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ABSTRACT

Design and validation of an XTP Simulator

J.X.G. Chen

This thesis presents a desigtn and validation of a
simulator for a transport and network level protocol the
Xpress Transfer Protocol (XTP). XTP was designed to provide
a highly efficient transport service.

The tool on which the XTP simulation is based is the
Local Area Network Simulation Facility (LANSF). The chosen
simulation LAN environment was the ETHERNET. LANSF was
modified to support virtual circuit simulations.

The conceptual model of XTP was designed, and used to
structure the processes within the LANSF simulation

Subsequent analysis of XTP performance shows that it
can provide high throughput to the transport users for file
transfer operation. Its bandwidth for short transfers is
limited by the necessity of carrying the overhead of packet
headers, packet trailers and acknowledgement packets.
However, it is no worse than most other protocols e.g. TCP

and TP4 in this respect.
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CHAPTER 1
INTRODUCTION

"If the presence of electricity can be made visible in
any part of a circuit, I see no reason why intelligence may
not be transmitted instantaneously by electricity."

Samuel F.B. Morse

Along with the fapid development of distributed systems
and high speed communication media, the demand for a more
efficient transport layer protocol for high bandwidth media
is increasing quickly. Many research activities have been
devoted to this area. The Xpress Transfer Protocol (XTP) is
one such example.

The following thesis presents a design and validation
of an XTP simulator which can be used for performance
analysis. The thesis consists of gix chapters:

The second chapter is an introduction to communication
protocol models, and the advantages and disadvantages of
using these models for distributed system implementations.
This chapter also compares two groups of protocols: general
purpose protocols and special purpose protocols.

The third chapter introduces the background of the XTP
protocol, and describes the operations of XTP, which include
connection management, data transfer, termination
mAanagement, multicasting, and datagram service.

The fourth chapter explains the structure of the Local

Area Network Simulation Facility (LANSF), which has been



used in this thesis as the performance simulation tool for
XTP. This chapter also points out the need to modify LANSF,
in order to do the XTP performance simulation.

The fifth chapter presents our design of the XTP
simulation program. This chapter also documents our
assumptions on which the simulation and the simulation plan
were based. Finally this chapter presents our simulation
results.

The last chapter summarizes the results which we have
obtained from the XTP performance simulation, and proposes

future enhancements to our work.



CHAPTER 2
AN INTRODUCTION TO COMMUNICATION PROTOCOLS

"Mr. Watson, come here, I want you."

Alexander Graham Bell

"It's currently a problem of access tb gigabits through
punybaud."
J.C.R. Licklider

2.1 The Importance of Communication Protocols in Distributed

Operating System Design

The computers forming a distributed system normally do
not share primary memory, and so communication via shared
memory techniques such as semaphores and monitors is not
applicable [27]. Instead, message passing in one way or
another 1is used. In order for processes to maintain
communication between its components, the system must be
able to deliver messages reliably and quickly from one
machine +to another. Therefore, achieving reliable and
efficient message delivery has become an important issue in
distributed system design.

There are many factors that affect how reliably and how
quickly a system could transmit messages from one point to
another. Some examples are:

- the physical characteristics of the communication

media;
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- the distance between interconnected machines;

- the behavior of electronic switching circuits;

- the data representation formats;

- the structure of the operating system;

- machine compatibility.

All these factors point out the need to set up some
sort of conventions for machine-to-machine communications.
The set of conventions which defines the rules governing the
exchange of data between two machines is referred to as a

protocol [26].

2.2 ISO and DoD Standards

Protocols are usually defined by logically separated
layer models, because it is too complicated to specify them
in a single layer. Figure 1 is a comparison of several
popular protocol reference models.

Among them, the Open System Interconnection (0SI)
reference model from the International Organization for
Standardization (ISO) is the one most widely discussed in
the research work referring to message passing. The main
purpose of the ISO reference model is to provide a common
basis for coordination of standards development in system
interconnection. There are seven layers in the ISO 0SI
model. The following is a summary of the functionality of
each layer [26].

Application: provides an accessing environment to the

user.



Presentation: converts different data representations,

e.g., from EBCDIC to ASCII.

Session: provides for the establishment of a
session between two communicating
processes.

Transport: provides reliable and transparent data

transfer between end points; provides
end to end error recovery and flow
control.

Network: provides upper layers with independence
from data switching technology used to
connect systems (routing functionality).

Data link: provides reliable data transfer across
the physical 1link; sends blocks for
synchronization; provides error control
and flow control for the upper layers.

Physical: provides electrical, mechanical, func-
tional, and procedural standards to
access the physical medium, i.e., cable
interfaces, signal encoding and
decoding.

By using a standardized layer model, it is possible to
connect systems with widely different operating systems,
character codes, and ways of viewing the world [26].

Unfertunately, there are two major problems that
prevent these layered model from being widely adopted for

actual distributed system design:
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(a) All these layered protocol models do not describe
multicasting operation, which is a very important feature of
distributed systems, especially in the areas of
decentralized naming [5), distributed scheduling, parallel
computation [6], distributed transaction management [12] and
replication [12].

(by A substantial amount of overhead results if the
implementation exactly follows these layered models.

The heavy overheads are mainly caused by:

(1) There are too many interactions between layers
[24]. Figure 2 demonstrates how many interactions are
needed among the transport, network, and data link layers,
in order to send a single data packet. This figure 1is
derived from the description given in [18). There are a
total of 22 interactions in the process of sending one
single user packet! Note: This is a worst-case scenario,
where a datapath is openec, the data are sent, and the
datapath is then closed. If more data are to be sent than
can be contained in a single packet (for example, in a file
transfer operation), then the open and close overheads can
be amortized over the several data packets.

(2) There are too many buffering operations among the
layers, due to the clearly defined layer boundaries [24].
The more buffering operations, the heavier the communication
process overhead.

(3) There are redundant functionalities among the

layers. For example, cyclic redundancy check (CRC) [26] is
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used by the data link layer, and a checksum scheme is also
used by <the transport layer, and sometimes, the network
layer. Both of the techniques are used for error detection.
An extra error detection means an extra parse over a packet.

(4) The complicated design of some layers such as the
transport layer, which introduces heavy CPU usage in the

implementation [24].
2.3 Transport Level Protocols

2.3.1 Significance of Transport Level Protocols for
Distributed System Performance

Distributed systems require their communication
protocol to provide reliable and fast end-to—-end message
delivery service. As described in [28], the transport layer
protocols are responsible for end-to-end message delivery.
Thus, much distributed system protocol development effort
has been put into transport level protocol design.

Figure 3 summarizes the main functions of the transport
protocols, and the mechanisms used by most of the designers.

Most of the existing transport protocols can be
classified into two groups: general purpose transport
protocols and special purpose protocols. The following

two sections will compare these two groups in detail.

2.3.2 Traditional Designs of Transport Layer Protocols
General purpose transport layer protocols are mainly

developed for inter-system communications [4], which
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concerns activities such as remote terminal access and long
file transfer in a wide area network. They ure designed
based on the assumption that the communication will take
place in an environment in which the lower layers have high
error rate and the behavior of the environment is
unpredictable. An example of such an environment would be
using packet radio communication in the hills around
Berkeley (the development environment assumed by the TCP
design group).

For connection management, general purpose protocols
usually use multiple packet exchanges to set up a virtual
circuit connection, and to tear down the connection. A timer
is usually started after each handshake packet is sent. If
no expected packet has arrived by the +time the <timer
expires, the previous handshake packet will be
retransmitted.

For error detection and recovery, general purpose
protocols use checksums to detect corrupted packets, and use
sequence numbers to detect duplicated or out-of-szquence
packets. A go-back—N or selective-repeat scheme is employed
for error recovery; go—back-N is favored for multicast
operation, and selective—repeat is favored for long delay
virtual circuit transmission. Figure 4 shows how go-back-N
and selective—repeat operate [26].

For flow control, general purpose protocols use an

explicit sliding window strategy which means the available

11
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buffer space is updated with the arrival of eack
ac” aowledgment packet.

For message fragmentation, general purpose protocols
use fixed packet header and fixed user data segment, or
variable size in control packets and fixed size in user data
packets.

We will now discuss two well-known general-purpose

transport protocols.

2.3.2.1 The Department of Defense's Transmission
Control Protocol

Transmission Control Protocol (TCP) was developed for
the U.S. Department of Defence (DoD) in 1981 [13], and
later became a DoD standard for communication. TCP is
probably one of the most popular transport protocols, and it
has been adopted by many experimental distributed systems,
because of its availability on the Internet and 1its
relationship with +the BSD version of the UNIX operating
system.

Figure 5 shows the minimum packet exchange needed to
transmit one packet of user data. There are three phases in
each transaction: conuection establishment, transmission,
and disconnection.

To send a message, a client must set up a virtual
circuit connection first, before the message can be sent.
The virtual circuit should be torn down when it is no longer

needed.

13
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Figure S Minimum packet exchanges in TCP data transfer
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When a send message request is passed to TCP from a
user, TCP will fragment the message into TCP packet(s). Then
TCP will send a "connection request" packet (SYN) to the
target site; in the meantime, a wait timer is started at the
sender site. If no ‘"connection confirm" packet arrives
before the expiration of the wait timer, TCP will retransmit
the "connection request" packet. If the "connection confirm"
packet arrives before the wait timer expires, the sender
site will transmit an "acknowledgment packet" which
acknowledges the receipt of the "connection confirm" packet
to the receiving site. The process described above is
usually referred as the three way handshake. During the
handshake, transfer and resource allocation are negotiated
between sender and receiver. Theoretically, TCP can safely
exchange a request and a reply using five packets (without
disconnection); many implementations, however, require nine
[24]. Once the virtual c¢ircuit is set wup, the actual
transmission of the user data will take place. An
"acknowledge packet” must be sent to the sender after the
receiver has received a certain amount of data. When the
user wishes to terminate the transmission, TCP will send a
"disconnection request" to the receiver site. If it
receives a "disconnection confirm" packet from the receiver,
it will shut down the wvirtual circuit.

TCP also provides error detection, error recovery, and
flow control functions for the user. Checksums and sequence

numbers are used to detect corrupted, duplicated, and out-

15



of-sequence packets. In some of the TCP implementations,
selective-repeat is used for long distance file transfer and
go—~back—-N is used for short distance communication, simply
because the cost of using go—-back-N for 1long distance
communication is too high. However, there is some overhead
caused by using selective-repeat, since the receiver site
must have the ability to store out-of-sequence packets and
to restore the sequence later. These requirements make the
receiving protocol more complicated. For flow control, TCP
uses an explicit sliding window technique. The main
shortcoming of the explicit sliding window is the possible
occurrence of the "silly window syndrome" [10] which is
caused by the window size becoming as small as one byte; in
this situation, only one byte is allowed to be transmitted
in each packet.

User messages are fragmented into TCP packets with
fixed format headers; this introduces additional overhead
in packets, because some control fields are not necessary

for data packets.

2.3.2.2 The ISO TP4

ISO developed Transport Protocol class 4 (TP4) in
1984 [18]. TP4 design 1is based on assumptions that are
similar to TCP's. As a result, TP4 design is very much like
TCP's, the only difference being that TP4 uses variable size
control packets in an attempt to cut down on overhead bits
in the packet format. The variable size control packets also

make the receiver side more complicated, and therefore
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reduce the throughput. Figure 6 shows the minimum packet
exchanges to send a request. There are very few actual
implementations of TP4 in the current market. As a result,
there is no distributed system adopting TP4.

In general, TCP and TP4 are very robust in a poor
communication environment as usually exists in a long haul
network. Once the virtual circuit is set up, the data
transfer becomes very efficient [24].

On the other hand, TCP and TP4 are extremely
inefficient when they are used for exchanging small amounts
of data as is frequently the case in request-reply style
communications. The main causes are:

- excessive packet exchange in virtual circuit

establishment;

- excessive packet exchange in virtual circuit

disconnection;

— possible silly window syndrome in flow control;

- no reliable real-time arbitrary-sized datagram

service;

- requirement for three phases per transaction.

Some experimental distributed systems use a modified
version of the general purpose protocols in order to gain

better performance [1,19,34].

2.3.3 Special Design of Transport Layer Protocols
With the development of distributed systems, the use of

communication has been shifted significantly to intra-system
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communication such as remote procedure calls, multicast, and
real-time datagrams [4]. Most of the intra-system
communication can be characterized as a short burst of
packets that carry the requests and replies.

