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Abstract

Distinguishing Permutation Isomorphism Classes of Groups

Kwok-On LAU

The ability to distinguish permutation isomorphism classes of groups is an impor-
tant step in the computation of Galois groups of polynomials over the rationals. In
order to distinguish permutation isomorphism classes of groups. it is useful to have
an extensive list of their invariants. These invariants include properties such as the
order, imprimitivity, parity and shapes, as well as the orbit lengths of sets and se-
quences. Computing these characteristics can be extremely time consuming. In this
thesis, a detailed description of efficient algorithms for solving the problem using the

concept of expanding horizon and orbit computation is presented.
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Chapter 1

Introduction

In this chapter, an introduction to the usefulness of the research work is given. Its
main use is in finding the Galois group of a polynomial. So far. there has not been
much similar research done for distinguishing permutation isomorphism classes of

Eroups.

1.1 Galois Theory and Galois Group

The aim of Galois theory is to study the solution of polynomial equations
f=t"4an """ +...+a0=10

and in particular to distinguish those that can be solved by a ‘formula” from those
that cannot [24]). By a formula we mean a radical expression : anything that can
be built up from, the coeflicients a, by a finite number of the operations of addition.
subtraction, multiplication, division, and also by taking nth roots. In modern terms.
Galois's main idea is to look at the symmetries of the roots of the polynomial f(¢).
These form a group, its Galois group, and the solution of the polynomial equation is
reflected in various properties of the Galois group.

In order to apply Galois theory to specific polynomials. it is necessary to compute
the corresponding Galois group. This is far from being a simple or straight-forward

task.



1.2 Permutation Isomorphism

The Galois group of a polynomial can be represented as a permutation group. (7, of
its roots. A reardering of the roots leads to another gronp. /1, which is permutation
isomorphic to (7. Thus. in order to determine the Calois groups of polynomials, it
is useful to have tables of invariants for the permutation isomorphism class. These
invariant can be the order, imprimitivity. patity, shapes. as well as the orhit lengths
of sets and sequences.

Given a polynomial. some invariants are casy to compute but some are not. Yor
example it is very difficult to find the order of the Galois group. On the other hand,
it is easy to obtain some information about the shapes by factotizing the polynomial
modulo primes that do not divide the discriminant. However, it is diflicult to prove
that we have generated ali the possible shapes of the Galois group.

Information about orbit lengths can be obtained by constructing and factoring a
resolvent polynomial using symmetric functions of the roots, For example if {a,}
are the roots of a polynomial f. then the degrees of the factors of

R(t) = H(f — (o, + )

1<y

are the orbit lengths of the 2-sets under the action of the Galois group. However this
resolvent polynomial has degree ('(n,2), and the current state-of-the art algorithms
can only factorize polynomials of degrees up to several hundieds, "This puts a linnt
on the usefulness of the orbit length information for r sets when the value of r s
large. Thus, further work still needs to be done.

In [23], every transitive permutation group of degree 3 1o Tis 1ealized as a Galois
group over the rationals. In [16]. the groups of degree 8 are realized. More discussions

on the advances in computational Galois theory can be found in [19].

1.3 Owur Approach

J. McKay and E. Regener have studied the actions of transitive permutation groups of
degree up to 11 in [18]. using an adaptation of [17] to the subset indexing procedures

described in [15].



It is useful to have tables of permutation isomorphism class invariants in order to
identify Galois groups. We find these invariants starting from tables of the transitive
penmutation groups from degree 2 to 15 [5].

There are a number of invariants that we are interested in computing. The order
is obtained by using the Schreier-Sims algorithm, imprimitivity by Atkinson’s algo-
rithim, and shapes by constructing conjugacy classes of elements using an inductive
schema, These computations are done using the algebraic programming language
Cayley, which is further discussed in Chapter 3. The shapes are encoded into a linear
array using the number of partitions as a perfect hashing function. The parity is
determined from the cycles in the generators of the group while they are being read.

Our main concern is the computation of orbit lengths. First, the group is built and
sequences are generated. For r-sets. the methods of expanding horizon and registra-
tion technigue are employed. For r-sequences. a theorem for computing the number
of sequences in an orbit is developed. This theorem is then applied to compute the
orbit length from tiie orbits on the elements. Here, ISOM. a package for isomorphism
testing. has been used extensively. It is further discussed in Chapter 4.

A list of invariants for groups of degree 2 to 15 is obtained. This enhances the
identification of permutation isomorphism classes of groups, leading to more Galois

groups being determined.

1.4 Contribution

In this research work, my major contributions include:
e computation of orbit lengths of r-sets, in particular:

~ design of the algorithm

— applying the method of expanding horizon
— using colex order to code an r-set

— including a consistency check

— coding the algorithm in C language



e computation of orbit lengths of r-sequences. in particular:

— design of the algorithm

— developing a theorem for orbit  alculation (although we later fonnd that

this theorem has been developed in somewhere else)

— including a consistency check

coding the algorithm in ' language
e running through all the 650 groups in the CAYLEY library
These are described in Sections 4.3 and 4.1. Other minor contributions indude.

e maintaining a shell script to call CAY'LEY for finding the order, imprimitivity

and shapes of a group
e checking the parity of a group
o finding the smallest set of generators among the given ones

e cncoding the shapes into a inear array using the nuriber of partitions of the

degree of a group
e re-formating the output from the main process so as to drive other prograns

These are described in Sections 3.1, 4.1, 4.2 and 4.7.

1.5 Organization of the Thesis

The layout of the thesis is as follows. Chapter 1 introduces the research work. Chap
ter 2 gives the relevant definitions and mathematical preliminaries. Chapters 3 and 4
describe the methodology employed to solve the problem. Chapler 5 gives a general
picture of the results. Chapter 6 analyses the time complexity and usefulness of the
algorithms. It also contains a discussion of some possible further improvements and

a conclusion.




Chapter 2

Basic Definitions and
Mathematical Preliminaries

In this chapter, some basic concepts and definitions in group theory and number
theory are presented. Based on these concepts and definitions, we develop algorithms
to solve our problems. Reference to group theory can be found in [2, 10, 14], while
reference to number theory can be found in [11, 20, 25].

A permutation is a once-to-one mapping of a set onto itself. Let
Q4 = {1,2,3,4}

A permutation of 4 can be written in cither the image form (as in [1,4.3,2]) or
the cycle form (as in (2,4)). When there is no ambiguity, a comma that is used
to separate two numerals representing two elements of the set will be omitted. This
happens when each of the numerals has only one digit. Thus, {1,2, 3,4] will be written
[123.1]. However, a permutation such as [12,3,4], which contains a numeral greater
than 9, will keep the commas. The same rule applies to an r-sequence, and to an r-set
like {13}. In this thesis, permutations act on the right, so the image of w € Q, under
the permutation p is denoted by wf. We compose permutations so that wP? = (w?)?
for permutations p and ¢.

To illustrate the meaning of some definitions, D4 will be used as an example. The
group can be best illustrated by considering the labeling of the corners of a square
as in Figure 2.1. The set of four elements, €14, is chosen to be the set of corners. The

permutation [2341] acting on the square is an anti-clockwise rotation that relabels

i)



Figure 2.1: Labeling the corners of a square

the top left corner as a 2. The permutation [1432] is a reflection across the diagonal

from corner 1 to corner 3.

2.1 Group and Subgroup

A group 1s a set (¢ closed under an associative binary operation " (produet) and

satisfying the following axioms :

1. There exists an identity element ¢ such that Vg € (¢, ¢ g = g« = ¢.

1 1 -1

2. Vg € G, there exists an inverse ¢7' such that g- g7 ' =¢7" - g = ¢.

A subset H of the elements of a group (i which forms a group with respect to the

product as defined in G is called a subgroup of (.

2.2 Symmetric Group and Permutation Group

The symmetric group of degree n, S,, on €1, is the set of all permutations on €, A

subgroup of the symmetric group S, is called a permutation group of degree n.

2.3 Generating Set

Let ' be a subset of S,. Then K is a gencrating set for a subgroup (7 of S, if ¢/
is the smallest subgroup of S, which contains K as a subset. The gronp 7 can be
obtained from K by repeatedly applying all the permutations in A to the identity
permutation e. The elements of K are called generators of (7. In our example, a

generating set for Dy is

K = {[1432],(2341]})

6



shape | permutations

T 1T [ (1HE)B3)[A)

211 | (24)(1)(3), (13)(2)(4)

22 (13)(24), (12)(34). (14)(23)
4 (1234), (1432)

Table 2.1: Shapes of Dy

ard

Dy = {c,[2341],[3412], [4123], [1432), [4321], [3214), [2143]}.

2.4 Order

The number of elements of a group ' is called the order of G, and is denoted by |G|.

In our example, |y] = 8.

2.5 Shape

The shape of a permutation is a multiset of the lengths of the cycles of the permuta-

tion. Table 2.1 shows the shapes that 1)y contains.

2.6 Parity

A permutation is even if it has an even number of even length cycles, otherwise. the
permutation is odd. A group is even if all its generators are even, otherwise, the

group 1s odd. Thus, Dy is odd.

2.7 Stabilizer
The stabilizer, G, of an element w € (1, in the group G is the set
G. = {glg € G A’ = w}.

The stabilizer is a subgroup of G. In our example. the stabilizer of the point 1 in Dy

is the subgroup {e.[1432]}.

-1



2.8 Orbit

The orbit. ¢, on win G is the set
G — (e L,
W - {Ill.“ < Qn A 3‘(] € (/1 LY = /(}

In our example, the orbit on 1in Dy is the set {1.2.3.1}.

2.9 Orbit on an r-sequence

An r-sequence is a sequence of length r with distinet elements taken from €2, The

image of an r-sequence [ ...q;] under a permutation g is
1. . o) = [af... 0]

The orbit on an r-sequence is the orbit on the r sequence under a permmutation group.
2 |

For example, the orbits on 2-sequences under )y are :

{[12],(23], [34], 141, {11}, (13]. [32).[21} },
and  {[13],(24], [31],{42]}.

2.10 Orbit on an r-set

An r-set 1s a subset of size r with distinct elemants taken from €, The image of an

r-sel {ay...a,} under a permutation g is
{ar...0. ) = {a]...a?}.

The orbit on an r-set is the orbit on the r set under a permmtation gronp. o

example, the orbits on 2-sets under Dy are :

{{12},{23}, {34}, {41}},
and  {{13},{24}}.



2.11 Imprimitivity

We say that a group ¢ acting on €, is imprimitive if €, can be partitioned non-
trivially into disjoint sets, B,,2 = 1,...,m, called blocks. such that for every permu-

tation g of (4 and every block B,,
B =B, for some j.

A partition is trivial if in = 1 or m = n. If G is not imprimitive, we say that G is

primitive. In our example, Dy is imprimitive as we can have

Q= {1,3} U {2,4}.

2.12 Transitive Group

A permutation group G on £, is transitive if for all w,,w, € €2, there is a g € G
with w! = w,. In other words, w% = Q, for each w € §2,,. In our example, we have

l”" = 2”" = 31)4 = 41)“ = 4. Therefore Dy is transitive.

2.13 Permutation Isomorphic Groups

Two subgroups G and [l of S,, are permutation isomorphic if there exists a permu-
tation s € S,, such that

s~'Gs=H.

This may be realized as a relabeling of the elements.

2.14 Lex and Colex Order

Lexicographic order (lex order for short) derives its name from the order imposed on
the words in a dictionary [25].

Given two sequences of the same length

P= Qyy.. s Oy



and

Ifp # g, wescan from left to right until we tind the first & such that ag # S Wog <
B, we say p is lexicographically less than g, otherwise, we say p is lexicographically
greater than ¢. If we scan, instead, from right to left, the resulting order will be
called the colex order.

A set of numbers can be viewed as a sequence if we list the elements of the set
in increasing order. Thus. we also have lex and colex order for sets. As an example,
the 2-sets obtained from €0, in increasing lex order are {12}, {13}, {14}, {23}, {21},

{34}; while that in increasing colex order are {12}, {13}, {23}, {14}, {21}, {3}

2.15 Partition of a Number

A partition of a number n is a representation of n as the sum of any number of

positive integral parts [11]. Thus,
4=341=242=24+141=1+14+1+1

has 5 partitions. The order of the parts is irrelevant, so that we may, when we please,
suppose the parts to be arranged in descending order of magnitude. We denote by
p(n) the number of partitions of n; thus p(4) = 5. It is convenient to define p(0) — |
[20].

We denote by p,(n) the number of partitions of n into parts not exceeding m. The
convention p, (0) = 1 for all m is made in [20]. It is convenient to define po(n) = 0

for n # 0. In [20], we have the following theorems:

Theorem 2.1 p,(n) = p(n) if n <m.

Theorem 2.2 p,,(n) = pu-1(n) + pu(n —m) f n > m > I.

10



Table 2.2 shows the values of p,(n) for n and 72 running from 0 to 4.

m

01 2 3 4

0{1 1 1 1 1
170 1 1 1 1
n2(0 1 2 2 2
310 1 2 3 3
410 1.3 4 5

Table 2.2: Number of partitions

11



Chapter 3

Preprocessing

The generating set for each group of degree 2 to 15 is stored in the Cayley lilnary,
trngps. These are analyzed preliminarily as a preprocessing step. Cayley is an alge
braic programming language developed at the University of Sydney in Australia [9].
It also contains many built-in functions and libraries of procedures which enable the
computation of order, imprimitivity and shape. Thus, these three invariants can be

computed with Cayley.

3.1 Computing Order, Imprimitivity and Shape

The order of a group may be obtained by counting the number of elements in the
group. This can be done by using the method of expanding horizon [13]. However,
it is a very tedious job. Instead, the Schreier-Sims algorithm [22] can he nsed to
efficiently generate a set of strong generators relative to a base. The order of the
group can then be computed as a product of the lengths of the basic orbits. For
more details, see [8]. To study whether a transitive group is imprimitive, we can
use Atkinson's algorithm [1]. The shapes of a group can be computed by studying,
the cycle types of all the elements of the group. To cut down the size of the search,
we need only search one clement in each conjugacy class. The conjugacy classes of
elements of a permutation group can be constructed with the random algorithm in

[9], or the inductive schema presented in [7].

12



3.2 Implementation Using Cayley

In [6], there is an introduetion to using Cayley under UNIX. For a more detailed
description, see [9].

Figure 3.1 shows the library for the dihedral group Dy.

LIBRARY t4n3;
G:perm(4); G.generators:

A= (1:2:3:4))
B = (2,4);
finish;

Figure 3.1: Library for Dy

The processing for a group starts with the analysis of the group by Cayley to
obtain information such as the order, imprimitivity, and shape. For example. before
D, is studied, its library is named t/n3, and is stored as a file with name t/n3. The
reason for using a systematic name, instead of the group name, is to conform to the
requirements of the UNIX operating system. For example, we may desire to use ¥ to
denote symmetric group. + to denote an even group, ..., etc. However, in the UNIX
system, we are not allowed to use such special characters as the filename.

This library can be called using the library command as library t4n3. This will
read the library called 1/n3 and execute the Cayley commands contained in the library
to define the group, say G, to be analyzed. The number of generators is printed out
by print ngenerators(G). If z is a generator, print z will print z in cycle form, while
print cltseq(r) will print = in image forni. The group G is then further analyzed by
calling a library procedure gpanalyse [5], to obtain the order, primitivity and shapes
information.

For a description on the transitive permutation groups in the Cayley library, see

[4, 5, 21, 22).

13



3.3 Output

The output from Cayley for a group (7 is then edited by using the stream editor
sed in UNIX. It edits according to a script of requests [12]. Of particular interest
is the repeated global substitution request which substitues all the occurrences of a
specified string by a replacement string. This is very useful for processing Canley
output to extract information or reformat it.

Figure 3.2 shows an example of the edited output file for Dy on the left column.

The right column is added here for explaining the meanings associated with the data.

output meaning

2 number of generators
2341 1st generator in image form
1432 2nd generator in image form
(1,2,3,4) 1st generator in cycle form
(2,4) 2nd generator in cycle form
8 order of the group

1 i=primitive, O=imprimitive
3 number of different shapes
211 1st shape

22 2nd shape

4 3rd shape

Figure 3.2: Output produced for 1),



Chapter 4

Main Process

In the main process, the parity of a group is determined, the shapes are encoded into
an array, and the group action on r-sets and r-sequences is studied.

A number of theorems have been applied to improve efficiency. These include the

umber of partitions of a natural number, colex ordering. expanding horizon. and the

number of sequences in an orbit.

4.1 Checking Parity and Reducing the Number
of Generators

The parity of a generator p is determined while its cycle form is being read. If p has

:ncveles represented as
(arveovar ) oo (Me e ooy Y )s

let

which is equal to the degree of the group plus the number of cycles in p. Then, p is

even if and only if P is even. In modulus 2,

Pzi(k.-{-]):f:(k,—l).

Thus. the conclusion can be drawn by just counting the total number of commas in

the representation of p.
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Reduction of the number of generators can reduce the complexity of the program
which computes the obit lengths of r-sets. In addition. this can save some storage
space. In order to find the smallest subset of the given generators which can generate
the same group. all the subsets of the given generators are considered. A group is
generated for each subset. If the order of the group thus generated is not reduced.
this is an equivalent set of generators. When the simallest of such equivalent sets is
found. the rest of the gi en gencrators are marked as redundant. This equivalent set
thus obtained is not a minimal set of generators in the sense that the group reqguires

this number of generators.

4.2 Partition and Shape

We let © = [a)...a,] be a partition of n. In other words, ay 4 ... 4 o, - n.and
a; 2 ... 2 o0, > 0. Now, we can use a perfect hashing funcetion to encode the shapes

into a linear array due to the foliowing theoren:

Theorem 4.1 Thc mapping & decfined on a partition = by
i3
() = Zlh..—l(" - 8-1).
1=1

where
1
s = E a,,
=1

is a perfect hashing function from the partiteon to a vanking nuwmber.

Proof: Let us consider a position ¢ where 1 < <. The number of partitions that
comes before

[ar...a1a, 1. .. 1]

n-9,

down to

[ay...a,y 1...1]

n—3,..1

iS Pa,-1(n — 8,-1). Summing over all the positions, the number of partitions ahead ol

[a1...am] is Tin) Pa-r{n —s,29). O

16



ender | partition pattern
0 [1111]
1 [211]
2| [22]
3131
4| ]

Table 4.1: Encoding partitions of the integer 4

Framplc: 'The integer 4 can be partitioned and coded as shown in Table 4.1.

The function ¢ is used as a perfect hashing function for encoding the shapes into
an array. For example, the shapes of Dy are encoded into an array as [1101]. A °1"in
the array indicates that the group has a shape which has the index as its rank. The
array starts with index number [, index 0 is not shown. as every group must have
the identity. In this example, the ‘0" in the array indicates that D, does not have a

shape of index number 3, which corresponds to the partition [31].

