l*l National Library
of Canada du Canada

Bibliothéque nationale

Canadian Theses Service Service des théses canadiennes

Ottawa, Canada
K1A ON4

NOTICE

The quality ofthis microformis heavily dependent upon the
quality of the original thesis submitted for microliiming.
Every effort has been made to ensure the highest quality of
reproduction possible.

I pages are missing, contact the university which grantec:
the degree.

Some pages may have indistinct print especially if the
original pages were typed with a poor typewriter ribbon or
if the university sent us an inferior photocopy.

Reproduction in full or in part of this microformis governed
by the Canadian Copyright Act, R.S.C. 1970, ¢. C-30, and
subsequent amendments.

NL 339 (r 88/04) ¢

AVIS

La qualité de cette microforme dépend grandement de la
qualité de la thése soumise au microfilmage Nous avons
tout fait pour assurer une qualité supénieure de reproduc
tion

S'il manque des pages, veuillez communiquer avec
funiversité qui a conféré le grade

La qualité d'mpression de certaines pages peul laisser a
désirer, surtout si les pages originales ont ét¢ dactylogra
phiées a I'aide d'un rubanusé ou st lumversité nous a fai
parvenir une photocopie de qualité inléneure

La reproduction, méme partielle, de cette microforme: esl

soumise A la Loi canadienne sur le droit d'auteur, SKRC
1970, ¢. C-30, et ses amendements subséquents

Canada

i~l

Bibliothéque nationale

National Library
du Canada

of Canada

Canadian Theses Service

Ottawa, Canada
KI1A ONA

The author has granted an irrevocable non-
exclusive licence allowing the National Library
of Canada to reproduce, loan, distribute or sell
copies of his/her thesis by any means and in
any form or format, making this thesis available
to interested persons.

The author retains ownership of the copyright
in his’/her thesis. Neither the thesis nor
substantial extracts from it may be printed or
otherwise reproduced without his/her per-
mission.

Service des théses canadiennes

L'auteur a accordé une licence irrévocable et
non exclusive permettant a la Bibliothéque
nationale du Canada de reproduire, préter,
distribuer ou vendre des copies de sa thése
de quelque maniére et sous quelque forme
que ce soit pour mettre des exemplaires de
cette thése a la disposition des personnes
intéressées.

L'auteur conserve la propriété du droit d'auteur
qui protége sa these. Nila thése ni des extraits
substantiels de celle-ci ne doivent étre
imprimés ou autrement reproduits sans son
autorisation.

ISBN 0-315-59186-2

Canada

DISTRIBUTED FAULT TOLERANT ROUTING ALGORITHM FOR
AN INTERCONNECTION NETWORK BASED ON
BALANCED INCOMPLETE BLOCK DESIGN

Suseela T. Sarasamma

A Thesis
in
The Department
of

Electrical & Computer Engineering

Presented in Partial Fulfillment of the Requiremants
for the Degree of Master of Engineering at

Concordia University

Montréal, Québec, Canada
May 1990

© Suseela T. Sarasamma 1990

ABSTRACT

Distributed Fault Tolerant Routing algorithm for

an Interconnection Network based on
Balanced Incomplete Block Design

Suseela T'. Sarasamma

A new class of network model based on the concept of balanced incomplete
block design is studied. The model G(/\2)" possess better modularity as well as
order-to-degree ratio among the above family of graphs. Hence we selected this
model for further studies. A suitable labelling scheme is defined for the above
network. Four types of basic transformations are then presented. Based on these,
two different distributed routing algorithms are given for the fault-free environment.
The upper bound on the length of the route thus computed is proved to be 2m + 1
for the network G(RK32,)™!. Comparison of the route-length thus computed,
with respect to the diameter estimate of G(Ip 2)™ as well as the shortest path
length between a given (source, destination) pair are made. Two types of fault-
distributions which allow up to a maximum of one-third of the total number of
nodes to be in fault and yet preserving the connectivity of the network are given.
A distributed fault-tolerant routing algorithm FT is then presented. It has been
proved that the above algorithm will successfully track down an existing route
between any pair of healthy nodes if the fault-distribution corresponds to D. We
also claim that the algorithm will be successful in finding an existing route in the

case of fault-distribution D'. The algorithms were validated by computer simulation.

iii

|

ACKNOWLEDGEMENT

I am deeply indebted to my advisor Dr. Jeroslav Opatrny for introducing me
to the concept of block design and suggesting this particular problem. I am grateful
to him for his excellent guidance, encouragement, and the time he spent in carefully
reading the manuscripts as well as the generous financial assistance given to me.
His in-depth knowledge of the fundumental isues and clear vision of the underlying
nature of research has not only helped me in the preparation of this thesis but has
also helped me acquire the proper approach for problem solving and has rekindled
my interest in scientific research.