From the previous discussion of general purpose
transport protocols, we can see that they are inadequate for
request and reply style communication. Thus many of the
experimental distributed system implementations have adopted
a different type and much simpler protocol for their
communication [27]. These newer protocols are classified as
special purpose protocols.

Special purpose protocols are designed to achieve high
performance for distributed systems. Their design assumes
that the system is based on a local area network, and that
the behavior of such a configuration is predictable. With
these assumptions in mind, many mechanisms that are used to
cope with an unpredictable environment are removed.

In the following we present two examples of special
purpose transport protocols. Our criteria for selecting
the examples are:

- The protocol must be designed specifically for

distributed systems.

It must be designed from scratch.

It must be implemented.

It must have performance statistics available.
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2.3.3.1 The Versatile Message Transaction Protocol
(VMTP)

VMTP was developed at Stanford University and used in
the V distributed system. VMTP is basically a request-
response protocol. The designers of VMTP assume that the
protocol would be used in a local area network or tightly-
coupled cluster of local networks [3].

A VMTP message transaction is initiated by a wuser
sending a request message to a server entity, and terminated
by the server sending back a response message [4].

The handshake mechanism for virtual circuit
establishment is not adopted by VMTP; instead, a much
simpler, timer-based connection set up method is used:

When a client wishes to request a particular type of
service, he or she formats a VIMP control block which
specifies the name and address of the server, and passes the
control block to the VMTP entity. VMTP will fragment the
request message into several fixed-length VMTP packets if
the message is too long. Then, it will send all the request
packets to *he server site in a short burst. A wait timer is
also started right after the sending action. The wait timer
is set to the interval of a packet round trip time plus the
expected server processing time. If the sending VMTP entity
does not receive any response packet from the server site
before the wait timer expires, it will retransmit the
previous request again. VMTP will declare network failure

after six unsuccessful tries.
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At the server site, the server is always 1listening.
Once VMTP receives a new request, it will set up a virtual
circuit associated with the request, and will pass the
request to the server process. At the same time, the server
site VMTP entity will also start a wait timer which will
expire in the length of expected response time. If there is
no response from the server by the time the wait timer
expires, VMTP will discard the virtual circuit to prevent
possible duplicated requests, because the reply would not
able to reach the client site before the wait timer on the
client site expires.

There is no specific packet exchange needed for the
termination of the virtual circuit. A timer called T-stable
timer is started when the virtual circuit is set up. The
time interval of the T-stable timer is six packet round trip
times plus six expected response times. If the virtual
circuit is not active in the period of T-stable, it will be
automatically torn down by the VMTP entity, and its
identifier will be used by another client.

There are a number of control bits in the VMTP packet
header that allow the sender entity to control when the
receiving site should return an acknowledgment. In this
way, one acknowledgment packet can acknowledge more than one
packet. If the number of the request packets is small, VMTP
could set no acknowledgment. In this case the response from
the server will be the acknowledgment. Using replies for

acknowledgment purposes is usually referred to as "implicit
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ack". VMTP only allows one outstanding request per client;
as a result, there is no need for multiconnection management
for each client, which makes the receiving site simpler.

VMTP uses checksums and sequence numbers for error
detection. For long transmissions, selective-repeat is used
for error recovery [4].

The VMTP Packet header is smaller than that of most of
the general purpose protocols because of the reusable
virtual circuit identifiers. Figure 7 shows the operation
of VMTP,

In general, VMTP designers made maximum effort to
reduce the number of packets required for virtual circuit
connection management, error control, and flow control. Thus
VIMP has better performance than most of the general purpose
protocols in a LAN environment.

However, there are also inefficient aspects in VMTP.
VIMP does not perform well when the client =ends a large
number of requests within a time interval which is slightly
greater than T-stable, because the virtual circuit would
have to be set up with each request. VMTP is also difficult
to tune, because there are many timers, especially the round
trip timer and the expected response timer. This problem of
tuning makes prrotocol adaptation and open connection
difficult. VMTP is also not suitable for 1long file
transfers, because VMTP only -llows one outstanding request
per client, and the maximum user data length in each request

control block is 32 Kbytes.
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2.3.3.2 The AMOEBA transport protocol

The AMOEBA distributed system was designed and
implemented at the Vrije University in Amsterdam [30].

To achieve high performance, the AMOEBA transport
protocol has been kept very simple. Figure 8 shows a
request-reply operation in the AMEOBA protocol.

There is no virtual circuit in AMOEBA's protocol. When
a client wants to send a request for the first time, a
packet containiny the server's port number is broadcast over
the network. The kernel running the server responds with a
packet containing its physical network address. The client
caches this information so that it may use it as a hint in
subsequent transactions to the same server [30].

Next the client sends the request packet, or a sequence
of packets if the request does not fit into one packet, to
the server using the acquired physical address. A
retransmission timer 1is started to recover from network
failures.

In the case where the reply is not generated quickly
enough, the server sends back an acknowledgment to prevent
the client from retransmitting the request [30].

There 1is no network level routing since a broadcast
technique is used.

For flow control, the AMOEBA protocol simply discards
the overflow packets, because the transmission rate is known
in the design. For error control, checksums and sequence

numbers are used.
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The AMOEBA protocol is extremely simple, which leads to
high performance in a stable local area network environment
[30].

However, the AMOEBA protocol is not suitable for long
file transfers, because there are nc virtual circuits, and
there is no adequate flow control. There is also the problem
of connecting to other systems.

To summarize the main design characteristics of special
purpose protocols, they achieve high performance in intra-
system communication by using a minimum number of packets
for connection management or a connectionless protocol, and
by using one-to-many acknowledgment or implicit

acknowledgment for error and flow control.

2.3.4 Performance Comparisons from the Literature

To compare the performances of the general and special
purpose protccols in distributed systems, we selected a
number of systems. The criteria for our selection are:

- The system must use an ETHERNET for communication.

- The system must be configured with similar hardware.

~ The system must be designed as a full system.

- The protocol used by the system must be known.

- The performance statistics must be available.

Although there are many reports on experimental
distributed systems, most of them do not provide performance
figures, e.g., [1,19,22]. Some systems are tightly coupled
multiprocessor distributed systems, e.g., [29]. For some

systems, information 1is provided about their protocol and
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performance figures, but the protocols are just variations
of the general purpose protocols, e.g., [23]. Some systems
are designed for a special purpose such as [17]. Some
systems use different medium access methods, e.g., [22].
Most of the papers provide performance information on intra-
system communication of their systems, but not on long file
transfer performance.

The syst:a2ms that meet the sgelectlon criteria are:

- DUNIX and SPRITE for general purpose protocols

- V and AMQEBA for special purpose protocols.

DUNIX was developed by Bell Communication Research.
DUNIX currently runs on the DEC VAX family of computers and
uses the Ethernet for inter-computer communication. The
pmntocol is adapted from DECnet [20].

SPRITE was developed by UC Berkeley. SPRITE runs on a
number of SUN stations that are connected by Ethernet. The
communication protocol in SPRITE is TCP ([32].

The configuration of the Vv Jistributed system is
similar to SPRITE: it is also a number of SUN workstations
connected by Ethernet. The communication protocol is VMTP
[3].

AMOEBA currently runs on Motorola 68020, Microvax II,
and National Semiconductor 32032 processors using Ethernet
and Pronet LAN [30]. The transport protocol is described
above.

Figure 9 shows tane system configurations of the four

examples and their performance on remcte procedure calls.
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From the comparison, we can see that special purpose
protocols do perform better in intra-system communication
than general purpose protocols. On the other hand, we have
noted above that general purpose protocols are better suited
for 1long file transfers. We also know that none of the
above four protocols provides reliable datagram and
mulitcast services to their user.

Currently much effort has been put into improving
general purpose protocols. Examples of such efforts are
[2,11]. Also there are many activities on the area of
designing new t.ansport protocols that are suitable for
inter-system and intra-system communications. The next

chapter outlines one such effort.
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CHAPTER 3
AN INTRODUCTION TO XTP

"Small is beautiful."

Schumacher's dictum

3.1 Background

The newly designed Xpress Transfer Proctocol (XTP) aims
to combine the advantages of both the general-purpose
protocols and the special-purpose protocols [7,8,9].

The XTP protocol has been designed under the leadership
of Dr. Greg Chesson. The protocol provides high efficiency
for Dbulk transport, real-time datagrams, and +traditional
stream services. It also has flow/error/rate control,
accommodation of multiple addressing schemes, message
boundary preservation, out-of-band signalling, and a
reliable multicasting service [8j3. XTP has the
functionalities of the transport and network layer in the
ISO reference model. The protocol is designed to meet the
demands of the VLSI execution environment [7,8,20]. The XTP
network layer could also operate as a bridge or routing
gateway. The core of the XTP protocol is a minimal
mechanism, or the so-called lightweight transport [8]. The
work reported in this thesis is based on version 3.3 of the
protocol definition (8]; occasional reference will be made

to new features defined in version 3.4 [9].

3.2 The Operation of XTP

For the purposes of helping the reader to understand
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our simulation, we are only going to discuss those XTP
operations that have significance to our simulation, rather
than the whole detailed definition of the protocol. Those
who are interested in the complete definition should refer
to [8]. Figure 10 is a summary of the XTP packet structure.

In the general sense, there are two types of XTP
packets:

(1) Control packets, which are used by the XTP protocol

to send control and management information between
the XTP peer entities. XTP control packets do not
carry any user data.

(2) Information packets, which are used to carry user

data.

Every XTP packet has the same header and trailer; both
are sixteen bytes long. The control segment is 160 bytes
long. In our simulation, the user information segment is
varied from 6 to 1442 bytes long, which fits into the
ETHERNET user data segment.

The XTP packet header has six fields:

{1y The options field which has sixteen bits. Table 1

is a summary of the meaning of the bits in the
options field (the bit count starts from the least
significant bit, which is bit 0 in +this <case).
Here, we are not going to describe the details of
the options field, because it does not relate to
our current simulation. A more detailed definition

of the options field can be found in [8].
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Figure 10 XTP packet structure [8]
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BIT POSITION MEANING

0

1 BTAG field exists in the data segment
2 -7 Not used

8 Check function disabled

9 Multicast mode enabled

10 Reservation mode enabled

11 No~error—-check mode enabled

12 direct addressing mode enabled
13 32-bit mask enabled

14 64~-bit mask enabled

15 Little—endian byte order used

Table 1 Bit meanings for the XTP option field

(2) The +ttl field records the total lifetime allowed
for a packet in a network.

(3) The type field consists of eight bits, shown in

Table 2.
BIT POSITION MEANING
0-3 Packet type
4-6 Version number
7 Little-endian bit order used

Table 2 Bit meanings for the XTP type field

(4) The route field is used for routing information.
(5) The key field is used for context association.

(6) The seq is the packet sequence number.
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The XTP protocol has nine packet types:

(1) DATA — data packet;

(2) CNTL - control packet;

(3) FIRST - the first packet;

(4) REJ — error indication packet;

(5) PATH — path threading packet

(6) DIAG — diagnostic packet;

(7) MAINT - network maintenance packet;
(8) MREPLY - multicast reply packets:;

(9) MGMT - management packet.

The XTP packet trailer has five fields:

(1) The flags field contains a number of command
flags. Table 3 shows the definitions of the
trailer flags [8].

RN MR IR N NN Y. R NE NS RN RS AN I K R DY R S M I S MK MK S SUE SN M Rt 2NS EED A J NN ST N WK SR JEE TR T DR 3% WK £ SR 208 TR TR M X NS R W TR TR TN TS

BIT POSITION MEANING
0 The last packet indication
1 The end of message indication
2 The end tag indication
3-10 Not used
11 The data checksum present
12 The write site closed indication
13 The read site closed indication
14 The end of burst indication
15 The status request indication

MM RSN RN RN NS RIS N R SRR R NI IR S IR I M R I S R SR S A SR Sy S e

Table 3 XTP packet trailer flags

(2) The align field records the number of padding bytes

present.
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(3)

(4)

(3)

The .gggg denotes that the sender requests that
status be sent after the data have been copied to
user space.

The dcheck is the checksum calculation on the
information segment.

The kcheck is the checksum calculation on the

header and trailer.

XTP control packei.s do not carry any user data; each of

the control packets has ninety-six bytes of control segment

within which there are eight control fields plus sixteen

retransmission pairs. The following is a summary of the

functionality of each field (from [8]):

(1)

(2)

(3)

(4)

Credit field; unlike the concept of credit that is

used in the explicit sliding window scheme, credit
in XTP is used to control the maximum number of
output bytes per burst allowed for each virtual
circuit 1in each node. The credit serves the
function of enforcing fairness among the senders in
a node.