4.3 Finding the Orbit Length of an r-set
4.3.1 Steps

The following steps are repeatedly used to find the orbit length of an r-set until no

more r-sets can be generated:

I. Generate a new r-set such that the elements are in an increasing order.

|

Il this set isin an orbit of a previously generated set, this set will be abandoned.

3. If this set is not in any previously generated orbits, the method of expanding

horizon is applied to find its orbit.

4.3.2 Expanding Horizon

In the method of expanding horizon, each generator is applied to a set which is popped

from the top of a stack. Any new set thus generated is pushed onto the stack.

17



stack i orbat | popped sl | apply
{17} {17] TR
{23} {12}.{23} {12} q
{23} {14} | {12}.{11}.{23} {11} P
{23} {12}.{11}.{23} {11} q
{23} {12} {14}.{23} {23} P
{343 {2111}, {23}.{34} {23} q
{34} {12} {14} .{23}.{31} {31} P
{} {12}.{11}.{23}.{34} {31) q
{} {12} {14}.{23}.{31}

Table 4.2: Applying expanding horizon to {1

2}

slack | orbit popped st | apply
{13} | {13} {13} P
{21} | {13}.{21} {13} q
{24} | {13}.{24} {24} P
{} {2}y {24 q
{3 {13424}

Table 4.3: Applying expanding horizon to {13}

As an example, consider Dy with two generators p = [2311] and ¢ == [11432]. To
find the orbit lengths of 2-sets, [12] and [13] are generated. Table 4.2 shows that the

orbit length of {12} is 4, and Table 4.3 shows that the orbit length of {13} is 2.

4.3.3 Use of Colex Order

To save the time for searching whether a set is in a previously generated orbit, the
registration technique is used [3]. In this technique, a boolean array is first clearcd
with zeros. When a set is encounted, it is mapped to an index for the array. Il the
boolean value for that index is zero, the set is new, and the boolean value is then set
to one. If the boolean value for that index is one, the set is not new. A mapping
function for colex ordering can be used to mark the sets that had been ineluded in

an orbit due to the following theorem in [25]:

18



Q3
1 2 3 4
- 1 2 4
o 2|- - 3 5
30- - - 6
41- - - .

Table 4.4: Encoding sets arranged in increasing colex order

Theorem 4.2 The mappung p defined by
p{ag.. o)) =14 Cla, - 1,i)
1=1

is the orvder isomorphism between the list of r-sets, which arc chosen from €, and

arranged in inereasing coler order, and

Irrample: The sets {aya) = {12}, {13}, {23}, {14}, {24}. {34} can be mapped to
{1,2,3,1,5,6} as shown in Table 4.4.
4.3.4 Sets of Special Lengths

For a transitive group of degree n, the orbit length of a 1-set is equal to n, and the
orbit length of an n-set is equal to 1. The orbit length of an (n — r)-set is equal to

that of the complementary r-set.

4.3.5 Storage

The orbit lengths are inserted into a binary search tree, and the frequency of occur-
rence of cach length is updated. After all the orbit lengths of r-sets are found, they

will be printed out in increasing order of length together with their frequencies.
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4.3.6 Consistency Checking

A consistency check is that the sum of the products of the length and the frequency

is C(n.r), where
'
n!

(=)t

This is the total number of distinct r-sets obtainable from n distinet elements.

(‘(n. I’) =

4.4 Finding the Orbit Length of an r-sequence
4.4.1 Steps

The following steps are repeatedly used to find the orbit length of an r-sequence until

no more r-sequences can be generated:
I. Generate a new r-sequence.

2. For each element in the r-sequence, find the orbit length under the group that

fixes all the preceding elements,

3. Multiply these orbit lengths together to obtain the orbit length of the r-sequence,

4.4.2 Number of Sequences in an Orbit

An efficient method for computing the orbit length of an r-sequence is based on the

following theorem:

Theorem 4.3 The orbit length of a sequence A, = [ay ... o) wunder the action of the
group G is equal to
N, = [T,
1=1
where G(x) denotes the subgroup of G that fires the first k elements oy, ... 0q of A,
and G(o) = G

Proof: We will prove this theorem by using induction on r.
Consider the extension of a sequence from A, = [a] to 1 = [ey ...,
At level 1,

A= [01],

20




r ; 0 . . . .
there are Ny = af = |0, | distinet sequences of length 1 that are isomorphic to A
under 4,

Assime that | extending down the path A} — ... — Ay where
A =lor.. .yl

the number of distinet sequences isomorphic to Ay is

Ny = |oy Jen),

DN x % ay

then, for level b+ 1, A; can be extended to
Akpr = [(*1 .- -0k0L+1]

and

B=Al, =l awai ] € Gy A g #c

Let one of the N sequences i the orbit on Ag be
A=Al =[al...a]]. pEG AN p#c.

We can obtain

— AP [P PP

Ak.}.l = ‘4k+l = [QJ . "0k0k+1

and

— P — [P N

B=DB"=|a]...ckaf,].

IR ) ) =1 3 -1 . .
Fhus. B = B = A} = (A},,)™" = AL, "7, showing that Ay, and B are in the
sarne orbit,

For two distinet sequences Iy and B, in the orbit on Ay, obtained from q;, ¢, € Gy,

we have

' 0
aihy F oy

q1s q25
= 0pq, ?é“k+1

21
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Thus. the B’s obtained from B's are distinet., so that the orbit length of iy is equal
C 4. Ga ek Ve .

to that of Agyy. which is Jo 4], In addition, if a sequence Cis in the orbit on Ay, .

the parent of (" must be isomorphic to ;. Therefore, by our assumption for level k.

the number of distinet sequences isomorphic to gy, is

A

. . ‘
Nigv = N xagly

= [(\?‘"’[ X oo N l(\:;‘;ﬁl.ﬂ

. G
For a transitive group ( on .. |o,""'[ = n, thus, we do not need to compute the

orbit length for the first level.

4.4.3 Example

As an example, consider D,. To find the orbit length of 2-sequences, [12) and |13)
are generated. The orbit on 1 under Dy is {1,2,3,4} with a length of 4. 'The orint
on 2 under a subgroup of Dy that fixes 1 is {2.4} with a length of 2. The orbit on 3
under a subgroup of Dy that fixes 1 is {3} with a length of 1. Thus, the orbit length
of [12] is 4 x 2 = 8, and the orbit length of [13]is 4 x 1 = 1. The whole picture
is shown in Figure 4.1. Here. 2-sequences are shown to the right of the | sequences
from which they extend, and the image of a sequence under a permotation is shown

with an arrow pointing to its image.

4.4.4 Sequences of Special Lengths

For a transitive group of degree n, the orbit length of a I-sequence is equal to n. The
orbit length of an n-sequence is equal to the order of the group. The orbit length
of an (n — 1)-sequence is equal to that of an n-sequence obtained by appending the

remaining element in Q, to the (n — 1)-sequence.

4.4.5 Storage

The orbit lengths are inserted into a binary search tree, and the frequeney of oceur
rence of each length is updated. After all the orbit lengths of 7-sequences are found,

they will be printed out in increasing order of length together with their frequencies,
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[12]

|4

[14]

[1]

(13]

P

P

[34]
| p~2qp?

[32]

[31]

14

[41]

1 p~3¢p®

[43]

L

[42]

Figure 4.1: Orbits on 2-sequences under D,
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4.4.6 Consistency Checking

A consistency check is that the sum of the products of the length and the frequency
is P(n.r), where

Pnor)=nxn—=1)x...x(n=-r+1).

This is the total number of distinct r-sequences obtainable from n distinet elements,

4.5 Implementation Using ISOM

ISOM is a package for isomorphism testing developed at Concordia University. It
uses the symmetry group to cut down the size of a scarch. The symmetry group of a
combinatorial object can be very large. In ISOM, a permutation group is represented
in a compact form. For a detailed description of 1ISOM, see [13].

The last appendix contains a description for the ISOM routines called in our pro
grams. Before calling the routine jerrum to generate a group, we create a null group
using the tunction build_null_gp to store the group, to specify the set of generators,
and to specify the number of generators. The order of the group can he obtained
using the routine gporder.

A symmetric group can be generated using the function symmelrie_gp. 'T'he rou-
tine find_ccrtificate uses this symmetric group and the group created by the routine
jerrum to recursively generate sequences in lex order. For example, Figure 4.2 shows
the sequences that will be generated by find_certificale when given Sy and anull group
of degree 4. This generates a list of all possible sequences from .

(1], [12), [123], [1234], [124], [13], [134], [14],
(2], [21], [213], [2134], [214], [23], [234], [24],

3], [31], [312], [3124], (314], [32], [324], [34],
[4]. [41), [412], [4123], [413], [42), [423], [43).

Figure 4.2: All possible sequences from €}y

T

. . . . Gioo . ST .
Lastly, the routine find_orbit enables us to find |or, ™| as required in Theorem 4.3,
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4.6 Output

Figure 4.3 shows the output file corresponding to Dy. Entry “2°{1}" indicates that

there is one orbit of length 2.

Name = D4

Generator ¢ (1,2,3,4)
(2,4)

Order : 8

Paraty : 0dd

Imprimitive : Yes

Shape : [1101]

2-sets ¢ [27{1},47{1}]

2-segs : [4°{1},8°{1}]

Figure 4.3: Characteristics of Dy

4.7 Re-formatted Output

Before the characteristics obtained for each group can be used to drive J. McKkay’s
Gialois program, they need to be further re-formatted and partitioned into files. de-
pending on the degree, parity and imprimitivity of the group. At the same time,
redundant generators will be thrown away to save storage space.

Figure 4.4 shows the result of re-formatting the output for Dy. This result will

be written to an output file for odd imprimitive groups of degree 4.

{[‘Da‘, ‘8¢,
{(1,2,3,4)",
“(2,4)‘},
{1, &, o0, 11,
(4, 8]
[2, 411,

Figure 4.4: Output for D,



Chapter 5

Results

Upon execution of the programs described in the previous two chapters. a huge volume
of output data was obtained. As it is not possible to display all the data here, only

selected data are displayed in this thesis.

5.1 Distinguishing Permutation Isomorphic Classes
of Groups

The invariants of each class are obtained. For groups of degree n, these invariants
include the order. the imprimitivity, the parity, the shapes. and the orbit lengths of
r-sets and r-sequences. For r-sets, r runs from 2 to |3 ]. For r-sequences, rruns from
2 to the minimum of n — 2 and 9.

In this section, we concentrate on sets of groups which are hard to distinguish.

Appendix E shows the output for the groups discussed here.

5.1.1 Some Previously Indistinguishable Groups

Within the range tabulated in [18], the orbit lengths and the parity of the group
generally serve to determine the permutation isomorphisin classes. The exceptions
are now further studied and shown in Table 5.1 '. The gronp names in the Cayley

library differ from those described in [4], see Table 5.1.

YA ?in an entry denotes that the set of groups are still indistinguishable
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group name mn [4) new growp name distinguishable by
513, 515 t5n3, tHnd 3-sequences
619, 6113 t6n9, tonl3 4-sequences
6114, 6'T16 t6nl4, ténl6 4-sequences
8126, 8128, 8130 t8n26, t8n28, t8n29 ?

8'1'46, 8147 t8n46, t8n47 6-sequences
9729, 9131 t9n30, t9n3l 6-sequences
1079, 10T10 t10n9, t10n10 ?

10711, 10T12 t10n11, t10n12 ?

10717, 10719, 10720 | t10nl8, t10n20, t10n21 | 7

10136, 10739 t10n37, t10n39 4-sequences
10741, 10T43 t10n42, t10n43 8-sequences

Table 5.1: Groups which are previously indistinguishable

5.1.2 Groups of Degree Twelve to Fifteen

Based on only the parities and the orbit lengths of sets and sequences, all of the
groups of degree 12 to 15 are distinguishable except the sets of groups shown in
Table 5.2,

5.1.3 Distinguishing with Shapes

The existence of the shapes of a group can be used to distinguish some of the per-
mutation isomorphic classes. This occurs if a class has a shape that is not in another
class, while the latter also has a shape that is not in the former. Some of groups in

Tablie 5.1 and Table 5.2 can then be distinguished as shown in Table 5.3.

5.1.4 Groups Still Indistinguishable

As concluded from the previous subsections, the groups shown in Table 5.4 are still

indistinguishable using only the parity, orbit lengths and existence of the shapes.

5.2 Time Spent in Finding Orbit Lengths

Now. we consider the empirical comploxity of our programs. The timing data shown in

this section are expressed in milliseconds. and are obtained by running the programs
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groups industinguisable
t12nl. t120d

t12n3 L 112010

t12n145. t 120154, t120ld5
t12nl152, t12nlH3
t12n168, t12n171. 1120072, t12nl7d
t12n180. t12n183
t120n196, t120197
£120209, t120217
120210, v12n21d
t12n212, t120216
t12n221, t12n223, t12n225
1120228, t12n229
t12n232, t12n234
120235, t120237, 1120238
t12n240. 1120241
1120248, t12n249
t12n262, 1120263, 1121267
t14nd6, t1dnd7

t15n31. 115032

t15nd8. t15Hnal

Table 5.2: Groups of degree 12 to 15, indistinguishable by parity and orhit lengths
p g 8 A )

degree | groups

8 | t8n28

10 | t100n9, t10u10, 110011, t10n12, t10n2]

12 | t12n155, 1120196, 120197, t12n225.
t12n232, 1120234, t120237, 112n240.,
t12n241, 1120248, 1120249, 1120263 |
15 | t15n31, t15032, t15048. t15nsl

Table 5.3: Groups distinguishable by shapes
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groups tndistinguisable
t8n26. t8n2Y

tHOnIR. 110020

t12nl, 1205

t12031. 112010
t12u145. 1120154
t12n152. 1120153
t120168, 1120171, t12n172, t12n174
t12n180G, t12n183
t12n200, t12n217
11202100 t12n214
t12n212, t12n216
120221, 112223
t12n228. t12n22Y
1120235 12n238
120262, 120267
thnd6, tndy

Table 5.4: Groups still indistinguishable by parity, orbit lengths and shapes

ina DEC 5000/200 machine under ULTRIX V4.1 (Rev. 52). A theoretical analysis
for the complexity of the programs is presented in the next chapter. This analyvsis
helps to explain the patterns of the data presented in this section.

In the first two subsections, symmetric groups are chosen for studying the varia-
tions among different degrees. They are chosen as they have similar natures. They
arc odd and have all the shapes. Besides, they have only one orbit on each r-set and
one orbit on each r-sequence, thus, complicated variations due to differences in their
natures are eliminated.

In the last two subsections. all the transitive groups of degree 11 are chosen to
study the variations among the groups. Degree 11 is chosen because there are only a
total of 8 groups. Besides, this degree is sufficiently large so that orbits on 9-sequences
will be computed. This is the maximum sequence length that our main program can

handle.
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Dot 3eset deset Aosel Beset Teset |
t2nl 0
13n2 0 -
tind 0 -
tand 0 -
t6n16 0 0
tin7 3 0 -
t8nal 0 3 T
t9ndd 3 3 T -
t10n45 3 7 11 15
tiind 3 11 19 31 -
t12n301 T 11 31 Ol 66
t13n9 3 19 16 39 128 -
t14n63 T 23 66 e 2310 257
t15nl0d T 27 97 226 391 5Hhi

Table 5.5: Timing data for r-sets of symmetric groups in units of millisecond

5.2.1 Finding Orbit Lengths of r-sets of Symmetric Groups

Table 5.5 shows the time spent on finding all the orbit lengths of 1 sets of symmetrice
groups. [t can be seen that, for symmetric groups, the time increases slowly with the

degrees but quickly with the length. r, of the r-sets.

5.2.2 Finding Orbit Lengths of r-sequences for Symnetrie
Groups

We find that it only take us a few microseconds to compute the orbit lengih of each

r-sequence under the action of a symmetric group.

5.2.3 Finding Orbit Lengths of r-sets for Groups of Degree
11

Table 5.6 shows the time spent on finding all the orbit lengths on r-sets for groups

of degree 11. The time increases quickly with the lengths of the sets,
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2-set 3-set 4-set H-set
tlinl 3 11 27 54
t11n2 3 11 31 66
tiHing 3 I1 27 46
tlind 3 7 23 39
t11n5 3 15 27 46
t1in6 3 11 27 42
tHinT? 3 7 19 31
tiIns 3 11 19 31

Table 5.6: Tining data for r-sets for groups of degree 11 in units of millisecond

2-seq d-seq dseq o Beseq G-seq T-seq 8-seq 9-seq
thinl 3 11 101 831 5753 32240 142252 468130
t1in2 ] 7 5 468 3167 17565 76741 249964
t11n3 3 3 31 212 1581 8616 37122 119359
thind 3 0 23 156 996 5316 22639 71905
t1inh 0 0 T 3! 203 1054 4456 14042
{1in6 0 3 0 3 23 121 492 1523
t1in7 3 0 0 3 0 3 0 3
tHin8 0 0 3 0 J 0 3 0

Table 5.7: Timing data for r-sequences for groups of degree 11 in units of millisecond

5.2.4 Finding Orbit Lengths of r-sequences for Groups of
Degree 11

Table 5.7 shows the time spent on finding all the orbit lengths on r-sequences for
groups of degree 11, The last two entries are for the alternating and symmetric
groups. In these cases, all the r-sequences are in one orbit. Since there is no need to
generate other orbits, the timing data for these two groups are substantially smaller
than the others. In Table 5.8, the number of orbits on r-sequences are given. We

note that the timing data seem to be linearly proportional to the number of orbits.
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2-seq dseq dseq Heseq 6-seq T-50 Sseq  Yseq ]
t1nl 10 90 720 5010 30210 151200 GOAS00 181.H00
{11n2 5 45 360 2520 15120 TH600 302100 907200
t11n3 2 I3 L 1008 6048 30210 120960 362880
t11n ] 9 72 500 3024 151200 60180 181440
t1n3 1 2 i2 81 50 9520 10080 30240
t11n6 1 | [ 7 19 210 810 2520
t1in7 1 1 1 | | | [ I
t11n8 1 1 1 1 1 1 | I

Cable 5.8: Number of orbits on r-sequences for groups of degree |1

32




5.3 Reducing the Number of Generators

Table 5.9 shows the nurnber of redundant generators found in the Cayley library.

total no. no. of qroups with
degre of k redundant generators
groups | k=11k=2| k=3
2 ] 0 0 0
3 2 0 0 0
4 5 0 0 0
Y 5 0 0 0
6 16 0 0 0
7 7 0 0 0
8 50 0 0 0
9 31 0 0 0
10 45 0 0 0
11 3 2 0 0
12 301 17 0 0
13 9 0 0 0
1 63 25 0 0
15 104 15 | l

Table 5.9: Numberof redundant generators found
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Chapter 6

Evaluation

In this chapter, a discussion of the time complexity of the four sections of the main
process is presented. This analysis helps to explain the trends in the timing data pre
sented in the previous chapter. In addition, discussion of the limitation and capability
of the programs, as well as suggestions for further improvement are also presented.