I wish to express my sincere grattitude to Dr. P. D. Ziogas, Dr. R. Patel and
Dr K. Venkatesh. Special thanks are to my husband Premchand for his constant
encouragement and support. Thanks are also tc the computer centre staff and to
the University for the excellent facilities and services which were of immense help
to me. I am grateful to the GOVT. of Canada and Quebec for granting me the
visa etc to come, stay, and study in this great country. Finally I wish to thank my

parents and friends.

iv

CONTENTS

1 INTRODUCTION

............. 1
2 BASIC CONCEPTS AND DEFINITIONS 10
2.1 Graph theoreticconcepts 10
2.1.1 Connected graphs and connected components 14
2.2 The(A,D) graphproblem 18
2.2.1 Reliability and extensibility aspects20
2.2.2 Surviving graphs and surviving route graphs20
2.3 A look at some recently proposed fault wolerant networks 2]
2.3.1 RoutinginSRGmodel 21
2.3.2 Network construction basedon 3IBD 24
2.3.2.1 Construction of (Ay,b,n,7 k) L L. 26
2.3.2.2 Construction of (Kx,b,n r,k) 28
2.3.2.3 Construction of (K, x,b,n,7, k) 20

3 DISTRIBUTED ROUTING ALGORITHM 1 OR THE
NETWORK MODEL G(K;2)' 32
3.1 Construction of network model (G, n(k),n(k), &, k) 32
3.1.1 Construction of network model ' Ky x,n(k),n(k),k, k)t . . . 36
3.1.2 Construction of (Kg x,n(k),n(k)k, k), 122 38

vi

3.2 Routing in network G(K22)*o
3.2.1 Labelling scheme for G(K,,)

3.2.2 Basic transformations

3.2.3 Comparison of route length gen=rated by opportunistic

algorithm to the diameter estimate

3.2.4 Comparison with respect to the shortest path length . . .

4 NETWORK FAULT TOLERANCE AND DiSTRIBUTED

FAULT TOLERANT ROUTING ALGORITHM

4.1 Resilienceof thenetwork
4.2 Fault tolerant distributed routing in G(K22)™

4.2.1 On the performance of algorithm FT

5 CONCLUSION o i et e e e

REFERENCES o 00

APPENDIXo

63

63

. .70

80

. 83

CHAPTER 1
INTRODUCTION

Today all branches of engineering and a multitude of other disciplines rely firmly
on computational support. However, each discipline has important problems that,
to be solved, need computers with orders of magnitude greater performance than
currently available. For instance, the finite element analysis in structural de-
sign, multi dimensional modelling of earth’s atmosphere for weather prediction and
fluid flow studies in computational fluid dynamics need tremendous computational
power. Then there are real time problems such as speech recognition, image pro-
cessing, computer vision etc. Consequently, the need for very high performance
computing is larger than ever and growing.

To date, high-performance computers have owed their speed primarily to ad-
vances in circuit and packaging technology. These technologies are subject to phys-
ical limits constraining the ultimate speed of a conventional uniprocessor computer.
Parallel processing computers executing problem solutions expressed as parallel al-
gorithms translated into parallel machine programs can exceed the single processor
speed limit. Problems such as matrix operations. weather prediction and air traffic
control have been identified as having great poteatial for parallel execution.

High-performance computers are broadly <lassified into two categories: mul-
tiprocessors and multicomputers. This classification is based on the degree of cou-

pling between processors. The degree of coupling can be categorized as:

1. Loose coupling.

2. Moderate coupling.

3. Tight coupling.
Loosely coupled systems are characterized by serial lines, relatively low transmission
speeds, relatively smaller amounts of interprocessor activity, and a high degree of

error checking. Geographically, the processors cen be closely located or seperated

I |

by large distance. Moderately coupled systems are characterized by higher levels

2

of intercomputer activity, using either high spec:d serial lines, parallel data buses
or shared disks. The processors are closely located. In tightly coupled systems
processors are closely located, share memory for data transfer and program storage,
invoke minimal communication protocols and en or checking. There is high degree

of interprocessor communications.

Multiprocessors are tightly coupled systems and permit all processors to di-
rectly share the main memory. Multicomputers cn the other hand are either moder-
ately coupled or loosely coupled. Here each proces sor has its own locally addressable
memory, a communication controller capable of 1outing messages without delaying
the processor, and a small number of connections to other nodes. Multi computer
architecture has been suggested as ideal for the solution of problems such as finite
element analysis, partial differential equations, linear algebra, game tree searches,
functional programming etc. The cooperating tasks of a parallel algorithm for
solving one of these problems will execute asyn.hronously on different nodes and

communicate via message passing.