The separation field specifies the pause space
between packets that are going on the same route.
The rseq field states the highest sequence number
that the receiver has received in consecutive form.
In other words, there is no packet missing up to
the rseq number.

The alloc field indicates the maximum number of

bytes that the receiver is willing to accept. The
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alloc function is thez same as the window size in
the sliding window scheme.

(5) The echo field returns the same value that the
sender has specified in the sync field in the
previous control packet. Once XTP receives a
control packet that requests the current status
of the receiving site, the XTP receiver will
report it s current status and will copy the sync
value from the request control packet to the
echo field of the return control packet.

(6) The sync field contains an arbitrary value that the
sender can put into a request control packet. The
sender, then, will check each value in the returned
control packet to ensure that the returned control
packet corresponds to the most recent request.

(7) The time field states the received time of the
control packet, this is used by the sending site to
determine the round trip time.

(8) The nresend field specifies the number of
retransmission pairs used in the control packet.

Each of the above eight fields is four bytes long.

Following the fields is the resend pair array which

specifies the received packets from whose cocmplement the
sending site can determine the missing packets. Note: the
function of the resend pairs described here is from [9].

The error recovery process will be discussed later.
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3.2.1 Connection Management

XTP, unlike TCP and TP4, uses a single packet to
establish a virtual circuit connection. When a user passes
a message in a XTP control block format to XTP, XTP will
check if there is a context which has already been created
associated with the destination. If +there is no such
context, XTP will create a context record, otherwise XTP
will start to send the message immediately. To send a
message which does not have a previous established virtual
circuit, XTP will start by formatting an XTP packet, which
may contain the entire message. XTP will then set the
packet type to indicate that this is a "first" packet. At
the reception site, +there must be a user who is willing to
receive the incoming message, and to receive it the user
passes a control block with receiving buffer to XTP. Once
XTP receives a control block that requests a passive listen,
XTP will create an idle context which is associated with the
listening address. When XTP receives a packet with the
first packet bit on, XTP will search its data base to
attempt to match to a context that 1is waiting for the
received packet; XTP will +then set the passive listen
context to active and thereby a virtual circuit is set up.
Figure 11 shows the process of virtual circuit

establishment.

3.2.2 Data Transfer Operation
XTP fragments user messages into smaller packets

depending on the media. Once a transmission on a virtual
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circuit is started, XTP will send user data up to the limit
given by the alloc or credit value, whichever is the smaller
one. If one of the limits is reached, XTP will turn the SREQ
bit on in the last packet going out. When the receiver
receives a control packet with the SREQ bit on, it
immediately <¢ends back a control packet with its current
receiving status. On the other hand, if a data packet has
the SREQ bit on, the receiver will deliver the data to user

space before generating a status control packet.

3.2.2.1 Flow Control

Initially, XTP uses the default value for the receiver
allocation space (alloc). Once the receiver has copied data
to the user's buffer and the user has passed a new buffer to
XTP for further reception of data, XTP at the receiving site
will update the alloc value. Then on the request for status
from the sender, the XT? receiver sends a control packet
with the new alloc value.

For every packet that XTP receives, the sequence number
of the packet is checked 7 .ainst the alloc and rseq values,
If the packet's sequence number is greater than the alloc
value, which means that the receiving user does not have
enough space to receive the packet, the packet is discarded
silently. If the packet's sequence number is smaller than
the rseq value, which means the packet is a duplicated one,
it is also discarded silently. If the packet sequence number

passes both tests, and it is the same as the rseq value, XTP
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will copy the data in the packet to user space and will
'signal the user the arrival of the new data. The XTP
receiver, unlike TCP and TP4, does not report its window
size (alloc) on a fixed period, rather it only reports the
window size when the sender requests it. Figure 12

illustrates the operation of flow control in XTP.

3.2.2.2 Error Recovery

If a packet sequence number is greater than the rseq
value and is smaller than the alloc value, this means that
there were packets missing during the transmission, or che
previously received packet did not pass the checksum. The
XTP uses a selective-repeat method for its error recovery in
non-multicast operation. Once an error is detected, XTP
records the sequence number of the new packet in the resend
pair. (The XTP protocol definition 3.3 specifies that the
"resend pairs" records the missing data segment, but in the
revision 3.4 +the ‘"resend pairs" are used to record the
received data segment.) For example, if the expected
sequence number (rseq) is 100, and the newly received packet
sequence number is 200, and the packet length is 100 bytes,
then the resend pair will be recorded as 200, 300. The value
of 300 1is calculacted by adding 200 to the packet 1length
which, in this case, is 100. Also the nresend value will be
incremented by one. XTP only allows for on. outstanding
reject (REJ) packet per virtual circuit. If there 1is no
outstanding REJ packet, then XTP sends a REJ packet to the

sender upon the detection of the error. If the sequence

40



User

Request to
send

SGQ:X‘

Figure 12 XTP flow control mechanism

XTP XTP User
Message Buftfer in
in control control Request to
block block receive
% Send packet with /
active F/{?S(‘pqckel Qreate
context indication listen
seq=0 context
Virtual
circuit
seq =100 =1 setup
WTIMER 5‘ \ Message
on C seq =300 delivered
/\ in control
block
cmd = SREQ ;-\~“s
WTIME CONTROL PACKET |~~~
oft with SREQ bit on Generate
CNTL
PACKET
with new
alloc value
Updare CONTROL PACKET | Generate | 3fter
context CNT1 cgelivering
with new alloc value PACKET datato
immediat- | USer
ly when
Update receive
context CONTROL PACKET g’:’ g, -
with new alloc value with
SREQ

41




number of the newly received packet is equal to rseq, and if
there 1s a resend pair for this packet, then the rseq will
be set to the end value of the resend pair, and nresend
will be decremented by one. Using the previous example, upon
receiving a packet with the sequence number 100, the rseq
will be set to 300, and the nresend value will be 0. Figure

13 shows the operation of error recovery in XTP.

3.2.2.3 Separation Control

XTP employs a separation ccntrol mechanism for
congestion control. The difference between the separation
control and flow control is that the separation is used to
control the number of bytes that a sender can send to the
same route in a fixed period, and the flow control is used
control the number of bytes that a user can send to the
receiver. XTP performs +the separation control on a per
route basis in each node: XTP pauses for the length given by
the separation value between packets that go on the same
route. The separation control allows XTP to be used as a
gateway protocol. AMEOBA and VMTP do not have any ratre

control mechanism, thus their usage is limited to LAN based

applications.

3.2.2.4 Credit Control

XTP uses credit control to provide fair service among
the virtual circcuits. A virtual circuit, in XTP, is allowed
to send up to the maximum number of bytes specified by the

credit field in the wvirtual circuit context. For every
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packet sent, XTP decrements the credit field by the bytes
sent. Once a virtual circuit reaches its credit 1limit, it
must wait until a new credit value is assigned to it. The
credit field of every active virtual circuit 1is updated
every sixtieth of a second. Neither AMEOBA nor VMTP provide
any fairness control to the users, so it is possible that

users could be starved indefinitely.

3.2.3 Termination Management

There are two ways to terminate an XTP connection:

(1) The user at the sending site passes a control block
holding a write close command (WCLOSE) to XTP. When it
receives WCLOSE, XTP sends a packet with the WCLOSE and SREQ
bits being turned on in the trailer to the receiving site.
If the receiving site does not require any retransmission,
it will generate a control packet which reports the status
and indicates the receiving site close (RCLOSE); then the
receiving site will release the context. Otherwise, the
sending site will perform the necessary resend; then it will
try the WCLOSE process again.

(2) If the user at the receiving site decided that the
incoming data were not interesting, he or she could pass a
control block holding the read close command (RCLOSE) to
XTP. XTP will send a control packet with the RCLOSE bit
turned on to the sender. The sending site XTP will inform
the wuser that the r~-:iving site does not want to receive
any more: data and then the XTP will discard the virtual

circuit context. Figure 14 shows two types of closing
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process.
The advantage of the XTP closing processes is that
they avoid the problems associated with VMIP's closing

protocol, while at the same time maintaining the simplicity.

3.2.4 XTP timers

The XTP protocol uses four timers, all of which are
managed by the sender site, The following is a summary of
the description of the four timers [8]:

(1) Wait timer (wtimer), which is started each time a
packet 1s sent with status request bit turned on. If no
expected control packet arrives by the time the wtiner
expires, XTP will resend the request control packet. In the
current implementation, the wtimer interval is thirty-two
milliseconds. When a status report control packet arrives,
the wtimer which is associated with the status request will
be cancelled.

(2) Context life timer (ctimer), which is started when
a new virtual circuit context is created. The ctimer expires
every sixty seconds. When the ctimer expires, XTP checks
its receive packet count. If the counter is zero, the XTP
will try up to four times to request status from the
receiver site. If all four tries fail, the XTP will inform
the user that there is a possible problem with the network
or the communication software. If the packet receive counter
is greater than zero, XTP will reset the counter to zero and

will restart the ctimer again.
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(3) Rate control timer (rtimer), which is started after
a packet 1is sent on a specific route. The length of the
rtimer is implementation dependent. Before the rtimer
expires, no other packet can be sent to the same route.

(4) Credit control timer (crtimer), which is started at
the XTP booting time. Its length is 1/60 second. Whenever
the crtimer expires, the XTP updates the credit field in
every active virtual circuit context, and signals those
virtual circuits that are blocked by the credit control to

send.

3.2.5 Datagram Service

The datagram service of the XTP protocol is simply a
short-lived virtual circuit connect [8], which is similar to
the X.25 datagram service (the fast-select). Figure 15
demonstrates an XTP datagram operation. VMTP and AMEOBA TP

do not have such a feature (reliable datagram).

3.2.6 Multicast Operation

XTP also provides a multicast service. Its multicast
operation is similar to the virtual circuit operation where
the wvirtual circuits are set up with the FIRST packet the
sender broadcasts. The error recovery in multicast uses go-
back-n. Multicast termination 1is same as the virtual
circuit termination process. Figure 16 shows the multicast
operation with error recovery. VMTP does not have any
multicasting service, and multicasting in AMOEBA TP is not

reliable.
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3.2.6.1 No Error Operation

There 1is a NOERROR operation option that an XTP
broadcaster could use in a multicast. This option could be
used in a continuous data update environment in which missed
or corrupted packets would not have much significance to the
receiver. An advantage of the NOERROR operation is that the
throughput could be higher, because the sender does not
require any retransmission. Once the receivers have
received a packet with the NOERROR bit on, they stop
reporting errors back to the multicast originator; instead

they report the errors to the receiving users.

3.2.6.2 Multicast Reply Packet

An XTP multicast receiver could use a multicast reply
packet (MREPLY) to send user data back to the multicast
originator without establishing a new virtual circuit. The
MREPLY packets are acknowledged by using the resend-pairs in

a control packet. XTP only allows one outstanding MREPLY

packet per user.

3.2.6.3 Damping Operation on Control Packets

In normal multicast operation, responding control
packets are controlled with a damping technique to suppress
multicast storms which can created by every node in the
network broadcasting the stutas report packet at the same

time. Figure 17 demonstrates the damping operation.
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TR AT

CHAPTER 4
AN INTRODUCTION TO LANSF AS A SIMULATION TOOL

"Recent advances in computer and communication systems
have resulted in demands for new tools for their analysis.
Mathematical modelling techniques have so far proved
inadequate in dealing with these systems, and simulation
seems to be the only viable alternative."

J. Misra

This chapter introduces the Local Area Network
Simulation Facility (LANSF) as the tool which we used to
study the performance of XTP,. In the following, we
summarize the key concepts of LANSF, to help the reader
understand our simulation design. We also compare the LANSF

design concepts to those of ESTELLE.

4.1 Background

The Local Area Network Simulation Facility (LANSF) is a
software simulation modelling package which is being
developed by Mr. Pawel Gburzynski and Mr. Piotr Rudnicki at
the University of Alberta. This package 1is wused for

communication network performance investigations [16].

