I o Natonal Library
M of Canada

Acquisitions and

Bibliothéque nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch des services bibllographiques

395 Wellington Street
Ottava, Ontano
K1A ON4 K1A ON4

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages wei. typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c¢. C-30, and
subsequent amendments.

Canada

395, rue Wellington
Ottawa (Ontano)

Your tile votre colee ke

Qur tile Notee rétien e

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la these soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S’il manque des pages, veuillez
communiquer avec [l'université
qui a conféré le grade.

lLa qualitt d’'impression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont éte
dactylographiées a l'aide d’un
ruban usé ou si I'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses amendements subséquents.

Distributed Debugging Based on Deterministic Reexecution -
Methodology and Design of a Working Prototype

Victor Krawczuk

A Thesis
in
The Department
of

Computer Science

Presented in Partial Fulfillment of the Requirements for
the Degree of Master of Computer Science at
Concordia University
Montréal, Québec, Canada

September 1992

© Victor Krawczuk, 1992

B+l Yoo

Acquisitions and

Bibliothéque nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch des services bibliographiques

395 Welhington Street
QOttawa, Ontano
K1A ON4 K1A ON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, Iloan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

395, rue Wellington
Ottawa (Ontario)

Yout e Volre rélérence

Out e Notre edtdrence

L'auteur a accordé une licence
irrévocable et non exclusive
permettant a la Bibliothéque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa thése
de queilque maniére et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
théese a la disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d’auteur qui protége sa
thése. Ni la thése ni des extraits
substantiels de celle-ci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN ©-315-81230-0

Canada

Abstract

Distributed Debugging Based on Deterministic Reexecution -

Methodology and Design of a Working Prototype

Victor Krawczuk

Effective methods and associated tools for debugging distributed programs have
evaded programmers since distributed computing’s inception. The inherent problems
that parallel and distributed programs introduce over sequential programs include
plural loci of control (both sharing an address space (threads) and not sharing an
address space (distributed systems)) and additional sources of non-determinism such
as the message enqueuing ordering at given ports, the order in which threads dequeue
messages from given ports, and the order o threads into mutual exclusion
constructs.

A methodology is presented to debug distributed programs on the asynchronous
message-passing process-model (one thread per address space) based on deterministic
re-execution (replay). The various ways in which replay can facilitate traditional
debugging services such as breakpointing, stepping, monitoring, etc..., in a distributed
setting is discussed.

The software design of a working prototype encompassing the above-mentioned
features is presented. The design is founded mostly on a language-based approach in
which the program is augmented for the collection of non-deterministic decisions and

for its replay. The design also is founded partially on a micro-kernel based approach

i

in which message interception is made transparent to the user of the debugger using

low-level micro-kernel primitives.

Furthermore, a mechanism of replay in the context of a micro-kernel environ-
ment and a typical threads run-time environment running within the distributed
sysiem are proposed. This mechanisin encompasses the process-model paradigm
mentioned above, as well as support for threads, synchronous messages. nigration of
port-capabilities and other various basic services of a modern micro-kernel that have

non-deterministic possibilities. The replay mechanism was partially implemented.

v

Dedicated to my parents, Michael and Halina.

R

RPN

Acknowledgments

I would like to thank my supervisor, Dr. H. F. Li, for his guidance. I would also
like to thank him for his financial support. Thanks also goes to Dr. T. Radhakrishnan.

I would also like to thank my friends and colleagues in the Department for all the
advice (especially programming assistance) they gave me during the implementation
phase of this preject, especially Rick Clark. I also would like to thank Paul Gill for
setting up and maintaining the Mach system.

I also would like to extend special thanks to some of the developers of Mach at
Carnegie Mellon University (specifically Rich Draves, Dan Julin and Mary Thomp-

son) for answering the many questions I had asked them time and time again.

Vi

Contents

1 Introduction

1.1

Distributed Debugging is Different from Sequential Debugging

1.1.1 Re-execution and Non-Determinism
1.1.2 Breakpoints Lo o
1.1.3 Transparency of the Debugger
1.1.4 Tracing i e e
1.1.5 Programming Environment Supported
1.1.6 PreviousWork 000

2 Debugging Methodology

2.1

3.1

3.4

Recording and Replay Phases
2.1.1 RecordingPhase
212 ReplayPhase
2.1.3 Debugging Basedon Replay

Cyclic Debugging Tools

Breakpoint Related Tools
J.1.1 Optimistic Consistent Breakpoint
3.1.2 Pessimistic Cavsal Breakpoint
Stepping L e e e e e
Database e e
3.3.1 Selecting Events toMonitor
3.3.2 Selecting Which Events to Log during Replay
Checkpoint, Rollback and Recovery

vii

A v Ut e W NN -

o

3.5 Graphical UserInterface 23
Design, Interface and Integration of the Prototype Debugger 29
4.1 Main System Structures) |
4.2 Breakpoints e 36
4.2.1 Optimistic Consistent Breakpoints 37
4.2.2 Pessimistic Causal Breakpoints 37
4.3 Checkpoint, Rollback and Recovery 38
4.3.1 Checkpoint - Replay Phase Interaction 39
4.3 Rollback - Replay Phase Interaction 40
44 Databaseof Events 42
Mechanics of Deterministic Re-execution 44
5.1 Overview and Assumptions. 45
5.1.1 Approach Taken 45
5.1.2 Phases of Recording and Replay 15
513 Target Environment 47
5.1.4 Sources of Non-Determinism 48
5.1.5 Virtual Naming System 50
5.1.6 Transparency of the Debugger 55
5.1.7 Miscellaneous Assumptions and Policies 56
52 Standard Servers L 61
52.1 Logserv e e 61
522 Replogserv e 64
523 Forkserv 65
724 Repforkserv oo o o oo 74
5.2.5 Gpnameserv and Repgpnameserv 78
52.6 Controlserv 79
5.2.7 Repcontrolserv 87
5.3 Non-Deterministic Events: Monitoring and Reproduction 89
53.1 MessageSending o oL, 90

5.3.2 Message Receiving 0000 99

5.3.3 Transfer of ReceiveRights 104

5.3 Netname Server i 109

5.3.5 Non-deterministic systemcalls. 115

5.3.6 Threads and Synchronization 116

6 Conclusion and Suggestions for Future Work 134
6.1 Summary e e e e e 134
6.2 Suggestions e e e e 135
6.3 Implemented Modules 136

A Mach Related Definitions 138

B Sources of Non-Determinism for Supported Application Platform 141

Bl Messagesending. e 141
B.2 Messagereceivingo i it e e 142
B3 Port Sets. o e e e e e e e 142
B.4 Kernel Primitives oo e 143
B.5 Netname Server i e e e e 143
B.6 Thread Synchronization, 144
B.6.1 Condition Variables 144

B.7 Task Termination 145

C BNF for Database Activation 146

L a4 PR

ST

L a

List of Figures

3.1
3.2
3.3

4.1
4.2

5.1
5.2
9.3
5.4
5.5
5.6
5.7
5.8
5.9

An example of OCB and PCB breakpoints
Command/State Flowchart
Sample GUI during the replay phase

Central controller’s relationship with various nodes

Workings of the debugger on agivennode

Interception Scheme o L
Format of an executable program
Transformation of the Application Program
Configuration of debugger servers
Basicelementsofalog
Forking on the localnode
Forking on the remotenode
Migration of receive-rights o o oL

Format of the rec/rep control message

5.10 General Scheme of CONTROLSERV « . v v v v v v v e e e

List of Tables

3.1 Attributes of message-transmissionevent oL 17
2.2 Attributes of message-receptionevent 18
3.3 Attributes of port-set-createevent o000 18
3.4 Attributes of port-set-deleteevent oL, 19
3.5 Attributes of port-set-add event oL, 19
3.6 Attributes of port-set-removeevent 19
3.7 Attributes of create-taskevento 0oL 20
3.8 Attributes of destroy-taskevent o000 20
3.9 Attributes of port-creationevent. 20
3.10 Attributes of port-destructionevent 21
3.11 Attributes of task-doneevent 21
3.12 Attributes of task-abortedevent oL 21
3.13 Attributesof userevent 22
3.14 Groups of commands for recordmode 25
3.15 Groups of commands for replaymode 26
5.1 Two Phases of the Testing and Debugging System 46
5.2 Potential Non-Determinism 48
5.3 History of thread creation 52
5.4 History of port creation, 54
5.5 Netname to virtual port-id mapping tuple 79
5.6 Location of receiverightstuple 79
5.7 History of message enqueuing at an application port 91
5.8 Log of application notify port enqueuing 92

Xi

e xS e

i £ |

5.9 History of time-out results for an application port

5.10
5.11
5.12
5.13
5.14
8.15
5.16
5.17
3.18
5.19

History of message dequeuing at an application port
History of message dequeuing at a notify port
History of netnzme system call results

History of non-deterministic system calls

History of condition variable allocation

History of mutex allocation

History of mutex entry in a specific mutex

History of mutex_trylock()

History of signalssento v

History of a signal being caught . .

xii

.................

Chapter 1

Introduction

As soon as we started programming, we found to our surprise that
it wasn’t as easy to get programs right as we had thought. Debugging
had to be discovered. I can remember the exact instant when I realized
that a large part of my life from then on was going to be spent in finding
mistakes in my own programs.

Maurice Wilkes discovers debugging, 1949

One area of ongoing research in software engineering concerns developing method-
ologies to translate a software requirements specification (SRS) into source code that
satisfies the requirements specification and is bug-free. Unfortunately, today’s state
of software engineering still does not produce errorless programs either at the source-
code level or in design documents that evolve out of the SRS. The release of flawless
software of significant size in practice is considered a hopelessly optimistic task now,
and into the foreseecable future. Proving a program is correct via mathematical rigor
is only considered practical for trivial programs.

Debugging can be described as the process of determining why a program has

violated its SRS either by performing some unauthorized action such as:

e a legal transition has resulted in an illegal state

e an illegal transition has resulted in an illegal state

e an illegal transition has resulted in a legal state

Finding the cause of errors (the bug) can be a labour intensive activity. Therefore,
debugging methodology and tools to support the developed methodologies must be
devised in order to improve programming efficiency.

Inevitably, when one discusses debugging, one finds it difficult to separate it from
program testing. While the two concepts are very much related, testing is more
a methodoiogy to determine whether illegal states/transitions can occur or legal
states/transitions cannot occur, using the SRS’s definitions of what constitutes a
legal state/transition. Debugging is more concerned with finding the root cause of
an illegal state or an illegal transition (at the level of the SRS), which often finds its
roots in faulty design documents, algorithms, etc..., and ultimately, faulty source
code. Furthermore, the underlying cause of a program violating its SRS ofien occurs
far before the explicit manifestation of an error relative to the SRS, and in the case
of a distributed program, the source of the error (bug) may have originated on a

different process/task! from which the violation of the SRS was detected!

1.1 Distributed Debugging is Different from Se-
quential Debugging

1.1.1 Re-execution and Non-Determinism

Distributed debugging techniques are more complex than conventional debugging
techniques. Conventional debugging techniques are designed for a single process (with
a single locus of control, single-threaded) running on one processor. Conventional
debugging techniques also assume that given the same sequential stream of external
inputs to the program and the absence of random number generators, the program
can be rerun countless times and it will always follow the same sequence of states and
the sequence of transitions will not change. Repeatability is essential in debugging,
since one execution is necessary to detect an error, and often a program must be

re-run several times as the cause of the error (the bug) is tracked down.

la process is considered a single-threaded task in this thesis

Debugging a distributed system is complicated by the potential for non-determinism
in one’s program. Thus the corner-stone of conventional software debugging, which is
the guaranteed reproduction of program errors, often cannot be applied to distributed
programs. For example, since multi-threaded tasks communicate via messages sent
to ports, if two such tasks have send rights to a given port p, the order of recep-
tion from the two tasks at port p cannot be guaranteed for each re-execution. If a
particular thread in a multi-threaded task is capable of receiving from a port-set P
and will randomly pick a port to receive from if more than one port is non-empty,
then this is another source of non-determinism, which cannot be guaranteed to be
reproducible during subsequent re-executions. Furthermore, the timing of message
arrival to any port in a port-set also adds to non-determinism since the receiving
thread of a port-set is obliged to dequeue a message in a port in a port-set if all the
other ports in the port-set are empty.

Multi-threaded processes (tasks) are inherently non-deterministic, since CPU
schieduling often determines which thread gets exclusive access rights to a critical
region shared by all the tasks in the thread and protected by a mutual exclusion con-
struct (such as a semaphore or monitor), assuming there are no errors in the mutual
exclusion construct itself! In a message-based distributed system, multi-threaded
tasks significantly add to overall non-determinism since several threads can poten-
tially receive from a given port in a given sequence, which cannot be guaranteed to
happen on subsequent re-executions. Furthermore, since various threads from vari-
ous threads can acquire send rights to a common port, the enqueuing order at a port

cannot be guaranteed to be reproducible on repeated executions.

1.1.2 Breakpoints

Conventional programs allow the user to specify an unambiguous breakpoint in the
code at which point the user can examine the state of the process (e.g., variables).
The breakpoint is unambiguous and it is guaranteed to be reached if it indeed can

be reached?, since there is only one flow of control (thread) in a sequential program.

%if random number generators (RNG) and external data cooperate, and there is no bug in the
code to prevent the program from ever reaching the breakpoint, irrespective of RNG’s and external

Once the program is restarted from a breakpoint, the program behaves as if it had
never been artificially suspended. Furthermore, given the deterministic behavior of
sequential programs, the user can use the technique of stepping, in which the process
is automatically suspended after every r number of instructions is executed. Usually,
z is equivalent to all the instructions inherent in one line of scurce code.
Breakpoints in a sequential program have an implied reference to time, typically
when a user-composed assertion becomes true. A distributed system is typically a
loosely coupled multiprocessor system, which implies that the various processors do
not share a common clock and that there are several threads of control spread across
several tasks. The fact that the tasks do not share a common clock implies that
there is no way to stop all the processors at precisely the same time. This implics
that the concept of simultaneous events must be redefined to one that is suitable
for distributed systems. Another complication that must be considered is that if
one places a breakpoint in a given single threaded task and it is rcached, inevitably,
this will cause other processes that receive messages from the suspended process to
block, while other processes may progress to completion, the result being that the
concept of a breakpeint in a distributed program must be redefined (discussed later

in section 3.1).

1.1.3 Transparency of the Debugger

Ideally, the distributed program should behave in exactly the same manner with
the debugger as it would if the debugger were not present. In reality, this does not
seem to be possible with distributed systems. Message sending and receiving can
be delayed by the debugger itsell by it “stealing” CPU cycles from the application
program being monitored/debugged, affecting CPU scheduling, and possibly delaying
the application program access to system resources such as the bus, I/O peripherals
(disks, Ethernet, etc...). This disruptive effect of the debugger, the probe effect,
can mask errors that would otherwise be observed during an execution of the program

without the debugger present.

data

1.1.4 Tracing

Tracing is another sequential debugging technique often used. The user typically
specifies which events he wants written to standard output when they occur (e.g.,
variable changed, variable referenced, label passed, etc...). Typically, only a few
variables and/or labels are traced at any given time, to avoid generating a flood of
data that the user must sift through.

In a distributed system, traces must be collected from various sites and then
“combined” at a central site either physically or logically. In a sequential program,
outputting trace statements will not generate a probe effect, whereas in a distributed
setting it would, due to the extra instructions necessary to generate traces, and due
to the burdening of the communication system linking the nodes if monitoring data

must be sent/coordinated between various nodes.

1.1.5 Programming Environment Supported

In this thesis, three aspects of distributed debugging are discussed: methodology,
debugging tools to support the methodology, and a mechanism to monitor and replay
non-deterministic distributed programs.

Starting first with the mechanism for monitoring/replay, the programming envi-

ronment supported consists of:

e a microkernel (specifically Mach [2]). All the non-deterministic events that such
a kernel presents (except for the external memory manager [2]) are recorded and
the non-deterministic events are regenerated during replay. Facilities supported
include asynchronous and synchronous message passing, send and receive time-
outs, non-deterministic system calls, a multi-threaded environment (see next
item for qualifier), name-servers, and the ability of passing port capabilities in

messages.

o the C-Threads package [6] that uses the low level thread primitives of a micro-

kernel and provides thread synchronization features.

o the C programming language.

O T SN U -«

The cyclic debugging methodology presented in chapter 2 is designed to take
advantage of the monitoring/replay facility described above.

Some of the described debugging tools designed to support the cyclic debugging
nmethodology are for use only in a process-based (one thread per task) asynchronous
message-passing environment. The breakpoint and stepping tools (see sections 3.1
and 3.2) fal into this category. The database, and the manual checkpoint, rollback
and recovery facilities (see sections 3.3 and 3.4) can function in the full environment,
as described above. Time constraints prevented the development of breakpoint and

stepping tools that would function in the full environment described above.

1.1.6 Previous Work
Mechanism of Monitoring/Replay

While previous papers hinted at the utility (and mechanism) of deterministic re-
execution for debugging parallel and/or distributed systems, the first serions at-
tempt at discussing the issue in any great depth, thus expounding the necessity
of deterministic re-execution in debugging, was put forward by LeBlanc and Mellor-
Crummey [21]. In this paper, the general idea of only recording the relative order
of significant non-deterministic events as they occur, as opposed to all events and
the data associated with the events, during the recording phase was proposed. Since
they implemented a prototype parallel debugger based on a sharcd-memory multi-
processor, their recording and replay technique was directed at the shared memory
paradigm. They only proposed a recording and replay algorithm for the shared
memory paradigm because they believed that all parallel and distributed debugging
is derived from the shared-memory paradigm.

The prototype described in this thesis differs from from the one developed by
Leblanc and Mellor-Crummey [21]. They proposed a very general solution to deter-
ministically replaying parallel programs in that the mechanism is based on the shared
memory paradigm, arguing that this paradigm’s basic principles can be extended to
other paradigms, such as loosely coupled systems. While this premise (and their

algorithms for replay on such a paradigm) is arguably correct, the amount of detail

that rests between their algorithms and a working replay mechanism on a loosely
coupled system is large. Issues like efficiency, the probe-effect, etc...in a loosely cou-
pled system are glossed over in the algorithm proposed in [21]. Issues such as hnw
the replay system can be effectively hidden from the user and how to name operating
system resources, which are given different ID’s during each reexecution, thus making
the job of mapping execution histories to the correct resources difficult,, is not dealt
with in [21]. Leblanc and Mellor-Crummey also do not describe how timeouts, name
servers, and non-deterministic system calls should be handled during replay. They
also do not consider the various race conditions that can occur in a loosely coupled
system of multi-threaded servers.

Fidge [11] proposed a monitoring/replay mechanism for purely message-based pro-
grams that are based on CSP [16] (:.e., rendez-vous synchronization). He also pro-
posed an algorithm for checkpointing a computation during the replay phase in case
the recorded execution history became unmanageably long and had to be truncated.
The approach taken in this thesis differs in that the proposed monitoring/replay
mechanism supports a platform encompassing more than just the CSP paradigm.
Furthermore, in [11], the checkpointing algorithm is based on an algorithm devel-
oped hy ~handy and Lamport [5).

In [3], 2 mechanism for the replay of a program based on shared variables was put
forward. The mechanism does not deal at all with message-passing programs.

In [31], a monitoring/replay mechanism was proposed for a real-time distributed
system. They claim to avoid any probe effect during the recording phase by using
hardware probes to collect the execution history. The work in this thesis uses software
probes instead during the recording phase, and is not intended for a “hard” real-time
environment. Furthermore in [31], since they are targeting a “hard” real-time system,
they monitor and replay 1/O and hardware clock interrupts, aspects that are not

critical to replaying most non-real-time distributed systems.

Chapter 2

Debugging Methodology

The apparent necessity of having a replay facility in a distributed debugger was
elegantly put forward by [21]. In addition to the fact that replay guarantees repro-
duction of an error/bug on every re-execution (if external data is the same on each
execution), cyclic debugging methodology, which is the staple of sequential (con-
ventional) debugging, can be, in principle, employed in the context of a distributed
program. This is typically achieved by focusing one's attention on a smaller, more
specific “region” of the program with greater attention to detail on each iteration of
the execution until the bug that caused the error is found. Humans generally think
sequentially rather than in parallel. Therefore, incorporating methodologies from the
sequential debugging paradigm (where possible) is important in order to streamline

the debugging process and provide a more intuitive environment for the user.

2.1 Recording and Replay Phases

The methodology assumed for debugging non-deterministic distributed programs con-

sists of two phases—the recording phase and the replay phase.

2.1.1 Recording Phase

The recording phase can be considered the first phase of the debugging methodology.
During this phase, all non-deterministic choices are monitored and recorded as they

occur for use during the replay phase. The recording phase is not concerned with the

reasons why a given non-deterministic choice was made-it is simply concerned with
1 ‘cording the choice.

It is assumed that no debugging activity will take place in the recording phase
other than recording the minimum amount of data related to non-deterministic
choices (done automatically by the debugger) in order to deterministically re-execute
a program during the replay phase. The recording phase will thus be typically used
when a program is being tested to determine if the program satisfies its specified
requirements. If an error is found, the user would revert to the replay phase in order
to use the cyclic debugging methodology to reexecute the program, using various
debugging techniques, to find the cause of the error.

Since non-deterministic choices are being logged onto secondary storage with lim-
ited capacity, a lengthy execution may produce more monitored data thar can fit onto
the secondary storage medium. In [11], when a pre-determined number of choices is
recorded for any process, a checkpoint is initiated at that process by sending marker
messages to all its neighbor process(es) (similar to [5]). When space runs out on sec-
ondary storage, a portion of the earliest recorded history still present on the secondary
storage device must be deleted so that monitoring can continue. Since reexecuting
from the initial state during the replay phase is not feasible if the earliest recorded
choices are not available to guide the re-execution with determinism, the user must
rely on a checkpoint that was taken automatically during the recording phase as a
starting point.

Even if the minimum amount of data is logged during the recording phase, it
still may introduce a small probe effect that may mask errors/bugs that would have
surfaced if the debugger was not being used. A software solution to the probe effect
currently does not exist. There are few techniques that can be used to compensate

and/or minimize for any probe effect that may be present in the recording phase:

Exhaustive Testing If the program is exhaustively tested, then the probe effect is
irrelevant, since all lurking bugs should have been unmasked. The recording
phase is used to pinpoint certain execution runs that exhibited faulty behavior

under specific controlled conditions, so that cyclic debugging techniques can be

9

used to find the cause of the error. Exhaustive testing is often impractical in
practice due to the large number of states and permutations of their execution
sequences that a typical distributed program can find itself in. Furthermore,
developing test suites (and techniques) that will test (and coerce) all possible

states of a program is a research field by itself.

Random Artificial Probe Effect Adding artificial delays to message delivery,
putting arbitrary threads and/or tasks to sleep for arbitrary amounts of time,
etc..., is a technique that can be used to unmask bugs that may be masked
by the debugger’s presence during testing or the recording phase. The artificial

probes can effectively cancel out the probe effect due the debugger.

Airline “Black-Box" Technique This technique for compensating for the probe
effect involves permanently incorporating the recording phase of the debugging
environment and logging every execution’s non-deterministic activity, much like
the flight-recorder in an airplane, which always monitors its operation on every
flight-if something goes wrong, the data is used to reconstruct the events that
lead to the malfunction. If the debugger masks any bugs in the execution, it
is of no concern since the program doesn't execute the masked faulty portion
of the program anyway. When the program eventually does execute a faulty
portion of the program (due to sheer luck) that the debugger generally masks,
that execution was monitored. Thus, the faulty run can be re-executed in the
replay phase, applying cyclic debugging methodology to debug the program.
Typically, some type of automatic error-detecting device (like an on-line spec-
ification checker described in [7]) could be employed in order to flag an error

condition if it ever occurs.

2.1.2 Replay Phase

During this phase, the debugger ensures that all non-deterministic choices the pro-
gram makes (or is coerced into making by its environment) matches the choices it

made during the recording phase. The program is thus rendered deterministic and

10

its behavior is no longer affected by the debugger’s probe effect, creating the proper
environment for cyclic debugging methodology. Since the probe effect is not an issue,
one can attach and use as many debugging tools to a re-execution as necessary with-
out affecting the program in any manner. An assortment of debugging tools designed
and/or derived from the conventional debugging world is described in chapter 3. The
debugging methodology in this phase becomes heuristic. The overall methodology of
this phase is to re-execute the program as many times as it takes, each time gathering
more detailed information about fewer processes that the user suspects may contain
the bug that caused the error (top-down methodology) until the bug is found. The
order and selection of using the various debugging tools depends on the type of pro-
gram being debugged and its related algorithms and the user being aware of the tools

at his disposal.

2.1.3 Debugging Based on Replay

While there are some drawbacks to basing a distributed debugger on replay, such
as the substantial complexity of developing a replay subsystem for a distributed
system, the non-trivial probe effect present in the recording phase, and large amount
ol space such a debugger requires on secondary storage (for the execution logs and the
checkpoints), there appears to be no other more efficient methodology for debugging
a non-deterministic program. The cost of secondary storage is falling steadily, and
software platforms are becoming more and more standardized, allowing debugging
tools to become more portable. Furthermore, fewer upgrades of the debugger become
necessary as software standards become less of a moving target, thus the core of the

complex debugger itself need not be changed as often.

11

Forrrm RO WeaKria. o T B e d b S akh o e A« doms -

P

[N ey

Chapter 3

Cyclic Debugging Tools

As mentioned in chapter 2, all debugging activity is done i1 the context of the replay
phase and the debugging activity uses facilities that take advantage of and/or rel, on
deterministic re-execution to support cyclic debugging. Most of the facilities have
been taken from the realm of traditional debugging and have been adapted for use

in distributed programs.

