N !
T

Acquisiiions and

Bibliothégque nationale
du Canada

Direction des acquisitions et

Bibllographic Services Branch des services bibliographiques

395 Weliington Street
Ottawa, Ontario
K1A ON4 K1A ON4

NOTICE

The quality of this microform is
heavily dependent upon the
quality cf the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c¢. C-30, and
subsequent amendments.

it

Canada

395, rue Welington
Ottawa (Ontano)

Your e Vot retere e

Our be Nolre oteren, o

AViS

La qualité de cette microforme
dépend grandement de la qualité
de la thése soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S’il manque des pages, veuillez
communiquer avec [université
qui a conféré le grace.

La qualité d'impression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont été
dactylographiées a I'aide d’un
ruban usé ou si I'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses amendements subséquents.

Dee: an Object Oriented Programming
Environment and its Implementation

Benjamin Yik Chi Cheung

A Thesis
in
The Department
of

Computer Science

Presented in Partial Fulfilment of the Requirements for
the Degree of Master of Computer Science at
Concordia University

Montréal, Québec, Canada

March 1992

© Yik Chi Cheung, 1992

ional Lib
L1 g

Acquisitions and
Bibliographic Services Branch

395 Wellington Street
Ottawa, Ontario
K1A ON4 K1A ON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, lecan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

395, rue Wellington
Ottawa (Ontano)

Bibliothéque nationale
du Canada

Direction des acquisitions et
des services bibliographiques

Yo frle Vtre 1dtdene e

e e Nobe 10feng o

L’auteur a accordé une licence
irrévocable et non exclusive
permettant a la Bibliothéque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa thése
de quelque maniere et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
these a la disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d’auteur qui protege sa
these. Nila thése ni des extraits
substantiels de celle-ci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN @-315-8log1-7/

Canada

Abstract
Dee: an Object Oriented Programming

Environment and its Implementation

Benjamin Yik Chi Cheung

We have combined a strongly-typed object oriented language with an integrated,
interactive development environment. In this environment, Dee, we designed the
compiler as an integral component of the environment. Coupling the compiler and
the browser simplifies symbol table management in the compiler. Conversely, the
same coupling ensures that information is semantically checked hefore the browser
displays it. Also, programmers do not have to understand the elass hierarchy becanse
the compiler creates class views.

In Dce. the class interface manager is the fundamental key idea of the whole
system. It provides diflerent vicws of class interface to other system components. It
facilitated both the development of the compiler and the environment.,

In order to support dynamic binding, most of the object oriented languages payed
a high cost on memory space and CPU time for message dispatching. In Deey an
improved color index technique was implemented. It shows that we can use heuristics

instcad of exhaustive searching to get better space consumption.

i

Acknowledgments

I would like to express my sincere gratitude to Dr. Peter Grogono my thesis su-
pervisor, for his guidance and valuable insight throughout this research. His support
and patience were invaluable in the preparation of this thesis.

I thank Dr. Peter Grogono and Dr.Hafedh Mili for their financial support.

I thank all people in the Dee group: Lawrence Hegarty, Joseph Yau and WaiMing
Wong for stimulating discussion, and make our project goes smoothly, and led to an
improvement of this thesis. Al my friends, D. Pao, C.H. Yim, S.Y. Leung, K.L. Ma,
S.C. Leung, K.O Lau and A.Wongyai have helped brighten my days at Concordia.

specially, I would like to thank my girlfriend Min Huang, for her patient, under-
standing and encouragement.,

Finally, I am most grateful to my parents, for their encouragement, support and
love,

This rescarch was supported in part by a grant from the Natural Sciences and

Eugineering and Research Council of Canada

iv

Contents

Listof Figures e

Listef Tables

1 Introduction

1.1 The Object Oriented Programming
1.2 Languages and Environments 000000 oL
121 Simulao

1.2.2 Smalltalk

1.23 Lisp: CLOS And Flavor
1.24 Eiffelo
1.25 CH4 oo o e e e e
1.3 Dee. . o oo e
1.3.1 System architectureo oL
1.3.2 Theprojecl o oo i
1.4 About thisthesis

2 Class Interface Manager

21 TheClassInterface oo oL
2.2 Designissues oL e e e
2.2.1 Integration and Interface 0oL

18

20)

23

222 Data00
2.3 The Architectureof CIM
24 CIDB ..o 00000l
2.4.1 Data Storage Schema . . .
24.2 Datarecorda
2.4.3
2.5 Data Base Maintenance
2.6 Implementation Issues
2.7 Advantages of the CIM Design . .
The Development Environment
3.1 Introduction L.
3.2 Motivation and Design Issues . .
333 Deeo o oo o000
3.0 DeebFolder. o000 00000 L.
3.1 Design Issues
3.1.2 The Information Provided
3.4.3 Layout Design.
1.5 Semantic Browser
3.6 DeeMode . .0 0000000
3.7 Discussion L L.
Linker
1.1 Introduction
1.2 Run Time System

vi

Low-level storage format and Fragmentation handling

....................

....................

....................

....................

....................

....................

....................

....................

....................

....................

....................

....................

....................

....................

....................

................................

.............................

.....

26
27
28
29

31

33
35
37

39
39
40
11
3
44
45
47
98
39

61

65

4.3 Message Dispatching L L 68
4.4 Coloring Methods 7l

4.6 The Heuristics T3
4.6.1 Sequence. e e e e e e e e e e e TD
46.2 Packing 78
4.6.3 The Algorithm o L o oo T8

4.7 Results . .. o oo e 81

Conclusion 86

51 CIM o 86

52 Theenvironment e sy

53 Linker e 89
54 Further Work 90)
CIM Interface 03
Example Programs 97
B.1 Class Filter e e 97
B.2 Class Program 98
B.3 Class Primes. P ¢ 1¢

vii

List of Figures

2,10

Dee System Organization oo 14
Canonical Document for Class Part 22
Canonical Document for Class Hook 22
Client Interface of Class Hook« o0 . 23
Inherited View of Class Hook oo oo o 23
CIDBDatalimage. o e e 25
C'IM System Organization o oo 28
CIDB Data Organization o0 0 v v v 30
CIDBDataRecord 0 o oo oo 32
CIDB data File Format o0 o oo 33
First Unix implementation: Memory Paging 36
Screen layout of Dee Folder oo o oo oo oL 44
Heirinterfaceof File 00 o o0 000 oo oo 48
Client interfaceof File o o oo o oo 49
Group classes of Device o o o o0 0 oo Lo i e e e o1
Class structure of Fishingo .. 51
Class structurc of Streamo oo oo 52
Query result: Full interfaccof class Fale . . . 0 . .00 o o000 0oL 54

viii

3.8 Query result: Summary of the interface of class rile 55

39 Theiconsof the Dec Folder 55
3.10 Query: Find all the methods with the same prefix .. 0 o000 00 56
3.11 Editand Query e 60
4.1 Dee: Run Time Environment 67
42 ColorExample oo 71
4.3 The conflict graph of the attributes 000 72
44 Resultof CITmethod g
4.5 The optimal coloring result Lo o oL 70
46 Basicclassof Dee oo 76
4.7 Classes for inputfoutput oL 77
4.8 Relations between abstract groupo L0 78
4.9 Decomposed sub-graph of basic classeso 00000 T
4.10 The worst case of CIT and CCI'T 83

List of Tables

1.1

3.1

3.3

3.4

1.1

Project: Module and People. 16
Panel: objects, events and its service 57
Graphical Window: objects, events and its service 58
Switches of semantic browser 59
Dee Mode Commands. 61
Space consumption of CIT method 73
The Minimal Coloring Result 81
Random testing with inheritance 0to 3. 82
Random testing with inheritance 0to 4. 82

Chapter 1

Introduction

The necd to develop, reuse and maintain large complex soltware systems in a com-
petitive and dynamic environment has created interest in a new approach, the object
oriented paradigm, for software design and devclopment.

Problems with traditional development using the classical life cycle include few
facilities for iteration, no emphasis on reuse, and no unifying model to integrate the
development phases[KM90]. There is little opportunity for code reuse and mainte-
nance costs account for a very large share of total system costs.

The object-oriented paradigm was proposed to address the rensability and main-

taintablity of software system and development.

1.1 The Object Oriented Programming

The goal in designing individual software components is to describe a concept in
such a way that it can eventually be an exccutable form. The Abstract Data Type s
the object based paradigm technique for capturing this conceptual information. ‘The

class is the conceptual modeling tool we are using:

e A computation is performed by a sct of objects.

e Objects communicate by sending messages to each other.

e An object will execute a method, if it has received a message.

Objects, Classes, Instances

The object oriented paradigm: an object combines data and a set of operations
(methods)[SB86G, Bud91l, KL89). It stores the data in instance variables in order
to save its state, and responds to carry out a specified procedure according to a re-
ceived message; a class is the static representation of the object, it specifies a set
of visible operations, a set of hidden instance variables and hidden procedures which
implement the operations. All the operations of a class are shared by objects which
arc called instances of the class.

When a new instance of a class is created, it has its own set of instance variables,
but shares all the operations with other objects of that class. The instance variables

of the objeet can only be modified indirectly by invokir s the operations.

Methods, Messages, Receiver

A method is the function that implements the response when a message is accepted
by an object.

A message is the specification of an operation to be performed on an object.
Similar to a procedure call, the operation to be performed is named indirectly through
a scicetor whose interptertation is determined by the class of the object.

A recciver is the object which will rececive the messages.

Basically, we can use the following notations to describe the relationship between

method, message and 1eceiver. For any given message, M, we write r.m(a, b,..): where

r is the receiver, m is the name of the method and a, b, ... are arguments.

Inheritance, Typing

Inheritance is strictly a reusability mechanism for sharing behavior between objects,
For example, if class B inherits class A, then class B will have all or most of the
behavior and properties of A. There are a lot of forms of inheritance depending on the
implementation and the object modeling concept of particular language. Basically,

inheritance involves the following issues[Nie89):
o What properties can be inherited?
o Is multiple inheritance supported?

o Does inheritance occur statically or dynamically?

Which inherited properties are visible to the client?

Can inherited properties be overridden or suppressed?
e How are conflicts resolved?

In an object oriented programming language, an object {ype is superficially the
same thing as an object class. In genecral, programming languages are commonly
classified according to the extent of type checking provided at compile time. Object
oriented languages vary widely on this issue. We have typeless object oriented lan-
guage like SmallTalk[Gol84], CLOS! [Kce89]; and strongly typed language like Fiffel,

C++[Str86] and Dee.

1CLOS is short for Common Lisp Object System.

For strongly typed object oriented language, type checking is applied at the level
of an object. Objects not only have data, but are also associated with operations.
In the object oriented world, type checking must not only be concerned with the
interpretation of data, but also needs to determine which operations may be applied
to an object.

Informally, one type, B, conforms to another, A, if some subset of its interface
is identical to the other. We then say that B is a subtype of A. Therefore, the
relationship between A and B may be equivalent or included.

Obviously, the type confirmation mechanism depends on the components of the
interface of an object class. And the interface depends on the particular type model
chosen for a language.

In general, suppose that class B inherits from class A. We say that B is a subtype
of A. The compiler will allow an instance of B to be assigned to an instance of A, in

the form of:

a:=b (1.1)

where a and b are instances of A and B.

Polymorphism and Dynamic Binding

A polymorphic function is one that can be applied uniformly to a variety of objects.
For example, the + function, may be used to add two integers, two strings, or two
floats. Polymorphism in object oriented languages is concerned with a set of opera-
tions that coincidentally share a name, but have completely different behavior. This
is mere overloading of operation namies.

Inheritance is close to polymorphism, because the same operations that apply to

instances of a parent class also apply to instance of its subclasses (children).

Polymorphism enhances software reusability by making it possible to implement
generic software that will work not only for a range of existing objects, but also for
later modification or objects to be added laier. For examples, A Sorting class will sort
any list of objects that support comparison operations such as equal, and less_than.

In object oriented programming languages, if variables can be dynamically bound
to instances of different object classes, we call it dynamic binding. Since we can
not determine the methods to be executed at compile-time, some forms ol run-time
method lookup or message dispaiching mechanism must be performed.

For typeless language like Simalltalk, the method lookup mechanism makes it
necessary to search through the class hierarchy at run-time to find the method of an
inherited operation. For strongly type languages like Eiffel, C+4+ and Dee, a run-
time support system will be created by the linker according to the classes needed at
the run-time. The invocation of functions on instances will be resolved at run-time
depending on the class to which the instance belongs. The resolution mechanisnn is

called message dispatching mechanism?.

1.2 Languages and Environments

1.2.1 Simula

Simula][BDMNT73, ND81] was designed in 1967, under the name Simula 67, by Ole-
Johan Dahl and Krysten Nygaard. The name was shortened to Simula in 1986,
Recent converts to the ideas of object oriented programming sometimes think of

Simula as a respectable but defunct ancestor.

2Sce the Chapter on The Linker in section 4.3

Ut

Simula is an object oriented extension of Algol 60. Its basic control structures

and data types are drawn from Algol 60.

Simula made several contributions to the object oriented paradigm. For example,

it supported:

e Single inheritance: B is declared to be an heir of A by
A Class B; begin ... end

Hese A is parent, B is the sub-class;

o Informalion hiding: a feature declared as protected will not be available to
the clients and a feature declared as hidden will not be available to proper

descendants.

o Virtual rouline is the deferred mechanism provided by Simula. A routine can be
defined as a wirtual routine in a parent class and implemented in the descendant

classes.

o Polymorphism is supported. By default, binding is static rather than dynamic,

expect for virtual routines.

The implementation of Simula supports garbage collection. The language definition

does not include a standard class library.

1.2.2 Smalltalk

The ideas for Smalltalk[GR83] were formulated around 1970 by Alan Kay. Adele
Goldberg, Daniel Ingalls are two other persons who made key contributions to its

implementation at Xerox.

As a language, Smalltalk combines the influence of Simula with the free, typeless
style of Lisp. It emphasis is on dynamic binding. No type checking is performed.

