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ABSTRACT

Departure Process Characterization Analysis

of a Leaky Bucket Scheme

Yuan Chen

This thesis presents the statistical characterization analysis of the departure process of
a Leaky Bucket scheme in ATM networks. There are few analyses in the literature on the
departure process. Most of the previous studies op the interdeparture time distribution of a
Leaky Bucket were based on the Laplace transform under simple Poisson arrival assump-
tion. In this thesis, a simple Modified Geometric (MGeo) model based on a mapping pro-
cedure is proposed for the interdeparture time distribution of a Leaky Bucket. The
burstiness and correlation control effects of a Leaky Bucket are extensively discussed
through various statistics such as Squared Coefficient of Variation (SCV), autocorrelation
cocefficient and Index Dispersion for Counts (IDC). The analyses are carried out under a
wide range of traffic sources such as Poisson, Generalized Geometric (GGeo) and Markov
Modulated Poissor: Process (MMPP) arrival processes. Simulation results are provided to
verify the accuracy of the various mapping procedures. Numerical results are obtained in
order to investigate how the traffic characteristics of the departure process are affec ed by
the token pool size, the token generation rate, the burst and correlation degree of the
arrival process. The trade-off between the burstiness of the departure process and the cell
delay is examined. Finally, a two-state MMPP model is suggested to approximate the

departure process of a Leaky Bucket.
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Chapter 1

INTRODUCTION

1.1 Background

The concept of the Integrated Services Digital Network (ISDN) has been cvolving
since CCITT (the International Consultative Committee for Telecommunications and
Telegraphy) adopted the first set of ISDN recommendations in 1984 [1]. The main feature
of the ISDN concept is the support of a wide range of voice and non-voice applications in
the same network. Two ISDN standard interfaces were defined and called basic access,
primary rate access. The basic access interface, comprising two 64 kbit's B channels and a
16 kbit/s signalling D channel, has a total bit rate of 144 kbps. The primary rate access
interfaces, with a gross bit rate of 1.544 Mbit/s (T bandwidth) or 2 Mbit/s (El band-
width), offers the flexibility to allocate high speed H channels or mixtures of B and H

channels and a 64 kbit/s signalling channel.

It was soon realized that higher bit rates were required for applications such as inter-
connection of local area networks, video, image, and so forth, bringing the standardization
process to the introduction of Broadband ISDN (B-ISDN) concepts. B-ISDN includes 64
kbit/s ISDN capabilities but in addition opens the door to applications utilizing bit rates

above 1.5 Mbit/s or 2 Mbit/s respectively [2]. The upper limit of the bit rate available to a




broadband user will be somewhat above 100 Mbit/s. B-ISDN is conceived as all-purpose
digital nctwork. It will provide an integrated access that will support a wide variety of
applications for its customers in a flexible and cost-effective manner. B-ISDN is required
to support transmission of both asynchronous data and synchronous real-time traffic on a
single transmission network. It will provide such diverse services as interactive and dis-
tributive services, broadband and narrowband rates, support for bursty and continuous
traffic, connection oriented and connectionless transfers, and point-to-point and complex
communications. B-ISDN is also required to meet the performance requirements of multi-

media traffic.

1.1.1 ATM Networks

In the past few years, Broadband ISDN (B-ISDN) has received increased attention as
a communication architecture capable of supporting multimedia applications. Among the
techniques proposed to implement B-ISDN, Asynchronous Transfer Mode (ATM) is con-
sidered to be the most promising transfer technique because of its efficiency and flexibil-

ity. It has been recommended by CCITT as the transfer mode of choice for B-ISDN.

In ATM, all information is organized into fixed-size blocks called “cells”, each con-
sisting of a header and an information field. As defined by CCITT, a cell consists of 53
octets, 5 of which are called header and are reserved for the network and 48 which are for
the user information with respect to the ATM layer and are termed as the payload. Figure
1.1 is the cell format in ATM networks. The header of each cell contains among others, the
virtval channei and virtual path identifiers. The payload contains all the user data and
ATM adaptation layer information. The header format is different at a B-ISDN User Net-
work Interface (UNI) than it is in a B-ISDN Network Node Interface (NNI), as illustrated
in Figure 1.2.



53

octet

Header
(5 octets)

User information
(48 octets)

Figure 1.1 ATM cell structure
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Figure 1.2 Cell header format at UNI and NNI



1.1.2 Congestion Control in ATM Networks

Many of the traffic sources that ATM is expected to support are bursty, such as voice,
interactive video and high-speed data. A bursty source may generate cells at a near-peak
rate for a while, and shortly afterwards, it may become inactive, generate no cells. Such a
bursty traffic source will not require continuous allocation of bandwidth at its peak rate,
Since an ATM network supports a large number of such buisty traffic sources, statistical
multiplexing can be used to gain band width efficiency, allowing more traffic sources to
share the bandwidth. Due to the dynamic nature of the bursty traffic, severe network con-
gestion can result. Therefore, congestion control is very important in ATM networks in

order to provide a desirable level of performance.

Congestion control in ATM based B-ISDN is difficult because of the high link speed,
diverse service requirements, and various characteristics of the traffic ATM is expected to
support. In recent years, congestion control has been an important and active area of
research. Various congestion control mechanisms proposed for ATM networks fall into

two classes: reactive and preventive control [3].

Reactive control reacts to the congestion after it happens and tries to bring the degree
of network congestion to an acceptable levcl. It uses the feedback information from the
network to adjust the input transmission rate. However, a major problem with reactive
control in high-speed networks is the slow feedback. The effects of high-speed channels
make the overhead due to propagation delay significant; therefore, by the time that feed-
back reaches the source nodes and the control is triggered, it may be too late to react effec-
tively. Reactive control based on feedback is generally accepted as inappropriate in the

ATM environments.

Unlike reactive control, preventive control does not wait until congestion actually

occurs, but rather tries to prevent the network from reaching an unacceptable level of con-



gestion, However, due to the bursty and unpredictable nature of traffic, this preventive
approach is not sufficient to control the congestion, and additive reactive controls may be

necessary in the network [5].

Preventive control for ATM can be performed in two ways: admission control and
bandwidth enforcement. Admission control determines whether to accept or reject a new
connection at the time of call setup. This decision is based on traffic characteristics of the
new connection and the current network load. The bandwidth enforcement, also called
policing, monitors individual connections to ensure that the actual traffic flow conforms

with that reported at call establishment.

1.1.3 Leaky Bucket Algorithm as a Policing Functionin ATM Networks

Since users may deliberately exceed the traffic volume declared at the call setup (i.e.
values of their traffic descriptors), and thus easily overload the network, admission control
is not sufficient to prevent congestion. After a connection is accepted, traffic flow of the
connection must be monitored to ensure it stays within its contracted parameters (various
parameters for the transmitting such as the mean and peak bit rate), negotiated between
the user and the network at the connection set-up phase. The policing function is used to
prevent the user from exceeding the contracted parameters, which could result in network
congestion. If a user transmits cells not conforming to the contract then the policing mech-
anisin detects this and the cells in violation are either immediately discarded or tagged
(they might be discarded later if congestion occurs) in order to protect the Quality of Ser-
vice (QoS) of the other users. The policing function is implemented at each User-Network
Interface (UNT) and Network-Node Interface (NNI). For “well-behaving” users or subnet-

works, the policing should be transparent, while all violations should be caught.



Various policing methods have been proposed and discussed. Among the proposed
policing mechanisms, there are the Leaky Bucket and window-based schemes such as the
jumping window, the triggered jumping window, the moving window, the exponentially
weighed moving-average. It is generally agreed that the Leaky Bucket scheme performs
better than the window based schemes under the conditions that prevail in ATM networks.
In fact, the Leaky Bucket scheme has been recommended by CCITT as the policing mech-
anism of choice in ATM networks. Generic Cell Rate Algorithm (GCRA), a different term

but similar approach, is used in the ATM Forum.

The basic idea of the Leaky Bucket mechanism is that a cell, before entering the net-
work, must obtain a token from the token pool. If the token pool is empty, then the cell
must wait for a token before it is delivered to the network. Tokens are generated at a fixed
rate of r and stored in a token pool. The pool has a finite buffer size of M. After filling the
pool, tokens arriving to the pool are discarded. The token gencration rate (r) is a measure
of the average bit rate of the connection. The token pool size (M) corresponds to the muax-
imum allowable burst length. Thus, it is guaranteed that the long term average bit rate
docs not exceed the pre-specified rate of the connection. However, over short periods, the
scheme permits bursts of higher rate. Essentially, the choice of M dctermines the bursti-
ness of the transmission, it could be set according to the appiication requirement. A value
of M = 0 maximizes the “smoothness” of the traffic, which refers to the rate-based con-

trol scheme.

1.2 Research Objectives

A Leaky Bucket scheme is one of the typical bandwidth enforcement mechanismsg
used for ATM networks; this scheme can enforce the average bandwidth and burst factor

of a traffic source. The performance metrics of interest for the Leaky Bucket scheme are:



* Cell loss probability;
» Delay characteristics at the buffer;
* The interdeparture time characteristics of cells.

The Leaky Bucket scheme was first introduced by Turner [4], without the provision of
an input queue. Since then a number of its variants have been proposed. In [9], the input
buffer is suggested to provide better control of the trade-off between the cell waiting times
and the cell loss probabilities. Recently, a good deal of effort has been expended in model-
ing the Leaky Bucket in ATM networks [5] [6] [7] [8] [9][10] [11][12] [13] [14] [15][29]
[32] [33] [40] [47] [48] [49]. An exact analysis of Leaky Bucket methods with finite and
infinite input buffer size is presented in [6], providing the Laplace transforms for the wait-
ing time and the inter-departure time of cells from the system. The expected waiting time,
the cell loss probability and the variance of inter-departure times are also obtained. How-
ever, a Poisson process is assumed for the cell arrival process in their analysis. Berger [10]
gives the analysis to continuous time Markovian Arrival Process (MAP). For the regula-
tion of packets during a user’s session, Eckberg et. al [11] consider a Leaky Bucket that
acts as a throughput-burstiness filter for ATM cells in the network. Cells that arrive to an
empty token pool are not blocked but rather are marked, are allowed through and may be
discarded if a subsequent node is congested. W. Matragi and K. Sohraby [5] propose an
adaptive rate based Leaky Bucket scheme as a combination of preventive and reactive
congestion control mechanism. The effects of propagation delay and parameters of the
control scheme on the performance are presented by simulation since an exact analysis is

rather impossible. The numerical results are given for an ON-OFF arrival process.

An appropriate characterization of the departure process of a Leaky Bucket is very
important for the network performance evaluation. The interdeparture time distribution of

the Leaky Bucket has been determined in the Laplace domain [6] [7]. Calculating the



moments and the Squared Coefficient of Variation (SCV) for the interdeparture time is
very time consuming, especially for the complicated arrival processes. Therefore, our
interest is to find a simple model to characterize the interdeparture time distribution of the

Leaky Bucket for real-time control.

However, the characterization of burstiness and correlation are not only captured by
simple burstiness index such as the SCV and the short term covariance. It is necessary to
look at the long term covariance such as long term Index of Dispersion for Counts (IDC)
in order to accurately characterize the departure process of the Leaky Bucket. The auto-
covariance function of the Leaky Bucket departure process are presented in [8]. We will
discuss the IDC and take it into account for modeling the departure process of a Leaky

Bucket to a 2-state MMPP process.

1.3 Scope of the Thesis

The objectives of this thesis are to analyze the departure process of the Leaky Bucket
algorithm. We provide the detail mapping procedures to analyze the departure process of

the Leaky Bucket scheme.
The thesis is organized as follows:

A Modified Geometric (MGeo) model for the interdeparture time distribution of the
Leaky Bucket is proposed in Chapter 2. The control effects of a Leaky Bucket are exten-
sively examined from the viewpoint of smoothing out the burstiness of the input traffic.
The smooth:ng effect is characterized by the Squared Coefficient of Variation (SCV) of
the interdeparture time of the Leaky Bucket. We also look at the correlation effect between
two consecutive interdeparture times. The trade-off between the burstiness of the depar-

ture process and the cell delay is examined.
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Chapter 3 provides the detailed mapping procedures for the distribution of the number
of departures and the correlation of the number of departures between two consecutive
slots. The auto-covariance function of the number of departures and the Index of Disper-
sion for Counts (IDC) are analyzed under different arrival processes with various parame-
ters. A statistical matching method is suggested for the departure process of a Leaky

Bucket scheme by considering the IDC.

Finally, the conclusions and recommendations for future work are given in Chapter 4.



Chapter 2

STATISTICAL CHARACTERIZATION OF THE
INTERDEPARTURE TIME OF A LEAKY BUCKET

2.1 Introduction

The study of departure process of the Leaky Bucket is important for the performance
of the whole network. The departure flow from Leaky Bucket is the arrival to the rest of
the network. Since the ATM traffic is very bursty, the Leaky Bucket scheme is expected to
reduce the burstiness of the traffic flow to the network. An appropriate characterization of
the departure process of the Leaky Bucket is very useful in analyzing the network perfor-

mance.

