/

‘

A

v \\ ‘ " .
B g
« \

. Canadian Theses Service
. Ottawa, Canada .

~ du Cana

.K1A ON4 \,
&
”ne .
i . .
B
.. \)
\ ~ . -
. b - & |
R

F A

.NOTICE

The quality of this mi diche is heavily dependeﬁt upon the -

quality of the original tisis submitted for microfilming. Every

, effort has been made to ensure the highest quality of reproduc-
tion possibie. . :)

If pages are missing; contact the university which grénted the
degree. - >)

Some pages may have indistinct print especially if the originai

pages were typed with a poor typewriter ribbon or if th&yniver-
sity sent us an inferior photocopy.
» N : 4 .

Previously copyrigh}ed materials (journal articies, published
tests, etc.) are not filmed. . ‘

Reproduction in full or in part of this film is governed by the

. Canadian Copyright Act, R.S.C. 1970, c. C-30.

b
rd

THIS DISSERTATION

' HAS BEEN MICROFILMED
EXACTLY AS RECEIVED
NL-339(r.88/08)

Bibliothéque nationale

Services des théses caradiennes

., THESES CANADIENNES

' {
N

—

. Avis (O

La qualité de cette microfiche dépend grandement de la qualité
. delathése s_oumls@au microfilmage. Nous avons tout fait pour
assurer une qualité supérieure de reproduction.

S'il manque des pages, veuillez communiquer avee I'univer-
sité qui a conféré le grade.

"La qualité d'impression de certaines pages peut laisser .4
désirer, surtout sl les pages originales ont é1é dactylographiées
a l'aide d'un ruban usé ou si I'université nous a fait parvenir
une photocopie de qualité inférieure.

Les documents qui font déja {'objet d'un droit d'auteur (articles
de revue, examens publiés, etc.) ne sont pas microfiimés. -

La reproduction, m&me partielle, de ce microfiim est soumise
a la Lol canadienne sur e droit d'auteur, SRC 1970, ¢. C-30.

. LA THESE A ETE
MICROFILMEE TELLE QUE
NOUS L'AVONS REGUE

-&.\ >

-

- %) .
i w 3
v ' . ,.ﬂ o) \
’ .,) . / / '\\ . ‘}
. p) ‘. P ". : '
Dcsign and Analysis of Graph Algor?th-s.
4 ‘ ' spanning Tree Enuneration,'?lanar Embedding and
S , Maximal Planatization : .
g) ’) (B N , '?}.—'; y - ,
oy o Do A
‘ X |) ‘\T . ". ‘ R ‘- e ! .) . .
o) Rajagopalan’iaygkumarw . ' .
Y | . |
b oS s . “ r 4
~A Thesis = . RS
. o - R in ‘ » .
- ‘ | The Departmenb\\:)/ .
w ‘ o of
L Electrical Engineering .
lA:“)\, . ’ 4
& .)
»~ k o

Presented in Partial Fulfillment of the Requirements
for the degree of Doctor of Philosophy at
. e Concordia University
o Montréal, Québec, Canada

%
o L '“Aic;/ust,‘ 1984

— ' -~

© Rajagopalan Jayakumar, 1984

~

AN . /

/ Permission has been granted
to ~the National Library of

Canada to microfilm this
thesis and to ‘lend or sell
copies of the film.

or (copyright owner)
eserved other

publicatiomr rights, and.

neithédr the . thesis nor

- extensfive extracts from it

printed or otherwise
reproduced ' without his/her
wnAltten permission.

»r

L'autorisation a ®t& accordée
a2 la PRiblioth&que nationale
du Canada de microfilmer
cette th@se et de pr8ter ou
de vendre des exemplaires du
film. oo
, " -

L'auteur (titulaire du droit
d'auteur) se r&serve les

autres droits de¢ publication;.

ni la th2se ni .de longs
extraits de celle-ci ne
doivent @&tre imprim&s ou
autrement reproduits sans son
autorisation &crite.

/
/

ISBN 0-315-30667-X

Py

s

-~

{})

t
.. Spanning Tree Enumeration, Planar Embedding and
Maximal Planarization

'y

.«Z"
G

JDRajagopalén Ja&akumar; Ph. D. @R '

Concordia University, 1984.

-

kS

This thesis 1is concerned with the design and anal&éis

of some graph algorithms and is orgahized into, two parts.
-) |
N\

In Part I a detailed computational complexity analysis
of a spanning tree enumeration algorithm\due to Char is
given. .

‘e Py

First the analysis is pfésented for general graphs. An

expression for the number of sequences generated by the

P
\

aléorithm is then .derived and a few properties of the

algorithm are established. The éohplexiﬁy of this algorithm

is shown to be O(n3t) where n is the number of Qerticgs of
the graph and t is the number of spanning trees. Two

heuristics aimed at reducing the number of sequences

generated’ are proposed for selecting the initial spanning

tree and an implementaéion usiﬁg path compressgon' is also

described. _ .
—

/

, : T

.
\
. - . .
. [s
. . - .

= iv -

a , - i)
Analysis of Char's algoa&thm for special graphs is then
<
carried out. A class of graphs for which the algorithm is
bf. complexity, O(nt) is identified. Certain intéiesting’

results reiating to the complete graph, the laddeg,—gnd‘ th
\h///~

wheel, which belong to this class, are obtained.

3

.-
Next an efficient implementation of Char''s algorithm,

Q

called algorithm MOD-CHAR, is developed. Classes of . graphs

i

3

: ' Font o
for which algorithm MOD-CHAR 1is of compIéXiFy O(nt) are
. 4 .
identified. It is shown that when applied on largs complete
graphs (n > 8), algorithm MOD-CHAR regquires, on the \average,

at most 10 computational steps to generate a-Spanniﬁ‘ tree,
: Py .
€

.

Finally, a computational evaluation of Char's allgorithm

in comparison with an élgorithm due to Gabow and Myers is

a -

presented. - wx_

Q- ’
In Part II of the thesis, efficient algorithms to
obtain a'planar;embedding of a planar graph and to determine
a maximal planar subgraph of a nonplanar graph are

developed. ' ' . - .

First the ©planar embedding problemlis considered. An -
embedding procedure thch involves placing the vertices at
different .horizonﬁal. énd vertical léQels in the plane is
developed. The vertical levels of the vertices are decided
by their st-numbers and an O(n) algér}thﬁ is presented to

.- - ”
-~

. ° ’
-
.0 . v - B .
. . \
’

- :
determine sheiﬁbrizontal levels of the vertices. Another.
O(n) algorftﬁm to determiﬁe tﬂe order in whicﬁ ?dges
.entering a vertex from lower numbegpd vertices should be
‘draWnu is ‘also develdggd. A proigéure to draw by hand the

° . ‘
edges.without crossovers is then Qéscribed.

-

. o
e " fe
\

Next the maximal planariza ion problem 1is considered.

Certain results reiating to a planarization algorithm due to-

- i , .
Ozawa and Takapashi are firsg/established}) It is shown that

.this glgorithm doBs not, /in géneral, determine a maximal

3

planar subgraph. A new mayimal planarization algorithm of

‘ complexity O(nz) is then eveloped; <

k:
7

. .
AT,

aJ . toA ;'\ A

h]

- ! . % R - N
. I would like to record my deep sense of gratitude to my

v) - ~ -~ 4&' : . ')‘
. . thesis supervisors Dean M.N.S. Swamy and Professor

K. Thulasiraman for their excellent guidance during the

. course of this research. . o.‘

) S

i am delighged to ma%e ébecigl mention of all the help
pnd_éncouragément I have :eyeivea from Dean Swamy and of the
deep interest which Professor Thulasiraman has shown in my
work dﬁring both my Ph. D. research at Concordia University,
Montreal, Canada and M. S.. research earlier at the Indian
Institute of Technology, Madras, India. I am grateful to

them for all -these things.

I would also like to thank Concordia Univérsity for the
’

University Graduate Fellowship awarded to medfrom September
i . .

1981 to August 1983. .

Thanks are due to all my friends £&8r keeping my spirits.
X 5 '
.alive which made this thesis possible.

J

f
-
>
L2
lx
»
I\)

-

- vii -
TO
THE MEMORY OF
MY MOTHER

N ; i .. . Q)
_ . . i
Ll - - . . ¢ -
- - -
« A " .
. : % - - - > - B . ,
- . - -
) R . - .
- * .
T * v - -
v . - .
ot + . . B]
- 1[!}'[0][{ R - . . .
< e L - .
.. . ———— . } _ .
. - -) LT —
. . . N . N
R) - .
- v .
’ . @ - b
- . . - - B
) o
’ N . - . N)
. . . P
. N B .
< - . ., >
. - & . "
13 il - » v - . .-
. . -
) . -) , - .
+ - . .
A - . - .
3 , * . N -
: - r . - .
. . . -
- » - .
- . K .
s - . - -
- .4
- [- °
v » ~
- . . - - LEY
- ~ L -
- ¢ - G .
D «
< ‘ v
. B

K9

A

LIST OF TABLES

Chapter’

1. INTRODUCTION

.
LIST.OF FIGU&ES

A
» \\‘ * '-
- viii - . huf
;
_TABLE OF, CONTENTS)
o , Page
A ’ ?
.;...........l....l..I.-.'............ xl

.

‘......l:".......'"..-I.......“....I....xviii

\a
® 9 0 @ D 5 000 O O G PO OSSOSO OSSO SE S S 0AS S 1

L

PART I - SPANNING TREE ENUMERATION e T

-

2. SPANNING TREE ENUMERATION ALGORITHMS ..cecossen 4

3.1
3.2

3.3

3.4

4. ANAL

UTATIONAL COMPLEXITY OF CHAR'S ALGORITHM g 12

Char' s. AlgorAithm’ ’ "(. ® o8 6 0 '. e e ® 0 o 00 .'. ® 0000 q ‘ 13
Computational Complexity Analys(is for
']

General Graphs

....’...................'.O’o 24

Heuristics for Selecting the Initial

‘spanning TreeI..l......ll..‘\:j.l.... 42

&

® ® & 60 0 5 00000 9 eSS0 e W e e 46

Path 'Compression

YSIS OF CHAR'S ALGORITHM FOR.

SPECIAL GRAPHS '.oootqtoooio.tctltl..-‘...-a..ll" 56

T 4.1

qa-c.ﬁ

Cou;plexi ty of Char's Algorithm
Special Clgss of Gr‘aphs esssesdeccsncenses
Char's Algorithm on Comp'leten Graphs,

Laddgrs and Wheelse... cocsase ./::-:’; 61

- > (
‘.) N

P \)

%é A -
57

’ | R o ". . N N‘ ‘~-- . -’ ,. "‘-"-F 4‘, . \‘ B
N " *ul - .‘..'-p' ““.‘ ';‘
/‘ ’ “ Y@ fc "» i
. - ix- ‘“ ‘.I". ‘ .Q
.
W . . T » ’
4.2.1. Complete GraphseMicvecccscenss 61
4.2.2.‘Ladders S & 9 900G O % PO U S S SO D OSSO SESEDE ‘63
4‘.2.3 Wheels)t“..I.."...........-‘..l 75 /
N .
4.3 Min-Tree-Numbér of a Graph and Some Yoow
COﬁjectures c.oo-.'-oc”nq00050‘0000000-:0.'0. 96_
¥ ‘
S. MOD-CHAR: AN EFFICIENT IMPLEMENTATION OF
CHAR'S ALGORITHM .O.......l‘.'l...‘...'......... 99‘
L : ™
5.1 Algorithm MOD-\CHAR ® 8 6 0 6 P 0 6O ¢ OO E OO OO OSSO S 99 ‘
5.2 Comﬁutational Complexity of Algorithm
LY ‘MOD-‘wARO.l..ﬂ.....'............. 104
5.3 Computational Experiencescceessssesss 110
\ ,
6. A TOMPARATIVE EVALUATION OF CHAR'S ALGORITHM.K .. - 114"
. o
v 6.1 Basic Operations of the Algorithms ,...... 115
6.2 The Computational Evaluation cerescssesses 124
125

6.3 conClusion ® 6 8 9 5 5 005 00O O SO O SO0 0SS e e

-

o . '
. PART II - PLANAR EMBEDDING AND MAXIMAL PLANARIZATION

-

7. PLANARITY TESTING AND PQ-TREES ..ccccccccccenss
»

7.1 Planarity Testing-Algorithmsccceess

7.2 Lempel, Even, and Cederbaum's Planarity

A

Testing Algorithm‘..‘........‘...l

.

7.3 ‘ PQ-trees to Represent BUSh FOENB seecsscos

A Y

7.3.1 PQ-tree Representation of a

129
130

135
161

-~

BuSh Form '...A.rco.(o’.a--o#-ou0.ooo-..ooﬁ 162 o

) 7’3.2 Templata Matcflim: ..‘l...l.4.."./'.l.. 167

P -

8. A O(n) VERTEX-EDGE ORDERING ‘ALGORITHM FOR

PLANAR EMBEDDING ~‘.u-oo0.0‘0,.0.ooooooo‘oon‘-oo;o.o-'. 201

<3
[

' F]
8.1‘ .Bush FOINB ahd T-Ordef‘ Ju‘oooouc;o.ooioo;.o 204

8.2 BlOCk G-taph and Ti'Or.der ";o.ocoo--non..o 213

8.3 Vertex Order and Planar Embeddirng 230

!
9. A O(n?)ALGORITHM FOR MAXIMAL PLANARIZATION
OF NONlPLANAR‘GRAPHS'...."......;... 247
'

9.1 Prfncibie of Ehe/Planatizatiqn .
. Algorithm ' 249
9.2 ‘dzawa‘a‘p Takahashi's qunarizétion

Aléorithm R R X R R R 254
9:3 .A New Graph-Planarization Algorithm - é?f

n

3»4F A Maximal Planarization Algorithm "....... 313

. 10. SUMMARY AND PROBLEMS FOR FURTHER

IWESTIGATION‘.....‘.....;...;... 339

~10.1 summary~’...."."......‘.......'.... ‘3396

10.2 Problems for Further Investigation 343

. 3 T . .
mEmNCE‘S ..’...‘.;......‘...............I'..l........... m

13

v aak 4 .
.&.’7. -~ xi - "
- LIST OF FIGURES . .

-

L

~

3.1(a) GfaéhG0‘...‘....‘...‘.l.......l'..‘..',.."

. ' »”

, 3.1(b) -Initial Spanning Tree 0Of G ..c.iveneecnveneas

3.2(a) Graph G, r

........‘...I...._....,.l....:,.......F

) £

3,2(b) Graph G

. <
l.......'O.......l...........Q.

2 ® & & o

3.2(c) Graph G
#
3'.2(6) G ph G4, ‘..'..I.....Q....-‘.C..I........t;'\...

® & & 006980 ¢ 080 SO O SO0 T OB IS C OO e 0SS SO

'a‘ .
Graph G to Illustrate Theorem 3.4ccces0

) 3.3(b) . Aspanning Tree“'O'fG -.ou,oaoo\--.c.-oc.-o-.o‘o

'3.3(c) Another ‘Spanning Tree of .G R R T

4.1(3) n-vel‘.‘tex Ladder Qo..-c.ono-....-.,..o}/.‘.’-n; .

4.'1(b) star Tree ‘..Q.‘..'...'.‘...Q.::..’.."....I.I;/.‘..

4.2 Graph Gi(S) ..;.‘...“‘.‘C....‘......0..‘.......'..
4.3(a)- Spanning Trees in Tk(l), l1<p iqk T

IA

4.3(b) Spanning Trees in Te(i), 1 < p'< k-itl

1

4.4(a) n-ve'rtexwheel ‘.‘........l.l....l...l..'....l"

. ‘)) .
4.4(b) Sta! Tree o.o-ouoco.t.‘..o-otoo-oo.-oo,oc.--c-o

-

73

" 74

76

4.5(a) n-vertex Wheel redrawn L........Ll..»,.}....lﬂug78

4.5(b) Graph G{® ... ol TTL
4.5(c) ‘“‘Graph G{s)-"e: ...’......‘..'..'...........‘........
4.5(d) Graph G}B’.e‘
4.5(e) " Graph G.e;........;;.....;....;.......
4.6 © Graph Gés) ;.....,....;qiéﬁ}............,.f..
.4.7]a) _ Spanning Trees‘in Ty (1) théh do not
contain the edge (1,n-1) o; the. edge (n-1,1),

lipin-i"........O.......'...‘...

7

78
79

°79
8l-
84

»

76

G . 20
¢ T . . S N éﬁ’
- . ‘ : xii - R . \ -,
‘ ; LS L T p :
&\:w* 4 7(?) | Spanning Trees %nkmﬁ;l(i) ghigh contain‘ P
. ‘ edge (l,n-1l), 2 &_ﬁ‘g n-i, 1 < q2p*l 88
. - . .4.,7(c) Spanning Trees in\§n_i(i).which cnntain“ w |
hdb;” | edge (N=1,1), 1 < P < A=l .uueveeeemocenennes - B9.
4.8(a) Spannipg Trees %n Tk(l; wﬁicn do nog‘contain
. ' edge (1,n—1;, 1< pié S 1
4.8 (b) Spanning Trees in Tk(l) which contdin T
' edge (1, n—i), 2<pP<k,12q@2pl eeenenn. 92
X ;.9ga) Spanning Treeé in T\, (1) which do not contain -;.
' — edge (1, n—1r, 1 <pp € k=i+l ciinvnineenieine. 94
' . '“4.9kb) "' Spanning Ereef_{n Tk(}l which contain ’
- edge (l,n4177‘2\§ P < x71+1:*1 <g<pl 4... 95
. 7.1 SE=graph G * «vueeliTeerentenecascncaneaanasans 138
7.2 Graph By ..eonviriesiiaiereniiinsiessiiseeasd?t 140
Lot jﬁh;f ©7.3 'Bush Form Bg eetessecsscranccracitosccassnies 141 -
.) %— 7.4 Bush Form'Bé cettecscatattitatcttreetriannnns 1#3
7.5 :mBush'Formw,ll- B} i..............g.,,......;» 146
o 1.g Bush Form B, = 2 Y e iieieereneenasaeadionee. 146
1.7 Bush Form B, = B3 cecsesscssscccssnnsessances 147
1.{, . Bush Form 340- - e T ¥
. " 1. 9 ’ Bush Form B, = Bg r..........:..,{.:..;,;..... 148
F :? . lO(a) Apush Form Bg ,.:....f:.,,............,....... ‘i49
' 74”b1b) Buah‘Fdrm BE eeterescencecasescnseaiasiesasas, 150
7.111 ."insh FormB.}-B-', ..'l........._........’.....,... 151
' .7412(a) Bush. 152
NN . 7.12(h) Bush 183
. M13t¢a) Bush 154
s "

Yo

A\
L)

St
~
o
L J
.4
- »
s
.
.4
w
[
-
~
<
ﬂ?. L]
n
o \

7.13(b)

7.14 (a)

‘7.14(b)

7.15

7.16
7.17

7.28
7.29

"7.30(a)
.7:30(b)

7.30(c)
7.30(d)

'-7.3oxef

7.31
7.32
7.337

)

Template P2

., PQ-tree T

Bush Form B

‘Bush Form B

LBush Form B

Bush Form B

PQ-tree T9 qgrpesponding to B9

Pruned-Pertinent Subtree of T9

!

are marked 'Full ..}.......................L.k

PQ-tree Tg

L3

Template P3

Template P4

Pyl

9

10

10

Template P1 .,

Template PS5

Template P6.

Template Q2
Template Q3

®

PQ-tree after.

PQ-tree after

PQ-tree after

PQ-tree ’I‘l

N

P@-tree '1'3

~

’ Template Q1

.PQ-tree after

= B

® 20 28 9 5P 0 s e

-

ll
Plane Réallzatlon of G

e e’e o o0

.

*9 0 ¢ 0 o e

LY I~

e v 09 @ s 00t o0 b

.
e 8 e 400

- xiii -

8 ® & 0 080 S B e te S e 0

o ¥

L

L
© 0 08 96890456 060600600aRsssBOEIPOGOESBSES

[}

(4]

-~

e & 5 00 e s VPO EA S BB

i, . .

L R R R e R N I N I I R I I N B R S N

L I I I I N N A N NN RN
“ a

'

LR I S

oo-i‘*”oc--‘."ono-oooooy

4 9 % @ &4 060 0 B 80

lyt..u(n

L4

LY
e v e’e e 20

Pertlnent Subtree of Tg. Pertinent Leaves
\ 1Y .

LU A R Y I A R R A BN A

® 0 00 0 00T SO LS N Rt ON 0SS sEL OB

S & 008000 9580
i

~

<

¢ ® 5 5 8009 0000020 08t e

' .
® 0 5 0600 0w 00 0.0 e

e

-
LI B RS SR I I B R BRI I A B)
. v

'8 88 0 0 8 00Nl e

*

,.l......."‘l'.'...l'.....'..l..QI

T

3 3
[ISIRN N

...ll......'...."..0.‘...‘.’.&
! .

) PQ-tree Tg ...010‘-\\\

1

*

applying Template P3 tq A
applying Template Q2 to B
applying Template Q2 to'C

applying Template P6 to D

1]

N
‘0".loatlloooooao‘oobll!Q0‘00
-

P R R R S I I T I S S RS Y
e s e
e dee e
-..‘-'o
-

e s 00

..“..............‘..'..‘...l.

0 8 &0 500 0 0 06 O 0 b eS8 e N
.

A3

N

155
156
157
158
159’
166
169

169

170

174
X75
176

177

179
180 -
182

183
184

" 186

186
187

187

188
189
189
199

= xiv -

7.34 - PQ-tree T4.Tz ..I...................‘....’... \190

7.35(‘) Po-tree‘Q..D...‘.l...'xff‘.'...Q.‘.‘....... 191 ’,

‘3
o

;.35(bT“PQ=£ree S & 31

7.36(a) PQ~tree Tag ceessessssensssssssssseassecasiasss 192
7.36 (b) PQ-tree T ..vvvequeveennnnnncassccancasnes,e 192
7.37(a) PQ-tree T ..eeueeuiencesecconueesetasaeeeees 193
7.37(b) PQ-tree TH' eeieeeceiiecaiiieenn.. 193
7.38(a) PQ-treg'§8 cesescssssssscasescscsesnsssssvasss 194
7.38 (b) ﬁaltree.rg A P K- 7
7.3§(a) PQ-tree Tg . & 1
7.39(b) . PQ-tree T},,.,,......1.....;.ﬂ...... 195

7.40(a) PQ-tree Ty wuevepirrnnesnsnceseioninenaaeis 196
7.40(b) PQ-tree THQ sesesersessosessascscsnsscneeyiss 196 7

7.41 PQ-tree T‘ll‘I..I..‘..;....O...‘Ql...ﬂ.ll. 197

t

8.1 Planar Embedding of Gg' in By .uzeeeesieeecses 208

8.2 Planar Embedding of By after Flipping _the ‘

Block -Containing Vertices 1, 3, 4, and 9 210

8.3 . Planar Embedding of G,, obtained from {

that Of’\—Gg l.....'..l..“...(‘...l........'....' 211~ Z_

°

:.........l.,‘.."“......I....ll.....l'l;..... 214\

=

............l.'..O.l".......-..........."‘.. 214
. «
+ 1 3 3 .
?

8.4

8.5

8.6 Block Graph .;...:.L.......:.:............... 219 °
8.7 7' -orders OS}hined From Status Information .. 229
8

.8 PQ-tree T;. \TL}lO) = (3), Tc (10) = (l): .)
JTR(lo) » (6.) \“:.‘.’DUOCOOI‘......ll.....t....ll. 233
8.9 ’ ~T£",T'Ci Tﬁ Ordets ..0:....";.0.0.._.’...c'..l.. 235

L4

8.10, Finding Vertex Order ...cccecececcccscccnasss ‘232

‘8,11
9.1

9.2

9.3

9.4

9.5 (a)
9.5(b)
9.6(a)"
9.6 (b)
9.7(a)

9,7(b)
9.8(a) .

© 9.8(b).

9.9
9,10
9,11
9412
9.13(a)
9.13 (b)»

9.14

9.15(a)

9.15(b)

19.16(a)

9.16 (b)

"PQ—gree T

Planar Embedding

- XV - .

.........‘.......,....QI..‘...

-

Nonplanar Grabh-G 0..bl...‘,....I.‘I...‘,....‘....

PQ-tree Tli. Ti
2 = T3

'T§

PQ-tree T

PQ-tree T3

.oo.ouu.--..aoo.o.td..oc.ol-lno
-y R
0 68 07000 0 p o et b '8 e e eessne

.C',..I.....l.:‘..l............

e

PQ"tree"T4 -o-oo.\-ooooooo-,o;toco-poo-‘.oo!o.-

PQ-trée‘ Tz ...'.l......‘.....l....l.........wl

PQ_tree TS. Edge (2'6)is removed AR RN

«

PQ-'tre’e T‘* -l.".I...‘..C......‘.:‘...'I..II...D

5

PQ-tree T.. Edgeg (4,7) and (5,7) are

b

removed ...‘.\..-.O.I....O....».;..........;....

.

‘PQ-tree Tg ...‘............"......I....'..‘;

PQ-tree T,. Edges (5,9), (4,9) and (6,10) are

nemoved ...l....l.l......"....'..........lll.\“.‘

/

PQ—tree‘Tg—.O.?....'............I.......

PQ-tree Ti for an n-vertex complete graph,

\...

NOnplanar Grath --.-‘oo.o;o-‘o-ooo-o--o.‘oio-

PQ-tree T, = T¥*

1
1;9;tree T

= *
T3
PQ—Eree T

= *
T3

B Wk W [V] |

PQ—-tree T
T

PQ-tree

® ¢ & & 0 6000 O W SO O S OO 00 T SO B DR

® & & O 0 90D 5SS S B S ST PO P 8,00 Ee e

N .
® &6 ® 00 8 b0 S @ LU S OB GOS0 O L0000 BN N e

o oo y'ss s e 00000000000 000D

5+ Edge (2,6) is removed,

Eg = {(2,6)} TS

)

PQ-tree Tg O....,o’o..."..’..‘l.tct.ll.l..ot..!.l

»

PQ-treeT .’.‘.....‘...;....l..‘..............‘.

~

PQ-tree Tg :.-0.000,.-’5...o..;o.o.oooo’.-o..on

245

261
262
262
263
264
264
265

.

265

266
266

267,
267

269

302
303
303
304
304

305

306
306
307
307

!

9.17 {a)

9.;7(b)
9.18 (a)

9.18 (b)
9.19
9.20
'2.21.

. 9.22
9.23
9.24 (a)
9.24 (b)
9.25
9.26 (a)

9.26 (b)
9.27 (a)
9.27 (b)
9.28 (a)
9.28 (b)
9.29 (a)
9.29 (b)
9.30

9.3

PQ-~-tree
E'

PQ-tree

s = (2,8}

L

T*

/

v

- xvi -

'C

N

-
(

7+ Edge (2,8) is remoy d,
..ll...........'."..\i....b.l...

7-..‘""..........'O.j...l.l....

PQ-tree Tg. Edges (2, 3) -and (3/6) are

removed, Ey = {(2,9), (3,9}

PQ-tree

PQ-tree’

\
.\Q:..-.'.‘.......

*
T8 .‘........'....'.O'....I...........

Tg R R R R R R R N N A o S A S B B BTN S)

Spanning Planar Subgraph

PQ-tree
PQ-tree T
PQ—-tree T
PQ-tree T
PQ—-tree T
PQ-tree
(2,8),

PQ-tree
PQ-tree
PQ-tree
PQ-tree
PQ~tree
PQ-tree
PQ-tree
PQ-tree

Maximal

e
e ~% ~Jd Nt O wn

T, =T

Nt %

= T

©

1
2
3
*
3
4 = T3
Tso

T*

H

H

H A3 3

3
©

Planar Subgraph

~ Planar Embedding of the Planar Subgraph G
/Edge;(2,8) can be added

e ® & 60060 8 0 50 s e BSE

. 'p.

2 5 @ ® S50 0.0 G 00 H O.O B 0SS S S PSS e 0D

® 8 & 000 0 & & 0508 P OSSN G O 0800 80 0 s

® © ® 5 80 0 O & PR O OO D HPOOLES O OSSOSO G Al s e 0

® ® @ © 66060 0 & 900 OO 00 LSS s s a0e

Edge (2,6) can be added.

(2,9) and (3,9) must be removed

/

\

o 5 & 9 850 0 ¢ v s -

Edges

s e 0 s
B

® O S P SO O 8 S CAOP O N 0SSPSO S0 0R NGNS EB O

2~
® o0 & 00 6 000" S 0
—

LS

® & © 6065 0 6 9 00O B O OO OO OO eSS AR SR

308 .
308

309
309
310

311

312 .
325
325
326
326
327

328
328
329
329

330

330
331
331
332
334

.

P

r

9.32 ., Planar Embedding of‘thé_Maximai Planar |

Subgraph

R 4
;
e
.
;
B
o
.
r
,
- s
.
PN
.
.
.
.
.
.
’
.
o
,

- xvii -

¥
'

® 6 & @ 00 00 +HEO O TBBOU VOGS QS TS OSSN ES

.
.
~N .
, .
- N)
2
. .
. '
o
i 3
’ o
. R
3 . B
A} - R
+
\
- . $
«
~ *

’ i}
* .)
9 .
L}
-
R N
&
1 .
4 - y
-\)
! .
¢
. | |
N .
(-] B ==
.. X .
») ~
,
i] Co
' . X 2
- . .
B . .
i 3
- 3
.
. ,
- N
- .
. “ R
G .
< o
s \
'l . .
i -
- N -
- . \
, N
o . - .
v ’ . .
- .
‘!. - .
AN + .
"
R . e
.
' ' ' . ©)
" N N -
B ..
,
.
. , . . N .
N v
L [.
. . .
v . v ! *
~ -, . ,

335

{4 I
4 A% T

A 3:3
3.4
5.1

- xviii -

LIST OF TABLES
X -

)

‘);n»..) Page

Test Graphs Il........l......’........‘........" 47

Number of Nori-tree Seqaences Generated 48

Number of Comparisons\Made cesssecvssetssenasne 52

E3

Exe.cu"tion Time .1'.‘.......'..-.....Q';...'..'... 55

L}
4 -
o

Execution Ti’me ® o 9 6 6 & 6 O 05060 000 00 &. . 0 ;. LI I] 112
Test G‘raphs ® ® 9 & 8 ¢ 0o 0O “.‘. 4 6 & & 0600 5 O 2 G QOO e .~. L] 126
Average Number of Computational‘Steps 127

Number 'of Edges Removed and Number of Edges

Added ® ® © B 0 00 0 O B SN G S ST O PO LS S Se S eE NN

Execution Time‘..‘...........;...........’

Y

4
«,

“MA"

RN/
-1 -
CHAPTER 1
INTRODUCTION
The impact of technological innovations on developments
in mathematics can hardly be wunderestimated, These
innovations ‘make possible design of large and 'complex
systems, Such systems require sophisticated mathematical
tools for their analysis and design; and this leads to the

introduction of new mathematical concepts as well as to a

. deeper study of already known concepti; For example, the

"availability of VLSI technology and computers has provided

great impetus to increased researcﬁ in a variety of
mathematical disciblinés. Graph theoéy is one of the areas
of applied'mathematics in which recent developments have
largely been influenced by the @omplexities of modern

systems,

The role of graph theory in unifying the study of
several engineering and scientific disciplines is now we;l
recognized. This unificati;n has Secome possibie becauseuof
the fact that ﬁor most systems, thei; behaviour ig
characterized by properiies which arise mainly as a result

of the constraints imposed by .their structure, namely the

. way the different elements/subsystems of the systems are

interconnected and graph representations of thesge systems
clearly capture their bebhaviour.: Thué graph theory has

Ay
. g .
proven useful. in many ways. One is to study the behaviour

.

of a systeﬁ as revealed through its structure, the other is
to analyse a system for its structural ptope;ties and the
third is to design a structure‘having specified properties.
However, graphs which arise in 'real—IEfg_ problems are
extremely large and complicated. An inevitable result of
this has been the search to develop compugationally
efficient algorithhs to solve graéh problems. Thus began,

about two decades ago, a period of intense research on what

is now called Algorithmic Graph'Theory. /

In this thesis we make several contributions to this
branch of graph theory. We discuss the design and analysi;
’of algorithms for two graph problems, namely spanning tree
enumeration, and planar embedding and\maximal planarization,

'Tpps the thesis is organized into two parts.

Part I cqnsisting of Chapters 2 to 6 is concerned with
the complexity analysis and the design of efficient
implementations of a spanning tree enumeration algori£hm due
to Char. We also give an' evaluation-of this algorithm in

fcomparison to other known efficient spanning tree

enumeration algorithms.

Part II consisting of Chapters 7 to 9 develop efficient
algorithms fpr' - the planar ‘embedding and maximal
planarization problems -based upon Lempel, Even and

Cederbaum's planarity testing algorithm. To make this part

-

self-contained,

Shm
[

/
we ~briefly discuss in Chapter 7 this

planaritybzésting algorithm and its implementation using

PQ-trees.

\

VY *
i

X

|

'
b
{

“In Chapter ;-,

. ;
we summarize the results of the thes;s

and point out a-.few problems for further investigation:

}

1

,‘8

. T
-

v

5

4 v 1 v
,,.‘V'; DAY

o

gl

- SPANNING

.
. Ve
s
P
. "
9
. L -
- t
D
[
\ ’

TREE ENUMERATION
»

’
i
B
-
%
1
.

B
¢
.
\
»
[N

>

v
v
PR
9
’
[}
v
Eid
[
. .
3

* CHAPTER 2 ' \
SPANNING TREE ENUMERATION ALG'om'mmy’

A connected acyclic subgraph of a connected graph G

having all the vertices of G is called a spanning trge of G.

The spanning tree is perhaps one of the most important
subgraphs in graph theory, insofar as englineering

S el

i . . -
 £§911cat1ons are concerned. For example, .a number of

NG
« bf

Feésults - in electrical network ‘theory are .based on the
ST,

concept of a spanning tree. The. number of independent
Kirchhoff's equations, met@pds for formulating sets of
indebendent ne?work equations and the topologicél formulas
for network functions are all stated in terms of the singlé
concept of a spanning tree. In addition to ;he;e, sbanning
‘trees have been used in chemical identificat}on, scheduling

and distribution problems and a variety of other appli-

cations [1l]-[3].

In the -topological anaiysis of a linear system, the
problem ultimately reduces ‘to that of finding the seg of ‘all
the .Spanning trees in an associated graph [4].
Bedrosian (5] used the set of all the spanning trees of a
‘graph in what,is called multilevel maser analysis. All the
_ spanning trees of a graph ake also required in the
computation of Tutte's polynomial (6] which“gepe:alizes the
chromatic polynomial of a graph, and'in‘determining’symboiic

reliability expressions for communication networks [7].

*
L]

% k

12

~
/ ' . '

Because of its wide range of applications, the problem

of enumerating all the. spanning trees of a graph has

received considerable attention in the 11terature. A number

of different algorithms based on various concepts hawve been

S~ e —————
developed to enumerate all the <spanning trees of a

graph [4], [8]. ~Chase [8] classifies those algorithms

~developed before 1970 according to ' their " underlying

principles.. Most of these algorithms suffer. from one or

more of the{following disadvantages. -

L g

¢i) Cdmplicated\ tests to determine whether a set of
edges of the given graph constjitutes a spanning tree or not.

(11) Involved procedures to avoid duplication of spanning
trees.

(iii) Extensive manipulations of the graph durimg tH’

-‘generation Rrocess.

v

Since the number of spanning trees of .a graph grows
exponentially withr the size of the graph, efficiency of
these algorithms /is of ‘paramount importance. IHowever,
complexity analygis is not available for many of the
spanning. tree enumeration algorithms repor ted in the

r

literature. Based on his complexity analysis for complete
graphs, Chase '[8] has concluded that . factorin;“.algorithms,
which £find the spanning trees as a set of Carte51an
products, are the 'most efficient. a recent compfzxityf‘
analysis ?y Kajitani [9] for a’ factoring algorithm

substantiates this observation.

! | e
A Ve
. /

'L“\:“In 1965, Minty [10] presénted a simple algorithm . to
enumerate all the spanning trees of a graph. This algérit’hm

is based on the following princ1p1e. If e is an efige of a

_graph G, then the set of a¥l the spanning trges of G can be

classified into two groups =~ those w Jplch contain e and those

'which do not contain e. Note that the spanning trees of G

-

which contain the- edge e can be obtained from the spanning

trees.. of the graph constructed by contracting e in G, and
L -

-

¥

the spanning tre“es .6f G which do not contain the edge e are -

the same as i:hose' of the graph constructed by removing e
N * ’ e

from G. Thus the spanning trees of G can"be obtained from:

=
the spanning trees of /certain graphs cohstructed from G ~

u-sing the edge contra”cti:on and removgl operations._
Algorithms of this type are known to be the most effi-
cient [2]. Re;dd and Tarjan [11] preséﬁtgd an + imple-
mentation of Minty's algorithm which requiren\ O(:n+n+mt) time
and O (m+n) space for a g;aph having m edges, n yertices and

t spanning trees. while enufnerating all the spanning trees

of G, Minty's algorithm does not generate any subgraph which

is not a spanning tree. Moreover, in this algorithm the

spanning trees are generated without duplication. But the

i T
graph G 1is manipulated extensiveiy during the enumeration

”
pnocess, since the spanning trees of G are obtained from

a
P 4

those of. certain graphs derived from G.

Read and Tarjan's implementation of Minty's algorithm

generates the séanning trees of G by st'artincj with an

L

-4

- -
arbitrary. edge of G ahd then adding certain appropriately
a selected édqés Cof G. During this .process the partial
subgtaph generated ‘at an’ intermediate‘ step may not bé
~tconnected. In 1978, Gabow and Myers [12} presenéed an
-iﬁplem;ntation of M;nty;s algorithm 1in thch the paftial
f* " subgraph formed at eaqh Step is guaranteed to be conﬁected.
Growing the trées this way, Gabow and Myers achieved
O(m+n+ﬁt)vtime. ahd O(m+n) space complexities for their
algorithm. Even thbugﬁ Gabow’ and Myers' algorithm is as

efficient as theoretically possible, it "~still has' the

disadvantage of requiring extensive graph manipulation.

Earlier, in 1968, Char [13] had presented a

‘conceptually simple and elegant algorithm to enumerate _ail
the sp;nning trees of a graph; This algorithm starts with a
refe}ence spanniﬂg tree, called the inifial spanning tree,
% / and determines all the other spanning trees of G, A véry;

siéfle procedure is used to determine whether a set of edges

/ ., of

G 1is‘a spanning tree or not; and the spanning trees are’
L . ’ . : .
) _~-®¥numerated without duplication. Moreover, no manipulation
/‘ . é\ :
,x”'_ ' of the graph is required during the enqu;ation process.
However, ir addition to spanning trees, Char's algorithm/
geherates certain subgraphs which are not spanning trees of
A ' G. Thus the complexity of Char's algorithm depends on the

number of non-tree subgraphs generated. Char had dpt

perforined any compléxgty analysis of his algorithm.

<

.
. N
f ¢ .
¢
» . [
M
\’_——' . /

8

In ;‘secgnp computational complexity analysis of Char's
;lgorithm.[fll-TISI, it has been shown that tﬁe complexity
. pf the algorithm depends on the choice of the initial
sp;nning tree, and éhat for a number of special graphs this
algorithm is of O (m¥n+nt) time complexity. In the gener;l
+case, the complgxity‘ is’ O(m+n+n(t+éo)), where to'is the
number of non-zree;subgraphs‘ generateé. Usingh the crude

24
- bound to < ,nzt, the worst-case complexity of Char's

&

¢ i .
algoritﬁzfgkcomes O(m+n+n3t7. However, experimental results’

presente in [14) ‘sﬁggest that Char's algo;ithm migﬁt be
faster than Minty's and -Gabow and ‘Myers' algorithms.
Perhaps, this 1is because Char'F élgor;thﬁ does not reqlire
extensive graph manipulation in contfast to the other two

. » \
algorithms. Moreover, Char's algorithm has a.number of very

interesting proper:ifi/,from the point of view of

computational compl&kxity theory.

Iﬁ, this' part of the ‘thesis we perform a detailed

~complexity analysis of Char's algorithm and present séveral

interesting results relating to this algozfthm.

'In Chapter 3 we first present Char's algorithm and then
establish an elegant expression for (ttto) in terms of the
numbers of spanning trees of certain éraphs constructed from
G. We then spresent a systematic methgd, .using certain

d

concepts from electrical network theory, “to compute this

number, Based on this expression, .we carry out a

1
o

_computational complexity’ analysif of éhér's algorithm -for
generai graphs. The exprgssfonijr (t+tg) indicates that
tﬁe number . t0 depends on tﬁe initial sg;pn%pg tree used in
the enumeration. Thus an interestigg prob}em is to find aﬁ
initial spanning tree which leads to the minimum vélue‘for’
ty. With the view to reducing the value of t,, we also

‘ develop in Chapter 3 two. heur}stic | p;oced?reé for

cénstructing appropriate initial spanning trees. We then

ﬁresent experimental resuiks)illustrating the reduction in
the value of ty achieved when the initial <sp$nning trees
constructed by the lﬁoaﬂﬁeuristibs are uéed in Ch;r's
algorithm, Finally, we present in wthis dchapter an
implemenfation of Char's algorithm us}ng the prinéiple of.
path compression which achieves considerable reduction in
the actual number of comparisons made by the algorithm while

testing whether a set of edges constitutes a spanning_ tree

" or not [16].

.Chapter 4 presents analysis of Char's algorithm for
speclal graphs. Specifically, we consider those grapﬁs for .
which Ehe algori£hm requires O (m+n+nt) time “and hence is
optimal., We first identify a class of graphs f£fbr which
Char's algorithm is optimal. We derive the number<it+t0) of
subgraphs generated by the algorithm when applied - on
complete graphs, ladders and wheels using a star tree as the

initial spanning tree, and show that the algorithm has

lipear time complexity in these cases. More interestingly,

~

= 10 ~
in ;he cases of ladders and wheels, we develop expressions
for the total number of computational steps required by
Char's algorithm and show that. in these cases, ‘the algorithm
requires, on>thg average, a;‘most 4 qomputational steps per
spanning tree generaggd. We conclude Chapter 4 with “the
‘ definition of the concept Of min-tf?efnumber, which is
essentially equal to the minimum value of ty for a graph.
We outline some results,on the min-tree-number apd state ﬁyg

conjectures which are supported, by .our computational

experiences with Char's algorithm.. g

)
li

In" Chapter 5 we éesigﬁ a highly efficient vimple-
mentation of Char's algorithm. ‘We call the new algorithm
MOb-CﬁAR. We prove that MOD-CHAR has a better asymptotic
complexity than Char's algprithm. We also show that “for
large complete graphs MOD-CHAR requires, on the average, at
most 10 computational steps per spanning .tree and identify a

class of graphs for .which MOD-CHAR is of O(m+n+nt) timé

complexity.

s

’

In Chaptet‘é we .present a ébmparison of Gabow'wand
Myers's ﬂalgofighm‘n with Char's élgorithm and algorithm
MOD-CHAR. -Even though Gabow and Myers' algorithm has a
better a#ymptotic time complexity than the other two
algorithms, it is found to require more execution time.
This is bec¢ause of the extensive graph manipulations .
’performea' by Gabowﬂ'and Myefs"' algorithm. : To make an

*
¢

<

evaluation which is indepeﬁdent of implementatlon detalls,
we base our comparison on the number of basic computatlonal
~steps performed by each of these three algorlthms when
yﬂ , . applied on a number of randomly generated graphs.
Without any loss of generality, we assume théé all the

graphs considered in thlS thesis are connected.
. : ¥

- 12 -

CHAPTER 3
COMPUTATIONAL COMPLEXITY OF

CHAR'S ALGORITHM

In this chapter we discuss the computational complexity
of Char's algorithm for general graphs. 1In order to make

our presentation self-contained, we describe, ™ in

»)

Section 3.1, Char's algorithm and detgrmine its complexity
in terms of the number of subgraphs geﬁeraEed by the
algorithm, In Section 3.2, we develop a formpla for the
number wgf sﬁbgraphs generated by Char's algorithm and
pfesént‘ a systematic method to compute this number from the
given graph. We also. discuss the"complexity 'qf Char's"
algorithm in detail and show that the complexity depends on
the initial spanning tree used in the enumeration, With a
view to reducing the number of non-tree subgraphs generated
by Char's algorithm, . we develop i;”‘ Section 3.3 two
heuristics to select an iﬁitial spanéggg tree. Finally, in
éection 3.4, we present an implementation of Char's
algoritﬁﬁ using the principle of path compression which
. conéiderably reduces the actual |number of comparisons made
b?’the Algorithm. We also show|that this implementation has

the. same asymptotic complexity| ‘as the original straight-

forward implementation.’

~

- 13 -

3.1 Char's Algorithm
Consider an undirected graph G = (V,E) having n = |V|
vertices and m = |E| edges. Let the vertices of G be
denoted as 1, 2, ..., n. Consider any sequence \ =

(DIGIT (1), DIGIT(2), ..., DIGIT(n-1)) of vertices of G Sdéh

that DIGIT(i), 1 < i < n-1, is a vertex adjacent to vertex i

in G. Each such sequen&e A corresponds to a subgraph
GX = (VX'EX) of G such that

Vxﬂ {1' 2, * e 0 p n}'

and

Ey = {(1,p1GIT(1)), (;,DIGIT(é)), ceer

\

(n-1,DIGIT (n-1))}.

Note that not all the edges in EX are necessarily distinct.

Char's algorithm is based on the following [14].

Tree Compatfbilit§ Property

The sequence (DIGIT(l), DIGIT(2), ..., DIGIT (n-1))
represents a spahning tree*of graph G if and only if for
each k < n-1, the first vertex not 1less than k in the

sequence k, DIGIT(k), DIGIT(DIGIT(k)), ... 1s greater than
.ko vt . D

3
[

This can be shown as foliqws. Let \ be a sequence having
the tree compatibility property, and 1let- GX be the
correspondingm\gubgraph of G. The tree <compatibility

. — :
property ensures that all the n-1 edges in GX are distinct.

Py
.

el

o~

Furthermore, in GX there is a path from each vertex .to ' the

vertex n. Thus GX is connected. Since GX has n'vertices,

n-1 edges .and is connected, it is a spanning tree of G.

n-1
'Clearly there are JI deg(i) such (n-1)-digit sequences
i=1 .
possible for a graph G where deg(i) is the degree of vertex

i in G. Char's algorithm generates some of these sequences
and classifies those sequences which have the tree

compatibility property as tree sequences and those sequences

which do not have the property as non-tree sequences, It

may be noted that if (DIGIT(l1), DIGIT(2), ..., DIGIT(n-1))
is a tree sequence, then, 1in the cor&gsponding spanning
tree, DIGIT(i), 1 < i < n-l,‘is the/{:rtex next to i in the

path from vertex i to vertex n.

To start with, Char's algorithm selects a reference

spanning tree, called the initial spanning tree, of G by
. perforining a breadth-first search on G. The vertices of G
are numbered as n, n-1, ..., 1 in the order in which they
are visited during the search. , These numbers are used
therdffter to represent the vertices of G. Using the
initial spanning tree, an array REF is defined as
' REF(i) = FATHER(i), 1 < i < n-1, where FATHER (i) is that
vertex from which vertex i is visited during the search.

Since we number FATHER(i) before numbering vertex i, it

follows that REF(i) > i, 1 < i < n-1l. Therefore the

sequence ko = (REF(l); REF(2), ..., REF{n-1)) has the tree

14

&

-
\

——

- 15 =

gcompatibility property. 1In fact, XO represents the initial

spanning tree, and so it 1is called the initial tree

sequence.

N

L

It should be pointed oué that in Char's algorithm, any
spanning tree can be used as the initial spanning tree,
prqvidqewggd vertex numbering is done such that* in the
corresponding - tree séquence; DIGIT(i)‘> i, 1 <i<n-1. 1In
fact, as we shall see later, it is this requirement on
vertex numbering that makeé.Char's algorithm very efficient.
One easy way to achieve this requiremeJt is to perform a
depth-first search or a breadth-first search on the initial

uépanning tree and number the vertices as n, n-1, ..., 1, in
the order in which they are visited during the search. Then
the initial tree sequence will be: (RﬁF(l), REF (2), “xR.,
REF (n-1)) where, as before, REF (i) = FATgFR(i) > i, 1 <i<
n-l. Note that for a given spanning tree more than one
vertex numberings satisfying the above requirement are

possible. '

In Char's algorithm the graph G is represented by the

- adjacency lists of all of its vertices except vertex n, such
that the first entry in the adjacency list of any vertex v
is REF(v) and the other neighbours of v are arranged in any
order in the list. The enumeration starts with the initial

tree sequence (REF (1), REF(2), ..., REF(n-1)). Given a tree

sequence (DIGIT(l), DIGIT(2), ..., DIGIT(n-1l)), to generate

[

- 16 -

the next~ sequence, we test wﬁether DIGIT(n-i) is the last
entry in the adjacency list of vertex n-1. If not, we set
DIGIT(n-1) ¢to e egtry next to the gurrent value of
DIGIT(n-1) in the adjacency list of vertex n-1 and obtain
.the next sequence. On the other hand, if DIGIT(n-1) is the
last eptry in the adjacency 1list of vertex n-1l, we set
DIGIT(n-1) to REF(n-1) and proceed to test DIGIT(n-2). If
DIGIT(h—Z) is alsg’the last entry in the adjacency' list of
vertex “h-z, we set DIGIT(n-2) to REF(n-2) and proceed to
test DIGIT (n-3) and so on until we find a new sequegce.
.

Suppose we have obtained a new seguence (DIGIT(1),. -

DIGIT(2), <., .?ﬁGIT(n—l)). Let k be the highest integer

<

such that in is‘nguence DIGIT (k) # REF(k). Consider the

sequence of verticesg k; DIGIT(k), DIGIT(DIGIT(k)), ... and
let j be the first vertex in this sequence which is not less

than k. Now the following two cases arise.