Finally, a conclusion is drawn.

6.1 Complexity

The programs have different sections which vary in time complexity, The tiune re
quired for initializing tables for the number of combinations, number ol permutations,
and number of partitions is very small. There is a binary scatch tree which stores
the orbit lengths. However, there are usually less than four different values of orhit
lengths in a group, thus, the time required for the search and insert operations on
this tree is also very small.

Before describing the complexity of the main sections of the programs, we define

some notation as bclow:

k the number of generators
b the number of orbits
s the number of shapes



6.1.1 Checking Parity and Reducing the Number of Gen-
erators

Checking parity requires counting the nmber of commas in the generators only. This
takes only O(n) time,

[n the creation of a group from the given gencrators, the routine jerrumof ISOM is
used. ‘To check for redundant generators, all the subsets of the given set of generators
ate checked using jerrum. The total cost here is O(24) x O(jerrum ), where & is not

greater than 5. At present, O(jerrum) is O(n®).

6.1.2 Partition and Shape

Belore encoding the shapes, we have to initialize a linear array tohold the information.
This takes O(p(1)) time. The cost to encode each of the s shapes is at most O(n).

using the mapping ¢. Thus, the total complexity is
O(p(n)) + O(ns).

6.1.3 Finding the Orbit Length of an r-set

To find the orbit length of an r-set. we use the procedure ertend_pcrmutation to
generate sets. In the method of expanding horizon, we need to apply the k generators
to cach set inthe orbit, and generate the image in O(n) time. Since each of the C'(n, 1)

sets is scen once, the complexity for this part is
O(C'(n,r) x ni).
The time needed to generate new r-sets as described in Section 4.3.1 is not included.

6.1.4 Finding the Orbit Length of an r-sequence

To find the orbit length of an r-sequence, we use the procedure extend.permutation
to generate sequences. For each of the b orbits, we need to multiply the r values of
orbit lengths together. However. for transitive groups, the first orbit length is n. for

the remaining orbit lengths. we use the procedure find_orbit. which has a complexity
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of O(n?). Thus. the complexity for this part is
O(n*rb).

One can show that this coniplexity also bounds the cost of generating the r sequenees,
Hence, the total complexity is still O(n*rb). For fixed n and r, this complexity is
linear in b, which explains the lincar relationship between the data in Table 5 7 and

Table 5.8.

6.2 Limitation and Capability

Our main program is written to run on a machine whose word length is 32 hits. Some
of the computations are limited by the size of an unsigned long, integer, which is about
232~ 1.3 x 10°. At present. the maximum degree of a group that the programs can
handle is 15.

Infact. the programs can work for groups of any degree i, as long as the lolfowing,

restrictions are observed:
1. for r-set. C'(7e.r) must be less than 2% and
2. for r-sequence. P(n.7) must be less than 2%,

Morcover. the array size for encoding shapes must be inereased o p(n). The second
restriction also explains why, for r-sequences, the current progiam restiicd r to at
most 9, as P(13, 10) is greater than 2%,

In addition, the maximum number of generators for a group is now set 1o 200 s

can be easily changed if the actual number of generators for a group is more than 20,

6.3 Further Improvement

Multi-length integers can be used to solve the problem of the limited size of a 32 bit
integer.

Instead of computing the orbit lengths of the elements in an r sequence after the
sequence has been completely generated, we can compute these lengths incementally.

This will reduce the complexity of computing the orbit lengt he of r-sequences.
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In the case that the orbit lengths for a group are not distinct, we can further
analyze the orbits, taking cach set or sequence as an element. This is particularly
informative if either the order of the orbit stablilizer is smaller than the order of
the group, or the orbit length is not greater than 15, the maximum degree that our
programs can handle.

'To hetter identify all permutation isomorphism classes of groups, more invariants
are needed. These can include the block systems, and whether the action induced by
(/ on an orbit is faithful,

Some computations such as finding the image of cach element in a permutation.
finding the orbits on individual elements, and the process using the method of ex-
panding horizon can be done in parallel. These computations may be carried out
in the synchronous mode SIMD, which can be implemented using C/Paris on the
Connection Machine.

It will help maintenance of the programs if the preprocessing part using Cayley
can be integrated into the main process. With this, we do not need to preprocess cach
file in the Cayley library to obtain an intermediate output before being processed by
the main program. Instead. we can then obtain the list of invariants directly from

the Cayvley library just by running the main program.

6.4 Conclusion

The results obtained for groups of degree 3 to 11 agree with those obtained in [18].
This supports our confidence in the correctness of the programs involved in the re-
search.

The method of expanding horizon, coupled with the registration technique to
identify new sets, is very effective for computing the orbits on r-sets. Furthermore,
the theorem on calculating the number of sequences in an orbit is very useful for
computing the orbits on r-sequences. Groups, including those of degree 12 to 15, can
now be studied in more detail.

The invariants obtained for each group enhance distinguishing permutation iso-

morphism classes of groups. More Galois groups may thus be determined for studying
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the solution of polynomial equations of higher degrees.
Cayley is very useful for finding conjugacy classes of permutation groups and
ISOM is a powerful tool for studying the actions of transitive permutation groups of

small degrees.
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Appendix A

Preprocessing Program

Attached is the CAYLEY program, due to G, Butler, that perforins the work ol
preprocessing described in Chapter 3. If the program is in a file called Lboan, the
group t/n3 is proprocessed using the UNIX command

sed s/LL/Gin3/ b in | cayley > Linid.pr

set workspace = 500000;
set format = true;

"the inductive schema for conjugacy classes of elements"
set libfile ='/home/faculty/butler/cayproc/rathom’ ;
labrary cladt;

library clcomposite;

library clutilitaes;

library sylanalyse;

library isnewrat;

library addpclass;

library clprime;

library rathomcl;

"routines to analyse properties of a permutation group"

set libfile=’/home/faculty/butler/batch/trngps’;
library gpanalyse;

"Print the group information, especially class information
about a group"

"gpinfo is a sequence containing
1. seq( order(G) )
2. seq of no. blocks i1n each minimal block system
3. seq( no. classes )
4. seq( seq of cycle shapes - sorted,
seq of no. elements with given cycle shape,
seq of no. classes with given cycle shape )
. seq of group names as strings (indicating kernel and 1image)
. seq( G )

(o) ¢

1"t



procedure printgp( gpinfo );

print 'SEQ ’, gpinfo[1][1];
bls = gpinfol2];

blth = length( bls );

1f blth eq 0 then

praint 'SEQ 0’;
else

print ’SEQ 1’;
end;

clss = gpinfo[4];
sss = clss[1]; sselts = clss[2]; sscls = clss[3];

"convert cycle shapes for encoding"
llsss = empty;

print ’SEQ ’, length( sss);
for 1 = 1 to length( sss ) do

oldcl = sss[ 1 ];
newcl = empty;
for j = 1 to length( oldcl ) by 2 do

cyclth = oldclf j ];
numcycs = oldecl[ 7 + 1 1;
newcl = concatenate( newcl, conseq( cyclth, numcycs ) );
end;
1l1sss[ 1 ] = newcl;
end;

for 1 =1 to len%th( sss ) do

print llsss[a
end;

.
’

end; "printgp"

finash;

set 1bfile=’/home/faculty/butler/cayley/caylibs/trngps’;
library LL;

print ’SEQ ’, ngenerators(G);

for each x in generators(G) do
print eltseq(x);

end;

for each x 1n generators(G) do
print 'CYC’, x;

end;

gpanalyse (G, °’LL’; gpinfs);

printgp (gpinfo);

quit;
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Appendix B

Liditing Commands

The following sed editing commands are used {or postprocessing the Cavley outpat.,
£ } | £ Vel

/SEQ/ s/,//g
/SEQ/ s/(//
/SEQ/ s/)//
/SEQ/ s/SEQ//p
/CYC/ s/CYC//p

If the above commands are stored in the file sed.in. the preprocessed file L3 preas
further processed using the UNIX command

sed -n -f sed.in > tyns.oul



Appendix C

Input to Main Program

The following is the input file to the main program that is used to obtain the output
for the groups discussed in Section 5.1. These are the groups which are difficult to
be distinguished from one another. The first column indicates the file containing the
Cayley output after preprocessing: while the second column indicates the group name
associated with the data in that file. In this file. as we just use the file names as the

group names, these columns are the same.

degree

5

t5n3 t5n3
t6n5 t5nb6
degree

6

t6n9  tén9
t6n13 t6n13
t6ni4 t6ni14
t6n16 t6nlé6
degree

8

t8n26 tB8n26
t8n28 t8n28
t8n29 t8n29
t8n46 t8n46
t8n47 t8n47
degree

9

t9n30 t9n30
t9n31 t9n31
degree

10

t10n9 t10n9
t10n10 t10n10
t10n11 t10ni1l
t10n12 +t1i0ni12
t10n18 t10ni8
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t10n20
+10n21
t10n37
+10n39
t10n42
t10n43
degree
12

t10n20
t10n21
t10n37
t10n39
t10n42
t10n43

t12n1  t12ni
t12n5 t12nb

t12n34

t£12n40

t12n145
t12n152
t12n153
t12n154
t12n155
t12n168
t12n171
t12n172
t1i2n174
t12n180
t12n183
t12n196
t12n197
t12n209
t12n210
t12n212
t12n214
t12n216
t12n217
t12n221
t12n223
t12n225
t12n228
t12n229
t12n232
t12n234
t12n235
t12n237
t12n238
t12n240
t12n241
t£12n248
t12n249
t12n262
t12n263
t12n267
degree

t14n46
t14n47
degree
15

t15n31
+15n32
t15n48
t15n51

t12n34
t12n40
t12n145
t12n152
t12n153
t12n154
t12n155
t12n168
t12n171
t12n172
t12n174
t12n180
t12n183
t12n196
t12n197
t12n209
t12n210
t12n212
t12n214
t12n216
t12n217
+12n221
t12n223
t12n225
t12n228
t12n229
t12n232
t12n234
t12n235
£12n237
t12n238
t12n240
t1i2n241
t12n248
t12n249
t12n262
t12n263
t12n267

t14n46
t14n47

t15n31
t15n32
t15n48
t15n51



Appendix D

Main Program

The following ' program performs the work described in Chapter 4. If the name of
this file is mawm.c, which is compiled to main, and the input file to it is in. output
file. oul, is obtained using, the UNIX command
main <in >oul
[n addition. files containing timing data. {ime.19 and timc.q9. are also produced.
The program is run in a DEC 5000/200 machine under ULTRIX V4.1 (Rev. 52).
In this machine. ISOM of version 1.00 written in C is included by the header file

groupdel.h,

#include <stdio.h>
#include <sys/time.h>
#include <sys/resource.h>
#include "groupdcl.h"

#define max_degree 15

#define max_comb 6435 /* 15 C 7_x*/
#define max_part 176 /* part[15][15] */
#define max_nof_gen 20

#define MINRSEQ

#define MAXRSEQ 9

typedef struct nodeT {
unsigned long size,freq;
struct nodeT *left, *right;

} H

short combination[max_degree+1] [max_degree+1];
unsigned long permutation[max_degree+1][max_degree+1];

ptr_to_perm_gp sym_gp, group;
ptr_to_permmatrix generators;



Etr_to_permvect temppvect,poppvect,orbt;
ong gp_order;

double rgp_order;

short degree,r,num_gen;

short part([max_degree+1] [max_degree+1];

boolean shapefmax_part];

struct node? *root;

short sizecount,first;

boolean seen[max_comb+1];

unsigned lon% set_index;

FILE *fptr,*ftimel,*ftime2;

short odd,blth,nof_shape;

struct timeval oldclock,newclock;

long cputime;

struct rusage ru;

short maxng;

double maxorder;

short non_reduntmax_nof_gen+1],A[max_nof_gen+1];
ptr_to_perm_gp sym_redun,auto_redun,group_redun;
ptr_to_permmatrix gen;

short nof_1;

unsigned long total_size;

[ F Aok RO ORIk DINATY TTee #okiorkkkkidokoiokok okl ook ook 3 KoKk Kok /
void init_tree(struct nodeT *node)

if (node==NULL) return;
init_tree(node->left);
node->freq = 0;

init_tree(node->right);

¥

zoid print_table(struct nodeT *node)
if (node==NULL) return;
print_table(node->left);
if ((node->freq)>0) {
if (first==1) first = 0;
else printf(",");
printf ("%u~{%u}", node->size, node->freq);

print_table(node->right);
total_size += (node->size) * (node->freq);

¥

void search_insert(unsigned long x, struct nodeT **node)
{
struct nodeT *WITH;
if (*node == NULL) {
*node = (struct nodeT *)malloc(sizeof (struct nodeT));
WITH = *node;
WITH->size = x;
WITH->freq = 1;
WITH->left = NULL;
WITH->right = NULL;
return;
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/* not found, insert =/

1f (x < (*node)->size) {
search_insert(x, &(*node)->left);
return;

1f (x > (*node)->si1ze) {
search_insert(x, &(*node)->right);
return;

/* found */

WITH = *node;

(WITH->freq)++;
}

/3w ok kKR Rk KR KRRk ok ok Kok kR INIT1aliZATI0NS H kA kkk ks dok ko skok ok ok kR AR AR Kok Kk
void init_combination()

short i,j3;
for (1=0; i<=max_degree; i++) {
combination[i][1] = 1;
for (j=2; j<=i-1; 3++5
combination[i]l[3] = combination[i-1][j-1] + combination[i-1][j];
combinationf[a][1] = 1;
for (j=i+1; j<=max_degree; j++)
combination([i] [j] = 0;
}

}

void 1nit_permutation()

short 1,3;
for (i=1; i<=max_degree; i++) {
permutataon[i][1] = i;
for (j=2; j<=i; j++)
permutation[1][3j] = permutation[i][j-1] * (i-j+1);

}
}

void init_part()

short 1,3;

for (j=0; j<=max_degree; j++) part[0][j] = 1;

for (1=1; i<=max_degree; i++) {
part[i] [0] = O;
for (j=1; j<i; j++) part[i][j] = part[il[j-1] + part[i-jI[j]1;
part[1] [i] = part[i][a-1] + 1;

) for (j=1+1; j<=max_degree; j++) part[il[j] = part[i][i];

}

void initialization()

init_combination();
1nit_permutation();
init_part();

root = NULL;
search_insert(12, &root);
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sym_ = NULL;
g¥ougp = NULL;
sym_redun = NULL;
auto_redun = NULL;
group_redun = NULL;

J ok ok kokokok ok Rk kokkok Rk kkok Rk create group 4ok ok ok o ok K KK KKK KK KK KoK ok koK ok K koK [/
short comma_count (char *str)

0
11="\0") {
==’ ) n +=

short i=0,n=0;
i1
J==7,

while (str[
if (strli
i++;

1;
return n;

void process()

short ii;

group_redun = build_null_gp (group_redun, degree);
jerrum (group_redun, gen, nof_1);

gporder (group_redun, &rgp_order, &gp_order);

if ( (rgp_order/maxorder>0.75) & (nof_i<maxng) ) {

maxng = nof_1;
for (i1=1; ii<=num_gen; ii++) non_redun[1i] = A[1i];
}
}
void generate(short index)
short ii;
Alindex] = 1;
nof_1++;

for (ii=1; iid=degree; ii++)
gen[nof_1][ii] = generators[index][i1];
if (nof_i<maxng) {
if (index<num_gen) generate(index+1);
else process();

}

Alindex] = 0;

nof_1--;

if (nof_1<maxng) {
if (index<num_gen) generate(index+1);
else if (nof_1>0) process();

}
}

void create_group()

/*reads in the generators and call Jerrum’s algorithm to

create the group.*/
short j,k,count;
char genstr[60];



fscanf (fptr, "%hd", &num_gen);
for (j=1; j<=num_gen; j++) {
readpvect (fptr,generators[j],degree);
for (k=1; k<=degree; k++)
gen[j][k] = generators[j][k];

group = build_null_gp(group, degree);
jerrum(group, gen, num_gen);
gporder (group, &maxorder, &gp_order);
maxng = num_gen;
for (3=1; j<=num_gen; j++) non_redun[j] = 1;
1f (num_gen>1)

generate(1);

fscanf (fptr,"/s", genstr);

1f (genstr[0]=='[’) fscanf (fptr, "¥s", genstr);
odd = (odd | comma_count(genstr)%2);

if (non_redun[1]==1)

lprlntf (" Generator : Y%s\n", genstr);
else
prantf (" Generator : *Is\n", genstr);

for (j=2; j<=num_gen; j++) {
fscanf(fptr,"¥%s", genstr);
if (genstr[0]==’'[’) fscanf(fptr, "/s", genstr);
odd = (odd | comma_count(genstr)¥2);
1f (non_redun[jl==1)

1prlntf(” %s\n", genstr);
else
printf(" *Ys\n", genstr);

} /*create_group*/

[ Frdok ok ok ok Rk ok Rk kR oRokk ok Shape  dekkktok ok skok sk sk skak ok sk ok sk ok ok ok ok
void find_shape()
{
short i,n,e,next;
fscanf (fptr, "%hd", &nof_shape);
for (i=1; (i<part(degree][degreel); i++) shape[i] = FALSE;
for (i=1; 1<=nof_shape; i++) {
e =0;
n = degree;
while (n>0) {
fscanf (fptr, "/4hd", &next);
e += part[n][next-1];
n -= next;

}
shape(e]l = 1;

printf(" Shape DK
for (i=1; (i<part([degree] [degree]); i++) {
if ( (1./‘50==1) & (i!=1) ) printf("\n u);

if (shapel[1]) printf("1"); else printf("0");
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printf("“J\n");

[ 65k 3 3 3 sk o o ok ek ook sk ok ok ok ke o sk sk o 3ok ok T=Set Aokkokokkokokokok ok dkok sk Kok sk ok ok ko Rk 0K R ¥Rk wokok o/
unsigned long colex_order(ptr_to_permvect alpha)

short i,sum=alphal1];
for (i=2; i<=r; i++)

sum += combination[alpha(1]-1][i];
return sunm;

void colex(long set_r, ptr_to_permvect alpha)

{
short i=1,j;
for (j=1; j<=degree; j++) {
if ((unsigned)j < 32 && ((1L<<)) & set_r) '= 0) {

alphal[i] = j;
i++;
}
}
}
void find_set_orbit(ptr_to_permvect choice)
{
short j,k;

long set_image;

long genset_stack[max_comb+1];
unsigned long nof_genset=1;
unsigned long nof_image=1;

genset_stack[1] = OL;

for (j=1; j<=r; j++)
genset_stack[1] |= 1L<<choice[j];

while (nof_genset>0) {

colex(genset_stack[nof_genset], poppvect);
nof_genset--;
for (j=1; j<=num_gen; j++) {
set_image = 0;
for (k=1; k<=r; k++)
set_image |= 1L<<generators([j] [poppvect[k]];
colex(set_image, temppvect);
set_index = colex_order(temppvect);
if (!seen(set_index]) {
seen[set_index]} = TRUE;
nof_image++;
nof_genset++;
genset_stack[nof_genset] = set_image;