A number of studies have investigated the behavior and the performance of the Leaky
Bucket scheme in recent years [S]-[15], [29] [32] [33] [40] [47]-[49]. Usually, the quanti-
ties studied in these investigations are the input buffer occupancy and the waiting time
experienced by cells 11 the input buffer. Only a few studies focus on the characteristics of
the output traffic of the Leaky Bucket [6], [7] and [8]. The Leaky Bucket can be analyzed
as a G/D/1/N queue with finite input buffer N and a suitable arrival process. In most of the
past research on the departure process of the Leaky Bucket scheme, it has been assumed

that input traffic follows a Poisson process. However, bursty traffic expected to be sup-

11
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ported by ATM networks has the squared coefficient of variation (SCV) of interarrival
time much higher than 1 (for Poisson arrival). Although the SCV of interarrival time is not
the same as burstiness by definition, it is clear that highly bursty traffic would have a high
SCV. The smoothing effect of the Leaky Bucket scheme is extensively studied in [6] by
characterizing the SCV of the interdeparture time of the Leaky Bucket. Under the assump-
tion of Poisson arrivals, Sidi et. al derived the characteristics of the departure process in
terms of the token generation time, the size of the token pool and the buffer size. The
trade-off between the smoothness of the departure process and the cell waiting time is
studied. Leung et. al [7] analyzed the departure process under a more general assumption
of renewal arrival process, but they only give the Laplace transform of the interdeparture
time distribution and the numerical results are carried out only for the special case of the
Poisson process. In [8], the performance of the Leaky Bucket scheme is analyzed under
batch data input traffic. The mean, variance and autocovariance of the Leaky Bucket out-
put process are presented. However, calculation of the covariance is time consuming. A
two mini-source model is proposed to characterize the Leaky Bucket output process and to

evaluate the network performance.

Most of the analysis of the interdeparture time characterization from Leaky Bucket is
in terms of the Laplace transform, obtaining the moments and the coefficient of variation
for the interdeparture time is very time consuming since Laplace transforms for departure
processes usually are very complicated. This is especially true when complicated arrival

processes are involved since differentiation becomes complicated.

The purpose of this chapter is to introduce a new discrete model (Modified Geomet-
ric) to characterize the interdeparture time distribution of the departure process from a
Leaky Bucket. We offer a mapping procedure to fit the interdeparture time distribution to
the MGeo (Modified Geometric) model.
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Also, a mapping procedure to derive the joint probability of two consecutive interde-
parture times is given. From this, closed form expressions can be obtained for the autocor-
relation coefficient between two consecutive interdeparture times. The numerical
calculation of the obtained formulas is simple and not time consuming, even for nore

complicated traffic sources such as Markov Modulated Poisson Process (MMPP) [18].

The analysis is carried out in the discrete time domain which is representative of the
ATM environment. We assume that cells arrive and depart only at the slot boundary. Cell
arrivals are modeled as Poisson, GGeo (Generalized Geometric) [28] and MMPP pro-
cesses respectively. The control effects of Leaky Bucket are extensively examined from
the viewpoint of smoothing out the burstiness of the input traffic. The smoothing effect is
characterized by the squared coefficient of variation (SCV) of the interdeparture time of
the departure process from the Leaky Bucket. Since the analysis is an approximation, we

also provide the simulation results to assess its accuracy.

The major difference between our work and the previous works of the Leaky Bucket
scheme such as [6] [7] and [8] is that we build a Modified Geometric (MGeo) model to
characterize the interdeparture time distribution of the departure process from the Leaky
Bucket. Our MGeo model could simplify the computations of the probability distribution
and the Squared Coefficient of Variation (SCV) of the interdeparture time from the Leaky
Bucket. The merits of this MGeo departure process model is that it is mathematically trac-
table when it is fed into the next queue as a new traffic stream, and it does take the bursti-
ness into account. Another potential advantage of this approach is that it might be used for
real-time control due to its easier calculation, since the policing function must be available

for every connection during the entire active phase and must operate in real-time.

The rest of this chapter is organized as follows. Section 2.2 summarizes the queueing
model of the Leaky Bucket presented in [6]. Section 2.3 gives the mathematical model of

MGeo. A detailed mapping procedure of interdeparture time from the Leaky Bucket is
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previded. Section 2.4 discusses the smoothing effect from the Leaky Bucket in terms of
squared coefficient of variation (SCV) of the interdeparture times. The trade-off between
the burstiness of the departure process and the cell delay is examined. The mapping proce-
dure for joint probability of two consecutive interdeparture times and the numerical results
for the autocorrelation between two consecutive interdeparture times are contained in

Section 2.5. Our conclusions are summarized in Section 2.6.

2.2 Queueing Model of the Leaky Bu<ket

For the purpose of completeness, in this section we summarize the work done by Sidi

which presented in reference [6].

As menticned earlier, the Leaky Bucket scheme was first introduced in [4] without the
input buff~r. The input buffer has been proposed to allow a trade-off between cell loss
probability and cell waiting time. The queueing model for the Leaky Bucket scheme is
depicted in Figure 2.1. A pool of tokens that can contain at most M tokens is available.
The generation process of tokens is deterministic, i.e., in each slot (of length T7) a new
token is generated and stored in the pool if it contains fewer than M tokens. Otherwise, the

newly generated token is discarded.

An arriving cell that finds the token pool non-empty, departs the system at the end of
current slot and one token is removed from the token pool. An arriving cell that finds the
token pool empty joins the queue (buffer size of N, for finite buffer) if the buffer is not
full. When the queue is not empty (the token pool must be empty in this case) and a token
is generated at the slot boundary, one cell departs the queue immediately (assume a FIFO
order) and the token is removed from the pool. Note that when the queue is not empty, the
token pool must be empty, or when the token pool is non-empty, the queue must be empty,

or both of them may be empty. But both cannot be non-empty at the same time. The cell
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departure process from the Leaky Bucket causes the input process to the network to be

smoothed.
UNI

Input buffer
Traffic ATM To
source > Networks > destination

N

Token
M pool
Token
Generator

Figure 2.1 Queueing model for the Leaky Bucket scheme

Consider a slotted time axis and a new token is generated at each slot boundary. A
generated token joins the token pool if it contains fewer than M tokens, otherwise, it 1

discarded.

X (m, n, t) is the probability of having m tokens in the token pool and n cells in the
buffer at 1 (r =0, 1,2, ...slot), just prior to the token generation instances. Since the
number of tokens cannot exceed M and cells wait in the queue if and only if there are no
tokens in the token pool, for all time ¢:

m>M

0
X(m,nt) = 2.1
(m,m 1) = A, 1<m<M, n2l )
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Since m - n = 0O for all the time, for simplicity, one-state variable i is used to represent the
state instead of two-state variables (m, n) . We have:
) X(M-i,0,1) 0<isM
x(i,1) = { . . (22)
X(0,i-M,1) izM
Where i is the state of the system which reflects both m and n at time 1, x; ( 20) is the

corresponding steady-state probability, x; = lim x (i, 7).
{30

For better understanding, Table 2.1 is given to present the relationship among the
number of tokens(m), the number of cells(n) and the state of the sys-

tem (i = M - m + n) for all possible cases.

TABLE 1.
Two-state variable (m, n) One-state variable (i)
m n i=M-m+n
(# of token) (#t of cellin Q) (state of systeri)

M 0 0

M-1 0 1

M-2 0 2
2 0 M-2
1 0 M-1
0 0 M
0 1 M+1
0 2 M+2
0 N M+N
0 © 0o
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(b) with one-state variable {

Figure 2.2 State Transition Diagram for Leaky Bucket with finite input buffer

Figure 2.2 (a) shows the state transition diagram of the Leaky Bucket model with
two-state variables, where (m, n) is the state corresponding to having m tokens in the
token pool and n cells in the input buffer, M is the token pool size, N is the input buffer

size, a; is the probability of i arrivals during a slot. Clearly, the arriving cell that finds
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i-1

there is no token left and the buffer full is discarded. Zz,. = |- z a;. Figure 2.2 (b) is the
j=0

simplified state transition diagram with one-state variable i (i = M —m +n) .

Then the stationary transition probability matrix P of finite buffer case can be

obtained from Figure 2.2 (b):

Ay Q) Ay . Gy Ay Appi) - g N-2 %M eN-1 CM4N
Ao Q) Ay . Ay App Apry) - A N22 M +N=1 PM4N
0 aya) ...ay _,ay | ay ... Ay, 38y, N 2y, N
0 0 0 ... a a, a .. ay an . ay .,
P=1Ipl=7000 .. ay a a .. ay_ ay ay,, @3
0 a, a; .. Qay_, ay_, ay
a a, a,
0 a, a a,
] 0 a, a, |

where p, ; is the state transition probabilities, from state { to state j.

For finite buffer size (N), once x, is assumed a value, x, (1 <i <M+ N) canbe com-

puted recursively via

i-2
R R L zxj+lai—l—j
x; = iz 0 (2.4)
a9
M+N
and finally all quantities are normalized by 2 x; = 1.
i=0

The average number of cells entering to the system (throughput) is given by:
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M+N

T = xo( z ia; + (M+N)&M+N]
i=0

M+N M+N-j+1

+ ) xj( Y iai+(M+N—j+l)&M+N_J.H]

j=1 i=0

(2.5)

Since service time is one slot, the load intensity of the system p also represents the

average number of cells arrived during one slot. Then cell loss probability is given by:

T

P, =1-= (2.0)
L p

For infinite buffer, the steady-state probability x; is easily seen to be
i
X; = xya;+ ijﬂa‘._ﬁ 20 N
j=0

where x, = 1-—p, then other probabilities can be computed recursively from (2.7).

The above queueing model can also be extended to matrix version for the MMPP

arrival process. The detailed presentation is given in [14] and [40].

2.3 Interdeparture Time Distribution with Modified Geometric Model

2.3.1 The Modified Geometric Distribution

The Modified Geometric (MGeo) distribution is a discrete distribution (Figure 2.3)

with the probability density function:
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1 -1t-d, k=20
Prob(V = k) = yd+1(1-0), k=1 (2.8)
t(1 -0)ok-1, k=2
|
‘ We define
1
A = ~ 2.9
v 2.9)
o\ V2_ (D)2
C? - EfV Z) .Y (Z) 2.10)
(V) ")
o _EWV-9’ _vVaviream)’ o)
("3 ("3 '
where
V= 2 kP (k) (2.12)
k=0
V- Z k2P (k) (2.13)
k=0
Vo= 2 k3P (k) (2.14)
k=0

A-! is the mean, C? is the squared coefficient of variation (SCV) of MGeo distribution,
C* is the cubed coefficient of variation MGeo distribution. These three parameters can

describe the departure flow with MGeo distribution completely.
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The first two moments provide the squared coefficient of variation which can be used
to capture the burstiness of the departure process from the Leaky Bucket. The idea of
MGeo model is an extension of Generalized Geometric (GGeo) model studied in [28) and

[30]. GGeo model is a special case of MGeo model by setting d = 0.

0-5 L) 1 T T LS T T T
(]
0.45}- i
0.4 i
T = 0.60
0.35f d = 0.19
0.3} g = 0.52 .
=
=025}
Q. <|3
0.2t
0.15F
0.1} .
0.05 T A
0 T ? 9 Q Ford O
0 1 2 3 4 5 6 7 8 9 10
k

Figure 2.3 Modified Geometric (MGeo) distribution

2.3.2 Mapping Procedure

The MGeo model is a discrete probability distribution implying a special bulk depar-
ture pattern and the interdeparture time for a single departure is geometrically distributed

with parameter ©.

The dynamics of the Leaky Bucket’s operation are such that we can map the departurc

process of Leaky Bucket to the MGeo distribution given by (2.8).
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First we consider the case of an infinite input buffer. Since each departing cell is
accompanied by a single token, the departure process of cells is the same as the process of
departing tokens. Hence, the interdeparture time V is the slots between the departure

epoch of the tagged token and the subsequent departure.

Before giving the derivation, some notation is defined:

m: number of tokens in the bucket, when the tagged token departs;
n: number of cells in the input buffer, when the tagged token departs;
M : token pool size;

x;: steady-state probability of the system in state i which reflects both token number

and cell number, (i =M -m +n);
a, : probability of i arrivals during a token generation interval;

V: interdeparture time between the tagged and subsequent token departures, Figure

2.4,

P (V = k) : probability of interdeparture time of k slots.

tagged token subsequent token
}(m. n) 4
[ ¥ —— |
Figure 24

We assume that tokens depart in a FIFO order. Our assumption is based on the dis-

crete slot boundary which means cells arrive and depart only at the slot boundary. The
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arrivals during the slot is independent from slot to slot conditioned on the state of the
arrival process. We also assume that tokens are generated and depart at the slot boundary.

