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ABSTRACT

Development of a Hybrid Knowledge-Based System for
Condition Mouitering and Diagnosis of Rotating Machinery

Siyu Zhang, Ph.D.
Concordia University, 1995

A new approach to hybrid knowledge-based systems (KBSs) for rotating
machinery monitoring and diagnostics is developed, incorporating the latest developments
in Al techniques and expert systems technology. This approach employs the vibration
signature as the diagnostic signal, and neural networks are used to perform numerical
processing of diagnostic data to enable condition identification and classification of fault
patterns, and the quantification of fault or malfunction development. Neural network
solutions to the above two problems, particularly the solutions using Self-Organizing Maps
(SOMj are sought and obtained. For trending and quantifying fault development, a method
which employs multiple-index based trend analysis is proposed and implemented. To
address this problem. an appropriate Self-Organizing Mapping algorithm is developed
from first principles.

A prototype expert system. designated RMD-KBS (Rotating Machinery Diagnostic
Knowledge-Based System). is designed and fully developed. This is an on-line diagnostic

system in which both the symbolic and numerical processing are deeply coupled. The

iii




"Object-Oriented Programming (OOP) technique" is employed in such a way that its
computational advantages are exploited in RMD-KBS. In addition. the RMD-KBS is
designed and developed with the ability to possess a number of the most desired
computational and functional capabilities of a diagnostic KBS for industrial applications.
In order to validate the RMD-KBS diagnostic expert system and to assess its performance,
experimental data from a class of real-life industrial machine systems have been collected.
Comparison of the diagnostic results provided by the RMD-KBS with the faults known
to be present. established the efficiency. accuracy and superiority of the proposed

prototype system.
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CHAPTER 1
INTRODUCTION

1.1 Machinery Monitoring and Diagnosis

The rapid advance of technology and the pressure of worldwide competition, have
placed an increased emphasis on industrial productivity and efficiency. Plants and machine
systems have become massive and complex and further, they have been largely automated.
To prevent catastrophic failures and minimize breakdowns in modern industrial machine
systems is a challenging problem. The unexpected breakdown of machines is financially
costly and it may lead to major accidents. such as airplane crashes and nuclear power
station failures. Preventive maintenance through continuous monitoring can contribute to
the avoidance of these problems.

Monitoring. Trouble-Shooting. and Diagnostics are terms (see Pau., 1981; Brawley
et al. 1989) used by many instrument manufacturers and system management engineers.
They represent the analysis processes and techniques which dynamically determine the
health or performance of machine systems, and support machinery performance control
and effective maintenance. The field of Machinery Monitoring and Diagnosis (MMD) has
been receiving widespread attention because it enables greater plant availability, lower
maintenance or replacement costs, increased produciivity and prolongation of service life
to be achieved without affecting operational safety. Also, it leads to achieving the required
modifications of mechanisms so as to minimize both the noise due to excitations and the

transmission of vibrations.



The main tasks of MMD are: to detect abnormal occurrences; to identify the

component and root cause of an existing failure: to estimate the risk of damage and

remaining life of a machine or machine component; and to provide diagnostic and
maintenance data on processes ranging from manufacturing to new product design.
Successful achievement of these objectives however, hinges on three major features of a
condition monitoring system: (i) collection of diagnostic data that can adequately represent
the occurrence and development of each and all of the faults or malfunctions in machine
components: (ii) development and use of cfficient data handling and information
processing techniques that result in precise fault detection: and ( ili) automation of the
process supervision systems.

The primary goal of monitoring and diagnosis is to recognize the faults developing
inside machines without disassembling or stopping the machine systems. Several different
on-line measurements are being used to provide diagnostic information depending upon
the intended use of the condition monitoring program. Recent studies have clearly shown
(Collacott. 1977: Haddad. 1991), that on-line measurements of temperature, pressure.

foree. stress. noise levels. acoustic emissions and vibrations constitute reliable, complete

and comprehensive diagnostic data. Moreover, each of these elements adequately reflects,
at an carly stage, the occurrence and development of different types of faults or
malfunctions in the machine system. Numerous sophisticated diagnostic techniques have
been developed and applied in industry. These range from oil debris monitoring (Lukas
and Anderson. 1989). infrared measurement, ultrasonic flaw detection (Haramis et al.
1989). and reliability estimation (Xistris. 1979). to data analysis methodologies for various
kinds of signals. Among all the signal processing techniques. vibration analysis has

emerged as the most successful for mechanical system monitoring and diagnosis. In most

[ 9]




of the present-day machinery diagnostic svstems. the condition of machinery. particularly

rotating machines (pumps. blowers, compressors, fans. turbines. gearboxes ete, usually
rotor- or shaft-bearing systems). are both identificd and classified through the analysis of
on-line vibration signals (Lipovszky et al, 1990: Eshleman and Jackson. 1992). Also.
machinery vibrations that arise duc to faults or malfunctions have long been used as
established performance indicators in monitoring systems for rotating machine clements
such as bearings (Taylor. 1980) and gears (Randall. 1982: Zhang et al, 1986: Liu et al,
1991). For these reasons, on-line vibration signals have been used as the primary source
of diagnostic data to monitor and diagnose the condition of rotating machinery in this
research.

Development of computer-based monitoring and diagnostic systems (Lyon and
Dejong. 1984: Zhang. 1990: Xu et al, 1991) is an important area in machinery monitoring
and diagnostics. and it is the only way to perform automatic diagnosis. Design and
development of condition monitoring and diagnostic techniques which can detect and
classify both the presence and the severity of potentially dangerous faults causing
malfunctions in mechanical machinery. are crucial to the automation of monitoring
systems. There is a continuing need for new practical techniques in this ficld to improve
the performance of machinery monitoring and diagnostic systems. In this area, Artificial
Intelligence (Al) technology, especially the Knowledge-Based System (KBS) approach has

been introduced into MMD to develop intelligent diagnostic systems.

1.2 KBS Technology for MMD
Diagnosis is the process that identifies the fault causing malfunction in a given

system (Mussi and Morpurgo. 1990). The diagnosis and maintenance of complex




mcchanical systems have been considered to be an interdisciplinary engineering task. The
key characteristic of machine fault diagnosis is both a knowledge-intensive and an
experience-based activity (Pau, 1981 Doherty et al, 1994). Human beings possess an
ability to process complex types of information and draw inferences. Expert diagnosticians
and cquipment operators are often more efficient than present-day automated MMD
systems. Current diagnostic systems are usually designed as an integration of the
mcasurement system, data collector, signal analyzer (or signal processing software) and
data base (Good et al, 1989: Ramakrishna et al. 1992). In such a system the diagnosis is
performed by means of numerical analysis and the results are numerical values of the
monitoring parameters. One serious problem of these diagnostic systems is the lack of
pattern classification methods to accomplish machine fault identification. Therefore.
numerical analysis based monitoring systems (known as conventional diagnostic systems)
cannot yicld definite conclusions on the precise nature of faults. The final decision
regarding machine condition has to be made by human experts based on their knowledge
and experience.

Knowledge-based systems (Garcia and Chien, 1991) are computer programs that
explicitly represent the knowledge of an expert in a particular subject domain, and
emulate the human reasoning process by means of symbolic manipulation. A more
specific definition of KBS and a survey of KBS design techniques are given in Chapter
2. Knowledge-based system methodology is very helpful for diagnosis (Wright and
Bourne. 1988). From a consideration of the following major characteristics and problems
of MMD (Zhang and Sankar, 1993), it is easy to recognize the advantages of using the
knowledge-based approach to solve MMD problems.

1) Signals. condition attributes and symptoms of machinery malfunctions vary




from case to case. No single feature of the vibration waveform has been found 1o vield
consistently accurate results for the full range of applications encountered in practice. The
most important point is that the use of a number of parameters in combination, will give
the best indication of machinery condition (Carlson et al, 1988: Tranter, 1989). Since
valuable human expertise can be manipulated in knowledge-based systems, such systems
are able to handle arduous tasks and consider multiple factors to carry out decisions or
suggestions.

2) Machine condition is reflected or represented by machine signals and test
results, where the indications are frequently indirect. unclear and unstable. Hence,
diagnosis is usually based on uncertain and incomplete information. KBSs can process
uncertain, incomplete and even inconsistent information.

3) Rigid and stiff regulations may not work well ia machine condition evaluation.
Diagnosticians prefer to make decisions based mostly on relative changes (Serridge,
1989). but not only to compare the absolute values of diagnostic indices with standards,
such as ARP1587 (SAE. 1981). VDI 2056 (Stronach et al, 1984). The structure of a KBS
and knowledge-based approach make it feasible to arrive at decisions based on heuristics
and past experience stored in memory. and make it pessible to update the stored
knowledge.

4) A serious problem is the shortage of diagnosis experts or that they are seldom
readily available at the specific location where they are needed (Minami and Hirata,
1991). A machinc operator or engineer needs considerable time to acquire experience and
knowledge about MMD methodologies. machine malfunctions and maintenance. KBSs are
available all the time in the absence of a human expert, and they can deliver the

knowledge from an expert’s domain to the end-users.



Therefore, design of knowledge-based diagnostic systems is of current interest to
diagnosticians in both the academic and industrial communities. Diagnosis has been

concerned with a human activity and is becoming an important application area of KBSs.

1.3 Current Issues in Computer Aided MMD

In Al research, many methods have been d¢ veloped and new approaches continue
to cmerge. Meanwhile. several knowledge-based diagnostic systems have been
implemented successfuily for various applications over the last decade. Detailed discussion
of Al and KBS design aspects will be given in the following chapters.

Two major achievements in diagnostic KBS development are noted. The first is
that the present design of diagnostic KBSs emphasizes representation of human diagnostic
knowlcdge and heuristic reasoning. Some basic KBS methodologies, mainly symbolic
processing schemes, have been employed in the reported systems. Advanced KBS
techniques. such as fuzzy logic (Zadeh. 1988: Kandel, 1992) and blackboard systems
(Tailor, 1988). have been utilized in a few diagnostic KBSs also. The second achievement
is that various approaches for diagnosis have been proposed for different applications.
Thesc include the decision tree method (Pattipati et al. 1986). fault tree (Parsaye and Lin.
1987). goal/subgoal scheme (Allard and Faemmerer, 1987), cause-effect and problem-
symptom diagrams (Cantu-Ortiz, 1991). case-based reasoning (Feret and Glasgow, 1992).
and model-based diagnosis (Reiter. 1987: Iwamasa et al. 1992).

The research presented in this thesis is to design a rotating machinery diagnostic
KBS. As pointed out in the next chapter. several KBSs have been developed to conduct
rotating machinery diagnosis. Their key features can be summarized as follows: thay are

rule-based systems: about half of them are consultative systems and others are on-line or




non-consultative systems: some of them utilize certainty factors to process uncertain
information. and fuzzy measurement has been used in one of them: not much attention
towards numerical processing of on-line machine signal has been paid in these designs.
The overall assessment of these KBSs is that they have been designed in a conventional
manner. New Al and KBS methodologies have not been employed to date in rotating
machinery monitoring and diagnosis. Further advancement and new methodologies are
clearly required.

Several critical shortages of effective methods in rotating machinery diagnostic
KBS design have been identified through recent research work.

1) Computational schemes for manipulating symbolic information are typically less
effective in dealing with numerical data (Kanal and Raghavan, 1992), but numerical
processing is essential in rotating machinery monitoring and diagnosis besides symbolic
processing.

2) It is difficult to manage large size rule bases and to keep the rules consistent
(Dillon and Laughton. 1990), even though the rule-based method is widely used and
suitable for diagnostic knowledge represcntation.

3) Knowledge acquiring and refinement is a bottleneck in KBS development (Diav,
1990).

4) Lack of methods to perform machine fault identification and classification, and
for fault developing trend analysis hamper the design of diagnostic KBSs.

It is difficult to solve the above problems with conventional symbolic processing
techniques. One of the most promising new methods gaining prominence with Al
researchers is the Artificial Neural Network (ANN) technique. As Zurada (Zurada, 1992)

noted. "Perhaps the most likely applications for neural networks will be those involving



classification, association, and reasoning." Therefore. the ANN technique is considered to

be particularly useful in problems involving condition monitoring and diagnosis.

1.4 Potential Applications of Neural Networks in MMD

Artificial neural networks or neural networks (Rumelhart and McClelland, 1986;
Zurada, 1992) are massively parallel interconnected networks that consist of basic
computing elements called neurons. The ANN structure is based on our present
understanding of the biological nervous systems (Lippmann, 1987). Neural networks can
deal with noisy and approximate data: learn automatically from training data; learn
incrementally; adapt to a changing environment; generalize to situations they have not
scen before: and execute very quickly once they are trained (Rich. 1990). Presently, most
applications of neural networks are in the areas of speech and image recognition.

In MMD. neural networks could be useful for signal feature extraction. fault
pattern identification and classification. and fault development trend analysis in a
conceptual consideration. Few cases of machinery diagnosis using neural network
algorithms have been reported that show the introduction of ANN methods in MMD
domain (see Chapter 2). Neural networks possess a high level of adaptivity that can not
be obtained from completely-analytical or numerical procedures and further, they provide
a data-based heuristic approach to machine condition monitoring and diagnostics of
machine systems. A neural network can automatically store knowledge about the faults
or malfunctions in the machinery system being monitored by learning from the historical
data and possess characteristics of associative memory. ANNs thus have the capability to
learn and store complex information about abnormal conditions of machinery from the

faults identified and classified in the past via the associative memory skills. This



associative diagnostic capability makes the neural networks superior to the conventional
methods of machinery fault diagnostics. Thesc advantages of the ANN technique can be
seen in both the published literature on the application of ANNs to solve MMD problems
and the research presented in this thesis.

Several hybrid systems incorporating ANNs to ES have been prototyped. such as
a hybrid ES for performance monitoring and diagnosis of telecommunication cable
distribution networks (Senjen et al, 1993), and another hybrid KBS for ship machinery

on-line diagnosis (Weiskopf et al. 1990),

1.5 Scope and Objectives of the Thesis

This thesis concerns itself with the development of a new approach to hybrid
knowledge-based systems for rotating machinery diagnostics. The new approach takes into
account the nature and characteristics of condition monitoring and diagnostics of rotating
machinery systems. Further, it incorporates the latest developments in Al techniques and
expert systems technology so as to result in a more efficient diagnostic KBS for industrial
applications. In the conventional approach to develop a KBS, the knowledge engincer
acquires both information and knowledge from human experts in terms of IF-THEN
statements and then formulates them into the rules of the KBS. This approach poses many
difficulties that hamper the development of diagnostic KBSs. In the present work, it is
recognized that neural networks can be used to acquire knowledge without the extraction
of IF-THEN statements from human experts, through the training process. Based on this,
a new approach in which neural networks are employed in conjunction with the KBS
technology, is proposed and followed. In this approach. neural networks are utilized for

numerical processing of diagnostic data. The numerical processing encompasses the




monitoring and diagnostic problems of 1) the condition identification and classification
of fault patterns. and 2) the quantification of fault or malfunction development. These two
fundamental problems that are frequently encountered in machinery monitoring and
diagnostics are formulated into the corresponding mathematical problems of clustering and
feature extraction. and trend analysis. To irend and quantify the development of faults in
a machinery system, the new approach of multiple-index based trend analysis is proposed
and implemented. Neural network solutions to the above two problems, particularly the
solution using Self-Organizing Maps (SOM). are sought and obtained. The efficiency and
performance of SOM networks in solving clustering and feature extraction problems are
demonstrated in this thesis. Further. it has been recognized that the second fundamental
problem mentioned above corresponds to the regression analysis. The connection between
Topological Maps such as SOM networks and regression analysis has been well
established (Cherkassky and Lari-Najafi. 1991). So. the SOMs are deployed in the present
thesis to solve the second fundamental problem of MMD. To trend and quantify the fault
development. since both the existing algorithm using SOM and the Constrained
Topological Mapping algorithm are inefficient and inaccurate, a new Self-Organizing
Mapping algorithm is developed from first principles.

Based on this new approach. a prototype expert system. the RMD-KBS (Rotating
Machinery Diagnostic Knowledge-Based System). is designed and fully developed. This
is developed as an on-line diagnostic system and further, both the symbolic and numerical
processing are deeply coupled. The key capability of a diagnostic system, the learning
ability. which none of the existing diagnostic KBS possesses. has been embedded into the
RMD-KBS through neural networks. Moreover. a new scheme called "Object-Oriented

Programming (QOP) technique”. which has also not been utilized in any of the existing
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rotating machinery diagnostic KBSs. is employed in RMD-KBS. Suitable desi gn strategies
have been developed for these purposes. In addition. the RMD-KBS is designed and
developed to possess a number of the most desired computational and functional
capabilities of a diagnostic KBS for industrial applications. The expert system
development tool known as LEVELS OBJECT has been utilized. Knowledge obtained
from published literature on rotating machinery diagnostics and the author’s industrial
experience has been embedded. In order to validate the newly-developed diagnostic expert
system, and to assess its performance. experimental data from a class of real-life industrial
machine systems have been collected. Diagnostic vibration signals obtained from actual
machine systems. which contain known induced faults or malfunctions, have been
processed by the RMD-KBS. The diagnostic results are compared with the induced faults

to validate the operation of the prototype system.

1.6 Organization of the Thesis

A brief outline of the applications of Al technology in KBS, the important issues
related to the design and development of KBSs, the mierits and disadvantages of existing
diagnostic KBSs and artificial neural networks is provided in Chapter 2. This chapter also
contains a literature survey of existing methodologies for KBS design (including the
conventional symbolic processing based approaches), the existing rotating machinery
diagnostic KBSs and new trends towards employing neural network approaches in Al.

The new approach to the development of a hybrid diagnostic KBS for rotating
machinery monitoring and diagnostics. is described in Chapter 3. The conceptual design
of the RMD-KBS and the approach of embedding various special features, that are not

available in any of the existing rotating machinery diagnostic systems, are detailed in

1




Chapter 3 (Zhang et al. 1994b; 1995a). In addition, in this chapter. (i) the nature and
principal characteristics of rotating machinery monitoring and diagnostics are summarized
in a way that guides the design of RMD-KBS. and (ii) the basic problem of machinery
monitoring and diagnostics is formulated into a pattern clustering and classification
problem, and a function regression and trending problem.

In Chapter 4. a new approach which uses SOM networks to achieve machine fault
identification and classification (Zhang et al, 1994a; 1995c¢) is developed and described.
The new approach of employing the multiple-index based trend analysis (Zhang et al.
1995b; 1995d ) for both the quantification of fault development and the prediction of the
condition of machine components. is developed and described in Chapter 5. Also, the new
self-organizing mapping algorithm that has been developed to solve the above trend
analysis problem (Zhang et al. 1994c: 1995¢) is described in detail in this chapter.

The details regarding the implementation of the conceptual design that is
developed in Chapter 3 are provided in Chapter 6. In this chapter. the characteristics and
the details regarding the knowledge base. inference mechanism. various modules of
knowledge-base ete.. of the prototype KBS. the RMD-KBS are summarized. The flow of
diagnostic information and the information about the physical and operational parameters
of the monitored machine system, is given in detail in Chapter 7 along with the details
about the functioning of the RMD-KBS. Details of the experiments on real-life industrial
machinery systems, that are intended for the validation and the assessment of performance
of the RMD-KBS. are also provided in Chapter 7. In addition. the diagnostic results
obtained based on the vibration signals are provided in this chapter. Chapter 8 contains
the conclusions and the summary of the results achieved in this thesis. along with

suggestions tor future work.



The Appendices contain details of signal processing methods. and of the expert

system shell LEVELS.
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CHAPTER 2

ASPECTS OF KNOWLEDGE-BASED SYSTEMS
AND NEURAL NETWORKS

Issues related to the design and development of knowledge-based systems, as well as,
artificial neural networks are briefly discussed. A survey of existing works on these topics
is provided, and various important aspects on the automation of condition monitoring and
diagnostics of rotating machinery, are described in detail. In addition, existing knowledge-
based systems for rotating machinery diagnostics and the design approach used, are

presented.

2.1 Knowledge-Based Systems and Applications

The field of Artificial Intelligence (Al) encompasses a range of several disciplines,
including problem solving. robotics and vision, knowledge-based systems (expert systems),
natural language understanding, machine learning etc., that are realized through computer
systems or programs. These systems frequently use various methods of symbolic inference
and exhibit performance that may be calied "intelligent". More details of basic Al
concepts can be found in (Garcia and Chien, 1991) and (Barr, 1981-1989).

An Expert System (ES) is a computer program which is capable of offering
solutions to specific problems in a given domain or which is able to provide advice. both
in a way and at a level comparable to that of human experts in a given field (Keim and

Nordmann, 1989). This is the outcome of several years of research in cognitive science
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and Al (Waterman. 1986).

Nowadays. it is common practice to use the term Knowledge-Based Systems
(KBSs) to denote an extended category of Al programs which are able to access
knowledge in a way of some marked degree of separation - or some definite decoupling -

between their knowledge and control portions. The term Knowledge-Based Systems is

generally employed to indicate information systems in which some symbolic
representation of human knowledge is applied. usually in a way resembling human
reasoning. Knowledge-based systems hence. denotes a wider range covering expert
systems and some other Al programs such as vision systems. thought support tools,
natural language systems etc (Garcia and Chien, 1991). When the particular method of
representing the knowledge uses logical implications (or rules). and these are the bases
for the inferences. these systems are designated as "rule-based systems". An overall
classification of Al systems is shown in Figure 2.1.

A knowledge-based (or expert) system is typically made up of at least three
components: a Knowledge Base (KB). an Inference Engine (115), and a Global or Working
Memory. The knowledge base contains the domain knowledge which is employed to solve
problem. The working memory is used to store the current context and information gained
from the user of the system. The inference engine uses the domain knowledge together
with acquired information about a problem to provide a solution.

The separation of knowledge from inference and control is probably the most
important concept to come out of 1 research. This is also the most notable difference
between KBSs and conventional computer programs which arc essentially of the
sequential instruction set and execution type. The effect of this new approach is to make

the sysiem simulate human "thinking". and to be flexible in integrating new knowledge
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Fig. 2.1 An overall classification of Al programs [Garcia 91].
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incrementally into the existing store of knowledge. and capable of letting anyone who can
provide knowledge. create and update the program (Garcia and Chien, 1991).

KBSs have been applied in many fields. They have been used in training.
planning. computer vision, computer aided design/manufacturing, scheduling. monitoring.
configuring. diagnosis. speech understanding. debugging etc. Diagnosis has emerged as
one of the most interesting and challenging applications of KBS technology. Among all
of the early developments, the most influential one might be MYCIN, best described as
a heuristic. rule-based system with certainty factors that aid in the diagnosis of and
therapy for bacteraemia and ‘aeningitis (Buchanan and Shortliffe. 1984). Numerical
implementations have been reported. such as the ESR project of the European power
generation industry (Maile et al, 1991). the KBS applications on steel manufacturing in
Australia (Lee, 1991). the five ESs developed in Mexico for equipment repair (Cantu-
Ortiz. 1991). LES for troubleshooting in tele-communication switching systems (Laffey
et al, 1986). FLES for aircraft on-board monitoring (Ali et al, 1986). SHARP 1 for
consumer electronics repair (Persad and Wei-Muddeen, 1991), ATE for radar fault

isolation (Chao et al. 1986). PRA for nuclear power plants (Parsayc and Lin. 1987) clc.

2.2 KBS Design Techniques

KBSs are more complex in design and more inclusive of techniques than
conventional computer software. Many factors have to be considered in the development
of a KBS. In general. the considerations deal with aspects of the system architecture,
knowledge representation and modelling. inference and control, processing uncertain
information, knowledge acquisition and learning. style of the user interface, explanation,

data base structure, programming language or development tool, wide range applicability
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(adaptability), financial and time costs, and so on. The available techniques in some of
the above areas, especially those involved in the design of diagnostic KBSs, are
investigated in this section. More details on the approaches that are employed in the

present development will be given in subsequent chapters.

2.2.1 Knowledge Representation

Knowledge is more complex than information, and more valuable. Knowledge is
stored in the knowledge base of a KBS in a variety of ways. A representation of
knowledge is a combination of data structures and interpretative procedures that will lead
to knowledgeable behaviour.

The basic knowledge representation approaches defined in The Handbook of
Artificial Intelligence (Barr, 1981-1989) are: state-space search, logic (or first-order logic),
procedural representation, frames. scripts, analogical representation, production rules and
semantic nets. A popular scheme that appeared in late 1980s, is object-oriented
representation (Ramamoorthy and Sheu. 1988: Dillon and Laughton, 1990).

Some of the proposed approaches for diagnostic knowledge representation have
been constructed from the above basic schemes. such as decision tree (Pattipati et al.
1986). fault tree (Parsaye and Lin, 1987). goal/subgoal representation (Allard and
Faemmerer. 1987). cause-effect and problem-symptom diagrams (Cantu-Ortiz, 1991),
models-based systems (Reiter. 1987: Iwamasa et al. 1992), and so on (see also Diaz.
1990: Garcia and Chien. 1991). The rule-based system has been most widely used to
accomplish diagnostic knowledge representation.

Because the pattern of knowledge is very complex and variant, the knowledge

representation methods currently used do not perform this task as well as expected (Diaz,
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1990). There is much work underway in trying to develop robust knowledge
representation schemes. Hybrid schemes, where more than one scheme is utilized to

represent knowledge (Kanal and Raghavan. 1992). appear to be powerful new methods.

2.2.2 Inference and Control Strategies

Inference engine is the portion of a KBS that contains the inference and control
strategies. It directs the search in the knowledge base to arrive at a conclusion appropriate
to the context (Garcia and Chien, 1991). Inference is the process by which new facts are
derived from established facts. The control is a group of methods used by the inference
engine to determine the order in which reasoning occurs.

Forward chaining and backward chaining (Barr, 1981-1989) are two basic and
widely used inference mechanisms in rule-based systems. Forward chaining (data-driven)
goes forward through the chain of condition-action rules, from conditions that match the
data in the working memory towards conclusions that may be established from these
conditions. Backward chaining (goal-driven) goes backward through the chain of rules.
from conclusions that have to be established towards the conditions that are necessary to
establish these. or the data that has to be acquired. Some KBSs have combined these two
reasoning algorithms to provide flexibility for different tasks.

The control and schedule of knowledge activation can be accomplished through
a specification of the rule properties to affect the sequence of fire or fail rules (Levels.
1990a). such as "fire the first rule". "fire all rules in a group", "forget the current value

of a variable" etc.
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2.2.3 Reasoning with Uncertainty and Imprecision

Uncertainty in KBS is present in two forms: the data received by the KBS may
not be completely reliable, may contain noise, or may be inconsistent with other data or
with expectations; and the hypotheses and conclusions arrived at by the KBS may be
inaccurate because of uncertain evidence (as in noisy data), or because t' « knowledge
about the process itself is uncertain, imprecise, and incomplete (Diaz, 1990). Therefore,
a KBS must be able to function with missing, incorrect, inconsistent, approximate, or
irrelevant data, and with uncertain, imprecise and incomplete knowledge.

Attempts towards representing uncertain facts (information and data) and imprecise
knowledge have led to various formulations. including the Bayesian probability
formulation (Sood et al, 1985; Kadesch. 1986). Dempster-Sharfer calculus (belief
measures) (Dempster, 1967: Sharfer, 1976; Smets. 1990), confidence factors (CF)
(Buchanan and Shortliffe, 1984; Feldman and Ballard, 1991) and fuzzy logic (Zadeh,
1988; Pedrycz, 1989; Xu and Zhang, 1990). Reasoning strategies have also been used in
KBSs. such as fuzzy reasoning (Kandel, 1992). and reasoning with statistical knowledge

(Bacchus., 1990).

2.2.4 Knowledge Source and Acquisition

Knowledge can be of many types and from different sources, mainly in terms of
human expertise given by domain experts directly, and those in verbal and graphic
manners in literature.

Knowledge acquisition has been found to be the major bottleneck in expert systems

development and requires significant time and effort (Diaz, 1990). Many explanations
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about the problem were offered such as the lack of tools and the difficulty encountered
in encoding an expert’s behaviour (Tian and Yun, 1991). As the knowledge comes from
domain experts and knowledge-based systems are usuaily designed by Al engineers, the
knowledge acquisition is based on dialogue. To sort out the knowledge from the literature
in a given domain, the help of an expert is needed. However, numerous proposed methods
of knowledge acquisition have attempted to extract expertise either by human-to-human
interviews or by some convenient man-machine interfaces, such as formatted input,
pseudo-nature language. or high-level programming languages (Kim and Courtney, 1988;

Gaines, 1988).

2.2.5 Learning

Al researchers endeavour to make machines learn. which is another way of
considering knowledge acquisition and refinement by automatic means. Knowledge
acquisition through machine learning is a difficult process.

The different types of learning can be classified broadly as learning by
memorizing. by instruction. by analogy, by induction from examples and by unsupervised
learning through observation and discovery (Carbonell et al, 1983). This categorization
is based on the increasing complexity of the inferencing process (Chitoor et al, 1991).
Some prototypes or substructures of KBSs for learning have been proposed, such as
PLAND (Whitehall, 1989) and ACES (Pazzani, 1989). But most expert systems do not
have the capability of supervised learning or self-learning at all. Neither do the existing

rotating machinery diagnostic KBSs.
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2.2.6 Programming Language and KBS Development Tools

A KBS can he built with computer languages or, by means of expert system
development tools (shells). The iwo higher-level languages commonly used for Al
programming are LISP and PROLOG. Some others are the object-oriented languages
SMALLTALK. C++. Objective-C; rule-based programming environment OPSS; frame
language FRL; and general purpose program languages as BASIC, PASCAL, FORTRAN,
FORTH, C (Ishii, 1988: Majstorovi¢. 1990), and PL/I (Butler et al, 1988). Using
programming languages to build KBSs facilitates the implementation of new methods, but
is time and effort consuming.