}
}

search_insert(nof_image, &root);

¥

comprestype compare_set(ptr_to_permvect choice, short depth)
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if (depth==1) {
return indifferent;
} else {
if (choicel[depth] < choice[depth-1]) {
return worse;
} else {
1f (depth<r)
return i1ndifferent;
else {
set_index = colex_order(choice);
1f (!'seen[set_index])
seen[set_index] = TRUE;
find_set_orbit(choice);

return worse;
}
}  /*compare_set*/

void find_set(short rlength)

{ .
short 1;
r = rlength;
init_tree(root);
for (1=1; 1<=combination[degree] [r]; i++) seen[i] = FALSE;
find_certificate(sym_gp, group, compare_set, 0);
}

[ A AR AR F AR AR AR KK T=SQQUENCE KoKk dkdkok ko ek kA kK ok ok [
voaid Orblt_Length(short *count, short pt, ptr_to_permvect orbt)
{

/*calculate the length of a cycle containing the point pt. returns answer

i1n count*/
short temp;

*count = 1;
temp = pt;
while (pt '= orbt[templ) {
(*count) ++;
temp = orbt[temp];
1f (*count > degree)
printf("problem\n");

} /*orbit_length*/

void Orbit_Size(unsigned long *size, ptr_to_permvect choice)

{
short count, i, j;
ptr_to_permmatrax U=NULL;

*size = degree;
for (1 = 2; 1 <=1; i++) {
for (j = 1; j <= degree; j++)
orbt[j] = 0;
find_orbit(group, choicel[il, i - 1, orbt, U);
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Orbit_Length(&count, choice[1], orbt);
*size *= count;

} /*orbit_size*/
comprestype compare_seq(ptr_to_permvect choice, short depth)
unsigned long size;
if (depth < r)
return indifferent;
else {
Orbit_Size(&size,choice);
search_insert(size, &root);
return worse;
} /*compare*/

void find_seq(short rlength)

{

r = rlength;

init_tree(root);

find_certificate(sym_gp, group, compare_seq, 0);
}

[F kAR Rk Rk MR T N ok okt sk ook ook ok ko ok ook koo /
int main()

short j,k,maxrset,maxrseq;
char name{40],gname[40];

initialization();

safeopen (ftimel, "time.t9”, "w");

safeopen (ftime2, "time.q9", "w");

fprintf (ftimel, “"Group Time(ms)\n----- -v=c=ee-- ")
fprintf (ftime2, "Group Time(ms)\n--=--  -===c---- "),

temppvect = allocatepv(max_degree);
poppvect = allocatepv(max_degree);

orbt = allocatepv(max_degree);
generators = allocatepm(max_degree);
gen = allocatepm(max_degree) ;

for (3=1; j<=max_nof_gen; j++) {
generators(j] allocatepv(max_degree),
gen[j] allccatepv(max_degree) ;

while (scanf("%s", name)==1) {
1f (strcmp(name, "degree")==0) {
scanf ("hd", &degree);
maxrset = degree/2;

if (maxrset<2) maxrset=2;
if (degree-2>MAXRSEQ) maxrseq = MAXRSEQ;
else maxrseq = degree-2;

if (maxrseq<2) maxrseq=2;
printf("DEGREE %d\n\n", degree);
if (sym_gp '= NULL) {




disposepg (sym_gp);
sym?gp ggNULK; er

sym_gp = symmetric_gp(sym_gp,degree);
scanf ("Ys" ,name) ;

scanf ("%s", gname) ;
printf("Name = %s\n", gname);
safeopen (fptr, name, "r"};
odd = 0;

create_group ();

fscanf (fptr, "%s", name);

printf (" Order : %s\n", name);

1f (odd==0) printf (" Parity : Even\n");
else printf (" Parity : 0dd\n");
fscanf(fptr, "%hd", &blth);

printf (" Imprimitive : ");

1f (blth==0) printf ("No\n") ; else printf ("Yes\n");
find_shape();
fprintf (ftimel, "\n%-10s", gname);
fprintf (ftime2, "\n%-10s", gname);
getrusage(RUSAGE_SELF ,&ru);
oldclock.tv_sec = (ru.ru_utime).tv_sec;
oldclock.tv_usec = (ru.ru_utime).tv_usec;
for (j=2; j<=maxrset; j++) {
find_set(j);
first = 1;
printf(" Y%d-sets S0, 3);
total_size = 0;
prant_table(root);
if (total_size '= combination[degree][3]) {
printf ("\ninconsistent!\n");
exit(1);

prantf ("J\n");
getrusage(RUSAGE_SELF,&ru);
newclock.tv_sec = (ru.ru_utime).tv_sec;
newclock.tv_usec = (ru.ru_utime).tv_usec;
cputime = 1000 * (newclock.tv_sec-oldclock.tv_sec) +
0.001 * (newclock.tv_usec-oldclock.tv_usec);
fgrintf (ftimel, "%8d", cputime);
oldclock.tv_sec = newclock.tv_sec;
oldclock.tv_usec = newclock.tv_usec;

for (j=MINRSEQ; j<=maxrseq; j++) {

find_seq(j);

first = 1;

printf(" Yd-segs 0y 3

total_size = Q;

print_table(root) ;

1f (total_size != permutation[degreel[j]) {
printf ("\ninconsistent!\n");
ex1t(1);

printf("J\n");
getrusage(RUSAGE_SELF,&ru) ;

dd



newclock.tv_sec = Eru.ru_utime).tv_sec;
newclock.tv_usec = (ruv.ru_utime) .tv_usec;
cputime = 1000 * (newclock.tv_sec~oldclock.tv_sec) +

0.001 * (newclock.tv_usec-oldclock.tv_usec);
fprintf (ftime2, "%8d", cputime);
oldclock.tv_sec = newclock.tv_sec;
oldclock.tv_usec = newclock.tv_usec;

printf ("\n");
) fclose(fptr);
fclose (ftimel);
fclose (ftime2);
disposepm(generators, max_nof_gen);
disposepm(gen, max_nof_gen);
disposepv(temppvect) ;
disposepv(poppvect) ;
disposepv(orbt);

) exit(0);

/* End. */

56



Appendix E

Output for Difficult Groups

The following shows the output obtained. as described in the previous appendix. for

"

the groups discussed in Section 5.1, These are the groups which are difficult to be

distinguished from one another.

DEGREE 5

Name = t5n3
Generator : (2,5,3,4)

(1,4,2,3)

Order 1 20
Parity : 0dd
Impramitive : No
Shape : [010011]
2-sets ¢ [107{1}]
2-seqs : [20°{1}]
3-seqs [20°{3}]

Name = t5n5

Generator : (1,2,3,4,5)
(1,2)
Order 1120
Parity : 0dd
Imprimitive : No
Shape : [111111]
2-sets £10°{1}]
2-seqs [20°{1}]
3-segs [607°{1}]
DEGREE 6
Name = t6n9
Generator (1,6,3,4,2,5)
(2,3)(4,5)
Order : 36
Parity : 0dd
Imprimitive : Yes
Shape : [0111010001]

ot
~1



2-sets : [67{1},9°{1}]
3-sets : [27{1},18°{1}]
2-seqs : [127{1},187{1}]
3-seqs ¢ [127{1},36°{3}]
4-seqs : [367{10}]
Name = t6ni13
Generator ¢ (1,2,3)(5,6)
(1,4)(2,5,3,6)
Order 72
Parity : 0dd
Impraimitive : Yes
Shape : [1111110101]
2-sets : [67{1},9°{1}]
3-sets : [27{1},18"{1}]
2-seqgs : [127{1},18°{1}]
3-seqs : [127{1},36°{3}]
4-seqs : [367{4},72°{3}]
Name = t6ni4
Generator (2,5,4,6,3)
(1’4’2’316’5)
Drder : 120
Parity : 0dd
Imprimitive : No
Shape : [0110021011]
2-sets : [157{1}]
3-sets : [207{1}]
2-seqs : [S0~{1}]
3-seqgs - [120°{1}]
4-seqs : {1207{3}]
Name = t6ni6
Generator : (1,2,3,4,5,6)
(1,2)
Order : 720
Parity : Ddd
Imprimitive : No
Shape s lit11111111]
2-sets : [15°11}]
3-sets : [207{1}]
2-seqs : [307°{}]
3-seqgs : {120741}]
4-seys : [360°{1}]
DEGREE 8
Name = t8n26
Generator : (1,2)(3,4)(5,7,6,8)
1,5,3,8,2,6,4,7)
(1!6)3,8,2,5)4)7)
Order : 64
Parity : 0dd
Imprimitive : Yes
Shape : [011100000101010000001]
2-sets : [4~{1},87{1},16"{1}]
3-sets . [8-{1}.16°{1},32°{1}]
4-sets : [27{1),4°{1},167{2},32°{1}]

K



2-segs
3-seqgs
4-seqs
5-segs
6-seqs

Name = t8n28
Generator

Order
Paraty

Imprimitive :

Shape

2-sets
3-sets
4-sets
2-seqgs
3-seqs
4-3seqs
H-seqs
6-seqs

Name = t8n29
Generator

Order
Parity

Imprimitive :

Shape

2-sets
3-sets
4-sets
2-seqs
3-seqgs
4-seqs
5-seq=
6-seqs

Name = t8n46
Generator

Order
Parity

Imprimitaive :

Shape

2-sets
3-sets
4-sets
2-seqgs
3~-seqs
4-seqs
5-seqs
6-segs

Name = t8n47
Generator

[8~{1},16°{1},32"{1}]
[16°{3},32°{3},64°{3}]
[16-{3},32°{3},64"{24}]
(64-{105}]

[64-{315}]

(1, 8)(2 7)(3 4,6)
(1,6,4,7,2,5,3,8)

64

0dd

Yes
(010100000011010000001]
[4-{1},8"°{1},16" {1}J

[8~{1}.16°{1},32°{1}]
[2-{1}.4-{1},16°{2},32"{1}]
[8-{1}.167{1},327{1}]
[16‘{3},32 {3} 64°{3}]
[16“{3},32‘{3},64‘{24}]
[64-{105}]

[64°{315}]

(1,2)(5,7
(1,7)(2,8
64

0dd

Yes
[011100000101010000000)
[4~{1},8"{1},16°{1}]
[8~{1}.16°{1},327{1}]
[2-{1} 4°{1},16"{2}, 32" {1}]
[8~{1}.16°{1},32°{1}]
[16-{3},32°{3},64"{3}]
[16‘{3},32*{3},64‘{24}]
[64°{105}]

[64°{315}]

6,8)
6,4,5)

S
—~
w

[010110110010010000100]

[12-{1},16" {1}]
[8-{1},48°{1}]
36°{1}]

[2-{1},32°{1}
[247{1},32°{1}]
[48°{1},96°{3}]
f48‘{1},192‘{4},288‘{3}]
[192~{5},576"{10}]
[576~{35}]

(1,7)(2,5)(3, 6)(4 8)
(1,5,3,7,2,8,4
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Order
Paraty
Imprimitive
Shape
2-sets
3-sets
4-sets
2-segs
3-segs
4-segs
5-seqgs
6-seqgs

DEGREE 9

Name = t9n30
Generator

Order
Paraty

Imprimitive :
: [01101011101001000000001010001]
: [9°{1},27°{1}]

: [3~{1}
: [18~{1},27-{1}
. [18-{1},54"{1}]
: [18~{1},108"{3},162°{1}]

: [108°{4},216°{3},324"{6}]

: [2167{10},324°{10},648"{15}]
: [216°{10},648°{90}]

: [648°{280}]

Shape

2-sets
3-sets
4-sets
2-seqs
3-~seqs
4-seqs
5-seqgs
6-seqgs
7-seqs

Name = t9n31
Generator

Order
Parity

Shape

2-sets
3-sets
4-sets
2-seqs
3-segs
4-seqs
5-segs
6-seqs
7-seqs

DEGREE 10

Name = t10n9
Generator

Order
Parity

Imprimitive :

. [3°{1
. [18" {{i 27°{1}

;1152

: 0dd

: Yes

: [111111110111110000101]
: [127{1},16°{1}]

. [87{1},48{1}]

: [2°{1}
: [24-{1},32° (1}
: [48°{1},96°{3}]

: [48‘{1},192‘{4},288“{3}]
: [192°{5},576°{10}]

: [576°{15},1152"{10}]

327{1},367{1}]

Yes

27-{1},54"{1}]

817{1}]

: (1,7,3, 8)(2 9)(4,5,6)

(1,4,9,2,5,7)(3,6,8)

. 1296
: 0dd

Imprimitive :
: [11111111111011010000001110001]

Yes

[9-{1},27"{1}]

27°{1},54"{1}]

81-{1}]
[18~{1} 54~{1}]
(18"{1},108"{3},162"{1}]
[108“{4},216“{3},324“{6}]
[216°{10},324"{10},648~{15}]
[216-{10},648"{60},1296"{15}]
[648~{70},1296"{105}]

Yes
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Shape

2-sets
3-sets
4-sets
S5-sets
2-seqs
3-seqgs
4-seqgs
5-seqs
6-seqs
7-seqgs
8-seqs

Name = t1i0n10
Generator

Order
Parity
Impramitiv-
Shape
2-sets
3-sets
4-sets
S5-sets
2-seqs
3-segs
4-seqs
5-seqs
6-seqs
7-seqgs
8-seqgs

Name = t10n11
Generator

Order
Paraty

Impramitive :
: [00011000010000000000010000001001000000000]
: [57{1},20~{2}]

: [20°{1},40"{1},60~{1}]

: [10°{2},30~{1},40"{1},60"{2}]

0 [2°{1},10°{1},20"{1},40"{1},60"{1},120~{1}]
. [10-{1},20" 2}

: [40~{6},120"{4}]

: [40~{6},120~{40}]

. [120°{252}]

: [120-{1260}]

: [120~{5040}]

: [120-{15120}]

Shape

2-sets
3-sets
4-sets
5-sets
2-seqs
3-seqgs
4-segs
5-seqs
6-seqs
T-seqs
8-seqs

Name = t10n12
Generator

Order
Paraity

: [00011000000000000000001000001000000000001]
: [10~4{2},25~{1}]

: [10°4{2},50"{2}]

: [10~{1},25~{2},50~{3}]
i [27{1},50"{5}]

: [20° {2},50"{1}]

: [20-{6},100"{6}]

: [20~{12},100°{48}]

: [207{12},100°{300}]

: [100°{1512}]

: [100-{6048}]

: [100~{18144}]

: Yes

: [00010000000000000000011000001000000000000]
: [10~{2},25~{1}]

: [10~4{2},50~{2}]

: [10~{1},25"{2},50~{3}]
: [27{1},50"{5}]

: [20~{2},50"{1}]

: [20~{6},100"{6}]

: [20-{12},100"{48}]

: [20~{12},1007{300}]

: [100~{1512}]

: [100~{6048}]

: [100-{18144}]

(1,2,4,7,9)(3,6,8,10,5)
(1,3)(2,5)(#,6)(7,8)(9,10)
120

0dd

Yes

(1,3,5,9,7)(2,4,6,10,8)
(1,6)(2,5)(3,10)(4,9)(7,8)
120

0dd
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Imprimative
Shape
2-sets
3-sets
4-sets
b-sets
2-seqs
3-seqs
4-seqs
5-seqs
6-seqs
7-segs
8-seqs

Name = t10ni8
Generator

Order
Parity
Imprimitive
Shape
2-sets
3-sets
4-sets
5-sets
2-seqs
3-seqs
4-seqgs
b-seqs
6-seqs
7-seqs
8-seqs

Name = t10n20
Generator

Order
Parity

Imprimitive :
. [00011000000000000000101000001000000000001]
: [207{1},25"{1}]

: [20~{1},100"{1}]

: [10°{1},50"{2},100"{1}]

: [2°{1},50°{1},100°{2}]

. [40~{1},50"{1}]

: [40-{3},200" {3}]

: [40°{6},200~ {24}]

: [40~{6},200~{150}]

: [200~{756}]

: [200~{3024}]

: [200~{9072}]

Shape

2-sets
3-sets
4-sets
S-sets
2-seqs
3-seqs
4-seqgs
b-seqs
6-seqs
7-seqs
8-seqs

Name = t10n21
Generator

Order

: Yes

B~

[00011000010000000000000000001001000000001]
[5°{1},20"{2}]

[20°{1},40"{1},60"{1}]
[10°{2},30"{1},40"{1},60°{2}]
[2°{1},10°{1},20°{1},40°{1},60"{1}, 120" {1}]
[10°{1},20° (2]

[40-{6},120~{4}]

(40~ {6},120"{40}]

[120~{252}]

. [120~{1260}]

[120~{5040}]
[120~{15120}]

: (1,5,2,3)(6,10,7,8)

(1,6,2,8)(3,10,5,9)(4,7)

: 200
: 0dd
: Yes
: [000110000000000000001110000010000000000011]

[20~{1},25"{1}]

[20°{1},100"{1}]
: [10°{1},50°{2},100"{1}]

[2°{1},50"{1},100"{2}]

. [a0-{1},50"{1}]
: [40°{3},200"{3}]

[40-{6},200~{24}]
[40~{6},200~{150}]

. [200~{756}]
: [200~{3024}]
: [200~{9072}]

(1,2,4,3)(6,9,8,10)
(1,6,2,8,3,10,4,7,5,9)
200

0dd

Yes

5,9)(3,10,4,7)

6) (2,8,
5,2)(6,9,8,10)

1,
1,4,
00
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Parity

Imprimitive :

Shape

2-sets
3-sets
4-sets
5-sets
2-seqs
3-seqs
4-seqs
5-seqs
6-seqs
7-seqs
8-seqs

Name = t10n37
Generator

Order
Parity

Imprimitaive :

Shape

2-sets
3~-sets
4-gets
5-sets
2-seqs
3-seqs
4-seqs
5-seqs
6-~seqs
7-seqs
8-seqs

Name = t10n39
Generator

Order
Parity

Imprimitive :

Shape

2-sets
3-sets
4-sets
5-sets
2-seqs
3-seqgs
4-seqs
5-seqs
6-seqs
7-seqs
8-seqs

Name = t10n4?2
Generator

: 0dd

Yes
[00010000000000000000111000001000000000000]
[20°{1},25°{1}]

[20~{1},100°{1}]

[10°{1},50"{2},100"{1}]

[2-{1},50°{1}, 100°{2}]

[40-{1},50°{13}]
[40°{3},200°{3}]
[40~{6},200"{24}]
[40"{6},200"{150}]

[200-{756}]
[200"{3024}]
[200°{9072}]

9)(7,8)
2,4,7,9,6)