- -
(i) If j > k, then the new sequence is a tree sequence.

In this case the sequence is listed aq? ve proceed . to
generate the next sequence.

(ii) I£ 3 = k, then the \new sequencsdis a non-tree
sequence. Iﬁ this case, if DIGIT (k) is not the 1last entry
in the adjacency 1list of vertex k, we set DIGIT(k) to the
entry next to the current value of DIGIT(k) in the adjacency
list of vertex k and obtain the next sequence. If DIGIT (k)

»

is the last entry in the adjacency list of vertex k, we set

7

DIGIT (k) to REF(k) and proceed to test DIGIT(k-1).

<«

& N
AW
s

.- for i:= 1 to n-1 do

- 17 -

@

SN—— «

The enumeration 'stops when replacement iﬁ attempted -,

with PIGIT(0). In this case DIGIT(i) = REF(i), 1 < i < n-1,
and hence the corresponding spanning tree is the initial

spanning tree. Forhally Char's algorithm may be given in

' ALGOL-like notation as follows. Here} by SUCC(DIGIT(i)) we

mean the entry next to DIGIT(i) in the adjacency 1list of

——

vertex i.

. .

Char's Algorithm to Enumerate all the,Spanning Trees of a

Gragh.

procedure CHAR; __) - "

comment procedure CHAR enumerates all the spanning trees of

a connected n-vertex graph G represented by the

adjacency lists of its vertices.

9
begin
T R
select an initial spanning tree of G; v

perform a depih—first’search or a breadth-first search on
the initial spanning tree and renumber the vertices as n,

n-1, ..;, 1l in the order in which they are visited during

a

the search;

find FATHER (i), 1 < i < n-1;

begin' '

REF (i) := FA’I‘H‘Eh)(i)-; ?

DIGIT(i) := REF(i)

[l
i

end;

output the initial tree sequence DIGIT(i), 1 < i < n-1:

a5

i = n-1; .
while i ¥ 0 do
begin ’ . . ' .
" _if succ(pIeiT (1)) # nil
o then begin | ‘
© DIGIT(i) := SUCC(DIGIT(i)); |)
if (DIGIT(L), DIQIT(Z)} seer DIGIf(n—l)) is a tree
| sequehce ‘ | a
-~ . then begin - ." ' S
- . "akoutput the tree sequeéce; ' ‘ R
Z\ o i := n-1 - .
7\/" end ‘ | o | -
. .

end ‘
T >

else begin <>\\

DIGIT(i) := REF(i);
i := i-1 ’ S
" énd : - . .
end . L e //
end CHAR; | |

Now we illustrate Char's algorithm by enumerating all
the spanning trees of the graph G shown Fig. 3.1(af. .First \

we perform a breadth~-first search starting at vertex b and
. . : -

:dbtain the 1initial spanning tree shown in Fig. 3.1¢(b).
Duriné the search we number the vertices of G and these
numbers are shown within parentheses in Figs. 3.1(a) . and

(b). For eachv, 1 <v < 4,1REF(V) is given below.

-—

‘Figure 3.1(a), .

"
L Graph G ‘
. c) (2)
.’n -
- | : . : -
L Q0w

.) ¢
N Figure 3.}(b)

Initia; Spanfting Tree of G -

A]
-

- %“,

Thus the

-

lnitial tree

- 20 -
\ N ‘
,,} \/\’ ' i g
v REF (v) ‘ " \
O -)
2 5 - ‘)
3 5 . D
4 s .
sequence‘ is (3 5 5 5). We

represent the graph G Qz the folldWing adjacency lists.

algorithm generates the followxng sequences where .

-

- + y

¢

W oWw W W W W W oW

b

"5\

o+ & o -

Starting Wi&, the

T T S R S I O Y

N

(5. I NI S RS S S I G R S YL

tyee

sequences are denoted by.a plus sign (+).

1Y

‘o

‘1 Aéj gvi

1. 3,2 . .
2. S;Qﬁffrl\\1 |

3 e, § o '
4 5,2 / ‘

seqience (3 -5 °5 5), Char's ..

.o oo
the tree , -
+ 3 375 5 .
+ 3° 3 5. 2
o 3 '3 2 s
3 3.1 5.
+ 3 1.5 s
+3 1 5 2
31 .25
'3 1 1 s .
| . . e

<. ' -2 -

3 4 2 2 , + 2 5 5 5

3 4 1 5 + 2 5 5 2
+ 2 5 2.5 + 2 4 1 s
+ 2 5 2 2° 2 1 1 2
+ 2 5 1 5 £ 2 3 5 5
+% 5 1 2 + 2 3 5 2
F 2 4 5 57 2 3 2 5
2 4 s 2 2 1 5
“+ 2 4 2 5 . 2 1 5 5

2 4 2 2

1

Next Wwe show that not all the possible sequences for a
graph G are ;generated in Cner's algorithm and certain
\cohfirmed .non-treel sequences are‘ekipped. Let (DIQI@{I),
DIGIT(2), ..., DIGIT(k), ..., DIGIT{(n-1)) be a non-tree
sequence generated by the algorithm which does not havé the
tree compatibility property at positlon k. In thé& subgraph
corresponding to this non-tree sequence there is a seguence
of edges starting with the edge (k,DIGIT(k)) and ending at™
vertex t using one or more of the edges (1,DIGIT(1l)),
(2,DIGIT('2)), eeer {k=1,DIGIT(k-1)). Note that this g
sequence of edges ‘cen either be a circuit passing through

)

vertex k or just the repetition of an edge as (k,DIGIT(K))
and (DIGIT(k),k). The next’sequence is obtained by changing
DIGiT(k) of this non-tree sequence. Hence generation of all
subsequent non-tree sequences which have the sequence
(DIGIT (1), DIGIT}?«)—/T:—:—,’/DIGIT(‘H) as a subsequence is
ey

i

L. N s
/ F
3 | - o

- 22 -

avoided. Thus not all the possible sequences are generated.

by Char}{s algorithm. ’) -
> . } . . ‘;,—‘— ’
v

o8

Cénsi er a t;ee sequence (DIGIT(1l), DIGiT(z),

. . DIGITkn—l)). ' As pointed. out‘earliﬁr, it follows from the
tree compatibi;ity property that DIGIT(i), 1 < i < n-1, |is

the vertex next to i in the path, in the spanning gree,'froh

verFex i Eo'vértex n. Thus the tgee'sequéncq specifies the

path from each vertex 1 to vertex n. So il follows that

each tree seéuence/Cerespohds to a unique spanning tree.

Furthermore, since distinét tree sequences specify distinct

sets of paths, they correspond to distinct spanning trees.

On the other hand, suppose for a given spanning tree, we
oStain the sequence (DIGIT(lf, DIGIT(E), u..,' DIGIT(n-1))

such that DIGIT(i), 1 ¢ i < n-1, is the vertex next to i in

the p;th, in the spanning tree[from vertex i to vertex n.

Then this = sequence will have the tree compatibility

- property. This means that. for each .spanning tree, there
exists a sequence having the tree compatibility property.

Thus there exists.a onejto-one correspondence between. the

set of all the tree sequences 'and the set of all the

spanning tfees of G. Since Char's algorithm generateé all

&5' ‘the sequences which have the tree compatibility property, it
follows that tﬁe algorithm enumerates all the spanning trees

of the graph G. Furthermore, the sequences gener%}ed by

Char's algorithm are all distinct, and so the spanning trees

are generated without duplication. Moreover, only the

.

- 23 -

~

adjacency.lists of the graph are used in the algorithm and

no manipdﬁation of the graph is required during the

enumeration process. : -

We now study the coﬁplexity of Char's algorithm. When -

g «*
a new sequence 1is obtained by changing DIGIT (k) of the
previous sequence, it is clear. that DIGIT(i) = REF(i) > i,
i Z.k*l' ané} DIGIT (1), DIGIT(2), ee., DIGIT(k;l) have thq

same values as in the previous sequence. Hence the new

sequence is to be tested for t%g tree compatibility property

only at position k and this .test, in the worst case,

involves k comparisons. Hence, at most n computational
q

steps are required to generate and test a sequénce. So, 1if
l

to is the number of non-tree sequences generated by Char's

algorithm, in the worst case n(t+to)ﬂpomputational steps are

required to enumerate all the spanning\trees of the given
.)

graph an8 hence Char's algorithm is of ¥ time complexity
0(m+n+n(t+t0)),‘which includes the complexity of determining

the initial spanning tree also. As regards the .space

[

complexity, first note that the graph is represented by a

set of n-1 adjacency lists. This representation requires

4

O (m) space.y Furthermorg’, the arrays DIGIT and REF each
reqqire O(n) space. Thus Char's algorithm requires O(m+n)

space altogether. :

a

- 24 -~

. 3.2 Compuﬁgtional Co.plexit& Analysis

" for General Gfaphs : ’ P

Since the computational complexiky of Char's algorithm

is 01m+n+n(t+t0)), any complexity'anal>éis of this algorithm
would require ‘a study of the numper (t+t0). wikh this
objective'in view, we first obtain an expression for.(t+t0).
?rom our discussibn in Section 3.i, it is clear that Char's
algorithm generates certain (n-l)jdigit 'sequences of

vertices of thé.graph G and classifies each one of them as a

s

tree_sequence or a non-tree sequence using the° tree compa-

tibility property. ' We partition the sequences generated by

Char's algorithm as follows. ‘ ///\
- > ' ~

n-1 :
Let T = ’Ti be the set of all the .tree sequences

’ .

i=0
such that

(1) Ty = {A\y}, and

(ii) Ty, 1 < i < n-1, is' the set of tree sequences of

the form (DIGIT(l), DIGIT(2), ..., DIGIT(i), REF(i+l),
. _ 4

RﬁF(i+2),‘..., REF (n-1)) with DIGIT (i) ¥ REF (1).

PR ¢ b l [SN
Also let T' = QU T{ be the set of all the non-tree
i=1

sequences such that Ti is the set of non-tree sequences of

the form (DIGIT(l), DIGIT(2), ..., DIGIT(i), REF(i+l),

REF (i+2), ..., REF(n-1)) with DIGIT(i) # REF(i). Note that

|T| = t is the number of tree sequences and |T'| = t, is the

' 4

number of non-tree sequences generated by Char's gigorithm.

»

—~—
;

- 25 - °

¢

Now we prove the following. . . B

THEOREM 3.1.

Consider a connected n-vertex undirected graph with its

vertices numbered as in Char's algorithm. Let Gés), 1 kg

n-1, be the graph obtained from G by céﬁlescing the vertices
i

k, k+1, ..., n and let t(k) be the number of spanning trees

of Gés). If t is the number of tree sequences and t0 is the

number of non-tree sequences generated by Char's algorithm,

then T‘é

n-1 ‘
t+t0 =1 + :z: (deg (k)=1) t (k) , S
k=1 :

) where deg(k), 1 < kfg-n, is the degree of vértexrk'in G.

-
.« °

Proof:

-x,

' Consider a tree sequence Xk = (DIGIT(l), DIGIT(2), .e., .

DIGIT (k-1), REF(k), REF(k+l), ..., 'REF(n-1)) generated by
Char's algorithm. The spannihg tree corresponding to Xk is

then the subgraph Gk = (Vk'Ek)’ where
A

ES Vk = V
and ‘)
W E_={q,pre1r(1)), (2,016I1T(2)), ...,
"~ (k-1,DIGIT(k-1)), (k,REF(k)),
(k+1,REF (k+1)), ..., (n=1,REF(n-1))}.

: : : 4
Let Gy = (Vé,EL) be the spanning 2-tree obtained from G, .by

—

i

deleting the edge (k,REF(k)) so that

- 0

!

+y

< ,'g,«t

<«

N

T = 26 -

VI = v

and k k
. ‘ —_
Since REF(i) > i, 1 < i < n-1, it follows that, in G! the

, k

edges (k+1,REF (k+l)), (k+2,REF(k+2)), ..., (n=1,REF(n-1))

are in one component and the vertex k is in the other
' =] 1

component. Let Gk,l (Vk,l’Ek,l) be the component

containing the edges (k+1,REF(k+l)), (k+2,REF(k+2)), ...,

— - ! = 1 '
. (n l,REF}n 1)) and let Gk’2 (Vk,z'Ek,z) be the cqmponent

containing the vertex k. Note that in G! and in G!
k,1 k,2

there exists a unique path between every pair of vertices,

)N

Consider any vertex v # REF(k), adjacent to vertex k.

Let G; = bu&,EiLJ(k,v)). Now the following two casesg arise.

(i) If -vEEV&'l} then it is clear that G; is a spanning
tree of G. Thus the sequence (DIGIT(1), DIGIT(2), ...,
DIGIT(k-1), v, REF(k+l), ..., REF(n-1l)) with VEV;(I.]' is a
tree seéuence passing the tree compatibility test at
position k.

(ii) If veV"(,'z, then in‘ G; the efige (k,v), along with
the unique path in G"2 bgtween the vertices k aﬁd v, forms
a circuit passing thfﬁygh the vertgf‘k, and hence G;‘is a
non-tree subgraph of G égpegqted by Char's algorithm, Thus
the §eqd;nce (DIGIT(1), DIGIT(2), ..., DIGIT(k-1), v,
REF (k+1), ..., REF(n-1)) with v!EVi'z is a non-tree sequence

which does not have the tree compatibility property at

8

- 27 -

position k. : ' -

Since vertex k is adjacent to (deg(k)-1l) vertices other
, * f""—h.._\ *

than KREF(k), there are (deg(k)-1l) distinct sequences of the
form (DIGIT(l), DIGIT(2), ..., DIGIT(k-~1l), v, REF(k+l), ...,
. REF{n-1)), with v ¥ REF(k), which have the sa&e DIGIT (1),
DIGIT(2), ..., DIGIT(k-1) as A\,. E;ﬁﬁ,/éhp of these
sequences is either a tree sequence or ‘a non-tree sequence
depending on whether veV,‘(1 ©or veV}'(or @and so all these
. . r ’
sequences belong to TkLJT'. Thus if t(k) is the number of
tree sequences of the form xk = (DIGIT(l), DIGIT(2), ...,

DIGIT(k-1), REF(k), REF(k+1l), ..., REF(n-1)), then

e
T UTL| = (deg(k)-1)t(k). (3.1)
. K

-Since in the spanning tree correéppnding td'kh, the
edges (k,REF(k)), (k+1,REF(k+1)), ..., (n-1,REF(n-1)) are
present, it followg that t(k) is the pumber of all the
spahnrng trees of ’G in which the edges (k,REng))r
(k+1,REF (k+1l)), ..., (n-1,REF(n-1)) are present. Thus t(k)
is the number of spapning trees of the graph obtained from G
by coalescing tne vertices k, k+1, ..., n-1, REF(k),
REF (k+1) , .f., REF (n-1). But {k, k+1, ..., n-1, REF(k),
REF (k+1), ..., REF(n-1)}°= [k, k+1, ..., n}, because REF(}):
>1, 1 < i <n-1, and so t(k) is “the number of spanniﬁg
trees of Gés), the‘gféph obtained from G by coalescing the

vertices k, k+1, ..., n. Also the total number of sequences

generated by Char's algorithm is

{

n-1 n-1 '
ttty = |T,) + E lTkUT]'(l =1+ Z |7 U TR« -
k=1 Y

k=1

-~

From these observations and (3.1) the theorem follows. o
From Theorem 3.1 we get the following.’

COROLLARY 3.1l.1.

For a complete graph, toiis independeq} of the initial

spanning tree. ' ‘ R

Proof: ‘ N

The proof follows if we note that in the case of a

_complete graph G, the number of spanning trees t(k) of the

graph Gés) for a given k is the same §or any choice of the

initial spanning tree and that deg(k) = n-1 for all k, 1 < k

< . s ' ' o
R . “‘

Now we develop a systematic procedure to compute-. t(k).

Let G(w) be a weighted undirected grapp in whicﬂ_w(i,j)

denotes éhe weight of the edéé“(i,j). For any vertex 1 of

G(w), let I'(i) be the set of vertices adjacent to vertex i

ag=) wd.

je (i)

in G(wi. Let

- 29 -

By pivotal condensation at vertex i in G(w) we mean the

following operation: For each pair of vertices jl,jzegp(i),
if the edge (jl'jz) is already present in G(w), then
increase 1its weight by w(i,jl)w(i,jz)/di; otherwise add to
’G(w) the edge‘(ji,jz) with the ;eight w(i,jl)w(i,jz)/ﬁi.
After all pairs of neighbours of ' the vertex i are
considered, delete from G(w) the vertex i and all the edges

incident on it.

Let N be an RLC electrical network and let G(N) be the
graph of N such that the weight of an edge is given by the
admittance of the corresponding element of N. Let.A'be a
'subset of the vertex set V = {1, 2, ..., n} of N. Let the

networks NA and N0 be defined as

A

~

NA; the network that results after coalescing all the

vertices of N which do not belong to a4,

the network that results after suppressing all the

z
PO

verticee of N which belong to A.

1€ T(g), T(NA)' and T(Ng) denote the sum,of tree—~admittance

products of the networks N, NA' No respectively, then it has

A
been shown in [17] that

T(N) = T(Np)T(N]). (3.2)

\

Note that the graph G(Ng) of the network N0

A
from the gi;;? G(N) by performtn? pivotal condensations, in

can be obtained

the vertices in A.

. | T .

.= 30 -

Let Gl(N) = G(N) and the graph Gi(N) be obtained from
G;_; (N) by performing pivotal condensation at vertex i-1 in
Gy_;N). 1f A=1{1,72, ..., k-1}, and &;, 1 < i < k-1, is

the sum of admittances of all the edges incident on vertex i

in Gi(N), then as shown in [17]
>

o _ 0 ‘
T(N) = dldz...dk_lT(NA). (3.3)

" Comparing (3.2) and (3.3) we get

T(NA) = dldz‘ . .dk_l.

Note that the graph of the network NA is obtained from G by
coalescing the vertices k, k+1, ..., n and hence it is Gés).
If N is a resistive network with each element of admittance
one Siemens, then the admittance product of each spanning
tree 1is one and so T(NA) is the number of spanning trees of-

the graph Gés). Thus we get the following.

THEOREM 3.2.

Consider a connected n—Qertex undirected graph G with
its vertices numbered as in Char's algbrithm. Let Géé) be
the graph obtained from G by coalescing the vertices k, k+1,
«ess. Nn. Let G, be the graph obtained from G by assigning
unit weight to each.edée of G, and Gi be the graph obtainéd
frem G;_, by performing pivsgél cofdensation at vertex i-1
in G;_,. Let d; be the sum of the weights in'G; of all the
edges (i,j), Je (i) where I(i) 1is the set of vertices

adjacent to i in Gi. If t(k) is the number of spanning

From “he

trees of Gés), then

- 3] -

s -
\ d
.

t, we get the following

t(k) = d d

ldzl.. k-l. . J

-

fact that t(n)‘ =

corollary‘%} the above theorem.

-

COROLLARY: 3.2.1.

"The number

-

— ‘
of spanning trees of G is given by

\ -

L g = dyd,...d ;.

Using the above corellary and Theorem 3.2 in

Theorem 3.1, we get the following.’
N "\\
. ’ t

THEOREM 3.3,

The number of sequences geﬁEEated by Char's algorithm

is
¢ ;’)j\: n-1 . T qﬁ%")
t+t, = 17+ ¢ deg(k)-1 .. \\
0 3.4 3 o
k=3 P17n-2 k
/
Now we illustrate the above procedure to compute (t+t,)
for the graph G in Fig. 3.1(a). We.obtain the graph G, in
-~ Fig. 3.2(a) by assigning unit weidht to each edge of G.
¢ Note that di = 2. The graph G, is obtained by performing

pivotalxcondensation"at vertex 1 in G, and it is shown in

Fig. 3.2(b). From G, we get d, = 7/2. The. graph G, is .

i

Figure 3.2 (a)

Graph'gl

Figure 3.2 (b)

Graph 92.

/

~ -33- o :
[4 - , ' 'Lﬁ/)
obtained from q2 by performing pivotal condensation at.

[} . ,
vertex 2 in G2 and it is shown in Figqg. 39§(c). From G3 we
: , get d, = 13/7. Finally, for the graph G, shown in .
. Fig. 3.2(4), d4 = 21/13. Thus for G

“

t = d.d.d.d, = 21,

) 1727374
: []
- and
M , .
. L tet, = 1 + ¢t deg (k)-1 = 35,
0 ‘ I a
; \‘t . kal n-l ﬂ-zn.. k
i .

Froﬁ the example given in Section 3,1 we can verify that the

graph G has 21 spanning trees and that Char's algorithm'
, _ i -

generates 35 sequences for G.
. . [
\ <

The ‘value of‘*@t+tb) given in Theorem 3.1 depends on

t(k)'s. Each t(k) is the number of spanning trees of G(s)

k r
b % which 1is obtained from G by .coalescing the vertices k, k+1,
' P N -
’ . cess N. Since the vertices are numbered using the initial

spanping Eree, the value of (t+t0) and hence the complexity
.0f the algorithm dgéends on the. initial spanning tree.
However, for two different initial spanning trees, the
,values of t(k) for a given -k will be the same if the set of
vertices which receive éhe numbers k, k+1, ..., 1n is
identical in both cases. In other words, the value of t (k)
depends on the set of vertices which are'assigned the
"numbers k, k+1, ..., n and not on thé edges connecting these

\;
verffces. Since. this statement is true for all values of k,

©

Graph-G

Graph G

o

» Figure 3.2(c)

3

Fidure 3.2(d)

4

N
.
-
¢
.
7’
°
>
B
+
.
Py
,
s
-

A4
)
.
4
»
-]
e
'
! e
.
'
.
L, . N
A
e .
v »
.
{ -
¢ .
B
“
4
. P .
.
s
v .
. vy
.
-
’ -

*¢]

Yy '»'
e

- 35 -

- N —

™

wevget the” following.

THEOREM 3,4. \

Consider any arbitrary numbering of the veﬁﬁices\ of a
connected ﬂnd;rected graph G. .Let S be the set of all the
spanning trees of G such that in the éeduences ebrresponding
to these~spanning‘trees—DIGIT(i) >‘i, 1l <i< n-1l. Then the -

number (t+to)’of subgraphs generated by Char's algorithm

. when applied on G (whose vertices are numbered as before)

- will be the same for all choices of initial spanning trees

chosen‘frbm the set S, ' ‘ O
'i

For example, consider the graph shOWn in FPig. 3.3(a)
Ny

" and the two dlstinct spannlng trees shown in Figs. 3.3(b)

_and .3. 3(c) If the vertex numbers are assigned as shown

within parentheses, then the sequences representing these

trees are. - ')///

- (5 44 5 6)

. and

(5 3 4 6 6).

Clearly in ‘these sequences DIGIT(i) > i, 1 < i,< n-1, and

' Theorem 3.4 is applicable. When/these trees afe used as the

initial spanning trees, the same value of (t+t0) w1ll be

, 4
qbta;ned. In fact, for both these 1nitial spanning trees,

¢

t+to-- 210 and to = 80. "

-

Having obtained an expression for ‘(t#to), we now
R v, .

l Lo

7

v

(o) @)

.Figure 3.3(a)

.Graph G to Illustrate Theorem 3.4

~

£
5

8
K

T "",j' - _4‘: .

- 37 - x«

. Figure 3.3(b)

A Sp;nning Tree of G . -

(3) (¢ f—= — :@'(2)

Eigure'3.3(é) 3

Another Spanning Tree of G

o

’

\“«
; .
-

A

. —,38\\-l
I %
consider the computationél complexity of Char's algorithm.

Consider a sequence N = (DIGIT(l), DIGIT(2),

e 0 p

>
DIGIT(k-l),lX, REF (k+1), ..., REF(n-1)), with x #¥ REF(K);

generated py Char.!s algorithm. This sequence belongs to
TkLJTk.‘ To generate this the algorithm explicitly ’requires
setting DIGIT(i) = REF(i) ‘for each i, k+l < i < n-1, in
addition to setting DIGIT (k) = x. Next the algorithm tests
whether‘ A is a tree sequence or not. Tﬁis is done by
checking the tree “compatibility pro;erty at position k.
This in turn requires checking the existence of a path, from
vertex k leading to k or a vertex greater than k, 1in the
subgraph consisting of the edges (1, DIGIT(l)), (2, DIGIT(Z)),
e+, (k-1,DIGIT(k-1)) and needs at.vost k comparlsons Thus

generating and testlng A invdlves the following two types of

S to set DIGIT(i).= REF(i), k+l1 < 1 <

nge;l: (n-k-1) gt

; n-1.

<

Type 2: C, steps to set DXGIT(k) = x .and to test A for the

tree compatibility phpperty.

-

. L
Suppose the sequence \ passe

the tree coppatibility

—

test. Then it 1is a tree sequence and the cost of Type 1

computatlon used in genenrating X can be associated with X

On the other hand, if X fails the test, then the algorithm

generates a new sequence N by setting DIGIT(k) to the
\

"

A

- 39 -

vertex next to x in the adjacency list of k. The sequence
)’ is then tested for the tree compatibility property. Thus
generating. N does not require Type 1 computation. If N
also fails the test, the algorithm continues °to generate
sequenceé (wéthou;~ using Type 1 computations) until a tree
sequence.xr is generated, The cost of Type 1 computation
required in generating A can therefore be charged to the
tree segquence N. Thus the Eost of each Type'l computation
can be charged to a tree sequence. Clearly the cost of
Type 1 computations (in terms of computational steps) for
generating all the tree sequences in Ty is given by
|Tk|(n—k—l). I1f we denote by COST1 thé total cost of Type 1

computations required in generating all the }rie sequences,

then . 4

n-1 nc2
© COST1 = E |T, | (n-k-1) = E |, | (n=k=-1) .
, - g — .

But o .
< ol Tkl = tik+l)=t(k) ‘
for all k, 1 i‘k < n-2. So -~
.
n-2 ! 5 ,
" cosTl = Z (€ (k+1)~t (K)] (n-k-1)
‘ k=1 “
n-1
: = :E: t(k) - (n-2), Since t(l) =1
k=2 \) |

¥

N e

- 40 - .

n-1 %i
=t Z 1 - (n=2). (3.4)
: - ddildn-2°"dk
As regards the Type 2 computation, it is required for
each. sequence “in TkLJTk and for all i <k £ n-1l. If CQ
denotes the maximum number of computational steps required
to perform a Type 2 computation for any sequence in TkLJT':
and COST2 denotes the cost of performiné‘ all Type 2 o
computations, then
| Ry
n-1 ‘. ' o ,
COST2 < Zc’,‘(‘}wku T | e
k=1) '
n-1
=t Z 2 deg(k)‘-l - CP, by Theorem 3.3. (3.5)
k=y P~1%n-2°°"%
¥

Thus the total cost COST of execution.-of Char's algorithm is’

COST = COST1 + COST2

N
' opel \ n-1

<t Z 1 - (n-2) + tz deggk)-1 _ cM, :
— T _ 3 a

d ...d d L2 AN
k=2 D=1 n-2 k k=] N1 n-2 k

{
From (3.4) and (3.5), it is clear that

K | . COST1 < nt

and

this thesis will be corcerned with

- 4] -

¢

cosT2 < n3t,

So COST |is 0(n3t). Thus the computational complexity of

Char's algorithm is 0(m+n+n3t) where O(m+n) is the

‘complexity of selectihg an, initial spanning tree and

numbering the vertices of the graph. In obtaining this, we

" have subétituted n for the sum

1 N L] -
‘ d d d

n-1"n-2"°°"k

o

However, this is a very crdde bound except in trivial caéés.
In a number of cases\it_has bqén found that COST2 i nt.
Most of our discussions in the {éiziﬁing parts of Part I of

detailed study of COSTL

and COST2 and attempts to minimize them.

\
It is clear from (3.4) and (3,5) that to minimize COST

we need to minimize -

: | %

n-1

(i) E 1 ’
! k.‘z dn_ldnnzo O ndk

(iiy minim%ze to,~0t eéuivéleﬂEly minimize

- n-1 ,
.) \

L - E deg(k)=1 .,
T s)

'(iiif minimize Cﬁ for each k.

LS

d

-at the root of T

These questions are considered in the following sections. -

3

3.3 Heuristics for Selecting the

. Initial Spanning Tree

The initial spanning tree used in Char's algorithm can

be obtained by performing a breadth-first search (BFS)'OE a

depth-first search (DFS) on the given graph. The imple-

@entation of Char's algorithm given in [14] selects the
initial spanning tree by performing a BFS starting at a
vertex of maximum degree. in this section we consider the
quesfion of using DFS for selecting the initial spanning
tree. Our objective is\to minimize t0 and cﬁ. For results

relating to DFS, (3] may bé consulted.

Let Tyne be a DFS tree of ﬁhe given graph G. St;rting
DFS’ let the vertices of G be numbered as n,‘
n-1, ..., 1, in the order iﬁ yhich they are visited during
the DFS. As pointed out earlier, with such.a numbering,
Thpg Will have the tree compatibility pfoperty and in the
corresponding tree sequence DIGIT(i) > i, 1 < i i\n-l. ';t

should be noted that each ancestor of k in TDFS will have a

number greater than k and each descendant will have a number

less than k. Furthermore, there are no cross edges in G,
In other words, if ¥ and y are two vertices such that

neither of them is a descendant of the other in TDFS' then

P
o0

A 3

- 43 -~

the edge (x,y) is not in G. Now we prove the following.

3

.

THEOREM 3.5.

If vertex k is a leaf ?n TDFS' then ITkl'z 0.

3
4

Proof:

thn” vertex k is a leaf, the number of any Qertex
adjacent to k will béAgreater-than k. Therefore, the treé
compatibility property 1is always satisfied at position k. ;
In other words, no non-tree sequence which does not have the
tree compatiﬁility ptopefty at posi?fon k is generated.
Hence |T!| = 0. o . ' -0

¢ ' : b4

Let 6k'be the number of descendants of vertex k in

TDFs; ?hen : ' . \

~

. THEOREM 3.6. ’ -

Proof:

Recall that C? is the maximum number qf computational
steps required to perform a Type 2 computation for any
sequence in T UTy. Also Type 2 computation regg?ges
traversing a path from vertex k in the subgréph which ‘does
not include the edges (k,REF(k)), (k+1,REF (k+1)), 7. .,
(n-1,REF(n-1)). This, along with the‘fact'that there are no
cross edges in G, means thaﬁ‘the traversingliﬁ done using

t

only the descendants of k. Hence the theorem. 0

. d

- 44 -~

4‘»

T

To minimize typs we need to mi ize the sum on the
right-hand side of the expression for (t+t0). given in
Theorem 3.3. Each term in this sum 'will be minimized when
its numerator is as small ;s.possible and the denominator is
as large as possible. Thus it is clear that if the vertices
.of the giyen graph G are numbered in such a way that the

t

degrees deg(n-1l), deg(n-2), ..., deg(l) of the vertices n-1,

n-2, ..., 1 are in the ascending order and the numbers A1

be reduced considerably. Since deg(n) does not appear in
the eipression for (t+t0), we can number the vertex having
the maximum degree in G as n. In other words, we can start
the DFS to find the‘initial spanning tree at a vertek ‘of

i

maximum degree.

Consider now a DFS spanning tree TDFS of the graph G.

Let " (i) be the set of ancestors of vertex i in T which.
- DFS

are adjacent to i in G and let di = |F‘(i) . We may recall

that to find the numbers dl'dZ’ ooy dnil' we start with the

graph G1 obtained from G by assigning unit weight to each

edge of G. Then di is the sum of the weightgs of the edges’

incident on i in the graph G; which is obtained from G, by
pefforming pivotal condensations at the vertices 1, 2, ...,
i-1. Since pivotal condensation doeé not reduce the weight
of any edge connecting i to any vertex in (i), . and since

each such edge has a weight of value at least one, it

follows that . /

n=2r ceer dl are in the descending order, then (t+t0) will .

ft is evident from Theorems 3.5 and 3.6 and the abovg

. 2
that EB could be reduced considerably if we

=

(i), maximize the number of leaves in»TDFS,

" (ii) maximize the number of ancestors “of each vertex

w

during the DFS, and

(1ii) minimize the number of descendants 6k' for each k.

To achieve these objectives,‘we suggest the following two
heuristics for selectihg the initial spanning tree using

1

DFS.

Heuristic 1: Start the DFS at a vertex of maximum degree.

Duriﬁg the search, when we are at vertex i, choose, from
among the neighbours of i, the one ﬁaving the maximum number
of ancestors in the tree developed s6 far. If more than one
vertex has this”property, then choose, from among ghese

vertices, the one having minimum degree in G.

Heuristic 2: Start the DFS at a vertex of maximum degree.
4

During the search, when we are at vertex i, choose, frbm
aﬁong‘ the neighbours of i, the one having minimum degree in
G. If more than one veftex has this property, then choosg,
frém among these vertices, the one having the maximum number

of ancestors in the tree developed so far.

.
/
. .

- 46 -

9 . S
We have implemented Char's algorithm using each one of

the above two heuristics. 1In Table 3.2 we give the number -

of non-trée sequénces generated by the algorithm ﬁpen the
initial ‘'spanning tree is selected using a BFS (as s;ggeséed
in [14]), as well as when éach bne of the abovg \ngw_
heuristics is used. The test graphs used in our comparisgn
have been generated randomly using the procedure given
in'[18], and in Table 3.1 we give the number of. vertices and
edges of these ten test graphs. From Table 3.2 it is clear
that -the heuristics considerably reduce the number of
non-tree sequences generated by thé algorithm. We also note
téﬁt these two heuristics generate approximately the same
number of non—tree'sequences. So either one of them can be

L

used in an efficient implementation of Char's algorithm, °

+

3.4 Path Compression

a

We may recall (Section 3.2) that the cost of execution

-

of éhar's élgorithm consists of two éomponents - COST1l, the '
cost of Type 1 computations and COST2, the cost of Type 2
computations. Whereas COST1l explicitly dgpends on the
"initial spanning tree, COSTZ depends on the initial spanning
tree as weli as the number of comparisons required to test a
séquence for the tree coméatibility property. The

heuristics for the selectidn of the 1initial spanning tree

discussed in Section 3.3 are aimed at reducing both COST1

- 47 -
- | Table 3.1
| s Zable 3.1
. ‘ ! Tes€ Graphs
N/ . .
S’
: tommm—————— tomm— e fmm—m————— tmmm——————
'di) . . | Spanning
) L Graph . | Vertices .| Edges w
‘ o C °l. trees
¥ L N .
° +- —- e ————— frm—————— +
. ' "] 'S
G, -« 9 20 24672
2 o . ’
N G, 10 20 13931
. 6y 10 . 24 151662
‘G, 11 25 151719
Gg - |- 11 30 1360710
\ Q _"/"// . .
Gg 1 35 12897460
@ G, 12 30 | 1592512
Y v 4
) Gg 12 30 | 1820488 |
Gg 12 35 14689650
N Gy, 13 . .35 26520950
| pmmm———— s e , S —— T
\(ﬁ 4
& L _ X ' ° ' ‘
A
, . .]
L (’ —

’

- 48 -

Table '3.2
Ly

. NumBei'of_Noﬁ—trée Sequences Genefated- ~
= + ————t— ————————————— -;--4-7----+‘
= NumLer of Number of non-tree sequences
Ggaph Spanning .+—---------+--—-----—?---+;h-rﬁi-------+
= tfe;s . -BFS Heufisq}c 1 Heuristic 2
+_;-____+ ___________ o e e ot e e e S SOt S
G, 24672 20738 14412 . L;4438 ‘
G, 13931 . 8778 " 5308 5310
. G, ‘(151662 120259 66079 , 67036
G, |~ 151719 | = 90831 65657 65950
<§;\ 1360710 1112223 . 504279 ‘ 4@1506*"
ég '12897g§0. 7559568 | 7136979 6971221
G, 1592512 871944 528195 528128
'GB 1820488" 1151321 634183 635357
Gy | 14689650 ' | 11998877 | 6179924 6207721
Gp | 26520950 20921468 | - 9096476 . ﬁ§41338
tommm e e +______--f-xf_,-_-_-;;;_-+-_ — ' +
* L
oot . ‘q
. “, : o
= ‘ g;ﬁ* L
. - - —
‘ o ;’
) \~\\\v’\

s B
and'COSTZ. Though the number of comparisous(required in ;
straightforward impiementation is also influencedez\f%e
initial spanning tree, the actual number of comparisons m;he
during the execution of the‘ a}gorithﬁQ can be reduced
COnsidergny by an appropriate dﬁoice'of a data struétursr
for maintaining the informatiofi relating to a tree sequence.

!
In this section we discuss a ‘method whiach can be use to

-achieve this.

{\

4

/

. . l
‘::abnsider a sequence A= (DIGIT(l), DIGIT(2), «..,

DIGIT (k-1) , %, REF(k+l), ..., REF(n-1)) with x # REF(k),
genérated by Char's- algorithm. Let Gh be\the corresponding
subgrapﬁ of the given graph G. - Lé;\fG*\ be the subgraph
o%éaineg by removing from GX the gdggrtﬁ{x)u Clearly Gx is
a spanning 2-tree of G. A To test whether A is a tree
sequence oOr ‘not, Chgf's algorithm tréverse? the éequence of
vertices K& x, DIGIT(x), DIGIT(DIGIT(x)), ... until the
vertex k or a vertex j > k is encountered. 1In the latter
case, \ is a tree sequence; Suppose A is a tfee sequence,
and ‘let P °denote the path represente&lby the sequencq of
vertices k, x, DIGIT(x), DIGIT (DIGIT (X)), +«vs 3. |

N

After generating and identifying the tree 'sequepce A,

the algorithm proceeds to generate sequences in ‘which
. ot

DIGIT (1), DIGIT(2), ..., DIGIT(k-1), and DIGIT (k) are the

same as in' A\. This is done by changing - DIGIT(k+1),

DIGIT(k+2), ..., DIGIT(n-1) in an appropriate order. So the

=

LI) ‘ ' . §

N

- 50 -

-

path P wiil he present in all th corresponding to
such sequences. Consider now one such sequence N which is
to-be tested for the tree compatibility property at poFLm;on
i. Clearly i > k. Let in N, DIGIT(i) = . Then to test
the trge éomp%tibility property, we ngéd to traverse the
sequence P' of vertiées i, o, DIGET«X), DIGIT(DIG{T(a)), .).

and so on until vertex i or a vertex greater than i is

encountered,-~¥f k lies on P', theM™ the sequence of vertic%s\

k, %, DIGIT(x), DIGIT(DIGIT(x)), ..., j representiry P will
be a subsequence O*% P'. Hence, in .suth a case, while
traversing P', when we encounter k, we can proteed directiy.
to j. In other words, we can effectiQely compress P' if we
keep track of the inférmation relating to the path P. This
technique, called path compréssion, will conside;ably reduce
the actual number of comparisons made during the execution
of Char's algorithm. Pgtﬁ compression has also “been
successfully : used f‘€> designing several efficient
algorithms [19]. . r~

To impl;meﬁgLChar's aﬁ!arithm with path compression, wg’ :

~use a new array NEXTVERTEX. Whereas the DIGIT array‘keeps

the adjacency ihformation of each sequence, the NEXTVERTEX
array, for a biee, is defined as NEXTVERTEX (i) = j, where jJ

is the first vertex greater than i reachable from vertex i

as we traverse the tree from i to vertex n. We create and

maintain the NEkTVERTEx array as folloys.w Since for the

initial tree sequence, DIGIT(i) = REF(i) > i, 1 < i ¢ n=1, "-*

~

-

\; - 51 -

v, -

Qg initialize NEXTVERTEX(i) = REF(i), 1 < i < n-1.
Whenever a tree sequence A= (DIGIT(l), DIGIT(2),8 ...,
DIGIT(k-1), x, REF(k+1), ..., REF(n-1)) is generated by
changing the value of DIGIT(k) of tﬁ; previpqs tree

+ sequence, the NEXTVERTEX array is updated as follows.

.

REF (1), k+l < i < n-1.

1]

Ugdate l: NEXTVERTEX (i)
Update 2: NEXTVERTEX (k) = j, where j is the first vertex

)
greater than k in the tree path from vertex k to

vertex n. -

2

Note that j will be known when the tree compatibility test

for N is completed.

We have implemented Char's algorithm with path
) | | L
‘compression usidS-NEXTVERTEx array. In Table 3.3 we give

the total number of comparis made by the implementation
of Char's algorithm Qith Heuristic“l and the implementation
with ‘@euristic 1 and‘path compression, for the ten randomly
generated graphs giysn in Table }.1. Fﬁgm Table 3.3 it |is

clear that the use of path compression considerably reduces

the total number of comparisons. .

Next we éompute the number of éomputational steps
-fequired . to create and update the NEXTV%RTEX array. ‘Note
that initially NEXTVERTEX (n-l) = REF(n-1) = n. Since
Update 2 sets NEXTVERTEX(n-1) to the firsg vertex greater

than n-1 in the tree path from vertex n-1 to vertex n, it is

T

- 52 -

Table 3.3 -
- Numbér of Comparisons ﬁadg
\ : : :
Ao e e e e o —————— e +
. ‘Number of Nupber of Number of Comparisons
Graph | Spanning non-trée’ +---————:j¥-e—+ ----------- -+
Heuristic 1
trees sequences | Heuristic 1 with
¢ : ‘ n ‘ Path Compr.
PRI T S — m——tm—————————— e ——————
Gl 24672 14412 110374 83342
G2 13931 5308 40711 33811
6, 151662 66079 593753 442127
G4-) 151719 65657 565449 434929
Gs | 1360710 504279 5323910 3841745
G6 12897990 7136979 62931380. 489708130
G7 _ 1592512 528}?3 5599546 . 49?0411
GB— 1820488 634183 6.749935 4808779
Gy | 14689650 6179924 6648447 45516982
Glo 26520950 ‘_ 9096476 102984126 69897903
O et ST S e o ————— prmm————————— o —————— +
J;':Eo .
N
-
\

K
J

- 53 -

clear that NEXTVERTEX(n—l)G is always equal to n and so we .
need to update only NEXTVERTEX(i), 1 < i < n-2. For each
tree sequence of the form Xk = (DIGIT(1l), DIGIT(2), ...,
DIG;T(g-l), X, REF(k+l), ..., REF(n-1)) with x ¥ REF(k),
Uﬁﬁate‘l requires (n-k-1) assignments and Update 2 requires
exactly one assignment. Thus Update 1 and Upddtesz together
require (n-k) computatiégal steps for each tree sequence of
the form Xk. The number of gree sequences of Ehe form kk is
given by t(k+l)-t(k), where t(i), 1 < i < n-2, is the ngmbér
of spanning trees Jf the graph Gés) defined in Section 3.2.

Thus'y, the total number of computational steps required to

create and update the NEXTVERTEX array is given by

8 n-2 \ . n=2
n-1 + :z:‘lt(k+1)-t(k)l(n-k) = 2t(n-1) + :E: t(k), |
k=1 ' =2 - |
e - since t(l)=1.
4 - n=1

-'t(n—l)\+ Z t (k)

* - : k=2
| n-1 ‘

. -t al___ + Z d’ . 1 '

)) v - - - e ® d
‘§ . n-1 k=g N 1'n-2 k
which is O(nt). Thus emplbying -path compression in the

implementation of Char's algorithm does not ‘affect the

.asymptotic &ompiexity of the élgorithm.

-
\\ !

; ﬂ _\w/t\>
: - 54 = - \\\V
~ o \)
L)

Since the total number of comparisons is reduced when
Char's algorithm ig” implemented with path compression, the
'

execution time of the algorithm with path compression should

also be less than the execution time of the algorithm

without péth compression. éyfhis can be verified from"

Table 3.4 where we tabulate the execution times for three

implessntations of Char's algorithm - Char's implemen%ation~

where breadth-first. search (BFS) is used to select the
initial spanning tree, implementation using Heuristic l, and
imp%emenﬁation using Heuristic 1 and path compression - for
the ten randomly generated graphs given in Table 3.1. Theée
execution times are for a CDC Cyber 170 and these algorithms
are implement;% in PASCAL. From Table 3.4, it c#%h also be
seen that thq/reduqtion in the execution time achieved when
Char's algorithm is\&mplemented with path compression is not
préRortional to the corresponding reductigﬁ in the number of
comparisons made. This 1is .due to the additional work
required to create and updaégd,the NEXTVERTEX array.

However, the reduction is significant for denser graphs, for

example G and\Glo. Thus it is clear that Char's algorithm

9
with Heuristic 1 and path compression 1is an efficient

impi;mentation of the algorithm,

., = 55 = fé
y Table 3.4
. Execution Time
e e T 4----—---—----—--7 ------- - e e e e e +
Number of Execution time in seconds
Graph | Spanning +=-=====--- pm———————— e el +
Heuristic 1
trees BFS Heuristic 1 with
Path Compr.

b ——— b —————— S T TSR —

. K

e 4

Gl 24672 2.037 1.924 1.767

G2 13931 0.970 0.944 0.928

G3 151662. 12.495 10.167 9.462

G, 151719 10.661 10.489 10.205

G5 1360710 102.660 87.835 81.612

G6 \ 12897990 994,735 966.608 894.63%

G7 1592512 113.124 105.868 99,491

G8 1820488 129.747 124.721 115.582

G9 14689650 %%93.974 1026.815 946.918

Glo 26520950 2264.015 1822.345 1662.247
tm—————— b —————— Frrm—————— et ———— —————— Ty s

f -
'l

- 56 -~

; CHAPTER 4
AN_ALYSIS OF CHAR'S ALGORITHM FOR
SPECIAL GRAPHS
o .

In this chapter we presént an angﬁysis of Char's
algorithm %or. special graphs. In Chapter 3 the time
complexity of this algorithm was shown to‘be O(m;;+n3t), for
a geﬁeral graph with m edges, n vertices and t spaqning
trees. However, for a <class of graphs the algorlthm
requires only O(m+n+nt) time and hence is as efficieng as
theoretically possible. In Section 4.1 we discuss the
complexity of ghir's algorithm for this class of graphs.
For certain graphs in this class thé number to of non-tree'
subgrahhs éenerated by the algorithm can be determined.asva
function of n. In Section 4.2 we rpresent elegant
expressions for the value of toqin the éases\of complete
graphs, ladders and wheels. We also obtain expressions for
the total‘ number of -computationall steps required in the
cases of ladders and wheels. Based on these expressionsp we
show that in these cases Char's algorithm require55 on the
average, at most 4 computational steps ‘per spanning ‘tree.
Since the. value of to and hence the cémpléxity of Char's

algorithm depends on the initial spanning tree; it 1is an

interesting problem to study the minimum value of t

Y

0
possible for a graph.' In Section 4.3 we define the minimum

value of ty over all initial spanning trees of a graph as
the, min-tpee-number of the graph and present some

-

.
L 4

- 57 -

conjectures on this number.

Fs

4.1 Complexity of Chdr's Algorithm for a n\

Special Class of Graphs - t /

~

,

e

Let G,(,n_l) be the set of all n-vertex connected graphs
which have at least one vertex of d‘egree n-1. Aijxy graph

GEG(n'_'l) contains a star tree as one of its spanning trees.

In this section we first brove that for any graph Geg(n"l) '

Char's ‘algor-ithm requires only Q(m+n+nt) time when the star

tree is choscen as the initial spanning tree.

Consider a graph Geg (1) Le‘t the star vertex in G,
whi'ch is a vertex of degrge n-1, be numbered é‘s n and the
“other vertices of G be numbered in any arbitrary order.
Since a star tree is used Ss the initial spanning tree, it
is clear that REF(i) = n, 1 < i < n-1. Let \, = (DIGIT(1),
DIGIT(2), ..., DIGIT(K), REF(k+l), ..., REF (n-1)), with
DIC&T(k) ¥ REF (k), be a non-tree sequence .rgenerated by
Cha!'"f"‘ algorithm which does not have the tree compatibility
p}:o’berty at k. Then for the non—‘tﬂxe'e subgraph Gk = (V, Ek)
of G éorresponding to)‘k,
g = {1, 2, ..., n}
' ~ B, = {(1,01GIT(1)), (2,DIGIT(2)), ...,

(k,DIGIT(k)), (k+l,n), ..., (n—l,n.)}.‘

| - 58 - \\ , ~ﬂ\

Since in Char's algorithm any edge (i,DIGIT(i)) in E, is

k
traversed from vertex i to vertex DIGIT(i), we can consider
the edges in Ek as directed edges. Thus, from our
discussion in Sgction 3.1, it follgws that Gk contains
exactly one directed circuit passing thFough vertex k using

edges ?%om the set {(l,DIGIT(l)), (2,DIGIT(2)), cesy

(k,DIGIT (k))}.

- Now we prove the following.

AY

A ’

THEOREM 4.1.
For any graph ceg(n—1) to.i t if a star tree ?9 used '

_as the initial spannifg tree.

- Proof: "

We prove tge theorem by showing that each non-tree

/,saguence generated by Char's algorithm when applied on G

corresponds to a unique tree sequence. Lét Xi and xj be two

distinct non~“tree sequences geﬁerated by the algorithm which

do not have ;;;“;ge;“;;ﬁpatibility property at positions i
and Jj respectively, and let Ga and Gb be the Ebtresponding

non-tree subgréphs of G. 1In Ga there is a dirécted circuit

(i, DIGIT(i), DIGIT(DIGIT(i)), ..., x, 1) passing through .
vertex i, and in G, there is a "directed circuit (3,
. DIGIT(J), PIGIT(bIGIT(j)), ..., ¥, j) passing through vertex
j. From Ga = (V, Ea) and Gb_= v, Eb), let us‘construct the

= . C = - "'
graphs G; (v, E;) and GB (v, Eb) such that

e

- 59 ~

E, = E, - (x,1) U (x,n)
and)
Ep = Ep - (y,.3) U (y,n).