An expert system shell is basically a programming environment with an embedded
inference engine. a knowledge editor. an empty knowledge base. and a designable or
modifiable user interface. It is a knowledge input and management tool. It usually
provides modules for accessing data files. devices or external programs. There have been
more and more powerful ES shells produced in the last few years (Garcia and Chien,
1991). Several new KBSs have been developed using ES shells (Ramu. 1991) to exploit
a higher design efficiency and overall convenience. The main disadvantage of using shells
is that the KBS designers have to follow a rigid pattern and are limited to the methods

offered by the tools.

2.2.7 Interfaces

The user interface is the working level of a KBS to communicate with the end-
users through a computer screen. keyboard and mouse. The design of the user interface

is critical in attaining widespread system acceptance (Irgon et al. 1990). The user interface
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could be a menu-driven system (Kirk et al. 1989). text windows (Carlson et al. 1988).
graphic windows (Altrock et al. 1991), or drawing support from advanced commercial
window systems (e.g. Microsoft* Windows™. X-Windows™ etc). The last style is the
newest, most powerful and user-friendly interface, similar to the user interface of shells:
ZERO (Ueno et al. 1991). NEXPERT OBJECT™ (TATA. 1989) and LEVELS
OBJECT™ (Level5, 1990a).

Al scientists think of "data" as describing the fact associated with a specific object
or situation. Many knowledge-based systems need to access databases which contain the
data to perform their tasks. such as computer aided design (Rosenman ct al. 1986).
planning (Artiba, 1991) and diagnosis (Irwin and Orden, 1987). NEXPERT and LEVELS
shells enable applications to communicate directly and dynamically with databases (i.c.
Oracle, Informix, RDB. dBASE, Ingres. Sybase and Lotus 1-2-3) during their inference

processes.

2.3 Existing Systems

A dozen knowledge-based systems for rotating machinery monitoring and
diagnosis have been documented in the literature. Five KBSs along with their principal
characteristics are listed in Table 2.1.

The first system in Table 2.1, DXPERT (Piety and Corley. 1989). is a consultative
(advisory, or off-line) one. A consultative system works together with its user through
dialogue to get input information (facts or data) required to diagnose the problem.
DXPERT is a small rule-based system. It has employed a method to measure the

uncertainty associated with the input. which represents Unknown by 50% and True Fact

by 100%. It has been used in resolving the real world problems in six different kinds of
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rotating machines. Similar systems are ROMAD (Mahalingam and Sharma. 1986). K1.UE
(Karel and Kenner. 1988). KDS (Zhao and Luo. 1989). and the one presented in (Kirk
et al, 1989).

The second system. TUMAD (Keim and Nordmann, 1989) is a large system with
a more complete knowledge of the domain. It uses frames to define machine objects, and
"context-sensitive” rules to represent diagnostic knowledge from the Sohre Chart (Sohe.
1980). The inference strategy has been the mixed forward and backward chaining. It uses
a point system (0 to 41) to denote the possibility of suspect diagnosis. This prototy pe has
been successfully tested and then deployed on pump monitoring applications, A similar
system. TURBOMAC (Stuart and Vinson. 1985). was developed using the KBS
development tool. RuleMaster in 1985. and encompasses about 4,000 rules. but no frames.

The third system was developed by General Electric (GI2) Company (Carlson
al. 1988). It works in on-line mode when connected to a machine monitoring system
(named TMGR. a HP based software package) through a numeric-to-symbol software
(named FEAT). by which the monitoring results can be transferred to True, False. or
Can’t Answer statements based on fuzzy sets. Then, the expert system takes over to
answer its own questions. The expert sysem portion alone is almost the same as a
consultative system. and actually can work in @ man-machine interactive mode. Similar
systems are AMDS (Gauger and Smee, 1989). AMETHYST (Bernhard, 1989 Milne,
1990), a system presented in (Petersen, 1990). and another one in (Hill and Baines, 88).

The fourth system (Liddle. 1993) has been developed using the shell NEXPLRT,
with a modern user interface under Microsoft Windows. 1t uses rules and objects with
inheritance to represent knowledge. Knowledge about machine structures, data needed to

calculate some key frequencies. and the amplitude alarm level for those frequencies can
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be specified during the installation stage of this system. It has functions of machine
selection, data transfer to "facts", generating symptoms, and diagnosis analysis. It has been
able to save up to 75% analytical time in industrial applications. A similar on-line turbine-
generator monitoring and diagnostic KBS developed in Japan is reported in (Kato et al,
1990). The latter system is large with about 5,000 rules to analyze 220 measuring points,
and it runs under X-Windows on an Engineering Work Station.

The last one (Schindler et al. 1989) in Table 2.1, has a certain amount of
knowledge of signal processing to make up for its lack of diagnostic knowledge. It can
invoke numerical processing subroutines in diagnostic inference when it needs additional
data from the machine being monitored. This ability has not been found in other rotating

machinery diagnostic KBSs.

2.4  Artificial Neural Networks and Hybrid Expert Systems

2.4.1 Aspects of Neural Computing

Artificial Neural Networks (ANNs), or simply Neural Networks. are also known
as connectionist systems. or parallel distributed processing models (Lippmann, 1987). A
neural network is a massively parallel. self-adaptive. interconnected network of basic
elements called neurons (Nigrin, 1993). These basic elements loosely model the mechanics
of computations in the neurobiological processes of the brain (Zurada, 1992). The early
ANN models had been proposed more than 40 years ago, and the more recent works by
Hopfield (1986). Rumelhart and McClelland (1986a), Sejnowski and Rosenberg (1986),
Feldman (1982). Grossberg (1986) and others have led to a new resurgence of the field.

Neurons of neural networks possess very simple computational abilities but the



S

interactions between them do allow for parallel processing of information that is inputted
as a set of stimuli to the array of input processors. The functions of these neurons are (1)
to qualify the input signals by evaluating their intensity, (ii) to compute a weighted sum
of these inputs using connection weights thereby comparing it with the threshold values
associated with individual newrons, and (iii) to fire an output signal if the strength of the
input signal builds up to the threshold level or. as in many cases, to obtain an output
signal by processing the weighted sum of the input signal through an activation function.
The sequence of operations is given below:

1) First. the input signals are multiplied by the connection weights W, and the

effective input to the element j is the weighted sum of these inputs given by:

n n
net =y input xW, =y xW, (2.1)
i-1 =1

2) Any one of the three functions. i.e. the sum function. activation function and
learning function, is executed depending upon the intended use. The sum function
compares the net, of Eq. (2.1) with the threshold value of the neuron with which it is
associated, to determine the presence of the output signal and its level. The activation
function processes the ner, through a mathematical function with asymptotic behaviour:

the commonly-used function is a sigmoid and it is given by

1
= t) = (2.2
out; = flnet) T+ oxp(-(net +6) )

where 6, is a bias parameter that is used to modulate the output of the neuron. The
learning function is usually associated with a neuron that is provided with a simple form
of memory: it makes it possible to store the results of the previous operations to obtain

a sort of learning behaviour.
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As mentioned carlier, the significant computational superiority of a neural network
is derived by interconnecting a large number of neurons into a single network. The overall
performance is dictated by the scheme of connectivity and network architecture. The
network architectures can roughly be divided into three categories (Kohonen, 1984) as
follows: (i) Feed-forward Networks (Rumelhart et al, 1986a; 1986b), (ii) Feed-back
Networks (Hopfield, 1982) and (iii) Self-Organizing Networks (Kohonen, 1990). Among
these. in the feed-forward networks sets of input signals get transformed into sets of
output signals, and the desired input-output transformation is usually determined by
external, supervised adjustment of system parameters. In feed-back networks, the input
information is used to define the initial activity state of the feed-back system. and the
final (asymptotic) activity state is identified as the outcome of computation, after some
transitions. In the last category. neighbouring neurons in a network compete in their
activities by means of mutual lateral interactions and develop adaptivity to specific
detectors of different signal patterns.

The feed-forward networks which have a layer of neurons to which the external
stimuli are presented. a series of hidden layers (in some cases) and a layer of neurons at
which the output is made available. have three distinct forms of architecture:

Flat Networks: Here inputs are directly mapped into the output. These are fully-
connected networks with each and every input neuron influencing all output neurons.
These networks do not adequately model the non-linear input/output relationship and the
only way of introducing the non-linearity is through the use of activation functions.

Hidden-Layer Networks: Here the external stimuli are received by the input layers

and the output layer transmits a signal as the response to this input. thus making the

hidden layers not to interact with the external environment but only to accept or output
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information within the overall system (refer Figure 4.16). If” the non-lincar activation
functions are not used. it is possible to convert a multilayer linear network into an

equivalent single layer network.

Functional-Link Networks: Relatively recent. this network is similar to flat

networks but has additional input nodes wherein the non-linear transformations of the
basic input quantities are performed. These are more suitable to realistic applications, and
the learning times are far more economical than those of multilayer networks (Pao, 1989).

Self-organizing mapping networks are sheet-like artificial neural networks, the
neurons of which become specifically tuned to various input signal patterns or classes of
patterns. so that each neuron or group of neurons acts like a separate decoder for the same
input (Kohonen, 1990). The self-organizing network has been intended as a viable
alternative to more traditional ncural network architectures, and these have been
successfully used for tasks similar to those to which other more traditional networks has ¢
been applied. Further details about these networks are given later in this thesis.

Design and development of a neural network for a particular application involves
first the selection of an appropriate architecture for the selected type of network. Once a
suitable architecture is chosen. the network is trained either by the supervised learning
method or by the unsupervised learning method. so as to produce an acceptable output for
a given input pattern. Self-organizing maps can be trained by the latter method. Various
methods of network training are available under the category of supervised learning
techniques and. the essential details of the back-propagation approach are given in Chapter
4. With the steepest gradient-descent algorithm, the back-propagation approach is
fundamentally looking to minimize the mean square error between the actual network

output and the expected output signal. The back-propagation method is suitable for the
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supervised training process of the functional-link neural vetwork. where the process of
weight updating is required only between input and output layers. However, it may be
noted that the nature of the gradient descent method leads to a low rate of learning near
local minimum, which increases the number of iterations when a higher value of accuracy
is prescribed.

A large number of ANN models has been established. Some of the most popularly
used models are Hopfield network (Hopfield. 1984), Hamming network (Lippmann,
1987). Kohonen's Self-Organizing Mapping (SOM), Back-Propagation Neural Network
(BPNN) (Rumelhart et al, 1986b). Counter-Propagation Network (CPN) (Nielsen, 1987),
Adaptive Resonance Theory (ART) (Grossberg. 1976), Bidirectional Associative Memory
(BAM) (Kosco. 1988), Recurrent Network (Elman, 1991), and Regression Network
(Specht, 19911, Actually. a designer can modify and re-design the structures of neural
networks so as to meet particuiar functional demands (Nigrin. 1993).

Current research has shown that ANNs have many outstanding properties. They
can operate in real-time under the presence of noise: can perform fast and slow learning.
or self-organize using unsupervised learning: they can use feedback expectancies to bias
classification; can perform context-sensitive recognition and process multiple pattern
simultancously: can combine existing representations to create categories for novel
patterns and scale well to large problems (Nigrin. 1993).

The most remarkable advantage of using neural networks is that they can deal with
uncertain information contained in noisy data, represent complex and non-linear
relationships between their input and output. process 0-1 logical or numerical information
very fast after being trained. learn new knowledge automatically and incrementally from

training data. and adapt themselves to new problems.

30




o

Applications of ANNs can be found in many areas. Most of them are out of the
scope of this research. It seems that most applications are in robotics and control. speech
and image processing fields, where ANNs have been used in clustering, feature extraction.
associated memories, pattern classification, pattern recognition, signal processing, control,
optimization, non-linear process formulation, function approximation and so on. Some
examples have been given by Zurada (1992). In the MMD arca. attempts to usc ANNs
to solve rotating machinery diagnostic problems have just stirted. The examples in
published literature include (Shi et al, 1990; Kim et al, 1991; Dimarogonas, 1992;

Kuczewski and Eames. 1992: Liu and Mengel. 1992: Liu and Anantharaman 1993).

2.4.2 Hybrid Systems

The conventional approach to building a KBS requires human experts to formulate
the rules by which the input data can be analyzed. Neural networks can acquire
knowledge without the extraction of IF-THEN rules from a human expert provided that
the number of training vector pairs is sufficient to form all decision regions. Thus, ncural
networks would be able to ease the knowledge acquisition bottleneck that has been
hampering the creation and development of conventional KBSs (Zurada, 1992). This
realization has led to new research on hybrid systems. The strengths of KBS and ANV
can be combined in hybrid systems thus providing the best features of both technologies.
A spectrum of possible hybrid architectures has been proposed in (Ricly, 1990). A number
of approaches of hybrid KBSs for different applications can be found in the literature,
including (Weiskopf et al, 1990; Wu. 1991; Khosla and Dillon, 1993; Leonard and
Kramer, 1993) and few implemented systems (Fu. 1989; Senjen et al, 1993). Hybrid

systems appear to have considerable potential for industrial applications (VerDuin, 1990).
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CHAPTER 3
DESIGN OF RMD-KBS

The issues and problems associated with rotating machinery diagnostics, as well as, the
types of information and knowledge which are essential to the diagnostic process are
summarized in the first part of this chapter. Two fundamental diagnostic problems of
rotating machinery monitoring viz.. (i) Identification and Classification of Fault Patterns,
and (ii) Quantification of Fault Development. arc defined and formulated in Section 3.1.
Rotating machinery units, such as pumps. fans, compressors, turbines and gearboxes are
selected to illustrate the monitoring effectiveness of the RMD-KBS, which is the
knowledge-based diagnostic system developed in this thesis. The design of the architecture
of RMD-KBS is described in the second part of this chapter, wherein the on-line working
mode of the KBS. the methodologies of coupling symbolic and numerical processes, the
hybrid approach of utilizing the advantages of both artificial neural networks and
conventional rule-based KBS technologies, the knowledge representation schemes, and the

diagnostic strategy implemented in the KBS, are detailed.

3.1 Diagnostics of Rotating Machinery

3.1.1 Diagnostics Based on Vibration Signals

Diagnosis of rotating machinery units such as pumps, fans, compressors, turbines,
gearboxes ete, for faults or maltunctions during service, has long been performed utilizing

on-line diagnostic measurements. On-line measurements of operational variables such as

32




temperature and pressure. state and response variables such as noise levels and vibration
amplitudes. constitute the domain of diagnostic signals. Among them. the vibration signal
has been shown (Lipovszky et al. 1990: Eshleman and Jackson. 1992) to be very
representative of the operational state of rotating machinery systems. Diagnostic methods
based on vibration signature have thus established themselves to be highly successful,
reliable and efficient. As mentioned in Chapter 1, vibration-based techniques of condition
monitoring have been shown to be capable of detecting a broad range of defects in
rotating machinery and in a wide array of other machine components. Vibration signals
obtained from real-life industrial systems, however, possess considerable variability and
further, this variability is distinctly different from the background noise that arises due to
signal detection. acquisition and conditioning devices. Moreover. the observed variability
has been recognized (Collacott. 1979: Eshleman and Jackson, 1992) to be a direct
characteristic of many faults or malfunctions in machine systems. A given state of
machine fault or machine condition, is normally represented by a combination of several
features of the diagnostic signatures, such as peak-to-pcak value of the vibration
amplitude. crest factor, Kurtosis factor etc (see Appendix A.1). Changes in the values of
these features show symptorms of the corresponding machine fault or condition. The on-
line vibration signal is employed in this thesis as the principal diagnostic signal for

rotating machinery systems.

3.1.2 Signal Feature Extraction
For monitoring and diagnostic purposes, it is always desirable to reduce the large
amount of information contained in the raw vibration signal, to a single index or number

that represents the overall characteristics of the signal. This procedure, known as signal
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feature extraction, apart from helping the machine operator to take remedial action,
enables automated comparison with both previous experience with similar machines and
with available standards. Such a capability is an essential property of intelligent diagnostic
systems. To determine such indices, statistical. time series and probabilistic approaches
have been developed (Cempel. 1988; Zhuge et al. 1990) in order to qualify and quantify
the variability in the obtained data. More recent methods of fault detection have been

developed for use in machine monitoring systems (Danai and Chin. 1991).

3.1.3 Identification of Machine Fault Pattern

Detection of any change in the operational characteristics of a machine through the
observation of corresponding changes in its vibration signature leads to the detection and
identification of possible faults that cause machinery malfunctions. This problem is one
of the most fundamental in rotating machinery diagnostics. and is widely known as Fault
Pattern Identification and Classification. Since each of the vibration signature parameters
is sensitive to a few particular types of defects, the fault that has occurred can be
diagnosed. Further. as mentioned in Chapter 1, simultaneous consideration of several
monitoring indices leads to a reliable diagnosis of machine faults. This is due to the fact
that there is no single index that can completely represent the conditions of a machine and
further. different types of malfunctions are distinctly reflected in different diagnostic
indices.

Fault pattern identification and classification, however. involves feature extraction
through processing of the large amount of information contained in the vibration signal.
The feature extraction approach that is followed in the knowledge-based diagnostic system

developed in this thesis. involves the representation of the diagnostic information
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(characteristics of the signal) contained in the on-line vibration signal by a set of
numerical indices. This set of indices which is representative of various failures in a
machine is called a feature (symptom) set and is denoted by the column vector X=X
Xy ooos Ay} The elements X, i= 1. 2. ... A. of the feature set are selected based on
previously established descriptors of machine condition monitoring such as peah-to-peak
value, root mean square value etc (see Appendix A.1). Selection of a feature set for a
particular machinery system. however, depends upon the type of failure or malfunction
of the machinery system to be included in the condition monitoring program. For instance,
the peak-to-peak value is useful in the detection of unusual impulses generated by bearing
defects (Lipovszky et al. 1990); the vibrational energy at the machine rotating, frequency
in the vibration power spectrum. is applicable to both rotor unbalance and rotor resonance
problems (Eshlemar and Jackson. 1992),

Various different machine faults or malfunctions that can be clearly identified from
the on-line vibration signal arc taken as the elements of the column vector ¥=1V,, ) ST
Yy}" which is designated as the failure (condition) set. Selection of the elements of ¥
depends on the particular machine system being monitored. For example. typical faults
in a rotor system could include (Eshleman and Jackson. 1992) unbalance, misalignment.

resonance. oil whirl etc.

The fundamental problem viz, the identification and classification problem of

machinery monitoring and diagnosis (MMD) can now be described as

Y&R= X (3.1)

where R is the fault-symptom correlative relationship between the feature vector and the

failure vector, i.e. a transformation set. To find or define a proper set R, is to describe the
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relationship between each of the elements of X and Y. After the R has been defined, it can
be applied on an observation of the feature vector X to find the corresponding failure
vector Y. This is essentially a problem of condition identification. The transformation set
R can be an influence matrix as in pattern recognition methods (Danai and Chin, 1991),
a fuzzy matrix relationship as in fuzzy classification methods (Xu and Zhang, 1990), or
a group of inference rules as in expert systems. It actually represents a feature mapping
between the vector spaces of X and Y. In the present design. it is represented by neural
networks. A new approach of using neural networks to identify and classify the condition
of rotating machinery is developed in Chapter 4. and it is implemented in the Numerical

Analysis Routines of RMD-KBS described in Chapter 6.

3.1.4 Quantification of Fault Development

Once the qualitative information about the malfunctions in a particular machinery
system has been obtained for diagnostic and monitoring purposes, it is then necessary to
quantify both the current stage of the malfunction and its time evolution. This is another
fundamental problem in MMD. i.e. the Quantification of Fault Development or Machine
Condition. which is intended to determine the health of a machine system through analysis
of historical data that are obtained through continuous measurements. This analysis is
mathematically known as fault development trend analysis, or trend analysis in short. This
is a diagnostic technique widely employed in industry for machine condition monitoring.
It 1s essentially a function regression problem in terms of mathematical statistics.
Normally the data is collected over a period of time (or over the number of cycles of
operation. or over any other suitable independent parameter) showing the continuous

changes in the behaviour of a machine system as a function of time (or process
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parameters). Existing studies that employ trend analysis for machine condition monitoring.

rely on a univariate function in the form of

Y =AY +e (3.2)

Here, ¢ is an unknown arbitrary disturbance, .\"is a monitoring index being extracted from
the machine signal such that its value represents the operative states of a machine system,
and Y is an indicator that is defined to monitor the operation of the machine system or
the performance of its components. and to predict the degree of damage present. The tash
of trend analysis is to find the function f defined from a given set of data pairs Z=(X,Y).
=1, 2, ... n. The function f represents a curve in the regression plane displaying
continuous changes of system condition. Once evaluated. the function [ has several
important applications. The most common application of f is to determine the current
condition and to predict the future behaviour of the machine system being monitored. For
instance. after observing the current values of .\ from a machine system, the residual
service life can be approximated from Eq. (3.2). This serves as a basis for suggesting
suitable machine maintenance programs.

Since simuitaneous consideration of a number of monitoring indices is important
not only in machine fault detection but also in fault development trend analysis.
diagnostics using a Multiple-Index Based Trend Analysis is proposed as a new approach
for MMD in this thesis. This approach is developed in Chapter 5, in a form that is highly
suitable to knowledge-based diagnostic systems. Self-organizing neural networks are
developed to perform the task of trend analysis and these networks are embedded in the
Numerical Analysis Routines of RMD-KBS (Rotating Machinery Diagnostic Knowledge-

Based System). The new approach is then embedded in the RMD-KBS. To this end, the
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fault development trend analysis problem is formulated as

V< AX) v (33)

where XeR" is a vector consisting of several monitoring indices. The task of the newly-
defined trend analysis is to find the multivariate function f defined in the (N+1)-

dimensional space. from a given set of data pairs Z=(X, V), i=1, 2, ..., n.

3.1.5 Information Needed in Rotating Machinery Diagnosis

In the machinery diagnostic processes. sensorial signals give the most important
information about the condition of machinery. In addition to the sensorial diagnostic
signals, scveral types of information about the rotating machine system are also needed
to diagnose its condition. The most necessary information for a monitoring and diagnostic
system is listed below:

1) Information about the structure of the machine system, including the number
of subsystems. the type of each subsystem (c.g. a gearbox, a pump), the specifications of
elements such as bearings and seals. and the position of each machine in the system train.
This information is used at different stages of the diagnosis. For instance, the number of
tecth in a gear is used as input information to the calculation of the gear tooth-meshing
frequency. which in turn is a reference frequency that determines the sampling frequency
for the vibration signal to be acquired from the corresponding gearbox.

2) The valucs of the machine operational parameters (e.g. machine rotational
speed, level of load. pressure tc) that show the operational state of the machine system
being monitored. Some of the operational parameters can also be used as diagnostic

signals. For example, if the value of the lubrication oil pressure is abnormal, it indicates
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that the lubrication system may have a malfunction.

3) The location and type of each and all of the sensors mounted on the machine
system. This information is used in the selection of a proper scheme for signal acquisition
and processing, and is also used to identify the defective machine component.

4) The threshold values of all of diagnostic indices. These are important reference
values for the assessment of machine health condition. The threshold values of a
monitoring index can be determined from previous experience or available standards.

The information listed above is usually treated as "facts" that are used in the
knowledge-based reasoning. From the view point of information processing. this

information is in two basic forms, i.e. qualitative descriptions and quantitative values.

3.1.6 Diagnostic Procedure

Having obtained both the qualitative and quantitative descriptions of a fault as well
as the description of the machinery system. diagnosis may be initiated. Generally, human
experts perform the diagnosis of rotating machines through the following sequence:

1) When some of the on-line measured data show that the machine under
monitoring may be in an abnormal condition, the diagnosis will start. The first stage of
the diagnosis is to acquire vibration signals and other monitoring signals.

2) Based on a cursory analysis of the collected signals (for instance, checking the
vibration level at certain measuring points). the diagnostician will put forward hypotheses
of the most likely malfunctions.

3) A selective problem-oriented analysis will be considered so as to focus the

diagnosis on the most likely causes.
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3.1.7 Knowledge Required in Diagnostic KBS

The most important knowledge required to diagnose the condition of rotating
machinery is the human knowledge and experience of both fault detection and machine
condition determination. As mentioned in the previous chapters, a large amount of
knowledge regarding rotating machinery monitoring and diagnostics has been accumulated
in the last three decades. The diagnostic knowledge can be arranged into several
categories. This is based on a consideration that, different categories of knowledge play
different roles in knowledge-based processing. and further, their representation may need
different schemes in building a diagnostic KBS.

The first category is "fault model directed heuristic knowledge" which is based on
the known relationships between symptoms and faults/failures. A fault model can be a
description of fault-symptom relationship in empirical qualitative mode. This is similar
to what has been represented using rules in the existing rotating machinery diagnostic
KBSs. In addition to the fault models. this category of knowledge contains several
heuristic observations, such as the possible or frequently observed types of faults in a
certain type of rotating machine. and the selection of a signal or a number of monitoring
parameters as diagnostic indices which are sensitive to the occurrence of a certain fault
or the changes in machine condition. Heuristic knowledge can help a KBS to generate
hypotheses, narrow down the solution space, and to efficiently arrive at a correct
diagnosis,

It has been recognized previously in this chapter that rotating machinery
monitoring and diagnostics are mainly based on numerical signal analysis. Hence,
quantitative knowledge about fault patterns is necessarily required to make diagnostic

Judgements based on the values of the monitoring indices. This assortment of knowledge
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has been implemented through conventional rules in a few existing rotating machinery
KBSs, that can reason out numerical information. In the present approach, the main
concern is to establish and utilize quantitative models of the fault-symptom correlative
relationships.

In the entire process of rotating machinery monitoring and diagnosis., knowledge
of the monitoring signal acquisition and processing. feature extraction and selection is also
necessarily required. Hence. there is a need for another category of knowledge, which
deals with the usage of the techniques and methods employed in signal acquisition, signal
processing, featurc extraction. and machine condition identification. This category of
knowledge includes both, the heuristics to guide the selection and use of a method for
certain diagnostic purposes. and the quantitative settings involved in the usage of any
method.

For instance. when a gearbox is diagnosed. the spectrum of the vibration signal
generated by the gearbox should be investigated. In the spectrum, the amplitudes at the
tooth-meshing frequency and its harmonics are important features to be considered in the
diagnosis. Further, a proper sampling frequency for the acquisition of vibration data
should be selected to assure data accuracy. However, in the existing diagnostic KBSs for
rotating machinery monitoring, only some elements of this knowledge are implemented.
since there is no signal processing employed in most of them.

The knowledge required to perform machinery diagnosis can also be grouped in
two types from another viewpoint: the knowledge regarding qualitative aspects and that
regarding quantitative aspects. Therefore, a single scheme for knowledge representation.
e.g. the widely used symbolic representation, is not fully suitable for diagnostic tasks.

Hybrid approaches, that incorporate both the symbolic and numerical representation and
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processing arc required in machinery monitoring and diagnosis applications.

3.1.8 Importance of Learning Ability in Diagnostic KBS

It has been mentioned in Chapter 2 that learning is considered to be both
knowledge acquisition and iefinement by automatic means. When KBS technology is
employed in performing rotating machinery diagnosis, a certain level of capability to learn
ncw knowledge is important and required to supplement and refine the existing knowledge
stored in a KBS, The diagnostic knowledge stored in a KBS is normally considered to be
incomplete and imprecise. Often the bottleneck in formulating a diagnostic system is the
lack of a qualitative and/or quantitative model of fault-symptom relationships. In turn, this
is duc to the lack of understanding of fault induction and propagation mechanisms in
machine systems. When a KBS has a certain level of learning capability, the new
knowledge can be added to the existing knowledge. thus making it more complete. For
instance. a fault that is unknown to a KBS may appear in a machine. When it occurs. the
faulty behaviour of the machine may be detectable by the KBS, since certain changes in
the diagnostic indices will show that the machine is in an abnormal condition. If this is
the case, the learning ability can help the KBS to learn the new fault pattern from the
observations of the new event.

The knowledge stored in a KBS can also be refined through learning so as to make
it more precise than before. As mentioned in Chapter 1. in many situations the indication
of a machine fault or malfunction by the monitoring indices is indirect, unclear and
unstable. This inherent uncertainty is an important characteristic of machinery diagnosis
via signal analysis. For instance. if unbalance is an incipient defect in a rotor system, the

magnitude of the spectral amplitude at the rotational frequency must be greater than the
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value at the same frequency in the vibration spectrum obtained when the rotor was in
good condition. This piece of diagnostic knowledge has been proven to be true through
many case studies. However, such knowledge may not be sufficient to establish a precise
quantitative model to detect unbalance. The model needs to be refined during the
diagnostic practice of the KBS, and it can be refined only when the KBS possesses a
learning capability. Learning capabhility in a KBS can improve its adaptability to a wider
range of rotating machine systems, since the variations of the values of diagnostic indices
that are influenced by particular characteristics of an individual machine can be learned

by the diagnostic KBS.