Yes
[11111006"°011100011000110000001111000000001]
[5~{1},40°{1}]
f40-{1},80°{1}]
[10~{1},80"{1},120°{1}]
[32°{1},60"{1},160"{1}]
[10-{1}.80~{1}]
[80°{3},480"{1}]
[80~{3},480°{6},960"{2}]
[480°{15},960"{20},1920~{2}]
[480°{15},960~{90},1920~{30}]
[960~{210},1920~{210}]
[960°{210},1920{840}]

[11111000011101111001110000001111010001101]
[6~{1},40°{1}]
[40-{1},80°{1}]
E1o*}1},so*}1{,120“{1}
32~{1},60~{1},160°{1}
[10~{1},80~{1}]
[80°{3},480"{1}]
[(80-{3},480"{6},1920"{1}]
[480~{15},1920~{10},3840°{1}]
[480°{15},1920~{45},3840°{15}]
[1920~{105},3840~{105}]
[1920~{105},3840"{420}]

]
]



Order
Parity
Imprimitive
Shape
2-sets
3-sets
4-sets
S-sets
2-seqgs
3-seqs
4-seqs
5-seqgs
6-seqs
7-seqgs
8-seqs

Name = t10n43
Generator

Order
Parity

Imprimitive :

Shape

2-sets
3-sets
4-sets
S5-sets
2-seqgs
3-seqs
4-seqs
5-seqgs
6-seqs
7-seqs
8-seqgs

DEGREE 12

Name = t12n1
Generator
Order
Parity

Shape

2-sets
3-sets
4-sets
S-sets
6-sets
2-seqs
3-seqgs
4-seqs
5-seqs
6-seqs
7-seqs
8-seqs

: 14400
: 0dd
: Yes

(01011101010100100010111011001001000000001]
[20-{1},25"{1}]

[20~{1},100"{1}]

[10-{1},100°{2}]

[2-{1},50°{1},200~{1}]

[40-{1},50°{1}]
[120° {1} 200~{3}]
[240“{1},600“{4},800‘{3}]
[240°{1},1200"{5},2400"{10}]
[1200-{6},4800"{15},7200~{10}]
[4800"{21},14400"~ {35}]
[14400°{126}]

Yes
(11111111111101111110111111111001016000101]
[20~{1},25"{1}]

[20"{1},100"{1}]

[10°{1},100°{2}]

[2-{1},50°{1},200"{1}]

f20-{1},50°{1}]
[120" {1} 200°{3}]
[240“{1},600’{4},800“{3}]
[240°{1},1200"{5},2400"{10}]
[1200°{6},4800"{15},7200~{10}]
[4800°{21},14400~{35}]
[14400~{56},28800"{35}]

: (1,2,3,4,5,6,7,8,9,10,11,12)
12

: Odd
Imprimicive :

Yes

[00000100000000000100000000000000100000000000000000
00000010000000000000000001]

[6°{1},12°{5}]

[4-{1},12°{18}]

[3-{1},6°{2},12"{40}]

[12°{66}]

[2°{1},4"{1},6°{3},12°{75}]

[12-{11}]

[12°{110}]

[127{990}]

[12°{7920}]

[12-{55440}]

[12°{332640}]

[12°{1663200}]
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9-seqs

Name = t12nb5
Generator

Order
Parity

Imprimitive :

Shape

2-sets
3-sets
4-sets
b-sets
6-sets
2-seqs
3-segs
4-seqs
6-segs
6-seqs
7-seqs
8-seqs
9-seqgs

Name = t12n34
Generator

Order
Paraty

Imprimitive :

Shape

2-sets
3~sets
4-sets
5-sets
6~sets
2-seqs
3-seqs
4-seqgs
5-seqs
6-seqs
7-seqs
8-seqs
9-seqs

Name = t12n40
Generator

Order
Paraity

Impramitaive :

Shape

2-sets
3-sets
4-sets

[12~{6652800}]

(1,2,3,4,5,6)(7,12,11,10,9,8)
(1,7,4,10)(2,8,5,11)(3,9,6,12)
12

0dd

Yes

[00000100000000000100000000000000100000000000000000
00000010000000000000000000]

[(6-{1},12"{5}]

(4~{1},12-{18}]

[3~{3},6"{1},12°{40}]

[12-{66}]

[2-{1},4°{1},6°{3},12"{75}]

[12-{11}]

[12-{110}]

[12~{990}]

[12-{7920}]

[12~{55440}]

[12~{332640}]

[12~{1663200}]

[12-{6652800}]

(1,2,4,7
(1,3)(2,5

: 72
: Even

Yes
[00010100000100000100000000000010000000000000000001
00000010000000000000000000]
[(6~{1},12"{2},18"{2}]
(4~{1},12~{1},24"{1},36°{3},72"{1}]

f6~{1} 9-{1},12°{4},18"{2}, 36~{5},72°{3}]
[12-{a},24~1{1},36°16},72°{73}]
[2~{3},12°{2},18"{3},24"{2},36~{10},72~{6}]
[12°{1},24"(2},36" {213
[24-{10},36"{6},72"{12}]
[24‘{30},36‘{6},72‘{152}]
[24-{60},72"{1300}]

(24~ {60},72°4{9220}]

[72~{55440}]

[72~{277200}]

(72~{1108800}]

(1,11)(2,12)(3
(3,4) (5,6

9,5 )(4 10,6,8)
(1,2) (7,

6(7,12,9,8,11,10)

: 72
: Even

Yes
[00010100000100000100000000000010000000000000000001
00000010000000000000000000]

[6-{1},12"{2},18"{2}]
[4~{1},12°{1},24°{1},36°{3},72"{1}]
[6~{1},9°{1},12°{4}, 18°{2},367{5},72°{3}]
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b-sets
6-sets
2-seqgs
3-seqs
4-seqs
b-seqs
6-seqgs
7-seqs
8-seqs
9-seqs

Name = t12n145
Generator

Order
Parity

Imprimitive :

Shape

2-sets
3-sets
4-sets
5-sets
6-sets

2-seqgs
3-seqs
4-seqs
5-seqs
6-seqs
7-seqs
8-seqs
9-seqs

Name = t12n1562
Generator

Order
Parity

Shape

2-sets
3-sets
4-sets
b-sets
6-sets
2-seqs
3-seqs
4-seqs
5-seqs
6-seqs
7-seqs
8-seqs
9-seqs

[12°{4},24"{1},36°{6},72°{7}]
[2°{3},12°{2},18°{3},24°{2},36°{10},72°{6}]
[12°{1},24°{2} ,36"{2}]
[24-{10},36"{6},72"{12}]
[24-{30},36"{6},72"{152}]
[24-{60},72"{1300}]

[24-{60},72"{9220}]

[72~{55440}]

[72°{277200}]

[72-{1108800}]

(1,6) (2,5)(3,8,4,7) (9,11)(10,12)
(1,6,11,4,8,10)(2,5,12,3,7,9)

384

0dd

Yes
[01011100000000000100101000000110100000000000000000
00000010000000000000000000]
(6-{1},12°{1},24"{2}]
[12°{1},16°{13},2a"{2},48" {1} ,96"{1}]
[3"{1},6"{2},24°{2},48°{5},96"{2}]
[12°{2},24~{a},48°{2},96" {4}, 192" {1}]
[27{1},6"{1},12°{1},24"{7},48°{4},64"{1},96°{1},
192~ {2}]

[12-{1},24"{1},48"{2}]
[24~{3},48"{6},96°{10}]
[24~{3},48°{6},96°{60},192"{30}]

(96~ {150},192~{300},384"{60}]
[96~{150},192"{1350},384"{1020}]
[192~ {3150}, 384°{8820}]

{192~ {3150}, 384°{50400}]
[384~{207900}]

51,11,5,4 10,7,2,12
1,10.2.93(3.11,4,1

~ Oy

2

: 384
. 0dd
Imprimitive :

Yes
{01011100000000000100100000001110100000000000000000
00000010000000000000000001]

(6~{1},12°{1},48°{1}]

{12*{11,4s~{1},e4~{1},96*{1}]
3°{1},12°{1},24{2},48"{1},96°{2},192°{1}]
[24-{1},48"{2},96"{3},192°{2}]
[8~{1},12°{1},167{1},24°{1},48°{6},192"{1},384"{1}]
[12-{1},24"{1},96"{13]
[24~{3},96"{3},192"{3},384"{1}]
[24~{3},96"{3},192~{24},384"{18)}]
[192~{105},384°{195}]

[192~{315},384°{1575}]

[192~{630},384°{10080}]

(192~ {630},384"{51660}]

[384~{207900}]

66



Name = t12n153
Generator

Order
Parity

Imprimitave :

Shape

2-gets
3-sets
4-sets
5-sets
6-sets
2-seqs
3-seqgs
4-seqs
5~seqs
6-seqgs
7-seqs
8-seqgs
9-seqgs

Name = t12n154
Generator

Order
Parity

Imprimitave :

Shape

2-sets
3-sets
4-gets
5-sets
6-sets

2-seqs
3-seqgs
4-seqs
5-seqgs
6-seqs
7-seqs
8-seqs
9-seqs

Name = t12n1i155

Generator

Order
Parity

Imprimitive :

Shape

2-sets
3-sets
4-sets

: 192*{21

Yes
f01010100000000000100101000001110100000000000000000
00000010000000000000000001]
[6~{1},12"{1},48"{1}]
[12°{1},28~{1} 64"{1},96"{1}]
[3-{1},12°{1},24"{2},48" {1} 96 {2},192~{1}]
[24-{1} 48" {2} 96-1{3},192°{
[8-{1},12°{1},16°{1},24" {1} 48 {6},192"{1},384"{1}]
[12°{1},24" {1}, 96" {1}
{24-{3},96°{3},192°{3},384"{1}]
[24‘{3},96‘{3},192‘{24},384”{18}]
[192°{105},384"{195}]
[192°{315},384~{1575}]
[192°{630},384"{10080}]
[192°{630},384"{51660}]
[384"{207900}]

(1,9)(2,10)(3,11,4,12)(5,8,6,7)
*(1,3)(2,4)(5,7)(6,8)(9,11,10,12)
(1,5,12,4,7,9,2,5,11,3,8,10)

: 384

: 0dd
Yes

[01011100000000000100101000000110100000000000000000
00000010000000000000000001]

[6~{1},12"{1},24"{2}]

[12‘{11 16~{1},24°{2},48"{1},96°{1}]
[3~{1},6°{2},24"{2},48"{5},96~{2}]
[12°{2},2471{4},48°{2},96~{4},192°{1}]
[2-{1},6°{1},12°{1},24~{7}, 28~{4},64" {1},96°{1},

[12°{1},24°{1},48"{2}]
[24‘{3},48’{6},96‘{10}]
[24-{3},48°{6},96"{60},192°{30}]
[96~{150},192~{300},384"{60}]
[96-{150},192~{1350},384~{1020}]
[192°{3150},384~{8820}]
[192°{3150},384°{50400}]
[(384°{207900}]

[01010100000000000100011000001010100000000000000000
oooooo1oooooooooooooooooo1]

[6-{1),12°{1},24"{2}]

[12° {11 16°{1},24°{2},48"{1},96"{1}]
[3~{1},6°{2},24"{2},48~{5},96~{2}]
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5-sets
6-sets

2-seqs
3-segs
4-seqs
5-seqgs
6-segs
7-seqgs
8-segs
9-seqgs

Name = t12n168
Generator

Order
Parity

Shape

2-sets
3-sets
4-sets
5-sets
6-sets
2-segs
3-seqs
4-seqs
5-seqs
6-seqs
7-seqs
8-seqs
9-seqgs

Name = t12n171
Generator

Order
Parity

Shape

2-sets
3-sets
4-sets
5-sets
6-sets
2-seqs
3-seqs
4-seqs
5-seqgs
6-seqs
T-seqs
8-segs
9-seqs

: $1,2)(4,6)(7,9)(10,
(1,7,3,9,2,8)(4,10)
: 648

: (1,11,3,12)(2,10)(4,8,5,§)é6,9)

[12°{2},24"{4},48°{2},96°{4},192"{1}]

i [(2°{1},6"{1},12"{1},24~{7},48"{4},64"{1},96" {1},

192-{2}]

: [127{1},24"{1},48"{2}]
: [24-{3},48~{6},96°{10}]

[24~{3},48"{6},96°{60},192"{30}]

: [96~{150},192°{300},384°{60}]

: [96~{1503},192"{1350},384"{1020}]
: [192°{3150},384"{8820}]

: [192°{3150},384"{50400}]

: [384°{207900}]

11)
1,10,2,11,3,12)(4,8)(5,9
(5,11)

: Even
Imprimitive :
: [00010110000100010100000000000000000000000000000001

Yes

00000010000000000000000000]

: [12°{1},18°{3}]

: [4~{1},36°{3},108"{1}]

. [12-{3}, 18°{3},81-{1}, 108" {3}]
. [12~{3}.36~{3},108"{3},324"{1}]
. [2-43}
. [24-{1},36°{3}]

: [24-{1},72°{9}, 108" {6}]

: [72°{30},216°{36},324"{6}]

: [72-{60},216°{240},648"{60}]

:+ [72-{60},216°{1080},648~{660}]
: [216°{3360},648~{5040}]

: [216°{6720},648"~{28560}]

: [216°{6720},648~{120960}]

36°{6},108"{2},162°{3}]

(1,8)(2,9,3,7)(4,12,5,10)(6,11)

: 648

: Even
Imprimitive :
: [00010110000100010100000000000010000000000000000001

Yes

00000010000000000000000000]

: E12‘{1},18‘{3}]

4-{1},36°{3},108"{1}]

. [12743}, 187 {3},81-{1}, 108~ {3}]
. [12-{3}.36"{3}.108"{3},324"{1}]
: [2-{3},36"{6}
. [2a~{1},36- (31
¢ [24°{1},72°{9},108"{6}]

. [72-{30},216°{36},324"{6}]

: [72~{60},216°{240},648"{60}]

: [72°{60},216°{1080},648~{660}]
: [216°{3360},648~{5040}]

. [216°{6720},648~{28560}]

: [216°{6720},648"{120960}]

108°{2},162°{3}]
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Name = t12n172
Generator

Order
Parity

Imprimitive :
: [00010110000100010100000000000010000000000000000001

Shape

2-sets
3-soats
4-sets
S5-sets
6-sets
2-seqgs
3-seqs
4-seqs
5-seqgs
6-seqs
T-seqs
8-seqs
9-segs

Name = t12n174
Generator

Order
Paraity

Imprimitive :
: [0001001000010001010000C000000010060000000000000000

Shape

2-sets
3-sets
4-sets
5-sets
6-sets
2-segs
3-seqs
4-seqs
5-segs
6-seqs
7-seqs
8-seqs
9-seqs

Name = t12n180
Generator

Order
Parity

Imprimitive :
: [000101000001000001000000000000100000000000001 00001

Shape

2-sets
3-sets
4-sets

: [67{1}
. [40~{1},60°{1},120"{1}]
: [15-{1},30°{1},90"{1},120~{3}]

: (1,10,3,12)(2,11) (4,7,6,9)(5,8)

(1,4, 2 »3 6)(7 10,8 12 9, 11)

: 648
: Even

Yes

00000010000000000000000000]

. [12-{1},18~{3}]
: [4-{1}
. [12743},18°{3} 81~ {1}
. [12-{3}.36~{3},108°{3},324 (1}
. [2-{3}
. [24-{1},367(3}]
: [24-{1},72"{9},108"~{6}]

: [72‘{30},216"{36},324”{6}]

: [72-{60},216°{240},648"{60}]

: [72-{60},216"{1080},648~{660}]
: [216°{3360},648~{5040}]

: [216°{6720},648~{28560}]

: [216°{6720},648~{120960}]

36-{3},108~{1}]

108~{3}]

36~{6},108~{2},162~{3}]

(1,5)(2,4,3,6)(7,12)(8,11,9,10)
*(1,6,2,5)(3,4)(7,10)(8,12,9,11)
(1,9,3,8)(2,7)(4,10,6,11) (5,12)
648

Even

Yes

00000000000000000000000000]

: [12-{1},18~{3}]
4~ {1}
. [12-{3},18°{3},81~{1}
. [12~{3}.36°{3},108°{3},324"{1}]
. [2-{3}
. [24-{1},36"{3}]
¢ [24-{1},72°{9},108"{6}]

: [72“{30},216‘{36},324‘{6}]

: [72~{60},216"{240},648~{60}]
: [72-{60},216-{1080},648~{660}]
: [216°{3360},648"{5040}]

: [216-{6720},648~{28560}]

: [216°{6720},648~{1209603}]

36-~{3},108~{1}]

108~{3}]

36" {6} 108~ {2}, i62- {3}]

: (1,12, 9 6,3, 2 1 ,10,5,4) (7,8)
(1,8,3,12)(2,7,4,11)(5,10)(6,9)
: 720
: Even
Yes

00000010000000000000000100]
30°{2}]
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S5-sets
6-sets
2-seqs
3-seqs
4-seqs
5~seqs
6-seqgs
7T-segs
8-seqs
9-seqs

Name = t£12n183
Generator

Order
Parity

Imprimitive :
: [00010100000100000100000000000010000000000000 100001

Shape

2-sets
3-sets
4-sets
5-sets
6-sets
2-seqs
3-seqs
4-segs
5-seqs
6-seqs
T-seqs
8-seqs
9-segs

Name = t12n196
Generator

Order
Paraity

Imprimitive :
: [010111000001010001001010000001 10100000000000000101

Shape

2-sets
3-sets
4-sets
5~sets
6-sets
2-seqs
3~seqs
4-seqs
5-seqs
6-seqs
T-seqs
8-seqs
9-seqs

Name = t12n197

: [6~{1}
. [a0-{1},60~{1},120~{1}]
: [15~{1},30~{1},90 {1}
. [12-{1},60~{1},120°{3},360"{1}]
. [27{1}
: [127{1},60°{2}]

: [60-{6}, 240 {4}]

: [60‘{6},240”{24},720’{8}]
: [240°{60},720"{112}]

: [240°{60},720"{904}]

: [720°{5544}]

: {720°{27720}]

: [720°{110880}]

: [6°{1}
: Eés{{%j 24-{1},36~{1},144~{1}]
: 1
: [12- {1} 36-{1},48~{1},72°1i}, 144~ {1}, 192°{1}, 288~ {1} ]
: [2- {1}
. [12-{1},a8~{1},72- (1}
: [48-{3},72°{3},96"{1},288"{3}]

: [48‘{3},72‘{3},96”{6},288‘{18},576‘{10}]
: [96-{15},288"{45},576"{100},1152"{20}]

: [96-{15},288°{45},576"{450},1152°{340}]
: [576~{1050},1152~{2940}]

: [576°{1050},1152-{16800}]

: [1152°{69300}]