Whether tightly coupled or loosely coupled, the peformance of a distributed
(parallel) processing system is determined to a great extent by the underlying com-
munication facility. Hence an important compor ent of a distributed system is the
system topology which defines the interprocessor communication architecture. The
topology of the interprocessor communication architecture, or interconnection net-
work as it is generally known, is the pattern of connections in its structure. The
pattern is modeled by a graph in which the nodes or vertices correspond to the
switching nodes in the network and the edges correspond to the communication
links. Different interconnection networks(IN) are compared graphically because
comparison by topology is independent of the hardware. Nodes in the gfaph of an
IN can be numbered and then an IN can be described in terms of the algebraic
relations among the nodes. The algebraic model is useful in discussing control and

communication routing strategy.

An IN can be classified based on the following tl ree operational characteristics:

1. Timing.
2. Switching.
3. Overall control.

The timing control of an IN can be either synchronous or asynchronous.
Synchronous systems are characterized by a central global clock that broadcasts
the clock signal to all devices on the IN so that they operate in a lockstep fashion.
Asynchronous systems on the other hand support independent operation of the
devices without a global clock. An IN transfers data using either circuit switching
or packet switching. In circuit switching, once a device is granted a path in the IN
it will occupy that path for the duration of the data transfer. In packet switching.
the information is broken into small packets that individually compete for a path
in the IN. Based on the overall control of the network, an IN may be classified as
centralized or decentralized. In centralized control, a global controller receives all
requests and transmits the message in the IN. In a decentralized system, requests
are handled independently by different devices in the IN. These three operational
characteristics with the topology define an IN. For example, the Butterfly parallel
processor uses an asynchronous, packet switched, decentralized IN.

The nature of servi~e demanded from the interconnection network by the
multiprocessor system is quite different from tha' of the multicomputer. Hence two
family of interconnection networks have evolved, namely, the multiprocessor IN and
the multicomputer IN.

Multiprocessor INs
In this system, all data shared by the processors are stored in the shared mem-
ory. All interprocessor communications are thrc ugh the shared memory which is
organized as multiple memory modules. There a~e four basic types of processor to
memory module interconnection:

1. Common bus shared memory.

2. Crossbar-switch shared memory.

3. Multibus/multiported shared memory.

4. Multistage Interconnection Networks.

4

The common bus interconnection is the simplest scheme with a common communi-
cation path connecting all of the functional units. Though this is less complex and
less expensive, the overall systemn performance is ceverely cut down by the limitation
on the overall transfer rate in the system due to the limited speed and bandwidth of
the single path. The crossbar switch on the other hand allows simultaneous connec-
tion between all nonoverlapping processor-memory pairs. The conflicting requests
for access to a particular memory module is resolved by special hardware which
adds to the complexity and hence, cost of the system. The multibus/multiported
memory interconnection uses a dedicated bus(link) to connect each processor mem-
ory pair. In other words. the control, switching and priority arbitration logic that
is distributed throughout the crossbar switch matrix 1s concentrated at the inter-
face to the memory units. Although there is potential for very high overall transfer
rate in the system, the complex memory units makes this expensive. Multistage
interconnection networks(MIN) are built using lerge number of simple switches ar-
ranged in several stages. Different patterns of interconnection between the inputs

and outputs are realized through various combinations of the switch settings.
Multicomputer INs

Interunit communications in this system take <ne of two forms: redundant bus
networks in which each computer can communicate with other computers over a
shared bus, or redundant point to point communication. Because the nodes do
not share any memory, the network in this case must efficiently support message
passing. The ring, chordal ring, hypercube, cube connected cycles and the X-tree
are some of the existing interconnection structiires. The hypercube, also known
as boolean n-cube, has received much attention. It is an n-dimensional network.
Each of the 2" vertices of the hypercube is directly connected to its n neighbors.
Many of the common interconnection topologies such as the ring, the tree, the
mesh etc can be embedded in a hypercube. Although the hypercube possesses some
attractive features such as low internode distance characterized by a diameter of n
and existence of n node disjoint paths between node pairs resulting in efficiency as

well as redundancy, it also has the disadvantage of logarithmically increasing node

connectivity.
Fault-tolerance and reliability issues

Computer systems have found their way into every day life activities such as bank-
ing, vehicle traffic control, communication systems, modern day aeroplanes with
auto pilot facility etc. As one can imagine, the breakdown of such a system can be
costly and dangerous. Thus came the impetus for reliability and fault tolerance in
present day computing systems. The most strir gent fault tolerance requirements
arise in real time control systems in which faulty computations can jeopardize hu-
man life or expensive equipment. The delay associated with fault recovery is also
very critical in such applications. Accerding to Avizienis [AVIZ76], a fault tolerant
system is a system which has the built-in capability (without external assistance) to
preserve the continued correct execution of its programs and input output systems
in the presence of a certain set of operational faults. An operational fault is an
unspecified change in the value of one or more logic variables in the hardware of the
system which is an immediate consequence of a physical failure event. The event
may be a permanent component failure, a temporary or intermittent component
malfunction or externally originating interference with the operation of the system.
Correct execution means that the programs, the uata and the results do not contain
errors and the execution time does not exceed a specified limit.