3.2 Design of RMD-KBS

Rotating machinery diagnosis is basically a s*gnal analysis process which involves
the complex tasks of feature extraction. fault pattern identification and trend analysis. A
knowledge-based diagnostic system should be able to perform these tasks with high
precision. Various different types of information and knowledge regarding the machinery
system being monitored need to be considercd in the diagnosis process. A knowledge-
based diagnostic system should be able to gather the needed facts and numerical values.
to store them in proper form, and to make full usc of them in performing the diagnostic
tasks. The way in which tke diagnosis is carried out by human experts should be
duplicated by the knowledge-based diagnostic system. There is a need to establish a
certain level of learning ability in any diagnostic KBS. Also, in the design of a KBS, the
ability to handle a variety of applications is an important consideration.

In Chapters 1 and 2, several knowledge-basc approaches for different diagnostic

applications have been mentioned. The decision tree (Pattipati et al, 1986), fault tree
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(Parsaye and Lin. 1987), and goal/subgoal schercs (Allard and Faemmerer, 1987) are
some of the carly approaches reported in the literature. They use logic operators such as
AND, OR to conncct the faulty events to the basic component events (i1.e. symptoms)
(Wang. 1990). Embedded in these approaches is the idea of constructing hierarchical links
between the rules in a diagnostic KBS.

A case-based reasoning (Kolodner, 1991) system stores past experience in the form
of cascs in the system case-base. When a new problem arises, the system retrieves the
cases most similar to the current problem and then combines and adapts them in order to
derive and criticize a solution. After a problem is solved. a new case can be created and
stored in the case-base. However, the case-based reasoning approach has been found to
lead to lack of flexibility in the way the acquired knowledge is stored, indexed and
subscquently, retrieved and re-used (Feret and Glasgow. 1992).

Another KBS approach known as the model-based diagnosis (Reiter, 1987;
Iwamasa et al. 1992), has also been in ase. In this approach, the model of a physical
device that represents structural, behavioral and functional knowledge, is used to provide
the expected behavioral data which is compared against the observed data from the device
under examination (Yu and Biswas, 1992). The models are based on theoretical
formulations, simulation or experimental data. To be effective, model-based reasoning
systems require an accurate model of the physical system in order to reason out the
expected behaviour. The models of the physical system must also be complete and
independent from the reasoning unit of the KBS (Adamovits and Pagurek, 1993). The
model-based approaches are considered to be able to handle new faults, but the KBS itself
can be very complex in its structure. Most model-based diagnostic KBSs have been

designed for fault detection in <lectrical circuits, since the behaviour of circuit elements
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can be modeled. In many other applications. model-based reasoning has been considered
to be not fully suitable to the diagnosis (Schonwilder et al. 1991), since there are less
available models which can be used to predict accurately the expected behaviour of the
physical system of interest. Rotating machinery diagnosis is one such domoin, where
models that are able to support the above reasoning approach are not readily available.

Another approach to diagnostic reasoning is the experiential one (Reiter, 1987).
in which heuristic knowledge plays a <ominant role. The corresponding diagnostic
reasoning systems attempt to codify the fault-symptom relationships. rules of thumb,
statistical intuitions. and past experience of human diagnosticians who are considered
experts in the task domain. This approach is quite clcse fo the way in which a human
expert recognizes machine condition. All the existing KBSs listed in the last chapter have
employed this approach. In the design of RMD-KBS, the diagnostic reasoning is also

based on this approach.

3.2.1 Outline of the Design

The scope of the design of RMD-KBS is limited to rotating machinery diagnosis
based on vibration signals. The functions and characteristics which have been built into
the RMD-KBS are as follows:

1) It is an on-line monitoring and diagnostic system.

2) Both symbolic and numerical processing techniques are employed, and further,
they are tightly (deeply) coupled. Symbolic reasoning controls the diagnostic process.

3) It is a hybrid system, in which artificial neural network algorithms are
incorporated in order to perform several diagnostic tasks and to provide learning ability

to the system.
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4) The knowledge in the KBS is modeled into different categories, and is
represented by several schemes. This is done in order to achieve control of the diagnostic
process, and to make the KBS accurate in the diagnosis, flexible for knowledge
refinement, and adaptable to individual real-world applications.

5) The diagnostic strategy utilized in RMD-KBS is close to the standard procedure
used by diagnosticians.

6) It is conceived for real-world applications and many aspects are considered in
the design in order to make the RMD-KBS more user-friendly.

RMD-KBS is designed as an integrated system that consists of an on-line vibration
data measurement and acquisition component, a database, a group of numerical processing
routines, the neural networks, several knowledge bases. an inference engine and a multiple
windowing user interface. The architecture of RMD-KBS is shown in Figure 3.1, wherein
the functions to be performed by each of the above elements and the connections between
them are briefly indicated. The implementation details are given in the following

subsections and in Chapter 6.

3.2.2 On-Line Monitoring and Diagnostic Capability

The RMD-KBS is designed as an on-line rotating machinery monitoring and
diagnostic system. The KBS can automatically perform signal acquisition. processing.
feature extraction, and diagnostic analysis to detect machinery faults, with minimum run-
time user interactions. It is based on the recognition of the fact that a consultative KBS
cannot perform the diagnosis precisely. and its end-users have to be familiar with many
techniques involved in machinery diagnostics.

It has been scen in Chapter 2 that about half of the existing KBSs for rotating
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Fig. 3.1 The architecture of the hybrid RMD-KBS.
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machinery diagnosis, such as TURBOMAC (Stuart and Vinson, 1985), KLUE (Karel and
Kenner, 1988). KDS (Zhao et al, 1989), TUMAD (Keim and Nordmann, 1989), DXPERT
(Piety and Corley. 1989) and the KBS reported in (Kirk et al, 1989), are consultative
systems. They are off-line systems and perform the diagnosis based on the information
provided by their end-users through a dialogue during the run-time. The existing KBSs
lack the knowledge of signal analysis and of quantitative measurement of the diagnostic
indices. These are pitfalls, especially from the view point of industrial applications. For
cxample, the following rule in the TUMAD system (Keim and Nordmann, 1989) is typical

of the rules employed to represent diagnostic knowledge in existing consultative systems:

IF: ( Machine has sleeve bearing
OR  Machine has long seal )
AND Vibration is 42 to 48% of running frequency

THEN: Suppose diagnosis is oil whirl

This rule qualitatively describes the human knowledge about the machine problem known
as oil whirl, where the information needed to detect the oil whirl problem by this rule is
listed as a set of conditions in its [F-part. A user of such a consultative KBS may be able
to provide the KBS with precise information about the bearing type and seal length of
elements in the machine system. But, in order to tell the KBS the fact whether a
significant peak is appearing in the range between 42 to 48% of the rotational frequency
of the machine in the vibration spectrum. which is a primary symptom of oil whirl, the
end-user must first perform the necessary signal measurement, signal processing and the

spectral analysis tasks.
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Moreover, in the case that a consultative KBS does not know how to quantitatively
measure the numerical values of diagnostic indices, many computational ana judgemental
aspects are actually left to its users. For instance, the expert system presented in (Kirk et
al. 1989) asks its users, "Is it true that it has high pressure?" The possible user
responses 1o this question are Yes, No or Don’t Know. Hence, in this case. the user has
been assumed as being able to judge what are the values of the pressure that are
considered to be high. If the user can only answer the question about the pressure by
Don’t Know. the KBS can certainly not conduct a precise diagnosis of machine faults.

In practice, consultative diagnostic KBSs depend on considerable human/machine
interaction before arriving to a conclusion (Mielnik, 1990). Such a KBS performs only
a part of the work. since the signal processing and certain determinations have 1o be done
by its users. On the other hand. an on-line monitoring and diagnostic KBS works in an
automatic mode which can perform the entirc process from signal acquisition to
knowledge-based reasoning. Since there is more knowledge stored in it than in a
consultative KBS, there will be less work that is left to its end-users. This advantage

renders on-line systems more suitable for industrial applications.

3.2.3 Coupled Symbolic and Numerical Processing

The expert’s diagnostic knowledge is about both the qualitative and quantitative
aspects of the methods employed and of the fault-symptom relationships. Therefore, both
symbolic and numerical processing methods are essential in solving rotating machinery
diagnostic problems. In the existing KBSs. symbolic processing is the key approach where
both information (facts and data) and knowledge take the form of symbolic representation,

such as fiames and rules. Previous research (Kanal and Raghavan, 1992) has shown that
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the computational schemes used to manipulate symbolic information are typically less
effective in dealing with numerical data. A more effective means of using Al approaches
is to couple symbolic and numerical computing in the KBS (Wang, 1989; 1990). Such
systems are known as coupled systems (Bhandarkar and Suk, 1991). The KBS developed
in this thesis belongs to this category.

The RMD-KBS is designed to possess both a numerical processing unit that is a
group of routines in C++ codes, and a symbolic processing unit that is an inference engine
with several knowledge bases that use objects and rules to represent knowledge. The rule-
based reasoning in RMD-KBS will control both the information flow and the diagnosis
procedure. A deeply-coupled system is designed, in which symbolic and numerical
processing are coupled in an extensive manner. The symbolic processing unit in this
system has the knowledge of numerical processing routines linked with it, so that it is able
to reason with regard to the applications of those numerical processes and to analyze their
results. The numerical processes employed for signal sampling, processing, analysis, and
for graphics. are utilized together in order to solve a given complex diagnostic problem.
Thus the problem can be solved more efficiently than would have been possible with a
single numerical process alone. This deep-coupling strategy is designed with the aim of
facilitating the representation of the entire human diagnostic knowledge. into the RMD-
KBS.

The existing on-line or non-consultative KBSs for rotating machinery diagnosis
(Carlson, et al. 1988: Hill and Baines, 1988; Gauger and Smee, 1989; Milne. 1990;
Petersen, 1990; Kato et al, 1990: Liddle and Reilly. 1993) can also be considered as
coupled systems. and be decomposable into a numerical processing unit, a symbolic

processing unit and a coupling unit in between. However, they are shallow-coupled
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systems in which the symbolic component has limited knowledge of the numerical
processes involved.

As can be seen from the third system illustrated in Section 2.3, the numerical
processing unit is actually a computerized on-line monitoring system. The numerical
values of the monitoring parameters, are converted into statements such as True, Falsc,
or Can’t Answer by a numeric-to-symbol software (i.e. the coupling unit). Further, the

expert system unit of the above system, takes over the symbolic descriptions of the on-line

vibration signals to answer its own questions. Moreover, the numerical processing unit of

such a KBS provides the values of all diagnostic indices to the symbolic processing unit
en-block, without any judgement on whether a particular index is related to the current
diagnostic task or not. The symbolic processing unit can not control the signal acquisition
and the feature extraction. Obviously, there is a lack of knowledge in the symbolic
processing unit of this KBS, about how and when to execute a numerical process. Neither
has the expert’s diagnostic knowledge heen fully embedded. So. the coupling strategy
does not use the numerical processing methods and data intelligently. The symbolic
processing unit in this system is quite similar to a consultative KBS, except that it obtains
the values of the machine signal features from the on-line monitoring system linked to it,
and not from the end-users. Moreover, since the transformation between the numerical and
symbolic processes may bring in a problem of information loss, a reduction in the
accuracy of the monitoring parameters is not avoidable, which in turn affects the accuracy
of the diagnosis.

In the design of the RMD-KBS, there is communication of information between
the numerical calculation routines and the KBS mainframe. These two units can exchange

information with each other and invoke each other during the problem-solving phase. For
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example, the symbolic processes can transfer the problem specifications and numerical
settings to the selected numerical processes. The numerical processing unit can also
transfer the results of computation back to the symbolic processing unit, and then the
symbolic processes will analyze those results. However, this KBS will not have a physical
coupling unit that is used in the existing systems. The information transfer scheme is
looked upon as a call for a remote procedure (external program) with the data regarding
individual parameters, name of a data file. or a class of data in complex form as the
message. The symbolic processing unit which issues a message becomes a client and waits
for a reply from the numerical processing unit. This way, certain rules in the KBS can
invoke numerical data processing routines and also receive the results of processing.
Morcover, the diagnostic reasoning in this system is operated directly on the available
numerical information. No translation is done unlike the existing KBSs, The purpose of
this proposed deep-coupling strategy is to preserve the advantages of both pure numerical
and pure symbolic processing techniques. and to improve the accuracy with which the

diagnosis is performed.

3.2.4 Incorporation of Neural Networks

Rule-based expert systems and neural networks could be used to supplement each
other in a hybrid system (Rich, 1990). Neural networks (connectionist reasoning) could
be used within a symbolic system (Minsky, 1991) to reduce the search complexity, to
produce a compact and well defined problem space, and to help overcome the often-
encountered problem of unexpected interaction between rules due to the usage of too
many rules.

The architecture of several hybrid KBSs reported in (Weiskopf et al, 1990; Kanal
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and Raghavan. 1992; Senjen et al. 1993). consists of both a connectionist and a rule-based
reasoning module. In these cases, neural nctworks were employed for signal feature
extraction and evaluation, as a preprocessor which took raw data as their input (Weiskopf
et al. 1990). Then the outputs of the ANN module were passed to. and further analyzed
by the rule-based reasoning module. Hence, these systems are called "partitioned hybrid
systems" (Senjen et al. 1993), where two separated modules with clearly defined roles
implemented for both knowledge representation and reasoning. A typical partitioned
hybrid system is shown in Figure 3.2 (from Senjen ct al, 1993). This hybrid system is
quite similar to the existing rotating machinery diagnostic KBSs in the way in which
numerical and symbolic processing are coupled. There is no interaction n this hybrid
system between the two modules except data communication.

Both neural network components and the symbolic module are embodied in the
RMD-KBS, and further. they are integrated together so as to share the knowledge
representation and diagnostic reasoning on the same problem. In RMD-KBS, the symbolic
processing unit has knowledge about machine faults diagnosis. It can heuristically select
key features corresponding to a diagnostic problem, call signal processing routines to
calculate the current values of the features. and then invoke, through the inference engine,
a proper neural network to reason out based on the obtained values of the selected
features. The neural networks invoked in the reasoning, also carry the knowledge in
quantitative form about the fault-symptom relationships, so that they can evaluate the
current condition reflected by the numerical values of those features. Further, the output
results of this neural network will be used together with other information handled by the
symbolic processing unit in order to render a diagnostic determination. In this hybrid

system, the neural networks are components of the system itself. Each of them can perform
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certain tasks at various stages of diagnostic reasoning. The control as to when to execute
which neural network. is performed by rule-based reasoning. in a way similar to the
coupling between the numerical and symbolic process that is described in the last section.

There are two important ideas to be realized in this hybrid system. The first idea
is that, instead of rule-based knowledge representation, the quantitative relaticnships
between faults and symptoms will be mainly represented by the neural networks and will
be used in their connectionist reasoning. The heuristic knowledge in qualitative mode,
however. will be manipulated in rule-based knowledge representation. Therefore, the
qualitative and quantitative modes of information and diagnostic knowledge could be
handled using the most appropriate technology. The advantages of both symbolic and
numerical processing technologies are thus properly utilized in the present hybrid system.

The second idea is that, any updating of the knowledge in this KBS depends on
the type of knowledge 1o be added or modified. In many cases. new training of the neural
networks is considered as the learning of new knowledge or refining of the existing
knowledge in the KBS. Sometimes, the symbolic part also needs modification to add new
rules or to refine existing rules. In general it can be said that, supplementing or moditying
the symbolic part in KBSs is not a simple task. This task is usually performed by Al
engineers who know the internal structure of the system and the conncctions between
rules. Compared to this, the training of neural networks is much easier and faster. In the
RMD-KBS, the task of adding new rules or modifying existing rules is reduced and
simplified. since much of the representation and learning/refining of knowledge is
assigned to neural networks. Under the present hybrid architecture of integrating the two
technologics. both the neural network learning and rules modification can be casily

performed.
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It has also been observed that most of the previous applications of ANNs in
solving various diagnostic problems, attempted feature extraction, wherein the inputs for
the neural networks were raw data, such as time domain signal data (Weikopf et al, 1990;
Leonard and Kramer, 1993; Liu and Anantharaman, 1993), or entire values of FFT
spectral components (Kuczewski and Eames, 1992). In other applications, ANNs were
used for fault pattern classification with key features of the diagnostic signals as their
input (Kim et al, 1991; Liu and Mengel, 1992). In both cases, only back-propagation
neural networks (BPNN. sce Chapter 4) have been employed. The ANNs for feature
extraction would be large in size, with up to 128 input neurons (Kuczewski and Eames,
1992) and 36 output neurons (Leonard and Kramer, 1993). The training of such large
sized ANNs is relatively more difficult than the training of smaller sized neural networks,
and further, a large amount of training data sets is required for the former. In the present
design, the neural networks incorporated in RMD-KBS are intended to perform fault
pattern identification and classification, and function regression for fault development
trend analysis. Neural networks that take a number of diagnostic indices as their input and
are smaller in size, are preferred. An individual neural network that is embedded in this
KBS will perform the detection of limited types of machine faults based on the input set
of diagnostic indices.

In the implementation of RMD-KBS, the neural networks are encoded in C++ as
are the numerical routines. The communication between the neural networks and the
symbolic processing unit of RMD-KBS is similar to the coupling between the numerical

analysis routines and the symbolic processes.




3.2.5 Knowledge Modelling

The knowledge to be stored in the knowledge base of this system is a complex
combination of different iypes of information. It can be sorted into three categories of
knowledge: factual knowledge. judgmental knowledge and control knowledge. The
incorporation of these three kinds of knowledge withina single system represents the most
current trend in knowledge-base diagnostic systems (Wang, 1991).

Factual knowledge relates to the defined problems. settings., conditions and facts,
including: 1) identification and structure of each machine system; 2) functional
correlations between machine components; 3) parameters of the machine components: 4)
general operational conditions: 5) sensor types. locations and measurement settings: 0)
settings of data sampling; and 7) list of monitoring indices and their thresholds, Factual
knowledge can be in many different formats, such as numerical values, symbolic
descriptions, curves and graphs.

Judgmental knowledge is usually in the form of condition-effect pairs required in
making suggestions. analysis and decisions. In this system, judgmental knowledge s
considered to be that required in the processes of 1) generating hypotheses of machine
faults (see Section 3.2.6); 2) reasoning on the numerical analysis results; 3) fault pattern
identification and classification; 4) prediction of fault development or cordition changes;
5) rendering final diagnostic results; and 6) making other pertinent decisions. The
judgmental knowledge that is most important to this design is about cause and effect
correlations between observable symptoms and defined faults (or malfunctions). This is
known as fault pattern or fault model in the literature (Wang, 1990). A fault model is a
description of fault-symptom correlative relationship, and of both the "correct behaviour”

and "faulty behaviour" of a machine or its component.
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Control knowled. guides the information flow, diagnostic procedure, and
exccution of the system. [t covers the knowledge of 1) the diagnostic process sequences;
2) the list of the frequently-experienced failures (faults and malfunctions) of rotating
machines: 3) the hints and clues for diagnostic feature selection; 4) the functions of each
and all numerical processing routines including neural networks; 5) the selection and
settings of numerical routines to suit the type of diagnosis requirement; 6) invoking signal
processing routines and necural networks; 7) the database structure, access and
management: 8} training neural networks; 9) the information. structure. and settings of the

KBS itself: 10) controi of the user interface.

3.2.6 Knowledge Representation

RMD-KBS is designed as an integrated system that has a single inference engine
to work with several knowledge bases. Each of the knowledge base works with the
inference engine which consists of a module to peiform certain aspects of the diagnostic
task. In such a design. an individual module will be relatively smaller 1n size. and requires
less computer memory to run. The number of rules in each KB is smaller, so as to ease
their management. and to speed up the inference searching among them. Such a design
is believed to be better than developing a single huge knowledge base.

Different types of knowledge are represented in RMD-KBS by diff".rent schemes,
such as "objects". "agenda", "rules". "demons", and "methods" (Level5, 1990a). These
schemes of representing domain knowledge have long been in use. The agenda schedules
the events which an application will follow. or the hypotheses the backward chaining
which the inference engine will pursue. The rules and demons are the same in the

statement format. but rules are fired by the backward chaining in the inference. while
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demons are fired by the forward chaining. A method contains a group of statements for
knowledge-based processing. The control knowledge is represented by symbolic rules,
demons and methods. The judgemental knowledge. especially the fault-symptom
relationships will be represented in both connectionist scheme of neural networks and
symbolic representation, in the form of rules. demons and methods. The neural networks
contain quantitative knowledge about the relationship between the values of diagnostic
indices and the occurrence of the corresponding faults. The rules represent the expert’s
heuristics knowledge of the fault-symptom relationships in a qualitative mode, rules of
thumb and many other connections/relationships employed in the diagnosis process. The
details of knowledge representation with each KB will be given in Chapter 6.

A new scheme, called Object-Oriented Programming (OOP) technique, which has
not been utilized in existing rotating machine diagnostic KBS, is cmployed in RMD-KBS.
Object-oriented computation provides a powerful means of controlling access to shared
data. data abstraction, program modularization, and structural knowledge representation
(Ramamoorthy and Sheu. 1988). In genecral. OOP is based on four concepts - object,
message, class and instance. Essentially, an object encapsulates a set of private data and
a group of procedures (methods or functions). The private data represent the "object task"
assigned to this object, and they can only be accessed or modified with the activation of
the group of methods in both symbolic and numerical modes. The procedures of the
object are hence designed as object-oriented methods, and further, they accept messages
through a call of them, that ask them to access or modify the data. Objects can be
arranged in a hierarchy in which operations implemented at upper hierarchical levels can
be automatically recognized at lower levels. In object-based systems, cach object is

defined by declaring a class and its instances. A class consists of auributes and functions,
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which define the structure of an onject. In order to carry the values of the attributes. an
occurrence of the class, called instance. must be created. For example, an object named

Bearing Type is defined by declaring a class in RMD-KBS as follows.

Bearing Type

{
rolling element
sleeve bearing
deflection pad
}

Any individual bearing in a rotating machine is one of the types listed in this class. In the
KBS, several instances of the above object may be constructed with each instance
intended to carry the information about a bearing in a machine system. The object may
be inherited by another object at a lower level.

The point to be highlighted here is not the usefulness of OOP, but the method of
using objects to represent the factual knowledge and tc support the data sharing among
the modules that constitute the RMD-KBS. In the KBS, one special type of objects can
be linked to database files. They are named "database classes". A database class is
composed of several attributes and a group of procedures for accessing the database file
associated with it. The values (usually called facts) of the attributes are saved in the
related data file. This way, the terms used to represent factual knowledge can be declared

as attributes of database classes and stored in a knowledge base of RMD-KBS. while their
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values can be stored in the relative data files separately. The use of this scheme to
represent the factual knowledge has two main advantages. The first advantage is that the
facts (values of the attributes in database classes) can be acquired or moditied through
accessing the database files instead of modifying the knowledge base. Since access to
database files is much easier than adding or modifying the statements in a KB. this
scheme makes the information acquisition and system adaption to new applications. to be
much easier than using other schemes. Therefore. this use of OOP in the design provides
a flexible. riskless. and user-friendly environment, and with it. the end-users can perform
many tasks without help from Al engineers.

The second advantage is that the object-oriented representation facilitates data
sharing among the modules of RMD-KBS. It has been mentioned previously that this
system consists of several numerical and symbolic modules. [n its symbolic processing
unit. there are several knowledge bases. The numerical processing routines and neural
networks are written in C++. and the symbolic processing modules are several knowledge
bases working with the same inference engine. Interfacing dissimilar languages in a
coupled hybrid system composed of different environments. however, is a very complea
task from an implementation point of view. OOP provides a bridge to link different
modules, and also different knowledge bases. For instance, when a picee of information
or knowledge is requested in different modules or knowledge bases, the same object can
be declared in those modules. The values of the attributes of such an object can be
communicated between modules through database files or through the working memory

cf the system.
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3.2.7 Diagnostic Strategy

The procedure employed to diagnose the condition of machinery in the present
design is shown in Figure 3.3. It attempts to simulate human performance more closely
than available strategies. As mentioned previously, the RMD-KBS is connected to sensors
mounted on the machine system. When this KBS detects abnormalities in the monitoring
data, for example, when a signal value is greater than its prescribed threshold, it will start
the diagnostic process. Diagnosis is performed in three steps. In the first step, based on
the results of an analysis of the data obtained from a given sensor, a set of hypotheses of
suspected niachine faults is established from a forward chaining search in a group of rules.
This step involves both signal processing and a rule-based reasoning through those rules
that represent the expert’s knowledge about the fault-symptom relationships The task is
to determine the "best hypotheses” in a heuristic way to increase the efficiency of
performance of the diagnosis. Since the establishment of a hypothesis is mainly based on
human experience, a certain level of uncertainty is always involved. Confidence Factors
(sce Appendix A.2) are therefore used in the rules for generating the hypotheses.

The second step is to determine the "best signal analysis approaches and diagnostic
indices" that yield the correct results. More machine signals will be collected from all the
interrelated and critically-located sensors and more analysis will be carried out on the
data. The above strategy is shown in Figure 3.4. The signal collection and analysis
routines are problem-oriented and are optimized by diagnostic expertise embedded in
RMD-KBS. I'or example. to confirm whether a hypothesis "Unbalance" is true or not, a
group of carefully selected indices of vibration signals that are closely related to the rotor
unbalance fault will be calculated from the raw data. The results that come from this stage

of inference constitute the symptom vectors. that denote the current condition with respect
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to each proposed hypothesis.

The third step is to confirm the hypotheses based on the observed evidence - the
pattern (symptom) vectors. This part of the work focusses on the "pattern recognition and
machine condition determination” by using the knowledge stored in the neural networks.
Some well known patterns of rotating machine faults will be identified and classitied by
neural networks at this stage. Further, some determination tasks, which do not suit neural
computing or need additional symbolic information, will be handled by rule-based
reasoning. If the proposed hypotheses could not be confirmed, a new set of hyputheses

will be introduced and proven through the same procedure as described above.

3.2.8 Inference Schemes

An expert system development shell, named LEVELS OBIECT™ is employed in
developing RMD-KBS. This tool supports forward, backward chaining, and mixed-mode
chaining. In this design, some steps in the execution of RMD-KBS are handled by means
of forward chaining. including the control of user interface, acquiring information from
the end-users. saving information to databases, displaying graphics, the procedures of
generating the hypotheses and calling numerical routines. In the last step, the
determination of machine condition will be reached through a mixed forward and
backward chaining scheme. The forward chaining follows a data- or event-driven
mechanism which provides control of the above steps in the execution of RMD-KBS. The
verification of the previously selected hypotheses is naturally a goal- or hypothesis-driven
process, that will be mainly realized by backward chaining. plus forward chaining in some

cases where it is considered more suitable.
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3.2.9 Data Normalization

In most of the diagnosis tasks, a particular condition of a machine system is
distinguished based on the relative change in the values of diagnostic indices (Serridge,
1989). but not only based on the comparison between the absolute values of measurements
to corresponding standards. This procedure actually allows normalization of the obtained
data from the on-line measurement, that keeps the values of data comparable after the
normalization. On the other hand, a computer-aided monitoring and diagnostic system may
monitor more than one machine system and may get signals from more than one sensor.
It is often required to normalize the values of on-line monitoring indices in order to
simplify the judgemental task that is based on the relative changes. Data normalization has
been widely used in computerized MMD systems (Watts and VanDyke, 1989). The data
normalization method used in the RMD-KBS, is now defined.

Any absolute value of a diagnostic index to be used in RMD-KBS is normalized

into a dimensionless value in the range of [0.0. 1.0] according to the following

expressions.
0.0, x<0.0
x =9 x% 0.0 <10 (3.4
1.0, x=1.0
where x is the normalized value of a diagnostic index, and x* is determined by
X -X
x° =08 L ™ +0.1 (3.5)
xm.l\ - xmm
where x, is the absolute value of an index obtained from on-line diagnostic signal, x,,, and

X, are the respective thresholds of the minimum and maximum absolute values of this
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index. This method of data normalization is similar to that defined in (Liu and Mengel.
1992). Normally, the thresholds of an index are determined by three means: 1) by
referring to the available standards or documentation provided by the manufacturer of the
machine system; 2) thresholds are drawn out from historical obser o s of that
diagnostic index through statistical methods; 3) based on the informaticn 1 ided by
experienced experts or machine operators. Further, any threshold value can always be
updated and rendered more representative, when sufticient data have been obtained from

a machine system.