3.1 Breakpoint Related Tools

The main problems of sctting breakpoints in non-deterministic programs is that the
breakpoint itself can introduce a probe effect (resources must be used to detect when
to precipitate a distributed breakpoint, as well as coordinating a distributed break-
poiat when the precipitation location has been detected) and a given distributed
breakpoint may not be reached on repeated executions due to random delays. These
two problems do not exist in sequential debugging. Thus, breakpoints are only set
during the replay phase where the program is executed deterministically.

The different key paradigms used in distributed programs would place different re-
quirements on debugging. To meet these requirements, two classes of breakpoints are
proposed: Optimistic Consistent Breakpoint (OCB) and Pessimistic Causal Break-
points (PCB) [19]. Both OCB and PCB can be specified as distributed breakpoints
over a subset of the communicating processes. Their definitions guarantee that the
global state reached by the distributed program is unique in that it can be repro-

duced at will on subsequent re-executions.

12

When the user specifies the OCB and/or PCB, the set of all processes in the
distributed program is partitioned into two sets P and @Q such that for each process
in P the user has specified a breakpoint. In the debugger, facilities are provided for
the user to specify such breakpoints either in the code space (program source code)
or in a synchronization specification space (messages exchanged at the process
boundaries).

The PCB and OCB together identify a state region in which certain restricted
conditions hold (such that some selected processes have reached certain local states
and have ceased to progress further). This region of global state is usefu! in checking
safety properties restricted to a subset of the processes that are allowed to progress
in the absence of the rest Fig .re 3.1 describes how the PCB and OCB breakpoints
differ given the same breakpoint set in a given process. It should be noted that
the breakpoint schemes just described (PCB and OCB) are designed for distributed
programs made up of single-threaded application tasks (tasks that consist of only one

application thread, i.e., a traditional process).

3.1.1 Optimistic Consistent Breakpoint

In the case of OCB, each process is stopped at either its breakpoint or at a point where
it is blocked waiting to receive a message from another process that is also blocked
or has reached its breakpoint. The fact that the processes in set @ are allowed to
advance forward maximally until they are blocked allows the user to investigate
possible violations of mutual exclusion (e.g., data contamination, liveness violations,

etc...).

3.1.2 Pessimistic Causal Breakpoint

In the case of PCB, each process breaks at the earliest state that reflects all events
that “happened before” the breakpoint [13]. This is useful in that the states of
processes in () are not allowed to pass beyoad the causal state and possibly mask the
cause of an error.

The algorithm used in [13] forces some processes in @ to rollback if they have

13

P1

P2

P3

P4

Oplimistic Consistent Breakpoint (PCB)

"\« Pessimistc Cousl Breckpoint (PCB) ~
/
'I

’/

Time l blocked by the debugger
———

| Naturally blocking message receive

Figure 3.1: An example of OCB and PCB breakpoints

14

surpassed the causality requirement when a pre-set breakpoint is reached in P.
Time-stamps must be maintained in order to rollback the processes in set Q so that
they reflect all events that “happened before” the breakpoint reached in a process
from set P. An improvement to the latter method is proposed for achieving causal
breakpoints in a more efficient manner in terms of space and time. A causal break-
point is implemented without the need for time-stamps, checkpoints, rollback, or any
special re-processing as required in [13]. This is achieved by pessimistic re-execution,
which allows processes in set P to proceed unhindered toward their pre-set break-
points while only allowing processes in set @ to advance enough to unblock processes

in set 7. For more details, refer to section 4.2.

3.2 Stepping

Stepping is another tool which is commonly used in conventional debugging for man-
ually following the flow of a program, usually a small segment of it, and possibly
pausing to investigate the state the program has found itself in. An added benefit
of the OCB and PCB mechanism is that it can easily be transferred to a stepping
facility.

In the case of OCB, one can single-step a single process and the other processes
will automatically step maximally forward to the maximal prefix. This is naturally
accomplished due to the enforcement of the happened-before relations due to the
blocking receive paradigm. This type of stepping is useful for when the user doesn’t
care about examining the causal states of the other non-stepped processes and thus
allows them to run beyond their causal relevance to the steppec process.

Related to PCB mechanism, a pessimistic form of stepping can also be used to
actively step one process while not allowing the other processes to progress beyond
the carliest causal event relative to the process that is currently being actively stepped
by the user. This feature is provided so that the causality requirement is constantly
maintained at the other processes while advancing a single process at a fine granularity
(one statement at a time). This type of stepping provides the user with a “white-

box™ tool. which comes from the fact that the user is stepping the one process in

15

isolation with a sequential debugger, which can step from statement to statement.
The black-box comes from the fact that the other processes are only breaking at
selected send events. The user can always switch to another process to do white-box
analysis during a re-execution to try to account for the current state of the actively

stepped process.

3.3 Database

The intended use of a database in the context of distributed debugging is to provide
the user an alternative method for “replaying” an execution in a more abstract and
selective manner than a re-execution. It is also useful in checking whether certain
user-composed assertions held true ur not during the re-execution. Selected events
are recorded during the replay phase. The collection of the events must be done in
the replay phase to avoid creating a significant probe effect in the recording phase.
Since the user cannot predict beforehand if and where the bug will be, all events
would have to be recorded, which would cause a massive probe effect if events were
collected during the recording phase.

The user typically collects selected events during repeated re-executions, since
recording all possible events, even during the deterministic replay phase, can be
unnecessarily cumbersome, especially in terms of the large amount of data that can
be collected. The data collected in the database is cumulative on repeated executions
in a particular session of the replay phase. An off-line “filtered” replay or listing of a
selected sequence of events can be demanded by composing an SQL-style query (based
on predicate logic). This, in effect, provides the user with the stepping facility at an
abstraction layer higher than at the level of the source code. Furthermore, assertions
about the program can be composed and verified against the events recorded in
the database using SQL-style database queries (based on temporal logic). Implicit
bugs, which occur far from the location where the program explicitly violates its
requirements specification, would be easier to detect if the user knows some useful
assertions about the program that is being debugged. The approximate location of

an assertion violation could also be provided with this type of query.

16

machine-id (sending from...)

task-id (sender)

thread-id (sender)

port-id (destination)

global-time

source code line # (of send primitive)
(in case primitive was unsuccessful)
message tag value

confirmed delivery to destination port
message contents (actual or ptr to VM)

Table 3.1: Attributes of message-transmission event

The EVENT FILE (database) is cumulative in that for each re-execution, one can
record different selected events, in case the events recorded during the previous passes

are insufficient in locating the bug.

3.3.1 Selecting Events to Monitor

The debugger is capable of recording “global” and “local” events in a user-named
EVENT FILE that is uniquely associated with a specific run. The events are culled
during replay mode only.

All logged “events” will include the event name, the machine-id, the task-id, the
source code line number, and the global clock value, if not debugging in a multi-
threaded environment. The global timestamp service is provided so that the user can
determine the causal relationship between events, if any, during an off-line query of

the database. Some events will record more information as described below:

Global Events

e message transmission. This will also record the message tag ! (if any), and
whether the message was successfully delivered to the appropriate port. If de-
livery was unsuccessful (e.g., a timeout occurred) the “confirmed delivery to

destination port” field would indicate this fact. The message contents trans-

'gome operating systems, like lfach, allow the programmer to type messages so that the receiver
can quickly determine what type (user defined) of message was received without needing to examine
the actual message

17

P U

machine-id

task-id

thread-id

port-id

port-set?

port-set-id

global-time

source code line #

message tag value

message contents (actual or ptr to VM)

Table 3.2: Attributes of message-reception event

machine-id
task-id

thread-id
port-set-id
global-time

source code line #

Table 3.3: Attributes of port-set-create event

mitted will be recorded, if they are actually contained in the message (in-line).
If a pointer to virtual memory serves as the message, then only the pointer is

recorded (see Table 3.1), since such as message can be as large as 2 Gigahytes.

¢ message reception. This event is defined as a thread dequeuing a message from
a port into the receiving task’s address space. The “port-id” field tells from
which port the message was dequeued. If the dequeued port was a member of
a port-set, the name of the port-set is provided, as well as which actual port
was dequeued. For example, under the Mach operating system, receiving from
a port-set can be a non-deterministic if two or more ports of the port-set are

non-empty.
e port set create. When a port set is created, the event is recorded (sce Table 3.3).
e port set destroy. When a port is destroyed, the event is recorded (Sec Table 3.4).

e port set add. Records the event when a port (port-id) is added to the port-set

18

machine-id

task-id

thread-id
port-set-id
global-time

source code line #

Table 3.4: Attributes of port-set-delete event

machine-id I
task-id
thread-id !
port-set-id

port-id
global-time

source code line #

Table 3.5: Attributes of port-set-add event

(port-set-id) (See Table 3.5).

e port set remove. Records the event when a port (port-id) is removed from the

port-set (port-set-id) (See Table 3.6).

o create task (see Table 3.7). This eveat records that a specific task was just

created.
o create thread. This event records that a specific task was just created.

e destroy thread. This event records that a specific task was just destroyed.

machine-id

task-id

thread-id
port-set-id

port-id
global-time

source code line #

Table 3.6: Attributes of port-set-remove event

19

machine-id

task-id

thread-id

task-1d of creator
thread-id of creator
global-time

source code line #

Table 3.7: Attributes of create-task event

machine-id

task-id

task-id of destroyer
thread-id of destroyer
global-time

source code line #

Table 3.8: Attributes of destroy-task event

¢ destroy task (see Table 3.8). This refers to the task that has just been destroyed.
If a task kills itself, the task-id of destroyer will be the same as the task-id.

o port creation. This applies to the receiving port for normal communication mes-
sages only. All other ports that are created are not recorded (see Table 3.9).
For example, under the Mach operating system, there is a port for all system re-
sources, such as regions of virtual memory, task bootstrap ports, task exception

ports, and task notify ports.
e port destruction. Same conditions as for port creation apply (sce Table 3.10).

e task done (see Table 3.11)

machine-id

task-id

thread-id

port-id
global-time

source code line #

Table 3.9: Attributes of port-creation event

20

machine-id

task-id

thread-id (if applicable)
port-id

global-time

source code line #

Table 3.10: Attributes of port-destruction event

machine-id

task-id

thread-id
global-time

source code line #

Table 3.11: Attributes of task-done event

machine-id
task-id

thread-id
global-time
reason (signal #)
source code line #

Table 3.12: Attributes of task-aborted event

21

name of user event
machine-id

task-id

thread-id
global-time

source code line #

Table 3.13: Attributes of user event

e task aborted (see Table 3.12). It is noted whether the abortion was due to a

normal or abnormal (e.g., due to a hardware exception)“exit”.

o user event. A user event is defined as a specifically named label (meaningful to
the user who defined it) that the user inserts in some specific area of the source
code. Each time the label is by-passed, the clock “ticks” and the user event is

recorded into the database (see table 3.13).

Local Events

Each event tuple includes fields for the logical time, event identification, source code

line, task-id, thread-id, machine-id, and data.
e assignment to a local variable

e assignment to a named pointer

e reaching a label

3.3.2 Selecting Which Events to Log during Replay

During the replay phase, the user can specify which events to record. The BNF for
the form the commands can take can be found in appendix C. A similar BNF exists
to selectively stop recording certain events during the replay phase.

Occasionally, the user won’t be sure what task and/or threads were created and
destroyed during the execution. This makes it hard to specify which task(s)/thread(s)
one wants to record. Such information can be provided by replaying the execution
and, for example, recording all the create-task and create-thread events, and then

generating the list by using the query facility.

22

3.4 Checkpoint, Rollback and Recovery

The ability of allowing the user to initiate a checkpoint, as well as to rollback to
a selected checkpoint within a debugger during the replay phase allows the user to
reexecute a suspect area of the program repeatedly without reexecuting the entire
program from the beginning each time. This facility is distinct from the checkpoints
which are periodically taken during the recording phase in order to restart a recorded
execution from a state other than the initial state, in the event that an early portion
of the execution history had to be deleted in order to make room for more recent
monitoring data.

The idea of reversible execution, executing “backwards” in time, is not a new one
(23] [22] [12] [10]. Basically, one must “unexecute” logically from the location of the
error to the associated bug. The prcposed tool supporting the user during the replay
phase allows the user to initiate checkpoints manually at global breakpoints. This
allows the user to re-execute a selected subportion or the program iteratively, from
a manually induced checkpoint to some upper bound (represented as a breakpoint).
The intended goal, on each reexecution, is to reduce the suspected area in which the
bug resides between a manually induced checkpoint to some upper bound (represented
as a breakpoint), as well as the number of suspect processes. The user can select which

manually-induced checkpoint to rollback to.

3.5 Graphical User Interface

A graphical user interface (GUI) provides a unified interface to all debugging fa-
cilities. It enforces the cyclic debugging methodology, as well as provides the user
with a centralized location where he can issue commands and view selected states of
the program. A flow-chart illustrating the sequence of steps a person debugging a
distributed program must go through is illustrated in figure 3.2 and tables 3.14 and
3.15.

During the recording phase, the user is not debugging the program, so the GUI

consists of just a simple menu system to set-up the recording phase. The GUI during

23

start

r debugger servers

cdb -
record mode
i
on
rlist
#1
set-up all recording\

a name for cdb

give the applicalim

]

for recording phase

transform pmg%

recompile program

and link rec libraries

execute/record

&

execution
terminated

2

ﬁi\

replay mode
on

a replay histary ﬁk\:’/"

is specified

replay file set at the
earliest saved state

hita
global
bp

transform
and

recompile

program

disable
current
replay
Jile

global breakpoint
(pre-set or step)

list

#3

cdb exits to
shell

#2

current replay
terminated

R

/ list \‘

)

[::' State

(O commands

Legend

D execution/re-exed

LY interactive input O automatic action

Figure 3.2: Command/State Flowchart

24

RLIST | COMMAND |

rlist # 1 | change mode to replay

delete execution history file

rlist # 2 | abort an execution being recorded
rlist # 3 [record another run

exit debugger

change mode to replay

rlist # 4 | start record

Table 3.14: Groups of commands for record mode

the replay phase consists of a number of windows on a bit-mapped screen running a
distributed windowing system such as the X-Window system [24], which presents the

users the following:

blocked table This table lists all the task-threads which are blocked due to a “block-
‘ng” message receive (awaiting a message on some port the task has receive
rights to). The location of the task (node-name) is also provided. This facility
is helpful in allowing the user to manually detect deadlocks, and it is useful
during stepping in that the table can assist the user in determining the cause

of a blocked process, which can be caused by another blocked process.

suspended table This table is similar to the blocked table (see above item) ex-
cept that the task-thread’s listed have been explicitly suspended by the task
controller (the modified sequential debugger gdb). The task is under control
of the task controller and the task’s state can be examined, if need be. The
use of the suspended table is to enable the user to determine if a specified

breakpoint has been reached.

artificial delay indication There may be occasions during the replay phase when
an event that should happen (for example, a message that has definitely been
sent should have been enqueued at the destination port) won’t happen imme-
diately. This can happen if the replay mechanism has noticed that the program
is attempting to execute some non-deterministic event that is not currently in

accord with the relevant execution history (like the receipt of a message “out

25

L LIST

COMMAND |

List # 0

change execution history
switch to record mode

List # 1

start re-execution

selecting events to monitor to database
delete execution history file
breakpoints

enable isolation run

List # 2

query of monitored events in event database
activate stepping mode

set /unset breakpoints

take manual checkpoint

rollback to a manually induced checkpoint
selecting events to monitor to database
abort re-execution

remove duplicate events in database
delete event file

save event file

global resume (of re-execution)

list manual checkpoints

delete current saved checkpoints

suspend recording of events

resume recording of events

quit database query

List # 3

remove duplicate events in database
delete event file

save event file

delete current saved checkpoints

delete replay file

rollback to a manually induced checkpoint,
query of monitored events in event database
list manually induced checkpoints

switch to record mode

change replay files

quit query

List # 4

hit panic button (force immediate breakpoint)

Table 3.15: Groups of commands for replay mode

26

of order”) is delaying the event. These flags will indicate which task-thread is
being artificially delayed. This facility is most useful in conjunction with the

stepping facility.

task controller This is the front-end of the modified gdb sequential debugger, run-
ning as an inferior process of the emacs full-screen editor [25]. The full-screen
editor must be used in order to interactively display the source-code of the

program at a breakpoint or while the program is being stepped.

ST diagram A space-time diagram is drawn in a special window as the program
progresses during the replay phase, giving the user an overview of the interac-

tions between tasks (message sending and receiving events).

database query window Queries on the event database are composed in this win-

dow using Prolog queries (based on predicate logic).

menu system A cascading menu system is used to enforce the flow-chart described

in figure 3.2.

panic button When things go wrong (like a deadlock has ensued), this facility, when
activated by the user, will put all tasks of the program into a suspended state,
giving complete control of each task to the task controller attached to it, thus

allowing the user to probe the state of any task of the program.

An example of the description of such a GUI is found in figure 3.3.

27

RT3 47 o= # T8 PN AT S n e

Suspended Blocked
List List
Antificial Delay Indicator
Database Query Window
Task 3 Controller
Command/SRC listing
Task 1 Controller
Command/SRC listing
Task 2 Controller
Command/SRC listing

Figure 3.3: Sample GUI during the replay phase

28

Chapter 4

Design, Interface and Integration
of the Prototype Debugger

The design of a distributed debugger based on replay must support various require-

ments:

e the debugger must not mask errors that would otherwise have surfaced in the
absence of the debugger. Thus the debugger must be designed to monitor pro-
grams in a decentralized manner, avoiding sending messages over the network
as much as possible in order not to congest the network and to spread the de-
bugger’s probe across the distributed system. This must be done in order to

avoid biasing the distributed program in any particular direction.

e the monitoring system must be efficient in order to minimize the probe effect
at a given node, thus reducing the chance that a bias could take place over a
short period of time before another probe causing a random delay can cancel

out its effects.

o the user debugging one’s program during the replay phase must not be aware,
as much as reasonably possible, that reexecutions are controlled to recreate
non-deterministic choices taken during the recording phase. There are two
reasons for this. First of all, the user should not be aware of the inner workings
of the debugger, since this can distract the user during a debugging session.

For example, if the source code is augmented by the debugger for debugging

29

purposes, the user should not see the auginented code on the screen while
“stepping”. Secondly, during a coerced reexecution, the user should not be
able to witness “impossible” occurrences, even though the coerced reexecution
actually reproduces the same execution during the replay phase. For example, if
a thread is waiting on a “condition_wait()” to enter a mutual exclusion construct
(mutex), the debugger’s replay controller must not allow the thread entry into
the mutex until the appropriate signal is sent, even if the waiting thread is

legally allowed to enter the mutex, according to the execution history.

e to incorporate as many off-the-shelf components into the design to expedite

implementation and/or to unnecessarily avoid “reinventing the wheel”.

An informal systems requirement specification (SRS) was written [20] to specify
the basic facilities a “base” distributed debugger should have. An object-oriented
design, based on the methodology expounded in [32], of the prototype was developed
based on [20]. The implementation language was intended to be C++, but a lack of
time to learn it, as well as some difficulty experienced in getting C++ to work in the
Mach environment, influenced the decision to implement mostly in the C language.
The latter problem was judged surmountable, but time constraints influenced the
decision to abandon C++ more than any other reason.

A prototype (and numerous feasibility tests) has been implemented. The pro-
gramming language used for the implementation was C. The platform that was used
for this prototype consisted of one Sun 3/180 file server and four Sun 3/50’s linked to
each other on a local network (LAN). The operating system used was Mach 2.6 [1].
Two toolkits especially made for the Mach operating system that were used exten-
sively were the C-Threads [6] and MIG (Mach Interface Generator) [9] packages. The
application programs that can be used with the debugger are assumed to be written
in C, with MIG and C-Thread support included. The implementation of application

multi-threaded support was deferred to a later date.

30

4.1 Main System Structures
The debugger prototype is made up of seven basic components.

Graphical User Interface and the Central Controller Asits nameimplies,the
Central Controller (CC) coordinates all activities, subsystems, etc..., related
to the debugger. The user’s graphical user interface directs all requests for
service to the CC. There is only one such module running at any one time
on the distributed system, which implies a centralized form of control (see fig-
ure 4.1). The CC should not cause any additional probe effect during the
recording phase since the CC is only active before and after execution of the
program, starting and initializing various servers and modules, which operate
without interacting with CC while a program is being monitored. During the
replay phase, since the program has been rendered deterministic, centralized
(i.e., ineflicient and probe-prone) interactions to the CC should not affect the
outcome of the program, except for slowing it down somewhat. Furthermore,
the mode of operation of most pieces of the debugger prototype behave in a
decentralized manner during the replay and recording phases, rendering only a
minimal slow-down during the replay phase. This efficiency becomes especially

useful in large distributed systems.

Transformed Program The program io be debugged must be transformed specif-
ically for either the recording phase or the replay phase prior to execution in
the recording or replay phase respectively. Specific language and operating sys-
tem primitives are transformed into calls to specific debugger library routines
which are eventually linked to the application program (see description below
and figure 5.3). Primitives are transformed for the purposes of monitoring, re-
playing the execution, receiving breakpoint instructions from the monitor, and
for collecting events for the database. Furthermore, additional data structures
are declared within the application tasks for use by the debugger, as well as the
code for various debugging threads that are launched within each application

task (see below).

31

Central CorycJer «

Database Ceniral Manager

LY 3 X T L T L 2 L LY X E XL L .2 J

CR&R Coordinator

B.P. Coordinator

P et bttt bttt bttt

Task
Controlier

Application
Task

Node 2

)
i
l
|
{
|
|
l
|
i
|
|
|
(
|
|
|
|
|
{
|
|
|
(
i
/

G R G NE TR G G AER WS TER GED GNP CER D GED ER S N GE G GEn SEm G S GEm

Figure 4.1: Central controller’s relationship with various nodes

Debugger Libraries A transformed program will have had several of its operating
system and /or language primitives replaced with specific library calls, which are
then linked to the library routines. Using libraries is preferable to incorporating
the additional code directly into the program code, since libraries can be made
transparent to the sequential debugger (gdb) used to control every task in the
distributed program being debugged during the replay phase by not generating
a symbol table during their compilation. This is accomplished by compiling the
library routines without the ~g flag [28]. They are also conducive to greater
general efficiency if the host operating system supports “shared libraries” (dy-

namically linked libraries).

Task Controller Every application task has a modified version of a sequential de-
bugger (gdb [26], modified for thread support under Mach [4]) dynamically
attached to it by the distributed debugger at the time of the (dynamic) task’s
birth. The Task Controller’s use consists of setting breakpoints within particu-
lar threads in the application task, as well as gaining access to the task’s address
space. The human-machine interface is replaced with a machine-machine inter-

face, enabling the distributed debugger to remotely:

e set breakpoints,
o determine if and when breakpoints were reached,

e examine the state of a given task,

as well as use the rest of a sequential debugger’s features as components for

setting up distributed breakpoints, checking distributed assertions, etc....

The distributed debugger’s central breakpoint coordinator sets up a “distributed”
breakpoint, in part, by setting up local breakpoints at the sequential debugger

attached to the involved task(s). See section 4.2 for more details.

Servers On each node, for each program, there are four RPC servers which per-

form duties for all tasks of an application program on that node. Application

33

programs send RPC messages to the servers via the debugging library request-
ing specific services related mostly to program monitoring and replay control.
The different servers also use each other’s services as required to minimize any
duplication of services. A particular server’s operations and knowledge are con-
ceptually related, thus one can consider a server an encapsulated object. Since
the public interface of a server hides its private representation and implemen-
tation, the servers follow the principle of information hiding. A description of

the servers can be found in section 5.2.

Debugger Threads Within the Application On atask’s birth, several debugger
related threads are spawned within the address space of each application task.
Figure 4.2 shows the various threads that are running within an application task
being debugged, as well as the communication patterns between the various

components of the debugger on given node with the central controller.

Monitoring/Replay Utility Thread As its name suggests, it performs a
variety of services in support of the monitoring or replay control sub-
system, depending on the phase the application program finds itself in

(see section 5.3 for more details).

Checkpoint Thread This thread running within the application task will sus-
pend the task to save the state (virtual memory and the CPU registers)
of the task onto disk (checkpoint). This thread acts as a server in that
it will take a checkpoint whenever it is requested to do so either within
the thread itself (rules built-in) or from an external request (e.g., the user
manually request a checkpoint be taken at a breakpoint). See helow for
more complete details on checkpointing and how this thread fits into the

picture.

Ro'lback Thread On demand, this server thread wili rollback the computa-
tion (the task it is running in) to a previously saved checkpoint and restart
the computation. For more details on how a distributed computation is

rolled-back and coordinated using this thread, see section 4.3.

34

e an m ot 2 0 o - - - Emmmsemasm.- —mwakeeeewsey

Condtion Coordinator (CC)
(replay phase only}

Mutex_unlock
Roltback Thread Coordmator

and Flagger
{MUCF)

Translormed Application Task

Debugging Library Routines

(
| {
{ {
| (
| (
{ I
| {
| (
{ I
(\
i (
| \
| (
{ 1
i {
((
| (
| [
| {
| {
| {
1 |
i (
| |
| 1
¢ i
| |
| (
! [
i {
| {
| {
| (
| (
! i
| i
' (
| (
{ !
{ |
| 1
t 1
| (
! (
| (
((
| '
' {
| (
l (
' [
({
l {
| i
| |
{ (
! |
| {
| |
((
\ /

Figure 4.2: Workings of the debugger on a given node

35

Mutex_unlock coordinator and flagger (MUCF) During the replay phase,
this thread detects an application thread’s exit from a mutex, obtains the
identity of the next thread that can have access to the mutex from the
execution history and sends a “condition_signal” to all threads that are
waiting to enter the mutex. Only the thread who has permission to enter

the mutex will do so-the rest will go back to sleep.

Condition Coordinator (CC) This daemon thread ensures that the threads
that sent a particular “condition.signal” during the recording phase will
do so in the same order during the replay phase. The “condition_signal”
will only be allowed to be sent when the threads that caught the signal
during the recording phase are ready to catch the signal during the replay
phase.