A partially fault tolerant (gracefully degrading)system is one which has the
built-in capability to reduce its specified computing capacity and shrink to a smaller
system by discarding some previously used programs or by slowing down below the
specified rate of execution [AVIZ76]. The above .eduction is due to the decrease in
the hardware configuration brought about by operational faults. In general, com-
puter systems with high reliability is achieved by redundancy and/or maintenance
techniques. Redundancy can assume three diflerent forms such as hardware, soft-
ware, or time. Redundant (hardware) computer syétems with several processors(or
units) has been classified into the following four systems by Beaudry [BEAUD7§:

1. Massive redundant system

2. Standby redundant system

3. Hybrid redundant system
4. Gracefully degrading system

Massive redundant systems use techniques such as triple-modular redundancy, N-
modular redundancy and self-purging redundancy. They execute the same task on
each equivalent unit and vote on the outputs for improving the output information.
Standby redundant systems execute tasks on their active units. Once failure of an
active unit is detected, these systems attempt to replace the faulty unit with a spare
unit. Hybrid redundant systems are ccmposed of a massive redundant core with
spares to replace failed units [LOSQT76]. Gracefully degrading systems may use all
failure-free units to execute tasks. When a unit failure is detected, these systems
attempt to reconfigure to a system with one fewsr units.

There are four essential elements in any fault tolerant system design. They
are tault detection, fault containment, fault diagnosis and fault recovery. Hard-
ware as well as software mechanisms are used to determine whether a fault exists
in the system. Fault containment refers to the techniques that are used to pre-
vent fault-damaged information from propagating through the system during the
time period between the fault occurence and its letection. Hardware and software
techniques used in locating and identifying the faults form the fault diagnosis sys-
tem. Fault recovery is the mechanism which is instrumental in correcting the fault
by voting out the incorrect results or replacing the faulty components by spares.
These four elements are present both in centralized systems as well as distributed
systems. But there are some inherent fault tole-ance capabilities present in some
of the distributed systems available today.

Reliability and fault tolerance of the interconnection network is viewed as
its capability to perform successful message transfer between healthy nodes in the
presence of faults in the network. Faults can be due to the processor or switching
node failure, or due to the failure of the communication links. The former is denoted
as node faults and the later as edge faults. Node faults are more severe than
edge faults since there are many edges incident on a node and hence possibly many

communication paths will be disrupted. Most fault tolerant systems are designed

7
to cope with a certain set of faults, which is referred to as the fault model. In a
fault model where node faults are considered, provided all nodes are of equal prionty,
the network is said to be k-fault tolerant if the network stays connected even after
the failure of any k nodes. If the system stays connected for some instances of k
node faults, then it is said to be robust rather than k-fault tolerant . Considering
node faults, the ring and tree structure have poor fault tolerance. The hypercube

which has n node disjoint paths is n-fault tolerant.
Routing Algorithms

An efficient means of controlling the message transfer within the network is crucial
to any communication network. A routing p is a network control] function which
assigns a path between any pair of specified nodes in the network. The complexity
of a routing scheme is decided to a great extent by the structure of the network.
Regular structures make the routing process ezsier compared to highly irregular
network topologies. Routing algorithms are broadly classified into two categories:
static routing algorithms and dynamic routing aigorithms. A static routing assigns
to any pair of nodes in the network, a fixed path, and all communications between
the two nodes travel along this path. Static routing in a network of size N is achieved
by providing a fixed routing table of O(NN') at every node in the network. This is
a very simple scheme but has the following major drawbacks. The fixed nature
of the routing directory doesn’t take into consideration, the network conditions
such as congestion and possit te failures of netwo-k components. The congestion of
messages at one node has a cumulating effect and may result in the delay of the
entire communication network. Further, since there is a fixed route between a source
and a destination, even if there exists edge disjoint paths between a source and a
destination, there is no efficient mechanism to exploit the inherent fault tolerance
capability of the network. In contrast, the dynamic routing scheme allows the nodes
to change the routing table.