4.2 The LANSF Simulator Structures

4.2.1 Time
Time in LANSF ' discrete, which mea..® that there is an
indivisible time unit (ITU), and two moments in real time

that differ by less than one ITU are assumed to take place
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at exactly the same time. The ITU in LANSF is represented as
a 155 bit non-negative integer [16]. Therefore it |is
possible for LANSF to simulate very small fractions of a
second (10 to the power of -12). Besides the ITU unit,
LANSF also provides the concept of virtual seconds for
better readability of the simulation results. A virtual
second 1is represented by a number of ITUs specified by the
individual user. In our case, one virtual second is equal
to ten million ITUs, because the ETHERNET transmission rate
is ten million bits per second.

The simulation of a global <clock 1is achieved by
processing an event in every station, before incrementing

one unit of ITU.

4.2.2 Stations

The second concept in LANSF design is statioms, which
possess links and ports. A station is a representation of a
physical machine in a network; a link is a medium which
could be used by a number of stations for exchanging
messages (packets); and a port is used by a station to
connect to a link. 1In a way, stations are similar to
modules, 1links are similar to channels, and ports are
similar to interaction points in ESTELLE. Figure 18 shows
some of the possible network configurations that LANSF 1is
able to simulate.

The station attribu*rs in LANSF are defined using a
structure in the C language. LANSF allows the user to add

additional elements to the station attributes (how to add
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them is explained in appendix A). Figure 19 is the station
structure with the added elements in our simulation. The
link and port structures are omitted here because users are

not supposed to change them.

4.2.3 Processes

A station may have a number of user-defined processes
which are similar to system activities in ESTELLE. The
station's operations a-e driven by events generated by the
so-called servers, where each server is a logical process
external to the stations, and is responsible for generating
events of a particular type [16]. There are four servers
existing in LANSF: port, timer, client, and signal.

The port server basically simulates the interaction
points that the stations could use to send, to receive, and
to detect possible collision.

The timer server essentially is an alarm clock. There
are two types of timer servers: one uses ITU's as delay
units, and another uses virtual seconds as delay units. The
one which uses virtual seconds is more efficient in term of
using CPU, because it does not iavolve the complex
calculation of TITUs (155 bits).

The client server generates messages with specific
type, length, and inter-arrival time to the stations. Figure
20 is the structure diagram of the LANSF message [16].

The signal server generates a numbcr: of types of
signals to the station prccesses.

Bach process could be seen as a finite state machine
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(FSM) in which each state is written in the form of a wait
function call and each action fired from a state is written
in the form of a case statement in the C programming
language. A process initially waits for a starting event.
For example, the XTP writer process initially waits for the
event of message arrival from the simulated client. When an
event occurs, the simulator schedules the appropriate
processes to run. A process usually returns to a new wait

statement after it has handled the previous event.

4.2.4 The Simulated IPC Mechanism

The signal server basically provrides a handshake
mechanism for inter-processes communication inside a
station. However, the signalling mechanism could not be
used to pass multiple values, becaise the signal in LANSF is
an integer value. The signal mechanism could also be wused
between stations.

The main means of communication between stations is to
use LANSF packets. There ave two types of packets: one type
is the standard packet ‘that LANSF uses to calculate 1link
performance statistics; another type is the non-standard
packet that is mzinly used by the user for control packet
purposes. LA.NSF does not include non-standard packets in its
perforuance statistics. LANSF automatically fragments
messages into standard packets. Each standard packet has a
contents field which the user could use for passing protocol
information such as a sequence number. Figure 21 shows the

LANSF packet structure which also includes our protocol
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information. In order to create control packets, LANSF
originally provided a function make_packet() which only
generated a LANSF non-standard packet without the contents
field. We rewrote this function so that it generates non-
standard packets that have a contents field.

Overall, LANSF provides minimal features for complex
protocol performance simulations. As a result, the
implementor of complex protocol simulations has to construct
the protocol in great detail (almost same as the actual
implementation), in order to obtain a proper simulation

result.
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CHAPTER 5

XTP PERFORMANCE SIMULATION USING LANSF

"More often than we realize, reality conspires to

imitate art.”

Paul Saffo ACM

Our simulation of XTP uses an ETHERNET environment
within which a number of stations set up virtual circuit
connections to each other, and transfer data using the XTP
protocol. The important design issues of the XTP simulation
are the correctness of the protocol implementation and the
flexibility of the program (it should be relatively easy to
build other protocols from the current implementation).
During the design of the simulation program, some formal
specification tools were employed: using finite state
machines for process constructicu, and using the LOTOS
specification language ior the specification of inter-
process communication. The following section describes the

details of our simulation design.

5.1 The Simulation Assumptions

Figure 22 1is the conceptual diagram of <the stzxt.on
architecture of our simulation. The architecture is similar
to most of the communication board designs. There are four
simulated chips: the main processor runs all the XTP
processes; the ETHERNET control chip performs all the

CSMA/CD operations; the timer chip handles all the XTP timexr
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processes; and the rate control chip does all the separation
insertion between out-going packets.

There are a number of assumptions in our simulation:

(1) The data link layer service that XTP makes use of
is the IEEE 802.2 class I service, which is a connectionless
service.

(2) All channels (queuas) between simulation processes
have unbounded length.

(3) Message fragmentation time is not simulated.

5.2 The Link and Physical Level Simulated Environment

The link layer used in our simulation is the IEEE 802.2
class I which provides a connectionless service to the layer
above it. The physical layer is the IEEE 802.3 CSMA/CD.

The 1link and physical layer simulation routines are
adapted from the original ETHERNET simulation example
provided by the University of Alberta implementers. We made
modifications to the initial wait signal on the ETHERNET
transmitter and receiver: the ETHERNET transmitter initially
waits for the sending signal from the serializer process or
the timer process; the ETHERNET receiver signals the XTP
receiver after it has received a packet from the 1link and
has mapped the packet to the input queue. Listings 1 and 2
give the pseudo code for the ETHERNET transmitter and

receiver processes respectively.
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Listing 1 Pseudo code for the ethernet_sender process
PROCESS ethernet_sender

Created by:
LANSF simulator;

Input signals:
ETHER_SEND from the serializer process or the
timexr process;
JAM or COLLISION from the port server process;

Output signals:
ETHER_DONE to rate_controller process;

BEGIN

WAIT for ETHER_SEND signal from the serializer process
or from the timer process;

DEQUEUE an event item from the oup_g gqueue;
LISTEN to port;
IF there is no activity THEN
SEND current packet;
ELSE
CONTINUE to listen;
ENDIF;
WAIT for collision signal;
WAIT for transmission completion;

IF collision heard THEN

ABORT sending;

SEND jam packet;

BACK UP;

CONTINUE to listen again and do retransmission;
ENDIF;

ENQUEUE an event item to rtm_1 queue;

SIGNAL rate_controller process that the packet
has been sent;

RETURN to the beginning of the process;

END PROCESS ethernet_sender
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Listing 2 Pseudo code for the ethernet_receiver process
PROCESS ethernet_receiver

Created by:
LANSF simulator;

Input signals:
MY PACKET from the port server process;
Output signals:
ETHER_ARR to the xtp_receiver process;
BEGIN
WAIT for MY_PACKET signal from port server process;
GET the packet;
MAP the packet to the inp_g queue;
SIGNAL xtp_receiver process with ETHER_ARR;
RETURN to the beginning of the process;

END PROCESS ethernet_receiver

5.3 The Design of the XTP Simulation

In our simulation, there are nine processes in an XTP
entity: +the initializion process, +the xtp_writer process,
the xtp_ reader process, the xtp_sender process, the
xtp_receiver process, the timer process, the rate_control
process, the credit_control process, and the serializer
process. The initialization process is responsible for
setting up the virtual circuit simulation data structures.
The xtp_writer and xtp_reader processes serve as transport
service accessing points (TSAP). The xtp_sender and
Xtp_receiver processes are like other protocol
implementations: they perforr the core operations of the
protocol. In this case, it is XTP. The serializer process
simulates the main processor which runs the xtp_reader,

xtp_sender and xtp_receiver processes. The timer process
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does timer interrupt operations for 'ctimer, wtimer, and
rtimer; and the credit_timer process is assumed to be run on
a different chip. The rate_control process is also assumed
to be run on a different chip.

All the 1initialization processes will be terminated
automatically by themselves after they have completed the
initialization. The other processes will be terminated by
the simulator when one of the exit conditions specified in
the test data file is met.

Appendix B shows the function call structure of the XTP
simulation program. Figure 23 is the data flow diagram for

the simulation program.

5.3.1 The Supporting Data Structures and Routines

Figure 24 illustrates the data structures used in the
XTP performance simulation, all adapted from the protocol
definition [3]. However, some fields are not used in the
simulation, because of unnecessary overheads. For example,
the user data buffer in XTP packets is not used because in
the simulation of the data transmission, LANSF just delays
for a time equal to the transmission time of the packet,
rather than actually transferring data. As a result, no user
data buffer is required. Although most of the IPC could be
done by using the signalling mechanism provided by the LANSF
package, parameter passing between processes is not
possible. Local variables in processes are not preserved

during events. Eight queues are implemented to accommodate
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the parameter passing among processes and to preserve local

variables. All the queues are built in a generic form

(Figure 25).

The purposes of the eight queues are as follows:

inp_1

oup_1l

rd_list

wpx_1

calloutl_1

psr_1

rtm_1

links ethernet_receiver and xtp_receiver
processes; used for passing received
packets.

links the serializer and timer processes
to the ethernet_sender process; used for
passing output packets.

links the =xtp_receiver process to the
xtp_reader process; used to pass data
packets,

used for preserving a pointer to a
context which has packets waiting to be
sent.

used by the timer process.

links the xtp_reader, the xtp_sender, and
the xtp_receiver processes to the
serializer process; used for passing
wake-up signals and delay length on data
copy and packet checksum.

links the ethernet_sender process to
the rate_controller process; used for
passing the send complete time and

destination identifier.
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rcntl_1 : links the serializer process to the rate
control process; used for passing output

packets.

The routines that operate on these queues are also
designed in such a way that they are generic. To append an
event item to a queue, the user has to use the function
append_event which takes the following parameters: pointer
to the queue, pointer to the context, pointer to the picket,
tag value, delay length, and the packet type. To remove an
item from the head of a queue, the user has to use the
function get_e_item which returns a pointer to character. It
is the user's responsibility to cast the pointer to the
desired form. The function get_e_item takes two parameters:
command for the item to be returned and the pointer to the
queue. The possible commands are as <follows: GET_CONTEXT
returns a pointer to a context, GET_PACKET returns a pointer
to a packet, and GET_E_ITEM returns a pointer co an event
item.

In addition to the above eight queues, each station
also has a context list which is used to link all the XTP
virtual circuit contexts. The routine operating on the
context 1list 1is called get_context. It takes the source
identifier from a received packet, and returns a pointer to
tlhe context associated with the packet.

Other than the eight queues used for carrying
information between processes, signals are also used to wake

up sleeping processes. Fiqure 26 illustrates the signals
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among the simulated process. The following signals are used
in our simulation.

PROCESSOR_START: used by the xtp_reader, the xtp_sender
and the xtp_receiver processes to wake up the serializer
prccess. This signal indicates to the serializer process
that there is a new request for using the processor.

XTP_SEND: used by the xtp_writer process to indicate to
the xtp_sender process that a new message has been received
from tha2 LANSF standard client process.

COPY_IN_DONE: used by the serializer process to wake up
the xtp_sender process. It signals that the process of
copying data from user space to xtp space has been
completed.

COPY_OUT_DONE: used by the serializer process to wake
up the xtp_reader process. This means that the process of
copying data from the xtp space to user space has been
completed.

CHKSUM_DONE: used by the serializer process to wake up
the xtp_receiver process when the checksum delay has been
completed.

ARM_TIMER: used by the xtp_sender, rate_controller and
timer processes to signal the timer process to start the
countdown of the first item on the callout list.

DAT_PACKET_ARR: used by the xtp_receiver process to
signal the x*r_reader process that a new data packet has

been enqueued to the rd_list.

NEW_ENQUEUE: wused by the serializer process to signal
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the rate_controller process that a new and unblocked packet
has been enqueued to the rcntl_l,.

ETHER_DONE: used by the ethernet_sender process to
signal the rate_controller process that a packet has been
successfully sent and timing information has been enqueued
to the rtm_1.

ETHER_SEND: 1sed by the timer process and the
serializer process to wake up the ethernet_sender process.
This signal indicates to the ethernet_sender process that
there is a new out—-going packet being enqueued to the oup_l.

ETHER_ARR: used by the ethernet_receiver process to
signal the Xxtp_receiver process that a packet has been

received and enqueued to inp_l.