3.3 Discussion

The RMD-KBS is designed to possess certain special features that are not available
in existing diagnostic KBSs. To cite just a few, they are: 1) the diagnostic process is
controlled by symbolic reasoning, 2) several complex diagnostic tasks are performed by
artificial neural networks, which also provide learning ability, 3) a deep-coupling exists
between symbolic and numerical processing of the diagnostic information ond on-line
signals, 4) on-line diagnostic data measurement and acquisition system, database.
numerical processing routines, knowledge bas=s, inference engine and user interface are
all combined together to make the RMD-KBS, an integrated diagnostic system and not
just a diagnostic KBS with the symbolic processing capability, 5) a new scheme for
controlling access to shared data, data abstraction, program modularization and structural
knowledge representation, called "Object-Oriented Programming Technique", is employed
in RMD-KBS, 6) the advantages of SOM neural networks are employed so as to result
in an efficient diagnostic process, and 7) a new SOM algorithm is developed and

implemented into RMD-KBS for the quantification of fault development. A number of
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diagnostic indices, that can represent the signatures and features of the vibration signal.

are used in the RMD-KBS. The definitions of these indices are listed in Appendix A.1.
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CHAPTER 4

FAULT CLASSIFICATION
USING NEURAL NETWORKS

A new approach to machine fault classification using neural networks (Zhang et al, 1994a;
1995c¢), is presented in this chapter. The problem of machine fault identification is
formulated in terms of pattern clustering and classification concepts in Scction 4.2,
Diagnostic indices obtained from on-line measurements, corresponding to various faults
arising in a machine system are used to constitute a multiple-clement symptom vector.
This formulation is of a more geaeral nature in that it can be directly applied to any
machine system. The suitability and efficiency of Self-Organizing Mapping (SOM)
algorithms (Kohonen. 1990) in solving the resulting clustering and classification problem
are outlined. A SOM network is devcloped to perform the clustering and feature
extraction which takes the multi-dimensional data set as input and provides the condition
of machinery systems as output. The details of the SOM algorithm as applied to the
clustering and feature extraction problem, are described in Section 4.3. The developed
approach is fully demonstrated through its application to the cases of both bearing
condition identification and rotor system fault classification, which are presented in
Section 4.4 and Section 4.5, respectively. For comparison, back-propagation neural
networks (Rumelhart and McClelland, 1986a: Lippmann, 1987) arc applied to the same
classification problems. and the results are compared in Section 4.6. Discussion on the
proposed new approach is presented in Section 4.7.
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4.1 Neural Networks in Fault Detection Systems

Neural networks possess a high level of adaptivity that can not be obtained from
completely-analytical or numerical procedures and further, they provide a data-based
heuristic approach to the condition monitoring and diagnostics of machinery systems. A
neural network can automatically store the knowledge about the faults in the machinery
system being monitored by learning from the historical data, and also possesses the
elements of associative memory. ANNSs, via their associative memory skills, have the
capability to learn and store complex information about abnormal machinery conditions
from the faults identified and classified in the past. The associative diagnostic capabilities
make neural networks superior to conventional methods of machinery fault diagnostics.

Recently, neural networks have been employed to handle problems of machinery
monitoring and fault detection. They have been shown to be particularly useful for the
analysis of machine degradation (Lee and Kim, 1993). condition monitoring of production
systems (Rangwala and Dornfeld, 1990; Jiaa and Dornfeld, 1992), and diagnostics of
machinery systems (Kim et al., 1991). However ne published literature listed in Chapter
2. reports only back-propagation neural networks (BPNN). A BPNN is a multilayer feed-
forward network which is one of the most widely used models and it is usually trained
by means of error back-propagation algorithms. For instance, in the work of Kim et al
(1991), BPNNs have been used to develop a simple diagnostic model for the purpose of
fault detection in rotating machinery systems. In the work of Liu and Mengel (1992),
back-propagation networks have been employed to classify the condition of ball bearings
based on three indices extracted from the vibration signature. In a similar manner, Worden
et al (1993) developed neural networks of the feed-forward back-ptopagation type that can

locate and quantify damage in structural systems based on strain data records. The
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establishment of a BPNN requires the actual structure of the network, i.e. the number of
layers and the number of neurons in each layer, to be known a priori. Further, network
performance is quite sensitive to 1 particular architecture. The training of a BPNN is
performed in a supervised learning r..-de through data pairs of both the input and desired
output. Also, there is a strong possibility that the solution obtained using a back-
propagation algorithm is not a global error minimum but a local one (Rao and Rao, 1993),
The BPNN algorithms are slow in learning and a large amount of training data is
required.

Self-organizing mapping (SOM) networks can successfully perform clustering and
feature extraction without requiring information beforehand about the actual classes of
objects. Hence, they are suitable for condition monitoring and diagnostics of machinery
systems wherein minimal a priori information is available for training purposes. The
associated one-layer neural network is developed during the process of SOM and the
training of this network is performed in an unsupervised learning mode. The usage of the
SOM networks to perform condition identification and classification is explored in this

chapter.

4.2 Pattern Clustering and Classification

As mentioned in the previous chapter, condition monitoring and diagnostics of
machinery based on measured on-line signals involve the extraction of features so as to
determine whether a fault exists (detection) and if so, to assess the nature of the fault
(classification). Typically, the inputs from which the signal features are extracted, are a
series of large data samples or multi-dimensional sets of data vectors. Further. cach and

all of the set members consist of real numbers corresponding to the diagnostic signal for
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a given condition of the machinery. The data must be compressed o lower-dimensional
performance-indicatirg vectors called features while still maintaining the same level of
information with respect to machine performance. In Chapter 3, the set of indices
representative of various faults in a machine has been defined as a feature (symptom)
vector X={Y,. X.. ... X\!'. On the other hand. different machine conditions or
malfunctions that can be clearly identified from the on-line machine signal, are taken as
the elements of the failure (condition) vector Y={},. ¥,. ... },,}". The identification and

classification problem of machinery monitoring can be described as
Y eR= X (4.1

where R is the fault-symptom correlative relationship between the feature vector and the
failure vector. i.e. a transformation set. To find a proper set R. is to describe the
relationship betweer: cach of the elements of X and ¥. After R has been defined. it can
be applied on an obscrvation of the feature vector X to find the corresponding fuilure
vector Y. This is essentially a problem of condition identification.

Patterns represented by several parameters (indices or signal features) in a multi-
dimensional space. can be observed as a distribution of a number of clusters. For example.
the multi-element vector X in Eq. (4.1). can be represented by a point in the multi-
dimensional feature space. When a given group of data samples of X is obtained from a
machine which has a certain type of malfunction, the data points will show similarity to
each other. Hence this group of points should gather in the feature space close to cach
other as a cluster. Clustering can be viewed as a process of grouping similar objects and
separating dissimilar ones (Zurada, 92). If it is assumed that the number of clusters. . is

known a priori, the patterns that correspond to a physical phenomenon can be mapped
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onto a vector as {W,. W,. ... W,;}. where W, denotes the "centre" position of the i-th
cluster in the feature space. The problem of pattern clustering can now be generalized to
the use of a small number of indicators (centres) 10 approximate the distribution of a large
number of sets of data samples obtained from the physical process. Mathematically, the

pattern clustering problem can be stated as (Kohonen, 1990)

" p(X) dX (4.2)

E = J |x-w.

Ix-w | = min{||x-w,]}

where XeR" is a random vector with probability density function p(X). W.eR'. i=1, ...,
k are centres and dX denotes the volume differential in the N-dimensional space that
corresponds to X. The problem is to place W, in the X space such that the expected r-th
power of the reconstruction error £ is minimal. Such a distribution of W, is said to be
optimal in the sense of representing p(X) by M. Since the problem has no closed-form
solution. iterative algorithms are generally required to obtain the desired approximation.

A number of traditional algorithms (Zurada. 1992), such as K-means algorithm,
maximum-distance technique and isodata algorithm are used in pattern mapping
techniques. Even though the error £ in Eq. (4.2) decreases monotonically when the K-
means algorithm is used, it has been shown through empirical results that the convergence
of the iteration process only leads to local minima and not to global minima. Further. this
convergence to local minima highly depends on the initial positions of the centres W.
Self-organization maps are more suitable for the pattern clustering and classification
problem represented by Eq. (4.1) and have been successfully applied recently to the tasks

of feature extraction and feature mapping. The weights of the networks are automatically

adjusted to fit the distribution of input training data. The SOM neural network. which can



be considered as a statistic classifier. can perform the linear or non-linear transformation

that the set R does. Therefore. the SOM algorithm is employed in the present work and

is summarized below.

4.3 Self-Organizing Mapping Algorithm

The distribution of training data in a higher-dimensional sample space can be
topologically mapped onto a virtual one- or two-dimensional space that is represented by
self-organized neurons. The SOM neural network is a set of these self-organized neurons
and is represented as a discrete lattice of units. For a one-dimensional map. the lattice is
represented by {W,. W,. ... W,}, where W is a weight vector that has the same dimension
as that of the training vectors.

The self-organization procedure consists of two steps. The first step is to find the
best matching unit ¥, to the current input vector X(r). which is called a winning unit. The
second step is to modify the weight vectors of both the winning unit and its neighbour
units. so as to reduce the distance between them and the input vector. The updating

process of the weights in discrete-time notation may be stated as

Wi+1) = W) + alXu)-Wn), iell (1) (4.3)

W(i+1) = W, iedl (1) (4.4)
where,

Ix0-w | = min{| X0 -Wn|} (4.5)

i=1. ... k. W_is the best matching unit corresponding to the current input data X(1).

Further. H (7). designated as the neighbourhood function. is a symmetric index subset with
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the centre ¢ and denotes the current spatial neighbourhood of W In Eq. (4.3). the
constant o is a scalar-valued adaptation gain called learning rate. such that 0<c<!. Both
the regions of /1(1) and the value of u decrease with time 1.

Since the learning rate o depends on both the training time and on the size of the

neighbourhood. Eq. (4.3) can be rewritten as (Zurada. 1992)
W (1+1) = W)+ a(H, 0[XN-W(n). ieH (1) (4.6)

By denoting the coordinates of cells ¢ and i by the vectors r, and r, respectively. a proper

value of «(/7,.1) can be obtained from

/6°(1)] (4.7)

a(ll .0y = b(tyexp]-| r.-r.
where h(¢) is the learning factor and the exponential term is the neighbourhood function.
Both A(r) and o(r) are suitable decreasing functions of tine.

The training can be performed in an unsupervised mode and the network
undergoes a sell-organization process. Further. i is usually defined in a one- or two-
dimensional metric space. The training algorithm is now described in terms of
computational steps:

Step 1. Locate cach of the £ units randomly or at equal distances in the sample space,
and consider this to be the initial position of the neuron.
Step 2. Given a randomly chosen input training data vector X(¢) in the sample space, find

the unit j which is closest to X(r) according to

Xio-wn |l = min{ | X(n-3#n ]} (4.8)

where 7 is the discrete iteration step and i=1. ... k. It may be noted that in the above

expression. the Euclidean distance is used as a metric norm.
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Step 3. Define a symmetric neighbourhood of units surrounding the winning unit j. (o),

and adjust the weights of the winner and all its neighbourhood units according to

W+1) = W +a(H DIXWO-W . iel(n .9

1

Wi+1) = W, iell(n (4.10)

where a(H,1) is the scalar quantitative learning rate which monotonically decreases with
the iteration number .
Step 4. Reduce the neighbourhood function and learning rate a(H, ). increase iteration
number ¢ and return to step 2.

The learning rate and neighbourhood function that are used in the above algorithm
can be given as below (Cherkassky and Lari-Najafi. 1991). The learning rate for the unit

i in the neighbourhood of the winning unit j can be given by

a(H, 1) = b(r)exp[—_—’—i_—j—lz] (4.11)
(b(1)sg)”

where s, is the number of neurons and (/) is the learning factor. For practical

applications. the learning factor for the winning unit is given by the empirical relationship

b(t) = b(b/b,)" (4.12)

where b, and b, arc the mnitial and final values of the learning factor, ¢, is the prescribed
maximum number of iterations which is usuaily defined as the product of the training sct
size and the number of times this set is recycled or repeatedly presented to the network
during training. It may be noted here that whereas a gradual decrease in the Iearning rate
is typical for neural network training, this is viewed as a special case of stochastic

approximation (Cherkassky and Lari-Najafi, 1992), a similar decrease of the
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neighbourhood function does not have any obvious statistical interpretation.

The problem of machine fault identification has been formulated as a pattern
clustering and classification problem earlier in this chapter. Therefore. a new approach for
machine fault identification and classification is to cluster the patterns of different
conditions of machinery by a number of neurons of a neural network through the above
self-organizing process. Afier learning, each neuron goes to the centre of a cluster of data
sample points in the feature space, and it represents a machine condition or fault
corresponding to that cluster. Further, a new observation of the feature vector can be
classified into onc of those patterns. when it matches a pattern represented by the
corresponding neuron. In such a way. the transformation between the feature vector and
the fault vector is performed by a self-organizing map. Applications of the above SOM
algorithm to condition classification of both a ball-bearing system as well as rotor systems
arc fully demonstrated in the next two sections. as examples of the implementation of the

new approach.

4.4 Bearing Condition Classification

Vibration data were acquired from a type 308E ball-bearing having 8 rolling
elements. The bearing was rotated at 1,470 rpm in a test machine and loaded with a
circumferentially symmetric radial force of 20.800 N. An accelerometer was mounted on
the bearing housing and its output was linked to a computer-based monitoring system. A
sampling frequency of 5.000 samples per second was used and the digitized raw data
stored in off-line files. Four different cases of bearing condition are considered: 1) defect-
tree bearing: 2) bearing with rolling element defects; 3) bearing with its inner ring sliding

on the shaft; and 4) completely damaged bearing. Typical vibration signals of the four
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cases have been collected over multiple revolutions and a portion of the signals tor cach
case is shown in Figure 4.1-4.4. As can be observed from Figures 4.1-4.4. the vibration
level is very low when the bearing was defect-free: impulse peaks are generated due to
ball defects: a low frequency (at the bearing rotational frequency) sine wave is present in
the vibration signal which is due to sliding: and the signal is complex when the bearing
is completely damaged. For bearing condition classification. these four cases are
represented in Eq. (4.1) by the failure vector Y={C',. (., C,, (',}". where C, is the i-th case
of the above four cases under consideration. Four indices that are extracted from the
bearing vibration signal are chosen as features: Peak-to-Peak value. Absolute Mean value.,
Crest Factor and Arithmetic Mean of the frequency spectrum. For clarity. these four
indices are described briefly below:

The Peak-to-Peak value (PP) is the difference between the maximum and
minimum amplitude of the vibration signal. It is sensitive to unusual impulses generated
by bearing faults (Collacott, 1979).

The Absolute Mean (A4.1) is an index in the time domain and is the average value
of absolute amplitudes according to

Z|xi| (4.13)

=1

X |-

where x is a series of acquired data samples of x,, i=1, 2. ..., n. The value of AX is small
when most of the amplitudes of the signal are small and it is high when the bearing
generates large-amplitude vibration.

The Crest Factor (CR) (Lipovszky et al. 1990) is another index in the time domain

and is based on the maximum amplitude of the vibration as defined by
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Fig. 4.1 Typical signal from an accelerometer for a defect-free bearing
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Fig. 4.2 Typical signal from an accelerometer for a bearing with ball defects.
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Fig. 4.3 Typical signal from an accelerometer for a bearing
with the inner ring sliding at the shaft.
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Fig. 4.4 Typical signal from an accelerometer

for a completely-damaged bearing.

80




o - o (4.14)
RMS

where RMS is the root mean square of the signal. The RMS feature measures the average

|
Imax

vibration energy. With the development of bearing faults. values of x|, increase rapidly
but the RMS value does not increase correspondingly at the early stages of the fault.
However, when the bearing condition deteriorates due to further development of the
faults, the RMS value will increase faster than |x! ... Hence. the value of the index CR
initially increases and then decreases during the development of bearing faults.

The Arithmetic Mean (41f) is an index defined in the frequency domain and is

given by the empirical formula (Mathew and Alfredson. 1984)

AM = 20log{( L Y4, 17107 (4.15)
2 —

where A, is the magnitude of the i-th frequency component in the Fourier spectrum of the
bearing vibration signal. Normally. the value of 4M increases monotonically within the
service life of the bearing. Additional details about the above four indices have been
published by El-Karmalawy (1993). and Kim and Lowe (1983).

The bearing conditions. corresponding to the vector Y. arc represented by the
vector X of the above four indices as X={PP, AX, CR, AM}". Feature mapping has been
performed by a self-organization neural network with four neurons in an array which is
represented by {W,, W,. W,. W,}. where the weights are in the form, W={PP. AX, CR,,
AM}'. The pattern recognition problem then reduces to mapping the data samples onto
these four units of neural network with each one denoting a particular case of bearing
condition. The trained neural network can then be used to perform condition classification.

It a given set of the feature vector X is closest to a particular neuron W, then X can be
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considered as the same pattern that is represented by the unit W,

The training of the neural networh was accomplished by a total of 80 sets of
feature samples (vectors X). The selected samples comprised 24 sets from case . 24
from C,. 8 from ('; and 24 from C,. Before training. all the sample values of the indices
PP, AX, CR and AM, were normalized so as to have the same range of values in [0, 1].
It may be noted that such a normalization scheme is necessary especially because the
Euclidian distance is used as a metric norm. Otherwise, the co-ordinate axes of the feature
space that is formed by the vibration indices will not be of the same scale. While
calculating and using the Euclidean metric norm during the training of the SOM network,
this situation causes unequal influence thus resulting in erroncous training result. The
parameters in Eq. (4.12) of the learning factor were chosen as: the initial value b,- 0.6,
the final value 6,=0.03. and the prescribed range of iterations ¢,=120x80=9,600. This
means that the 80 sets of data arc recycled 120 times during training. Before cach cycle
of the data was presented as input to the neural network, the order of presentation was
rearranged into a new random series. In other words. a sample set of features has been
randomly selected from among the 80 sets during cach training iteration. This way, the
possible influence of the order of inputting the sample data sets has been eliminated.

The initial positions of neurons in the four-dimensional feature space has been
randomly located as shown in Figure 4.5. In this figure, the entire data has been projected
onto each of the hyperplanes determined by two orthogonal axes in the four-dimensional
space. Four different types of dots are used to illustrate the data samples from the four
cases (clusters). Similarly, the initial locations of W(0), i=1, ..., 4. have also been
projected onto the hyperplanes, which are represented by small circles in Figure 4.5. The

final positions of the units. after training is completed, are shown in Figure 4.6, where

82



o ﬂ
o _‘“ 1.0
x -O

‘e

Ser @

+ bearng in good condition
. bearing with defects at balls

~ bearing with its inner nng sliding on the shaft
« completely-damaged bearing

Fig. 4.5 Data samples for bearing condition classification
and the initial positions of the four weights.
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cach of the four neurons has been located at the centre of the corresponding cluster.
Once the patterns have been classified and represented by a self-organizing map,
the one-dimensional neural network can be applied to bearing condition identification. For
any given feature set X, the pattern to whick it belongs, can be determined by finding the
matching unit closest to X using Eq. (4.5). The results of this classification are one-
hundred percent correct for the prescribed data among which 80 sets or some others have
not been used in the training. This excellent result demonstrates the potential application
of self-organizing neural networks in pattern recognition and condition monitoring

problems.

4.5 Rotor Condition Classification

The vibration signals were measured by velocity sensors from four rotating
machines, two pumps. a motor. and a compressor. For each machine, the vibration signals
from both, good and malfunctioning conditions were recorded at proper sampling
frequencies. Data samples of digitized signal were provided by Mr. El-Karmalawy. The
details of the set up, machinery and the measurement can be found in his thesis (El-
Karmalawy. 1993). Rotor system problems were analyzed and classified into seven
conditions based on pievious knowledge and experience (El-Karmalawy, 1993). The
observed seven different health conditions (cases) of the monitored rotating machines are:
1) good condition: 2) slight unbalance: 3) severe unbalance; 4) resonance; 5) misalignment
with unbalance; 6) pure misalignment: and 7) oil whirl in journal bearing. The description
of the above faults can be found in literature. such as (Eshleman and Jackson, 1992) and
(Lipovszhy et al. 1990). Typical signature spectra of the vibration signals for the seven

cases are shown in Figures 4.7 1o 4.13. respectively.
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Fig. 4.7 Typical vibration spectrum for fault-free rotor system.
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Fig. 4.8 Typical vibration spectrum for slight unbalance.
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Fig. 4.9 Typical vibration spectrum for rotor unbalance.
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Fig. 4.10 Typical vibration spectrum for resonance.
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Fig. 4.11 Typical vibration spectrum for misalignment with unbalance.
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Fig. 4.12 Typical vibration spectrum for misalignment.
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Fig. 4.13 Typical vibration spectrum for oil whirl in the journal bearing.
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The following four fcatures were chosen as system condition indicators: Peak-to-
Peak value, magnitude at first harmonic of the rotational frequency. magnitude at second
harmonic of the rotational frequency and the maximum magnitude of vibration power at
a frequency which is around 42% of the rotational frequency. The Peak-to-Peak (P)
value shows the maximum variation of the amplitudes of the vibration signal in the time
domain. The magnitude at the rotational frequency (F/) is important to problems of
resonance and unbalance. The value of F/ is small for a rotor in good condition. as in
case 1 (Figure 4.7). and it is large for resonance conditions as in case 4 (Figure 4.10). For
typical unbalance problems as in cases 2 and 3 (Figures 4.8 and 4.9), F/ assumes
intermediate values. The magnitude at the second harmonic of the rotational frequency
(F2) is usually considered an indicator of misalignment problems. For a pure
misalignment problem as in case 6 (Figure 4.12). the value of F2 is even greater than that
of FI. Both FI and F2 show up in case 5 (Figure 4.11) where misalignment and
unbalance are present. The maximum magnitude at a frequency around 42% of the
rotational frequency (Fh) has been sclected as the fourth index. The value of /' depends
on the stability of the oil film in journal bearing, i.e. it is indicative of the oil whirl
problem. The vibration signal generated by an air compressor subject to incipient oil whirl
has been recorded in case 7 (Figure 4.13).

Since the vibration data were measured on different machine systems, the
normalization for training purposes has been performed using the method presented in
Chapter 3. The last step of the normalization is to force the ranges of the values of the
four indices to be in [0, 1]. This essentially means that all the four indices have been
considered to be equally important.

The feature vector has been defined as X={ PP, F/. F2, FFh}' and the failure vector
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Fig. 4.14 Data samples for rotor condition classification
and the initial positions of the seven weights.
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as ¥={C,, (i, .... (;}". The neural network with seven neurons in an array is represented
as {W,, W, ... W,}, where the weight W, is a column vector of the four indices, i.e.
{PP, F1,F2, Fh)'. i=1, .., 7. The initial positions of the neurons have been randomly
chosen and are shown in Figure 4.14. The four sub-parts of Figure 4.14 show the
projections of the data and weights from the multi-dimensional space onto each
hyperplane that is determined by the two axes in the four-dimensional space. Totally, 91
sets of data samples have been used for training. The number of sample sets for different
cases is not the same. The maximum number of sample sets is 21 and the minimum is 8.
The learning factor parameters in Eq. (4.12) have been chosen as 5,=0.8, b=0.03. and the
maximum iteration 1,=140x91=12.740. The final positions of the weights are shown in
Figure 4.15. As in the case of bearing malfunction classification. the usage of this neural
network to identify any given index vector from among 91 data sets, has met with one-
hundred percent success.

The results of using SOM to classify machine faults have been compared with

back-propagation neural networks. and are presented in the next section after a brief

introduction of BPNN algorithms.

4.6 Condition Classification with BPNNs

A back-propagation neural network (Rao and Rao, 1993; Elkordy et al, 1994) is
illustrated in Figure 4.16. It consists of three layers: an input layer, a hidden layer, and
an output layer. There are certain numbers of neurons (nodes or units) in each layer, and
these neurons in the same layer are fully connected to the nodes in the next layer by a
synaptic weight matrix. In general. there can be more than one hidden layer in such a

network. A BPNN is a feed-forward multilayer network. The information contained in the
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Fig. 4.16 Feed-forward back-propagation neural network.
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Fig. 4.17 Feed-forward back-propagation neural network with one output unit.
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input signal is recorded into an internal representation by the hidden layers and weights

which perform the transformation from the input to the output.

The training of a BPNN takes place in an iterative fashion, and is performed in
a supervised learning mode with data pairs of both the input and desired output. Each
iteration cycle involves a forward propagation step followed by an error backward
propagation step to update the connection weights. The forward propagation step starts
when the nodes in the input layer receive signal data. The forward propagation proceeds
through the hidden layer up to the output layer by computing the activation values of the
nodes in those layers. Each node receives its input from other nodes. The output of the

J-th node in the hidden layer is calculated from (Rao and Rao, 1993):

B " o . 4
h = A ;.x,u,, +0,). I T (4.16)

where, n 1s the number of nodes in the input layer, / is the number of neurons in the
hidden layer, and x, is the input received by this node from the i-th input neuron. W, is
the connection weight which links the i-th input neuron to this node. 8, represents an
internal offset (threshold) value, and the activation function fis a sigmoid function defined

as

o) = — b (4.17)

wERY AV, v k=1, .., m (4.18)

where, m is the number of neurons in the output layer, 4, is the j-th input which comes

from the hidden layer. ¥V, is the corresponding connection weight, and 7, is the threshold.
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The outputs of the network are the activation values of the output nodes. For the

k-th node in the output layer during training, the error §, is computed from

6, = (1 -y)d, ). k=l. ... m (4.19)

where d; is a given value of the desired output of node k corresponding to the present
input. After the error values are computed. the error back-propagation step starts. The
purpose of the back-propagation approach is to modify the connection weights and
thresholds such that the difference between the calculated output of the network and the
desired output is reduced. The weight between the /-th neuron in the hidden layer and the

k-th output neuron is updated according to the following equation:
P+l = V() + uhd, (4.20)

where, 1 is the discrete iteration step. and  is a constant called learning rate. For the /-th

neuron in the hidden layer, the error ¢, is estimated from

m

- . 7
e =h(l —/1’)5,"6‘ . J=lad (4.21)
The weights between the input layer and the hidden layer are updated through
W +l) = W) + Mg, (4.22)

where N is the learning rate. The offset parameters, 7 and 6 are treated as additional

weight factors and updated as follows:

T,(1+1) = 7(1) + po, k=l. ... m (4.23)

6 (1+1) = 6(1) + e, | J=l el (4.24)

This training process is repeated until the calculated outputs have converged sufficiently
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close to the desired output or, an iteration limit has been met. Forward and backward
propagation in a BPNN which has more than one hidden layer is computed in a similar
way.

A BPNN model with a single output neuron (Matteson et al, 1992), as shown in
Figure 4.17, was employed to classify bearing faults by Liu and Mengel (Liu and Mengel,
1992). In that work, three vibration indices were used as inputs to the neural network, and
the outputs were six different bearing states. The number of the input nodes was equal to
the number of the vibration indices, i.e. three input neurons. After training. the single
output neuron was able to give an output value, y. between 0.0 and 1.0 to denote the
bearing condition (six different cases). BPNNs with one or two hidden layers, and with
different numbers of neurons in each hidden layer were also tested.

Such a BPNN model with four input nodes and a single output node has been
applied to both bearing fault identification and rotor system condition classification as
described previously. In the bearing state classification, the same 80 sets of data samples
are used as the input data in the training of BPNNs. A training data set is formed as { PP,
AN CR. AM. d} . where PP, AX. CR and A M are the four indices being defined in Section
4.4, and d is the desired output corresponding to the input. Following the approach
proposed in (Liu and Mengel, 1992), the desired output has been chosen as 0.2 for the
bearing condition of defect-free, 0.4 for the case of a bearing with rolling element defects.
0.6 for a bearing with its inner ring sliding on the shaft, and 0.8 for a completely-
damaged bearing. Based upon the output of the network, the condition of the bearing can
be classified to be in four categories according to the following rules: good bearing,.
0.100-0.300; bearing with defects, 0.301-0.500; bearing with its inner ring sliding on the

shaft. 0.501-0.700: and completely-damaged bearing, 0.701-0.900.
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BPNNs with a single hidden layer. but different numbers of nodes in the hidden
layer, have been tested. The training has been performed by using a computer simulation
program designed by V. B. Rao and H. V. Rao (1993), In training, the learning rate has
been set at 0.1 for all tests. Since a smaller number of recycles has been unsuccessful in
the tests, the repetitive cycles to present the training data to the network is set at 4.000.
This means that the number of iterations is 80x4,000= 320.000. The result is that for a
BPNN with less than 6 nodes in its hidden layer. the success rate depends on the neural
network structure, ranging from 87.5% to 98.8%. A BPNN with more than 6 nodes in its
hidden layer. can perform the classification with one-hundred percent success, which is
the same as the performance of the SOM approach illustrated carlier.

The data samples used previously in the rotor system fault classification have also
been applied to train BPNNs. As before, the training set is formed as {PP, F'I, I2. Ih,
d}. Here, the desired output d is chosen as 0.2. 0.3, 04, 0.5, 0.6, 0.7 and 0.8 to denote
the seven different cases respectively. that were considered in Section 4.5. The rule for
classification is that the output of the BPNN should be ciose to the desired output within
the interval of d-0.5<y<d+0.5. The training rate is 0.! and the number of recycles is
5,000. BPNNs with one or two hidden layers have been tested. In those with one hidden
layer, the number of neurons in the hidden layer has been selected from 2 to 25. The best
result reached is 90.1% for the neural network with 9 nodes in its single hidden layer. In
tests with two hidden layers, all combinations of 5 to 16 nodes in the first hidden layer
and 5 to 16 nodes in the second hidden layer have been tried. The best result is 95.6%
which is from a BPNN with 12 nodes in the first hidden layer and 8 nodes in the second

hidden layer.
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4.7 Discussion

It has been stated in Chapter 3 that a fundamental problem of MMD is the
machine fault identification and classification. In the earlier sections of this chapter, an
effective way of using a self-organizing mapping algorithm to solve this problem is
presented. This new approach is based on the interpretation of machine fault (condition)
identification and classification problem to be a preblem of pattern clustering and teature
extraction from multi-dimensional data sets. Neural networks are developed based on the
SOM algorithm and training is performed in an unsupervised mode. The training of such
a computationally-effective neural network takes only a few seconds on an IBM PC 486
system and thus is cost-effective. Four diagnostic indices have been extracted from the
vibration signature and have been used for condition classification. Neural networks are
developed based on self-organizing mapping algorithm and the training is performed in
an unsupervised mode. The establishment of this self-organization neural network is easier
than the implementation of conventional expert system approaches. A neural network can
learn diagnostic knowledge from historical data. In using expert system approaches,
human knowledge about the classification problems needs to be sufficient and accurate.
as well as to be available in explicit form for symbolic representation. Further, the
reasoning scheme employved should be able to use the knowledge properly and to yield
correct results.