Debugger Data Structures During the phase-specific transformation of the source

code of the application program to be debugged prior to the recompilation and
commencement of the recording or replay phase, the debugger adds various data
structures within the address space of each task. The additional data structures
are for the specific use of various debugger threads within the task and certain

linked debugger library routines when activated.

4.2 Breakpoints

Each task has attached to it a task controller, which is a sequential debugger with its

man-machine interface transformed into a machine-machine interface in which some

debugger controller task can seud a given task controller a message containing a

sequential debugger command such as a breakpoint setting command,

As mentioned in section 3.1, two types of distributed breakpoints are defined: Op-

timistic Cousistent Breakpoints (OCB) and pessimistic causal breakpoints (PCB).

When the user specifies the OCB and/or PCB, the set of all processes in the dis-

tributed program are partitioned into two sets P and @, such that for each process

in P the user has specified a breakpoint.

36

4.2.1 Optimistic Consistent Breakpoints

The user sets a breakpoint via the task controller, which actually sets the break-
point within the process. When the process hits the breakpoint, all the other processes
in the system will eventually block at breakpoints set within them, or at points where
they are blocked waiting to receive a message from another process that has hit a
breakpoint or is blocked waiting to receive a message from another processes that has
hit a breakpoint, or the remaining processes will execute until they finish. When the
central controller of the debugger notices that all processes of the distributed sys-
tem have become inactive (by virtue of hitting breakpoints, finishing, being blocked
at a blocking msg.receive() primitive, or perhaps due to deadlock due to a program-
ming error in the application program alone), the central controller of the debugger
will send a message to all the task controllers attached to all the application tasks
(see figure 4.1), asking the task controllers to put all the blocked processes into
a suspended state (force a breakpoint) so that the user can investigate the global

state of any task at the global breakpoint.

4.2.2 Pessimistic Causal Breakpoints

In order to have each process break at the earliest state that reflects all events that
“happened before” the breakpoint, a breakpoint coordinator must allow processes
to advance unhindered toward their pre-set breakpoi:ts while only allowing processes
without breakpoints specified within them to advance enough to unblock processes
that have breakpoints specified within them, if the latter processes have not yet
reached their breakpoints.

If more than two processes have breakpoints set (membership in set P), then
these processes must be allowed to progress one at a time to their breakpoints, with
the processes in set @@ (no breakpoints set within the process(es) in set @) being
allowed to move forward to unblock processes in set P. This is done to ensure a
causal breakpoint if processes in set P communicate with another member in set
P. If a process in set P hasn’t reached its pre-set breakpoint, then it can only be

suspended after a msg_send() primitive in order to preserve the state that “happens

37

before” if another breakpoint in set P is subsequently reached. The same PCB will
be regenerated for every reexecution if the members of set P progress toward their
respective breakpoints, set in the code space, in lockstep (one after another, serially)
in the same order every time.

Pessimistic causal breakpoints are implemented by having an application process
ap detect a msg.receive(port) statement. If a PCB breakpoint has been set, the
receiving process ap assumes that the sender task is suspended. The sender task
must be advanced to its next msgsend() primitive, which should send a message to
process ap. The process ap knows which process must send it a message by checking
the enqueuing history recorded during the recording phase (see section 5.3.1) for
the port it is receiving on from the REPCONTROLSERV server. Then, process ar
sends a message to the task controller attached to the process that must now send
a message to unblock process ap, telling it to execute the process until the next

msg-send() primitive and then suspend itself once again.

4.3 Checkpoint, Rollback and Recovery

The checkpoint thread server will take the checkpoint of the task it is running
within by suspending all other threads within the task (application and other debugger
service threads), and forking a virtual memory image of the parent (including the
stacks of all the threads and the current state of the CPU’s registers). The checkpoint,
thread then resumes all other threads within the parent that were suspended prior
to the checkpoint thread forking a virtual memory image (child) of the parent while
concurrently writing (from the parent checkpoint thread) the virtual memory of the
child onto secondary storage. The child task suspends itself immediately so that the
checkpoint thread server within the parent can read and record the child’s virtual
memory image onto secondary storage.

The rollback thread server will realize rollback by forking a virtual memory
image of the task it finds itself in. The forked task only serves as a template for
the saved virtual memory image of the state the task is rolling back to. The forked

task immediately suspends itself and the rollback thread server from the forking task

38

replaces the virtual memory completely with the intended virtual memory image
after killing all threads in the forked child. Each thread that existed when the task
was checkpointed is re-created and restarted, and the state of the CPU registers is
restored.

It is assumed that the type of distributed checkpoint and rollback scheme used
is similar to that proposed by [29], commonly known as “optimistic recovery”. This
scheme must be integrated with the replay phase in order to be able to “rewind”
the execution history when the distributed program is rolled-back. It is assumed
that the necessary support needed to deal with duplicate and missing messages in a
distributed environment are supported by the basic checkpoint and rollback scheme
as proposed in [29] and that all ports are restored accordingly (see section 4.3.2).

It should be noted that the described checkpoint, rollback and recovery scheme
was not implemented (lack of time). The following design is partially justified by

some feasibility tests that were performed:

¢ the ability for a thread to checkpoint or roll-back the task it is running within

was demonstrated,

e the ability to checkpoint a task on secondary storage was demonstrated, thereby
allowing an unlimited number of checkpoints to be taken (limited only by the
size of secondary storage). The use of the C-Threads library package [6] to
implement a checkpoint, rollback and recovery scheme was found to be very

useful.

e the ability to detach the task controller (modified sequential debugger [4])
prior to rollback and the ability to attach a task controller to a task that has

rolled-back was demonstrated.

4.3.1 Checkpoint - Replay Phase Interaction

When a checkpoint is taken during the replay phase, several additional pieces of data
must be logged in order to coordinate “rewinding” the execution history with the

distributed state.

39

o All logical logs (execution histories) that are exclusive to the task being check-
pointed (like the fork logs, system-call logs, etc...) in which logs are normally
entered by the task itself (via debugger library calls) have a marker uniquely
identifying the checkpoint being recorded within the sequence of the log (im-
plies location where checkpoint took place). All other logical logs that are
not directly entered by the involved task (like the enqueuing logs, which the
REPCONTROLSERYV enters into the relevant logical log), are flagged by having
the checkpoint server thread send a special message to all the enqueuing logs
indicating that a certain task is undergoing a checkpoint. The recipient of the
special message, an intercept port on the REPCONTROLSERV, will recognize the
marker message and proceed to mark the involved log it is maintaining with
a special marker indicating the checkpoint taken so execution histories can be

rolled-back to the appropriate place matching the checkpoint desired.

e All the send rights to port(s) the task being chieckpointed had successfully
checked-in {but not yet checked out) to the local netname server, and thus
sent to the local REPGPNAMESERV a mappirg of the netname to the wvirtual
port name the send-right capability refers to (via a debugging library) must
be recorded. This is done so that the local REPGPNAMESERYV and the netname
server can be properly restored after a rollback to remap netnames to the virtual

names of the send rights to ports they represent.

e The task sequence number in REPFORKSERV must be recorded so that it
can regenerate the same virtual names for the newly forked tasks so that they
can dynamically match-up with the appropriate execution history log for that

particular task as recorded during the recording phase.

4.3.2 Rollback - Replay Phase Interaction

After a computation has been rolled-back to a checkpoint ch, the debugger must reset
all execution history logs to the marks in the individual histories that are associated

with checkpoint ch, and all the relevant re-execution controller threads (within the

40

application tasks and the various server logs) must be re-initialized to the current

value (at the time of checkpoint ch).

On rollback, the task controller (a modified gdb [26]) attached to each applica-
tion task is detached (using gdb’s “detach” command) as a first step in the rollback
procedure. Once a computation is rolled-back to a checkpoint, the task controller

is once again reattached to each task using the modified gdb’s “attach” command.

Restoration of Ports and Port Rights

For each checkpointed task, a list of the ports rights, their local name (as given out
to the task’s port name space by the 0.5.) as well as their global virtual names are
saved with the associated checkpoint. To restore the capabilities associated with the
task at the time of the checkpoint, as well as the interception set-ups, the following
steps are vaken after the virtual mermnory, stacks and registers for the checkpointed

task are restored:

1. All existing application ports and port name space of the restored task must be
destroyed, since the port-name space is altered dynamically, and it may not be

in the same state as it was during the instance that the checkpoint was taken.

2. For each port that a task had receive rights for, a port p is re-allocated by the
rollback thread, and the (ta-k-local) name of the port allocated is adjusted,
if necessary, to the 0.S. name the port was known as during the checkpoint.
The restored port p is registered on the local netname server with a special
name (e.g., virtual port name - checkpoint ID) that is meaningful only to the
checkpoint and rollback system so that all other tasks in the system that had
send rights to port p at the time of the checkpoint can lookup and obtain
the send rights (to restore their own port name space), as well as obtain the
location (node-name) so that interception could be set-up immediately at the
REPCONTROLSERV at the node where the receive rights to port p currently

reside (see section 5.2.7).

41

3. All the send rights a rollback’ed task possessed to other application ports it
didn’t have receive rights to must be regenerated by having the task’s rollback
thread search each netname server (or until found) for the send rights registered
by the rollback system using the special name that is associated with a particu-
lar checkpoint and the virtual name of the port. Once the send right is received
(thus restored) in an application task, the rollback thread then proceeds to
restore message interception for the send right it just restored by sending an
RPC request to do so at the REPCONTROLSERV server at the node where the

receive rights for the port reside.

4. All ports the task had checked into the netname server (but had not checked
out) prior to the checkpoint must be rechecked into the netname server (under
the same “name”) by the rollback thread. By virtue of the previous step, the
task should have all the send rights it held prior to the checkpoint to successfully
restore the portion of the state of the local netname server that the rollback’ed
task had affected (i.e., all the netnames that the task had successfully checked

in).

5. Finally, all the application tasks are resumed.

4.4 Database of Events

During the replay phase (database doesn’t operate in the recording phase), all global
events (see BNF in section 3.3.1) are transformed to send the event's occurrence
(and its parameters) to the local event-logger, which will check if the event has
been slated to be recorded in the database. Local events to be recorded are checked
by the local task controller (modified sequential debugger) if they have been slated
to be logged-if so, the task controller will send an entry to the database. Local
events can be easily checked by the task controller by using its built-in conditional-
breakpoint mechanism. Each node has a local database server in order to avoid
unnecessary congestion on the network during reexecution.

Queries are composed at a central location (off-line) when the program in question

42

is suspended (e.g., a breakpoint) or has ended. A public domain Prolog compiler such

as SB-Prolog [8] could be used as the query interpreter.

43

Chapter 5

Mechanics of Deterministic
Re-execution

Ideally, the monitoring/replay subsystem of a distributed debugger must take into
account every possible legal and illegal action a user application program may take,
bounded only by the constraints of the language and operating system used in one’s
program. The amount of recorded data can be very large. An execution history is
a collection of sequential history logs. The debugger’s monitoring/replay subsystem
must monitor (during the recording phase) and control the execution during the replay
phase so as to reproduce the same environment interaction and, if the program itself
is non-deterministic, the same program choices. Any operating system scheduling
choices that may have influenced a non-deterministic program’s behavior would also
have to be monitored. Also, the recording and replay phases use mechanisms normally
ilot expressible in the programming language itself, which makes both implementation
and reasoning aboul it more complex [14].

This chapter describes, in detail, a mechanism of deterministic reexecution, how
the non-deterministic choices are collected during the recording phase and how they
are enforced during the replay phase. The interaction between the augmented source
code of the application program, the debugger servers, the debugger libraries, ete...,
are described. Deterministic reexecution is a service provided to the debugger. The
monitoring/replay service developed targets a micro-kernel’s capabilities, which en-
compasses more than just the process-model of single-threaded tasks communicating

only via asynchronous messages, thus allowing this mechanism to be relevant to other

44

modeis.

5.1 Overview and Assumptions

5.1.1 Approach Taken

In the literature, various approaches have been used for the development of a de-
terministic reexecution system 1or a distributed debugger. These approaches can be

generalized into two distinct categories:

implementation based With this approach, the implementation of the run-time

system, the operating system, and the compiler is modified to support replay.

language based This approach involves transforming the source code of the appli-

cation program.

The approach taken in the prototype debugger is somewhat different to these ap-
proaches since the replay sub-system is designed to work at the micro-kernel level.
The approach is partially language-based, since the program is transformed prior to
compilation, and partially implementation-based, since the C-Threads library pack-
age used is altered, and a few specific operating system techniques at the system call
level (port-capability manipulation) are used to transparently intercept messages in
transit. The traditional argument against implementation-based replay systems is
that much effort is required to port the system to various platform/language com-
binations. This argument is less relevant when applied to a micro-kernel. This is
because the alterations in the C-Threads library is at the source code level (in user
space) and no changes to the kernel are made (transparent interception of messages

is accomplished by using system calls only).

5.1.2 Phases of Recording and Replay

A debugging session is split into two phases: the recording phase (monitoring) and

the replay phase.

45

PHASES ACTIVITIES

Recording (Monitoring) Phase | Monitor execution of a target system

Log the execution (record non-deterministic
choices)

Replay (Debugging) Phase Check all non-deterministic behavior
Correct reexecution to correspond to
execution history

Table 5.1: Two Phases of the Testing and Debugging System

Typically, testing of a program is done with the debugger in recording mode. In
this manner, if an error is detected during testing, the user can immediately go into
phase 2 and deterministically reexecute the program as many times as it takes to find
the bug using various debugging tools designed for cyclic debugging methodology.

In short, during recording, all non-deterministic behavior is monitored and recorded
into various logical logs that symbolize the activities of particular non-deterministic
events. All relevant program objects (tasks, threads, ports) are given virtual names
during the debugger’s recording phase in order to correctly map the objects to their
respective execution histories when the replay phase is invoked. This is necessary
because the ID’s given by the operating system to allocated resources are not re-
producible on subsequent reexecutions. During the recording phase, the collected
execution history is put into a form that is meaningful to the replay phase (using a
formatting convention).

During the replay phase, potential non-deterministic constructs in the code of
the application being debugged are transformed. If execution of the transformed
non-deterministic constructs are attempted, the replay system of the debugger will
first check if the proposed activity is in the proper order and/or which choice in
the non-deterministic construct was chosen during the recording phase. If there is
a scheduling inconsistency with the recorded history, the replay system will reorder
accordingly. If the reexecution is attempting to enter a non-deterministic construct,

then the replay subsystem will ensure the same original choice is taken.

46

5.1.3 Target Environment

The mechanism for the replay system presented here makes a few assumptions about
the platform in which the application programs will be written. Specifically, a
message-based micro-kernel operating system is assumed, and the prototype is geared
toward the Mach [1] operating system (version 2.5). Mach-2.5 can be considered a log-
ical micro-kernel, even though physically it is not. Distributed programs are assumed
to be written by using a combination of a sequential language (C), operating system
primitives (Mach) to support at least concurrent constructs and capability-based mes-
sage services, an RPC package (MIG), and a thread run-time library (C-Threads).
To support deterministic reexecution on this platform, the following software tools

are used:

e The Mach operating system primitives port_insert() and port_extract(). With
these calls, messages can be transparently intercepted by a debugger task by
altering the capabilities of the sending or receiving task, giving the user the

impression that messages are being normally sent.

o The GNU C-Preprocessor [27] is used to transform the source code of the ap-
plication program to a form suitable for recording or replay. When the ap-
plication program is compiled, the pre-processor is automatically invoked prior
to actual compilation. Specific operating system and language constructs are

transformed into calls to debugger-specific library routines.

o The MIG RPC package is used to build debugger servers (described later in

section 5.2) that reside on each node of the distributed systems.

o The C-Threads package is used to render certain debugger MIG servers “multi-
threaded”. Furthermore, each application task is required to use C-Threads,
even if the application is single-threaded, in order to accommodate several dae-

mon threads, one of which is dedicated for recording/replay purposes.

5.1.4 Sources of Non-Determinism

Table 5.2 gives an brief indication of what type of non-determinism is possible within
the confines of the application platform (as described in section 5.1.3). See Ap-

pendix B for more details:

| EVENT TYPE | POTENTIAL NON-DETERMINISM 1
message send sending task & thread (enqueuing order at the port)
message receive | receiving task & thread (dequeuing order at a port)
netname lookup success or failure code
if success, from which node
netname check-in success or failure, in case of race
netname check-out success or failure, in case of race
kernel calls result of a non-det kernel call
timeouts timed-out or not
for message sends and receives
thread entry to mutex construct
synchronization list of threads that sent a signal
tally of threads which caught a signal
port sets which port in set was dequeued
miscellaneous external input and
random number generators

Table 5.2: Potential Non-Determinism

Since multiple tasks can acquire send rights to a given port, the enqueuing order
at a given port can alter from execution to execution. Therefore, the sender task
of each message must be identified. In a multi-threaded environment, the sending
thread must be identified as well, since a given task’s send rights to a given port is
accessible to all threads within that task.

For the receipt of messages, the dequeuing order of messages must be logged during
recording and enforced during replay. In a multi-threaded environment, all threads
within a task have the potential to dequeue from any port the task has receive rights
to, thereby justifying the reason for logging the identity of the dequeuing thread.
Furthermore, since receive rights can be transferred to another task, the identity of

the “dequeuing” task must also be logged.

48

The netname server (see appendix A for description) system calls are generally
non-deterministic. Checking a name into the server can fail if the same netname is
attempted to be checked in (by the same or different task/thread) and it already
exists on the target netname server. Furthermore, it is possible that a race condition
may exist during a netname check-out in that a different task/thread will check-out
a name from the netname server (the other task/thread(s) will receive an error code)
during different executions.

Netname look-up’s are also subject to race conditions (and are thus
non-deterministic) in that a look-up can either be successful or not during differ-
ent executions, depending if the task/thread that checks-in the name is delayed or
not. Furthermore, if a broadcast look-up is involved, this is another source of non-
determinism if more than one server has the searched-for netname. The result of
the look-up and any ancillary data (such as the node where search was successful) is
logged for subsequent enforcement during the replay phase.

Certain operating system primitives return non-deterministic results. For exam-
ple, memory can be allocated at a certain specific location or the program can ask
the operating system to allocate a contiguous segment at a location of its (the 0.S.’s)
choosing. In such a case, then during the replay phase, memory allocation must be
coerced to occur at the same location.

Timeouts on message sending and receiving primitives are not guaranteed to recur
from reexecution to reexecution. Therefore, it must be logged as to whether timeouts
have occurred or not during the recording phase so as to regenerate the timeout, if
necessary, during subsequent reexecutions.

If a task/thread is receiving messages on a port-set, it is not guaranteed that the
sequential thread will dequeue in the same sequence from the various ports in tne
set. If more than one port in the set is non-empty, the operating systern can make a
non-deterministic choice as to which port to dequeue. If only one port is non-empty,
the receiver must dequeue from that port, but communication delays can alter the
possible port(s) a task/thread can dequeue at a given message-receive construct in

the code across various reexecutions. Furthermore, ports may be added and removed

49

St o Fhvrme £ o ann

from a particular port-set dynamically. Delays in a task/thread adding or removing
a port from a port-set can also affect the possible port(s) a task/thread can dequeue
at a given message-receive construct in the code across various reexecutions.

Thread synchronization is dependent on the scheduler as well as other miscel-
laneous delays. As a consequence, entries to specific muier constructs by various
threads can vary greatly across several reexecutions. The fact that threads can be
created and destroyed dynamically adds to the complexity since a delay in the spawn-
ing of a new thread can affect the order in which threads gain entry to particular
mutex’s. In order for a reexecution to be deterministic, the various threads that
were granted (exclusive) access to a given mutex construct must access the mutex
construct in the same order as during the recording phase. Furthermore, as condi-
t' 1.signals to wake-up sleeping threads waiting on a condition variable can be sent
to any one such thread waiting for such a signal (on a condition_wait) or to all the
threads, it is imperative during the replay phase that the same threads that actually
received the wake-up calls during the recording phase will receive the signal (at the
appropriate place in their respective code) during reexecutions. Problems such as
the fact that a thread that originally received a signal during the recording phase
may not be asleep yet (or hasn’t even been created created yet) due to various delays
when the signal is sent during a reexecution must be overcome in order to render an
authentic reexecution.

Other sources of potential non-determinism are random-number generators, ex-
ternal data input into the program (if not the same for each execution) and unpro-
tected shared memory (z.e., not properly protected by a mutex construct). The latter
source of non-determinism often is influenced by the hardware’s policy (or lack of it)

on atomicity of operations on shared variables.

5.1.5 Virtual Naming System

A system to label (or name) system resources, specifically threads, tasks, and ports, is
required in a replay system in order to name various logs of execution history so that

the logs can be correctly matched up to the activities of various resources during the

50

replay phase. The identity of resources such as task, threads, and ports is typically
given by the operating system, but the identities given out are almost always different
for each execution of a program, even if the program being debugged is deterministic.
Thus, the system of resource naming must ensure that system resources are given the

same virlual names during both the recording and replay phases.

Threads

The threads in each task are given I.D.’s as they are created (within only a given
task). Within each task is a debugger-specific integer variable vir_thread_id that
is initialized to 0. Each time a thread is created within that task, the new thread is
given the current value of vir_thread_id and it is incremented. The vir_thread_id
is never reset (assuming that a task will never create more threads than can be
described by an unsigned 32-bit integer). By default, the initial application thread
of a task is assigned the name 0. Also within each task is a debugger specific data-
structure that is kept in the shared memory mapping existing threads in the task to
their virtual names. A thread wishing to determine its virtual name (typically via a
debugger library routine inserted during the transformation of the program) can look
it up in this data-structure.

In order to give out the same virtual names to the same threads during the record-
ing and replay phases, so as to refer to the correct thread during the replay phase, all
thread fork() and virtual thread-name assignments operations in a multi-threaded
application program must be made to be atomic within each such multi-threaded
task. This is achieved by protecting the two operations with a mutual exclusion
construct (mutex) allocated for this sole purpose. During the recording phase, the
virtual name of the parent thread that forked a child thread is recorded in the log
of thread creation (see table 5.3). During the replay phase, the monitoring/replay
subsystem guarantees that the same sequence of threads that forked a thread during
the recording phase would fork them again in the same sequence so that the thread’s

granted allocation number would be the same during both phases of debugging.

91

Who adds to log | task-thread that just forked a new thread

Kind of data the virtual ID of the parent thread that

just forked a thread

Who created log | Application task (via init_cdb()) when the task
is created

Location of log | physical log file dedicated to a particular
application task

Table 5.3: History of thread creation

Tasks

Since newly created application tasks on the Mach 2.5 operating system are given
names by the operating system that cannot be reproduced on each reexecution, a
system is needed to grant names to application tasks that will be regranted to the
same tasks on each reexecution. This facility is needed in order to match a task with
its respective execution history during the replay phase.

The responsibility for giving out identities for tasks lies with forkserv (sec sec-
tion 5.2.3), a server operating as a distinct (non-application) task on each node of
a distributed systcmn. Before dynamic allocation of a new task (either locally or re-
motely), all tasks that are about to spawn a new task must request permission to do
so from the forkserv on the node they desire to spawn a new task on. This is because
the new task spawned asks the forkserv it is created on for a virtual name. The
newly spawned task must be guaranteed to be the only task making such a request
to the local forkserv so that when it does make such a request, the forkserv will
unambiguously send the new virtual name to the task (see sections 5.2.3 and 5.2.4.
If there is no such guarantee of exclusive node-specific forking rights, then if two
tasks are in the process of being spawned concurrently, their respective virtual names
they receive during the recording phase from the forkserv may be different from
the name they are given during the replay phase, depending on whose RPC to the
forkserv arrives first. This situation would make it impossible to match the tasks
with the correct execution history files, compiled in the recording phase, during the

replay phase. In short, the FORKSERV ensures that the order of the birth of tasks

52

belonging to a specific distributed program on a given node are the same during both
the recording and replay phases. This is necessary because tasks are given virtual
names (integers) as they are created, starting with “0” and incremented for each new

task spawned on a node.

Ports

When a task/thread allocates a port, it immediately gives it a virtual name. The
virtual name of a port consists of the concatenation of four elements to ensure that

the port has a globally unique name!:
1. the virtual name of the thread that allocated it,
2. the virtual name of the task in which the port was allocated,
3. the IP (Internet Protocol) number of the node in which the port was allocated,
4. the current value of the task’s port allocation number vir_port_id.

As with the naming of threads, each task contains a debugger specific integer
variable vir_port_id that is initialized to 0. Each time a port is allocated within that
task, the new port is given the current value of vir_port_id and it is incremented,
although this port allocation number becomes only one component in a port’s virtual
name. The vir_port.id is never reset (assuming that a task will never allocate
more ports than can be described by an unsigned 32-bit integer). By default, the
initial application port of a task is assigned the name “3” because the debugger
reserves the first 3 values for other purposes (described below). The virtual name of
a port must consist of the above mentioned four components in order to give the port
an unambiguous global name throughout the distributed system. The task’s port
allocation number is not a sufficient global name, since other tasks also use a port
allocation number scheme and thus several ports could have identical global names.
To compensate, the virtual names of the task and thread that had allocated the port

are concatenated to the port allocation number. Since there is still a possibility that

'The Mach kernel has a local port name space

53

ke i

T T T T

identically (virtually) named tasks/threads exist on other nodes (it is assumed that
tasks/threads do not migrate to other nodes) with identically named ports, the IP
number of the node in which the port was allocated on is used as a component of a
port’s virtual name to render it globally unique. The virtual name of a port remains
constant throughout the port’s life, even if its receive rights are moved to another
task on another node. If a port is deallocated, its name is not recycled.

In order to give out the same virtual names to the same ports during the recording
and replay phase, so as to match up port activity with the correct execution history
during the replay phase, all port_creation() and virtual port-name assignments op-
erations in a multi-threaded application program must be made atomic within each
such multi-threaded task. This is achieved by protecting the two operations with
a mutual exclusion construct allocated for this sole purpose. During the recording
phase, the virtual name of the thread that allocated a port is recorded in the log
of port creation (see table 5.4). During the replay phase, the monitoring/replay
subsystem guarantees that the same sequence of threads that allocated ports during
the recording phase would allocate them again in the same sequence so that the port’s

granted port allocation number would be the same during both phases of debugging.