: [12-{1},60~{1},120°{3},360"{1}]
: [2°{1),127 {1}
. [12-{1},60~{2}]
: [60~{6},240~{4}]

: [60“{6},240‘{24},720‘{8}]
: [240~{60},720"{112}]

: [240-{60},720"{904}]

: [720~{5544}]

. [720°{27720}]

: [720°{110880}]

20~ {2}, 30~ {1},607{1},180"{3},240"{1}]

(1,2)(3,5)(4,6,8,10,11,12)(7,9)
(1,3)(2,4)(5,7)(6,8) (9,10 (11,12)
720

Even

Yes

oooooo1ooooooooooooooooooo]
30~ {2}]

120~{3}]
12~ {1} 20" {2}, 30" {1},60°{1},180°{3},240{1}]

: (1,7,6,9,4,12)(2,8,5,10,3,11)
(1,12,4,8,6,9,2,11,3,7,5,10)
. 1152
: 0dd
Yes

00000010000000000000000001]
24~{1},36"{1}]

“{1}, 24" {1}, 72" {1},96°{1},144"{2}]
i8~{1}

64" {1},72" {5}, 192~ {1}, 288~ {1}]
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Generator

Order
Parity

Impraimitive :

Shape

2-sets
3-sets
4-sets
5-sets
6-sets
2-seqs
3-seqgs
4-seqs
5-seqs
6-seqgs
7-seqs
8-seqs
9-seqgs

Name = t£12n209
Generator

Order
Parity

Shape

2-sets
3-sets
4-sets
5-sets
6-sets
2-seqs
3-seqgs
4-seqs
5-seqgs
6-seqs
7-seqs
8-seqgs
9-seqs

Name = t12n210
Generator

Order
Parity

Impraimitive :

Shape

2-sets
3-sets
4-sets
5-sets

1,3)(2,4)(5,6)(7,9,8,10)
(1,2)(3,6)(4,5)(7,8)(9,11) (10,12)
1,7,6,12,3,9,2,8,5,11,4,10)
152

0dd

Yes

(01010100000101000100011000001010100000000000000101
oooooo10000000000000000001J
[6{1},24°{1},36"{1}]

[16-{1},24°{1},36°{1}, 144-{1}]
[6-{1},9°{1},24~{1},72" {1,,96 {1},144°{2}]
[12°{13,36~{1} ,48~11},72°1{1}, 144" {1},192° {1}
[2- {1} 18~{1},64~{1},72"(5},192"{1},288~ {1}]
[12-{13 48 {1},72°(1}
[48°{3},72°{3},96°{1},288"{3}]
[48‘{3},72‘{3},96‘{6},288‘{18},576‘{10}]
[96~{15},288~{45},576°{100},1152"{20}]
[96-{15},288"{45},576~{450},1152"{340}]
[576°{1050},1152"°{2940}]
[576-{1050},1152"{16800}]

[1152°{69300}]

, 2887 {1}]

(1,10,4,9)(2,11,5,7)(3,12,6,8)
(1,10,2,12)(3,11)(4,9)(5,8,6,7)

: 1296
: 0dd
Impramitive :

Yes
[00111110010100110100000000000010100000000000001011
1o1ooo1oooooooooooooooooo1]

[12-{1},18"{1},36"{1}]
[a~{1},36~{1},72"{1} 108 {1}]

f12-{13},187{1},24-{1} 36" {1},81"{1},108"{1},216"{1}]
[12° {1} 24~{1}.36~{1},72-{1} 108" {1}, 216" {1} 3247{1}]
[2-{1},4°{1},72°{3},108" {2}, 162" {1}, 324~{1}]
[(24~{1},36°{i},72°{1)]
[24°{1},72"{3},144"{3},216°{3}]
[72‘{10},144‘{10},432‘{18},648‘{3}]
[72°{20},144"{20},432~{120},1296"{30}]
[72°{20},144~{20},432" {540}, 1296"{330}]
[432°{1680},1296"{2520}]

[432°{3360},1296"{14280}]

(432" {3360},1296°{60480}]

(1,7,2.9)(3,8)(4,11,6,12)(5,10)
(1,3)(5,6)(7,9,8)(10 12 11)
(1,4)(2,5)(3,6)(7,10,9, 12 8,11)
1296

Even

Yes

[01010110100101010100000000000010000000000000000001
00000010000000000000000000]

[(12°{1},18°{3}]

[4-{1},367{3},108~{1}]

[127{3},18°{3} ,81~{1} 108~ {3}]

[12-{3},36~{3} 108" {3} ,324"{1}]

(3



6-sets
2-seqs
3-seqs
4-seqs
5-segs
6-seqs

7-seqs
8-seqs
9-seqs

Name = t12n212
Generator

Order
Parity

Shape

2-sets
3-sets
4-sets
5-sets
6-sets
2-seaqgs
3-seqs
4-seqs
5-seqs
6-seqs
7-seqs
8-seqgs
9-seqs
Name = t12n214
Generator

Order
Parity

Imprimitave :

Shape

2-sets
3-sets
4-sets
5-sets
6-sets
2~seqs
3-seqgs
4-seqs
5-seqs
6-seqs

7-seqgs
8-seqs
9-seqs

[2-{3},36"{6}
[24-{1},367 {3}
[24~{1},72°{9},108"{6}]
[72-{18},144"{6},216°{36},324" {6}]
[727{20},144°{20},216°{120},432°{60},648"{60}]
[72-{20},144°{20},216°{240},432"{420},648" {300},

%08"{2},162“{3}]

1296°{180}]
: [2167{280},432"{1540},648°{840},1296" {2100}

[432°{3360},648~ {1120}, 1296°{13720}]
[432°{33A0},1296°{60480}]

¢ (1,12,3,10)(2,11) (4,8,5,7)(6,9)

(1,10,5,8)(2,11,6,7,3,12,4,9)

: 1296
: Even
Imprimitive :

Yes
[000100100611000101000000000000100000000000000C 0100
01000000000000000010000000]

[12-°{1},18°{1},36"{1}]

[4-{1},36"°{1},72"{1},108{1}]
[12°{1},18°{1},24~{1},36°{1},81°{1},108"{1},216°{1}]
[12-{1}.24~{1}.36~{1}.72~{1}, 108" {1}, 2167 {1}, 324" {1}]
[2°{1},4"{1},72°{3},108°{2},162°{1},324"{1}]
[24~{1},36-{1},72°{i}
[24-{1},72°{3}, 1447 {3} .216°{3}]

[72°{4}, +44-{13},432°{18},648"{3}]
[144°{30},432"{120},1296"{30}]
[144°{30},432"{540},1296"{330}]
[432°{1680},1296~ {2520} ]

[432°{3360},1296"{14280}]

[432°{3360},1296"{60480}]

(1,5)(2,6,3,4)(7,11,8,10)(9,12)
1,7,2,9,3,8)(4,11,5,12,6,10)
1,3)(4,6)(7,9,8)(10,12,11)

1296

Even

Yes

{01010110100101016100000000000010000000000000000001
00000010000000000000000000]

[(12°{1},18°{3}]

[4~{1},36°{3},108"{1}]
[12°{3},18°{3},81"{1},108~{3}]
[12-{3},36"{3},108"{3},324"{1}]
[2-{3},36°{6},108°{2},162°{3}]

[24~{1},36"{3}]
[24°{1},72°{9},108"{6}]
[72-{18},144°{6},216"{36},324"{6}]
[72°{20},144"{20},216°{120},432"{60},648°{60}]
[72°{20},144°{20},216°{240},432"{420},648" {300},

' 1296°{180}]

[216°{280},432°{1540},648  {840},1296"{2100}]
(432°{3360},648°{1120},1296°{13720}]
[432°{3360},1296°{604801}]
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Name = t12n216
Generator

Order
Parity

Impraimitaive :

Shape

2-sets
3-sets
4-sets
S5-sets
6-sets
2-seqs
3-seqgs
4-seqs
5-seqs
6-seqs
7-seqs
8-seqs
9-seqgs

Name = t12n217
Generator

Order
Parity

Imprimitive :
: [00111110010100110100000000000000100000000000001011

Shape

2-sets
3-sets
4-sets
5-sets
6-sets
2-seqs
3-seqgs
4-seqs
5-segs
6-seqs
7-segs
8-seqs
9-seqs

Name = t12n221
Generator

Order
Parity
Imprimitive
Shape

2-sets
3-sets
4-sets

[00010110001100010100000000000010000000000000000101
01000010000000000010000000]

[12°{1},187{1},36"{1}]

(4~{1},36"{1},72"{1},108"{1}]

[12°{1},18°{1},24-{1},36~{1},81~{1},108~{1},216"{1}]

[12-{1}.24~{1}.36"{1}.72~{1}.108~{1},2167{1},324"{1}]

[2-{1},4~{1},72°{3Y,108~{2},162"{1},324~{1}]

[24-{1},36"1{1},72-{11}]

. [24~{1}.72"{3} 144" {3},216"{3}]

[72-{4},144"{13},432"{18},648"{3}]
[144~{30},432° {120}, 1296~ {30}]
[144-{30},432"{540},1296"1330}]
[432"{1680},1296"{2520}]
[432-{3360},1296"{14280}]
[432-{3360},1296"{60480}]

(,7,6,11,3,9,5,10,2,8,4,12)
(1,4,3,5,2,6)(7,12)(8,11) (9,10)
(1,6)(2,4)(3,5)(7,9,8)

1296

0dd

Yes

10100010000000000000000001]
[12~{1},18"{1},36"{1}]
[4~{1},36"{1},72"{1},108"{1}]

[12°{1},18°{1 ,24~{1},36-{1},81°{1},108"{1},216"{1

: 1]
. [12°{1},24°{1},36°{1},72"{1},108°{1 ,216“{1},324“{1}]

[(2°{1},4"{1},72"{3},108"{2},162"{1},324"{1}]
[2a~{1},36~{1},72"{1}]

. [24-{1}.72"{3}.144"{3},216°{3}]

[72-{10},144°{10},432°{18},648°{3}]
[72°{20},144°{20},432"{120},1296"{30}]
[72°{20},144°{20},432"{540},1296"{330}]
[432-{1680},1296~{2520}]

(432~ {3360} ,1296"{14280}]

: [4327{3360},1296"{60480}]

: (1,10)(2,9)(3,11,4,12)(7,8)

(1,7,4,5)(2,8,3,6)(9,10)

: 1536
: 0dd
: Yes

[01111100000000000110111000001110100000000000000000
00000010000000101010000001]

[(6°{1},12"{1},48"{1}]

[12-{1},487{1},64"{1},96"{1}]

[3°{1},12"{1},48~{2},96"{2},192"{1}]
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5-sets
6-sets

2-seqs
3-seqs
4-seqs
b-seqs
6-seqs
7-seqs
8-seqs
9-segs

Name = t12n223
Generator

Order
Parity

Shape

2-sets
3-sets
4-sets
5-sets
6-sets

2-seqs
3-seqs
4-seqs
5-seqs
6-seqs
7-seqs
8-seqs
9-seqgs

Name = t12n225
Generator

Order
Parity
Imprimitive

Shape

2-sets
3-sets
4-sets
b-sets
6-sets

2-seqs
3~seqs
4-seqs
5-seqs
6-seqgs
7-seqs

[24°{1},48°{2},96°{1},192°{3}]
[8~{1},12°{1},24"{1},48~{3},64°{1},96" {1} ,192°{1},

" 384-{1}]

[12°{1},24"{1},96"{1}]
[24‘{3},96‘{3},192‘{3},384‘{1}]
(24°{3},96°{3},192"{18},384°{9},768~{6}]
[192°{45},384"{45},768°{60},1536"{15}]
[192-{45},384" {150} ,768"{270},1536"{255}]
(384~{315},768"{630},1536"{2205}]
[384~{315},768°{630},1536"{12600}]
[1536~{51975}]

(1,12) (2,
(1,11,7, 3

11)
.9,
x(1,3 2,43 (5

: 1536
: 0dd
Imprimitive :

Yes
[01011100000000000101111000001110100000000000000000
00000010000000101000000000]

[6°{1},12"{1},48"{1}]

[12-{1} 48~ {1} 64 {1},96"{1}]
[3°{1},12°{1},48°{2},96°{2},192°{1}]
[24~{1},48"{2},96"{1},192-{3}]
[(8-{1},12°{1},2a"{1},487{3},64°{1},96"{1},192" {1},

" 38a°{1}]

[12{1},24"{1},96"{1})
[24‘{3},96‘{3},192”{3},384‘{1}]
[24°{3},96"{3},192"{18},384"{9},768"{6}]

. [192-{45},384-{45},768"{60},1536"{15}]

[192°{45},384"{150},768"{270},1536"{255}]

: [384~{315},768"{630)},1536~{2205}]
: [384°{315},768"{630},1536"{12600}]

[1536-{51975}]

s (1, 6,4 ,2,5,3,7)(9,11)(10,12)
(1,2)(3,4)(5,12,8,10)(6,11,7,9)

: 1536

: 0dd

: Yes

: [011111000CV000000110111000001110100000000000000000

00000010€00000011000000001]
[(6-{1},12°{1},48"{1}]

. [127{1},48"{1},64"{1},96"{1}]
: [37{1}
. [24~{1} 48~ {2},96"{1},192-13}]
. [8~{1}

12°{1},48°{2},96"{2},192"{1}]

12~ {1}, 24" {1}, 48-{3},64" {1},96771},192" {1},
384-{1}]

: [12°{1},24"{1},96"{1}]

: [24‘{3},96‘{3},192‘{3},384‘{1}]

: [24°{3},96"{3},192°{18},384°{9},768°{6}]
: [192~{45},384"{45},768°{60},1536"{15}]

: [192~{45},384"(150},768"{270},1536~{255}]
: [384~{315},768"{630},1536"{2205}]
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8-seqs
9-seqs

Name = t12n228
Generator

Order
Paraty
Impraimitaive

Shape

2-sets
3-sets
4-sets
5-sets
6-sets
2-seqs
3-seqs
4-seqgs
5-seqs
6-seqs
7-seqs
8-seqs
9-seqgs

Name = t12n229
Generator

Order
Paraty

Imprimitive :

Shape

2-sets
3-sets
4-sets
5-sets
6-sets
2-seqs
3-seqs
4-seqs
5-seqgs
6-seqs
7-seqs
8~seqs
9-seqs

Name = t12n232
Generator

Order
Parity

Imprimitave :

Shape

2-sets
3-sets

[(384-{315},768~{630},1536°{12600}]
[(1536°{51975}]

(1,5,10,2,7,12,3,6,9)(4,8,11)
(1, 10 6,2,12,8,4,11,7)(3,9,5)
: 1728
: Even
: Yes

[01010100000101010000000000000000000000000000000000
00000000000000000000010000]
[18-{1},48"{1}]
[12-{1},64"{1},72"{2}]
[3-{1},48~{2},108~{1}, 288" {1}]
[12°{2},72°{2}, 1927 {1}, 432°{1}
[18~{2}.,48°{2} 216" {1}, 288~ {2}
[36~{1},48~{2}]
[36°{2},144°{6},192°{2}]
[36°{2},144"{16},432"{6},576"{12}]
[144-{20},432"{40},576"{40},1728"{30}]
[432~{140},576~{60},1728"{330}]
(432~{280},1728~{2240}]
[432°{280},1728~{11480}]
[1728~{46200}]

i

(1,11,7,2,9,5)(3,12,8,4,10,6)
(1,2,3)(6,8,7)(9,12)(10,11)
1728

Even

Yes

[01010100000101010100000000000000000000000000000000
00000010000000000000000000]

[18°{1},48"{1}]

[12°{1},64"{1},72"{2}]

[3°{1},48"{2},108"{1}, 288" {1}]

[12°(2} 72712}, 192°{1},432°{1}]
{18~{2},48~{2},72"{3}, 2838-{2}]

[36-{1},48"{2}]
[36‘{2},144 {6},192"{2}]
[36*{2},144“{16},432‘{6},576”{12}]
[144~{20},432"{40},576"{40},1728"{30}]
[432°{140},576~{60},1728~{330}]
[432°{280},1728"~{2240}]
[432°{280},1728"{11480}]
[1728°{46200}]

(1,11,3,12)(2,10)(4,7,6,8)(5,9)
(1,4, 9)( ,6,7,3,5,8)(10,12)

: 1944

: Even
Yes

[00010010000100010100000000000010000000000000000000
01000000000000000001010000]

[12°{1},54"{1}]

[4-{1},108"{2}]
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4-sets : [36°{1},54"{1},81°{1}, 324 {1}]

5-sets : [36°{1},108~{1},324"{2}]

6-sets : [67{1},108"{4},486"{1}]

2-seqs . [247{1},1087{1}]

3-seqs : [247{1},216°{3},324°{2}]

4-segs : [2167{10},648°{12},972"{2}]

5-seqs : [216°{20},648°{80},1944"{20}]

6-seqs : [216°{20},648~{360},1944" {220} ]

7-seqs : [648°{1120},1944°{1680}]

8-seqs : [648~{2240},1944"{9520}]

9-segs : [648-{2240},1944°{40320}]

Name = t12n234

Generator : (1,8,2,7,3,9)(4,11,6,12,5,10)
1,10,6)(2,11,4)(3,12,5)(7,8,9)

Order : 1944

Parity : Even

Imprimitave : Yes

Shape : [00010110000100010100000000000000000000000000000001
01000010000000000001010000]

2-sets ¢ [12°{1},54"{1}]

3-sets . [47{1},108~{2}]

4-sets . [367{1},54"{1},81" {1} 324 {1}]

5-sets . [36~{1},108°{1},324°

6-sets . [6~{1},108~{4},486" {1}]

2-segs . [24-{1},108"{1}]

3-seqs : [24°{1},216°{3},324"{2}]

4-seqs . [216°{10},648°{12},972~{2}]

5-seqs : [216°{20},648°{80},1944"{20}]

6-seqs : [216°{20},648°{360},1944"{220}]

7-segs : [6487{1120},1944°{1680}]

8-seqs : [648°{2240},1944"{9520}]

9-segs : [6487{2240},1944~{40320}]

Name = t12n235

Generator : 51,8,5,11,2,7,6,12)(3,10)(4,9)
1,5,3,2,6,4)(7,9)(8,10)
(1,10)(2,9)(3,8,6,12,4,7,5,11)

Order : 2304

Parity : 0dd

Imprimitive : Yes

Shape : [01111100000101100110111000101010100000000000000111

00001010000000001000000000]

2-sets : [67{1},24"{1},36"{1}]

3-sets . [16° {1} 24-{1},36°{1}, 144~{1}]

4-sets : [67{1},9°{1}, 24~ {1}, 72‘{1} 96~ {1}, 144" {2}]

5-sets : [12° {11 36" {1} 48~ {1} 72" {1} 144" {1} 192°{1},288"{1}]
6-sets . [27{1},18°{1},64"{1},72" {3}, 144" {1}, 192" {1}, 288" {1}]
2-seqs : [127{1},48" {1}, 72°{1}]