Everything in the Smalltalk system is an object; a class is an object and is viewed
as an instance of a higher-level class called a metaclass. By this approach, Smalltalk

obtains some beunefits. They include:

e conceptual consistency, a simple object abstraction is applicable to both classes

and objects.

e contributions to the programming environment. At run-time, classes are part
of the data. This facilitates the development of compiler, debugger, browser

and the source inspector. This is appropriate in an interpreted environment.

o Considering a class as an instance variable of a metaclass makes the run-time
system casier to define or modify an individual class rather than its instances

and makes it possible to define a new method during run-time.

Smalltalk is not just a language but a graphical, interactive programming envi-
ronment. It popularized many of the advances in this arca such as multiple windows,
icons, integration of text and graphics, pull-down menus and the use of & mouse as
a selecting and pointing device|Gol81]. A very important window based tool, the
browscr, is incorporated in this environment. It allows users to retrieve and view
class or system information during the development period; and it also allows users
to inspect a specified instance variable.

This environment is Smalltalk’s most significant contribution.

1.2.3 Lisp: CLOS And Flavor

Lisp[IFat88, McC81] is a functional language widely used in the artificial intelligence
community. By itself Lisp has a unique computing concept. Both data and program
have a uniform representation as lists. On the other hand, most of the implementa-
tion of Lisp language already has incorporated the concepts of advanced programming
environments such as garbage collection, tree like-data structures, editing tools, de-
bugging and tracing facilities. Thus it is not surprising that Lisp has been used as
the base language for several object oriented languages. A good Lisp environment is
directly applicable to the implementation of object oriented concepts.

There are two popular object oriented extensions of Lisp. They are COMMON LiIsP
OBikcrt SysTeM (CLOS)[KEE89] and Fravors Lisp. CLOS has now become a
standard part of the COMMON Lisp. The Flavor[INC88, INC91] object system is
developed by Franz Inc, it alimost have identical functionalities and function protocols

to CLOS.

CLOS

CLQOS comprises a set of tools for developing object oriented programs in Common
Lisp. It has been adopted as part of Common Lisp by the X3J13 committee®. The

major techniques supported by CLOS are listed below:

Classes and Instances: CLOS supports multiple inheritance. Each class is a Lisp
type in the language with two object oriented properties, data slots and meth-
ods. Specifically, it allows instance variables to have a default value, after their

creation,

X33 13 is a comnuttee working on creating the ANSI Standard Common Lisp

o

g

Methods: CLOS allows users to define methods with different roles. Besides the
primary methods, users can define before methods, after methods and around
methods. These provide an extremely flexible framework that enables the users
to define code in modules and reduce code repetition fragments in a large soft-

ware system.

Dispatching mechanism: In CLOS, the system provides generic message dispatching
rules. Users can redefine the dispatching sequence and control the combination
of methods in the inheritance hierarchy. These facilities give users freedom to
control how the methods are called and what is the update sequence of the

updating of an objects state or value.

CLOS allows redefinition of generic functions, methods and classes on the fly. CLOS
ensures that everything that is affected by the redefinition is automatically

updated.

Due to the goal of designing CLOS, which is to satisfy most appheation, according
to its specification and implementation, all CLOS features add up to a great deal of
expressive power, and the programming interface is very flexible. The disadvantage of
this flexibility is that the CLOS user might be overwhelmed by the wide assortment,
of techniques and features to be learned. In particular, CLOS often supports more
than one way of doing a single thing, and there is not always a clear guideline as to

which way is preferable.

1.2.4 Eiffel
Eiffel[Mcy90a, Mey88] was designed by Bertrand Meyer of Interactive Software En-
gineering. It is a strongly typed object oriented language.

9

For an object oriented language, Eiffel was strongly influence by Simula, not
only the conceptual model but also the syntax and style of the language. Meyer
invented Eiffel based on the object oriented design. As an object oriented language,
Eiffel supports multiple inheritance, deferred methods, generic classes, renaming and
redefinition.

The most novel ideas in Eiffel are the concepts of assertions == pregramming by
conlracl.

An assertion is a property of a programs entity. For example, an assertion may
express that a certain integer has a positive value or that a certain reference must be
void.

Syntactically, assertion are simple boolean expressions, with a few extensions. For
example:

n > 0; not x.void

The semicolon js equivalent to a logical and.

Eiffel uses assertions for the semantic specification of methods or classes. Con-
sequently, a method in Eiffel is not only a piece of code which performs a specified
task, but it may also have two assertions associated with it: a precondition and a
postcondition. The precondition expresses the properties that must hold whenever
the method is called; the postcondition describes the properties that the method
guarantees when it returns.

In Fiflel, users also can define an assertion for a individual class, called a class
invariant. A class invariant is a global property of all instances of a class, which must
be preserved by all its methods. An invariant for a class C is a set of assertions that is

satisfied by every instance of C at all stable times. Meyer defines that the stable time

10

of a object instance should be: on instance creation and before or after every method
exccution. A simple example is the following property of class STACK2 which in the

standard class library of Eiffel:
0 < nb_elements;nbelements < mar_size

The concept of assertion enhances the softwares reliability and it can pay a crucial
role in helping programmers write correct programs. In particular, it helps the class
designer to make the specification more clearly. At the same time assertions give

programmers a more accurate way to understand existing systems.

1.2.5 C4H4+

C++[Str86, ES90, Sak88] was designed by Bjarne Stroustrup of ATET. (44 is
a hybrid language which combines the feature of imperative and object oriented
language. The language design is an attempt at a belter C. Programmers need not
do all their coding in the object oriented way. It allows programmers to code routines
in C. Almost any correct C program is a correct C++ program.

C++ supports only single inheritance in its published descriptions. Dynamice
binding is also available, but only for those routines that have explicitly been marked
as wvirtual in their original class. This makes it easicer for the compiler to implement
an efficient message dispatching mechanism. But it loses the flexibility of redefinition
and extendibility of existing classes.

The weakest point of C++ is, that it does not support any memory management,
facility. No garbage collector is provided; programmers are responsible for managing

the object memory by writing constructor and destructor functions.

11

1.3 Dee

Two of the major problems of software development are code management, software
extendability and code reuse. Although object oriented programming has been widely
acclaimed as a way of solving these problems, the potential benefits of the object
oriented paradigm have not yet been realized in currently available products.

The typeless object oriented languages, such as Smalltalk and CLOS, have a
nice programming environment, but they lack run-time safety and are too slow for
general applications. They are suitable for prototyping environment. On the other
hand, most of the strongly typed object oriented languages, like Eiffel and C++, do
not have a good programming environment.

The design goal of Dee is: to design a simple yet complete object oriented pro-
gramming language with an interactive programming environment which satisfies the
requirements of object oriented development. The significant differences in the de-
sign approach between Dee and other languages are: we design our language and
programming environment at the same time and implemented them in parallel. In
most previous case, the language was designed and implemented first, followed by
extra tools for their programming environment.

The primary goals of designing and implementing Dee were:

1. a programming language which provides full support for the object oriented

paradigm;

2. a programming environment for the language which supports all phases of soft-

ware development; and

3. a library of classes which facilitate both coding at a high level of abstraction

12

and efficient object code.

The detail issues of designing Dee can be found in [Gro91b)

The orginal version of Dee was designed by Dr Peter Grogono. He implemented
the first prototype system PC-Dee in Turbo Pascal. The second revision of PC-Dee
incorporated the concept of class inlecrface manager. It was also written in Turbo
Pascal and the class interface manager was implemented by Benjamin Cheung during
the summer of 1990. A set of standard class libraries were also developed in this
version in order to get real development experience.

After evaluating the PC-Dec[Gro90], we redesigned and implemented Unix-Deet.
For the language itself, we made some small changes which are the result of the
responses of student users to PC-Dee. We tried to elimate mistakes in PC-Dee and
enhance the integration and performance of the whole system.

The goal of first phase development are:
¢ Develop a new compiler for Dee on Unix environment;
¢ Redesign the Class Interface Manager;

¢ Build an interactive development programming environment, including a cus-

tomized editor, a semantic browser and a graphical user interface;

o Redesign the object linker to get better space and run time performance.
1.3.1 System architecture

Figure 1.1 shows the major functional components of our system. They include: a

compiler, consisting of a scanner/parser, a sermantic analyzer, and a code generator.

In the following chapters of this thesis, Dee denotes Unix-Dee

13

Semantic Browser

CEI LT LY T PR PTYY T PPy ey

‘ AST Code Generator 2

Dee Folder

Figure 1.1: Dee System Organization

This compiler translate the Dee code to C; the class interface manager consists of data
base maintenance unit and class interface database; and the linker, which is an object
linker which creates the run-time system of each individual executable program. The
diagram shows that the whole system is tightly coupled and highly integrated. This
is our key design approach, each component should be integrated and benefit from

the others,

Tnre COMPILER
‘The scanner/parser is responsible for translating the Dee source text into an in-
termediate data structure, called the abstract syntax tree, and denoted by AST

in Figure 1.1. The semantic analyser is responsible for semantic checking and

14

enriching the information of the original AST by retrieve related information
from the Class Interface Manager (CIM). After semantic checking, the semantic
analyser saves the class interface to the CIM; The code gencrator translates the

Dee into C;

THE CLASS INTERFACE MANAGER®
The CIM, is a functional unit which supports interface managenent, system
configuratiun ~nd database mainteinance facilities to the environment. It is
responsible for storing class interface into the class interface data base (CIDB),
provide service interface, views, to other components,
The class interface data base ¢ is a specially designed database module, which

provides database service to the CIM.

THE SEMANTIC BROWSER
The semantic broser[CG92] is a tool which can be using to retrieve class interface
and semantic information from the CIM. It can be activated in a text terminal

or inside the editor.

DEE FOLDER
The Dee folder is a graphical user interface which supports class hierarchy

browsing, semantic and source browsing.

THE LINKER
The linker of Dee is the functional unit which creates the run-time data strue-
ture and support environment for each Dee program. For an individual pro-

gram, the linker will try to determine: the smallest set of classes which need to

5Class Interface Manager will be abbreviated to CIM from now on
6Class Interface Data Base will be abbreviated to CIDB from now on

[

15

Modules Person
liraes Dee Mode (editor) | Lawrence Hegarty
Scanner/Parser Lawrence Hegarty
Semantic Analsyer Waiming Wong, Lawrence Hegarty
Code generator Lawrence Hegarty
Garbage collector Lawrence Hegarty
Class interface manager | Benjamin Cheung, Joseph Yau
Linker Benjamin Cheung
Semantic Browser Benjamin Cheung
Dee Folder (GU Benjamin Cheung
Standard Class Peter Grogono, Lawrence Hegarty, Benjamin Cheung

Table 1.1: Project: Module and People

be linked together; and the best space consumptic . The linker will translate
all run-time supporting system into C data structure in a C source file, then
produces a Unix make file which is responsible for using the C compiler and

Unix-linker to create the executable program of Dee.

1.3.2 'The project

Table 1.1 shows, that the Dee project had been divided into several major components
and it was implemented by four graduate students. They are Benjamin Cheung,
Lawrence Hegarty, Joseph Yau and Waiming Wong. This development group’ is
supervised by Dr Peter Grogono.

The Dee group started this implementation rroject on May of 1991. The first
Dee program which said Hi folks, I am alive! was successfully compiled, linked

and executed on 21st December 1991.

“Dee group will be used to denote the people in the development team

16

1.4 About this thesis

This thesis is about the design and implementation of the Class Interface Manager,
Linker and the Programming Environment.

In Chapter 2 and Chapter 3, the detailed design and implementation strategy of
the environment were discussed. For this environment, we tried to implement our
language and the programming environment in parallel. A class interface manager
was introduced, which had many benefits for the system design and which facilitated
the design of the programming environment. This approach is quite different from
that of other researchers[LO90, Mey88]. As the result of our rescarch, a strongly cou-
pled and efficient system was built, each of the components of the system depending
only on the views of the CIM.

In Chapter 4, a compact object record linker was discussed. We use a heuristic
method to solve the problem instead of exhaustive scarch. Our CCI'T is hased on
the CIT method. Both experiment and random testing show that our method is a

significant improvementi over CIT.

17

Chapter 2

Class Interface Manager

In the Dee programming environment, the class interface manager is an integral part
of the system. The idea of using a database management system to maintain informa-
tion in a software development environment is not new, but its effectiveness is limited
if the components of the development environment are not carefully integrated.

Program development in object oriented languages typically requires more inter-
action with existing code and its documentation than does development based on
other paradigms. The object oriented paradigm encourages programmers to extend
existing classes by inheritance rather than to write completely new modules. Since
the inheritance relation is more intimate than the client relation, programmers must
acquire familiarity with the details of many classes before they can program produc-
tively. While programming, they will frequently need to confirm their recollections
of the services provided by the classes they are using,

For these reasons, programmers who use object oriented languages need rapid
access Lo accurate documentation about the software components they intend to use.
Accurate documentation of a specified class can only be found in source code that
has been accepted by the compiler.

‘Thus there is a need for storing some of the intermediate information captured or

inferred by the compiler.

There is also a very important reason to store some of the verified information of a
specified class. It is because all classes in an object oriented language are independent
units which describe the abstraction or implementation of a class. The semantic
analysis is a very important part of the processing of the compiler. This processing
needs a lot of information about the other classes. All class informiation must he
accurate and consistent as are created during compilation.

In the Dee programming environment, a class interface data base was designed
to store class interface information and some information about the development
system, such as class ownership, update time, interface change time, source location,
etc.

The class interface manager was designed as a query interface of CIDB for other
system modules other than the current module, for examples, the compiler, linker
and the graphical user interface. The most important issue in building this layer
was to cnhance the integration and flexibility of the system and provide databasce
maintenance facilities such as consistency and accessing control over the CIDB and
avoiding fragmentation.

As Figure 1.1 shows, the compiler writes the interface of a class to the database
after successfully completing the semantic analysis of that class. This is the only way
in which the databasc is ever updated. The CIM provides information in response
to queries. Both compiler and programmer can trust information they obtain from
the CIM because the original source of the information is the compiler Information
provided by the CIM is correct, consistent, and up to date. The CIM provides access

to a rich repository of useful information about existing classes and Dee. In particular

19

the CIM provides facilities and abilities for distributed software construction and
management by maintaining the source code as private files and the database as a
shared resource. In a natural way, programmers retain full control over their own

classes while benefitting from classes developed by others.

