F T ——

e hationale

National Library Biblioth
l*' of Canada du Canada
Cailadian Theses Service  Service des thases canadiennes
Ottawa, Canada
K1A ON4
NOTICE

The quality of this microform is heavily dependent upon the
quality of the original thesis submitted for microfiiming.
Every etfont has been made to ensure the highest quality of
reproduction possible.

if pages are missing, contact the university which granted
the degree.

Some pages may have indistinct print e.~cially if the
original pages were typed with a poor typewner ribbon or
if the university sent us an inferior photocopy.

Reproduction in full or in part of this microform is governed
by the Canadian Copyright Act, R.S.C. 1970, ¢. C-30, and
subsequent amendments.

NL-399 {r.88/04) ¢

AVIS

La qualité de cette microforme dépend grandement de la
qualité de la thése snumise au microfilmage. Nous avons
tout fait pour assurer une qualité supérieure de reproduc-
tion.

Sl manque des page. veuillez communiquer avec
'université qui a contéré le grade.

l.a qualité d'impression de certaines pages peut laisser a
désirer, surtout si les pages originales ont été dactylogra-
phiées a l'aide d'un ruban usé ou si l'université nous a fait
parvenir une photocopie de qualité inférieure.

La reproduction, méme partielle, de cette microforme est
soumise a la Loi canadienne sur le droit d'auteur, SRC
1970, c. C-30, et ses amendements subséquents.

. Canada




Design and Implementation
of a Communications Subsystem
for the Homogeneous Multiprocessor

Walter Prager

A Thesis
in
The Department
of

Computer Science

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science at
Concordia University
Montreal, Quebec, Canada

May 1989

© Walter Prager, 1989



i+

Bibliothéque nationale

National Library
du Canada

of Canada

Canadian Theses Service

Ottawa, Canada
K1A ON4

The author has granted an irrevocable non-
exclusive licence allowing the National Library
of Canada to reproduce, loan, distribute or sell
copies of his/her thesis by any means and in
any form or format, making this thesis available
to interested persons.

The author retains ownership of the copyright
in his/her thesis. Neither the thesis nor
substantial extracts from it may be printed or
otherwise reproduced without his/her per-
mission.

Service des théses canadiennes

L'auteur a accordé une licence irrévocable et
non exclusive permettant a la Bibliothéque
nationale du Canada de reproduire, préter,
distribuer ou vendre des copies de sa thése
de quelque maniére et sous quelque forme
que ce soit pour mettre des exemplaires de
cette thése a la disposition des personnes
intéressées.

L’auteur conserve la propriété du droit d'auteur
qui protege sa thése. Ni la thése ni des extraits
substantieis de celle-ci ne doivent étre
imprimés ou autrement reproduits sans son
autorisation.

ISBN 0-315-51358-6

Canadi




ABSTRACT

Design and Implementation
of a Communications Subsystem
for the Homogeneous Multiprocessor.

Walter Prager

This thesis describes the design and implementation of
the communication layer of an operating system Kkernel for
the Homogeneous Multiprocessor (HM). The HM has a linear-
array topology, with interprocess communications achieved
through a high-speed, parallel bus as well as by the sharing
of memory between nearest neighbours. The communications
layer design provides a general framework which allows easy
implementation of needed protocols suitable for the many
intended uses of the multiprocessor, and simple mechanisms
which provide low-overhead access to the various protocol
layers. An implementation of the framework and the link-

level protocol has been completed.

- ijii -




ACKNOWLEDGEMENTS

The author wishes to express the deepest gratitude to
his supervisor, Dr. J. W. Atwood, without whose careful
supervision, invaluable help, and inexhaustible patience
this work would not have been possible.

This project was supported in part by a Natural
Sciences and Engineering Research Council of Canada (NSERC)
Operating Grant, by an NSERC Postgraduate Scholarship, and
by the Quebec Ministere de 1’Education, de la Science, et de

la Technologie, through its Action Structurante program.

- iv -



Dedicated to my wife

Terry Ann




Chapter

Chapter

Chapter

Chapter
1.
2.
3.
4.

5.

Table of Contents

I. Introduction...c.vveeeeeccacescsescsssanasscaal

II. The Homogeneous Multiprocessor.......cc..c.c..6

The Homogeneous Multiprocessor Architecture........7

The Homogeneous Multiprocessor Nucleus............12

Features to Support Communications....... cesesees.18
III. Communication ProtoCOlS...cceeeessessnsosssasasl
Protocol Hierarchies.......eceeeecencossas cee e enesel?

The ISO/0SI Reference Model.......cceeeervnsveres.24

Protocol Families.....eeeeeeseeccaseneccscscesasesll
Project RequirementsS.......eeveeveecesacerossens «..32
IV. Design of the Communications Subsystem...... .36
Communication ProtoCols......ceecceeccccccscacanns 36

Relationship to the Memory Management Subsystem...40

Structure of the Communications Subsystem..... e...44
Channel Devices.........'..ll.....l.........-C.IY .45
A Proposed Shared Memory Protocol...... cevssoscsesa49

- vi -



Chapter V. Unix STREAMS....eecesesnansas

Chapter

Chapter

Overview...... cteessececnnes e

STREAMS MoAuleS. cesteecccacenncanse

Kernel Data Structures.....cceecececencanss

Buffer Management........oo0veeeee
Scheduling.....ceveeeeenececcennns
Flow Control..cceeeeenes cetanassan

POlling......--...--.......-......

....-..0-51

cssvevessB3

o.oaocooo56

00000000058

I - 1 -

..... eese62

UtilitiesS.e et eeneereneeneeeeeneoassneencess ceeesseB3

MultipleXing...oeoeeveensesonsenaass

VI. Implementation of Turing Plus STREAMS........ 68

The Environment. ....eeeeeeeeeeeenoeencens

Ooverview of Turing Plus STREAMS...

Data StrucCturesS. «.cveeeseescconcneaes

Buffer Allocation...eeeeeeeeeeenns

Scheduling......... ... it eseressc ettt 75

Utilities...vveevnnese e e s e eeeeaneneneos

VII. Overview and Conclusions.....

OV TV iBW. ¢ c v vt e cerooocensonoesnosasacsnconssenenns 88

Future WOoXK. ..o e eeteeoncecsoncensosss

CONClUSIONS .t e v oscesosnsonsnanses

cesesesscscease a2

Bibliography...-......-........--..--..-............-..--.94

- vii -




Figure
Figure
Figure
Figure

Figure

Figure

Figure

1:

2:

3:

List of Figures.

The Homogeneous Multiprocessor Architecture......8
Structure of the HM~Nucleus......cceeeceeeeeess.15
The ISO/0SI Reference Model..:eceeeseveccesaneese2b
Comparing Transport Protocol ClasseS............28

Approximate Correspondence Between the

Various Network Hierarchies........cececeeeeees.30
STREAMS Modularity......... cee e erare s ceeae..54
The T+ STREAMS Directory Structure...... Y

- viii -



Appendix
Appendix
Appendix
Appendix
Appendix
Appendix
Appendix

Appendix

List of Appendices.

The Switch Closing Algorithm.........ccceeee..97

The ISO/0SI Network Hierarchy.........eeece...99

STREAMS Data Structures........... creseeeseesl02
STREAMS Messade TYPeS..ceceeeteccssanccns ese..104
STREAMS Utilities..ieeviieiiiieecrneneneeanes .109
Turing Plus STREAMS Buffer Manager......... ..118
Turing Plus STRLAMS Scheduler........cceeee... 122
Class I LLC Protocol Module......ocooveveene .125

- ix -




CHAPTER I.

Introduction.

Due to the technological advances of the last half of
cthis century modern-day computers can deliver more proces-
sing power than ever though* possible, yet at a fraction of
the cost of their predecessors. Super computers, like the
Cray 1, can perform several million flcoating-point opera-
tions per second (MFLOPS). Yet as the processors increased
in size and complexity, so did the user community. Compu-
ters are now being used by more people for more varied
applications than ever before. Demand on performance has
never been greater.

While a large mainframe can accommodat: most applica-
tions satisfactorily, its cost can be rather prohibitive.
Also, in many applications the full power of a mainframe
(such as floating-point arithmetic or complicated I/0 pro-
cessing) is not needed, while its high speed is still requi-
red. Using a large computer in such cases results in
wasting much of its processing power.

The advent of the microprocessor and personal computers
changed the situation tremendously. It now became possible
to provide each user with a dedicated (albeit) small machine
at a relatively small cost, when compared with the price of
a large mainframe. As microprocessors became more powerful
and less expensive (a trend which is still continuing), it

became apparent that the combined power of many smaller



machines could match that of a larger mainframe at a lower
overall c¢ost.

A better cost-efficiency is not the only reason for
connecting processors together. GCome applications, such as
the conireol of the life support-system on a space shuttle,
require a fault-tolerance which just cannot be achieved on a
uniprocessor, however fast. Other applications, such as
weather forecasting or flight simulation require the proces-
sing to be done in parallel--a feature tha+ ~.n only be
simulated with a single processing element. Network-type
connections allow sharing of expensive and relatively
rarely-used resources, such as printers. Diskless work-
station configurations sharing a file server provide users
with a large central file system as well as a dedicated
processor.

The concept of connecting many small processors to
achieve greater performance is used even in the construction
of mainframe computers. Pipelined architectures and vector
processors use an interconnection of simple processing
elements to derive incredible overall power.

While physical connectivity 1lets data be transferred
between processors, software support is required to allow
this feature to be used as a tool for process cooperation.
In fact, the success or failure of a multiprocessor to
achieve desired processing power depends almost as much on
the design of the communication subsystem as it does on its

architecture. The communication layer can be viewed as a




bridge between the hardware interconnection and the require-
ments of the intended applications. Some of the functions
of this layer could include process addressing, error detec-
tion and correction, pre.erving message boundaries and so
on.

Multiple-processor architectures can be classified
according to several schemes. One classification is based
on the tyve of data and instruction streams used--single or
multiple. A typical uniprocessor would be classified as a
Single Instruction stream/Single Data stream (SISD) machine.
A vector processor would fall under the Single Instruction
stream/Multiple Data stream (SIMD) designation. A true
"multiprocessor"--a machine capable of carrying out several
related or unrelated tasks simultaneously--would then be
termed a Multiple Instruction stream/Multiple Data stream
(MIMD) architecture.

Another method of classifying multiple processor archi-
tectures is by the degree of coupling between the component
elements. The degree of coupling is related to both the
physical connections between the processors and the logical
relationship between the components. For example, an array-
processor is a very-tightly coupled architecture, since the
processors cooperate at the instruction level. A Wide Area
Network (WAN) or a resource-sharing environment would be
considered loosely-coupled. If any ccoperation is present
it is probably at the user level. 1In addition, the communi-

cation medium in WANs is slow in comparison with other forms



of communication, and the distances between the processors
are generally large. A Local Area Network (LAN) where some
task-distribution is present (e.g., Remote Procedure Calls-~

RPC) would fall somewhere in between the first two examples.

As far as the methods of communication are concerned,
they are 1largely determined by the intended application.
Close cooperation between the processors would require that
the supporting communication medium to be reasonably fast.
The closer the cooperation, the faster the communication
speed required. Thus satellite transmissions and other WANs
generally indicate a loosely-coupled system, while shared
memory and common-bus interconnections would suggest a
tightiy-coupled architecture.

The Homogeneous Multiprocessor, {Dimo83, Dimo87, Li87a,
Li87b], is an architecture currently being developed by Dr.
Nikitas Dimopoulos. It is a "true" multiprocessor in the
sense that it is an MIMD architecture, as defined above.
The multiprocessor is structured as a linear array of iden-
tical processing elements (hence its name) with communi-
cations supported by a high~speed LAN as well as memory
sharing between neighboring processors. The architecture is
intended to support general-purpose applications, although
it should be noted that it is especially well suited to
support pipeline algorithms commonly used in pattern-recog-
nition, digital system processing and neural network simula-

tiomn.




The overall goal of the current project was to design
and implement the Communication Subsystem for the operating
system of the Homougeneous Multiprocessor. Such a subsystem
has to utilize the available resources (shared memory, fast
network) to provide an efficient and orderly data-transfer
facility between the component processors. This system has
to be efficient enough to accommodate the requirements of
time-dependent applications (such as real-time processing of
speech or image data), yet flexible enough to allow imple-
mentation of various higher-level protocols needed to sup-
port such applications as distributed databases, as well as
the more immediate task of supplying file-transfer and
loading facilities to the multiprocessor.

The rest of this report is organized as follows.
Chapter II discusses the structure of the Homogeneous
Multiprocessor, both its architecture and the operating
system kernel implemented for it. Chapter III presents
various existing communication protocols in the context of
the requirements of the project. Chapter IV presents the
design of the Communications Subsystem. Chapter V describes
STREAMS--a communication subsystem for the Unixl operating
system--which became the chosen method for implementation.
Chapter VI contains a detailed description of the implemen-
tation environment and the implementation itself. Chapter

VII presents an overview and conclusions of the Thesis.

lynix is a trademark of Bell Laboratories.

-5 =



CHAPTER II.

The Homogeneous Multiprocessor.

This chapter presents the structure of the Homogeneous
Multiprocessor. Readers who are already familiar with this
subject may proceed to the following chapter. A brief
overview is given in the next paragraph for those who wish
only a general introduction of the topic or to refresh
already-known information.

The Homogeneous Multiprocessor [Dimo83, Dimo85, Dimo87,
Lis7a, Li87b] is a tightly-coupled architecture composed of
a linear array of processors. The processors are connected
by a high-speed parallel LAN, and each has the ability to
access the memories of its nearest neighbors. The latter
feature is made possible by dynamically fusing two 1local
busses into an "extended" bus, by the closing of an interve-
ning switch. The operating system kernel for the multi-
processor--the HM-Nucleus--provides interprocess communi-
cation support to user programs in the form of Shared
Regions, Global Memory, Remote Procedure Calls, Pipes, User
Channels, and Remote Signalling. The Shared Regions provide
a method for a two or three-way sharing of data, as well as
the mechanisms necessary for mutually exclusive access to

the shared data. Global Memory emulates a globally-visible




memory. Pipes support one-to-one or broadcast mode communi-

cation between processesl.

1. The Homogeneous Multiprocessor Architecture.

As shown in Figure 1, the topology of ‘“he HM is a
linear array of processors. A complete system is composed
of kK (k > 3) processors, k memory modules, k+1 interbus
switches and the H-Network--a fast, parallel LAN. Logically
the structure is divided into two parts: the Homogeneous

Multiprocessor Proper and the H-Network.

The Homogeneous Multiprocessor Proper.

The HM Proper comprises the processing elements, memory
modules and interbus switches.

The processors used are standard, off-the-shelf
Motorola MC68000 microprocessors, and operate independently
from each other. Memory access is controlled by the MC68451
memory management unit (MMU), and the access to the H-Net-
work is controlled by the Network Station, designated as HS
in Figure 1. Each processor, Pj, owns its local memory
module, M;j, which is accessed via the local bus, bj. It
also has exclusive use of the network station, HSj, which
controls the access to the H-Network.

In addition to the H-Network, each processor can access

the memory modules of the neighbors to its immediate left

1p pipe in the HM-Nucleus denotes a communication
method similar in concept to Unix pipes, but extended to
cover interprocessor communications.

-7 -



ainjoayoly Jossasoadinyy snosuabowoH ayl I 2inbi4

EAR YRR

welofisanbaysng ©fH  UONBISHIOMIBN :SH

ebeiolgiaiseN S jeuiusa 4 sngeco]  :q

Jejloauod youms DS pugyoeg -39 puzwoil4 34

youmssng s ainpopn Aloway Jossacold :d
N oM . cE«lv N
oS ) 0s oS

N

}10M19N-H




and richt via the "extended bus" feature. An extended bus
is created when local busses bj and bj;) are dynamically
fused by the closing of the interbus switch, sj. The clo-
sing of the switch is triggered by a request from one of the
processors having access to it (Pj or Pj,;), and regulated
by a special algorithm which prevents deadlock and ensures
liveness. The algorithm prevents two adjacent switches from
closing at the same time, while ensuring that any request to
close a switch is granted within a finite period of time.
The algorithm is presented in Appendix A.

After the physical closing of the switch, the extended
bus exists for the duration of the request. After this time
(typically one memory cycle) the switch is opened and the
extended bus decomposes into its component local busses.

The address space of each processor is divided into
four parts: local memory; left and right shared memories;
and local unshared memory. An access to the left (or right)
shared memory is mapped onto a corresponding address in the
memory module of the left (or right) neighbor and carried
out via the extended bus. Typically, a remote memory access
takes two to three times as long as a local one, depending
on the frequency of access. This is due to the tine taken
by the closing of the switches (both the execution of the
algorithm and the physical closing), which increases if
there is contention with the processor adjacent to the

switch being closed.



The H-Network.

While the extended bus mechanism allows direct com-
munication only between adjacent processors (a multi-hop
protocol would allow messages to propagate via the shared
memory between non-neighboring processors), the H-Network is
well suited for communications between distant processors as
well as for broadcasting. It can also support data transfer
to and from a back- or front-end processor, which will be
used for program development, initial loading and, eventual-
ly, for file system support and swapping.

The H-Network is a high-speed parallel IAN capable of
14 megabyte (Mb) data transfer rates. It is similar to the
Ethernet in structure, but uses word-parallel data transfer
as well as separate access and control lines.

The H-Network uses the Carrier Sense Multiple Access
(CSMA) protocol to control network acquisition. At any time
only one station--the transmitting station--is deemed to be
the network master. All other stations can sense the pre-
sence of a carrier signal on the line, indicating that a
transmission is in progress, and will refrain from using the
network until the operation has completed.

With this scheme it is still possible for two or more
stations to find the line "free" and attempt to send their
data at almost the same time. The common solution is to use
a Ccllision Detection (CSMA/CD) method with various back-off
intervals to resolve contention. Taking Ethernet as an

example, a transmitting station will "listen" to the line

- 10 -




while it is transmitting, making sure that the bits being
transmitted correspond to the ones it is sending. If a
discrepancy is detected, then a collision wirh another
station’s packet must have occurred. Each station that
detects a collision stops transmitting and backs off or
refrains from using the network for a short period of time
before attempting to retransmit. The back-off interval can
be randomly picked, fixed, or dynamically adjusted, depe:.-
ding on the volume and nature of traffic on the network.

The CSMA/CD scheme works well when the average packet
size 1is large. In this case the aborted portion of the
packet is a small fraction of the overall data. However if
packets are smaller in size a larger fraction of the data
will have to be retransmitted and network efficiency will
decrease.

The H-Network uses a variant of CSMA, called Collision
Free (CSMA/CF) [Wang85]. This method works well for both
small and large packets. A station manifests its need to
transmit by placing a request on the Contention Channel. It
is possible to differentiate between the presence of one or
several requests on this channel and a station will not
place its request on an already requested channel. If after
a short interval, called the Contention Interval, the sta-
tion detects only one request on the channel, it is assured
that it will be the only one to be granted access. If more
than one request is present, the station withdraws its

request and backs off, much as in the above case.

- 11 -



The contention channel in the H-Network is one line,
and it is separate from the data transmission path. This
implies that while a transmission is taking place the remai-
ning stations can contend for the use of the network when it
becomes free. Due to the small contention interval there is
a high probability that the next network master will be
determined by the time the current transmission is termi-
nated. As the name of the scheme suggests, collisions are
thus avoided and network efficiency is increased to its

maximum.

2. The Homogeneous Multiprocessor Nucleus.

As in many present distributed systems, the design pro-
posed by Li [Li87a] for the operating system for the Homoge-
neous Multiprocessor (the HM-Nucleus), revolves around the
concept of a kernel. Simply put, a kernel provides the
essential services of an operating system, extending the
bare hardware with runtime support for high-level language
constructs. These include such services as process and
memory management, interprocess communication primitives,
low-level I/O and others. Other features of the operating
syvstem, such as swapping, the file system and program deve-
lopment tools can then be built on top of the kernel, using
the services it provides. The designers of the Homogeneous
Multiprocessor use the term "nucleus" to denote kernel, and
reserve the word "kernel" to denote the innermost layer of

the nucleus.