5.3.2 Initialization Process

The initialization process sets up the virtual circuit
simulation environment. This process will terminate after
the initialization has completed and the process entry in
the simulation will be erased. As a result, the
initialization does not occupy any process time. Figure 27
is the finite state machine of the initialization process.
The process starts from the initial state and terminates at
the done state after intialization is completed. Listing 3

contains the pseudo-code for the intialization process.
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Listing 3 Pseudo code for the initialization process
PROCESS initialization

Created by: LANSF simulator;

Input signals: None;

Output signals: None;
BEGIN

WHILE the number of contexts created is less than the
total number of stations minus one DO

ALLOCATE memory for a new context;
INITIALIZE all default tunable parameter values to the
new context;
END WHILE;
TERMINATE initialization process;

END PROCESS initialization

5.3.3 Writer Process

The xtp _writer process 1is intended to provide an
interface for a user to create active open virtual circuits
and then send data [8]. However, the writer process in our
simulation merely serves as a triggering mechanism to start
the chain reaction of the entire simulation.

The simulated writer has the following functions: (a)
to wait for a message arrival signal wnich is generated by
the LANSF scheduler process, (b) to signal the xtp_sender
process to send the newly arrived message, (c¢) to return
to (a). Figure 28 is the finite state machine of the
xtp_writer process. Listing 4 contains the pseudo-code for

the xtp_writer process.
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Listing 4 Pseudo code for the xtp_writer process
PROCESS xtp_writer

Created by:
LANSF simulator;

Input signals:
MESS™GE_ARRIVAL from standard client process;

Output signals:
XTP_SEND to xtp_sender process;

BEGégIT for MESSAGE_ARRIVAL signal from the standard client;
SIGNAL the xtp_sender process to send the message;
RETURN to the beginning;

END PROCESS xtp_writer

5.3.4 Reader Process

The actual purpose of the xtp_reader provess is to
provide an interface for an XTP user to create a passive
open on an XTP virtual circuit and to perform the management
of the out~of-order packet recording [8]. The xtp_reader
process in our simulation does not create passive open
simply because there is no user to actually receive the
incoming data. The passive open contexts are created by the
xtp initializing process described above.

The functions of the simulated xtp_reacder process are
as follows: (a) to receive 1incoming data packets that are
within the reange of the received sequence number and the
allocation size, (b) to record out-of-order packets and
generate a reject packet to the sending site, (¢) to
simulate the data copy-out =2lay. Figure 29 is the finite

state machine for the xtp reader process. Listing 5

contains the pseudo-code for the xtp_reader process.
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Listing 5 Pseudo code for the xtp_reader process
PROCESS xtp_reader

Created by:
LANSF simulator;

Input signals:
DAT_PACKET_ARR from the xtp_receiver process;
COPY_OUT_DONE from the serializer process;

Output signals:
PROCESSOR_START to serializer process;

BEGIN

WAIT for DAT_PACKET_ARR signal from the xtp_receiver
process;

IF rd_list queue is empty THEN
RETURN to the beginning;
ENDIF

IF the packet sequence number is greater than the
expected sequence number THEN
RECORD the sequence number in a resend pair;

IF there is no outstanding reject packet THEN
SEND a reject packet to the sender;
ENDIF

RETURN to the beginning;
ENDIF;

EXTEND allocation size;
REDUCE input queue size;

IF enqueue an event item to psr_l queue returns the
value of head TEHEN
SIGNAL the serializer to start;

ENDIF;

WAIT for COPY_OUT_DONE signal from the serializer
process;

DEQUEUE an event item from the rd_lict queue;

IF the packet command flag has status request bit set
THEN
SEND status control packet to sender site;

ENDIF;

RETURN to the beginning;

END PROCESS xtp_reader
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5.3.5 Sender Process

The xtp_sender process performs the core operation of
the protocol including flow control and credit control.
The reason that the rate control mechanism is not included
as a part of the sender process is to preserve parallelism
in the sending process. The xtp_sender process is designed
in such a way that the entire process 1is a non-blocked
machine because the sender process should have the ability
to perform multiplexing among the wvirtual circuits. Packet
fragmentation is performed by LANSF itself, and the delay
caused by the fragmentation is not simulated.

The simulated xtp_sender has the following functions:
(a) to fragment the message into packets, (b) to enforce
end-t>-end flow control and local credit control, and (c) to
preserve incoming packets that are blocked by either flow
control or credit control. Figure 30 is the finite state
machine for the XTP sender process. Listing 6 contains the

pseudo—code for the xtp_sender process.
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Figure 30 Finite state machine for the xtp_sender process
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Listing 6 Pseudo code for the xtp_sender process
PROCESS xtp_sender

CREATED by:
LANSF simulation;

Input signals:
XTP_SEND from the xtp_writer process;
COPY_IN_DONE from the serializer process;

Output signal:
PROCESSOR_START to the serializer process;

BEGIN
WAIT for XTP_SEND signal from the xtp _writer process;

IF the current packet in the station is full THEN
RELEASE the packet.;
ENDIF;

IF funct’~21 get_next_packet returns a null pointer THEN
IF function find_wait_x returns a context pointer THEN
CONTINUE at label is_wait;
ELSE
RETURN to the beginning;
ENDIF;
ENDIF;

ENQUEUE an event item to the psr_l queue;

SIGNAL the serializer process to start the copy-in
delay;

WAIT for COPY_IN_DONE signal from serializer process;

IF fail to find the context pointer which is associated
with the current packet THEN
RELEASE the current packet;
RETURN to the beginning;

ENDIF;

IF the current context is blocked by flow or credit
cor*trol THEN
SAVE the current packet;
RETURN to the beginning to get the next packet;
(from ancLher message)
ENDIF;

IF the context already has packet waiting to be sent
THEN
LABEL is_wait
SET context state to BUSY;
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IF there are still packets after sending up t» the
maximum allocation or maximum credit allowance
THEN
SAVE the current packet;

RETURN to the beginning to get the next packet;
(from another message)
ENDIF;

ENDIF;
IF the current packe: is full THEN

SEND the current packet to the serializer process;
ENDIF;

END PROCESS xtp_send

FUNCTION send_packet

Input Parameters:
pointer to the sending context;
pointer to the packet;

Output:
wera if the last packet is not up to allocation
limit or credit limit;

nonzero if the centext 1is Dblocked by either
allocation o. credit;

Side effects: none;
BEGIN
COPY the current packet to a new packet;

IF the current packet is the FIRST packet THEN
SET the packet command field to indicate FIRST packet;
ARM ctimer;

ENDIF;

IF the output sequence is EQUAL to or GREATER than the
receiver's buffer allocation THEN
SET the command field inside the packet to
indicate status request;
ARM wtimer;
SET return value to be nonzero;
ENDITF;

IF the packet is the last one in the message THEN
SET packet command to indicate end of message;
ENDIF;

ASSIGN current sequence number to the packet;
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EXTEND the next sequence number;
ENQUEUE the packet to the psr_l queue;

END FUNCTION send_packet

5.3.6 Receiver Process

The xtp_receiver process performs the core xtp packet
reception operations. It 1is responsible for discarding
packets for which the sequence number is greater than the
buffer allocation or less than the delivered sequence
number, It is also the simulated xtp_receiver's
responsibility to perform the necessary retransmission. The
error recovery mechanism is implemented, but it is not used
in the current simulation. The  reason that the
retransmission is not done by the xtp_sender process is that
there 1is no actual user data in the simulation and the xtp_
receiver can act for the Xxtp_sender, simplifying the
simulator.

The simulated xtp_receiver process has the following
functions: (a) to wait for the packet reception signal from
the ETHERNET receiver, (b) to delay a period corresponding
the calculation of a checksum, (c¢) to check the packet
sequence number against alloc and dseq values, (d) to
forward the packet to the xtp_reader process, (e) to return
to (a). Figure 31 illustrates the finite state machine of
the xtp_receiver process. Listing 7 contains the pseudo-

code for the xtp_receiver process.
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Figure 31 Finite state machine for the xtp_receiver process
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Listing 7 Pseudo code for the xtp_receiver process
PROCESS xtp_receiver

Created by
LANSF s.mulator;

Input signals:
ETHER_ARR from ethernet_receiver process;
CHKSUM_DONE from the serializer process;

OQutput signals:
DAT_PACKET_ARR to xtp_reader process;

BEGIN

WAIT for ETHER_ARR signal from the ethernet_receiver
process;

IF the inp_1l queue is empty THEN
RETURN to the beginning;
ENDIF;

ENQUEUE an event item which contains the checksum delay
length to psr_1 queue;

IF the psr_l queue was empty THEN
SEND PROCESSOR_START signal to the serializer process;
ENDIF;

WAIT for the CHKSUM_DONE signal from the serializer
process;

DEQUEUE an event item from the inp_1 queue;
GET the context associated with the packet;

IF the packet is a data packet THEN
IF the packet sequence number is greater than the
allocation or less than the delivered sequence
number THEN
DISCARD the packet;
RETURN to the beginning;
ENDIF;

IF the packet sequence is equal to the expected
sequence number THEN
EXTEND the expected seqience number by the
length of the received packet;
ENDIF;

IF the virtual circuit was expecting a retransmission

THEN
UPDATE the resend pair in the context;
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ENDIF;
ENQUEUE the packet to the rd_list queue;

SIGNAL the xtp_reader process that a new data packet
has arrived;
ENDIF;

IF the packet is a control packet THEN
IF the packet command field does not have the status
request bit turned on THEN
COPY the status to the context;
IF the number of resend is greater than zero THEN
DO retransmission;
ENDIF;
ELSE
SEND a control packet which contains the current
receiver status to the sending site;
ENDIF;
ENDIF;

IF the packet is a diagnose packet THEN
IF the context state indicates that the writing site
is closed THEN
DO close context;
ENDIF;
ENDIF;
IF the packet is a maintenance or management packet THEN
PO nothing;
ENDIF;
RETURN to the beginning;

END PROCESS xtp_receiver

5.3.7 Timer Process

There are four timers in XTP: context 1life timer
(CTIMER), wait reply timer (WTIMER), rate control timer
(RTIMER), and credit control timer (CRTIMER). All timers are
maintained by the sending site. The receivers are not
required to maintain any timers, thus rec:ivers perform less
function and therefore increase their throughput. ™ e WTIMER
is used by a sender to control the response time of a status

request from a receiver, when the sender is blocked by flow

87



control. WTIMER currently is set to twice the estimated
round trip delay. The CTIMER is the context keep-alive
timer; currently CTIMER is set to sixty seconds. The RTIMER
(rate control timer) is used to time the rate control
interval which is implementation dependent [8]. The credit
timer fires an action to update the credit field on every
active context. The duration of the credit timer 1is one
sixtieth of a second.

In our simulation CTIMER and WTIMER are turned off
during the no-error simulation since they do not affect the
overall performance. The credit timer is simulated as a
separate process on the assumption that there 1is separate
hardware to perform this function.