Who adds to log | task-thread that allocates a port.
[Kind of data the virtual name of the task and thread that
allocated the port
Who created log | Application task (via init.cdb()) when the task
is created
Location of log ! Physical log file dedicated to a particular

| application task

Table 5.4: History of port creation

Within each application task is a debugger data structure that maintains a map-

ping between its local (O.S. given) port rights and their associated global port names.

54

5.1.6 Transparency of the Debugger

There are two issues that determine whether a # bugger interferes with an application.
During the recording phase, the main concern is the probe effect [15]. During the
replay phase, the priority becomes trying to hide the fact from the person using the
debugger that the observed execution is really a conirolled execution.

In general, the probe effect will mask bugs/errors only if the probe effect is heavily
biased toward a particular direction. For example, if a disproportionate amount of a
debugger is centrally located on some node that also hosts portions of the distributed
application program being monitored, the debugger on this node may disproportion-
ally slow down the application program on that node.

If the probe effect is reasonably random, it should only slow down the program
slightly without masking any bugs/errors. During the recording phase, the probe
effect is minimized by using efficient algorithms and methods in the debugger, most
notably in the logserv server (sec section 5.2.1). Once the recording phase has begun,
the collection of monitoring data is done on each local node in that each node has
identical monitoring servers and local secondary storage, thus monitoring data is
not all sent to some central location. Each application task also works during the
rerording phase to record all non-deterministic activity by virtue of the fact that the
application task’s source code is transformed to perform tasks related to debugging.
Thus each task carries an equal burden related toward monitoring, and on average,
the probe effect should not be biased in any manner.

During the replay phlase, the data-structures and macros used by the debugger
within an application task are d~clared in each application program with a single
statement (#1nclude '"cdb.h", see figure 5.2). The library calls an application makes
(via macros) to special debugger routines are transparent to the GDB (task controller)
interface [26] while stepping. During both phases, the messages the application tasks
pass between themselves are transparently intercepted and forwarded by controller
tasks in that the sending and receiving tasks are unaware of the interception. Fig-
ure 3.1 describes how the transparent interception scheme is set-up. Furthermore, the

application message being passed is unaltered—all co. ‘rol information is passed in

35

separate control messages and the user has no way of even knowing of the existence

of the various control messages.

5.1.7 Miscellaneous Assumptions and Policies

dynamic creation of resources The monitoring and the replay subsystem is able

to support the dynamic c.eation and destruction of ports, tasks, and threads.

Start-up of a distributed program Since the dynamic creation of tasks is sup-
ported by the debugger and the host 0.5., a distributed program always starts
out as a single single-threaded task. Subsequent local and remote spawning by
any application task will create a parallel/distributed program. During the re-
play phase, the initial task must start on the same node as during the recording
phase in order to properly regenerate the same virtual names generated during

the recording phase.

application threads It is assumed that the user will always employ the services
of the C-Threas [6] package for multi-threaded programming and will refrain
from using the low-level Mach thread primitives [2] directly. This is because
the monitoring/replay subsystem monitors and replays thread activity at the
C-Thread level. It is reasonable to assume that most programmers will not use
the low-level thread primitives, since they were primarily designed to be used as

building blocks for thread packages [17) and custom synchronization constructs.

shared memory protection It is assumed that the application programs have not
left any shared variables (between threads) unprotected and thus subject to
possible violations of hardware sequential consistency. This is not a realistic
assumption. There don’t seem to be any practical solutions to this problem in

the literature.

name servers Since the micro-kernel being used is Mach 2.5 [2], it comes with
two distinct name servers, the “Environment manager” [30] and the “netms-

gserver” [18]. It is assumed that only the “netmsgserver” is used by application

56

’ﬂ--------------‘

: Controlserv : - : port
']

' I

: Application :

! I

|]

|

| Y hioiel R S %omrol (for rec/rep controller) logserv
" %Real Application Message
: inserted A
L f
e, portextract | ..
™, of send right
Y Controlserv
P
¥ M

Application -

D
.
.,
*»
.
e,
t,
.
.
ey

Application

Node 2

.---.---------------------------'-------

U D IS GEL G GED CnN TED GES GND GED GNS GED GED CED GEL GEE GER GUL GEE GER GUD Auh ou e e o

Figure 5.1: Interception Scheme

57

programs, since the “netmsgserver” services are a super-set of those of the “En-

vironment manager”.

restriced kernel calls Certain kernel calls are not permitted in a user’s applica-
tion program. Since the transparent message interception is achieved by using
Mach’s port_extract() and port.insert() system calls, their use is forbidden in
an application program. Furthermore, it is assumed that no application task
will send kernel calls to kernel ports that are not their own, since this makes
tracking non-determinism much more difficult, and the necessary support has
not been built into the debugger. The two restrictions just described should
not affect most applications, since the described kernels calls are most often

used by debugger developers or kernel emulation library developers.

As well, Mach external memory manager calls [2] are not permitted since they

are presently unsupported in the replay system (due to time constraints).

remote spawning of a task Since Mach 2.5 does not come with an implemented
primitive for forking a task on a remote node, and there are some technical
difficulties in forking a task on the local node (see belaw), it is assumed that
the application programs will use the following Unix C-Shell primitives for

spawning new tasks:

local fork: system(executable.program)

remote fork: system(rsh node -n ezecutable_program)

The technical difficulty of forking a task locally is that the task controller
attached to the task will fail on a fork. The ultimate solution to this prablem
is to detach the task controller from the forking task temporarily until the

fork operation has completed, and subsequently reattach the parent task.

additional daemons Within each application task, there will be various daemons
such as a checkpoint, rollback, among others (see section 4.1 and figure 4.2). All
such daemon threads are created using “C-Threads” primitives upon program

initialization.

58

#include "cdb.h" [/« first declaration ¥/
[+ other declarations go here %/

main() {

[+ declarations */
init_cdb(); /* first line of code */

/* program goes here ¥/

Figure 5.2: Format of an executable program

standard format of an application task Each executable program that makes

up a distributed program must have the format described in figure 5.2.

Compilation involves linking to a special library (-1cdb) and defining whether
the program is being transformed for the recording or replay phase (i.e.,
-DRECORDING or -DREPLAY) (see figure 5.3). Furthermore, the application pro-
gram must be given a large random identifier (a large unsigned integer) during
compilation (z.e., -DID=unsigned integer), the same number during the record-
ing and replay phase, so that 1) more than one invocation of the debugger can
exist on the svstem concurrently (by the same or different users?), and 2) so
distinct execution histories can be labeled as belonging to a certain application

program.

compiler and “local” debugger Each task will have attached a sequential debug-
ger gdb [26], which was modified for multi-threaded debugging [4] and was
subsequently modified by replacing the human-machine interface by a machine-
to-machine interface. Furthermore, it is assumed that the application programs
will be compiled with gee (version 1.3 or 1.4) [28] [27]). This is done because
the symbol table that gcc produces is compatible with gdb [4] and debugger li-

2debugger service ports are given netnames that have as components the application program’s
identifier

59

Original Program (stc)
Transform specific primitives)
into debugger function calls
-DRECORDING J -DREPLAY
Transformed Program Transformed Program
for Recording (pre-processed) for Replay (pre-processed)

[oompe

Debugger
J libraries for

recording

Object file

Other
Libraries

!

L oo

Object file

Link I [.)ebu‘gger
libraries for

replay

Executable for recording phase

Executable for replay phase

Figure 5.3: Transformation of the Application Program

braries compiled with it do not generate any additional debugging information,

thus rendering the debugger library routines transparent to gdb.

5.2 Standard Servers

Upon debugger invocation for a new program, four distinct phase-specific (recording
or replay) servers, which directly support the recording or replay phase mechanism,
are initiated on each node of the distributed system. The servers are initiated prior
to the commencement of the application program to be monitored (or replayed).
Figure 5.4 describes the interface between the debugger servers and the application
program. Each set of servers, which are dedicated to a specific program, have uniquely
named service ports (incorporating the program’s ID) so application programs and
other servers (via debugger library routines) can call the correct server, if more than
one distributed program is being debugged on the system at the same time. For
the recording phase, the servers are called LOGSERV, FORKSERV, GPNAMESERV, and
CONTROLSERV. For the replay phase, the same names are used, but a “rep” prefix

is added to the aforementioned names,

5.2.1 Logserv

The LOGSERV provides a generic logging service during the recording phase. In short,
the LOGSERV manages the entry of large quantities of small pieces of data (as it
is collected during the recording phase) into specific labeled logical sequential logs
which are intertwined within a sequential physical file. No assumptions are made as
to how many logical logs will occupy a physical log, nor are any assumptions made
as to when a logical log begins within a physical log (:.e., logical logs are created
and named dynamically). The logical logs consist of a series of primary elements,
which can be a non-empty ordered set of integers and/or a non-empty ordered set
of character strings (each no longer than 19 characters, plus the null character) (see
figure 5.5). Each element has two pointers: one to link the log elements to create a
logically sequential log, and the other pointer so that a set of data (e.g., the names

of all the threads that caught a broadcast signal) can be grouped together and still

61

N

——c————

: Send right

Gpnameserv

" -- L X N B § X ¥ % N ¥ §F ¥ ¥'9
]

]

]

: man port

; Controlserv Forkserv

' d i

:

[}

:

: Application

:

[}

]

|

]

[

: Logsew Gpnameserv
]

S o)
D
|

I

: man port

1

! Controlserv Forkserv

: oob port

]

[}

]

:

! Application

|

]

1

]

1

]

]

]

Figure 5.4: Configuration of debugger servers

62

T
[svingJawxpr Joompe H

T
L integer I-ux ptrTnexl pur H

¢ Jawxpr Joenpr |1

mleger lluxpu Incxlptr H [;nn lnuxptr Inextptr H

T
_‘L integer l AUX pir I next p&r_H str-id lmx pir lnext pttHimeger Ex pur I next ptr H

logical log x

Figure 5.5: Basic elements of a log

be considered to belong to one composite element of a logical log.

Interface

The services offered by the LOGSERV are as follows:

new _physical_log(server_port, physical_log_id) Open a new physical log file with

the name physical log_.id.

close_physical_log(server_port, physical_log_id) Close an existing physical log
file with the name physical log_id that the specified LOGSERV is managing. This
call must be invoked at the end of the recording phase so as to flush out all

logical log buffers to the file proper.

new_logical_log(server_port, physical log-id, logical log.id, log_type) Open a
new logical log file with the name logical log.id within a specified existing phys-

1cal file.

add_to_logical log(server_port, physical_log-id, logical log_id, data,log-type)
Add a log element to a specified logical log within the specified physical log

63

or append a new integer or string to the last log element (an ordered set of

integers or string).

Noteworthy Features

e The LOGSERV dynamically creates a log-file that is meaningful to the RE-
PLOGSERV. This implies that all individual elements of each logical log are
linked to each other in the order they are logged, and a separate file of logical
“start” locations (of various logical logs) is constructed on-the-fly. No interme-
diate processing of the monitored data is required before it can be used for the

replay phase.

e A circular bufler equivalent to 4 virtual memory pages is maintained for each
physical log the LOGSERV is maintaining in order to minimize the number of
system calls used to write monitored data to permanent storage, thus reducing
the probe effect. When the circular buffer becomes full, the oldest window is
flushed to permanent storage, thus freeing a window for subsequent new logged
data. The fact that a window’s size is equivalent to the operating system’s page

size implies an efficient transfer to permanent storage.

o The LOGSERV explicitly converts all logged data to “character” type in a mean-
ingful format so that the REPLOGSERV can interpret it. The “character” format
is used so that the REPLOGSERV can map the physical file of logs directly into
its virtual memory (using Mach's map{d() primitive [2]) and allow the oper-
ating system’s virtual memory system to handle the transfer between memory

and permanent storage in an optimal manner.

5.2.2 Replogserv

The REPLOGSERYV server manages the retrieval of log elements from the named phys-
ical/logical log, which is kept in a sequential physical file that is intertwined with sev-
eral logical logs. The REPLOGSERV keeps track of the last element (and sub-element)

retrieved from each log and it always advances the log forward (never backwards)

64

after each retrieval.

Interface

The services offered by the REPLOGSERV are as follows:

rep_open_physical_log (serv_port, physicallog.id): Open a physical log file with
the name physical log_id.

rep_close_physical_log (serv_port, physical Jog.id): Close an existing physical log
file with the name physical log.id that the specified REPLOGSERV is managing.

rep_new_logical log (serv_port, physicallog.id, logical logid, logical log type):

Open a new logical log file with the name logical_log_id.

rep_get_logical _log_element (serv_port, physicallogid, logicallog.id, data,

log-type): get the next element (or sub-element) in the logical log specified.

Noteworthy Features

o maps the physical file of logs directly into its virtual memory and allows the
operating system’s virtual memory system to handle the transfer between mem-
ory and permanent storage. This is achieved by using the map{d() primitive

within the Mach operating system [2], which makes the transfer very efficient.

e shields the user from the complexities of maintaining the “current location” of

each logical log.

5.2.3 Forkserv

The purpose of this server is hand out “virtual” names to all tasks of an application
program so that the same instances of tasks named during the recording phase will
be given exactly the same names during the replay phase. This is necessary in order
to map instances of tasks to their respective execution histories (that were logged
during the recording phase) when the tasks are spawned during the replay phase.

The names of resources (€.g., tasks, threads, ports) that operating systems hand out

65

are not reproducible from execution to execution, thus a virtual naming system is
needed, not least of which is for naming tasks.

In short, the FORKSERV must:

e ensure that no forks (spawning of new tasks) occur concurrently so that the
report to the forkserv concerning a forking operation (via a message) is un-
ambiguous (no race conditions to the FORKSERV's RPC service port due to
other tasks which are spawning child tasks on the same node from the same or

different nodes).

e ensure that only one newly forked task can send a message to the forkserv
asking for a virtual task id at any time (avoid race conditions). Recall that
when a task is spawned, it asks for an ID itself via the init_cdb() debugging

primitive, which is supposed to be on the first line of the source code.

¢ in general, the sequence of task creation on each node, whether initiated locally
or remotely, is logged. All task spawning activity on each node is serialized,
if necessary. For locally initiated forks, the virtual task and thread 1D of the
forker is logged. If the forking initiator is remote, then only the node name
of where the remote log was initiated from is logged by the forkserv on the
node where the new task was created on. During the replay phase, the same
tasks are spawned in the same order as during the recording phase in order
to grant the same virtual names to the application tasks during both phases,
since names are distributed as new tasks are created, and the names are taken

from a sequence of integers.

e cach forkserv has two service ports, each serviced by a separate thread:

1. the main service port is where application tasks (via macros) send requests
for exclusive forking rights. The FORKSERV sends an acknowledgment
message to inform the requester of when it has been granted rights. The
forkserr ves not dequeue a request from this port if some task alrcady

has exclusive fork rights for that node.

66

2. the out-of-band service port is where application tasks send requests to
the forkserv that must be serviced immediately (i.e., the thread servicing
this port always responds to any requests on this queue immediately). The

requests that must be responded to immediately include:

(a) a task relinquishing its exclusive forking rights for a node (after it has

spawned a new task), and

(b) a newly spawned task asking for a new virtual ID when it is just

spawned.

The following is a brief description of the two threads that service the two service
ports of FORKSERV. The main service port is where tasks send requests for forking
permission (see Algorithm Z). If a remote fork is requested, a remote FORKSERV will
send a request to the main port to request permission for the requesting task that
wants to fork.

In short, the task requesting a remote fork must get exclusive forking rights on
both the local and the remote nodes (via the FORKSERV’s on both nodes) before it can
spawn a new task. This is necessary to ensure that the forking sequence is properly
recorded during the recording phase and that the same forking sequence is enforced
during the replay phase so that tasks are given identical virtual names during both
phases. The out-of-band port is where t« ks (or remote FORKSERV’s) send indica-
tions that they have just forked and are now surrendcring their exclusive fork rights
(algorithm Y'). A separate port for the latter purpose is necessary since there may be
multiple fork-right requests blocked-up in the main service port. Figures 5.6 and 5.7
describe the protocol that is followed involving FORKSERV when a task intends to

spawn a task locally or remotely, respectively.

Z1: FOR (;;)
22 IF (go.to.sleep_mainJoop)
73: condition_wait(wake _up_call for_.main_loop).
24: go_to_sleep_mainloop = FALSE.
ENDIF

67

e
J’ﬂ

i, A 2 g

P Y

for each fork-request {from main server port) |

#“"=1"=* 1. log forker's vid in forking log for this nodd™= " forking
.
3. {no more msgs dequeued from main port} “\
\
\ *
i, send indication of fork rights \......... ey

[}
8. allocate a new virtual 1D for the spawned task \
9. create new physical task log for the spawned ta k\\

10. send *ACK" to forker so it can start normal

i
!
i
]
1
'
i
{
\ execution (and new virtual task ID)
\
\

! 11. {(now forkerv can take another fork request
Y

\ from the main server port}
)N
\ P forkserv
A .—ﬁ‘-) T T
[T 1d : |‘
Main ! Out of '
Server § 1 band \
, \
Pot | | Senice .
1 s
| Port l\ Seaal
Pt ~ .
[] - Sso
I.] ~ AN
Il :' \\ \‘l
II] \
’] ' |
’ . J 1 P /
/'l. Ask for exclusive ¢ ! J I
N 3 ¢
. forking rights on local ! /7. Ask for a vitual name ! :‘
/ node] ot for the task, and unlockT :
,/ , / o exclusive forking rights i
5. Receive 'ACK" {now taskj ,/ ’ for this node !
systen() ¢ exclusive forking #==1 1\nit_cdb() !
. i \ A
s, et . 12. Recewve *ACK' ftask_|
\\ 6. Fork ‘\\ can now begin normal
“ FOfk \\execuuon)
forking application task forked application {ask

p——cTr

Figure 5.6: Forking on the local node

68

F.---..--.-..'..-.....-..--.ﬂ----\ ’--.-.---.............--..-...-.-.--\

|

for each fork request | /* al main service porf !/

2. logfomker's |V

3. reques for exclusive borking rights of
e remole node

4. recaive "ACK kom remole forkserv,
indicating that s forkserv has ocquired
exclusive foriing ighs on the larged
remofe node.

7. send "ACK" foork requester (fosk ‘A’) that
i now has exclusve forking rights on bo*h }

10cal and remole nodes.

/ 15. send " " to forkee 5o # can start s

for gach remote fork request |
4. ognode-name where remotefork s coming ~
fom
5, send "ACK" o forksenv “A” that it has now
acquired exclusive forking Aghts on this node.
13, Allocate and regster new virtual task [0 for
Yorkee® and create new physical log for task

14, unblock main servce thread

- — —— . —— . —— G raa —— . G G — — — — —— — — o — ——_ — - — A —— f— — ——— ———

MO release exclusve fok nghts on local node

system(rsh) cal in Appiicalion Task 1 (forker)

oas,
.....
.,
.

11 Mecelve a ‘egse’ o fork rights kom forker nomal esecuton
} IAI Mm DBI
Out-of
Band
Senvice
Pot
i
{1
/. I
1 Askfor excluswe forkng nghts on local and ('
remole nodes : :
(18 Recene *ACK" now has exciusveforkngnghts on | ¢ 1 /|12 askloravitual rame and ufock the exclusve
local and remote nodes :: fork nghts on this node.
0. fork 11 1]16. recene *ACK". thus akowng task o star normal

= exeoution

init_odb{ call in Applcation Task 2 forkee)

Node |

Figure 5.7: Forking on the remote node

69

Node 2

(YIYTY XY IS T Y I T L LY YT Y P Y Y Y Y Y D Y L Ll Ly 2 2

e Tt S — — — — — a— — — . — — — —— —— - — —— — —— o — —

Z5: dequeue a request from the main request queue.
26: result = procedure_requested.
[* see algorithms W and U on pages 71 and 72 respectively */
YAK send back reply message to client.
ENDFOR

Y1: FOR (;;)
Y2: dequeue a request from the oob request queuc.
Y3: result = procedure_requested.
/* see algorithms X and V on pages 70 and 72 */
Y4: send back reply message to client.
ENDFOR

The interfaces (and their associated algorithms) offered by the FORKSERV are as
follows:

The local unlock fork lock() primitive is typically called by a task when it is just
spawned before executing any of the task proper (the initial thread, that is) to inform
the local FORKSERV of its birth, thus releasing the exclusive forking rights it had on
this node.

X: local_unlock fork lock(local forkserv_oob_port,
pid_of the_newly spawned _task,
virtual _thread_id .of the_newly spawned_thread)
X1: grant a new v_task_id from the current distribution.
X2: put mapping of “v.task.id to pid" into forkserv’s data space.
X3: increment forkserv’s current distribution v_task.id.
X4: start a new physical log for the new task (call local LOGSERV).
X5: IF (forkernode != NULL) /* set by remote_get _lock to_rfork() */
/* forkserv's variable indicates that
this new task was remotely forked */

X6: log the node_.name where the remote fork originated on.

70

ENDIF

X7: indicaie to thread servicing main fork-request that it may now be
free to dequeue another request for exclusive fork_rights.

X8: send back ACK to calling task that it is free to start with its

normal execution now.

When a task wants to fork remotely, it calls local get_lock_to_rfork() (see
algorithm W) to get forking rights on the local FORKSERV and the FORKSERV then

calls the remote FORKSERV to obtain forking rights there using this RPC:

W: local_get Jock_to_rfork(local forkserv_main_port,
forker_real _pid,
forker_virtual_thread.d,
destination_node)

WI: v_forker_task_id = lookup forker_task.id.

/* log the v_task_v_th of the forker to the
local dog_of fork_sequence (for this node) for this program */
add_to_logical log(local_logserv,
TASK.CREATE_LOG for this node,
virtual_task_thread).

W2: IF (remote rsh)

W3: remote.get Jock_to_rfork(forkserv on remote node, my node_name).
/* acquire exclusive forking rights on remote node, and provide
requester the name of the node from which remote forking will
take place */

ENDIF

W4: tell main server of forkserv servicing main queue not to dequeue
any more requests from the main queue after this servproc returns.
/* since at this point, the task that made this request now has
exclusive forking rights on this (and the remote) node */

W5: send back ACK message to requester that it now has exclusive

71

forking rights for the type of fork (local or remote) it had asked

for.

When the forker task has finished forking remotely, it must release the exclusive
forking rights it has on the local node (the remote node’s exclusive forking rights will
be released when the newly spawned task sends a special message to the FORKSERV

on the remote node), so it uses the following RPC to accomplish this (algorithm V):

V: remote_unlock_fork lock(remote forkserv_oob_port,
forker real_pid,
forker.v_thread.id)
V1: unblock the main forkserv thread servicing the main port.
/* no one is holding exclusive forking rights for this node,

so we are free to accept an new request */

When a FORKSERV receives a local message from a task requesting exclusive fork-
ing rights on some remote node, it must first grant the task exclusive forking rights
on the local node, and then the local FORKSERV must obtain for the requesting local
task exclusive forking rights from the remote FORKSERV. Remote rights are needed
since that is where the fork will actually take place and the local rights are needed so
that fork will not be initiated until the fork rights are obtained at the remote node.
The following RPC is used by a local FORKSERV to obtain forking rights from the

remote FORKSERV on the target node (algorithm U):

U: remote._get lock_to_rfork(remote forkserv_main_port,
target_node.where forking_is_desired)
Ul: forker_node = the name of the node where the task wants to fork.
/* just by virtue of dequeuing the request (and thus invoking this
servprocs), the task wanting exclusive forking rights on this

node has now “got” them */

72

[* forker_node is in this server’s global space */

U2: forker.node = the name of the node where the task wants to fork.

U3: tell main server of forkserv servicing main queue NOT to dequeue
anymore requests from the main queue after this servproc returns,
since at this point, the task that made this request now has
exclusive forking rights on this node.

UU4: send back indication (ACK) to requester forkserv that it now has
acquired exclusive remote forking rights for the task the

requesting local forkserv is currently trying to get them for.

During the recording phase, a system() call is used as the forking primitive
(the csh rsh command is used within system() if the fork is remote). When the
application program is transformed for the recording phase, all system() primitives
are transformed into a function call rec_system() which is linked after transformation
and compilation of the application program. The rec.system() routine does the

following (algorithm T):

T: recsystem(string)
T1: determine virtual name of thread self.

T2: IF (not a remote fork) /* not a “system(rsh...)” type call */

T3: targethostname = the node_name mentioned in “string”.

T4: ELSE /* a remote fork */

T5: 1F (myhostname() == targethostname)

T6: error code(convention states that rsh only spawns on remote node).
ENDIF

T7: local_get lock.to_rfork(local forkserv_port,
pid_of myself,
my virtual _thread _id,
destination_node).
/* ask for forking rights on this node, and when obtained,

indirectly ask for forking rights on the remote node, and

73

when obtained, return. */
ENDIF
T8: system(string). /* real call */
T9: IF (a remote fork)
/* surrender exclusive forking rights on the local node by
sending a message to the “out-of-band™ port (note the
forking rights on this remote node will be surrendered by
the remotely forked task (see Figure 5.7) */

T10: remote_unlock fork_lock(oobforkserv_port, my_pid, my_virtual_thread_id).

ENDIF

When a new task is spawned, it immediately executes init_cdb (see 5.2), which

immediately calls local unlock fork lock().

5.2.4 Repforkserv

The mission of this server is similar to that of the FORKSFRV (see 5.2.3), except it
is designed to run during the replay phase instead of the recording phase. The main
difference between the FORKSERV from the REPFORKSERV is that the latter enforces
the forking sequence on each node so that it corresponds to the forking log that
was generated during the recording phase. This nust be done so as to give the same
“names” to the instances of execution so that they can be matched-up to the correct
execution history (log) that was generated during the recording phase.

