisites

' .

and

whose prerequisites are
which are prerequisites of
of . :

SYSTEM COMMAND§/ Backup,

Enter, Continue, Dorie

[4

A\
Find courses which are\laught by Atwood

Courses taught by Atwood: Systems Software Design

92

-

‘ Appendix 3

S

" Results of System Prototype Testing
The following table presents the average confidence levels

, ofg queries made ‘using three ,versions of the system

prototype ~ . .
/

Version 1 presented the user with a blank screen, Version 2

presented the inital NLMenu screenk without highlighting,,

S

’ and'ﬁersion'B presented the screen with highlighting.
The * percentages given are averages of the confidence levels
recorded for between two and four queries’fcr each version

of the sustem prototype.

Subject 1 2 3 .4 5 -6 7 8 9 10

-1 e

‘Version 1 60% 51% 60% -59% 69% 56% 45% 60% 40% 57%

- . Version 2 63% 64% 62% 70% 82% 70% 66% 66% 66% 69%

v

Versiqn'B 95% 80% 80% 86% 89% 81% B84% B86% 80% B89%

Overall Averages for all Subfects 7
. Jo'
Version 1: __55.7 % , :
Version 2: 67.8 % \
ersion 3; 85.0 %

)
3

93