The CTIMER, the WTIMER and the RTIMER are managed by a
timer process in our simulation. The timer process delays
the length which is specified by the first event item in the
callout 1list. Then the timer process waits for either the
signal for timer expiration or the signal for a new
insertion in front of the callout list. A routine called
arm_time is provided for arming any one of the three timers.
Arm_timer is responsible for performing event insertion on
the calloutl_l queue, which is similar to the timer call-
out-list in many operating systems. If an insertion is made
in front of the first item in the calloutl_1l queue, the
arm_timer routine will signal the timer server process t-
restart the time count down. Whenever the timer process

receives a timer-expired signal from the timer server
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process, it removes the first event item from the callout
list and passes the event item to a process interrupt
handler. The timer interrupt handler performs operations
associated with a specific timer: If the timer expired is
the CTIMER, the interrupt handler will check the number of
times +that the WTIMER has gone off since the CTIMER went
off. If the number is greater than four times, the interrupt
handler will terminate the simulation. Otherwise the
interrupt handler will send one control packet with the
status request bit being turned on and will start a WTIMER.
Once a status request packet is sent the ctimer count will
be incremented. The simulated timer process has following
functions: (a) to wait for the ARM_TIMER signal, (by to
delay a period specified by the first event item in the
call-out-list and wait for the ARM_TIMER signal, (c) to
perform timer interrupt handling and to restart from (a), or
to restart from (b). Figure 32 is the finite state machine
for the timer process. Listing 8 contains the pseudo-code

for the timer process.
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Figure 32 Finite state machine for the timer process
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Listing 8 Pseudo code for the timer process
PROCESS timer
Created by: LANSF simulator;
Input signals:
ARM_TIMER from the xtp_sender process or
the rate_controller process or
the timer process;
TIMER_OFF from the LANSF timer server;
Output signal:
PROCESSOR_START to the serializer process;
ETHER_SEND to the ethernet_sender process;
BEGIN
WAIT for the ARM_TIMER signal;
IF the calloutl_1l queue is empty THEN
RETURN to the beginning;
ENDIF;
WAIT for either the TIMER_OFF or ARM_TIMER signal;
IF the received signal is TIMER_OFF THEN
DEQUEUE an event item from the calloutl_l queue;
PASS the event item to the timer interrupt handler;
RETURN to the beginning;
ENDIF;
IF the received signal is ARM_TIMER THEN
REARM timer;
ENDIF;

END PROCESS timer

5.3.8 Credit Control Process

The credit_timer process updates the credit field in
every active context to the maximum default value. If the
context was blocked by credit control, +the credit timer
signals that the virtual circuit is unblocked by turning off
the credit blocked bit in the context state. The credit
timer also signals the xtp_sender process that a virtual

circuit has been unblocked. The duration for the credit
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update process 1is one sixtieth of a second in our
simulation. Figure 33 is the finite state machine of the

credit__timer process. Listing 9 contains the pseudo-code

for the credit_timer process.
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Figure 33 Finite state machine for the XTP credit timer process
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Listing 9 Pseudo code for the credit_timer process
PROCESS credit_timer

Created by: LANSF simulator;

Input signals: None;

Output signals:
CREDIT UNBLOCKED to the xtp_sender process;

BEGIN
DELAY 1/60 of a second;
WHILE there is context to be updated DO
IF the context is blocked by credit THEN
RESET the context state to unblocked;
SEND the CREDIT_UNBLOCKED signal to the sender
process;
ENDIF;
UPDATE the credit field to maximum default value;
END WHILE
RETURN to the beginning;

END PROCESS credit_timer

5.3.9 Rate Control Process

The rate_controller process inserts delay between
packets that go on the same route. 1In our simulation, each
station sets up virtual circuits that are connected to other
stations. However, within a station, there is no wvirtual
circuit which yoes to the same target station. As a result,
the rate control is based on per station in our simulation.
The simulated rate control process has the following
functions: (a) to accept a packet from the serializer
process, (b) to calculate the difference between the last
time a packet has heen sent to the receiving station and the
current time, (¢) to arm the timer with the remaining

separation delay time, (d) to mark the context to indicate
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rate blocked, (e) +o wail for send-completed time from the
ETHERNET sender, (f) to record the last-sent-completed time
to the context and to return to (a). Figure 34 is the
finite state machince of the rate_controller  process.
Listing 10 contains the pseudo-code for the rate_controller

process.
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Figuse 34 Finute state machine for the rate_controller process
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Listing 10 Pseudo code for the rate_controller process

PROCESS rate_controller
Created by: LANSF simulator;

Input signals:
NEW_ENQUEUE from the serializer process;
ETHER_DONE from the ethernet_sender process;

Output signals:
ARM_TIMER to timer process;

BEGIN
WAIT for either NEW_ENQUEUE or ETHER_DONE signal;

IF the received signal is NEW_ENQUEUE THEN
WHILE not at the end of the rcntl_l
queue DO

IF the packet is not blocked by rate control THEN
REMOVE the packet from the rcntl_l queue;
CALCULATE the time offset of the separation;
ARM timer process with new packet send time;
BLOCK context for rate control;

ENDIF;

END WHILE

IF the rtm_l queue is not empty THEN
CONTINUE at the point where the ETHER_DONE signal

is tested;
ELSE
RETURN to the beginning;
ENDIF;
ENDIF;

IF the re~eived signal is ETHER_DONE THEN
IF the rtm_1 queue is empty THEN
RETURN to the beginning;
ENDIF;

FIND context associated with the sent packet;
UNBLOCK rate control in the context;
RECORD last send time in context;

WHILE not at the end of the rcntl_l1 queue DO
IF the packet is not blocked by rat+e~ control TFEN
REMOVE packet from the rcntl_l queue;
CALCULATE the time offset of the separation;
ARM timer process with new packet;
BLOCK context for rate control;
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ENDIF;
END WHILE
RETURN to the beginning;
ENDIF;

END PROCESS rate_controller

5.3.10 Serializer Process

The purpose of the serializer process is to simulate
the fact that the sender, receiver, writer and reader
processes are running on a single CPU. The serializer
process schedules the three processes in FIFO order.
Whenever a process wishes to use the processor, it passes to
the serializer process an event item specifying the expected
processing time delay and the signal which +the process
wishes to receive after the delay has expired. The
serializer sleeps for the length specified by the first
event item on its input queue (psr_1l). When the serializer
wakes wup, it will check the contents of the first event
item, and perform the operations according to the event. The
operations are to signal the waiting process or to enqueue
packets to the rcntl_l or oup_l queues.

The simulated serializer process has the following
functions: (a) to wait for the processor—start signal, (b)
to delay the period specified by the first event item, (c)
to perform actions according the event type, (d) to return
to (a). Figure 35 4is the finite state machine for the
serializer process. Listing 11 contains the pseudo-code for

the serializer process.
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Figure 35 Finite state machine for the XTP seriaiizer process
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Listing 11 Pseudo code for the sirializer process
PROCESS serializer
Created by: LANSF simulator;

Input signals:
PROCESSOR_START from the xtp_reader, xtp_sender, or
xtp_receiver process;

Qutput signals:
COPY_IN_DONE to the xtp_sender process;
COPY_OUT_DONE to the xtp_reader process;
CHECKSUM_DONE to the xtp_receiver process;
ETHER_SEND to the ethernet_sender process;
NEW_ENQUEUE to the rate_controller process;

BEGIN
WAIT for the PROCESSOR_START signal;
DELAY the length of the first event item in psr_1 queue;
DEQUEUE the first event item from the psr_1 queue;

IF the packet type specified by the event item is NONE
THEN
SEND signal specified by the event item;
ELSE IF the packet type is FIRST THEN
ENQUEUE the packet to the oup_l queue;
SIGNAL the ethernet transmitter to send;
MARK the context to indicate rate control block;
ELSE IF the packet is not blocked by rate control THEN
ENQUEUE the packet to the rcntl_1 queue;
SIGNAL the rate controller process that an
unblocked packet has arrived;
ELSE ENQUEUE the packet to the rentl_1 queue;
ENDIF;

RETURN to the beginning;

END PROCESS serializer
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5.4 The Simulation

5.4.1 The Simulation Run Environment

The performance simulation of XTP has been run on a
SUN4 processor. The operating system on the SUN4 is SUN OS
4.0. The standard UNIX debugging tool dbx was used during

the development of the simulation program.

5.4.2 The LANSF Tunable Parameters

There are many tunable parameters in the LANSF

software. We are only interested in four of them:

(1) The message length, which specifies the length of
the message that the LANSF client will generate to
the XTP writer process. This parameter is specified
in bits.

(2) The message interarrival time which specifies the
message arrival rate according to a user-defined
time unit.

(3) The number of stations in a network.

(4) The number of messages that the LANSF client should
generate for a simulation run.

The rate of client level requests can be varied by

changing the above four tunable parameters.

5.4.3 The XTP Tunable Parameters

There are seven tunable parameters in our XTP
simulation:

(1) alloc, which defines the receiving buffer size in

bytes.
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(2) credit, which specifies the maximum number of bytes
that a virtual circuit could send in a burst.

(3) separation, which specifies the minimum packet
spacing on a per route basis.

(4) wtimer, which is the wait timer value.

(5) ctimer, which is the context life timer value.

(6) copy-delay, which is the delay caused by copying
data from and to user space.

(7) checksum—delay, which is the checksum delay on the

incoming and outgoing packets.

5.4.4 Measurements

The measurements that we obtained are the throughput
and the individual message delay time for different message
sizes under various traffic loads.

The last message completion time is recorded in the
xtp_receiver process. When the xtp_receiver process receives
a CNTL packet which does not have the SREQ bit on (status
report packet), it checks the pre_packet field in the
context to ensure that the last packet that went to the
destination was +the 1last packet of the message. If the
pre_packet field indicates that the last packet was the end
of the message, the xtp_receiver process will record the
last message completion time in the context record.

The throughput of the simulation 1is «calculated by
dividing the number of bytes delivered to the destination

user by the last message completion time. The individual
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message delay is calculated by dividing the offered load by
the actual throughput and multiplying by the minimum message
delay time.

After the simulation has finished, a routine called
calcu_result calculates the performance results using the
above formulae.

To ensure the correctness of the simulation, print
statements were inserted between every action to output the
information associated with the process state. The first
round of the simulations were run without any copy-checksum
delay to ensure that the maximum effective throughput

corresponded to the expected maximum throughput.

5.4.5 The Simulation Plan

The number of stations used in the XTP frame relay
simulation was +two: one sender and one receiver. Since
normal operation of a network does not saturate the MAC
layer, and since simulation of multiple conversation-pairs
would only mask the properties of XTP under the contention
resolution properties of the MAC layer, we have simulated
only the case of a single virtual circuit at this time.

The XTP wtimer and ctimer were turned off, since they
do not have any effect on the performance in a no error
en&ironment, and the expected error rate in an ETHERNET LAN
are too low to produce significant effects on the
throughput. The XTP rtimer was also turned off, because
there 1s no gateway in the simulation.

The message sizes that we used in our simulations are
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6 bytes, 128 Dbytes, 1024 bytes and 8192 bytes. The

following are the reasons for choosing the above four sizes:

- The 6 byte message is the minimum number of bytes

that a user can send, which fits the XTP minimum

packet length criterion. This message size could
represent terminal accessing activity.

- The 128 byte message represents remote procedure call

activity.

- The 1024 byte message represents page fetch

operations.

- The 8192 byte message represents file transfer

operations.

There are ten different offered load figures used in
the simulation of each message size. The offered 1load
figures were calculated by partitioning the expected maximum
throughtput into ten equal intervals. Three more offered
load numbers were added to the simulation. They were
calculated by adding 10, 20, and 30% of extra load to the
maximum expected throughput. The last three added numbers
were used to determine the performance of XTP when it 1is
saturated. The expected maximum throughput was derived by
using the ratio of the user data length to the total packet
length to multiply the total bandwidth (the propagation
delay is omitted).

The simulation of each message size at each offered

load interval was run with and without copy-checksum delay.
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The LANSF client jenerated 10,000 messages to XTP in each
simulation run. To ensure the consistency of the simulation
results, each simulation was run three times with different
random number gegneration seeds, and the average of the three
results was used.

The simulated processor has ten million instructions
per second execution speed. The maximum throughput of
copying data in and out of user space is 3.8 megabytes per
second which includes the execution time of the read system
call, 1locking down page, and the copying time [33]. The
time to copy one byte to user space is 2.6315e-7 second.
The checksum delay is also assumed to be included in the
copying delay in our simulation, because it is possible to
implement the checksum algorithm in such a way that the

checksum result is produced at the completion of the copying

process.

5.4.6 Simulation Results

For 6 byte messages, Tables 4 and 5 give the throughput
and delay results, repectively. Figures 36 and 37 show
graphs of the results in Tables 4 and 5, plotted versus the
offered load. The column labelled "No Delay" shows the
results when there 1is no delay due to data copying or
checksum calculation. The column labelled "Delay" shows the
results when data copying and checksum calculations are
modelled.

Tables 6 and 7, and Figures 38 and 39, give the results
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for 128 byte messages. Similarly, Tables 8 and 9, and
Figures 40 and 41, give the results for 1024 byte messages.
Finally, Tables 10 and 11, and Figures 42 and 43, give the
results for 8192 byte messages. Note that the scales used
in the various graphs are not identical. For the 8192 byte
case, the messages are fragmented (by LANSF) into five 1442
byte packets and one final packet of 982 bytes. The
copy/checksum delay given is the total delay; it is actually
simulated in pieces corresponding to the size of the
fragments.