- 12 -



The HM-Nucleus is structured in a hierarchical fashion,
as proposed by Brown, Denning and Tichy [Brow84]. A layered
structure has the advantages of information hiding and data
encapsulation, as well as enforcing a modular design. This
allows various layers to be modified and new ones to be
added without requiring changes in the other layers.

Brown et al. proposed fifteen levels of abstraction in
their model operating system. From bottom to top they are:
electronic circuits, instruction set, procedures, inter-
rupts, primitive processes, local secondary store, virtual
memory, capabilities, communications, file system, devices,
stream I/0, user processes, directories and shell. The
first eight layers, from electronic circuits to capabili-
ties, are referred to as the single-machine levels. Ser-
vices provided by these layers never cCross over processor
boundaries. The remaining layers are called the multiple-
machine levels as the functions in these layers may affect
remote machines in a multiprocessor environment.

The design of the HM-Nucleus deviates somewhat from
this order, mainly because Brown’s model gave a user’s view
of the operating system structure, while the HM-nucleus
reflects the structure from the point of view of the imple-
mentation. 1In addition, not every node has local secondary
store, and two methods of interprocessor communication are
present, which forces communications (levels 4-6) to be
defined much closer to the hardware than in Brown’s model.

Also, since the HM-Nucleus is not a complete opzrating

- 13 -



system, some levels are not included at all. The following
paragraphs briafly describe the structure of the HM-Nucleus.
A more theo: .Jgh description can be found in [Li87a].

The HM-Nucleus consists of eleven layers (Figure 2).
They are: Kernel, Physical Memory Manager, Device Manage-
ment, Capabilities, Universal Datagram Services, Remote
Procedure Calls, Communications, Virtual Memory Manager,
File Management, Table, and User Interface.

The first five layers correspond, roughly, to the
single-machine layers (1-8) of Brown’s model. The Kernel
provides extensions to the hardware such as process switch-
ing, interrupt handling and access to the Memory Management
Unit.

The Device Management layer extends +the Kernel by
providing software drivers for the peripheral devices
attached to the processors, and for channels, which use the
shared memory as a communications medium. In most nodes the
only peripheral will be the H-Network station controller,
but some specialized nodes will also contai.: access to disk
drives and serial 1line interfaces (possibly to outside
networks). The Kernel and Device layers map onto levels 1-5
of Brown’s model.

The Physical Memory Manager uses the Buddy algorithm to
allocate both local and shared memory to user processes and
the communication layers. This layer also manages the

Memory Manager Unit (MMU) Descriptors, which perform virtual

- 14 -



User Interface

Tables

File Management

Virtual Memory Manager

Communications

Remote Procedure Calls

User Datagram Services

-

Capabilities

Device Management

Physical Memory Manager

)

Kernel
-~ _ ¥

MMU/MPU/switches/
' H-Network/memory

Figure 2. The Structure of the HM-Nucleus

- 15 -




to physical memory mapping and low-level capability
checking.

The Capabilities layer provides mechanisms to create
and maintain capabilities, which consist of a type, a
processcr number, a sequence number and a pointer to the
information concerning the object described by that capabi-
lity.

The next three layers--the Universal Datagram Services
(UDs), Remote Procedure CcCalls (RPC), and Communications
(COM)--compose the Interprocess Communication Subsystem of
the HM-Nucleus.

The UDS 1layer provides a datagram—-oriented ser ice
between processes on different machines. In most standard
protocols, datagrams are short (their size is constrained by
the maximum frame size of the physical media), and no
routing is performed. However, the Universal Datagram
Service (UDS) as described in ([Panz85] supports uniform
access to the various communication media accessible by the
system, and permits each datagram to be of essentially any
size. This is especially relevant in the HM because of the
variety of communication paths (H-Network, Shared Memory,
Serial lines).

RPC is a higher level protocol built on top of the
datagram service. Remote procedure calls are the typical
mode of communication in a client/server environment and are
suitable for implementing file transfer protocols between

the multiprocessor and a front- or back-end processor. The

- 16 -




RPC layer alsc serves as the interface between the single
and multiple machine abstractions.

The COM layer provides communication between user
processes, in the form of Pipes, User Channels and a Remote
Signalling mechanism. A pipe provides stream-oriented
communication on a process-to-process or broadcast basis.
The data are transmitted via the H-Net, or via memory
buffcrs that are shared between adjacent processors. Chan-
nels allow processes on up to three neighboring machines to
exchange a small buffer. The remote signalling mechanism
permits a processor Pj to interrupt processors Pij-2, Pj-1.
Pi+1, and Pj,p.

As the word "channel" is used in [Lig87a] to connote
both this channel and the Device Management layer channel
the terms "user channel® and "channel device" will be used
where the distinction is not clear from th2 context.

The next layer--the Virtual Memory Manager--supports
the abstractions of virtual memory space, Shared Regions for
user processes, and Global Memory. The communication and
synchronization required to implement the latter two abs-
tractions must be provided by the Communications Subsystem.
The VMM will eventually include routines t» implement swap-
ping by using the UDS over the H-Network.

The File Management layer will implement a hierarchical
file system based on that of Unix. Branches of the tree
will reside in nodes having a local disk. Other nodes will

route their file system requests to these server nodes.

- 17 -



The Table layer, at present, consists only of tables
which map symbolic names to capabilities. The tables are
not replicated, defining only the cmpabilities owned by a
process on the local node.

Portions of the Nucleus have been implemented in the
Concurrent Euclid (CZ) language. The Kkernel for this
nucleus was based on the Tunis kernel. Tunis is a Unix-like
operating system implemented in CE, and it provides the

runtime support for CE primitives.

3. Features to Support Communications.

As stated previously, the H-Network has a structure
similar to that of the Ethernet. The basic unit of data
transfer is a packet, which can be addressed to an indi-
vidual network station or sent in broadcast mode. The
length of the packet is limited by the controller hardware
(the present implementation allows a 128 byte packet, inclu-
ding all header and trailer overhead). This means that the
UDS layer will have to incorporate code to handle fragm .a-
tion and additional (prccess) addressing to support an
interprocess datagram service.

Communication using the H-Network does not require any
original features from the operating system or from the
hardware. Due to its similarity to the Ethernet, a driver
for the H-Network could be developed relatively easily,
using an existing driver as a model. The IEEE 802.3 stan-

dard (see chapter III) or the Ethernet protocol can be used

-.18—




as the Physical level protocol with few, if any, modifica-
tions. This has the advantage that a driver for an actual

Ethernet controller could be introduced with minimal effort.

Communication using the shared memo>-y, however, is not
as straightforward. The hardware which implements the
switch closing algorithm is a custom design [Sega88] and no
standards exist for communicating via shared—-memory connec-
tions. The following paragraphs outline some of the fea-
tures of the HM-Nucleus that were proposed by Li [Li87b], to
support shared memory communications. Some slightly diffe-
rent proposals will be mentioned in later chapters.

In support of the shared memory transfers, the Device
layer implements "channels"2. Briefly, a channel device is
a small buffer whose location is fixed at start-up time and
well known to one of the neighboring processors. Separate
right and left channel devices are allocated to transfer
short messages via the shared memory.

Virtual channels are defined to support additional
addressing. User processes do not use these virtual chan-
nels directly; the additional addressing would be analogous
to the process addressing in the UDS layer. The channel
devices will be used to implement the synchronization
required to establish Shared Regions as well as in support

of the UDS layer using shared memory transfer. Typically

2 70 resolve the ambiguity noted previously, these
channels will be called channel devices.

- 19 -



ol

TIRFF Y

this would be accomplished by a UDS process passing the
address of a datagram (or fragment) through a virtual chan-
nel to a peer process on an adjacent machine.

Special interrupts are implemented in the Kernel to
"poke" a neighbor when new information has been placed into
the channel device; after reading the information the recei-
ver then clears the channel device, allowing the sender to
transmit any additional information.

A hybrid channel-packet has also been defined which
causes the recipient to poke its neighbor. This can be used
to support messages passed through shared memory from pro-
cessor P;j to processor Pj;5 (or Pj_j) with processor Pj;q
(or Pj_3) being the recipient of the hybrid packet. This is
required for correct operation of the algorithms controlling
access to Shared Regions. A more thorough treatment of this

topic can be found in section 4.1.2 of [Li87b].

- 20 -




CHAPTER III.

Communication Protocols.

As mentioned previously, one of the most important
aspects in the design of any multiple processor system is
the area of interprocessor and interprocess communications.
Without a way for machines to communicate with each other
there can be no cooperation and therefore no benefit in the
interconnection. Similarly, if the method of communication
is inefficient, it will hinder the performance of the
overall system and, in the worst case, will slow down rather
than speed up the execution of an application.

In order for interprocess communications to be effi-
cient three basic factors must first be considered, both
separately and in relation to each other. At the "lowest"
level is the hardware portion of the communication system--
the actual medium and controller hardware. Efficiency at
this level depends not only on the raw speed of the medium
put also on its reliability and on any special features
offered by the controller (large packet size, error recovery
and correction and so on). At the other end is the actual
algorithm used in the application. There are many ways to
split a 1large problem into several smaller parts, each
requiring different communication support. The choice of a
distributed algorithm can be instrumental in achieving the

desired efficiency level.

- 21 -



The last factor to be considered lies, logically, in
between hardware and algorithms, and acts as a bridge or
interface between the two. Like the hardware, it provides
certain services, and like algorithms it enforces rules and
guidelines for communications. This feature is commonly
referred to as a Communications Protocol, and it can be as
varied as the other two factors considered above. Many
protocols and protocol families (described later) have been
defined and many new ona2s are under investigation. [Lately
there has been much work done on tools to simplify protocol
creation and verification. A somewhat slower develcpment
has been the thrust toward standardization. This chapter
presents the concept of protocol hierarchies and describes
one of the most common ones in existence--the International
Standards Organization (ISO) Reference Model for Open
Systems Interconnection (OSI). The notion of protocol
families is defined and several existing protocols and
protocol families are presented. To conclude the chapter,
the requirements of the project in relation to communication

protocols are discussed.

1. Protocol Hierarchies.

The task of transferring data between processes on
different machines involves many intermediate steps. A
multitude of problems have to be dealt with, such as error
correction, fragmentation and routing, to name just a few.

As in the case of operating systems, the designers of net-

- 22 =




working systems have found it appropriate to structure the
design in a hierarchical fashion. The overall complexity of
the task is thus distributed among several relatively simple
steps. Functions are grouped together or separated, accor-
ding to the service they provide. As in the layered opera-
ting system design of the previous chapter, each layer
provides services to be used by the layer above.

In a hierarchical communications protocol the user’s
data are passed down between layers, each performing a
certain function. After the data reaches the remote
machine, this process is reversed: the data are passed up
through the layers, each layer "undoing" what its peer had
done on the sending machine. The end result is that the
receiving process on the remote machine receives the same
information that was sent by the sending process.

The same can be said about every level of the hierar-
chy. The information that is passed down from layer n on the
sending machine is identical to the information sent up to
layer n on the receiving side. Thus it is said that there
is wvirtual communication going on between peer protocol
levels. The lowest layer, which performs the actual trans-
fer of data over the medium, communicates with its peer
level directly, since there are no levels beneath it.

There are many ways of grouping the functions of a
network into protocol layers. The only feature that is
common to all is that the physical data transfer is done at

the lowest level, while the interface to the user is done at

_23_



the highest. This is analogous to the hierarchical opera-
ting system structure, where the lowest layer is the hard-
ware, and the highest layer implements the shell--or user

interface.

2. The ISO/0SI Reference Model.

One of the best known communication protocol hierar-
chies is the ISO Reference Model for Open System Intercon-
nections (0SI). This model (Figure 3) is composed of seven
levels--from the Physical layer to the Application layer.
Appendix B briefly outlines the 1levels in terms of the
services for which each is responsible.

As with the layered operating system design each level
implements services that are used by the 1levels above.
Unlike the operating systems example, however, the OSI
reference model is not a functional hierarchy. This means
that the services of a lower level are available only to the
layer directly above it. Once user data has entered some
level it must go through every level down to the Physical
layer--there can be no short cuts.

Each level implements a protocol by which it communi-
cates with its peer level on the receiving side. 1In general
these protocols imply the addition of some overhead to the
data (in the form of headers and/or trailers) as they pass
through each layer. On the receiving side this process is

reversed, each layer stripping off the overhead pertaining

- 24 -



[9POW 20UBI9§3Y ISO/OSI @Yl "€ ainbid

SO
d 1SOH ( diI diI ) V 1SOH
g | eoshyg | =] eoishyy |dmm—l eosiyy | _mo_MEm 2
aweld | jyurjeeq |- | durereqg | q | yuneeqg | | Xul] eleg 9
4
M {000104d am:ﬂzm fewsiy| H H
v '
19)0ed | YIOMISN |- ‘| YIOMIBN | | syiomiaN | | JIOMISN ] 0
i N < ] _
- Aiepunog 1sugns uoieaIuNwWwWo?) [ odsumr .
abessa | HO mw N |020101d Hodsuels | T
v v
abesssiy | uoisseg |- "| uolsseg e
- |020)0id UOISSaS _—
uonejuasald| - -juonejuassid
sbessapy da ﬁ d |00010.1d Uoiejuasald H ¢
aoeualU|
abessap | uoneoyddy | - - | voneolddy L

|020}j01d uonedddy
abueyoxa
Em: JO awepN 19/e




to that level only, before passing the data upward. In this
fashion each level on the receiving end receives the same
unit of data that was passed from its peer 1level at the
sending side. Thus a virtual communication between peer
levels is established, signified by the dotted lines in the
diagram. Communication between the lowest levels is direct
over the communication medium, and not virtual, which is
shown by the solid line in Figure 3.

The lower three layers together make up the internet-
working subsystem of the hierarchy. If a message has to
cross a network boundary it will go through special network
stations called "gateways". The box in between the lower
three layers in Figure 3 represents crossing-over between
networks through gateway nodes. The gateways only use the
bottom three layers of the protocol hierarchy as they are
only concerned with passing the message to the correct
network.

The goal of the reference model is to subdivide commu-
nications into workable layers, so as to reduce the overall
complexity of the problem. The division into layers follows
five main principles as outlined in [Tane8l1]. One: a layer
should be created where a different level of abstraction is
needed. Two: each layer should perform a well-defined
function. Three: the function of each layer should be
chosen with an eye toward defining internationally standar-
dized protocols. Four: the layer boundaries should be

chosen to minimize the information flow across the inter-

- 26 -




faces. Five: the number of layers should be large enough
that distinct functions need not be thrown together in the
same layer out of necessity, and small enough that the
architecture does not become unwieldy.

The reference model is just that-—a reference. It does
not correspond to any specific network implementation, nor
do most network hierarchies map directly onto the model. 1In
fact, the exact definition of each layer is clearly under-
stood to be a '"grey-area", which is exemplified by the fact
that 0SI has defined five classes of Transport Layer proto-
cols [Pisc86). The various classes, TPy through TP, provide
the same service to the Session Layer, but each have dif-
ferent functionality, depending on the type of service pro-
vided by the Network Layer. Class 0 assumes a completely
reliable Network service, and is not required to implement
functions such as error recovery, flow control or out-of-
sequence data, to name a few. Class 4, on the other hand,
assumes that the underlying network is unreliable and imple-
wents all of the above (and other) functions. The various
Transport Protocol classes are summarized in Figure 4.

The reason for this non-standard behaviour from a stan-
dards organization is the understanding that not all
applications need the full services a network can provide.
For example, speech or image applications do not need the
extensive error correction required in file transfer proto-

cols, so they should not be restricted by the time overhead



sasse|’) 0201014 Hodsuel] Buiedwo) " ainbij

snad. paidnuo)
SNAdL P2IopIOSIN

sSNddl 1so1
snNad. paedldng
:woi} A1I3A023Y pue uol}23lag
Buixaidiyny
[onuo) moj4 noldxy
Jajsues] ejeq paupadxy

A1an02ay 10113

uonoun4

- 28 -~



incurred by this feature. An actual implementation may also
combine the services of several layers into one protocol--
this would only 1limit the application’s access to the
various levels. Also, some hardware allows for features of
higher layers to be omitted. Taking shared memory as an
example, correction and error-detection is not vital because
of the inherent reliability of memory access. It can also
be argued that given a clever memory allocation scheme, the
shared memory-basec communication will not require fragmen-
tation and reassembly to be implemented.

As mentioned earlier, the IS0/0SI model is not the only
existing network structure. Other network architectures
include proprietary architectures such as IBM’s SNA (Systems
Network Architecture) and DEC’s DECNET, as well as the
ARPANET network and, more recently, the DoD architecture
from the Department of Defense. The DoD architecture has
seven layers, like the ISO model. The difference is in the
Network layer, which DoD has split into Network and Inter-
network sublayers, and the Presentation and Session layers
which, in the DoD architecture, are combined into one level,
called the Utility layer. Differences such as these are, in
effect, cosmetic. They imply a slight variation in the
division of communication functions into layers, rather than
differences in the functions themselves. The approximate
correspondence between the ISO/0SI layers and those of DoD
and the other architectures mentioned above is summarized in

Figure 5.

- 29 =



S3I1YDIeIdIH }IOMIBN SNOUBA
ayl uaamlaq aouapuodsano) ajewixoiddy -G ainbi4

|edisAud jeaishud [ea1sAud leaisAyd |eaisAyd 1
|oJluoD [oJJUoD
Mg 0 By o 3ur ejeq 3ury eleq 2
YIOMISN e
IOMIaN
HOOSUBIL | 100 yied | uoneunsaa | uomisu-sau
0} 80IN0S
A podsuel| podsuei| 14
MIOMISN |OUOD 1SOY-1SOH
UOISSILUSURI |
(suop) [o)uo) (8uoN) uoISSag G
MOJ} BJEQ
Aian
Sa0IM8S VN did IBudL uoNEUaSaId g
uoljeoyddy
lasn pu3 lasn uoijeolddy uoneoddy l
13INO3AA VNS 1INVdHY aoa (013 19he

- 30 -



3. Protocol Families.

As mentioned above, each layer in the reference model
communicates with its peer through a protocol intended for
that 1level. Each protocol presents an interface to the
layer above it by which the services of that layer can be
accessed. Unless the user application is prepared to access
the network via the Physical layer, several protocol layers
will have to be impiemented in order to present the services
of the network to the users. Several protocols, implemen-
ting various levels of the hierarchy, which are designed to
interface with each other, are szid to be a protocol family.

The concept of a protocol family is needed because the
0SI reference model, or any such model, does not enforce any
restrictions on the design c¢f protocols. Even if a protocol
maps directly onto one (or more) of the model’s levels, that
does not imply that another proto.. which maps onto the
next level of the hierarchy will be able to interface with
it correctly. This is because the protocols specify only
the peer-to-peer interactions, and 1leave the interface
between layers as an implementation-defined detail.

Several protocol families exist. TCP/IP is a protocol
family used in the US Internet which implements the services
of the Transport and Network layers. TCP (Transport Control
Protocol) implements the services of the Transport layer and
interfaces with IP (Internetworking Protocol)--which imple-

ments the services of the Network layer.

- 3] -



The IEEE 802 family of protocols Eomprises the 802.2
Link level protocol and several Physical level protocols
(802.3, 802.4, 802.5). The specifications ensure that the
Link-level protocol is compatible with any of the Physical-
level protocols.