Dynamic routing schemes fall in to two catagories namely, centralized routing
scheme and decentralized routing scheme. In centralized routing scheme, the routing

decisions are made by a central node. Although there is great control over the overall

o

8

communication within the network, the inability of individual nodes to take their
own routing decisions often leads to congestion and delay. The central controller
at times, becomes the bottleneck in the efficient operation of the entire network.
This is especially the case when there are faults in the system. The reconfiguration
process tends to be too slow and inefficient. Furthermore, reliance on a single
node for making decisions, makes the network more vulnerable. So the current
trend in fault tolerant routing is towards decentralizing or distributing the network
control. Further distributed routing schemes do not need elaborate routing tables

at individual stations. Hence our interest is mainly in dynamic distributed routing.
Focus of the research

The focus of this research is on network models. From the previous discussions it
is quite clear that there is growing demand for highly fault-tolerant interconnection
networks which possess multiple node-disjoint paths. Further, as we will see in
chapter 2, the diameter stabiiity, i.e., the netwcrk’s ability to maintain the diam-
eter of the surviving network within close range of the original diameter is a very
significant factor in the selection of interconnection network.

In chapter 2 we first give some basic definitions and concepts which are
relevent in the context of this thesis. We then review the (A, D) graph problem and
some of the significant research done in solving this extremal problem. The fault-
tolerant routing algorithms propsed for the DeBruijn network is briefly scanned.
Finally we examine the construction of the recently proposed BIBD networks.

In chapter 3, at first the construction of the networks (G, n(k),n(k), k, k)
and (K . n(k),n(k),k, k)* proposed by Opatrny et alis presented. Then we study
some of the significant properties such as diameter, order, number of vertex-disjoint
paths etc. of the G(K x)' graph model. We thes show that the G(K;2)" model is
the most interesting of the above family of grapas in terms of modular structure,
large order-to-degree ratio etc. A suitable labelling scheme is given for the special
class of G(l\2,2)" network. We then define four «ransformation schemes. Based on
these transformation schemes we present two efficient dynamic distributed routing

algorithms for the above communication network in a fault-free environment. An

9

estimate of the length of the route thus computed is presented. A comparison of
the route-length computed by the above algorithm with respect to the diameter
estimate of G(K32)' as well as the shortest path length between a given (source,
destination) is then made.

In chapter 4, we first give a set of conditions under which the network
G(K;2)' can allow as many as one third the total number of nodes to be faulty
and still remain connected. Then we present a distributed fault tolerant routing
algorithm for the network G(K;). It is then showed that under the above condi-
tions the algorithm will be successful in finding an existing route between any pair
of healthy nodes. Another kind of fault distribution which will also permit as many
as one-third the number of vertices to be faulty with out impairing the network’s
connectivity is then given. We also claim that for this distribution of faults, the
algorithm FT will be successful in tracking an existing route between any pair of
healthy nodes.

Research contribution of this thesis is organized as a sequence of lemmas and

theorems in chapters 3 and 4.

CHAPTER 2
BASIC CONCEPTS AND DEFINITIONS

In this chapter, we give the basic definitions and notations to be used in the rest
of the thesis and and some well known and sigificant concepts which forms the
building block for the forthcoming chapters. Section 2.1 gives a brief description of
graph theoretic concepts to be used and some basic definitions. Section 2.2 covers
the (A, D) graph problem and some of the significant research done in solving this
extremal problem. In section 2.3, we introduce the concept of balanced incomplete
block design and briefly look at the routing scheme proposed for the Shift and
Replace Graph. A brief discussion of the netwoi« construction based on Balanced

Incomplete Block Design is also given.

2.1 GRAPH THEORETIC CONCEPTS

Ever since Euler solved the Kénigsberg bridge pr-blem, graphs have served as mod-
els for problem solving. They form a very usefil tool in the design and analysis
of communication facilities. In a link-based systemn of interconnection network, the
individual processors (units) are represented by the vertices of a graph and the
communication links between processors are represented by the edges of the graph.
Similarly graphs can be used to model distributed computations, with nodes repre-
senting tasks and edges representing required patis for interprocess communication.
We will follow the notations given in [ORE62).

A graph G is denoted as the pair (V(G), E(G)), where V(G) denotes the
set of nodes in the graph and E(G)} denotes the set of edges in the graph G. An
edge is a pair of vertices (a, b) between which thee exists a logical connection. The
nodes a and b are called the end points of the ¢dge (a,b). An edge whose initial
vertex and final vertex are the same is called a self loop. If there are several edges

joining a pair of vertices, then these edges are said to be parallel edges. A graph

11

without self loops and parallel edges is termed a simple graph. A vertex is said to
be an isolated vertex if there is no edge incident to it. A graph consisting only of
isolated vertices is called a null graph. When two sets V; and V, are given, one
can form the set of all pairs {(v;,v2)lv; € ¥}, v2 € V2}, known as the product space
Vi x V,. Thus the graph G with given edges E(G') can be viewed as a subset of the
product space V x V.