Our embedded point is the slot boundary, just after the token departure.

We consider an arbitrary token that departs from the token pool and tag it. In order
that this token will ever depart the system, it must join the token pool (the probability of
this eventis 1 - x,, ). Conditioned on the event that the tagged token joins the token pool at

the embedded point, we may find the system in one of the following states.
1. The queue is not empty and the token pool is empty (n2 1, m = 0) :

There are n(n2=1) cells and no tokens in the system.

tagged token subsequent token
*(O.n) 4
e— v | —>
Figure 2.5

In Figure 2.5, the subsequent token generated at the next slot boundary will depart

immediately. The interdeparture time V is one slot, the probability of this event is:

P(V =1) = Prno tokens in the system] = E x; (2.15)

imMa+i
2. Both the queue and the token pool are empty (n = 0,m = 0):

There are no cells and tokens in the system.
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tagged token subsequent token

(0,0)
LX)
l-a,
[———>]
Vel
Figure 2.6
tagged token subsequent token
{(0, 0)
] !
Y
ao ...... 1- ao
| T >
Figure 2.7

In this case, the subsequent token will depart at next slot boundary if there is at
least one arrival during the current slot and V is one slot with probability (1-a),
Figure 2.6. Or next departure will occur at the kth slot boundavy if no cells arrive dur-
ing the previous k-1 slots and the V is k slots with the probability a(’)‘“l (1-ap),

Figure 2.7. Then the probabilities of all these events are:
P(V=k) = xMa(‘)’"(l—aO), k=1,273,.. (2.16)

. The token pool is not empty and the queue is empty (n=0,1<m<M-1):

There are m (1 Sm <M -1) tokens and no cells in the system. In order to see the
interdeparture time between the tagged token and the subsequent departure, the tagged
token must depart from the system (the probability of this eventis 1 — a, ). Conditioned
on the event that the tagged token departs from the token pool, we have the following

two cases.
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tagged & subsequent token

|(m.O)
57

|~a0—a|
V=0

Figure 2.8

a) If i (i 22) cells arrive during the current slot, then the tagged token and the subsequent
token will depart simultaneously at the next slot boundary, see Figure 2.8. Then V is

zero slot with probability a; (i 2 2) , the probability of this event is:

Mo
P(V =0) = Pr[more than one arrival | at least one arrival] Z Az

M-1 (217)
X;
l1-a.
%o i=1
tagged token subsequent token
0 * 1 ! L
» * T4
a a, a; e I -a,
e Vek -

Figure 2.9

b) If there is only one arrival during the current slot, then the tagged token will depart at
the next slot boundary. The subsequent token will depart at the following kth slot
boundary and the interdeparture time V is k slots with probability a,a(’;“ '(1-a,),as

shown in Figure 2.9. Then the probabilities of all these events are:
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M-1
P(V = k) = Pr{only one arrival | at least one arrival ] 2 X;

i=l

k-1 M-]
a,ag "' (1-ag,)
1 -a, i?l !
M-1
-ala(’j"Zx,. k=1,2 3...

i=1

In summary, conditioned on the event that the tagged token joins the token pool (the

probability of this event is 1 —x,), the probability distribution of interdeparture time V is

given by:
P(V=0) = =) )
- = X. (2.19)
( (l—xo)(l-—ao)i“l !
] o0
P(V=1) =]—_—xo[ v xi+Q(l—a0)] (2.20)
i=M+1
k-1
Qa, (1-a,)
P(V=k) = — 0 k=234,... 2.21)
1-x,
where
M-
a
Q = x)+ "o Y x; (2.22)

i=1

Now we get the probability distribution of interdeparture time from Leaky Bucket.

For the finite buffer size of N, we just replace o by M + N in (2.20).

From the equations (2.19), (2.20), (2.21)and (2.22), we can see that the interdeparture

time of a Leaky Bucket has the same distribution pattern as the MGeo model. Next we try
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to determine the parameters T, d and ¢ in the MGeo distribution. From (2.8), (2.19),
(2.20), (2.21)and (2.22), we know that 6. d and T can be obtained by mapping the depar-

ture process of the Leaky Bucket. 6, d and T are given by:

0 = a, (2.2%)

ix,.

d = i=M+1

1 (2.24)
T = Q (2.25)

where x; is the steady-state probability of the system which can be solved by using (2.4).

The vector version derivation for the MMPP arrival process is similar to the scalar
case. The MMPP [24] is a generalized Poisson process which allows the arrival rate to be
governed by an underlying Markov chain. We make the same assumption as in the scalar
case. We assume that tokens depart in a FIFO order. Our assumption is based on the dis-
crete slot boundary which means that cells and tokens arrive and depart only at the slot
boundary. Our embedded point is the slot boundary, just after the token's departure. In
order to present the derivation for the vector form, some notation is necessary as given

below:
J : number of phases of the arrival process in MMPP;

x;: steady-state probability vector with J elements, x; = (x;}, X;5 ..oy X; TR nE
where X (1 €j<J) is the steady-state probabi ity of system in state { when the

phase of arrival process is in j;

A,: probability of i arrivals during a token generation interval with JxJ elements;
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¢: column vector of 1°s, with J elements;
1: J xJ identity matrix;
mt: invariant probability vector of phase.

Conditioned on the event that the tagged token joins the token pool (the probability of
this event is 1 — x,e) and at the embedded point, we may find the systemn in one of the fol-

lowing states.
1. The queuc is not empty and the token pool isempty (n21, m=0) :

There are n(n= 1) cells and no tokens in the systcm. In this case the subsequent
token generated at the next slot boundary will depart immediately. The interdeparture

time V is one slot, the probability of this event is:

P(V =1) = Prno tokens in the system] = 2 x;e (2.26)
i=M+1

2. Both the queue and the token pool are empty (n = O,m = 0) :

There are no cells and tokens in the system. In this case the subsequent token will
depart at next slot boundary if there is at least one arrival during the current slot and V
is one slot with probability (7 —A4;). Or next departure will occur at the kth slot
boundary if no cells arrive during the previous & — 1 slot and the V is k slots with the

probability Aé -T- A,) . Then the probabilities of all these events are:
P(V=k) = xMA(’;'-‘ (I-Ap)e k=1,2, 3, ... (2.27)

3. The token pool is not empty and the queue isempty (n=0,1<m<M-1):
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There are m (1 <m <M - 1) tokens and no cells in the system. In order to see the
interdeparture time between the tagged token and the subsequent departure, the tagged
token must depart from the system (the probability of this event is I - A)). Conditioned
on the event that the tagged token departs from the token pool, we have the following

two cases.

a)Ifi(i22) cells arrive during the current slot, then the tagged token and the subscquent
token will depart simultaneously at the next slot boundary. Then V is zero slot with

probability A, (i 2 2) , the probability of this event is:

M-1
P(V=0) = ( z xiJPr [more than one arrival | at least one arrival]

i= |

M-1
- ( Dy xij(l-Ao)" (I-Ag-A|)e

i=]

(2.28)

b) If there is only one arrival during the current slot, then the tagged token will depart at
the next slot boundary. The subsequent token will depart at the following kth slot
boundary and the interdeparture time V is k slots with probability AIA(’;" ! (I-A,).

Then the probabilities of all these events are:

M-1
P(V=k) = ( z x‘.JPr [only one arrival | at least one arrival |
i=1

M- y (2.29)
- Zx‘. (I-Ap) AAL-TU-Ape

i=1

k=1, 2, 3 ...

Finally, conditioned on the event that the tagged token joins the token pool (the prob-
ability of this event is 1 - x,e), the probability distribution of interdeparture time V is

given by:
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M-
| -1
P(V=0) = I_XOe( inJ(l—Ao) (I-Ay—A)e (2.30)
=1
1 o0
=1) = . 1- :
P(V=1) I_XOe[ > ox+Q( Ao)Je (2.31)
i=M+1
P(V=k) = ——Qak " (1-4y)e, k=234, .. (2.32)
1 -x,e
where
M- |
Q= xM+[ Y x,.J(l—AO)“ A, (2.33)
i-=]

As we see from equations (2.19), (2.20), (2.21)and (2.22), the vector case is analo-
gous to the scalar case. Same as before, for the finite buffer size of N, we just replace o
by M + N in (2.31). The parameters T, d and ¢ in the MGeo distribution for the MMPP

arrival process is given by:

O = nAoe (2.34)
d = ! i X.e (2.35)
1 —xge. !
i=M+1
t - 22 (2.36)
| —-xy€

where x; is the steady-state probability vector which can be solved by using the extension

of (2.4) presented in [14] and [40].
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Now we can use the parameters we have obtained [(2.23), (2.24). (2.25) and (2.34),
(2.35), (2.36)] to determine the MGeo distribution for the departure proccs:s‘ of the Leuky
Bucket by using (2.8).

2.3.3 Numerical Results and Discussions

First, we consider the simplest case of Poisson arrival process to see the departure
process of the Leaky Bucket by using our derived MGeo model and we will compare the
numerical results with Sidi's approach [6]. Later on, we also consider an input traffic
model of GGeo-type [28] which takes the burstiness into account. Finally, the correlated

arrival process of the MMPP is discussed.
For Poisson arrivals, the probability of i arrivals during a slot is given as by:

_}‘u
Ae
qa =

! i!

, i20 2.37)

For GGeo-type arrivals, the probability of ¢ arrivals during a slot is given in [28]:

l_nv i =20
a; = =1 (2.38)
né(l-3) i21
2 21, 2. . -
where & = and n = . € is the squared coefficient of variation
2 2 a
C,+1+A, C,+1+A,

(SCV) of the interarrival time and A is the average number of cells arriving in a token

generation interval (one slot).

For the MMPP arrivals, the probability of i arrivals during a slot is given in [20]:
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A, = [P(n1) ®adH (D) (2.39)
0

where P (n,t) is the probability that n cells will arrive in time (0, t) for J-state MMPP,
and ® isaKronecker product definedby P®H = {p, Y.

By mapping the departure process of the Leaky Bucket, we know that the interdepar-
ture time distribution of the Leaky Bucket fits to the MGeo distribution (2.8). From (2.23),
(2.24), (2.25) and (2.34), (2.35), (2.36), we can easily get the parameters of MGeo distri-

bution.

Figure 2.10 shows the interdeparture time distributions (MGeo) from a Leaky Bucket
at diffecrent system loads (i.e. average arrival rates) for Poisson arrival process. As we
expected, the interdeparture time distribution becomes more concentrated as the system

load increases.

Figure 2.11, Figure 2.12 and Figure 2.13 show the interdeparture time distribution for
GGeo arrival process. We observe that the interdeparture time distribution is very sensi-
tive to the system load, token pool size and the squared coefficient of variation of the inter-
arrival time. According to the measured data of video-phone given by Rathgeb [29], we

consider the SCV of interarrival time running from 1 to 10.6.

Figure 2.14 and Figure 2.15 give the interdeparture time distribution for the MMPP
arrival process. We have seen that the traffic 1oad and the token pool size greatly affect the
interdeparture time distribution for the MMPP traffic also. Compared with Figure 2.12, we
also find the interdeparture time distribution is not very sensitive to the IDC (Index of Dis-

persion for Counts) of input MMPP traffic.

Simulation results demonstrate that our MGeo approach is a good approximation for

the interdeparture time distribution of the Leaky Bucket.
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2.4 Burstiness of the Departure Process from a Leaky Bucket

2.4.1 The Moments

Let V (z) denote the probability generating function of the interdeparture time in

number of slot. From (2.8), we have

V(z) = 1—‘c—d+dz+M (2.40)
-0z
Let ym denote the mth factorial moment of the interdeparture time (slot), that is
V™ e E(V(V=1) (V=2)...(V=m+1)) 2.41)
Taking the first and second derivatives of V (z) , we ottain
T
E(V) = — .
(V) =d+— (2.42)
20t
E(V(V=-1)) = — (2.43)
(1-0)
thus the second moment of the interdeparture time is
E(Vz) - E(V)+E(V(V-1))
(1 +0) (2.44)

= d+
(1-0)°

the variance is



Ky}

Var (V) = V2- (P)2
2+‘t(l+0—‘t—2d+2d0) (2.45)
2
(1-o0)

=d-d

where the parameters t, d and ¢ are given in (2.23), (2.24), (2.25) and (2.34), (2.35),
(2.36).

2.4.2 The Squared Coefficient of Variation (SCV) and Average Cell Delay

ATM rraffic is very bursty in nature and capturing this burstiness is essential for an
accurate model. The first two moments provide the squared coefficient of variation (SCV)

and this parameter can be used to capture the burstiness of ATM traffic.
. - . o 2
1. The squared coefficient of variation of interarrival time C
The squared coefficient of variation (SCV) for interarrival time is given by:

C2 var (a)

(@t

(2.40)

where a is the interarrival time of the arrival process.