It can be easily seen that both G; and Gé are spanning trees
of G. 1In fact, when considered as directed graphs, both G;

' (]
and G! are directed spanning trees in which every vertex

b
except vertex n has out—-degree equal to 1.

LN

\,

The proof is completed by showing\Ehat G; and G are
- distinct Whenevet Ga and Gb are distinct. Assume, on the

contrary, that G;,a G! First we note that i = j. If not,

b<,
let i < j. Then the\édge (j,n) will be present in Gé but
not in Gé, contradicting the assumption that G;"= Gé. Thus

i = j.

Note that all the directed edges in E * except (x,1i) are
present in E;, and all‘the directed edges in Eb except (y,3)
' : °___~‘ 1= Pt (e Al = @

are present in Eb. Since i I, Ea Eb and in Ga Gb

every vertex except n has out-degree equal to 1, it follows

7
that X = vy, Thus we have Ea = IEé—(x,n)L}(x,i) =
Eé—(f}n)\)(y,j) = Eg, éontradicting‘qéhat G, and Gb are

<:‘dist:imr:f:. Hence the theorenm. : ' L. o

The above was originall} proved in [14]. The proof'

. given here is more‘elegant than that given in [14]. Since

the time complexity of Char's alg;rithm is-O(m+n+n(£+tO{y

and to < t for any graph in G‘n-l), when a star tree is used
as the initial spanning tree, we get tZéf

. /
v

following.

- 60 =

"\.\
THEOREM 4.2.

For any graph cec{™1) char's algorithm requires
O(m+n+nt) time if a star tree 1is ‘used as the initial

spanning tree, . O

Now we prove a result more general than Theorem 4.2.-

Consider a graph GEEG(n-l) and let S1 be any .arbitrary

spanning tree of ¢G. Leqfsz be a star tree of G and Va be

the star vertex. Suppose we assign the number n to| vertex
Qa’ and number the other vertices of G usﬁég S, so that in
.the sequence correéponding to Sl' DIGIT(i) > i, 1 i'i < n-1.
In 52, everyhvertex is adjacent to vertex n, and so in the
corresponding tree sequence DIGIT (i) > i, < i< n-1. hus
Cif to’1 and ®$0,2 are the numbers of, non-tree sequences

2

trees, then by Theorem 3.4 ¢t = t . Since these
0,1 0,2°

arguments are valid for any arbitrary initiaL/spanning tree,

generated when S, and S, are used as the initial spanning

we get the following.
N N

THEOREM 4. 3.
N

For any graph ceg(n1), t, < t for any inifial
spanning tree if a vertex of degree n-1 1is assigned _fhé
"number n, and the other vertices of G are numbered so that

in the corresponding tree sequence DIGiT(i)'> i,/ 1 < 1 <

n-1. ' ' a

- 61 -

_/ iy ——

Since a complete graph 1is in c(™ 1) ang all the

vertices of a cémplete graph have degree n-l1, we get the

0

] following result from Theorem 4.3.
v ' R \ /

COROLLARY 4.3.1.

.

For a complete graph, t0 £ f for any choice of the

¢ initial spanﬁing,tree. ‘ o

4.2 Char's Algorithm on

J . : Coqpiete.craphs, Ladders and Wheels:

in this section we discuss the behaviour of Char's
a¥gorithm in the .céseg of 'complete graphs, ladders and
wheels and point out certain interesting propérties of ‘the
algorithm in these cases. Wé develop e}egant exptesgions
for the ﬁumber to pf non-tree subé?iphs generated 'when'
Char's algorith@ﬂfis applied on these graphs. Note that
. these graphs belong to G{™ 1) and hence #har's algorithm

requires O (m+n+nt) time in these cases. . .

4.2.1 Complete Graphs

13

- . Let K be an n-vertex complete.graph. For every vertex
» , / ’

‘i of‘Q: : .
deg(i) = n-1. N (4.1)

]

< ' . n

L

- Let G1 be‘the;weighﬁed graph obtained from L by assigning
unit weight to each edge of K . Let Gi' 221 jﬁﬁrl, be the
graph obtained from G1 3 by performing pivotal condensation
at vertex i-1 rn Gy_ 1.’ Since Gl is a complete graph ‘'with n

vertices, the graph Gy 2i§ i < n-l, is a complete graph

with (n-i:!ﬁ vertices and all the edges in Gi have the same

‘weight, say ¢;. Thus we get
./ .
“ b di = (l‘l"i)ci, 1 _<_ i i n-lo . (4.2)

" We now prove by induction that

n A ‘
ci = m, 1 i i f_ n-;l. . ' g (4.3)

»

Since c1 =1, (4.3) is true for i = 1. Let (4.3) ' be ltruevz

for all values of i < k. Consider i ="k > 1. In Gk-l’

vertex k;i'is adjacent to theivertices k, k+1,‘ ...,' n and

1

dk-l‘ = (n=k+l)c,_;-. . Thus in G, the weight ck.of e;ch edgé.

_/‘k

. ("k 1) .
SR+1 Lo

n-k+2) ~
n=k+1] k-1 T
o R

R n—k+2
T “\n=k+1 n—k+2

is given by

9

A > , . i
14’ .
; e .
.. b C | ‘) -
i
. /‘. ' . . \\v .
) '{‘hus (4.3) follows. U%i . (4.1), (4.2), and\ (4.3) in
. Theorem 3.3 we get)
o, T, o \\\. . ‘
: 1 ~i o
N o n n .
l-.j . , / i=2 . . ,
. " . r '
— X St n=2 for ' ‘
nce t = n for Kn" the above expression reduces to
. *' . ‘. ‘ « /
b . -
. 4 ; . . . n_z [nn l-l]
’ ’ . . t¥#ty = 2n° 0o
. R o0 (n-1) 2 .
' v ' Ly ' - —
" and hence vetget the following. ‘e -

. , > , , ¢
‘ Lt R) . 3
, " - ~: \ < . oo ‘), « ' < \é‘! 3. . ‘\ ‘
. - N THEOREM 4 » 4 . , . . & ‘ '3" ”‘} .. ‘
.,.* « .. - - For an n-vertex complete graph, \ *; '
: TP - : :
" . . > . , .
It . e . . X 4 . o P v
< ‘ - - - T. .
~ ‘ . , g a1l LA -
. , tg =0 = ——|* . =
.: ’ ./q , . - N ‘ , (n“l;) s .
VA P ' U ‘ ' °
W - Fro‘l’n the above expression we see that tj < t for a
« 1
T complete grapﬂ which is better than the bound given in
/ Y T N . '
., . (Corollary 4 3.1. .. , L
%. [} - - ,
Lt . Lo coow s ' '
- 4.2,2 Ladders \ ' « T
S YA - AN .

: . . i [. g L ‘ =I. .
Lo , The draph "shown in Fig. 4.1(a) 45 called an n-vertex t

L / ‘

"> ladder. (A ladder is alpo known as-q fanﬁ[zm % R ‘Let 'L

’ o - \‘ P
. . !
’ . -+ - ' M . M .
L K - ‘e - . » N Y

s . } . . -
. N - M]
' « . v Q‘ ° . / N N N ' '
.‘_‘s 0 - ! N . 3 N
. . - .

oo f . v
YIS ’ . | W .

i

¥4

Figu;ef4.l(a)
Qn—ierte§ Ladder’

. .
a
¢
o

2 3 4,
. I
,n.
I
I
!
!
I
|
-
!
!

-N

s

o

~ Figure 4.1(b)
. star Tree

eso 3 .
- ‘ ’ - ' »

denote’ the number of spanning trees of an n-vertex ladder

0
n

when Char's algorithm is applied on the ladder choosing the

and let L. denote the number of non-tree subgraphs generated
. (-3 4

star tree shown in Fig. 4.1(b) as the initial spanning tree.

. Note that a l-vertex ladder has a single vertex and no edge

ahd hence L1 = 1, and that a 2-vertex ladder has a single

edge and so L2 = 1,

¢

4 0
> . 't

- It is knqwn that [21] ~

w

L = 3Lﬁ:

n - Ln_2’ n _>_ 4.) ' (4.4)

,1 1

From , (4.4) it can be seen that Lé, L3, ... are alternate
numbers(in the Fibonacci sequence 1, l,‘Z, 3, 5, 8, 13, 21,

eee 'with/Lz =1, Ly =3, L, =8 and so on. Let the number

3
next to Li in the Fibonacci sequence be denoted as NEXT(Li).

Note that NEXT(Ll) = 1 and NEXT(LZ) = 2. Using the

identities

& i Ly +L, =1+1L,
NEXT (B,.) + NEXT(L,) = 1 + NEXT(L,) =L
t 1 2 & 2

= NEXT(Lz),

37
Lj + NEXT(Lj) = Lj;l, j > 2,

NEXT (L;_j) + Ly = NEXT(Ly), J 2 2,

3

we can show that ' o)

.t) : .
- 3 ‘ .

~

- z L; = "NEx'r(Lj)

i=1

and ‘ .) -
» ’ j ' o
. . : ! r. .o -
. T E NEXT(L,) = L .- : + . (4.6
- . . (i) j+ l .,(. ‘(’,\y)
3 i=ll .

) > f‘" ' “'
Now we compute the value of Lg using I?eorem 3.1. Note that
. ‘ ' . .
for an n-vertex ladder,

deg(l) = deg(n—l) = 2 . (4.7)
and ' . . A
- . degkl) = 3, 2 < i < n-2. (4.8)

4

The graph G(S) obtained from an n-vertex ' ladder hy

COalescing the vertxces i, i+l, ..., n.is shown in Fig. 4.2.

The numper of spanning trees of this graph‘ié given in the .

-
’

following.

¢ »

LEMMA 4.1.

e

The number of spanning trees t(i) of the graph shown in

' Fig. 4.2 is-'given by

" k(i) = NEXT(L;), 1< 4 ¢ n=l. 0 '

‘Proof: L
A — .

Let e be the edgp’shoén in Fig. 4.2. The numbet (1)
of spanning trees of this graph is the sum of the number Li

of épa ning trees of the graph constructed by removing e,

/A \‘ (¢

) and the numbet t(i-l) of. spanniﬂ% tr}es of the- graph -

A

constructed by contracting e. Thus N ' 9

9,
S /
-~

t(i) = L, + t(i-_-l'l‘f).

«
[

]

-f !
'
;
A
-
,
.
N
:
s
f
~n
1
AN

' aravitas

e
\
'
¢
v
N
r
- ﬂ‘
.
+
4

(

{1, 141, ...,'n}

ay

Figure 4.2
' Graph Gfs)

AN

- 68 -

Solving this fecurrence relation using (4.5) we get

(i) = NEXT(L,). L o

‘Using (4.7), (4.8), and Lemma 4.1 in Theorem 3.1 we get
-] T,

r S

o ' | . ,n=2 G
- . %

L +L. = 1. NEXT(L;) +‘NE)éT.(Ln_1) + ‘2 E NEXT (L,) -
’ R . . _‘ - k=2 . -~
n-1 n-2 :
. . i <
=] + E NEXT(L’k) + Z NEX’%‘(Lk) . , . ' o
* k=1 . k=2 ' e
Since NEXT(L,) = 1 we can rgﬁrite the above as {;
- . ﬂ"lj . 1;-2 . ' "
) 0 = | ” ’
| Ln-i»Ln Z NEXT(Lk) + E NEXT(Lk) . .
< . kel . k=1 : ‘
Using (4.6)ﬁin the above expression we get ¢
| - L +50 = Lo+ " S
. . n'n n n-1 ‘ .
and hence the following theorem. Ty

€ « %
L3 -

THEOREM 4.5. | : .
: .

-

For ‘an n-vertex laqder, the Jnumbet Lg of non~tree
‘ . subgraphs generated by Char's algorithm when a/g&ar t:ég/‘fs:

. —_ _ \ =
used as the initial spanning tree is given by S
R , o . i

+ h -
'S J R ‘m > -— }

TR R
g
-

t{/ }; , . _' “ Lg = Lp1et \ o

This .result was irst stated and proved.in [14]. However,

- the proof given here is much -simpler than ~that reported:

in [14].
‘ -~
Solving (4.4) wé get
, -~ Y ' | . a
' ' . n-1 n-1 .
o Al(3nBY (35
~ Ln Vg[(—i—) (>)]. (4.9)
Using (4.9) and Thoerem 4.5 we can show that.
0 ,
Lt In_ 38&
- [4 n-wL -
' 8ince 'Ln_l/Ln is an increasing function of n, it follows
A that for an n-veréex ladder Char's algorithm ggnerates' at
mbst.O.382Ln non-trde sequences.
. N
. - We now proceed to cbmpute the ﬁumbgr of computational
) ' \
. steps required by Char's -algorithm to generate all "the
roo " 8pqnning trees. of an n-vertex. ladder, when a star tree is
v used ‘as the initial §panning tree. Note that to output a
S ‘ 8pannihg tree -at least (n-1) computatioﬁal steps are
) tequired. In the follouing analysis we do not consider the
»:;‘gu v ‘ ¢ ' -
%; - ; computational stepzacfequired to qptp&t the spanning tfees. = -
o, ’ '
A * 'Also we do not consider the computqtional,steps required to

determiné the initial ébahning tree. . ' o

Tw~

We have shown in Section 3.2 that the total cost COST

of Char;s-algorithm is the sum of

H " ‘ - +
) . n-l N | F} }
cosT1 = Z £(k) - (n=2) . (4.10)
~ e . =2 a
and \
n-1 ‘
1 4) m .
COST2 < E CplT UTL|. (4.11)

. - " k=1

For an n—-vertex ladder, thé number t(k) of spanning trees of
the graph obtained by coalescing the vertices k, k+1l, ..., n
is given in Lemma 4.1. Using this value.for t(k) in (4.10),

we éan show that for an n-vertex ladder

o) ‘ ’ n-1 .\'. \ .
. ; . N
COST1 = E NEXT(LK)‘- (n-ZX = Ln-n+l. - (4.12)
k=2 - ™y

‘
{

\ . Let ~ COST2- = COST2 (T)+C03T2('s\',.y,wher¥cos'rz('r) is the .

Eoét of Type 2 computations for . generating. tree sequences -

and COST2(T') is the corresponding cost for generating
- o

non-tree sequences. It can be easily seen that in the case
" of a ladder, the oircuit passing through vertex k in the
non-treé subgraph corresponding to a sequence in T', 2 < k.

< n-1,” is of Q%e form (K, DIGIT(k), k). These non-tree

subgraphs require’exactly twb.computational steps to .test

-
H '
-~ EEEE
. B
'
,

- 71 -

for the tree compatibility propertys From thig observation
' {

and the fact that Char's aigorithm generates Ln_1 n?nmtree
subgraphs ' for an n-vertéx ladder, when a star tree is used

as the initial spanning tree, we get

COST2(T') = 2L __,. _ (4.13)

e

Next we compute COST2(T). Since to verify the tree

. L . <
compatibility property of any sequence in Tk' we start with

the edge (k,DIGIT(k)) and traverse some of the edges in the

set {(1,DIGIT(1)), (2,DIGIT(2)), ..., (k-1,DIGIT(k-1))}, it

L]

follows that a minimum of one and a maximum of k

- computational steps will be required for each tree sequence

in Ty. Let T (i) be the set of tree sequences in T, which

require exactly i compu&ational steps to test for the tree

. compatibility roperty. The £allowing lemma gives the

number of sequences’ in any Tk(iﬁ, 1<i<kand1l¢< k <n-1.

LEMMA 4,2, (_

For an n-vertex ladder, the number of tree sequences in
Teer 1 £ k < n-1, which require |exactly i computatiéﬁal steps
is given by ' \\ |

- ﬂ .
| Ty (1)] = NEXT(L,_;,.q)r-1 <
|'rn"1‘(1)1 = 0,

T, (4] = 'qu(r.n_i), 2<i<nl. | -

and

v

* R
Proof:

We first prove the lemma for i -Jl. Consideé any tree
sequence A in Tk' k < n-1. The spanqing tree GX
corresponding to this sequence contains the.edges (k+1,n),
(k+2,n*, ..., (n-1,n). If, in addition, the edge (k,k+l) is
also in GX' then ;he sequence)\ would require only one
computational step. All the spann&ng trees having ;he edge
(k,k+1) should be of the form shown in Fig. 4.3(a), where 1

‘ . ’ -

< p < k. For a given value of p, the number of épanning

‘trees of the form shown in Fig. 4.3(a) is L

p° Thus we gef
k -
ITk(l)l = Z Lp = NEXT (L) . (4.'f4)

p=1 '
- .

1
Y

For any 6thé: value of i, 2 < i < k, the edges (k,k-1),
‘(k—l,k-Z), .;., (k-i+2,k—3+1), (k:i+1,n) must be traversed
ih.fo ‘while testing N\ for the tree compatibility ptoperty.l
These spanning trees should ,be of the form shown 1in

o \ ,
Fig.4.3(b), where 1 < ;75_ k-i+1. Hence we get

/> L k-ivl o
E / pnl S

‘Note .that all 'the sequences in Ts_l;for an n-vertex

ladder require at- least two-computational r/’steps.:

Furthermore (4.15) ° valid 8¢ k = n-1 and i ¥ 1. These

PO

LI}

R
~0°
.

- 73 -

Spanding tree
of a .p~-vertex

ladder

ee

Figure 4.3 (a)

Spanning Trees in T (1)
l1<pik

n-1

- 74 -

P pHle k-1 k=i4] . k-l ko k¢l n-1
O 0O¢ee0 \ OO -0+ 0O-~--0—<0 QeeeQ
o 1 2 p-1)

Spanning ‘ . - .

tree of a

' ' [!
p~-vertex ladder N\ . : :
. J
“ - n !
S i
N > -

Lo . - Figure 4,3(b)

. . . ' 8
, . Spanning Trees in Tk(i)' N ,
1l <p < k-i+l ,
s, [}\ 8
)ﬂ N '
- - . i ! ' " ?

% o ! ‘ ‘

! .

' 1 l -
A, . . [A ' : .
/ . o :
> -~ T, ‘e , o
R a - .

, ‘ , ; o

’ 1 ‘.? - }\’ £ R ‘: [
- : oo

S5 2N

=

N ») I3
.
- :

L

‘- 75 L
. - » [
N i .

. observations along with (4.14) and (4.15) prove the lemma.C

Using Lemma 4.2 we get

n-1 k

. CDST2(T) = :z: :E: i|T (i)] = 2L -n.. (4.16) -

' o k=] i-
From (4.12), (4.13) and (4.16), we get :
% | COST = 3Li4+2L__,-2n+l. . (4.17)

Using (4.9) in (4.17) we can show that

-

N COST ", 4'.

n

Thus we get the following.

. THEOREM 4.6.
Fof an n-vertex laéder, when the star tree is used as
, the initial spanning tree,

-

) (i) the total cost of Char s algorithm 1s gzven by

-~

‘ ~, . COST = 3L _+2L__,-2n+l.

‘ LN . ’ .

-) , (41) Char's algorithm requlres, on the average, at most 4
' computetional steps to generate a spanning tree. , . (]

L - - ' & y S

%g. - 4.2.3 Wheels | - L A

- ’ _ . The g:aph shown in Fig, 4.4(a) is ~an n-vertex wheel,

Y, IS s : ’

-
©
.
t
. ")
W
.
\
— \
N
B
/
A
- i
- ’
)
-
. -
\
- .
-
8
¥
.
-
AY
.
'
.
"
o
)
s
. +
\
u
.
f
.
.
.
'
- t
|
.
. o ”
v °
o~ o . .
N " .
, ' .
—_— i
o e
) i N
. . - 9
» L
d '
. LI
. I
N '
o v
N . .
1 ’ :
: . '

, lnh-Z‘
. Figure 4.4(a)

n-vertex Wheel

.a

. ’ ', n7,2 “\G? L.
e %ﬁre‘i.up) 4

Star Tree

~
-
.
< ¥
4
kY
. t
N a
* [
o
[a
W’.
4
7.
.
2
* I “
.
;
o
o
.
<
.
'
B
"
0
. + L) N
. °
)
4
L o
' o
.
\ .
‘ ~
, f
! o
v
I3
[
-
a »
@
.
+
- -
-
]
v
~ .
.t s
. o
.
-. ¢
h t
i\. '
e,
5y ~
. B -
- Ll T,
e ;T
H i
o
- ‘\ .
. h

*

.9~/\ N | ‘ o

.‘ / | B
| -177 - ‘
4 * :

‘Tﬁé graph G{s)-e, conétructed by EEmoving‘ e,' i

\

\ .,
e . [J\

4
\Let“'Wn denote the number of gpanniqg trees of an n#vertex
\ - &, ’

wheel G and Wg‘ denote the number of non-tree subgraphs
6?enerated by Qhag's algSTTEEl‘wheh the star tree shown in

Fig. 4.4(b) is chosen.as the initial spanning tree. Now we
» -

0

derive an expresgion for W_

using Theorem 3.1. ' :

7 1 2
/ 3
-

o

The wheel shown in Fig. 4.4(a) can be redrawn as in

Fig. 4.5(a). Note that for an n-vertex wheel,

R

deg(i) = 3, 1 < i < n-1. (4.18)
\ .
. . -~

The graph G{s) obtained from G by coalescing the vertices i,

i+l, ..., n is shown in Fig. 4.5(b). The number of spanning

trees t(i) of Géslris given in the following lemma.

A . »
N . J \ -
LEMMA 4.3. : - Q\
—o L 4 .
The number t(i) of spanning trees of the graph shown in
Fig.4.5(b) is given by g Y

t(i) = Li+l'

Id

Proof: EP ’

g

[

Let e be the edgé of Gié)‘indicated ip Fig. 4.5(b).
B “shdwq in
Fig. 4.5(c). and the graph G{s).e;'constiucted by éonérdcting
e, is shown in Fig. 4.5(d). Note' that Fig. 4.5(c) is
identical to Fig. 4.2 and- so t(Gis)-e; = NEXT(L,). Also the
9f&pﬁ G{B).e“is,isomqrphic to the graph Gifi. Thu; we get
thelfollowing recuﬂrence ?elation. '

*. L 3 ‘ B 3

Figure "4.5(a)

4

n-vertex Whee; redrawn

/

{1, 141, ..., n}

¢ Figére 4.5(b)
Graph G{s)

w

vt

(g

.

4

\ ft, i+, ..., n}

Figure 4.5(c¢)

¢

Graph G{s)-e

. fl, 3, 141, ..., n}

X ‘Figure 4.5{(d) -~

“G;aph-éis)ae N

1

oo t(i) -\NExT(Li) + t(i-1). ‘

'&ﬁﬁg;' ' Solving this recurrénce,gelatiqn using (4.6), we obtain -
i v
t(i) = E NEXT(Lk) = Li+l' . ” ‘vD
~ k=1 , .

?

The following,lemﬁé\givés the number of sganning trees
. A Y ¥

"of an anerﬁqx wheel. ‘ »
~ L
. ‘ . é ~
-4 LEMMA 4.4. ‘ » . : 7 h '
The nqmber Wn of spanning trees of an n-vertex wheel is
given by
W = 2NEXT(L,) - L - 2, n> 3.
Proof:’

Consider the n-vertex wheel G shown in Fig. 4.5(a) and
let e be th; edge iqdicatedl’ Then the grabh G-e,.
constructed by removing e from G, is the n-vertex ladder
. | .- shown’ in Fig. 4.1(a) and the graph G.e, constructed by
'contracting ‘e in G, is shown in Pig. 4.5(e). The number of
spanning trees of the graph. in Fig. 4.5(e) can be shown to
be -

W + t(n~-2) = wn-l + L

n-1 , n=1°

Thus we get the following recurrence relation for the number

t

- . P

%,

-

B

- 81 -

Figupe’ 4.5 (e)

Graph G.e

N

”

) e e
. - !

, - 82 - .
r . .

of spanning trees of an n-vertex wheel.

~

' - ‘,/ T Wn'- Wn_l +’Ln-l+Lp'

"~ Solving the above recurrence relation we get

el

: '
o - .-“ . n

‘ r . .‘.. ' . - q . ov, " ‘ga
¥ L Mn = ZM:E: Ly = Ly = 2 G

R

: - i ‘

. Using (4.5) the above expregsion can be reduced’to

N .
% @ ' e

Wo = NEXT(L) - L, - 2. ‘o

*"Using‘(4.185 and. Lemma 4.3 in Theorem 3.1 we get '

Y

n-=1

SR R .
'. WA = 1+ 2 Z Ly 4y

k=l @

- = NEXT(L)-1. (4.19)

. From (4.19f and Lemma 4.4 we get ‘the fog}owing theoren,
which was first proved in [14] usin§ very involved

arguments.,

: ’ THEOREM 4.7.

For an n-vertex wheel, the -nuhber Wg of non-tree
' subgraphs generated by Char's aigorithm when a star tree is

used as the initia%ﬂgpanning tree is given by

- - R -

. .T) 0 i -) .
/J o wn - 1+Ln' ‘ . a

0
W
Lt n _ .4472.
rh*aawn .

This fmeans that for larzae values of /n, dﬁéf'g algorithm

generates at ‘most }0.4452Wn non-tree sequences for an
n-vertex wheel. , Note that wg/wn an be shown to be a
deéreasing function of n.
» | L J .

Next we coﬁbate ~the n bét of computationél steps
requi;ed by char's algorithm t6 generate . aliu the Spanﬁiné
trees of an n-vertex wheel. In the case of a wheel, the

graph obtained by coaf%scin the vertices k, k#l, eeey, n is

.shown in Fig.4.6. The n er t(k) of spanning trees of this

’

{

graph is

ZWk Lk = ZNEXT(Lk)-Z.

Thus, for an n-vertex wheel

1

s

e

6

Figure 4

(s)
G

Graph

rn

(R4

LT
Vo

Chag's algor}thg‘denera;es 1+L hon-tree sqbgraﬁﬁs for -
an n-vertex wheel. ;t’can easily be seen that one_of‘éhgsé
non-tree subgr?phs is the circgit'(n-l,.n-z, ceer 2, 1, n-1l) '
and the other 1is: the circuit (n~1, 1,2, ..., n=2, n-1).,
Note that e;chrpm these two non-tree subgraphs réquikes
exactly (n]%) compu;aéi&nal stépg -to test for the tree
compatipility property. ‘Since each of the other L-1

non-tree subgraphs require exactly two computational steps,

we get ' ,/i;; - o
o | |
* ‘ -
| COST2(T*) = 2L +2n-=4.. A4r21)
Now we prove the following. 3 .

LEMMA 4.5,-:"

For an n—-vertex wheel, the number of tree sequences in

~

: ~ N |
'Tk' 1l < k < n-1, which require exactly k computational stgps

is given by

ITk(k)l = 2,

Proof: " !
L}

First consider the case k = n-1. The spanning €;!§

corresponding to a sequence 'in T__. (n-1) must contain either
the edges (n-1,n-2), (n-2,n-3), ..., (2,1), (l,n) or the
edges (n-lpl)—' (1'2)’ e o0y (n-3'n-2), (n"z,n)‘ ThUS the

lemma follows for k = n-1. For other values.of k, 1 < k <

. v '
n-2, the spanning tree corresponding to a sequence in Tk(k)

.

4

\ Ll ‘
' n'. i) .) ? w
must contain thi edges (kfl,ﬁn, (k+2,n), ..., (n-1,n) and
_ fhe edges (k,k-1), (k;l,k-z), veer (2,1) along'with either
-‘ .
"the edge (1,n) or the edge (1,n-1). " Thus ﬁhellemma follows
§6r any k, 1 < k < n-2. Hence.the lemma. ') a

‘o
N

g

LEMMA 4.6.

For an n-vertex wheel, the number of tree sequences in

i '1'k which reqﬁire exactly i computational steps is given by

L

|Tk'(;&| = L_j4gr 1 <i<k-1, 2<kEn2
Tpepy (11 = 0,

and ’ ‘
|Tn_1(i)1 = 2L _jeir ? <1 < n-2.

.

.* Proof: _ ("

J e

'éirst we consider the case k = h-1. It can be easily
n that all the sequences in Th-1 require at least two

oméutatggnal steps and hence |Tn_1(l)| = 0, Now, consider

. the case k = n-1 and 2 < i < n-1. When considered as a

directed tree, the spanning tree corresponding to a sequence
in Tn_l(if, i# 1, must contain a.directed path of length i

from vertex n-1 to vertex n. Thus each one Of these

‘spanning trees should be of one of the three forﬁs shown iT“’“

leigs. 4.7(a), (b), and (c¢). The numbers of spanning trees

in these three groups are, respectively, _ “

«

n-i | - u
p-l . ‘

L g

&
7'\/ ‘ '
- 87 - '
. ’ 3 '
/ 6»;; 4
| /
W » /
//
. 1{&@ /o
/
- //
-/
N // . -

Spénning '
tree of a-

p-vertex ladder

P .pjl,h-i;l n-1 n-i+1 n-2 n-1

O~+—On- —O----0—0

// ' »
\N/ . -," // . ' v
. e v \ Figure 4.7(a)_
/3 ' ‘Spanning Trees in T _, (1) :
which do'not\conté;n the edge (l(n-l) or the edge (n-1,1)
3 1 <p <n-i,
* -

~

A DRI FOPL T e S ‘) - . .
A “ ~ ——————— A " . g .

) <f
YA -) . N

- .,
. .

v , v . - ‘o - .
. ‘ B
b, . - 1 - ‘.

- . . N
N " . :

' .
N

! ° g‘\\
— ' \\ ‘
-4
4 ”' . ‘(
Spanning tre .
of a (p-q)-vertex
ladder
,.\;/. - , o . i ‘ e N X .
/\,_/“ | Figure 4.7(b) ' ,
. \ T Spanning Trees in T __. (i)
- N which contain edge (l,n~1)
— SR o 2<psni :
1< qg<p-l
¥ ” : 3
L
o

"R
xS

Spanning treé'_
of a (p-i+2)-
ver tex. ladder

containing the - . -
edge (i-1,n) -
B Figure 4.7(c)
';Spaﬁning Trees in Tn;i(fj
which cgntain eége (ﬁf%,l) ' e
' 1\5“9 5 n-1 -
N - ~

) R A
.. B f” I ¥
~ R) - 90 - -) w
\ :4 } _j - e\ﬂ
T~ ' n-i p-1 ’
»'.' . e 2;: z ; Lo-q = Lntyv) *
y 74: -,/.—“‘\./ p=2 q‘I] .
\/ .
. ,.) B | n-1 R 9
y | Z NEXT(Lo_j,1) = Lp_jup-
p=i o
Thus we get . ‘ , Y,
- - - . . »
\g o T ITpoy (1) = NEXT (L4040 i+lp_ 54
' . : “ - . » - '
‘ ‘ = " i1, 221 202 N
) i : 7 . N - = -
‘ which proves the lemma for k = n-1.
/‘(~ ‘ . N
- SR .) We Nyext prove the lemma for other values of k, 2 <k < !
n-2. First we consider™he.case i = 1. The tree sequences -
» , , v *‘ [hd) .
in T (1)’ must contain ‘the edge (k,k+1) hnd these Jpanning (“?
N
‘ ﬂ"trees should be of the form ‘shown in Fig. 4. 8. " The number '
- of spanning treeél of the form shown in Fig. 4 8(a) is Lp, 15~ >
" < P £ k. The’ number of sPanning trees of the form shown in
f o Fig.4 8(b) 18 I"p- ' fori<p< k and 1<q< p-l. Thus the
" ~ -total number of fpaming trees.dn T (1) is given by
C | ke ' - y
* A k”\‘ -

>) - . c ' . .

S

. p-vertex ladde

<

v

¢

P 2

Spam}ing’
b

tree of a

-

"

A

Figu?e.4.8(a)

B

Spanning Trees in Tk(l)

k+1

'

which do not contain edge (1,n~1)

\

lips<k

.
B

¢

n-1

%

——,

- 92 -

Spanning tree
of a (p~-q)-vertex |

ladder ~

Figdre 4.8(b)
" Sparning Trees in Tk(i)

‘ o ‘which contain edge (1l,n-1)

’ - 2z2p<k 7
) : 1<qgz2pl

‘

Ei

- 93 - .

-

For other values of i, 2 < i < k-1, the tree sequences;
‘in Tk(i) must contain the edges (k,k-1), (k-1,k-2), ...,
(k=i+2,k=-i+1), .(k-i+l,n) and these spanning trees should be
of the form shown in Fiq.4.9. The number -of spanniné trees

of the form in Fig.4.9(a) is Lpﬂ l < p < k-i+l and the

) f those of the form_sgh in Fig. 4.9(b) is L
nnnber (o] e e (ﬁ_own in g (b) is p~q' 2
< p < k=i+l and ‘1 <.9'< p-1. Thus the total numher-.

B / -
of spanning trees in Tk(i)' 2 < i-j;k-l, i3 given by
k-i+1 k-i+l p-1 :
'T (i)l :E: bp ¥ :E: ji: bp-q T Pk-ie2
p=1 p=2 q=1
-Hence the proof. N ' A D‘.
Using Lemmas 4.5 and 4.6 we get
n-2 k-1 N
COST2(T) = Z 2k +‘§,Z 2iLn i+l Z E Ly 4 .
,k’l k-z i-
= 3NEXT (L)-3n-4. " (4.22)

From (4.20), (4. 21) an\/04 .22), we get the total number of

A

' computational steps trequired by Char's algoré§hm to generhte
all the spanning trees of an n-vertgx wheel, when a star

tree is used as the initial spanning tree, as

COsT =(9n+2+29n-4n._‘ : .(4.23)

LA

-

Uﬁing the exp;essioné for Ln and W and (4.23) we can show

i~

- 94 -"

Spanning
tree of a

p-vertex ladder

Figure 4.9 (a)

Spahning Trees in Tk(i)
which do.not contain edge (1,n-1)

1<p< k-i+l

Hk+1/

n-1

-

-.95 -
¢ :‘ /
P kei+l Kookl NG
O.--) wl) welD . Deee D
- ' . /n-1
'Spanning tree)
of a (é-q);vertex
¢ ladder) ,
o
‘n
HEN . t
) Figure 4.9 (b)-
; Spanning Trees in T, (i)
5w which contain edge (1,n-1)
2 <p < k-itl
¢
l<gcspl
o ~
-

"

N

- 96 - ' .

that for an n-vertex wheel

Thus we get the following. - E S ——

¢ . ' . ~

ij.n

| THEOREW—4=87 . ‘

For an n~vertex wheel, when the star tree is used as

the initial spanning tree, -

.{1) the total cost of Char's algorithm is given by

cosT -:Ln+2+2Ln-4nﬁ

(ii) Char;s algorithm requires, on the average, at most 4

computational steps to generate a spanning t{ee. =

!

4.3 Min-Tree-Number of a Graph and ;2//

Some Conjectures

/
/

ﬁe have shown iﬁ Section 3.2 that for any graph G, the

' value of to depends on the choice of the initial- spanning

tree. We now define the min-tree-number, ¢ , of G as the

.-min
minimum value of t over all - possible choices of initial

spanning trees.

Two immediate consequences " of Theorem 4.1 and

Corollary 4.3.1 are

- e

1

b3
"of the initial spanning tree.

K ‘ - 97 -

THEOREM 4.9.

- ~(n=1
For any graph ceg!), €min < t. . ‘ a

THEOREM 4.10. . L.

L4

_ For a complete graph € . is independent of the choice
Lo

\\/"\M D

S
/
Emiﬁ
Theorem 4.3 'aqﬁ Theorem 4.9 the

the value ??/ is given in

. - ‘ nL 1
question arises .Whether for. graphs in G(“), tg attaiM® the
]

minimum value € ; when a star tree is chosen as the initial

n
spanning tree. /

o o
-

’

’

.‘ J R .
We have computed the value /éf to for a number of
4

- randomly generated graphs. For all éhese‘ graphé, we have

chosen .the initial spanning : tree by ‘perfbrming a
breadth-first sgarch (14]. In genergl, we have observed
that to < 't, except iﬁ the c;ée"of certain sparse graphs
having vertices of degree 2. We can prove that for an
n-vertex circuit to = (}n—;)(h—zi)/é. ‘Since an n-vertex
circuit has n spﬁnding trees, it follon th?t in this case
to = Oknt). We obsgrved from our computational e;pgriences

¥

that only for n~-vertex circuits to = Q(nt). Note “that a

circuit is a 'sparse graph in which all the vertices are of .

degree 2. These obserQétionS‘lead us to believe that: the

4

following are true.

o

- 98 - * '

CONJECTURE 4.1.l

For any biconnetted graph,_, € = O(nt).

min

v

CONJECTURE 4.2.

For any bicon'necj:ed graph with minimurﬁ degree at least

e < ' T '
3 ‘€qin £ t- ‘ ; o
. - ' - s
T
L
'. -
[4 : .
\
* & ’
0/—“
a

- 99 -]

CHAPTER 5
MOD-CHAR: AM EFFICIENT IMPLEMENTATIONs

OF CHAR'S ALGORITHM

~_In Chapter 3 we “have ,shown that Char's algorithn
involves two types of comg:tafions, namely the Type 1
computations and the Type 2 computations. Whereas the cost
of Type 1 computations is O(nt), Type 2 computations cost

O(n3

t) for an n—vertex graph. In this chapter we develop a
new ' algorithm, based on the principles of Char's algoriéhm,
which requires O(n t) Type 2 computations only. Recall that
Type 2 computations‘ are essentially those required to test
the sequencdg for the tree céﬁpatibility property. We call
this modified algorithm as algorithm MOD-CHAR. In
Section 5.1 we discuss algorithm MOD-CHAR and in Section 5.2
we present a complexity analysis éf the algorithm. We
discuss in Section 5.3 our computétional results on

- s
algorithm MOD-CHAR and compare this algorithm with C

and Gabow and Myers' algorithms.

- Ce
5.1 Algorithm MOD-CHAR

Consider an n-vertex undirected graph G = (V,E). ' Let
the vertices of G be numbered as in Char's algorithm.
‘Consider a tree sequence AN = (DIGIT(1l), DIGIT(2), «esy

DIGIT (k), REF(k+l), REF(k+2), ..., REF(n-1)) with DIGIT(kK)

- 100 -~) "

¥ REF (k) , generated by Char's algorithm when applied on G.

Note that A 1is a ' tkee sequence in T, (see Section 3.2).°

After generat%ng A, Char's algorithm proceeds to generate
the tree sequences in T, ,UT, ,,U..-UT _; aalﬁefi(as the
non-tree sequences in TL;ILJkazLJ---L)Tﬁ-l whichi’have _the
same DIGIT(1), DIGIT(2), ..., DIGIT(k) as N, by changing
DIGIT(n-1), DIGIT(n-2), ...; DIGIT(k+1l) in an appropriate
order as described in'qéétion 3.1. Then another sequence in
?kLJTi is generated by segting DIGIT(i) = REF (i) for k+l < i
< n-1, and changing DIGIT (k) in A. h

Considef now . the sequences'in TkLJTﬁ ha:ing the same4
DIGIT(1l), DIGIT(2), ..., DIGIT(k-1) as N\, It is clear that
these ‘sequences are not generated immediately after), ‘and
generating each one of these sequences requires at most n
Type 2 computations. We now show how these computations can
be reduced by ‘' an ‘appropriate implementation of Char's
algorithm, We use the ideas developed in the course of the

proof of Theorem 3.1.

‘ﬂ\.Consider a tree sequence Xk = (DIGIT (1), DIGIT(2), +..,

-

BIGIT (k-1), REF (k), REF(k+l), ..., REF(n-1)). Lét G; denote
the spanning 2-tree obtained by removing the ‘ edge
(k,REF (k)) from the spanning tree G, corresponding to the
tree sequence Xk. Note that in Gy thé vertices k+1, k+2,
..., N are in one component and the vertex k is iné&he other

‘component. For each vertex x # REF (k) adjacent to vertex k,

4
- 101 - ' \

=

the sequence \{ = {DIGIT (1), DIGIT(2), ..., DIGIT(k-1), x, .
REF(k#l), eeey REF(n-1)) will be in TkL)T'.. This sequence
can be classified as follows, If vertices k and x are in
the same component of G;, then there is a circuit passing

through = vertex,.& in Gr (the subgraph of G corresponding to
i G > \

the sequence X;ﬁgﬁand so k; is a non-tree . sequence in TL.

On the other hand, if vertices k and x are in different

o

components of G', ‘then Xi is a tree sequence in T,. Thus
if, for -each xk defined above, .we obtain the information
whethet each neighbour x of k in G is in the same component

of Gi as vertex k or not, then only one comparison is

-

required to test each one of these sequences.

In order to determine the information about the two

’

components of Gk, we associate a label with each vertex of

Gi. We denote’the label of a vertex i, 1 < i <& n as

LABEL (1) . Forr each neighbour x of k, LABEL(x) 1is defined

such that LABEL(x) = k if the vertices k and x are .in the

1

same component of G!; and LABEL(x) = n otherwise, In order

to obtain these label values, we traverse the path 1in GL

from vertex x to either vertex k or to some vertex greater

]

.than k. 1If this path leads to vertex k, then we set

LABEL(x) = k; otherwise LABEL(x) = n.. Tﬁese.computations
»

+

-are performed efficiently as follows,

-

Since im GL there is a path from each one of " the

[N

vertices k+1, k+2, ..., n-1 to vertex n, we initialize

AN T

>

£y 7

- 102 -
* LABEL(i) = 0, 1 < i < k-1, . .
LABEL (k) = k, , .
‘and -, ’
LABEL(i) = n, k+1 < i < n. o

-

For each 'neighbour x of k in G, we traverse the path in G}

. from x to some vertex y such that LABEL(y) # 0. As soon as

y 1is found, we traverse this path once again and set
LABEL (v) = LABEL(y) for all the vertices v in th&s path
except vy. It is eaéy to see that this procedufe determmines
the lgbel values correctly. Moreover,aeacﬁ edge of Gi is
traversed at most twice in this procedure. More precisely,

. # v
each one of the edges (1,DIGIT(1l)), (2,DIGIT(2)), *..,

(k-1,DIGIT(k-1)) is traversed at most twice and hence this

-

traversal réquires at most 2(k-1) computationai steps. Thus

the label values can be computed in O(n) time.
* f ’

v

~
From the disqgssions thu far, it 1is clear that

algorithm MOD-CHAR will require considerably less number of

Type 2 computations than Char's algorithm. We now present a

recursive version of algorithm MOD-CHAR in ALGOL-like =%

notation.

-

Mod{f}gg Char's Algorithm to Enumerate All the Spanning

&

Trees of a Graph.

procedure MOD-CHAR; . ‘é' .
¢ &
comment procedure MOD-CHAR enumerates all the spanning trees

of a ’COnneqted n-vertex .graph using algorithm

R T
B g
i '

- 103 - o g

MOD-CHAR. The graph iﬁis repreSen}:’éd by the adja-

cency lists ADJ(i), 1 < i <n-1, of itsyvertices,
. - .- * .,_/’ -

It v ’ ~

procedure GENERATE (k)';

-

f"ﬁ:oument‘; procedure - GENERATE, when called with. the argument:

k, sets DIGIT (k) to generate a tree sequenée. .

3 | | This procedure uses a local array LABEL,)
| begin ’ | B
' 1~f k=n
' ‘ then outpg£ the tree sequence. .o
else begin

{set DIGIT(i) to REF(i); k < i < n-1}

DIGIT (k) := REF(K); | . i

GENERATE (k+1) ;) S

{Geherate all t:he< sequences in TkU;r;(having the
’ &

same DIGIT(1), DIGIT(2), ..., DIGIT (k-1)}

Q - .

A

~. ompute LABEL(x) for each neighbour x of k, »
) or xe.ADJ()g?-I‘iEF(k)' do _ |
{if LABEL(x) = n
then ‘begin c - - R
DIGIT(K) t= x; = - S

4

r

.GENERATE (k+1) - .. -
- end
end ' R . * Lo

end GENERATE; o L ,j .

- begin

n

find the initial tree sequence (REF(l), REF(2), , ,
- . \

‘ol

-

.
T

r . .- 104 .- '

\

v ’ 7 REF{n-1));
-

renumbEr the*vertices of G;

> . Y . GENERATE(l) .
"end Moq-cup.n;' - | “ o
) .
!
5.2 Cmpu?:ational‘Complexlty of ‘
. ; © - Algorithm uon—cmm '
- he
~ \ “ ‘ ’ ’ , ' h Ol
J . We now study the complexity of generating all the

spanning trees of a graph using algorithm MOD-CHAR. To

-

output.t spanning trees, this algc;rithm) requires at least'

(n-1)t computational steps.. ‘rhese are not included in the
R following -analysis, ' Also to find the 1n1t1al spanning tree,
i,
g' weé ﬁeed 0(m+n) computatlons where m is the :number of edges
;‘ . in the graph and we do %t include these ‘ also in our
cor(pléxity analysis. | ’
) L 4 < R -
:.r'”v .. \‘V -C‘ ‘ "’4. | ' hﬂz‘ -
g = " It is clear that algorithm MOD-CHAR requires the same, -
\ [} N -~ ¢)
\\s\ amount of . 'I‘ype 1 computations 'as Char's algorithm. Thus
\ . " ! 'y
\\{r_om/(:i 4), COSTl for algorithm MOD-CHAR becomes
- va [y / .) .
e n-1 .
-~ . & " \ !
‘ / d COST1 = t, E 1 .. - (n=-2).
' y ’ d - .d - Ic.d .
| kmo D 1l °n=-2 k\ | .
‘ : bk
P . ~ * . , ! . ‘ ;’:y
- .+ We can write COST1 as

%

r

=< ™ T
: / -
./‘

s - :]..05 -
i ¢ "‘;.I
;CQSTl = H t - (Q'1)

-

where) ,

»

Thus CQST1 is O(Hnt).

From our discussions in Section 5.1[we' can see th;t'
algorithﬁ MOD-CHAR requireé Type 2 computations to determine
the label values and éé generate ‘and test éhea sequences,
First we compute the cost to determine the label. values. It
is eaéy to see that ‘for a given treé‘ sequence Xk o
(brGIT (1), DIGIT(2), ..., DIGIT (k=1), REF (K), REF(K+l), ...,
RE?(n-l}), we need n comput?tiohalf’g:;;s to initialize
LABEL(i), 1 < i <'n, and at most 2 (k-1) steps ts determine
the necessary LABEL(x)’'s. Since there are t(ki such Xk's,

: . - v .
where t(k) .is the number of spanning trees of the gfaph'

' obtaLned:by coalescing the verticeg k, k+1, .., n in G, the

cost of computing the labels is less than

n-1

n-1 S . -
Z'(n + 2(k-1))t(k) = t Z n + 2(k-1) ,
k=1 .

a ..‘.d

- ksl - n ,l n-2 k ' ‘
\ S) S

which @s O(ant), . | .) ' ‘

¢
AN

Now - we .compute the cost of %enerqping and testing the

~

;sequences. Note that. algorithm = MOD-CHAR requires exactly
. ~ .

v

.
’ - \

- 106 -
_ .
one comparison to test a: sequence and one assignmgnt(s?
. generate a.trge sequence.\‘ Téus Ehe computational stéps;
required to generate and test the sequences"is.2t+t0, which
| is O(nﬂnt) since t+t0 is O(ant) according to Theorem 3.3.
Thﬁs the EU{QI number of Type 2 computations required py

algorithm MOD-CHAR is
COST2 = O(nH_t). . -

From these results we get the following. o
\ '

THEOREM S5.1.

’ »

. “‘, The time complexity of algorithm MOD-CHgR is O(ant)r

where

n-1
Hns = ‘ - l N ’ . ’ ' ’ . D
z Tp-19n-2- -9

k=1

Since the complexiﬁy of algorithm MOD-CHAR depends on
the number ﬁn, we no& study this number. If Si = {jjj>i and
vertex 3Jj .18 adjacent to vertex i}, 1 < i < n~1, then it pén
be easily seen that d; > [s;|. Thus, fq general, d; > 1 and
so each term in H is less than or equal to 1. Assuming

‘ that, in the worsé\W case, each term in Hn is 1, phe
computational comg&exity of algorithm MOD-CHAR becomes
0(n%t). Thus algéflthm MOD-CHAR has a better asymptotic

complexityw&than Char's algorithm which has O(n3t) asymptotic

\

X

- 107 -

time complexity. However, the bound H <n is a very crude

[

one and in the case of a number of graphs Hn is a constant

as we shall see now.) .

.
4

Let M denote the set of all graphs such that the

\

vertices of each graph in M can be numbered as in Char's

‘ 4

. algorithm with the property that |S{4 > 2, 1< i'< n-2. A

numbering with thls property will be called an M-numbering.'

Then for any graph GEM, d |Si| > 2, for 1 < ' i < 'n-2,

and an_l > 1 and so in this case

-2 ‘
1 .
Hy <1+) <2 :
- . 'Zk
k=1

3

and hence the following theorem.

A8

THEOREM &.2.

Algorithm MOD-CHAR is of complexity O(nt) -for an

n-vertex graph G whose verticgé}can be numbered as in Char's

. algorithm- such that, each vertex i, 1 < i‘i n-2, is adjacent

L%

o

to at least ‘two vertices greater than i. O

t

Since a complete graph is in M for any arbitrary
numbering of its vertices, it follows that for a \complete

graph algorlthm MOD-CHAR requires O(nt) time. Howéver, in

this case we' ¢an prove ‘more 1nteresting results, Since for

an n-vertex completé graph deg(k) =°n-1 for all k, we get -

-~

A

- 108 -

from Theorem 3.3 : .

¥

~

ety =1 + (n-2) tH .

; \
Since t+tb < 2t for a complete graph (éee séctiogjg.z.l), it

follows, K that

»

Hy < 2 o (5.1)

From (5.1l) and Theorem 5;1, we can see that algorithm

MOD-CHAR has O(t) time complexity for a.complete graph.