The X.25 recommendation specifies protocols for the
bottom three layers of the ISO model. It can be used to
support TCP/IP, which means that the Network layer’s func-
tions are distributed between IP and the top protocol of
X.25. In the DoD framework these would map onto the Inter-

network and the Network layers respectively.

4. Project Requirements.

Several current multiprocessors and network architec-
tures were examined in terms of the communication subsystems
of the operating systems implemented. These included the
Sprite project [Welc86, Oust87], the Newcastle Connection
[Brow82, Panz85], the Cm* and Cmmp architectures from Carne-
gie-Mellon university and the operating systems designed for
them (StarOS ([Jone79)], Medusa ([Oust80], Hydra ([Wulf74)),
Roscoe [S0lo079], Locus [Pope8l] and V [Cher84, Chers8s].
Some were clearly netwcrks rather than multiprocessors,
(Newcastle Connection, Roscoe, Cm*), and were studied solely
for the protocols employed and to understand how these
protocols were chosen. Others were studied closely because
of the hardware similarities to the HM architecture (Locus,

v).

- 32 -




This research provided an insight into the communica-
tion requirements of distributed systems and multiprocessors
and showed some of the common problems encountered during
the design and implementation of such systems. 1In particu-
lar it was found that shared memory was not as common as
networking. If shared memory was supported it was usually
in the form of one large memory accessad by all processors
through a cross-~bar switch as in Cmmp. In Cm* all memory is
also visible, but each processor has its own local memory
and remote memory is accessed through the network rather
than directly. In all instances shared memory was viewed
solely as a resource to be accessed directly, and not as a
medium for the physical layer of a communications system.
(In Li’s design, Shared Regions are available to processes
to be used as needed, but are also used by the communica-
tions subsystem to transfer packets between neighboring
stations.) Remote procedure calls were found to be used
extensively (Newcastle Connection, Sprite, V), as were
message-based communications (Roscoe, Star0S). Generally it
was seen that remote procedure calls and higher level proto-
cols, such as pipes, could be supported by message-based
communications such as are provided by the datagram protocol
in [Panz85].

The Homogeneous Multiprocessor is intended to be used
as a general-purpose multiprocessor. According to Chanson
et al., [Chan84], LAN messages fall into three main catego-

ries: Remote service requests/replies, System generated

- 33 -



messages and Stream-type messages. The first maps directly
onto Remote Procedure Calls and is supported by that layer.
The second type refers, in general, to intra-protocol con-
trol messages (these protocols can be at various levels in
the ISO reference model). This type of message can usually
be supported by the protocol below the one which is sending
the control messages. For example, the RPC layer will most
likely use the UDS to send protocol-~specific control messa-
ges to remote peers. The third type of message is a pipe;
it 1is provided by the Communications layer of the
HM-Nucleus.

To the above three message types we add another--inter-
process messages. These are similar to the System-generated
messages in that they do not require any connection orienta-
tion. As such they would be implemented less efficiently
using the pipe-based communications provided by the
HM-Nucleus, Using the RPC layer, on the other hand, would
restrict the use of such messages to conform to the RPC
protocol. As an example of this type of message traffic
consider a master-slave algorithm where a master process
sends some data to be processed by a slave process, and then
waits for the response. This exchange is similar to the
request/reply semantics of the RPC layer, but it would be
unreasonable to force the implementation of the slave proc-
ess to be a general-purpose server. A connection-oriented

scheme would be similarly undesirable, as the connection

~ 34 -




set-up overhead and complexity could not be justified in
such a simple exchange.

What makes this type of message different from the
System-generated messages described by Chanson is that the
Communications system must provide a user-level interface to
these services, whereas a protocol layer is already provided
(the UDS 1layer) with this interface. This means that the
Communications Subsystem of the HM-Nucleus must be flexible
enough to provide to the user an interface to virtually

every level in the ISO/0SI model.

- 35 -



CHAPTER 1IV.

Design of the Communications Subsystem.

Up to this point, the hardware features of the Homoge-
neous Multiprocessor have been introduced and Li‘’s proposed
structure for the HM-Nucleus has been given.

In this chapter, the requirements imposed by the pro-
jected uses will be reviewed, and a design developed for the

Communications Subsystem.

1. Communication Protocols.

The communications level proposed by Brown, Denning and
Tichy [Brow84] supports a single interprocess communication
(IPC) model: pipes. This was motivated by their desire to
propose a system in which the only "construction" primitives
visible to the user applications were processes and pipes
[Brow85]. Details of the mechanisms used to achieve this
communication were suppressed in their exposition; other
levels are clearly necessary to achieve the actual communi-
cation, but inclusion of these layers in their model would
have caused it to be unduly complicated [Brow85].

In the design for the HM-Nucleus [Li87a, Li87b], the
Communications Subsystem consists of three layers: Universal
Datagram Services (UDS), Remote Procedure Call (RPC), and
Communications (COM).

The COM layer is assigned the responsibility for pipes

(implemented through the H-Network), and also for (user)

- 36 =-




channels and a remote processor signalling mechanism. In
order to achieve high throughput, we have added the ability
to move (pipe) data through the shared memory between two
processors to the list of responsibilities of this layer.

The addition of an RPC layer to Brown’s model reflects
the expectation that the remote procedure call will be a
most useful paradigm for the proposed applications on the
Homogeneous Multivrocessor.

The proposal for a UDS layer reflects the fact that
many services (Pipe management, Shared Region management,
Global Memory management, remote procedure calls, and, later
on, distributed files and distributed directories) will
require a datagram-oriented service for their convenient
implementation. The UDS layer hides the details of routing
(process location) and fragmentation.

The COM layer provides connection-oriented services.
However, use of a connection-oriented protocol for lower
levels would degrade the performance of the UDS and RPC
layers, where connection-orientation is not necessary. It
is more efficient to include connection schemes only where
they are needed, and refrain from implementing them at lower
levels.

The UDS layer could be built on top of the hardware
driver and provide services of the Data Link as well as the
Transport levels. However, since the HM architecture sup-
ports two communication media, and because the UDS layer

must provide uniform access to these media (and more as they

- 37 -



appear), it is simpler to implement the UDS datagram service
on top of a Link-level protocol which, in turn, provides
uniform media access. This reduces the functions of the UDS
layer to only the fragmentation and reassembly of datagrams
(since the packet size at the Link level is generally limi-
ted by the medium controller), and routing. It is of course
possible to handle fragmentation at the Link level or sup-
port transparent access to various media at the UDS layer,
but this would make one of the layers unnecessarily complex.

The protocols implemented then, need to be flexible
enough to provide both connection-oriented and connection-
less services to the user. Barring the use of a general-
purpose protocol that supports all types of services, the
above stipulation would require that the Communication
Subsystem provide user interfaces to several levels of the
IS0/0SI hierarchy. In addition, the Link 1level protocol
chosen must be flexible encugh to provide a uniform access
to the H-network, the shared memory and any other media
which may be connected to the architecture in the future.

In view of the above requirements, the merits of the
protocol families mentioned in Chapter III will be dis-

cussed.

TCP/IP.
TCP/IP is widely used in networking and is also avail-
able for a Unix environment with Ethernet support. However

it was designed with Long Haul Networks (LHN’s) in mind and

- 38 -




contains many features unnecessary in LAN implementations
(e.g., internet addressing, two-level checksumming, byte-
level sequencing). These features produce considerable

overhead and reduce the efficiency of a LAN [Chan84].

LNTP.

LNTP provides the services of TCP/IP which are relevant
to LANs [Chan84, Chan85]. It removes the unneeded features
of TCP (see above) and stresses, instead, the features
required for efficient LAN communications (avoiding fragmen-
tation, simple flow control, selective retransmission).
Unfortunately, INTP is not a standard protocol, nor is it
likely to become one. Also, it implements connections,

which in our scheme have been relegated to a higiher level.

IEEE 802 family.

The IEEE 802 family of protocols was chosen for several
reasons. First--it is a recognized standard, and as the
push toward standardization continues will become more
widely accepted. Second--it includes specifications for
various Physical level protocols (802.3, 802.4, 802.5) to
support different communication media. The Link level
protocol (802.2) is specified in such a way that it can
interface with the various Physical level protocols. The
standard for CSMA/CD (802.3) can be adapted easily to suit
the CSMA/CF scheme used for the H-Network. As far as shared

memory is concerned, it would be a relatively simple task to

- 39 -



define a protocol which would interface with the 802.2 Link
level protocol (see chapter III). Finally, this protocol
specifies two modes of operation. LLC Type I supports
connectionless services using a very simple and efficient
protocol. LLC Type II provides both connection-oriented and
connectionless services and is compatible with LLC Type I.
The simplicity of LLC Type I is very attractive for an
initial implementation, while LLC Type II can be added later
if desired, without changing the rest of the Communication

system,

2. Relationship to the Memory Management Subsystem.

There is an interaction between the Memory Management
Subsystem and the Communications Subsystem which must also
be explored. In [Li87a], the Memory Management Subsystem
proposed for the HM~-Nucleus consists of two layers: Physical
Memory Management (PMM), and Virtual Memory Management
(VMM) -

Li assigns to the PMM the responsibility for the allo-
cation and deallocation of memory space for processes and
communication packets, in addition to the implementation of
virtual-to-physical memory mapping. The allocation is done
by AssignSegments, using the Buddy algorithm. In order to
conserve descriptors in the Memory Management Unit, the
minimum size of an allocation is 4K bytes. A virtual-to-
physical mapping is bound using BindSegment. Both of these

routines have a (user) task identifier as one of their

- 40 -




parameters. Another function which is assigned to the PMM
is garbage collection of segments that are no longer needed
(either the owning process has been destroyed, or the commu-
nications packet has been consumed).

The VMM is responsible for assigning and managing
virtual space for processes: program, data, and stack space
for user programs; Shared Regions; and Global Memory.

Shared Regions are allocated by the Virtual Memory
Manager (VMM) in blocks of at least four kilobytes and can
be specified to be either guarded or unguarded (the diffe-
rence between the two will be described later). Access is
effected through the CreateRegion, BindRegion, EnterRegion
and ExitRegion calls of the VMM. The first two calls,
respectively, define a Shared Region and give it a name to
be used in later calls. Processes on adjacent machines sub-
sequently acquire the capability for the region by issuing
the GetName call, implemented in the Table 1layer. The
EnterRegion and ExitRegion calls implemcnt the mutual-exclu-
sion algorithm needed to ensure safe sharing of data by up
to three processors. The algorithm, described in ([Li87a),
uses one central semaphore, in the local memory of the owner
of the Shared Region, and three spin-locks, in the local
memories of each of the three sharing processors. The spin-
locks are used to control access to the semaphore which, in
turn, ensures controlled access to the shared data. With
this arrangement busy-waiting performed in one of the

sharers will not need to access the interbus switch, which

- 41 -



A TRy AR TTYT

AT TR

e 7 T e

AT TTETE TR T R TR TR AT e

would interfere with the operation of the owner processor.
The mutual exclusion is needed to implement guarded regions;
if the region is created unguarded, the EnterRegion and
ExitRegion calls are transparent. This implementation
allows applications to make a compromise between security
and efficiency, according to their individual needs.

The synchronization required among the spin-locks and
the control semaphore is implemented using the hybrid chan-
nel packets described in Chapter II.

The Global Memory is implemented by replicating the
data in the memory of each processor, and then using the
communications subsystem to control updates. Three update
algorithms are proposed in [Li87a], which make use of the
particular properties of the H-Network and shared memory for
communication.

The RPC layer builds on the UDS layer, and is indepen-
dent of the COM layer. It does not interact with the memory
management software, and therefore will not be discussed
further in this section.

Four points concerning the interaction among the UDS,
COM, PMM and VMM layers can now be raised. The first three
relate to the management of the memory used by the Communi-
cations Subsystem, and the fourth addresses the wvisibility
of channels. To avoid ambiguity in what follows, we define
abcve to mean "further away from the hardware".

Li suggests that messages that are going to be ex-

changed between adjacent processors be sent via the shared

- 42 -




memory, and that this memory be allocated as a Shared
Region. If so, then the shared memory "driver" for the
physical level in the UDS must be above the VMM. However,
the VMM utilizes channels to achieve coordination among the
users of a Shared Region, and these channels are assigned as
part of the responsibility of the COM layer. The COM layer
is two lewels above the driver. (The driver is 1located
inside the UDS layer.) This represents an unfortunate
circularity. Therefore, the Communications Subsystem cannot
use Shared Regions for its buffers.

The packet size adopted for common memory transfers is
likely to be significantly smaller than 4K, which is the
minimum allocation size for the PMM. Thus, allowing commu-
nications packets to be garbage collected by the PMM does
not seem appropriate. Therefore, the shared memory driver
will have to allocate a (relatively) large buffer, and then
manage it by itself.

As noted, one of the parameters of the AssignSegments
and BindSegment calls in the PMM is a task identifier. As
the Communications fubsystem is acting on behalf of all
processes, there is unlikely to be a user task identifier to
associate with a shared memory segment that has been
assigned for communication use. Therefore, the task identi-
fier must be dropped as a parameter for the PMM primitives.

User channels represent a medium with significantly
different properties from those of the H-Net. From the

point of view of a user process, it may be immaterial which

- 43 -



medium is used. However, from the point of view of the
software in the VMM, it is essential that certain features
of channels be visible to it, and that the identity of the
specific processor being addressed via the channel be known.
It is therefore necessary to both expose the detailed fea-
tures of channels (within the HM-Nucleus), and hide those

features from user processes (outside the HM-Nucleus).

3. Structure of the Communications Subsystem
The structure chosen for the Communications Subsystem

must satisfy the following requirements:

a. Provide a device driver for the H-Network.

b. Provide a device driver for nearest-neighbor communica-
tion, using the shared memory and the channel devices.

c. Provide separate, low-overhead access to the channel
devices, for use by the special algoritnms within the
HM-Nucleus (such as those that support Shared Regions
and Global Memory).

d. Integrate the H~-Network and the shared memory communi-
cations paths into a uniform, IEEE 802.2-based subsys-
tem, with provision for adding other media at a later
date.

e. Provide a simple mechanism for the construction of
modules to implement the UDS, RPC, and COM functionali-
ties.

£. Ensure user access to any level of protocol within the

Communications Subsystem, preferably with a uniform

- 44 -




interface. "User" in this context may mean: i) an
HM-Nucleus entity implementing Shared Regions or Global
Memory; ii) a user application built on the present
HM-Nucleus, executing in supervisor mode; or iii) a
user application on a future HM-Nucleus, executing in
user mode.

g. Manage its own memory, including garbage collection,
using a buffer pool requested from the Physical Memory

Manager at system initialization time.

The chosen vehicle for this flexibility is the STREAMS
facility, which is introduced in the next chapter. The next
two subsections outline the design of the channel devices
and their use in providing a nearest-neighbor communications
path. These will provide device drivers for use within the

STREAMS framework.

4. Channel Devices

As has been mentioned previously, protocols for shared
memory-based communication are not as abundant as those for
more conventional media. As a result, it is impossible to
select a "standard" or to adapt an existing protocol to suit
the requirements of the project. This section outlines
proposed protocol for channel devices, and the next section
outlines how channel devices can be used to provide shared
memory-based interprocess communication in the Homogeneous

Multiprocessor.

- 45 -




Channel devices provide a uniform mechanism to support
several algorithms used in higher-level modules. As pro-
posed by Li [Li87a), channels provide a small buffer, and a
mechanism for interrupting a neighboring processor. Li also
suggests that virtual channels be provided, as there are
several proposed algorithms in the HM-Nucleus that rely on
the efficiency of direct transfers between adjacent proces-
sors for their operation. Finally, Li proposes a remote
signalling mechanism, using a special "hybrid" packet in a
channel device, to permit the interruption of processor Pi-2
or Pi+2 from processor Pi.

Channels are not efficient for direct use in inter-
process communication. The primary reason for this is the
fact that the size of the data part of a channel is (neces-
sarily) small. The second reason is that only one channel
is defined for each (left and right) neighbor. Additional
channels would require the poke operation--which is, essen-
tially, an interrupt--to be capable of passing the channel
address. In Li’s design, the addresses of right and left
channels are fixed at compile time and constant across all
nodes of the multiprocessor. The third reason is that since
only one channel is defined for each neighbor, the response
to a poke and consumption of the channel information must be
completed in a shori time. The first is an interrupt
service, and as such poses no problems. The consumption of
tl.. data, however, may depend on a user process, and cannot

be guaranteed to be prompt. At best, the data can be ccpied

- 46 -




into a local buffer, thus freeing the channel quickly. That
involves an extra copy, however, which should be avoided if
possible.

Our proposal differs slightly, in that it distinguishes
between the signalling mechanisms and the management of the
associated buffers. A channel device consists of a data
structure containing three elements: a channel number, a
data value, and a memory address. Separate channel devices
are provided for each direction of data transfer; these are
assigned fixed addresses which are the same for zll proces-—
sors. The value zero in the chanr :1 number field is used to
indicate that the contents of the channel have been
consumed. The high order bit of the channel number is used
to indicate direction. Certain channel numbers are assigned
to indicate special functions (such as remote signalling).
The data value is used when the special function to be
perfr -med involves setting a byte somewhere to that wvalue.
The memory address gives the location of a buffer being
transferred, or the address to which the special function is
to be applied. The memory associated with a buffer of data
is managed by the sender, and not by the channel device
driver.

The proposed operation is as follows:

1) The sending channel device driver copies the channel
data into the data structure.
2) The poke operation is used to interrupt the adjacent

processor.

- 47 -



3) The interrupt handler that responds to the poke opera-
tion examines the channel. If the channel number is
one which has been allocated to a special function,
then that function is performed. Otherwise, the con-
tents of the channel are enqueued for use by upper-
level software.

4) The interrupt handler then sets the value of the chan-
nel number field to zero.

The delay required for synchronization of the two
processors can be achieved in one of two ways: either the
sending channel device driver can loop, examining the chan-
nel number field until it becomes zero, after it has poked
its neighbor, or it can test for the zero value prior to
filling the channel in the first place. The first approach
ensures that the receiver has acted, prior to letting the
sender continue. The second approach is likely to result in
less contention between the processors, as the probability
of the channel being full at the time of access by the
sender should be quite small.

In order to permit the greatest flexibility, the entry
point address of the special functions is definable using an
ioctl call to the driver. This will provide a user-specifi-
able link between a channel number and the function which is

executed when it occurs.

- 48 -



5. A Proposed Shared Memory Protocol.

We use the channel device only to pass the address of a
data packet. The packet itself is stored in the (left or
right) shared memory partition of the sending processor.
The shared memory segment from which buffers for packets are
obtained is allocated by the PMM. However, since the PMM
allocates segments in 4K byte increments, the Communication
Subsystem must maiatain its own buffer pool. This includes
any allocation, d:allocation and garbage collection.

When a buffer is to be sent to a neighbor processor,
its address is placed into the corresponding channel device
and the neighbor is poked. The receiving processor, knowing
which neighbor performed the poke, can easily map the
received address to the corresponding shared memory parti-
tion. This address can then be queued to be processed at a
convenient time by the communication layer. The channel
device is immediately marked as empty and can be used for
further communication.

Since the buffer will not necessarily be processed
immediately, it must carry a flag specifying to which pro-
cessor, the neighbor or the owner, it currently belongs.
The 1tlag is set to "neighbor" when a packet is copied into
the buffer, and it is reset to "owner" when the packet data
has been consumed.

Since no explicit acknowledgement is sent to the packet
originator, specifying that the packet has been received and

processed, the buffer manager for the Communication Subsys-

- 49 -



tem must perform garbage collection. Initially the buffers
are placed in a linked list. When this list becomes empty,
the allocation routine invokes the garbage collector. The
garbage collector finds all consumed buffers and builds a
new linked 1list. If no consumed buffers are found, the
garbage collector will alternate between sleeping and col-
lecting, until the 1linked 1list of buffers is no longer
empty. Alternatively, the garbage collector can request
another shared memory segment from the PMM, and form an
additional buffer pool out of this block.