From the interarrival time distribution of a specific traffic, we can casily get the
squared coefficient of variation (SCV) of interarrival time. For Poisson arrival, the SCV

of interarrival time is simply 1.

For very bursty traffic, such as in a high speed communications network, the SCV
of interarrival times would be much higher than 1. According to the measured data of

video-phone given by Rathgeb [29], the SCV of interarrival time for highly variable
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output stream is around 10.6 and the SCV of interarrival time for smoothest traffic is
about 2. The SCV of interarrival time for the actual traffic will be somewhere in

between two extremes from 2 to 10.6.
. - : . 2
2. The squared coefficient of variation of interdeparture time C,

The SCV of interdeparture time can be obtained by:

v2_yp2
2
C s 72 (2.47)
where
V= d+———]f0 (2.48)
Vi ds+ "_Sﬁ._"_% (2.49)
(1-0)

the parametess T, d and o are given in (2.23), (2.24), (2.25) and (2.34), (2.35), (2.36).
3. Average queue length and mean cell delay

The average queue length in the system is given by:

oo

L= Y (i-M)x (2.50)

f=M+1

Since service time is one slot, from Little’s formula, th: mean cell delay in the system is:
— L
delay = -‘5 (2.51)

For finite buffer case (buffer size of N), just replace o by M + N in (2.50).
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Figure 2.16, Figure 2.17 and Figure 2.18 show the effect of traffic load and token pool
size (M) on the cell delay in the system and the squared coefficient of variation (SCV) of
interdeparture time from a Leaky Bucket for Poisson, GGeo and MMPP arrival processes
respectively. Both the cell delay and the SCV of the interdeparture time of cells are greatly

affected by system load and token pool size M, and there is a clear trade-off between these

two parameters.

We can see that as traffic load increases the cell delay increases while SCV decreases.
If the average arrival rate A, is fixed, the load p varies in direct proportion to T/, the
token generation interval. In the extreme case of p — 0, tokens are generated very rapidly
(TI - 0), Cj — CZ , the Leaky Bucket does not throttle the sources at all. The cell delay
goes to zero for Poisson and MMPP arrival process or Ci = | in GGeo arrival process
and remains small for the highly bursty traffic. Clearly, in this case the departure process is
the same as the arrival process. Most of the buffering or loss takes place inside the net-
work, potentially affecting the performance of other sources as well. From Figure £.17, we
can see assuming SCV of interarrival time to be 1 gives very optimistic results for cell
delay. In the other extreme case of p— 1, tokens arc generated very slowly
(TI - 1/4,) , the Leaky Bucket is “tightly” controlling the source, most of the cells are
buffered in the input queues (or lost). The cell delay goes to infinity and Ci — 0 since
each cell waits for a token to be generated and the departure process approaches a deter-

ministic process.

It is clear that the reduction of the burstiness of the traffic flow is larger in heavily
loaded systems than it is in lightly loaded ones. Thus, the departure p:ocess of a Leaky

Bucket in a iightly loaded system with bursty arrival process tends to be bursty too.

The effect of the size of the bucket is also demonstrated in Figure 2.16, Figure 2.17
and Figure 2.18. As M increases, the cell delay decreases while SCV of interdeparture

time increases. The small value of cell delay introduced by the highly bursty traffic at the
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light load could be diminished to zero by increasing the token pool size M. It is interesting
to note that for large values of M (M = 10) , it is only at high load, p — 1, that the effect
of the bursty control is seen, i.e. C3< Cj. In this range, the system performance is very

sensitive to the changes in the load.

Figure 2.16, Figure 2.17 and Figure 2.18 also provide the comparison of the analysis
results with simulation results for SCV of the interdeparture time and the cell delay for
Poisson and GGeo and MMPP arrival processes respectively. We can observe that our

analytical MGeo model approach and simulation give very similar results.
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Figure 2.16 SCV of interdeparture time and cell delay vs. traffic load for different token pool sizes M
(Poisson arrival)
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Figure 2.17 SCV of interdeparture time and queueing delay vs, traffic load for different token pool
sizes M (GGeo arrival, SCV of interarrival time = 10.6)
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2.4.3 The Smuothness of the Departure Process of a Leaky Bucket

The Leaky Bucket scheme is used to smooth and regulate the incoming traffic, so the
smoothness is a very important parameter in the performance evaluation of the Leaky
Bucket scheme. We define SM as the smoothness of the departure flow from the Leaky

Bucket, which reflects only one departure per slot. From (2.8), we have:

P(l) = d+1(l-0)

SM = 1—P(1) 1-d-z(l-0)

(2.52)
where the parameters T, d and ¢ are given in (2.23), (2.24), (2.25) and (2.34), (2.35),
(2.36). From the definition of SM, we know that the larger SM is the more smooth the
flow is. As we mentioned earlier the SCV is a measure of burstiness of a traffic which also

reflects the smoothness of the process. But notice that SM is the inverse of SCV.

Figure 2.19 and Figure 2.20 show the smoothness of departure flow versus traffic load
for the different token pool sizes for the GGeo (with SCV of interarrival time to 10.6) and
the MMPP arrival process respectively. The smoothness is also greatly affected by the

traffic load and the token pool size.

As the traffic load increases, the smoothness increases and the Leaky Bucket scheme
has stronger smoothing control on the departure flow. For the fixed average arrival rate,
higher smoothness can be obtained by increasing the token generation interval T/. How-

ever, the performance degradation on cell delay and cell loss will be expected.

From Figure 2.19 and Figure 2.20, we can see the effect of the token pool size M. As
M increases, the smoothness decreases, this means the Leaky Bucket has less control on
the smoothness of the departure flow. By means of the token pool size M, the Leaky
Bucket scheme still allows for a certain degree of burstiness while limiting the average

input rate below some predefined rate. M corresponds to the maximized burstiness of the
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departure flow. As M increases, the maximized allowable burstiness increases and the
Leaky Bucket has less smoothing control on the traffic. A value of M = 0, corresponds to

the rate-based control, maximizes the “smoothness” of the traffic.

20 T T T

16 GGeo Arrival

T

14r c? =106

-
N
T

smoothness
=

.18
Id
6} /
- 3 ’
- ;
ar -7 10 . 1
- ’
2._""'_ ‘—/ .
0.7 0.8 0.9 1

Figure 2.19 Smoothness vs. system load for different token pool size M (SCV of interarrival time =
10.6)
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IDC=8.98)

2.5 Autocorrelatioi: between Two Consecutive Interdeparture Times

ATM networks are expected to support diverse applications such as voice, video and
data transfer with different Quality of Service (QOS) requirement. Many of the traffic
sources in ATM are not only bursty but highly correlated as well. It has been shown that
neglecting correlations may result in a dramatic underestimation of various performance
measures such as the loss probability and the cell delay [31]. Thus, it is important to look
at the correlation effect of the departure process of the Leaky Bucket. In this section, in
order to see the correlation of the departure process from a Leaky Bucket at lag 1, we pro-
vide a mapping procedure for the joint probability of two consecutive interdeparture

times.
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2.5.1 Mapping Procedure

In order to see the correlation effect of the departure process from a Leaky Bucket, we
focus on the autocorrelation between the two consecutive interdeparture times. By defini-

tion, the autocorrelation at lag 1 can be determined through the joint probability distribu-

tion of two consecutive interdeparture times.

We make the same assumptions as before. Our embedded point is the slot boundary,
just after the token’s departure. The cells and tokens only arrive and depart at the slot
boundaries. In order to have the derivation for the vector form, some notations are given

below: .
vE interdeparture time between k — 1 th and & th departure, shown in Figure 2.21;

yirt : interdeparture time between kth and & + 1 th departure, shown in Figure 2.21.

First, we are going to find the joint probability distribution of two consecutive inter-
departure times Q,,)) = Pr[Vk =, Vk+ ' e j:l . As before, we let (m, n) denote the
number of tokens and cells in the token pool and the input buffer respectively at the

(k = 1 )th departure.

(k-1)th token k th (k+1)th
+(m. n) * *

e V' m i V' = ]

Figure 2.21

As before, conditioned on the event that the (k — 1 )th token joins the token pool at the

embedded point, we may find the system in one of the following states.



1. The queue is not empty and the token pool is empty (n21,m = 0) :

a) There are n 2 2 cells and no tokens in the system.

(k-1)th kth token  (k+D)th

*(0’") 4 4 1 |

e

Figure 2.22

In this case, the subsequent token (kth) generated at the next slot boundary will
depart immediately, and the (& + 1)th token generated at the following slot boundary
will depart at the following slot boundary as shown in Figure 2.22. Both interdeparture

times V* and V** " are one slot, the joint probability of this event can be obtained as:

0,(1,1) = Pr[V'= 1,V a1l = Y xe 2.53)

me=M4+2

b) Thereis n = 1 cell and no tokens in the system.

(k-1)th kth token  (k+1)th

S S S
T F

1-A,

e >l
Vel VT oy

Figure 2.23
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If at least one cell arrives at the current slot as in Figure 2.23, the kth token generated
at the next slot boundary will depart immediately, and the (k + 1 )th token will depart at the

following slot with probability (I-A,) . The joint probability is given by:

, L l
0,1, 1) = Pr[V =1,V o] = x,,,  U-4)e 2.54)
(k-1)ta kth token (k+Dth
0,1
Aon 4 l . A
* 2
A, Ay e 1-A,
[ >l >
Ve e,
Figure 2.24

If there are no arrivals at the current slot as shown in Figure 2.24, the kth token
generated at the next slot boundary will depart immediately and the (k + 1 )th token will
depart at the jth slot boundary following the kth departure with probability
AOAG_ ' (I-A,) . The joint probability of this event is:

0,(L,j) = Pr[VF=1,V**' = j] = x,,, A4 (-4 e
j=1,2,3,...

(2.55)

2. Both the queue and the token pool are empty (n = 0,m = Q) :

a) There are no cells and tokens in the system and there is at least one arrival during the

current slot.
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As shown in Figure 2.25, if there is only one cell arrival at the current slot, the kth

token will depart at the next slot boundary and the (k + 1)th token will depart at the jth

slot boundary following the kth departure with probability A,A{;l (I-Ag) . The joint

probability of this event is:

Q,(1jy = PriVF=1,V** ' = j]l = x a4 -4y e

j=1,2,3,...

(k-Dth kth token (k+1)th
4(0'0) * * ] 1

FF

I-Ay-A,
s | —|

Ve Vit e

Figure 2.26

(2.56)

If there are more than one arrival at the current slot as shown in Figure 2.26, the

k th token will depart at the next slot boundary and the (k + 1)th token will depart at the

one after the next slot boundary with probability /- A,— A, . The joint probability of

this event is:



%
0,(1,1) = Pr{V' = 1,V = 1] = v, (- Ag-A)e .57

b) There are no cells and tokens in the system and there are no arrivals during the current

slot.

(k-1)th kth token (k+1)th
4(0’ 0) 1 1 4 ] 1 4
f ¥
AO AO ...... AI AO AO ...... 1 - AO
|- oL~
Vk = | V“'I = j
Figure 2,27

If there is only one arrival before the kth departure (Figure 2.27), the kth token will
depart at the ith slot boundary following the (4 - 1)th departure and the (k + 1 )th token
will depart at the jth slot boundary following the kth departure with probability

A:)— ]A,A{)— Y- A,) - The joint probability of this events is:

0, ) = Privi =iV = j] = x,al A AL (-Ag)e
P=2,3,4... j=123..

(2.58)

(k-Dth kth, (k+1)th token
4(0’0) ] 1 “ ] 1
77
Ay Age o I=ApA,
- >
Ve V*lao

Figure 2,28
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If there are more than one arrival before the kth departure, the kth and the
(k + 1)th token will depart at the same time with probability A;,- ba —Ay-A)) ,see

Figure 2.28. The joint probability of this event is:

0,(i,0) = PrVE =i V¥* 2 0] = x, A7 (1-A,-4))e
i=2,3,4,..

(2.59)

3. The token pool is not empty and the queue isempty (n=0,1<m<M-1):

There are m (1 <m <M - 1) tokens and no cells in the system. In order to see the
joint probability of the interdeparture time between the (k — 1)th, the kth token and the
kth, the (k + 1 )th token, the (k — 1 )th token must depart from the system (the probabil-
ity of this event is —Ag). Conditioned on the event that the (k- 1 )th token departs

from the token pool, we have the following two cases.

a) There are i (i 22) cells arriving during the current slot.

k-1, kth (k+1)th
0
(1l’ ) ” 1 1 4
5 %
A2 AO AO ...... I_AO
- >
Vk -0 V“l -
Figure 2.29

If there is only one token (m = 1) in the system and there are only two arrivals during
the current slot as shown in Figure 2.29, the (k - 1 )th token and the kth token will depart
simultaneously at the next slot boundary and the (k + 1)th token will depart at the jth slot
boundary following the kth departure with probability AzAf)- : (I-A,) . The joint proba-

bility of this event is:



St

, c+ . -1 j~1
0,(0,j) = Prv' =0, V" =] = x,,_ -4 7 A4 -4 e
j= 1,23, ..