In short, the REPFORKSERV must:

e ensure that no forks occur concurrently so that the report to the REPFORKSERV
concerning a forking operation (via a message) is unambignous. This is to
ensure that no race conditions due to another forked child task sending an RPC
(algorithm X) to FORKSERV’s OOB port, to have the new virtual id mapped to

its O.S.-given 1.D., can occur (see next item).

e ensure that only one newly forked task can send a message to the REPFORKSERV

74

asking for a virtual task id at any time (avoid race conditions). Recall that
when a task is spawned, it asks for an ID itself, via the init_.cdb() debugging
primitive, which is supposed to be on the first line of the source code, and ID’s

are given out as tasks are created.

e if a request for exclusive-forking-rights is received from a task/thread (or re-

mote node) and according to the execution history, it is not that task/thread’s
(or remote node’s) turn to fork, the request is deferred. The task/thread (or
node) asking for exclusive forking rights doesn’t receive the acknowledge mes-
sage informing it it may proceed with the fork until the REPFORKSERYV sends
the acknowledgment, thus the client (the entity requesting exclusive forking
rights) is blocked. The REPFORKSERV is a multi-threaded server that forks
(and detaches) a new thread for each request (message) that is dequeued. Thus
if a forking request is out of sequence relative to the execution log, the request
thread is put to sleep. When a task has been given exclusive forking rights
and the task has completed its fork, notice is given to the REPFORKSERV to
advance the execution history and all sleeping request threads are awakened so
that each can check whether it is their turn to spawn a new task. Otherwise,

the request threads put themselves back to sleep.

The main service loop and the request thread of the REPFORKSERV works as

follows:

S: main_service Joop()

S1: FOR (1)

S2:
S3:
Si:

allocate memory for next incoming request.

receive request message m.

detach_thread (fork_thread (RequestThread, pointer to message-m)).
ENDFUR

The algorithm for REPFORKSERV’s request thread (algorithm R) is as follows:

75

R: RequestThread()
R1: demultiplex and call the appropriate server routine and wait for the reply.
R2: send back the reply in a message.

R3: deallocate memory used for request message.

R4: exit(). /* kill this thread */

The pseudo-code for the REPFORKSERV 's service procedures (don't forget that the
following routines execute as request threads, and that they are reentrant routines)
are as follows:

The routine local_get_lock_to_rfork in REPFORKSERV is different from the one in
FORKSERV in that when it dequeues a request for exclusive forking rights, it checks
whether the task/thread asking for forking permission is in the same sequence as
during the recording phase, and if not, it defers granting the requester exclusive

forking rights (algorithm Q).

Q: local_get lock_to_rfork(mainserver_port_of local_repforkserv,
forker.real _pid,
forker.v_thread.id,
destination node)
Q1: look-up forker’s virtual task id in repforkserv’s mapping data-structure,
/* is the thread-task that wants to fork in the correct sequence? */
Q2: WHILE (next_forker_virtual id != v_pid_v_tid)
Q3: condition_wait(someone has finished forking and has given
up his exclusive rights).
ENDWHILE
Q4: IF (remote-fork)/* if this is a remote fork, get exclusive
forking rights from the remote repforkserv
before sending the forker an ACK that it has
exclusive forking rights */
Q5: remote_get Jock_to_rfork(server_port_on_destination_node,

my Jocal_node_name).

76

ENDIF
Q6: send ACK to caller that it now has exclusive forking rights on the

remote node,

Again, the remote get lock_to.rfork system call is analogous to the one in
FORKSERV, except that here it checks whether the REPFORKSERV making the request
for forking rights is doing it in the correct sequence-if not, the request is deferred

(algorithm P):

P: remote_get Jock to_rfork(main_server_port_of_remote_repforkserv, forker’s_node)
P1: WHILE (it’s not yet time to give exclusive forking rights to a
remote task which is requesting from “forker's_node”)
P2 condition_wait(someone has finished forking and has given
up his exclusive rights).
ENDWHILE

P3: send ACK to caller (typically a REPFORKSERV) that it now has

exclusive forking rights on the remote node.

When a new task is spawned, the first thing it does is to execute
local.unlock fork.lock(), which lets the local REPFORKSERV know that forking
has been completed and that it is surrendering the exclusive forking rights it presently
possesses. local unlock fork lock() gets the next log element from the forking log
and signals to any sleeping fork requests that they can wake up and check if it is their

turn to fork (algorithm O).

O: local.unlock fork Jock(mainserver_port_of local _repforkserv,
real_pid,
virtual_thread_pid)

O1l: acquire a new virtual_task.id for the new task and add a

pid-to-virtual task id mapping in the repforkserv’s space.

11

02: open associated physical log (execution history) for the new task
that was recorded during the replay phase.
03: advance the forking log for this repforkserv (representing this node).
O4: signal to all sleeping request threads that someone has
released his exclusive rights (on this node) and the log has been

advanced (so please wake up and check if it's you).

The remote unlock.rfork_lock call is essentially the same as in FORKSERV (al-

gorithm M).

M: remote_unlock_rfork lock(main_server.port_of _remote_repforkserv,
forker_real _pid,
forker.virtual thread_id)
M1: advance the forking log for this repforkserv (representing this node).
M2: signal to all sleeping request threads (on this node) that
someone has released his exclusive rights and the log has been

advanced (so please wake up and check if it’s you).

5.2.5 Gpnameserv and Repgpnameserv

The GPNAMESERV provides a mapping service between names that are currently
“checked-in” at the local netname server (relevant to the distributed program the
GPNAMESERV is currently serving) and the debugger-given virtual name of the port
it represents. This service is essential when a task looks-up a name in a node’s local
netname server (e.g., the netname server [18] in the Mach [2] operating system).
The GPNAMESERYV is also used to keep track of which node a port’s receive right
is currently on. A lookup for the location of a receive-right is necessary in order
to properly set-up transparent message interception by the CONTROLSERV at that
location in order to decentralize the interception of messages. The REPGPNAMESERV

is identical to the GPNAMESERV. This server also maintains a list of ports® whose

3that do not have anytiing to do with the netname server

78

receive rights on that node currently cannot be transferred. Clients (typically the
CONTROLSERV) can add, subtract, and check the list using the port’s virtual name.
The CONTROLSERV checks whether a port p’s receive right can be moved before doing
so in order to avoid conflicts with any intercept set-up operation in progress involving
the same port p (sce section 5.3.3).

The GPNAMESERV is a simple single-threaded database. It can add, delete,
modify, and lookup information using various search keys. The query language is a
set of MIG [9) RPC’s, since the only client of this server is the debugger itself, thus
the type of services required are few and quite specific. There are two types of tuples

that are maintained by the GPNAMESERV:

| virtual_name_of_port | netname |

Table 5.5: Netname to virtual port-id mapping tuple

| virtual_name_of_port | unmoveable |

Table 5.6: Location of receive rights tuple

The tuple described in table 5.6 includes one status variable, unmoveable, which
is sct and checked by the CONTROLSERV (and REPCONTROLSERYV if in replay mode).
This status variable assists the CONTROLSERV in avoiding race conditions (and pos-
sible deadlock) if a port p’s receive right is in the process of transferring to another
task while port p is in the process of having interception set-up on it by the local

CONTROLSERV (more details in section 5.3.3).

5.2.6 Controlserv

The CONTROLSERV can be considered to be the most important server since it is
responsible for transparently intercepting various types of messages and logging their
enqueuing order. The CONTROLSERV is an active client of the LOGSERV and Gp-

NAMESERV. There is one CONTROLSERV per node.

79

The transparent interception of messages is accomplished by having the con-
TROLSERV extract an application task’s “send-right” capability to a port immedi-
ately following the application task's acquisition of the capability, thus in effect the
controller steals the capability for itself. The name n the application knows the ca-
pability (port right) by remains unchanged. Now the CONTROLSERV has send rights
needed to forward messages to the target port. The CONTROLSERV then allocates
an interception port and inserts its “send-right” capability for the interception
port it just created in the application task under the capability name n. Thus,
message interception is transparent to the person debugging one’s program, since
the send-right known as n did not change its name and the messages are appearing
to be getting through to the destination port. The primitives used on the Mach
0.S. [2] to implement the above described transparent message interception were the
port_insert() and port_extract() series of primitives.

The general duties of the CONTROLSERV involve:

e intercepting “ordinary” and “notify” (see Appendix A) messages heading to-
ward “application” ports and “notify” ports respectively, log their order of
arrival at the intercept port, and forward the message to the target destination

port.

e process recording phase control messages that are associated with and follow
each application messages (see later for more details), one control message per

application message.

e acting as a MIG RPC server for setting up interception on request and for
setting up a mechanism to detect an application port’s death so that the event
can be recorded in the database if necessary and execution history files can bhe

properly closed.

e provide the location (node name) of a receive right on demand. Assuming that
interception is already set up for the port in question, a task/thread having a
send right to some port p will send a specially marked message to port p, know-

ing that it will be intercepted by the CONTROLSERV on the node where port p’s

80

receive rights are located. The CONTROLSERV will not forward the message to
port p. Rather, the CONTROLSERV will return the location of p’s receive rights
(the node where the specially marked message was intercepted). The location

request is serviced by a port’s “Intercept Thread” on the CONTROLSERV.

There is one CONTROLSERV server per node, per program. The various service
ports of this server contain the program’s ID so that multiple debugger sessions
(different programs, possibly run by different users) can co-exist. Interception is set-
up to occur at the node where the task that holds the receive-rights of the target port
resides. If the receive-rights to a port migrates to another task on the same node,
then no adjustment of the interception scheme need be done. If the receive-rights
to a port migrates to another task on a different node, then an adjustment of the
interception scheme must be performed so that interception continues to occur at the
node where the task that holds the receive-rights of the target port resides.

Interception is always set-up to occur at the node where the task that holds the
receive-rights of the target port resides in order to facilitate moving the interception
set-up if and when migration of a receive-right occurs (see figure 5.8 and section 5.3.3
for more details). The interception scheme must be adjusted dynamically if receive
rights move to another node to ensare that the probe effect remains balanced during
the recordirg phase. This way, no task holding send-rights to the port whose receive
rights is moving needs be readjusted. Furthermore, having interception occur at the
location (node) of a port’s receive right allows a port’s enqueuing log to be localized
on the same node as where the receive rights for that port are. A port’s enqueuing
log will be spread across various nodes if a port’s receive right migrates between
tasks situated at different nodes, keeping at the !ucal nodes only the portion of the
execution history that actually took place there. It is assumed that receive-rights
are not moved frequently, if at all, in a typical program. For example, fault-tolerant
distributed applications, which would be the chief users of migrating receive right
capabilities, typically do not constantly “fail”, so the probe effect of moving the
interception scheme should be, on average, small, since it is an event that doesn’t

occur frequently.

81

Node 1

~
J h
.

.

Application

Node 2

.
4. Intercepl ports moved \\

K

Extetled
Sénd Right

g ‘ Totercept Ports

- A 3, Interoep! ports moved

IR /Y4

l"'
s 3 Intercept ports mosed
! Ha1in
] L Sgrvft

; or 2. RPC reques! tomove intercept ports

5 htS S5

5. nghts adusied

——

5. nghis sdpusied

Node 3

1. Receive nghts to port P are acnt to Port Q

Figure 5.8: Migration of receive-rights

82

Transparent message interception is set-up whenever a task acquires a send right
from the netname server or from an application message carrying a send-right directly.
The request for interception (RPC) is then uirected to the CONTROLSERV on the node
where the task that holds receive rights to that port resides.

Often, message-based operating systems provide each task with a special pert in
which to receive special asynchronous “notify” messages from the kernel concerning
various evenis that have happened outside the recipient task that it may need to be
informed of. Since “notify” messages are produced in response to events external to
the task that receives them, the notify message’s order of reception can vary from
one execution to another. Thus, all “notify” messages must be intercepted for each
task, have their enqueuing order logged, and then have the message forwarded to the
2ppropriate task’s port. Interception of task’s notify port is arranged immediately
after a task is created. The non-migration of tasks to other nodes is assumed by
the CONTROLSERYV (and the debugger in general). The interception is transparent to
the user of the debugger, since the debugger sets up interception by extracting and
inserting port-rights of an application’s notify port. This is done in a fashion similar
to the interception of ordinary application messages, except that the CONTROLSERV
extracts the receive rights of the notify port from the application task, allocates a
substitute nntify port it forwards the notify messages to and gives the application task
receive rights to the substitute notify port under the original “name” the application
task knew the notify port as, thus achieving transparent interception.

It is assumed that the messages a given thread sends to a given port are guaranteed
to arrive (enqueue) in the order sent?. It is also assumed that cach message can only
hold a limited amount of data and that the message (at the level of the O.5. interface)
does not contain a field indicating from which task/thread/node the message came,
Since the recording phase needs to know which task/thread/node sent each message,
as well as other miscellaneous information (see later), a control message follows
each application message with the latter information. The alternative of appending

additional “control” information within an application’s message may interfere with

4the Mach O.S. guarantees this

83

Virtual ID of the sending thread Obligatory
1 H '
! Virtual Port ID E Node-name of location of receive right !
O e AL E L L eI L E LTS L e R R e e]
[}
H Virtual Port ID E Node-name of location of receive right E
e e -4
| ! ;
L : '
foo T ettt =
] !
| : -
'
1

End-of message marker Obligatory

Figure 5.9: Format of the rec/rep control message

the normal functioning of the application program (as well as making the debugger
more visible during the replay phase) and may introduce a error in the application
program itscl if there is not enough space in an application message for the debugging
“control™ information. Figure 5.9 shows the format of the control message.

The CONTROLSERV is a multi-threaded task in which various threads perform
distinct specific sets of functions while sharing access, to varying degrees, to certain

server global data-structures. The threads consist of:

Intercept Service Thread Assuming that receive rights to a given port can only
be held by one task, an intercept service thread is allocated to intercept all
messages being sent to a specific application port, and the dedicated intercept
service thread for the port is allocated on the node where the receive right
exists for the given port. There can only be one intercept service thread per
port. If a receive right migrates to another node, the intercept service thread
must be killed at the old node’s CONTROLSERV and resurrected at the new

node’s CONTROLSERV.

Each existing send-right to the existing port by a local or remote task (not
thread) is represented on the CONTROLSERV by an intercept port, and all
such intercept ports are serviced by port-specific “intercept” service threads,

which receive from all the intercept ports that represent send rights of various

84

tasks for a specific port.

A separate intercept port is required for each task with send rights to a specific
port in order to avoid having control and application messages from different
tasks that have send rights to a common port from getting interleaved, making
it impossible to match application messages (with no field as to who sent them)
with their respective control message. A task can ensure that no interleaving
between the real and control messages sent by two or more of its threads to
the same port can occur. This can be done by having the sending task making
sure that only one thread within its address space can send a real and a control
message to a given port. In other words, the act of a thread sending a real mes-
sage and its associated control message to a given port is a mutually exclusive
event within a given task. This is accomplished transparently by transforming
the 0.5.’s message sending primitive to a routine that will ensure such mutual
exclusion before actually sending the real and control message. There is no
such practical method to ensure that interleaving of various real-control mes-
sage groups doesn’t occur if 2 different tasks (on same or diflerent nodes) have
send rights to the same port. Thus, each task that has send rights to a given
port p must have its own intercept port on the CONTROLSERV that is on the

node where port p’s receive rights reside.

The control message is generated within the routine that is called after the
0.S.’s message-sending primitive is transformed (for the recording phase). The

control message contains (in sequence):

e the virtual thread ID of the sending thread,

o if the message is carrying port right(s) within the message, the virtual
name of the port p whose rights are being passed as well as the location
(node-name) of the task holding receive-rights to port p. If more than
one port right is passed in a message, the control message will contain a
sequence of virtual port names and its receive-right location in the same

sequence as the port-rights occur in the message, enabling the receivers

85

of the application and control messages to map the descriptions of the

port-rights in the control message to the actual port rights being passed.

e aflag to indicate the end of the control message, since its length depends

on how many port rights are passed in the message.

Notify Service Thread This thread intercepts all notify messages that are sent
by the kernel to the application tasks on the local node, logs the enqueuing
order, and forwards the message to the intended task. There is only one notify
service thrcad per CONTROLSERV, intercepting all notify messages that come
in from the local kernel to the local application tasks, logging the message, and
then forwarding the message appropriately. The data logged for the intercepted

notify message consists of the “type-of-notify-message” involving “virtual-port”.

Control Notify Service Thread After interceptionisset up (7.c., the CONTROLLER
extracts send rights from the real sender), some notify messages that concern
the extracted send-rights of application tasks would now be sent to the CON-
TROLSERV instead of the intended application task. This is because the CON-
TROLSERV has send rights to the real port, and the sending task has send rights
to an intercept port on the CONTROLSERYV after interception is set-up. Thus,
the CONTROLSERV’s own notify port must be monitored by a thread, which
determines if notify messages it receives from the kernel were really intended
for an application task, and if yes, the CONTROLSERV generates and forwards
the notify message to the intended notify port. On the Mach platform the pro-
totype debugger was designed for, forwarding a notify message to a task ¢’s
notify port when one of the ports that ¢ has send rights to dies is accomplished

by simply deallocating the intercept port for the dead port.

Main Service Thread The CONTROLSERV also acts as a MIG RPC server for inter-
ception set-up requests from transformed application programs. A dedicated
thread dequeues such requests from a dedicated port (where RPC requests are
directed), calls the appropriate server routine, and sends the server reply mes-

sage (if applicable).

86

W‘?"(A

The general scheme of CONTROLSERYV is illustrated in figure 5.10. In this figure,
the manner in which the CONTROLSERV intercepts messages destined for “normal”
and “notify” ports are illustrated, as well as the fact that the CONTROLSERV has send
rights to a “secret” port to detect a task’s death. The CONTROLSERV receives death
notifications from the kernel via its own “notify” port. Currently, the CONTROLSERV

in figure 5.10 is intercepting two application ports.

5.2.7 Repcontrolserv

The REPCONTROLSERV generally serves the same purpose during the replay phase as
does the CONTROLSERYV during the recording phase, except that instead of logging an
execution history, the REPCONTROLSERV ensures that all non-deterministic choices
an application program made that a particular node-specific CONTROLSERV recorded
during the recording phase make the same choices during the replay phasc.

Transparent interception is also set-up in the the same manner as for the CON-
TROLSERV (see 5.2.6).

The general duties of the REPCONTROLSERYV involves:

e intercepting ordinary and notify messages (and their associated control mes-
sages) heading toward application ports, checking with the execution history
(for the enqueuing log of that port) whether the message it received should be
forwarded to the destination port or should it be stored for forwarding at a
later, more appropriate time in order to enqueue a given port in the same order

as recorded in the execution history log,

e immediately forwarding any messages it has temporarily stored (and their as-
sociated control messages) to their intended ports when it accords with the

execution history,

e processing replay phase control message that immediately follow all application

messages,

e acting as a MIG RPC server for setting up interception and for registering an

application task on the server.

87

Port"A"

Mach Kernel

Application Task

Secret

Application Task

Application Task
Secrel
Port

T~

Notyy'. S_gm'z.'e

e eVernssndSoontilogsacnn,,

Conirol Nonfy
Service Thread

Conlrolserv MIG
Service Thread

Intercept Thread
Jfor Apphcation Port
” A "

Intercept Thread
for Application Port

g

Y

| Application Task

Secret
Pont

Secret
Port

RPC requests
from vanous
tasks (vwa debugging
Iibranes) on various
nodes

Each task {local
or remote) with
sendnghts bo “A” 1s
represented by a
intercept port

Intercept ports for
real port "B"

Pon IBI' ml
Port
|=T
Apphcation Task

W Noufy Port

l__.l Port Set & Receive right

=3 Pseudo Notify Port == Send right % Extracted port right

Figure 5.10: General Scheme of CONTROLSERV

® as in the CONTROLSERV, on demand, return the location of a port’s receive

rights to the requester.

The same assumptions ahout set-up and configuration that were stated in sec-
tion 5.2.6 for the CONTROLSERV apply to the REPCONTROLSERV. The same service
threads exist in the REPCONTROLSERV as in the CONTROLSERV, except for two im-
portant differences—the threads that intercept application and “notify” messages,
called “intercept service thread"” and “notify service thread” spawn new request
threads for each message intercepted. This is done so that if the request thread
handling the intercepted message realizes the message cannot be forwarded to the
target destination (lest it violate the execution history logged during the recording
phase), the request thread puts itself to sleep, awaiting a wake-up call. On wak-
ing, the request thread must again verify with respect to the execution history if
it can now forward the message—if yes, the request thread forwards the message,
along with the message’s associated control messages, and then the request thread

exits..., if no, then the request thread puts itself to sleep again.

5.3 Non-Deterministic Events: Monitoring and
Reproduction

Monitoring and logging non-deterministic choices involves cooperation between spe-
cial monitoring phase libraries (r=!led by the application program being debugged
after their calls are inserted into the code during the program’s transformation) and
the various debugger servers on each node of the distributed system. The type of
debugger libraries called (and which portion of them is used), and whirh debugger
server nodes are used depends on the type of non-deterministic activity the applica-
tion program intends to execute. Execution history logs are always recorded on the
node where the activity took place by either the [REPJCONTROLSERV or the appli-
cation task (via a debugging library). In short, most of a task’s non-deterministic
activities are recorded in a distinct physical file (consisting of many logical sequential

logs) associated with that task. All port enqueuing histories of a program are kept

89

in the same physical files, one enqueuing physical file per node, and the enqueuing
history logs are maintained by the [REP]JCONTROLSERV on each node. The logs of the
enqueuing sequence for all application-allocated ports and all netify ports that were
allocated by the kernel for the application tasks, as well as the forking sequence
for a node, are kept in the same physical file, one per node. Otherwise, the amount
of open physical files would be very high and it could exceed an operating system’s

limit for open files.

5.3.1 Message Sending
Recording Phase

During transformation of an application program specifically for the recording phase,
all instances of the message sending primitive (msg.send()) are replaced with the de-
bugger library call rec_msg.send(), w..ich calls the real message passing primitive,
among various other recording phase duties it performs (see algorithm A on page 92).
When the task is about to send a message to some port p, if the task indeed has
send rights to port p, message interception will have already been set-up to be di-
rected to the CONTROLSERV on the node where the receive rights for that port reside.
Thus the recmsg-send() library call and the service thread(s) that dequeues from
the “intercept™ (substitute) ports on the CONTROLSERV are involved in monitoring
message sending activity. The CONTROLSERV is concerned with the order in which
messages are enqueed at given ports by various thread/tasks which have send rights
to them, thus recording the interleaving of messages from various sources (see ta-
ble 5.7 for log element recorded when application tasks send to application ports). It
is assumed that a port receiving messages from a given task/thread combination will
always receive the messages in the order sent.

Application task notify-ports receive their messages from the kernel only. Since
the kernel sends notification messages to the notify port in response to external events
(initiated by certain specific activities initiated by application tasks, like the death
of a port). the same sequence of notify messages cannot be guaranteed to be re-

generated on each re-execution. Thus, all messages that are sent by the kernel to the

90

Who adds to log

The controlserv on receipt of intercepted message,
if forwarding was successful

Kind of data

The name of the virtual task-thread that sent
the message

Who created log

Task that got send rights to port P

sends a “set-up interception” request to the
controller on the node where receive rights

to port P are found. The logical log is created
when the first request for an intercept-setup for
a given application port comes in.

Location of log

In the physical log file on a controlserv

which is dedicated to enqueuing logs. The
enqueuing log is kept on the controlserv on
the node where reccive rights are located when
the message was enqueued at the intercept
port. If the receive rights to port P move to
arother node, then the enqueuing log to port P
will be scattered across several controlservs.

If the receive right moves back to a node it
once occupied, the existing enqueuing log for
port P is then appended to it.

Table 5.7: History of message enqueuing at an application port

91

notify port are intercepted during the recording phase (see table 5.8 for log element

logged when kernel sends to notify ports).

Who adds to log | The controlserv on receipt of intercepted message,

if forwarding was successful

Kind of data The type of notify message and the port involved.
Who created log | Application task when task is created (in init.cdb())
It then requests interception set-up from the local
controlserv of the task’s notify port.

Location of log | In the physical log file (for enqueuing logs) on the
local node (assuming notify port’s receive right
never moves) which is dedicated to enqueuing logs.

Table 5.8: Log of application notify port enqueuing

As well, a task having send rights to some port p may pass copies of the send
right to any task f it has send rights to. Before doing so, the task (via a debugging
library) sends a control message to port p requesting the location (node) where the
reccive-rights are presently located. The message directed toward port p should be
intercepted by the CONTROLSERV at the node where the receive rights reside. The
CONTROLSERV recognizes requests for the location of specific receive rights, so the
request message is not forwarded to the real port-instead the CONTROLSERV returns
the node-name where the receive-rights to port p are located. The location of the
receive-rights are important to the recipient of the send rights in order for it to request
message interception to be set-up for it on the CONTROLSERV on the correct node.

Algorithm A shows the relevant parts of rec_msg.send () in order to record asyn-

chronous message passing (without considering time-outs):

A0: mutexJock(super_lock[sending_port}).
Al: OS_return.code = msgsend(). /* send the real message */
A2 IF OS_return_code is not successful.
return OS_return_code to application program.
/* compose control message /

A3: determine sending thread’s virtual ID from its real (OS-given) ID.

92

AA4: put the sending thread's virtual ID in the control message.
A35: FOR each port right passed in the message /* from first to last */
A6: determine sending thread’s virtual ID from its real (OS-given) ID.
AT: put the port’s virtual ID in the control message.
AS: IF send rights (to some port p) are being sent
A9: send a request message to port p asking
on which node the task that has receive right to it is, and wait for the reply.
/* message should be intercepted by CONTROLSERV
on the node where the receive rights reside, and
the CONTROLSERV sends back the node's name */
Al0: put th- Lort’s receive right location (node) in the control message.
ENDIF
ENDFOR
All:put end-of-message marker in control message.
Al12:send the control-message to the same port as the application message.
Al3:micex.unlock(super lock[sending_port]).
Aldreturn OS_return_code (see A1) to the application program

which called msg_send().