2.1 The Class Interface

Dee is a strongly-typed, class-based, object oriented language which provides multiple
inheritance facilities for both protocol and implementation.

The source text of a Dee program consists of a number of class definitions. Each
class is defined by a single document called the canonical decument{Gro91b, GC91,
GroYla] of the class. The canonical document is read and modified only by the owner
of the class.

All the information about a class is contained in the canonical document of the
class. A class is not visible to anyone other than its owner until it has been compiled.
The compiler, in addition to semantic checking and code generation, constructs an
interface for the class and writes it to the CIDB. Subsequent access to the class, by
both programmers and the compiler, is made through this interface.

The canonical document of a class defines all attributes of the class. An atiribute
is cither a definition of an instance variable or a method. Each attribute is either
public or private. Clients of a class may use its public attributes but not its private
attributes. Heirs of a class may use both its public and its private attributes. For
example, a client. of class Part, shown in Figure 2.1, could use desc, satisfies, and
show, but not cost. The value of a public variable, such as desc, can be accessed, but

not altered, by a client. The canonical document also specifies the classes which the

20

defined class needs. The classes which the defined class inherits are listed explicitly.
Other needs are indicated by declaration: for example, the declaration dese:String
indicates that the defined class is a client class of String, the class of strings.

The canonical document may contain comments. In Dee programmers cannot
write comments in arbitrary places because a comment is a terminal symbol in the
grammar of Dee. For example, there may be a comment between two statements
but not within a simple statement. In practice, the restrictions on the placement of
comments are a minor inconvenience for programmers. The compiler writes selected
comments to the class interface. Specification comments, which answer the question
“What does it do?" are distinguished syntactically from implementation comments,
which answer the question “How does it work?” A programmer who enquires about a
method will see only its signature and specification documentation. Figure 2.1 shows
the canonical document for an abstract class called Part. The documest has been
simplified for the purpose of illustration; typical documents would be much longer
than Figure 2.1. A part has a description, a cost, and two methods. The method
satisfies is abstract because it has no implementation in this class. The method show
has an implementation and is therefore concrete. Since there is an abstract method,
the class as a whole is abstract and can have no instances.

The class Hook, shown in Figure 2.2, inherits from Part and provides an imple-
mentation for satisfies. A programmer who wanted to inherit from flook would see
the view shown in Figure 2.4. The view contains the attributes inherited from P
as well as the attributes declared in Hook itself. The programmer would sce the
specification comment “Return true if the hook size satisfies the coastraimt” for the

method satisfies but not its implementation comnment “Use integer comparison”.

21

class Part
-~ An abstract class describing an inventory part

-~ which satisfies a constraint.
inherits Any
public var desc.String
-~ Description of the part.
private var cost:Float
-- Cost of the part.
public method satisfies (c:Int):Bool
-- Return true if this part satisfies the constraint.
public method show:String
-- Return a string corresponding to the part.
begin
result := desc + " " + cost.show
end

Figure 2.1: Canonical Document for Class Part

class Hook
inberits Part
var size:Int
public cons make_hook (hook_cost:Float; hook_size:Int)
-- Construct a hook with given cost and size.
begin
cost := hook.cost
size 1= hook_size
desc := "hook"
end
public method satisfies (hook.min_size:Int):Bool
== Return true if the hook size satisfies the constraint.
begin
-~ Use integer comparison.
result := size > hook_min_size
end

Figure 2.2: Canonical Document for Class Hook

class Hook

ancestors Any Part

var desc:String

var size:Int

cons make_hook (hook_cost:Float; hook_size:Int)
method show:String

method satisfies (hook_min_size:Int): Bool

Figure 2.3: Client Interface of Class Hook

class Hook
inherits Part
uses Int String Float Bool
ancestors Any Part
desc:String
-- Part descriptor
cost: Float
-- Cost of a part
size:Int
show:Slring
cons make_hook (hook-cost: Float; hook_size: Inl)
-=- Construct a hook with given cost and size.
salisfies (hook.min_size:Int): Bool
-- Return true if the hook size satisfies the constraint.

Figure 2.4: Inherited View of Class Hook

The compiler, compiling a client of Hook, would sce an encoded formn of the

information shown in Figure 2.3. The attribute cost, declared private in Part, is

not visible to a client of Hook and is therefore not included in the interface.

2.2 Design issues

The most important design issues for CIM are: How is the CIM integrated with the

other functional units? What should be th~ interface between the CIM and other

components? What information needs to be stored? How much information can he

23

re-created at run-time?
2.2.1 Integration and Interface

IFigure 1.1 shows the relationships between the major components of the environ-
ment. The compiler, consisting of a scanner/parser, a semantic analyzer, and a code
generator, is an integral part of the system, not an isolated component. This is the
key to our approach, since it allows all components of the environment to benefit
from semantic information derived during compilation. The abstract syntax tree,
denoted by AST in Figure 1.1, is an intermediate data structure created by the scan-
ner/parser and used by the semantic analyzer and the code generator. Class interface
information is stored in CIDB, the class interface database. The diagram shows that
all access Lo class interfaces is mediated by the CIM and that the class interfaces
contain only information that has been semantically checked.
Figure 2.5 shows, as a service oriented functional module, the CIM provides four
1

sels of query commands and views for the Dee compiler, linker and semantic browser?.

The following is a summary.
o The response of CIM to a compiler query is in the form of abstract syntax tree.

e Ior the linker the view of output data is an syntax attribute list (SAL) which

contains only the data of interest to the linker.
e lor the semantic browser, the view of CIM is in form of textual data records.

o The interface between the graphical user interface (Dee Folder) and CIM are

consisted of both textual data and syntax attribute list.

'Appendix A contains a detailed description of the queries.

Heir & Client Semantic Dee Linker

Interface Browser Folder

.........................

udksoJovecansnancacce

Class Interface Munager

N—

Class

Interface

DataBase

Figure 2.5: CIDB Data Image

25

The advantages of the design are: The CIM hides all the detail of implementation
of the CIDB; The four interfaces can be seem as different views of the CIDB; Each
view has its own functional aspect and is isolated from the others. For instance,
the semantic checker of the compiler only need to knew about the interface is the
functions provided by the CIM and that all data returned by the function are in the
form of abstract semantic trees which the semantic checker can immediately use. The

semantic checker need not to have extra functions to handle the output of the query.

2.2.2 Data

As described in the previous section, we have two kind of class interface for an indi-
vidual class. They are: Heir interface, containing all the properties which could be
inherited by descendants, and the Client interface, containing all the properties of an
instance object which belong to that specified class. The Client interface is a subset
of the Heir interface. So, the basic unit of data in CIM is a class’s Heir interface.
For any given class’s interface, we can decompose all *he information into three

categories:

o Cluss Definitions: Information includes class heading, inherits, extends, uses and

anccslors information.

o Instance Declaration: Information about all the instance variables, including type

of the instance and comments.

o Method Signature: Information including: method signature, comments and some
extra information added by the compiler, such as: when it was declared, where it

was implemented and which method categories it belongs to.

According to the requirement of linker, semantic browser and graphical user inter-
face, CIM also stores some extra information about the classes, such as: last update

time, source location, system environment variables, etc.

2.3 The Architecture of CIM

The current implementation of CIM is a interface between other system modules and
the class interface data base system CIDB). The CIDB provides data storage and
access to multiple user which was built upon the Unix file system with file locking
facilities.

As the Figure 2.3 shows, the whole system was decomposed into § layers:
o CIM service is the query processing interface for other modules.

¢ Parser and Packer the parser is responsible for translating the data read from
database into an abstract syntax tree. The packer is responsible for translating
the abstract syntax tree into a logical text record which can be stored in the

lower layer.

¢ Database interface provides a set of routines that can he used to read data

from or write data to the CIDB file.

e Database maintenance routines are responsible for data update and trans-

action handling.
o File handing routines support low level file facilitics.

This design has emphasizes the need for flexible system architecture in order

to achieve the goals of software extensibility, reusability and compatibility. The

27

CIM Service

__________________________ CIM
Parser Packer
Database Interface
Database Maintenance CIDB

File / Image Handler

Figure 2.6: CIM System Organization

whole architecture reflects the basic techniques of modular decomposition. They are:
narrow the interface, weak coupling, explicit interfaces and information hiding[Mey88,
BR8Y]. Each module had been precisely designed according to its own functionality

and usage.

2.4 CIDB

The CIDB is a small, fast data base management system. It provides the basic data
base facilitics to the upper layer. As a functional unit of language processing system,
the CIDDB has to address the major issues of its usage: store class interfaces, provide
data retrieval facilities and control the consistency and integrity of all stored data.

For our application, the CIDB has to fulfill the following additional requirement:
1. First, it should be customized to the requirements of a compiler;
2. Second, it must carry out all queries within an acceptable time;

3. Third, the size of data stored in the data base should not be limited to fixed

(]
oo

size records, and it should allow varied logical layout;
4. Fourth, storage space should have an acceptable size;

5. Fifth, it should provide flexible record accessing method to support the mapping

from AST to the data record pages(physical pages).

The first and second requirement is the key issue of design. They aflect the
overall performance of the system. The time and storage used by the CIDB must be
acceptable to the computer and user. The third and fourth requirement reflects the
aspects of the source text of the Dee program and the goal of the implementation.

The fifth point addresses the criteria of software construction.

2.4.1 Data Storage Schema

The CIDB stores all data in the form of ASCII text. The whole data base can be
seen as a memory image. It consists of binary index trees, textual data and a hash
index table.

The binary iree is used to index names. There are two kinds of binary tree in the
data base. The class tree contains all the classes in the system and the altributes tree
contains all the attributes of an individual class. The reason we used a binary tree is
not just for its simplicity, but also because it meets the requirements of object oriented
programming. Most of the classes are typically small, consisting of no more than a
few hundreds of lines of code. Each class usually has no more than 25 attributes.
Thus the binary tree’s search performance is acceptable for the systems for which
Dee is intended to be used.

As the Figure 2.7 shows, there two different data units in the data base: ‘Iree

nodes and data records. Each tree node is a fixed size record consisting of indexes to

29

Class Index Tree

= =

Attribute Index Tree

Logical Record

Logical Record
' Name Tree e Y
1
' oo P o — |

Attnbute List
Z1 Auribute
Hash Table

Figure 2.7:

CIDB Data QOrganization

30

-

data records. There are two kinds of tree nodes: class node and attribute node; In
the CIDB, the data record is the basic unit of stored data. It has a variable size and
logical attributes.

The hash table in the CIDB is used to index the attribute binary tree of attributes
that have the same name. As figure Figure 2.7 shows, it has 26 entries, each entry
pointing to a binary tree which contain all attributes which have the same first

character of its name.
2.4.2 Data record

Due to the requirement of the CIM, we implemented a compact, variable length for
data storage. The data record in the CIDB is a logical unit. It consists of a ficld, a
value and a sub-value.

A data record is a textual ASCII string terminated by a record mark. Lor any
individual record, each field is terminated by a field mark. Each field may contain
values and each value nay consists of sub-values. Values and sub-values are separated
by a value mark or sub-value mark.

The Figure 2.8 shows the logical layout of a record. This design provides several
benefits for implementation, and both extensibility and compatibly for the system.

By using this design, the CIDB does not need to concerned with the layout of any
given data record. For all data records, it needs to take care ouly of the length. It is
clear that the logical field separation not only provides variable length and compact
storage for the data records, but also provides the convenicnce for changing the record

layout, for examples by adding a new logical member to the data record.

31

Record

Ficld 1,FM, Field 2, FM, .. Filed i, FM, ... Field n, RM

Field

Value 1, VM, Value 3, VM, .. Value i, VM, ... Value n, VM,FM

FM: Field Mark
VM: Value Mark

Figure 2.8: CIDB Data Record

2.4.3 Low-level storage format and Fragmentation handling

For performance reasons, CIDB maintains a special form of data in the image file
instead of a conventional record file. This is becausec we need more flexibility and

efficiency to build a language environment.

Image file

The CIDB stores all data in form of ASCII characters. The major reasons for this
approach are: First, it is convenient for debugging in the implementation phase;
Second, it increase the compatibility of the image file. All image files could be used
on different machines and file systems.

The CIDB uses a special form of storage schema. It is different from a conventional
data base system. As the Figure 2.9 shows, the whole image file is divided into two

parts:

o System cells region is a reservation region for system information. The size

32

System Cells

b e e mm e e e e e e e e an e o e o

Data Region

Figure 2.9: CIDB data File Format

of this region is 2K bytes, giving 200 slots for system information. Bach cell
slot would be used as a pointer to a special data segment which is in the data
region, or used as a variable which denote the system status. The CIDB uses
this region for storing dynamic information or special control state variables of

the system.

e Data region is used to store all data, including class index, attribute tree, at-
tribute hash table, data record and special data segments pointed by the cells

in the system cell region.

2.5 Data Base Maintenance

For any data base maintenance system, there are two important implementation

issues: fragmentation and accessing control.

33

Fragmentation is created by data updating. For instance, one technique for record
updating is to delete the record first, then append the new one in the tail, then try
to reuse the deleted region as soon as possible.

Because of the intended usage of the CIDB by the compiler, we implemented a
very simple and efficient method to handle both issues.

According to the data flow of CIM, the only task which will update the data is
the compiler. The semantic browser, linker and graphical user interface are read-only
tasks. Morcover, the updating requested by the compiler is an atomic task updating
the entire interface of the given class. This update action causes fragmentation, but
the maximuin space of fragmentation is known to be total deleted space. It close to
the

number of delele request * average size of interface.

The fragmentation space depends on the number of delcte requests. Thus, the CIM
will perform a garbage collection after a certain number of delete requests. After
experimenting, we set this figure to 3. Most of time, total fragmentation spaces are
from zero to 10/ bytes. The upper bound varies according to the size of the class’s
interface. For example, due to multiple inheritance, the standard classes of Dee have
bigger size than the usual classes written by the user. The biggest class interface are
Float with size 3.2K. The upper bound may reach to 9.6 K.

Data access control of CIM is a very important issue for a multi-user environment.
And also it is the technique invoked with transaction. These facilities are provided
by the CIDB.

There two kinds of accesses action in the CIDB, data updating and data retrieval.