The flat (saturation) parts of the throughput curves
closely approximate the calculated maximum expected
throughput. These values depend on the the ratio of
"useful" bytes to the total bytes exchanged. For XTP
version 3.3, these numbers are shown in the second column of
the Table 12. In version 3.4, the control packet format is
redefined, to permit omitting unnecessary resend pairs,
which shortens the length of a control packet in the case
where no errors occur. The throughput values that result
for these cases are shown in the third column of Table 12,

along with the percentage improvement in the fourth column.
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Msg length 48(bit) 6(byte) FHfective Throughput
Msgcpdetay 16 (time unit)
Msg chk delay 1 (itme unat)
Msg Inter Msg Inter No Delay Delay
(Time Unit) (Byte/Second) B/S RB/S B/S KB/S
22,472 2,730 2,687 3.0 2,687 3.0
11,261 5,328 5,360 5.0 2,472 5.0
7,513 7,986 8,033 8.0 8,033 8.0
5,636 10,644 10,709 10.7 10,713 10.7
4510 13,302 13,379 13.4 13,377 13,4
3,759 15,960 16,059 16.1 16,058 16.1
3,222 18,618 18,735 18.7 18,666 18.7
2,820 21,276 21,335 21.3 21,335 21.3
2,506 23,934 21,464 21.5 21,464 21.5
2,256 26,582 21,477 21.5 21,477 21.5
2,051 29,250 21,480 21.5 21,480 21.5
1,880 31,908 21,481 21.5 21,480 21.5
1,735 34,566 21,481 215 21,477 21.5

Table 4 Throughput vs offered load for 6 byte messages
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Msg length 48(bnt) 6(byte) Message Delay
Msgcpdelay 16 (ume unit)
Msg chk delay 1 (time unit)
Msg inter Msg inter No Delay Delay
(Time Unit) (Byte/Second) Time Unit ms Time Unit ms
22,472 2,730 2,495 0.25 2,528 0.25
11,261 5,328 <. 441 0.24 2,472 0.25
7,513 7,986 2,441 0.24 2,473 0.25
5,636 10,644 2,441 0.24 2,471 0.25
4,510 13,302 2,442 0.24 2,474 0.25
3,759 15,960 2,442 0.24 2,473 0.25
3,222 18,618 2,440 0.24 2,482 0.25
2,820 21,276 2,449 0.25 2,481 0.25
2,506 23,934 2,737 0.27 2,774 0.28
2,256 26,582 3,039 0.30 3,079 0.31
2,051 29,250 3,344 0.33 3,387 0.34
1,880 31,908 3,648 0.36 3,695 0.37
1,735 34,566 3,952 0.40 4,004 0.40

Table 5 Delay vs offered load for 6 byte messages
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Figure 36 Throughput vs offered load for 6 byte messages
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Msg length 1024(bit) 128(byte) EHective Throughput
Msgcpdelay 336 (time unit)
Msg chk delay 1 (time unit)
Msg Inter Msg Inter No Delay Delay
(Time Unit) (Byte/Second) B/S KBS B/S D15
32,258 39,680 39,660 39.7 39,740 39.7
16,077 79.616 79,536 79.5 79,780 79.8
10,741 119,168 119,056 | 119.1 119,417 | 119.4
8,064 158,720 158,861 | 158,9 158,476 | 158.,5
6,455 198,272 198,145 | 198.1 198,085 | 128.1
5,382 237,824 237,661 | 237.7 237,451 | 237.6
4,615 277,776 277,139 | 277.1 276,875 | 276.9
4,038 316,928 316,537 | 316.5 316,443 | 316.4
3,591 356,352 356,010 | 356.0 344,744 | 3447
3,232 396,032 370,801 | 370.8 346,174 | 346.2
2,937 435,712 371,087 | 371.1 345,459 | 3455
2,692 475,392 371,089 | 371.1 345,350 | 345.4
2,485 515,072 371,110 | 371.1 345,474 | 345.5

Table 6 Throughput vs offered load for 128 byte messages
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Msg length 1024(bit) 128(byte) Message delay
Msgcpdelay 336 (time unit)
Msg chk delay 1 {time unit)
Msg Inter Msg Inter No Delay Delay
(Time Unit) (Byte/Second) Time Unit ms Time Unit ms
32,258 39,680 3,343 0.34 4,089 0.41
16,077 79,616 3,435 0.34 4,096 0.41
10,741 119,168 3,435 0.34 4,095 0.41
8,064 158,720 3,428 0.34 4,110 0.41
6,455 198,272 3,434 0.34 4,108 0.41
5,382 237,824 3,434 0.34 4,110 0.41
4,615 277,776 3,439 0.34 4,117 0.41
4,038 316,928 3,436 0.34 4,110 0.41
3,591 356,352 3,350 0.34 4,242 0.42
3.232 396,032 3,666 0.37 4,695 0.47
2,937 435,712 4,030 0.40 5,187 0.52
2,692 475,392 4,397 0.44 5,649 0.56
2,485 515,072 4,763 0.48 6.118 0.61

Table 7 Delay vs offered load for 128 byte mescages
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Msg length 8192(bit) 1024(byte) Effective Throughput
Msgcpdelay 2,694 (lime unit)
Msg chk delay 1 (tyime unit)
Msg Inter Msg Inter No Delay Delay
(Time Unit) (Byte/Second) B/S KB/S B/S RB/S
104,166 98,324 98,127 98.1 98,715 98.7
51,813 197,632 197,240 197.2 198,476 198.5
34,602 295,936 295,442 295.,4 297,123 297.1
25,974 394,240 393,973 394.0 395,864 395.9
20,790 492 544 491,582 491.6 494,388 494 4
17,331 590,848 588,974 590.0 593,127 593.1
14,858 689,152 685,739 685.7 681,572 681.6
13,003 787,456 785,844 785.8 761,952 762.0
11,645 875,520 883,920 883.9 761,306 761.3
10,405 984,064 961,325 961.3 760,000 760.0
9,460 1,082,368 964,367 964.4 738,966 739.0
8,673 1,184,748 964,218 964.3 738,269 738.3
8,006 1,278,976 964,362 964.4 739,793 740.0

Table 8 Throughput vs offered load for 1 Kbyte messages
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Msg length 8192(bit) 1024(byte) Message Delay
Msg cp delay 2,694 (time umit)
Msg chk delay 1 (time unit)
Msg inter Msg Inter No Delay Delay
(Time Unit) (Byte/Secona) Time Unit ms Time Unit ms
104,166 98,324 10,621 1.06 15,925 1.59
51,813 197,632 10,621 1.06 15,920 1.59
34,602 295,936 10,617 | 1.06 15,924 1.59
25,974 394,240 10,607 1.06 15,922 1.59
20,790 492,544 10,621 1.06 15,928 1.59
17,331 590,848 10,633 1.06 15,926 1.59
14,858 689,152 10,652 1.07 16,165 1.62
13,003 787,456 10,621 1.06 16,523 1.65
11,645 875,520 10,499 1.05 18,387 1.84
10,405 984,064 10,850 1.09 20,701 2.07
9,460 1,082,368 11,897 1.19 23,417 2.24
8,673 1,184,748 13,023 1.30 25,656 2,57
8,006 1,278,976 14,058 1.41 27,640 2.76

Table 9 Delay vs offered load for 1 Kbyte messages
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Msglength  65,536(bit) 81 92(byte)H Eftective Throughput
Msg cp delay 21,559 (ume unit)
Msg chk delay 1 (time unit)
Msg Inter Msg Inter No Delay Delay
(Time Unit) (Byte/Second) 8IS KB/S 8/S KB/S
714,285 114,688 112,692 112.7 112,651 112.7
357,142 229,376 132,313 132.3 230,035 230.0
238,095 344,064 346,475 346.5 345,023 345,0
178,571 458,752 461,707 461.7 461.719 461.7
142,857 573,440 577,233 577.2 577,480 577.5
119,047 688,128 692,667 692.7 693,075 693.1
104,166 786,432 791,773 791.8 791,093 791.1
89,285 917,502 923,919 923,9 917,416 917.4
79,363 1,032,192 1,038,653 ]1,038.9] 1,005,057 | 1,005.1
71,428 1,146,880 1,125,287 }1.,125.3} 1 001,730 1,001.7
64,935 1,261,568 1,125,169 §1,125.2 998,929 Q98.9
59,524 1,376,256 1,127,718 §1,127.7 995,570 995.6
54,945 1,490,944 1,126,562 ] 1,126.6 991,874 991.9

Table 10 Throughput vs offered load for 8 Kbyte messages
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Msglength  65,536(bit) 8192(byte} Message Delay
Msgcpdelay 21,559 (ume unit)
Msg chk delay 1 (time unit)
Msg Inter Msg inter No Deilay Delay
(Time Unit) (Byte/Second) Time Unit ms Time Unit ms
714,285 114,688 72,017 7.20 115,941 11.59
357,142 229,376 70,171 7.02 113,555 11.36
238,095 344,064 70,272 7.03 113,565 11.36
178,571 458,752 70,311 7.03 113,150 11.32
142,857 573,440 70,299 7.03 113,085 11.31
119,047 688,128 70,300 7.03 113,069 11.31
104,166 786,432 70,286 7.03 113,211 11.32
89,285 917,502 75,273 7.03 113,892 11.39
79,363 1,032,192 70,323 7.03 116,956 11.70
71.428 1,146,880 72,122 7.21 130,383 13.04
64,935 1,261,568 79,342 7.93 143,823 14.38
59,524 1,376,256 86,360 8.64 157,428 15.74
54,945 1,490,944 93,652 9.37 171,182 17.12

Table 11 Delay vs offered load for 8 Kbyte messages
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Throughput

Message Fixed Number off] Variable Number oi’ Paercemt
Length Resend Pairs Resend Pairs improvement

(bytes) (bytes) (bytes) (%)

6 26,596 48,701 83.0

128 396,040 579,710 46.0

1,024 984,615 1,092,150 10.9

8,912 1,169,217 1,186,559 1.5

Table 12 Throughput comparison of fixed and variable number of
resend pairs
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CHAPTER 6
CONCLUSION

"You can observe a lot just by watching."

Yogi Berra

6.1 Project Goals

As noted in the introduction, the goal of this project
was to design and validate a simulator for XTP, based on the
IEEE .02.2/3 link and physical layers, and using LANSF as a
simulation tool. To do this it was necessary to extend and
adapt LANSF, so that it could deal with virtual circuics; to
construct a conceptual model of the XTP pioutocol, which
permitted organization of the processes within the
simulation; and to determine the ranges of the pairameters
that would stress the operation of the simulation
sufficiently to inspire confidence in its design.

The extensions were simple to implement: they consist
of adding queues for parameters passing ameong processes,
multiplexing ability, multiple timer handling, virtual
circuit capability, and error recovery to LANSF. The
conceptual model was more difficult - it has to be pieced
together from an understanding of the XTP protocol
description. Certainly the understanding of the structure
of XTP would have come much more quickly if the version 3.4
document had been available at the start of the project, and
a more formal specification of XTP would have helped

considerably.
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Determining the stress points proved to be particularly
easy. The performance of the protocol at maximum throughput
1s determined entirely (in the error-free case) from the
propagation times and transmission times of the packets
involved, plus components to account for the copying delays
and checksumming delays. The performance of a transport-
level connection will be lower when there is contention for
the (shared)} physical medium, but this is effectively a
lowering of the raw lata-link bandwidth, and is not a

property of the transport level protocol itself.

6.2 XTP Performance

From the simulation, we find that XTP is capable of
providing a highly efficient transport service to its users
- up to 80% of the raw bandwidth usage in the file transfer
applications in an ETHERNET environment. XTP performance
also depends on how quickly data copying and checksumming
can be done. The achievable throughput drops markedly when
this factor 1is taken .nto account. In a no error
enivironment, XTP performance for short packets is improved
by 83% (6 byte packets) or 46% (128 byte packets) when the
variable resend pairs of version 3.4 are used [9], because
the resend pairs take up to 128 byte of space which 1is a
considerable amount of the extra overhead in the no error

case.
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6.3 Future Work

6.3.1 General

In order to gain wide use, LANSF could develop a direct
interface to some formal protocol specification language,
such as ESTELLE or LOTOS, because one of the major
shortcomings of LANSF is its inability to express timed
message channels in high-level abstract terms. Another
possible exploration would be to adapt a finite state model
for simulation.

More research in high level protocol simulations is
needed to understand how the tunable parameters affect the
simulation results.

Although the formal specification techniques wused
during the simulation design helped to prove partial
correctness of the implementation, they could not contribute
to proving the total correctness because of the state
explosion problem in finite state specifications and the
problem of specifiying non—-atomic events in the trace
theory. From the experience of designing and building the
XTP simulation, we found that there are strong needs to have
formal specification tools that could perform automatic

proofs of the total correctness of the protocols.