The SOM algorithm needs only one piece of information, that is, how may
patterns (clusters) of machine conditions are to be presented in the feature space. On the
other hand. details as to which data sample set belongs to what pattern must be given
during the training of a BPNN.

It is also observed that a monotonic increasc or decrease in the number of units
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does not lead to precise maps. i.e. the precise representation of the transformation set R.
For a particular problem. the optimum number of units is dictated by the interpretation
of the failure set. For the problem of rotor system fault classification, neural networks
with 5 to 10 units have been attempted. It is observed that when the number of units is
less than seven (the number of prescribed cases), two different rotor conditions are
classified into the same condition. Also in some cases, half of the samples from a
particular case are attributed to a neighbour cluster and the other half is attributed to some
other cluster. On the other hand. when the number of units is greater than seven. new
clusters are designated which contain samples from one or more conditions which are not
relevant to these clusters. Moreover, the fact that the classification is sensitive to the
values of Fh is also seen from this investigation. The influence of Fh is due to the
amplification of the values of Fh. which were originally smaller than the values of other
indices, during the process of normalization.

In both the bearing and rotor condition classification problems considered in the
present chapter, a larger number of iterations is used so that a smooth leaming process
i5 achieved. Notwithstanding this, the training process took only a few seconds on an IBM
PC 486 system. Further, initial and final values of the learning rate have been properly
selected in order to achieve the best results in terms of accurate positioning of neurons
in the multi-dimensional space of data sets. It is observed that for a fixed value of the
final learning rate, a larger value of the initial learning rate leads to a larger variation of
the weights of each and all neurons throughout a larger learning period. On the other
hand, usage of smaller values of the initial learning rate may have led to a local minimum
or erroneous positions of neurons through fixing the final locations of the weights at an

earlier time during training. In the present work, the ranges of values of the initial and
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final learning rates were taken to be 0.4 to 1.0 and 0.01 to 0.07 respectively.
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CHAPTER 5

MULTIPLE-INDEX BASED TREND ANALYSIS
USING NEURAL NETWORKS

The development of a new approach to Multiple-Index Based Trend Analysis for MMD
(Zhang et al, 1994c; 1995d) is presented. This new approach centres around the
simultaneous use of a number of diagnostic indices to provide a precise determination and
prediction of machine conditions. As explained in Section 5.1, the new approach
formulates the trend analysis of MMD into a regression analysis of estimating an unknown
multivariate function from the pertinent diagnostic signal. The neural network solutions
based on Self-Organizing Mapping (SOM) and Constrained Topological Mapping (CTM)
algorithms which have been developed quite recently for global nonparametric regression,
are introduced in Section 5.2. In Section 5.3, simulation results arc used to clearly show
the failure of the SOM and CTM algorithms in performing multi-dimensional function
regression. The fundamental reasons behind the encountered deficiency arc then
systematically brought out. A new self-organizing mapping algorithm (Zhang et al, 1995b;
1995¢) which overcomes the limitations of the existing SOM and CTM algorithms is
developed in Section 5.4. The efficiency and computational superiority of the new
algorithm are illustrated through simulation experiments. Further, this newly developed
algorithm is adapted to perform multivariable trend analysis. Applications of thc new
approach of multiple-index based trend analysis, that uses the new SOM algorithm to

practical problems of predicting the service life of both a bearing system and a gearbox,
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based on on-line vibration measurements, are fully demonstrated in Sections 5.5 and 5.6.
Discussion of both the new diagnostic approach and the new SOM algorithm is presented

in Section 5.7.

5.1 Multivariable Trend Analysis in MMD

Trend analysis in MMD, as defined in Chapter 3, is a diagnostic technique to
quantify development of incipient fzults. This analysis uses functional models that show
the trend of continuous changes in machine health condition, in the degree of damage or
in the service life of a machine system. It is essentially a function regression problem in
terms of mathematical statistics. To date, only a univariate function, as given below, has

been used in trend analysis for machinery condition monitoring.

Y = fiX) +e (5.1)

where ¢ is an unknown disturbance. X is a monitoring index extracted from the on-line
diagnostic signal. and Y is an indicator. employed to monitor the operation of the machine
system or the performance of its components. In this approach. the determination or
prediction of machine condition is based on the value of a single diagnostic index X.
Further. the global parametric method is commonly used for estimating the function f
from a given set of data pairs Z=(X, ). i=1, 2, ... n. In this method, the unknown
function is assumed to have a fixed form, where this form can be represented as a
combination of some basis functions. The simplest and most commonly used parametric

method is linear regression in which the functional form is taken as

) =aY + b (5.2)

where parameters a and b are obtained by the method of least squares.
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However, in condition monitoring and fault diagnosis of machine systems. the
state, behaviour, charactcuistics and conditions of machines are represented by a group of
indices that are obtained from the diagnostic signals, with each index reflecting a certain
aspect of the signal. Further, it has been clearly shown (Tranter, 1989: Lipovszky et al,
1990). that more than one diagnostic index should be used if precise and complete
information about the fault or malfunction in the machine system is desired. This is duc
to the fact that there is no single index that can adequately represent the conditions of a
machine and further, different types of faults or malfunctions are distinctly reflected in
various different diagnostic indices. Hence, the widely-used single-index based trend
analysis can not provide complete and accurate information about the conditions and
malfunctions of a machine system. Therefore, in trend analysis, a number of diagnostic
indices should be considered simultancously. It is observed from existing works that such
a trend analysis involving many diagnostic indices has not been employed so far for
system monitoring and diagnosis. This is due primarily to the inherent complexity and
difficulty involved in modelling the multivariate diagnostic function f.

In order to make a collective use of several diagnostic indices in trend analysis,
a new approach, designated Multiple-Index Based Trend Analysis. is proposed. This new
approach uses multivariate functions to quantify the development of machine faults or the
changes in machine conditions. It will be shown later in this chapter that the collective
use of several diagnostic indices through a multivariate function leads only to the
extraction of precise and complete information about the state or malfunctions of machine
systems.

This new approach essentially involves a multi-dimensional regression analysis,

that is a regression fitting of a function } of N independent variables that are represented
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by a vector X, from a given sct of » data points denoted by (X, Y). i=1, 2, ..., n, in
(N+1)-dimensional sample space. Mathematically. this problem is stated as finding the

diagnostic function f such that

Y =fX) +e (5-3)

where ¢ is a disturbance assumed o have a zero mean. Further, it is assumed that the
distribution of ¢ may depend on the vector X and that the distribution of data points X,
in R" is usually not uniform. In Eq. (5.3). the function f may represent either a multi-
dimensional curve or a multi-dimensional surface, depending on the particular physical
problem being addressed.

In condition monitoring and diagnosis of machine systems, the operative states of
the machine system at any instant of time zre represented in an N-dimensional vector.
Also. the health condition. the degree of damage or the measure of service life of a
machine system, are represented by a scalar variable which is obviously a function of the
operative states of the machine system. Condition monitoring systems which use on-line
vibration measurements as the diagnostic signal. usually vibration measurements are taken
at pre-fixed instants of time 7, i=1, 2. ..., n. (or over the number of cycles of operation,
or over any other suitable independent parameter) from which N number of diagnostic
indices are extracted. These diagnostic indices are representative of the operative states
of the machine system and essentially constitute the N-dimensional operative state vectors
I=KT). i=1, 2, ... n. The data points (I, T}). i=1. 2, ..., n, are used to estimate the
functional dependency between the operative state vector I and the service life of the
machine that is denoted by 7. This functional dependency is then used to predict the

residual service life of a machine system based on the sampled values of the operative
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state vector. The problem of condition monitoring can be posed as a mathematical
regression problem represented by Eq. (5.3). if the operative state vector 7 and the service
life of the machine system T arc interpreted to be the vector X and the function )’
respectively. In this case, (i) fis a multi-dimensional curve, (ii) the distribution of X in
R" need not be uniform but a uniform distribution of Y in the (N+1)-dimensional sample

space can be achieved through the proper selection of observation time instants T,

3.2 Multi-Dimensional Regression and SOM Algorithms

Regression fitting of a function } of N independent variables represented by a
vector X. from a given set of » data points Z=(X, Y). i=1. 2. .... n. is considered herein.
The regression analysis is central to many problems of engincering in industry. However,
these regression problems significantly differ among themselves in the nature.
characteristics and availability of the data set (X. })), and also in the physical system
parameters that are represented by this data set. The goal of the above regression analysis
is to estimate an underlying mathematical function based on a finite number of possibly
inaccurate data points, for the purposes of data reduction, data interpolation and data
prediction (extrapolation). There are several approaches that can be employed to solve this
multi-dimensional regression problem. including neural network algorithms (Specht.
1991).

If the functional form of f'in Eq. (5.3) is assumed through an exploratory study
of the data points and by considering the particular application, parametric models of the
function can be estimated. In global parametric regression methods, the functional form
of the regression surface or the curve f is assumed to be known, and the problem is

reduced to estimating the parameters of the regression surface or curve. For high-
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dimensional regression, suggesting a model for the regression surface that fits well with
the data is extremely difficult (Cherkassky and Lari-Najafi, 1991), and the results of
regression analysis are entirely dependent on the correctness of the assumed model.

On the other hand, if none or very few general assumptions about the functional
form of f are made, a more complex problem, known as nonparametric regression
analysis, is to be solved. Nonparametric methods of regression analysis eliminate the
problem of predicting a priori the true functional form of f by making none or very few
general assumptions about the regression surface or curve. When the underlying functional
form is non-linear, the most common approach is to consider the function f to be a
piccewise linear function made up of several linear pieces that are joined continuously at
points known as knots (Friedman and Silverman, 1989). Assuming the coordinates of the
knot positions to be fixed, there are several parametric models that can fit a wide range
of training data sets reasonably well. The performance of the estimated function then
depends on three factors, viz.. the number. the relative location and the positioning of
knots. However, nonparametric regression is cumbersome for the following reasons:

The finite number of sample points implies that the problem itself is ill-posed
(Poggio and  Girosi, 1990). Hence. the number of data points required to estimate a
function with a prescribed accuracy should grow exponentially with dimensionality.
Another difficulty is the existence of unknown additive output noise which in turn poses
difficulties in distinguishing between the variations in sample data due to noise and the
variation due to their dependencies over the process parameter changes (Geman et al,

1992). It has also been recognized that better results can be achieved through a dynamic

knot positioning approach than through the fixed knot positioning approach (Cherkassky

and Lari-Ngjafi. 1991). In these circumstances. the self-organizing mapping networks
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described in the last chapter. can be employed to perform the nonparametric regression
analysis, if the units of the SOM network are interpreted as the knots (Cherkassky and
Lari-Najafi, 1991; 1992).

As has been pointed out in Chapter 4, the original self-organizing topological map
(Kohonen, 1990) essentially consists of an array of units which are interpreted in this
context as knots, {W,, W,, ... W,}. They respond to the input signals in an orderly
fashion. The response, in a high-dimensional sample space, is such that (i) the spatial
locations of the neurons on a multi-dimensional map reflect the distribution of given
(training) data points in the sample space; and (ii) the topological ordering of the neurons
in the array reflects the ordering of the input signals drawn from the input sample space.
In this formulation. the network model is basically a mapping of input signals onto a low-
dimensional discrete lattice of units called neurons. During this mapping, both the data
distributions and the neighbourhood relations in the input sample space should be
preserved to the extent permitted by the units of the network model. It may be noted that
the ordering of neurons is irrelevant when using Kohonen's SOM to perform data
clustering. but it is relevant and very important when using the SOM algorithm to perform
function regression.

Application of the self-organizing algorithm developed by Kohonen for regression
problems, however, has not been successful. This is due primarily to the inability of the
SOM algorithm to produce functional maps that do not violate the topological ordering
of knots (Ritter and Schulten, 1989). During learning, the unit selected as the best match
will experience maximum modification. It is possible for this knot to move far enough
to cross its immediate neighbour. If this occurs, the topological order of the knots is said

to be violated. The problem becomes much more serious for multivariate functions where
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the SOM algorithm fails so frequently. Figure 5.1 (from Cherkassky and Lari-Najafi,
1991) shows the disordering of units formed by the original SOM algorithm when it was
trained using six data points that represent a sine function with error. In many regression
problems, most or all of the independent variables have been considered to have uniform
distributions and to be monotonically varying (increasing or decreasing), such that the
violation of the order of units in a network is mainly observed in the N-dimensional
subspace of independent variables. Making it a constraint that the topological order in N-
dimensional input sample space be preserved during mapping, Cherkassky and Lari-Najafi
(1991) proposed the so called "Constrained Topological Mapping" (CTM) algorithms for
global nonparametric regression problems. Correct topological order in the subspace of
independent variables is sought by this algorithm through finding the best matching unit
in the same subspace of independent variables X. Correspondingly. the learning steps are
modified by using the Euclidean distance in the subspace X of independent variables for
the selection of the best matching unit but the weight updating is still performed in the

input sample space Z (like in SOM algorithm), based on the following expressions.

Wi+) = W + alZ0-Wmn). W (eH(D) G4
W(1+1) = W), W, (DeH (1

where
[ xw-w." 0] = min{ | X)-w;" (0 ||} (5.5)

W* is an N-dimensional vector of the projection of W onto the X subspace. H,(f) is a
symmetric neighbourhood subset of the X subspace with the centre vector being W, *(1).

The other forms of adaptation and neighbourhood functions can also be used as in the
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Fig. 5.1 Nonfunctional mapping formed by the original SOM algorithm.
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Fig. 5.2 Functional mapping formed by the CTM algorithm.
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original SOM algorithm listed in the last chapter. Two different versions of the CTM
algorithm have been proposed viz., Piecewise Linear Regression for Data Smoothing and
Locally Constant Regression for High-Dimensional Problems. Hence, in order to find the
best matching unit, the CTM algorithm selects a winning unit only according to the
distance between the projections of a given sample and the units on the lower dimensional
subspace of X. The difference between the SOM and CTM in selecting the winning unit
results in different outcomes while fitting functions of curves. Figure 5.2 (from
Cherkassky and Lari-Najafi, 1991) shows the training result obtained using the CTM
algorithm based on a 20-unit network to fit a sine function from the same data points as
presented in Figure 5.1. The mapping can be seen to have no disordering problems. The
CT™ algorithm could be more successful than the original SOM algorithm, particularly
when the independent variables have uniform distributions. However, if some of the N
independent variables have non-uniform distributions, the CTM algorithm cannut avoid
producing maps that have disordering of units. In fact, when fitting a high-dimensional
curve, the CTM algorithm will perform the same operation in the N-dimensional subspace
as the SOM algorithm does. to fit a curve in this N-dimensional subspace. If the original
SOM fails in fitting the N-dimensional curve, the CTM will also fail in fitting the (N+1)-
dimensional curve, especially when one or more independent variables have non-uniform
distributions. For regression problems of trend analysis, wherein MMD, f is a multi-
dimensional curve, application of both the original SOM and the CTM algorithms does
not yield functional maps which do not violate (topological) order of the network units.
Moreover, a map without disordering may or may not be a functional map for regression
problems wherein f is a multi-dimensional curve, as can be seen from the following

demonstrations. Both the SOM and CTM do produce nonfunctional maps as will be
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illustrated through simulation experiments in the next section. Detailed discussions of the

reasons causing nonfunctional mapping problems are also included.

5.3 Nonfunctional Mapping in Regression Problems

The neurons of multi-dimensional maps move their spatial locations during the
self-organizing process so as to represent the distribution of data points in the sample
space. However, the way in which the spatial distribution of input data points is mapped
onto a set of neurons through Kohonen's self-organizing process, may or may not be
exactly what is expected for function regression analysis. A sclf-organizing map for
regression analysis must satisfy some additional conditions. In self-organizing processes
for function regression, in addition to responding to the distribution of the training data,
the topological ordering of the neurons in a network should also reflect the ordered
neighbourhood relations of input signals drawn from the input sample space. As a simple
condition. it can be said that. if the values of the projection of given data points on an
axis is monotonically increasing (or decreasing), the projection of the units onto the same
axis should be increasing (or decreasing) in an orderly fashion. Self-organizing maps
which are not such ordered maps, have been called nonfunctional maps. The following
two simulation experiments have been performed to investipate the reasons behind

nonfunctional maps.

Experiment 1
A single-variable function that represents a curve on the x-y plane in the following

form is now considered.



flx) =ax? + bhx + ¢, 0<x<l/ (5.6)

where a, b and ¢ are constants, and / is the maximum value of x. Allowing for

disturbances and noise, the above model becomes
y = [Lx) = (are(x)x? + (bre(x)x + ¢ +e(x) + e, (5.7)
where

¢,(x) = 0.2asin(2nx/20.0)

¢y(x) = 0.08hsin(2nx/7.0)
e.(x) = vsin(2nv/4.0 + 0.3)
= 0040 = 0.140)

mas

and ¢, is a Gaussian white noise. denoted by N(0. v). with zero mean and a standard
deviation of v. In the above equation. e,(x). e,(x) and ey(x) are assumed forms of
disturbance. The constants of Egs. (5.6) and (5.7) are teken to be ¢=0.01, 5=0.2 and ¢=80.
The training data are uniformly sampled 4.480 times from the function £(x) in the domain
[0. 140] with a minimal sampling interval of 0.25. i.e. Z=(X. ¥Y)=(x,. y), i=1, 2. ..., n. and
n=4.480. Both the idcalistic curve f{x) without disturbance and the scatter-plot of the
sample data points obtained from f(x) are depicted in Figure 5.3. It can be seen that the
projections of data points onto the y-axis are monotonically increasing and further, they
are uniformly distributed. It is also evident in Figure 5.3 that the disturbance and noise
are at a high revel compared to the values of the function f{x) itself.

A network of units {0 B, o W)L k=20, with W=(X. Y)) to represent the

spatial location of the i-th knot in the x-» data sample plane. is established through the
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Fig. 5.4 A 20-unit network obtained using the SOM algorithm.
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original SOM algorithm to estimate the underlying function from the data samples. The
topological mapping is demonstrated in Figure 5.4, which shows that the order of the 20
units (shown by small circles linked by straight lines) imeasured along the x-axis has been
violated. The knots are not in increasing order, and are not distributed uniformly along
the x-axis as the distribution of the projections of the data samples on the x-axis should
do. Another network with 8 units is trained by using the same algorithm, and the result
is shown in Figure 5.5. All the 8 units are in the correct order. Obviously, there are some
reasons that cause such discrepancies in regression mapping with different number of
units. In order to cstablish the reasons behind the observed unit disorder, another network
with 16 units is formed. The result is shown in Figure 5.6, wherein the order of units
along the x-axis has not been violated. However, for two reasons. this regression curve
is considered a nonfunctional map: (i) the projection of the unit positions onto the x-axis
has not formed an uniform or close-to-uniform distribution, and (ii) the locations of the
units close to the y-axis vary significantly around the curve fx), and hence, they do not
properly represent the neighbourhood relations in the input sample space.

As mentioned earlier, the SOM and CTM algorithms differ in selecting the best
matching unit to a given data sample. The SOM algorithm when followed for the
sclection of the winning unit may cause nonfunctional maps of the knots. The CTM
algorithm leads to the selection of the best matching unit according to the distance
measured only on the axis of the single variable x. This strategy forces, by the nature of
self-organizing. the knots to have uniform or close-to-uniform distribution along the x-
axis. During the learning process. since the projections onto the x-axis of both the data
points and units have uniform distributions, a particular unit can only be matched to the

closest samples lying between its immediate neighbours to the left and right along x-axis.
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Fig. 5.5 Regression curve obtained using the SOM algorithm
based on an 8-unit network.
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Fig. 5.6 Regression curve obtained using the SOM algorithm
based on a 16-unit network.
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Hence, such a selection of a winning unit will not be able to move any unit to cross its

neighbours. And, the projection on the y-axis of the final position of a unit reflects the
distribution of local samples around it. To be precise, one can draw two straight lines
parallel to the y-axis. One is at the median between W, and W, , the other is at the median
between W, and W,.,. The final position of W, will be approximately located at the mass
centre of the piece of data between these two lines. This capability of being able to
"cluster” the data by itself is an important feature of the CTM algorithm. Figure 5.7 shows
the result of mapping a network of 20 units using the CTM algorithm. The resulting curve
can be considered as a proper map for the purpose of regression.

However, in certain cases. where the distribution of the values of one or more
independent variables is non-uniform or/and with certain level of noise, the CTM learning
algorithm could not avoid nonfunctional mapping. Consider the case of a two-variable
function regression. where .V and 1 are two independent variables, and U is a function of
them. that denotes a curve in three-dimensional space. Assume that the data vectors {.X.
Y. U}' are sampled from a machine system corresponding to discrete steps in X. This is
the most common way of data collection. Assume further that a two dimensional curve
is determined by the data vectors of LY. 1} in the subspace. and assume also that the
original SOM fails in fitting such a two-dimensional curve. While applying the CTM
learning algorithm to this three-dimensional curve fitting problem, the winning unit has
to be chosen based on the Euclidean distance on the X-Y plane. Since the projection of
trained units on the \-} plane in the CTM process is the same as that of SOM, the results
become similar to that obtained using the SOM algorithm (to fit a curve on X-Y plane).

Hence. the problem of disordering is still present with the CTM algorithm.
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Fig. 5.7 Regression curve obtained using the CTM algorithm
based on a 20-unit network.
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Fig. 5.8 Regression analysis involving an “S” curve using the CTM
algorithm based on a 20-unit network.
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Experiment 2

Another simulation experiment was performed to fit a high-dimensional "S" curve
using self-organizing neural networks. In this simulation. the "S" curve is given by the

sigmoid function

y =) = ]__'___ (5.8)

.
+ ¢ —x

whete x is an independent variable and. the constant A controls the shape of the "S"

nen

curve. Such an curve has been very useful in describing the cumulative fatigue
damage process of many engineering materials.

A three-dimensional "S" curve in the sample space of y=f{x,, x.) is given by

X, = 0.6 +02 +e,. 0<x,<n (5.9)

2 l 0 ‘e 03y 0 S

0.75
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fx. x) =

+0.125 + ¢, (5.10)

where # is the length of data samples. and ¢, and ¢, are Gaussian white noise defined by
N(0. v). The standard deviation v is expressed as a percentage of the function range. The
training data was generated by Egs. (5.9) and (5.10) with n=400, ¢,=N(0. 25%) and
¢,=N(0, 15%). The CTM algorithm has been tested in establishing a neural network with
20 neurons to fit the above three-dimensional curve. The initial locations of 20 neurons
were set to be equidistant (uniform distribution) in the sample space. The data points and
regression results are both shown in Figure 5.8, wherein the two plots show the
projections of data points onto the x,-y and x-x, planes. The projections of the final
locations of the knots are shown with small circles linked by straight lines. From Figure

5.8 it can be seen that the order of some knots of the neural network has been violated
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and that some of the knots are too close to each other. Hence. the CTM algorithm has
failed in solving this function regression problem.

As mentioned earlier, the original Kohonen algorithm performs poorly in fitting
curves when the non-uniform distribution of a variable (e.g. y in Eq. (5.7)) has given
undue influence to the selection of the best matching unit. even though another variable
(e.g. x in Eq. (5.7)) has a uniform distribution. An explanation for the occurrence of
disordering can be provided as follows:

1) The only difference among the three networks in Experiment 1. is that the
number of units is changed. A lower number of units leads to (i) greater values of x
(greater influence of x-values of data) in calculation of the Euclidean distance and vice
versa, (ii} a trained network that will have a close-to-uniform distribution of units along
the x-axis and vice versa.

2) From another viewpoint. the ratio of the band width of the values of y to the
interval of x between two units is small, when a lower number of units is employed, and
vice versa. The band width of y is large in the case of more neisy data.

3) The neurons are self-organised in a way to cluster the data points. The
nonfunctional mapping problem is caused by the dislocation of units, and the worst case
of disordering is also caused by this. When the noise level in the training data is high, the
underlying function is complex, and the values of y give a greater influence than that of
x through the Euclidean distance norm. it seems that nonfunctional mapping will result.
This is the key reason for the occurrence of nonfunctional mapping.

It has also been observed in the present experiments, that disordering happens
usually when two units are particularly close to each other so as to confuse the process

of selecting the best match. Also. the level of noise gives a strong influence to the unit
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selection. This is due to the fact that. if there is a high level of noise ¢ in Eq. (5.3). which
in turn causes the y variation, the proper selection of the best matching unit through the
Euclidean distance is hindered in the original SOM algorithm. On the other hand, the
C'TM algorithm selects the winning unit in the subspace of independent variables. When
all the independent variables have uniform distributions. and this is the most common case
especially in simulation experiments, the CTM algorithm organizes the units into uniform
or close-to-uniform distributions, such that no two units would be too close to hinder the
selection of the best match. Since there is normally no noise that is added to those
monotonically increasing and uniformly distributed independent variables. CTM can
guarantee the ordering of the units. It has already been shown that if there are one or
more independent variables that have non-uniform distributions with a certain level of
noise. CT"™ has the same problem as SOM does, in yielding nonfunctional maps. When
the number of units is small. it is hard to observe disordering. When a large number of
units is used. disordering occurs more often as has been observed in the simulation

experiments.

5.4 A New SOM Algorithm Based on Weighted Euclidean Distances

Application of a self-organizing mapping algorithm to a multi-dimensional
regression problemy is successful only when the units of the SOM network represent
correctly the distribution of data in the (N+1)-dimensional input sample space Z, and there
is no disordering among the units of the network. Normally. a uniform or close-to-
uniform distribution of the units on one or more dimensions is desirable since it serves
the objectives of functional mapping. Further. certain properties of the sampled data in

practical problems should also be considered. In real-world nonparametric regression
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problems, such as trend analysis in machinery monitoring and diagnostics, the data
corresponding to independent variables are obtained from on-line m rasurements, and
hence, they can have any kind of distribution. It is quite possible, particulary in the
problems of condition monitoring and diagnosis of machine systems. that the distribution
of at least one variable in the input sample space is unitorm. In the most widely employed
Discrete Sampling Method (DSM) of data collection. one or more variables (independent
or dependent) are continuously increased (or decreased) and the corresponding values of
remaining variables are measured. Depending upon the physical characteristics of the
system being monitored. sampled values of the remaining variables could have any kind
of distribution including uniform or close-to-uniform. For instance. if the functional
dependency between the independent variable vector X and the scalar dependent variable
Y is linear. uniform distribution of onc wvariable would call for a similar uniform
distribution of the remaining variables. This is the case for the lincar segments between
any two knotsin a piecewise linear regression curve. while the overall distribution of data
may still be undefined. Weakly non-linear functional dependencies would also result in
close-to-uniform distributions. During the leaming process. a uniformly distributed
variable will force the projection of the units (of the self-organizing network) on the
dimension of this variable to be uniformly placed. It can also be observed that an uniform
distribution of a regression variable can effectively control both the selection of the best
matching unit and the weights of the self-organizing units.

In the previous section, it has been observed that (i) the original SOM algorithm
positions the knots (or units) so as to reflect the distribution of training data in the input
sample space Z, and (ii) the CTM algorithm positions the knots so as to reflect the

distribution of projections of data onto the lower dimensional subspace of independent
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variables X. Further, selection of the best matching unit in the SOM algorithm is dictated
by the values of both X and ¥, whereas in the CTM algorithm it is dictated by the values
of the projections of Z onto the dimension corresponding to the independent variable X.
It would be more appropriate and effective, if both the values of X and Y are considered
in the sclection of the best matching unit but with different weights. The relative values
of the weights could then be determined so as to reflect the influence of the uniformly
distributed variable in determining the distribution of knots (or units). This strategy will
particularly be useful to the regression problems wherein (i) f is a multi-dimensional
curve, (i) the input sample data are collected from a machine system using DSM of data
collection, and (iii) the problem is a global nonparametric regression using piecewise
linear functions.

In a self-organizing mapping process. once the best matching unit to an input
sample data point is selected. adjustment of the weights of both the unit and its neighbour
units actually moves all of them in the same direction towards the given data point. At
this juncture. the lollowing two cases may arise: (i) the given data point is in between the
best matching unit and its closest neighbours, (i) the given data point is not in between
the best matching unit (to be occasionally selected) and its closest neighbours. In the
former case. no disordering of knots is possible and in the latter case a disordering may
occur along at least one axis (along which the Euclidean distance measurements were
taken). Hence, the proper selection of the best matching unit dictates the ordering of units
(or knots). The above strategy essentially focuses on this point, i.e. to maintain the
distributions of projections of units along one or more axes as close to uniform as possible
during the entire learning process, and to have the proper selection of the best matching

unit based on weighted Euclidean distances measured along both independent and
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dependent (regression) variables. The units (or knots) of the SOM network will not be
subject to disordering and better represent the influence of uniformly distributed data
points.