The above scheme overcomes limitations of the channels,
as described previously. In addition, the size of the
buffers does not have to be fixed. Various quantities of
different buffer sizes can be allocated, depending on the
demands and nature of communication. Also, since packet
consumption is no longer a time-critical operation, the
packet can either remain in the original buffer until deli-
very to the user, or be copied to an intermediate buffer, as
is appropriate.

This protocol can easily be incorporated into STREAMS.
There is already a buffer manager in STREAMS, very similar
to the one described above. It will be a simple task to
expand that manager to maintain shared memory buifers, or to

add a separate manager to handle this task.

- 50 -




CHAPTER V.

Unix STREAMS.

This chapter describes STREAMS--a facility designed for
the UNIX operating system to be used as a major building
block in providing networking support for Release 3.0 of
system V [AT&T87a, AT&T87b]. It is a communication subsys-
tem which is compatible with the current UNIX character I/O
interface, yet flexible enough to allow implementation of
various hierarchical protocols used in network architec-
tures. STREAMS does not implement any such protocols, but
rather provides developers with an environment and a set of
working tools that reduce protocol implementation to a

relatively simple task.

1. Overview.

Central to STREAMS is the concept of a Stream. Basi-
cally, a Stream is a bi~-directional data path between a
user, in user space, and a communication device driver, in
kernel space. Buffer allocation, scheduling and flow
control are all incorporated into STREAMS, which greatly
reduces the developer’s task. Another feature of STREAMS is
polling, which allows a user process to monitor several
separate Streams and receive input asynchronously.

A Stream is a chain of kernel-resident STREAMS modules,
which can be linked together or taken apart dyramically. A

module encompasses a set of (usually) reentrant procedures

-5]1-—



which perform some pre-specified action on data passing
between the user and driver. The topmost module of a Stream
is called a stream-head. This is a standard STREAMS module
which provides the user interface to the subsystem. Other
than packaging the user-space data into kernel-space messa-
ges (and vice-versa), no processing of data is performed by
the stream-head. The interface is provided by the usual
UNIX read/write/ioctl system calls as well as by two new
calls--putmsg and getmsg. These two calls are analogous to
write and read, but allow protocol-specific information to
be passed along with the data. They also preserve message
boundaries.

The last module in a Stream is a device driver module.
This module implements the interface between the kernel and
the communication hardware. The procedures in a driver
module are not reentrant (the reasons for this are too
involved to be discussed here), so a separate instance of a
driver module must exist for every hardware interface, while
other modules can be used in several Streams without dupli-
cating their code.

A minimal Stream, consisting of a stream-head and a
driver, is created when the device driver module is opened.
The open system call recognizes that the device is a STREAMS
device and calls the appropriate STREAMS open routine. It
is during this time that the non-shareable, dynamic part of
the head and driver are allocated. Following this, other

kernel-resident modules can be pushed and popped below the

-52—~




stream-head in a LIFO manner. Thus, if several modules,
each implementing a certain layer of the O0SI hierarchy,
exist, the user can create Streams that will provide proto-
col services at various levels in the hierarchy. Also,
since a standard stream-head is always the top module in any
Stream, the user is provided with a consistent interface,
namely the getmsg and putmsg calls. Figure 6 illustrates
this principle by showing two Streams providing a Transport-

level service and a Link-level service.

2. STREAMS Modules.

A module is a collection of procedures designed to
process messages passed in a Strean. Due to the bidirec-
tional nature of a Stream, the module has a dwnstream and
an upstream part, corresponding to message fiow from the
head to the driver and from the driver to the head, respec-
tively. Two types of procedures are used in a module to
process messages. The put procedure is called from a prece-
ding module to propagate a message along the Stream. The
processing of data by the put procedure is performed imme-
diately. The developer may chose to place some non-time
critical proces:-ing in the service procedure. Typically,
the put procedure will perform some decision or management
functions, then enqueue the message to be processed at a
convenient time by the service procedure. The STREAMS
scheduler will execute the service procedure automatically

at a later time. Each module must have both a read-side and

-53-—



User space
""""""""""""""""""""""""""""""""""""""""""""" Kernel space
Stream Head Stream Head
S 4 b
v
Transport-level protocol
module
3
i 4
Datalink-level protocol | feusable Datalink-level protocol
module modules module
8 A
v - v
Ethernet Driver module | TTY-line driver module
3
Kernel
v Hardware

TlY-iine
Ethernet Controller )
Controller

Figure 6. STREAMS Modularity:

Stream (a) offers a Transport-level protocol service,
while Stream (b) offers a Datalink-level servcice.

-54-




a write-side put procedure, but service procedures are
optional.

Each side of the module is defined by a qinit structure
(see Appendix C) which contains pointers to the correspon-
ding put and service procedures, among other things. The
overall module is represented by a streamtab (see Appen-
dix C) structure, which contains pointers to the read and
write-side ginit records of the module (rinit and winit).
The streamtab structure also contains pointers to two other
ginit structures (muxrinit and muxwinit) which are used only
by multiplexing drivers (described in section 9). Two other
structures are used to describe a STREAMS module. These are
the module_info and module_stat structures. Briefly, the
first contains information about the module, such as its
name and ID, minimum and maximum packet sizes, and high and
low-water marks for flow control purposes. The second
structure, which is optional, contains statistics, such as
the number of invocations of the module’s procedures, the
number of times flow control has been applied, and so on.
Pointers to these two structures are placed in the qinit
records for each side of the module. Pointers to the
streantab structures for driver modules are placed in the
cdevsw table and used in the open routine to initialize the
dynamic parts of the driver. A similar table, fmodsw, is

used for ordinary STREAMS modules.

-55=



!
i
¥
3
2

b
5
J
;I

- e

3. Kernel Data Structures.

Two data structures are fundamental in STREAMS. They
a.e the structures which define the STREAMS me<sages and
Queues. Messages allow data to be passed within STREAMS
without the need of copying, even if header or trailer
information must be added to the original data. Queues are
the dynamic parts of modules which allow multiple instances

of a module to exist in STREAMS.

Messages.

STREAMS is a message-based system, in that all informa-
tion transfer within a Stream is carried out by passing
STREAMS mnessages between linked m.dules. A STREAMS message
(see Appendix C) is a 1linked triple consisting of two
control blocks and one data buffer. A message on a Stream
may consist of several such triples linked together.

The first control block, dblk t, is specific to the
data buffer. It describes the location and size of the
buffer, as well as the type of the message to which the
buffer belongs (STREAMS defines 18 message types, listed in
Appendix D). It also contains a reference count (explained
below). The second control block, mblk t, defines the
relationship of the data buffer to the rest of the nessage,
and sometimes to other messages in a Stream. It contains a
pointer to the next block of the message, as well as two
pointers to the previous and next message, which allow

gqueues of messages to be maintained. The reference count in



the dblk t structure permits several mblk t records to
reference the same data buffer, allowing replication of
read-only data without physical copying. There are also
pointers to the next data byte to be read and written,
allowing various messages to refer to different parts of the

same data buffer.

Queues.

The second prominent data structure used by STREAMS is
the Queue. Essentially, a Queue is one half of the dynamic
portion of a STREAMS module. A Queue is defined by the
queue_t structure (see Appendix C). A pair of these is
allocated whenever a STREAMS driver is opened or a module is
pushed onto a Stream. Several fields are .nitialized when a
queue_t record is allocated. These include a pointer to a
ginit structure and the parameters from the module_info
record. The parameters are copied because the module_info
is a read-only structure. The copies in the queue_t record
can be altered to tune-up the performance.

The queue_t structure also includes pointers to the
next Queue in a Stream and to the next Queue on the STREAMS
scheduler queue (described in a later section). Two other
fields point to the first and last message enqueued on the
Queue. This allows Queues to maintain a doubly-~linked list
of messages, waiting to be processed by the service proce-
dure. The last field in the queuwe_ t structure is a pointer

to a private data structure. It is developer-dependent and

-57—



is used to allow a module’s procedures to be reentrant,
while still allowing private data structures in each instan-

tiation of a module.

4. Buffer Management.

STREAMS maintains its own buffer pool from which it
allocates data buffers for messages. At the stream-head
interface, user data (which is in user space) are copied
into these buffers (which are in kernel space), and remain
there until the message reaches the driver. Oonly message
pointers are passed, so no additional copying is necessary.

Buffers can be allocated in various sizes and at three
priority levels. When the buffer pool becomes depleted, a
low-priority request (such as a user write or putmsg) will
be denied in favour of a high-priority request (such as
input on the driver side). Utility procedures exist to
allocate and free buffer space, as well as to test for
buffer availability (a list of utilities is given in Appen-
dix E). A routine (buffcall) is also included to assist

developers in recovering from buffer-allocation failure.

5. Scheduling.

After the initial interface call, data are passed along
a Stream without additional user intervention. When a put
procedure in cne of the Stream’s modules enqueues the mes-
sage, the original wuser call returns, and the message

becomes the responsibility of the STREAMS facility. In

-58~-




order for the message to propazgate any further along the
Stream, the module’s service procedure must be invoked.
STREAMS performs this scheduling task independently from the
UNIX Kkernel’s scheduling routines.

The typical scenario is as follows. The user issues a
write or putmsg call, which creates a STREAMS message and
invokes the write-side put procedure in the top-most Stream
module. If all the processing is performed by the put
procedure, its last action is to invoke the put procedure in
the next mndule in the Stream. This will continue until the
message reaches either the driver or a module with a service
procedure. In the case of the service procedure, the
module’s put procedure enqueues the message and returns,
eventually completing the initial user call. Since the user
is now free to continue, it is the responsibility of the
STREAMS facility to ensure that the service procedure is
eventually called.

The STREAMS scheduler maintains a list of all Queues
which contain messages to be processed by the service proce-
dure. For each of these Queues, tiie scheduler locates the
service procedure (from the qginit pointer in the queue_t
structure) and invokes it. This action is performed automa-

tically, without any user intervention.

6. Flow Control.
It was mentioned previously, that STREAMS implements

flow conirol to aid in the development of modules and

-59-



drivers. Flow control is used to prevent fast devices from
swamping slower ones. In STREAMS it applies more tc modules
than to devices, except in the case of driver modules.

The pair of Queues associated with each module keep a
count of all data bytes in their message queues. This is a
weighed count, where the bytes in short message buffers will
have a greater or lower weight than bytes in large buffers,
according to system requirements. In addition to the byte
count, the Queurs also maintain a high and lcw water mark,
to determine when flow control should be enabled or relaxed.

Every time a message is added to the message queue, the
putg utility automatically increments the byte count. If
the new byte count exceeds the high water mark for the
Queue, tha state variable is changed to include a flag which
specifies the Queue as being full. Whenever a message is
removed, the getq utility automatically decrements the byte
count. If the Queue had been full and the message removal
brings the byte count below the low water mark, the full-
flag is removed and back-enabling is performed. sack ena-
bling is defined later.

The following gquidelines should be observed to ensure
that flow control works properly. Messages should be placed
on queues using the provided utilities--putq and putbq.
Messages should only be removed from gqueues using the getq
utility. These utilities ensure that the byte count is
updated correctly, manipulate the state flags and perform

back-enabling.

-60-




Priority messages are not subject to flow control and
are processed immediately. For ordinary messages, however,

he following guidelines should be observed.

After the service procedure removes a message from the
queue (using getq), but before any processing is performed,
the canput utility should be consulted to determine whether
the forward path along the Stream is blocked due to flow
control. The canput procedure searches along the Stream for
the next Queue with a service procedure (if such a Queue
exists), and checks whether that Queue’s state variable
contains the full-flag. If canput fails, the calling Queue
becomes blccked (indicated by a state-flag) and the message
is returned via the putbg utility. A blocked queue can
still accept messages, but, being unable to process then,
will eventually become full. In this way, flow control will
travel up or downstream until it reaches the driver or the
Stream head.

When the iuw water mark is reached as a consequence of
removing a message from the gqueue, back-enabling is per-
formed. The getq utility searches in the opposite direction
along a Stream, trying to locate any Queue which is blocked
as a result of flow control. If such a Queue is found, it
is enabled via the genable utility, which removes the
blocked-flag and submits the Queue for scheduling. If more
than one Queue nad been blocked, the first re-enabled Queue,

after processi.lg enough messages, will also fall below the

-61-



low water mark. This chain-reaction will ensure that all
blocked Queues will eventually be back-enabled.

Flow contror only applies to modules with service
procedures, which should be evident from above. Without
service procedures no messages ever get enqueued, SO0 no
accumulation of unprocessed messages would occur. Flow
control can be regulated by adjusting the high and low water
marks of the Queue. Since flow control and back-enabling
propagate along connected STREAMS modules, it will not be a
substitute for end-to-end flow control of transport-level
protocols, nor will it cross over pseudo drivers in multi-
plexed Streams configurations (multiplexors are discussed in

a later section).

7. Polling.

The poll system call allows a user process to synchro-
nously monitor the input and output of several Streams
simultaneously. The read, write, putmsg and getmsg calls
support synchronous I/0 over one Stream, where the user
process will be suspended until data is available to read or
space is available to write. The poll system call, in
conjunction with the STREAMS signalling facility, allows a
user process to perform asynchronous I/0 on one or more
Streams.

Polling works as follows. For each Stream to be
polled, the user specifies the Stream file descriptor and

the events to be reported (these events include arrival of

-62-



input data, arrival of a priority message and relaxation of
output flow control on the Stream). This information is put
into an array of records, which also contain a field for
specifying returned events (these include fatal error,
hangup condition, invalid file descriptor or no event).
This array, along with the number of Streams to be polled
and a timeout period are passed as parameters tec poll. On
return, the user checks each returned event and performs
whatever action is required.

The poll system call allows a user process to synchro-
nously monitor several Streams. The signalling facility of
STREAMS, used with polling, allows a user process to monitor
several Streams asynchronously.

An ioctl call specifying the I_SETSIG command is used
to request STREAMS to send a signal to the user process when
a specific event has occurred. These events include the
three polling events (input, priority input and output), and
notification of the arrival of a special message, containing
a signal from a downstream module or driver.

The signal catching process can then use poll to deter-
mine which Stream has caused the signal, and process the

corresponding event.

8. Utilities.
Many utility tools are included in STREAMS to facili-
tate the task of developing modules. Appendix E contains a

list of these utilities along with a brief description of

-63~-



each. Included are many macros which perform often-used
tasks needed to move messages along a Stream (putnext, getq,
qreply) . Others provide some (hopefully) common message-
processing routines (linkb, adjmsg, pullupmsg).

It is strongly suggested that a developer use these
utilities whenever possible, in place of writing additional
code. One reason for this is the saving in code space.
Another is that some of the utility routines have certain
side-effects which are essential to the proper operation of
a Stream. For example, the purpose of the putq routine is
to place a message on a message-queue, but a rather
significant side-effect 1is that the associated Queue is

placed on the scheduler queue to be serviced.

9. Multiplexing.

As was described previously, a Stream is a data path
between a user process and a driver. In most applications a
linear connection of various STREAMS modules is sufficient.
Other applications, however, require the ability to multi-
plex several Streams in a variety of configurations. One
such application is a terminal windows facility, where
information coming from one physical line must be directed
among several windows. A similar configuration 1is needed
for any commuriications protocol which supports multiple
users of the services it provides. A different configura-

tion would be needed by a Network Layer protocol, which must

-64-—




route data over several lower modules, each supporting a
different communication medium.

STREAMS supports the above configurations with its
notion of a multiplexing pseudo-driver. It is called a
pseudo-driver because like a STREAMS driver, it must ini-
tially be opened as a Stream. 1In its final configuration,
however, the multiplexor will not be the last module in the
Stream--hence it is a pseudo-driver.

The first configuration, as in the windows example, is
an upper multiplexor, and it requires no special features on
the part of STREAMS. In order to have several Streams
connected above requires only that each is opened with a
different minor device number accompanying the major device
number which specifies the pseudo-driver. Of course, the
code 1in the driver’s open procedure must be capable of
supporting minor device numbers and setting up the necessary
information, so that the processing procedures can correctly
route data among the different upper Streams.

A lower multiplexor, as demonstrated in the Network
protocol example, is more complicated. The lower sections
in such a configuration must each be opened as a separate
Stream, and then linked underneath the multiplexor. This
linkage is performed by issuing an special ioctl system call
on the multiplexor Stream, naming the lower Stream to be
linked. The system call results in a specific message being
sent down to the driver. The write-side put procedure in

the driver processes the message and performs the necessary

-65-—



steps, which include saving the address of the linked Stream
in a global structure, which is accessible by all of the
driver’s procedures.

A multiplexor consists of two parts: the upper part,
and the lower, linked, part. This duality accounts for the
two special fields in the streamtab structure (muxrinit and
muxwinit). The lower part contains procedures, but is not
allocated any queue_t records. Instead, when a lower Stream
is linked under the multiplexor, the queue t structure of
that Stream is modified to point to the multiplexor’s lower
procedures. This type of linkage means that the upper and
lower Streams are not physically connected. For this reason
STREAMS flow-control cannot propagate across a multiplexor,
and the driver procedures must handle flow-control internal-
ly. In a typical implementation, when STREAMS flow-control
restricts the passage of messages above or below the multi-
plexor, the corresponding messages are simply discarded.

To hide the complexity of multiplexed Streams, these
configurations are usually set up by a daemon process. This
process opens all the necessary Streams and performs all the
linking. All that a user process is required to do to
access the configuration is to open a Stream to the topmost
multiplexor, specifying a new minor device number. Usually,
the minor device number zero is reserved for the daemon,
which becomes the controlling process for the Stream confi-

guration. The multiplexor procedures will typically check

-66—



that special control messages, such as 1link and unlink
messages, are sent only over the control Stream.
Multiplexors allow Streams configurations to be created
which are more complicated than ibove examples. It is worth
noting, however, that although STREAMS provides the tools,
most of the work must be done by the developer of the

modules and drivers.

-67-



CHAPTER VI.

Implementation of Turing Plus STREAMS

As stated previously, a major part of the project
involved the implementation of a Unix STREAMS-like facility
in a high-level concurrent language--Turing Plus. A high-
level language ensures portability of the code and will
allow the facility to be easily integrated into the
HM-Nucleus. This chapter describes the environment in which
the implementation was carried out and the implementation
itself, backing up some of the design decisions that were

made along the way.

1. The Environment.

The hardware of the Homogeneous Multiprocessor is still
not fully developed. Furthermore, the HM-Nucleus is still
likely to undergo many changes before it can be used to
support application programs. For these reasons it was
decided that any implementation would have to be made in a
high-level language to facilitate the later task of integra-
tion into the HM-Nucleus. The language chosen was Turing
Plus [Holt86], a concurrent version of the Turing language
[Holt87], recently developed at the University of Toronto.

Turing is a strongly typed language which is similar to
Concurrent Euclid [Holt83]--the language of implementation

for the HM-Nucleus. Because of this similarity, translation

- 68 ~




of the HM-Nucleus code into Turing Plus would be a trivial
task.

Turing offers some features not present in Euclid,
which make it the preferred choice of the two. The most
prominent such feature is the addition of subprogram (func-
tion or procedure) types and variables. This permits proce-
dure and function handles (pointers to subprograms) to be
defined, permitting greater flexibility in implementation.
As will become evident later, STREAMS relies heavily on
this feature in order to achieve a high degree of modularity
and flexibility.

Another useful feature of Turing is that its strong
type checking can be defeated by using type-casting and by
mapping variables of one type onto the address of another.
Strict checking usually results in code which contains fewer
mistakes, simplifying the debugging stage. However, when
the code has Leen properly debugged, Turing allows the
runtime checks to be turned off, making the implementation
extremely fast.