3-segs : [48°{3},72°{3},96"°{1},288°{3}]

4-segs : [48‘{3},72“{3},96”{6},288”{18},576‘{4},1152“{3}]
5-seqs : [96°{15},288"{45},576"{40},1152°{30},2304"{10}]
6-seqgs : [96°{15},288"{45},576-{180},1152°{135},2304" {170}]
7-seqs : [676°{420},1152°{315},2304°{1470}]

8-segs : [676°{420},1152"{315},2304"{8400}]

9-seqs : [2304°{34650}]
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Name = t12n237
Generator

Order
Paraty

Impramitive :

Shape

2-sets
3-sets
4-sets
5-sets
6-sets
2-seqgs
3-seqs
4-seqs
5-seqgs
6-seqs
7-seqs
8-seqs
9-segs

Name = t12n238
Generator

Order
Parity

Impramitive :

Shape

2-sets
3-sets
4-sets
5-sets
6-sets
2-seqs
3-seqs
4-seqs
b5-seqs
6-seqgs
7-seqs
8-seqs
9-seqgs

Name = t12n240
Generator

Order
Parity

Impramitive :

Shape

2-sets
3-sets
4~-sets

: (1,12,5,7)(2,11,6,8)(3,10,4,9)

(1,9,4,7,6,11,2,10,3,8,5,12)

1 2304
: 0dd

Yes
[01010100000101000101011000011010100000000000000101
ooo1oo1ooooooooo1oooooooo1]

[(6°{1},24"{1},36"{1}]

[16° {1} 24~ {1} ,36°{1},144°{1}]

[6~{1},9"{1}, 24~ {1},72°{1},96"{1},144"{2}]
[12-{1},36-{1},48°{1},72°11}, 144 {1}, 1927 {1}, 288~ {1}]
[2-{1},18" {1},64~{1},72" {3}, 144~ {1}, 192~ {1}, 288~ {1}]
[12-{1},48°{1},72"{1}]
(48~{3},72"{3},96"{1},288~{3}]
[48‘{3},72“{3},96‘{6},288*{18},576‘{4},1152“{3}3
[96°{15},288"{45},576"{40},1152"{30},2304"{10}]
[96-{15},288~{45},576"{180},1152"{135},2304"{170}]
[576°{420},1152°{315},2304"{1470}]
[576°{420},1152°{3156},2304"~{8400}]

[2304~{34650}]

: (1,9,4,12,2,10,3, 11)(5 6,7)
(1,7,5,10,4,11,2,8,6 12)
. 2304
: 0dd
Yes

[01111100000101100110111000101010100000000000000111
00001010000000000010000001]

[6~{1},24"{1},36"{1}]

[16° {1} 24~{1} ,36"{1}, 144~ {1}]
[6~{1},9"{1},24"{1},72"{1},96"{1},144"{2}]
[12-{1},36°{1},48"{1},72°{1}, 144 {1},192°{1}, 288~ {1}]
[2°{1},18~{1},64~{1},72"{3},144{1},192°{1},288~{1}]
[12-{1},48~{1},72°{1}]
[48-{3},72~{3},96"{1},288"{3}]
[48“{3},72‘{3},96‘{6},288‘{18},576“{4},1152“{3}]
[96-{15},288~{45},576"{40},1152°{30},2304~{10}]
[96-{15},288°{45},576"{180},1152°{135},2304~{170}]
[576°{420},1152"{315},2304~{1470}]
[5676°{420},1152"{315},2304~{8400}]

[2304~{34650}]

[11111100000111100100111000001110100000000000001111
00100010000000000000000001]

{6°{1},24"{1},36"{1}]
[16-{1},247{1},36"{1},144~{1}]
[6~{1},9°{1},24"{1},72°{1},96" {1}, 144~ {2}]
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5-sets
6~sets
2-seqgs
3-seqs
4-segs
5-segs
6-seqgs
7-seqs
8-seqgs
9-seqgs

Name = t12n241
Generator

Order
Parity

Shape

2-sets
3-sets
4-sets
5-sets
6-sets
2-seqgs
3-seqs
4-segs
5-segs
6-seqs
7-seqgs
8-seqs
9-segs

Name = t£12n248
Generator

Order
Parity
Imprimitive
Shape

2-sets
3-sets
4-sets
5-sets
6~sets
2-seqs
3-seqs
4-seqs
5-seqs
6-seqs

7-seqs
8-segs
9-seqgs

[12°{1},36°{1},48°{1},72"{1},144"{1},192"{1},288"{1}]
[2-{1},18~{1},64~{1},72°{5},192°{1},288"{1}]
[12-{1},48°{1},72°{1}]

(48-{3},72°{3},96°{1},288"{3}]
[48“{3},72“{3},96‘{6},288‘{18},576‘{10}]
[96~{15},288~{45},576°{100},1152"{20}]
[96-{15},288~{45},576"{450},1152°{300},2304"{20}]
(576~{1050},1152"{2100},2304"{420}]
[576°{1050},1152"{8400},2304"{4200}]
{1152°{18900},2304"{25200}]

(3,4)(7,10, 11)(8 9,12)
(1, 11,5,7)(2 12,6,8)(3,10) (4,9)

: 2304
: 0dd
Imprimitive :

Yes
{11111100000111100100111000001110100000000000001111
oo100010000000001010000000)
[(6~{1},24"{1},36"{1}]
[16~ {1} 24-{1},36" {1} 144-{1}]
[6-{1},9°{13, 24~ {1}, 72~ {1},96°{1},144"{2}]
[12°{1},36°11},48°{1},72°{1},144" {1},1927 {1}, 288" {1}]
[2~{1},18"{1},64"{1},72" {3}, 144~ {1}, 192~ {1}, 288~{1}]
(12°{1},48"{1},72" (113
[48-{3},72°{3},96"{1},288"{3}]
[48*{3},72*{3},96“{6},288“{18}.576*{10}}
[96-{15},288"{45},576" {100}, 1152~ {20}]
[96~{15},288"{45},576"{450}, 1152~ {300},2304" {20}
[576-{1050},1152"{2100},2304"{420}]
[576°{1050},1152"{8400},2304"{4200}]
[1152°{18900},2304"{25200}]

(1,10,6,7)(2,11,4,8) (3,12,5,9)
21 8)(2 7)(3,9)(4,11 5,10,6,12)
1,4,2,5,3,6)(7,11,9.12,8.,10)

. 2592

: 0dd

: Yes

[01111110110101110100000000000010100000000000001011
10100010000000000000000001]

[12-{1},18"{1},36°{1}]

[a-{1},36°{1},72"{1},108"{1}]
[12-{1},18°{1},24"{1},36~{1},81~{1},108"{1},216"{1}]
{12-{1},24"{1},36"{1},72"{1},108" {11 216-{1},324"{1}]
[2-{1},4~{1},72°{3},108"{2},162°{1},324"{1}]
[24-{1},36°{1},72°{i}]

[24-{1}, 72“{3},144“{3},216”{3}]
[72‘{10},144”{4},288‘{3},432‘{18},648”{3}]
[72-{20},288°{10},432°{60},864"{30},1296"{30}]
[72-{20},288~{10},432"{120},864"{210},1296 {150},

" 25927{90}]

[432-{140},864~{770},1296"{420},2592"{1050}]
[(864°{1680},1296"{560},2592"{6860}]
[864°{1680},2592"{30240}]

78



Name = t12n249
Generator

Order
Parity

Imprimitive :

Shape

2-sets
3-sets
4-sets
5-sets
6-sets
2-seqs
3-seqgs
4-seqs
5-seqs
6-seqs

7-seqs
8-seqs
9-seqs

Name = t12n262
Generator

Order
Parity

Imprimitive :

Shape

2-sets
3-sets
4-sets
5-sets
6-sets
2-seqs
3-seqs
4-seqs
5~seqs
6-seqs

7-seqs
8-seqc
9-seqs

Name = t12n263
Generator

Order
Parity

Impraimitive :

Shape

2-sets
3-sets

(1,6,2,5,3,4)(7,11,8,10,9,12)
(1,8,10,5,2,7,12,4)(3,9,11,6)
2592

Even

Yes

[01010110100101010101010010010010000000000000000001
00000010000000000010000000]

[12°{1},18"{1},36"{1}]

[4~{1},36°{1},72°{1},108~{1}]

[12°{1},18°{1},24~{1} 36~{1},81-{1},108°{1},216°{1}]
[12-{1}.24~{1} 36~{1},72~{1},108"{1},216"{1},324°{1}]
[2-{1},4"{1}, 72~{3},108°{2}, 162-{1}, 324~ {1}]
[24~{1},36°{1},72°{1}]

[24-{1},72°{3}, 144~ {3}, 216" {3}]
[72‘{10},144”{4},288“{3},432“{18},648‘{3}]
[72-{20},288"{10},432"{60},864~{30},1296°{30}]
[72-{20},288°{10},432"{120},864"~{210},1296"{150},

" 2592°{90}]

[432°{140},864"{770},1296"{420},2592"{1050}]
[864-{1680},1296" {560} 2592 {6860}]
[864‘{1680},2592“{30240}]

(1,7,5, , 6,12)(2,8,4,10)
(2, 3)( 113(9,12)

. 5184

: 0dd
Yes

[01111110110101110100101001000010000000000000001011
1o1o1o1ooooooooooo1ooooooo]

[12°{1},18"{1},36"{1}]
[4-{1},36"{1},72"{1},108°{1}]
[12-{1},18°{1},24°{1},36~{1},81{1},108"{1},216"{1}]
[12- {1} 24~{1}.36~{1}.72~{1}.108°{1},216°{1} 324" {1}]
[2-{1},4~{1},72"{3}, 108-{2},162°{1}, 324~{1}]
[24-{1},36°{1},72°{1}]

[24-~{1},72" {3},144‘{3},216*{3}]

[72-{4} 144~ {7} ,288"{3},432"{18},648"{3}]
[144~{10},288~{10},432"~{30},864"{45},1296"{30}]
[144-{10},288~{10},864~{180},1296"{60},1728" {45},

' 2592-{135}]

[864°{210},1728"{315},2592°{630},5184"{315}]
[1728~{840},2592~{840},5184"{3150}]
[1728~{840},5184"{15120}]

(1,10)(2,12,3,11) (4, )(5 8)(6,7)
(1,8,6, 11 2,7,5,10,3 4,12)

: 5184

HERER T
Yes

{010*0°1y10110101€101011010010010100000000000000101

0iv. 25 N05000000000000001]
[12°{1},18°{1},36"{1}]
(a~{1},36"{1},72"{1},108~{1}]
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4-sets
5-sets
6-sets
2-seqs
3-seqgs
4-seqs
S-seqs
6-seqgs

T-seqs
8-seqgs
9-seqgs

Name = +12n267
Generator

Order
Parity

Imprimitive :

Shape

2-sets
3-sets
4-sets
b-sets
6-sets
2-seqs
3-seqs
4-seqgs
5-seqs
6-seqs

7-segs
8-seqgs
9-seqs
DEGREE 14

Name = t14n46
Generator

Order
Parity

Imprimitive :

Shape

2-sets
3-sets
4-gets
5-sets
6-sets

7-sets

2~-seqs

[12-{1},18°{1},24"{1},36"{1},81"{1},108"{1},216"{1}
[12~ {1} 24~{1} 136~{1},72-{1}.108~{1},2167{1} ) 324" (1}]
[2°{1},4~{1},72°{3},108°{2},162"{1}, 324°{1}]
[24~{1},36~{1},72°{1}]

[24-{1},72°{3},144°{3},216"{3}]
[72‘{4},144“{7},288‘{3},432‘{18},648“{3}]
[144-{10},288"{10},432°{30},864°{45},1296"{30}]
[144~{10},288"{10},864"{180},1296~{60},1728~ {45},

" 2592-{135}]

[864~{210},1728~{315},2592"{630},5184"{315}]
[1728°{840},2592°{840},5184°{3150}]
[1728~{840},5184"{15120"]

1,7,12,4,3,9,10,5,2,3,11,6)
1,11)(2,12)(3,10)(5,6)(7,8)
1,6,3,4)(2,5)(7,10,8,12)(9,11)

5184

0dd

Yes

[01111110110101110100100001000010100000000000001011
10100010000000000000000001]

[12~{1},18"{1},36°{1}]

[4~{1},36°{1},72"{1},108"{1}]
[12-{1},18°{1},24"{1},36-{1},81"{1},108°{1},216"{1}]
[12° {1} 24~{1} 36~{1}.72°{1} 108" {1},2167°{1},324- (11
[2-{1},4~{1},72"{3¥,108°{2},162" {1}, 324~{1}]
[24-{1},367{1},72- {11

[2a-{1}, 72-{3} 144~ {3},216"{3}]
[72“{4},144‘{7},288”{3},432“{18},648“{3}]
[144~{10},288~{10},432"{30},864"{45},1296"{30}]
[144~{10},288~{10},864~{180},1296"{60},1728" {45},

2592-{135}]

[864~{210},1728~{315},2592"°{630},5184~{315}]
[1728~{840},2592"{840},5184"{3150}]
[1728"{840},5184"{15120}]

(1,2,5,9,12,8,4)(3,6,10,14,13,11,7)
(1,3)(2,6)(4,7)(5,10) (8, 11)(9 13)(12 14)
5040

0dd

Yes

[00010010000001000100010000000000000000011000000000
00000000000000100000000100000000010000100000600000
0001000000000000000000001000000000]

[7-{1},42°{2}]

[70-{1},84~{1},210~{1}]

[(21~{1},70"{1},210°{3},280"{1}]

[a2-{1}.210"{2},280"{1},420"{1},840°{1}]

(14" {1} 35~{1},84~{1},140"{1},210"{2},420"{2},630" {1},

14- {1} 42 {1},70°{1},84"{1},280°{1},420° {2},

" 840~{1}

[2-{1}

" 840°{1},1260°¢

[14~{1},84" {2}]
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3-seqgs
4-seqs
5-seqgs
6-seqs
7-segs
8-seqgs
9-seqs

Name = t14n47
Generator

Order
Parity

Imprimitive :

Shape

2-sets
3-sets
4-sets
5-sets
6-sets

7-sets

2-seqgs
3-seqs
4-seqgs
5-seqs
6-seqs
7-seqs
8~segs
9-seqs

DEGREE 15
Name = t15n31

Generator

Order
Parity

Impramitive :

Shape

2-sets
3-sets
4-sets
65~sets
6-sets
7-sets
2-seqs
3-seqs
4-seqs

" 840~{1}

(84°{6},420°{4}]
[84~{6},420"{24},1680"{8}]
[420~{60},1680~{80},5040~{16}]
[420~{60},1680"{360},5040~{304}]
[1680~{840},5040~{3152}]
[1680°{840},5040"~{23744}]
[£040"{144144}]

) )(9 10)(11,12)(13,14)
(2,4,6,8,10,12,14)

Yes
[00010010000001000100010000000000000000041000000000
00000000000000100000000100000000000000100000000000
_0001000000000000000000001000000001]

(7°{1},42°{2}]

[70-{1},84"{1},210"{1}]
[21-{1},70"{1},210~{3},280"{1}]
[42-{1}.210°{2},2807{1},420"{1},840~{1}]

(14~ {1} 35-{1}, 84" {1}, 140- {1}, 210" {2},420"{2},630" {1},

[2-{1},14" {1} 42 {1},70~{1},84"{1},280°{1},420"{2},

" 8a0-{1},12607¢

{14-{1},84" {2}]

[84-{6},420°{4}]
[84‘{6},420“{24},1680“{8}]
[420~{60},1680°{80},5040"{16}]
[420-{60},1680~{360},5040~{304}]
[168C~{840},5040"{3152}]
[1689°{840},5040"{23744}]
[5040-{144144}]

: (1,2,3,4,5)
(1,6,11)(2,7,12)(3,8,13)(4,9,14)(5,10,15)
;gés)(3,4)(6,11)(7,15)(8, 14) (9,13) (10,12)
0dd
Yes

[00000010000000000000000001000000000000000000000000
00010000000000000000000000100000100000000000000000
00000000000000000000000000000000000000000000000000
0000000010000000000000001]

[15-{2},75"{1}]

[15~{2},125°{1},150"{2}]

[15~{1},75°{2}, 150~ {3},375°{2}]

[3~{1},150" {5},375°{4},750"{1}]

[30-{1},75"{2} 125" {2} . 150" {3},375°{3}

[30-{2}.75°{1},150"{2}.375"{6}.750~{5}]

[30-{2}.150°{1}]

[30*{6},150‘{12} 750"{1}]

[30-{12},150°{96},750"{24}]

750~{4}]

Sl



5-seqs
6-seqs
7-seqs
8-seqs
9-seqgs

Name = t15n32
Generator

Order
Parity

Imprimitive :
: [00001000000000000000000001000000000000000000000000

Shape

2-sets
3-sets
4-sets
5-sets
6-sets
7-sets
2-segs
3-seqgs
4-seqgs
5-seqs
6-seqs
7-seqs
8-seqs
9-seqs

Name = t15n48
Generator

Order
Parity

Imprimitive :

Shape

2-sets
3-sets
4-sets
b-sets
6-sets
7-sets
2-seqs
3-seqs
4-seqs
5-seqs
6-seqs
7-seqs

. [307{1},75-{2}.125~{2} . 150~{3},375°{3}
. [15~{4},150"{1}]

[30°{12},150°{600},750"{360}]
[150°{3024},750°{4200}]
[150°{12096},750"{40824}]

[150°{36288},750"{338688}]

[150°{72576},750"{2407104}]

(1,2,3,4,5)
(1,6,11)(2,7,12)(3,8,13)(4,9,14)(5,10,15)
(6,11)(7,12)(8,13)(9,14)(10,15)

750

0dd

Yes

00010000100000000000000000100000100000000000000000
00000000000000000000000000000000000000000000000000
0000001000001000000000001]

(15~{2},75~{1}]

. [15-{2} 125-{1},150"{2}]
: [15-{1},75~{2},150~{3},375"{2}]

[3~{1},150~{5},375"{4},750"{1}]

750°{4}]
[30~{2},75~{1},150~{2},375~{6},750"{5}]
[15~{12},150"{12},750"{1}]
[15~{24},150~{96},750"{24}]
[15~{24},150"{600},750~{360}]

; [150°{3024},750"{4200}]

[150°{12096},750" {40824}]
[150~{36288},750~{338688}]
(150" {72576},750"{2407104}]

1,2,3,4,5)
1,6,11)(2,7,12)(3,8,13)(4,9,14)(5,10,15)
6,11)(7,15,10,12)(8,14,9,13)
(2,5)(3,4)(7,10)(8,9)

*(7,10)(8,9)(12,15)(13,14)

3000

0dd

Yes

[00010010000000000000000001000000000000000001000000
00010001000000000000000001100000100000000000000000
00000000000000000000000000000000000000000000000000
0000000010000000000000001]