A greater veeight is given in this new algorithm to the variable that bas a uniform
distribution. The weight factor is called the "scaling factor” and it is denoted by the

symbol s, since it actually changes the scales of one or more dimensions in the Euclidean

space. In selecting the winning unit, the distance between the sample data Z={X,. .\,,.
...}" and a unit W={X,,. X5, ..} " will be calculated by
[Z-W]| = JX,,=0, 7+ s X, - _
(5.1

= \/(‘le—‘\’lu ) ks 2(‘\',/"\’,41 )+

where it is supposed that X, is monotonically increasing (or decreasing) and has a uniform
distribution. and so it has been greatly weighted by s>1. Therefore, variables other than
A, can affect the winning unit selection only when the value of s°(Y,-\,) is relatively
small. This strategy helps the self-organization process in producing functional maps not
only along the dimension of the variable that has a uniform distribution but also in other
dimensions. The influence of noise will also be reduced. When the number of urits is
small, this scaling factor can be selected as 1.0 and the present algorithm then becomes
the same as the original SOM algorithm. When a large number of units is used on a
multi-dimensional map. a proper value of s is easy to select for producing functional
maps. The algorithm is now given in terms of computational steps.

Step 1. Locate all the & units, W={X. Y,}'=(X,, .., X\ V.}' i=1. 2, ..., k randomly or

LRl L]

at equal distances in the sample space Z as their initial positions. and set the value of the
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scaling factor to be s>1.0 (there could also be more than one scaling factor).
Step 2. Given a randomly chosen input training data vector Z(2)={X(r). Y())}'={X,(. ...,

XM1), Y(1)}' in the sample space. find the unit j which is closest to Z(r) according to

|zw-wn| = min{||Z@)-wn |} (5.12)

where 1 is the discrete iteration step. In Eq. (5.12). the distance between Z(r) and W(/) is

determined by

| zary-win| = \/(,\’l AN=X, (D) + o+ (8X DX, (07 + ... 5.1

- ‘v/('\"/(,)—‘\'lu(’))2 + ...t Sz(/\’,z(f)“/\’,u(f))2 + ..

Step 3. Define a symmetric neighbourhood of units / surrounding the winning unit j.

11(1). and adjust the weights of the winner and all its neighbour units according to

W(+1) = W) + alH 0[Z0-Wnl.  ieH ()
(5.14)

W(t+1) = W(r). igH (1)

where a(/1,.0 is the scalar learning rate monotonically decreasing with 1.

Step 4. Reduce the neighbourhood and the learning rate. increase iteration number 1 and
return to step 1, until certain number of iterations is performed.

Step S. The accuracy of the regression results is measured by the Average Residual (4R)

(Cherkassky and Lari-Najafi, 1991), which is given by

AR = | L5 - axor 1)

n o=l
where # is the number of data points, and Y, belongs to a training data pair {X, }}'. In
the above equation, (X)) is approximated by the value of Y coordinate of the most
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matching unit W, to the input sample X(1) according to

| X¢ry-w;* () | = min{ | xn-w," (0|} (5.16)

where WX(1) is the projection of the weight vector of a unit onto the X subspace. This
step can be combined with step 4 for training. so that whenever the proposed algorithm
converges to a stable 4R value, or the value of AR achieves the prescribed level of
(function approximation) accuracy. the training process will terminate.

In practical applications of SOM. CTM or the new algorithm presented above. the
learning rate for unit / in the neighbourhood of unit j at time 1 is given by

a(HU.t) = b(l)exp[_M] (5.17)
(b(n)s,)

where 5(1) is called the learning factor, the exponential term is the neighbourhood
function, and s, is the number of knots. The learning factor for the winning unit is given

by the empirical relationship

h(1) = b,(b/b) " (3.18)
where b, and b, are the initial and final values of the learning rate, 7 is the discrete step
of iteration, r=1, 2, ..., 1,. ¢, is the maximum number of iterations which is usually
defined as the product of the training set size and the number of times this set is recycled

or repeatedly presented to the network during training,

Experimental Results
The same simulation experiments performed earlier have been repeated using the

new algorithm. In fitting the data generated by Egs. (5.6) and (5.7), the parameters used
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in the learning factor defined by Eq. (5.18) are selected as 5,=0.7, 5,=0.03 and the number
of iterations is taken as r,=5n=22.400 (thc same values have been used in those previous
experiments.) The scaling factor has been selected as 2.0. The result of this regression
analysis with 20 units is shown in Figure 5.9. The locations of the 20 units can be seen
to fit the data very well. Comparing Figure 5.9 and Figure 5.7, it can be seen that the new
algorithm yields better results than the CTM algorithm.

The three-dimensional "S" curve is now fitted by a 20-unit network using the new
algorithm. The training parameters used in Eq. (5.18) are taken to be 5,~0.5. b,=0.02 and
1,=151=6.000. The scaling factor s has been taken equal to 2.0. The result is shown in
Figure 5.10 in the same manner as in Figure 5.8. This regression analysis is successful
and does not exhibit a disordering problem. Further. the distances between any two

neighbour nnits along the x-axis are almost equal.

5.5 Multiple-Index Based Trend Analysis of Bearings

The conditions of a bearing system are now identified using the new trend analysis
approach with the newly developed algorithm presented in the previous section (Zhang
et al. 1995b). Diagnostic indices are extracted frora historical vibration signal. Vibration
data were acquired from a type 308E ball-bearing having 8 rolling elements. The set up
for testing the bearing and signal acquisition system have been described in Chapter 4. An
accelerometer was mounted on the housing and its output was hnked to a computer-based
monitoring system. When an abnormal vibration signal was generated. the computer
started to collect vibration data after each time period of 4.5 minutes, until complete
failure of the bearing. A sampling frequency of 4.000 samples per second was used and

the digital data stored in 105 files. Each file was divided into two time series thus
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Fig. 5.9 Regression analysis of quadratic functions using the newly
developed algorithm based on a 20-unit network.

s=2.0

X}

0.0 400

Fig. 5.10 Regression analysis involving an “S” curve using the newly
developed algorithm based on a 20-unit network.
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yielding 210 records. The malfunctions of the tested bearing were defects on the rolling
clements and on the inner raceway. Four features being used in Chapter 4, the PP. AX,
C'R, and AM from the on-line bearing vibration signal have been chosen as diagnostic
indices for trend analysis.

Trend analysis can be defined as finding a time 7. that denotes the bearing life and
is related to each and all of the four indices. Using the standard equation for a third order
polynomial in 7, and determining by the least square method the respective constants in

these equations. the following were obtained:

PP =19.013 +0.1437 + 8.603-10°T3 - 1.947-10%T* (5.19)
AY = 2.095 + 85641077 + 5.001'107T? + 2.676:10°7T? (5.20)
CF =3.4001 +0.147T - 2.336:10°T + 9.468-107T* (5.21)
AM =104.307 +0.178T - 3.696:10772 + 6.589-107T" (5.22)

From the above four equations. the bearing life 7 can be expressed in terms of PP. ALY,
CR and AM. This way. a one-to-one correspondence between the bearing life and the
diagnostic indices is observed. The data samples and corresponding curves of the above
expressions are shown in Figure 5.11, wherein the horizontal axes of the four sub-plots
denote time 7 and the vertical axes denote PP (upper-left), 4X (upper-right), CR (lower-
left) and AM (lower-right).

In multiple-index based trend analysis. the bearing life time 7 is determined based
on the four diagnostic indices which are arrarged in the form X={PP. AX. CR, AMYY.
Since these four indices have been extracted from the same set of time series and further.

since they can always be represented as four explicit functions of T, they actually
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represent a curve in a four-dimensional space. Each data point X, is extracted from the
data record corresponding to time 7, which is the bearing life time corresponding to the
i-th data pair. The training data vectors have thus been defined as Z=(X, TY=1PP, AX,
CR, AM, T}'. i=1. 2. ... n with n=210, and this way the multivariable trend analysis
essentially involves fitting a five-dimensional curve. Before training, the five variables
have been scaled so as to lic approximately in the same range. The parameters of the
equation for the learning factor. Eq. (5.18). have been taken to be 5,50.6, b.=0.04.
1,=50n=10.500. Considering the possible influence of the order of data presentation on
the results of training. records of Z have been rearranged into a new random serics prior
to reusing them. The variable 7" has a uniform distribution over its range but the four
indices are not distributed uniformly.

A neural network consisting of 8 units was first trained by the CTM algorithm.
The training failed to generate a functional map. since the order of knots was violated.
The resulting regression curve is shown in Figure 5.12, where the four sub-plots show its
projection on to the four hyperplanes that are similar to those of Figure 5.11. The two
dimensional figure plotted below the sub-plots shows the one-dimensional map of the
units along 7. which is the output of the training using CTM algorithm.

In using the new algorithm described in the previous section, a scaling factor has
been used to multiply the uniformly distributed variable 7. Different values of the scaling
factor have been tested to estimate the functions corresponding to the number of knots
ranging from 5 to !5. When the scaling factor is greater than 1.8, violation of the unit
order has not been observed. A network with 10 units and a scaling factor of 2.0 is
presented in Figures 5.13 and 5.14. Figure 5.13 shows the initial positions of the 10 units

with random coordinates in the sample space. After training. each unit is moved to its
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Fig. 5.11 The four univariate functions of bearing life obtained from
the on-line vibration signal.
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Fig. 5.12 Projections on to the hyperplanes of 8 knots of a
nonfunctional map obtained using CTM algorithm.
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Fig. 5.13 Random initial positions of 10 knots of a neural network
used in the new algorithm.
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Fig. 5.14 Performance of the new algorithm in training a network
of 10 knots with a scaling factor s=2.0.



final position in the Z space as shown in Figure 5.14. These ten units constitute the knots
that connect the locally linear line segments, and the estimation of the unknown functions
can now be obtained by piccewise linear methods. In our experiments. an easier approach
has been used. That is, for any given index set X obtained from the same machine system.
the corresponding bearing life 7 is simply approximated by the value 7, of the closest knot

W, which in turn is determined from the following equation
Ix-w," || = min{| X-W,"|}. 1<j<k, i=1. 2, ... kb (5.23)
in the same form as Eq. (5.16). The performance of the above network can now be

measured by the average residual expressed as the percentage value. e, which is the ratio

between the average residual and the range of 7. It is expressed as

" -
e _1'_ % U, (5.24)

In the above equation. 7, represents the product of the number of data points and the
sampling time interval, i.e. 7,=472.5 (minutes), which thus represents the entire
monitoring time. Further, 7;, is the life time corresponding to each data sample X, i=1. 2.
.. n, and T, is the life time of the matched unit w. This measure of error is in terms of
standard deviation of the estimation error expressed as a percentage value. Another
measure of error, ¢,, is now defined as the average estimation error expressed as a

percentage value:

n

!
¢y = o 2 IT,-T)| (5.25)

o

where, 7,. 7, and 7, are the same as those defined in Eq. (5.24). The value of ¢, in the



present case is 7.34% and that of ¢, is 5.23% for the 10-knots network established using
a scaling factor of 2.0. They can now be compared with that obtained from single-variable
functions, i.e. Egs. (5.19)-(5.22): the values of ¢,, and ¢,, obtained from given values of
PP are 20.41% and 17.82%. respectively. Corresponding values obtained from A\ are
14.18% and 11.92% respectively. and from CR are 39.17% and 34.89% respectively. The
best results obtained from AM have the values 9.92% and 7.57% respectively. For
practical applications, the neural network established here consisting of 10 units is thus
seen to be good enough for the purpose of estimating bearing life.

The number of knots is now increased and the performance of trained neural
networks obtained using the present algorithm is compared with those obtained using both
SOM and CTM algorithms. in Table 5.1. Two different values of scaling factor have been
used. It can be seen from the accuracy of the results obtained using the present algorithm
that even though the trend analysis is a high dimensional regression problem, wherein the
variation of data is in large ranges, and the number of data points for learning is small.

the method achieves reasonably good results.

5.6 Multiple-Index Based Trend Analysis of Gear Boxes

Application of multiple-index based trend analysis to the problem of life estimation
of gear boxes is now considered. The on-linc vibration signal was collected from a gear
test machine during experiments with gear tooth surface damage due to fatigue (Ll
Karmalawy. 1993). Two identical spur gears with 30 teeth and a modal value of 6 have
been used in the test apparatus. The rotating speed of the driving gear was 1.480 rpm, and
so the gear tooth-meshing frequency is given by f/= rotating speed (rpm) X number of
teeth / 60 == 740 Hz. An accelerometer was mounted on the gearbox housing, to pick
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Table 5.1 Accuracy of bearing life estimation using different algorithms.

Number | SOM algorithm | CTM algorithm Ne‘:,\i'til%:gi}(};m Nti;\;t:lfzrzi.t(l; m
of knots | (exp%, €4 %) (ear%0, €41 %0) (€%, €x) (€xn, c%)
5 8.01, 6.26 8.23. 6.43 839, 6.55 8.08, 6.33

6 7.52, 5.75 7.51, 5.74 7.60, 5.42 759, 5.54

7 7.43, 5.55 7.47. 5.68 7.70. 5.44 7.58, 5.51

8 * * 760, 5.38 735, 5.38

9 7.49, 5.49 7.46. 5.68 7.59, 5.28 749, 536

10 7.36. 5.37 731, 5.52 7.60, 5.21 7.34, 5.23

11 7.30, 5.42 * 7.53, 5.12 738, 5.12

12 * * 7.44, 5.06 730, 5.15

13 x * 7.48. 5.09 724, 5.1

14 * * 733, 4.98 7.11, 5.09

15 * * 7.24, 5.08 721, 5.10

* The network knots were disordered.




up vibrations in the horizontal direction. There were only nine digitized data records of
the vibration acceleration signal obtained from the test. They were recorded one after
another at approximately the same time interval. The sampling frequency was 6,400 Hz
and further, 2,048 data points were stored in each record. Record 1 was obtained at the
beginning of the test just after the gears started wearing in. Records 2 and 3 were
collected during normal operating conditions. Records 4 and 5 correspond to gears that
had very small pits introduced on a small number of teeth located near the pitch line.
Records 6 and 7 were obtained from a condition when a large number of pits was
distributed on the gear teeth. Record 8 was obtained when the gears had large pits where
the biggest one was 1.25x2.5 mm”. The last record, number 9, was obtained when the
gears had practically failed.

Trend analysis has been conducted in order to approximate the unknown function
that describes the whole process of the development of malfunctions (the process of
damage). based on incomplete information provided by the nine records. Three indices
have been extracted from the vibration acceleration signal, that include the RMS value
of the time domain signal, magnitudes at gear tooth meshing frequency (Mf1) of 740 Hz,
and its second harmonic (Mf2) of 1,480 Hz. Previous research (El-Karmalawy, 1993) has
shown that the RMS values are sensitive to changes in gear condition. The values of Mf/
and Mf2 are sensitive to the development of the defects on the surface of gear teeth.
Using the variable T to denote the damage process, the training sample has been defined
as being the set Z=[RMS,, Mfl, Mf2,, T}, i=1, ..., 9. The training parameters of Eq.
(5.18) have been taken to be b,=0.7, 5,=0.03, 1,= 3,600. And, the scaling factor
applied to the variable T has been taken as 1.4. A one-dimensional map with 50 knots

has been established through the previously described new algorithm. Figure 5.15 shows
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Fig. 5.15 Network of 50 knots trained by the new algorithm
to fit 9 data points. (s=1.4)
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Fig. 5.16 Disordered 30-knots network trained by CTM algorithm.
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how well the algorithm would allocate extra units. The projections of the damage

function obtained using the present algorithm onto the hyperplanes determined by the
three diagnostic indices of the gearbox are shown in Figure 5.15. It can be seen from the
above figure that the new mapping algorithm has the ability to find the optimal locations
of units, even though the number of knots is much more than the number of data points.
A neural network with 30 knots has been attempted using the CTM algorithm for training

but the network failed in that it produced a nonfunctional map as shown in Figure 5.16.

5.7 Discussion

A new approach to the condition monitoring and diagnosis of machine systems
is proposed. In this approach, the multiple-index based trend analysis is used as a basis
to (i) obtain information on the current state of the machine and to (ii) estimate with
prescribed accuracy the service life of the machine system being monitored. On-line
vibration measurements are used as the diagnostic signal and the variables for trend
analysis are obtained from the signal through the indices that are extracted from the time
series of the signal. The diagnostic indices are selected in such a way that each index is
distinctly sensitive 1o a particular type of fault or malfunction in the machine system.
Alternately, each and all of the commonly-observed faults or malfunctions in the machine
component being monitored, are adequately reflected in the variables used in the trend
analysis. That the proposed method produces more accurate results than the widely used
single-index based trend analysis is demonstrated considering the case of a bearing
system. The proposed new approach using multiple variable trend analysis has the
following important advantages:

1) No prior knowledge of the unknown model of multivariate function is required.

139



2) More than one characteristic of the on-line vibration signal can be
simultaneously considered.

3) Both large or small training data sets can be handled adequately.

The new neural network algorithm, is adapted to perform the above trend
analysis. The unequal scaling of variables is central to the new neural algorithm which
was originally proposed to improve the performance of Kohonen's self-organizing
mapping algorithm for regression problems. This strategy is particulary useful to the
regression analysis using piecewise linear functions, wherein the fitting of a multi-
dimensional curve is involved. Disordering of knots or units is avoided through the
proper selection of the best matching unit and its closest neighbours. Both independent
and dependent variables are considered for the selection of the best matching unit but
with different weights and further, the component of the input data vector that has a
uniform distribution, whether it corresponds to independent or dependent variable, is
assigned a greater value of weight. The natural ordering of units in both the projection
subspace of independent variables and the dependent variables is preserved in this new
SOM strategy. A greater emphasis to preserve the ordering of units along the component
of input data vector that has a uniform distribution is embedded through assigning a
greater value of weight to that component. The algorithm development has been oriented
so as to avoid the nonfunctional maps obtained by both the CTM and SOM algorithms.
Structuring a self-organizing neural network using the new algorithm for desired
applications is easy and further, the training process is fast in that it takes only few
seconds on a personal computer. It is shown that boih the CTM and SOM algorithms,
which are currently being used for function regression analysis, are not efficient and

accurate for use in machinery monitoring problems. To demonstrate this, application of
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the originzl SOM and the CTM algorithme to the trend analysis of a bearing system and
a gearbox is conducted. It is clearly shown that the topological order of units is violated
in both cases thus leading to erroneous and unreliable results. The new neural network
algorithm is shown to be superior to both the SOM and CTM algorithms in that it

1) does not violate the topological order of units;

2) does not produce nonfunctional maps when real-life data from practical
machine systems are considered,

3) has the ability to optimally locate all the units even when the number of units
is significantly large;

4) can estimate the multivariate curve from finite data points in addition to
estimating the multi-dimensional surfaces; and

5) consumes less compuiational time but yields highly accurate estimation of
multivariate functions such as the service life of practical machine systems. Thus, the
present chapter contains both analytical and algorithmic developments for use in condition
monitoring and diagnosis of industrial machine systems.

The scaling factor of the new algorithm has been shown to have a direct bearing
on the order and locations of the units or knots, thus on the accuracy with which a
regression curve is obtained. When the value of this scaling factor reaches a certain
threshold, violation of unit order ceases to be present in the established map. When the
number of data points is relztively large. increasing the value of the scaling factor beyond
this critical value makes the knots possess a more uniform distribution along the weighted
axes in the input sample space. However, equally spaced knots do not always yield an
optimal regression curve. since the corresponding value of average residual is more ‘han

that of the network with unequally spaced units. In other words, the average error of
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uniformly distributed knots is smaller. From the simulation results, it is felt that the
values of both average residual and average error simultaneously tend towards their
corresponding minimum values when the scaling factor reaches its critical value.

Increasing the values of the scaling factor beyond the critical value however, does not

guarantee this trend.
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CHAPTER 6
IMPLEMENTATION OF RMD-KBS

The structural implementation of the RMD-KBS (Rotating Machinery Diagnostic
Knowledge-Based System) prototype system is detailed in this chapter. The KBS
development tool that has beer utilized in this application is briefly introduced in Section
6.2. The knowledge acquisition is described in Section 6.3. An outline of the system
structure is given in Section 6.4 and this is followed by descriptions of all components
and modules of the RMD-KBS in Sections 6.5 to 6.10. The coupling of numerical and
symbolic processing, the hybrid knowledge representation and manipulation, the inter-task
connection between the database and the knowledge bases, and the inter-process
communication between the RMD-KBS and the external programs are all discussed in

detail, as is the multiple windowing user interface.

6.1 Introduction

In Chapter 3, the conceptual design of a new knowledge-based diagnostic system
for rotating machinery monitoring and diagnosis was described. Formulation of the fault
detection problem into a neural network based pattern classification problem was
discussed in Chapter 4. The multiple-index based trend analysis and its neural network
formulation. was developed in Chapter 5 for use in the diagnostic system. The feasibility
of the new conceptual design is the prime concern of this chapter. The conceptual design

is realized and the prototype knowledge-based system is fully developed. The
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implementation details and the features of the knowledge-based diagnostic system are both
provided in this chapter.

At this point, it is worthwhile to outline the major features and limitations, which
have been considered in the development of the prototype. As shown in Chapter 3. the
most remarkable characteristics of the design are

1) it is a hybrid system which employs both connectionist (neural networks) and
rule-based reasoning approaches for knowledge representation and knowledge-based
diagnosis:

2) it is a deeply-coupled numerical and symbolic processing system, which
performs machine fault diagnosis based on vibration signal analysis; and

3) it has a certain level of learning capability, as a consequence of the neural
networks employed in the system.

The design of the RMD-KBS orients itself towards industrial applications. Many
important aspects regarding industrial applications have been taken into consideration. For
instance, the RMD-KBS can itself perform suitable signal processing operations for
feature extraction. Compared with existing KBSs for rotating machinery diagnosis, the
RMD-KBS is highly automated. The user interface of RMD-KBS is well constructed to
provide a convenient working environment under a simple operating procedurc.

However, the development of a diagnostic KBS for real-world applications
involves too much work that can not be performed by a single person in a limited time.
As a prototype. the RMD-KBS is not considered to be a complete system. Both the
diagnostic knowledge encoded in it and the functions it can perform now, are less than
desired. The approach and methodology developed in this thesis have been implemented

in RMD-KBS only at a level needed to demonstrate the feasibility of the design approach.
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The RMD-KBS has been assembled using the KBS development tool LEVELS
OBJECT™. The structure and capability of this tool, as well as its object-oriented system,
are briefly introduced in Section 6.2. The knowledge source and acquisition are delineated
in Section 6.3, before describing the details of the structural implementation of the RMD-

KBS.

6.2 The KBS Development Tool and Its Object-Oriented System

The LEVELS OBJECT™ (Level5. 1990a: 1990b) is a KBS development tool
available for the implementation of rule-based systems. It combines the versatility of
object-oriented techniques with multiple interfacing strategies in a flexible windowing
environment. The LEVELS system is composed of an inference engine and a knowledge
editor. The inference engine supports both forward and backward chaining. and also
mixed-mode (forward and kackward) processing. It works with any knowledge base which
is developed using its knowledge editor. The knowledge editor is a multiple windows
environment (see Appendix A.2), that includes the utilities named Object Editor,
Rule/Demon/Method Editor, Display Editor, Agenda Editor, Windows Editor, Database
Interfaces, Graphical Display of Knowledge Tree, Session Monitor/Debugger. Values
Report. History Record and External Program Interfaces. These utilities support the
establishment of the knowledge base.

In a knowledge base, the information and knowledge can generally be represented
using different schemes such as "objects”. "agenda"”, IF-THEN-ELSE "rules"/"demons",
"methods”. grouped rules, and relational database models. The LEVELS5 objects
encapsulate the knowledge structure, specific values, and procedures for processing the

data. They are created using class declarations. The agenda schedules the events that the
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LEVELS application will follow, or the hypotheses that the inference engine will pursue
during backward chaining. The rules and demons are the same in the statement format,
but rules are evaluated by the backward chaining during inference. whereas demons are
fired by the forward chaining. A method consists of a group of statements for knowledge-
based reasoning. that can perform a more complex task than a rule or demon, Two types
of methods, named WHEN CHANGED and WHEN NEEDED, that are fired by forward
and backward chaining during inference, can be defined using LEVELS. These knowledge
representation schemes have been described at length in (Level5 1990a) and the details
of their usage have been documented in (Level5, 1990b). Further, associated with the
rules or demons are the confidence factors (CFs) which are described in detail in
Appendix A.2. The relational database models interface with external database files, for
information exchange between a particular database and the other components of the KI3S.
Moreover, a KBS devcloper can design his/her own user interfaces in Microsoft®
Windows™ format using LEVELS5. External computer programs, which are designed to
perform specific numerical or symbolic computational tasks, can be invoked by the
inference engine of LEVELS. Further details about the utilities of LEVEL5 will be
introduced in this chapter as and when required.

The RMD-KBS employs the object-oriented technique and the LEVELS system
supports the implementation. The objects provide a template for classifying and organizing
knowledge within a LEVELS application. A class, that is to be declared in order to create
an object, is defined by a collection of characteristics called attributes, that define the
structure of an object. The structure of a LEVELS object is outlined in Figure 6.)
(Level5, 1990a). It can be seen from Figure 6.1 that, a class possesses a name, certain

assignable properties. several attributes, and at least one instance. The properties determine
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Fig. 6.1 Outline of the structure of a LEVEL5 object.
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if the class can inherit the structure of another class, if the class is created from an
external database file. or if the class is limited to a single instance. An attribute of the
class has its type. and it can be used in the statements of the knowledge base as a
symbolic element or variable. Facets, rules, demons and methods refer to and influence
the attributes. For example, when the value of an attribute chaages during a reasoning
session, the rule that has previously been defined for this attribute, will be activated (i.c.
fired). A class defines only the structure of an object. In order to carry the values of the
attributes, an occurrence of the class called instance must be created. More than one
instance can be created by a KBS developer from the same class. A KBS developer can
use the Object Editor of LEVELS (see Figure A.2.2) to create classes and their instances.
as well as to specify the properties of the class, and to select the type of each attribute.
Moreover. LEVELS provides a number of system-defined classes such as application,
picturebox. promptbox, pushbutton. textbox. timer, and true-false box (see Levels,
1990a). for KBS development. Typical examples of classes will be given in the following
sections.

Among the family of currently-available KBS development tools, the LEVELS is
a medium-sized and a fairly sophisticated system. Compared with other expert system
shells such as NEXPERT OBJECT™ (TATA, 1989), the LEVELS is not a very powerful
tool. However, this tool has been adequate for the implementation of RMD-KBS, since
it provides all the utilities needed to support the development of the present diagnostic
KBS. Nevertheless, significant amount of additional programming work had to be

performed to fruitfully exploit the capabilities of LEVELS system.
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6.3 Knowledge Source and Acquisition

The knowledge embedded in RMD-KBS has mainly been acquired from published
literature on rotating machinery monitoring and diagnosis, and fault detection based on
vibration signal characteristics. Diagnostics of rotating machinery employing the analysis
of vibration signal has been well documented in the technical literature. The diagnostic
knowledge to be implemented in the RMD-KBS is obtained from the literature. Two
important articles (Sohre, 1980; Esheleman and Jackson, 1992) written by well known
experts in this domain, have been used as the primary references. It may be noted here
that the former article, (Sohre, 1980) has formed the knowledge source for several
existing advanced KBSs, e.g. (Stuart and Vinson. 1985; Keim and Nordmann, 1989; Kato
et al, 1990). Detailed information about the algorithms that are used in both vibration
signal analysis and machine fault diagnosis has been acquired from relevant text books
and monographs. including (Collacott, 1979: Shives and Mertaugh, 1986; Rao and
Griffiths, 1990: Lipovszky et al, 1990; and Chen and Li, 1991). The illustrations and case
studies, that have been documented therein have been taken into account. In addition, a
large number of journal and conference publications have also been reviewed. These
include the works by Sasaki and Tomita (1984). Cempel (1988). Boyce et al. (1989).
Brawley et al. (1989b), El-Shakweer (1989), McFadden (1989), Zhuge et al. (1990),
Saavedra et al. (1990), Grace (1990), Martin et al. (1990), Kadushin 1991), Tang et al.
(1991), Leung (1992), Mechefske and Mathew (1992), Yan and Shimogo (1992).

The author has long worked on machinery monitoring and diagnosis of real-life
industrial machinery systems and hence accumulated experiential knowledge. This
experiential knowledge has served as a basis in sorting out the information provided in

the published literature. Further, real-life vibration data have been obtained from machines
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currently in use and have been carefully analyzed in this investigation before encoding the
relevant information. The detailed information about the machines monitored, the setup
of signal measurement devices, the vibration data, the detected machine faults based on
this vibration data, and the diagnostic method appropriate to cach and all of the cases are
available in the work of (El-Karmalawy, 1993).

The knowledge acquisition work involved in the present development of RMD-
KBS is performed through the sequential investigation approach described below:
Step 1. Make a list of the faults and malfunctions in a rotating machinery system, that
have been well defined, frequently observed and comprehensively studied in previous
MMD research.
Step 2. Investigate for (i) the relationship between the faults and the machine type or
structure, and (ii) the relationship between a fault and the operational conditions of a
machine, if they are given in the literature.
Step 3. For each machine fault or malfunction, find the most appropriate diagnostic
methods and indices, that have been proven or recommended in the published literature
as the best ones for the detection of the fault.
Step 4. Sort out the relationship between a machine fault and the diagnostic indices used
in detecting it, and describe the relationship qualitatively. The previous knowledge and
experience about fault-symptom relationships in quantitative mode, that provide important
reference values 1o be used in determining the numerical thresholds of the indices, and
in the training of neural networks, are also obtained
Step 5. Corresponding to each diagnostic index, find the relevant equation or algorithm.
Obitain the information of the sensors, the corresponding settings involved in the signal

measurement and processing, if available.
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Step 6. The raw information and knowledge can be gathered through the above five steps.
Reorganize the accumulated material into different types of information and knowledge
as defined in Chapter 3. In this step of knowledge acquisition, significant analysis tasks
are involved, while determining the way in which the information and knowledge are used
in the RMD-KBS.