Each update transaction should be an atomic task. During this task no other tasks

34

ol 3R

are allowed to access the data base. For the CIM, the update transaction is the whole
period of a write request. This write request needs to update the entire interface of
the given class in one atomic task. Thus, the file locking control schema is suitable
for CIDB.

When the CIDB receivs a write request, it will try to instantiate an exclusive lock
on the data file. It allows the update only after successfully gaining the lock. All the

read tasks share the data file at the same time.

2.6 Implementation Issues

There are currently three implementations of the Dee compiler and environment.
Dee; was written in Turbo-Pascal for the IBM PC and compatibles by Grogono.
Dee, is a revised version of Dee; designed and implemented by Grogono and Cheung,
With other graduate students, we implemented Deey, a version which runs on Unix
workstations.

The Dee; compiler writes class interfaces as small, separate files. Although the
compiler must open and close many files while compiling a class, the speed of compi-

2 indexed by class name

lation is acceptable. Dee; stores class interfaces in a B-tree
and attribute name. Access to class interfaces is considerably faster with this orga-
nization, but the overall performance of the compiler is little better than with Deey.
There are two reasons for this. First, Dee, was obtained by modifying Deey rather
than by starting afresh: efliciency is lost where new code interacts with old code. See-
ond and more significantly, after compiling a class, the compiler rebuilds the B-tree

index, which takes longer than we anticipated.

Deec; represents an attempt to combine the best features of Deey and Deey. The

2We used the B-Tree Filer utilities to build the CIM

35

CIM Service

.......................... CIM
Parser Packer
Database Interface
Database Maintenance CIDB

Memory Management

Figure 2.10: First Unix implementation: Memory Paging

first implementation of Dees tries to achieve better run-time performance. It uses
memory image coucept, regarding the whole CIDB as real memory. During execu-
tion, CIDB swaps the data into he2p space (real-memory) and maintain all data
in several memory pages. This approach give an acceptable index update time and
achieved a very high performance during run-time. Due to the need of concurrent ac-
cessing capabilities and support distribution development environment, a multi-user
accessing technique was integrated into the second implementation of Dees . In this
version, the CIDB is stored as a textual file, with the same hard image format as the
previous implementation.

The current implementation of CIDB, has three image under its control. They

are:
1. System standard image, it containing the basic class of Dee. For instance, Any,

Int, String, Float and the classes of basic input/output classes;

2. Shared class image, it containing a set of interface of classes which may shared

with others. For instance, a group of programmer works on a proiect, they

36

may have a shared project image. At this point, the class owners still have full

control of their own classes, but the interface are public to others;
3. Private user image, it containing all users own classes.

All CIDB images have identical format. The CIM searches the class interface in the

user image first, then the shared class image and system standard image.

2.7 Advantages of the CIM Design

The design has advantages for both the implementors of the development environment
and the programmers who use it. For the implementors, symbol table management
within the compiler is simplified. When the compiler requires information for type
checking, it issues a query to the CIM.

One of the design principles of Dee requires that programmers should not have
to provide the same information more than once. Another important principle is
that all of the information about a particular entity should be in one place [Gro91b].
The canonical document and views support these principles: programmers are not
required to write separate interface and implementation modules. In the canonical
document, the definition of an instance variable or inethod consists of a single block
of text; there are no export lists.

The CIM can determine whether a change to a canonical document changes the
interface of the corresponding class. It can therefore decide how much recompilation
is necessary and may even make fine distinctions, such as to recompile descendants
but not clients.

The CIM maintains precise control over the content of a view. In particular, it

can decide whether the information is needed for a client or for a descendant, and

37

it reveals attributes accordingly. It may also reveal information to the compiler but
not to programmers, for example the fact that a method is to be compiled in-line.

Programmers can trust information they obtain from the browser because the
original source of the information is the compiler. Information provided by the CIM
is correct, consistent, and up to date. The CIM provides access to a rich repository
of useful information about existing classes. A browser need do no more than access
this information in response to appropriate queries.

The Dee environment can support distributed development by maintaining the
source code as private files and the database as a shared resource. In a natural way,
programmers retain full control over their own classes while benefitting from classes
developed by others.

Multiple versions of both individual classes and complete programs must be sup-
ported. With our approach, version control requires that the CIM maintain multiple
versions and provide access to them as required by the compiler and by programmers.

The design of CIM addressed the requirement of flexible system architecture in

order to achieve the goals of software extendibility, reusability and compatibility.

38

Chapter 3

The Development Environment

3.1 Introduction

Since the birth of computer languages, the only two tools we have used for program-
ming are; a compiler and an editor. The compiler is used to generate the target
machine code; the editor is used for editing our programs. Unfortunately, this has
not been changed much for over 30 yecars, in spite of the fact that programuming
languages have changed from the first generation to the third generation.

In software development, programmers need rapid access to accurate and up-to-
date information about the programs they are currently developing. And they need
more tools to help them for their project development. For example, debugging tools,
project management tools, source control, version control and system configuration
management tools are all important.

An integrated programming environment is needed especially for an object ori-
ented language which provide classes and inheritance, and in which programmers
work by classifying all information into a hierarchy of related characteristics. Pro-
grams are in the form of abstract data types. Abstraction is captured in the classes

hierarchy. Programmers need to know what classes can do and how they are related

to one another.

Thus, it is very important for an object oriented language to have a integrated
programming environment which can help the programmers to learn the current class
hierarchy. The class hierarchy browser of Smalltalk is a good example, and becomes
an important part of learning Smalltalk.

The Dee! system is an integrated programming environment. We have combined a
strongly-typed object oriented language with an integrated, interactive development
environment. For several reasons, we designed the compiler as an integral part of
the Dee environment. Coupling the compiler and the browser simplifies symbol table
management in the compiler. Conversely, the same coupling ensures that information
is semantically checked before the browser displays it. Also, programmers do not have
to understand the class hierarchy because the compiler creates class views.

The Dee environment, consists of: the Dee Folder, which is a graphical user
interface for class hierarchy browsing and the query of class interface; the Dee mode
editor, which is an editing mode of the emacs editor. It also support class interface
queries and interactive editing facilities; the Semantic browser is a tool which can
be used to make ad hoc information requests to the class interface management. All

these facilities was built upon the CIM.

3.2 Motivation and Design Issues

The lack of reusability of software is a serious problem in the software industry.
Object oriented programming has been proposed to solve this problem. By itself,
the object paradigm is not sufficient. The solution should be an integrated and

interactive software development environment. It must consist of language processing,

'Both the language and the environment is called “Dee”.

40

project management, specification and documentation, self-learning and distributed
development facilities.

The main motivation of Dee is to try find a better approach to reach our goal:
An integrated, interactive development environment.

Biggerstaff [BR89] identifies four elements that would support software reuse:
finding components, understanding components, modifying components, and creating
components. A software component may be a library function, a module, or a class.

For the Dee environment, we also keep track of the following principles:
¢ The compiler should be an integrated part of development environment.

e Learning facilities must be provided. It must be casy to use and casy to learn

the existing software components (classcs).

e The knowledge captured by the interface must maintain consistency with the

conceptual model of the language.

e Distributed development facility should be simple, easy to understand and

straightforward.

e The ways in which programmer’s work should not be complicated.

3.3 Dee

A significant aspect of the Dee environment is that we designed the whole system
(compiler and the environment) at the same time and implemented them in parallel.
In traditional language development, a team first designs a language, then writes a

compiler for it, and finally goes on to develop a programming environment.

4]

Program development in object oriented languages typically requires more inter-
action with existing code and its documentation than other paradigms. The whole
development concept has been changed to classify abstract data types, find the ob-
jects, design class interface and arrange all classes into an inheritance hierarchy.
The paradigm also encourages programmers to extend existing classes by inheritance
rather than to write completely new modules. In particular, when the programmer
wants to re-use some of the classes, he/she has to understand the details of the ex-
isting system and follow the existing abstract model in order to keep the extensions
consistent with the current system. While programming, due to the dynamic binding,
name overloading and their limited short-term memory, programmers will frequently
need to confirm or to learn the services provided by the classes they are using.

For these reasons, typical object oriented environments support a browser which
provides views of the class hierarchy and source code. The browser is usually syntac-
tic, providing access to source text. The use of inheritance makes browsing facilities
a very important tool for the programmer. At the same time it also complicates the
design of environments which would help the user learn more faster and efficiently.

Object oriented languages have supported browsing since their beginning. For ex-
ample, the Smalltalk—80 programming environment allows programmers not only
to inspect the class hierarcly, source code, and individual methods, but also can an-
swer questions such as What messages does this method send?, Who implemented this
method. [Gol84]. The Actor programming environment has the same kind of facili-
ties. Specifically, user can ask questions like this List all the sender who may be the
implementor of the given method. Since Smalltalk and A ctor is interpreted, how-

ever, browsing retrieves only what the programmer wrote from the run-time system.

42

The browser does not provide any semantic information or any validated information.
This is because, dynamic systems which interpret or compile incrementally do not
usually perform static type checking.

Development environments for typed object oriented languages, such as C++
[ES90] and Eiffel [Mey88], are usually built after the language itself has been imple-
mented and not as an integral part of the language design. These kinds of tools can
only get information from the source code which may not be validated or may have
semantic errors. In fact, many object oriented environments do not have any tools
at all. Programmers are required to develop programs with no tools other than an
editor, compiler, and debugger. The Command Lisp and Flavor object system is
an example. Meyers reports that debugging an object oriented program under these
circumstances can be difficult and frustrating because the information provided by
the debugger is often not relevant to the problem [Mey90b).

In comparison, Dee has three major advantages: First, the information that the
browser displays is correct and up-to-date and it is obtained during semantic analysis;
Second, programmers do not usually need to be aware of the inheritance hierarchy,
because each interface includes extra information inferred by the compiler; third,

users can control the level of detail of the response to cach query.

3.4 Dee Folder

The Dec Folder is shown in Figure 3.1, is a graphical user interface. It provides both
the functionalities of the class hierarchy browser and the semantic browser. Users
can browse through all classes related by inheritance, and can use the query facilities

to make some specific queries.

43

® Dee Folder Version 1.00

Class Croup Root Classos
== EEEEEEE
Array2 Index

»

{e

Collection . Primes Any Array Array2 BitMap Bool Byte ByteFile
Device TestByte
filtar Testing

[ene=]

o AR

Mo EEEH

(Ailcllssus] LQuorﬂ [Hoin} 'QU"I Collection Compare Device Filg Filter Fishing

Command : [Heir | Clint | Attributes |

s B EEEE

Float Hook Hyperbolic Index Input Int Iterator

& Remarks

B A @ @ @ @ @ @ @

B Abstract

o tine tList ListNode logic Monoid Order Orderitem
Dee Speclal

o o HEHEEEEEE

Output Part Primes Program Ring Sinker Stdin
Attribute Name =

«JI 10} i

Click on an object to browse! 4

L,

Figure 3.1: Screen layout of Dee Folder
3.4.1 Design Issues

As software systems grow in size and complexity, so does the difficulty of understand-
ing and keeping track of relevant information. Research in software understanding
attempts to mitigate this problem by creating useful views of both concrete and
abstract aspects of software development. Visible, accessible and comprehensible
information will enhance the understandability of software products.

Using simple and easy to operate graphical user interfaces that have become
popular during the last ten years, the computer screen can be used to represent or
sitmulate a lot of real work operations. For example, accurate pictures, or symbolic
picture; (icons), represent objects which the user can manipulate by operations such
as selecting, moving or activating a specified process.

The way of working with a graphical user interface is called direct manipulation,

because it manipulates obiects ina direct way. The major advantages are: first, object

44

are visible, which helps the user to remember how to operate the objects; second, all
manipulation has been transformed to basic work skills, such as moving and pointing.

Our goal in the design of the Dee Folder was to provide a graphically-based soft-
ware visualization|Gol84] tool to the users. It can provide detailed views of individual
software components and their derivations, as well as higi.cr-level views of compo-
nents and their relationships.

The major principles of our design of Dee Folder are:

e Provide a graphical user interface for class hierarchy browsing, semantic brows-

ing and source code browsing.

e The interface should be consistent with our criteria of the design of our language:

Simple and Easy to learn.

o The interface should capture and simplify the concepts of the object oriented

paradigm. However, it should not mislead or confuse the users.

The main idea of design of Dee Folder, is to provide a clean and simple graphical
user interface which must represent the nature of object oriented concepts and give

users a tool to understand the development system.
3.4.2 Tbe Information Provided

In order to help the user to have better working and learning tools, we have to provide
a clean logical path from the interface to the users.

In general there two ways to understand an object oriented system. First, from
an individual class, we can go through all related classes, identifying each class, going
through the inheritance hierarchy, learning both the heir and client interface, then

trying to learn the classes which have a client relationship with the current one.

45

Second, from the model of the system, we can learn the abstract concepts of each
concrete class, then try to understand each individual class.

More often, the programmer will use the first method. It is the most straight-
forward, being based on logical thinking. In our experience, however, the second
method is more effective than the first one. Using this way, the programmer will get
the full picture and will have a basic understanding about the whole system. This is
especially true when the class hierarchy is very deep and complicated.

Due to the nature of the object oriented technique, all the data are described in
abstract and concrete classes. Genericity and dynamic binding give us the flexibility
to re-use our code. In order to have better genericity and reusability, class designers
will classify the entire real data model into an abstract inheritance hierarchy and
make the interface of cach class suitable for dynamic binding. As a result of doing
this, the class hierarchy usually looks like an inverted tree. The topmost node is the
most generic abstract class. The leaves of the tree are the concrete classes. From
the top to bottom is the view of global abstraction; From the bottom to top is local
abstraction which represents the hierarchical structure of an individual class. Both of
them have captured the abstraction of the given data model, but in different views.

These two views, which we call global abstraction view and local abstraction view,
have been incorporated into our user interface. We provide group by group, class by
class, learning steps for the user.

The class interface is the most useful information derivable from a class. In
Dee, the class interface not only contains the information provided by source text, it
also includes some information inferred by the compiler. This information includes:

ancestors, and uses set of that class; and all the properties that it inherits from its

46

parents. Thus, for any individual class, programmers need not go through all the
parents to get the full picture of the class which they are interested. Some special
information also would be helpful for understanding and clarification. For example,
the type of an attribute, where it was defined, and where it was implemented.