The Turing Plus (T+) compiicr was installed on a net-
work of Sun workstations running Unix. The workstations are
based on a Motorola MCé68020 processor, further ensuring the
ease of porting to the Homogeneous Multiprocessor. The
network can also be used to test protocols by sending messa-

ges between Streams on different machines.

- 69 =~



2. Ooverview of Turing Plus STREAMS.

The structure of the code for T+ STREAMS corresponds
closely to the hierarchical structure of the Tunis Kkernel,
on which the HM-Nucleus is based. At the topmost level is
the hmnucleus mcdule, which in the current implementation
consists of little more than the declarations of some global
variables and constants. For testing purposes a user can be
simulated as a process defined at this level. Below
hmnucleus is the io module, which contains some global
variables pertaining to the I/O0O subsystem but not required
in the rest of the nucleus. Underneath io lies the streams
module, which holds the actual STREAMS implementation. 1In
reality, STREAMS is itself a two-level hierarchy, with
several modules below the streams module. These include,
among others, modules containing code for STREAMS drivers
and other modules, the utilities and STREAMS-specific system
calls.

The Turing Plus language incorporates the concept of
modules, and also of hierarchies. A module can be defined
to be a child of another, by including a parent clause. The
parent module, on the other hand, will refer to the child in
a child clause. Thus the io module is a child of hmnucleus
and the parent of the streams module.

The relationship between these modules is also reflec-
ted in the directory structure of th.. code files. The root
directory i= called hmnucleus. Below it is io and below

that the streams subdirectories. Below streams there are

- 70 -




|

five subdirectories. Beside the drivers, modules, and utils
directories, alluded to above, there are also the procs and
allocators subdirectories. The first one contains the
procedures implementing the STREAMS-specific system calls
(getmsg and putmsg, among others). The second one holds the
code for procedures which allocate the STREAMS data struc-
tures needed to create a Stream. The directory tree, along

with a partial listing of files is shown in Figure 7.

3. Data Structures.

T+ STREAMS uses the same main data structures as the
original Unix version. The only difficulty encountered in
translation was caused by the fact that Turing collections
are typed, so that a pointer to a variable in one collection
cannot be used to point to a variable in a different collec-
tion. The problem with this is particularly evident in the
case of the private data structure (pds) pointer in the
queue_t record. The type of the pds is developer-dependent
and not the same for all modules and drivers. The queue_t
structure, however, 1is common to all such entities. The
chosen solution was to change the field to an address-type,
and to store the address of the private data structure,
rather than a pointer to it (in Turing a pointer is not just
an address). The structure can later be accessed by mapping
its record type onto the stored address (written in Turing

as: type name@ (address)).

- 71 -



hmnucleus
- hmnucleus.t

-statuscodes.gb

io
-jo.st
-io.bd

streams
.- streams.st

- streams.bd

-

drivers

utils
modules - putnext.ch

- head.bd -cook.bd -flushq.ch
-llc1.bd -slip.bd -pullupmsg.ch
- tty.bd e o
procs allocators
-getmsg.ch - mS__init.Ch

- gi_init.ch

Figure 7. The Turing Plus STREAMS
Directory Structure

- 72 -




This solution is adequate for a testing version, but it
presents a problem with deallocation. Since the pointer to
the pds is not saved, the structure cannot be freed to its
collection (this problem does not occur if the pds is allo-
cated from an array). The solution is to use only arrays or
unchecked collections in allocating private data structures.
In Turing, a pointer to an unchecked ccllection is equiva-
lent to an address, so it can be stored in the appropriate
field of the queue_t record.

The queue_t structure also had to be altered slightly.
The structures are always allocated in pairs, one for each
direction on the Streanm. A utility routine is provided
whereby the other partner of a gqucue_t structure can be
located. Two other routines can locate the read or write
side Queue, given either one. These routines rely on the
queue_t records being allocated a* particular memory bounda-
ries. From the address it is possible to determine whether
the Queue is an upstream (read) or a downstream (write)
Queue, and also to locate the other Queue in the pair. This
approach is heavily dependent on the allocat:on routines of
the operating system and is not. very portable. Furthermo: 2,
Turing does not allow variables to be allocated at desired
memory boundaries. Instesd, the queue_t record has been
extended with the q_other pointer field which locates the
Queue’s partner. As far as determining the Queue’s direc-
tions is concerned, a bit is reserved in the ¢_state field

of queue_t to denote whether the Queue is on th: read or

- 73 -



write side of a module. This bit and the q_other field are
initialized when the pair of queue_t structures are first

allocated.

4. Buffer Allocation.

Buffer allocation in STREAMS is handled by the mem
module, which for reasons mentioned later resides in the
utils subdirectory. It maintains a pool of buffers whose
sizes are varying powers of two. The number of buffers of
each size, as well as the range of their sizes are compile-
time constants and can be altered according to system
requirements. The module also implements the utility proce-
dures used within STREAMS to allocate and release buffer
space (allocb, freeb, freemsg and testb).

Buffers are maintained 1in freelists--one for each
buffer size. Since the pointer to the next buffer in the
list is kept at the beginning of the buffer, sizes less than
the machine address cannot be supported. The read pointers
for each freelist are kept in an array, indexed by the power
of two which determines the size of the buffer.

During the iritialization of the module, the overall
space needed for the buffer pool is allocated (the number of
bytes is thne sum of the products of the number of buffers of
each size and their respective sizes). Once the 1logical
division of the pool into buffers is performed at initiali-

zation, the total number of buffers of any one size remains

- 74 -



constant. No attempt at compaction is made by the buffer
manager.

The decision to grant an allocation request depends on
the availability of buffer space and the priority of the
request. High-priority requests are always satisfied,
provided that a buffer of the requested size exists. For
medium and low-priority requests, there exist compile-time
threshold values, expressed as percentages. The individual
thresholds for each buffer size (expressed as number of
buffers) are calculated and stored in an array, for quick
referencing. A medium-priority request is satisfied provi-
d=~d that the number of buffers of the requested size cur-
rently in use has not exceeded the medium threshold value
for that size. The same holds for low-priority requests,
except that the low threshold value is examined.

At present, the allocating algorithm makes no attempt
to satisfy a request with a larger-sized buffer, when no
buffers of a requested size are available. A modification
to this rule can easily be included, allowing, for example,
high-priority requests to be satisfied even when the prefer-
red buffer size is unavailable. The user of the allocb
utility, of course, is free to request a larger buffer, when

the original request is denied.

5. Scheduling.
The scheduling facility in T+ STREAMS consists of two

main parts--a scheduler monitor and a scheduling piocess.

- 75 =



R

The process, sched proc, resides in the sched module, in the
utils subdirectory. The monitor, sched_mon, resides in a
module of the same name, also in the utils subdirectory.
The monitor is declared to be a child of the sched module.
The code for the buffer manager and the scheduler is inclu-
ded in Appendices F and G, respectively.

The monitor provides exclusive access to the STREAMS
scheduler queue, which is manipulated by two exported proce-
dures-~genable and dequeue. The first is the STREAMS utili-
ty routine used to schedule a STREAMS module service proce-
dure for execution. It essentially enters the STRFAMS Queue
to be scheduled onto the scheduling queue. The second
procedure is used by sched_proc to obtain the next Queue to
be scheduled.

The function of sched_proc is to run the service proce-
dures in the Queues which have been placed on the scheduler
dqueue. With the above setup and the STREAMS data struc-
tures, this becomes a trivial task. The process consists of
a:l endless loop which obtains the next Queue to be scheduled
using dequeue, then invokes the service procedure, which is
accessible through the queue t structure which describes the
Queue. When the scheduler queue becomes empty, dequeue
perform a wait on a condition variable. This condition will
eventually be signalled by genable when another Queue is
scheduled. The waiting must be performed because sched proc
cannot exit--it must remain active throughout the lifetime

of the system. A condition variable is used because it is

- 76 -




more efficient than allowing the process to busy-wait for
the next Queue.

In retrospect, it would be logically more appropriate
to place the mem module and the scheduler modules into
separate directories. Perhaps, the mem module belongs in
the allocators subdirectory because it allocates buffer
space. The reason for their present placing is that these
modules implement procedures wnich are STREAMS utilities,

and therefore should reside in the utils directory.

6. Utilities.

All of the utility routines are contained in the utils
subdirectory, below streams. All of the utilities are
children of the streams module. Because some utilities make
use of others, the order of their declarations in streams is
important.

Essentially, the utilities are the same as the ones
listed in Appendix E, for Unix STREAMS. The major diffe-
rence is that the Turing Plus compiler does not support
macros, so every utility is either a procedure or a func-
tion. Also, functions in Turing are not allowed to have
side-effects, so the appropriate utilities have been coded
as procedures with an extra parameter, corresponding to the
returned value.

In addition to the standard utilities two more func-
tions are added. They are nextsq and prevsq. They are used

to locate che next and previous serviceable queue, respec-

- 77 -



tively. A serviceable queue is defined as one which corre-
sponds to a module with a service procedure, and has not
been disabled. The nextsq routine is used when checking if
flow-control is restricting the passing of a message. When
the flow-control condition is cleared up, prevsq is used to
locate a queue to be back-enabled.

Utilities which deal with buffer management (allocb,
freeb, freemsg, and testb) are placed together in a separate
module--mem. The procedures are exported from mem unquali-
fied, which means that the same naming conven.ion can be
used for these and all other utility routines.

The qgenable procedure, which deals with scheduling, is
similarly contained within the scheduler module. The code
for the buffer manager and the scheduler is included in
appendices F and G, respectively.

Two utility routines from Unix STREAMS--splstr and
strlog--are not included in this implementation. The first
is used to raise to the interrupt level when a module is
executing a critical section of code. Turing Plus supports
monitors which can be used to implement critical sections,
so the routine is not necessary. The second routine is used
to submit a message to the logging driver. Because message-
logging is not an essential part of STREAMS it is not sup-
ported in this implementation, rendering the strlog routine
unnecessary.

Anocher routine--buffcall--is included in the utils

directory but does not contain any code. In the original

- 78 -




implementation it provides a method of recovering from
buffer allocation failures. When allocb fails, the buffcall
utility is invoked. The parameters to buffcall include the
priority and size ~f the failed request. They also provide
a function, and an argument to the function, which will be
invoked when a buffer of appropriate size at the given
priority becomes available.

Two examples of the use of this utility were given. 1In
one case, the function invoking buffcall was the driver
receive interrupt handler. Wwhen allocb failed buffcall was
invoked, specifying the handler as the function to be called
later. In the second example, buffcall was invoked by a
service procedure, again specifying itself as the function
to be called. C does not differentiate between procedures
and functions, nor does it complain about incompatible

unction in the parameter 1list of

H

function types. The
buffcall is specified as returning an integer and having one
integer parameter. The actual function passed to buffcall,
on the other hand, may be different in various cases. While
C allows such flexibility, the strong type-checking of
Turing makes this implementation impossible. Clearly, this
matter requires some further exploration.

For the time being, at least, buffer exhaastion may be
handled as follows. In the first case, when driver input
data cannot be copied into a message, the data are simply
discarded. This would still happen even if buffcall were

implemented, when more input arrived before buffer space

_79_



became available. In the case of a service procedure, the
message shou.d be discarded as well. The service procedure
cannot simply put the message back on the queue as in the
flow control case. There is no guarantee that another
message will arrive, so the Queue may never be scheduled.
Another possipility is for the service procedure to put the
message back and continue processing the other messages.
Some of these messages may be consumed locally and their
buffer space released, allowing the previously returned
message .0 be processed. The putbg utility could not be
used for this purpose, as it places messages at the head of
the queue. A nrFw utility would be needed, which would place
these messages at the end of the queue to delay their pro-
cessing. It would also be necessary to keep track of which
messages have been put back for delay purposes, as the case
can happen when all messages in the queue are being delayed,
and the service procedure would repeat the process of
gettin/g a message, putting it at the back of the queue, and
getting the next message. Beside these complications, this
plan almost certainly would cause messages to arrive out-of-

sequence, which may pose problemns.

7. A Sample Protocol Modale.

Several T+ STREAMS modules and drivers have been coded
and reside in appropriate subdirectories. Most are transla-
tions of examples given in the STREAMS Programmer'’s

Guide [AT&T87b]. Translating these modules provided invalu-

- 80 -~




able help in understanding the fundamental aspects of
STREAMS as well as giving an insight into particular fea-
tures such as scheduling and multiplexing. In this section
we present the structure of a T+ STREAMS pseudo-driver,
which implements the services of the IEEE 802.2 standard for
Class I Logicel Link Control (LLC-I) [ANSI87, IEEE85]. The

standard provides a connectionless, unacknowledged service.

The LLC module is structured after the sample multi-
plexor in the STREAMS Programmer’s Guide [AT&T87b]), but it
is by no means a translation. The code for the module,
given in Appendix H, consists of three files in the drivers
subdirectory. Oue file contains the declaratiors of types
and constants needed for the module. This file is included
in the streams module, making the declarations visible
throughout STREAMS. The two other files are the stub and
body of the LLC module. Stub files are used in Turing Plus
to allow separate compilation. The LLC-I driver, as all
other STREAMS drivers and modules, is a child of the streams
module.

The upper part of the LLC-I multiplexor consists of
only the upper write-put procedure. The Lower part consists
of the lower write-' *~vice procedure, and both the put and
service procedures of the lower read side.

The upper write-service and the lower write-put proce-
dures are not used because the upper-put and lower-service

procedures of the write side complement each other. That is

- 81 -



to say, the put procedure enqueues the message, which is
subsequently processed by the service procedure.

The upper read-side prccedures are both absent because
the lower side puts upstream messages directly into one of
the upper Streams. The upper read Queue structure is used
only as a reference point for the putnext utility.

The module’s open procedure supports multiple minor
device numbers and the CLONEOPEN option. This option is
used when no specific minor device number is given by the
user, and the module is requested to automatically select
some available number. The first time open is called the
minor device number must be zero (if CLONEOPEN is specified
it is set to zero). The zero minor device number is inten-
ded to be associated with the controlling Stream, used by
the driver daemon or other controlling process.

The linking information structure is allocated dynami-
cally in the open procedure, anrd not from an array. Because
of this the number of upper Streams is not directly limited.
However, each upper Stream is associated with an SAP
address. The SAP address size is one byte, and two bits are
reserved. This allows 32 SAP addresses, and hence 32 upper
Streams, including the controlling Stream. In reality, some
of these addresses are already reserved by IEEE for parti-
cular protocols, but in this implementation the entire
address space is used when selecting an address for the
CLONEOPEN option. The function which performs this selec-

tion is appropriateiy named next_sap.

- 82 -



Every time a new upper Stream is opened, a special SAP
linking structure is allocated. This structure holds a
pointer to the upper Queue and the SAP address of the upper
Stream (this is the same as the minor device number). These
structures are linked together to form a list of SAP’s,
which is used by the lower part to locate downstream, and
route upstream messages.

The upper Queues are serviced in a round-robin fashion
by the lower write-service procedure. The get next q proce-
dure returns the next upper Queue that needs servicing, or a
nil pointer, if all Queues are empty. A global variable
keeps track of the last Queue serviced, so that round-robin
scheduling can proceed fairlv in those cases when the ser-
vice procedure is unable to service all Queues during one
invocation.

Upstream messages are placed by the lower procedures
directly into the Queue immediately above the appropriate
upper Queue, specifying that upper Queue as a parameter to
putnext. The upper Queue is located by matching the desci-
nation SAP Address in the message with the address field of
one of the records in the SAP list. This search is per-
formed by the find_sap routine.

If the destination address is a group address, the
function find_group is called instead of find_sap. Although
group addressing is not fully supported the intent is that
this routine will return a pointer to another list of SAP

records, each of which belong to the same group. A nil

- 83 -



pointer is returned if the group has no membership at a
particular station. The manner in which groups are created
and maintained is a matter for further investigation. At
present, the find group function always returns a nil
pointer.

The 802.2 standard logically divides the LLC into a
Station Component part and one or more SAP Component parts.
The station component handles all primitives which affect
the station as a whole. The SAP component handles all
primitives which affect only a particular SAP. Each SAP
component is zddressed by its corresponding SAP address,
while the station component is addressed by the NULL SAP
address. In the STREAMS implementation, this logical divi-
sion maps very closely onto the division of the multiplexor
into a lower and upper parts. The upper part, handling each
of the upper Streams, represents the SAP components, while
the lower part performs the actions of the station compo-
nent. The only deviation from this is the fact that M_IOCTL
messages, used for linking and unlinking lower Streams, are
processed by the upper write-put procedure. This is done
because before a lower Stream is linked, there is no lower
Queue, hence no way of scheduling the lower write-service
procedure. However, only the controlling Stream is allowed
to perform linking actions, and the controlling Stream--as
is the Station Component--is addressed as SAP zero.

Since STREAMS is message-based rather than procedure-

based, all of the 802.2 primitives (requests, responses,

- 84 -




indications and confirmations) are implemented as messages.
Two messace types--M_PROTO and M_PCPROTO--are used to repre-
sent these primitives. In addition to these, the LLC per-
forms standard driver and head flush-message processing
(because it is a pseudo-driver, the upper part acts like a
Stream end of the upper Streams, and the lower part acts as
the Stream head of the lower Stream). Also, since it is a
multiplexor, it processes M_IOCTL messages (as mentioned
above) .

The protocol-specific messages (M_PROTO and M_PCPROTO)
are structured as follows. The first message buffer con-
tains an LLC header record (defined in 1llcl_types.in). This
corresponds to the actual header information, consisting of
the source and destination station addresses, the source and
destination SAP addresses, the contvol field and the prio-
rity and service class fields. The last two fields are not
used by the current implementation, because provision of
different priorities and service-classes depends on the
medium-driver. A header is considered valid if it is large
enough to contain the first five fields (declared as
min_header_size in 1llcl_types.in). The second (and any
additional) message block contains the data part of TEST or
UI (Unnumbered Information) messages (the 802.2 primitives--
such as UI, TEST, XID and others--are defined in [ANSI87]
and [IEEES85]).

M_PROTO messages are used to send protocol messages

(UI, XID and TEST). M_PCPROTO messages are used to pass

- 85 -~



certain request and confirmation primitives, as outlined
below.

The Network-layer, or any user of the LLC module, must
adhere to the following interface. Downstream M_PROTO
messages a3:'e only used to send data (Ul in 802.2 termino-
logy). All four address fields of the header, as well as
the priority (if used) must be provided. The control field
will be filled in by the LLC module. Downstream M_PCPROTO
messages are used to request the sending of TEST or XID
messages, to request the activation or deactivation of the
SAP component, or to put the station component in an up or
down state (the last two functions are reserved for the
controlling Stream). All fields in the header must be
provided. The control field can take o»n the value of
TEST_req, XID_req, ACTIVATE req or D<fACTIVATE_req (these
values are defined in 1lcl_types.in). Only the TEST_req
message can have any data part. 1In addition to the above,
the .ontrolling Stream is allowed to specify UP_req or
DOWN_req in the control field, to change the state of the
station component. Such requests from any other Stream will
be discarded.

Upstream M_PROTO message, coming from the Physical-
layer module, carry UI, TEST or XID messages. UI messages
can only be sent as commands, while the TEST and XID messa-
ges can be command:, or responses to previously sent TEST or
XID command messages. Upstream M_PCPROTO messages are used

to represent the transmission status confirmation primitive.

- 86 -




This primitive is not defined in [IEEE85] but appears in an
update to the standard [ANSI87]. It is not specified how
the primitive should be used, or for what purpose. Class I
LLC’s do not provide message retransmission, so this primi-
tive should not be used for this purpose. It could be used
by the Physical Layer to report a failure of the communi-
cation medium, but without any primitive to report this
failure to high=2r layers the Class I LLC simply discards
this message type.