The knowledge acquisition has been mainly performed at the early stage of this
research work, and has continued throughout the development of the RMD-KBS, as and

when necessary.

6.4 OQutline of the RMD-KBS

The structure of RMD-KBS is shown in Figure 6.2. As an on-line monitoring and
diagnostic KBS, it is designed to be an integrated system of eight components: the
sensors, a data acquisition system, a database (DB). numerical analysis routines (NAR),
a multiple windowing user interface (Ul), an inference engine (IE). knowledge bases
(KBs), and a knowledge editor (KE). These components are now described in the sequel.

The sensors and data acquisition system, including signal pre-preprocessing
hardware (signal amplifiers, filters etc), can be linked to RMD-KBS. These are actually
intended to pick up vibration signals form the machines being monitored, to digitize the
measured analogue signal, and further, to input the obtained digital data samples to the
RMD-KBS. They are designed so as to be controllable by the RMD-KBS, e.g. when they
perform their tasks. the settings of the sampling conditions are sought from the KBS. The
functions performed by physical sensory and data acquisition systems, are simulated
through the use of oft-line files of vibration data samples.

In the RMD-KBS. several types of information and vibration data are stored in
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Fig. 6.2 The structure of RMD-KBS.



more than 200 database files that are managed by the DB. LEVELS has a database
interface for communicating dBASE I11* files through a special type of objects, known
as database classes. Using the object-oriented programming (OOP) techniques in RMD-
KBS, as mentioned in Chapter 3, the large amount of information (facts) required for the
diagnosis is stored in the database, instead of being directly described through the
symbolic statements in its KBs. This facilitates the acquisition and refinemant of the
factual knowledge, through database access rather than knowledge base modification.

A number of algorithms and their corresponding computer programs, for numerical
data processing, realization of neural networks, and graphic displays have been developed
to perform the tasks of vibration signal unalysis, diagnostic index extraction, neural
network based diagnosis, and to display the vibration data, the spectrum and other relevant
plots on the screen. They have been encoded in C++ language as Microsoft* Windows™
applications (i.e. the programs can run under the Windows environment). The C++
routines are external programs to the KBS and they are invoked by the inference engine.

The multiple windowing user interface developed in this research is in Microsoft®
Windows'™ format, and performs the man-machine communication at the run-time of the
system. The utilities of the LEVELS knowledge editor have been employed in the
development of the user interface. The behaviour of user interface elements is controlled
by rules. demons and methods. In order to enhance the user interface, several windows
in a more complex style for graphical displays have been developed in C++.

The inference engine that is provided by the LEVELS OBJECT, supports three
inference strategies, i.e. the forward chaining, backward chaining and mixed-mode
chaining schemes. The selection of an inference scheme, however, depends on the tasks

to be performed by a KBS using a particular knowledge base. For RMD-KBS, all the
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three inference schemes have been employed, at different stages of performing the
monitoring and diagnosis tasks.

The knowledge editor embedded in the LEVELS system, has been adopted. The
implementation « f the symbolic processing modules has been performed using the utilitics
of ihe knowledge editor. It is an integral component of the RMD-KBS, and LEVELS is
always available for the acquisition and refinement ot the knowledge. as well as for the
modification of the RMD-KBS. More information as to how the LEVELS knowledge
editor has been used to build a KBS is given in the foliowing sections.

The structure of the knowledge base of the RMD-KBS is designed as a set of
several knowledge bases. Each uf these KBs works with the LEVELS inference engine
in order to constitute a symbolic processing module. Each module is designed to perform
certain specific tasks, such as system initialization, display of the monitoring signal and
indices, diagnostics and knowledge learning etc. While the RMD-KBS performs diagnosis.
only one KB works with the inference engine of the system at a time. It may be noted
that in such a design, the size of each KB, as dcfined by the number of rules contained
in it, is relatively small. The relatively small size of KB will be more helpful in grouping
different knowledge and in easing the inference, since any reasoning through a small

group of rules will be certainly more efficient than searching a massive group of rules.

6.5 Sensors and Data Acquisition System

The sensors and data acquisition system arc intended to obtain the vibration signal
and provide the RMD-KBS with digitized data samples. The RMD-KBS has been
designed to possess the capability of controlling the data sampling process. In the

development of the prototype, however, the functions that are normally performed by the
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sensors and data acqui-ition system are simulated through accessing the off-line data files.
Vibration signals have been acquired from several real-life industrial machines and also
from (El-Karmalawy, 1993). Tle signals have been digitized and stored in a large number
of off-line data files. These data files are organized by the database of the RMD-KBS.
The information about the machines being monitored and the sensors (number, type,
location etc) has also been obtained. The relevant data have been stored in the database
of the RMD-KBS.

During the diagnostic process, the RMD-KBS asks the sensors for vibration data
obtained under the sampling conditions or sr*.ings. as specified by it. This step of the
diagnostic process is simulated as follows: when the RMD-KBS needs vibration data, it
is provided by its database. instead of being directly provided by the data acquisition
system. For the diagnosis. the required input information regarding real-life machines and
sensors, is provided by the RMD-KBS itself. This way. the functionality of the sensors
and data acquisition system is simulated without affecting the design of the RMD-KBS

as an on-linc monitoring and diagnostic KBS.

6.6 Database

The database of the RMD-KBS is able to handle various types of information and
a large amount of vibration data, automatically and efficiently. In this meuner, easy access
to any picce of the information or any block of the data samples during diagnosis is
assured. In the implementation of the RMD-KBS, this requirement has been achieved by
structuring the database in an appropriate manner. It has also been designed such that the
end-users are not requested either to learn the format of the database files or to create the

files by themsclves. The RMD-KBS provides the end-users with the utilities for accessing
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the database. so as to obtain the information stored in it, and to perform acquisition and
refinement as may be needed. Descriptions of the utilities of RMD-KBS for database
access will be given later in this chapter. Both the structure of the DB, and its
intercommunication with other elements of the RMD-KBS are shown in Figure 6.3.

The LEVELS possesses a Database Interface (see Figure A.2.1), that can integrate
a database file with a KBS. The database files must however be written in dBASE 111*
format, which uses a number of "fields" to define a complex data group and "records" to
store the values of the "fields". A KBS developer can create a special type of object,
called database class from the data file structure. The database class has the same number
of attributes as the number of "fields", with each of them communicating a corresponding
"field" of the dBASE Il1 file, thereby reading from or writing the values into the file. The
database class has also a group of system-defined procedures (commands or functions),
that can be utilized (called in the knowledge base statements) to access the corresponding
file.

The database of the RMD-KBS contains numerous database files that are external
to the LEVELS system. As mentioned previously, there is a large number of off-line files
that contain the vibration data samples. During the implementation of the RMD-KBS, a
problem has been observed that the format of dBASE 111 files is not suitable to store the
vibration data samples which are in a sample series format and not in tabular form. In
order to handle the vibration data samples, as well as other types of information, two
types of database files called data files and information files respectively, have been
established in the DB. A data file is written in a text format as a serics of data samples
and can be accessed (both read and write) by the numerical processing routines of the

RMD-KBS. They can also be edited by using any text editzr. An information file is
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established in the dBASE 111 structure that can be directly accessed by the KBS through
the LEVELS database interface. The information files can also be edited by using the
dBASE III database editor.

There are more than 200 data files in the DB of RMD-KBS, in which a large
amount of data samples is stored. They include the data files of machine vibration signals.
the files of some signal processing results, and those of historical data. In order to manage
such a large number of files, the names and certain information about them are recorded
in the dBASE 11 files that provide the information to the KBS. Based on the information.
RMD-KBS can make a selection among the data files, and can assign a numerical
processing routine to work on the selected data file at run-time.

Several types of information are stored in the DB under dBASE 11l format. The
information includes the values of the structural and operational parameters of the
machine system, the descriptions of machine components, the number, type and location
of the sensors mounted on cach machine, the signal processing scutings, the values of the
diagnostic index thresholds, and information about the data files themselves. There are 8
information files in the DB. The structure of these files is established using dBASE 111+,
Version 1.0, and they are integrated into the RMD-KBS. In the knowledge bases of the
RMD-KBS, 18 database classes are created corresponding to the 8 information files. They
are designated as dB3 unitrgst, dB3 sensor, dB3 setting, dB3 bearing ctc.

An example of a database class is shown in Figure 6.4. The databasc class
illustrated is named dB3 sensor, and is linked to the dBASE Il file named
SENSOR.DBF that contains information about the number, type and location of the
sensors mounted on the rotating machines being monitored. The dB3 sensor class, like

other database classes. possesses both a group of attributes and a group of procedures
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(commands or functions). Its attributes are shown on the right window of Figure 6.4,
which represents the structure of the corresponding information file with each attribute
to communicate a field of SENSOR.DBF. The procedures of dB3 sensor, listed on the
left window of Figure 6.4, are defined by the LEVELS system. These procedures can be
called in the statements of rules, demons or methods, and are invoked in a reasoning
session so as to open or close a file, to read or write a record, to insert or delete a record.
and so on. For instance. the statements in the demon below ask the LEVELS inference
engine to delete. from SENSOR.DBF. a record of previously stored information about the

sensors on a machine system. that may be no longer used.

DEMON to delete record
IF to delete OF dunit actions AND cc OF variables > 0
THEN FIND dB3 sensor
WHERE unit_name OF dB3 sensor = string OF variables
WHEN FOUND
record OF dB3 unit := record OF dB3 sensor
action OF dB3 sensor IS delete record := TRUE
action OF dB3 sensor IS pack := TRUE
action OF dB3 unit IS delete record := TRUE
action OF dB3 unit IS pack := TRUE
cc OF variables := cc OF variables - 1
WHEN NONE FOUND |
to delete OF dunit actions := FALSE

FIND END
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AND record OF dB3 sensor := 1

AND record OF dB3 unit := 1

AND LOOP

AND to delete OF dunit actions := FALSE

In the above demon, action OF dB3 sensor IS delete record ;= TRUE and action OF
dB3 sensor IS pack := TRUE are the statements that perform the deletion of a record
from the file.

As mentioned in Chapter 3. the DB is so designed as to enable the representation
of factual knowledge. The files contain the "facts" (data, parameters, settings, conditions
etc) of the factual knowledge. The knowledge is structured by objects (i.e. database
classes) and corresponding attributes, which are in turn referred in the knowledge-based
processing. Through such a shared representation, the acquisition and refinement of the

factual knowledge is easily accomplished through a simple access to the database.

6.7 Numerical Analysis Routines

The RMD-KBS is designed as a deeply-coupled numerical and symbolic
processing system which processes the vibration data by itself during diagnostic reasoning.
It is also a hybrid system which employs connectionist technologies (i.e. neural networks)
to represent the diagnostic knowledge in a quantitative mode. The neural network
algorithms (see Chapters 4 and 5) perform their tasks through a numerical manipulation
of data. Morcover, the KBS is required to display plots on the screen, to illustrate the
data, information and some results of numerical computation. From a global view of the

KBS. it can be seen that (i) the graphical display routines are utilized to enhance the user
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interface of RMD-KBS; (ii) the numerical processing capability of the system and the
coupling between numerical and symbolic processing are accomplished through the design
of the corresponding routines: and (iii) the neural network algorithms and the
incorporation of neural networks with the rule-based symbolic processing modules of the
system are also realized by invoking external programs.

The implementation of the above functions of the RMD-KBS is not feasible under
the LEVELS development tool alone, since it does not support complex plots and
numerical calculation. Hence, programs that are external to LEVELS are employed in the
RMD-KBS. Routines for graphical display. numerical calculation and neural networks, are
encoded in C++. They constitute the component named Numerical Analysis Routines
(NAR). The RMD-KBS can invoke them via its symbolic statements through a LEVELS
utility named Inter-Process Utility (IPU). The connection between the inference engine
and the external routines is shown in Figure 6.3. Two types of external programs, named
EXTERN and SERVER programs, can be called from the statements of rules, demons.
or methods. An EXTERN program is a common Windows application (i.c. the program
can run under Microsoft* Windows™) without any special codes. It can receive messages
and different types of data from RMD-KBS. On the other hand, a SERVER program is
specifically written to communicate with the LEVELS inference engine, that can also send
its responses or calculation results back to the KBS.

The external programs of the RMD-KBS are encoded in C++, using the Borland
C++ compiler, Version 3.0. They are designed for graphical display, signal processing and
neural network applications. Some of them are designed as EXTERN programs, and the
others, as SERVER programs, depending on the amount of information to be passed

between a routine and the KBS. The routines for vibration signal processing can perform
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spectral analysis and statistical calculations in order to extract a number of indices from
the vibration data samples. The mathematical expressions of the statistical methods
implemented in the routines are listed in Appendix A.1. Further, the programs of neural
network applications implement the self-organizing networks for fault pattern
identification and classification, the back-propagation networks for machine condition
classification, and the newly developed SOM algorithm for multiple-index based trend
analysis. The neural network programs can also display plots on the screen. The way of
calling external programs from the RMD-KBS is illustrated through the following
examples.

The statements given below may be seen in a rule, demon or a method of RMD-
KBS. They invoke an EXTERN program, named ANALYSIS.EXE to present both a set
of vibration data samples and the FFT spectrum of the data set on a window, as shown

in Figure 6.5.

ACTIVATE "IPU, EXTERN, d:\I50\2\ANALYSIS.EXE"

COMMAND Command of Variables

The statement ACTIVATE is a command to call an external program through the
LEVELS5 IPU, with the specifications of the type and name of the external program. The
statement COMMAND s used to send a message carried by an attribute of a class, i.e.
Command of Variables, to the external program. The message could include the name
of the data file, the name of the machine, and the type and location of the sensor that
picked up the vibration signal to be displayed on the screen.

The signal processing and vibration feature extraction routines are written as
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SERVER programs to LEVELS, since more communication is required in calling them.

The way to call a SERVER program is shown through the following example.

ACTIVATE "IPU.SERVER, d:\I50\2\PROCESS.EXE"
SEND File Name of Bearing1

SEND Analysis f of Setting

RECEIVE PP of Indices

RECEIVE  AX of Indices

RECEIVE CR of Indices

RECEIVE AM of Indices

Via the above statements, the RMD-KBS calls a SERVER program, named
PROCESS.EXE. The SEND commands send messages about the data file name and the
value of the analysis frequency to the routine. Further, RMD-KBS asks the routine to
calculate and then to return the values of four indices, namely Peak-to-Peak value,
Absolute Mean valué, Crest Factor, and Arithmetic Mean value respectively.

The programs of neural networks are written in both EXTERN and SERVER
application forms. When the RMD-KBS trains a neural network for the purpose of
learning knowledge, the corresponding program is designed as an EXTERN program.
While the RMD-KBS invokes a trained nieural network to perform fault classification or
trend analysis. the corresponding routine is encoded in the SERVER application form, that
can send back its calculation results to the RMD-KBS. The way of calling an EXTERN
or SERVER program of ncural networks is similar to either one of the examples given

above. A neural network program may also draw some plots on the screen to illustrate its
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performance. Figure 6.6 is drawn by the program that uses th: newly developed SOM

algorithm to perform a multiple-index based trend analysis.

6.8 The Multiple Windowing User Interface

The user interface provides a man-machine communication environment. The end-
users communicate with the RMD-KBS and thereby operate it through the user interface.
The UI performs two fundamental functions: (i) obtain the input information from an end-
user, e.g. to receive a value, a piece of information, or a user selection among several
options; and (ii) post the output information such as figures, messages, and queries for
user response. In this implementation. an input is calied a user interface event, and the
output is called a user interface action.

The Ul of the RMD-KBS has been built in Windows format, and is composed of
window frames, graphical displays on the windows, and various graphical elements that
constitute a display. It is mainly built by using the utilities of LEVELS. In addition some
graphics programs have also been encoded in C++ to enhance the capability of the UL.

The development of the user interface is not only to create the windows and
displays, but also to implement the functions that are desired to be performed by the
displays and their elements. The man-machine communication is the most basic function
of the Ul. For example, a graphical element called Promptbox can be defined in a
display which receives an input from the user. There must be an attribute of an object,
that is attached to the Promptbox to receive the input value. After the input has been
received, it may be considered as an Ul event to drive the system to perform a task,
depending on the design of the interactions between the Ul events and the other parts of

RMD-KBS.
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The actions of the Ul are fully controlled by the RMD-KBS. For example, at the
stage of system development, a Picturebox, that is a square frame with a picture attached
to it, can be defined within a display. When the Picturebox appears on a window., the
corresponding picture wiil be posted within it. It is also allowed to attach another picture
to the same Picturebox, at the time when something else is to be shown on the sereen.
This way, the RMD-KBS performs the communication with its user through its user
interface. The Ul has been designed to offer more convenicnce and clarity to the user,

as can be seen from the demonstrations reported in the next chapter.

6.9 Inference Mechanism

The inference engine employed in the RMD-KBS is that of the LEVELS system.
As mentioned previously. it can perform forward chaining, backward chaining and mixed-
mode chaining. It can also calculate the confidence factors (sce Appendix A.2) involved
in the rules or demons during the evaluation. When the LEVELS is used to implement
the RMD-<BS, the selection of an inference scheme that is highly suitable for the
intended application becomes an important task. According to the selected inference
scheme, the statements to be written in the corresponding KB could differ in format. For
example, the rules and the WHEN NEEDED methods are evaluated and fired by the
backward cheining scheme, while both the demons and the WHEN CHANGED methods
are processed by the forward chaining scheme. In the RMD-KBS, both forward and
backward chaining strategies are employed in order to optimize the performance of the
diagnostic system. The details as to when and where the different inference strategies have
been employed. will be given in the next sectin along with the description o1 the

knowledge bases of the RMD-KBS. Furthermore, some schemes of inference procedure

168



control, such as "fire the first" and "firc all" (to evaluated the first or all. of the rules in

a rule group), are also employed.

6.10 Knowledge Bases

Five knowledge bases have so far been implemented in the RMD-KBS. Each one
works together with the inference engine of LEVELS, thereby constituting a symbolic
processing module of the RMD-KBS. The symbolic processing modules thus constituted
are named MAIN-KBS. SET-UP, BROWSER. MONITOR and MENTOR. This way. the
entire knowledge has been partitioned into separate knowledge bases that arc relatively
smaller in size. The development and management of the small sized KBs are much casier
than developing a single huge knowledge base.

More than 400 instances of 101 objects have so far been defined in the knowledge
bases of the RMD-KBS. The attributes of the objects are referred in 57 rules, 136 demons
and 89 methods that have been encoded in the KBs. It may be noted here that several
methods have been used. Because a method contains many more statements than what a
rule or a demon. it can perform complex tasks. Before describing the implementation of
the five knowledge bases, two aspects. viz., (i) linking the modules, and (ii) sharing the
data and information among the modules, will be considered.

The link between the five symbolic processing modules is shown in Figure 6.7.
The MAIN-KBS is the one which can be linked to any other knowledge base, and there
is no direct link between the other knowledge bases. At any time, there is only onc
knowledge base that is working with the LEVELS inference engine. A module is linked
to another module using the CHAIN command of LEVELS5. When the LEVELS executes

a CHAIN command. the current KB ends, and a new KB is invoked. The following
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example shows a typical WHEN CHANGED method. that invokes the BROWSER from

the MAIN-KBS.

WHEN CHANGED

BEGIN
record OF dB3 unitrgst := 1
record OF dB3 bearing := 1

record OF dB3 sensor := 1

record OF dB3 setting :

I
RN

CHAIN “browser"

END

When a knowledge base is linked to another knowledge base. there may be a
message that needs to be transmitted from the current KB to the new one. Further,
different inodules of the RMD-KBS may need to refer to the same information and data
in performing their individual tasks. Data sharing between two knowledge bases is
realized in two ways. The first one is the so called "values sharing” of object attributes.
All of the knowledge bases have the same object, named domain, which is specified as
a SHARED object. The current values of the attributes of domain can be directly passed
to the new KB. This method is used in the implementation in order to carry the message
that is immediately needed at the beginning of a new module. The second way of data
sharing employs the database classes for data sharing between the knowledge bases.
Database classes corresponding to the same database file can be established in different

KBs. Hence, the different modules can get the same information from the database file.
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Most of the data and information to be shared by the KBs are handled this way. The five
modules are described in the following sections. The way with which they are used. and

their performance are illustrated in the next chapter.

6.10.1 The SET-UP Module

The SET-UP is an important knowledge-based module, which is developed as a
tool that helps the end-users to (i) initialize and adapt the RMD-KBS to any individual
application, and (ii) refine the information that is stored in the information files. With this
tool. the user can input the identifications of the machine system being monitored. Users
can specify or modify the values of both the structural and operational parameters of the
machines or the machine components. They can also input sensor information and assign
monitoring index threshold values. using the SET-UP module. Figure 6.8 shows the first
window of the SET-UP module.

The SET-UP module is not only a tool for the users to access the information files
in the database. it also automatically determines the signal processing settings, such as the
sampling frequency. filtering frequency. the frequencies at which the spectrum amplitudes
should be taken as monitoring indices. and so on. based on knowledge of the signal
measurcment process and the signal processing methods, that are embedded in it. The
following demons in a demon group arc employed to determine the correct sampling
frequency.

DEMON setup 4: sampling f

IF to setup OF setting actions
AND 0 < rotating f OF limits
AND rotating f OF limits < 10.0
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THEN sampling f OF limits := 128.0

DEMON setup 5: sampling f

IF to setup OF setting actions
AND 10.0 < rotating f OF limits
AND rotating f OF limits < 20.0
THEN sampling f OF limits := 256.0

......

DEMON setup 9: sampling f

IF to setup OF setting actions
AND rotating f OF limits > 240.0
THEN sampling f OF limits := 4096.0

The SET-UP module has a sophisticated user interface to perform the man-

machine communication needed for information acquisition. Inside the SET-UP, the

settings is also performed according to known information (i.e. the user input and other

information). Hence, the forward chaining strategy is selected to work with the knowledge

base of the SET-UP tool.

6.10.2 The BROWSER Module

The BROWSER is the smallest and the simplest module of the RMD-KBS. It is
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designed for the user to select a machine as the subject to diagnose by browsing through
the information files of all the machines under monitoring. The BROWSER provides the
user with information about the machine systems. their subsystems and components, the
sensors and so on.

The RMD-KBS has been designed to monitor machine systems by acquiring
vibration signals and calculating the values of a set of monitoring indices. The diagnosis
process is triggered when an abnormal value of any monitoring index is detected.
However, the initiation of a diagnosis task can also be performed by the user. When a
particular machine has been selected by the user. the BROWSER will gather the neeessary
information and pass it to the MAIN-KBS. The statements in the knowledge base of

BROWSER are written in a form suitable for forward chaining.

6.10.3 The MONITOR Module

In the diagnostic process. the end-users may want to check the current values of
the monitoring indices and to see the vibration signal and the spectrum. The MONITOR
module is intended to provide the user with the above information. The database can be
accessed. graphical routines can be called to display the plots, and numerical routines can
be invoked to perform the calculations by the MONITOR module. Further, this module
is important to the system since it enables the experienced diagnosticians to compare the
results of the knowledge-based reasoning with what they infer from the information and
displays provided by MONITOR. The diagnosticians can thus decide whether the
knowledge embedded in the RMD-KBS is not adequate and so should be refined, and in
that case, what type of new knowledge is needed to be added into the system.

The MONITOR module is implemented through symbolic processing with the
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forward chaining scheme. Several graphical and numerical routines are involved in this
operation. It can also access both the information and data files. Hence, it is quite large
in size, i.e. it contains a large number of demons and methods. The graphical and
numerical routines can be further improved so as to implement more methods that are
available for vibration signal monitoring and analysis. Figure 6.9 shows a small part of
the Knowledge Tree of MONITOR. The Knowledge Tree (see Figure A.2.9) is a utility

of LEVELS, which graphically shows the structure of a knowledge base.

6.10.4 The MENTOR Module

The MENTOR module is designed to perform two tasks: (i) to train the neural
networks, and (ii) to adjust the values of the monitoring index thresholds. Three types of
neural networks have so far been implemented in this prototype. i.e. back-propagation
neural networks. self-organizing neural networks and the new SOM algorithm for
multiple-index based trend analysis. The learning algorithms of these neural networks have
already been described in Chapters 4 and 5. This module can select a data file from the
historical data files and then perform the training of neural networks. When sufficient
historical data have accumulated, the adjustment of the threshold values of diagnostic
indices could be performed using statistical methods to calculate the proper values of both
the minimum and maximum thresholds of an index. The MENTOR module also works
with the forward chaining scheme. since the learning processes are data-driven in nature.
It is an independent module that will not be involved in the diagnosis, but will be used
when the user wants to train a neural network. A WHEN CHANGED method described
below calls an external routine. that is one of two routines designed for training the SOM

networks, according to the context of the reasoning session.
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WHEN CHANGED

END

BEGIN
visible OF expand window ;= FALSE
commands OF control := CONCAT( commands OF control, "+")
commands OF control := CONCAT( commands OF control, nNodes
OF control)
commands OF control ;== CONCAT( commands OF control, "+")
commands OF control ;= CONCAT( commands OF control, nCycles
OF control)
commands OF control ;= CONCAT( commands OF control, "+")
IF case OF control = 1 THEN
BEGIN
ACTIVATE "IPUEXTERN,TRENDW.EXE"
COMMAND commands OF control
END
ELSE
BEGIN
ACTIVATE "IPU,EXTERN,SOMW.EXE"
COMMAND commands OF control

END

The attribute, nNodes OF control. carries the number of nodes of a new SOM network

to be established. Another attribute. nCycles OF control, carries the value of the number
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of times the data sample sets are presented to the network during the training. The values
of these two attributes are assigned by the user before firing the above WIHEN
CHANGED method. The external routines designed to perform the training of the two
different types of SOM networks are named SOMW EXE and TRENDW.EXE. In the
above example and in the examples previously presented, it can be seen that the control
of the symbolic process is performed by the statements in the KBs. The numerical
processing routines are also controlled by the symbolic commands and statements. Such

statements in the KBs represent the control knowledge which was sumimarized in Chapter

3.

6.10.5 The MAIN-KBS Module

The MAIN-KBS module performs the most important task of th. diagnostic
system. The knowledge regarding rotating machinery diagnosis is mainly manipulated in
the knowledge base of this module. It can chain to any of the above four modules.

As mentioned in Chapter 3. the diagnostic strategy employed in the RMD-KBS,
consists of three steps. i.e. (i) generate the hypotheses of the suspected fault: (ii)
determine the relevant signal analysis methods and diagnostic indices; and (iii) determine
the condition of the machine in light of the assigned hypotheses. The manipulation of the
diagnostic knowledge by symbolic statements is described below.

There are five groups of rules, demons and methods in the KB of the MAIN-KBS
module. The neural networks to be invoked by the MAIN-KBS can be considered as
another group. Both the hierarchy of reasoning out the above six groups, and the
information flow during the reasoning are shown as Figure 6.10. The diagnostic tasks and

the reasoning process to be performed by MAIN-KBS is described below.
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Generating the Hypotheses of Machine Faults: In the KB of the MAIN-KBS. a list
of fauits and malfunctions which are frequently-encountered in rotating machinery and are
documented in the published literature (Sohre, 1980: Dimarogonas, 1992; Eshleman
Jackson, 1992), has been encoded. The faults or malfunctions are summarized in Table
6.1. The hypotheses to be generated by the MAIN-KBS are selected from the above list,
based on the available information about the machine system. the values of the monitoring
indices, the diagnostic knowledge and experience, and the heuristics and rules of thumb
regarding fault-symptom relationships. which are stored in the MAIN-KBS in symbolic
mode. The forward chaining inference scheme is followed through demons and WHEN
CHANGED methods with confidence factors, to generate the hypotheses.

The strategy of generating the hypotheses basically involves two steps of reasoning
as shown in Figures 6.10 and 6.11. After a machine. a sensor on it and the corresponding
data file are all selected by the user. the values of several monitoring indices are
calculated from the data samples in the file. These values are normalized to have a value
between O and 1. using the method defined in Chapter 3. Subsequently, the hypotheses
are generated by the hierarchically connected demons and methods in the first and second
groups. through the following reasoning.

1) Determine the faults and malfunctions from the list, that can not occur or can
not be detected in the machine being diagnosed, based on the input information and the
available information about the structural and operational parameters of the machine, the
information about the sensors, and the diagnostic knowledge and experience encoded in
the MAIN-KBS. This step of reasoning is designated as "elimination”, and actually
cancels form the above list, the faults that can not occur in the subject machine. The

remaining faults are marked as the "candidates" and they are evaluated by another group
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Table 6.1 The list of machine faults and malfunctions.

Components Fault 1 Fault 2 Fault 3 Fault4 Fault 5
Rolling Wear Pitting Sliding
element
bearing
Coupling Mi-align- Resonance | Inaccuracy
ment & damage
FFoundation Structural Insufficient | Resonance
resonance tightness of support
Gears Wear Tecth Scoring Pitting Spalling
broken
Journal Oil whirl Eccentric
bearing
Rotor /shaft | Unbalance | Cracked Resonance | Run out Bow
Seal Oil seal Rub
induced
vibration
Thrust Wear Rub Damaged
bearing surface
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of demons and methods in the second group.