Figures 3.2 and 3.3 show the Heir and Client interfaces respectively of the class
File. From this example, we can find that the interface includes all information about
the class and it contains more information than the source code does.

From those two interface, we can tell that: the class File inherits from Stream,
its ancestor set is {Stream, Input,Qutput, Device}; it may have instance variables or
it will receive an object instance as the parameter of a method form the set of uses
which is { String, Int, Bool }; the method write was defined and implement by class
Output. The method read was defined and implement by class Input. The method

open is defined by class Device but implemented by class File itsell | and so on.
3.4.3 Layout Design

The layout design of the Dee Folder is intended to help users to learn our system.

Figure 3.1 shows, the layoat of the Foldcr; The whole interface is separated into
two parts, the control panel and the display window. There are no pop-up menu or
pull-down windows.

The detail of the design of the panel is explained below.

Class List

There are two list windows on the left corner of the folder window see Iigure 3.1.

They are Class Group and Root Classcs.

47

class Filz

inherit Stream

uses Slring Bool

ancestors Oulput Inpul Device Stream

public var handler:Int
source class: Device

public var option:String
source class: Stream public var path:String
source class: Device

public cons assign (dev:String opt:String)
-= constructor
Concrete
Defined By : Stream; Implement By : File
public method close
Defined By : Device; Implement By : Device
public method eof : Bool
-~ return true if reach the end of file.
Dee Instruction
Defined By : File; Implement By : File
public method open -- Function open a file with its’ option
Dee Instruction
Defined By : Device; Implement By : File
public method read (n:Int } : String
Dee Instruction
Defined By : Input; Implement By : Input
public method readln : String
Dce Instruction
Defined By : File; Implement By : File
public method seekendof (offset:Int)
-~ seck to a specified position from the end plus the offset.
Dee Instruction
Defined By : File; linplement By : File
public method seekoffsct (offset:Int)
-~ seck to a specified position from the current position plus the cffset.
Dee Instruction
Defined By : File; Implement By : File
public method seekto (offset:Int)
-~ seck to a specified position from the beginning of stream plus the offset.
Dee Instruction
Defined By : File; Iimplement By : File
public method write (buffer:String)
Dee Instruction
Defined By : Output; Implement By : Output

Figure 3.2: Heir interface of File

class File
inherit Stream

public var handler:Int
source class: Device

public var option:String
source class: Stream public var path:String
source class: Device

public cons assign (dev:String opt:String)

-~ constructor

public method close

-=- close the file

public method eof : Bool

-- return true if reach the end of file.

public method open

-~ Function open a file with its’ option

public method read (n:Int) : String

-~ read n-type of date and return it as an string.

public method readln : String

-- read till end of the line.

public method seekendof (offset:Int)

-- seek to a specified position from the end plus the offset.

public method seekoffset (offset:Int)

-- seek to a specified position from the current position plus the offset.
public method seekto (offset:Int)

-- seek to a specified position from the beginning of stream plus the offset.
public method write (buffer:String)

Figure 3.3: Client interface of File

49

o Class Group List is the list of all classes that do not have parents. They are
the classes which have the most generic form of abstraction and they are the

topmost class of the class hierarchy.

¢ Root Classes List is the list of all root classes. All classes in this list have a

method enlry. They are executable classes , or complete program.

The Class Group list, is designed for capturing the concept of the view of global
abstraction. When the user clicks one of the items on this list, all descendants of that
node will be displayed in the graphical display window. By doing this, the user would
get an idea of what classes inherit from the generic classes. As Figure 3.4 shows, all
descendants of class Device have been listed in the display window. The user can
click on the objects to see the detailed class structure of an individual class.

Basically, this list provides a facility for the user to do top-down scanning or
searching. The graphical representation helps the user to remember the inheritance
hierarchy by remembering the graphical pictures.

The Root Classes list contains all executable classes of the system. We try to
capture the concept of local abstraction view by using this list. The users can click on
one of them and get a graphical display of the class structure. Then, they can select
any class they want to perform more queries. As Figure 3.5 shows, the class structure
has been clearly displayed in the display window. On top of the class Fishing is its
parent Program. All classes which have a client relationship with Fishing are listed
beside it. Users can browse the class interface or the source code of Fishing by clicking
the left or right mouse butten. If they want to browse other classes, they can just
point to another icon and press the left button, then the class structure of that class

will be displayed in same manner as the class Fishing.

30

F®

Des Folder Version 1.00

Class Group Root Classes

s |
Any ko Elshmi l E
Array2 (ndex =
Collectlon h Primas 4
TestByte
Filter Testing

=

SEEEEEBS

Device Output Stream Flle Bytefils Stdout Input

[MI Classes] IQuary] I Help] IQuh I

=

Stdin

Command : [Heir | Client | Atwributes |

Switches :

B Heading

&5 Remarks

& Concrete

B Abstract

[Dee Spaciat

& Commaents

Class Name

Attribute Name fe=

(I T*} {
h. Click on an object to browse!]
Figure 3.4: Group classes of Device

(=) Dee Folder Version 1.00 T

Class Group Root Classes =
N) -

| Bny] ile} | Eishing J if=] @ 3
i Array2? Index - .

| Collaction s, Primes hd Program

: Device TestByts

l Filter Testing

[1 { enm |
[MI Classes] lQunry l I Help I [Qui!] @
Fishing

Command : [Heir | Client | Mtrlbulesj

8] (.3 3 5]
[f Heading
Fishing List Hook Float Int Line String
& Remarks
o @
e Abstract h h h h
Sinker Trarcaction Stdin Stdout Beol
Bf Oee Special
B Comments
Class Nams
J oup §
Attribute Name _ 1T} i
. Click on the current object for query, others for browsing! |

Figure 3.5: Class structure of Fishing

[
—

c) Dee Folder Version 1.00 K

Class Group Root Classes =
R [=B]
Array2 Index .
Colisctinn > Primes M Input Output

EQWEE l TestByte

Filter Testing

[e | [aws|
[AllcluusJ IQuory] [H.lp] [Quh] @

Command : [_ﬁtl‘rj Client] Attributes] Sveam

Switches : @
& Heading

File
o Remarks
W Conaets 3
N
B Abstract h
& Dee Special String
M Comments
Class Name
Attribute Name (=]
(el 2}~ {
h Click on the current object for query, others for browsing! ¢

Figure 3.6: Class structure of Stream

Figure 3.6 shows, the class Stream has two parents Input and Output, one child,
File, and it uses class String.
In general, this ts bottom-up searching (from the root to the others). By doing

this, user will get the full picture of all classes related to a particular class.

Buttons

There are two sets of buttons on the panel. The first set is for system commands.
The second set is for query commands.
The command set button include, All Classes, Query, Help and Quit. The func-

tion of this button are listed below:
o All Classes: list all the classes in descendant order in the graphical window.

e Query: activate a query which specifies by query command and the query

switches, and display the result in the graphical window.

52

¢ Help: active the interactive help system.
o Quit: quit the system.

The query button set is used to specify which interface user wants to query. The
buttons Heir and Client denote that the query will be activated for Heir or Client
interface respectively. The button Attribute denotes that the query is active for a
specified set of attributes of a classes. For instance, the user can make a query such

as List all methods which have the prefir “str™ in their name.

Query Switches

The query switch on the control panel is used to control the level of detail of infor-
mation which will be displayed.

For each class interface, we can decompose all information into three categories:

Class Heading, including class definition, inheritance, ancestor, descendants, and

uses information.

Attributes, in Dee, each attribute is either public orprivate. For methods, they

may be abstract, concrele or special.

Extra Information, is the information inferred by the compiler or the comments

of the attributes or the class.

Each query switch on the control panel is an on/off switch, denoting whether or
not the user wants to display that kind of information. By the combination of the
switches, the user can select the desired queries and control the level of the detail of

the output. For example, they can ask queries such as: List all concrele method wn the

23

r’@

Dee Folder Version 1.00

Class Group Root Classes
s -
Any g ife
Array2 index

Cotlection 3 | primes A
Testoyte
Filter Testing

{oom]|

|Allclassu I IQutry | IH.In | lQul(|

Command : | Halr | Clisant]Atmbuus |

class File

inherit Straam

uses String Bool

Ancestors Qutput input Davice Stream

public var handlarint
source class. Devics

public var option:String
source class. Stream

public var path String

{eI [*]]

Switches : source class: Davice
W Heading pubtic cons assign(dev String optString)
- constructor of the File
B Remarks Conaste
Defined 8y : Stream
B Conarete implament By : File
B Abstact public method eof : Bool
B4 Dee Special — raturn ture if reach the end of file
Des Speclal
& Comments Defined By * File
Class Name tmplement By : File
Attribute Name public method open Ak
Ulel_i0} [
. Mouse Button: Left/Select -> Reflush, Middle/Adjust ~> Browsing) |

Figure 3.7: Query result: Full interface of class File

cluss String; Which mcthods are implemented in Dee special; List all abstract methods

of class Comparable. The users can control the detail of the output by specifying

whether they want to have comments and remarks.

Figure 3.7 and Figure 3.8 show the two different query results of class File created
by sclecting different switches. The user can get full information by selecting all

the switches or get a summary short list by turning off the switches Remarks and

Comments.

Icons

In order to give a better visualization to the users, the Dee Folder uses icon to

represent graphical objects in the display window. Figure 3.9 shows all the icons

used by the Dee Folder. They are:

e Class icon denotes the curren

t class.

o4

Dee Folder Version 1.00

class Flie

'®
Class Group Root Classes

— —
Any L)]
Array2 Index -
Collection - Primes A
Testeyt
Filter Testing

{ o] =

inherit Stream
public var handlerint

public var option.String

1Al Classes | [Query | { Help | [quit |

Command : [Heir | Client | Attributes |

Switches :
Heading

Remarks
Concrete
Abstract

Dee Special

omREzxOMx

Comments

Class Name

Attribute Name

public var path.String

public cons assign(dev String opt:String)
pubtic method eot - Bool

public method open

public method read(n Int) String
public method readin String

public method ssakendof(offsetint)
public method seekoffset(offsetint)
public method seskto{offset.int)

public method write(buffer:String)

[

1

N

7

Ul _Lv)

Mouse Button: Left/Select -> Reflush, Middle/Adjust -> Browsing! |

u

Figure 3.8: Query result: Summary of the interface of class File

CLASS Parent

‘ Uses

Child

Figure 3.9: The icons of the Dee Folder

r@ Des Folder Version 1.00 !

Class Group Root Classes public method stof : Float D

- ; E2| — Return the floating point number denotad by the string If there is

| Any *) | Eshing____1 |23 — such number, raise a system exception. g
Array2 index - .
Collection S primes 3} Dee Spacial
TestByte Defined ®y : String
Fliter Testing implament By : String

= =

public method stol : int
[AII Classes J (Qulry] [Help] (QU"] —— Return the Integer denoted by the string. If there is no such intege
-~ raiss & system exception.

command : | Heir [Client [Ateributes |

Dae Spacial
Switches : Defined 8y : String
W Heading implement By : String

& Remarks
M Concets
&5 Abstract
R4 Des Special
& Comments

Class Name String

Attribute Name st 2y
Jlel 10} 0
h Mouse Button: Left/Select ~> Reflush, Middle/Adjust ~> Browslnglj

Figure 3.10: Query: Find all the methods with the same prefix

e Parent icon denotes that this class is a direct parent of the current class.
e Child icon denotes that this class is a direct child of the current class.

e Uses icon denotes that the current class has a uses relationship with this class.

The mouse sequence

In a window environment, the pointing device, typically a mouse, is very important.
It enables the user to interact directly with the system.

In general, as a pointing device, the mouse should simplify the interface by a
well-designed event sequence. Otherwise, it will make the user confused about the
operations provided by the iconified objects.

For the Dee Folder, we designed a very simple and straightforward mouse event
sequence for the interface. In the current implementation, the users can just use the

mouse to do most of the queries they want. A small number of queries require the

56

Class Mouse Event | Function

Class Group Left (Selected) | Display all the descendants in the graphical window.

Root Classes Left (Selected) | Display the class structure of the selected item
Buttons Left (Selected) | Perform the specified task.

Query Command | Left (Selected) | Reset the query command for the selected item.
Switches Left (Selected) | On/Off

Table 3.1: Panel: objects, events and its service

user to enter the name of a class or attribute. As Figure 3.10 shows, users can make
a query which displays all the attributes with the same prefix.

From the object oriented point of view, each graphic element on the panel or in
the graphical window can be seen as a functional object which can receive a mouse
event message and perform a specified action according to the received event message.

Table 3.1 shows all the definitions of the pancl objects. Table 3 2 shows, all the
definitions of the object in the graphical window.

Basically, users can do the browse, interface retrieval and read source code just
using the mouse. Specially, for the graphical window, we can summarize the mouse
event by the buttons: Left (select button), used for displaying class structure or
activate a query to the item; Middle (adjust button), return to display the class
structure from text browsing; Right (menu bottom), display the source code of current

class.

Message

For any kind of interface, it is very important to have help or error messages. The
help messages can let the user to learn and understand the operation, and also should
provide hints when user need to know what to do nezt. The error message should

clearly point out what is the error and what should be done next.

Y

Class Mouse Event | Function

Class Icon | Left (Selected) | If in list form, display the class structure;
If in class structure, activate the query
which specify by the panel.

Class Icon Right (Menu) | If in class structure, browse the source code
Parent Icon Left (Select) | Display the class structure of that class.
Child Icon Left (Select) | Display the class structure of that class.
Query Text Left (Select) | Refresh or Activate the query again.

Query Text | Middle (Adjust) | Go back to display the class structure.
Source Code | Middle (Adjust) | Go back to display the class Structure.

Table 3.2: Graphical Window: objects, events and its service

Nowadays, most user-friendly interfaces have interactive message to help the user
to learn more quickly and easily. Most of the time users are likely to learn by trial
and error.

The Dee Folder has both help and error message reporting. The error message
is displayed at the left footer of the window with a beep bell. The help message arc
displayed at the right footer. The system will trace the users input and report what

is the next correct action.