(2.60)

k-1.kth  (k+D)th

go M4

57
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Figure 2.30

If there is only one token (m = 1) in the system and there are more than two arriv-
als at the current slot shown in Figure 2.30, the (k — 1)th token and the kth token will
depart at the same time of next slot boundary and the & + 1th token will depart at the
one after the next slot boundary with probability /- Aj— A — A, . The joint probability

is given by:

0,00,1) = Pr[V =0, V¥ =1 = x,_ (-4 U-Ag-A,-Aye @sb))

k-1, kth (k+1)th
mo) M .4
+4
A, A Ay e 1-4,
fe— >
vV =0 v

Figure 2.31
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If there are more than one token (m=2) in the system and there are only two
arrivals during the current slot shown in Figure 2.31, then the (k- 1 )th token and the
kth token wil! depart simultaneously at the next slot boundary, and the (k + 1 )th token
will depart at the jth slot boundary following the kth departure with probability
A,AL" ' (1- Ag) . The joint probability of this case is:

M-2 _
0,(0,j) = Pr[V =0, V"' =] = Y x, (I-4p)7'A,4  (I-4p)e

m = |

(2.62)
j=1,2,3,..

(k-1), k, (k+1)th
(m,0)
1

r44
Ai>2)

Vao, V' ao

1 :

Figure 2.32

If there arec more than one token (m =2) in the system and there are more than
two arrivals during the current slot shown in Figure 2.32, the (k + 1)th token will
depart at the same time as the (k—1)th and kth tokens with probability
I-A,-A,-A,. The joint probability of this event is:

M-2

0,(0,0) = Pr[V =0, V' =0] = S x (J-4) 7 U-4y-4,-4))e @63

mm=]

b) There is only one arrival during the current slot.
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(k-Dth kth token (k+1)th
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Figure 2.33

Then the (k — 1 )th token will depart at the next slot boundary and the kth roken will
depart at the ith slot boundary following (k - 1 )th departure. If there is only one arrival
before the kth departure, the (k + 1)th token will depart at the jth slo: boundary following

kth departure with probability AIA:)_ 'AlA{)—l (I-Ay,) , as shown in Figure 2.33. The
joint probability of this case is given by:

M-

. R % B -1 i~ 1 ie1
Qi) = PrV =iV 2] = T x, (d-A0 A AT A AT -4y e o
me=| )
ijo=123, ..
(k-1)th kth, (k+1)th
(m, 0)
1 4 1 d 1
¥ T
A, Ay Ag e I-Aga,
| —»]
Ta vVt ao
Figure 2.34

If there are more than one arrival before the kth departure (Figure 2.34), the
(k+ 1)th token will depart at the same time as the kth token with probability

A IA:)_ l (I-Ay,—A)) . Then the joint probabilities of this event is:



54

M-1 .
0,(i,0) = Pr[VF =i V** ' ag] = T x (I-49) A4y (U-Ag-A,)e

(2.65)
mm=1

i=1,23,..

Finally, conditioned on the event that the (k- 1)th token joins the token pool (the

probability of this event is 1 — x,e), the joint probability of two consecutive interdeparture
Q, (i, j)

1 —Xg€

times Q, (i,j) =
Then the autocorrelation of the two consecutive interdeparture times is

Ry = E{V'V"y « S T ijpr[vim i, v 2 ]
im0j=0
=) Y i, G.))

im0jm=0

(2.66)

The autocovariance at lag 1 is defined as:

2
Cp=Ry- (V)
°°' = 2 (2.67)
- > 2 i) - (V)
i=0j=0

Then the autocorrelation coefficient is given by
o X o s 2
S Y i, 6 - (V)

. . _Sn_icei-o
I yvar (V) Var (V)

(2.68)

where V is the mean interdeparture time given in (2.42) and Var (V) is the variance of

the interdeparture time given in (2.45).
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2.5.2 Numerical Results

In Figure 2.35, Figure 2.36, Figure 2.37, Figure 2.38, Figure 2.39 and Figure 2.40, we
have plotted the autocorrelation coefficient between two consecutive interdeparture times,
at various values of traffic load, token pool size M and arrival IDC, for the Poisson and

the MMPP arrival processes.

From Figure 2.35 and Figure 2.39, it is clear that the autocorrelation between two
consecutive interdeparture times from Leaky Bucket for Poisson arrival is always
(slightly) negative. The Leaky Bucket thus transforms the uncorrelated interarrival times
at its input into slightly negatively correlated interdeparture times at its output, which can
also be considered as a favorable effect of the Leaky Bucket control. The same conclusion
is drawn by Wittevrongel and Bruneel for the ON-OFF source model in [32]. The MMPP
arrival process has correlated interarrival times. The autocorrelation coefficient between
two consecutive interdeparture times is less than a specific value which corresponding to
the autocorrelation coefficient of interarrival times at lag 1. It is clear the Leaky Bucket

has a favorable control on correlation betweer: two consecutive interdeparture times.

From Figure 2.35 and Figure 2.36, we can see that the autocorrelation coefficient
between two consecutive interdeparture times is greatly affected by traffic load and token
pool size M. It decreases when the traffic load increases. It is clear that at heavy loaded
systems, the Leaky Bucket has stronger control on the autocorrelation cocfficient of the
interdeparture time (at lag 1). For the lightly loaded systems with correlated arrival pro-

cess it tends to be correlated too.

Figure 2.37 depicts the value of autocorrelation coefficient of the interdeparture time
at lag 1 versus the arrival IDC for different token pool size of M at traffic load 0.67. Leaky
bucket has a stronger control on the correlation when pool size decreases. It is interesting

to note that the autocorrelation coefficient of interdeparture times slightly increases when
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the arrival IDC increases from 20 to 100. This means that autocorrelation coefficient of
interdeparture time at lag 1 becomes less sensitive to arrival IDC when the arrival IDC

reaches to 10.

The effect of token pool size M is also demonstrated in Figure 2.38, Figure 2.39 and
Figure 2.40. The autocorrelation coefficient between two consecutive interdeparture times
increases when M increases. For the large value of M, the autocorrelation coefficient
between two consecutive interdeparture times reaches to the autocorrelation coefficient of

interarrival times. The Leaky Bucket will have no control on the correlation at lag 1.
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Figure 2.35 Autocorrelation coefficient between consecutive interdeparture times vs. load
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2.6 Conclusions

The Leaky Bucket scheme as a policing function in ATM networks must be available
for every connection during the entire active phase and must operate in real-time. In this
chapter, we have proposed a Modified Geometric (MGeo) model for the interdeparture
time of a buffered Leaky Bucket scheme. The detailed mapping procedure to fit the inter-
departure time to MGeo model is provided. The MGeo model is verified under a wide
range of traffic sources such as Poisson, GGeo (Generalized Geometric) and MMPP
(Markov Modulated Poisson Process) arrival processes. Numerical results and simulation
show the MGeo approach provides a good approximation for the interdeparture time dis-

tribution of the Leaky Bucket and is very computationally efficient for real-time control.
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The control effects of the Leaky Bucket are extensively examined from the view point
of smoothing out the burstiness of the input traffic, thereby making it easier for the net-
work to handle large amounts of traffic without undue delay, congestion, or buffer over-
flow. The smoothing effect is characterized by the Squared Coefficient of Variation (SCV)
of the interdeparture time of the Leaky Bucket, and is analyzed under the Poisson, GGeo
and MMPP arrival processes. Through the numerical examples, we investigate how the
traffic characteristics for the designated traffic flow are affected by the traffic load, token
pool size and the burstiness of the traffic source. The trade-off between the burstiness of
the departure process and the cell delay is examined. We present results for both finite and

infinite input buffer sizes.

By using the proposed MGeo departure model, we can analyze performance of the
Leaky Bucket scheme with different parameter settings. Such results are useful for system
designers to set the various parameters of the Leaky Bucket mechanism in accordance

with the Quality of Service (QoS) requirement.

We also have looked at the correlation filtering effect of the Leaky Bucket. The auto-
correlation coefficient between two consecutive interdeparture times is derived by using a
similar mapping procedure. It is interesting to note that the Leaky Bucket has stronger
burstiness and correlation control for heavily loaded systems. For lightly loaded systems,
the burstiness and the correlation between two consecutive interdeparture times of the

departure from the Leaky Bucket tends to be preserved from the input flow.

In this chapter, the correlation effect is studied in terms of covariance between two
consecutive interdeparture times (at lag 1). In order to accurately characterize the depar-
ture process of the Leaky Bucket scheme, this measure is not sufficient to capture the cor-
relation. Further study on the long term Index of Dispersion for Counts (IDC) will be

carried out in the next chapter.



Chapter 3

STATISTICAL CHARACTERIZATION OF THE
NUMBER OF DEPARTURES FROM A LEAKY
BUCKET

In this chapter, we focus our analysis on the number of departures (counts) from a
Leaky Bucket. Most of the previous work on the Leaky Bucket departure characteristics
deal with the interdeparture time, and only focus on the coefficient of variation and short
term correlation (correlation at lag 1). Only a few looked at the number of departures (8).
Wau et. al [8] present a procedure for calculating the mean, variance and autocovariance of
the number of departures from the Leaky Bucket. A two mini-source model is proposed to
characterize tlie Leaky Bucket departure process and evaluate the network performance.
We note that the calculation of long term autocovariance with a large buffer and token

pool sizes are very time consuming.

The characterizations of burstiness and correlation are not only captured by simple
burstiness indexes such as the coefficient of variation, and the short term covariance (c.g.
at lag 1). It is necessary to look at the long term variance such as long term Index of Dis-
persion for Counts (IDC) in order to accurately characterize the departure process of the

Leaky Bucket.

61
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The objective of this chapter is to fit the departure process of the Leaky Bucket to a
two-state MMPP process by considering both variance and long term covariance. The
detailed mapping procedures for the probability distribution of the number of departures
and the correlation of the number of departures between two consecutive slots are pro-
vided in Section3.1 and Section 3.2 respectively. The autocovariance function of the
number of departures at arbitrary lags is carried out in Section 3.3. In Section 3.4, we dis-
cuss the Index of Dispersion for Counts (IDC) for the departure process of the Leaky
Bucket. A statistical matching method is given in Section 3.5. Section 3.6 conclude this

chapter.

3.1 Distribution of the Number of Departures from a Leaky Bucket

3.1.1 Mapping Procedure

First we consider the case of an infinite input buffer. As before, our assumption is
based on a discrete slot boundary which means cells arrive and depart only at the slot
boundaries. A slot is eqquivalent to a token generation interval. The arrivals at the end of a
slot is independent from slot to slot. Further, we assume that tokens are also generated and
depart at the slot boundaries, and depart in a FIFO order. Our embedded point is the slot

boundary, just after the token’s departure.

We will look at the number of cells departing at the end of a slot. Here we give a more
general derivation of the vector version. The scalar version is a special case with dimen-

sion of one element.

In order to have the mapping procedure, some notation is given below:

ni: number of tokens in the bucket;
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n: number of cells in the input buffer;
M : token pool size;

J : number of arrival phases;

x;: steady-state probability of the systeminstate i,(i = M -m +n),

A : probability of s arrivals during a token generation interval with J XJ elements;
e : column vector of 1’s, with J elements;

I: J xJ identity matrix;

D : number of cells departing from the Leaky Bucket at the end of a slot (Figure 3.1).

D
ﬁm’ ") * 1

R '
AS

| -

kth slot
Figure 3.1

At the embedded point, we may find the system in one of the following states.
1. The queue is not empty and the token pool is empty (m = O, n21):

There are n(n21) cells and no tokens in the system.

}(0’ ") * 1

3

kth slot |

Figure 3.2
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As shown in Figure 3.2, the new token generated at the next slot boundary will add
to the empty bucket and there is only one token in the bucket. Then the number of cell

departures at this slot boundary is one, the probability of this event is:

P(D = 1) = Pr[no tokens in the system] =( 2 x‘.)e 3.1
i=M+1

2. The queue is empty (0<m<M-1,n = 0):

There are m (0 <m <M - 1) tokens and no cells in the system.

D = min(m+1,s)

(m, 0) ( I, s)
A A ;

¥ ¥
AS
= kth slot -
Figure 3.3

At the end of current slot, there are m + 1 tokens and s cells in the system if s cells
arrive at the slot boundary with probability of A, see Figure 3.3. Then the number of

cell departures at this slot boundary is min (m + 1, s) , the probability of this event is:

P[D=min(m+1,s)] = X mAs€

m=2012 .. ,M-1,s=0,1,2, ...