On the CONTROLSERV, each task that has send-rights to some application port
p that a CONTROLSERYV is intercepting is represented by an intercept port, which
intercepts all messages sent to port p from a specific task. For vach real port p that
a CONTROLSERV intercepts, there exists a dedicated intcreept thread that dequeues
from all such intercept ports for th» application port p. The intercept port expects to
receive the real application message, followed by a recording phase control message
which describes which task/thread sent the message, as well as the virtual names
of any port rights being passed in the message (and possibly the location of the
receive rights of the port if a send right is being passed). Algorithm B shows the
intercept thread's duties. Note that in line B4 that the CONTROLSERV is marking a

receive-right as “unmoveable”. The only time a request is made for the location of

93

port-receive rights (B3) is when a thread in a task is about to pass send rights in

a message it already has and for which interception is already set up but it doesn’t

currently hold receive rights to (see section 5.3.1).

B1: WHILE (TRUE) /* infinite loop */

B2:

B3:
B4:
B5:

BY:

B10:
B11:
B12;

B13:

Bl4:

dequeue a message from any non-empty intercept ports

representing various task’s send rights to an application port p.

IF (message is a request for location of port-receive rights)
send back the name of this node to sender.
add the virtual name of the application port this
“intercept” thread is intercepting to the list of
“unmoveable” receive rights in the local GPNAMESERYV.
go to top of loop (B1).

ENDIF

IF a real application message was dequeued
go to top of loop (B1) and wait for another intercepted message.

ENDIF

/* contiol message arrived, which describes the previously

dequeued applicat.on message on this intercept port */

forward the real and control messages. /* real msg first */

IF (the real and/or control messages were NOT successfully forwarded)
intended port died, so application’s msg send considered unsuccessful.
go to top of loop (B1).

ENDIF

/* log successful msgsend() in enqueuing log */

log virtual ID of sending task in enqueuing log for

intended port on local CONTROLSERV.

log virtual ID of sending thread in enqueuing log for

intended port on local CONTROLSERV.

ENDWHILE

94

For synchronous message sending (a primitive that sends a message m to a port
and will block until it dequeues a return message from the port it gave send-rights
to in message m), the transformation of the application program will call a routine
rec_msg-rpc (), which will split the synchronous primitive into a sending primitive
(see algorithms A and B) and a message receiving primitive (see algorithm C). No
other special treatment is needed to record synchronous message-passing events, since
a synchronous message-sending primitive really is a combination of a msgsend() and
msg._receive() primitive.

Time-outs on message sending primitives are also monitored. A send time-out
is defined to have occurred if the message was unable to enqueue at the target port
wichin a pre-set time limit. A logical log for each application thread in an application
task is maintained by the debugger to record a sequentiai thread’s history. The
message sending primitive (asynchronous or synchronous) is transformed into a call
to a debugger library routine, which checks during the recording phase whether the
message send primitive involves a send time-out or not. If it does involve a send
timeout, the debugger routine logs whether the send operation timed-out or nol
(see table 5.9). Since messages are transparently intercepted at the CONTROLSERV,
a time-out occurs if the message sent by the application task cannot be enqueued at
the intercept port before the pre-set time limit and not the actual target, port. This
is generally not a problem, since if the target port is full, then the pscudo intercept
port(s) will eventually fill up, causing the original sender to possibly time-out when

the intercept ports become full.

Replay Phase

All instances of msg.send() primitives are replaced with a call to a special debugger
library routine (rep.msgsend()) for dealing with this primitive during the replay
phase. The algorithm for the latter routine is identical to the algorithm describing
rec_msgsend() (s=e algorithm A) except the manner in which send tirncout’s are
handled and the fact that each msg.send() operation results in a control message

being sent immediately following the real application message:

95

Who adds to log | task-thread (via debugger library routine) that does
a send or receive that involves a specified

time-out bound.

Kind of data The result of the time-out (timed-out or not).

Who created log | Application task-thread when thread is created

(by forker thread, or init_cdb(} if initial thread).
Location of log | Physical log file dedicated to a particular
application task.

Table 5.9: History of tinie-out results for an application port

e the replay control message, which carries the same information as during
the recording phase, as well as information concerned with the mechanics of
checkpointing, rollback and recovery and a global time-st..np for use by the

database tool.

On the REPCONTRULSERYV, just as on the CONTROLSERV, application messages
are intercepted transparently, with the difference being that the REPCONTROLSERV
intercepts a control message following receipt of the application message that carries
more information than the recording control message during the recording phase.
As in the recording phase, the control message is sent by the sending thread (via
the rep_msg_send() library routine) immediately after the application message to the
same destination port p and guarantee that no other thread in the same sending task
will send any message to port p until both messages (real and control messages) have
arrived at their destination, which is an intercept port on the REPCONTROLSERV. In
other words, the sending of the real and the control message must be considered to
be atomic.

The main difference between the REPCONTROLSERV and the CONTROLSERV is
that the latter logs the sender of the message (the enqueuing order) and simply
forwards the message to the real destination port, while the former must reorder
the appiication messages (considering the application message and its two associated
control messages as one logical message) received according to the enqueuing history.

and then forward them to the intended application port. As in the CONTROLSERYV,

96

e Y T e T R e
s

each send right a task has to a port a particular REPCONTROLSERV is intercepting
is represented by an intercept port on the REPCONTROLSERV. A separate intercept
thread for each application port p the REPCONTROLSERV is intercepting dequeues
from the group of intercept ports that represent send rights various tasks have to
port p.

Message reordering is accomplished by using a multi-threaded server approach.
Each series of intercepted messages (application and control) are considered a “re-
quest” to a multi-threaded server, where the application port-specific thread dequcu-
ing messages from the associated set of intercept ports can be considered the “multi-
threaded” server. When the group of three messages are received by the server, it
spawns an independent “request thread” which serves to forward the three messages
when it accords with the history log and then die, having served its purpose. Other-
wise, the “request thread” puts itself to sleep until the history log is advanced, where
it again checks whether it is its turn to forward its group of messages. Algorithms

AA and BB show how this is accomplished:

AA: Intercept Request Thread(pointer to memory m)
/* in case the same thread sends to the same intercept port and
there is a back-log of InterceptRequestThreads from one port,
then the FIFO ordering of message sending between a certain
thread and port will be lost, so each thread carries a local
variable “priority” which mainiuins the FIFO order within the
pending InterceptRequestThreads threads */
AA1: IF there are other pending InterceptRequestThreads representing
messages sent by a thread of a particular task
my _priority = number of pending InterceptRequestThreads.
AA2: ELSE
my _priority = 0.
ENDIF
AA3: WHILE ((task that sent message !=

current task in enqueuing history log for real port) OR

97

AA4:

AA5:

AAG:

AAT:

AAS:
AA9:

(thread that sent message !=
current thread in enqueuing history log for real port) OR
(my priority = 0)) /* remain in “waiting” loop */
IF (((task that sent messave ==
current task in enqueuing his.ory log for real port) AND
(thread that sent message ==
current thread in enqueuing history log for real port)) AND
(my _priority != 0))
my _priority = my _priority - 1.
ENDIF
go to sleep, to be awakened only when the enqueuing
history for the port in question has been advanced.
ENDWHILE
at this point, forwarding rights have been icquired, so forward the
real and replay control messages to their ultimate destinations.
advance the enqueuing history log for the real (application) port in question.
signal (wake-up) all pending InterceptRequest Thread’s waiting for

permission to send to the port in question.

BB: MainlnterceptServiceThread(intercept_port_set)

BB3:
BB.{:
BB5:

BBG:

/* intercept_port_set represents an application port */
BBI:
BB2:

receive (dequeue) intercepted message from an intercept port.
determine from which intercept port it just received a message {rom,
thus determining which virtual task from which a thread just
sent this message from.
IF all messages of group came
allocate memory m for 2 messages.
copy the two received messages (one from buffer b and one from
the message receive buffer) into the allocated memory m.

fork and detach an “InterceptRequest Thread” to forward the

98

“group of two messages in memory m to their intended
destination when the execution history says it can.

BB7: ELSE

BB8: store received message in a buffer b that is associated to the

intercept port just received from.

ENDIF

Timeouts are handled by the rep_-msg_send() library routine before any message
is actually sent. The library routine notes whether the send primitive has specified
any timecut. If yes, the library routine checks the timeout log history for the thread
wishing to perform a timeout with a send operation. If the history says that the
send operation timed-out during the recording phase, then the library routine will
not perform any send operation-instead it will simply simulate an Q.S. return code
signifying that the operation “timed-out”. Otherwise, the library routine will guar-
antee that the send operation will not time-out by executing a recal “msg.send()”

operation without any timeout specified.

5.3.2 Message Receiving
Recording Phase

Just as for message sending, all instances of message receiving primitives are trans-
formed into a function call (rec_msgreceive()). This call is linked to a debugging
library routine which monitors all received messages (dequeued from a port), as well
as actually receiving the message. Each task has within its address space (secretly
maintained by the debugger) a list of data structures consisting of elements that map
a port right that the task currently has rights to with that port’s virtual name. For
each application message that is received, the debugger routine (rec_msg.receive())
expects a control message describing the newly arrived application message to imme-
diately follow the message. Both the application and control message are forwarded

by the CONTROLSERV serving the local node for the distributed program in question.

99

On receipt of a message, rec_msgreceive() must log which thread received (de-
queued) the message and set-up message interception if new send rights were received.
See section 5.3.3 for the handling of transferal of receive rights. The algorithm for

rec.msg._receive() is described in Algorithm C:

C1: OS_return_code = msg.receive().
C2: IF dequeued message from the notify port
C3: log which virtual thread dequeued message
into the notify port log for this virtual task.
C4: return OS_return.code (see C1) to the application program
which called msg_receive().
ENDIF
C5: dequeue control message.
C6: FOR each port-right that was passed in the message just received
C7: IF (port-right already exists in this task)
Cs: unmark the “unmoveable” flag for matching receive rights
for the duplicate port rights this task has just
received at the GPNAMESERV at the node where
the receive rights are at (ie. send RPC to that
GPNAMESERV).
CY: go to C6.
ENDIF
C10: IF a send right s was received
Cll1: create a new port-to-virtual-port mapping in recipient
task’s address space and enter data.
Cl2: set-up interception so that all messages sent to s
will be intercepted. A request RPC is sent to the CONTROLSERV
on the node where receive rights are located, as indicated
in the control message for the port whose send right was received

requesting that interception be set-up.

ENDIF

100

ENDFOR

Cl3:return OS_return.code (see C1) to the application program

which called msg_send().

The CONTROLSERV’s “intercept set-up” RPC routine does the following (see algo-
rithm CY). Note that the capability to extract and insert port capabilities is greatly
simplified if the operating system provides primitives to accomplish the operations
(as Mach does). The name of the send-rights to the intercept port is given the same
name as the original extracted capability in order to make interception transparent to
the user of the program (see line CY3). For line CY4, recall that the “unmoveable”
flag was set when a request for location of receive rights came in, a prelude to an

intercept set-up request.

CY: setup-interception()
CY1: extract sending rights to port p (with name n) from the task
t that just received send rights (the CONTROLSERV
now has send rights, and the task ¢ currently has no
send rights to associated with name n).
CY2: allocate an intercept port.
CY3: insert s .nd rights to intercept port to task ¢
under name n.
CY4: unmark the “unmoveable” flag on port p's receive rights

in the local GPNAMESERV.

A thread in a multi-threaded application program can dequeue from any port
that the task has receive rights for. Thus, the possibility of a race condition exists
(ie. non-determinism). Thus, dequeuing logs must be maintained for each port (see
table 5.10).

There also exists a separate dequeuing log for notify ports (see table 5.11).

vl

Who adds to log

task-thread that dequeues from application port (via macro)

Kind of data

name of virtual thread that dequeued the application port

Who created log

The application task when it receives the
receive right for the application port
(port.allocate or receiving receive rights in
a message) for the first time. If the task
gives away the receive right and then later
receives it again, then it will keep using the
existing dequeuing log for that port.

Location of log

In the physical log file dedicated to a particular
application task

Table 5.10:

History of message dequeuing at an application port

Who adds to log

task-thread that dequeues from application
port (via macro)

Kind of data

name of virtual thread that dequeued the application port

Who created log

The application task when task is created (init_cdb)

Location of log

In the physical log file dedicated to a particular

application task

Table 5.11: History of message dequeuing at a notify port

The result of timeouts on msg_receive() primitives are monitored and are logged
in the same thread-specific log as the results of timeouts on msg_send() primitives

(see table 5.9 in section 5.3.1).

Replay Phase

The rep_m: g_receive() macro is essentially the same as algorithm C, except that it
receives extra information in the control message (between lines C12 and C13) like
marker-messages, which is then used by the checkpoint and rollback-related code
in the rep_msg receive() routine as well as a global time-stamp, which is used by
the database tool. Furthermore, the rep.msg.receive() macro differs from its record-
ing phase counterpart in that rep.msgreceive() must ensure that the same threads
receive from a given port in the same order as during the recording phase. The
rep_msg_receive() macro achieves this with the following steps described in algorithm

LL below (algorithm LL is a component of the rep_msg_receive() macro):

LL1: super_mutexlock(p).

LL2: WHILE (not my turn to receive from port p)

LL3: condition._wait(super.mutex_unlock(p), wake_up_call).
LL4: msg.receive(p).

LL5: advancelog(p).

LL6: super_mutex.unlock(p).

Furthermore, timeouts are handled differently in rep_msg._reccive() than in the
rec.msg.receive() routine. If the latter routine notices that a msg.receive() has a
time-out specified, it checks the calling thread’s timcout log to determine whether

the timeout during the recording phase occurred or not.

o If the msgreceive() had timed-out during the recording phase, a real
msg.receive() is not executed. Instead, the rep_msgreceive() routine returns a
simulated O.S. return code to the calling program, indicating that the

msg.receive() operation had timed out.

103

e If it had not timed-out during the recording phase, a real msg.receive() is exe-
cuted without any time-out specified, thus guaranteeing that the msg_receive()

primitive will not timeout during replay phase.

5.3.3 Transfer of Receive Rights

The transfer of a port’s receive right from one task to another, especially when the
tasks reside on scparate nodes, must be dealt with by the recording/replay controller
(the transfer of send rights in a message is covered in sections 5.3.1, 5.3.2, and 5.3.4).
The reason for which the replay system must specially handle this type of trans-
action is to ensure that interception of messages always occurs at the node where
the task that currently holds the receive rights for a certain port resides. A shift
of a receive right between tasks on the same node doesn’t trigger any interception
set-up adjustment being taken on the part of the recording/replay subsystem of the
debugger.

It is assumed that port receive capabilities can only be passed to another task in a
message (no netname server can be involved) from the current holder of the capability
to the intended task, and that only one task can hold the receive rights to any port
at any instance of time. Also it must be noted that a receive right can only be sent
to anothes task t if the sending task has send rights to a port that task ¢ has receive
rights on. This implies that message interception should already be set-up, thus the

reccive right will be intercepted by the [REP]JCONTROLSERV.

Recording Phase

A receive port right being passed in a message is followed by a control message
indicating the virtual name of the sending task-thread, the node fron- which the
receive right is coming, and the virtual name of the port whose receive right is being
passed. When the CONTROLSERV notices that it just intercepted a receive right in
transit from another node, it sends an RPC to the CONTROLSERV, on the node
where the receive right in-transit formally resided, to request the receive-rights to all

the intercept ports that represented send rights other tasks had to the port whose

104

receive rights has just moved be moved to the CONTROLSERV on the new node.
Then, the CONTROLSERV that intercepted the receive right in-transit forwards the
receive rights it received toward the intended port. The following algorithms (EA,
EB, EC and ED), all in abridged format, demonstrate the relevant portions of various
debugging libraries during the recording phase for transferring the interception set-up
when a receive right is transferred to a task on a different node. A graphic description
of the protocol in found in figure 5.8.

Algorithm EA describes the relevant portions of rec_msgsend() that apply to
transferring reccive rights. The delay of 1 second on line EA4 is compensated by the
fact that it is highly unlikely, but nonetheless possible, that the port will be considered
“unmoveable” (due to an interception set-up in progress) when a task decides it wants
to move its receive rights to a task on another node. This is because interception
set-up of a send-right to a port only occurs once for a given task throughout its

lifetime.

EA : recmsgsend() /* abridged algorithm */
EA1: /* it has been determined that a receive right to some port
p is being transferred */
EA2: send RPC to GPNAMESERV to determine if receive rights to port p
can be transferred (no set-up interception currently in progress).
EA3: WHILE (receive rights to port p cannot be moved)
EA4: wait for 1 second.
EA5: send RPC to GPNAMESERV to determine if port
p can be transferred (no set-up interception
currently in progress).
ENDWHILE
EA6: msgsend()./* send the receive rights-will be intercepted by
the CONTROLSERV on the remote node */
EAT7: send control message, which indicates the virtual name of
the sending task-thread, the virtual name of the receive rights,

and the node where receive rights used to be.

105

The Intercept Threads, which each dequeues from a group of intercept ports that
each 1_present send rights to a particular application port at the CONTROLSERYV at
the node where a receive right is arriving, performs the following actions (algorithm

EB) on the receipt of a receive right:

EB: InterceptThread()

EB1: receive (by interception) the receive right.

EB2: send RPC request to CONTROLSERV on the remote node where
the receive rights are coming from, requesting a transfer of
the interception to this node.

EB3: receive receive-rights to transferred interception ports (reply
to EB2 RPC request).

EB4: IF (enqueuing log for port whose receive rights it just
received don’t yet exist on this node's LOGSERV)

EB5: start such a logical log.

/* if the logical log exists, then future logs to this
logical log will be appended to the existing log */
ENDIF

EBG: forward the receive right to the intended port.

Each CONTROLSERV has a dedicated service port for RPC requests, such as for
requests to transfer interception schemes for a real application ports whose receive
rights have moved to another node. The CONTROLSERV intercepting such traveling
receive rights will send an request to the CONTROLSERYV on the other node demanding

the service of transferring interception schemes be performed (see algorithm EC).

FC: RPCServerThread() /* at CONTROLSERYV at node from
which receive right has just been sent from */
EC1: receive RPC from remote CONTROLSERV that just intercepted

a receive-right that was sent in a message.

106

EC2: stop dequeuing application messages for the intercept port(s) representing
the various tasks that have send rights to the port whose receive
rights have been transferred to another node.
EC3: mark in enqueuing log that receive rights were transferred to
another node at that point.
EC4: forward remaining messages, that were dequeued from the intercept
ports that are associated with the port whose receive rights are
moving to ancther node, to the intended (application) port.
EC5: stop forwarding messages to the intended port.
EC6: send receive-rights of relevant intercept ports to the

calling RPC client (CONTROLSERV).

Finally, algorithm ED shows what special acticn may have to be taken when the

receive right is finally received by the application on the different node:

ED: recmsg._receive()
ED1: IF (a dequeuing log for the port it just got receive rights for
doesn’t exist yet on this node)
ED2: create a new logical log for the dequeuing log of port
it just got receive rights for.

ENDIF

Replay Phase

During the replay phase, transferral of a receive right is handled in essentially the
same manner as during the recording phase. The only complication is at the REPCON-
TROLSERV, where during the recording phas=, the CONTROLSERV dequeues a specific
number of messages which it forwards to the intended port before the interception
scheme is moved to a CONTROLSERV on a new node. The REPCONTROLSERV must

dequeue the same messages before allowing the interception scheme to be moved.

107

The following abridged algorithm (EF) is for the InterceptThread in REPCON-
TROLSERV on the node that has just intercepted a receive right that is being trans-
ferred from another node in a message. The sleeping InterceptRequestThread’s comes

frorn algorithm AA (see page 97):

EF: InterceptThread()

EF1: receive (by interception) the receive right.

EF2: send RPC request to REPCONTROLSERV on the remote node
where the receive right is coming from, requesting a transfer
of the interception to this node.

EF3: get receive rights to the transferred interception ports
(in reply message to the RPC request [in EF2]), as well as
receive data on any sleeping InterceptRequestThread’s that could not
forward to the port whose receive rights are being transferred
on the old node due to the fact that the execution history
of the “moving” port resumes on this node.

EF4: The transferred pending InterceptRequestThreads are restarted on
this REPCONTROLSERV.

The “:leeping Intercept RequestThread’s” mentioned in line EF3 refer to messages
that the REPCONTROLSERV received out-of-order with respect to the execution his-
tory. Thus the REPCONTROLSERY is delaying the forwarding of these messages (see
algorithm A A on page 97) to the intended port.

The following algorithm (EG) is for the RPCServerThread in REPCONTROLSERV
on the node where a task is giving away areceiveright. Note that the InterceptThread
is multi-threaded during the replay phase in that it spawns InterceptRequestThreads
which serve to forward the message to the destination port at the correct time. This
implies that the REPCONTROLSERV may have pending Request Threads that represent
intercepted messages that were intercepted at a different node during the recording
phase. The following algorithm takes this possibility into account (see lines EG5 and
EG6).

108

EG: RPCServerThread()

EG1:

EG2:

EG3:

EG4:

EG5:

receive RPC from remote REPCONTROLSERV that just
intercepted a receive right that was sent in a message
requesting transferral of the interception scheme to another
node.
IF (all the messages that were intercepted and then
forwarded before the RPC request came during the recording
phase have not happened yet)

wait for the missing messages to arrive and

forward them.
ENDIF
stop dequeuing application messages for the intercept port(s)
representing the various tasks that have send rights to the
port whose receive rights have been transferred to another node.
send receive-rights of the relevant intercept ports to
the calling RPC client (REPCONTROLSERV), as well as the
specifics of any pending request-threads that represent
intercepted messages that were originally intercepted on another

node during the recording phase.

: kill pending Reques.Threads that were “transferred” to

the remote node where the receive rights were moved to.

5.3.4 Netname Server

Recording Phase

The debugging platform assumes that there exists a netname server on each node
of the system, which allows arbitrary tasks the ability to obtain send rights to well-
known (by some text string) application ports. Only ports whose send rights are
explicitly registered under a well-known pseudo-name at a specific node’s netname

server can be “looked-up”. Furthermore, a broadcast request to all nodes (netname

109

servers) for a specific pseudo-name can be performed. Each netname server is assumed
to work independently on each node and is considered a minimal “bootstrap” server
on which more sophisticated name servers can be built upon.

Again, all netname server related primitives are transformed into special function
calls to primitive-specific debugger routines during the transformation of the program
prior to the start of the recerding phase.

The chief difficulty of incorporating a netname server into a monitoring/replay
system that dynamically arranges for message interception as new ports and/or new
or existing port rights are distributed or rearranged is that a typical netname server
docs not maintain or provide .he virtual name (see section 5.1.5) of the port it is
distributing (on request), thus making monitoring difficult. Another difficulty is that
a recipient of a “looked-up” send-right cannot determine on which node the receive
rights are located, making the process of interception set-up seemingly impossible
(message interception is always arranged at the CONTROLSERV on the node where a
port’s receive right resides).

When receiving a port right in an application message, the control message that
follows it contains the above mentioned required information (virtual port ID and
location of receive rights). A netname server is a public server which cannot be
recompiled at will, and is often incorporated into the kernel itself (in some O.S.’s).

In order to achieve the goal of making the debugger as portable as possible, the
netname server was not altered for the purposes of monitoring (or replay). Instead
of having the netname server send a control message describing the port rights it
is sending, there exists a server (GPNAMESERV, see section 5.2.5) on each node that
keeps track of the virtual names of all send rights to ports which are registered on the
same node's netname server, as well as the location of the registered port’s receive
rights. Specific debugger library routines request the necessary information when
required from the GPNAMESERV. For rec_netname_checkin() (which replaces the
real netname_checkin()), it is described by Algorithm E. It is assumed that a task
can only check in a port it has send rights to, and a task can only check in to the

local netname server.

110

El: OS_return_code = netname.check.in().

E2: IF OS_return_code == failure

E3: return OS_return_code (see Al) to the application program.
E4: record type of netname._check.in() failure.
E5: exit this routine.

ENDIF

E6: place an entry in the local GPNAMESERV, mapping the

netname string to the virtual name of the port the local

netname server now has registered.

/* virtual port to O.S. port mapping is found in a data within the task itself */
E7: record type of netname_check_in() success-code.

E8: return OS_return.code (see A1) to the application program.

The result of netname_checkin() calls (success or failure codes) are recorded in
the calling thread’s netname system call history log (see table 5.12). The combination
of these calls can be non-deterministic in that it is possible numerous tasks can be
involved in race-conditions to attempt to request various services of the netname
server which cannot not be guaranteed to be reproducible between re-executions.
For example, two tasks can be racing to check-in the same “netname” on the same
node’s netname server.

The rec.netname.checkout() routine sends an RPC to the local GPNAMESERV,
instructing it to remove the netname-to-virtual-name tuple that contains the netname
specified in the netname_checkout() call. The results of this system call are also
recorded in the netname system call history log associated with the calling thread.

For recnetname_lookup(), it logs the result of each look-up attempt (success or
failure) in the task-thread’s history log (sec ‘able 5.12), as well as the node where
the look-up succeeded if a broadcast look-up was involved. Algorithm F explains the

procedure:

F1: IF (a netname broadcast lookup attempt)

F2: look-up each node’s netname server in some random sequence

111

until the name is found (and thus logged) or all nodes

have been searched once without finding the specified netname.

F3: IF (netname lookup a failure)
F4: log error code in the task-thread log.
F5: exit this routine.
ENDIF
F6: log the name of the node where the look-up succeeded

in the task-thread log.
F7: ELSE /* direct lookup at a specific node */
F8: record the result of the netname look-up.
ENDIF
F9: IF send right to port p just received was not previously owned
by this task
F10: go to GRNAMESERV on node where the netname lookup
succeeded, ohtain the virtual name of the port send
rights it just obtained, and put the virtual name to
portname mapping within the task’s debugger data structure
mapping virtual to real port names.
F11: broadcast to all gpnameserv’s (on all nodes) to determine
location ! of the receive rights of the port p.
F12: send RPC to CONTROLSERV on node [asking it
to arrange message interception for newly acquired send right.
ENDIF
F13:return OS_return_code to the application program

which called netname Jookup().