Now we determine an upper .bound fior the number of

€

coﬁpdtational steps required "by algériéhm, MOD~CHAR to
geherate a 8paﬁhing tree of é completérg;aph. Note that
. each Type'l computation involves setting DIGIf(k) = REF (k)
for ~some k and hence oﬁe éssignment operation.\ Thﬁ% the
total ngmber of assidnments for all th; Type 1 cﬁhputations
is H.t - (n-1). For a given k, to find thé‘lgbél ;alues we
require n + 2(k-1) < 36;4lcomputational'steps. Thus thé
label gomputations require at m»st (3n-4)Hnt 'éQmputational
steps. Moreover, 2t+t0 < 3t compu;ational steps are
required to generate and test all .the sequénces for’ a
:co@plete graph;,- fhus'at most 3t + (3n73)Hnt coméutaéional
' steps are required by algoritbm MOD-CHAR for an n-vertex-

complete graph. From this oSservation and (5.1) we can show

that algorithm MOD-CHAR requires, on the average, at most

- 109 -

6
3+ 72

computational steps’ to generate a spanning tree ﬁf—fxﬁ‘”

n-vertex complete graph. Thus we get the following, !

»

-

THEOREM 5.3.

Algorithm MOD-CHAR requires, on the average, at most 10
computatioﬁ%ii steps to generaﬁe a spanning tree- of a

complete graph having more than 8 vertices, O

/ Consider next the class of all n-vertex biconnected
gréphs which have maximum degree n-1., Recall that a vertex
* with degree n-1 is called a star vertex. Let G be:any graph
in this class and S be a star free of G. Assigning number n
to Ehe star vertex .in S and the numﬁgk n-1 to any other
vertex of S, we can obtain an M-numbering of S. If this
were not possible, then there would exist a subset X = {xl,
Xor eees xk} of . vertices such that vertices n and n-1 ‘are
not in X and each Xy is adjacent to exactly one vertex
(ﬁamely} the vertex n) ' not in X. But then, in such a case,
the wvertex. n would be a cut veftex of G, contradicting that
G is biconnected. From this and Theorem 5.2 we get the

following.

THEOREM 5.4.

For an n-vertex biconnected graph with maximum degree '

- 110 -

\

n-1, algorithm MOD-CHAR is-of complexity O(nﬁ). B 'u

Finally, |if an n-vertex .biconnected graph G has a
(1+1ogzn)-vertex connected subgraph G' which permits an

M-numbering of the vertices of G', then for the graph G

-

n-1
nH "= n 1
n
T3 ...3d)
k=1 N 1"n-2 | k (/,/
‘\
\ logzn n-2-logzn
' 1 1
<n :E: + n
L F —K
; k=0 k=1
‘ﬁ?, .
< 2n +1 ’
< 3n |

Thus we'get the following theorem. . :

THEOREM 5.5.

Algorithm MOD-CHAR 1is of complexity O(nt) in the case
of aﬁ n-vertex biconnected graph G, if G has a
j1+1og2n):vertex connected subgraph which permits an

)

* M=numbering. - ’ a

5.3 Computational Experienceg

The complexity analysis of algorithm MOD-CHAR presented -

-

- 111 -

‘in Section 5.2 brings out the fact that this algorithm is of

time ~complexity O(ﬁt) for certain c¢lasses of n-vertex

graphs. In this section’ we present our, computational

experiences on algorithm MOD-CHAR

In Table'5.1 we give the execution times required by
Char's algorithm, ;lgor'thm MOD~-CHAR and Gabow and Myers'
élgorithm when applied{ on the ten randomly generated graphs
1iste§ in Taple 3.1. All the aigorithms are implemented 1in
PASCAL and the execution times are for a CDC Cyber 113{ ﬂ?;
the case of Char's algorithm and algorithm MbD-CHAR, the

initial spanning tree has been chosen by performing a

breadth~-first search.

From Table 5.1 we~can see the following.

(1) Even though algorithm MOD-CHAR has a better asymp-
totic’ cpmplexity' than Char's algorithm, it requires about
twice as ﬁuch execution time as Char's. This is due to the
additional computations required td compute the- label values
in algorithm MOD-CHAR. |

(ii) Char's algorithm seems to be the fastest of the three
algorithms. In fact Table 5.1 shows that Char's algorithm
takes less than one-té;th of the time regﬂired by Gabow and
Myers' algorithm.\\Whis is pe;haps due to the simplicity of
the algorithm. The 6n1y operations required. in Char's

algorithm are assignments and cbmparisons and this algorithm

does not require any complicated data structure mani-

A

- 112 -

Table 5.1

e)) \
Execution Time °
) (°]
I oo e +
- ~ \‘“// Execution Time in Seconds’
Spanning '
Graph . |Vertices N Sttt et Fommmtm———— +
: ‘ - F trees Gabow
. CHAR MOD-CHAR and
Myers
$o—mm - $omm———— tmm———— Fom e ————— e LTS SR +
Gl 9 24672 2.037 3.812 27.575
: Gz' 10 13931 0.970 1.938 17.333
Y6, 10 151662| 12.495 26.189 -| 208.422
G, 11 151719 10.661 23.144 225.576
G5 11 “1360710 102.660 188.759 14581505
| G, 11 [12897990] 994.735 | 1958.547 NA
G7 12 1592512 113.124 242.613 2490.788
G8 12 1820488 129.747 247.238 2618.466
G9 12 14689650 1193.974 2649.267 NA
Glo 13 26520950 2264.815 NA NA
b —— pormm——— fm—————— prm——————— P — Fommm————ee +
NOTE: NA means that the execution time is more than 3000

seconds and is not available.

¢ ‘ ' - 113 -

pulations. L | ' ’ .

The coﬁputational experiences and the ‘complexity
analysis presented in this chapter lead us to believe that
Char's algorithm is the fastest algorithm reported so far to
enumerate all the ;Banning trees- of a_ graph ”fé'"’
conclusively establish this, further study of the numbef ,gn

is reduired.

X .
. .
. :
‘ a v -
-
. v, . . N
. R .
-
.
N

~

- 114 -

CHAPTER 6

A COMPARATIVE EVALUATION OF

CHAR'S ALGORITHM

Complexity analysis of Char's algorithm presented in
| Section 3.2 lhas‘ shown that this algorithm ruequires O(n3t)
time. In Clapter 5 we developed an efficient implementation
of Char's algorithm, namelﬁ(algorithm MOD—CﬁAR, which needs
only O(nzt) time. Even though algorithm MOD-CHAR haé a
"better asymptotic complexity than Char's, the computatipnal

ret;ults presented in Section 5.3 seem to imply that the
latter alggrithm is twice as fast as the former. Moreover,
Table 5.1 suggests that Char's algorithm might be the
fastest of all the spannindg tree enumeration algorithms

reported so far.

Although the execution times required by different
algorithms help us compare their relative effigiencies, this
ald¥e may not provide an accurate meastire of the

| veffi‘ciencies. This- is because the execution time of a
implemented algorithm depends on many fgctors which have
little— or nothing to do with the algorithm proper. These
factors include t;he .programmer, -the prt_)gramming language
used and .the computer on which the program is run, 1:‘he

£
impleme;xtation, and the data . structures used in the

implementati.on .

» © > :
' r
.

‘)
>

-}) A

- 115 -

To obtain an-evaluation which is independent of these
factors, we may fif;k determine 'the Egéic operations
fequired by the concerned lgorithms'g:; khén determine ther

. humbers of these basic opeérations éérforﬁed during the
e#ecution of these algorithms. As suggested by Chase [8],
we may assign weights to these basic operatigns so that the
costs computed using this approach reflect the ‘efficiencies*
of these algorithmé ﬁZfe acéd?%tely. ‘

A\ K

Using the above approach we present in this chapter a

computational evaluation of Char's algor m when compared

with algorithm MOD—CHAR, and Gabowrané Myers{ algorithm,. . In

Section 6.1 we identify the basic operations‘éerformgd by

' these algorithms, In. Section 6.2 we present , our
experimental results and make a few comments on the;/

efficiencies of these algorithms.

6.1 Basic Operations of the Algorithms

In this section we 1identify the basic operations

performed by Char's algorithm, algorithm MOD-CHAR, and Gabow
. \ ')

and Myers' algorithm. 1In the following we will not consider

|7 ‘the computations required to outputlthe spanning trees.

Lo

From our discussions in Section 3.1, it is easy to see

that Char's algorithm uses the adjacency lists of the giiph
wld . \

n

Woe T g
) S

- 116 -

bl

and the sequences (DIGIT(l), DIGIT(2), ...,.DIGIT(n-1)) and
(REF (1), REF(2), ..., REF(n-1)) only. Recall that DIGIT(i),
1 < 1 < n-1, in fact corresponds to the edge (i,DIGIT(i))
and-REF(i), 1< i < n-1, corresponds to the edge (i,REF(i)).
Thus Char's algorithm can be considered as using only the
edges of‘the‘graph during its execution. So we consider

edge access as a basic operation performed by Char's

algorithm. Note .that the test for tree compétibi&ityl

property basically requifes tEavefsing the edges in the

@

subgraph. 'Also determining 7the initial spanning tree

requires traversing the edges of the graph. Thus the

alga;ithm requires énly edée accessés. ' Now we ‘preseng -a
version of Char's algorithm ¢n which‘ the different
statements involving edge accesses are identified. Note
that this version of the algorithh is the same as that

presented in Sec?ion 3.1.
: : p o

Char's algorithm to Enumeggte All the Spanning Trees of a

Graph.
procedure CHAR;
comment prﬁéedure CHAR enumerates all the spanning trees of
a connectgd n-vertex gragh G represented by the
adjacency lists of its vertices. N
begin b Y
select ;h initial spanning tree of G; ‘ ,

perform a depth-first search or a breadth-first search on

the initial spanning tree and renumber the vertices as n,

LY

—

L= 117 -

n-1, ..., 1 in the order in whichJ/;ey are(ﬂi;ited“during

the search; | o ,
find FATHER(i), 1 < i < n-1; .

{all the above operations can be performed during a single

- -~

search. They involve edge accesses} . A
for i := 1 ton-1 d - , ‘ 3 -
begin" \ .
REF (1) := FATHER(i)a
DIGIT (i) :=. REF(i) . “
‘ & g
{2(n-1) edge ‘accesses)
end; 3 B
output nthe initiel” tree sequence 1REng), REFk;), ..:,
REFuﬁl}y; | : L R
i = nel; - : e C
while i # 0 do . o ' ,
begin ' - AN
if SUCC(DIGIT(i)) # nil A *
' | o | {one edge accéss}
theo begin' ., - »_‘ . .o L iu)
DIGIT (i) := SUCC(DIGIE(i)i; , ‘
. ‘ .; RI L g "{one edge access} f
.. if (DIGIT(l), DIGIT(Z), s DIGIT(n-l)) is a tree
' sequence ' '" ','. ; o | e x3
o *) | . {edge'accesees}
then begin i -
output the tree sequéhce~)
i := n-1 ‘_ Ce T : o | ,;

‘ end
' * o——
o - else begin
N . A\
e .- Yo DIGIT(i) :i= REF(
L e e , : ' " " {one edge access}.
— . . , . .
* . ~ i = i"l . N
’ ‘ ‘
‘end ' “
"7 end
x,) , s. -
2 end CHAR; : .
! \
. - Next we consider algorithm MOD-CHAR, Note that this
5 : ~-aigpr,ithm involves the same basic - operations ‘as Char's
/ . algorithm aexcept for the computation .of the label values,

a Since to compute’the lgpel values, we ;raversé the paths in
’ \a " spanning 2-tree (see Section S.If;' again only. edge

. acceSQes‘qre'reqhiied for this computation. Thus in the
%. case of qﬂgorithm MOD-CHAR also we identify edge accesses as -
- - B the basic operations performed. In the %ollowing we present

algorithm MOD-~CHAR in which the different edge accesses are

clearly identified. ;

A

~— . R

Tt

Modiéiedzbhar's Algorithm to Enumerate- All 'the Spanning4

o L // . ¢
Trees of a Grapl.
N

ptocédure MOD-CHAR;
comment proceduresMOD-CHAR enumerates all the.spanning trees

of a cqnnected n-vertex- graph G using algorithm

C MOD-CHAR, The graph is représented by the adjacency

L}

.

- 119 - '

lists ADJ (i), 1 < i < n-1, of its vertices, "’

. procedure GENERATE (K} ;

&

co.ﬁeht prodedpre GENERATE,” when called with the argument
k; sets DIGIT}k) to qenerate a tree sequence.
This procedure uses a local array LABEL.
h begin ‘
if k = h,
then'output‘the tree sequence/J | i
else 'begin .
{Set DIGIT(i) to REF(i), k < i < n-1}
| DIGIT(i) := REF(i);

¢ ’ N

{one edge acqéss} -

GENERATE (k+1) ;- |

{Generate all the sequences . in T, U T¥ hévingv the

same DIGIT (1), DIGIT(2), ..., DIGIT(k-1)} |

compute LABEL(x) for-each neighbour x 9f k;

' - {edge aé%egses}

' for xéADJ(k)-REF(k) do |
: _~._ 1if LABEL(x) = n . | S |

(/ , ,/*ff/ | \. o , : {one edge access}

N ’ ’ | tl‘?en beq in

/A DIGIT (k) -+= Xx;
. / ' {one edge access}
L - GENERATE (k+1) ' |
C‘.:\ ’ 4 h -
end T e
end '

end GENERATE; . . e,

)
.
e

s

r , \ ¢
begin .
find the initial tree sequenceﬂ'(RﬁF(l), REF (2), «¢.e,

' REF (n=1));

(\renumber the veitices of G; ' f
{The ;bove operétions can be peiforméd during the - same
search. They involve edges ‘accesses])

GENERARE (1)
end MOP—CHAR; . Q
Finally, we consider Gabow and Myers' algorithﬁ tof
generate all the spanning trees of a graph [12]. Since we
have: not 'presentéd this algorithm so far, a discussion of

this algorithm is now i{ order, As we have stated \in

Chapter 2, Gabow and Myers' algorithm is based on %

* following principle. 1If e is an‘edge of a graph, then the

spanning trees of G can be classified into those which

contain e and those which do not contain e. -

Thus Gabow and Myers‘ approach involves finding
recursively all the spanning trees of the graph G containing
; subtree T (which is a single vertex to start with). To do
this, -they choose an edge e; connecting a vertex in T and a

vértex not in T;“f}nd all the spanning trees containing

.TUe,; then delete e, from the graph. Next choose an edge
1 1

”ez connecting T to a vertex not in T; find all the spanning

{Mtrees. (in the modified graph) containing TLJez: then délete

& .
¥

'R

- 121 -

ey, _ (zg_ continue, they repeatedlyn choose an edge ey
connecting T to a vertex not in T; f£ind all the spanning
trees (in the modifi&d graph) containing T\Jei; then dziete
e;. This process is stopped when the edge ey that has just
been processed is a bridge of the modifieé graph. At this
point each spanning tree containing T h&s been found exactly
'opce, because if a spanning tree does not contain any‘ejz 3
< k, it must contain the bridge e : ‘

In order to detect, in the above procedure, the edge L
which is a bridge, Gabow and Myers.grow the tree T depth-
first. Suppose all the spanning trees containing TLJe’have
been found, and we want to check if e is a bridge. Let L be
the last‘spaqning tree found that contains TUe, and let e =

~“Tgv). It has been shown in [12] that edge e is. a bridge
when no edge (besides e) goes from a nondescendaﬁt of v (in

L) to v. It can be easily seen that all the above

operations involve only edge accesses. »

To grow T depth-first, Gabow and ::ers' algorithm uses
-F, a list of all edges connecting vertices in T to ve;tices
not in T. Besides F, the algorithm uses lists FF, Each
recursive invocation has a local FF list. It is wused to
reconstruct the original F 1list. Manipulating these two

lists involves stack operations, Thus Gabow and/ Myers'

i:igorithm requires list accesses to maintain the lists in
d

dition . to the edge accesses, Now we pfesent the

4’

£ 4

- 122 -

algorithm, in ALGOL-like notation, in which we identify the-

-

different list accesses as well as the edge accesses.

, .) o
Gabow and Myers' Algorithm to Enumerate All the Spanning

Trees of a Graph.

=

procedure éABOW_MYERS;
comment procedure GABOW MYERS “finds all the spanning trees

of a connected n-vertex graph G.

procedure GROW;

cq-nené procedure, GROW finds all the Spanniﬁg . trees
n - containing T. - e i

bééin o -

if T has n vertices.

then beéin
L =74
: \
An-1 edge accesses}
output L
end
®
else begin ’

make FF an emptylgist local to‘GROW;
repeat |
pop an edge e from F; let e go from T to a vertex
Q‘not in T;) ‘
| " {one list access}

add e to T; c ..

{one edge access]}

push each edge/jy,w+7~u4£\§,&onéo F;

- 123 -

{edge accesses and 1list accesses)
\\3 P remove each edge (w,v), w € T,‘from F;
\ ! , f {edge accesses ana 1list accesées}
| GROW;\\
pop each edge (v,w), w g T, from F;
- {edge accesses-and list accesggs}
“* 'restore each edge (w,v), w € T, in F;

 {edge accesses and list accesses}

N . // \ "/
remove e from T and freE/G; AN o
v ! ' . . L, * /
“ ' L ~ {two edge accesses}
! st .
. . add e to“FFq
N -+ {one list access}
I~ '
- if there is an edge '(w,v), where w is not a
» :
descendant .of.v in L
& o , ‘ " {edge accesses}:
/ . then bridge -— false
. else bridge «— true

: unéil bridge;

R pop each edge e from FF;
S | S {l1ist accesses}
push e onto F; . ' u:; ﬁ

'E' {1ist accesses}

. add e to G ' |
y o : 3 »?' {edge accesses}

| end | \
end GROW;

o
s
¢ ' / @
’

b

\’ . - 124 -

begin
initialize T to contain vertex 1;

initialize F to contain all the edges (1,v);

’ ‘ ‘{edge accesses and list accesses} '
GROW A

end GABOW_MYERS;

6.2 The Computational Evaluation

F:bﬁ our discussions in the previous section, it is

clear that ile Char's algorithm and algorithm MOD-CHAR

. . ..\\-/
e accesses as their basic operations, Gabow

require only e
and Myers' algorithm involves both edge accesses aﬁd list'
accesses, Thus the total computational work required by the
last algorithm is the sum of the edée accesses and list
accesses, In this section we present our experimental
results on the total computational effort required by these

'

algorithms.

Gabow and %yers [12] ,discuss an efficient implg—‘
mentation of,tﬁéirualgorithm in which the list F ist manéqed’
as a doubly 'linked list. We have implemeted this'algprithm
as suggested by them. . In Table 6.2 we show the average '
number of computational steps required by the three

algorithms to generate a spanning tree when applied on

”b sederal test graphs, The number of vertices, the number of

/
- 125 - /

—

n

edg‘émpnd the ng&ber of spanning trees of these test’ graphs

are shown in Table' 6.1.

Table 6.2 substantiates our observation in Chapter 5
that Char's algorithm might be thg‘fastest. We can see that
in most cases this algorithm requires aﬁout one-fifth as
much c;ﬁ utational effort as Gabow and Myers' algorithm. It

is interesting to note that Char's algorithm requireS*“'

comparatively more number of cdmputations for the graphs G12

and G4 which are simple circuits on 10 and 20 vertices
respectively. This may be due to ‘the fact that Char's
algorithm generates O(nt) non-tree subgraphs when applied on
an n-vertex circuit. However, as cén be seen in Table 6.2,
Gabow and Myers' algorithm also requires comparatively more

J

" number of computations and is inferior to Char's in these

cases too. . _ ' .

6.3 Conclusion o

Our objective in this part of the thesis has been to
" study Char's algorithm and evaluate its performance 1in

-

comparison to Gabow and Myers'. Our analysis has shown that

this algorithm can be implemented with complexity O(nH_t), ’//
.which 1is O(nzt) in the wor&f case. Note that Gabow and
Myers' algorithm has complexify O (nt), H?wever, we believe

that this poor complexity of Char's algorithm in relation to

_

-.126 -

Table 6.1

Test Graphs

+
i

i

i

]

|

]

+

i

i

1

]

]

I

]

[}

1

]

|

I

]

]

]

i _
i

g e o o o o

‘ . ' ' Number Nﬁmber " Number
- ‘ Graph of . of of
' . Vertices Edges Spanning Trees
- tm—————— tmmm——m———— tomm——————— te e ——————— +
" 6 8 14 497 .
- 6, |- 8 17) 3465 |
Gy 8 20 16968 /
' G, 8 23 ~ 49392
Gg-- - 8 25 _ 100352
G 8 + 28. 262144
| G, 11 30 1360710
. Gg 15 25 " 15764 ,
. . Gg 15 30 921456 °
) - Gy, 20 30 " 66448
Gy, 25 35 | 34368
G,, 10 10 ' 10
63 | 20 20 20
to—————— tommm————— Fom——————— +-——--£ ---------- +
N
)

- 127 - ‘

Table 6.2 4

Average Number of Computational Steps

tmmm————i - + - o s o o e e e 0 s e e e +

" Average Number of Computa-
Number tional Steps per Spanning Tree
Graph of $mmmmmnb e + e em——— tommm—ce——— +
Spannitig—} Gabow -

Trees CHAR | MOD-CHAR and
Myers

$mm————— tmm——————— R tomm e ——— b ———————— +
G 497 5.5 11.0 27.0
G, 3465 5.3 11.0 24.0
Gy 16968 | . 5.7 10.0 - 24.0
G, 49392 .. 5.4 8.7 22.0
Gg 100352 5.5 8.9 22.0
Gg 262144 6.0 11.0 | 23.0
G, 1360710 |. 5.3 ©'11.0 24.0
Gy 15764 | 6.9 12.0 37.0
Gq 921456 | 5.0 8.9 32.0
G 66448 9.4 13.0 49.0
Gy, 34368 6.8 13.9 64.0
Gy, 10 22.0 75.0 60.0
Gy 20 . 47.0 | 250.0 120.0

: ! N\
fomm———— e et fmmmmmm———— o et c———
» -

g -7 -

- 128 -

—-—

Gabow and Myefs' is mainly due to our inability to obtafﬁ a
bound for Hn tighter fhan the one, namely H <n, which we
have used. The extreme simplicity of Char's algorithm along
with. the theoretical and experimental;resultsvpreseﬁted in
this part of the thesis suggest that thig algorithm might be
superior to . all .the other spanning tree enumeration
algoriﬁhms.‘ So we concluée this part of the thesis with the
cénjeqture that Char's algorithm implemented with .one of our
heuristics to select the initial spanning tree and rpath

compression to reduce the number of comparisons made is the

"best of all the spanning tree eﬁumeratibn - aLgorithms

reported so far. To prove this conjecture, further study of

H_ is required. .
, : . R

e

-

AP
s . . s e ey,
IS . ! ! s

- >

M . ' .

, A .
. . .
(4 . .

. e .

/ .
. / . .
. / ,
-
7 . * .
' . . '/ ' .
v . oo ,
- f
P B
. » " : ; .
. . , -~
. ’ ' .
\ / . .
; N
. o , .
-) } -
- N n
- , , v ,
£ - i
. 4 . , * .
. .)
. ' .
4 w ¥
B ‘
. ' o ’\ .
. -t - ‘¢
- R N
©
s \
L
. , h
. y ' N 0
. . - ' '
- . L . [.
. . . f
- [- - , .
i . N - ! . .
, , . ' / N
[: . ‘ ‘ / .
. .) ,
= : ! ! . .
. . .
, N .
4 - . . . s
q . . ’ K
. . R
’
R .
. . - : .
. . M)
- ~ i f .
, .
. . - R .)
- M N ! h - . _
- . .
.)
. - . . ;) - . i
. .
- - R . . .
[. .
. o . .
: : . 4
. s N * - N . B
- -
-~ = A
» . N , . e
. , .
. . . - .
N "~ ’ & ‘ -
N . + n \ A
°
. . . .
. .
' > -] - f
N v
»
. , . .
- ! ' N N . ‘ v v
B . l . L4
. . 3 ’ . ‘ s > \
T - . . .
- . . L] : t
. - ¢ 0 . -
L . \ . ‘ ‘ . v [N ! .
f - B . N R '
} e
’ o N B - . .e B .
, . . - , .
. - N M . N s " - . * “ .
- - ' B B * - .
\ Lo . . s . PR
L. . . - . L R .
. ' N . M N = N \)

-~

* ‘ - 129 - o

CHAPTER 7

PLANARITY TESTING AND PQ-TREES

.

r‘ .‘ ' -
A graph G is planar if there exists a one-to-one

., mapping of its vertices and edges into the plane such that

(1) each vertex v is mapped into a distinct,point in
the pl;:g:

(11) each edge (v,w) is mapped onto a sf%ple curve with
the vertices v and w mapped onto the endpoints Af
the curve, ané . ,

(iii) the mappings of distinct edges have in common only

the mappings of their common®end vertices.

9

A mapping of G ‘'which satisfies the above conditions is
b

called a planar embedding of —G. Testing. a graph .for

plgharity and embedding a planar graph in the plane have
several applications. For example, the design of integrated
circuits _and the layout. of printed circuit boards require
testing whether a circuit can be embedded in the plane
without crossovers. Determining isomorphism of cﬁemical
étguctures is simplified if the structures are known to be
planar {23), [24}. A maximum cut in a graph can. be
determined efficiently if the graph is planar [25], whereas
the problem is NP-cq:B}ete for an arbitrary graph [26].

Ty

- 130 - T g(‘

7.1 Planarity Testing Algorith-s‘ >

»
~

/

Because of its great practical interest, the proélem 6{
tésting planarity.of a graph has been widely. studied. The-
earliest characterizaéion of.<planar graphs was givém by
. Kuratowski [27]. He pfobgd that a graph is planar if and
lonly if it does.not contain a subgraph wﬂich, upon removal

L]

of degree two vertices, is isomorphic either to K., the .

-

complete graph on fivé vertices, or to K3 3, the complete ,;.

N . ’ - *
bipartite graph on six vertices. Mei and Gibbs [28] _have /
givep an algoriﬁhmﬁ based on Kg;atowski's characte}ization,

to test a graph'for planafity. heir aigorithﬁ‘first £inds

all circuits of- lehgth five or greatggxgp thé ?raph. It
then processes two circuits at a timq‘and checks whether the
‘union of the two circuits is one df Kuratowski's "forbidden"
subgraphs: This algorithm, however, is not efficiéht. J.féf

fact, Kuratowski's chéfacterization, although mathematjcally

*

elegant, is not useful as a practical test for planarity,

because testing for the presence of Kuratowski's éubgraphé

may require an amount of time proportional to at least n3f

where n is the number of vertices in the graph. ,
A

P hin]

Another characterj&atién of planar graphs is due to
-

Whitney [29] who proved éhaé a graph is planar if and only
if it has a dual, Later, MacLane [30] showed.that a g;aph
is planar if and only‘if it contains a set of fuanmental

circuits such that no edge appears in more than two of these .

AN
1

. . .
- . kJ .
. A ’
\

. .
e -]
N N . a N

of
2

F-

3

" planarity. K ‘ .\‘\ p

'several connected ‘components, Eac

- 131 -

a

- citcuits, However, these characterizations "also have not

ylelded any efficient algorithm to ‘test a giaph for

AY

1 B s

N~

1

The most successfull .approach so far for testing . the
planarity of a graph seems tb~be an attempt to construct a
representation of a planar embedding of the graph. If such

a representation can be obteined, then the graph is planar;

. if‘not, the graph is.nonplanar. All the planarity testing

o
algorithms based on this idea can be grouped into two

categories as follows, -

(i) Path Addition Algofithms: ‘The algorithms in this

*category first find a cycle in the graph. When this cycle

is removed, the remaining edges of¢ the graph would form
of these components is

then embedded in the plane along with the orlglnal cycle and

®ehe embeddings of the components are combined, if p0551b1e,

to give an embeddlng of the entire graph.

/
The first such algorithm was proposed by Auslander end

iParter [31] This algorithm embeds the connected components

by calling itself recursively. Unfortunately the algorithm

‘was not correct; the proposed method may loop 1ndef1n1tely

' Go}dstein'[32] correctly formulated Auslander and Parter s

algorithm using = iteration instead vof recursion,

?hirey [33], in. his thdsis, gave an implementation of

#

~

~

- 132 - ' .
x

Goldstein's algorithm, using a list étrugture representation
of graphs. He also proved that his implementation has an
O(n3) time bound. Later, Hopcroft and Tarjan [34] devised a
variant of Goldstein's algorithm with a time bound of

O(nlogn) using-'depth-first search.

In 1974 ﬁ0pcroft and Tarjan [35] proposed a linear time
algorithm for testing planarity of a grapﬁ. This algorithm
f;nds a cycle in the graph using depfh—first search. This
cycle is then embedded in the plane, thereBy dividing the
plane into two faces - one inside the cycle and the other
outside the cycle. The connected compoﬁents of the graph,
obtained after removing the cycle, are then successively
embedded either’ in the inside face or in the outside face,
During the embedding of any component, if necessary, all the
components which are already embg@ded in the inside face may
be moved to tPé outside face, and all those already embedded
in the outside face may be moved to the inside face. All
these rearrangements are done in an efficient manner without
acfually drawing the embeddihg, so that the algorithm has
- 0(n) time bound. An ggcellent exposiéfbn of Hopcroft and
Tarjan's algorithm may be found in [36]. .
Earlier, Demoucron, Malgrange and éertuiset [37) had
~given an algorithm similar t? Hopcroft and Tarjan's, which
avoids the rearrapgement of already embedded components by

choosing the components, for embedding at.each stage, in an

- 133 -
i «
appropriate manner. Rubin [38] developed an 0 (n?) space and

0(n2) time implementation of this algor;thm and showed that,.l
for ali ptact%cal purposes, his implementation béhaves as an
0o(n) algorit@m. It is intéresting to note that Rubin's
implementation is, on éhe average, about twice as fast as .

Hopcroft and Tér?an's implementation of theif aigofithm.

A novel path additi?n aigorithm for testing the
planarity of a graph was proposed by Fisher and Wing [39].
This algorithm works .directly on the incidence matrix of the
graph. If the graph is nonplanar, this algorithm syste-

matically identifies a set of edges whose deletion yields a
subgraph that is planar. Hewever, this algorithm is not
computationally efficient, nor any algorithm which uses the °

‘incidence matrix:

+

¢

/

o

@) .
(ii) Vertex Addition Algorithms: The algorithms 1in this

-

éapegory use an-‘alternate approach to embed a graph in the
élane. These algorithms start with a sing&e embedded vertex
and add all the gdges inciéent on that vertex. The other
end vertices of these'edges are not embedded. They then

embed an unembedded vertex and add all edges incident deit

in the same way. This process of embedding is' continued
. N

until the entire graph is constructed. For these algorithms
o ’ *

to work correctly, .the vertices must be embedded in a
- -

' special order.

S - 134 -

Hopcroft ange Tarjan [35] refer to one such algorithm
due to Mondshein [40] which requires. O(n2) time. Another
vertex addition algorithm was proposed by Lempel, Even, and
Cederbaum [41]. In this algorithm, at any time during the
embedding process, the subgraph embeddéd uptb that time is
represented by.certain formulas thch are then maniéulated,

4

by applying certain transformations, to check whether the

. -next vertex can be embedded. Lempel, Even, and Cederbaum

did not give any implementation or time bound for their

algorithm; howevgr, an implementation of this algorithm Adue

to Tarjan, requiring O(n) space and O(n2) time is Asferred
to in [35] . The best implementatign of Lempel, Even, and
6ederbaum's algorithm was reéorted by Booth and Lueker [42].
They developed a data structure dalled PQ-tree to represent
the permutations of a set _in- Jhich elements of certain
subsets of the given et are required “to occur
consecytively, and presented efficient algorithmé to
manipulate the PQ-tree. Using PQ-trees, Bodtﬂ and Lueker
developed an O(n) time'implemeﬁtation of Lempel, Even, and

Cederbaum's algorithm. ‘ fﬂﬁk

"

P -

An ihterestipg algorithm to test the planarity of a
graph, which does not £fall into any ”of the above two
categories of algorithms, was proposed by Btuno, Steiglitz,
and Weinberg [43]. Their élgorithm is based on some of

Tutte's .results on triconnectéd _graphs. Instead . of

< .
embedding a graph in the plane, they reduce it to simpler

-

-

- 135 -

and simpler graphs until a wheel 1is obtained. Then the
original graph is reconstructed from the wheel., Dyring this
reconstruction, a planarzembeddlng of the graph is obtained
if the graph is planar. Although they gave no explicit time
bound, their algorithm does not compare favorably with those

mentioned above.

In this part of the thesis, we develop, using Lempel,
Even, and Cederbaum's algorithm along with PQ-trees,
efficient algorithms for the planar embedding and maxlmal

planarization problems. In order to make the thesis

self-contained, we present a discussion of Lempel, Even, and

A3

Cederbaum's "algorithm in the following section. In
Section 7.3, we describe PQ-tree and explain how.the Gse of

PQ-trees leads to an efficient implemeqtation of Lempel,
¢

Even, and Cederbaum's algorithm.'

9

L

7.2 Lempel, Even, and Cederbaum's

Planarity Testing Al'gorithm

In this section we discuss the vertex addition

algorithm due to Lempel, Evén, and Cederbaum to test the

N

planarity of a graph, Hereafiter we refer to this algorithm

as the LEC algorithm, 'Since a graph is planar if and only
AN

if it?' bi%onnected components are planar, we consider only

simple biconnected graphs. A complete discussion of 4 this

~

- 136 - | [

4

\ algorithm may be found in [44].

N
‘Let G = (W,E) be. a simple biconnected graph with n =
|v| vertices and m = |E| edges. For any edge (s,t) of G,

Lempel, Even, and Cederbaum define an st—numbefing of G as a

' one-to-one function g: V— {1, 2, ..., n} satisfying the

following conditions:

Y ‘ . ®

n,

(i) g(s)
(ri) g(t)

(iii) for every vertex v e V-{s, t}, there .are adjacent

vertices u and w such that‘g(u) <:g(v) < g(w).

They also showed that for every biconnected graph G, there
exists an st-numbering for any edge (s,t) of G. Their proof
suggested ‘an O(mn) time algorithm to coméu%g such an
st-numberfing. Later, wusing depth-first search, Evén and
| Tarjan [45] éresented an O(m+n)'time algorithm to compute an
st-numbering., Recently, Ebé??“iﬂG] presented an algorithm

" which uses less space and time than Even:-and Tarjan's.

The PEC algorithm first renumbers the vertices of G as
1, 2,[«esy N using an st—numbéring. The vertices of G are
therkafter feferred‘to by th?ir st-nuﬁéers and they are
processea in that. order for e@bedding. The st-numbering is
essential for the algorithm to work correctly. The graph G,
with “its vertices labeled according to an st—ndﬁ;;}ing is
called an st-éragh. Clearly the edges (1,2}, (n-1,n), and

!

- 137 -

(1,n) - are present in any st-graph G. Furthermore, if each
edge is oriented from its lower vertex to its higher vertex,
then G may be viewed as a directed gréﬁﬁéin which the edges
ére directed from lower to h}gher verticeé. The following
g observations follow easily from the definition of

st-numbering.

Obgervation 1l: In G, the in-degree of vertex 1 is zero, the
out-degree of vertex n is zero, and for every other vertex

v, 2 <v 211, the in-degree and out-degree are nonzero,

Observation 2: For any vertex v, 2 < v < n, there exists a

path in G from vertex 1 to v such that all the-jf%ernal
\ .

vertices on the path are less than v. ° ™~

The above observations may be verified for the: st-gfaph G

shown in Fig. 7.1.

For any st-graph G let G .,Mal < k < n, denote the
subgraph of G induced by the vertex set v = {1, 2, ..., k}.
Thus Gk consists of all those: edges of G whose end vertices
are both in Vi. Now we define the grapb %k as follows, Gy

is a subgraph of B JIn addition to Gk' B, contains all.the

k* k
.)
edges of G which emanate from vertices of V, and enter, in

'G, vertices of V—V;. ~Thesé edges are called virtual edges

r

and the vertices they enter -in V=V, are called

virtual vertices. These vertices are labeled as their

‘J\éanterﬁarts in G; but kept separate. Thus, in Bk there may

P

be several virtual vertices with the same label, each with

TN

Figure 7.1

st-graph G

S
3
‘s

v - 139 -
.
exactly one entering edge. For example, Fig. 7.2 shows the
graphiBgiof thg st-graph shown in Fig. 7.1.
If the st-graph é is blana;,~then thére exists a planar
embedding G of é. Note that G contains a planar embedding
ak éf Gy, 1 <k <n. Using Observaﬂﬁon 1, the following

lemma can be proved. ‘ '

LEMMA 7.1..

If G, is a planar embedding of G, contained in a planar

embedding .& of an st-graph G, then all the edges and

&

vertices of G--Gk are drawn on one face of Gk>\ ' (u}

Thus we can assume, without loss, of generality, that if G is

a planar graph. then there exists a planar embedding of Bk

in which all the virtual edges are drawn in the outside

kr 1

face. Sinca the edge (l1,n) is a virtual edge in every B
< k < n-1, it follows that vertex 1 is on the outside face

of every Gk’ Thus we can draw the graph Bk in the following
form. Vertex 1 is drawn at the bottom level. All Athéf
viftual vertices appear at the highest 1level on one
horizontal line. The réhéfﬁing vertices of Gk are drawn ﬂﬁ;
such a way that vertices with higher 1labels are drawn.
higher. Such a realization of B, is called the bush form.of
Bk' For example, the bush form of the.graph B9 is shown in'

Fig. 7.3. Since Bk and its bush~ form are isomorphic,

hereafter we shall refer to the bush form ovak also by B,.

- 140 -

Figure 7.2

Graph Bé

Figure 7.3

Bush Forn’a}B9

. ’ - 142 -

Note that in‘thé bush form B, , the virtual vertices are
labeled k+1 or higher; and the st-numbering - ensures that
there exists at léasé one virtual vertex labeled k+l.
Lempel, Even, and Cederbaum proved that if G is planar, then
there exists a bush form. of B, in which ail the virtual
vertices with labels k+1l appear ne#t to each other on the
hofizéntal line. Lét_Bi be such a bush formltsomqrphic to
B,. For example, the bush form By corresponding to By 1is
shown in Fig. 7.4% If for a given By ; c6rresponding Bi
exists, then the bush form Bk+1 can be constructed from Bi
as follows., Merge all the virtual vertices labeled k+1 into
one vertex and pull‘{t down from the horizontal line. * Add
all the edges of G which emanate from vertex k+l as virtual
edges. . Now vertex k+l is considered embedded. Thus, if for

each B,, 1 < k < n-2, the corresponding B, exists, then we

.l., B/ starting with.

B n-1

can construct the bush forms Bz, 30

B,. Note that Bﬁ-l = B, _, and applying the above procedu;g

to Bn-l will give a planar embedding of G. Thus, if for

each Bk’ 1 <k < n-2, the corresponding BL exists, then G is

planar.

Using the above ideas, Lempel, Even, and Cederbaum
formulated a planarity testing algorithm, Their vertex

addition -algorithm is presented below in ALGOL-like
o

notation. p

e X
¢ - o

Figufe 7.4 °

?
Bush Form B,!

LRI T)
- x
P \
' .
. .
+ H . .
W
") "
4 (
. PR .

g v »
% .

[. 1

t ~ &
N r
N
o
- .
"
) « .
v y)

» -
~ - 144 - ' ’ : -

¢
k]

Lempel; Even, and Cederbaum's Vertex Addition Algorithm to
‘wlest Planérity of a Grapﬁ.

boolean function PLANAR (G); L \

comment function PLANAR tests the planariﬁy of a simple
biconnected graéh G. It returns the 'value true if G
is planar; false otherwise; ‘;‘

begin ' . © .

find an st-numbering for G;

renumber the yertf;;; of'G aqcoiding to"the ‘sﬁ-numbe(ing

and obtain the st-graph G; ¢

{Bush form él cSnéists of the vertex &*aﬁa all the. edges

in G incident out of vertex 1 as ;irtual edges.} ;

construct the bush form'Bl; ‘ .

for k = 1 to n-2 do _

{Bk is & bush form isomorphic to B, in whigh ail the

%*birtual vertjces labeled k+1 appear next to each other.}

v
“N

it By exists
then
‘ construct By . fﬁsm'Bé , .
A @ {Bk_l_'1 is constructed from Bj by merging-all the
| vifdual vertices labeled k¢l into a s}hgle vertex,
apd adding all ﬁhe“fdges in G ingident out of vertex.

. k+1 as vi;tqé}vfdges.} C

else

{G is nonplanar.}" ’ e .)
return falsef§ .

{6 is planar.} : //

S L/

ALY L o A
4 a

oy

"

. end PLANAR;

- 145 -

return true

. “~ . T +
)

.]
We now illustrate the gboqualgorithm on the st-graph G

-shown in Fig. 7.1. ~Various bush forms of this st-graph are

shown in Figs., 7.5 to 7.15 and a planar embedding of G is

-

shown in Fig. % 6. P
% N

Thek\b92ucihl step in ﬁhe LEC algorithm is the
construction of B, from B, for -every l.< k £ n-2. Such bush

forms lwould- éiist if the given graph G is planar. We now

) v .) , 2 .
_state two lemmas which form the basis of an algorithm for

» R 3 '
. constructing Bj- from B,. - Thé proof of these lemmas use ,

Observation 2 and Lemma 7.1, and may be found in [44].

P

.

LE‘ 7.2. ! ’ . - . .

-

Let v be a cut vertex of Bk' Ifv> 1, “then exactly

one component of Bk' with respect to v, contains vertices

L]

lower than v. ‘ : A =
' . - -

3 , v

LEMMA 7,3, -

Let H be a maximal biconnected éomponent of ék‘and Yyr

-

Yor eesy yq,be the vertices of H which are also end vertlces
of the 3dges of B, -H. In every bush form isomorphlc to "B,

Yir Yar eeer Yg are on the outside window of H‘and in the

same order,-except'that the orientation may be -reversed. O

’

2

E:

Figure 7.5

o = Al .
Bush Form Pl Bl

i

.

1?

jfi@ure 7.6

Bush Form 82 = Bé

%

. ‘

7

'
-

.

o

Bdsh Form B

.

Figure:7.7

v

= B")

»=B

’ /
X,)
Figure 7.8
Bush Form B4

2

’

Al

[

<

| L
aJcJo¥ofofoRcRo¥cRoRoRcye)

N

N

NI A

U

L

4

oJoNcYoNoNeNoNoRnEOEe

e
/ {3 >
- . ’ -’}
N } !
A

.

ts

o

&, | .
Figure 7.9 S

; '
Bush'Fprm B5 = 85

-
o«

E

Ay

- 149 .-

Figure 7.10(a)

..Bush Foﬁm 36

)’

‘-

Figure 7..10(b)

Bush Form~86

e - o
S !

+ - 151 -

Figure 7.1

Bush Form B, = B

f
0
.
.

Figure 7.12(a)

Bush Form Bg ' - e

-
« B
\"'
Figure 7.12(b)
) Bush Form Bé /_,_.,_.- K
12 ‘ o
'
h]
L]
[ud) ~

- 154 -

Fiqure 7.13(a)

Bush Form B9

[
. * Figure 7.13(b)

Bush Form Bé

I24

o

Figure 7.14(a)

Bush Form Blo

Figure 7.14(b)

]
Bgsh Form BlO

|

¢ .
“. - @
K~
.
B § ’
& . e q
. :
* f)
-
o

-
9
»
]
.
.
%
A
.
'
.
.
'
’
'
- - ‘ '
R . ’
| A
‘ N
¢
.«
.
* > [s]
, N
'
, .
! 0
! ’ |
.
‘
4 . .
1+ R .
by N . \ IS
‘ 2
& . ‘.
R .

A

Figure 7.16 -

Plane Realization of G

[

e

~— - 160 ~-

From Lemma 7.3 it folléWs that a hush form" isomorphic .

-

to B, can be obtained - by fllpping a maximal biconnected
component. Lemma 7.2 implies that a cut vertex v of Bk is
the Ilgueqt vertex in each of the components, except the one
which contaihﬁ vertex l, if v > 1. Each of these components
has the same structure as a bush form, except that its
léwest vertex is v rather than 1, an§ SO we cail it a
subbush. If there are p such componénts of Bk'with respect
to v, then these subbushes can be p7émuted around v in any

/
B, . Also each of these subbuShes ocan be flipped over.

\ l.of the pl permutatlons to obtal){a bush form {somorphic to

fhese transformations, namely perMutetion and flipping,

maintain the bush form., In fact Lempel, Even, and Cederbaum

proved the fgllow1ng [44] . \\\) .
o) .

¥ V4 ‘\ - .)

THEOREM 7.1. - \ ‘

1f Bl and B2 are bush forms of t\ “same*B,, then there
k k k' ° :

\ .
exists a sequence of permutations, and\ flippings which

transforms B% into Bi such that in B aSB\BY_thS_virtual
. \
vertices appear in the same order, " : -43’/’\‘_

The above theorem implies that each bush form B, can be

transformed into a bush form Bi

vertfces labeled ‘k+1 appear next to each other. For

in which all the virtual

etamp e, the bush form B9 shown in Fig. 7.4 is obtained from'

the push form By of F1g._7 3 by ffggping the biconnected

" component containing the sat of vertices {1,3, &, p} and

i ' , o

I~ T R .
L s i) -.r

. o - A » . s {

. ' =161 -

permuting the subbusheés around the cut vertex 1. Now the
prpbleﬁtis to find, from among all possti; Wermutations and
flipp}ngs, an appropriate sequence of pe;putations and
flippings“ which will tfansform 'Bk into Bp. Moreover, we
would li&e to do tﬁese transformations efficiently,r without
drawing the actual bush- forms. Lempel, Even, and
Cederbaum [41] represented the information about a bush form
-using certain expressions. Théy developed different methods
to Qfdigglaté these gkpressions, which would reflect the
effect “of perm@égéions and flippings of the subbushes.
However, ~ their method did not result in an efficient
implementation of the. algorithm. In the next section we
describe a data structure called PQ-tree. We shall discusé
how it, could be used to represent the information pertaining
"to a bush form as well as to obtain the bush form B from

k+1
the given B . We also show that using PQ-trees, the LEC

algorithm can be implemented with O(m+n) time bound.
Y

7.3 PQ-trees to Represent Bush Forms

'Given a'set U and a collection f{s,, 52; .e.)} of
,aubsétb of U. Boot:h‘t and Lueker f42] introducea a data
structure to represent the class 6f possible permutations of
lhe elements of U'in which all the elements in each subset
S; appear consecutively. If.U;, 1 < i < n-1, is the set of

the/ virtual edgeé in the bush form By of a graph G ana S; is

»

- 162 -
s

*

. the set of the virtual edges éntering vertex, i+l in Bi, then
the LEC i}gorithm implies that G is planar if and only if

for each i there exists;a permutationjff the edges‘of Ui in
which— all the 'edgeé in S, appear conggcutively. Based on
this Booth and Lueker showed how PQ—trées could be used to
implement the LEC algorithm in O(m+n) time. In this section
we discuss PQ-trees in the context of the planarity 'Ybsting
problem. A more general description of PQ-trees may be
found in [42]. We describe how to represent any bush form’
Bk' 1 < k < ﬁfl, of 'G,using a PQ-tree. We also discuss
methods of manipulating 3 PQ-tree representing B, to obtain
the PQ-tree representing(Bk+l. ‘ ,

7.3.1 PQ-tree Representation of a Bush Form

"Consider a bush form Bk' 1 <k <n-1, of an st-graph G.
The first step in applying the LEC algorithm is to transform,

! in which all

the virtual vertices labeled k+1 appear consecutively. * Ks

1

we noted in the previous’'section, s¥fch a B', whenever it

By if possible, to an equivalent bush form B

exists, can be obtained by performing a sequence of
f

transformations, namely.iflippings of maximal biconnected

bl

components of‘Bk and permutations around cut vertices of the

subbushes of B,. Thus while’apblying the LEC algorithm for

testing the p13narity of G the folrdﬁing are-of interest.

(1) the'virtual vertices (and virtual edges) in Bk'

AN

(ii) the cut vertices in B, and the maximal biconnected

4
)

"‘ f
R | . = 163 -
, - - -
components of*Bk, and (
\ (1ii) the cut vertices Yir Yor eoer Yq appearing in that

order ¢@n the outside window of any maximal

biconnected component of By .

Let ka denote the PQ-tree corresponding to B, . Then,
, in ng\t@e éboveapieces of information are represented by,

d{f{erent types of nodes as described below.

4 (i) Leaf: Leaves in a PQ-tree represent virtual vertlces

* / in the corresponding bush form. Since each wvirtual

\ ‘\

vertex 1is the end vertex of a virtual edge, a leaf

\< \ also represents a virtual edge. Leaves are
t . indicated by squares in our fiigures. A leaf has the
.7 . . ' ,
. Lt N
. , same label as the virtual edge it represents.

g\‘(ii) P-node: P-nodes represent cut vertices in the bush
-)
¥ jjorm. P~nodes are ihdicated by circles in our

figures, A P-node i% labeled as the cut vertex it
represents,

™

S - companents in a bush form. Let Yir Yor eeey yq be

the cut vertices (except the 1lowest vertex),

-] appearing in that order, on the outside window of a
.- . maximal biconnected component, Thén this coﬁponent
b is régresented by a Q-node whose children are the

'P-nodes corregponding to y;, y,, ..., Yq- Further-

" more,. these children apéear in thé& same left-to-

* . -

“\

" . w »
(iiiy @-node: Q-nodes represent the maximal biconnected

\

1

‘- 164 -

right order as the order of the corresponding cut
vertices bn the outside window of the maximal
biconnected component. The P-nodes corresponding to

¥
Y, and yq'are called endmost children of the Q-node

and the other P-nodes are called internal children.

—

. <
Q-nodes are shown as rectangles in the fidures.