The upper Stream is not required to send back TEST and
XID responses, but it should be noted that the SAP component
part will not provide these replies automatically. Tn this
fashion, TEST and XID nessages can be used by higher-level

proucocols to implement other functions as appropriate.

- 87 -



CHAPTER VII.

Overview and Conclusions.

1. Overview.

The HM possesses a unique architecture, with two sepa-
rate and rather distinct communication pa*is. The extended
bus mechanism for sharing memory is a novel approcach. While
most shared-memory systems provide a global memory module
accessible through a cross-bar switch, the HM extends its
pipeline-like structure by supporting only nearest neighbor
memory sharing. This is done because the HM is not intended
to be a general-purpose processor, but a powerful computing
engine for pipelined algorithms, such as are commonly used
in digital signal processing.

In order for the tight coupling present in the hardware
to be prominent at the application level, the communication
protocols used have to be relatively uncomplicated, since
heavy-weight protocols--such as TCP/IP~-are generally too
slow. At the same time, the duality of the communication
paths means that the chosen protocols must be flexible
enough to allow different media at the physical level. The
IEEE 802 protocol suite was chosen for this reason, and,
also, because it is a recognized standard. The 802.2 Link
level protocol is designed to interface with several Physi-
cal 1level protocols--a required feature in this project,
since both the H~Network and shared memory media must be

supported. Because the H-Network design is similar to that

~ 88 -



of the Ethernet, the 802.3 protocol can easily be adapted as
the physical level protocol for the H-Network. Although no
standard exists for shared memory communications, a new
protocol can be designed relatively easily. A proposed
protocol which will fit well into the 802 protocol suite was
presented in Chapter 1V.

Li’s original proposal for the memory management system
is insufficient, as it creates a cyclic dependency. This
difficulty was explored and a solution was proposed.

Based on the requirements of the Homogencous Multipro-
cessor and its proposed applications, and taking into
account the problems with the original memory management
system, the proposed structure for the Communications Sub-
system was presented. STREAMS was chosen for the imple-
mentation of this subsystem due to its flexibility and
expandability. STREAMS allows access to virtually any level
in the ISO/0SI hierarchy, and can be expanded dynamically to
include new media and protocols. Another reason for the
choice is that STREAMS is likely to become a standard commu-
nication system for Unix.

A proposal for the design of channel devices was also
presented. This design satisfies the requirements of both
the upper 1level algorithms and the memory management of
STREAMS and the HM-Nucleus.

The operation of the original STREAMS facility was
summarized. Next, a detailed description of the STREAMS

implementation for the Homogeneous Multiprocessor was pre-

- 89 -



sented. This implementation was written in Turing Plus--a
concurrent language with strong type checking, modular
structure, code reusability and almost all of the flexibi-
lity of C. As an example of STREAMS programming, the code
for a module implementing the 802.2 standard for a Class I
Logical Link Controller was included. Because STREAMS
provides developers with many "building blocks", the module

itself required only three days to complete.

2. Future Work.

Although the Turing Plus implementation STREAMS is
fully operational, the hardware for the Homogeneous Multi-
processor is not available for testing. Testing the func-
tionality of STREAMS was carried out using a loop-back
driver and a special-purpose Stream head. This special
Stream head is a module which accepts commands from the
operator to send and receive messages of various sizes on
the Stream to which it is connected. The data for the
downstream messages are taken from a file specified when the
Stream is created. Likewise, data from upstream messages
received by the Stream head are written to another file. The
loopback driver at the downstream end of the Stream is the
Turing version of an example given in The STREAMS Program-

mer’s Guide. It receives downstream messages and simply

reroutes them back upstream.
This configuration allows the basic functionality of

STREAMS to be tested. It is also possible to push interme-

_90_



diate modules on the Stream. These modules can implemen’:
communications protocols or act as simple filters. A care-
ful selection of input data would allow for more rigorous
testing of both the modules as well as the STREAMS utili-
ties.

Another future project would be the implementation of a
STREAMS module implementing the shared memory protocol
presented in chapter 1IV. Because the hardware is unavail-
able, the functionality of shared memory would have to be
simulated in software. The simplest approach is to imple-
ment a common buffer shared by two (or more) processes.
Each process will represent the shared memory driver of a
neighbor processor. The poke operation can be simulated by
a signal on an appropriate condition. One common buffer and
three condition variables can be used to represent three-way
shared memory communication.

The functionality of the channel device can also be
simulated in software in a similar fashion. The common
buffer in this case would only have to be big enouyh to hold
the channel information, such as the channel 1id, in-use
flag, and message buffer address. Two such buffers would be
needed for every process representing the channel device
driver of a neighboring processor--one for communicating
with left neighbor and one for the right. No memory trans-
formation would have to be done to the message buffer
address, since all processes would be running on the same

machine.

- 9] -



When STREAMS modules representing the shared memory and
channel device drivers are in place, the full functionality
of STREAMS can be displayed. A Stream can be created which
would multiplex upstream messages between several Stream
heads, and route downstream messagqes between the shared
memory, LLC-I or other driver. Further work would also
include development of STREAMS modules to perform the func-
tions of the UDS and RPC layers of the Communications Sub-

system of the HM-Nucleus.

3. Conclusions.

As was stated earlier, the Homogeneous Multiprocessor
has a unique architecture, where two very different communi-
cation paths exist. Furthermore, since the Multiprocessor
is intended to be used as a special-purpose computing engine
for applications such as digital signal processing, the
communications layer of the operating system must provide
fast, uncomplicated access to both media--and it is desira-
ble that this access be uniform. We have shown that the
above can be accomplished in very standard ways, by adapting
a standard protocol and framework. We also note that
STREAMS provides a very flexible communications framework.
The communication layer can be tailored to the specifica-
tions of a particular algorithm without major reconstruction
and providing the same interface to users. By allowing
modules to be pushed onto a Stream dynamically, STREAMS

allows the Communication subsystem to be configured without

- 92 -



the need to restart the system. By allowing any Streams
module to be directly below the Stream head, a Communication
layer built within the STREAMS framework can easily provide
a uniform interface across all levels of the ISO/0SI hier-
archy.

Turing Plus was shown to be an excellent systems pro-
gramming language as it included most of the flexibility of

C, while being very structured and strongly type-checked.

- 93 -



[ANST87]

[AT&T87a]

[AT&T87b)

[Blyt84]

[Brows2]

[Browg4]

[ Brow85]

[ChanB4]

[Chang5)

[(Cher84]

[Chers8]

[Ches87]

(Dimo83]

[Dimo85)

BIBLIOGRAPHY

American National Standards Institute, Revised Text of ISO/DIS
8802/2 for Second DIS Ballot, ANSI Document number ISO/TC
97/SC 6 N4453.

AT&T, STREAMS Primer, Prentice Hall, 1987.

AT&T, STREAMS Programmers Guide, Prentice Hall, 1987.

David Blythe, Peter Ewens, Mark Funkenhauser, Mark Hume, "The
Structure of the Tunis Operating System", Computer Systems
Research Institute, University of Toronto, May 1984.

D.R. Brownbridge, L.F. Marshall, B. Randell, "The Newcastle
Connection or UNIXes of the World Unite!", Software: Practice
and Experience, Vol. 12, 1982.

Robert L. Brown, Peter J. Denning, Walter F. Tichy, "levels of
Abstraction in Operating Systems", IEEE Computer,
October 1984.

Robert L. Brown: personal communication to J.W. Atwood.

Samuel T. Chanson, K. Ravindran, Stella Atkins, "Performance
Evaluation of the ARPANET Transmission Control Protocol in a
Iocal Area Network Envirament"™, Technical Report 85-6, UBC,
December 1984.

Samuel T. Chanson, K. Ravindran, Stella Atkins, "INTP - An
Efficient Transport Protocol for Iocal Area Networks",
Technical Report 85-4, UBC, February 1985.

David R. Cheriton, "The V Kemmel: A Software Base for
Distributed Systems", IEEE Software, April 1984.

David R. Cheriton, "The V Distributed System", Communications
of the ACM, Vol. 31, #3, March 1988.

Greg Chesson, "“Protocol Engine Design", Proceedings of
the 1987 USENIX Technical Conference, Phoenix, Arizona,
June 1987.

Nikitas J. Dimopoulos, "he Hamogeneous Multiprocessor
Architecture - Structure and Performance Analysis",
Proceedings of the 1983 International Conference on Parallel
Processing, August 1983.

Nikitas J. Dimopoulos, On the Struchure of the Hamogeneous
Multiprocessor", IEEE Transactions on Computers, vol. C-34,
#2, February 1985, pp. 141-150.

- 94 -



[Dimo87]

[Holt83]

[Holt86]

[Holt88]

[ IEEES5 )

[Jone79]

[Li87a]

[Li87b]

[Mend83]

[Metc76]

[Oust80]

[Oust87]

Nikitas J. Dimopoulos, Kin Fun Li, Eric ¢Chi Wah Wong,
D.V. Ramanamurthy, J. William Atwood, "The Hamogencous
Multiprocessor System: An Overview®, Proceedings_of the 1987
International Conference on Parallel Proucessing, The Pennsyl-
vania State University, August 17-21, 1987, pp.592-599.

Richard C. Holt, Concurrent Euclid, the UNIX Systom, and
Tunis, Addison-Wesley Publishing Company, 1983.

R. C. Holt and J.R. Cordy, The Turing Lanquage Report,
Technical Report CSRI-153, Computer Systems Research
Institute, University of Toronto, December 1983, last updated
August 1986.

Richard C. Holt and J.R. Cordy, The ‘Turing Plus Recport,
Technical Report CSRI-214, Computer Systems Research
Institute, University of Toronto, August 1988.

IEEE, Iogical Link Control 802.2, 1985.

Anita K. Jones, Robert J. Chansler, Jr., Ivot Durham,
Karsten Schwans, Steven R. Vegdahl, "Star0S, a Multi-
processor Operating System for the Support of Task Foroves",
Proceedings of the 7th Symposium on Operating Systoms
Principles, SIGOPS, Vol. 10, #12.

Kin Fun Li, Nikitas J. Dimopoulos, J. William Atwood, "l1he HM-
Nucleus: A Distributed Kermel Design for the Hamogencous
Multiprocessor", IEEE Micro, February 1987.

Kin Fun Li, The Hamogeneous Multiprocessor: a Simulation Study
and an Operating System Design, PhD Dissertation, Concordia
University, Department of Electrical Enginecering, July 1987.

Mark P. Mendell, "Structure of a Portable Opcrating Systom",
Master’s Thesis, University of Toronto, Department of Computer
Science, 1983.

Robert M. Metcalfe, David R. Boggs, "Ethernet: Distributed
Packet Switching for ILocal Camputer Networks", Communication:s
of the ACM, Vol. 19 #7, July 1976.

John K. Ousterhaut, Donald A. Scelza, Pradecp S. Sindhu,
"Medusa: An  Experiment in Distributed Operating System
Structure", Communications of the A, Vol. 23 {2,
February 1980.

John Ousterhaut, Andrew Cherenson, Fred Douglis,
Michael Nelson, Brent Welch, "An Overview of the Sprite
Project", ;login:, Vol. 12, #1, Jan/Feb 1937.

- 05 =



[Panz85]

[Pisc86)

(Pope8l]

[Sega88]

[So0l079]

[Tane81])

[Wong85]

[Weis87]

[Welc86)

[Wulf74)

Fabio Panzieri, Design and Development of Commmication
Protocols for Iocal Area Networks, PhD. Dissertation,
University of Newcastle upon Tyne, 1985.

David M. Piscitello, Alan J. Weissberger, Scott A. Stein and
A. Lyman Chapin, "Internetworking in an OSI enviromment", Data
Communications, May 1986, pp. 118-136.

G. Popek, B. Walker, J. ¢Chow, D. Edwards, C. Kline,
G. Rudisin, G. Thiel, "IOC(US - A Network Transparent, High
Reliability Distributed System", Proceedings of the 8th
Symposium on Operating System Principles, December 1981.

Terry Segal, The Hamogeneous Multiprocessor Memory Modules and
the Imterbus Switch Controllar, M.Eng. Thesis, Concordia
University, Department of Electrical and Computer Engineering,
1988.

Marvin H. Solomon, Raphael A. Finkel, "The Roscoe Distributed
Operating System"™, ACM 1979.

Andrew S. Tanenbaum, Camputer Networks, Prentice Hall Inc.,
1981.

Eric Chi Wah Wong, A Oollision Free Protocol for IANs

Utilizing Concurrency for Channel Contention and
Transmission", M. Eng. Thesis, Concordia University, 1985.

Alan J. Weissberger, Jay E. 1Israel, "™wiat the New
Internetworking Standards Provide", Data Communications,
February 1987.

Brent B. Welch, "Ihe Sprite Remote Procedure Call System®,
July 1986.

W. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin, C. Pierson,
F. Pollack, "HYDRA: The Kernel of a Multiprocessor Operating
System", Communications of the ACM, Vol. 17, #6, June 1974.

- 96 -



Appendix A.

The Switch Closing Algorithm.

A switch can exist in one of three logical states, and
a transition to the next state is governed by the operatio-
nal Algorithm 1.2 [Dimo83]. The closing of a switch is
carried out in two stages. During the first stage, the next
logical state is determined, while the physical closing of
the switch is performed during the secound stage. The three

logical states in which a switch can exist are as follows:

OPEN: This state signifies that no request to close a
switch exists, or that if a request exists, it
will not be honored immediately because a neigh-

boring switch is currently servicing a request.
GRAY: This state signifies that a request 1is acknow-
ledged and switch closure will be carried out in

the immediate future.

CLOSED: This state signifies that it is safe for a switch

to close, and stage two can proceed immediately.

The Operational Algorithm 1.2, which governs the state

transition of a switch is as follows:

- 97 -



Algorithm 1.2.

For a switch Sj:

If no request exists, it becomes OPEN,

Otherwise, if a request exists, then:

If OPEN it becomes GRAY, provided that the switch to

its left, Sj_q, is OPEN, otherwise it remains OPEN.

If GRAY, it becomes CLOSED, provided that tne switch to

its right, Sj;1, is OPEN, otherwise it remains GRAY.

If CLOSED, it remains CLOSED.

The left-most Sg, and right-most, Sk, switches are always

OPEN.

_98_



Appendix B.

The ISO/0SI Network llierarchy.

Level 1. The Physical Layer

This layer is concerned with transmitting raw bits over
a communicaticin channel. The principal problem is making
sure that when a one is sent at one end, the other end also
receives a one, not a zero. Typical design decisions
involve how many volts shuuid represent a one or a zero, and

how long each bit should be (transmission rate).

Level 2. The Data Link Layer.

The function of the Data Link Layer is to take a rew
transmission facility and transform it into a 1line which
appears to be free of transmission errors. Quertions
addressed at this level include frame format, acknowledge-
ments, flow-control, retransmission and duplicate detection.
All of the above are at the link, or point-to-point level
only. JAcknowledgements and flow control at the end-to-end

level are handled by a higher layer.

Level 3. The Network Layer.

The Network Layer is concerned with the operation of
the subnet. Particular questions addressed here include
routing decisions and congestion control. Inter-network

flow control (between Gateways) 1is also handled by the

_99_



Network Layer. This layer is only present in inter-

networking systems.

Level 4. The Transport Layer.

This layer is concerned with the end-to-end aspects of
the communication. End-to-end flow c..itrol, acknowledge-
ments, as well as retransmission and detection of duplicates
are some of the problems dealt with here. The set-up,
maintenance and break-down of connections also concern this

level. Fragmentation may also have to be performed.

Level 5. The Session Layer.

The Session Layer is generally considered to be the
user interface to the network. It is here that functions
such as user authentication and permission checking are
performed. Another duty of this 1layer 1is to recover

gracefully from breakdowns of the underlying network.

Level 6. The Presentation Layer.

This 1level is mainly a data-transformation layer.
Functions include text compression, conversion between data
representation on different machines, and data encryption

and decryption.

Level 7. The Application Layer.
The structure of the Application Layer is up to the

individual user. A protocol at this level defines what kind

- 100 -



of communication goes on between individual users. Some
questions addressed at this level, however, are general.
These include network transparency and problem-partitioning.
A typical Application Layer protocol is the Remote Procedure

Call.

- 101 -



Appendix C.

STREAMS Data Structures.

Structures defining a module or driver.

struct streamtab {

struct ginit *st rdinit; /* defines read QUEUE */
struct ginit *st wrinit; /* defines write QUEUE */
struct ginit *st muxrinit; /* for multiplexing drivers only */
struct ginit *st muowinit; /* for multiplexing drivers only #*/

H
struct ginit {

int (*qi_putp) () ; /* put prccedure */
int (*gi_srvp) (): /* service procedure */

int (*gi_gopen)

()1 /* called on each open or a push */

int (*qi_gclose) () /* called on last close or pop */

int (*gi_gadmin) (); /* reserved for future use */

struct module info *gi_minfo; /*information structure */

struct module stat *gi mstat; /* statistics structure -- optioral */

}i

struct module info {
ushort mi_idnum;
char *mi_idname;
short mi_minpsz;
short mi_maxpsz;
ushort mi_hiwat;
ushort mi_lowat;

b

struct module stat {
long ms pent;
long ms_scnt;
long ms_ocnt;
long ms_cent;
long ms_acnt;
char *ms_xptr;
short ms_xsize;

/* module ID number */

/* module name */

/* min packet size accepted, for developer use */
/* max packet size accepted, for developer use */
/* hi-water mark, for flow control */

/* lo-water mark, for flow control */

/* count of all calls to put procedure */

/* count of all calls to service procedure */
/* count of all calls to open procedure */
/* count of all calls to close procedure */
/* count of all calls to admin procedure */
/* pointer to private statistics */

/* length of private statistics buffer */

- 102 ~



QUEUE Structure

struct queue ({
struct qinit *q_ginfo; /* procedures and limits for queue */
struct msgb *g first; /* head of message queue for this QUEUE */
struct msgb *q last; /* tail of message queue for this QUEUE */
struct queue *q next; /* next QUEUE in Stream */
struct queue *q_link; /* next QUEUE on STREAMS scheduling queue */

caddr t g_ptr; /* pointer to private data structure #*/
ushort gq count; /* weighed count of chars on message queue */
ushort g flag; /* QUEUE state */

short g nminpsz; /* min packet size accepted by this QUEUE */
short q maxpsz; /* max packet size accepted by this QUEUE */
ushort gq hiwat; /* message queue high water mark */

ushort q_lowat; /* message queue low water mark */

)i
typedef struct queue queue t;

Structure of STREAMS Messages.

struct msgb {
struct msgb *b next; /* next message on queue */
struct msgb *b prev; /* previous message on queue */
struct msgb *b cont; /* next message block of message */
unsigned char *b rptr; /* first unread data byte in buffer */
wisigned char *b wptr; /* first unwritten data byte in buffer */
struct datab *b datap; /* data block */

)i

typedef struct msgb mblk t;

struct datab {
struct datab *db_freep; /* used internally */
unsigned char *db base; /* first byte of buffer */
unsigned char *db lim; /* last bytet+l of buffer */
unsigned char db ref; /* count of messages pointing to block */
unsigned char db type; /* message type */
unsigned char db _class; /* used intermally */
}i
typedef struct datab dblk t;

- 103 -



Appendix D.

STREAMS Message tvypes.

STREAMS defines eighteen message types--nine each of
ordinary and high priorities. A STREAMS module or driver
can generate any type of message or change the type of any
message, and send these messages in any direction on the
Stream. However, certain rules governing the use of some
message types, although not enforced, should be observed.

The following list briefly describes each message type
and its intended application. The list is divided into two
parts--one for ordinary and one for priority message types.
Priority messages are always enqueued ahead of ordinary
messages, but otherwise their processing has no special

characteristics.

Ordinary Message Types.