Replay Phase

The netname system calls are transformed into replay phase specific library calls,

which call primitive-specific debugging routines, which perform additional duties in

112

e

Who adds to log | The task-thread that makes a netname lookup
call (via a macro).

Kind of data The result of the netname call. If a broadcast
lookup, the node from which the lookup succecded
is recorded as well.

Who created log | Application task-thread then thread is created

by forker thread, or init_cdb() if initial thread.
Location of log | The physical log dedicated to a particular
application task.

Table 5.12: History of netname system call results

addition to actually executing the calls they are emulating.

Both the rep_netname_check.in() and rep_netname_check_out() debugger library
routines check the history of netname system call results for the calling thread before
actually executing it. If the history log states that the netname call was a success
during the recording phase, the call is executed immediately—otherwise, the netname
call is not executed and the library routine returns the error-code stated in the his-
tory log to the application program, thus simulating a faulty netname call. Due
to random delays during the replay phase, a successful netname_check.in() or net-
name_check _out() call during the recording phase can still fail during replay phase.
To compensate, their respective debugging library routines will repeatedly retry the
failed netname call until the call succeeds, and only then will the debugging library
routine return a success code to the calling application program (see algorithm CC).

For the netname_lookup() primitive that doesn’t involve a broadcast lookup (i.c.,
the look-up is directed at a specific node), just as for the netname._checkin() and
netname._check.out() calls, the debugger library routine associated with the call first
checks the netname execution history for the result of the call during the recording
phase. If it was a failure during the recording phase, a failure is simulated during
the replay phase. Otherwise, the call is tried until it eventually must succeed (see
algorithm CC).

For the netname.lookup() primitive that involves a broadcast lookup, the asso-

ciated debugger library routine determines from the netname history log (for the

113

calling thread-task) whether the broadcast was successful, and if yes, from which
node did the broadcast succeed in acquiring send rights (in the case when more
than one netname server has the same “name” rcgistered). This way, the debug-
ger routine can make a “persistent” netname look-up only at the node where the
broadcast lookup succeeded during the recording phase. Algorithm CC explains the

rep-netname Jookup() routine:

CC: rep_netnamelook.up(hostname, portname, portid)

CC1: get the next log element for this virtual task-thread from the
special netname log (for the calling task-thread), which will
consist of the result of the netname_look_up primitive.

CC2: IF (netname failed during the recording phase)

actual call not attempted; instead, the error code recorded
during the recording phase is simply passed back to the
application program.

CC3: exit this routine.
ENDIF

CC4: IF (thi is a “broadcast” lookup)

CC5: get from the execution history (for the calling thread-task)

the node name where the look-up succeeded.

ENDIF
/* execute the netnamelookup(), but instead of a broadcast,
lookup netname at the node where it succeeded during the
recording phase */

CC6: return_code = netnamelook_up(nodename).

CCT: WHILE (return_code !'= KERN_SUCCESS)

CCs: pause 1 second.

CC9: return_code = netnamelook_up(nodename).
ENDWIILE

CC10:IF (send rights to this port don’t already exist)

/* ie. interception not yet set-up for this send right */

114

CCl1: broadcast a request message to all gpnameserv's, for

the purpose of asking where (on which node) the receive

rights are located for the send rights just received

from the netnameserv.

CC12: send a request for interception set-up for the newly

acquired send right to the repcontrolserv on the node

where the receive rights to the port reside.

ENDIF

5.3.5 Non-deterministic system calls

Most modern operating systems have primitives that allow the user to choose some

value to a parameter or to allow the operating system to select it. One prime exam-

ple is the allocation of virtual memory-by default, the operating system may allocate

the requested size at a location of its choice or the user may specify a starting ad-

dress. The result of all such non-deterministic calls in which the operating system

is allowed to choose a parameter is logged during the recording phase (in the calling

task /thread’s specific log, see table 5.13). The system call is then re-exe.ied in the

replay phase by explicitly specifying the same parameter that was chosen by the oper-

ating system during the recording phase, thus rendering the system call deterministic

during the replay phase.

Who adds to log

task-thread that does a non-det. system call

Kind of data

the result of the non-deterministic call

Who created log

application task/thread when thiead is created
(by forker-thread or initcdb if initial
thread of task)

Location of log

In the physical log file dedicated to a
particular application task

Table 5.13:

wmsv:\:g-;r PO
2

History of non-deterministic system calls

115

5.3.6 Threads and Synchronization

In a multi-threaded environment where threads share a common address space, the
shared spaces are often protected by explicit mutual exclusion constructs. Synchro-
nization primitives (condition variables) together with mutual exclusion constructs
are used to constrain the possible inter'eavings of threads’ execution streams. The
resultant approach (as is used in C-Threads [6], which is used in the debugger proto-
type) separates the two most common uses of Dijksta’s P() and V() operations into
distinct facilities and thus basically implements monitors, but without the syntactic
sugar [6)].

The order in which threads gain exclusive entry to given mutual exclusion con-
structs can influence the paths and states of execution the threads take. This form of
non-determinism can thus mask bugs and errors in the program from re-execution to
re-exccution, depending on CPU scheduling and random delays. Thus, the sequence
of thread entry Lo every mutual exclusion construct must be recorded during the
recording phase and enforced during the replay phase.

As well, “condition signals” sent to sleeping threads must be recorded as to which
thread they woke-up, since a particular signal will wake-up exactly one specific thread,
even if more than one thread is waiting on a particular condition_wait() primitive.
If a broadcast signal is sent, the ide-~tities of all recipient threads of the broadcast
must be recorded (during the recording phase) so that it can be arranged during the
replay phase that exactly the same group of threads will receive the signal®. This is
more complex than it seems, since for example, during the replay phase, the original
recipient of a condition signal may not be ready to receive a signal (hasn’t gone to
sleep on the appropriate condition_-wait() prinative) when the sender thread of the
signal is ready to “fire”. The replay phase must coordinate the reconstruction of
non-deterministic events among threads.

The events of interest to the monitoring/re-execution controller are:

1. the sequence and instance in which threads gain entry to mutual exclusion

constructs.

5a thread must be waiting in a condition_wait()

116

2. the instance in which threads surrender exclusive access to mutual exclusion
constructs (applies to the replay phase). This is done so that the replay con-
troller can grant access to the mutex to the next thread listed in the execution

history.

3. the threads that received a “signal” to “wake-up” from their sleep state (on a

condition._wait() primitive) and which thread sent the signal.

It is assumed that debugging will take place in a pre-emptive multi-threaded en-
vironment (not a co-routine implementation) and that the C-Threads package is used
[6]. During transformation of the application program, most C-Thread primitives are
selectively replaced with specific debugger library calls, which perform the C-Thread
call they replace, as well as relevant monitoring/replay duiies related to the call.
Only the C-thread routines related to condition.signal()’s, so that the debugger can
obtain the O.5.’s thread-id(s) that just caught a signal sent, needed to be changed.
This is necessary because an efficient mechanism for obtaining the aforementioned

thread-id’s by simply angmenting the source code was not found.

Virtual Naming of Thread Resources

Condition variables and mutex’s are given identical virtual names during the record-
ing and replay phases so that the execution histories can match up with the correct
thread resources during a reexecution of a multi-threaded application program. This
1s achieved by doing the following: on allocation of a condition variable or mutex, the
virtual name of the thread that allocated it is recorded in a log of condition vari-
able allocation or log of mutex allocation, as the case may be (see tables 5.14
and 5.15). The allocation of new condition variables and new mutexes are sequen-
tialized respectively by making the allocation of the resource class and the granting
of a virtual name for it atomic by protecting the operation with a mutual exclusion
construct for that purpose. During the replay phase, the replay subsystem guaran-
tees that the same sequence of threads that allocated condition variables or mutexes

during the recording phase would allocate them again in the same sequence so that

117

the granted virtual name would be the same during both phases of debugging. The
virtual name consists of an integer that is incremented after assigning a name to each

resource (condition variable and mutex) respectively as they are created.

Who adds to log | task-thread (via debugger library routine) that
successfully allocates a condition “ariable
Kind of data the virtual name of the allocating thread

Who created log | application task (via init.cdb()) when task is
first created

Location of log | physical log file dedicated to a particular
application task

Table 5.14: History of condition variable allocation

Who adds to log | task-thread (via debugger library routine) that
successfully allocates a condition variable

Kind of data the virtual name of the allocating thread

Who created log | application task (via init_cdb()) when task is
first created

Location of log | physical log file dedicated to a particular
application task

Table 5.15: History of mutex allocation

Detection of Mutex Exit

During the replay phase, detection of the exit of a thread from a mutual exclusion
construct is important so that the replay controller can give permission to the next
thread in the mutex’s log to enter.

The following special conditions must be watched for and handled in a specific

manner in order to detect a mutex becoming unlocked:

o Mutex unlock operations on already unlocked mutexes must be detected, since

they are false mutex unlock operations (logical no-ops). This can be remedied

by executing “mutex.try Jock(lock)" once before executing the real mutex un-
lock operation (either mutex.unlock(lock) or condition.wait(cond, lock)8). If
mutex.try lock(lock) returns TRUE, it means lock was not locked, and there-
fore, the mutex unlock operation is a false mutex unlock (debugging library
routine must mutex unlock(lock) immediately). If mutex.try Jock(lock j returns
FALSE, then the macro must check if the lock is held by another thread (thus
making the mutex_unlock(lock) false as well). This can be accomplished by
maintaining a special data structure within the task that indicates which thread
presently has the lock for a given mutex. This data structure is updated each

time a mutex is entered and exited.

o If a thread aborts (or exits) while holding some lock, the lock will be perma-
nently locked. This is normal C-Thread behavior, and therefore the monitor-
ing/replay subsystem will not take any special action to defeat this normal

behavior.

e If a condition_wait(c, lock) is not properly preceded by a mutexlock(lock),
the implicit mutex_unlock(lock) when condition_wait(c, lock) executes will be

a no-op. The calling thread will sleep on the wait queue until ¢ arrives.

1. mutex_unlock(lock) A macro during the replay phase will transform
mutex_unlock() to rep-mutex.unlock(), which performs the following routine:

Note: There is no need for a *

‘super-mutex”” to surround the entire macro
(i.e., to sequentialize all mutex_unlock(lock) operations), since all that must
be determined is whether the calling thread that wants to unlock “lock™ truly
owns “lock”. During the replay phase, a “mutex_unlock()” is never artificially
blocked, but it must be reported so that the next thread that should enter the

mutex according to the execution histories is given permission to do so.

Simplicit mutex.unlock() on execution
“a mutex transparently created by the debugger to assist it controlling the monitoring/execution
of multi-threaded tasks by restricting threads from executing certain calls when need be

119

boolean_var = mutex_try_lock(lock);
if (boolean_var == TRUE) { /* lock was unlocked => false mutex
unlock */
mutex._unlock(lock); /* let go of acquired lock immediately */
/* do not inform a mutex was unlocked, since it really wasn’t */
mutex_unlock(lock); /* real, although a logical noop */

}
else { /* check if lock is currently held by the CALLING thread */

cthread-id = lock_holder_lookup(lock);
if (cthread-id == cthread_self()) { /* lock is currentlw held
by calling thread */
mutex_lock(super_lock(lock)); /* make report atomic with
mutex_unlock so that no
other thread can unlock
"lock" until this thread
reports AND unlocks */
inform_MUCF_of _mutex_unlock{lock) ;
mutex_unlock(lock); /#* real */
mutex_unlock(super_lock(lock));

}
else /* cthread-id != cthread_self() */
mutex_unlock(lock); /* real, even though logical noop */

2. mutex_unlock(lock) No macro during the recording phase is needed, since only
mutex entry is recorded during this phase “as it happens™ (thread gets access,
and doesn’t just block at mutex_unlock()).

3. condition_wait(c, lock) A macro during the recording phase will not expand
this call for the purposes of mutex unlock detection (but it is expanded for
when this primitive implicitly takes the lock, see below).

There is no need to inform the Mutex_unlock Coordinator and Flagger daemon
thread (MUCF, see page 131 for more details) of the implicit mutex.unlock()
during the recording phase, since all that must be done is to execute condi-
tion_wait() and log when the calling thread actually enters the mutex.

4. condition_wait(cond, lock) A macro during the replay phase will expand this
call to the following algorithm. “condition_wait{) statements are artificially
held back in this macro in order to prevent threads from receiving the wrong
signals at the wrong time, relative to the execution history:

120

[% *xmkmmpnnnnkersrss utility function of 4.kssnsksesssssnsnsrrs &/
rep_control_condition(virtual-thread-id, condition, mutex)
{
/* ‘‘cc’’ thread coordinates replay of threads =/
tell_cc_ready_to_do_condition.wait_when_allowed(virtual-thread-id,
mutex) ;

mutex_lock(super_lock(cond)); /* the mutex is condition-specific,
so that the cc can update which
thread can execute the real
condition_wait() (a shared memory
variable) next without being
subjected to any race
conditions */

/* the calling thread will have to check its 7D with the
variable that’s set by the cc in order to determine
whether the thread can proceed to execute the real
condition_wait. »/

vhile !(cc_gives_me_permission_to_execute)

condition_wait(cc.c(c), super_lock(c));
/* "super_cond(cond)" is a condition specific signal */

mutex_unlock(super_lock(cond));

/* at this point, the thread has permission to execute the real
condition wait */

/* a policy decision: the replay controller only gives permission
to wake-up a thread (among other conditions) when it will be
the ONLY candidate to be scheduled to actually get the
lock. */

inform_MUCF_of_mutex._unlock(lock); /* due to upcoming
condition_wait() =/

condition_wait(cond, lock);
/* real, although mutex_unlock is noop #*/

inform_MUCF_of _mutex_lock_acquired(lock, virtual-thread-id);

/* due to condition_wait() receiving a signal */

}

/% sxxxxxnrrnkxkakrkakend of utility functionsssssxxsusennksnns */

121

/% wxsxxnsnssnsnnnsss main body of macrokkkskkkkkkkkkkkknkhkkk */
/* does "lock" really belong to me? */

boolean_var = mutex_try_lock(lock);
if (boolean_var == TRUE) { /* lock was unlocked => false
mutex unlock */
mutex_unlock(lock); /* let go of acquired lock immediately */
/* do not inform of mutex_unlock, since it’s a noop */

rep.control_condition(virtual-thread-id, cond, mutex);

}
else
{ /* check if lock is currently held by the CALLING thread */
cthread-id = lock_holder_lonkup(lock);
if (cthread-id == cthread_self()) { /% calling thread
holds lock */

/* no super-mutex required here, since the replay
controller will never allow more than one thread
to be waiting for a lock. Since the waiting
thread will never get the lock until the previous
thread has let it go (within the MACR0), there
is no chance of a race, even without using a
super-mutex */

inform_MUCF_of _upcoming_mutex_unlock(mutex) ;

rep.control_condition(virtual-thread-id, cond, mutex);

}
else /* thread-id '= cthread_self() */

/* mutex_unlock is unreported, since it’s a noop */

rep_control_condition(virtual-thread-id, cond, mutex);

Detecting and Handling Mutex Lock

When a thread wants to enter a mutex, it must, coordinate with the recording/replay

controller so that:

122

1. during the recording phase, the mutex entry is logged only when the calling
thread has in fact entered the mutex, since a thread that has executed mu-

texJock() can be put on a wait queue if the mutex is presently locked and,

2. during the replay phase, the thread (within a transparent debugging library
routine) must ask and be given permission to enter a mutex from the MUCF
before it actually executes a real mutex.lock(). In otherwords, all mutex.lock()
operations are intercepted and actual entry into the mutex are serialized and
order adjusted, if necessary, by the replay monitor according to the recorded

data.

During the replay phase, a thread which has been given permission to enter a
mutex must be guaranteed that the mutex will be entered immediately after the
thread executes mutexJock() by guaranteeing that the lock is unlocked at that time
and that no other thread can possibly beat it to the mutex by not giving any other
thread to permission to execute mutexlock() on the lock in question. The thread
that now has permission to enter the mutex is placed in the sleep state alone waiting
for that mutex to become free (if it isn’t so already) so that it won’t have to race
with any other thread to gain exclusive access to that mutex. A log exists for e _ry
mutex that is allocated by an application task. A log element of a mutex entry is

shown in table 5.16.

Who adds to log | task-thread that was granted entry into
mutex (via debugger library)

Kind of data the virtual thread-id that gained entry into
the mutex

Who created log | Application task-thread when it allocates a
new rnutex

Location of log | In the physical log file dedicated to a
particular application task

Table 5.16: History of mutex entry in a specific mutex

1. mutex_lock(lock) During the recording phase, this primitive will be expanded

to:

123

mutex_lock(lock);
log_mutex_entry(virtual_thread_id, virtual_mutex_id);

2. mutex_lock(lock) During the replay phase, this primitive will be expanded to
the following routine. A lock-specific “super-mutex” is needed to to give the
thread exclusive access when it checks a shared variable to determine whether
it is its turn to grab the mutex lock:

mutex_lock(super_lock(lock)); /* mutex specific */

while (!(do_I_have_permission_to_enter(virtual-thread-id,
mutex)))
condition_wait(mucf_c, super_lock(lock));

mutex_lock(lock);
inform_MUCF_of_mutex_lock_acquired(lock, virtual-thread-id);

mutex_unlock(super_lock(lock));

Handling the “mutex_trylock()” primitive is handled somewhat differently (with
respect to the blocking mutexlock() primitive). Since it is a non-blocking call, if
the call failed, the thread may have done other things, possibly changing the state
of its holding task, possibly changing the state depending on how many times mu-

tex_try.doc’i() failed, which can vary from execution to execution (see Table 5.17).

1. mutex_try lock(lock) During the recording phase, a macro wili expand this call

to:

mutex_lock(super_lock(lock)); /* mutex specific */
if (mutex_try_lock(lock)) {
log successful mutex_try_lock() attempt in thread’s execution
history of ‘‘mutex_try_lock’s’’;
log_mutex_entry(virtual_thread.id, v. :ual_mutex_id);

124

Who adds to log | The task-thread that just attempted
mutex_try lock()

Kind of data The return code of the mutex_try_lock()
primitive

Who created log | Application task-thread when it is created
(via init_cdb())

Location of log | In the physical file dedicated to a particular
application task

Table 5.17: History of mutex_try Jock()

else /* mutex_try_lock(lock) failed, ro log failure attempt */
log unsuccessful mutex_try.lock() attempt in thread’s execution
history of ‘‘mutex_try_lock’s’’;
mutex_unlock(super_lock(lock)) ;

2. mutex_try lock(lock) During the replay phase, the mutex_try lock(lock) prim-
itive will expand to:

mutex_lock(super_lock(lock)); /* lock specific */

if (thread’s execution history of ‘‘mutex_try_lock’s’’ indicates
that the call failed)
/* simulate a failed mutex_try_lock(lock) by returning error
code to the application program */
return(failure code);

/* if this point reached, thread’s execution history indicate that
the mutex_try_lock(lock) should succeed at this point */

if (do_I_have_permission_to_enter(virtual-thread-id,
virtual_mutex_id)) {

bool = mutex_try_lock(lock); /* guaranteed to work */

if (!bool)
exit(~1); /* something wrong with replay monitor,

this should not happen */

else { /* bool==TRUE */

inform_MUCF_of _mutex_lock_acquired(lock,
virtual_thread_id);

return TRUE;

125

}
else /* I don’t have permission, so just pretend
mutex.try_lock had returned false (didn’t
attempt to execute a mutex_try_lock) */
return FALSE;
mutex_unlock (super_lock(lock));

Handling Condition Signals

During the recording phase, the (virtual) ID of the thread that sends a signal must be
recorded, and the resulting thread(s) that caught the signal (via a condition_wait()
statement), if any, must be recorded as well. This is done because the receipt of a
signal will eventually unblock the recipient thread, which is then free to execute and
possibly alter the state of the task it finds itself in. The C-Thread library is altered
in order to provide the debugger with the thread id’s that “caught” a signal sent
(multiple thread-id’s provided if more than one thread caught a “broadcast” signal).
A log of signals sent, for each spccific signal declared within a task, is collected during

the recording phase (see table 5.18).

Who adds to log | The task-thread that just sent the signal

(via a macro)

Kind of data The name of the virtual task-thread that sent
the signal

Who created log | Application task-thread when it allocates a
new “condition variable”

Location of log | In the physical log file dedicated to a
particular application task

Table 5.18: History of signals sent

As well, for each specific signal declared within a task, the threads that “caught”

a signal are recorded (see table 5.19).

e It is assumed that all signals of a given task are sequentialized (for each condi-

tionsignal()) during the recording and replay phases in order to eliminate any

126

Who adds to log | task-thread that sent the signal (it requests

and receives the information from the altered
C-Thread library)

Kind of data The virtual name(s) of the threads that “caught”
the signal (if more than one, then all names

are placed in the same compound log entry)
Who created log | Application task-thread when it allocates a

new “condition variable”

Location of log | In the physical log file dedicated to a

particular application task

Table 5.19: History of a signal being caught

possible race conditions during both phases with respect to the occurrence of
a signal and its recording (during the recording phase) or a signal’s permission
to be executed (during the replay phase). The condition coordinator (CC)
thread (see page 132) coordinates this activity.

1. condition_signal(c) A macro during the recording phase will expand this call

to:

mutex_lock(super_c(c)); /* a condition specific lock,

no other thread can signal "c" before

log is written x*/
thread_awakened = condition_signal{c); /# could be NULL,

if nobody waiting */
/* C-Thread’s condition_signal() libthreads is modified to be
able to return "thread-awakened" */
log-condition_sent(virtual-calling-thread-id,
condition, thread_awakened);

mutex_unlock(super_c(c));

2. condition_signal(c) A macro during the replay phase will expand this call to
the following algorithm. The CC (Condition Coordinator) will ensure that the
thread that caught the signal during the recording phase will do so during the
replay phase. Otherwise, if the signal that originally caught the signal has

127

not executed the appropriate condition_wait() primitive, the signal may not be
caught by any thread when sent:

mutex_lock(super_c(c)); /* a signal specific lock,
no other thread can signal "c" or start
a new "condition_wait(c, *)", so that a
specific signal will be caught by a
specific thread */

while (!(do_I_have_permission_to_send_c(virtual-thread-id, c))
condition_wait(cc_c(c), super.c(c));

/* if I don’t have permission, give the thread that has
permission a chance to exercise its permission and
wvait for the CC to signal when this thread MIGHT
have permission */

/* The thread executing this code really doesn’t need to
let go of the "super_c" lock here,
since no other thread that wants to signal "c" can do so
until this one has done so. But, this is a convenient
way of expressing it, to make sure that the two conditions
are met before a thread signals */

vhile (!(is_thread_ready_to_receive(c)))

/* at this point, no other thread has permission to
send "c¢", so CC knows which thread is making
this request. Also, this thread is guaranteed that
only one original thread is activated to
receive "c" when it should. Once the
receiving thread gets the "c", it will NOT have to
compete with any other thread to get the lock
(max 1 on the wait queue), since the replay
controller guarantees that there will be no
other threads on wait queues waiting for the
mutex. */

condition_wait(cc_c(c), super_c(c));
condition_signal(c); /% real */
advance_log(c); /+ by activating Condition Coordinator (CC) */

mutex_unlock (super_c(c));

128

3. condition_broadcast(c) A macro during the recording phase will expand this
call to the following algorithm. The order in which the threads that were
awakened is recorded in the “condition_wait()” macro expansion.

mutex_lock(super_c(c)); /* condition specific =/

threads_awakened = condition_broadcast(c); /* due to altered thread
library, it returns
an array of threads
avakened */

log_condition_sent.(virtual-calling-thread-id, c, threads_awakened);

mutex_unlock(super_c(c));

4. condition_broadcast(c) A policy decision: a broadcast will only be allowed to
execute when all the threads that received the broadcast during the record-
ing phase have all executed the appropriate condition_wait() during the replay
phase. This is done because if a logical broadcast is broken-up into logical
condition_signal()’s during replay, this can/will confuse the user debugging in
that threads that have not yet reached a condition_wait() statement may ap-
pear to be catching signals. Therefore, a logical broadcast will only be executed
when all threads that caught this signal during the recording phase are ready
to execute condition_wait() (whenever CC gives them peimission).

A macro during the replay phase will expand this call to:

mutex_lock(super_c(c)); /* a condition specific lock,
no other thread can signal "c" =*/

wvhile (!(do.I_have_permission_to_send_c(virtual-thread-id, c)))
/* if 1 don’t have permission, then let go of mutex
super_c(c) so that thread that does have permission
can get inside the super_c(c) mutex */
condition_wait(cc_c(c), super_c(c));

/* at this point, no other thread has permission to send signal 'c",

so CC knows which thread is making this request. Also at
this point, all the threads which received this broadcast

129

are ready to execute condition_wait(). The CC coordinates
activating various condition_wait()’s (one at a time) and
then activating various condition_signal() (one at a time)
to send the signal to the activated condition_wait()’s. */

vhile (!(are_all_threads_ready_to_receive_(c))
/* CC signals this condition when true */
condition_wait(cc_c(c), super_c(c));

/* get # of times to signal */
list = number_of_times_to_signal(c, cthread.self());

for (sig.num =1; sig.num <= list; sig_num++) {

/* confirm each condition_wait() has permission to
execute and that it is has been executed so that it is
prepared to ‘‘catch’’ the signal c */

while (!(is_thread_ready_to_receive(c, cthread_self())

condition_wait(cc_c(c), super_c_lock(c);

condition_signal(c);
tell_cc_that_c_was_just.sent{(c); /* so CC can advance the log
for signal ‘‘c’’ */

/* wait for confirmation that the mutex was entered */

while (!(confirm_mutex_entry(c))
condition_wait(cc.c(c), super_c_lock(c));

mutex_unlock(super_c(c));

Servers and Data Structures to Support Replay of Threads and Synchro-

nization

Various auxiliary servers are required to support the macro extensions (calls to specific
debugger library routines) to the various C-Thread primitives mainly during the

replay and to a limited extent during the recording phase.