A graph G is said to be a directed graph if all its edges are directed. An edge
(a, b) is said to be a directed edge if (a,b) is an ordered pair of V x V. In this case,
vertex a is known as the initial vertex and vertex b is known as the terminal vertex.
If ordering is immaterial then edge (a, b) is said to be an undirected edge. Whether
directed or undirected, an edge e is said to be i1 cident to its end vertices and the
end vertices are said to be incident to the edge. Similarly a graph whose edges are
undirected is referred to as an undirected graph. Communication networks with
unidirectional links are modelled as directed graphs whereas undirected graphs are
used to model communication systems with bidirectional links. An undirected
graph in which the edge set E(G) is the set of all possible pairs (e,b) where a # b
and (a,b) € V(G) is called a complete graph. .. complete graph with n nodes is
denoted as A,.

For an undirected graph G, the number of edges incident to a vertex a is
termed as its degree, denoted by p(a). A self loop incident to a vertex contributes
a value of two to its degree. For directed graphs. the number of incoming edges on
a node is termed its indegree p*(a) and the numer of outgoing edges is termed as
its outdegree denoted as p(a). In the case of an undirected graph G, the minimal
value of p(a) for a € V(G) is called the mindegree §(G) and the maximal value of
p(a) is known as the maxdegree A(5G). An undirected graph in which every node
is of the same degree is called a regular graph. Thus a k-regular graph will have
ple) =kforallae V.

€3
v, Q
e, e,
Vi
fig 2.1.(a) fig 2.1.(b)

In fig 2.1.(a), V = {v1,v5.v3,04,v5,v6} and E = {ej,ez,€3,€4,e5}. Note
that €; and ¢, are parallel edges. The edge e5 is a selfloop. Vertex v, is an isolated
vertex. vz and vs are pendant vertices. (i.e., a ve tex having only one edge incident
to it) The mindegree § of G in fig 2.1.(a) is 0 and the maxdegree A is 3. Fig 2.1.(b)
is an example of a directed graph whose minimal in-degree as well as minimal out-
degree are 2. Incidentally, the maximal in-degree A* and maximal out-degree A

are also 2.

A graph H is called a subgraph of the graph G (denoted as G O H) if the
vertex set V(H) of H is contained in the vertex set V(G) of G and all the edges of H
are edges in G. A null graph is considered to be a subgraph of every graph. To every
subgraph H of G, there exists a unique complementary subgraph H consisting of
all edges which do not belong to H which is indicated as H = G — H. A subgraph

13

H is said to cover G when H has at least one edge incident at every vertex of
G. Let H, = (V(H,),E(H,)) and H, = (V(H,), E(H;)) be two subgraphs of G.
Then their sum graph H = (V(H),E(H)) where V(H) = V/(H,)U V' (H,) and
E(H) = E(H,) U E(H2). Analogously, the inte:section graph D of H; and H; is
(V(D), E(D)) where V(D) = V(H,)NV(H,) aud E(D) = E(H,)N E(H;). Two
subgraphs H; and H; are said to be vertex disjoint if they have no vertices and
hence no edges in common. Similarly two subgraphs are said to be edge disjoint if
they have no edges in common. The ring sum of subgraphs H; and H,, denoted as

H, @ H; is the induced graph H on the edge set E(H,) ® E(H;).

In an undirected graph G, any series of ecges § = (...,€0,€1,...,€n,...) is
called a sequence if every consecutive edges e,_; and e, have a vertex in common.
That is, S = (---,ep = (ag,a1),€; =(a1,a2), -+ ,€n = (@n,ap4+1),). If there are
no edges preceeding e then ep will be called the initial vertex of S. Similarly, if
there are no edges after e, then a,4; will be called the terminal vertex of §. Any
vertex a, which belongs to two consecutive edge- e,—; and e, is an inner vertex or
intermediate vertex. Since vertices and edges may appear repeatedly in a sequence,
an inner vertex may also be an initial vertex or terminal vertex or both. A finite
sequence with both an initial vertex ap and a final vertex a,, can be denoted as
S = (ag,an) where ap and a, are called the end points of S. If ay = an, the
sequence is cyclic. When a, and a, are two vertices in the sequence, the subsequence

S(a,,a,) = (&1, €141,...,€,-1) is called a sectio1 of S.