M_DATA: Contain ordinary data. This is the default
message type when buffers are allocated by allocb. The
contents of the M_DATA message blocks are passed as the data
part to the user invoking the getmsg system call; a call to

putmsg copies the user’s data part into an M_DATA block.

M_PROTO: Intended to contain control information, such
as protocol header and/or trailer fields. The control part

in a call to getmsg or putmsg will be associated with this

- 104 -



nmessage type. A typical protocol interface message will
contain one M_PROTO (or M_PCPROTO, described later) block,
containing the interface parameters, and one or more M_DATA

blocks, containing the protocol service data unit (psdu).

M _IOCTL: Generated by the Stream head when an ioctl
system call is issued on the Stream. The M_IOCTL block will
contain an iocblk structure, which contains information
identifying the specific ioctl command and the user, and
specifying whether any data follows. This message is acted
upon by the first module (or driver) which understands it.
The Stream head expects an acknowledgement to be returned

with an M_IOCACK or M_IOCNAK message.

M_CTL: Typically used for inter-module communication,
as, for example, when adjacent protocol modules negotiate
the terms of their interface. Cannot be generated by the

user and discarded if received at the Stream head.

M_BREAK: A special case of the M_CTL message, uscd to
request a driver to send a BREAK signal on whatever medium
-t accesses. Cannot be generated by user and always

discarded when passed to a Stream head.

M_DELAY: Sent to a driver to request output delay. The
buffer of this message type is expected to contain an

integer indicating the length of the delay in machine ticks.

- 105 -



Typically intended to prevent swamping slower devices. This
message cannot be generated by a user and is discarded if

passed to the stream head.

M_PASSFP: Used to pass a file pointer from one end of a
pipe Stream to the other end. A pipe Stream is defined as
one which is terminated at both ends by a Stream head. This
message 1is generated as a result of a special ioctl call on
the sending Stream head, and is placed directly into the

receiving Stream head, without passing through the Stream.

M_SETOPTS: Used by a downstream module to alter some
characteristics of the Stream head. The data buffer of this
message contains a special structure describ’'ng the options
to be set and their new values. Options include initial
write cffset for data buffers, min and max packet sizes, and
high and low water marks. Interpreted only by the Strean

head and passed unchanged by other modules.

M_SIG: Sent by downstream module or driver to post a
signal to a process. The type of signal is stored in the
first byte of the data buffer. If the Stream is a control-
ling TTY for its process group and the signal is not
SIGPOLL, the signal is sent to the entire group. Otherwise,
the signal is sent to those processes which have registered

to receive that signal.

- 106 -



Priority Message Types.

M_PCPROTO: Same as the M _PROTO type, except that
priority enqueuing is performed. Also, when this message
type is placed on a message queue, the corresponding Queue
is always enabled. Only one M PCPROTO message is allowed to
be in a message queue at any one time--all others will be
discarded by the Stream head. Intended to allow data and

control information to be sent unaffected by flow control.

M_ERROR: Sent upstream by a module or driver to report
some error condition. When a Stream head receives this
message it becomes locked. This means that all calls to the
Stream, other than close and poll, will fail, with the
global variable errno set to the first data byte. All
processes sleeping on calls to the Stream are awakened and

the Stream is flushed.

M_HANGUP: Sent by a driver to report that it can no
longer send data upstrean. When the message reaches the
Stream head the Stream is marked so that all calls resulting

in a downstream message fail, returning ENXIO.
M_TOACK: This is the positive acknowledgement of a

previous M IOCTL message. May contain information from the

sending module or driver, which the Stream head returns to

- 107 -



the user if a corresponding outstanding M_IOCTL request

exists.

M_TOCNAK: Same as above, only the acknowledgement is
negative. This message signals the failure of the corres-

ponding ioctl call.

M_FLUSH: Request to all modules and drivers to discard
messages on the corresponding message queues. The first
byte specifies whether the read, write or both sides of the
Stream are to be flushed. Each module flushes its queue,
then passes the message on. The Stream head or driver may
be required to route the message in the opposite direction,

depending on the flag.

M_PCSIG: Priority version of M _SIG.
M_START and M_STOP: Used to request a driver to start
or stop their output. Not intended to turn devices on or

off, but rather to produce pauses in output. These messages
cannot be generated by a user and are discarded if passed to

the Stream head.

- 108 -



Appendix E.

STREAMS Utilities.

The following is an alphabetized list of the utilities
available within the Unix STREAMS facility. The declaration
of each utility and its parameters is first given, followed
by a short description of its function. For a more detailed

description refer to Appendix C of the STREAMS Programmer'’s

Guide [AT&T87b].

int adjmsg(mp, 1len)
mblk_t *mp;
int len:;

Trim +len bytes from the beginning, or -len bytes from
the end, of message pointed at by mp. Only trims bytes
across message blocks of the same type, fails if there are
not enough bytes of similar type.
mblk t *allocb(size, pri)
int size, pri;

Returns a pointer to a message block of type M_DATA
with a buffer of at least size bytes, if such a buffer at
the indicated priority, pri, exist. A nil pointer is
returned if buffer space is unavailable.
queue_t *backq(q)
queue_t *q;

Returns a pointer to the Queue behind the given Queue,
or a nil pointer if no such Queue exists (as when q is the

Stream end) .

- 109 -



int buffcall (size, pri, func, arg)
int (*func) () ;
int size, pri;
long arqg:;

Assists in recovering from buffer allocation failure.
When allocb returns a nil pointer, the calling function can
use buffcall to reschedule itself when the proper-sized
buffer at the indicated priority becomes available. If
buffcall returns a one, then func() will be called with the
argument arg; a return value of zero indicates a temporary
inability to allocate internal structures, and func will not
be called.
int canput(q)
queue_t *q;

Determine whether the message queue of g is full or not
(as determined by the high-water mark). If q has no service
procedure associated with it, the Stream is searched until
such a Queue is found or an end is reached. A one is
returned if q was not full (or if the search stopped at one
of the Stream’s ends); a zero is returned otherwise, causing
the caller to be blocked.
mblk _t *copyb (bp)
mblk _t #*bp;

Makes a copy of the message block pointed at by bp and

returns a pointer to the new block. The new block is
allocated with medium priority. If the buffer cannot be
allocated (i.e., allocb returns a nil pointer), then a nil

pointer is returned.

- 110 -



mblk_t *copymsg(mp)
mblk t *mp

Uses copyb to make a cop; of a whole message chain,
pointed at by mp. T * . ns a pointer to the new message only
if z1ll buffers could be allocated, otherwise all allocated

blocks are freed and a nil pointer is returned.

#define datamsg(mp) ...

This macro returns TRUE if mp (declared as mblk _t *)
points to a message whose first block is of type M_DATA,
M_PROTO or M_PCPROTO; otherwise it returns FALSE.
mblk_t *dupb (bp)
mblk_t *bp;

The message block pointed at by bp is duplicated, that
is a new mblk_t is allocated and linked to the original data
block (dblk t structure). The reference count in the data
block is incremented. A pointer to the new message descrip-
tor is returned on success. If the message descriptor could
not be allocated, a nil pointer is returned instead.
mblk t *dupmsg (mp)
mblk_t *mp;

A whole message is duplicated using successive calls to
dupb. Returns a pointer to the new message or a nil pointer

if any call to dupb failed.

{define enableok(q) ...

This macro cancels the effect of an earlier nocnable
call. It allows q (declared as queue_t *) to be serviced by
the STREAMS scheduler.

- 111 -



int flushq(q, flag)
queue_t *q;
int flag;

Removes and frees messages from the message queue of q.
The flag determines whether all messages, or only data
messages are to be flushed. If a Queue behind g had been
blocked, flushqg may perform back-enabling (as described in
the section on flow control).
int freeb(bp)
mblk_t *bp;

Frees the message block pointed at by bp. The message
block descriptor is always freed, but the data block and
descriptor are only freed if the reference count is one.
Otherwise the reference count is decremented.
int freemsqg(mp)
mblk_t #*mp;

Uses successive calls to freeb to free all message
blocks in message pointed at by mp.
mblk t #*getqg(q)
queue_t *q;

Removes the next message from the message queue of g
and returns a pointer to it; a nil pointer is returned if
the message queue is empty. The byte count of the Queue is
decremented according to the size of the message, and back-—
enabling may be performed. If the message queue is empty,
the Queue is so marked, so that the next message enqueued

will cause gq to be scheduled.

- 112 -



int insq(q, emp, nmp)
queue_t *q;
mblk_t *emp, *nmp;

Places the message, nmp, in the message queue of q,
immediately before the already enqueued message, emp. If
emp is the nil pointer, the new message is placed at the end
of the message queue. The byte count of q is updated and
the Queue may become full.
int linkb(mpl, mp2)
mblk t *mpl, mp2;

Concatenates the message pointed at by mp2 at the end
of the message pointed at by mpl.
int msqgdsize (mp)
mblk_t *mp;

Returns the total number of bytes in the message blocks

of mp which are of type M DATA.

{define noenable(q) ...

This macro causes q (declared as queue t *) to become
unschedulable. That is, the scheduling, which is automati-
cally performed by certain utilities, is turned off{ for this

Queue.

#define OTHERQ(q)

This macro locates the partner of q (declared as
queue_t *). That is, if q is the write-side Queue of the
module, the pointer to the read-side Queue is returned, and

vice-versa.

- 113 -




int pullupmsg(mp, len)
mblk t mp;
int 1len;

Concatenates and aligns the first len bytes of message
mp into a single message block. A len of -1 causes all
bytes of 1like-type blocks to be pulled up. On successful
completion a one is returned; a zero is returned on failure.
int putbq(q, bp)
queue_t *q;
mblk t *bp;

Places the message pointed at by bp at the head of the
message queue of q, in acccrdance with its priority (prio-
rity messages are placed at the head, regular messages are
plac2d behind any priority messages). The same scheduling
and flow control rules as in putq apply.
int putctl(q, type)
queue_t *q;
int type:;

Creates a control message of the given type and passes
it to the put procedure of the given Queue. The new message
block 1is allocated at high priority. Returns one on
successful completion, or zero if it could not allocate the
proper blocks or if the given type was M_DATA, M_PROTO or
M_PCPROTO.
int putctlil(q, type, p)
queue_t *q;
int type, p:;

As above, but for control messages requiring a one byte

parameter, p.

- 114 -



#define putaext(q, mp) ...
This macro calls the put procedure of the next Queue
(relative to q) on the S5tream, passing it the message

pointed at by mp. The parameters are declared as mblk t *mp

and queue_t *q.

int putq(q, bp)
queue_t *q;

mblk t *bp:;

Places the message, bp, onto the message queue of
Queue, g. Messages are endqueued according to priority. The
Queue will be enabled (given to the scheduler) under the
following conditions: the message is a priority message, or
the queue is empty and not disabled. The Queue is marked
empty when the module is first pushed, and when getq returns
a nil pointer. The Queue becomes disabled after a call to
noenable, and can be reenabled by calling enableok. The
byte count is incremented and the Queue may become full.
int genable(q)
queue_t *q;

Submits the Queue, g, to the STREAMS scheduler. The
scheduler eventually will service the Queue by calling its
service procedure.
int qreply(q, bp)
queue_t *q;
mblk t *bp:;

Send the message pointed at by bp in the opposite

direction on the Stream, relative to the Queue q. This is

- 115 -



accomplished by locating the partner of q (using OTHERQ) and
invoking its put procedure.
int gsize(q)
queue_t *q;
Returns the number of messages currently on q’s message

queue.

#define RD(q) ...

This macro 1locates the read side queue_t structure
given th2 write side Queue pointer, g (declared as
*queue_t).
mblk t *rmvb(mp, bp)
mblk_t *mp, *bp;

Removes block pointed at by bp from message pointed at
by mp, then restores the linkage. The unlinked block is not
freed. The return value is the pointer to the resulting
message. If the block is not in the message, a value of -1
is returned.
int rmvq(q, mp)
queue_t *q;
mblk t *mp;

Removes the message pointed at by mp from the message
queue of q, and then restores the linkcge. If the message

is not on the given queue, a system panic could result.

int splstr()
Raises the processor level to block interrupts at a

level appropriate for STREAMS modules executing critical

- 116 -



code sections. Returns the present processor level, which
can later be restored by the standard splx(s) call.

int strlog(mid, sid, level, flags, fmt, argl, ...)

short mid, sid;

char level;

ushort flags;

char *fmt;

unsigned argl, ...:

Submits a message to the log driver. mid is the module
id, sid is usually the minor device number. level is used to
selective trace logged messages at a later time. flags
specifies one or more types of logged messages (error,
trace, fatal, or notify). fmt and arg’s are the same as in
a printf call.
int testb(size, pri)
int size, pri;

Checks for the availability of a buffer of the given
size, at the stated priority. Returns 1 if a buffer is
available, 0 otherwise. A return of 1 does not guarantee
that the next call to allocb will succeed.
mblk t #*unlinkb(mp)
mblk t *mp;

Unlinks the first block of the message pointed at by mp

and returns the pointer to the resulting message.

#define WR(q) ...
The opposite of RD. Given a pointer to the read side
Queue, g (declared as *queue_t) returns a pointer to the

write side queue.

- 117 -



Appendix F.

Turing Plus STREAMS Buffer Manager.

The buffer manager consists of the mem module, which
resides in the file "mem.ch" in the utils subdirectory. The
streams module is the parent of mem. Some repetitive and
trivial or irrelevant code has been left out to preserve
space, and replaced with an ellipsis (...).

file: "mem.ch"

parent "../streams.bd"

stub module mem
import (var msgb, var data)
export (unqualified allocb, unqualified freeb,

unqualified freemsg, unqualified testb)

procedure allocb(sz: nat, pri: bpri, var mp: msgb ptr)
procedure freeb(var bp: msgb ptr)
procedure freemsg(var mp: msgb ptr)
function testb(sz: nat, pri: bpri): boolean

% largest and smallest buffer size; if these are changed, new

% NBLKn constants must be added, and vice-versa; changes to either
% will require changes also to TOTAL BYTES calculation, and ‘nblk’
% variable initialization.

const *MAX POWER := 12 % expressed as power of two

const *MIN POWER := 2

type *P _RANGE : MIN POWER..MAX POWER % range of powers of two

% tunable parameters
% quantities of various buffers
const *NBLK4096 := O
const *NBLK2048 := 0

const *NBLK4 t= 40

% total number of bytes reserved for buffers
const *TOTAL BYTES := NBLK4096*4096+
NBLK2048*%2048+

NBLK4*4

% threshold values for denying 10 and MED priority requests
% expressed as percentages

const *STRIOFRAC := 0.7

const. *STRMEDFRAC := 0.85

end mem

- 118 -



body module mem

const *MAX BUFFER SIZE

: *MAX POWER % MAX expressed as integer
const *MIN BUFFER SIZE :

2%
2%*MIN POWER

% super BUFFER containing all data buffers
var BUFFERS : array 1..TOTAL BYTES of intl

% array of freelist pointers for various buffer sizes
var freelist : array P_RANGE of addressint

% counters of how many buffers of each size are used
var inuse : array P_RANGE of nat

% low and medium priority thresholds for different buffer sizes
var lo _thresh, med thresh : array P_RANGE of nat

% this array holds the values of NBLKn used to simplify loops
var nblk : array P RANGE of nat :=

init(NBLK4, NBLKS, NBLK16, WBLK32, NBLK64, NBLK128,

NBLK256, NBLK512, NBLK1024, NBLK2048, NBLK4096)

function sizetopower(sz: nat): 0..MAX POWER

% this internal function converts a buffer size in bytes into

% a suitable buffer size, expressed as a power of two or returns
% zero if an invalid size is given

end sizetopower

procedure allocbuff(pwr: P_RANGE, pri: bpri, var b: addressint)
% internal procedure to allocate buffer of size 2**pwr bytes

if (pwr = 0) then % this would mean that the size passed to
:= nilAddr % allocb was out of range (see sizetopower)
else
if ((freelist(pwr) = nilAddr) or
((pri=bpri.BPRI_I0O) and (inuse(pwr)>lo_thresh(pwr))) or
((pri=bpri.BPRI_MED) and (inuse(pwr)>med_thresh(pwr))))
then
b := nilAddr % cannot allocate because of depletion
else
inuse(pwr) += 1
b := freelist(pwr)
freelist (pwr) := addressint@(b)
end if
end if

end allochuff

- 119 -



body procedure alloch % (sz: nat, pri: bpri, var mp: msgb_ptr)

var dp : datab ptr
var bp : addressint
var pwr := sizetopower(sz)

allochuff (pwr, pri, bp)
if (bp = nilAddr) then % could not allocate buffer
mp := nilMsgb
else % buffer allocated--try to allocate other pieces
new msgb, mp
new datab, dp
if ((mp "= nilMsgb) and (dp "= nilDatab)) then
% mp and dp allocated—-can proceed
bind var p to msgb(mp)
p.b next := nilMsgb % initialize various fields
p.b prev  := nilMsgb

bind var b to datab(dp)
b.db_freep := nilDatab
b.db base := bp

else
% could not allocate mp or dp or both--clean up
addressint@(bp) := freelist (pwr)
freelist(pwr) := bp
inuse(pwr) —= 1
if (mp "= nilMsgb) then
free msgb, mp
end if
if (dp "= nilbDatab) then
free datab, dp
end if
end if
end if

end allocb
body function testb % (sz: nat, pri: bpri) : boolean

var pwr := sizetopower(sz)
if (pwr = 0) then % size was out—of-bounds
result false
else
result
" ((freelist(pwr) = nilAddr) or
(pri=opri.RPRI_IO) and (inuse (pwr)>lo thresh(pwr))) or
(pri=bpri.BPRT MED) and (iruse(pwr)>med thresh(pwr))))
end if

end testb

- 120 -



body procedure freeb % (var bp : msgb ptr)

if (bp "= nilMsgb) then
... % various assert statements
var dp := msgb(bp).b datap
var b := datab(db).db base

free msgb, bp
if (datab(dp).db ref > 1) then
datab(dp) .db_ref — 1)
else
var p := sizetopower(datab(dp).db lim - b)
addressint@(b) := freelist(p)
freelist(p) := b
inuse(p) = 1
free datab, dp
end if
end if

end freeb

body procedure freemsg % (var mp : msgb_ptr)
loop

exit when (mp = nilMsgb)
var mp = msgb(mp) .b_cont

freeb (mp)
mp = 1p
end loop
end freemsg

% initialization
var nb := address(BUFFERS)
for i : P_RANGE
lo thresh(i) := round (STRIOFRAC * nblk(i))
med_thresh(i) := round(STRMEDFRAC * nblk(i))
if (nblk(i) > 0) then
freelist(i) :=nb
for j : 1..nblk(i)-1
var b := nb
nb += 2%*j
addressint@(b) := nb
end for
addressint@(nb) := nilAddr
nb += 2%kj
else
freelist(i) := nilAddr
end if
inuse(i) :=0
end for

end mem

- 121 -



Appendix G.
Turing Plus STREAMS Scheduler.