(3.2)

3. The queue is empty and the token pool is full (m = M,n = 0):

There are M tokens and no cells in the system.
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D = min(M,s)
(M, 0) M, s)
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T

Figure 3.4

As depicted in Figure 3.4, at the end of current slot, there are still M tokens (since
the bucket is full and the newly generated token will be dropped) and s cells in the sys-
tem if s cells arrive at the slot boundary with probability of A . Then the number of cell

departures at this slot boundary is min (M, s) , the probability of this event is:

PID =min(M,s)] = x/A e

.3
s =0,1, 2, ...

In summary, the probabilities of having D departures at the end of a slot are given by:

P(D=1) =( Y xi]e (3.4)
i=M«+|

PID=min(m+1,5)] =x, [ Ac

(3.5)
m=0,1,2..,.M-1;, s=0,1,2, ...

P[D =min(M,s5)] = x/A.e

(3.6)
s=01,2,..

For the finite input buffer size of N, we just replace «o by M + N in (3.4).

Using equation (3.4)-(3.6), we can have the probability distribution of the number of
departures from the Leaky Bucket. The first two moments, D and Dz, of the number of

departures are:
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M

D= ) kP(D=k) (3.7
k=0

_— M

D' = S K'P(D=k) 3.8)
k=0

Then the variance of the number of departures is given:

Var(D) = D*= (D)> 3.9)

For the convenience of the discussion late- in this chapter, we define Variance to

Mean Ratio (VMR) of the number of departures as

Var (D)

VMR (D) = D

3.10$)
We will see later VMR is one of the main terms in Index Dispersion of Count (IDC). Like
SV C of the interdeparture time, VMR reflects the burstiness of the departure flow in terms

of numbver of departures.

3.1.2 Numerical Results

in this section, we give some numerical results to illustrate probability distribution
and the Variance to Mean Ratio (VMR) of nnmber of departures from the Leaky Bucket
described in the previous section. We consider different kinds of arrival processes such as
Poisson, GGeo and MMPP. Numerical examples are given under the various parameter

settings.

Figure 3.5 shows the probability distribution of number of departures from the Leaky

Bucket at the end of a slot for different system loads for Poisson arrivals. As the traffic
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load increases, token generation slows down, the probability of one departure per slot
increases. That means cells depart more evenly and smoothly, and the Leaky Bucket has
more burstiness control on the departure flow. This is the same conclusion we have drawn

in Chapter 2.

Figure 3.6, Figure 3.7 and Figure 3.8 show the probability distributions of number of
departures for GGeo arrival process. We find that the probability distribution of number of
departures is also very sensitive to the traffic load, token pool size and the squared coeffi-

cient of variation of the interarrival time.

For the MMPP arrival process, similar results (Figure 3.9 and Figure 3.10) arc
obtained as those for the interdeparture time distribution discussed in Chapter 2. The
departure probability distribution pattern either for the intervals or for the counts is not

very sensitive to the IDC parameter of the MMPP arrival process.

Figure 3.11, Figure 3.12 and Figure 3.13 show the effect of traffic load and token pool
size (M) on the Variance to Mean Ratio (VMR) of number of departures from the Leaky
Bucket for Poisson, GGeo and MMPP respectively. As before, the VMR of the number of
departures is greatly affected by traffic load and token pool size. It is obvious again that
the throttle effect on burstiness is stronger in heavily loaded systems than in lightly loaded
ones. In Figure 3.12, it is interesting to notice that the VMR can also be greatly redviced by
choosing proper value of token pool size M. even in the lightly loaded system for GGeo
arrival process. A value of M = 0, relates to the rate-based control, maximizes the Leaky

Bucket’s burstiness control effect in terms of VMR.

Figure 3.14, Figure 3.15 and Figure 3.16 plot the VMR of the number of departures
versus the token pool size M for Poisson, GGco and MMPP arrival processes, respec-
tively. We find that the control effects on VMR for Poisson and MMPP arrival are similar

when changing the token pcol size and the traffic load. For large token pool sizes
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(M — 10), the burstinzss control effects at various traffic loads show no big differences,
and the Leaky Bucket has less smoothing control on the output flow. But for GGeo arrival
process, 2t the lazge token pool sizes (M — 10), the VMR is more sensitive to the traffic
load. By setting a proper value of token generation rate, certain degree of burstiness reduc-

tion can be achieved.

In Figure 3.5 - Figure 3.10, the lines between points are only us.d to identify a partic-

ular set of results. There are no values between two consecutive integers.

load = 0.15

Icad = 0.35 M=4
load = 0.90
Poisson Arrival

£o. load = 0.75 -
£ _
aal load = 0.55 ]

N

0.2

0.1}
o :

2
number of departure (cell)

Figure 3.5 Probability distribution of no. of departures during a slot from Leaky Bucket at different
system load (Pois<on arrival)
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Figure 3.7 Probability distribution of no. of departures during a slot at different token pool size M for
GGeo arrival
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system load (MMPP arrival)
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3.2 The Autocorrelation of the Number of Departures between Two

Consecutive Slots

The correlation control effect of the Leaky Bucket for intervals at lag 1 is presented in
Chapter 2. In this section, we are going to look at the correlation control effect for counts

at lag 1 by using a similar mapping procedure given in the previous section.

3.2.1 Mapping Procedure

In order to see the correlatio:: effect on the number of cell departures from a Leaky
Bucket, we will look at the autocorrelation of the number of departures between the two
consecutive slots (at lag 1). We make the same assumptions as before. Our embedded

point is at the slot boundary, just after the token’s departure. The cells and tokens only
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arrive and depart at the slot boundary. The cell arrival process is independent from slot to

slot and tokens depart in a FIFO order.

From the definition of autocorrelation, we know the autocorrelation of the number of
departures between two ¢« cutive slots can be determined by the joint probability of the

number of departures at two consecutive slots Q- (i, j) = Pr [DI‘ =i, D**' - j] .

Dl- 1 DL - l)k +1 -
hon A \
F 1= + + 2
A, A,

< kth slot i (k+1)th slot

As before, at the embedded point, we may find the system in one of the following

states.
1. The queue is not empty and the token pool is empty ‘n21,m = 0):
a) There are n = | cell and no tokens in the system.

i) If there are no arrivals (A, ) during the kth slot:

pt! D' -1
*(o, 1) @(0,0) 4
AO A()

e T nnse

Figure 3.17
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In the case there are no arrivals at the end of (k + 1)th slot boundary shown in Figure
3.17, the number of departures at the kth slot boundary is one after the newly generated
token is added to the empty bucket, and the number of departures at the (k + 1 )th slot

boundary is zero with probability AjA, . Then the joint probability of this event is:

0c(1,0) = Pr[D*= 1,0 = 0] = x,,, | AAqe @3.11)

-1

D p* =1

4(0,1) +<o,0) 4
FF1

Ay 1-A,

kth slot i (k+1)th slot

Figure 3.18

In the case of at least one arrival at the end of % + 1 th slot boundary (Figure 3.18),
both the number of departures at the kth and the & -+ 1 th slot boundary are one with

probability A, (/- A,) . Then the joint probability is:
0,1, 1) = Pr[D*=1,0"" 1] = x,,, Ay UU-Ap)e (3.12)

ii) If there is at least one arrival (I - A, } during the k th slot:

.

Dk—l Dk-] Dk+l_]
(0, 1) (0, n)
4 nznl 4
L K I
1-A,
- *7
| kth slot (k+1)th slot >

Figure 3.19
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In this case shown in Figure 3.19, the number of departures at the kth slot bound-
ary is one after the newly generated token is added to the bucket and the number of
departures at the &k + 1th slot boundary is one with probabili. . * since there are
cells but no tokens in the bucket at the beginning of & + 1th slot .uuy «.e will be only

one newly generated token in the bucket at the end of & + 1 th slot. The joint probability

of this event is:

0.0, 1) = Pr[D¥ =1, D" a1] =, U-Ape XK

b) There are n (n 2 2) cells and no tokens in the systen.

Dk-l Dk-l l)k”—l
(0.n)
g | !
|— —p |t »|
kth slot (k+1)th slot
Figure 3.20

In this case (Figure 3.20), both the number of departures at the kth and (k + 1)th
slot boundary are one since the cells in the system are waiting for the tokens in order to

depart from the system. The joint probability of this event is:

0-(,1) = Pr[D*=1,0"" = 1] -( )y x,.]e (3.14)

F=M+2

2. The queue is empty (0<Sm<M-2,n = 0):
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J
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5 F FEF
As A, {
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- *
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DY = min(m+1,s)

D) w min{m+2-min(m+1,5),s+r-min(m+1,s)]

Figure 3.21

As shown in Figure 3.21, at the end of kth slot, there are m + 1 tokens and s cells
in the system if s cells arrive at the kth slot with probability of A_. In this case, the
number of cell departures at this slot boundary is min(m + 1,s). The.e will be
m+1-min(m+1,s) tokens and s — min(m + 1, s) cells left in the system after the
departure at the kth slot boundary. At the end of the k+ 1th slot, there will be
m+2-min(m+1,s) tokensand s +r—min(m+ 1, s) cells in the system if r cells
arrive at the (k + 1)th slot with probability of A ; consequently, the number of depar-
tures at the (k+ 1)th slot boundary is
min[m+2-min(m+1,s),s+r-:min(m+1,s)]. The joint probability of having

D* and D%+ departures at the kth and (k + 1)th slot boundaries is:

Q- (D4 D¥*1) = x,  AA

s, r=0,1,2,35, ...

(3.15)

where D¥ = min(m+1,5) and

D't = minfm+2-min(m+1,s),s+r-min(m+1,s)].

3. The queue is empty and there are M — 1 tokens in the bucket (m = M- 1,n = 0):
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(M-min(M, s),s-min(M,s))

k-1 k } k+l
(M-1,0) o, s) P / P
\* "/ *
ol o
FFF L
AI AI‘
(min(M=-min(M,>) + L,A),s+r-min(M,s))
a kth slot | (k+1th slot

Dk = min (M, s)

DY+l = min[min (M =min(M, s} + |, M), s+ r—min(M,s °

Figure 3.22

At the end of kth slot, there are M tokens and s cells in thc system if s cells arrive
at the kth slot with probability of A, shown in Figure 3.22. In this case, the number of
cell departures at this slot boundary is min (M, s). There will be M —min (M, s)
tokens and s —min (M, s) cells in the system at the beginning of the (k + 1 )th slot. At
the end of the (k + 1)th slot, there will be min (M —min (M, s) + 1,M) tokens and
s+r-min(M,s) cells in the system if r cells arrive a. the (k + 1 )th slot with proba-
bility of A,. Then the number of departures at the (k+ 1)th slot boundary is
min(min(M -min(M,s) + 1,M),s+r-min(M,s)) . The joint probability of hav-

ing D¥ and D%+ ! departures at the kth and (k + 1 )th slot boundaries is:

Q¢ (DX DE*1) = x| AA,
s,r=0,1,23, ...

(3.16)

where DF = min(M, s) and

DK+ = min(min (M -min(M,s) + |,M),s+r-min(M,s)).

4. The queue is empty and the pool is full (m = M, n = 0):
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(M-=min(M, s),s=min (M )

k-1 Dl ‘; 1)l+l
(M. 0) (M, s) /
H
17 I
Ax A, l,
(min(M—=min(M. 3} + LMY, s+r—-min(M,s))

- »{df
| kth slot (k+Dth slot

D} = min(M,s)

D**V = min[min(M—-min(M,s) + L, M), s +r-min (M, )]

Figure 3.23

This case is same as the case 3., except the initial state is different (sec Figure
3.2?). The joint probability of having D* and D*+! departures at the Ath and (k + 1)th

slot boundaries is;

Q- (DY, D1y = x A A,
s, r=0,1,2,3,...

.17

where Dk = min (M, s) and

D} = min[min (M -min(M, s) + |,M),s+r-min(M,s)].

Then the autocorrelation of the number of departures between two consecutive slot (at

lag 1) is

M M
Re, = E{D'D**"y = 3 Y ijpr[D* =i D""' -]
im0 jm0
M M
=Y > ijQci))

imy j=0

(3.18)
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The autocovariance at lag 1 is

Cer = Rey - (D)2
M M ) (3.19)
=Y Y iiocG.j)- (D)
i=0 =0

Finally, the autocorrelation coefficient is given by

M M )

S Y ijocti,j) - (D)
r - CCl e i=0)=0 (3.20)
€l Var(D) Var (D)

where D and Var (D) are given in (3.7) and (3.9).

3.2.2 Numerical Resalts

Figure 3.24-Figure 3.29 show the autocorrelation coefficient of the number of depar-
tures between two consecutive slots, at various values of traffic load, token pool size M

and arrival IDC for Poisson and MMPP arrival processes.

The autocorrelation coefficient of the number of departures between two consecutive
slots is greatly affected by the traffic load and token pool size M as depicted in Figure 3.24
and Figure 3.25. It is interesting to note that the setting token pool size to one has different
correlation control effect from other values of pool size as traffic load changes for Poisson
arrival. The Leaky Bucket amplifies the correlation on counts at lag one when the token

pool size is set to one.