A sequence in which no edges appear more than once is called a path. Note
that a vertex in a path could possibly be traversed several times. A noncyclic
path is called a simple path or an arc if none of its vertices is traversed more
than once. A cyclic path with end points ag is called a circuit if ey appears only
as the end points and no other vertex appears more than once. In the case of
directed graphs, a directed sequence is a sequence of edges in which all edges are
traversed in their prescribed directions. A cyclic directed sequence which traverses
every edge of G is termed an Euler path. A graph which possesses an Euler path

is called an Euler graph. For a simple path, th ' number of edges in its sequence

14

is termed the length of the simple path. The length of a shortest simple path
between vertices a and b is called the distance dia, b) between a and b. For a finite
graph or graph with bounded distance, diameter D(G) is defined as the maximal
distance between two of its vertices. That is, D(G) = max d(a,b) for a,b € V(G).
The corresponding shortest arcs connecting two *ertices with maximal distance are

called diametral arcs.

2.1.1 Connected graphs and connected comnponents

For an undirected graph G, two vertices a and ¢ are said to be connected if there
exists an edge sequence with a and b as the two 2nd points. It is then evident that
two nodes connected by an edge sequence are also connected by an arc. A graph
is said to be connected if every pair of vertices are connected. The vertex set of
a graph can be partitioned as ¥ = 3} V, into disjoint subsets such that in each
V,, all vertices are connected while no vertices be'onging to two different blocks are
connected. That is, corresponding to each set V; there is a connected subgraph
G(17). These subgraphs are known as the connected components of G.

Let A and B be two disjoint subsets of the vertex set V(G) of an undirected
graph G. An arc joining a € A and b € B is termed a connecting arc denoted as
P(a,b). A set of vertices in V is called a separat’ng set S if every connecting path
in G must pass through at least one of the vertices in S. The subsets A and B are
said to be o-vertex separated when there exists a finite separating set with at least
o number of vertices. By Menger’s theorem, there exists o disjoint simple paths
between the o-vertex separated subsets A and B of G. In other words, if @ and b are
two nonadjacent nodes in a connected undirected graph G with the smallest number
of separating vertices equal to o then there are o >aths between a and b having only
the vertices a and b in common. Graph G is then said to be of node connectivity o.

With A and B as defined above, a family of edges, T' = {e,} form a sepa-
rating edge set for A and B when every connecting path between these sets must
pass through at least one edge in T. Clearly an edge ¢, € T’ do not belong to either

the subgraph G 4 or Gg. Any subset S of vertice : containing at least one end point

15

of e, € T is a vertex separating set and any family of edges containing all edges
from the vertices in a vertex separation set is an edge separation set. The minimal
number of nodes or edges that must be removed from a graph in order to remove
all existing paths between any remaining pair of nodes is termed the connectivity
of the graph [WILK70].

Some special graphs which have been considered in communication networks
are the tree, the cycle, completely connected undirected graph A',, de Bruijn graphs,
bipartite graphs, the hypercube etc. A connected undirected graph is called a tree
when it has no circuits. In a tree, any two vertices are connected by a unique path.
The de Bruijn graph is a directed Euler graph, denoted by G, . Here s denotes the
number of elements in an alphabet A and n is a positive integer. The construction
of G, , is as follows:

1. V encompasses all the s"~! words of length n — 1 over the alphabet A.

2. E is the set of all the s™ words of length n c¢ver the alphabet A.

3. The edge b,,b;,...,b, has by,by,...,b,; as its initial vertex and by, b3,...,b,

as its final vertex.

4. At each vertex, there are s incoming edges and s outgoing edges.
Given in figure 2.2 is the de Bruijn graph G; 4. The sequence of edges 0000, 0001,
0011, 0111, 1111, 1110, 1101, 1011, 0110, 1100, 1C01, 0010, 0101, 1010, 0100, 1000 is
a directed Euler trail. The first alphabet of these words, when concatenated yields
the de Bruijn sequence 0000111101100101. It is known that this type of graph gives

reasonably small value of diameter for a given order N(A, D).

16

0000

1000

1001

No 0010

100

001

1100 0011

1011

10 0110 o1l

fig. 2.2 De Bruijn graph.

The Shift and Replace graph (SRG) is essentially the de Bruijn graph with
the number of nodes, n = r™ and degree A = r. The difference lies in the fact that
SRG is undirected, has no self loops or parallel edges. This topology was studied
by Pradhan and Reddy in [PRADS82]. The diameter of such an SRG is m. With
m = 1, the resulting graph is a completely connected graph with r nodes and when
r = 1, it is a single node. Any node ¢ in SRG could be represented by the radix-r

representation
(1) = Im=1yTm=25-- 511,20 where 0 <:i<r™ - 1.