2) Evaluate the values of the monitoring indices based on rules of thumb regarding
the fault-symptom relationships, in order to determine which faults and malfunctions are
the most plausible faults, i.e. the hypotheses. The facts about both the machine system and
the sensors should also be referred to this end. This step of reasoning is called
“nomination", and selects a few faults and malfunctions as the hypotheses, i.e. the most
likely faults.

For example, the demon below eliminates all the journal bearing faults, since the
type of bearing in the monitored machine is a rolling element bearing. Meanwhile, tne
demon sets the values of the attributes of the ball bearing fault to 100. so that further
cvaluation of other demons in the second group will be triggered at a later stage. The
factual knowledge of the bearing type is actually provided by a database class. named

dB3 unitrgst, which in turn gets the relevant facts from the corresponding database file.

DEMON bearing problems 1

IF bearing OF dB3 unitrgst = "Rolling Element Bearing"
THEN Wear OF ball bearing fault := 100

AND Pitting OF ball bearing fault := 100

AND Sliding OF ball bearing fault := 100

AND Oil whirl OF journal bearing fault := 0

AND Eccentric OF journal bearing fault := 0

AND Damaged surface OF journal bearing fault := 0

Another demon given below, recognizes that no sensor has been mounted along
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the axial direction to measure the vibration signal. Then, it has to climinate the category
of thrust bearing problems. because these problems are difficult to identify based on the

available information.

DEMON thrust bearing problems
IF axial bearing OF dB3 unitrgst := "Doesn't have"
OR ( free_a OF dB3 sensor = "
AND joint_a OF dB3 sensor="")
THEN wear OF thrust bearing fault := 0

AND rub OF thrust bearing fault := 0

When the other demons similar to the above have been evaluated, the faults and
malfunctions in the list are assigned a value of either 0 or 100. Those faults that are
assigned a value of 100 will be further judged by other demons or methods, that represent
the fault-symptom relationships. in the second group. At the stage of knowledge
acquisition to establish the RMD-KBS. the fault-symptom relationships have been
collected. For example, regarding rotor unbalance, the possible symptoms are (Sohre,
1980; Eshleman and Jackson. 1992): (i) a distinctly-high amplitude appears at the rotating
frequency in the spectrum, with much lower level amplitudes at the 2nd and 3rd
harmonics; (ii) the value of the amplitude at the rotating frequency increases when the
rotating speed increases; (iii) the values of certain time domain indices are greater than
their corresponding values at the normal operating condition of the machine, e.g. the
Peak-to-Peak value, RMS value and the Absolute Mean value; (iv) the above symptoms

can be obtained from the sensors at both the vertical and horizontal directions. The demon
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given below provides a heur!.tic suggestion about the current fault, based on the above

knowledge about the occurrence of unbalance.

DEMON of unbalance

IF Unbalance OF rotor fault = 100
AND ar OF dB3 index > 0.25
AND ( pp OF dB3 index > 0.3

OR rms OF dB3 index > 0.3

OR ax_mean OF dB3 index > 0.3)

THEN Unbalance OF rotor fault := 90 CF 90

A number of demons similar to the above, are available to represent the
judgemental knowledge and determine which fault is possibly developing. Another demon
given below considers the features of the vibration signal and an additional condition. as

to whether the location of the sensor is close to the coupling of the machines.

DEMON of misalignment
IF misalignment CF coupling fault = 100
AND ( location OF sensor = "JH"

OR location OS sensor = "JV")
AND a2 OF dB3 index > 0.2
AND ( pp OF dB3 index > 0.2

OR rms OF dB3 index > 0.25)

THEN misalignment OF coupling fault := 85
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AND unbalance OF rotor fault := 60 CF 80

It may be noted here that confidence factors are employed in the above two
examples. The usage of confidence factor scheme is helpful to represent the heuristic
knowledge in the above examples, since the rules of ihumb regarding the fault-symptom
relationships are usnally not in the form of simple YES or NO answers.

After this round of reasoning, the faults and malfunctions are assigned to a value
between 0 and 100. Three of the faults with the highest values are selected as the
suspected faults, i.e. the hypotheses. It has been mentioned in Chapter 3 that this step of
diagnostic reasoning. yields reasonable hypotheses about the faults, that can narrow down
the following steps of reasoning and make the system more efficient. The hypotheses are
then set as agenda items to be proved through the backward chaining inference in the next

two steps.

Feature Extraction: As shown in Figures 3.3 and 3.4, in accordance with the posted
hypotheses, signal analysis methods are selected next in order to calculate the diagnostic
indices which will quantify machine condition. The following three tasks are performed
based on the corresponding knowledge encoded in the MAIN-KBS.

1) Determine from which sensors the vibration data should be acquired in order
to prove the hypotheses.

2) Determinc the analysis methods. such as time domain analysis, frequency
domain analysis, and cepstrum, that should be employed to extract the features from the
data samples.

3) Calculate the values of the diagnostic indices.
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in the last step, several monitoring indices are used in generating the hypotheses.

Their values are extracted from only one file, the user selected file, that stores the data
samples from a scnsor that is mounted on the selected machine. In the design of the
RMD-KBS. data samples from other sensors will also be used in the next diagnosis step.
In general, a monitoring system could have more than one sensor mounted on a single
machine, to measure the vibration signals at different locations and in different directions.
When a certain type of machine fault occurs, it may be detectable by more than one
sensor at the same time. The diagnostic analysis, which considers the features of the
vibration signals from more than one sensor, provides more accurate results. For example.
the sensors mounted in the vertical and horizontal directions can both detect the presence
of unbalance. The values of the indices that are sensitive to the rotor unbalance problem
can be extracted form the two sets of data samples that are measured from the sensors
along the vertical and horizontal directions, respectively. If both of them show unbalance,
the diagnosis is quite obviously the unbalance problem. In the MAIN-KBS, additional data
samples from other sensors (usually one). if they are available, will be taken into
consideration. This task of obtaining additional data is performed by several rules and
WHEN NEEDED methods, that are in the third group of rules (see Figure 6.10). When
the sensors and the data acquisition system are connected to the RMD-KBS, this step of
data file selection should be replaced by the acquisition of new data from the selected
SEnsors.

As mentioned in Section 6.3, the best indices recommended in the literature, to
diagnose each fault have been known through the knowledge acquisition. In the
implementation of the MAIN-KBS. such human knowledge regarding the selection of

signal analysis methods is encoded as follows: when a hypothesis needs to be proved. a
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corresponding set of indices is selected and extracted from the data samples. The values
of the selected indices are extracted from the selected data files by invoking the
corresponding routines which perform the calculations. The way in which the numerical
routines are invoked to perform this task, has been illustrated in Section 6.7. The obtained
set of indices is used as the pattern vector X of Eq. (3.1) for fault classification and
identification through neural networks. The rules and methods that belong to the fourth
group shown in Figure 6.10, are designed to perform this task. It may be noted from
Chapter 4, that the same set of diagnostic indices is used to identify several different types
of machine faults. The index set is a combination of the diagnostic indices that can be
used for the identification of more than one type of fault. Consequently. a neural network
that is intended to identify and classify fault pattern. is trained to detect more than one
type of fault. In accordance with the diagnostic task to be performed, the MAIN-KBS
selects a proper set of indices in this step.

In some cases, the SOM networks which perform the multiple-index based trend
analysis have been established, and can be used to estimate the remaining life of a
machine component. Then the values of the index set to be used for this purpose, are also
calculated at this point. Most of the indices in this set are the same as the set used for

fault identification, but it may be supplemented by a few additional indices.

Fault Recognition and Condition Determination: After calculating the values of the
selected indices, these will be judged by a neural network which has the knowledge in
numerical mode about the fault-symptom relationships. According to the posted
hypotheses, a SOM network is invoked from the statements of rules. The SOM network

will then return the results of fault identification back to the MAIN-KBS module.

189



Subsequently, the rules in the last group shown in Figure 6.10 will be evaluated to render
the final diagnostic results. The rules in the last group are implemented as follows.

1) If there is only one sensor mounted on the machine, the rules will simply
declare the results obtained from the neural networks as the final diagnosis result of the
current condition of the machine.

2) In the case where two data files corresponding to two different sensors, when
evaluated by the neural networks, yield the same results, this result will be declared as the
final diagnosis result.

3) If the resuits deduced from the two different data files are not the same. then
both results will be posted on the screen as the result of the diagnosis. This means that
at the current instant of time, the symptoms of both faults are observed.

4) In some cases. the symbolic processing module will evaluate some other rules
in this last group of Figure 6.10, so as to obtain the final diagnostic results. For example,
a symptom of unbalance is that the amplitudes which appear at the rotating frequency and
its harmonics increase when the rotating speed increases. The occurrence of this kind of
symptoms may not be checked by the neural networks. In certain cases, they are important
in distinguishing one fault from another. Hence, the symptoms of machine faults. in the
above example, arc checked by the symbolic rules at this final stage of diagnosis. A query
may be posted to ask the user if the occurrence of a symptom is TRUE or FALSE before
the KBS achieves the final diagnostic result.

5) If the diagnostic result at this point is "unknown fault", then the system will
return to the beginning of step 2 and a new round of data collection and analysis will

start.
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CHAPTER 7

PERFORMANCE AND APPLICATIONS
OF RMD-KBS

In this chapter, the flow of both the sensory data regarding the vibratory response and the
information about the structural and operational parameters of the monitored machine,
over the entire diagnostic process is illustrated. The diagnosis of oil whirl and unbalance
problems in a compressor unit is considered. The functioning of various modules of” the
RMD-KBS and the sequence of operations in extracting the diagnostic result are explained
in detail. Further, applications of the RMD-KBS to a class of industrial rotating machinery
are demonstrated. Vibration measurements from the machine systems with known faults,
have been obtained. Diagnosis results are obtained from the RMD-KBS, based on the

sensory data to ascertain its performance and reliability.

7.1 Initialization of RMD-KBS

The information flow and the tasks to be performed by each module of the RMD-
KBS are shown in Figure 7.1. The SET-UP module performs the acquisition of
information for the initialization and refinement of the facts stored in the databasc. Using
the SET-UP module, the user can type in the information, or by selecting one among
several options provide the RMD-KBS with the facts about the structural and operational
parameters of machine units. Before the RMD-KBS starts monitoring and diagnosing an

individual machine system, information about both the machine system and the sensors
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should be provided. This step is in essence the initialization of the RMD-KBS. Whenever

the facts need to be refined, the SET-UP module can be used to perform this task. The
initialization of the RMD-KBS and the performance of the SET-UP module are now
demonstrated through the case study given below.

The diagnosis of an air compressor that has oil whirl and rotor unbalance problems
is considered. Oil whirl is a malfunction that is associated with fluid-film bearings in
rotating machinery (Eshleman and Jackson, 1992). It tracks the operating speed and
appears at a frequency about 0.35 to 0.47 times the operating speed. The rotor unbalance
is a once-per-revolution fault which occurs when the geometric centre and the mass centre
of a rotor do not coincide. The selected air compressor unit is a key machine system in
a factory of chemical fibres, in the city of Yizheng, Jiangsu province, P. R. China. Several
off-line data files, that contain the digitized vibration signal measured from the
compressor unit, were provided by the Mechanical Engineering Department of Southeast
University, Nanjing. P. R. China.

The RMD-KBS is started through executing the MAIN-KBS module. As shown
in Figure 7.2, the first window of the MAIN-KBS module appears on the screen
displaying the RMD-KBS Central Panel. There are seven buttons on the Central Panel.
By clicking on any one of them using the mouse, the corresponding module will be
invoked to perform its tasks for monitoring and diagnosis. The button with the label
"Initiate Diagnosis" links to the BROWSER module; "Condition Monitoring" chains to
the MONITOR module; "Refine Knowledge" cails the MENTOR module; "Browse
Data File" invokes the Notepad program of Windows to show the contents of data files.
If the button with the label "Begin Analysis" is selected, a diagnosis will begin. When

the button labelled "Set-Up Module" is selected, then the SET-UP module, that is the
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module for the information acquisition, will be invoked.

The first window of the SET-UP module is shown in Figure 7.3. It can be seen
that the window shows the name of the machine system, the location where the machine
system 1is in service, the installation date of the machine, the first service due date, the
number of major subsystems, and the reference number assigned to this unit. The above
information is stored in an information file named UNITRGST.DBF. The information can
be inputted, modified or deleted by the end-user. using the buttons labelled "Replace",
"Append" or "Delete". The buttons with labels of "<<","<"_ ">"and ">>" are designed
to search within the databace file to find the first, the previous, the next and the last
record respectively.

After finishing the above step of the system set up, by pushing the button with the
label "Next Step", another display as shown in Figure 7.4 will appear. This step is
designed to define each subsystem (a machine or a major component) of the current
machine unit. The compressor unit consists of a motor, two compressors and two
gearboxes. Since no sensor had been previously used to monitor the motor and the
gearboxes and further. no information about those subsystems is available, the compressor
unit is described as a machine system of two compressors in the RMD-KBS. The
information about one of the compressors is summarized in Figure 7.4,

More details about the machine components arc also acquired in this step. For
example, when the bearing type is given as a rolling element bearing, a small window will
automatically appear on the screen to inquire about the specifications of the bearing. The
windows and screen display appearing at this moment are shown in Figure 7.5. On the
small window. the user can input the information about the number of rollers, the pitch

diameter, the roller diameter and the bearing contact angle. Then, the SET-UP module
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will calculate the fundamental train frequency, the ball pass frequencies at the inner and

outer race, and the ball spin frequency, using Eqs. A.1.15 to A.1.18 of Appendix A.1. All
the above information about the bearing is needed in the monitoring and diagnosis. If the
user can not provide all the bearing details but only information on the number of rollers,
the characteristic frequencies can still be estimated using Eqs. A.1.19 to A.1.22 (Schiltz,
1989) of Appendix A.1. The above information about each and all of the bearings to be
monitored, is stored in a database file named BEARINGS.DBF.

When a subsystem has been defined, the SET-UP module requires information
about the mounted sensors. The window and display for the acquisition of information
about the sensors are both shown in Figure 7.6. If the end-user does not know the
definition of the sensor locations in the RMD-KBS, he can ask for help from the RMD-
KBS. by selecting the button labelled “Help". The graph shown in Figure 7.7 which
defines the likely locations of the sensors on a machine system, will appear on a smaller
window.

After the acquisition of all the information mentioned above. the SET-UP module
recasons out the values of the settings for signal processing and feature extraction, based
on both the information available up to this point. and the knowledge already encoded in
it. Further, it requires the threshold values of the monitoring indices. Another display as
shown in Figure 7.8 appears on the screen at this moment. All the values of the settings
as weil as, the thresholds displayed on the screen corresponding to a single sensor can be
modified by the user. Some of the settings for signal processing, regarding the sensor in
horizontal direction at the free-end of the air compressor. are listed below as determined

by the SET-UP module.
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Data file name: D:\data\u6p2\ A H*

Data length: 1.024

Sampling frequency: 5,120 (samples/sec)
Analysis frequency: 2,500 (Hz)
Rotating frequency: 390 (Hz)

Natural frequency: 245.8 (Hz)

The 2nd harmonic: 780  (Hz)

The 3rd harmonic: 1,170 (Hz)

42% of rotating frequency: 163.8 (lz)

At the end of this step. all the values of both the settings and the thresholds are
stored into an information file named SETTING.DBF, which will be accessed during the
diagnostic reasoning. The SET-UP module actually provides the users with a tool to
access the information files of the RMD-KBS. Whenever a new machine system is to be
monitored by the RMD-KBS, all the above initialization steps require to be performed.
The existing information stored in the RMD-KBS may be modified as appropriate.

In order to provide the end-users with a utility to view and manage the data files,
the Notepad (a Windows text file editor) is employed. If the button on the Central Pancl
of MAIN-KBS labelled "Browse Data File" is selected, the Notepad will be invoked. As
shown in Figure 7.9, the Notepad presents the values of data sample stored in a data file.

It can also be used to manage the data files.

7.2 Performance of Monitoring and Diagnosis Tasks
The tasks of monitoring the current condition of a machine system and diagnosing
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incipient faults are performed by the MONITOR and MAIN-KBS modules, respectively.
The MONITOR module provides the facilities needed to display the current values of the
monitoring indices, signal, spectrum, orbits etc. Before invoking the MONITOR module
from the Central Panel of the MAIN-KBS, a machine subsystem must be selected as the
subject to monitor. By selecting the button on the Central Panel labelled “Initiate
Diagnosis". the BROWSER module is invoked. The window of the BROWSER module
is shown in Figure 7.10, in which the information about a monitored machine system is
presented. If the button labelled "View The Machine” is selected, a drawing of the
machine 'vill appear on a small window. As an example, Figure 7.11 shows a gearbox.
When a machine is selected. by the button labelled "Central Panel", the system goes
back to the MAIN-KBS module. At this time. since a machine has been selected as the
unit to be monitored or diagnosed. the Central Panel shows the selected machine on the
display. as illustrated in Figure 7.12. Simultaneously. the information about the currently
selected machine is passed to the MAIN-KBS module. Further, the name of the machine
system, the name of the selected subsystem. sensor types and locations, names of data
files. and so on. can be transferred to the MONITOR module. by selecting the button
labelled "Condition Monitoring".

The first window of the MONITOR module is illustrated in Figure 7.13, and it
displays the current values of several diagnostic indices using a bar chart. These values
are extracted from a data file named d:\data\u6pI\AH1, which is the currently-selected
data file and contains the data samples from a sensor in the horizontal direction. There
are several buttons in the display as shown in Figure 7.13, that are designed for the user
to select a sensor and a data file that contains the corresponding data samples. When a

sclection is made. the values of the corresponding set of diagnostic indices are
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automatically calculated and shown in the bar chart.

In Figure 7.13. it can be seen that the Peak-to-Peak value (PP) and the Maximum
x value (lx;) are high and both of them attain a valuc of 0.6. Values of several other
indices such as the Absolute Mean value (4.Y). the Root Mean Square value (RA1S), and
the magnitude at the machine rotational frequency (F/), are also relatively high. The
magnitudes in the FFT spectrum at the frequency around 42% of the rotational frequency.
i.e. Fh, are significant. From the above observations, an experienced diagnostician can
arrive at an impression that the current condition of the compressor is not "good". Further,
by selecting the button labelled "Signal/Spectrum”, a C++ program (ANALYSIS.EXE)
will be invoked to display both the data samples in the file d:\data\ubpI\AH 1 and the
corresponding spectrum. Then, a window with the graphical display appears as illustrated
in Figure 7.14. The timc domain vibration signal is shown in the upper plot, while the
spectrum that corresponds to the frequency domain components of the signal is shown in
the lower plot. The related information about the machine and sensor is also presented.
It can be seen in Figure 7.14 that the time domain signal is typical of oil whirl defects.
In the spectrum, the second highest peak at the frequency that is a little bit less than 0.5
times the rotational frequency. is the prime symptom of oil whirl. It can also be observed
that the magnitude of the amplitude at the rotational frequency is also high. A
diagnostician can easily conclude that an oil whirl problem is present, and also, the rotor
is not well balanced. Furthermore, the MONITOR module observes that (i) there are two
sensors on this compressor that measurc simultaneously the vibration signal in both the
horizontal and vertical directions, (ii) the two sensors are displacement sensors (proximity
eddy current transducers) which measure the relative motion of the rotor with respect to

the bearing. Hence, the MONITOR module can plot two sets of signal samples from the
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two sensors on the x-y plane. This plot is known as the rotor-centre orbit, which shows
the actual movement of the centre line cf the shaft with respect to the bearing. This orbit

is also called the Lissajous pattern. The orbits constituted by the signal in the current file

and the signal in the corresponding data file, named d:\data\u6p1N\AV 1, that comes from

the other sensor mounted in the vertical direction. are depicted in the Figure 7.15. In this

figure, two ellipses, one bigger and one smaller, are present. This pattern of oibits is
typically observed when oil whirl occurs (Eshleman and Jackson, 1992). An experienced
diagnostician can tell, based on an examination of the shape of the orbits, that oil whirl
is present.

The above illustrations of the signal. spectrum and orbits can now be compared
with other monitoring results, The data samples stored in two other files,
d:\data\u6p2\AH3 and d:\data\ubp2\AV3. correspond to the same sensors, but they were
measured at the time when oil whirl had not occurred. Figure 7.16 illustrates the data
samples in d:\data\u6p2\AH3 and the corresponding spectrum. It can be seen that the wave
form of the time domain signal is quite close to a pure sine wave. In the corresponding
spectrum. there is no significant peak at the 42% of the rotating frequency. Further, the
corresponding orbits of the rotor. as displayed in Figure 7.17, have the shape of a repeated
plot of a single ellipse.

The above cases can now be analyzed by the MAIN-KBS module based on the
diagnostic knowledge it contains. By selecting the button labelled "Begin Analysis" on
the Central Panel of the MAIN-KBS module, the diagnosis process will begin. At this
point. the subsystem of a machine system must have been selected. Then. a sensor and
a data file corresponding to the machine can be selected by the user. For example, the

input data is now selected as the data file d:\data\u6pl\AH1, that contains the data
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samples from the compressor when the oil whirl problem occurred. By selecting the
button labelled "Start Diagnosis"on the current display shown in Figure 7.18, the MAIN-
KBS module will generate the hypotheses based on information about this machine and
the sensors, and the input data file. As shown in Figure 7.18. two hypotheses, namely
"Rotor Unbalance" and "Journal Bearing Oil Whirl", are gererated by the MAIN-KBS
module. Further. by reasoning through the rules, the MAIN-KBS module will find the
other data file, i.e. d:\data\u6pI\AV 1, which is related to the current diagnosis. The KBS
will calculate the values of certain indices from both the data files according to the
hypotheses, pass the values of the indices to the neural networks. and then output the final
diagnostic results on the screen. For the selected compressor of the unit of interest, it is
confirmed that both the two hypotheses, i.e. "Rotor Unbalance" and "Journal Bearing
Oil Whirl", are true. The result of the diagnostics is shown in Figure 7.18.

When the data file. d:\data\u6p2\AH3. is selected for a diagnosis, only one
hypothesis. that is "Rotor Unbalance". is generated by the MAIN-KBS module, as
shown in Figure 7.19. The diagnosis of this input file and another file named
d:\data\u6p2\AV3 yields a diagnostic result, that confirms the hypothesis "Rotor
Unbalance". Some other examples of diagnosis performed by the RMD-KBS will be

demonstrated later in this chapter.

7.3 Training the Neural Networks

The training of the neural networks is performed by the MENTOR module of the
RMD-KBS. The trained neural networks arc then used by the MAIN-KBS module 1o

perform the diagnosis of machine faults. The information flow in both the training process
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and the diagnostic process using neural networks is shown in Figure 7.20.

By selecting the button labelled "Refine Knowledge" on the Central Panel of the
MAIN-KBS module, the knowledge-base of the MENTOR module is loaded onto the
LEVELS environment and then it begins to function. Its window and the first display are
shown in Figure 7.21. The training of a particular type of neural network begins by
selecting the corresponding button. For example, consider that a SOM network is to be
trained for machine fault classification and identification. The "SOM" button can be
selected, and a small window appears at this time to query for some specifications. The
display on the screen at this moment is illustrated in Figure 7.22. The query for user input
asks the name of the data file, the number of samples in the data file, the number of
nodes and the number of times the set of training data will be repeatedly presented to the
nctwork. When the above information has been provided to the MENTOR module, by
selecting the button labelled "Done”, the corresponding C++ program is invoked to train
the network. The data and the initial positions of the network nodes are both shown on
the window. that is illustrated in Figure 7.23. By selecting the option named "Train" from
the drop-down window of the option named "View". the training process begins and this
will be performed in a few seconds. After the training. the nodes of the SOM network are
moved to their final locations. as shown in Figure 7.24. If the user wants to know the
weight values of the network nodes, the option named "Weight" from the drop-down
window of the option named "View" must be selected, and then the weight values of the
just-trained SOM network are presented on the screen as illustrated in Figure 7.25. With
similar procedures easy and straight forward. the user can train the BP neural networks,
or the SOM networks of multiple-index based trend analysis. Correspondingly, the

MENTOR module will display windows as illustrated in Figures 7.26, 7.27 and 7.28.

200




After the training is completed, the weights of the trained neural network will be
saved into a database file. When the MAIN-KBS module diagnoses machine faults, it will
call the corresponding C++ routines that can read the values of the weights and use them

to evaluate the current indices to determine machine condition.

7.4 Applications to Industrial Machine Systems

There are more than 200 data files in the database of the RMD-KBS. Three
examples of rotating machinery monitoring and diagnosis are given in this section in order

to demonstrate the performance of the RMD-KBS.

Example 1: The specifications of a sump pump and motor unit are stored in the RMD-
KBS in a set of database files. The vibration signatures were recorded from the motor in
service, that had a rotor unbalance problem (El-Karmalawy, 1993). These signatures arce
representative of the vibratory behaviour of the system at both smooth operation and
unbalance stages. The physical characteristics of both the motor and the pump are
presented in Table 7.1 given below. The structural and operational parameters of the
motor are given in Figure 7.29.

Two velocity sensors, with a sensitivity of S0 mV/IPS, were mounted on the motor
bearing housing. in both the vertical and horizontal directions to pick up the generated
vibration signals. The signals from the two pick-ups were recorded on a two-channel tape
recorder, and were digitized via a high speed analogue-to-digital converter, using a
sampling frequency of 512 Hz. The data samples are stored in 12 data files of the RMD-

KBS.




Table 7.1 Motor and pump specifications

Motor Pump
Service HP RPM Capaciiy Type
Sump Pump 100 1.770 2,200 GPM Vertical
Motor

Figure 7.30 presents the hypotheses and the diagnostic results achieved by the
RMD-KBS, by selecting the data file named d:\data\ul pI\UH3. This data file contains the
data samples that were obtained from the sensor in the horizontal direction. In the present
diagnosis. another data file named d:\data\ulpI\UH3 obtained from the sensor in the
vertical direction is also used. The condition of the motor is diagnosed and further, it was
noted that rotor unbalance was present. Figure 7.31 shows the vibration signal obtained
from the motor and the corresponding spectrum. In the spectrum, the second highest peak
is at a frequency about 42% of the rotor rotational frequency. The RMD-KBS recognized
this symptom, which is the prime symptom of oil whirl. Since the type of the bearing of
this motor is a rolling element bearing. oil whirl cannot be a malfunction of the rotor.
Hence. in Figure 7.30 it can be seen that the index F/ does not show a rotor problem in
the motor. Further, there is no fault that has been detected from the vibration signal which

was measured in the vertical direction.

Example 2: Vibration data were acquired from a type 308E ball-bearing that has 8
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rolling elements. The bearing was rotated at 1,470 rpm and loaded with a
circumferentially-symmetric radial force of 20.8 kN. in a test machine at a bearing
manufacturing plant. An accelerometer was mounted on the housing and its output was
linked to a computer-based monitoring system. A sampling frequency of 5,000 samples
per second was used and the digitized raw data were stored in more than 100 data files.
The information about the bearing test machine stored in the RMD-KBS is shown in
Figure 7.32.

As mentioned in Chapter 4, several different types of bearing faults have been
identified through the previous analysis of the data, such as pitting problem and the inner
ring of the bearing that slid on the shaft. The diagnostic result yielded by the RMD-KBS
is demonstrated in Figure 7.33. Two hypotheses. namely "pitting problem" and "bcaring
wear problem", have been posted. The bearing under test is a faulty bearing with pitting
defects in its rolling elements. Since the RMD-KBS contains a SOM network with 8-units,
which has been trained previously. for the trend analysis of the bearing service life time.
it can perform the multiple-index based trend analysis on the input data. The diagnostic

result is posted in the display that is demonstrated in Figure 7.33.

Example 3: Vibration signals from a boiler feed pump in service that had a misalignment
problem, were collected. The pump specifications are given in Table 7.2 below.

Two velocity sensors were mounted on the pump bearing housing, to measure
vibration in both the horizontal and vertical directions. The signals from the pick-up were
recorded on a two-channel recorder. and were digitized via a high speed analogue-to-
digital converter, using a sampling frequency of 1,024 Hz. The digital data was stored in
16 data files, with each file having 2,048 data points. Figure 7.34 shows the display of
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the BROWSER module which presents information about the pump. Since information
about other subsystems of the boiler feed pump system is not available, the pump is

defined as the only subsystem of the machine unit.

Table 7.2 Pump specifications

Service Manufacturer Size Capacity Rotating
Speed
Boiler Feed INGE 8x4x11 in. 1,000 GPM 3.600 rpm
Pump

In this example. the file that contains the data samples obtained from the sensor
in the horizontal direction, is selected for the diagnosis. Since no obvious symptom of any
fault from among the list of faults contained in the RMD-KBS has been found. the
hypothesis named "Fault Free ?" has been posted as shown in Figure 7.35. While using
the neural network to evaluate the indices. that are in turn obtained from both the selected
data file and the file containing the data from the sensor in the vertical direction, however.
two types of faults have been detected. They are unbalance and misalignment. In the
diagnostic results posted on the screen (see Figure 7.35). that no fault has been identified
from the data which had been obtained from the horizontal sensor, is also declared. The
data samples that were measured in the vertical direction, and the corresponding spectrum
are both presented in Figure 7.36. In the spectrum, it can be seen that the magnitudes at
both the pump rotational frequency and the second harmonic are high. This observation

confirms the diagnostic results vielded by the RMD-KBS.,
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