6.3.2 XTP and Others

To simulate the XTP multicasting operations, it will be
necessary to add the following functions to the XTP LANSF
program:

- Damping control for the XTP control packets;
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- change the message type declaration in the testdata
file to inform the standard client to generate
broadcast type messages to the XTP processes.

It would also be interesting to add buffer allocation
measurement to the LANSF simulation. The count field in the
queue structure and the maximum value field in the context
could be used for this purpose.

The current implementation could be used to investigate
the performance of XTP in specific network configurations.
It could also be moved on top of another MAC layer, e.g.,
token ring, token bus, or FDDI.

Another interesting research area would be to implement
other protocols, e.g., VMTP, AMEOBA TP, TP4 or TCP using the
current implementation. To change protocols, the designers
only have to change the structures of the xtp_sender and

Xtp_receiver processes.
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IR

APPENDIX A
Figure 44 is the directory layout of +the LANSF

package [16].

LANSF
~~ BIGLIB
NN
[} . -
SOURCES 4 EXPER PROTOCOLS
PAON RALN AN

r',ll|\ N ,!/'\\\ R AN
/"/’Ill\\\\ A A TN P I T W SN
LANSF sources protocol directories

Figure 44 Directory layout of the LANSF packawe.

The following is a summary of how to use LANSF [16].

A user specified protocol must be named "protocol.c",
and the necessary definitions for protocol.c must be
contained in a file named “protocol.h". To compile the
executable version of LANSF for a particular protocol, the
user executes ~user/LLNSF/EXPER/mk -p <directory name).
{directory name> is the name of the directory which contains
the desired procotol specification. There are other optional
flags for other compilation purposes. After a successful
compilation, an executable file called lansf is produced in
the same directory where the original specification resided.

To run +the simulation, the user can type lansf
testdata. The testdata is a file containing the
simulation test data (which will be explained later). By
simply omitting the testdata in the command line, the user

can type in the test data from his or her console.
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If the testdata file is not in the directory with the
lansf executable file, the patn .name of the testdata must be
fully specified in the command line.

There are other option flags available for user to run
the simulation. They are listed in Appendix B of [16].

The test data file must be specified in four sections

(1) Time section

In this section, the user must specify the number of
ITU's in a virtual second [16].

(2) Configuration section

In this section, the user has to specify the network
configuration. The parameters include the number of
station(s), ports, 1links, port assignment to each station
and distance between stations, number message types, message
inter-arrival time, message minimum and maximum length, and
number of senders and receivers.

(3) Protocol-specific section

In this section, the user can specify propagation
delay, minimum and maximum packet length, and header plus
trailer size (all in bits). The other parameters are minimum
and maximum space between packets, and minimum, maximum jam
length.

(4) Exit conditions

The simulation exit conditions consist three choices:
maximum number of message, virtual time limit, and CPU time
limit. If any one of above conditions is met, the simulation

will be terminated.
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The structure of the protocol.c file consists of three
parts:

(1) Initialization

This section starts  with the declaration of
in_protocol(). Within the section, the user can read in all
protocol-specific parameters, by wusing the following
predefined functions provided by LANSF.

read_integer() returns a long integer.

read_real () returns a real number.

read_big() returns a non-negative integer which |is
greater than the capacity of the long format. This function
is mainly used for inputting integers that are wused for
ITU's.

(2) Protocol-specific output

This section starts with a predefined declaration -
out_protocol(). The function of this section is to output
protocol srecific results after the simulation run.

(3) Protocol-specific processes

This section is right after the out_protocol() section.
In this part, the wuser can define all the necessary
processes for his or her protocol. The following are all
the zredefined functions that the user can use in the
process of designing his or her protocol. It is a summary
from [1l6].

a. For output purposes

out_integer( ivalue, string );

int ivalue;
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char *string;

This outputs an integer with a string for explanation
purposes.

out_real( rvalue, string );

float rvalue;

char *string;

This outputs a real number with a string.

out_big( bvalue, string );

TIME bvalue;

char *string;

This outputs a TIME type value, and a scring.

out_text( svalue, string );

out_string( string );

char *string;

This outputs a string.

b. Creating a process

int (*new_process ( code, version )) ()

int (*code)(), version;

This creates a separate process in a station. The code
is a pointer to :he process code which actually is a
function in C. The version allows user to create several
processes which executes the same code (similar to forking
in UNIX). However, there is no forking in LANSF, version
number 1is appended to the function name for the purpose of
distinguishing the processes.

terminate; /* stop a process */
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c. Wait requests
wait_event( server, event, act );
int server, act;
int event;
Server are predefined as TIMER, DELAY, CLIENT, and
SIGNAL.
Event can be defined as integer, character, or other.
Act 1is the action supposed be taken when the waiting event
occurs.
0 - 1023 the port server, the parameter value is equal
to port number;
1024 the client (this value 1is assigned to
symbolic constant CLIENT);

1025 the basic timer server (constant TIMER);
1026 the alternate timer server (constant DELAY);
1027 the signal server (constant SIGNAL);

continue_at( act );

It is same as :

wait_event( DELAY, 0, act );

return;

d. Client

User can either use the standard client provided by
LANSF, or can define his or her own Client. Since LANSF is
originally developed for MAC level protocol simulation, the
standard client is not suitable for high 1level protocol

simulations.
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int

int

int
int

get_packet( mtp, min,

mtp, min, max, frm;

get_next packet! min,

min, max, frm;

max, frm )

max, frm )

get_next packet looks at all the station ports.

For

automatically put into

both functions, the received packet will be

current_packet, and

current_packet_status is set to 1.

release_current_packet();

There

wants to wait for

(1) MESSAGE_ARRIVE
(2) MESSAGE_INTERCEPT

are three types of events a process essentially

/% =1 %/
/* =2 %/

(3) message type identifier /* 0 to n-1 */

TIME generate_inter_ arrival_time( mtp )

long generate_message_length( mtp )

TIME generate_inter_ burst_length( mtp )

int generate_burst_size( mtp )

int mtp;

generate_sender( mtp, sender, group )

int mtp;
STATION **gender;
COMMUNICATION_GROUP **group;

This

generates a sender of a spcific communication

group to a message.
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STATION *generate_receiver( mtp, sender, group )

int mtp;
STATION *sender;
COMMUNCATION_GROUP *group;

This generates a receiver of a specific communication

group to a message.

MESSAGE *generate_message( mtp, sender, receiver lgth )

int mtp;
STATION *sender, *receiver;
long lgth;

This function generates a user specified type message,
and appends the message to the station message queue.

PACKET make_packet( snd, rcv, lgth )

STATION *snd, *rec;

long lgth;

This creates a LANSF packet structure. This is a very
good feature for customizing specific protocols. The
shortcoming of this function is that it does not create the
PCONTENTS array structure, which can be used by the user for
passing protocol specific data. In our simulation
make_packet() is modified to create non-standard packets
that have the PCONTENTS array. The new make packet accepts
five parameters: the first three are identical to the
original make_packet(); and the last two are the XTP packet

type and the XTP packet command.



e. Port events

The functions that are associated with ports are mainly
used by MAC level simulations. Thus, they are not discussed
in this thesis. The interested reader can refer to [16].

f. Starting and Terminating Transmissions

Again, the functions that are associated with packet
transmission are mostly used by MAC level protocol
simulations, and therefore, they are not discussed 1in
detail.

start_transfer( port_id, packet )

int port_id;

PACKET packet;

transmit_packet( port_id, packet, eot_action )

int port_id, eot_action;

PACKET packet;

stop_transfer( port_id )

int port_id;

abort_transfer( port_id )

int port_id;

g. Generating Random Numbers

For same reason mentioned above, they are not discussed

here.
h. Operations on Flags
set_flag( flags, n )
clear_flag( flags, n )
FLAGS flags; /* #typedef FLAGS long */
int n; /* the bit position */
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set bits on flags associuted with packets.

int flags_set( flags, n )

int flags_clear( flags, n )

These two function will return the original contents of

the bit.

i. Signal

This is most important
generate_signal( n, s,
int n; /*
int s; /*
char i1, i2; /*
send_signal( n, s );
internal_signal( n );
clear_ all_signals();
priority_signal( n );
int n;

j. Error Handling
excptn( string ) /*

char *string; /*
assert( cond, string )
int cond;

char #*string;

k. Memory Management

feature in LANSF.
i1, 12 )

signal number */

station number */

+alues to be returned */

terminate the simulation due
error condition, similar
perror(); exit(); */

used for stdout */

char *memreq( size )
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int size;
release( prt, size )
char *ptr;

int size;

1. Receiving Packets

accept_packet( packet, port_id )

PACKET *packet;

int port_id;

my_packet( packet ) /* packets associated with the

current station */
PACKET *packet;
m. Operations on Big numbers
LANSF provides a number of possible operations on large
integer numbers such as TIME type variables. The interested

reader can refer to [1l6].
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Appendix B Funtion Call Chart for LANSF

1

(O, I - VS N - ]

10
1l
12
13
14
15
16
17
18
19
20

21
22
23

clear_timer [protocol.c]

credit_timer [protocol.c]
walilt_event
generate_signal

excptn

dump_x (protocol.c]

printf

ethernet_resceiver [protocol.c]
wait_event
accept_packet
map_packet [protocol.c]
memredq
bzero
bcopy
append_event [protocol.c]
memreq
excptn
bzero
generate_signal

excptn

ethernet_sender [protocol.c]
wait_event

last_eoa_sensed
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24
25
26
27
28
29
30
31
32
33
34
35
36
37

38
39
40
41
42
43

44
45

46
47

1_tolerance

start_transfer

end_transfer

append_event [see line 15]

generate_signal

. release_out_packet [protocol.c]

get_e_item [protocol.c]
release

start_jam

end_jam

backoff [protocol.c]
exp
1_uniform

excptn

in_protocol [protocol.c]
read_big
read_integer
new_process
d_action_list

d_action_item

lookup_delay [protocol.c]
printf

out_protocol [protocol.c]

out_transport [protocol.c]
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48
49

50
51
52
53

54

56
57
58
59
60
61
62
63
64
65
66
67

68
69
70
71
72

out_string
printf

out_string
out_big
out_integer

flush_1line

rate_'controller [protocol.c]
wait_event
get_e_item
send_next [protocol.c]
arm_timer [protocol.c]
memreq
excptn
bzero
insert_gq [protocol.c]
generate_signal
release
release
show_gq {[protocol.c]

printf

timer [protocol.c]
wait_event
get_e_item
timer_intr_handler _.rotocol.c]

release

143



73 send_cntl [protocol.c]

74 make_pkt [protocol.c]

75 . excptn

76 memreq

77 bzero

78 bcopy

79 lock_processor [protocol.c]
80 append_event

[see line 15]

81 generate_signal
82 arm_timer [see line 58]

83 excptn

84 generate_signal

85 append_event [see line 15]

86 excptn

87 initialization [protocol.c)

88 memreq

89 excptn

90 bzero

91 init_context [protocol.c]
92 terminat_

93 serializer {[protocol.c]

94 wait_event
95 get_e_item
96 processor_intr_handler [protocol.c]
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97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112

113
114
115
116
117
118
119
120
121

generate_signal
append_event [see line 15]

release

xtp_reader [protocol.c]
wait_event
lock_processor [see line 79)
get_e_item
record_resend [protocol.c]
send_cntl [see line 73]
release
send_cntl [see line 73]
do_close ([protocol.c]
send_cntl [see line 73]
bzero
init_context

excptn

xXtp_receiver [protocol.c]

wait_event

lock_processor [see line 79]

get_e_item

get_context [protocol.c]

update_x ([protocol.c]

update_resend [protocol.c]

bcopy

append_event [see line 15]
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122
123
124
125
126
127
128
129

130
131

132

133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

generate_signal

send_cntl [see line 73]

bcopy

do_resend [protocol.c]
make pkt [see line 74]
arm_timer [see line 58]
bcopy

do_close [see line 108]

printf
release

excptn

xtp_sender [protocol.c]
wait_event
release_current_packet
get_next_packet
find_wait_x [protocol.c]
get_context
save_packet [protocol.c]
memreq
excptn
bcopy
append_event [see line 15]
send_walit (protocol.c]
get_e_item
send_packet ([protocol.c]

memreq
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148
149
150
151
152
153
154

155
156
157

excptn
bzero
bcopy
lock_processor [see line 79]
release
send_packet [see line 146]

excptn

xtp_writer [protocol.c]
wait_event

generate_signal
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