The scheduler consists of two parts: the module sched
and the monitor sched_mon. The two are in separate files,
with the monitor being a child of the module.
file: "sched.ch"

parent ", ./streams.bd"
stub module sched

import (var ginit, var queue)
export (unqualified genable)
child "sched mon.ch"

end sched

body module sched

grant (var queue)
child "sched_mon.ch"

process sched proc
var q : queue ptr
loop
a#gﬁmmudemxaw(q)
qinit(queue(q) .q_ginfo) .qi_srvp(q)
erd loop
end sched proc
fork sched proc

end sched

- 122 -



file: "sched_mon.ch"

parent "sched.ch"
stub monitor schedmon

import (var queue)
export (unqualified genable, dequeue)

procedure genable (q : gueue ptr)
procedure dequeue (var q : queue ptr)

end schedmon

body monitor schedmon

type q g : record
head, tail : queue ptr % a queue of Queues
end record

var ready : q gq
var more ready : condition % signalled when ready queue not empty

function is_in g(q : queue ptr, aq : q d) : boolean
% this function checks whether q is in qgq

var ql: queue ptr := ggq.head

loop
exit when ((ql = q) or (gl = nilQueue))
gl := queue(ql).q link

end loop

result (ql = q)

end is _in g

body procedure genable % (q: queue ptr)
% this procedure schedules a Queue for execution

assert (q "= nilQueue) % sanity check
% make sure q is not already scheduled
assert ("is_in g(gq, ready) )

if (ready.head = nilQueue) then
ready.head := gq
else
queue(ready.tail).q link := g
end if
ready.tail := g
queue(q) .q_link := nilQueue
% signal, in case scheduler is waiting
assert (ready.head "= nilQueue)
signal more ready
erd genable

- 123 -



body procedure dequeue % (var q: queue ptr)
% this procedure gets the next Queue to schedule

if (ready.head = nilQueue) then
wait more ready
end if
assert (ready.head "= nilQueue)
g := ready.head
ready.head := queue(q).q_link
if (ready.head = nilQueue) then
ready.tail := nilQueue
erd if
end dequeue
% initialization
ready.head := nilQueue
ready.tail := nilQueue

end schedmon

- 124 -



Appendix H.

Class T LIC Protocol Module.

The relevant code is contained in three files, all of
which reside in the drivers subdirectory. The file
"llcl_types.in" 1is included by the streams module and
contains the necessary type and constant declarations. The
other two files are the stub and body, respectively, of the
1lcl module, which is a child of the streams module. Some
repetitive and trivial or irrelevant code has been left out

to preserve space, and replaced with an ellipsis (...).

- 125 -



file: "llcl_types.in"

% address types

type * stn addr : nat2 % station addresses, Ethernet addresses are 16
% or 48 bits, we choose 16, but that can easily
% be changed

type * SAP addr : natl % SAP addresses

const * CR bit := 2#00000001 % Command/Response bit position

const * CR mask := CR bit xor 2#11111111

const * IG bit := 2#00000001 % Individual/Group bit position

const * NULL SAP := 0

const * GLOBAL DA := 2#11111111

% control byte formats

const * UT := 2#00000001

const * XID := 2#10101111

const * TEST := 2$#11100011

const * PF bit := 2#00010000

const * PF mask := PF bit xor 2#11111111

% transmission status values
const * XMIT OK := 255
const * XMIT FAIL := 254

% reguest primitives

const * XID req := XID

const * TEST req := TEST
const * ACTIVATE req := 253
const * DEACTIVATE req := 252
const * UP_req := 251
const * DOWN req := 250

% component states

const * ACTIVE := ACTIVATE req
const * INACTIVE := DEACTIVATE req
const * UP := UP_req

const * DOWN := DOWN_req

% header format

type * ctl_field
type * pri field
type * scl_field

natl % for Class 1 LIC this is enough
natl % one byte should be enough for priority
natl % same for service class

type * 1lcl header :

/* The actual LLC header consists of the source and destination SAP
addresses, the control field, and the priority and service class fields.
The DA/SA addresses and the length field make up the MAC header. They
are included because there is no other way of passing parameters in a
message-based system (such as STREAMS). Passing them in a separate
message block would serve little purpose other than degrading
performance. */

- 126 -



record
DA, SA : stn addr
len : natl
DSAP, SSAP: SAP addr
control : ctl_field
pri : pri_field
scl : scl_field
end record

const * min header._size :=
size(llcl_header) - size(pri field) - size(scl_field)

file "1llcl.st"

parent ",,/streams.bd"
stub module 1lcl
import (var u,
var incoreInode, major, minor, var cdevsw,
var fmodsw,
include "../allocators/a_grant.in" ,
include "../utils/u_grant.in"
)
export(c_init)
function c_init : streamtab_ptr
end 1llcl

- 127 -



file: "llcl.bd"

body "1llcl.st" module 1llcl

/************************************
* variables for STREAMS structures *
************************************/
var llclinfo : module_info ptr
var rsinfo, wsinfo : module stat ptr
var urinit, uwin.t,
lrinit, lwinit : ginit ptr
var st : streamtab ptr

/***********************************
* private per SAP data structures *
Kkdkkdkdkddokkdokokdcdokdiokddokdokokdeok ok kddkkkok /
var SAPs : collection of forward SAP rec
type SAP rec : record
next, prev : pointer to SAPs
adr : SAP addr
gotr : queue ptr
state : INACTIVE..ACTIVE % SAP component state
end record
var SAP list := nil(SAPs) % a list of currently cpened SAP’s

[ *Rdkdkdkkdkddddkkkkkkhddekkhkhhkhkdkkhhhkkidkdkki

* private station component data structures *

T e e Y

var stete : DOWN..UP := DOWN % station component state
var llcibot : queue ptr := nilQueue % linked lower queue
var nextSAP := SAP list % next upper quene to be serviced

/*******************

* 11cl procedures *
kK skkkkokk /

function next sap : natl

/* Find next available SAP address. Search starts at 252 and
goes down by four, until four, since bits 0 and 1 are reserved,
and address 0 is the controlling stream.
A zero is returned when no more SAP addresses are available.

*/

- 128 -



var register i := 252
loop
var register s := SAP list
loop
exit when ((s = nil(SAPs)) or (SAPs(s).adr = i))
s = SAPs(s).next
end loop
if (s = nil(SAPs)) then
exit
end if
i—-=4
exit when (i = 0)
end loop
result i
end next .ap

procedure send(var mp : msgb ptr)
/* Sends the given message down the lower linked stream.
If a group DSAP is given, then the GIOBAL DA is used. */

bind var hdr to 1lcl_header@(msgb(mp) .b_rptr)
if ((hdr.DSAP and IG bit) "= 0) then % group DSAP
hdr.DA := GLOBAL DA % must send to all stations
end if
putnext(llclbot, mp)
end send

procedure llclopen(q : queue ptr, dev : dev_t,
flag : openFlag, sflag : strmFlag,
var retval : int)

var mdev : natl
if (sflag = strmFlag.CLONEOPEN) then
if (SAP_list = nil(SAPs)) then
mdev =
else
mdev := next sap
erd if
else
mdev := minor(dev)
end if
if (SAP list = nil(SAPs) and mdev > 0) or
(SAP_list "= nil(SAPs) and mdev <= 0) then
retval := OPENFAIL
else

- 129 -



var n : pointer to SAPs
new SAPs, n
SAPs(n) .next := SAP list
if (SAP list "= nil(SAPs)) then
SAPs(SAP list) .prev :=n
end if
SAP list :=n
SAPs(n) .qptr := g
queue(q) .q ptr := addr(SAPs(n))
SAPs(n) .adr := mdev
SAPs(n) .state := ACTIVE
end if
erd llclopen

procedure llclclose(q : queue ptr, flag : closeFlag)
/%
* Upper dueue close.
*/
var sap := queue(q).q ptr % address of private SAP record
var p := SAP list % pointer for searching
loop % check that SAP add>=ss is valid (i.e. it is in SAP list)
exit when ((p = nil(SA s5)) or (addr(SAPs(p)) = sap))
p := SAPs(p).next
end loop
if (p "= nil(SAPs)) then
var prev := SAPs(p).prev
var next := SAPs(p).next
if (prev = nil(SAPs)) then
SAP list := next
else
SAPs (prev) .next := next
erd if
if (next "= nii(SAPs)) then
SAPs (next) .prev := prev
end if
if (SAPs(p).adr = NULL SAP) then % closing control stream
state := DOWN $% put station into DOWN state
end if
free SAPs, p
else
put "1llcl close: attempt to close non-existent SAP\n"
end if
end llclclose

- 130 -



procedure llcluwput(q : queue ptr, var mp : msgb ptr)

/* This procedure processes all messages relevant to the SAP
component, such as the requests to activate and deactivate.
Data messages, and requests to send a TEST or XID are enqueued
provided that the SAP camponent is active, otherwise they are
discarded. Requests to change the state of the station
camponent are discarded unless they come from the controlling
stream. ICCTL messages are handle here, even though they
pertain to the station comporent. This is because the IOCTL
message contains the link block which carries the bottom 1inked
queue pointer, which is needed before any message is handled by
the (station component side) lower service procedure. Generic
head processing is done on FLUSH messages. All other message
types are discarded.

*/

type status : enum(FREE, ENQUEUE, NAK)
var s : status := status.FREE

case (datab(msgb(mp).b datap).db type) of

label m.M FIUSH:

bind var ftype to mtset@(msgb(mp).b rptr)

if (mt.FLUSHW in ftype) then
flushq(q, mt.FIUSHDATA)

erd if

if (mt.FIUSHR in ftype) then
flushq(RD(q), mt.FLUSHDATA)
ftype — mtset (mt. FLUSHW)
greply(q, ™p)
return

end if

label m.M _TOCTJ.: /* Only controlling stream can do ioctl’s.
Two calls are recognized: LINK arxi UNLINK
*/
s := status.NAK
birncl var sap tc SAP_rec@(queue(c,).q ptr)
if (sap.adr = NULL SAP) then
bind var iocp to iocblk@(msgb(mp).b rptr)
case (iocp.ioc_cmd) of
label ioc c.I_LINK:
if (llclbot "= nilQueue) then
s := status.NAK
else
bind var linkp to
1inkblk@ (msgb(msgb(mp) .b_cont) .b_rptr)
llclbot := WR(linkp.l ghot)
datab(msgb (mp) .b_datap) .db_type := m.M_IOCACK
iocp.ioc_count := 0
qreply(q, mp)
return
end if

- 131 -



label ioc_c.I_UNLINK:

bind var linkp to
1inkblke (msgb (msgb (mp) .b_cont) .b_rptr)
llclbot := nilQueue
datab (msgb (mp) .b_datap) .db_type := m.M_IOCACK
iocp.ioc_count := 0
areply(q, mp)
return
end case
end if

label m.M PCPROTO:
if ((msgb(mp).b wptr-msgb(mp) .b_rptr) >= min header size)
then
bind var hdr to llcl_header@(msgb(mp) .b_rptr)
bind var sap to SAP rec@(queue(q).q ptr)
case (hdr.control) of
label ACTIVATE req, DEACTIVATE req:
sap.state := hdr.control
label UP_req, DOWN req:
if (sap.adr = NULL SAP) then
s := status.ENQUEUE
end if
label XID req, TEST req:
if (sap.state = ACTIVE) then
s := status.ENQUEUE
end if
end case
end if

label m.M PROTO:
if ((msgb(mp) .b_wptr-msgb(mp) .b_rptr) >= min header size)
then
bind var sap to SAP rec@(queue(q).q ptr)
if (sap.state = ACTIVE) then
bind var hdr to 1lcl_header@ (msgb(mp) .b_rptr)
hdr.control := UL
s := status.ENQUEUE
erd if
end if

end case

if (s = status.FREE) then

freemsg (mp)

elsif (s = status.NAK) then % fail ioctl

datab (msgb(mp) .b_datap) .db_type := m.M IOCNAK
qreply (q, mp)

else % (s = status.ENQUEUE)

- 132 -



if (1lclbot = nilQueue) then % no bottom queue ~ ERROR
datab(msgb(np) .b_datap) .db_type := m.M_ERROR
msgb (mp) .b_rptr := datab(msgb(mp) .b_datap) .db_base
natl@ (msgb(mp) .b_rptr) := EINVAL
msgb (mp) .b wptr := msgb(mp) .b rptr + 1
qreply (q, 1p)

else
putq(q, mp)
genable(llclbot)

end if

end if

end llcluwput

procedure get next g(var nqg : queue ptr)

/* Round~robin scheduling.
Return next upper queue that needs servicing.
Returns nilQueue when no more work needs to be done.

*/

var register i := nextSAP
var found := false
loop
nq := SAPs(i).gptr
i := SAPs(i).next
if (i = nil(SAPs)) then
i := SAP list % wrap around

erd if
if (ng "= nilQueue) then
ng := WR(ng)

if (queue(nq).q first "= nilMsgb) then
found := true
end if
end if
if (i = nextSAP) then
exit /* went all the way around */
end if
erd loop
nextSAP := i; /* round robin */
if (not found) then
ng := nilQueue % no more work to be done
end if

end get next g

- 133 -



procedure llcllwsrv(qg : queue ptr) % called with (g = llclbot)

/* This procedure performs the actions of the station component.
It sends UI, TEST, and XID messages on behalf of the SAP
components and processes requests to put the station component
into an UP or DOWN state. As all service procedures, it is a
loop which ends only when no more work needs to be done (as
indicated by the return of a nil pointer from get next q) or
the way down is blocked due to flow control.

*/
loop
exit when (not canput(queue(q).q next)) % blocked below
var nq : queue ptr
get_next_q(nq)
exit when (ng = nilQueue) % no more work -- so long
var mp : msgb ptr
getq(ng, mp)
case (datab(msgb(mp).b_datap) .db_type) of
label m.M PROTO: % this must be a UI request - send it
send (mp)
return
label m.M PCPROTO: /* Can only be TEST or XID req. from
active SAP or UP/DOWN request. The
latter must be from the controlling
stream.
*/
bind var hdr to llcl_header@(msgb(mp) .b_rptr)
bind var sap to SAP_rec@(queue(q) .q ptr)
case (hdr.control) of
label UP_req, DOWN_req:
if (sap.adr = NULL SAP) then
state := hdr.control
end if
label XID req, TEST req:
datab (msgb (mp) .b_datap) .db_type := m.M_PROTO
hdr.SSAP and= CR mask % send as a command
send (mp)
return
end case
freemsg (mp)
end case
end loop

end llcllwsrv

function find sap(hdr : llcl header) : pointer to SAPs

/* This function finds the pointer to the sap record of the SAP
whose address matches the DSAP of the header.

*/

- 134 -



var register dsap := hdr.DSAP

var register sap := SAP list

loop
exit when (sap = nil(SAPs)) or (SAPs(sap).adr = dsap)
sap := SAPs(sap) .next

end loop

result sap

end find sap

function find group(hdr : 1llcl header) : pomter to SAPs

/* This functions takes the group DSAP address in the header and
returns the pointer to the first SAP address which belongs to
the group. The rest of the SAP’s are linked via the next field
of SAP rec. At present, groups are not implemented, so the
function simply returns a nil pointer - signifying that the
group is empty. Any future implementation of groups should
follow this convention of linking all the SAP records belonging
to the same group. The rest of the implementation should not
matter.

*/
result nil (SAPs)

end find group

procecdure llcllrput(q : queue ptr, var mp : msgb _ptr)

/* This procedure routed M _PROTO messages up to the approprlate
SAP, provided the SAP component is ACTIVE and the P/F bit is
off. All other valid message types are enqueucd and processed
by the lower read service procedure. Valid messages are
M PROTO, M PCPROTO and M FIUSH. No other messages are
ant1c1pated so all others are simply discarded.

*/
case ( datab(msgb(mp).b datap).db type ) of

label m.M_PROTO, m.M PCPROTO:
var group: boolean
if ((msgb(mp) .b wptr-msgb(mp).b_¥ptr) < min_header size)
then
freemsg(mp) % header not correct - discard
else % header is all right
bind var hdr to 1llcl header@ (msgb(mp) .b_rptr)
if (hdr.DSAP = NULL SAP) then
putg(q, mp) % addressed to station component
else % addressed to individual or group SAP
var sap : pointer to SAPs
group := ((hdr.DSAP and IG bit) "= 0)
if (group) then
sap := find_group (hdr)
else
sap := find sap(hdr)
end if

- 135 -




loop
if (group and (sap = nil(SAPs))) then
exit % no one here from this group
end if
if (sap = nil(SAPs)) then
put "1llcllrput: message addressed to ",
"non-existent SAP\n"
else % SAP exists
if (SAPs(sap).state = ACTIVE) then
var ok := true
case (hdr.control) of
label UI:
if ((hdr.SSAP and CR bit) "= 0) or
((hdr.control and PF bit) "= 0)
then
ok := false % a UI response or UL
% with PF-bit on is
end if % discarded
label XID, TEST:
label: % default - discard
ok := false
end case
var uq := SAPs(sap) .gptr
if (ok and canput(nextsg(q))) then
if (group) then
var mc : msgb_ptr % copy of message
dupmsg (mp, mC)
putnext(q, mc)
else
putnext(q, mp)
erd if
end if
end if % SAP active
end if % SAP doesn’t exists
if not(group) then
exit % individual DSAP - no more work here
else
sap := SAPs(sap) .next % else do next in group
end if
end loop

end if % NULL DSAP address
end if % header incorrect

if (group) then
freemsg(mp) % free criginal message
end if

label m.M FIUSH:
putq(q, mp) % let the service procedure handle FIUSH

- 136 -



label: % default - everything else is discarded
freemsqg(mp)

end case
erd llcllrput

procedure llcllrsrv(q : queue ptr)

/* This procedure hardles everything passed-up by the lower read
put procedure, namely NULL DSAP’ed M_PROTO and M_PCPROTO
messages, FIUSH messages. The former will include TEST and XID
command<ss and responses (in M_PROTO messages) and transmission
status reports (in M _PCPROIO messades). Anything not covered by
the above will be discarded.

*/
loop
var mp : msgb ptr
geta(q, mp)

exit when (mp = nilMsgb)

type status : enum(FREE, DONT FREE)

var s : status := status.FREE

case (datab(msgb(mp).b_datap).db type) of

label m.M FIUSH: % generic stream-head FIUSH processing
bind var ftype to mtset@(msgb(mp).b rptr)
if (mt.FIUSHR in ftype) then
flushq(q, mt.FIUSHALL)
end if
if (mt.FIUSHW in ftype) then
ftype — mtset (mt.FIUSHR)
greply(q, mp)
s := status.DONT FREE
end if

label m.M_PCFROTO:
bind var hdr to 1llcl_header@(msgb(mp).b rptr)
case (hdr.control) of
label XMIT OK: /* transmission status messages */
label XMIT FAIL: /* are currently ignored */
end case

label m.M_PROTO: /#* Only NULL DSAP messages should get
here, so the only types to expect are
XID and TEST command and responses.
*/
bind var hdr to 1lcl_header@(msgb(mp) .b_rptr)
case (hdr.control) of

- 137 -



label TEST, XID:
if ((hdr.SSAP and CR bit) = 0) then %
var tdsap : SAP addr := hdr.DSAP % reverse
%

hdr.DA :=
hdr.SA := tda
hdr.SSAP or= CR bit % change to response

o
send(mp) % and send back

if (s = status.FREE) then
fx;eensg(mp)
end if
end loop

end llcllrsrv

body function c_init
result st
end c_init

% module information structure
mi_init(llclinfo, stm.llcl, "1lcl1", 0, INFPSZ, O, 0)

% read module statistics structure
ms_init(rsinfo, 0, 0, 0, 0, O, 0, O)

% write module statistics structure
ms_init(wsinfo, 0, 0, 0, 0, O, 0, 0)

% upper read queue initialization structure
gi init(urinit, nil_qgi putp, nil gi_srvp, llclopen,
llclclose, nil gi admin, llclinfo, rsinfo)

% upper write queue initialization structure
gi_init(uwinit, llcluwput, nil gi srvp, nil_gi_open,
nil_qgi close, nil_gi_admin, llclinfo, rsinfo)

% lower read queue initialization structure
gi_init(lrinit, llcllrput, llcllrsrv, nil_gi_open,
nil_qgi close, nil gi_admin, llclinfo, wsinfo)

% lower write queue initialization structure

gi_init(lwinit, nil gi_putp, 1llcllwsrv, nil gi open,
nil_qgi_close, nil_gi_admin, llclinfo, wsinfo)

- 138 -



% streamtab initialization structure
st init(st, urinit, uwinit, lrinit, lwinit)

% c_init will be called to initialize the element of cdevsw

end 1lcl