Figure 3.26 shows the autocorrelation coefficient of the number of departures at lag
one versus arrival IDC for the MMPP traffic. The main difference between the correlation

(at lag 1) for counts and for intervals (Figure 2.37) is that the Leaky Bucket with token
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pool size of one increases the short term correlation on counts. We have obseived that the
autocorrelation coefficient of the number of departures at lag 1 becomcs less sensitive to
arrival IDC value after it reaches to 20. We have similar results for the interdeparture time

presented in Chapter 2.

Figure 3.27, Figure 3.28 and Figure 3.29 plot the effect of token pool size on the auto-
correlation of the number of departures. As we mentioned before setting token pool size to

one results in more correlated departure flow in terms of count at lag 1.

0.03 T T T T T T v r —r - - - l
0.02 1

0.01+ J

~0.01+

autocorrelation coefficient

-002F

Pcisson Arrival
-0.03}

_0'040 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 09 1
load

Figure 3.24 Autocorrelation coefficient of number of departures between two consecutive slots vs.
load for different token pool size M (Poisson arrival)
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Figure 3.25 Autocorrelation coefticient of number of departures between two consecutive slots vs.
load for different token pool size M (MMPP arrival)
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Figure 3.26 Autocorrelatinn coefficient of number of departures between two consecutive slots vs.
token pool size M for different loads (MMPP arrival)
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Figure 3.28 Autocorrelation coefficient of number of departures between two consecutive slots vs.
token pool size M for different arrival IDC (MMPP arrival)
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Figure 3.29 Autocorrelation cocfficient of number of departures between two consecutive slots vs.
arrival IDC for different token pool size M (MMPP arrival)

3.3 Autocovariance of the Number of Departures from a Leaky Bucket

The burstiness and correlation charucteristics of the traffic are not only captured by
simple burstiness index such as VMR and the short term covariance (e.g. at lag 1). In
order to model the departure process accurately, it is necessary to look at the long term
variance. In this section, the mean, variance and autocovariance of the number of depar-

tures at different lags are presented.

3.3.1 Number of Cell Departures from Leaky Bucket During a Slot

We let D, ; denote the number of cells departing at the end of a slot due to the i — j
state transition (Figure 3.30), / and j are states of the system which retiect both number of
tokens and cells. The relationship among the number of tokens (m), the number of

cells (n) and the state of the system (i = M —m + n) is listed in Table 2.1.



d (0<isM): icellsdeparting from the Leaky Buchet at ceriam state transition

Figure 3.30 State Transition Diagram for Leaky Bucket Output

For i 2M + 1, there is only one departure, then

1,
D‘._J= {0’

ForO<i<M,
J=i+1,
D:.j= {M—i+l,

0,
Fori =0,

Js
Do,,= {M,

i-1<j
. j_; (3.21)
i-1>j

i-1<j<M

j>M , (3.22)
i-1>j

<M

J 1.23)

j>M
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In summary, the number of departures (D, j) at the end of a slot due to the i — j state

transition could be written in the following form:

min (M, j) - i, i=0
n(M,j)-i+1, O<isM
D - min(M,j) —i+1 . i (324
hJ 1, i2M+1
0, i-1>j
(01 2. M1 M M .. M M M|
o1 2. M-1 M M ... M M M

001 . M-2M-1M-1.. M-1M~-1M-1]

D=1[D]1=1000.. 0 1 1L 1 1 (3.25)
00 0 0 I 1 1 1 1
000 0o 0 0 1 1
000 0 0 0 1 1
000 0o 0 0 0 I 1

3.3.2 The Mean, Variance and the Third Moment

Then the mean D, the second moment D2, the variance Var (D), and the third

moment D° of the number of cell departures at the end of a slot are obtained as follows:

M+N M+N

D = E:xiE:L%ﬂ%j (3.26)
im0 j=0

=3 M+N M+N )

D"= Y x; > D p; (3.27)

im0 j=0




Var (D) = D*- (D)’
M+N M+N

5 s (3.28)
= 2 X; 2 D p; - (D)
i=0 ;=0
= M+N M+N ;
3 ] ; ,
D z X, z D,.'Jp“ (3.29)
1m0  j=0

where p, j is the i, jth entry of the state transition probability matrix P given in (2.3), X,

is the steady state probability given in (2.4).

The Variance to Mean Ratio (VMR) of the number of departures from the Leaky

Bucket is given by:
M+N MaN ) M+N M+N 2
v D ZX.ZD:‘,,'P:,J‘[ inzl)i.jpl,j]
VMR = Yar(D) _ i-0 j=0 — M+I:I-0 j=0 (3.30)
X5 XD,
im0 j=0

3.3.3 Autocovariance of the Number of Departures at Different Lags

Let i (k) denote the state of system at the end of (k- 1 )th slot and just before the
beginning of the kth slot, and j (k) be the state of the system at the end of kth slot, just
before the beginning of the (k + 1)th slot.

itky Jjlk) itk+n) Jj(k+n)

L L L L A\ 1 1 I3 1
3

k-1 k k+1 k+n-1 k+n k+n+1 (sSlOt)
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For simplifying the documentation, let i(k) = i, j(k) = j, i(k+n) =1 and

Jlk+n) = m.

The autocorrelation function of the number of cell departures at the end of the two

slots with lag of n slots is

Ren = EIDiy, iy Pith o ny,yikem]
M4+N MaN M+ N ( UM+N 3.31)
. .
= > 52 Dipi Y P Y Db
i=0 ;=0 =0 m=0

where pj(",) is the j, {th entry of the multiple step transition probability matrix PP pis

- - T ' i -1
the state transition probability matrix given in (2.3}, and P W pxpi-h,

Then the autocovariance of the number of cell departures at lag n is given by:

2
CC’n = RCn_ (D)
M+N M+N M+ N l)M+N
(n-
= Z X Z D; p;; 2 Pi 2 D, Py, m
. . (3.32)
im0 j=0 1=0 m =0

M+N M+N 2
‘( 2 %2 Dip
im0 =0
The autocorrelation coefficient at lag n is:

CCn

rCn = Var (D) (3.33)

where C~, and Var (D) are given in (3.32) and (3.28).

Some numerical examples are given for the autocorrelation coefficient of the number
of departures from the Leaky Bucket. Figure 3.31-Figure 3.38 show the autocorrelation

coefficient at different lags for Poisson, GGeo and MMPP arrival processes. The effects of
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traffic load, token pool size, SCV of the interarrival time and IDC of arrival process on the
correlation of departure flow are presented. We have observed that autocorrelation coetfi-
cient function is unstable before lag 10. It is clear that only taking correlation statistics at

lag I or 2 to mapping the output traffic is very approximate.

For the Poisson arrival process and lightly loaded or large token pool size systems,
the departure flow has the same correlation characteristics as the arrival process as shown

in Figure 3.31 and Figure 3.32.

The numerical results shown in Section 3.2 for lag 1 are verified the same as using the

method in this section by setting lag to 1.

0.01 r r r y . —
load = 0.85
0005} T L
0.65
0.45 ——
< o+ - VA Rl gl A0
2 0.26
2
[*)
s -0.005}
&
[33
§ Poisson arrival
£ 0011
= M=3
-0.015}
_0'02 [ 1 A L] A 4
0 5 10 15 20 25 30
lag (slot)

Figure 3.31 Autocorrelation coefficient of number of departures at different loads for Polsson arrival
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Figure 3.32 Autocorrelation coefficient of number of departures for different token pool size M for
Poisson arrival
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Figure 3.33 Autocorrelation coefficient of number of departures for different loads for GGeo arrival
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Figure 3.35 Autocorrelation coefficient of number of departures for different C: for GGeo arrival
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Figure 3.36 Autocorrelation coefficient of number of departures for difterent loads for MMPP arrival
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Figure 3.38 Autocorrelation coefficient of number of departures for different arrival IDC for MMPP
arrival

3.4 Index of Dispersion for Counts (IDC) of the Departure Process of a
Leaky Bucket

Gusella [35] demonstrates that Indexes of Dispersion of Counts (IDC) is a valuable
and valid tool for characterizing the variability of a process. The IDC is relatively straight-
forward to estimate and conveys much more information than simpler indexes such as the
coefficient of variation, that are often used to describe burstiness quantitatively. The IDC
at lag n can be expressed in terms of VMR and the autocorrelation coefficient at lag &

n-1
IDC, = VMR [1 +2) (1 - f)er] (3.34)

k=1

where VMR and r, is given in (3.30) and (3.33), respectively.
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Figure 3.39-Figure 3.47 show departure IDC versus lag at different traffic loads,
token pool sizes under Poisson, GGeo and MMPP arrival process. From these figures, we
can see the departure IDC becomes closer to the arrival IDC when lag increases. It seems
that the long term IDC (lag — =) is likely to be preserved, same conclusion is obtained
by Saito [36]. However, the reduction of Variance to Mean Ratio (IDC at lag 1) under the
heavily loaded systems is larger than that under the lightly loaded systems, and that
through the system with smaller token pool size is likely to be larger than that with a larger
token pool size. These results are very helpful to us to do the statistical matching of the

departure process of the Leaky Bucket.
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Figure 3.39 Comparison of the analysi' results with simulation results for arrival and departure IDC
(Poisson arrival)
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Figure 3.41 Departure 1DC for different token pool size for Poisson arrival
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Figure 3.42 Comparison of the analysis results with simulation results for arrival and departure IDC
(GGeo arrival)
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The calculation of IDC in (3.34) is very time consuming because of those seven sum-

mations [(3.30), (3.32)-(3.34)], especially when the Leaky Bucket has large dimensions of

M and N. Since the autocorrelation coefficient rens autocovariance C ci and the autocor-

relation R, have the following relations:

CCk

2
ergVar(D)’ CCK = RCA—"(D)

(3.35)

we make some modifications to the equation (3.34) in order to speed up the calculation.

[~ n
IDC,,, = VMR 1+22(1_n_i1)rc‘]

& k=1
[ 2« k)
=VMRL1+€1 Z(l—m/ca]
k=

[ 2 " | " n 2
= V —_ —— _- -
MR L1 + Vd( Ret o lkz kRCL. 3 (D) ]]

- VMR:h\—'Z—(d)—g(D)Z):I

n n
where @ = Y Rep-—— 3" kRq,.

k=1 k=1

n n M+NM+N M+N " l)M+N

ZRCI = 2( 2 Z ,-,,P,,,ZP,,z Z Dl,mpl,m]

k=1 k j=0 i=0 [=0 m=0
M+N M+N M+N/{ n k-1) M+N
SRR T LI
j - im0 {=mQ Nl
M+N M+N M+N M+N

- X ZxD,,,P.,Z ¢, E 4 mPt,m

j=0 i=0

(3.36)

(3.37)




M+NM+N

n

EkRk' Z Z

k=1 j=0 i=0Q
M+NM+N

- X XDy

Jj=0 i=0
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M+N{ n h=1) M+N
l,jpivj Z[kaj.l JZ Dl,mpl,m
I=0 k=1 m=0
M+N M+ N

i, 1_14, Zlemplm
=0 m=0

(3.38)

where C, = ij, and C, -Zk(‘ D

k|
Then we have ¢ as:

k=1

n n
1
D=y Rev= 7= Y kR,

A=
M+N M+N

- Z 2" ,,,puz

j- [-0
M+N M+N

ke 1

M+ N M+ N
( ) 2 Dl mpl n (3.39)

m =
M+N M+N

= Z ZXD/)UZCZ Dlmplm

]- j=(

where

=0 m=0

n
D T S

kw1 k=1 (3.40)

(k-1)
n+l)pf"

Finally, IDC atlag n+1 is given by

IiDC,, W = VMR|:] +

Var (D)

M+NM +N M+N M+N )
]}3.41)
j=0 i=0 /=0 m=0

2 sz ijZCZDlmplm Z(D)

Figure 3.48-Figure 3.53 give departure IDC at lag 20, 40 and 80 versus traffic load. At

smaller lag, IDC has the similar control effect as VMR. However, when lag is set to a
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larger value (e.g. at 80), the control effect becomes less. From these results, the same con-
clusion can be drawn as before. The long term IDC of the arrival process seems to be pre-

served by the Leaky Bucket mechanism.
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Figure 3.48 Departure IDC(20) vs. load for different token pool size M (Poisson arrival)
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Figure 3.49 Departure IDC(40) vs, load for different token pool size M (Poisson arrival)
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Figure 3.50 Departure IDC(80) vs. load for different token pool size M (Poisson arrival)
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Figure 3.51 Normalized departure IDC(20) vs. load for different token pool size M (MMPP arrival)
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Figure 3.52 Normalized departure IDC(40) vs. load for different token pool size M (MMPP arrival)
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Figure 3.53 Normalized departure IDC(80) vs. load for different token pool size M (MMPP arrival)

3.5 Statistical Matching Procedure of the Departure Process to a two-
state MMPP Model

Finding an appropriate representation for the output process of a Leaky Bucket is of
paramount importance for network performance evaluation. With the correlated input, we
are facing the challenge of obtaining a suitable traffic model for the departure process of
the Leaky Bucket which can capture both the burstiness and the correlation. Recently,
some studies analyze the statistical properties of the departure process of the Leaky
Bucket. Only few [8] [33] presents a traffic model to approximate the departure process.
Wau et.al [8] vse a two-mini-source model to characterize the departure process of a Leaky
Bucket by considering the autocovariance. But determining the parameters of the two-
minisource model is very complicated and time consuming. As demonstrated earlier in

Section 2.3, our MGeo model gives very good results for modeling the interdeparture time
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distribution of the Leaky Bucket scheme. However, the MGeo model only captures the
burstiness of the departure process. From the results shown in Section 3.3, we know that

considering the long term correlation is very necessary for appropriate modeling the

departure process.