We now describe the procedure to construct
)]
Consider a cut vertex v in the bush form B, 1 <k < n-1,

"3 .
.- Let Ck(l)f Ck(z)’ ceny Ck(i) be the components* of B, with

,Tk)

respect to v. Any component Ck(j)' l1 <j < i, may be of one
4 . ‘ - -—)

Y

of the following two types. ‘ f‘

(1) Ck(j) has only one edge (v,x) incident out of v in

e

G. In this case tife node corresponding_to ve{tex x is made
a child of the P-node corresponding to v. ' Note that the
L

node in Tk corresponding to x may be a P-node or a leaf

[s - 4 .
in Bk') - /

(ii) Ck(j) has more than one edge incideht out of v in G.,

\\gsgfnding on whether x is a cut vertex or a virtual«ve;fex

In this case ckkj) is represented by a Q-node whose children
are the P—nopes cgrrespohding to the cut vertices other than
v appe?ring on the outside window of Ck(j)' This Q-node is

then made a child of the P-node corresponding to v.
.) >
v) .

- - - s S —— hd

*Note that only thoﬁf biconnected coqﬁongnts in whicp vertex . .,
'S 1

v is the lowest vertex are of interest to us.

a
]

ot ! . . . -
B . 4

- 165 -

SA
Repeating the above procedure for each component of

every cut vértex in B,, we can construct the PQ-tree T,

corresponding to'-B,. As an example, the PQ-tree Tqg
% - .

corresponding to <+the bush form 89 of Fig. 7.3 is shown in

Fig. 7.17. -Note that the PQ-tree'is drawn with the P-node

Q corresponding to vertex 1 at the top because it is customary

by

to draw rooted trees with the rqot at the top.

v 5 Suppose a node Y in 'I'k has only one child Z. Let X be

¢'.¥‘ . . the parent of 'Y in T.. Then, (X,Y) and (Y,%) are series
4; o * -‘edges in T , and replacing these series edges by thé - edge
. €{ ' (X,2) 'will not affect the essential features of the bush

[& -
form B, , which are required for testing“the planarity of G.

hY ”»

So, 1if any node Y has only one child 2, then we delete Y

from Tk and make Z a child of X. Thus we assume, without

- ! .

loss of generality, that all the nodes in a PQ-tree have at

least .two children.
)

2

. ~ As we noted before, whenever the st-graph G is planar,

,

—

‘ form By, in which all the v}rtual. vertices labeled k+1

H

appear together, using a sequence of one or more of two

¢

?" types of operations, namely flipping a biconnected compenent

Pa [

SN ,and permuting the subbushes aroundyg cut. vertex. Clearly

- : the corresponding_operations on a PQ-treé are, respectidbly,

l

(1) reversing the order of the children of a Q-node, and
_ (ti) permuthg the children/of a P~node..

- . & bush form B, of G'o§ﬁ be converted into an equivalent bush,

Y

T
«

. | ~ (1,10) (1,12)

»11) (4,12)(5,11)(6,10)"

.

(2,11) (

(8,11) (8,12)(3,10)(3,11)

L N . ./
Figure 7.17
~ .
a f f) A
PQ-tree Tg.correspondinq to By
- . Vo ‘
Lo "’/
- ~
» .
0 -
f [' .
‘ , v .. * M ‘ . r
. . :
- f:) ‘.\-_//‘ L " . .
. a C ' o
r C e
v, | S b S
¢ ' s ‘”".
: e
- - . ‘::z".e:f;a%'?

- 167 -

Thus we consider two PQ-trees to 'be equivalent if we can
transform one into the other uéipg a gequence of one or more

| S

of the abovg two operations;

7.3.? femplate Matching
- v

N ¥

Given the PQ~tree Tk representing a bush fo;m Bk' 1 <k

< n-1, we'!

now describe an algorithm for constructing Tk+l
from T, . We wish to achieve this without drawing B, or

Bk+l' First we need a few definitions.

Let S(k+l) denote the 52\ of 1leaves in fk‘which
corfspond to the virtual vertex 3+l% A node X in T, is
said to be full if all its descendant leaves are in S(k+l);
X is said to beﬂgﬂg&x if‘noné of its descendant leaves are
iq S(k+l). In our figures we indicate full nodes by shading

them and empty nodes are left unshaded. If some but not all

of the descendant leaves of X are in S(k+1?}1tﬁen X is said'

to .be partial. Partial nodes are shown bartially shaded. A

node which is either £full or partial is referred as a .

gerfinent node{ We define .the frontier ' of ?k as the

sequence of all the leaves in 'i‘k read from left to right.
For example, the frontier of Tg shown'in- Fig. 7.17 is 11,
ll") 12' 10, 11,‘ 11' 12' llJ, IQ' 10, 12- The

pertinent subtree of T, with respect to S(k+l) is the

subtree of minimum height whose frodtiér_codtéins all the
. B n‘é'

-

<

- 168 - =

leaves in S(k+l). The pertinent subtree and 1its root are

unique. The root of the pertinent subtree 1is not

necessarily the root of T . The pruned pertinent subtree of

Tk with respect to S(k+l) is the smallest connected subgraph
of Tk which contains all the pertinent nodes. For example,
for the PQ-tree ?9, the pruned pertinent subtred, with
respect to the set of leaves corresponding to virtual vertex

10, is shown in Fig. 7.18. Noté that in this case T9 itself

:is thg pertinent subtree, In Fig. 7.19, we have shown this
pertinent subtree with thewieaves corresponding to virtual
vefteg 10 marked full. Finallyuiet T(i), 1 < iu < -1,
denote a PQvtree having one P-node labeled i and as many

léaves as the number ‘of edges incident out of verter i in G.
5 D '

These leaves -are children of the P-node and are labeled as

their corresponding edges in G. Note that T(l) = Tl'

»

To construct Tg+l-from Tk' we first?construct a PQ-tree
T§ in which alr\the full leaves of"Tk appear consecutively
‘as the children of/;/é;%ode. Of course, if there |is 6nly
one full leaf in T, then T{ will be the same~as'Tk. For
example, the PQ-tree T; corresponding to the PQ-tree Tg of

Fig. 7.17 1is showh in Fig. 7.20. Now replacing the leaves

Pl

corresponding to the virtual vertex k+l by T{k+1l) we obtain

the PQfEree kal representing the bush form Bk+f'4

4 , - . b Y

7

We now describe a procedure to transforh T, into Tf.

This procedure for‘iedﬁcing T, into T¢ involves processing
" \, % . . ' ,
- {

N

&

ceF

LRI R A U
v -
W

f‘. - T - 169 -
. 1 (1,10
. ’ ' (6,10)
" (3t1°).
. T
v Figure 7.18 : .
. Pruned Pertinent Subtree of 'I.‘9
‘/(_'— , ‘
(1,10)(1,12)
A o 8 87,
”"_“ ’ . _\; u ¢ (2'11) (9’11)’(4:12)(5911)(6)10)
PR TR
.8 (8,11)(8,12)(3,10)(3,11) .)}
LI t - . “
| ¥ ‘ F'ig‘ute 7.19
v i \
Pertinent Subtree of f1_‘9
) Péftinent' Leaves are marked Full

f

. v K \ [
2 | | - 170 -
Y.
A, . | :
< . ”
— : {
6,
o (1,12)
. ' Y
. 7 L o
oo (2,11) [/ \{4,12)(9,11)(3,11)(3,10)(1,10)(6,10)(5,11) ~ ~ . =
(8,11) (8,12) |
L . S * \ ' N
: Pigure 7.20 . ‘)
\(| PO-tree T3 ' o R |
-
T \ .; ‘ : i ‘ ‘

- 171 -

(in an appropriate manner ﬁo- be described below) the
pértinént subtree of T, with réspect_‘to the 1leaves in
S(k+1l). " The processing is carried out bottom-up. Tﬁat is,
a node ;f'the pertinent subtree is processed only after all
its pertinent children are processed. When a node is
processed, the node and its children are compared with a
sequénce of templates. Each template has a pattern and a

replacement. During the template matching, if necessary,

the children of a P-node may be arbitrarily permufed, and if‘
any of the children is a Q-node, thgn‘the children of this
Q-node may be reversed so as to match the pattern of a
template. If a node and its children match a template's
pattern, then the pattern is replaced within the tree by the
template's replacement. Thus, each template specifiés a
local change within the PQ-tree and the ;ree gbiained after
the replacement is also a PQ-tree. This template matching
is repeated pntil the root of -the pertinent ﬁubtree is
processed. The bottom=up strateqgy is used to ensure that
the subtrees rooted at the pertinent children of a node have -
already been.pfocessqg when the node itse}f is considered
for template matching: o -
% |

To . begin tpe template matching, all the pertinent
leaves in '1‘k (that is, £he leaveé in S(k+1)) are marked full
and all the other leaves are marked empty. When any
internal node is processed, our aim\is to ensure that after

replacement, all the pertinent leaves in the frontier ofhe

P
N o v o e}, Yo = Rt | St AR o8 e e e = e . _ . —

LY . ¢ - 172 - '}J

. subtree 'rooteq at that node occur as a consecutive

. subseéuence of the frontier. Moreover, we want to do thé
template matching in such a way that all the 1leaves in

‘S(k+1) are made phildren of a sing}e_node in T*., Note that
in/fi, this node, which is the parént of all the leaves in’
S(k+l), will be a Q-node if |s (k+1),] > 1.

-

Now we describe the segyence of templates which are
-

R ' needed to aphieve the above gdﬂls. In the figures which
\ follow, a triangle represents élsubtree. Our discussfgn of
}emplate matching is in the context of reducing Tk intq: T*.
Sd, -each pertinent'leaf representsva virtual vegtex labeled
k+l as well as a virtual édgev(i,k+l), for some 1, inciaent
into the vertex k+l. Furthermore, dur{ﬁg the reduction of,
' \Tk into TE, each Q-noge will represent either a bicqgnected

component of B, or the biconnected component which will

result if we coalesce in BK all the virtual}\vertices which'

4. a

are represented as children of the Q-node.

‘During the template matching the following different
cases occur, where X deénotes the node being prégessed.

o , . \ " "‘ L“
Case 1: X is a P~-node.

- -

f . \
~ (i) If allgphe'children of X are empty, then no change -

Y
is necessary.

(ii) Template Pl (Fig. 7.21): In this case all- the

v
L)

.

—

. " 173 -

’

: / R v’ ’ Lo
- children of X are full. To bring all \the pertinent leaves
‘as ch%}dreq of the same nOder we\ replace X by the
. ne . . Co PN
: replaé@ment shown ‘in Fig. 7.21. \ !
\)) - & = ’ *

(iii)éTeleate P2 (Fig. 7.22): In this case X is partial
e and is the sroat of tﬁ@’/;lxtinent . subtree. Thus . the

reduction process wfll stop after proéessigg X. So, we make

» * : ‘ -,
+".all pertinent leaves as children of the saﬂe(node by the

v

reﬁlacement shown. in-Fig. 7.22. ’
«

(iv) Tempiate P3 (Fig. 7.23): Now X is paftial and is noi

! the root of the pertinent subtree. Thus there is at least"

one'more%pertiﬁght node to be processed which is not a

descendant of X. So, after the reduction X will.be on the
1 B

outside window of some biconnected component. This 1is

reflected in the “replacement shown in Fig. 7.23.
’ »*

?

(V) Template P4 (Fig. 7.24): qufhis case X is pé;tial;
it.is the root of the pertinent subtree and has exactly one
paftial Q-node among itg childre;i If Yir Yor sees yq are
the cut vertices on .the butside windqy of the biconnected
ar’”/fZEmpoﬁent corresponding to the parti;i Q-node, then in I
this.bidopnected component will have the cut vertices yi,

fz, «eer Y¥Ygqr k+l on its outside window. From this

*

. observation, the teplaéement in Fig.a7.24-follows.

(vi) Templafe P5 (Fig. 7.é5): Now X is a partial node; it

is not the root of the pertinent subtree and has exactly one
- /) 4

/partial Q-node among its children. Let Yir Yor eces- ngﬁbef

v . e

g

)
B

\

Pattern
-

%

o

Replacement
l.

Figure 7.2

‘Template Pl

™

»

———

Pattern

®

/ ‘ooo~ ‘,"'%QCf'/A

P

A soe

S

Replacement

Figure 7.22 .

' Template P2

Je oy

,4’ (}.;.

i
' - 176
v |
. /'1
oy
X

[X N A

~ %000'

.

Pattern .

VY eee

B

Replacement .

Figure 7523 .

: 'l‘e‘niplate P3 .

o > BN
%‘..% ‘ r

~NH &*

- 177 -

eo o \ 7///A /VOQ. Z
: A‘A’%@ | - B-v ¢ 8\

Pattern

)

C 7

kko-boo-u o-n

Replacement *

Figure 7.24 | (

. Template P4

- 178 -

- . . /

A‘the cut vertices on the outside windo&fpf the biconﬁedted
‘ﬁ.component cor;éspopd{ng to the partia{ Q—nodé{“ Since X is
~qnot the root of the pertin;nt subtree,cin_Bk+l there will be

a biconnected component having the ;ertices X, Yir Yor eees

’k+l, ... on its outside window. Thus the replacementﬁ

——

Yq’
in Fig. 7.25 follows.

' o i ' .
(vii) Template P6 (Fig. 7.26): In this case X has two "

p&fﬁial Q-nodes, séy Y and Z, among its children. Note that
: o,

X must be the rootdof‘the pertinent subtree, for otherwise
the tree T, cannot be feduced. Let y,, ¥, ...i y; and z,,
2y, :.., zy be the order Sf the cut vertices on Fhé .outside
qfw1ndowé of thelbicdnﬁbcted components corresponding to the
twqtpartié} Q—nodés. Then Bk+1 will have a biconnected
:omponent which has the cut vertices Yy Y2""" Yir k+1,
Zys 22;“ﬂ°" zj appearing ih that order on its outside
window. To obtain the Tyt corQ?Sponding to this Bk+1;h:e
use the replacement shown in gig.'zszs. ,
- It is easy to see that if a. P-node has more than two
partial Q-nodes as its children, then the PQ-tree cannot be
. reduced. Thus if a PQ-tree has any P-node which does not
match any of the above templates, then the tree is not

reducible and so the graph G is not planar.

Case 2: X is a Q-node.

-

(i) If all the children of X are empty, then no change

—

o~

Figure 7.25

Template P5

bl

o0 e - Y} //
! q
XX ooo%‘
. | Pattern
/
s
w
’ Py
..’
//000 /~_ o0e %oo.
& ' .
‘ - Replacement .

B 4 :
v -*‘i

I\

94 ajerduag

9Z"L ?{inbrg

_ juswadetday

-7 7

777

772777277777

uiajjeg

P W

\—@‘”

N\

Jsrarnn

L]

S

- _] - » P
- - 181 -
/)
/ . ' A
is necessary. J/J> *
SR (ii) Template Q1 (Fig.C@igg)t In thi% case‘ all the

children of X are full. So, no change is necessary ekcept

to shéde X, thereby indicating that it is nbﬁ full.'

i | .
(iii) Template Q2 (Fig. 7.28): In this qase X has exactly

one partial Q-node, say Y, among its ch#ldren. Let the

biconnected component of B, corresponding'to X have the cut

vertices Kor Xgr eeer’ Xpp oee on its| outside window.

Supposé the biconnected component corresponding to Y have
the cut vertices yl; Yor «vee yy on its . outside window.

. Then in Bk;l there will be 'a biconnected component having

r’tl-le Veftices xl' x2' s e oy xi' yl' Yz' * ey Yj, k+1' L) On

its outside window. Thus we.use the eplacemenﬁﬁsﬁ%wn in -

Fig. 7.28 for this templéte.
‘ : R

. g

(iv) Template Q3 (Fig. 7.29): Now X has exactly two

\

partial Q-nodes among its children. Note that in this case

. »
X must be the root of the pertinent subtree; for otherwise
l

the tree,cannbt\be reduced. Let _the partial Q-nodes Y and 2

represent the set of cut vertices {yl, Yor eeee y?}, and thé”?
set of cut vertices {z,, Z,, ...y Zg} respectively. 'Also

let X represent the set of cut vertices {xl, Koy seer Xis
xi*l' PR xj}. Then in Bk+1' there will be a biconnected
cémpbnent having the cut vertices x,, x,, ..., Xy, ylfdigz,
seer Yoo k+1, 20 Zgr eeer Zgy Kjpqr eees X4 on its outside
window. The replacement shown in Fig. 7.29 ‘reflects this

situation.

o

2 ¢t woer
IS4 '
P
Lot
R
e
.
1
e

\ .
(N i

5y

. '
.
, L]
.

\ 4
.]
I3
i

14

< /
[
N ¢

i
L
i

b .

Y

1
-

/3

G-

Repldcemeqt

i

: figure'7627'
Template Q1

I
i
i
i
/
L
f
(¢
/f-\
L 4
. '
2,
-
| r\
.) -
>
O,
. A
.

B

 kkomo-t
i '?.. ‘%...%/)

Pattern,

[y

V . N ‘
o .
ooy L . '

’ | . | coe L
A~ X ’ X y y \
1 i 1 < . : ‘.
. ‘ cse soe 3 %oog% @Qoo% . %ooo
. C - C b . '

No— ‘

S } // ‘Replacement

. Figure 7.28

pae

Template Q2

.
s -

) €0 ojerduway

6L @1nb1g . ~

-
~

‘ juauwaoetday

a

of

‘..=~~
-

: \\\\\\\\\\&\\\\ \\\\\\\H .

B

4 .
) uisjzjed <
*°00 ¢
7) (
mN .;. ﬁx.

. <-< \'v . A V....: - > [X X J ,m
‘,. ’ C N ﬂx‘ . ﬁ*Px . Fx ' ﬂx ..\ﬂl
- . qw 0

3 , X . -
: .Wn N , ‘. a n \ |
- S ’ v ’ N) - 3 .

‘that G is nonplanar«

s/

~

. . =185 - ’/’ o
If a Q-node does not match any of the above templatea,

then the tree cannot be reduced. fTﬁe templates explained

above are the only templates that can occur in the case of a

-

- planar graph.“ So, if any node in the PQ-tree Tk' 1 < E <

n-2, dges n?t match any one df the above templates, then T

k

cannot be(feduced to T}

illustrate in Fig. 7.30 the reduction of the PQ-tree
T9 into T;. Starting‘with T9 in which, all the .pertinent

leaves are marked full and all: the other nodes are marked

empty (Fig. 7. 30(a)), we obtain the PQ—tree'in‘/flg. 7.30(b;

%Eper applylng Template P3 to node A, The PQ-tree shown in
Fig. 7. 30(c) is obtalned by applying ‘Template Q2 to node B,
and Figqg. 7,39(6) results after applying Template Q2 to node

C. Finally applying Template P6 to node D gives the PQ-tree

shown in Fig. 7.30(e), which is the PQ-tree T§ shown in
. Fig. 7.20. ' '

Thua, to test a graph for,planarity, we start with: the
>

PQ-tree T, corresponding to the bush form B;. At any point
we reduce a PQ-tree Tk' l<k < nfz,'into the corresponding

from T*

T dhd then construct “the Pthree T x. 1f all the'

k+1l

PQ-trees Ty, Tyr «+er° T, ; Can be obtained in this way, then

G is plarar; otherwise G is nonplanar.' In Figs. 7.31 to

7.41 we give the PQ-trees corresponding to the bush forms of

" .the st-graph G of Fig. 7.1. Since all,the—fequired PQ-trees

ot il

s

©

s~ g
at

i
' -t
c

(1,10)(1,12)

i

(8.11)§q1't)(3.10)(3:11

¥

(9,11)(4,12)(5,11)(6,10)- . |

§

= e o
. Pad °

1

Yo

R
\ N
SRR © Figure 7.30(b) .
PQO-tree after applying T plate P3 to A
‘\ b
S,

-
- win

‘- 186 - g
e A '
N
\)
A" .
“(1,10)Qi:i§}
%
(2,11) (9.11)(4312)(5;11)(6,10) . h Q\~ '
(N J)
/
‘ (8,11)(8,12)(3,10)(3,11)
- \ : Figure 7.30(a)
PQ-tree T
b ° . _
d /// ~

“f -

»
>
S
4
<
L .

N ' -
‘?/' '
(1.10041.12)
5 7B ’ 1V . p
(2,11) /. - (9,11)(4,12)(5,11)(6,10) -
M7 - ;

(8,11)(8,12)(3,10)(3,11)

Figure 7.30 (c) ;

PQ-tree after applying Template Q2 to B

-

14

' * K ~

%

(8,11)(8,12)

., - 'Figure ‘7.30(d)
PQ-tree after applythg Template Q2 to C

] : S - -

- 188 -

wn

(1,12)

.

(8,11)(8,12)
-

!

, Figure 7.30 (e) CT

7

4,12)(9,11)(3,11)(3,10)(1,10) (6,10)(5,11)

‘PQ-Eree after applying 'i‘vemg‘lat:e_Pﬁ‘to D

A

- 189 -
<

1,

» Y .
s ' . .
(1,2) (1,7) 1,8) (1,3) (1,4) (1,6) (1,5) (1,10)(1,12)
. ‘ . _
Figure 7.31
) //? PQ-tree '1‘l - Ti
< 5
1
Q\
2 : 1 v

- (1,7) (1,8) (1,3) (1,8) 11,6) (1,5) (1,10)(1,12)

~

(2,7) (2,11)

. ' " 4
7 Figure '7.32 z ca
. PQ-tree '1‘2' - Ti -
- ha Q

o“!

w

. s
. ,’g@
NN

"190" 1

2

(1,7) (1,8) (1.4) (1,6)7(1,5) (1,100(1,12)

N -

(2,7) ‘2,11) (3,9) (3,10)(3,11)

Ffburé 7+33

-t PQ-tree T3,= T

*
3 ‘ - -

(1,7)(1,8) ‘ / (1,6) (1,5) (1,10)(1,12)

/

(2,7) (2,11) (2,9)(3,10)(3,11)(4,9) (4,12)

- - Figure 7.34

. PQ-tree '1‘4 = Tz

IS S
- 191=

(1,7)(1,8) ’ 0 (1,6) (1,10)(1,12)°

(2,7) (2,11) (3,9)(3,10)(3,11) '(4,9)(4,12) (5,6)(5,11)

L

. 1
' Figure 7.35(a)
® PQ~tree T5
‘ ‘1
e , 4 *
2 3 : v .
(L1)(.8 /) | (1,10)(1,12)
. /] .0

(2,7) (2,11) (3,9)(3,10)(3,11) (4,9)(8,12)(5,11) (5,6) (1,8)

* Figure 7.35(b)

- o
< ‘PQ tree '1‘5

f._/ : - 192 - -
o
1 .
o
2 3) 4 . :
(1,7)(1,8) ‘ C(1,10)(1,12)
. . - o
(2,7) (2,11) ﬂ (3,9)(3,10)(3,11) (4,9)(4,12)(5,11){6,10)
) Figure 7.36(a) -
‘ - ’ I;Q-i:fee ’I.‘O6 '
- | ' ' - . \ E

/

. -/
7/ REO, (4) /
, (1,8) - | (1,100(1,12)
N7 74n
(2,11) (2,7) (1,7) (3,9)(3,10)(3,11) (4,9)(4,12)(5,11)(6,10))
. Figure 7.36(b)
. PQ-tree Tg 4

/| R) , e
/ - 193 - :
,}/ .
/
(’ 1
4
/ 4 -
(1,8) (1,10)(1,12)
. .
©(2,11) (7.8)'/(3.9)(3.10)(3;11) (4,9)(4,12) (5,11)(6,10)
" Figure 7.37({a) e
_ ot PQ-tree ~T7
/ {a
‘L ‘ " . ‘
/ /oA
A _
3 l'/‘/
/
>/ 1
//) /
/ . -
// y
2 7 3 »
SR ' (1,10)(1,12)
V.
% | .
- 42,11)(7,8) (1,8) (3,9)(3,10)(3,11). (4,9)(4,12)(5,11)(6,10)
Figure 7‘{37(5)
PQ-tree T3 - ;
- ‘Q . A .:‘ . ‘ .

%

- 194 ~

(1,10)(1,12)

. .
- .
9 r)

(2,11) (3,9)(3,10)(3,11) (4,9)(4,12)(5,11)(6,10)

(8,11)(8.12)

A

Figure 7.38(a)

PQ-tree Te

7

(1,10)(1,12)

8 (7
(2,11) - (3,9)(4,9)(4,12) (5,11)(s,10)

(8,11)(8,12)(3,10)(3,11)

Figure 7.38(b)

» 2 PQ-tree T}

(1,10)(1,12)
8 3) ¢
Q (2,11) -/ \(9,11)(4,12) (5,11)(6,10)
(8,11)(8,12) (3,10)(3,11)

Fiqgure 7.39(a)

PQ~tree Ty
!

|
|
|
l

77

'
‘ “(1,12)
- [7R
(2,11) ¥ (4.12)(9.11)(3.11)(3,10)(1.10)(6.10)(5.11) % '
(8,11)(8,12) ' -
‘e

Figure 7.39(b)

PQ~tree T;

atd

A% R
$ T
~

e 2T~
T 2 . -

3,11)(10,11)(5,11)

G

(8,11)(8,12) ,

& ’

//’figure 7.40(a)

ynyQ-tree T10

, B 7 (1,12)
CanBaan

‘8,12)(8.11)(2

,11)(5,11)(10,11)(3,11)(9,11)(4,12)

Figure 7.40(b)
. PQ-tree Tio

oW et

%’/27

(8,124&11,12)(4,12)

Figure'7.41

PQ-tree Tll

C | azy

-

7 ' - 198 -

" are obtained, G is a planar graph. From these trees we can

observe that in order to test for planarity, we need not
keep all the pertinept leaQes consecdtive in any PQ-tree,
If all the pertinent leaves in Tk can be made consecgtive,
then the position for the P-pode'k#l is what we need to
construct Tk+1' Using, this observation, we can simplify the
templates. But we prefer to fetain the templates as they

are, for reasons which will® become clear in later chapters.

Booth and Lueker [42] implemented the above algorithm
in such a way that only the nodes in the pruned pertinent
subtree are processed during the template matching process.

They perform the reduction in a reduction phase. It is

. -
. clear that to perform the reduction process, all the
S—t ' com '

pertinent nodes in the tree should be known 1in advance.

-

This information is obtained during a separate pass of the

algorithm called the Bdbble-ug phase. Moreover, in order to
¥ ’ "

obtain an efficient implementaftion, Booth and Lueker keep
-~ .

parent pointers for all the chi dreﬁ of a P-node; but only
endmost children of Q-;odeé are given wvalid parent éointers
and all the childrenlof Q~nodes are provided with sibling
poiﬁters. If, during the reductign process, any internaf\\

child of a Q-node” becomes pertinent, -then- it ,should‘ be

provided with a valid pérent pointer for template matching.

Thisgparent pointer@assignment is also performed during the
bubble—up phase. Moreover, in certain cases non-reduci-

bility of a PQ—tree&can be detected during(the bubble-up’

\
4

{‘

-~
e

F

/

. - - 199 -
phase itself. We wil«I_f_qot pursue these details any further.

¢

A complete discussion is :Z'@ilable in [42].

It is easy to observe that the reductionof a PQ-tree

requir;es time proportional to the number of per-élnent nodes

in it:.. Using this observation,’ Boo‘th\ anfi Lﬁeker (42] proved
ﬂt\h)at,o,.when impi.emented using I,PQ-—trees, the -LEC algorithm

requi‘.res.O(m-i-n) time. Since for any planar graph m = O(ri'), &

the time complexity of this; algorithm is O(n') for planar.

graphs.,. " -

N

L]

As ve have stated at the beginning of- this section, the

*

. data structure PQ-tree was invented to represent the claﬁs

q_f,_all.the permutations of a set in which all the elements
,‘}’in certain su}asets of the set appear together. Using the
ﬁQ—trées, Booth and Lueker [42] developed efficient
algorithmé to test for the consecutive ones _propex:ty",of

/ matrices, and to test for interval gra‘phs in ,addition to‘the

imple;ne tation of the LEC algorithm discussed above.

I

Y t - .
of graph problems. Fujij,h_j.‘ge‘ 47] used. the' ideas of

PQ-trees to sol‘ve a graph realization problem\.‘G’Zi:suki and

Recent f PQ-treés have been used in solving a wide wvariety

* Mori [48] | used 5 PQ—t;_ee algorithms to obtain an virn:er:v.'.ll :
”graph "fx:on'\‘a' given grap_h by adding a minimum number of edges
to it.' Ozawa and Takahashi [49] 'developed an al_gorithm
‘using PQ-trees.to obta;n a planar subgraph, - dhgdh contains

. as many edges as possible, of a nonplanar gx:anp:j~ (However , - °

[
~

. ’)
" ') ‘ —_— \/~
<

S B ’ B .)

47t
L4

- 200 -
| " we show in Chapie; ? that:this- algofithm may not finmd a
Waximal 'plaqskf subgraph = in some cases.) In the graph
. rengsgntatiop of electronic circuits whicﬁ °contain’
integrated “ circuit components, certain vertices
(representipg the pins in the integrated circuits) must
app‘&r in a spec{fiéd order. Testing planarity of such
'graphs is called codstrained“planarity testing. Masuda,
Kashiwabara and Fujisawa [50] and Nakajima and Sun. [51]
_exteﬁded the ideas éf PQ—Lréés a;é introduced)PQﬁ-frees ggd
éos-trees‘ respectively to develop a linear time algorithm

- for the constraired blanarity testing problem,

'y "L In the following chapters, we develop efficient

algérithms uging’PQ-trees to

(i) obtaid a §lanar embedding of a planar graph, and

L4

1’ ao L):‘Aii) obtain a maximal Rlanér subgraph of a'nonplgnar

. . Yo .) .
-\\\;’ - graph. i E .
L e ?
‘ X / - .' ! . . \"

\‘/ N ' C‘
~ ;\; {w
\ . ; ‘ g ‘
, /,l » -
- | '{t .
]
® N

A « <\ - 201 -

. CHAPTER 8

A 6(n) VERTEX—EDGE ORDBRING ALGORITHM

FOR PLANAR EMBEDDING

This chapter is concerngd with the problem of gbtaining

a planar embedding of a plagar graph..

One of the earliest ‘algorithms to-construct a planar
embeddlng of a’'planar trlconnected graph G was aproposed by
Tutte [52]. His "barycentric” embedding algorithm firstf”

' finds a cycle C, called the peripheral éolygon, in G and

- embeds this peripheral polygon as a regul;r convex polygon.
Then a planar embedding of G is constructed.by forming ana
solving systeﬁs of simultaneous linear equations whiéh;
expréss the position of each vertex not in C as the centroid
of its neighbours. The formiiif}pﬂ and solution.of these
systems requires 0(n3) tjmé and O(ng) space in general,

. Once the coordinates AOff the vertices aré determined, the

' edges may be embedded as straight-1line gegmehts.

~Later, Woo [53] presented another ngorithm to obtain a

- planar embedding of a planar graph in which all the edges
are drawn as str;ight—line’segments. Although his ulgor#thm
drew all planar graphs with upto 22 cycles, it failgd for
\larger graéhs. In tpe evéht‘of.failure of his algorith?)
- Woo suggeéted a héﬁristic procedure involving maﬁ-machine

. communication to obtain the planar embedding. Koppe f54]
B ? 4

- 202 -

developed a g¢ompletely automatic algorithm to obtain a
planar embedding in which the edges are drawn as

straight—line segments. _ b C\

Wing [55] and Fisher and Wing ([39] presenteg an
algorithﬁd;o construct a planar embedding when the positions
of the vertices in the plane are arbitrarily specified.
However, in this algorithm it may be necessary to redraw~
some of the previously embedded subgraphs in such a way that
a cut vertex appears on the outgide window. 'Recently,'
Maly [56] developed another algorithm to obtain a planar
embedding of‘a planas graph whose vertices are ;iteadwa_
placed in the blane.“ A computer program to draw electronic
circuit diagrams” in the plane has Heen. reported .by

Hope [57].

As discussed. in Chapter 7, there are two efficient O(n)
time algorithms to test the planarity of a graph G with n
vertices, namely Hopcroft and Tarjan's path addition

algorithm and Lempel Even, and Cederbaum s vertex addition

‘algorithm (in short, the LEC algorithm).l These algorithms

test G for planarity by trying to construct an embedding of

G 1in the plane. Tarjan [58] shows that "his planarity

testing algorithm can be used to obtaiq\a planar embedding
and gives the details of how to do this "by hand". - He calls
the.planar embedding which hiscplanarity testing .algorithm

constructs as a "standard embedaing“; Recently Williamson

s

o}

.the LEC algorithm.

- 203 -

i

[59] prgsenied a procedure to construct a planar embedding

of a planar graph based on the ideas of Hopcroft .and

" Tarjan's planarity testing’algorithm. However, no, work has

yet been reported on constructing a planar embedding using

L4

4

Brehaut [60] proposed an. algorithm tdl find a planar
mesh of a planar graph G in O(n) ;iﬁe aﬁd space using thé
ideas of Hopcroft and Tarjan's planarity testing algorithm.
He also poin;ed out tbat us}ng this mesﬁ)as the periphéral

polygon in Tutte's barycentric mapping algorithm, a planar

N

embedding of G can be obtained if G is triconnected. Later,

Brehaut [61] presented an algorithm to find the coordinates

of all the vertices of G in a planar embedding in O(fi2) time

and O(n) space. Unfortunately, one of the steps in this
algorithm is computationally difficult and Brehaut shggested

a heuristic to implement this step.

+

in thié chapter we discuss the problem“of‘ obtaining ql
planar embedding of a planar graph G ‘using~ the, LEC
algorithm. We develop an O(n) time alqoribhm to determine
the positions of: -the vertigeévin‘a planar;embedding of G.
We also develop another O(n) time algorithm to determine the
order in which the edges should be drawn around a vertex 8o
that an intersection-free drawing of the edges can be
achieved. Finally, we describe ; .procedure to obtain a
planar embedding "by hand” .

_ - 204 -

8.1 Bush Forms and 7T-order

In this section we' first discuss ‘the principle

underlying our procedure for dr;wing a planar embedding-of a

. planar graph G using the different bush forms constructed by

'the LEC algorithm, We thdn draw attenti to certain

prbblems that will ~be encountered in a straightforward
implementation of this procedure. In the ‘subsequenf
sections we shall develop algorithms to Qéeréome these
problems.’ |

» .

"‘Let G = (V,E) be an n-vertex planar st-graph. Since
replaciné the edges incident on a.vertex of degree~two.byh‘g
single "edge does not affect the planafity of G, wefass;me,
Qiéhout loss of generality, that everyﬂlQertex’~in G “h£;

degree at least three. We may recair that the st=graph G

can be considered as a directed graph in which each edge is

‘oriented from its lower numbered end vertex to the higher

)

numbered end vertex. For any vertex i, 2 < i < n, let I'"(i)
% - .

be the set of lower numbered neighbours éf i. Let Bl = Bi,
By, BS, ..., By, B}, ..., By, be the sequence of bush forms
generated: by the .LEC aliSTithm. Recall that in the bush
form Bi' the virtual vertices labeled (i+l) may not be
appearing cénsecutive}y whereas in Bg these virtual yeftices
appear consecutively. Let Ti be the PQ-tree éepreéenting
By. Note that the PQ-tree implementation of the LEC

'

algorithm does not. explicitly construct the PQ-tree

- 205 -

'‘corresponding " to - Bi. Rather, starting with Ty ié
constructs a PQ-tree T; from which Ti+1 can easily be

obtained.

Consider now the virtual edges entering vertex i in
Bi-l' The left-to-right order of these edges. imposes an
anticlockwise order around 1i among the ver?ices in F+(i).
We call this order as the 7-order in B; for vertex |i. In
general, the 7-order for vertex i in a plan&r embédding of G
will refer to the anticlockwise order around i of the edges
entering i from lower numbered vertices aé well as to the
corre8ponding‘o:der of the lower numbered vertices. The
T-order for wvertex- i in B, willibe denoted by T(i;. Noté
fhat in the PQ-tree Tg_l, the pertinent leaves corresponding
to the viptual' edges entering vertex i in Bi—l appear
consecutively as children of the pertinent root in the same
leftlto-right order as .the virtu?§ edges appear in Bi-1:
Note also that the pertinent root 1is a Q-node provided
[r(i)| > 1. So, if (vord)y (v, d), weu, (vj,i), j>1, is
the left-to-right‘order of these pertinent leaves in T;-l'

then T7(i) =-(v1, Vor eees vj). Thus 7(i) for each i can be

constructed from the corresponding T;_l. For example, from
the PQ-tree 'i'g showr in Fig. 7.38(b), we get 7(9) = (3,4).

In T;_l, the leaf. corresponding to the virtual edge
(1,n) is a child of the P-node labeled 1. Since etach vertex

of G has degree at lemgt three, all the other children of

- 206 -

N

this P-node are Q-nodeé. These Q-nodes can be.merged‘into a
singMF Q-node because " all of them are full Q-nodes. The
order\of all the edges incident into vertex n, except the
edge il,n), is determined by the left~to-right order of
their appearance as children of this "new Q-node. Let
(vi,n),'(yz,n), cosy (vj,n), j>1, bé this order. The edge
(1,n) has the freedom to appear either on the left or on the
rigﬁt of this sequence of edges.. Moreover, vertex 1 will
appear in the 7T-order of some other vertex less than n. So
we decide to omit vertex 1 from 7(n), and write 7(n) as 7(n)
= (vl,'vz, cosy vj); For example, from the' PQ-tree TIl
shown in Fig. 7.41 we obtain 7(12) = §8, 11, 4).

¢

Note that the bush .form Bi;l' 2 < i < n, contains a
planar embedd{ng of Gi-l' the subyraph of G inducgd by the
vertices 1, 2, ..., i-1l. In this planar embedding the
vertiges 1, 2, ...,,i-l are placed at diffgrent vertical
levels such that vertiées. with higher labels appear at
higher levels. Also, all the edges incidentwffito vertex i
in this planar embedding enter from below and 7(i) specifies
the anticlockwise order around vertex i of these edges.
Using these observations we can draw a planar embedding of G

from the 7T™orders of its vertices as follows.

We start the embedding By placing vertex 1 ‘at the
lowest vertical 1level, say Level 1. This represents a

planar embeddiné of G, and we now ‘call vertex 1 as

- 207 -

"embedded". We then place vertex 2 at Level 2 higher .than
Level 1., Since 7(2) = 1, we draw an edée between vertex 1

and vertex 2 and obtain a planar embedding of G In

2°,
general,\suppose we have embedded the vertices 1,. 2,\ ceer
i-1. Then we can embed vertex i aslfollgws. First we need
to obtain Bi-l (and' hence 7(i)) from the bush form Bi-i‘
This' could be achieved by using a sequence of flippingé and
permutations of the maximal biconnected comp?nents in Bi-l'
Let Ci(l)" Ci(Z)' coely Ci(j) bé the maximal\biconnected
components in B;_, other than the virtual edges. We calis
these maximal biconnected components as blocks. Since the
planar embedding of Gj., contains planar embeddings %f the'
b}oqks ci(l)' Ci(2)’ ceoy ci(j)' it follows that fé/we flip
ahd/or permute a set of blocks in Bi—l to obtain Bi-l' then
the same flippings and/or permutations are performed on the
planar embedding§>of these blocks in Gi also. Clearly,
the resulting drawing is also a plahar embedding of Gi-l and
the vertices in.F‘?Ia ge£ arranged around i as in T(i).
Thus we can embed vertex i by placing it dt Level i higber
ﬂhan-Level i-1 and drawing all the edges entering vertex 1
.‘ the anticlockwise order specified by 7(i) such that these

edges do not intersect any of the edges already drawn.

Consider, for example, the planar embedding of 69 shown
in Fig. 8.1. This is obtained from the bush form 89 shown
in Fig. 7.3. This Elanar embedding has three blocks Cl' 02

‘and C; induced by the vertex sets {1, 2, 7, 8}, {1, 3, 4, 9}

.

¢ ek Y. — - S
ARLERY -
My [y ' .
7
el
£ .
3 K
>

- 208 -

\ ’ \
.. L3
~) .
y o«
, .
. " ' o Figure 8.1
Planar Embedding of.(;9 in Bg.
% | ’ \
: v : '
" , .
“ y
\ - / -

-

R

- 209" -

L4

.and {1, 5, 6} respectively. We obtain Bé (sengig. 7.4). by

flipping C, in By and so we flip.thé'planar embedding of C,
in that of Gy also. This new planar sembedding is shown in
Fig. 8.2. Ffom this new planar emBeddinb of Gy we obtain
thelplanar embedding of G10 by draying the edge'(3,lQ) first

and then the ’edges (1,10) and (6,10) in that order since

" 7(10) = (3, 1, 6). This planar embedding of 619 is shown in,

Fig. 8.3. Note ‘thagg this is the planar embedding of G,
) .
contained in the bush form B, shown in Fig. 7.14(a).

L

- /
Embedding the vertices 2, 3, ..., n in that order as

described above, we can eventlally obtain a planar *mbedding'

of G. However, the above prggedure is not elegant nor is it
+ efficient. First of all when we'éfibed vertex i, we may have

to redraw some portions of Gi—l corrgéponding to the blocks
which are flippedl and/or permuted. Thus we may ‘have t?
redraw certain portions mahy times before we obtain a plana:-
embe@ding of G. Moreover, for larger draphs this redrawing

A
jé a very cumbersome process. Note that when a block Ci(k)

~_ .

in G, Iis involved in a permutation, its position in the
final embedding relative to. other blocks is‘aﬁfected. Also,
when Ci(k) is flippéd, the 7T~orders of all the vertices in

ci(k) are reversed. Furthermote, ci(k) will be involved .in.

several permutations and/or flippings before the final

‘embedding of G is obtained. So, if we wish to avoid the

< .]
redrawings . required by the above straightforward procedure,

then we should not aEtempt draﬁing until all the bysh forms

R I

* o

K

X

L 2 S
gﬂl;';«‘uﬁ?‘:{&:} P o -
FOEE O R
:u ¥
K ! - .

¥
Lk
“

S~

~—

Figure 8.2 ~—
. Planar Embedding of:G9 after Flipping

the. Block Containing Vertices

|
, N 1, 3, 4, and 9
4
LI
- t, '
2 , 7
£ -

- 211 -

Figure 8.3

Planar Embedding of G,o obtained

from that of Gy

pre st 3:~;7~ M

~ * ‘ ’ ’ N\
~ 212 -

/\ - a
aré opfained. As we construct these bush forms, we shéhld

- extract adeq≊information to enable us to obtain@%ﬁ&e"

/,’ t
e relative locations of all the vertices . in the final

Y

embedding of G.

As pointed out earlier, the 7T-order for a vertex i gets
.reversed whenever a block containing i is flipped while
embedding vertices greatef than 1. Thus the T7-order o;j
vertex i in the final embedding -of G may not be the same as
7(1). . In Section 8.2 we develop an algorithm to obtain the
T-orders for ;ll the vé;tipes in a planar embedding of G.
In our discussion thus’ far; we have assumed tgit the
vertices appear at a{fferent veiﬁfgal levels in\éhe fknai
embedding. 'Witbout loss of generality, let us also assume'’
that no two distinct vértiges ofr G appear on, the séme
gbrizéntal ' level, Then by s;anning' such an embedding
left-to-right we can also obtain a hotizontgl order of the
vertices of G. Let us call this horizontal ~order the

K

vertex order. 'n;n Section 8.3 we develop ‘'a procedure to

obtain a vertex order from the 7-orders of all tpé\ vertices
>

in the final planar embedding of G.

' ¢
: Finally, . let us consider the way the édges entering
vertex fi should be drawn. While T7(i) sggcifies 'the
antic}ockwise order around vertex iy in which the.edge;
é@tering vertei i ‘should be drawn, unfértun;teiy, this

. , N
condifior alone will' not resultyg.in an intersection-free

~
AN

e ————

) -0313 -
’ ‘ . ¢ -) T o
drawing. For example, consider Fig. 8.4. Here\fTG) = {1, -

>

— i

o

5). So the edges (1,6) and (5,6) have to be drawn in tRkat
order. If tﬁese e@ges were drawh aQ shownlin Fig. 8.4, then
when vertex 9 is embedded at adf;;er time, thé:eAig no why
the,edge (4,9) caﬁ be drawﬁ without ihtersecting some of the
edggs"aifeady%drawn. .To avoid this problem,xwe should havet
drawn the edges (1,6) and {(5,6) as shown in Fig. 8.5. This
example shows that to obtain an intersection-freé drawing,

the edges should also S;ldrawn in ah\eppropriat:kway if we
wish ’to avoid redfawing any of Eﬁe edgés already drawn. 1In
Section 8.3 we study-thi§ quest?on' further and present a ¢

" procedure to draw the edges of G,

A .
. s /l—‘.’/ N . .' ., ‘ -
/8.2 Block Graph and 7“-order
) ’ —— . ’ \

.
. ’

.) ,

/ : '

, - PO,
t

'A$ diséussed.ifi Section 8.1ﬂ.beforevJ§.start drawing a
A . e J

planar\ﬁmbedding/sf a planar gféph G, we would 1like éo‘
de;grm Ae the 7-order of every vertex{in the fingl embédding
of 92 This would help us in obtaining a planaf embeddipg’
yffﬁqpt ‘redrawing any po;tion already embéaéed. In tﬁis
‘section wé first discuss how the blocks are formed 'du;iﬁg
gﬁe busq %grbwing process and Ehen develop an O(n) time
?Aigqfithm:to determine the final 7-order of ‘each vertex '
~“using: fheo information obtained during the bush growing

N . L]
» . .
. ‘ » . .

process, ' .

LT e,

Nt

N

oc

°

.

\\ ~ - 215 -

Consider the bush form Bl 1° We know that the virtual

edges entering vertex i emerge from vertices on theagutsid'er

window of the maximal biconnected components, or blocks, ofi

Bi_q- Let C,

these virtual edges emanate. The T-order T(i) induces an

i(1)" 1(2), ceey Ci(k) be tho blocks from whiéh

anticlockwise order around i among these bldocks. For any
- . ’
two virtual edges (x,i) apnd (y,i) emanating from distinct

> .
blocks' C, and C, respectlvely, let us assume that

i(r) i(s)

r < s if x is to the left of y in (i) so that ci(l)' Ci(z)’

k3 ~

evey i(k) is the ant1c16€kw15e ~order qround i of these

blocks in the bush form B!

i-1°
. - -
Let vi, v%,',.r,‘v%, i be théx@equence of vertices on
the outside window of block Cl(J) in Bj_, when the outside

w@ndow is traversed in the clockwise d1rect1on from the

lowest vertex. vi of Ci(ﬁ)? Let (,i) and (vkhi) be

respectively the first and the last virtual edges entering
‘vertex i in Bi 1+ When B, is formed by merging the virtual

edges enterlng vertex i in Bx -3 2 new block is formed. In
il V]2-l vrey v&"i'.vﬂ.'vﬁk'ﬂ.'
‘will appear in that or@er on the outside window.

~

Since i 1is the highest vertex in this new blcck, we.numbef

this new , block the vertices w
k
LI R] Vr

it as block i and denote it by C

&
During the bush growing process, several blocks of Bi-l
may merge to ‘forh Ci' These blooks are;pfecisely those

‘ represénted by the Q-nodes ithhe‘B;?Elnent\subtree of T

P @

»

i-1°

- 216 -~ N

») ’ , ’ o
Such blocks will bé& considered to be enclosed by C..

T

.
ngarly, Ci’encloses ci((?{ Ci(Z)' ceey ci(k)' For example,
the planar embedding of G9 shown in Fig. 8.2 consists of the

blocks Cg, Cg and Cy. In F&g.'aii, the block C,, 1is

' obtained by merging the blocksﬂc6 and Cy. Thus the block

C10 encloses C6 and C9. Now we prove the following.

v
? 1
b

THEOREM 8.1.

| 8

If C, encloses the blocks Ci(l)(ci(ZY' ceoy hci(k)'

. = .

then Ci(l)' Ci(z)' ceey ci(k) will not be blocks in the bush
. . v

forms Bi! Bit1r ++er Bpq- . ,

Proof:

Clearly C, is a block in B; and Ciyr Ciqayr ---v

Ci(k) are all suBgraphs of C;. Since a block is a maximal

. k.
biconnected component, it follows that ci(l)' Ci(z)' ceeys

Cik) ®ill not be present as blocks in the bush formi B,,
Bi+l' LI Y Bn-ln) ‘ D

The above theorem implies that G, , will contain at most

(i-2) blocks.
. | s .
While growing the bushes, a block Ci may be involved in
several permutations and flippihgs. Permutations do rot
’ - [}
affect the 7T-order of any vertex in Ci. On the other hand, .

flipping a blogk Ci reverses the 7-order of i. Furthermore,

if C; encloses then the 7-order of j will also be

<3,

|
reversed whenever C,

i is flipped. Our interest 1is to

\

-

S | | e

- 217 - ' __—

determine the T-order of each vertex in the f£inal embedding

6f G. In other‘words, ve wish to determipe the status of a e

1

" blopk,\namely reversed or not, in the final embedding.

;e A . \

»

Let 7'(1) denote\ihe T—ordér of vertex i in the final
embedding of G. If 7 _ (i) denotes the list 'obtainéd by
reversing the 'list 7(i), then it can be seen that 7' (i) is
-equal to either 7(i) or Teey (i) ~We now deyvelop an
efficient algorithm to determine the T'-order‘ for e&ch

vertex.

;, First we discuss a way to represent the different
blocks. If C; is a block with only one edge, then (i) will
have only one vertex in it. As a result, flipping Ci will
have no‘effecé on 7(i). 1In o;her'words, for a block Ci with .

‘ﬂ\honly one edge, T'(i) = 111) So’in the follbwing discussion

we w1ll be considering only those blocks which have at least

three edges. Such blocks will be referred to as. nontrivial

blocks and the others will be called trivial blocks. ®

.