3.5 Semantic Browser

The Unix version semantic browser is a command line query tool for use with text-only
terminal. It is a switch driven query command. Programmers can query different
information by setting the value of an individual switch. Table 3.3 lists all of the
switches. The semantic browser has same functionalities as in the Dee Folder. The
only the difference is that the semantic browser can be active in any command window
or a terminal window,

The command line format is as follows:

ri Class [Attributes] +/-[Switch]

58

Switches | Description
C Display Client class information
D Turn off the default switches set of current command
1 Inherited Attributes
a Abstract Attributes
c Concrete Attributes
d Dee Specials
h Class Heading
p Public Attributes
1 Private Attributes
r System Remarks
f Full string matching for attributes

Table 3.3: Switches of semantic browser

3.6 Dee Mode

emacs[Bar84] is a programmable editor. Due to its flexibility for modification, it has
become the most popular editing tool in the Unix workstation environment.,

We had chosen emacs for the Dee environment as our fundamental editing fa-
cility and we have re-programed the emacs according to our needs®. The detailed
description can be found in the master thesis of Lawrence Hegarty[Heg92].

When the users run the emacs editor, if they had specified the file name with a
extension “d”, the emacs editor will switch to an editing mode (Dee Mode) which
was designed for Dee. In Dee mode, an interactive editing facilities are provided
for text editing. They include auto-indentation, template editing, and interactive
semantic queries. Figure 3.11 shows that the user can uses the editor to interactively
drive the semantic browser and get all the query output displayed in another window
with a temporary buffer. This buffer and tet will reside in the editor and the user

can using editing command to read all of them.

2The Dee Mode for emacs was, was designed and unplemented by Lawrenee Hegarty In order
to give a full picture of Dee, I have outlined its functions

59

frﬂ xterm
class Fishing

--This progran demonstrates the use of Inheritance to enforce
-—consistency «f Sshavior, There are throe kinds of 1tem:
~-Hook, Line, eno Sirker (vith apologies to Len Deighton),
--cach of which provides a mthod “satisfles’, ¥hen an order
--is procsased, sach item ms' “satisfy” Its constraint.

inher 1ts Program

ver 1wilistiPart) ~lmwentory

var transiTrfhsaction --(urrent transaction
var htHook

var 1iline

ver 8:Sinker

class Transaction
=-A transaction consists of & set of constraints, one construint for

--sach kind of part.
uses Stdin Stdout List Bool String Orderlten Iterator
private var in:5tdin

source class: Transaction

private var jtoms:list(Orderitem)
source class: Transaction

private var out:Stdout
source class: Transaction

public cons saketransaction (input:Stdin output;Stdout)
~~Constrct an empty transaction Jist,

Corcrete
Defined By : Transaction
Inplenent By @ Transaction

S by el

Figure 3.11: Edit and Query

60

Interactive Keys | Command and Description
C-c dee-class: get the class template
C-b dee-browse-class: output to the browser buffer
C-B dee-BROWSE-class: output to a new buffer
C-m dee-method: get the method template
C-f dee-function: get the function template
C-C dee-cons: get the constructor template
C-a dec-attempt: get the attempt statement template
C-i dee-if: get if statement template
C-1 dee-loop: get for loop template
C-e dee-elsif: get else-if template
C- dee-comment-region: mark the whole region as comments
tab dec-indent-line
return dee-return
Del backward-delete-char-untabify
5SC dee-comment |

C-z denotes that press Control C with z

Table 3.4: Dee Mode Commands

Dee mode also provides compiling and debugging interfaces. User can activate
the compiler in order to compile the current editing buffer or activate the linker to
link a root class. All error message from the compiler will be captured by the editor,
and the user can uses a set of interactive editing command to trace through all the
places which may have syntactic or semantic cerrors

Table 3.6 shows all the interactive key sequence and its functions.

3.7 Discussion

The Dee development environment is an integrated, interactive development environ-
ment. It provides class hierarchy browsing, scrmantic browsing, interactive editing,
interactive compiling and distributed development capabilities for our object oriented

programming language Dee.

61

Dee satisfies all four criteria identified by Biggerstaff[BR89] as fundamental to
software rcuse: finding suitable components, understanding components, modifying
components and creating components.

Finding & Understanding components

The Dee Folder and semantic browser, provide both graphical and textual facilities
enabling the user to find interesting software components. The user can use the
Dee Folder to get a first impression or a quick overview of objects by following the
inherit and client relationship of the objects. Specially, by integrating the editor and
the semantic browser, an interactive ac hoc queries facility has been provided to our
users.

The Dee Folder lists each class in the form of their abstraction relation instead of a
long name list. User can quickly get to the point of the components in which they are
interested, The iconified object representation not only provides visible information
of the class but also enhances the understandability of the class hierarchies. Users
will gain familiarity of other classes during browsing, because the browsing sequence
of Dee Folder is the same as the class hierarchy.

The browsers in the Smalltalk and the Actor® programming language list all the
classes in descendant order by the name of class. Most users feel confused at the very
beginning. Both browsers provide three separate editing windows for class definition,
instance variable and the method body. User will get confused about the class hier-
archy and its structure. In [SB86] , it is stated that, users usually require at least
7 days to get familiar and comfortable with the user interface. When the system
gets bigger, most of the users reported that they had difficulty understanding the full

picture of the system.

3The author has industrial project development experience with Actor during 1989-1990.

62

Onc of the primary objective of the design principles for Dee is to provide a
maintainable language to the users. The first design principle was that mformation
should not be duplicated. The second was that all information related to a program
entity should be in one place. These two principles directly contribute to the un-
derstandability of our system. The immediate consequence of the design are: Dee
programmer do not write separate files for specification and implementations; All
information about the class is in one place and there are no import or export lists
in class declarations. Specially, the canonical document format separately defines
the specification and implementation comments. Thus, the user interface is able to
identify both of kinds of comments and use this information to help the development
and system maintenance.

In Dee, programmers can choose the level of detail of the query output. They can
casily make a specified query to confirmn their knowledge or to recall the specification
of an individual method or class.

Modifying & Creating Components

An interactive editing facility has been incorporated in Dee. Inaddition to these ca
pabilities, it also has an interface to the semantic browser. During editing a program,
programmers can directly make queries to the semantic browser if they need some
information or help.

As Table 3.6 shows, besides the fundamental editing facilities, the Dee cmaes
editor, provides a set of custom-made functions. These functions give a lot of conve
nience to the programmer. For instance, by using the template retrieving commands,
the programmer need not fully remember the syntax of the Dee language. They can

get a template from the editor then modify it as they want.

63

A very important idea of the design of Dee emacs editor is: we try to give a
complete development environment to the programmer. Programmers can do all the
development work within the editor if they like. Compiling and linking facilities
had been built with the editor. Specially, the error message of our compiler can be

captured by the editor to help the user trace through all the errors in the source text.

64

Chapter 4
Linker

4.1 Introduction

A software system may consist of thousands of modules. We must be able to compile
large programs one picce at a time. First, this avoids excessive compilation time.
Second, separate compilation is a basic requirement of software construction and
development. For class-based object oriented languages, the unit of compilation is
at most a class, or preferably, a smaller unit such as a method. In Dee, the smallest
compilation umnit is a class.

One of the most important issue of compiler design is the run-time performanee
of the code generated by the compiler. Some of the commonly used techniques for
code optimization include, peephole optimization, register allocation, loop unwinding
and loop induction. An efficient and simple method of optimization, is to caleulate
all values that can be found at compile-time instead of finding them at run-time. For
example, by translating identifiers to constant offsets, the compiler turns an expensive
name search into a cheap addressing mode.

For any object oricnted language providing multiple inheritance all the offsets

determined by the compiler may be invalidated by subsequent inheritance. Eithe

the compiler must resort to indirection, as in C++ [ES90], or offset calculations must
be deferred until linking.

The Dee compiler [Gro91b, Heg92] translates a Dee class into a C language source
file and saves all interface information into CIDB. The Dee linker uses CIM queries
to obtain information about a set of classes or an individual class, then calculates all
the offsets needed at run time. All this information is written in a C source file which
defines the layouts of objects, class descriptors, a class table and the special objects.
The C source files are then processed by a C compiler and a conventional linker to
obtain an excecutable program.

Ior a strongly typed ¢ “»ct oriented language run time efficiency is dependent on
the mechanism of message dispatching. The problem is how to determine the correct

method at run-time.

4.2 Run Time System

T'he Dee run-time system, shown in Figure 4.1, consists of a class table, class descrip-
tors, an objeet stack and some special objects. The class table contains all classes
for a particular Dee program. Bach class is represented by a class descriptor. This
data structure contains a list of parents, a method table, and the size and type of an
instance of the class. The special objects include: undefined object, false vbject and
true object.

At run time, each instance of object consists of a pointer to the class descriptor
and instance variable table. Each slot in the instance variable table is a pointer to
another instance which is an instance variable of that object.

The goal of the linker is to try to find out the value (offset of an instance object

66

Class
descniptor

Method
slots

Class
Class descriptor
descriplor
Method
Method slots
slots
>
-
Class Table
Class
descnptor
>
Objects
Object Stack

Figure 4.1: Dee: Run Time Environment,

67

or address of the methods) of each slot in both the method table of class descriptors

and the instance variable table of the objects.

4.3 Message Dispatching

‘The basic concept of message dispatching is very simple: an object will send a message
to a specified object if it needs a service from that object. An object will perform a
task pertaining to the received message.

In order to support this kind of facility, all object oriented languages need to
implement a fast dispatching mechanism which will determine the correct code of a
specified method of a class. At the conceptual level it is quite easy, but the difficulty is
that we need to support dynamic binding in order to benefit from the object oriented

paradigm. There are two major approaches to the problem.

o Dynamic routine search: At run-time, class descriptors are organized into
a graph, mirroring the inheritance graph. This graph may be searched for the
proper method. The searching usually starts at the receiver, continuing (if

necessary) with all the parents of the receiver.

o Constant routine offset: At run-time, each class descriptor has a method ta-
ble. Anobject linker will try to number all methods with a offset. The number-
ing scherme must respect the dynamic binding rules of the language. Basicall v,
the rules are: all methods of a specified class should have a non-identical offset
number and all methods which have same name in a class hierarchy should have

the same offset number.

Dynamic routine search seems dangerously inapplicable when multiple inheritance

68

is permit- d. The whole inheritance graph may need to be searched, leading to
unacceptable performance.

Most strong typed object oriented languages use the constant routine offset method
to implement message dispatching.

There are three system components which contribute to this approach. First, the
compiler performs a static analysis of a single class to determine what messages it can
provide to others and what classes will be required during the run time. However,
the compiler cannot determine exactly which methods it needs. Second, the linker
needs to analyze all of the compiled classes required by a root class. The linker has
access to more information than the compiler but still cannot determine exactly which
methods will be required at run-time. Finally, the run-time system needs information
which ca: be used to determine the correct method.

Here is a definition of the problem in a more abstract way. The function f
computes the address I” of the code of the required method. N s the name of the

method, and the class of the receiver is C. In symbols,
P = f(N,C).

The method name, N, is known at compile-time, but the class of the receiver, () is
not known until run-time. (Hence the term “dynamic binding.™) The problem is to
compute f(N,C) efficiently.

In Dee, the linker constructs class descriptors for all classes which are needed by
a specified root class. Each class descriptor consists of a method table, inheritance
information and some special iuformation for the run-time system. For instance, the
size of cach instances of classes, the inheritance relation hetween dasses and rmn-tjme

status of the object. The dispatching mechanism is: locate the receiver first, then its

69

class descriptor, and finally the method. Thus, this dispatching mechanism can be

dircctly transferred to the following C code.
recciver — class descriptor — method table[method offset] (4.1)

This solution is used in various forms by most typed, object oriented languages.
Its time performance is acceptably efficient, but the space usage (size of the method
and instance variable table) depends on the linker’s algorithm which assigns the offset

of the attribute and method table.

The simplest solution is, the run-time system maintain a method table which is
4 two dimension array, denoted as T(C, N). The x axis is the :lass name, C. The y

axis is the method name, N. The function f will be:
f(N,C) =T(C, N).

Obviously its time complexity is O(1), and space O(|N| x |C|), where |N|is the
number of method names and |C'] is the number of classes.
From this point, we could improve the time performance and space requirement

by using the following techniques:

I. determining cases in which dynamic binding can safely be replaced by static

binding;
2. compressing the method offset tables.

The first technique is used for improving time performance by eliminate the un-
necessary overhead of function calls. The second is mainly focusing on improving
the space requirement. The current implementation of Dee is mainly focusing on the

Space issue.

{a b, c d}

Figure 4.2: Color Example

As the code fragment 4.1 shows, the dispatching mechanism of constant routine
offset depends on the method tables of each classes and the value of method offset
(selector). The size of the method table is equal to the maximum value of the method
offset of that class. Thus, if we can minimize the value of method offset of cach class,

then we would get a optimal space consumption at the run time.

4.4 Coloring Methods

In general, finding the offset of a method in the method table is quite casy. We can
transform this problem into a graph coloring problem.

Figure 4.2 shows that A, B, C, D and F are classes. Class I3 and (! have a
single parent A. D has two parents, B and C. Class I also has a single parent, (.
Assume that each class defines a single attribute. The attributes are a, b, ¢, d and ¢,
respectively.

The rule for assigning the atiribute offset is: no two attributes in any class have
the same value. Thus, we can transfer the graph G = (V, £) in Figure 4.2 and its
relation Letween the attributes into a conflict graph which is illustrated in Figare 4.3.

Let CG = (V',E') be a conflict graph. Each vertex v' € V' is a attiibute. The

71

Figure 4.3: The conflict graph of the attributes

pair (u',v") belong to edge set E' if u’ could not have same value as v'.

At this point, we find that the offset value of each attribuie can be easily found
by coloring the conflict graph, such that, there are no two connected vertexes with
the same color.

This general technique is called sequential coloring. First assign a color to a node
and then pick one node after another and assign it the minimum color that does
not conflict with any adjacent node which has been already colored. This simple

technique will find a minimal coloring if the nodes are chosen in the right order.

4.5 CIT

The color indexed table (CIT)[DMS89] technique is an implementation which uses
the coloring method to assign the offset of attributes.

In order to get a closed minimal coloring result, the CIT technique sorts all the
nodes in the conflict graph in descending order on the number of nodes adjacent to
the given node (degree).