The MMPP is a model that has received much attention in recent years. It is a power-
ful, analytically treatable model that can capture the burstiness and correlation. To reduce
the complexity of solving queues, the departure process may be approximated by a sim-
pler process such as two-state MMPP that can capture the important characteristics of the
departure flow from the Leaky Bucket as closely as possible. The two-state MMPP is
defined by four parameters (}1,,):2) and (&,6,) . Then the problem is reduced to
choosing the parameters of the two-state MMPP using four metrics of the departure pro-
cess of the Leaky Buckei. For example, let us assume that the first four moments of the
departure process are known. Then, using the equations of the first four moments of the
two-state MMPP and the given values, we have four equations and four unknowns, which
can be solved to obtain the required unknowns. However, in general, there is no guarantee
that there is a two-state MMPP that matches the first four moments of the departure pro-
cess exactly. Even if there is an exact match, we have a nonlinear system of equations to

work with. Hence, most often the matching has to be done approximately.

In order to accurately model the departure process of the Leaky Bucket, it is impor-
tant to capture both the variance and the long term covariance. In our procedure, we chose
to match the Variance-to-Mean Ratio (VMR) and the long term autocorrelation coefficient

(r,) of the number of departures.

We assume the arrival process is the 2-stac MMPP with parameters (A, lz) and

(0,,0,). Then
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A, O -0, O,
A= , R= (3.42)

In order to capture variance of the number of departures of a Leaky Bucket, we

denote

VMRdepanurc -0 (3.43)
VMRarrival
where parameter 0 is the ratio of departure VMR given in (3.30) to arrival VMR.
By definition of VMR:
Var (a) Var (D)
VMR iva = X ’ VMR departure Ay (3.44)
a

where Var (a)/Var (D) is the variance of arrival/departure process and A, /A, is the

average arrival/departure rate of the Leaky Bucket. In addition we know
Ay =A,(1-P;) (3.45)
where P, is the cell loss probability.

Then the variance (Var (D) ) of departure process can be obtained from

(Larc2y ), (Yer) _ g 00

a

Substituting (3.45) into above equation, we have

Var (D) = 6Var(a) (1-P;) (3.47)
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From [36] and the conclusion we reached in Section 3.4, we know that for the
MMPP/D/1 queue, the covariance structure of the departure process are likely to be pre-
served even when the variance is controlled by the Leaky Bucket. To simplify calculations

we assume that the parameters R and R which reflect the correlation structure have the

following relation,

=2
AQled

- (3.48)

oo

where Tt = 1/ (0, +0,), 1= z re, (refer to[41]), and 7y is the normalized autocorre-
lation coefficient. The calculati8ir Of the autocorrelation coefficient re, 18 very compli-
cated and time consuming as we discussed in Section 3.3. For real-time system control,
we suggest using the calculated curves (Figure 3.54) to find the value of 7y at different traf-

fic loads and token pool sizes. Then R = YR, G, and &, are given by
6,=v0,, 06,=1Y0, (3.49)

We notice that from [41] for the 2-state MMPP,

I 2
A —hy) 6,6 (A, -2,) 0,0
Var (D) = (A1~ 2) ‘2 2 Var(a) = —! 2) '2 2 (3.50)
(6,+0,) (0,+0,)
26, + A6 A, G, +A,0
Qpepaiac Iidcod R Wl b i (3.51)
01 +02 Ol +02
Substitute (3.50) into (3.47) and (3.51) to (3.45), then &, and A, are found to be
A=A (1=P (h ~45) 0, B(1_P (3.52
1 = a( - L)+ 0|+G2 - L) 3.02)
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(A, -%,)0,

hy = A, (1-P)) ~—oTo, o(1-P,) (3.53)
1

where 0 is the ratio of departure VMR to arrival VMR and P, is the cell loss probability

given in (2.6).

10 T
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Figure 3.54 Normalized autocorrelation coefficient vs. traffic load

3.6 Conclusions

In this chapter, the characterizations of burstiness and correlation are discussed in
terms of number of departures from a Leaky Bucket. The probability of the number of
departures and the correlation of the number of departures between two consecutive slots
are derived by using similar mapping procedures. We also consider the long term covari-

ance in terms of autocovariance at arbitrary lags and IDC for the departure process of the
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Leaky Bucket. Finally a two-state MMPP approximate model is suggested for future study
to model the departure process of the Leaky Bucket. Further studies and verifications are

needed through analysis and simulation work.



Chapter 4

CONCLUSIONS AND FUTURE WORK

The Leaky Bucket mechanism 1s widely considered to be the most promising
approach for congestion control in the high-speed ATM networks. The study of the depar-
ture process of a Leaky Bucket is very important for the network performance evaluation.
In this thesis, we have discussed various statistics of the departure process of a buffered

Leaky Bucket scheme.

The Leaky Bucket scheme as a policing function in ATM networks must be available
for every connection during the entire active phase and must operate in real-time. Our
MGeo approach provides a good approximate model for the interdeparture time distribu-

tion of the Leaky Bucket and is computationally very efficient for real-time control.

The burstiness and correlation control effects are extensively examined in terms of
SCV of interdeparture time, VMR of number of departures, and autocorrelation coeffi-
cient of two consecutive interdeparture times/number of cell departures between two con-

secutive slots.

The analyses are carried out under a wide range of traffic sources such as Poisson,
Generalized Geometric (GGeo) and Markov Modulated Poisson Process (MMPP). Simu-

lation results are provided to verify the accuracy of the various mapping procedures.

11
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Numerical results are obtained in order to investigate how the traffic characteristics of
the departure process of the Leaky Bucket are affected by the token pool size, the token
generation rate, the burst a. d correlation degree of the arrival process. Based on the results
we find that by decreasing the token generation rate the traffic flow gets smoother but cells
may experience longer delay in input buffer. By increasing token pool size, smaller cell
delay but higher bursty traffic flow may obtained. These results give the design engineer
an idea of how to set the various parameters of a Leaky Bucket in accordance with the

agreement between network and users.

We also look at the covariance function and Index Dispersion for Counts (IDC) of the
departure process of a Leaky Bucket. Various numerical results arc provided under the dif-
ferent arrival processes for further study. Finally, a two-state MMPP approximation is sug-

gested for the departure process of the Leaky Bucket.

Although the results discussed in Chapter 2 and Chapter 3 are promising, there is still

a number of issues that remain to be investigated and studied further.

» Modified Geometric (MGeo) model is demonstrated to be suitable for the interde-
parture time distribution of the Leaky Bucket. A more general model based on

MGeo which can also capture the correlation effect may be investigated.

« The calculations of the covariance function and Index of Dispersion for Counts
(IDC) is complicated and time consuming. Simplification of those calculations is

possible, and useful for the real-time control.

o The 2-state MMPP approximate model will be verified through simulation under
the different traffic sources such as voice, video and data. This may result in more

precise matching procedure.




Appendix A:

SIMULATION MODEL

Simulation of the departure process characterization of a Leaky Bucket unier differ-
ent traffic arrival processes is implemented in the UNIX environment using C. The flow-

chart of the simulation program for the Leaky Bucket is shown in Figure A.1.

In the simulation, time is segmented into fixed size of slots, and a slot is the minimum
duration of any event. Cells arrive to the input buffer of the Leaky Bucket according to a
Poisson or GGeo or two-state MMPP process. And tokens are generated at a fixed rate and
stored in the token pool, if the token pool is not full. An arriving cell that finds the token
pool non-empty departs the system and one token is removed from the token pool. An
arriving cell that finds the token pool empty joins the input queue if buffer is not full, oth-
erwise it is lost. The simulation is made over a specified number of cells generated to the
system at each simulating point. The simulation yields a set of performance measures:
system load, queue length and queue length variation; and output statistics: mean, vari-

ance, SCV of interdeparture time, VMR of the number of departures and IDC.



Initialize
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|_GGeo  |— cellArival
| MMPP

¥

| Deterministic|—__
[ mmpP
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Y

Cell Departure

v

Update Statistics

Simulation
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Yes

Compute
Summary Statistics

Figure A.1 Flowchart of the simulation program for the Leaky Bucket scheme

114



Appendix B:

CONFIDENCE INTERVAL AND MAXIMUM ERROR
OF ESTIMATE

For each simulation used in this thesis, the method of repcating the simulation experi-
ment is used for analyzing the data. The experiment is run many times using different (and

presumedly independent) streams of random numbers for different runs.

Let m be the number of runs, and n be the observations in each run. Let d,.m be the

delay of the ith cell in the jth run. d,.U); 1<i<n, 1 <j<m. The total number of cells

gencrated is m - n. We have total of m - n observations for each statistics analysis.

We denote the sample mean delay of the jth run by

n I3
_ T4

> Jj=12,...,m (B.1)

Then the set {d U). 1 <j<m} forms m independent and identically distributed random
variables. The best estimates of the mean d and variance 0‘2, of the variables d W are

given by the overall sample mean delay

115
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n

am— m n
1 W) 1 w
= — 1 = — A
I - ] - |-

and the sample variance

m ——
o - > (d(j) —-21)2 (B.3)
d  m-| .
J=1
respectively.

Since the number of cells generated is sufficiently large, the variables dY are
approximately normally distributed. Then, the distribution of the variable
a—mean( cxj/m)l/2 can be approximated by the r-distribution with m -1 degrees of
freedom. Thus, the confidence interval for the mean is given by d + E, where E is the

maximum error of estimate and can be obtained by

E- Yasa, m-1

773 Ou (B.4)
m

The value of t,/, €an be found in Table B.1.

Taking 95% confidence interval obtained from 20 runs as an example, we know from
the figure on the next page that @ = 1 -95% = 0.05.Then /2 = 0.025 and m = 20.

So the parameter t_ ,, in (B.4) is given as 1002519 = 2.093.

In our experiment, the simulations results are obtained from total of 20 runs for each
token generation rate 1/a and each token pool size of M considcred. We gencrate over
50K cells to the system for each run. The mean values are within 2% of the true mean with

95% confidence.



Table B.1. Table of Percentage Points of the t-Distribution

la
Degrees of
Freedom fo 100 Tooso foozs tooio fo.00s
1 3.078 6.314 12,706 31.821 63.657
2 1.886 2.920 4.303 6.695 9.925
3 1.638 2.353 3.182 4.54] 5.841
4 1.533 2.132 2.776 3.747 4,604
5 1.476 2.015 2.571 3.365 4.032
6 1440 1.943 2.447 3.143 3.707
7 1.415 1.895 2.365 2.998 3.499
8 1.397 1.860 2.306 2.896 3.355
9 1.383 1.833 2.262 2.821 3.250
10 1.372 1.812 2.228 2.764 3.169
11 1.363 1.796 2.201 2.718 3.106
12 1.356 1.782 2.179 2.681 2055
13 1350 1.771 2.160 2.650 3.012
14 1.345 1.761 2.145 2.624 2977
15 1.341 1.753 2.131 2.602 2.947
16 1.337 1.746 2.120 2.583 2.921
17 1.333 1.740 2.110 2.567 2.898
18 1.330 1.734 2.101 2.552 2.878
19 1.328 1.729 2.093 2.539 2.861
20 1.325 1.725 2.086 2.528 2.845
21 1.323 1.721 2.080 2.518 2.831
22 1.321 1.717 2.074 2.508 2.819
23 1.319 1.714 2.069 2.500 2.807
24 1.318 1.711 2.064 2.492 2.797
25 1.316 1.708 2.060 2.485 2.787
26 1.315 1.706 2.056 2479 2.779
27 1.314 1.703 2.052 2473 277
28 1.313 1.701 2.048 2.467 2.763
29 1.311 1.699 2.045 2.462 2.756
o 1.282 1.645 1.960 2.326 2.576

Source: From M Memngton, *“Table of Percentage Points of the 1-Distribution,” Biometrika, 32, 1941, p. 300

Reproduced by permission of the Biometrika Trustees.
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