: [15-{2},75"{1}]

[15-{2},125°{1},150~{2}]
[15“{1},75*{2},150*{3{,375*%2}]
(3~{1},150~{5},375"{4},750°{1}]
[30°{1},75°{2},125"{2},150"{3},375"{3}
[30~{2},75"{1} 150”[2},375'{6},750“{5}j
[30-{2} 150" {1}]
[(30-{6},300-{6},750"{1}]
[30°{12},300"{24},600"{12},1500"{12}]
[(30~{12},300"{60},600"{120},1500~{60},3000°{60}]
[300~{72},600°{720},1500"{180},3000"~{960}]
[600~{3024},1500~{252},3000°{10080}]

750" {4}]
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B-geqs
9-seqs

Name = t15n51
Generator

Order
Parity

Imprimitive :

Shape

2-sets
3-sets
4-sets
5-sets
6-~gets
7-sets
2-seqs
3-seqs
4-seqs
b-seqs
6-seqs
7-seqs
8-seqs
9-seqs

[600°{9072},3000~{84672}]
[600~ {18144} ,3000°{6017761}]

(1,<,3,4,5)
(1,6,11)(2,7,12)(3,8,13)(4,9,14)(5,10, 15)
(6,11)(7,12)(8,13)(9,14)(10,15)
(2,5)(3,4)(7,10)(8,9)
*(7,10)(8,9)(12,15) (13, 14)

3000

0dd

Yes

{00012000000000000000000001000000000000000000010000
00010001100000000000000000100000100000000000000000
00000000000000000000000000000000000000000000000000
0000001000001000000000001]

[15~{2},75"{1}]

[(15~{2},125"{1},150"{2}]

[15-{1},75°{2},150°{3},375~{2}]

[3~{1},150°{5},375"{4},750~{1}]

[30~{1},75"{2},125°{2},150~{3},375"{3}

[30-{2},75°{1},150~{2},375~{6},750~{5}]

[30~{2},150"{1}]

{30~{6},300"{6},750"{1}]

[30-{12},300"{24},600"{12},1500~{12}]

[30°{12},300°{60},600"{120},1500°{60},3000~{60}]

[300°{72},600~{720},1500"{180},3000"{960}]

[600°{3024},1500~{252},3000~{10080}]

[600°{9072},3000~{84672}]

[600°{18144},3000°{601776}]

750~{4}]
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Appendix F

Timing Data for r-sets

The following shows the timing data for r-sets, in the file fome £9. obtained by tunning,

the main program with wn as the input file. The columns under the heading “Time”

corresponds to timing data for 2-sets, 3-sets, ... and so on.
Group Time(ms)

t5n3 0

t5n5 0

t6én9 3 0

t6n13 0 3

ténid 0 0

t6n16 0 3

t8n26 3 3 7

t8n28 3 3 7

t8n29 3 3 7

t8n46 3 3 3

t8n47 3 3 3

t9n30 0 7 7

t9n31 0 7 7

t10n9 3 7 15 23

t10n10 3 7 15 23

t10n11 3 7 15 27

t10ni2 3 7 15 27

t10n18 0 7 15 23

t10n20 3 7 15 19

t10n21 3 7 15 19

t10n37 3 7 15 19

t10n39 0 7 15 19

t10n42 0 7 15 19

t10n43 3 7 11 19

t12n1 3 11 42 93 167
t12nb 3 19 50 113 195
t12n34 3 15 39 82 132
t12n40 3 15 42 82 128
t12n145 7 11 39 74 109
t12n152 3 15 35 66 89
t12n1563 3 15 35 62 93
t12n154 7 19 50 93 128



t12n155
t12n168
t12n171
t12n172
t12n174
t12n180
t12n183
t12n196
t12n197
t12n209
t12n210
t12n212
t12n214
t12n216
t12n217
t12n221
t12n223
t12n225
t12n228
t12n229
t12n232
t12n234
112n235
t12n237
t12n238
t12n240
t12n241
t12n248
t12n249
t12n262
t12n263
t12n267
t14n46
t14n47
+16n31
t15n32
t15n48
t15n51

[Sreyae

NOINNWWNWWWWNWWLWWLWWWLWWLWWNLONNWLWLWNNWLW NINLWWLWW

15
19
15
11
19
15
i1
15
19
11
19
15
19
11
19
11
19
15
15
15
15
15
19
15
15
19
11
19
15
15
15
19
27
35
42
42
62
62

35
46
35
39
46
35
35
35
46
35
46
35
46
39
46
35
46
35
35
35
31
35
46
35
35
46
39
46
35
35
35
46
70
97
140
140
207
207

85

74
85
66
66
85
66

N
r

62
82
66
85
62
85
62
85
62
82
62
62
62
62
58
82
62
62
82
62
82
62
62
62
82
156
210
335
339
503
499

106
117
93
89
117
93
85
82
109
85
117
85
117
82
109
85
115
85
82
82
82
82
109
82
82
113
82
109
82
82
82
1ub
246
359
632
628
917
917

320
472
929
929
1300
1304



Appendix G

Timing Data for r-sequences

The following shows the timing data for 7-sequences. in the file time.q9. obtained by

running the main program with in as the input file. The columns under the heading
“Time™ corresponds to timing data for 2-sequences, 3-sequences, .. .and so on.

Group Time(ms)

t5n3 0 0

t5nb 0 0

t6n9Y 0 3 0

t6n13 0 0 3

t6ni4d 0 3 0

t6n16 0 0 0

t8n26 0 3 7 19 62

t8n28 0 0 7 19 62

t8n29 0 3 3 23 62

t8n46 0 3 3 3 11

t8n47 0 3 0 7 7

t9n30 0 3 3 11 35 89

t9n31 0 3 3 11 35 62

t10n9 3 0 15 74 371 1585 5124

t10n10 0 3 15 74 367 1674 5089

t1i0nit 0 3 11 58 316 1351 4370

t10n12 0 3 11 62 316 1347 4351

t10n18 0 3 7 42 207 886 2835

t10n20 0 0 11 42 207 878 2827

t10n21 0 3 7 42 207 886 2835

t10n37 0 3 3 15 54 175 453

t10n39 0 3 3 11 35 97 242

t10n42 0 3 3 7 15 31 62

t10n43 3 0 3 11 15 31 46

t12n1 0 11 140 1328 10776 73065 405017 1773851
t12n6 0 15 140 1328 10800 73210 404970 1773299
t12n34 0 7 42 332 2410 15545 84018 361027
t12n40 3 3 46 332 2410 15665 84033 361004
t12n145 0 7 27 160 843 4226 19502 78096
t12n152 0 3 19 105 691 4136 21182 88365
t12n1563 0 3 19 105 695 4124 21166 88275
t12n154 3 3 31 156 847 4245 19623 78541
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t12n155
t12n168
t12n171
t12n172
t12ni74
+12n180
t12n183
t12n196
+£12n197
t12n209
t12n210
t12n212
t12n214
t12n216
t12n217
t12n221
t12n223
t12n225
t12n228
+12n229
t12n232
t12n234
t12n235
t12n237
t12n238
t12n240
t12n241
t12n248
t12n249
t12n262
t12n263
t12n267
t14n46

t14n47

t15n31

+£15n32

t15n48

t15n51

OWWWWOWWOWOoOWOSWWOOOWOOOWOWOOOOWWWOWWOOW

NN WNWWWWWWWWWWWWHBWRWWRWWNWWWWNLWNNW

27
19
19
23

4
i

15
11
15
15
15
19
15
23
15
15
15
15
15
15
15
11
11
15
11
11
15
15
15
11
15
11
15
19
23
50
58
31
31

87

160
109
108
109
109
70
66
66
66
70
89
66
89
62
70
66
66
66
50
50
46
50
54
54
54
66
66
53
58
50
50
46
85
89
414
441
160
160

851
581
581
581
581
378
378
332
335
339
410
332
410
335
339
304
308
300
214
214
261
257
230
226
230
316
320
238
2472
187
191
191
414
425
3355
3488
1050
1054

4253
2886
2874
2882
2882
2195
2191
1628
1632
1644
1765
1610
1769
1636
1640
1390
1406
1398
1011
1015
1257
1261
968
960
960
1456
1460
1011
1007
667
671
667
2327
2425
26588
27197
7573
7573

19654
12768
12749
12756
12768
11346
11358
7452
7495
7214
7046
7210
7054
7183
7187
6136
6175
6144
4792
4796
55630
5542
4113
4077
4093
5905
5937
4007
4007
2292
2304
2296
14319
14854
199909
203576
556320
55328

78690
48434
48305
48356
48391
47610
47680
29689
29869
27209
26377
27138
25428
27103
27138
24068
24240
24111
19475
19490
20779
20834
15940
15791
156842
20213
20315
14448
14436
7659
7706
7683
85939
89131
1389231
1410905
380850
380877



Appendix H

Re-formatting the Output

The following ¢ program re-formats the output obtained from the main process. If
this output file is oul, and this program is in the file format.c, which is compiled to
format. the UNIX command

Jormal <out

produces out puts that is simiilar to the one shown in Figure 4.4.

#i1nclude <std:o0.h>

short ),k,maxrset,maxrseq;

char ch,str([132],sdum[2],1dum{30];
short out_index;

FILE *fptT,*out(4];

char *fnamel[4];

short first_group[4],first_size;
short degree,ig;

char generator[30][52];

char parity[5],imprimitive[4];
char gname[40],order[20];

void get_generator()

short cmp_res;
scanfl("Zs%s%s", 1dum, sdum, &generator[0][0]);
ig = 1;
scanf ("%s", &generator[ig][0]);
cmp_res = stremp (&generator[ig] [0], "Order");
while (cmp_res !'= 0) {
ig++t;
scanf ("/s", &generator(ig] [0]);
) cmp_res = strcmp (&generator[ig] [0], “Order");
}

void print_generator()

o
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{
short fg=1,1;
for (i=0; 1<ig; 1++)
1f (generator[1][0]'="%’) (

1f (fg==1) {
fg = 0;
fprintf (fptr, " {");
else

fprintf (fptr, ",\n ");
fprintf (fptr, "‘%s‘", &generator[1][0]);

fprintt (fptr, "},\n");

void get_print_shape()

short i,count,finish;

scanf ("%s¥%sks", 1ldum, sdum, str);

fprintf (fptr, " [%c", strlil);

i = 2;

count = 2;

finish = 0;

while (finash == 0) {

while ( (str[1]'=’]’) & (str[1]'='\0’) ) {

1f (count’20==1) fprintf (fptr, ",\n ‘%c", strlil);
else fprintf (fptr, ", Uc", strl[il);
1++,
count++,

}
1f (str([il==']’) finish = 1;

else
scanf ("%s", str);
1 =0;

}

fprantf (fptr, "1,\n");

void get_print_size()

long size,freq;

char c1,c2,c3,c4;

short i,11=0;

if (first_size==1) {
first_size = 0;
fprintf (fptr, " [");

} else {
fprintf (fptr, ",\n {");

scanf ("%sY¥%s¥ckc", 1ldum, sdum, &cl, &c2);

)
scanf ("%d%chchdlclc", &size, &cl,&c2, &freq, &c3,&c4);
for (i=1; i<=freq; i++) {

1i+4+;

if (ait=1) {
if (ii%10==1) fprintf (fptr, ",\n ");
else fprintf (fptr, ", ");
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}
fprintf (fptr, "4d", size);

while (c4'=']");
fprintf (fptr, "1');

void terminate_file()

if (first_group[0] !'= 1) fprantf (out[O0], "1,");
fclose (out[0]);

if (first_group(1] !'= 1) fprintf (out(1], "1");
fprintf (out[i], "}1,");
fclose (out[1]);

if (first_group[2] != 1) fprintf (out[2], "],");
fclose (out[2]);

if (first_group[3] '= 1) fprintf (out(3], "]");
fprintf (out[3], "},");
) fclose (out[3]);

void start_file()

short j;
for (3=0; j<4; j++) {

if (degree<10)

fname[j]1[0] = 0’ + degree;

else
fname[j]1[0] = ’a’ + degree - 10 ;
out[j] = fopen (fnamelj], "w");
first_group[j] = 1;

¥

fprantf (out[0], "{");

fprantf (out[2], "[{");
}

JHkckokooR ook Rk ok kkkokok MOA T N soksokokokskookok ook skokokokok o kok ok skok ok ok /
main()

fname%O] = "0oi";
fnamel1l] = "Oop";
fname[2] = "Oei";
fname[3] = "Oep";

while (scanf("%s",str)!=EQF) {
if (strcmp(str,"DEGREE")==0) {
1f (degree>0) terminate_file();
scanf ("%hd" ,&degree) ;
maxrset - degree/2;
if (maxrset < 2) maxrset = 2;
maxrseq = degree - 2;
if (maxrseq<2) maxrseq=2;
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1f (maxrseq>9) maxrseq=9;
scanf ("%s",str);
start_file();

scanf ("4s%s", sdum, gname);
get_generator();

scanf ("%s%s", sdum, order);

scanf ("/s¥sY%s", ldum, sdum, parity);
scanf ("/4s%s¥%s", ldum, sdum, imprimitive);
if ( strcmp (parity,"0dd")==0 ) {

if ( strcmp (imprimitive, "Yes") == 0 ) out_index = 0;
else out_index = 1;

} else
if ( strcmp (imprimitive, "Yes") == 0 ) out_index = 2;

else out_index = 3;

fptr = out[out_index];
if (first_group[out_index]
first_grouplout_index] =
else
fprintf (fptr, "J,\n\n");
fprintf (fptr, "[‘%s‘, ‘%s‘,\n", gname, order);
praint_generator();
%et_prlnt_shage();

== 1)
0;

irst_size =
for (j=2; j<=maxrset; j++) get_print_size();
get_print_size() ;
for (j=3; j<=maxrseq; j++) scanf ("%s¥s%s", 1dum, sdum, str);

3

terminate_file();

/* End. */
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Appendix I
ISOM rountines

Here is a part of the declaration file groupdel.h showing the ISOM routines that are

used in the resecarch work.

/* The data structures are designed to allow the library routines to

/* operate 1ndependently of the degree of the permutation group, while using
/* the minimum required space. This 1s done by using pointers to reference

/* all data structures which depend on the degree, and doing
/* all the allocations according to the size of the permutation group.

typedef enum {worse, indifferent, better, isom_exit} comprestype;
typedef short permval;
typedef permval *ptr_to_permvect;
typedef struct { /* declare a labelled branching »/
short permsize; /* 1.tual size of the permutation. */
gp.status_type gp_status;
/* = 1s_dir_prod if built as symmetric or direct product group.
/* = other_gp if not.
/* Invalid otherwise. Allows optimisation in
/* handling of the group in find_certificate */

ptr_to_permvect base; /% relative to base */

ptr_to_permvect rank; /* index relative to Omega,
/* value relative to base. */

ptr_to_permvect orbits; /* relative to Omega */

/* Contains most recently manipulated orbit(s). Set by various
/* routines in various ways. Careful!' Reflects top level
/* orbits of dir_prod_gps. */
ptr_to_permvect t1; /* Strictly local temporary, of correct size.
/* any procedure is free to use it, but it 1s not preserved accross

/* a call. Included to avoid the overhead of allocating and releasing

/* temporaries, which cannot be simply declared. */
point_type *point; /* perms: relative to Omega */
} perm_gp; /* end declaration of a labelled branching */
typedef ptr_to_permvect *ptr_to_permmatrix;
typedef perm_gp *ptr_to_perm_gp;
typedef i1nt base_index; /* relative to base */
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typedef 1nt point_index; /* relative to Omega */

extern ptr_to_permvect Allocatepv(short size);
/* allocate a permvect of the user required size. */

extern void dlsposepv(ptr_to_permvect pPv);
/* Dispose pv */

extern ptr_to_permmatrix allocatepm(short size);
/* Allocate a permmatrix of the user required size. The first size
/* elements will be used, and are initialized to NULL. */

extern void disposepm(ptr_to_permmatrix pm,

short size);
/% Dispose pm, and 1ts first size elements. */

extern ptr_to_perm_gp build_null_gp(ptr_to_perm_gp pg,
short size);

/* Build a trivial branching of the given size in pg.

/* Return (resized) pg. The base will be 1..size. */

extern ptr_to_perm_gp symmetric_gp(ptr_to_perm_gp pg,
short size);
/* Build branching for the symmetric group of given size in pg.
/* Return (resized) pg. Base will be 1..si1ze. */

extern void disposepg(ptr_to_perm_gp pg);
/* Dispose pg after disposing its components. */

extern void gporder(ptr_to_perm_gp branch,
double * rorder,
long * 1order);

/* Calculate the group order of the group in branch, both
/* as a real number (rorder) and as an integer number (1order).
/* For large groups, a machine integer may not be big enough

/* to hold the order. If this is the case, 1order
/* is set to =~1. */

extern void find_certificate(ptr_to_perm_gp symgroup,
ptr_to_perm_gp autogroup,
comprestype (*test_part_perm) (),
short stats);
/* Procedure to find the certificate of a combinatorical object A,

/* under the action of the symmetry group symgroup.

/* On entry, the automorphism group autogroup is either

/* NULL or points to a perm_gp describing (part of) the group

/* stabilizing the object. On return, autogroup (1f not NULL on entry)
/* will point to the augmented automorphism group.

/* The function test_part_perm compares the temporary maximum

/* canonical form Atmax of A with A**choice[l..depth].

/* It returns ’worse’ if A**choice[l..depth] < atmax

/* better >
/* isom_ex1t to abandon the search for a certificate.
/* indifferent otherwise.

/* However, if depth=permsize, then returns indifferent
/* iff A*xchoicell..permsize] = Atmax.
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/* If depth=permsize and better 1s returned, ptmax will be updated.
/* The parameter stats controls the printing of statistics. When stats

/* =0 - no statistics will be printed
/* =1 - print time and number of accepted choices.
/* =2 - print time and number of accepted choices at each level. */

extern void find_orbit(ptr_to_perm_gp pg,
E01nt_1ndex P
ase_index level,
ptr_to_permvect orbit,

ptr_to_permmatrix u);
/* Find the orbit of ‘p’ in ‘pg’ fixing the first ‘level’ basepoints.
/* Link the points of the orbit into a circular list in ‘orbit’.
/* If u <> NULL, compute the perm which maps p to each point of the
/* orbit and store 1t i1nto the corr. element of u. The identity
/* element is not created for p. If u = NULL, only the orbit is
/* computed. On entry, orbit[1] <= 0 for each i which may possibly
/* be 1n the orbit. This allows several orbits to be built up in
/* a single vector. Ortits are not sorted. */

extern void jerrum(ptr_to_perm_gp pg,
ptr.to_permmatrix genlist,
short nngens) ;
/* Augment the (possibly trivial) labeled branching ‘pg’ to reflect the
/* new set of ‘nngens’ generators in ‘genlist’. */

94