We represent the nént:ivial diocks and the enclosing
relation among them by a directed graph called a block
graph. The vertices of the block graph represent the
nontrivial blocks in the various bush forms, We denote the
vertex representing‘b}ock Ci as ¢y, and with each vertex Qe
associate a label. The label of vertex c; is R if block C;
is reversed when the first block enclosing Cy is formed;

Yo T

/

2

Ciyr Ci@)r ot Cik)e

otherwise the label is NR. If block C; encloses the blocks

Ci1)r Ciqz)r ---* 'Ci (k) then iq'the~block.gr§ph we. draw

edges directed from vertex cy to each one of the vertices

o,

The block graph can be constructed as follows. Note
0)_ !
that in'a PQ-tree representing a bush form, a nontrivial

block 1is represented by a Q-node. If |[T(i)| > 1 for any i,
2 <1< n-1, then -in the PQ-tree T;_l the pertinent root
will be a Q-node and inulater reductions this Q-node will

represent the block Ci and so we assign the block® number i

to rtﬁis Q-node. Thus in a PQ-tree (representing a bush

form) each Q~node is assigned a block number, which is the

number of the highest numbered vertex in the block. In the

lfollowing we refer .the reduction process ‘transforming the

»

tree T, , into Ty_, as reduction (i-1).

/ \

Suppose that the bloc#s Ci(l)' C{(Z)' coey Ci(k)

bush form B;_, are merged to form the block C,. Then the

in the

corresponding Q-nodes -Qi(l)’ Qi(Z)' coos Q;(k) will all be

present in the pertinent subtree of T During reduction

i-1°
(i-1) these nodes wili.be processed and merged into a single
Q-node whose block number is i, Thus we can construct the
block graph by _adding an edge directed from vertex ci'to
vertex cj if the Q-node Qj is processed during reduction
(i-1). For example, the block graph of theé planar st—graph

d

G shown in Fig. 7.1 is given in Fig. 8.6. It can easiiy be

.‘“\x

. = 219 -

Figure '8.5 ‘

Block Graph

L

Mt o R
N ’

5

- 220 -
8 l -~

seen that the block graph is a rooted directed forest.

- It now remains to determine the label of each vertex in
the block graph. Consider now the reduction (i-1l). Let Ci
enclose the blocks ci(l)’ Ci(z), ceoys Ci(k;. The label of
each one of these blocks which C, encloses indicéggg/xzhg
status of that block, namely, whether the block is reversed
or not in the embedding, when Ci is formed. To determine
these ‘labels, we should keep track of the flippipgs which
the blocks suffer as the reduction (i-1l) progresSses. For
this purpose, we construct what wg:call-thé i-th inter-

A
mediate block graph which will be denoted by IBG(i). To

start with, we add to IBG(i) nodes to correspond to the

Q-nodes i the pertinent subtree of Tia and\aéiiiiate with

. .
each one of these nodes the label NR. !

Suppose $~ nqde, say X, in‘Ti_l is being proéessed and
that Qj’ Qk{ ...,(? are the Q-nodes which are pertinent
children of X. Consider the case that X is a P-node. Let
0y bé the Q-node created after ' the processing of X is
completed. Now we add to IBG(i}) a node, say dy s to’
correspond.‘to‘Qx and add an edge directed from qy to each
one of the nodes representing Qj' Qk' ooy 9?' ;On the other
hand, if X is a Q-node, then‘IBGKi)~will contain a node, say
Ay corresponding to X. Now, as beﬁpre, we add to IBG(i) an

edge directed from dy to each one of the nodes corresponding

‘to Qj, Qk' cees 97' If any of the nodes Qj' Qk' cecy 9@ is

t

/

-

7

-

- 221 -

reversed while processing X, then we change. the label of the

——

corresponding node in IBG(i) to

R, It can be seen that

WG (i) is esgentially a directed tree in which each leaf

corresponds to a Q-node in mi—l representing a block of

G

To determine the iabel of the

j-1- The root of IBG(i) will represent the block C,.

vertices in the block

grqu§Qjepresenting the blocks Ci(l)' ci(2)' ceey Ci(k)

encloded by Ci,'wé proceed as follows. We traverse IBG(i)

depth-first starting at its root. Suppose, during éhis_

traversal, we are at.vertex y. If the label of j in IBG(i)

is R; then we switch the labels of

IBG{(i). (By switching the label we

all the children of y in

mean setting the label

"to R if its current value is NR, or setting the label to NR

if.its current value is R.) At the end of the traversal of

IBG(i), the 'label of a node will tell us whether tpe

corresponding block enclosed by

embedding of C,. These labels

. corresponding ‘vertices in the block"

The procedure for constructing
the £final 1labels of its.nodes can

follows.

procedure FIND_LABEL_IBG(i);

C; is flipped in the
are then given to the
graph.

IBG(ii’ and determining

be formally presented as

comment procedure FIND _LABEL IBG constructs the inter-

mediate block graph IBG(i) during reduction (i-1).

J/

- 222 -

o

It aigo determines the labels of the blocks enclosed

by Ci'

A

. ' procedure SET__'LAéEL(u);
comment ptocedufe “SET_LABEL determines the labels of all
the children of vertex u in IBG(i).
- begin
for&each‘child v of u in IBG(i) do
1 . ' / begin . - .
- | if label of u is R ‘
Qp: - then switch label of v;
= SET_LABEL (v) |
\ | énd

end SET_LABEL;

begin . .

{Constract(fﬁéii)} o
init#al;ze_IBG(i) to §ontain yertices cér}ésponding.to the
Q-nodes in-‘the pertipéﬁ&\fgggzee of ?1_1:

for éach node.x pFocessed during reduction (i-1l) which is
not a leaf do \ . :

.- _ - begin |

if X is a P-node

. then édd a new vertex gy to %:Gci);

{gy is the vertex in IBG(i) representing node X}

'{ﬁet Qr Qy ..., Q, be the Q-nodes whi§P are children

!

m?tinent subtree of T'-l}

of X in the_ i

draw ed-f $Wdirected from qQy to -each one of the

. -, ,
. .
2 —_—— .
7 - .
- .
v
‘(:
h. [. .

- 223 -

vertices corresponding to Qj, Qk""" Q, in IBG(i);

/4
for each Q-node Q_ among Qi, QH? cess 9@ do |

if Qr is reversed when node X is processed)
then label of Q. := R | ~
end; ' ,'Q
{betermine the label of .each node in IBG (i)}
- SET_;ABEL(foot of IBG(i))

end FIND_LABEL _IBG;

In the following theorem we present the complexfty of

the above procedure.

-

THEOREM 8.2.

Cost ' of procedure FIND LABEL IBG (i) is O(Ni), where Ni

is the number of pertinent nodes in Ti-q-

It can be easily seen that the nﬁmber of vertices in
IBG(i) 1is no moke than Ni' the number of éertinent nodes in
Ti—l' ance IBG(i) is a directed tree, it has O(Ny) edges.
So the cost of construc;ing IBG(i) and thé cost of'traveréal
of G(i) to determine the labels of its vertices are both
OAN;) . The theorem follows | since ' the procedure

[} \P‘\\ Y N
FIND LABEL IBG involves only these two costs. . o

This~Edﬁ§iEtes the discussion of our procedure to

construct the block graph. Note that the proceduré involves

LR
)

- 224 -

executing procedure FIND LABEL IBG for all i. In Fig. 8.6
we have Bhown within parentheses the label of each vertex in

the block graph.

'We now give a formal presentation in ALGOL-like
notation of our procedure to construct the block graph. In
this procedure, the labels of the vesztices of the block

graph are stored in the array STATUS.

o

N

procedure BLOCK_GRAPH; _
conlentuprocedhrq BLOCK_GRAPH constructs the block graph and
étores the status information of eaéﬁ block during
the PQ-tree reduction proéess.. STATUS(i) represents

the status of block C;.

' begin -

for i:= 2 to n-1 do ‘ , . e
.begin R '

{Construct the block graph‘aaa-deéermine the stazzirof‘

the blocks} ’ . |

FIND_LABEL.IBG(i);

for each pertinent Q-node in T;., do
"begin ' '

draw a directed edge from ci.té cyr where j is the

q10ck.number of the Q-node; , _ -
STATUS (j) := label of the Q-node --] ¢
' (

end;

' {Create. the block Ci} .
. *

/

'

- P .
- 225 -

obtarn Ti; v .

-

. y
assign the Klock number i to ‘the Q-node which 1is the

pertlnent root in Tt~1 ;K

STATUS(i) t= NR
end . -

end BLOCK GRAPH; " | | .

—

~

The following theorem.shows that the above computations

can be performed in O(n) time. ' : ‘

a N ' , ’ ‘ \
THEOREM 8.3. '\ . ' . ~ C
: N .- T '

‘Procedure BLOCK GRAPH cprrectly constructs the block

graph and determines thevstatus informatlon of each block in

O(n) time. |) ' "y//

Proof: . , e
1 © /

Correctness - of' the procedure follows froz/"our

discussion eo far. To find the complexity, note that the
cost of procedure BLOCK GRAPH durrng reduction// (i=-1),
exclusive of the cost for procedure FIND_LABELviBG(i), is
proportional to the number of pertinent nodes ig/fi_l. From.
' Theorem 8.2 the cost “of procedurei FIND_LABEL_IBG(ii is
'proportional to the number of pertinent nodes in Ti—l

Hence the overall " cost of -procedure BLOCK GRAPH is
proportional to the number of pertinent nodes. in T{il. Thus
the complexity of procedure BLOCK_GRAPH is O(m+n) which is

O(n) for a planar graph. ' ' ' o

(2, —

- 326 -

N

Having obtained the blockxafaph and the status.of‘_eacg
block *in it, we now proceed to find whether a block will be
reversed in the final embeéding of G or nét. "This will
determine the 7'-order f?F each vertex. Note that block Cn
will not be present in the block graph ‘because it is not
processed during -any Eeduétion. Alsq block Ci' 2 < i i n-1
willvbe present in the block graph if agghonly if |7y >
1. We determine the 7'-order by traversing the block graph
in a depth—fiﬁst way. Suppose we are at a Qerte&, say ¢y,
of the block ﬂgraph. If- the status of the block C; is R,
thenh all the blocks enclosed by C; require flippings. These
,blocks are representedlin the block graph by the cBildren of
C; and so we update their status by swit9hing their 1labels.
No updating of ‘the labels is required if the status of Cy is
NR. q " | |

-«

»
b : .
'The following procedyre. FIND STATUS determines the

Y

status of each block in the final embedding of G and 7' (i),
| . =) ‘

2 <1 <n. We begin the procedure by initializing all the

blocks "not processed” and repeat thecprocedute until all .

the blocks are processed.

procedure FIND STATUS;

'co-lent procedure FIND_STATUS traverses the Block graph 'in a
deéth-first way and obtains the status of each of
the blocks in the final embedding of G. It also
fimds 7 (1), 2 < 1 < n.

¥ , .

:n'f&
&y

L]

- 227 - -

procedure UPDATE_STATUS (i) ; S
. comment procedure' UPDATE_STATUS determines g;e,status of

the blocks enclosed by block Cy and £inds 7' (i).

»

begin

set block C; processed; E
. for each child cy of ¢;* in the block graéh do .
begin o . s

if STATUS(i) = R -

then switch the status of block Cj;

\

UPDATE_.STATUS (3) ‘ , : ,
end:‘ |
if STATUS (i) = R | . o 7~
then 7' (i) := ;everséd T(i) 5 o
else 7' (i) iz T(i)

end UPDATE’ STATUSY . \..

begin . A { “ 3 ' .

initialize all blocks "not processed"; e
P r . v
7' (n) = T(n); ™ | " - "

for i:= n-1 downto 2 do
if |7(1)] = 1 '
then 7' (i) := T(i) ,

‘else if C, is not processed

: §
then UPDATE_STATUS (i).

end FIND_STATUS; ‘. LT
o g

As an example, in Fig. 6.7 we give the fiﬁal s?atus ‘of.

-

»

- 228 - R : 0
"each block in the block graph shown in Fig. 8.6 and the
7'-orders for all the vertices in G obtained using the above
proaeaure. _fhe following theorem gives the comolexity of

procedure FIND_ STATUS.

THEOREM 8. 4. ’ " !
Procedure FIND_ STATUS .determines 7'(i), 2 < i < n,;”

correctly in O(n) time.

Proof:

L

Correctness of the prodedure'is'easy‘to see. To find
the complexlty, note that the block graph is a forest and se
the * ‘ooat) of procedure FIND STATUS is proportional to theﬁ
number of vertices .in the, block graph The pumber of
vertices. in the block graph is at most n, the number of
vertices in G and SO'procedure FIND_STATUS is of complexity
o). . T o
"It can be easily .seen that procedure BLOCK GRAPH can be

‘e.implemented along with the‘ PQ;tree reduction: procedureib//J

Once the block graph is COnstructed and the status of the

/
blocks are determined, procedure FIND STATUS can be applied-
to the block graph to obtain the T‘-orders 7' (1), 2 <1 < n,
"/ In the next-section we use these . T'-orders to obtain the

i P VN
- !

L ‘ \.Jvertex order.

D . . - 229.-
-
| \

Block Status '~ T-order ‘ - .T'=-order
¢, NR (8,11,4) (8})}1,4)
c;; MR (8,2,5,10‘,,3,9) ~ (8,2,5,10,3,9)
€10 K (3,1,6) o (6,,]:.,3)
Cg - KNR (3,4) (3,0
Cq R (7,1). Lo
c, MR R (2,1) , - (1,2)
Ce R NR’ (5,1) (5)1) "
Cs - (1) | (1)
c, _ W (1)
Cy R (1) . (1)
C2 _ « (1) RN (Ly

. ‘ ~ : . K

.

Fi - : “"‘\\ f
gure 8.7 | / \’:

r'-orders Obtained From Status Information

-

-

"
e
il

-

- 230 - '
N "

8.3 Vertex Order and Planar Embedding

. In Section 8.2 we developed an O(n) time algor}tﬁﬁ to
~determinerthe T'-orders of the vertices of a planar graph G.
In this section we discuss an efficient procedure to
construct ' a planar embedding of G using these T7'-orders.
The embedding scheme discussed in Section 8.1 places ‘the
vertices of G in the plane ar different hérizontal~ and
vertical 1lbvels such that no two 8istinct vertices are
placed in the same veiticai or horizontal levels. Recall

4

that the left-to-right order of the vertices of G in such a
placement is called the vertex order. We shall denote it by
K. Note that the vertex order g is to be such that if the

vertices are placed at differént horizontal levels as

‘ specified by it, then the edgee from vertices in T (i), 2 <

»
i < n, entering vertex i can be drawpn around i, "entering i

from below in .the anticlockwise order specified by 7'(i).
Now we develop an efficient algorithm to determine such a
vertex order and dlscuss a method to draw a planar -embedding

of G.

t

&*WE embed G in the plage by embedding the vertices 2, 3,
«esry n 1in that order. By 'embéddipg vertex i" we mean
connecting i to its lower numbered neighbours wusing the
order speeified by T7'(i). Thus . when. vertex i is to be
embedded, the lo;er numbered vertices 1, 2, ..., i-1" are

already embedded. Some of these emtbedded vertices may be

-

e
S

.Y

"in p .since i should be i

- 231 -

adjacent to vertices greater than i in G. We shall call
these vertices as Type 2 vertices relative to i. All the
other vétticgs will be called Type 1 vertices relative toqi.
In the following we shal} refer- to these vertices as simply
Type 2 and Type 1 'vertices,'respectively, if the context

makes it clear - that they indeed have these properties

| relative to vertex i.

-

We represent the vertex order u ‘as a ‘doubly 1linked
list. To start with u contains the vertex n and we add the
vertices in 7' (n), 7'(n=-1), ..., 7'(2) to M in that order.

\ .
\
Whenever a vertex is placed in u, we store the address of
' .- S

the elemént‘in p corresponding” to that vertex so\that we can
access any vertex in pu in constant time. When we add the
vertices in 7' (i) to.#, verfex i shouid be already present
T'(j)°fo; some j > i. Moreover,
at this stage ali the (Type 2 vedtices in T' (i) will also be

present in u. Thus we can check whether a vertex is Type 2

‘or not by simply testing for its presence in pu.

- ~
Furthermore, since all ‘the Type 2 ivertfées in 7' (i) are

already in u, we need to add to u only the Type 1 vertices
. - _

in 7 (i). . N

- . . \‘,.\’
\ . » ,

Consider reduction (i-1) in which the #Q=tree Ty, 18

. -
transformed into the PQ-tree T{_,. We know that when the
pertinent root in Ty, is processed, it can have at most two

partial children (which are partia% Q-nodes) but any number

-

»
a”

AY

- 232 -

of full children (some of which may be pertinent leaves).
Just before the pertinent children of the pertinent root are
merged to obtain TY_,, one of the partial children should
have igs full childrep at its right end and the other should
have its full children.at lts left end. We shall call these

partial children as the Left €hild and the Right Child

respectively. All the 'other pertinent children of the

pertineﬁt root will be galled Center Children. As mentioned

before all the Center Children will be full. For example,
for the planar graph G of“Fig. f.l, we have shown in
Fig. 8.8 the PQ-tree T; at the time the pertinenf rgot of
the PQ-tree Ty is being‘precessed. In this figure we have
indicated the Left'Child, Right Child and the Center Child

4

of the pertinent root.
¢ -

It is easy to see Ehat in 7(i) the vertices corres-
ponding to the pertinent leaves oé the Left Child should
appear consecutively ‘and we denote this portion of 7(i) as
T, (1). ’Siﬁilarly, tﬁe verticés i%}T(i) corresponding to the
Center Children and Right Child should appear consecutively
and we denote these portions‘ of T(i) as Tc (i) and Tg?i)
respectively. Thus 7(i) = (77 (1), 1b(if, TR(1)) andJ at
leastn one of T, (1), 7o(i) and T (1) is'not empty for any i,
2 <i<n. For exampie, fro; Fig. 8.8 we) can see that
T, (10) = (3), TL(IO‘) =((1), TR(IO) = SG) and so 7(10) =
(7, (10), 7o(10), TR(10)) = (3, 1, 6). Note that "7 (i),

N

Tc(i) and 7h(if, 2 < i <n, can easily be obtaiwed during
s -

“ 5

- 233 -

Left Child Right Child

-

Qenter‘Chila'

C(2,11) \ (4,12)(9,11)(3,11)(3,10) (6;10)(5,1¥)

(8,11)(8,12) . -

Figure 8.8 .
: ' " PQ-tree Tg b o
€ C ' - : L
“ﬁp(lo) = (3». Tc(10) = }l), TR (10) = (6)
_ \ ‘ l
C Rt-\ ’ LY * i
N
‘ - . o ‘
) _‘ : {
' 1 ' '\ , ‘ 4 P—
' . @ \ N4 o
‘ i 4
) . /—"\
t, A

£ 04

- 234 -

-~ ‘
the PQ—tre; reduction without increasing the computational
complexity of the reduction procedufe. Furthermore, if 7(i)
is reversed to obtain the final 7-order Tﬂ(i), then Tﬁ(i),
1&(1) and Tﬁ(i) will simply be the f?yefsals of 7§(i), Tb(i)
and Th(i),respectivelya Hence Ti(iri Té(i) and‘rﬁ(i)'gdh ?e
obtained in O(n) time -‘using the algorithm diécussed in
Section 8.2. In our -example, since the block C10 is
reversed in the final embedding of G, Tﬂ(lO) = (6), Té(lO) =
(1) and 1%(10) s.(3). In Fié} 8.9 we“sth Tﬂti), Té(i) ana
t&(i) for all the ;ertices i, 2 < i n, of the planar graph

ot

shown in Fig. 7.1.
/

We want to construct the vértex,ordér p such that for
any K?rtex i, 2 < i <'n, all the vertices in % (i) will
appeat‘to the left of i in u, and all the verfib in Té(i)
will appear to the righg.of i in pu. If the vertices are
placed according to such\a U, then in the 'fiﬁal embedding
the blocks containing the vertices in Ti(i) will be on the
left sfde of i and those containing the vertices iﬁ 'Ta(i)

, !
will be on the right side of i. A vertex order with this

property would aid us in obtéiqing an elegant planar

embedding, as we will discuss later. To construct such a j,

" we place the Type 1 vertices in 1£(i) to the immediate 1left

of vertex i, and the Type 1 vertices in Té(i) to the
immediate right of 1 as described in the following

procedures,

rn
¥

Vertex i 7' (1) a" T (1) 1E(i§
‘4 \

12 (8,11,4) _ (8,11,4)
11 (8,2,5,10,3,9) ‘(3,2) _

0 (6,1,3) (6 (1)

9 (3,4) 3

¢ @ S ¢

7 (1,2) . _ (1)
L6 (5,1 (5 © (D
5. - - (1) .
4 (1) _ (1)

3 (1) o (1)
2) _ (1

Eigure'a.é

TLs T&s TR orders

TR(1)

(5,10,3,9)
(3)

(4)

(N
(2 -

- - 236 -

~

procedure PLACE_LEFT (i);

7, (1) = (jL;lf jﬁ.Z' caey jL.p) to the left of
vertex i in pu. '
be&&n. a
recently placed vertex i= i;
v . for x := |1£(i)| déownto 1 do . _~ .' .
}f jL.x,is Type 1 |
~then begin
place jL;x to the immediate left ofA
recentlx_plaéeq_vertex; .
recently placed_vertex := jL.x

end

end PLACE_LEFT;

R B

procedure PLACE_RIGHT (i);

comment procedure PLACE_RiGHT places the Type 1 vertices in

TR(1) = (Jg.1s Ig,27 +-++ g} to the right of
vertex i in pu.-
begin‘ ’
recently placed vertex := i; ‘
for x := 1 to |1§(i)| do o ‘,ﬁdf‘
if jp , is Type 1 o u
then begin | . . e
‘ place jp . to the immediate right of
recently placed_vertex; n

recently placed vertex ;= jR %

comment procédure PLACE._LEFT places the Type 1 vertices in

‘ B ‘ - 237 -

end . {g;? D ——

end PLACE_RIGHT;

After placing the vertices in‘Ti(i) snd Tﬁ(i), we place
the Type 1 vertices in 74(i) around vertex i in u. We split
these Type 1 vertices into two halves and place the first
half to the left of vertex i and the sec-ondu half t; - the
right of vertex i in pu'such that the left-to-right order of
“these verticeg in u‘is the same as in 7o (i), - This 1is

described in the following procedure.

procedure PLACE CENTER (i) ;

»

goﬁhent procedure PLACE_CEﬁTER places all the Type 1
l verticeg in Té(i) around vertex i in u so that in 4
vertex i ;;pears in _the center of these Type ;
vertices.
begin
place all the Type 1 vertices in T&(i)\around.vertex i in
g such that in p i appears in. the center of these wertices

end PLACE_CENTER; ‘
] . v
. - B ‘
Thus we “can obtain the vertex order ‘4 using the

following procedure VERTEX ORDER.

procedure VERTEX ORDER;

comment procedure VERTEX ORDER determines the vertex order

from 7' (i) ='(T£(i),’1é(i)' Tr(i))y 2 £ 1 < n.

. begin ' : -

- 238 -

<ol

1n1tiaii£§’p to contain'the vertex n;
for i:= n downto 2 do
begin
' ‘ - ‘ t v
}t 1£(i)\is not empty
then PLACE_LEFT (i);
if Tﬁ(i) is not émpty \ o
" then PLACE_RIGHT(i); |
if T&(i)'is not empty
then PLACE CENTER(i)
end

-end VERTEX_ORDER; -

We will illustrate in Fig. 8.10 the above procedure to
find the vertex order for the graph of Fig. 7.1. ‘In this.
figure we show the progressive growth of the vertex order as’

we add the vertices in 7'(i),.n > i > 2,

We now prove that the vertex order cqnstructed by
procedure VERTEX ORDER has the desired property.

=

THEOREM 8.5. />

In the vertexXx " order constructed by proceduré

VERTEX;ORDER, the vertices in Ti(i) will appear to the left

" of wvertex i for any i, 2 § i < n, and the vertices in 7§ (i)

will appear to the right of vertex 'i.

. . .
v
. . . .
' .
.
rl . N o

- 239 -

T'(if»plabed’in "

e

Initial

7' (11)
7' (10)
7' (9)
7' (8)
T (7)
7' (6) .
T (5)
7' (4)
73y
T' (2)

T (12)

Vertex order U

12
8,12,11,4
8,12,2,11,5,10,3,9;4 .
8,12,2,11,5,6,10,1,3,9,4
8,12,2,11,5,6,10,1,3,9,4

. 8,7,12;2,11,5,6,10,1}3,934
“a,7,12,2,11,s,§;1o,1,3,é,4
8,7,12,2,11,5,6,10,1,3,9,4

8,7,12,2,11,5,6,10,1,3,9,4

.8,7,12,2,11,5,6,10,1,3,9, 4

8,7,12,2,11,5,6,102},3,9,4 '

8,7,12,2,11,5,6,10,1,3,9,4

Figure 8.10 .

Finding Vertex Order

c_

- 240 -

Proof:
o ' ;\

If |7'(i)| = 1, then the only vertex in. 7' (i) wil} * be

. in Té(i). Tpus/gg,nzéé to consider only the case |7'(i)]| >

1. Note that procedure PLACE LEFT places all the Type 1
girtiéeé oin Tﬂ(i) to the left of i in the vertex order p in
the same left—td—%}ght order as in Ti{i). Also procedure
PLACE_RIGHT places all the Type 1 vertices in 7Tp(i), to the
right of i in p in the same legt—to-right order as in Tﬁ(i). » .
So it only remqiné‘to prove that all the Type 2 vertices in
7y, (1) will.appeér to the left of i in pu and all\:such
vertiées inlfﬁ(i) will appear to the right of i in .
| ' -
For any vertex v, let first(v) be the highest numbered
nef&hbour of v.: This means that v is in 7' (first(v)) and it
is placed in 'ﬁ when we add the vertices in 7' (first(v))x
Also v is a Type 1 vertex in 7' (first(v)). Hence procedure
VERTEX_ORDER will ' place - v around first(v) and no Type 2
vgrtex in T'(first(v))vwill appéar bgtwéen v and first(vlﬁin
. Now let j be a Type 2 vertexniﬁ Ti(i). From thé PQ-tree
reduction procedure it should be clear that in T;+ the ".node
corresponding té vertex\)j .will appear to the left of the
node corresponding- to veréex i. Both these nodes will beX

children of a Q-node.)
\

. o\ . .
first(j), first(first(j)), ..., y be. E%e sequences of

vertices aguch~ that first(x) = first(y) = k. Suppose we

)

- 241 - ST

v

carry out the PQ-tree reduction procedure making sure that <
at each step the Q-nodes representing the different blocks
of a bush form give rise .to the T‘-otdérs, then no reveréai' ‘

, of "%EZ§:M nodes will be_arequireq. So, in such Tk-l; the

nodes corresponding to the vertices x and y should.appear'as
- chﬁldren of a’Q—node-uitQ\the n?de corresponding to vertex y
appearing to the left of the noée corrésponding to vertex x. -
‘Since both x'andly are Typé i vertices in'T'(QTf“brocedure

VERTEX_ORDER will place y to the left of x in p. This along

with the fact thatipﬁy vertex in the sequence i, first(i),

%

first (first(i)), ..., ix and in the sequence j;l first(j),

first(first(j)),ijT?., Yy is placed aroun?-fts successor in
' .

the sequence in x implies that .j .will be placed to the . left

' of i in pu. Thus all the Type 2 vertices in Tﬂ(i),will be
L) -) . '
placed to the left of vertex i im gu. Similarly we can prove

L

that- all the Type 2 vertices in jﬁ(i) will be placéd to the
right of vertex i in T ‘ ' (3

-~y The following theorem establishes the complexity of

\]

procedure VERTEX ORDER. K

THEOREM 8.6. . :)

o Procedure VERTExﬁORDER~ déte;mines the vertex order in
’ : 0“'
O (n)' timg. :) _ .
» _ S -
© Proof: - *

It is easywté_gge that for a given i, the costs of —

‘

execution of procedures PLACE LEFT, PLACE CENTER and
' X

*
-

T

\ - L \ w
)) h ' - 24 2 land . . - v
M} P . L

-

Ad

PLAbE_RIGﬁT are If&(i)l, |ﬁé(i)| and |fﬁ(i)|' respectively.

‘Thus the cost of execution of procedure VERTEX_ORDER is

|7£k13| + ‘Té(i)| + [Ti(ijl, which is‘ the in—deg;ee‘ of

| % vertg?'i ih the st-graph G. Summing up these‘cqsts over all

i, 2<1i < n, we get *the execution time of procedure .

VERTEX_ORDER as O(n) for a plafar graph. /" 0
/ | I - .

Having$ qbtained the vertex order, we now describe our

drawing Qroégaure tp obtain -a planar& embedding. We place -

.the wertices of G in the élane at different horizontal and

qerkicallievels. In'the\followiﬁg(the horizontal- line at

L vertical level r will bé denoted'by X, and tﬁe vertical line

‘ qt horizontal level r will be denoted by Yr' Whereas the

. | vertic;l levei .of a;vettex‘in the placement is dictated.by

its st-number, the horizontal level |is dictéted gy .the

, uposition th the vertex :.in tyg” vertex ‘order Yoo Thus'if

- - ‘;yektex i occurs at the 2:th position in i, then it will be

placed at the i-th vertical level and j-th horizontal level.

. In such a Qlaceﬁent'noftﬁo,vertices willlappear in the same

. » horizontal or vertical ~level. We then consﬁrqct~aA§;aﬁar

'’ c embegd;ng OS G by ‘const}ucti?g‘ planai embeddings Lof‘ the

. vertex induced subgr;phs'Gz, Gg, .;.; G, = G, Suécessively.

At each step of the embedding process, we have to ensure

that the cortespondggd'Typg42 vertices appear on the‘outg}de‘

window. Clearly this‘tequirement is satisfied by G2.
@

v

. - »

LIV L Suppose we have embedded Gi—l such that all the

‘ . . ! R : " ui

o _\
S
1
\
e |
/
{
'
"
/
\\
ST
\
4

'- 243 - - : .
vertices connected to wertices numbered i or higher are on
the outside w1ndow of G -1+ When we embed vertex i, clearly

it will appear on the outside window of G;. However, the

%dges connecting i to vertiéeS'in T' (i) should be drawn so

fhaf in Gi all the Type 2 vertices appear on the outside |

window. Let 7'(i) = (Jl, 32, oy Jk) Connecting vertex i

. to the vertlces Jl andq;k forms a circuit, sQy Xi' in Gi‘

In addition to the edges (31,1) and (Jk,), this circuit

. will contain the path from 31 to jk traced along the o;taide

window of G1 -1+ Now " recall tfat in p all the Type 1
vertices in 7' (i) are placed -around vertex i. Thus in u no

Type 2 vertex appeérs between i and a Type 1 ve:tex.' Also,

“in @ all the vertices in 77 (1) _appear to the left of i and
!

thoSe in TR(l) appear to the right of i. Furthermore, 7'(1i)
can have at most two Type 2 vertices from each block of Gi l.
and these Type 2 vertices .are necessa y cut vertices 1in
Gi_y. These observations imply that the region bounded.by
X; will enclose no Type 2 vertices provided the edges (3;,1)
and (jk,i) are drawn so that ell tbe/Ty e 2 vertices placed
to the left .(Jrigh-t) ‘of i in p lie -left éght) of the edge
connecting ix to jl (jk);, plso the edge oonnectinq i to jl
can peldrawngwithin the reg%on bounded by the lines xﬁl, Xq0
: and Y;. Similarly the edge connecting i to Iy can be
drawn within the region bounded by the lines xjk, Xgo ij

and Yi. ' ' L IS

Thus to embed vertex i, we first draw the edge ?jl,i)

- 24) -

within the region bounded by xj ,

all the Type 2 vertices placed in this region appear above

X and Yi such that

ir ¥
this edge. Next we draw the edges (J,,i), (j3,i), ...,
. >

g (jk,i) entering vertex i from below in such a way that any
edge enter® vertex i to the immegiatel right of its
prgdpcessor in the sequence. Note thét the edge (jk,if has
‘to be drawn so that all the Type 2 vertices in the region..
'bounded by X. . .

. y Jk' kl' YJk.
Embedding vertex i this way we obtain a planar embedding of:

and 'Yi lie .above this edge. "

G,y. Repeating this procedure' we can obtain planar
embeddingé of Gi+1' Gipor ++er G =G. In Fig. 8.11- we show’
‘a planar embedding of the planar graph G shown in Fig. 7.1

obtained using the above procedure.

TTTr—
——

\
A ‘ —

" ' o -
Even though the vertex order can be computed ir o(n)

time, the embed&ing précedure . described (‘abo'x‘re'has to be
implemented manﬁabﬂy.“ However, this 1is ‘a ‘systematic
procedure in the sense that the regions in wq;ch the édges
should be drawn can be determineﬁrgasily and so the ™ planar
embedding can be obtained without any difficulty. The

vertex order helps us to construct the planar embeddings of ..

G2, G3, ce ey Gn in such a way that the edges can be dfawn as

smooth line segments without awkward bends. Thus this

procedure will construct a nice planar embedding. ‘

-t

From Fig. 8.11 we can seé that many of ‘the edges in the

. ¥ :
- planar embedding can be drawn as straight-line segments. It

~

o J—

.
4 N

- 245 -

) . _v\)q 1/.
1T N
N mum“w\\ml ‘\N i

1{.?-‘»“'3&,-(:‘*3_’4»,. ;T 4.- . o o o ——
¥ "y . : '
e
SN .
D . .
. - 246 -
. x
' .

. is well known that any simple planar graph can be embedded
.in the plane .in such a way that all the edges are
straight—line segments., Intuitively it appears that by
péﬂgerly shiftinq.the vertices and adjustlng their positions

l _in the planar embedding obtained by our procedure, it should’

be possible to draw all the edges as straight—line segments.

| However, .the way in which the vertices are to be adjusted is
not very obvious. , L ;//

——

e

~

= 247 -

CHAPTER 9
.A 0(n?) ALGORITEM FOR
MAXIMAL PLANARIZATION OF NONPLANAR GRAPHS
A subgraph G' of a nonplanar /graph G is a maximal

planar subgtaph of G 1f’G~' 1S planar an@ adding to G' any

edge not present in G' results in a nonplanar subgraph of G.
The process of }kmov1ng a set of edges from a nonplanar

graph to obtain a maximal planar subgraph is known ’as

maximal planarization. Maximal planarization of a nonplanar

graph is .an important prob&fem encountered in the automated
design of printed sircuit boards. If an electronic circuit
cannot be wired on a -.single lsyer of a printed circuit
board, then we would like to determine the minimum number of
layers necessary to wire the circNit. Since only a planar
sircuii# can be wired on a single ls;er‘Loard, we would like
to decompose the nonplanar circuit into a minimum number of
maximal planar circuits. In general, for a nonplanar graph,

neither the set of edges to be removed to maximally .

planarize it nor the number of these edges is unigque.

Determining the miniﬁum number of edges whose removal
from a nonplanar graph will yield a maximal planar subgragh
is an NP-complete problem [26]. However, a few algorithms
which attempt to produce maxiﬁal planar subgraphs having the
largest possible number of edges have been reported. One of

the earliest algorithms to planar}ze'a nonplanar graph is

s
L

- 248 -~

due .to- Fisﬁer and Wing [39]. Their plaqarity testing
algorithm identifies'; set of edges whose réméval makes a’
nanplanaf. graph planar. However} the planar- subgraph
obtained may not be maximally planar. Later Pasedach [62]
éuggested an algorithm to obtain a maximal plahar subgraph
of a nonplanar graph using Fisher and Wing's plaﬁarity
testing algorithm. However, this algofithm works on the
inciqgﬁée matrix of ég; graph and so it 1is not - very
effiéient. Another algorithm to planarize a triconnected
nonplanar graph was propbsed by‘ Marek-Sadowska [63]. This
algorithm works on the circuit matrix of the nonplanar graph

X

‘and hence it is also not very efficient.

.
[

\

.Recently, Chiba, Nishioka, and Shirakawa [64] modified
Hopcroft aﬁd Tarjan's planarity testing algorithm to
maximally planarize ; nénplanar q;aph. Their algorithm
needs O(mn) time and O(mn) space for a nonplanar graph
Qaving n vertices and m edges. Ozawa and Takahashi [49]
' éroposed another 0O(mn) time and O(m+n) space algorithm to
planarize a nonplénar graph using the PQ-tree implementation

of the LEC algorithm. They expected their ,algorithm to £ind

k
a maximal planar subgraph when applied on a complete graph.
However, for a general graph this algorithm may not

determine a maximal planar subgraph.
¢

-

In this chapter, we present an efficient O(nz) time and

O (m+n) space algorithm to determine a maximal planar

i)

- 249 -

subgraph of a nonplanar graph. We attempt to include as
many edgéé as possible in the maximal planar subgraph. 'pur
algorithm is also based on the LEC algorithm, We present
the basic principles' of the planarization algorithm*{n
Section 9.1. In 'Se;tion 9.2 we discuss Ozawa ,%ng
Takahashi's algorithm and. point out that this algorithmy may
(not determine a m;ximal planar subgraph of a nonpianar
graph. However, we show that this algorithm determines a
m;ximal planar subgraph when applied on a complete graph.
In Section_ 9.3 we develop a O(nz) algorithm to determine a
spanning planar subgraph of a - "nonplanar graph. In
Section 9.4 we present a .O(nz) algorithm which maximally
. y .

planarizes the spanning planar subgraph with respect to the

v given nonplanar graph;

» b

9.1 Principle of the Planarization Algorithm

°

Consider a simple biconnegted st-graph G. Let T,, T,,

ceey Tn-l be the PQ-trees corresponding to the bush formé of
'q- For any node X in T;, recall that, the frontier of X is
*) the left-to-right order‘of appearance of the leaves in the
&subtree of T, rooted at X. Ozaw§ and Takahashi [49]
cIéssifX#ﬂFﬁe nodes of any PQ-tree according to their

frontier as follows. .

Type W: A node is said to be Type W if its frontier consists

of only non-pertinent leaves.

- 250 -

Type B: A node is said to be Type B if its frontier consists
‘oﬁ only pertinent leaves.
Type H: A node X is said to\be Type H if the subtree rooted
at X can be féarranged such that all the descendaﬁt
pertinent leaves of X appear consecutively at either
the left or the right end of the frontier. Note
that at least one non-pertinent leaf will appear at
~ ‘ the other end of the frontier. ’
. Type A: A node X is said to be Type A if the 5ubtre; rooted
| at ‘f)can be rearranged such that all’the descendant
» pertinent leaves of X appear) consecutively in the
middle of the frontier with at leagt one non-
pertinent leaf appearing at each end of the

frontier.

The following theorem is the central concept of the

planarization algorithm.

THEOREM 9.1.) .

An n—vertex%éggéh G is planar if and only if the

pertinent ropts in all the PQ-tfees\Tz, Tys eves T of G

n-1
are Type B, H or A.

Proof: ' ¢
Since the pertirent leaves in any T;, 22< i < n-1, are
all descendants of the pertinent root, it follows that the

pertinent root cannot be Type W. If the pertinent root in

v

N

- 25]1 -

Ti is Type B, H or A, then T; can be successfully reduced to
T{ and the next PQ-tree Ti+1 can be constructed. Thus the
sufficiency of the theorem follows. On the other hand, if

the pertinent root in a PQ-tree is not Type B, H or A, then

\ . . .
h&;\fertinent leaveddin that tree cannot be made consecutive

and\hence that tree cannot be reduced.. Thus the graph will

.be noﬁblanar if the pertinent root of any PQ-tree is not

-

Type B, H or A. a

We call a PQ-tree reducible if its ' pertinent root is

‘Type B, H or A; otherwise it is irreducible. Theorem 9.1

implies that the graph G is blanén.if and only if all the
Ti's < are éeducible. 1f any Ti is irreducible, we can make
it reducible by appropriately deleting some 6f the 1leaves
from it. Of course, we would like to delete a minimum
number of leaves while trying to make Ti reducible. If we
make all the Ti's reducible'this way, then a planar subgraph
can be obtained by removing from the nonplanar graph the
edges corresponding to the leaves that are delgted.

It is easy to see that the PQ-tree Tn-i is always
reducible because its root is Type B.» The tree Tl is ’also
reducible because it has only one pertinént leaf ; tﬁe leaf
corresponding to the edge (1,2); Consider now an
irreducible PQ-tree Ti of. an n-vertex nonplanar graph. For
a node X in T;, let w, b,‘h, and a be the minimum number of
descendant leaves of X which should be deleted from T, 80

——

SN

- 252 -

that X becomes Type W, B, H, and A Fespectively. We denote
these numbers of a node as [w,b,h,al]. Any node in Ti may be
made Type W, B, H, or A by appropriately deciding the types
of its children. So the {w,b,h,a] number of any node can be
pomputed from that of its children., Thus to make Tﬁ
;educible, we first traverse it bottom~up from the leaves to
" the pertinent root and compute the [w,b,h,a] number for
every node in T;. Once the ([w,b,h,a] number of the
pertinent root is computed, we make the pertinent root
Type B, H,‘or A depending on which ona of the numbers b, h,
and a of the root is the smallest. After determining the
type of the pertinent root, we traverse T; top-down from the
pertinent root to the leaves and decide the type of "each
node 1in the pertihent subtree of T;. Note that the type of
a node uniquely determines the types of its children and so
the types of aI; the leaves i; T, can be determined by this
top-down traversal. This information yould help us decide
the . nodes to be deleted from T, in .order to make it
reducible. After deleting these nodes from T we can apply
the reduction procedure to obtain T;. Note that deletion of
leaves corresponds to removal of the corresponding edges

from the nonplanar graph.”

Repeating the above procedure for each irreducible T,
we can obtain a planar subgraph of the nonplanar graph. It
is easy to see that if,ﬁhe minimum of b, h, and a for the

pertinent root in a PQ-tree T, 1is =zero, then Ty is

®. o

T T e T

- 253 -

reducible. Thus we can determine whether a Ti is reducible
o ~
or not from the [w,b,h,al number of its pertinent root. In

the following we summarize the above procedure,

procedure GRAPH PLANARIZE (G); : '
comment procedure . GRAPH_PLANARIZE determines . ‘a ‘planar
’ ’
subgraph of an n-vertex nonplanar graph G by

removing a minimum number of edges from G.

begin
construct the initial PQ-tree T, = "ri; ?(
for i := 2 to n-2 do \

begin
" construct the PQ-tree T; from TY_;:
, . compute the [w,b,h,a] number of each node in the’
’ pertinent subtree of T, by'traversiné it bottom—up;
if minfB,h,a} for the pertinent root is not zero '
then begin °
{‘1‘i is irreducible})
make the pertinent root Type B, ﬂ, Qor A dependipg
on the min{mum of b, h, and a;
determine the type of each node in T, by
traver;}ng it top-down;
delete the necessary nodes from T; and make it
reducible;
remove from G the edges corresponding to the
— leaves that are deleted from T,
end; |
| A

~%

- 254 -

{Ti is now reducible}
reduce T, to obtain T} <
end "

‘end GRAPH_ PLANARIZE; /

/!

g
Note that the above algorithm may not .determine a

maximalr planar subgraph. This can be explained as follows.
Suppose we delete certain leavés from T; to make it
reducible, In a later reduction step some of the leaves
which caused the irreduéibilfty of T, may themselves be
deleted. 1In sﬁch a case, we may be able to return to G a
subset'of the. edges which were removed while making 'I‘i
reducible, Hence' the planar subgraph obtained b& procedure
GRAP&_PLANARIZ% may not be maximally planar.
‘) t
Ozawa and Takahashi [49i have)prgsenped formulaé to
compute [w,b,h,al] numbers for thé nodes in a PQ—trjaq' Using
tﬁese formulas in proéedure GRAPﬁ_PLANARIZE we can”“determine
<f’:\;laqar subgraph of a nonplanaf graph./ In the next segﬁ}on
we discuss their approach and highlight some of its

drawbacks.,

9.2 Ozawa and Takahashi's Planarization Algorithm
L |
In this section we discuss Ozawa ‘and Takahashiﬂs

approach to planarize a nonplanar graph G. Consider an

. . '
- 2 4
g ‘ P
_ . . . N .
. o
. . + a

- i ’ - 255 =

~

irreducible” - PQ-tree Tyr 3'< 1< n=-2, of G. The pertinenﬁ

root of Ti has both 'pertinent. leaves and non-pertinent égé

leavés as its descendants. Ozawa and Takahashi make Ty
reducible by deleting a minimum number of these leaves, some
of which’ may not be pert:inem:-,ufx:(m\.'1"1.,~ We now present the
formulas they developed ‘g»cqmpute the.!w,b,h;a]‘number of a
node in T,. .

Consider a node X %n a PQ-Efee T;. Let d be the numbér
of descendant leaves of X. + .Let_ the children of X be
numbered as i, '2, eses P. Also, let the wf b, h, and a

numbers of child i of X be denoted as

réspectively. To make node X- Type W, we have to dfféte from

T£ all the ééscendant péftinent leaves of X. Thus for the

node X the valué of w is equal to the number of its

‘descendant pertinent leaves. Similarly to make X Type B,

all. the 'descendant non-pertinént leaves of X should be

wi, .bi" hi' ai.

A%

='de1eted and hence the value of b is equal to the dumbér 65'

such leaves of X. Based on these obéetv;éions, the

following formﬁlas'can be derived.

(i) X is\a leaf. . . |
/{ 1, if x is'a pertinght leaf, |
? v {0, if X is a non-;ertinent leaf |)
b = d-w. |
h'= 0,
a =.0.))

¥,

[A

£ ‘ - 2 - =
: \
: (113 X is a P-node. . .f‘<
. . |
‘:/ g ' r p \\\ ! /
N o N
” “ w wia‘ \\
94 i ¢ i=1 A .
rb . ;
. . Yo, . , ' p
\ ' ‘ b= z :bi = d-w.
< — ' i’l , 4
/

;\;/ LA We can make X Type H by .making ‘oné “of it8 childrg'n
. Type H .and all She otﬁ'xer’ chil‘dren‘.either. Type W or Type B.
Since hadenote:s the minimum.number of leaves to be deleted

.{, to make X Type H, we get

’ 4' Lo J . \,‘ .) % ‘ ‘a N
Ao : , o
* N ‘ p . < e,
e® h = E ‘min{w;,b,} - max { (min{w.,b, h,) RS
,, L i' i} | l<1<p { i’ } } 4§ {%}
i=1 \ ‘ . s . TR
- . . . N . -
. oL . : . . " nE
R . R ‘. : " -, .) ~ . D"
| ¢ , . L v . ? At

"M . The node X can be made Type A in two different ways.dy

3

n . One way is tq make two of.its children Type H and all the
- . 5 .

: othef -’child;:eﬁ either Type W or 'I"ype B. Fo‘r‘ this case, the
b, ' . ' .
‘nf¥nimum' number of leaves 'to be deleted is given by
¢‘ .; ! \ 2
. .) L . - :
[B - P ;. p , K , .
ot ;o ‘ s 0y = z mif}{wi:bi} -8 . -
ot 2 . iml - B B
] where - , . . ; 3 ‘~,,7)~' . -
t ‘ A . " '
= max min{w,,b } h + min{w bs}- %)} S
. , B 1<i;lj< ‘ i i ! j b
LY ’ " ' CT e
’ i ‘- ¢ : . 'y b
v < - ‘; , m.
« L - g ' - i -...I 7 , '

- 257 = S
. ' ' | ‘ : ‘ hd
The other possibil‘}ty is to make one of the ‘children of X
Type A and all the other children Type W For this case,
tbe‘mi'nirqhm numbert .of\lea;’es to be deletefi is given by .
1,

T

\ ,‘ T ’ p
;’ | a, = Z wi - max {(wi-ai)} L.

1 <p o :
i=1 ¥<
Thus the value of a for the node X when it is a P-node 1is

glven by

o
]

‘ min{.al o}
(iii) X is & Q-mode. = .~ SN
o ‘ . X (' -

p
w = zi:“i:

,

[
" -
(-

v i

We can make X Type H by letting one of its children
‘Type H; all the siblings of that chi‘lé on . one side '(eithe;

. i N]
left or right) Type B and all the siblings on the other side

'Type W. Thus the value of h -for X when it is a Q~node is’

£ -

given by
'(» .)
. : o h = min {(h +yk)} .
. ‘ . - 1<k_p ﬂ
'\'where b ' ' ’ | . . ?

M -
L

N - B .

- - 258 -
. w . * . p. /
'~ - min{Z(wi-bi) bk+ E bi’ Z(bi-w)"Wk Z }
i=lo =1 i=1 i=1
:\J , ﬂ@
) X can be‘made Type A in two different ways. The first

¥

is to make two of its children Type H, all the -siblings in

between these two Type‘ﬁ‘chlldren Type B, and all the other

\j .
children Type W. In this.case the minimum number of leaves

to be deleted is given by

. P
L d o

N) ' " p (,
IR 1 : :E: .
w . Gy.= 2. b max (ys+z,)
Ho) 1) i l<j<k<p{ yJ k }
c0 i=1 '
where (.) . Co
“ ' E (bi-wi)+b -h . - .
Do o iml ‘ °
- and ; b ' N ' B
- . .f
' . i-k+1

Iﬁe second method is to make one. child Type A’ and all the '

d

other childten Type W. For this case

“ ”‘ T ' ¢
IR o P ' T
. N E v, - max {(w;~aj)}. -
. ‘ S 2 i 1<i<p il
. .o . . .~j_-]_
o~ .
. R ,."'\

- 259 -

3

‘Thus the value of a for*the ndde X when it is a Q-node is

given by d

a= min{ai,azl.