By using CIT technique, the size of the table associated with each class is reduced

from number of altvibute names x number of classes to a much smaller number, close

-1
[

Class CIT-best | CIT-worst | Optimal
A 1 5 1
B 2) 2
C 3 5 3
D 4 5 1
E b) 5 3
Total Space 15 25 13

Table 4.1: Space consumption of CIT method

to (|S| x |C]), where |S| is the number of attributes of the biggest class and |('] is
the number of classes.

Figure 4.4 is the result of the CIT method. The weakest point of this technique
is that the degrec of the nodes of the conflict graph does not represent the real class
hicrarchy, and the results of the coloring are very dependent on the coloring sequence.
Table 4.1 and Figure 4.4 show, the worst and best coloring. In the best case, space
consumption is 15 with 3 empty slots. In the worst case, space consumption is 20
with 13 empty spaces: ¢ ‘%’ denotes an empty slot.

Figure 4.5 are the optimal coloring result. Table 4.1 shows the comparison hetween
them. The total space consumption for the worst case of (C17)is (|N] x |(]), where

|N] is the total number of attributes and [C] is total number of classes.

4.6 The Heuristics

Our compact coloring indexed table (CCIT) technique is based on the CI'T method.
In order to improve the coloring result, Dee uses heuristics,described in the next
section, to arrange the coloring sequence which more closes to the class hierarchy and

tries to get a densely packed attribute table.

73

a
a
a [
a [
a c

(a) Best Colours

e b *
* * C
d b c
* * C

(b) Worst Colours

Figure 4.4: Result of CIT method

A a
B a b

C a + ¢

D a b ¢ d
E a ¢ ¢

Figure 4.5: The optimal coloring result
4.6.1 Sequence

For a given set of classes, the size of its attribute table is the maximum color of the at

tributes; The best case is when the number of attributes is equal to the size of table.
As Figure 4.2 shows, empty slots will be added to the table according to the inher
itance structure. Different coloring sequences produce different results. The majo
difficulty is to find the sequence which will produce the optimal solution. The de
termination of a coloring of minimum number is a computationally difficult. problem.
Finding a coloring which has near the minimum number of colors is quite casy.

First of all we need to analyze the class structure appropriate to object oriented
programming development.

For any strongly tyr.~d single inheritance language, like C4+, the coloring prob
lem is simpler than with multiple inheritance. With single inheritance, all class
hierarchies are in form of a tree. The dynamic binding can only perform on a single
branch. Thus, there will be no empty space if the coloring sequence is from the top-

most node to the leaves. For multiple inheritance case, the classes hierarchy is more

Monoid Comparable

Hyperbolic

Float Int String Bool

Figure 4.6: Basic class of Dee

complicated, it could be any kind of graph.

In the object oriented paradigm, we encourage programmers to reuse and make
extensions 1o the existing code rather than rewrite from scratch. The most important
aid for reusing code is inheritance. But reuse depends on the class hierarchy of existing
classes in which we encapsulate the real data model. Most often the class designers
will try to classify all the real data model into several class groups according to their
abstract or functional aspects. Each group is encapsulated with different conceptual
data structure or real objects. Then the class designers arrange all classes in one group
into a class hierarchy which would lead a well-defined and easily reused conceptual
model.

By doing this, the class hierarchy of an typical object oriented software system
will consist of several groups of abstract data type. In order to get better reusability

and extendibility, each of this group will be constructed into a tree-like structure.

76

Device

Output

Stream Stdin

Stdout

File
Figure 4.7: Classes for input /output
The topmost nodes of the inheritance tree are the generie class or abstract class. All
the concrete classes' are the leaves of the inheritance tree,

Figure 4.6 and 4.7 show the basic abstract data groups in Dee: Figure 4.6 shows
the basic classes: they are Int, String, Float and Bool; IFigure 4.7 shows the basic Unix
input /foutput devices: they are Stdin, StdOut, and File.

In Dee, even the simplest root class will probably use these two abstract data
groups. Figure 4.8 shows, the relations between groups are client relations.

Through observation, we found that, for any concrete classes in the graph, we can
build the class hierarchy graph in direction of bottom up. As Figurce 4.9 shows, Each
graph includes all the properties of that class. The size of indexed table is the total
number of its attributes. If a class have more than one parent’s, there will be empty
space in the parents descriptors. The way to deduce the empty space in this tiee is

to color the whole tree from the topmost generation to the lowest one. If there is

1A concrete class does not have any abstract methods

7

q_—_) Basic Classes

P38 P~ :
e e
L4 C

Heir relation ——————»
Client relation ~=-cweea- »
Figure 4.8: Relations between abstract group

more than one classes in the same generation, we should choose the class which has

the smallest number of attributes.

4.6.2 Packing

Figure 4.2 illustrates that at most one of the descriptors of B, C can be densely
packed. If (' is not densely packed, then the descriptor for class £ can make use of
one of its empty slots, as shown in Figure 4.5.

Because of the simple nature of this example, there is only a small advantage to be
gained by the compact packing technique, but it illustrates the point of our compact

color indexed table.

4.6.3 The Algorithm

It is clearly infeasible to obtain the optimal coloring of offsets by exhaustive search.

Instead, we use heuristics to find a solution which is not too far from optimal. Since

-1
o

|
!
!
1
|
[}
[}
[}
[}
|
|
i
|
|
[}
[}
)
[}
]
[}
i
]
[}
|
[}
i
J
]

Compurable

Bool

Any

Monoid

Order
- ——— - - ——— = = — - o o 2

e e memmccc e
Figure 4.9: Decomposed sub-graph of basic classes
79

the problems of coloring offsets to instance variables and methods are similar, we do

not need to distinguish between them.

The coloring algorithm must choose colors for the attributes in such a way that

no two attributes in any class have the same color. The Dee linker performs the

following steps:

1.

N

Starting from a given root class, construct the set S of all classes needed by
the root class. (Need is the transitive closure of the union of the client and heir

relations.)

C'onstruct the inheritance graph G = (V, E) of all the classes in S. Each vertex
v € V7 is a class. A pair (u,v) belongs to the edge set E if class u inherits from

class v.

Find the sets 17 and V', such that U' = {uju € U Av € V A (u,v) € E} and
Vi={rlue U Ave V A(u,v) € E}.(Informally, U’ is the sct of classes which

have parents; V7' is the set of classes which are parents.)

I'ind the set R, such that R = U’ — V’. For ecach source r € R construct
a subgraph G, = (14, £,) containing only u and vertices reachable from v.
(Informally, for each class which has no descendants, construct a subgraph

containing that class and its ancestors.)

. Color each subgraph G, in turn, starting with the subgraph that has the small-

cst weight and proceeding in order of increasing weight. The “weight” of a
subgraph is the total number of attributes (methods and instance variables)

that it contains, not the number of nodes.

Class | #. Attributes | Biggest color | Empty space
Testing 6 6 0
File 14 114 0
String 24 24 0
Int 25 25 0
Stream [7 0
Bool T 7 0
Float 33 33 0
Input 5 5 0
Output 9 6 1
Any 1 1 0
Device 2 2 0
Total 129 130 1

Table 4.2: The Minimal Coloring Result

Coloring Subgraph
For each subgraph, the Dee linker tries to color it with dense packing, using the

following strategy.

1. Chose the node v in the graph G with oldest age and least weight. For nodes

in the same generation, choose the one with smallest weight.

2. Color all attributes of the given node with the smallest colors, trying to re-use

the empty space these create by adjusting sub-graph as soon as possible.

4.7 Results

The Figures 4.6 and 4.7 show the two inheritance graphs generated for programs
that do not introduce any additional inheritance. Table 4.2 shows, the descriptors

generated by the linker for thesc programs have only one empty slot, in class Output.

Since the Dee project is still in its infancy, we do not yet have larger than 40

classes programs to test the linker.

81

Classes | Attributes { Empty Space Ratio | Max colors
50 125 ~ 656 0~ 26 6 ~ 38
75 287 ~ 1195 1.9 ~ 17.5 12 ~ 61
100 413 ~ 2374 6.7~ 17.1 9~74

Table 4.3: Random testing with inheritance O to 3.

Classes | Attributes | Empty Space Ratj¢ | Max colors
50 123 ~ 1448 7.1 ~ 421 6 ~ 78
75 311 ~ 2536 5.1 ~ 43.3 8 ~91
100 289 ~ 2968 5.31 ~ 53.1 8 ~ 95

Table 4.4: Random testing with inheritance 0 to 4.

However, we have experimented with some randomly generated test data. The
Table 4.3 and Table 4.4 are two examples: For each table, the random model tries
to generate similar inheritance structure with different number of attributes and
distribution of attribute over that class structure. The maximum inheritance of
‘Table 1.3 is 3 and of Table 4.4 is 4. The figure a ~ b denote that the specified value
aire forma to b,

All random tests yiclded a result with minimum color for the biggest table.
Through the observation of the performance of random test, we could not find a
linear relation between any of the following pair, {empty space ratio, total number
of attributes }, { empty space ratio, mazimum number of inheritance } and {empty
space ratio, schema of distribution of attributes } . This is due to the nature of object
oricnted programs. The total emply space is dependent on all three of them.

These technique improved the CIT method, the worst case for the CIT and CCIT
techniques is illustrated in Figure 4.10. There are N classes, and M attributes. All
the attributes are distributed on the class; to classy_1, and S = (TVM-T) is the number
of attributes of those classes.

For CCIT, tle coloring sequence will be from class; to class,—;. classy will

82

Figure 4.10: The worst case of CIT and CCIT

create S slots in classy, classy will create 2 x S slots in classy, and so on. The
classy_y will have (N - 3) x S empty slots in its table. The total number of empty

spaces will be:
(N =3)(N -1)

x S
2

total empty space =

hee § = M
Since § = §5
(N =3)(N —-1)

2N = 2)

» M

total empty space =

Thus, the total empty spaces X are bound by:

x M

;o (N=3)(N-14)
X< 2(N - 2)

The ratio of total empty spaces and used spaces, R, is:

1 (N =3)(N -14)
4 (N-2

R< (1.2)

For the CIT technique, since all the vertexes in the graph have the same degree

(—,\{‘1—2), The worst result is which all of class; to classy have the maximum size M.

Thus the ratio of empty space of CIT, R is:

R=l

5,(/\7_3) (1.3)

83

And the ratio of CCIT and CIT is:

CCIT: CIT = % (4.4)

The ilquation 4.4 shows, the CCIT technique has better performance than the
CIT technique. On average the CCIT technique creates only half as many empty
spaces asCIT technique creates.

Ikrogdahl was one of the first authors to address the problem of packing in the
presence of multiple inheritance [Kro85). His method requires pointer coercion and
fails if an attribute is inherited along more than one path. It has the advantage,
however, of not requiring global analysis at link time. Stroustrup’s proposal for
(44 [Str87] is an extension of Krogdahl's method which overcomes the multiple
path problem but introduces complicated coercions and some space overhead. The
current approach used by C++ [ES90] is essentially the same and appears to be a
good solution given the eonstraint of a standard linker.

OQur method is quite similar to that of Dixon et al. [DMS89]. The significant
difference is that we split the inheritance graph into subgraphs before beginning to
colour it. We have found experimentally that this improves the packing densities.

The approach used by Connor et al. [CDMB89] is slightly different. In their model,
an object reference contains a pointer to an address map and another pointer to the
actual data fields. This technique is not as efficient as ours, but its greater flexibility
makes it more suitable for systems in which classes can be created at run-time.

Pugh and Weddel [PW90] show that dense packing can be achieved if records are
allowed to grow in both directions. In other words, slots may have both positive and
negative offsets with respect to a pointer to the object or class. Their method may

achieve better packing density at the expense of considerable higher computational

84

complexity.

Chapter 5

Conclusion

In this thesis, we have discussed the implementation of Dee. Dee is an object oriented
programming language with an interactive programming environment. T'he goal of
this research is to implement a object oriented language and its programming envi
ronment at the same time in order to achieve a better integrated system organization
and performance.

The following is a summary of the research and contribution of this thesis.

5.1 CIM

In Dce, the programming environment is an integral part of the language. We devel
oped both the language and the environment at the same time. The class interface
manager is the fundamental counterpart of our system. The advantages of this design

and implementation are:

1. Centralizated control
As Figure 1.1 shows, all major system components communicate with the CIM
by using the class interface. The role of the CIM is like an interface server,
responsible for data storage and information retrieval. The compiler passes the

validated class interface to the CIM and also sends queries to the CIM. All

user source documents are private to themselves, but the class interfaces would
be a public properties of a group of users. This accessing scheme gives the
development environmen! a very clean and easy controlled facilities to share
coding and the information. By doing this, data consistency and integrity are

guaranteed.

. Validated information

In Dee, the only task updating the data base is the compiler. All data passed
to CIM is validated and accepted by the compiler’s semantic checking. CIM
guarantee that all information provided to users is up to date and valid. Both

the system and the users can rely on the information they get from the CIM.

. Tightly coupled system

The major principle of the design of Dee is to provide a tightly coupled inter-
face between other components. The CIM provides different views to different
components of the system. The semantic checker of the language looks to the
CIM like a class interface server, providing class interface in the form of an
AST. The linker of Dee sces the CIM as an information retriever, providing
class information in the form of attribute list. The semantic browser and the
graphical user interface see the CIM as a information display board, which can

retrieve and redirect the output information according to thier needs.

For overall consideration, CIM is not just a database management unit, it also
simplify the name symbol maintenance in the compiler, narrows the interface
between each components. and makes each component concentrate only on its

own functional aspect,

87

4. No need for extra compiling
Views of CIM are in the form of the data structures which can be directly used
by the retriever. No extra compiling effects need to take place in the semantic
checker or linker. Other languages like Eiffel and C+4 need to re-compile the
class interface header in order to perform the semantic checking and the object

linking.

5. Project Management and System Information
The CIM maintzins precise contrel over the content of the data base and vrews,
In particular, it can provide a distributed development environment by main-
taining the original source code as private files and the database as a shared

resource.

The current implementation of CIM not only stores the class interface. But it
is also responsible for storing some extra information about the development,
system, such as locations of files, modification times, interface changing times,

etc,.