130

=R

Maintainer of lock holder For each virtual_mutex_d in existence, it stores the vir-
tual thread.id that currently holds the virtual_mutex.id. If no virtual_thread_id
holds the virtual_mutex_d, then the value of virtual_thread.id is NULL. There

is one maintainer of “lock-holder” per task.

Operations of this server include;

e receive a report about a mutex_unlock() and adjust the database accord-
ingly.
e receive a report about a mutexlock() and adjust database accordingly.

o on lock_holder lookup(virtual.mutex.id) request, RETURN the owner of
the lock (virtual_thread id), or NULL if no thread currently owns the lock.

N.B. If it receives a report for a mutex it has no record of, it creates an “entry”

for the new mutex.

Mutex_unlock coordinator and flagger (MUCF) On recciving notification of
any logical mutex_unlock(mutex), this server thread running within the ap-
plication task advances the log for the *mutex” and determines from the log
the next thread that can enter the mutex. It sets the mutex specific (replay
internal) condition variable so that when the thread that has permission to
enter attempts to enter by checking the condition variable, it will recognize
itself and subsequently take the lock. Then this controller does an internal
(invisible to application program) condition_broadcast(cc.c(mutex)) to wake-
up every thread that is waiting to be given permission to enter that mutex
(threads within “replay” macros and the “signal-coordinator” (N.B. sctting the
condition must be protected by a mutex (lock-specific))). There is one MUCF

per application task.

Note: The CC must be involved when a thread gained entry to a mutex by
receiving a signal while waiting in a “condition_wait()” primitive. If the execu-
tion history indicates that some thread { entered some mutex m via a condi-

tion_wait() and it’s presently thread {’s turn to enter mutex m:
p y

131

1. allow thread f to execute its condition.wait() primitive

2. check execution history to determine which thread sent the signal to thread
t and allow this thread to send the signal when it reaches that point in its

code (if it hasn’t reached that point already)
Operations of the Mutex_unlock coordinator and flagger involve:

® receiving a report that a mutex has just been unlocked from an internal
replay macro extension. The coordinator will advance the log, set the
internal condition flag and broadcast the fact that the log has advanced.

All this must be protected by a mutex-specific macro.

Note: There is no reason to look-out for new mutexes, since this thread runs in

the same task and has access to all global mutexes and conditions.

Condition Coordinator (CC) In general, the condition_coordinator (CC) knows
which thread-id is at the head of the list and thus sets the
“do_I_have_permission_to_send.c" according (and independently). The thread
attempting to signal will recognize that it has a right to do so, but will only
signal when the condition coordinator (CC) sets another signal (and sends an
internal broadcast signal so that threads waiting on the condition can check
whether it is their turn to signal) that it can really signal the thread that should
catch the signal and the recipient of the signal during the recording phase is
guarantecd to catch the signal during the replay phase. This is guaranteed by
the fact that only one thread at a time is allowed into the mutex, and that

there is never more than one thread in the mutex-wait queue.

If the signal only went to one thread, then the controller will indicate to the
thread that should do a condition.wait() and to do so only after it knows that
it has a legal right to enter that mutex when condition_wait is executed (an
unlocked mutex or empty condition-specific wait queue for the mutex is guaran-
teed when the condition.wait() is given permission to execute). The condition-

coordinator will have to check if that thread is next in the execution history

132

TR

e s S A

for the send sequence of a particular condition-signal. Then the CC checks to
see if appropriate thread waiting for that signal (pending condition_wait()'s).
After the CC receives confirmation of the successful condition_wait(), it releases
the associated condition_signal(), by means of setting an internal variable and
an internal broadcast, variable and and waits for confirmation that the sig-
nal was delivered. Once the entire operation is finished, it will advance the

signal-specific logs.

Else, the signal went to more than one thread, broadcast during the record-
ing phase. Therefore, this coordinator must give permission to the condi-
tion_broadcast() macro when all threads are ready to receive. Then, at this
point, the macro will still have to wait for various permissions to condition signal()
(number of times equals the number of threads that originally caught the sig-
nal) so that when it does signal, it is guaranteed that the same thread will catch
the signal by guaranteeing that the mutex is unlocked or that the wait queue

(mutex-specific) is empty and will stay empty until the signal is delivered.

Only when all original number of signals are confirmed caught will the signal-

specific queue be moved up by one.

133

Chapter 6

Conclusion and Suggestions for
Future Work

6.1 Summary

The importance of using a cyclic debugging methodology on distributed programs is
paramount. The challenge lies in developing a reliable monitoring/system that faith-
fully renders a monitored non-deterministic program functional on repeated reexecu-
tions without distracting the user. The non-deterministic choices must be monitored
in as unobtrusive a manner as possible durirg the recording phase so as not to bias
the execution in any specific direction.

The monitoring/replay mechanism is designed at a low-level without actually al-
tering the operating system kernel. This is not an unreasonable goal when using a
microkernel such as Mach [1], since microkernels are designed to be extensible and
allow most “traditional” kernel activity to be done in user-space. This approach en-
ables the monitoring/replay subsystem to be easily portable to a variety of hardware
platfcrms, due to the fact a microkernel’s interface, for the most part, hides the pecu-
liarities of the hardware it is running on while still allowing the user to use low-level
operating system primitives. Since the monitoring/replay systems runs at a micro-
kernel’s system call level, and since a microkernel provides basic services so that more
specialized services can be built on top of it, once all potential non-determistic events
of a micro-kernel are monitored during the recording phase and enforced during the

replay phase, all composite services that built from the micro-kernel components can

134

use the monitoring/replay service.

An attempt was made to support the monitoring/replay of all (or as much as time
would allow) the non-deterministic services of a typical message-based micro-kernel
operating system that supports multi-threaded application programs at the kernel
level (as opposed to “user-level” threads, in which the operating system is unaware
of the existance of threads) in which the kernel schedules threads.

In addition, several debugging tools that take advantage of the guaranteed deter-
ministic execution have been described.

In short, the design of a debugger sufficiently endowed with features and capabili-
ties to be effective has been proposed. The base of the debugger, the underlying mon-
itoring/replay system, and facilities proposed (such as pessimistic causal breakpoints)
to take advantage of deterministic reexecution can be easily modified or expanded to

provide more effective tools to debug distributed programs.

6.2 Suggestions

e The four debugger servers (LOGSERV, FORKSERV, GPNAMESERV, AND CON-
TROLSERV) can be combined into one multi-threaded server during the record-
ing phase (and the counterpart servers for the replay phase) in order to min-
imize the interactions amongst themn (on the same node) which now involves
messages. A message operation results in a kernel trap, which may increasce the

probe effect.

e Currently, there is no strategy to deal with multi-threaded, shared-mermory
tasks, which have some portions of shared memory not properly protected by
“mutex” constructs. There is no satifactory solution to this problem, it scems,

in the literature.

® LOGSERV process the data it collects (during the recording phase) “on-the-fly”.
This processing activity can be done befween the recording and replay phases,

thereby reducing the probe effect somewhat during the recording phase.

e While there has been some progress on defining and implementing hreakpoints

135

in “process-based” distributed systems, a method of setting a breakpoint based
on a coinposed predicate that is powerful yet relatively easy to use still needs
to be developed. Furthermore, since more and more message-based distributed
systems consist of a collection of multi-threaded cooperating servers, there has
been little effort expended to date in defining debugging tools to work in such a
hybrid system (threaded and message-based), based on replay (e.g., breakpoint
and stepping facilities).

e In general, more well-defined and useful tools that can assist the user in de-
bugging a distributed system that consists of multi-threaded servers, each pos-
sessing their own protected address space and communicating with each other
via messages, must be developed. There is currently no widely accepted multi-
threaded debugger, let alone a multi-threaded debugger that is specifically de-

signed to work within a distributed system.

e Implementation turned out to be a more time-consuming endeavor than origi-
nally anticipated, thus only a fraction of the features were fully implemented.
It should be suggested that a project of this nature requires considerable man-
power, as well as a sufficient time for the programmers to get acquainted with

systems programming on a multi-threaded message-based micro-kernel.

6.3 Implemented Modules

Due to severe time constraints, the implementatiion of the design of the debugger is
incomplete. None of the cyclic debugging tools as described in chapters 3 and 4 were
implemented, although feasibility tests were performed to judge whether the design
was reasonable.

The monitoring/replay mechanism, as described in chapter 5, was partially imple-
mented. Support foi multi-threaded application programs was not implemented but
the portion of the monitoring/replay system that was implemented was designed with
the multi-threaded support in mind. Monitoring/replay support for passing “receive”

port capabilities was not implemented. Limited support for passing send rights in a

136

message (as related to the monitoring/replay mechanism) was implemented in that a
send right a synchronous RPC passes in order to grant the RPC server send-rights to
the reply port is supported only. Passing send-rights via the netname server is fully

supported.

137

Appendix A
Mach Related Definitions

task an execution environment and is the basic unit of resource allocation. A task
includes a paged virtual address space and protected access to system resources

(such as port capabilities).

thread the basic unit of execution. It consists of all processor state (e.g., CPU
registers) necessary for independent execution. A thread executes in the virtual
memory and port rights context of a single task. The conventional notion of

process is, in Mach, represented by a task with a single thread of control.

netmsgserver The network server is responsible for extending the local Mach Inter-

Process Communication abstraction over the network which interconnects Mach

hosts.

netname server Thisisa network name service, which is used to acquire send rights
to remote ports designated by a string name and an IP address (may be the
broadcast address). It is implemented as a module on the netmsgserver. It
operates by sending a netname message to the desired address, and waiting for

a similar message in response.

port is a simplex communication channel, implemented as a message queue managed

and protected by the kernel.

port set is a group of ports, implemented as a queue combining the message queues

of the constituent ports. A thread may use a port set to receive a message sent

138

to any of several ports.

notify port on which the task should attempt to receive notification of such kernel
events as the destruction of a port to which it has send rights. Each task has

receive rights to this port.

kernel port handle that is used in the task kernel calls to identify to the kernel

which task is to be affected by the call.

message is a typed collection of data objects used in communication between threads.
Messages may be of any size and may contain inline data, pointers to data, and

capabilities for ports.

mutexlock(m) attempts to lock the mutex m and blocks until it succeeds. If
several threads attempt to lock the same mutex concurrently, one will succeed,
and the others will block until m is unlocked. The case of a thread attempting
to lock a mutex it has already locked is not treated specially; deadlock will

result.

mutex.try_lock(m) The mutex.try lock() function attempts to lock the mutex
m, like mutex_lock(), and returns TRUE if it succeeds. If m is already locked,

however, mutex_try_lock() immediately returns FALSE rather than blocking.
mutex_unlock(m) unlocks the mutex m, giving other threads a chance to lock it.

condition_signal(c) is called when one thread wishes to indicate that the condition
represented by the condition variable is now true. If any other threads are
waiting (via conditionwait()), then at least one of them will be awakened.

If no threads are waiting, then nothing happens.

condition_broadcast(c) is similar to condition_signal(c), except that it awak-

ens all threads waiting for the condition, not just one of them.

condition_wait(c, m) unlocks m, suspends the calling thread until the specified

condition is likely to be true, and locks m again when the thread resumes (after

139

receiving signal ¢ and then acquiring the lock m. Since there is no guarantee

that the condition will be true when the thread resumes, use of this procedure

is usually of the form:

mutex_lock(m) ;

while (/* condition is not true */)

condition_wait(c, m);

mutex_unlock(m);

140

Appendix B

Sources of Non-Determinism for
Supported Application Platform

Disclaimer: The “race” conditions mentioned in this section do not refer to races
that corrupt system data structures; rather it refers to potential non-determinism

that may affect the outcome of an application program.

B.1 Message sending

Several multi-threaded tasks can possess send rights to a particular port p. The order
in which messages, that task-thread combinations send, enqueue at port p is subject
to a race condition.

The order in which the kernel sends notify messages (see appendix A) to a task’s
notifv port (z.e., their enqueuing order) is subject to a race condition. This is because
the kernel sends notify messages in response to events that are often initiated by
events in application tasks, which are subject to random delays.

A niessage send operation with a timeout specified may or may not “time-out” on
subsequent reexecutions. A “send timeout” specifies that if a message was not able
to enqueue at the target port within a specified amount of time from the sending of
the message because the target port was full, the operation thus “timed-out”.

Any thread within a task can send away a send right to some port p to another
task (it can also pass copies of a send right it has in its address space), thus taking

away from the other threads in the task the right to send messages to port p. In

141

a pre-emptive threaded environment, this is a potential race condition, since during
subsequent reexecutions, certain threads may be able to send greater or fewer mes-
sages to purt p, depending when the send rights were passed away in a message (or
the send rights were simply deallocated by a thread within the task). A send right is
shared by all threads within a task.

B.2 Message receiving

A task’sreceiverightsto a port is shared by all threads within the task. Consequently,
there is a race amongst the threads to dequeue messages from the port in that the
same threads may not dequeue the same message(s) on subsequent reexecutions.

A message receive operation with a timeout specified may or may not recur on
subsequent reexecutions. A “receive timeout” specifies that if a thread executing
a msg-receive() operation was not able to dequeue any message at the target port
within a specified amount of time from the time the msg._receive() began executing,
the operation thus “timed-out”.

Since receiverights to a port can be transferred to another task (cannot be copied),
the race condition described in the previous paragraph is compounded in that any
thread can transfer receive rights to a port. On subsequent reexecutions, greater or
fewer messages will be dequeued from the same port by the threads in the same task,
depending if the thread(s) which intend to transfer (send in a message) the receive
rights to some other task are delayed or not.

Furthermore, any thread within a task can destroy a port the task has send rights
to. Therefore, there exists a potential race condition between threads that want to

dequeue from some port p and thread(s) that want to destroy port p.

B.3 Port Sets

A port set (see appendix A) can be the site of several potential race conditions:

o Messages being sent to any port in a port set can be delayed. If all ports in

a port set are empty except one, then the thread dequeuing from the port set

142

must dequeue from the non-empty port.

e If two or more ports in a port set are non-empty, then the thread dequeuing from
the port-set will randomly dequeue (not the choice of the dequeuing thread)

from one of the non-empty ports in the port set.

o Any thread within a task that has receive rights to some port set can at any time
add or remove a port (it has receive rights to) from a port set, thus potentially

affecting the messages a thread dequeuing from a port set will receive.

B.4 Kernel Primitives

In general, in a multi-threaded environment, calls to the kernel are potential races,
since depending on timing and circumstance, a kernel call may or may not fail. For
example, if two threads want to deallocate an existing port p, the first one to execute
tie kernel call will succeed, and the second thread will fail because port p had already
been deallocated.

Furthermore, certain kernel primitives can return different resources on different
reexecutions. For example, asking the kernel to allocate a specific amount of memory

an any location may return a different starting memory location on each reexecution.

B.5 Netname Server

netname check-in A race condition can ensue if several attempts by various
task /thread combinations to check-in the same name on the same netname
server with different “signatures” are made. Once the name is checked in, all
other attempts of checking in the same name (with different signatures) will

result in an error.

netname check-out If more than two different task /thread entities wish to attempt
to check-out the same netname entry from a netname server on the same node,

only one will succeed.

143

In addition, there is a possibility that a task/thread will check-out a name
from a netname server before everyone that had wanted to look it up had a
chance to. On subsequent reexecutions, various task/thread’s netname lookup
attempts may or may not succeed, depending on the relative time a particular

name is checked out from the netname server.

netname look-up The look-up call depends on the relative timings of the check-
in and check-out primitives. Furthermore, if the name n is looked for via
a broadcast look-up and n exists on more than one node, the node the caller
finds the name on may differ on subsequent reexecutions. Identical netnames on
different netname servers (situated on different nodes) may or may not represent

send rights to the same port.

B.6 Thread Synchronization

In general, all threads within a task confend to enter mutual exclusion constructs

(mutex) in three possible ways:

1. the non-blocking primitive mutex_try lock(m) (returns immediately if lock not
acquired)
2. the blocking primitive mutex lock(m) (blocks thread until mutex m acquired).

3. the conditionwait(c,m) primitive blocks the thread until it first receives
signal ¢, then it continues to block until the thread acquires mutex m when it

becomes free.

B.6.1 Condition Variables

A signal ¢ will (arrive at) be caught by one thread that has executed conditionwait(c,
m). If more than one thread is at conditionwait(c, m), only one thread will catch
the signal. If no thread is waiting for signal ¢, then it will be lost and nothing hap-
pens. On subsequent reexecutions, the same thread may not catch the same signal

either due to luck or the thread didn't execute conditionwait () in time.

144

If a signal is broadcast, then all threads waiting for ¢ will receive it. The set of
threads waiting for a particular broadcast signal may vary on subsequent reexecu-
tions. The order in which the group of threads catch a broadcast signal ¢ may not

be in the same order in which the threads gain access to mutex m.

B.7 Task Termination

In a multi-threaded environment, several threads may be in a race to terminate the
task normally (e.g., calling exit()) or abnormally (raising an exception, €.g., divide
by 0). The implication of this possibility is that other threads in the task will execute
to a different extent on each reexecution, possibly creating a different final state for
its task on each reexecution. In addition, the race condition as to when and which
thread effectively kills its task can affect the states of other tasks in that random
delays in a task’s death may give it time to send more messages to other tasks on
certain reexecutions. Furthermore, when a task “dies”, it destroys all ports pp it had
receive rights on. If a task’s death is premature, other tasks who had successfully
sent messages to ports pp will not send those same messages in time to be received by
the dead task’s threads. While the act of sending a message should not itself change
the state of the sending task (since a message send operation can be considered a
glorified “read™), since the sending thread will be informed of whether the sending
operation was a success or failure, the thread may take a different path of execution
depending on the success or failure of the send operation. Since different paths may

be taken, each path may change the state of the task in a unique manner.

145

Appendix C
BNEF for Database Activation

record <global events>
record <specific global events>
record <specific local events>

<specific global events> ::= <task-id><global-events> |
<thread-id><global-events> |
<task-id><global-sub-events> |

<thread-id><global-sub-events>

<specific local events> ::= <task-id><local-events> |
<thread-id><local-events> |
<task-id><local-sub-events> |

<thread-id><local-sub-events>

<global-events> ::= create-task | destroy-task |
create-thread | destroy-thread |
task-done | task-aborted |
thread-done | thread-aborted |

146

ST

A S Y

R A i L

port-creation | port-destruction |
port-set-create | port-set-delete |
port-set-add-port | port-set-remove-port |
user-event-ended | user-event-begun |

message-transmission | message-reception

<local-events> ::= assignment-to-variables |
assignment-to-pointers |

reaching-a-label

<global-sub-events> ::= <port-name> port-creation |
<port-name> port-destruction |
<port-set-name> message-reception |
<port-name> message-reception |
<port-name> message-transmission |
<port-name> port-set-create |
<port-name> port-set-delete |
<port-name> port-set-add-port |
<port-name> port-set-remove-port |
<user-event-name> user-event-end |

<user-event-name> user-event-begun
<local-~sub-events> ::= <variable-name> assignment-to-variables |

<pointer-name> assignment-to-pointers |

<label-name> reaching-a-label

<user-event-name> ::= user-eventl | user-event2 | userevent3 |

<port-set-name> ::= portsetl | portset2 | portset3 | ...

147

<port-name> ::= portl | port2 | port3 | ...
<task-id> ::= taskl | task2 | task3 |
<thread-id> ::= threadl | thread2 | thread3 |
<variable-name> ::= varl | var2 | var3 | ...
<pvinter-name> ::= ptrl | ptr2 | ptr3 |

<label-name> ::= labeli | label2 | label3d | ...

148

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

Mike Accetta, Robert Baron, William Bolosky, David Golub, Richard Rashid,
Avadis Tevanian, and Michael Young. Mach: A new kernel foundation for unix
development. In Proceedings USENIX Summer Conference, pages 93-112, At-
lanta, GA, 1986.

Robert V. Baron, David Black, William Bolosky, Jonathan Chew, Richard P.
Draves, David B. Golub, Richard F. Rashid, Avedis Tevanian, and
Michael Wayne Young. MACH Kernel Interface Manual. Department of Com-

puter Science, Carnegie-Mellon University, January 1990.

Richard H. Carver and Kuo-Chung Tai. Reproducible testing of concurrent
programs based on shared variables. In Proceedings of the Sizth International

Conference on Distributed Computing Systems, pages 428-433, 1986.

Deborah Casewell and David Black. Implementing a Mach debugger for multi-
threaded applications. Technical Report CMU-CS-89-154, Carnegie-Mellon Uni-

versity, Department of Computer Science, November 1989.

K. Mani Chandy and Leslie Lamport. Distributed snapshots: Determining global
states of distributed systems. ACM Trans. on Comp. Sys., 3:63-75, February
1985.

Eric C. Cooper and Richard P. Draves. C Threads. Department of Computer
Science, Carnegie-Mellon University, July 1987.

Bao Minh Dang. Methodology and tools for distributed debugging. M.Comp.Sci.
Thesis, Concordia University, 1989.

149

(8] Saumya K. Debray, David Scott Warren, Suzanne Dietrich, and Fernando
Percira. The SB-Prolog System, Version 2.5. Department of Computer Science,
University of Arizona, September 1988.

[9] Richard P. Draves, Michael B. Jones, and Mary R. Thompson. MIG-The MACH
Interface Generator. Department of Computer Science, Carnegie-Mellon Univer-

sity, November 1989.

[10] Stuart I. Feldman an¢ Channing B. Brown. IGOR: A system for program de-
bugging via reversible execution. Proceedings of the ACM SIGPLAN/SIGOPS
Workshop on Parallel and Distributed Debugging, published in ACM SIGPLAN
Notices, 24(1):112-123, January 1989.

(11] C. J. Fidge. Reproducible tests in CSP. Australian Computer Journal, 19(2):92-
98, May 1987.

(12] Alessandro Forin. Debugging of heterogeneous parallel systems. Proceedings of
the ACM SIGPLAN/SIGOPS Workshop on Parallel and Distributed Debugging,
published in ACM SIGPLAN Notices, 24(1):130-140, January 1989.

[13] Jerry Fowler and Willy Zwaenepoel. Causal distributed breakpoints. In Pro-
ceedings of Tenth International Conference on Distributed Computing Systems,

pages 134-141, Paris, France, May 1990.

[14] Haim Gaifman, Michael J. Maher, and Ehud Shapiro. Replay, recovery, repli-
cation, and snapshots of nondeterministic concurrent programs. In Proceedings
of the 1enth Annual ACM Symposium on Principles of Distributed Computing,
pages 241-255, 1991,

[15] Jason Gait. A probe effect in concurrent programs. Software - Practice and

Experience, 16(3):225-233, March 1986.

[16] C.A.R. Hoare. = Communicating sequencial processes. = Commun. ACM,

21(8):666—677, 1978.

150

[17] Avadis Tevanian Jr., Richard F. Rashid, David B. Golub, David L. Black, Eric
Cooper, and Michael W. Young. Mach threads and the Unix kernel: The bat-
tle for control. Technical Report CMU-CS-87-149, Carnegie-Mellon University,
School of Computer Science, August 1987.

[18) Dan Julin. Network server design. Technical report, Carnegie-Mellon University,

Department of Computer Science, MACH Networking Group, August 1989.

[19] V. Krawczuk, H.F. Li, and T. Radhakrishnan. cdb: A toolkit for debugging
distributed programs. In Proceedings of the ACM/ONR Workshop on Parallel
and Distributed Debugging, pages 242-244, Santa Cruz, California, May 1991.
[Extended abstract].

[20] Victor Krawczuk. cdb record/replay facility and debugging tools: v 1.0.0. Tech-
nical report, Concordia University, Department of Computer Science, March

1991.

[21] Thomas J. LeBlanc and John M. Mellor-Crummey. Debugging parallel programs
with Instant Replay. IEEE Transactions on Computers, C-36(4):471-482, April
1987.

[22] Barton P. Miller and Jong-Deok Choi. A mechanism for efficient debugging
of parallel programs. Proceedings of the ACM SIGPLAN/SIGOPS Workshop
on Parallel and Distributed Debugging, published in ACM SIGPLAN Notices,
24(1):141-150, January 1989.

[23] Douglas Z. Pan and Mark A. Linton. Supporting reverse execution of parallel
programs. Proceed ..gs of the ACM SIGPLAN/SIGOPS Workshop on Parallel
and Distributed Debugging, published in ACM SIGPLAN Notices, 24(1):124-129,
January 1989.

[24] Robert W. Scheifler and Jim Gettys. The X window system. ACM Transactions
on Graphics, 5(2):79-109, April 1986.

151

[25] Richard M. Stallman. E'macs Versi» 18 for Uniz Users. Free Software Foun-

dation, Inc., October 1986.

[26] Richard M. Stallman. GDB Manual, The GNU Source-Level Debugger. Free

Software Foundation, Inc., October 1989.

[27] Richard M. Stallman. The C Preprocessor. Free Software Foundation, Inc., July

[28]

[29]

[30)

[31]

[32]

1990.

Richard M. Stallman. Using and Porting GNU CC. Free Software Foundation,
Inc., June 1991.

R. E. Strom and S. A Yemini. Optimistic recovery in distributed systems. ACM
Transactions on Computer Systems, 3(3):204-226, August 1985.

Mary R. Thompson. Mach environment manager. Unpublished manuscript,

Carnegie-Mellon University, School of Computer Science, July 1988.

Jeffrey T'sai, Kwang-Ya Fang, Horng-Yuan Chen, and Yao-Dong Bi. A nonin-
terference monitoring and replay machanism for real-time software testing and
debugging. IEEE Transactions on Software Engineering, 16(8):897-916, August
199¢.

Rebecca Wirfs-Brock, Brian Wilkerson, and Lauren Wiener. Designing Object-
Oriented Software. Prentice Hall, 1990.