-

-

Ozawa and Takahasﬁi [(49] 9 presented algorithms to
c;;pute the (w,b,h,a] numbers for the nodes in a PQ—treé
using the above formulas in O(n(ﬁ+n)) time. The PQ-trees
.are siored in O(m+n) space and so their algorithm requireé
6(m+n) space. As we have already étatea, vbzawa and
Takahasﬁi's algorithm may ?esult in deleting Soth pertirent
and non-pertinent leaves from Ti *in order to make it
reducible. In some cases we may be able to make Ti
‘reducible by deleting either a pertinent -leaf or a“

'

non-pertinent leaf. In such cases Ozawa and Takahashi .

il
the pertinent leaves correspond to the edges entering vertex

prefer > to delete the non-pertinent leaf. Note that in T

(i+1) in the ét-graph G and the non-pertinent ‘leaves
correspond to the edges entering vértices greater than
(i+l>°\ Since a PQ-tree T; with only one pertipent.legf is
alwagijreducible, ig the planar_ subgraph obtained 'pfber
reducing such a Ti,’there will be a path from verééx 1l to
vertex i+l. Since Ozawa and Takahashi permit -deletion of
non-pertinent leaves® also, it m;y ‘80 happen that as the
algorithm proceeds, 5&1 the edges entering a vsrtex k >

(i+1) may gét reﬁoyed from G and tgus vertex k and some of

other vertices may not be present in’ the resulting planar'
‘ ¥

-\ subgraph. /

—_—

L

-y

-

- 260 -
2.

We illustrate this situatiog for the nonplanar st-graph
shown in Fig. 9.1. - In Figs. 9.2 to 9.8 wé show the PQ-trees
'1'1 to T7 for the graph in fig. 9.1. In these PQ-trees, thé"
[w,b,h,a] number for a node which is not a leaf |is ghown
adjacent to it. Note that T, is the first irreducible
PQ-tree ang the algorithm removeé the edge (2,6) from the
graph to make T5 reducible. Similarly the edées\(4,7) and
(5,7) are removed to make T6 reducib}e, and- the edges (5,9),
(4,9) and (6,10) are removed to make T7’reducib1e. yote
that (4,9) a;d (5,9) are the only edges entering vertex 9 in
the st-graph and hence after removing these two edges,
vertex 9 will not be represented in the PQ-tree Tg. Thus
the planar subgraph of the ngnplanar graph‘of Fig. 9.1,
obtainfd by Ozawa and Takahashi's algqrithm, will not

éontain vertéx 9,

From our discussions so far, it should be clear that

the main drawback of Ozawa and Takahashi's algorithm, apart
<)

from the fact that it may not determine a maximal pl?nar
]

subgraph, is that the planar subgraph it determines may not

‘even’ be a spanning subgraph of the givgn‘nonplanar graph.

- o .
This is because the algorithm permits deletion of both
pertinent and non-pertinent leaves. In the next section we

show that by. appropriately deleting only pertinent leaves,:

it Ys.possible to obtai? a spanning planar subgraph.

T A
\

In / the case of .a complete graph,; Ozawa and

- . . AN

Al

- 261 -

’
?
. .
» k]
-«
LAY
. o
i .
v v
e
L4 LR
L4
<+
—— ri
|' ‘} -
- -~ 'y ' . B '
| . S Figure 9.1 ‘
L . .. Nonplanar Graph G .. ’ Vo
N 4 - PR ' -
0 N ’ ‘ *
. 1’* +: ’ » . ’ . R ‘ : -
. ’ ’ . ’ » . » . . :
. i .
»
. } . . 5
\ >y .
’
¥ '
’ ’ . .
l B . ’
L]
Al ¢ * b
. - . - .
-~ - @)‘ : .
. | -~ - . I - b
: + ¢ O ‘
» . .. ’
. ’ .. ‘
-t N

‘ R A S
—-— .; T, ,.. ,"’ ‘."»r\‘,'l,‘y.- (4
N :"_.\ i ‘I‘ ' L ‘_'v, -
' 9 & ‘ - . .
N 3 PR ¥
. ' Y Toean
Y
Vo) !
) .
] B (1,2) (1,3) (1,8) (1,7) (1,10)
PR Figure 9.2
2 N . _ i = *
B \) : PQ-tree 'I'l 'I‘l
“' 'Y .
f A & - g .
0 N 2))
" C N - (1)11,7,0,0]
) . 2 ,
‘ o \{1,3)(1,5) (1,7) (1,10)
1 o - Z e .
. S ‘ S \
ST 2,8) 12,8),(2,8) (2,10)
. - . v) . " . Y .
R Figure 9.3(}‘ -
] ‘-{‘ N . X 4‘\
3, PQ—tr‘ee '1'2 = .'1‘*2'r
. i : ' l' v
i . A T .

-0,

+

- 263 - !

- 4 >
t
i * .
»
ﬁ .v’
v , -
A
é
- L 2
R 1 - S

2 [1,3,0,0] 3

(1,5) (1.7) (1;10)°

?

(2,5) (2,6) (2,8)(2,10) (3,4) (3,5) (3,6) (3,7)

: Figure 9.4
PO~ T = T*
. Q-tree 3 T3
N ~ - ' .
. -
a be - i -!-‘
. o, . .

SR

BTy

= 264 -

[4,11,0,00 (!

300 (Y [sod (3): |
| (1.5)(1,7)(1,10)
[1,4,0,0
¢ 2 ~ R
(2,5) (2,6)(2,8)(2,10 | (3,5)(3,6)(3,7)

(4.5) (4.6) (6,7) (8,8) (4.9)

Fiqure 9.5(a)

PQ-tree T4

’ .
. (1,7) (1,10)
2 % V, ' 4
2,5) (1.5) (3,5) (4,5)
(2.6) (2.,8) (2,10) (4,6) (4,7) (4,8) (4,9) (3,6) (3,7)
) .Figur‘e'9.5(a)l
o ' o . PQ—-txee','r: !

A
2

oo

&

[3,9,2,1]

0 (1,3,0,0]

(1,7) (1,10)

(1.1,0,0]

(2,6) (2,8) (2,10)(5,7) (5,8) {5,9) (4,6) (4,7) (4,8) (4,9) (3,6) (3,7)

Figure 9.6(a)

PQ—-tree T‘5

v Edge (2,6) is removed

’

vz

‘

{4.6) (3,6) (3,7)

(1,7) (1,10)

R
U .
“(5,9) (4,7) (4,8) (4,9)
Figure 9.6(b)
PQ-tree T;_ .

:' '\}/ . - 266 -

. [4,8,2,2]

(1,7) (1,10)

(2,8) (2,10) (5,7) (5,8) (5,9) (4,7) (4,8) (4.9) (6,7) (6,8) (6,10)

Figure 9.7 (a)
. PQ-tree T,
Edges (4,7) and (5,7) are removed

x,&"

’

(1,10)

A

(6,7) (3,7) (1,7)

. e ' Figure 9.7(b)

Lo) ' , * _ . ' '
e - PQ=tree Tg .

- 267 -

(1,10)

’1 bo 10] 1 91 ao 30]” 1 91{ :O '0] [1 '1 00 sOJ

(2,8) (2,10) (5,8) (5,9) (4,8) (4,9) (6,8) (6,10) (7.8) (7,10) -

Figure'Q.B(é)
; PQ-tree T7 ‘ , '-a- ‘
Edgé§~(5,9), (4,9) and (6,10) are removed

\
B 77777 |
o s . (1,10)
-%@éé%\‘
(2,10)(2,8) (5,8) (4,8) (6,8) (7 s) (7,10)
) ‘Figure 9.8(b)_ ‘
7 .

PQ-tree T;

@ .

7 Z. B

Py
Mo .
AN
<, . .
L e e e .

g o s .

-

<
P

AR T e

X}
S S

o
-7

- 268 -

" Takahashi [49] expected their algorithm to “determine a

maximal planar subgraph. We conclude this section by

proving thgir assertion,

THEOREM 9.2.

“In the case of a complete graph, Ozawa and Takalashi's

algorithm determines a.maximal planar subgraph.

'Proof:
We prove the theorem by showing' Ehaf the. planar
R) subgerh obtained by Ozawa and Takahashi's algorithm when

applied on an n-vertex complete graph’will have n_éertices

and 3n-6 edges.

¥ Note that for any graph the PQ-trees T2 and T are

n-1
always reducible and so no leaves need be deleted from these
trees. For any i, 3 < i < n-2, the PQ-tree Ti of an

n-vertex complete graph 1is of the form shown in Fig. 9.9.

e P TR 5 et -

The (w,b,h,a] numbers of the nodes in T, 'can be easily

{
computed as follows.
(1) Por the P~nodes labeled 2,*3, O |
-w = 1.
! b = n—i-lc
h =20,

a=90,

@

.l
!
s
g
N {
' {
. [l \ .
. ¥
'
AT T \
4
AN
b
- .
L. . P

(ii) For the only Q-node

‘o
’ . -
. s
/

-9
»

. [1,i(n-i-1),1-2,4-2]

[1-1,(1-1) (n-4-1),,1-2,4-3]

AL (L,192) (1)

[1 .ﬂ-‘.'l pQ .0‘]N

(2,841) (2,042) (2,0)(3,041) (3,142) (3.) (4,041) (1,992) (hom) .

»
- -

Figure 9.9 . o
N ZPQ-t}ee T, ‘
B,

for an n—vﬁe\rtex comple,-.t:eng'aph .

1

v a
‘ HEaE 48 .)

- B - -\270 - . -

At)) - ;J\
) e . : .' ')
1 ‘W = i-1¢ ’ -
" ‘. - " b . (1=1) (n-i-1). ’ |
) A —~"hl= i-2.
| - a= i-3‘.’ -)

v e

- g

(iii) For the pertiﬂr‘{ent‘ root (the '(P-no_de labeled 1)
’ w= i, \ |
. . b =li(n-i-1).

h = i-2, - «

i a=i-2, . ‘

-~ - bl

' LY - .
Thus from each Ti' 3 <1i<n-2, (i-2) leaves are removed to
make it reducible. Hence -the‘total number of edges removed

‘is given &y . :
\\ '. ! v. n-z \

~ "N 5 = (n=3)(n-4)
LY . Z (1“2)‘ 2 ' -

: . © im3

y'/\ Since ‘an‘_)n-'-vertex -.complete graph has n(n-1)/2 edges, the

number of edges in the planar graph deterxﬁined by Ozawa and
N ¢ r3 N .

Takahashi's algorithm is given by

As ‘can be seen from Fig. 9.

for an n-vertex complete
» .

graph, minimum leaf deletion in t case of eich T, 3 < i<,

\”n'-3, necessarily results in deletion of only pe;tiner’at

L ‘ . “ 2 |
leaves. Since from edfh Ty 3 2 i} <'n-3, or?ly (k52) 1leaves-

0 ~ ‘) ' 'l 'lA

>

b -

are removed, it ,follows “that in each such~reducible T,

(4 ¢

there will be exactly two pertinent leaves.' On the otqer

L ¥
-hand, ..’'in the case of T _,° minimum leaf deletion can be

n-2
achieved by deleting either (n-4) pertinent leaves or '(p-4)

L]

non-pertinent leayes. However, even in 'this case,

irrespective of the choice made; thére will be‘at least two:
pertinent leaves in the redJLible T,-2- Since the edges
(1,n) and (1,2) are not removed, it follbws :that in the
planar sﬁngaph obtainea by Ozawa 'and Takahashi's algorithm,

each vertex will be connected to at least one lower numbered

vertex and so this subgraph will be connected and will have

- L 4

n vertices. Hence the theorem. SN ' O

9:3’A New Graph-Planarization Algorithm
| "”' %

As a first step towards designing an ‘algorithm (to be

‘discussed in Section 9.4) ¢to obtain a maximéll planar

subgraph of/; nonplanar graph G,‘Wé develop i; this ,éectiow
an efficiené algorithm to determine a épanniﬁgh planar
subgraph of G, The \%lanaqization appr;acﬁ discussed ,in
Section 9.1 will form téé basis of this-algorithm. As-
pointed out in-the previous section, Oiéwa“and Takahashi's
algorithm may not result in a spanning planif subgraph. The
reason for this is thag while makinq a-EQ-tree T; reducible,
non-pertinent leaves may be deleted. We modify tﬁis.

. \ \ . .
approach so that deletion of only hpert@hent leaves is

1)
o
v
-~ R ‘ ¥ -

- ' - 272 - y

? .

permitted. We first prove that with thismmodificatien; the‘

approagh'of &égtion 9.1 will result in a spanning planar
suﬁ@r&ph of G.

THEOREM 9.3. . . o . -

-rn,

The planarization algorithm of Section 9.1 will

'deterﬁine ‘a spanning planar subgraph of a biconnected

n-vertex 'nonplanér graph, if only pertinedt leafres e .
¢

deleted while making any PQ-tree Ti'~3 <i< n42} reducible.

Proof: g

Note that a PQ-tree with only one pertinent 1leaf is

always reducible. So it 'follows that from no PQ-tree all

the pertinent leaves will be deleted, if only . pertinent

‘leaves are to be chosen for deletion. This means that in

b3

the subgraph that results at the end of the application of

the algorithm, each vertex will be connected to at least one
iowe; numbered vertex.._IhQ? the subgraph determined will be

~a spanning subggaph of the given nonplanar graph. a

13

A]
$

Let 'G be-a nonplanar st-graph. Let El, 2 <ic<n, be
the set of edges entering vertex i in G. We determine a
. planar subgraph of G by removing a sequence Ea, Ety evey

~E;;1 (EiC:Ei) of edges such that for each i the subgraph

ntains a plénar,subgraph induced by the vertex set {1, 2,

[

cetes i}; '“Thus. after removing the édges in E;,‘Eé, coey

~

G obtained by removing the edges in EA, E';_..., Ei

- 273 - .
)

E :we obtain a planar subgrapgh of G. It is easy to see

Al

n-1r

- QT_- : that the edges 'in Ei+1' 3 <i<n-2, correspond to the
pertinent leaves in the PQ-tree T, which should be deleted

4

to. make '1‘i reducibie. Thus Ei+i can be determined while

NS o

makimjVTi reducible.
) ,

- ' In order to make a PQ—tfee Ti

reducible, we firstj%

éompute, the ([w,b,h,a] ‘huﬁber for eagh node in Ti' Rgcal;.'
that a node in T, is full if the number ' of leaves in the
pertinent subtree'roqteﬁdat the node“iz equal to thé number
of’pertinent leaves. Note that during %he processing TN
make Ty feducible, a full node and a}l its descendants may
be made Type W, or they will remain'Typé B. On the other

* hand &Qgrtial nodes ,ﬁay be maae Type W, H,‘or'K; but nezéi
Tgpe B because we delete only pertinent, lanes from Ti'
,Thus"any pertinedt node in T; may be made Type ﬁ, H, or A

only. So we need to compute only the w, h, and a numbers

for the perti;ent nodes in Ti' We denote these numbers as
[w,h,a]. | ' ‘ | - |)
. Now we develop formulas to compute the [w,h,a] ﬂum‘ir /)*’

for each pertinent node in T;,. wWe précess T; bottom-up f>3m4~//

[

ry—

the éertinentﬁgeaves to the pertinent root. 3So when a
; pertinént node X 1is processed,- the [w,h,a] ngmberé of all
its pértinent’children should have already beénr“comﬁuted.
- Thus we can compute the ([w,h,a] number .for.x from the

numbers of its pertinent children. " In the following, P (X)

- 274 -

dgnotes the

denotes the set of-partial children of X..

[w h a] number

set of pertinent children .of X and Par(Xi

‘Along with the

for each pertinent node, we also determine,

for each pertinent node which is not a leafs-three children

called h_childl(X), h_child2

(X) and a_child(X) which’ will be

used later to decide the type of each pertinent child of X

in'ghe Teducible Ti‘

.

(i) X is a pertinent leaf.

L

In this case

(ii) X is a full node.

In:;his case

(iii) X is a partial P-node.

To make X Type W, all

made Type W. Thus

i€rP(X)

fep(x).
0,
0.

its pertiqént childten should be

i

‘\'_'L-, -

—

« . Z ~ L v
. A . \
We can make X Type H by making all its full. childrén—

Type B, one partial child Type H and all other partial-
children Type W. Thus the h\number of X is given by o -
. ! ¢ . Y .

h = Z W, - max r{(w’—h)}.
) i i & Par (X) 17 i

1'e PAr (X) , . ,
(»

Q
. M o
{
IS

In thigs case the partial child -which" is made. Type H will be
called h_childl(‘)g) . |

‘q »

We ca‘;l- make X Type A in two different ways. We can

mak‘e one partial child of X Type A and all other _pertinent

children Type W. In this case . ¥ (

a, = Z Wy - max {(w;-a;)}

i € Par (X)
iEeP(X)

descendant pertinent léaves of X will have.to be deleted.
The partial child which is magde ~Type A will be called

)

a_child(X). On the .other hand, if we make two partial
children Type H, all full children Type B and, all other
pertinent children Type W, then

k]

o, = Z w; - maxl {(w;,~h;)} - max2 {(w;~hy)} .
2 i i € Par (X) i ieprar (X) i
i € Par (X)
. descendant pertinent leaves will have to be deleted from Ti

to make X Type A, where maxl is the first maximum and ,m'ax_z

"is ° the second maximum. The partial child hairing‘

maxl{iwi-hi)} will be called h_childl(X)

~

LS

4

pertinent leaves from Ti‘ If th

1';5
value of a 1is different

from ;, then we make a_child(X) empty. . :

"L,

(iv) X is a paftial Q-node.
= .

made Type W. Thus for‘x
*

To comegte the / number of X, first note that X can be

either 1its leftmost child or its

rightmost child is pertinent. Suppoig that the leftmost

|

To make X TypetW, all its pertinent children should be

child of X is/pertinent. Let us traverse the children of x’

from left to néght and find P, (X), the maximal consecutive
sequence og/pertinent children such that only the rightmost

node in P (;) may be partial. If'the leftmost cwild is

other hand, that the rightmost child of X is pertinent. As
we traverse the chilWign of X from right to left, let Pp(X)
§>bé e maximal consecutive sequence of pertinent children
876h that only the leftmost node in gRix) may be partial.

. }f the rightmost child of-X is not pertinent, then Pp(X) is

/ ' |
/n » -

not pertinent, then P (X) will be empty. ~Suppose, on the |

" = 277 - N

\ e -
»

empty. We can easily see that X can be made Type H by

deleting - : .
. « ' % o
h = Z Wy - max{ . Z (wi=hy), Z (wi—hi)}
. ieP(X) " 1E€P(X) ————IEPg(X) '

Y
1

pertinent leaves from T;. We call as h_childl(X) the
. leftmost- node in P, (X) or the leftmost node in Pp(X)"

depending on which one has the maximum .}E(wi"hi) sum in the

above formula_for h.
X can be made Type A in two different ways. We can
“<make one of the pertinent children of X Type A and all the
. . .b‘ .

other pg;fihent children Type W.- This can be achieved by

]

deleting : .

o = Z w; = Tax {("i'ai)}

ieP(X)
iePr(X)

pertinent leaves from T,. In this case the pertinent child "

having max{(wi-ai)} will be called a_child(X).

- Let PA(X) be a maximal consecutive sequence of
"E/;ertinent children of X such that all the nodes in Pp (X)
except the leftmost and the rightmost oneé. ar; full. The
endmost nodes may be full or partia1:~ Then we éan make X
Type A by making all the fuil nodes in’p, (Xy Tye B, the

partial nodes in P, (X) Type H and all the /bther' pertinent

< /
\u/

- 278 -

- ' - - - - B '
| 4 . e ‘
pg———— - R
. .
4 ' ‘
A . . \ .
L 3

4

3

children of X Typékw. Note that there may be mo:é pﬁan one

P, (X). Thus we can make X Type A by deleting ’

[

* N '

.
pertinent leaves from T;. In this case we call the leftmost
nod® in the PA(i) selected as h_child2(X), Thus node X can

-~ be made Type A with the deletion of .
a = min{al ’az} \.) .

pertinent leaves from Ty. 1¥. the value of a is different ;g&

‘ N
. ffomtxl, then we make a_child(X) empty.

-

-

v Traversing T, bottom-up we can compute the [w,h,a]
number for each pertinenﬁ node in Ti using the above

i

formulas. This is described in the following procedure.

procedure COMPUTEi(Ti);
co-ent‘proceduré COMPUTE1 computes the [w,h,a] number for
each pertinent._node in Ty. For each pe??!Lent node
"X which is not a leaf, h_childl(X), h_child2(X) "and
| a_ch?ld(X) are also determined.
begin
for_each pertinent leaf X in T; do ’ | | ¢f‘
. begin ,) , '
put X into the queue; '
initialize w := 1, h := 0, and a := 0 for X

*"

— o— 1

<M

’ (.
- .= 219 -

end; .
ROOT_PROCESSED := false;

i
i

.while the queue is not e'iﬁpty and not ROOT_PROCESSED do
. bedin .
,xz‘:.m.— remove a nodé X from the queue;

if X is the pertinent root

then = 20

: i
ROOT_PROCESSED := true; | ,?f'
W.‘:- E wi; /
‘ . // p
ie P (X) ‘]
if X is fall N
then begin » L 2y
‘) . " s ' .}."..’
o h := 0; . ” =
a:=Q
end , ' - .
else) Lo . 1" ‘
) if X is a Penode ' . :
' then begin ' o, q‘,h
. {Traverse the pertinent children of X} '
2 T f£ind h_chilal()()n having: maxl {(wi'hi)}7
, - i e par (X)
£ind h_child2(X) having max2 {(w;-h,)};
L. - <« 1€Par(X)
. e
N . . :‘ .
£ind a_child(X) having ¢ max -f(w;-a;)};
i € Par (X) s
) h = w - (w ..h) . * . ’ -
:E: i 1771 {an_chizarxy’ .
i e par (X) .. - D ey

"b

A

&

else begin

lfind h_childl (X) corresponding to

Ay #= “‘a"{ z (y=hyde Z)/“('1"“1)}’

‘fiqd q_ch{ld(X) corresponding to

--280 - C e
o :-;‘w- ('w -a;)
1 | 17 !i-a child(X)

i=h_ child2 (X)

v

a := min{al,az}//s L 5.
if a poy !
_ then. ‘ /'

j’ a chil;i/()() t= - ni:l—\
end S :

i
1 L

—-—

(X is a §-node. . Traverse the children. of X\from

left to right} A .«

determine P (X), P (X) and different P~fX) 8;
\

1€ P} (X) .. LEPR{XY

<.,

find h_child2(X) corresponding to

h. := max Z (wy=h)l;
2" p (x){. S }

2" Her) e

=

-

e t= - max {(w -a)}
iepX) 1751

h := wehy;~ : L

Q) 1= w-a;

K,

- Oy = w-hy;

a := .min{al,az};

*i.fa,#al

N

»

LEMMA 9.1.

- -.281 =~ .

then ‘
a_child(X) := nil
end; ‘ .
mark x processed" -
{PARENT(X) denotes the parent of node X in T} .
Y := PARENT (X): o
increment the number of children of Y processed;
if all'pertinent children of Y are processed
then | '
put Y into the queue T
end
end COMPUTEL; B ' ’

e

Cost .of procedure éQMRUTE} is established ‘in the

followihg lemma.

P

Procedure ' COMPUTEl correctly qpmputes the [w,ﬁ,a]

numbers for all_the pertinent nodes in O(n) time. - _ ' .

' 4 . "

Proof:

Proof of correctness follows from our. discussions so

fer;

—

- As irregarcis. the complexity, note that for a Q-node

_procedure COMPUTEl traverses all the children of the node.

rY -

Thus the amount of work done for the Q-nodes in a f is
1

proportional to the number of children of all the Q—nodes in

-

- 282 - R " - r'{\

T;¢ The children of a Q-node corresponding to a block> “

represent vertices, except the lowest, on the outs 4 ~.~

"of the block.

g6ver, any vertex in G ‘which is,

a ch{ld of a Q-node in/T, can~appear on the -\
3

outsid window of only one block. Thus\ the tota number {of

A |
’

r equal to -
(n, the number of vertices in G. -

For a P-node, the wdrk done by procedure
proport1onal to the number of its pertinent children. A .
vpertipent child of a- P-node 'is elther a P-node or a ' Q-node *

or a leaf. Since a Q-node represents a block, there are no oo
: ‘ »
more than n Q-nodes in'any T;. Also the numher of pertinent

~ leaves in Ti is in—degzi+1), where in-deg(i+lf is'tne numbex

.

of edges entering vertex i+l in G. Furfﬁermore the number

of P-nodes in T;-is at most i.nkfhus the amount of work for

all the P~nodes in T; is O(n + in-deg(i+l)).
K

by procedure COMPUTEL for all the Q-nodes and P-nodes is

'It follows from the above that the amount of work done

O(n + in-deg(i+l)). Summing up the work done for all Ti's,
we get the ‘complexity of procedure COMRpTEl as 0(m+n) -=
o(n?). e - o

,.) J
’
.

Aféeg computing the [w,h,a] number for the pertiment
root of Ti; we\can determine whether ii is reducible or not.

If the minimum of h and a is zero for the pertinent root of ’ <:::;;

*l

n\‘ ‘ , "

- - 283 -
. ‘“1 L Y

?i,bthen:Ti is reducible. If T, is not reducible; then - we

1

- make the pertinent root -of gi Type H or A depending on which

"one of h and a is minimum, ‘and make Ty reducible by deleting -

the"nedessary pertinent 1leaves from T Now we need to

determine the type -of each pertinent node in. T, to obtaln a-

reducible Ti' Note that T may\have certaln full nodes. If

we decide to keep any such full node, then we mark it
Type B. .
-, o 4 1. -

a

Consider now a pertlnent node x in T whose type has .
\

'been determined. To start with X is théxpertinent root We

\r/

‘can’ determine the types of all the pertinent ch1ldren of X

uniquely from the type of X as follows.
* ' ! . » ‘ 3

: If X is Type B, then it is a full node and we would

like to (eep X as well as all its descendants in T;.. So no

b

action needs t® be taken in this case. ’/
Coe - : PN . -
'\) ‘. . " N\

.
: . .
4 s o

Oon ‘Ke qther hand, if X is not Type B, then we traverse

the pert nent dﬁbcendants of X to determine their type. 4n

' easy cas¢ is when X is a leaf. Then it should be Type W and

so-we haye to delete it T;. We also have to remove the

_edge corresponding to .X from

”~

2 .
Thus the edge corresponding

to X should be included in Ei+l this case. If X is not a

“eaf, _then we have the following different cases to

consider, s

N

p—

-

> ' - - 284 - . o

Suppose X is Type W. Then all its peisinent children

should be made *Type W. Moreover, if any of these pertinent

v

children is a full node, then the entire subtree of 'I'i

" rooted at that full child should be deleted from T,.

- hY
-

If X is Type H and a ?-node, then we make the partial
child h_childl(X) Type H, all the full children Type B and
- all other partial children Type W. +If X is Type H, but a
. - . : ! % c
. Q=node, then we traverse the children of X from h childl(X)

a , , 4 —
o gbwards the rightmost child and determine the maximal
consecutive sequence of perfineng children PL(x) °r,PR(f?"
We then make aIi‘the nodes in \gh{s sequence Type B; the
| 'Fiéhpmost node in PL(x)“og the leftmost nepde ianR(X)‘age
~ made Type:H and all other pertinent children of X a:e‘ made

Type W,

Suppose X is Type-ﬁ and Q.P-node. Theh we process the
é:;t;hent children of’X as folléws; If a_child(x) 1; not
empty, then we make :q:child(X) Type A and all ‘ other
pertinent children Type W. On the oﬁher hand, if q_ch#ld(;)
is empty, then we make the partial children h_childl(X) and
h_cb1162XX) Type H,'all.;hil children of X Type B and' ali
other partial Eﬁildren 65 X Type w;‘ If X is.Txpe A’and a-
@-node, then we shou.:Ld process its pertine‘nt\ children\ as

" follows. If a_child(X) 1is not empty, then e make

‘a_child(X) Type A .and all other.peréinent" children Type W,

i

If - q_child(X) is empty, then we traverse the childten of X

a

o ,pu'.

T i ‘“} - 285 -

from h_child2(X) towards the rightmost child and f£ind the
maximal cbﬁsecuéive sequence P, (X) of peftinen; children of
X. Then we make all nodes . in PA(X) T&pe B, the endmost
nodes in 'PA(X)QM if théy,are partial, T&pe H and all othgr

pertinenﬁ children Type W.

. i a - . . .
From the above discussions it should be clear that the’

type of any pertinent node in Ti.uniquely determines "the
i ‘) '

types of its pertinent children. Hence we process . the
PQ-tree T, top-down from the pertinent ‘root using the

following procedure DELETE NODES. During this processing we
lt — L}

. L]

determine the set of edges Ei+1 and delete from T, the nodes
which are full and marked Type*W. Since certain pertinent

leaves are deleted from T we have to update, if necessary,

j_l
for each node the ngmbez‘of descendant leaves. Procedure .

DELETE_NODES peiforms this update also.

A
|

procedure DELETE NODES (T,); - "

comment procedure DELETE _NODES determines the type of each
- ‘ - ;

- pertinent node in T4. It alfo determines the set

[

Ej+) of edges to be removed from the nonplanar graph

\»

G and makes Tiireducible.

LS rd
»

procedure DELETE (X) ; * ¢
‘comment procedure DELETE determines the type of each
pertinent child of X. It updates the number of .

descendant leaves of node X and deletes X from 'Ti

L4

a’\

-

begin

{FLAG is a Boolean variable which is set

if X is full &nd marked Type W.

¢

to- be deleted; and false otherwise}

FLAG :

m
”

false; : . ¥

if X is not Type B. - .

. then begin '
,//Q) ~if X is a leaf

_ then begin

P

‘delete X from T,;’

-~

add the edgé corfesppnding to X to Ej :

end ' ‘ f o~

. else begin

°

éqse’type of node X of
Type W:i
begin

r I

to true if X is -~

-
~

X

\

Jfamarf_all pertinent children of X Type W;

if X is full

then FLAG := true;

{DESCENDANT LEAVES(X) refers to.

of descendant leaves of x}
DESCENDANT LEAVES (X)* :=
.~ DESCENDANT. LEAVES (X)'~=.w
end; - |
Type Bt N

begin

if X is'a P-node

— e

the number
¢ .

ﬁé’::f‘ e o

~

- o
hl .

- 287 --
- f

then hégin
.aark h_childl(X) Type H;
mark all full children of. X Type B;
-mark, all other pertinent child;en 6f X
‘TyPe'W | ’
enq. ‘
_else‘pegin
‘ {x is a Q;node}
determine Pi(x) or pR;x) from
h_childl (X); \

mark all ,childrgn ?n P/ (X) "or Pp (X)

. !

Type Bj

- cit PL(g) is not empty

« .., then .

N | if the rightmost node in PL(x) is
oo - Gparpiai] -

o o ‘éheh mark the righfmost_nod§'in

PLLX) Type H; /
elée ’

iflthe’leftmogt node in PR(X) is-
partial

'fthén mark the leftmost node in

" Bp(X) type H;
/upérﬁ all other ‘pertinent children- of X
' Type W - v ¥

end »

DESCENDANT LEAVES (X)

|
p
1

- = 288 -

DESCENDANT LEAVES (X) - h

end;
‘Type A i . '
begin ,
if a_child(X) # nil
| ~ then begin | . \
mark a_child(X) Type A; » N

mark .all other pertinent éhiidreh of X
’ Typé‘w) ‘ ' -) .

‘-end : o .
else ~ ”

if x'}s a P-node-

then begin]

" mark “h_childl{X) ahd‘-bﬁ_childzkky
Type H; | ‘ |
mark all full children-of X T§?e By

-~.mark all.other parti&l phgldrem,of X
Type W .)

;eﬁd-

else begin

o

{x is a Q-node}
~—~ ' determine P, (X) from h_child2(X);
mark all nodes in PA(x)-fype B;

- if the leftmost node in PA(X) is

~

partial

then mark the 1leftmost node in

BalX) Type Hi

G

n
,
1.
i
=)
{7,

- 289 - o - S r
i£ the rightmost node in ‘PA(X) is'
. " Pa;t%a} : ‘) Q | o
N then mark ,tge rightmost node in
- A | P, (X) Type H;O e
‘ mark all other pertinent children of
X Type W L
. T end;- .
"DESCENDAN;r_LEIX'VES(X) ;a" ’ ‘
DESCENDANT LEAVES (X) - a')
) end ‘ o . ////
A end case - o /;// -
T for each pé;tinent ch}id‘Y,of X do '
| 'BELETE (Y) 5 S PR x/ |
if FLAG AN xs
,‘. thcn delete X féam T, ‘ | K ﬁ
: _end e o
‘end I | /%z .
end DELETE; S ‘ “,/ S
o - | //
begin - D _G e ";// . ‘ _
‘,IDEﬂETE(pertinent'rpét of T,) ":?' i ‘

. end DELETE_NODES; - .

6

' The followiﬂg lemma shows that the edges- in Ei+l can be -//
") : ‘/ - (3 . / g
determined and removed from the nonplanar graph G in O(nz),/

L,

time. ’ : 3 a

. proof of

LEMMA 9. 2.
Cost of procedure JELETE_NODES is O(n?).

Proof:
Note thay/ for each node X -procedyre DELETE_NODES
traverses thfe pertinent children if X is a P-qﬁde, and all

the childfen if X is a Q-node. Thus it follows from the

mma 9.1 that the cost.of procedure DELETE_NODES

is 0(n?), » | \) 0
b v

Having made Ti reducible, we. can n@w reduce it to .

. obtain T¥ ‘using Booth and Lueker's PQ-tree reduction

algbrithm. We can then obtain the next PQ-tree Ti+1 and

repeat our pkocedures to make Ti+l reducible. Note that the

-;eductibn of all the reducible PQ-trees can be performed in

O(m+n) time if we\keep.the parent pointers for all children

of P-nodes and for the endmost children of Q-nodes. Thus in.

"Booth and Lueker's algoritﬁm,)inte;ior children of Q-nodes

in any Ti are not assigned valid parent pointers and if any

" such inﬁerior .child becomes pertinent, -then its parent

pointer will be determined during the bubble-up phase. 1In
our discussions’so fér, we héve assumed 'Egat fhe correct
parent pointer‘fOt evenj pertinedt node‘is %&ailablé ';2 we
have to detef@ine the parent pointérs of alll thé pertinent
nodes in .Ti_'bpforeg"processiﬁg. it. Booth ané\ﬁﬂ@ker!q
plénarity testing algo;ithm‘stops when it detects during the

bubbif-up phase that certaip pertinent . nodes cannot ' be

~

- 291 - g

e
assigned pargent pointers, for 'that would imply nonplanarity
of the given graph. However, in our case we would like to
proceed further to find parent pointer's,of all the "pel‘:tinent
nodes since our aim is to pl;narize the non@xla/r(graph. As
a result our bubblé-qp algorithm described . below is

different from Booth and Lueker's,

Let X be a.p;e:tinent node in Ti'— If X is a child ¢f a
P—-node or one of the endmost children"_o'ETB—node, then it
has a valid pérent pointer. On the other hand, if X is an
interior child #of a Q-node, then its parent pointer will be
empty. To find the correct parent pointer for X, we
traverse the siblings of X gom X towards the rightmost
child and obtain the parent pointer for X from that of the
rightmost child. Let Y be the parent of X in T;. If at a
later time another child 2 of Y is processed to find its
pareht pointer, then t‘t:xe a'box;e .procedure would require
traversing . the childrenﬂ of Y upfo the rightmost child and
may result in \;isiting certain nodes several times. To
avoid these unnecessary visits, when we traverse ‘the
children of Y from X to the rightmost child, we assign the
parent pointer of the rightmost child to all the nodes
traversed and store these nodes in a ql;eue called
interior queue., So when a child 2 of Y is processed, if its
parent pointer is empty, then we traverse the siblings of 2

until we find a node with a non-empty parent pointer.

Though this path compression technique makes our bubble~up

'3292-
s 3

procedure ef‘ficiehtL many non—perﬁnent children of Q-nodes
may be" assigned parent poinger. .In order to make the parent
pointer of such non-pertinent nodes empty, we process the
interiér_quex;le at the end of the bubble-up. If any node 1in
this queue is not pertinent, then its parent pointer is made

-

empty .

The efficiencies of our procedures- COMPUTEl and
DELETE NODES arise from the fact that we process orly the
' pertinent children of any P:-node. . In a PQ-tree the
pertinent children’ of a P-node may appear in any arbitrary
order and so we m‘ay have to traverse all the children of a
-node to find the pertinent children. In order to avoid'
this, we split the children of each pertinent ‘P-node .into
two gréups - one‘ group consisting of pertinent children only
and the other consisting of only non-pertinent‘ children. We.
now pre§ent our procedure BUBBLE_UP which fina the parent
pointer for all the pex:i:inent nodes in a PQ-tree and groups
the pertinent children of P-nodes together. This procedure
also cemputes the number of pertinent children as well as

the number of descendant pertinent leaves of each pertingnt

node in the PQ-tree Ti'

procedure BUBBLE__UP(T,i); ,
conment procedure BUBBLE UP determines the parent pointers
for amll pertinent nodes in T, and groups together

the pertinent children of each pertinent P-node. It

o /\/ - ‘ - =293 - .
] , - /

. . - o)
also computes the number of pertinent children and \ ,”

e number of pertinent leaves Of each .pertinent

begin ‘
{PERTINENT_LEAVES (X) denotes ‘the number of descendant

pertinent leaves of node X} . /w

e

for the leaf X corrésponding to an edge in Ejyq do

begin ,/ﬂf() ’ . .

mark X a pertineﬁt node;

PERTINENT_ LEAVES (X) := 1;
pu; X into pertinent_queue
end; -
initialige'interioq_queue empty; D e
. ROOT- PROCESSED := false; a
while péftingnq_queue is not empty and not ROOi_PROCESSED

-

i

do -
begin)
remove a node X from.the'pertineng_éueue:w«‘ i - B A
if PERTINENT LEAVES(X) = |E, ,| | C ‘ 3
- then begin .
{Xx is the pertinent Toot dfi?i}
- PERTINENT ROOT = X;
. | ROOT PROCESSED := true | i
- . B end ’ R |
| elge begin- | a
e ' . ~ {PARENT (X) denéigs the parent “of node X in T} .
- ‘ if PARENT(X) = nil - . o -

-

- 294 -

then begin
{x is an interior child of a Q-node}

v mg; traverse the siblings of X towards—the
= ‘ .
zégg; rightmost child and find the sequence X, Xp0
g X

29. cev e k

nil, 1 ¢ j <k, and ~PARENT(Xk) ¥ nil;

of nodes such that PARENT(Xj) -

for j := k-1 downto 1 do

?

begin -
-PARENT (X;)" := PARENT (X,);

put X; into the interior_qheue «
end; ‘
» | ’ PAREN'I;(X) := PARENT (X y
end LI
T else ! o ' S D

e
-

1f PARENT(X) is a P-node

- then begin

remove X from the group of non-pertinent

véhildren of PARENT (X);

put X' into the group of pertinent children

| of PARENT (X)
end;

_——{PERTINENT GHILDREN (X) denotes ,the number oOf
: INENT_ !

- p——
4 pertinent children of node X}
4 \w |
NV PERTINENT CHILDRENYPARENT (X)) t=
>, : PERT INENT_CHILDREN (EABENT (X)) + 1;
-/ PERTINENT LEAVES (PARENT (X)) := Y

- PERTINENT_ LEAVES (PARENT (X)) +

ot m
P

o
"oty

TR
sy,
T

“ 2‘95 -

PERTIRENT LEAVES (X); '
if PARENT (X). }s,‘not 'queqed
then begin/\‘\' ; ' -
0 ‘Zark PAREN}‘(X) a pertinent node; - .
put’ PARE /X) into the pertinent_gqueue
end B
. end, - L | ..
end;
. while inter ior_queue is‘ not empty do
begin ‘ o ‘.
temove a node X from interior_queue’
if X is not marked pe.ftixient , -
then PARENT (X) := nil I -
e’nci : ‘ | ’ ' -
end BUBBLE UP; - ‘ / o

o~ i

14

-

The following,lemma shows that procedure ‘BUBBLE UP has

. (3

the same time complexity as the other procedures developed

1

go far., -

LEMMA 9.3. - - o
T | , o
Procedure BUBBLE_UP requireg p(nz) time.

N } 1

Proof:

For ‘a\Pd—tree Ty ﬁhe comput(a,ti‘onal -work done by
procedure BUBBLE_UP \fox: nodes which are child.ren'of Q-nodes
1; proportionél to the numbeﬂr of'children‘of all the Q-nodes
in T;, which 'is o(n). Tl;e computat{onal work done for nodes

[. -~

<

e R

~v

*)»_

A

-

45 - 296;

which are children of P-nodes is proportional to the number

»

" of pertinent nodes in T,, which is O'(n + in-deg(i+l)). Thus

the total work required ;fo,r any 'i‘i is O(n + 'in-deg (i+l)):

Summing up this for all the PQ-trees Tir 2 <1 < n-2, wé get

" the time ‘complexity. of procedure BUBBi'..E_UP as O(m+n

o(n?. ' . o =]

-
~

Procedure COMPUTEl and DELETE: NODES require that wve

should be able to dqtefmine whether a pertinent node -in Ti
, . N

is full or partial. A pertinent node is full if the number

N

of descendant pertinent leaves of the node is equal to the

number of its.descendant leaves; otherwise it is 'par‘cial.
) , 1

Procedure BUBBLE _UP determines the number of descendant

pertinent leaves of every pertinent node in Ti" Now we

"should find a way of determining the number of descendant

lgpaves of every pertinent node in T;. Clearly each leaf has

J\"e descendant ' leaf. In Tl' the’ 'only' node which is not'a

leaf is the P-node corresponding to verex 1. Thus the
A

number of descendant leaves.of this P-/od'z—i.& the. nnmbe'r of

\

edges incident out of vertex 1 i’n G. We determine /the
~_

number of descendant leaves. of any node in Ti" 2 < i/< n-2,
T ow
from the tree Ti—l as follows. -

-

v~

o

L4

. @
Assume that the number of descepdant leaves of each

node in Ti 1 is known. During the processing ‘of Ti.q We may

delete some leaves from it to make it reducible. Note that
. . ‘ Y
procedure DELETE_NODES wupdates the number of descendant

q]) *

~

r

1&-'

"y

- 297 -

]

- leaves of the nodes in Tiq- Thus in TY., also the correct

nynber of descendant leaves for each node is known. Let Ei
= {(jl,i),,(jz,i), ey (jk,i)} be the set of edges entering
vertex i in the planagy subgraph obtained from G. 1In Ti-l

the leaves corresponding to the edges in E, appear as

~
-

children of the same node, say X.. Since these leaves are

removed from Tg_l to form 'Ii, the number of descendant -

leaves' of the nodesﬂcorresponding to the vertices jl' j2'
ooy jk' if they are present in T shogld be decreased by
.one and theﬁ number of d?scendant leaves of node X and its
ancestors in Ti shoqld'be decreased by in—deg(i). Moreover,
we construct T, from\'l“z'__l by adging a P-node corresponding
to ygrtek i with leav?s corresponding to the edges incident
out of vertex i'ing as its children. Clearlyg the number of
descendant leaves 6f-this P-node if equgl to out-deg(i) in
G;«.Since this node is’'made a child of node X, the number of

S}

degéeﬁdant leaves ofhnode X éﬂﬁ all 1its ancestors in Ti

should be ingreasgd by out-deg(i). Thus for node ¥ and for

" each one of its ancestors in T,, the net ‘increase ~in .the

L

number QEW descendant leéves'_Is_i;Gt-deg(i) - in-deg(i)).
The.fqllowing procedure performs this updating.

-

p:ocedure—EQDATE_DESCENDANTSETi); S L.

Lo

comment procedure UPDATE_DESCENDANTS .ybdates the number of

descendant leaves of each node in Tie .

J]

begin

L]

{Let E; = {(ji,iy,' (39ri) s «ves (3 ri)} be the set of

-

@

e aa

~a

N

- 298 -

[}

edges‘corresponding to the pertinent leaves in T; 1}
. » -

-~
v

for p := jl to jk do

’

if there exists the <empty P=-node X corresponding to

23

»

vertéx p in Ti . .
{DESCENDANT LEAVES (X) denotes the number of descendant
leaves of node X} . . —~

. then DESCENDANT_ LEAVES (X) := DESCENDANT LEAVES (X) - 1; -

let xlbe the leaf corresponding‘to the edge‘(jk,i);
Rl 4 . “

repeat
¥

T a

< if PARENT (X) = nil | ; e
‘then travérsé tﬁe siblings'of X towards the fightﬁost-
child uA;il the rightmost child and find PARENT(X);‘H

X :=, PARENT (X); . |
\DESCENDANT_LEAVESer’g:/,ﬁ
bé§éENDANT_;EAVES(x) + out-deg(i) - in—dég(i).
until X is the P-node corréspogding to vertex 1

v

end UPDATE_DESCENDANTS ;

’ The,(following lemma shows';he complexity of procedure
i &

UPDATE _DESCENDANTS.

-
A}

“LEMMA 9.4. - . /

=

Procedure UPDATE_DESCENDA&TS requires ,0(n2) computa-

tional work. ~ . o -

Proof:

For a T,, 2 < i < n-2, the updates for the nodes

, .o S
corresponding to 'the vertices ji} jz, ceey j; ‘require
O(in-deg(i)) time. The updates'for the other nodes may, in
the wofst case, result fn traversing all the nodes which are .
not leaves in Ti' This would require O(n) time, .The tgtal

computational work required by procedure UPDATE_DESCENDANTé

for all T,'s is therefore om+n?) = 0(n?).) Qo

Y ’ - ‘

v ¥

Now we present our'planarizatiop algorithm which uses

the procedures developed so far. This procedure’ deterq{?es
a spanning planar subgraph GP of the nonplanar graph G and

the sets Ei,'Ea, «eey E}_y of edges~to be removed from G ';o

.

obtain G
p.

procedu:e PLANARIZE(G), . ‘ 1 ‘ .

comment procedure PLANARIZE determines the set of edges E3 =
¢, E ar ceey En-l to be removed from a _nonplanar
graph G to: obtain atspanning planér subgraph Gp.
b;gin' ‘ ‘ _ | <
{DESCENDANt_UEAVES(X) denotes the number of descendant
leaves of node X} | k\\
construct the initial PQ-tree T, = Ti , ' .
DESCENDANT LEAVES (1) := out-d/g(l), |
for each leaf X corresponding to an edge in E2 do
DESCENDANT LEAVES (X) := 1; |
&Pr i1 := 2 to n-2 do
beéin

f) initialize Ei+1 to be empty,

- 300 -

construct the PQ—gree Ti from Ti-l}
* UPDATE_DESCENDANTS (T,); ’
ifc‘gr the P-node X corresp%nding to vertex ; do
DESCENDAnm_LEAQES(X) tm o@ffdeg(i);
for each leaf X correspomdiég ib an edge in Ei+1«d°
DESCENDAN;_L#Avgﬁ(xy’z- 1; X ‘ .
BUBBLE_UP (T,);) ’ . - . .
- COMPUTEL (T) ; |) 1 |
if min{h,a} for the pertinent rdat is not zero
then b;gin. r
make the pertinent.root Type H or A 'borres?opding
to the minimum‘oé h and a;

DELETE_NODES (T,)

end;

&
o . '

reduce T, to obtain TY ,
end

end PLANARIZE; , : ‘ o

p . .

\' ' N - - " i N

The complexity of procedure PLANARIZE is stated. in the

L : ’ :)
" following. - -

<

THEOREM 9.4. L Lo .

Procedure PLANARIZE determines a spanning planar

gubgﬂgph of a ‘honplanar graph G in O(nz) time and O (m+n)

space. .
. , & ‘ —~— < .) .
Proof: - S -

]

The fact that procedure PLANARIZE @etermiﬁes a spanning = '

. - 301 -

e

planar subgraph of the nonplanar graph follows from our

discussions and Theorem 9.3. ‘ 55’ ‘f}

All the procedures used in procéduré PLANARIZE 4are of
time complexity O(m+n2). The PQ-tree rgducfion procedure is
of - time complexity O(m+n). Thus procedure PLANARIZE is of
time complexity 0(m+n2) = O(nz). |

The space required b& the procedure is bouﬁded by. the
sﬁace gaqu%red to store the PQ—trees;'lwﬁlch is O (m+n).

.
N . w

Hence the theorem, 0

!

-shown in Fig. 9.10. In Figs. 9.11 to 9.19.
aifferent PQ—trées Tl ‘to Té. The [w,h,a]
numbers of the pertinent nodes in ftheée ;trees are shown
within brackets adjacgnt to the nodes in these figﬁres. Our
algorithm determines Bgw = {(2,6)}, Eg = ,{(2,8)}, and E§ =
{(2,9), (3,9)} as the sets of edges ;o be removed from G to
p%anagige it and the spanning planar subgraph Gp’is shown in
Fig. 9.20. In Fig.-9.21 we show a plaﬁar embedding of Gy
constructed usin§ our planar -embedding algorithm. From
Fig. 9.21 we can easily see that the planar subgraph
obtained is not maximally plana;,‘since thé édge (2,8) in
. Eg can be added to this embedding without affecting the
) planar}ty of_‘thé - resultant graph. Thus the spénning

subgraph determined by procedure PLANARIZE may not. be

- 302 -,

-

o
]

Figure 9.10

Nonplanar Graph G

S >
- - 303 -
T
~
| .

(1,2) (1,4) (1,6) (1,7) (1,10)

-
- e

Figure 9.11

W

T

?Q—tree Tl ’i

-

l[.]"oiol

(1,6) (1,7) (1,10)

).