6. The Extendibility of CIDB
As an ongoing development project, the major design issues of CIM and CIDI
are to provide a extendable, easy accessible and maintainable system. As the
discussion of Chapter 1, both CIM and CIDB had achieved high quality on
these issues. Specially, the logical variable record layout of the CIDB gives a
lot of flexibility for further development. The internal structure of the CIM has
been classified into four layers, each layer having its own unique functionality.

This makes the whole systemn very easy to enhance and to modify,

88

5.2 The environment

One significant difference between Dee and other languages is that our our language
and its programming environment were developed at the same time.

The Dee system consists of an object oriented language, semantic browser, graph-
ical class hierarchy browser and an emacs Dee model editor. It offers all the basic
tools of software development: modifying and creating components, finding and un-
derstanding components.

As a result of its interactive programming environment, Dee provides an easy to
learn and easy to use interface to the user. Users can perform their development in a
standard terminal environment or with a graphical work station environment. Both
of these two environments provide a full set of tools for development.

The Dee Folder is not only a graphical browsing tool, it also captures some basic
ohject oriented concepts in its interface, inheritance and client relationship, and pro-
vides a better learning procedure to the users as well as encouraging users to reuse

the existing clusses.

5.3 Linker

The finker of Dee use a heuristic coloring method to get a better run-time space
consumption than the CIT. Our CCIT technique is simple and efficient. It not only
tries to color cach classes by its inheritance hierarchy, but also tries to find out the
densest packing layout. By doing this, most of class descriptors and objects are
densely packed. In the worst case, the ratio of total empty spaces and used spaces R
had been improved from CITs R =3+ (N =3) to R < i ﬂ‘i‘.(‘%.i%:i)

In our experiments, all the concrete classes in the leaves of the inheritance hier-

89

archy are densely packed.

Our CCIT technique yiclds straightforward class description and efficienct dis-

patching.

5.4 Further Work

For the Dee project, we have already built up the basic components of our systen.
A working version is installed on the SUNKISD network, and there some students
trying to learn and use it for their course project and assignments.

Since the Dee project is still in its infancy, a lot of rescarch can be done upon the
current implementation. The following is a list for long term projects that need to

be done in the future.

1. The CIM
The current implementation of CIM is a multiple user version. For a distributed
object oriented development environment, the CIM should have been upgraded
to network server version. In this version it should provide centralized data
storage control and the facilities to allow user share the interface and also the

object code “C” of the classes.

o

The environment

There are both long term projects and short term projects that need to be done
in order to enhance the Dee environment. The short term projects include: a
class maker which can use to check the integrity of all classes and bring all
the classes into an up-to-data state; an interactivate tutorial facility should be

added to the Dee Folder. This tutorial should include lessons for the concepts

of object oriented paradigm and the Dee language.

90

To reach the final milestone of Dee, an object oriented development environ-
ment, the long term projects should include: A version and project controller,
to control and maintain the versions or software development projects; A spec-
ification language and a object oriented design methodology should be incor-
porated into Dee; and for the documentation purposes Dee should have self
documentation capabilities to help user to create standard documentation of

the classes.

For rapid prototyping development, it is neccessary to have a interpreter devel-
opment environment in which the development cycle would be more flexible to

the user and more suitable for software prototyping and specification.

3. The Linker and the code generator

The current implementation of the linker basically addresses the problems of
dynamic binding and message dispatching. In order to achieve more run-time
cfficiency, the Dee should provide some dynamic to stalic binding analysis
which can find out all the static binding messages and eliminate the unnecessary

dynamic message dispatch at run-time.

In this case both the code generator and linker need to be enhanced.

1. The Dee Language

IFor the language itself, the further research should focus on the issue of constant
objects, delegation and persistent objects. The issue of constant objects and del-
cgation mechanism can enhance the flexiblity of the language. The difficulty
is to avoid import and export clauses, and the type confirmance rules of dele-

gation. The persistence issues is the fundamental topic of object oriented data

91

bases, and is a very important enhancement to the Dee language to support

data base maintenance facilities.

. Class Library

The issues of object oriented paradigm is try to address the problems of code
reusablity and extendability. Besides the language, the standard of class li
braries is also very important. The further development should focus on the
standardization of class libraries and develop libraries for general applications.

For examples, data structure library, graphical interface library cte,.

Appendix A
CIM Interface

The following is a list of the interface of the CIM of Dee. They are listed in two
separated categories. The first one is for the compiler. The second one is used by

linker, browser and the Dee Folder.

INTERTACE FOR THE COMPILER

¢ int CIM_Init()

Funetion initializes the CIN and CIDB.

o int CIM_Write_Class(AST ClassNode)
Frunetion write the give class interface to the CIDB. This update will be performed

on the users own image.

¢ AST CIM_Read.Class(char *ClassName)

Function return the class interface of a specified class.

¢ int CIM_Get_Class_Params(char *ClassName, AST *result)

Function return a AST contains the class parameter information only.

93

o int CIM_Get_Ancestor_List(char *ClassName, AST *result)

Function return a AST list which contains the ancestors of the specitied class.

e int CIM_Get_Attribute Item(char *ClassName, char *AttrName, AST
*result)
Funciion return the AST which contain the signature of a specified attribute of the

given class.

e int CIM_Close()

Function terminates the CIM data base system.

91

INTERFACL FOR BROWSLR AND LINKLR

e int CIM Is_RootClass(char *ClassName)

Query: Is this a root class?

o char *CIM _Get_Classlnfo(char *namePtr, IOBUFFER info)

query: return all the information of the given class. The information include:

inheritance, ancestors, uses and location.

e char *CIM _Get_ClassLocation(char *ClassName)

query: get the location of the given class.

e int CIM_ClassHasSpecial(char *ClassName) |

query: Does this class have special methods?

o SAL CIM_GetSALAttributes(char *ClassName)

query: Get all the .nformation of attributes of the ziven class. The output infor-

mation include: type. implemented by, from where.

e cim _ClassIOList CIM_Get_AllClasses()

query: Get all the naine of classes which are used in CIM,

¢ int CIM_CheckClassExist(char *ClassName)

query: Does this class exist in the CIDB.

e void CIM_ReadCDisplay(char *ClassName, long switch)
query: Display all the information which specified in swifch of the given class. CIM

will redirect all the output to the standard output device.

95

¢ void CIM_Read _CAPDisplay(char *ClassName, char *AttrKey,sw)
query: Find all the attribute which have the same name prefix as the given attribute
key of the given class. Then redirect the output data to the standard output. The
given switch is used to control the detail level of the information which should be

display.

¢ void CIM_Read XDisplay(char *ClassName, long switch)
query: Display all the information which specified in switch of the given class. CIM

will redirect all the output to a graphic window.

¢ void CIM_Read XAPDisplay(char *ClassName, char *AttrKey,sw)
query: Find all the attribute which have the same name prefix as the given attribute
key of the given class. Then redirect the output data to a graphic window. The
given switch is used to control the detail level of the information which should be

display.

96

Appendix B

Example Programs

B.1 Class Filter

class Filler
-- A component of Eratosthenes’ sieve
var p:lut - Qur own prime number
var [:Filter - A filter for numbers we cannot process
public cons make (prime:Int)
-- Construct a filter for the prime
begin
p := prime
f:=nil
(p.show + 7 ").print
end
public method process (n:Int)
== Ignore multiples of p but pass on non-multiples to the next filter
begin
ifnmod p =0
then
if undefinedf
then [.make(n)
else {.process(n)
fi
fi
end

97

B.2 Class Program

class Program
-- This class provides a keyboard for input and a screen for output. A
-- descendant class should provide a method entry which begins by calling
-~ self.open and ends by calling self.close.
public varin: Stdin
-~ Use stdin for input.
public var out: Stdout
-~ Use stdout for output.
method open
-~ Construct and open the keyboard and window.
begin
in.assign
out.assign
end
method close
-~ Close the keyboard and window.
begin
in.close
oul .close
end
method reply (message:String): String
-~ Displey the argument and return the user’s reply.
begin
out.write(message)
result := in.getline
end

98

B.3 Class Primes

class Primes

-- Compute prime numbers using Eratosthenes’ sieve

inherits Program
method entry

-~ This method is the entry point of the executable class.

var {:Filter i:Int max:Int

begin
self.open
max := 100
f.make(2)
attempt
fromi:=3J
until i ; max
do
f.process(i)
=141
od
handle c:/nf "Failed”.print
end
self.close
end

99

Bibliography

[Bar84]

[BDMN73]

[BR8Y)

[Bud91]

[CDMBSY

Richard M. Barstow. Emacs: The extensible, customizable, self-
documenting display editor. In David R. Barstow, editor, Interactiv
Programming Environments, pages 300-325. McGRAW-ITILL Book Com-

pany, 1984,

G. Birtwistle, O.-J. Dahl, B. Myhrhaug, and K. Nygaard. SIMULA Begin.

Petrocelli/Charter, 1973.

T. Biggerstaff and C. Richter. Reusability framework, assessment, and
directions. In T. Biggerstafl and A. Perlis, editors, Softwarc feusabil-
ity. Volume I: Concepts and Modcls, pages 1-17. ACM Press (Addison

Wesley), 1989.

T. Budd. An Introduction to Object-Oricnted Programming. Addison

Wesley, 1991.

R. Connor, A. Dearle, R. Morrison, and A. Brown. An object addressing
mechanism for statically typed languages with multiple inheritance, In
N. Meyrowitz, editor, Proc. ACM Conf. on Object-Oriented Programmnyg

Systems, Languages and Applications, pages 279 286, 1989,

100

[CGY2)

[DMS89]

[1:590]

[Fat85]

@

[(:()IS-I]

[(GRS3]

[(:mf)ﬂ]

B. Cheung and P. Grogono. Compact record layouts for multiple inher-
itance. In European Conference on Object Oriented Projramming, 1992.

Submitted.

R. Dixon, T. McKee, and P. Schweizer. A fast method dispatcher for
compiled languages with multiple inheritance. In N. Meyrowitz, editor,
Proc. ACM Conf. on Object-Oricnted Programming Systems, Languages

and Applications, pages 211-214, 1989.

M. Ellis and B. Stroustrup. The Anrotated C++ Reference Manual.

Addison Wesley, 1990.
Richard Fateman. Common LISP: The reference. Addison-Wesley, 1988.

P. Grogono and B. Cheung. Database support for browsing. Technical
Report OOP-91-1, Department of Computer Science, Concordia Univer-

sity, January 1991.

A. Goldberg. The influence of an object-oriented language on the pro-
gramming environment. In D. Barstow, H. Shrobe, and E. Sandewall,
editors, Inleractive Programming Environments, chapter 8, pages 141-

174. McGraw-1ill, 1984.

A. Goldberg and D. Robson. Smalltalk-80: The Language and its Imple-

mentation. Addison-Wesley, 1983.

P. Grogono. The book of Dee. Technical Report OOP-90-3, Department

of Computer Science, Concordia University, February 1990.

101

[Gro91a]

[Gro91b)

[Heg92]

[INCSS]

INC91)

[Kee89)

[KL89]

[KM90]

[Kro85]

[LO9YO]

P. Grogono. The dee report. Technical Report OOP-91-2, Departinent

of Computer Science, Concordia University, January 1991,

P. Grogono. Issues in the design of an object oriented programming

language. Structured Programming, 12(1):1-15, January 1991.

Lawrence A. Hegarty. Implementing the Dec System: Issues and Erperi-

ences. Master thesis,Concordia University, 1992.

Franz INC. Allegro Common Lisp User Guide: Relcase 3.0. YFranz Ine,

1988.

Franz INC. Allegro Common Lisp User Guide: Release 4.0. Franz I,

1991.

Sonya E. Keene. Objcet Oriented Programming in Common Lisp: A
j g g

Programmer’s Guide to CLOS. Addison-Wesley, 1939.

W. Kim and F. Lochovsky, editors. Qbject-Oriented Coneepts, Databases,

and Applications. ACM Press (Addison-Wesley), 1989.

T. Korson and J. McGregor. Understanding object oriented: a unifying

paradigm. Comm. ACM, 33(9):41-60, September 1990.

S. Krogdahl. Multiple inheritance in Simula-like languages. BI'T, 25:318

326, 1985.

Y. Li and T. O’Shea. BRRR: a tool for facilitating user’s navigation
in Smalltalk-80. In Proc. Symp. on Object-Oricnled Programming -
phasizing Practical Applications (SOOPPA), pages 175 189, September

1990.

[MeC81)

[Mey8S]

[Mey90a)

[Mey9ob)

[NDS1]

[Nie§9]

(PWo0)

[Sakss]

J. McCarthy. History of LISP. In R. Wexelblat, editor, History of Pro-

gramming Languages, pages 173-196. Academic Press, 1981.

B. Meyer. Objcct-oriented Software Construction. Prentice Hall Interna-

tional, 1988.

B. Meyer. Lessons from the design of the Eiffel libraries. Comm. ACM,

33(9):68-88, September 1990.

S. Meyers. Working with object-oriented programs: the view from the
trenches is not always pretty. In Proc. Symp. on Object-Oriented Pro-
gramming Emphasizing Practical Applications (SOOPPA), pages 51-65,

September 1990.

K. Nygaard and O-J. Dahl. The development of the SIMULA language.
In R. Wexelblat, editor, History of Programming Languages, chapter 1X,

pages 439-493. Academic Press, 1981.

O. Nierstrasz. A survey of object oriented concepts. In W. Kim and F. Lo-
chovsky, editors, Object Oriented Concepts, Databases, and Applications,

pages 3-21. ACM Press (Addison Wesley), 1989.

W. Pugh and G. Weddell. Two-directional record layout for multiple
inheritance. In ACM Conf. on Programming Language Design and Im-

plementation, pages 85-91, 1990.

M. Sakkinen. On the darker side of C++. In S. Gjessing and K. Nygaard,
editors, Proccedings of the 1988 European Conference of Object Oriented

Programmung, pages 162-176. Springer, 1988. LNCS 322.

103

aete v

(SBs6]

[Str86)

[Str87]

Mark Stefik and D.G Bobrow. Object-oriented programming: Themes

and variations. The Al Magazine, 6(4):182-204, 1986.
B. Stroustrup. The C++ Programming Language. Addison-Wesley, 1986.

B. Stroustrup. Multiple inheritance in c++. In Proceedings of the Furo-

pean Unix Users Group Conference, pages 189-207, May 1987.

104