N

(2,3) (2,6) (2,8) (2,9) .
F igure 9. 12
{
-PQ-treF T, = ?5
s

iyl

(3,8) (3,9)

Figure 9.13(a)

' PQ-tree T3

[

%

(3,9) (3,4) (1,4)

)

(2,6) (2,8) (2,9)

Figure 9.13(b)
PQ-tree T;

(1,6) (1.7) (1,10)

'S ' lq
N
B
N “ : T |
@ %
-~
) 2 a)[1,0,00 - . >
(3,9)
4 —
(2,6) (2,8) (2,9) (4,5) (4,8)
Figqure 9.14 .
. . B
PQ-tree T4‘= TZ |
E,;' \ #\ -
a2
o
3 . e

(2,6) (2,8) 4

/[.
(5,6) (5,8) (5,9)
" Pigure 9.15(a) .
N PQ~-tree ?5
. | «Edg}\(z,s)-is removed, E{ = {(2,6)}
‘:\l | |
- o | (1,7) (1,10)°
(3,9) (4,8) (5,6) (1,6)
i |
N
(2,8) (2,9). (5,8) (5.9) o
@ Figure 9.15(b) .
- o S PQ~tree Tg
=)
- - ¢

‘l \ .2

-«

- 307 -

N
- [1,0,0]

(1,7) (1,10)
1,0,0

(3,9) (4,8)

] L
(2,8) (2,9) (5.8) (58) (6,7) (6,9) "~
, Figure 9.l§(a)
PQ-tree 'I.‘6
S
s

N 7777

(1,10)
2 .
(3,9) (4,8) (6,9) (6,7) (1,7)
(2,8) (2,9) (5,8) (5,9)
"’ Figure 9.16 (b) ’ ,3
PQ-tree T%)

L

‘l"

(1,10)

(3.9) (4,8) / \ (6,9) /

(S

(2,8) (2,9) +(5,8) (5,9) (7,9) (7,10)

' Figure‘9.l7(a)

-~

PQ-tree T7

Edge (2,8) is removed, B} = {(2,8)}

v
z U L

(2,9) (3,9) (4,8) (5,8) 5,9) (6.9)

' (7,9) (7,10)
: ’ ~
Fﬁgure 9.17 (b)
o - PQ-trele T)

5 - 309 -
b * 14
., — — d .
\ : {5,3,2] . - <
: . _ ’ ‘ (1,10)
S | 2 (7) 10,6
S : (2,9) (3,9) (8,10)(5,9) (6,9) /' .
| L - (7,9) (7,10)
\ ' 1 ‘
o ‘ Figdre 9.18(a) :
e o) ' s
| ‘ | PQ-trée T, . N
_Edges (2,9) and .(3,9) are removed,-Eé = {(2,9), (3,97}
. A .
>
. ——
I ’ Y
, ' (8,10)(5,9) (6,9) (7,9) (7,10)
;;i; | o - Figure '9.18(b). . ‘ T
; S . | LS '_‘;___ L, ,‘ PQ-tree Ta

-

S

‘"J

a

.

o
.
"
N
3 -
R
4 -
\
~
~
11
,
I3 ,U'
.
,
» .
¥
.
B4
.
-
.
‘-
£
zx:,
‘r " L4
\ 2.
?ﬁj.. .
A‘_;'!‘, .

g
TTE
D
.
-
. .
1
1
-
4+
.
.
a L3

S
[‘,5./1.;'?,,». IS

»

W

Figure 9.20

Spanning Planar Subgra’ph.Gp

!

o

. Figure 9.2f\7

L L v \ G
Planariafgaddlng of t?e Planar Subgraph' P

[=]

Edge (2,8) can be added

3
bl

»

- 313.-

maximally planar. In the ~ next section éwe develop an

efficient algorithm which determines a maiiMpl planar

, subgraph starting with the planar subgraph determined by
Cy -

procedure PLANARIZE, .

"

9.4 A Maximal Planarization Algorithm
s

f

In this section we develop an efficient aigo;ithm to
\/‘ .

! maximally plaqarize tpe spanning planar subgraph constructed

by procedure PLANARIZE 'described in the previous section.

ANy Let G be the given nonplanar graph and Gp be *th ‘spannihg
planar subgraph con?trqcted by procedure PLANAREZE.' Let Eé

= ¢, E}, ..., Efo1 bgﬁghe sets of edges removed by procedure

PLANARIZE to obtain G_. Our inte;est'is.to add to G

P) p
. many edges from these sets as possible, without affecting

as

, the planarity of the resultant graph. We can achieve this
in one of two ways. ~ Fg :
,«.l"\‘ .) .
'One approach is to start with ’G? and@ ‘grow -its bush s
forms and tgp correspondiné PQ-trees, After.constructihg a
PQ-tree, say Ti(p)' we may add to it -as many leaves as

—~ possible representing the edges in " the corresponding set

t

~ Ein- While doing so we should ensure - that the
(v reducibility of Ti(p) is not affected. To add to T; (p) the

leaves corresponding to éﬂ% edges in Ei+1' we have to first '

identify the , 'b-nodes representing the lower nhmbered

~—

T\,

- 314 -~
. . \

vertices of these edges. It may~so hapgen that for some of
these edges such P-nodes may not be present in Ti(p). We
can overcome this problem by augmenting G by a new qgrtei
n+l and connecting this vertex to all the other vertices.
However, this method is not elegant,thoughtit‘will be very
ugeful in constructing a nice planar embedding of Gp. So we
shall not pursue this 1line of approach for maximally
planarizing G_,

P

k4

Tﬁg altern?te approach to maximally planarize Gp is to
start with G and construct its PQ-trees. After constructing
;‘ PQ-tree, say Ty, wé make it reduciple.by deleting a
minimum number of leaves repfesenting the edges 'in' Ei+1.
(Note that Ti will become reducible if all these leaves are

deleted from T;.) This can be easily done by computing the

[w,h,a] number of the pertinent nodes *n Ti. In the.

following, the leaves in T corresponding to the edges in

Ei+1 will be called the new Eg;tinent leaves of ‘1‘i and the

other pertinent leaves of Ti (corresponding to the edges

entering vertex i+l in Gp) will be called preferred leaves,

To compute the minimum number of new pertinent leaves to be

removed from T;, we may proceed as follows.
: /

-
- —

To start with we say the new pertinent leaves in Ti are

""not processed” and computé the [w,h,a] numbers of all the

-

: P ,
pertinent nodes in T,;, Note that in the following "full®

and "partial” are with respect to the graph G Let X be a

p.

-315- #

pertinent node in T{. We call X a preferred ndde if it has

some ofyv the preferred 1leaves among its descendants.
C;early, if X is full, then it is'preferred and it should be
retained 1in Ti' If X is not preferred, then it may either
be retained in the reducible T, or it may be‘.deleted alb&b

with all its descendants to make Ti reducible.

Suppose X is a partial node, Then it can have at most
two partial preferred children., First we consider the case

when X is a P~node. If X h@#s no partial preferred children,

e

‘then it can be included in the reducible T, only by making

it Type H. So in this case we derermine h_childl (X) and the
h number of X and also set h_child2(X) and a_child(xi;empty.
If 'X has exactly one partial preferredkchild, then that
preferred child has to be retained in T;. Moreover, in this

case x can be made Type H or A in a reducible T So the

partial preferred child becomes h_childl(X) and we determineh\

»
h childz(X) anQ! the h and a numbers of X. We also set
a_child (X) empty On the other hand, if X. has two partial

preferred children, then it should be the pertinent root of

»

C

the reducible Ti' So one of the partial preferred chlldren y -

of X becomes h_childl(X) and the other pertial preferred
child becomes h_child2(X). It is now easy to determine _the
a number for X. We also set a_child(X) empty and remember
" that the pertinent root is processed by setting the ‘Bpolean

¢

variable ROOT_PROCESSED to true.

-

- 316. -

-

’

" If. X is a Q-node, then all 1its" preferred pertinent
children 'should appear in one maximal consecutive s;éﬁence
of pertinent children. In this case, we traverée " the
children of'x'ffbm the leftmost child towards the rightmost
child and determine the méximal consecutive sequence P'(X)

of pertinent children of X such that

ki) P' (X) contains all the preferred children of X;

(ii) only the leftmost node and/or the rightmost node in
. Pl(X) is pantial; agd, '
}ifi) all the other nqdes in P'(X) are full.

TR

In this case X can be made Type H ohly when

'(13 P' (X) appehrs at the left end of X and the leftmost
node in "B'(X) 1is not partial. In this case Py (X) =

P'(X). . : ®
(or) | SN

"(ii) P'(X) appears at the righp‘end of X and the rightmost

node in P'(X) is not partial. 1In this 'case Pp(X) =

-

l.
1" +
=l§

o

P'(X).

‘
o

In both the above cases, we set h_childi(k) to the 1leftmost
node in P' (X) and compute the h number for X, If P'(X) does
not satisfy either of thelébove two conditions, then P, (X) =
ﬁ'KX). In this case X becomes the pertinent rdok of the

reducible T;, If P'(X) contains only one node, then the

node in P'(X) should be made Type H or A corresponding to

g

!

)

- 317 -

A

the minimum of h and a. If P'(X) is made Type A, then the
only node in P'(X) becomes a child(X). 1If P'(X) has more
than one node, then we set h child2(X) to the lﬁﬁkﬁsg\\\node
in P'(X) and compute the a number for X. We also remember

in this-case that the pertinent root is processed.

Note that some of the internal nodes in P'(X) and/or

their descendants may be non—preﬁérred leaves and all such
2

' non-preferred leaves should be deleted from T

2\\\&%11'1:oce£'.s:tng the pertinent nades of T; upto the pertinent

root\j using the above 1deas, can deternzlne the [w,h,a]l

number of the pertinent nodes in T,. This procedure is

presented below in ALGOL-like notation.

procedure COMPUTE2(T,);

comment procedure COMPUTE2 computes ‘the [w,h,a] number of
the pertinerit nodes in Ti' For each pertiqent node

X which 1is not a leaf, a_child(X), h_childl(X) and

u
h' child2(X) are also computed.

&
begin *
mark all old pertinent leaves preferred;
for each pertinent leaf X in T, do : .

begin g
put X into the queue;

i «
initialize w := 1, h := 0, and a := 0 for X

end;

- -

N

v-—-\

(
_\ - 318 -

RN
\
»

ROOQ_PROCESSED t= false; -

while the queue is not empty .and not ROOT PROCESSED do
. -

begin

remove a node X from the queue;

if X is full

iepP(X) . s

then begin

A ’ end

else

e

1= Q3

t=

if X is a P-node
then begfh

H

case number of partial preferred children of X

)
o~

of.

0: begin “son
determipe ‘h_childl(X)

. partial child of X having

max {(wi'hi)}’
i e par (X)

h_'child2(X) &= nil
~end; L e
1l: begin
h_childl(X) := the partial
child 6f X;

h_child2(X) " := the

~

which

partial

is the

preferred

child of X

-
e
B
ws

B

- 319 - \
vhaéing) ! _
max {(wi-hi)}}// :
i € Par (X)
i¥h_childl(x)-
end;
2: begin o

1 -

h_childl(}() := first partial' preferred
child of X;

& 2, “

'h_child2(x) = second partial preferred
child of X; ‘ |
ROOT_PROCESSED := true

end

end case

a_child(X) := nil;

h = Z w; - (w.,~h;) . ' :
A linh childl (X)
i € Par (X) -

a = h - (Wi-hi)
. _ i=h child2(X)

end

else begin
' {x is a Q-node} N

'éraverse the children of X from left to right

and determine the maximal\gonsecutive sequence

¢ pertinent children P'(X);

i1£f any internal node of P'(X) has a descendarﬁt

which is a non-preferred leaf

then

delete gﬁt ‘non-preferred leaf from Ti;

*

4
- 320 -
ifP'(X) = P, (X) : - 8
then begin .
ROOT_PROCESSED := true{
if P' (X) has only one hode
then | |
if a < h for the node in P' (X)
. then begin
a_child(X) ¢= .thg only node in
P (X) 3 -

a = w - (w ;a) |- .
1717 jua_chila(x)

end

else begin ‘ _
h_child2(X) :=-the only node in
P (X); |

a = w - (wi-hi)
: . i=h child2(X)

end ’ .

else begin

h_child2(X) := 1E£Fmos£ node in P'(X); "

a = w - Z (Wi-hi)
iep' (X)

£

end

end

”~

else begin

h_childl(X) := leftmost node in P'(X);

oy

h = w - Z (yii-hi)

’ ’ 1 €P' (X) : ' A

i

- 321 - \ “

end

end ! ot
/

{ PARENT (X) denotes the parent of node X in T,}
"if all the pertinent children .of/ PQ&E&T(X) are
processgé ‘ ‘ p v
then put PARENT(X) into the queue;’ |
if X is a preferred node -’ o .
then mark PARENT(X5 a prefetred;podé;

if X is the bertinent‘root

- then '
- vnoo'r_pgocnssnﬁ := true ¢ N
end - S .ﬁ ;
.end COMPUTE2; o St - . ‘6@ ,

* ' " -

The following léﬁma gives the complexity of procedure
& 4 : .

COMPUTE2Z2.

' Al

LEMMA 9.5.

'

— Procedure COMPUTE2 computes the [w,h,a] numbérs of the
-

‘ pe;tinent'nodes in all the PQ-trees in O(nz) time, .

Proof:
It is easy to see that the computational work done by
procedure COMPUTE2 1is équal to or less than that of proce-

dure COMPUTEl. Hence the proof follows'ffom Lemma 9.1. a |

. b
b .
Having computed the [w,h,a] numbers for the pertinent

o S g

-322 - S

nodes in T, we can obtain a reducible T, by traversing the

pertinent subtree top-down from the pertinent root using

procedure DELETE;NODES. Duringwgbis pioéessing somé of the

new pertinent leaves in T; may not be processed at all. "It

is easy to see tHat such pertinent leaves should be deleted

,from Ti to make it reducible and the edges corresponding to

these leaves should also be removed from the nonplanar graph

G

to obtain a maximal planar subgraph. °

Processinthhe Pthrees T2' Tys «os T

~

n-2

Y

obtain, a maximal planar subgraph of the nonplanar graph G

using:the fellowing procedure.

.’ -

procedure MAXIMAL PLANARIZE(G);

comment procedure MAXIMAL PLANARIZE determines a maximal

planar subgraph of the nonplanar graph G.

This

procedure uses the sbanning planar subgraph cbtained

by procedure PLANARIZE.

begin

a

[Determine the spanning planar subgraph}

PLANARIZE (G) ; |

{Maximally planariie the spanning planar’

construct the initial'PQrtreéth = Ti;

DESCENDANT_LEAVES(l) ¢= out-deg(l);

for é;ch leaf X corresponding to an édge
DESCESPANT}PEAVES(X) 1= 1;

for i := 2 to n-2 do °
. ‘ .4\,,% q)

/

subgraph}

in E, do

this way we

>

- 323 -

begin A
construct the PQ¥-tree.'1‘i from T{_,:
UPDATE_DESCENDANTS (T;);. ~®~

for the P-node X corresponding to vertex i do
A

“¥ESCENDANT LEAVES (X) := out-deg(i); .

for each leaf X correéponding to an edge in Ej{y do

DESCENDANT 'LEAVES (X) := 1; ‘ \ o

BUBBLE_UP (T,); -
COMPUTE2 (T) ; | ’
Af mip{h,a}'for the begtinent root is not zerq
thqubegin |
\/ make thé per;ineﬁt root Tyée H or A co:reéponding
to the miﬁim@h of h and a; |
" ' © DELETE NODES(T;);

deleie the new pettingnt leaves which are not
processed from Ty ,ma
end; .
. reduce Ti.ahd obtain TY

end

s end MAXIMAL_PLANARIZE; '

The coﬁblexityadf procedure MAXIMAL PLANARIZE is given
0 i -

‘{p the -following.
’ .

THEOREM 9.8 = o .
Procedure MAXIMAL_PLANARIZEJdetermines a maximal planar

‘subgraph of a. yonplanar graph “in 0(n?) ti&e and O (m+n)

’ [.
(-
.

.ff"‘

o

space. , . ' !

-~

Proof: .

1

The fact that procedure MAXIMAL PLANARIZE {determines a

" maximal planar sﬁbgraph foilows when we note that no edge

can be Iad@ed to the ‘resultant planar ,subgrabh without 4
: ‘-
affecting its planarity. o . : a 2 e
: - .

All the procedures used in procedure MAXIMAL_PLANA‘EZE L

[}
are of time gomplexity O(nz). The PQ-tree reductions can. be

performéd inle(m+n) time. Hence procedﬁ;e MAXIMAL

PLANARIZE
} t‘ - .
has an O(nz) time complexity. . \k* -

13

<

Regarding the space complexity, note that the space
: _ o
required by the algorithm is bounded by the space required
- -

to storeﬁthe different PQ-trees, which is O(m+n). S =

P4

i - . R ', [-
We now illustrate procedure MAXIMAL PLANARIZE on the

ﬁ;nplaﬁar gr&ph)shown in Fig. 9.10. We start with the
spanning planar, subgraph, GE; determined’ ‘by-. procpdure'
PLANARIZE, which is Qhown in'Eig. 9.20. In Figs..9.22 to
&30 we syow the differeht PQ-trees "?btaihed" during

procedure MAXIMAL PLANARIZE. In these figures, adjacent to

) eaéh‘pertinent node we show its [w,h,a] number, and the new

pertinent leqyeé as shown as triangles. From Fig. 9.26(a)

we .can see -that the edge (2,6) from Eé can be added-'to Gp

without affecting s the planarity. The maximal planar

w
L4

<&

o

- 325 -
/
1
R
0
N
: e L) |
(1,2) (1,4) (1,6) (1,7) (1,l0) ’ e
* \ 9 -
: Figure 9.22
. PQTtﬁee TI“E“Ti .
. »
- /
p 1
»r i .
L ; [1,0,0 {2
| (1,4)(1,6)(1,7) (1,10
/-
0 M ’ i
(2,3) §2,6) (2,8) (2,9)
l f
vFggure'9.23
'PQ-tree T, = T*

2 2

) ' - 326 - -
[1,0,00 (U
[1,0,0]' 2. ,
(1,4)(1,6)(1,7) (1,10)/ .
l) \ ® P e
[1-0:0] 3 ‘ '@ ' ! .

(2,6) (2,8) (2,9)

(3,4) (3,9)
’ % : . X

" Figure 9.24(a)
PQ-tree T3 | o | ‘

~

e

- Yo

L b % (1,6) (1,7) (1 10)

3,9) (3,4) (1,4) : ' .o

: (2,6) (2,8) (2,9)
| N
-Figure 9.24(b) T

! po-tree % PR N

- 327 -

4
| 2 [1.0.0]
(3,9 -

(2,6) (2,8} 12,9) (4,5) (4,8)

7
. - ~
C Figure 9.%25 :
“PQ-tree '1‘4 = frz . ; \
Y.
’ '
[y : . -
N -
4\ ' L3
' H
- - \ M

(1,6) (1,7) (1,10)

%]

FA
T e

N

\

s/ y
(1,6) 11.7) (1,10)
[1,0,0] 4)1,0,0] | -
(3,9) v '
§
5
(2,6) (2,8) (2,9)

(4,8)

< T .\

(5,6) (5,8) (5.9)

v Figure 9.26(a) , T

PQ-£ree. T

5

"Edge (2,6) can be ‘added

_Edges (2,8), (2,9) and (3,9) must be removed

Ny
e

\J

1 .

/.

 bhmd

(1,6) (2,6) (5,6)

(147) (1,10) ° e f*»
L]) .

(4,8)

\

(5,877(5,9) R SRRV

Figure 9.26(b)

PQQtree T

5:

TRt T
" -

(1,7) (1,10)
) [1,0,01 (6
| (4,8)
(6,7) (6,9) (5,8) (5,9)
 Figure 9.97(a)
o) 'PQ-t;ee TG .
(3 ’ ‘ ‘
°]
o N
. | N 1 (1.10)
S - (1,7) (6,7) (6,9) (4,8)
P |)
. L (5,8) (5,9) .
: Fig'ute’_9;27(b)'° .
- . . PQ—tﬁreeTg

L 4

- 330 -

! \ -/ \ (6.9 (a,8) & §

(7,9) (7,10) (5,8) (5,9)

. . Figure 9.28(a)
R PQ-tree T, ' T
¥ . S ' : L) '
. : ‘ - .

o~

(1,10) o | C s

P N e NN

. | ' ‘ ‘ “ | ‘ .) - ‘. r/
v S e .
“ ' *.\ ¢ o ‘ ‘E]\/ é

e [\ (6.9) (5,9) (5:8) (4,8)

' _ . S
. ©(7,9).(7,10) N
sy,) ' ‘ , . ' T N — ' P
. { Figure 9.28(b) -

~ e . PQ-trge'r; . L

<3

e

1,0,0 %

(6,9) (5,9) (8,10)

(1,9) (7,10) -

.V Figure 9.29(a)

PQ~tree '1‘8

%

{1,10)

/~>

%%

(7,10)(7,9) (s6,9) (5,9) (8,10)

Figure 9.29 (b)

8

PQ-tree T

(1,10)

- 332 -

-(7,10)(9,10)(8,10)

‘ Figure 9.30"

PQ~tree T9

————————

VAN

- 333 -

Sﬁbgraph‘ determined by procedyre MAXIMAL_PLANARIZE is shtwn
in Fig. 9.31 anqhgig.‘9.32 shows a planar embedding of‘ thié
graph. From Fig. 9.32 we c;n easily verify that the
subgraph deﬁe}mined by procedure MAXIMAL_PLANAR;ZE is a

L]

maximal planar subgraph of the nonplanar graph'G shown . in

_Fig. 9.10.

3

It is easy tb see that any biconnected spanning planér
subgraph, of the nonplanar graph can be used as the.starﬁing

gtéph for procedure MAXIMAL PLANARIZE, However,:we use the

- gspanning planar subgraph G, detlermined by procedure

P
PLANARIZE as the starting graph because while obtaining G

p
we have already attempted“ to include as many edges as
possible and so procedure MAXIMAL PLANARIZE will be required
to add only a small number of edges to Gp to determine the

maximal planar subgraph.

From Theorem 9.5 it is «clear that tii/\O(nz) "time
procedure MAXIMAL PLANARIZE s computationélly suéerior fo
both Chiba, Nishioka and Shirakawa's algorithm [64] and
Ozawa énd Takahashi's algorithm (49] . Moreover, our
algorithm can easily b; modified to determine a maximal
planar subgraph of a nonplanar graph G such that the maximal
planar subgraph contains a‘-desired set of edges of G. .

4

We have implemented procedure MAXIMAL PLANARIZE' in

" PASCAL and tested it on several nonplanar graphs using a CDC

S S,

o

” ,)

- 334 -~

- Figure 9.31

_ Maximal Planar Subgraph

- Figure 9.32

Piénar Embedding of the Maximal Planar Subgraph

R . —
S

- 336 -
'Cyber %70: In Table 9.1 we show the number qf edges temoysd
I Q by procedure PLANARIZE and the - number of edges added by
) p?écééure MAXIMAL_PLANARI?E fbr some of the test graphs. It
Y ¢an ye‘éeen from Table 9.1 that pgoceé%re MAXIMAQ_PLANAQIZE
adds only a very small number of edges to the spanning
| planar ‘subgraph.-) Fiéglly, in Tabie é.z we show the

' gxecqtion'time required to find a maximal plan;r subgr;ph;

for these'gﬁpphsr«

2

A

R

.,.,._._w,%,_H,ﬂ.,_,‘v;._.,,_
VAR LT g @0 2Tyl - -
fye, S R

& [v

7 .

38

v - B

o : -

i .

P

337 -

Table 9.1 . -

-

W

Number.éf-EdQQS-Rémoved and Number of Edges Added

¢ @
i St L +
| . ®
RN , Number of Number of
Number | Number | edges removed ‘edges added
Graph - of- of by procedure by procedure
vertices| edges PLANARIZE MAXIMAL_
PLANARIZE y
+= + - T S— - + - —+
. L r | s
G, 3 10 35 21 3
o Gy 20 760 2@ 0
P
3 | - 30 95 42 5
G4 40 125 39 -~ 2
Gs 50 150 47 4
95 GQV ‘180:‘ 53 ‘ 3 .
G, 70 225 [57 0
Gg 80 250 78 ¢ -7
69 ‘ 90 %go - .103“ 5
G0 100 350 124 8
. : &
o o e s o o0 e wnfe m i - e L L U Por - o - - - - - - - e
. .) A
. ' A
(. N o -
}; ‘
% “

N

- 338 -

Pable 9.

2

b

77\~ Execution Time
R A fomm————— -+
Number Number |.Execution time
Graph of of - [. 1in secands
vertices| edges . ‘
+‘-‘- ----- -‘-+-—:—---—’-;+-—;———--+ ——————————— --—-—+
. | |
T qf\ m‘\\10 35 . 0.263
' . .
G, 20 60 ' 0.672
0 ° <
Gy 30, 95 P.976
. G, 40 . 125 1.321
Gg 50 150 1.985 .
' Gg 60 ° 180 3.126
G- .70 1225 4.795
Gg . 80 250 5.013
Gg 80 300 6.792 '
b ———— —H=mm et e +
k 1
oL
¢ * ‘.
" | '
?d < ‘ , .
\' t

- 339 -

¥ , . CHAPTER 10
SUMMARY AND PROBLEMS
g ' FOR FURTHER INVESTIGATION .
In this chapter we summarize-the main reselts of the

thesis &nd point out a few problems for further study.

4

o 10.1 Summary .
\
In Part I“‘(Chapters 2 to 6) of the thesis a detailed
study of the computational complexity of Char's spanning
. tree enumeration algorithm has been carriedldut. -A brief

* oy

;/? rev%ew of some of the well-known spanning tree enumeration -
‘ algorithms has-'béZn given in Chaptef 2. We have given in
Chapter 3 a description of Char's algorithm and a detailed

. 8 analysis of this algorithm for general grapﬂs. ZSpeci-
fically, an ‘expression for the number of sequenceé - tree

seqﬁences and- nonf}gee sequences - geﬁeratgd by Char's
algorithm has been deriyed, Qnd based §n this expressibn,
;ertain properti%s of the algoriéﬁm Have‘been established.
The two typeg of*computations perfof&ed by tﬁé“algorithm are
identified and the costs of-these compuiatioﬁé have been
» obtained. Using a crude bound for the‘ total number of
4 L sequences generated,’we have shown that Char'§ algorithm is
of‘complexity‘O(n3t), where t is the ngﬁbér of spanning

§ . . —
trees, Two heuristics have been proposed for selecting the

4 : T Y : @ n

.

.

“

-

N

[o

- 340 -
. ’ ' - A * -
initial spanning tree th be used in 'the algorithWm. These

heuristics aim at reducing the number of non-tree sequences
N B ~ -
generated. We have given an implementation of the algoriéhm

using path compressigﬁ whi€h helps reduce the number of
4 P ok
e .
comparisons made by the algorithm. We have also shown that

use of- path compression doés not affect the complekity of
the algorithm as obtained before. We have concluded

Chapter 3 with 'our: computational experiences with Char's

A 4

algorithm when ihplemented using the heuristick and piath

. . ,’/ M h
compression. P

/

Analysis of Char's algorithm for certain special graphs
has been.carriéd oﬁf in Egapte; 4, A class ’6f graphs for
whiéh‘u\%he algo:ithm‘ is of complexity O(nt) has been
identifie&i_The complet; géaph,‘the ladder and thé wheel

o

belong toX\ is class. For these graphs, we have obtained

expres ion functions of n) fo‘ﬂbthe total number of

ces generated by CPar's algorithm. We have also shown

J

that in the cases of the ladder’ and the wheel, the algorithm
,requires, on the average, at most 4 computational steps to

generate a spanning tree,

[

: |
An efficient implementation of ‘Char's algorithm has

been given 1in Chapter .5. We have shown that this modified
algorithm, called algorithm MOD-CHAR, 1is of complexity
O(ant) which is o(nzt) in the worst case. Classes of

graphs for which algorithm MOD-CHAR is of compleiity O(nt)

-~

- 341 -

have been identified. These classes are more genera&l than

the oné¥considered in Chapter 4. We hi\le shown that in the
case of a large complete graph (n > 8), algorithm MOD-CHAR
requires,.on the average, at most 10 computational steps per.
spanning ktree Y generated. We have also given our computa-.

tional experiences with.algorithm MOD-CHAR and observed that

. Char's algorithm 1is superior to algorithm MOD-CHAR though

the‘latter has a better asymptotic complexity.
In Chapter 6, the final chapter of Part I, a compu-
tational evaludtion of Char's algorithm in comparison to the
n .
algorithm by Gabow and Myers has been given. To, make the

evaluation independent of ihplementation(%eqails, the number

of basic opekayions performed by these algorithms has been

used as a measure of efficiency of the algorithms. Again we

have observed that Char's afﬁs}ithm is éuperidr to both
algorithm\\MOD-CHAR and Gabow and Myers"élgorithm. In most
of the c;ses, Ch&r's‘algorithm’is five times as fast as
Gabow and Myers' algorithm. | \

In ;PartmII " (Chapters 7 to 9) of the thesis we have
developed efficient algorithms for obtaining "a -planar
embedding of a planar &graph and for obtaining/a maximal

A, Il

planar subgraph of a nonplanar grapg; These algorithms are
based on Lempel, Even, . and péderbaum“stplanarity\testing
alggrithm (the LEC algorithm) and its implementation using

PQ:treés. To make tﬁe discussions in. Part II self-

’ . i,

»

- 342 -

-

contained, a description of the LEC algorith;w\and its

PQ-tree implementati?n have been given in Chapter 7. ¢

B
1]

e
The planar embedding procedure developed in Chapter 8

starts with an st-numbering of the given planar graph and
involves placing the vertices at different vertical and
horizontal levé}s, sa that’in the final embedding no two
vertiées apbear in the same vertical or horizontal levels,
The vertical levels of the qerticés are ‘dictatgd Py their
st-numbers. .The order of the vertices as we scan the final
embedding from left to right is called vertex order. The
anticlockwise order in which edges from iéwer numbered
vertices enter a vertex in the final planar embedding is
called the- T'-order of that vertex. In Chapter 8 first an
O(n) algorithm to obtain the 7'-orders of all the vertices
has been developed. Then we have designed an O(n) algorithm
to obtain Ythe vertéi”order. This latter aigorifhm uses the
T'-orders of the vertices. An interesting propegty of the
vertex order so obtained has been established. The vértex
order and the st-numbers fix the positions of the vertices
in the planar embedding. Finally, we have described a
simple proceduré to draw by hand the ?dges " without

crossovers,

0) |
In Chapter 9, the problem of determining a maximal
planar subgraph of a nonplanar graph has been considered.

First we have shown that Ozawa and Takahashi's planarization

et
“\

~\

- 343 -

algofithm does not, 1in general, obtain a maximal planar

subgraph. ~ However, we have established that this algorithm

determines a maximal planar subgraph in the case of a
complete graph. The new maximal planarization algorithm
described in this chapter is in two phases. 1In the first

] /
phase a spanning planar subgraph of the given nonplanar

. graph is dgtermined. We have developed formulas to

determine the minimum number of edges thag need to be

removed at each step in the first phase. In the second

S
;phase edges ag& added to the spanning planar subgraph so

that at each step in this phase, a maximum number of edges
are added to determine the maximal planar subgraph. We have
-

shown that the complexity of this maximal planarization

algorithm is O(nz). Finally, results relating to the

.maximal planarization algorithm have been tabulated.

L]

4

10.2 Problems for Further ‘Investigation
Our aﬁghysis in Part I has shown that Char's algorithm
¢can be implemented with complexity O(ant), which is O(nzt)
in the worst case. We may recall that Gabow‘and Myers'
algorithm has O(nt) é;mpleiity. We believe that the poor
complexity of Char's algorithm in relation to-Gabow and
Myers' algorithm is more a résult of our inability to obtain

a bounq for Hn which is tighter than the one, namely H < n,

we have used. To conclusively establish the superiority of

< y ‘

- 344 -

Char's]aléorithm, we have to investigaée H further.

:One 1line of approach is to show that all biconnected
graphs with m}himum degree ‘greater than or equal' to three
‘admit the M-numbering defined in Section 5.2. Such a result
will prove that Char's algorithm is of ‘complexity O(nt}),
since this class of graphs is genera;lenough as far as éhe

spanning tree enumeration algorithms are concerned.

We can see that H is in fact the ratio of t and the
sum of t(k)’s. . Thus H_ dan be expressed in terms of the
da;erminant and the principal minors of the matrix AAt,~
where A is a reduced incidence matrix of the graph. Thus
andther line of approach is to s;udy Hgi using this

+

" . determinant approach.

7

Consider an n-vertex biconnected resistance network N
consisting of only one ohm resistances. If the vertices of
N are numbered a; in Char'g algorithm, then d.-1 gé the
‘driving point admittance of N across the terminals',(n,n-l).
A third line of approach‘to prove the superiority of Char's

algorithm is to show that n/dn_1 converges to a constant for

‘large values of n.

T /
We believe that studies along ;hé above lines might be
fruitful, : ‘ g

- 345 - -

As regards the planar embedding problem, when we set
out to ;tudy this problem, our aim was to obtain an
embedding in which all the edges are straight-line segments.
%geh an embeddinéyis possible if the graph has no pabhallel
ééges or self-loops. Our choice of Lempel, Even, and
Cederbaum's planafity testing algorithm to study this
problem was motivated by two considerations. One was‘ that
no published. work to obtain a planar embedding which uses
this algorithm'was available. The other was that this
algorithm' t;sts for planarity by building a planar
embedding, and the 'way it 1is achieved appears more
appropriate for constructing an‘smbedding with straight~line
segments. Howevef,'we have not been able to achieve our
ggal of obtaining a straight-line embedding. It seemé that
augmenting the graph by an additional vertex, as mentioned
in Section 9.4, might helb in getting more information about
the relative locations of the vertices on the outside window
of a block. An examination of Eﬁ;-embedding procedure
described in Chapter 8 will show that in our embedding
almost all the édges, except those entering a vertex, say i,
from lower numbered cut vertices in the corresponding bush
form Bi-l' can be drawn as straight-line segmenté. Thus it
seems that for this study, using the idea of augmentation
may be helpful, since it might provide more information

[t

about the vertex order.

\

[1]

[2]

(3]

[4]

[5]

}6]

[7]

(8]

- 346 -

REFERENCES X

R.G. Busacker ‘and T.L. Saaty, "Finite Graphs arid
Networks: An Introduction with Applications", (Book)
McGraw-Hill, New York, 1965.

N. Deo, -"Graph Theory with Applié;tions to Engineering
~and Computer Science", (Book) Prentice-Hall, Englewood
Cliffs, New Jersey, 197;.

M.N.S. Swamy and K. Thdlasiraman, "Graphs, Networks,
and Algorithms", (Book) Wiley-Interscience, New York,
1951. ¥ |

W.K. Cheﬁ, "Applied Graph Theory: Graphs and Electrical
Networks", (Book) North-Holland Publishing Company, New
York, 1971. |

S. Bedrosian, "Application of Linear éraphs to Multi;
level Maser Analysis",” Journal of the *Franklin
Institute, Vol. 274, No. 4, 278-283 (October 1962).
é.A. Bari, "Chromatic Polynomials and the Interna% 'and
Extefna; Activities of Tutte", in Grgpﬁ Theory and
Related Topfcs, J(Ed.) J.A. Bondy and U.S.R. Murty,
Academic Press, New York, 1979, pp. 41-52.

A. Satyanarayaga and J.N. Hagstrom, "A New Algorithm
fér- the Reliability Analysis , of Multi-Terminal
Net‘:.works"', IEEE Trans. Reliability, Vol. R-30, No. 4,
325=-334 (October 1981).

S.M. Chase, "Analysis of Alqori?hms for Finding All

Spanning Trees of a Graph", Repor£ No. 401, Department

[9]

[10]

(11]

[12]

113

[14]

(18]

’ Fo= 347 -
of Computer Science, University of ;;iinois,. Urbana,

October 1970.

Y. Kajitani, "A Tree Listing Algorithm whose Computa-

tional Time 1is Asymptotically 0", IEEE Conference’

Record of the Fourteenth Asilomar Conference on
Circuits, Systemg and Computers, 51-54 (Novembei 1980).
G.J. Minty, "A Simple Algorithm for Listing All the
Trees of a Graph", IEEE Trans. Circuit Theory,
‘Vol. CT-12, No. 1, 120 (March 1965).

R.C. Read and R.E. Tarjan, "Bounds on Backtrack
Algorithms for Listing Cydles, Paths and Spanning
Trees", Networks, Vol. 5, No. 3, 237-252 (July 1975).
H.N. Gabow and E.W. Myers, "Finding All Spanning Trees
of Directed and Undirected Graphs", SIAM Journal on
Computing, Vol. 7, No. 3, 280-287 (August 1978).

J.P. Qhar, "Generatioﬁ of Trees,’TQo—Trees and Storage
of Mggiegﬁ Forests", IEEE Trans. Circuit Theory,
Vol. Cf-ls, No. 3, 228-238 (September 1968).

R, Jayakumar, "Analysis and Study of a Spanning Tfee
Enumerétion Algorithm", M,S. Thesis, Department of
Computer Science, Indian Institute of Technology,
Madras, India, 1980.

R. Jayakumar and K. Thulasiraman, "Analysis of a

3

"spanning Tree Enumeration Algorithm"™, in Combinatorics

and Graph Theory, Springef-Verlag Lecture Notes in
Mathematics, (E4.) S.B. Rao, No. 885, 1981,

ppP. 284-289.

!

3
F‘ 1

(16]

- 348: ’

R. Jayakumaég K. Thulasiraman and M.,N.S, Swamy,

"Cdmplexity of , Computation of a Spanning Tree

. Enumeration Algorithm", IEEE Trans., Circuits and

[(17]

(18]

[19]

[20]

Systems, Vol. CAS-31, No. 10, 853-860 (October 1984).
M.N.S. SQamy and K. Thulasiraman, "A Theorem 1in the
Theory of Determinants and the Number of Spanning Trees
of a Graph", Canadian Electrical Engineering Journal,
Vol. 8, No. 4, 147-152 (October 1983).

G. Tinhofer, "On the Generation of Randum Graphs with
Given Properties and Known Distribution", in - "Graphs,
Data Structures, Algorithms”, Proceedings of the
Workshop on Graph-theoretic Concepts in Computer
Science, (E4.) Ménfréd Nagl and H.J. Schneider, Carl

Hanser Verlag, 1979, pp. 265-297.

R.E. Tarjan, "Applications of Path Compression on
Balanced Trees", J. ACM, Vol.\26, No. 4, .690-715
(October\l979). '

A.J.W. Hilton, "The Number of Spanning Trees of

" Labelled Wheels, Fans, and Baskets", in Combinatorics,

[21]

[22]

published by Inst. Math. Appl., 1972, pp. 203-206.

B.R. Myers, "Number of Trees in a Cascade of 2-Port
Networks", IEEE Trans. Circuit Theory,‘ vol, CT-14,
No. 3, 284-290 (September 1967). | /

N.K. Bose, R. Feick and F.K. Sun, "General Solution t;

the Spanning Tree Enumeration Problem in Multigraph
Wheels", IEEE Trans. Cicuit Theory, Vol. CT-20, No. 1,

69-71 (January 1973).

v ————————

[24]

(25]

[26]

[27]

(28]

[29]

(30]

[31]

[32]

- 349 -

" (23] J. Hopcroft and R. Tarjan, "A Vlogv Algorithm ®for

Isomorphism of Triconnected Planar Graphs", J. Comput.
Syst. Sci., Vol. 7, No. 3, 323-331 (June 1973).
J. Hopcroft and J.K. Wong, "Linear Time Algorithmg for
Isomorphism of Planar Graphs", Proc. Sixth Annual ACM
Symposium on Theory of Computing, 172-184 (1974). |
F. Hadlock, "Finding a Maximum éut in a Planar Graph in
Polynomial Time", SIAM J. Comput., Vol. 4, No. 3,<
221-225 (September 1975).
M.R. Garey and D.S. Johnson, "Computers and Intract-
ability: A Guide to the Theory of NP-completeness” -
(Book),.Freeman, San Francisco, 1979.
C. Kuratowski, "Sur le probi!he'desfcofbes gauches en
topologie”™, Fundamenta Mathematicae, Vol. 15, 271-283
(1930) . ' |
P. Mei and -N. Gibbs, "A Planarity AlgofNthm based on
the Kuratowski Theorem", Proc. AFIPS 1970 SJCC,
Vol. 36, AFIPS Pééss, Montvale, New Jersey, pp. 91-95.
H. Whitney, "Non~separable and Planar Graphs", Trans.
Am. Math. Society, Vol. 33, 339-362 (1932).
S..ﬁacLane, "A Structural Characterizatfon of Planar
Combinatorial Graphs", Duke. Math J., Vol. 3, 460-472.
(September 1937).
L. Auslander and S.V. Parter, "On imbedding Graphs in
the Plane™, J. v%&h' and Mech., Vol. 10, 517-523 (May
1961) . B

-

A.J. Goldsgtein, "An Efficient and ‘ Constructive

v

2

[33])

- 350 -

Algorithm for:‘Testing whether a Graph can be Embedded
in a Plane", Graph,and Combinatorics :éonf., Contract
No. NONR 1858-(21), Office of Naval Research Logistics
Proj., Dept. of Math., Princeton University, May 16-18,,

1963. : f’

R.W. Shirey, "Implementation and Analysjis of Efficient

' ~Graph Planarity Testing Algorithms”, Ph.D. Thesis,

[34]

[35]

[36]

[37]

[38]

[39]

University of Wisconsin,‘June 1969.

J. Hopcroft and R. Tarjan, "Planarity Testing in VlogVv
Steps", 'Extended Abstract, Proc. IFIP Cong. 1971:
Foundations of Ihfqrmation Proce;¥ing} Ljubljapa,
Fugoslavia, August 1971, North-Holland Publishing Co.,
Amsterdam, pp. 18-22, ° '

J. Hopcroft and R. Tarjan, "Efficient _ Planarity
Testidg", J. Ass. Coméut. Mach., vol. 21, No. 4,
549-568 (October 1974). .

E.h. Reiqgold, Jd. Nieverdelt and N, Deo, "Combinatorial
Algotithmsi‘Theory and Practice"™ (Book), Prentice-ﬂall,'
Englewobd Cliffs, New Jersey, 1977.

G. Demoucron, Y. Malgrange and R. Pertuiset, "Graphes
planaires: Reconnaissance et construction de
representations planaires toéologiques','Rev. Francaise
de Rech. Operationelle, Vol. 8, 33-47 (1964).

F. Rubin, "An Improved Algorithm for Testing the
Plaﬁarityk of a Graph", IEEE Trans. on Comphter,
Vol. C-~24, No. 2, 113-121 (February 1975).\

G.J. Fisher and O. Wing, 'Céﬂéﬁter Recégﬁition and

n

- 351)~ .

<

Extraction of Planar Graphs from the Incidence Matrix",

IEEE Trans. on Circuit Theory, Vol. CT-13, No.. 2,
"154-163 (June™1966) .

(40] L. Mondshein, 'Cémbinatorial Orderihgs and Embedding of
Graphs®, Tech. Note 1971-35, BEincoln Lab., "M.I.T.,
August 1971.

)[41] A, Lémpe ’ ,S‘ Even:and I. Cederbaum, "An Algorithm for
Planarit Testing of Graphs", Theory of Graphs:
Ipternatioﬁal ' Symposium: Rome, July,. 1966,
P. Ros®nstiehl (E4.), Gordgn and Breach, hew York;
1967, pp. 215-232, | -,

[42] K.S. Booth »and G.S. Lueﬁer, "festiqg for/ the
Consecutive Ones Propérty, Intefval Graphg[\‘and Graph
Planarity Usiﬁg PO-tree Algorithms", J. éf Comp. and

ef’,\N + Syst. Scienced, Vol. 13, No. 3, 335-379 (Pcember

1976) . | _ |

[43] J. Bruno, K. Steiglitz and L. Weinberg, "A New
Planarity Test Based on 3-Connectivity"”, IEEE Trané. on

Circuit Theory, Vol. CT-17,JN0. 2) 197-206 (May 1970).
[44] S. Evep,, "Graph Algorithms" (Book), Computer Science

;, Press, Potg*ac,-uaryland, 1979. ‘
'A [45] S. Even and R.E. Tarjan, fComputing an ét-numbering",

Th. Comp. Sci., Vol. 2, 339-344 (1976).

[46] J. ébert, "st-Ordering the Vertices of ‘Biconnected
G:apﬁs', Computing, Vol. 30, 19-33 (1983). oL

i47] S. Fujiéhige, *An Efficient Algorithm for :Solﬁingu‘the

% . Graph-realization Problem by means of PQ-trees",.

- 352 = -
.. ’ 8
Proc. of 1979 1Int, Symp. bpé Circuits dand -Systems,
pp. 1012-1015.%, ' ‘
[48] T. Ohtsuki and H. Mori, "On Minimal Aughmentation of a
Graph to Obtain an Inte;val Graph;, J. Comput, and~
. . Sys. Sciences, ‘Vol, 22, No. 1, 60-97 (1981). l
[49] T. Ozawa and H. Takahashi; "A Graph-Planarization
) ‘ Algorithm and its Application to ;a;dom Graphs", in
/Gnﬁph Theory and Algorithms, Springer-Verlag Lecture
Notés)in Computer Science, Vol. 108, 1981, pp. 95-107.
[SOL\S. Masuda, f. Kashiwabara and T. Fujisawa, hA, Ldyo;t.
. Problem on Single Layer Printed Circuit Board", IECE of
. t Japan, Tech. Rep. CAS 8%-19,'1981, pPp. 93-100.
f51] K. Nakajimﬁ and M. Sun, "On an Efficient Impiementation
Oof a Planarity Testing Algorithm for a Graph with Local
Constraints", Proc, Twentieﬁh Annual Allerton
X . Coﬁference on' Communication, Controlf\;hd-Compgting,
*+ 1982, pp. 656-661.

S .- :
[52] W.T. Tutte, "How to Draw a Graph", Proc. London

. Math. Soc., Vol. 13, No. 3,/52;-768 (April 1963). ‘
(53] L. Woo, ."An Algorithm for Straight-line BepresentaGion
- of_Simple Planar Géaphs',-\Journal"of the F}ahklin
‘ Institute, Vo;t 287, No. 3;'197-206 (March 1969).
[54] R. Koppe, "Automatische Abbildung eines Planaren
n Graphen in einen Streckengraphen , Computing, Vol. 10,
1<:—:\\3117 -333 (1972).

[55] O. Wing, “On Draw1ng a Planar . Graph®™, IEEE Trans.

Circuit Theory, Vol. CT-13, No. 1, 112-114 (March

" Nonplanar Graphs",

P \\\
. ‘ A L
. 1966). ' ~ |

&

W. MAly, 'Aﬁ Algorltﬁh for Obtgininé the Planar Drawing
of a Planar Graph", Proc. IEEE Int. Symp. Circdits and
Systems, 1955, ép. 83-87. -

A.K. Hope, fA P%anar Graph Drawing Prbgram"$ Software f'
Practice and Expefience, Vol. 1, 83-91 (197{).. \

R: Tarjan, ‘An/Efficient Planarity Algorithm", STAN-CS
[4

244-71, ‘Gombuter. Science Department, Stanford
University, No%ggber 1971. WS
(59] S.G. Williamson, "Embedding Graphs in ¢he Plane -

o

A}éori%bgic .Aspects”, in Combinatorial Mathematig?}:
Optimaf 'Designs and their Applicatiops, Annalsvgéf;’
Discrete “ Mathematics, ’(Ed.) J. Sriv&stava, No. 6,.
.ﬁorth-Holléndu Publishing bompany; Néw York, 198‘0@:r
. pp. 349-384. . f o
[60] 'W.M. Brehaut, "dn Planaf' Graphs a&d the Plainer

Doctoral dissertation, University of

: WateiiSOi Séptembe; 1974, -
[613 W.M. Brehaut, ‘"Efficieng Blaﬁar Embedding;, Proc. 7—-th
. §?ﬂth-§aster; Confererce on Coﬁbinatorics,: Grapﬁ
; Theory, and Combuting, 1976,'pp. 177-190. ,”?k -
(62]

K. Pgéedach,; "Criterion and elgofithms faf'Détermrna-

‘tion of Bipartfte Subgraphs and- their Apbfication to
, .

e, . . . ™ |
' ﬁlanarization of Graphs", in Graphen—&prachﬁn_ und®

Verlag, “3573:

Algbq}tbmen‘ahf Graphen, Carl Hanser
l. * / .

pp.
[63] M. Marek-sidowika;

L d

K4

175-183. G i

(

"Planarization Algorithm for Integ-

£ L4
——y

o Voo) . Ts
@ t. v
PR .~ .
. .

L3
R

-~

LA

\

| K - 354 =
‘ s R Y . ' ° -

rated Circuits Engingering",APr!oc. 1978 IEﬁE Interna-

tional_Symposium on Circuits and Systems, pp. 919-923.

[64] *':E. Chiba, 1I. Nishioka, and I, Shirakawq,-’"kn Algofithm

I’

.
ll
.
A ¢ A
. 3 —
» L
! ’ 4
-
) A -
- .
. .
.
£
»
3 - N
-
. ’ '
) ;
. —
' d |
P} .
B >
.
- ! o
-
I
+ O
‘ 1
¥
V4 .)
.
N <
. v
. . -
» . -
. M «
. 3 v
.
4 i
. ’
*
.
‘
*
P I .
M
~
o . ¢
. . » T — - .)
a
I N
- ’
t o
‘/ ¢ s -
. AN
By * 1 (
s “"a
" . 4] 3 .,
N 4,00 - H
- ,
- ¢
. - ' . '
N L] ° N l
»
! .‘2
» . C— ~
. - . B -
N N
. »y . ; .
’ . .
. ‘ * - . :
v ‘e ‘
» i R
- N ’ 3 i) f
- . R . - .
< L - . (1Y
iy o 3 'd
> + ’ ‘ 3 .
’ * °
, v ‘
. = . "
.) * - - .
. : - * j
N B
) ¥ — > ¢ L]
. -
‘e e¥ .

of Maximal Planarization of Graphs", Proc. 1979 IEEE

tnternational Symposium “on, Circuits

pp. 649-652. : | - : K

and "S_ys tems,

- l“
~a