With such a representation, it can be easily stated that node ¢ is connected
to node j if 7, = (tm-2,tm-3,...,%1,%0,¥) Or r; = (Y,tm=1,2m-2,...,%1) for y =
0.1,2,...,r = 1. The graph thus emulates the state diagram of a shift register
with alphabet size r. The next states of the register containing (im—1,%m-2---+%0)

can be determined by left or right shifting of the register wherein the least(most)

TR SR PRI

S ARASY L T e e Y IR, R

17

significant digit is replaced by z for ¢ = 0,1,...,r — 1. Thus the graph is promptly
named the Shift and Replace Graph. It has been shown in [PRADS82)] that the SRG
has n — 72 nodes of degree 2r, r nodes of degree 2r — 2 and r? — r nodes of degree
2r — 1. Esfahanian and Hakimi have shown that the connectivity of an SRG with
n = r™ nodes is 2r — 3 [ESFA8S).

Ease of routing and existence of multiple paths are the two important char-
acteristics of the SRG graphs. With the nodes lat elled by the corresponding radix-»
representation, the routing algorithm reduces to the task of properly shifting the
labels to obtain the internal nodes in the route. Pradhan and Reddy have presented
two routing algorithms for the SRG for the following network conditions: 1. No
node failures. 2. Number of failed nodes < r -- 1. Esfahanian and Hakimi have
proved that the system can tolerate up to 2r — 3 processor failures without being
disconnected. Thus this topology has the two important and desirable features of
an interconnection network such as reliability (due to multiple paths) and simplicity
of routing scheme.

A bipartite graph G = (V,V') is a graph in which the vertex set V(G) can
be partitioned into two disjoint sets V' and V' such that each edge e = (V,1"')
connects a vertex v € V' to another vertex v' € V . A subgraph of a bipartite graph
is bipartite. If G is connected then each vertex v € V has an even distance from
vertices in V' and an odd distance from vertices ir. V'. A graph G can be represented
as a bipartite graph if and only if all circuits in G has even lengths. If in a simple
bipartite graph G with bipartition (V, V'), there is an edge (v,, v,) for every vertex
v, € V and every vertex v, € V', then G is called a complete bipartite graph. We
will denote a complete bipartite graph as K, x, where r = |[V| and k = |V’|. Shown
in figure 2.3 is a K3 3 graph.

18
Vi Y
V3 VA
Y5 Ve

fig. 2.3 The complete bipirtite graph Ajy;

2.2. The (A, D) graph problem

It is well known that one of the cost factors »f interconnection among proces-
sors(computers) is the number of physical line: between them. For a communi-
cation network model to be of practical significance, it is essential that the trans-
mission delay be kept a minimum. This delay is closely related to the diameter of
the graph representing the network. Furthermore, in a large network, the shortest
route between many pairs of nodes will have tu pass through several intermedi-
ate nodes. However, there is a certain amount »f distortion, switching delay and
vulnerability associated with each node. In this perspective, it can be said that
minimizing the distance between every pair of nodes is of great importance in the
design of interconnection networks. Hence, giver. a number of nodes, interconnect-
ing them with minimal number of links and miniral diameter is a major issue in the
design of INs. The converse of this problem, i.e., given a maximum degree A and a
maximum diameter D, the problem of finding a graph with the maximum number
of vertices is known as the (A,D) graph problem. The (A, D) graph problem was

first set by Elspas and it addresses the issue of maximizing the order N(A,D) of a

19

graph, given A and D. Optimizing the order N(A, D) of a graph, given its degree
and diameter is considered to be a difficult theoretical problem. A theoretical upper
bound on N(A, D) is given by Moore as:

N(2,D)<2D+1 for A =2 and

A(A—1)P -2

Nap) s S

for A >2

It has been proved that the Moore graphs can exist only 1if:
1. A =2, the corresponding graph being the 2D + 1-cycle or
2. D =1, the graph being the (A + 1)-cliqu.:s or
3. f D=2 and A = 3,7, 57.

For A = 3 there exists a unique Moore graph, the Petersen’s graph on 10 vertices.
The Hoffman-Singleton’s graph on 50 vertices is a unique Moore graph for A = 7.
The existence of Moore graphs is not known for A = 57. Sachs proved that these
graphs exist only if A — 1is a power of a prime aumber [SACHS64]. R. S. Wilkov
gave a construction for A € {2,3,4,5,6}. Many constructions which give a lower
bound for some values of (A, D) graph problem were also given. Akers [AKERGS]
constructed (A, A - 1) graphs based on coding theory which has

2A -1
)

nodes.

Nad,A —1) = (

Arden and Lee proposed the multitree structured (A, D) graphs for A < 3 [AR-
DENT78]. They claim to have given the best known solution for the (A, D) graph
problem for A = 3. Imase and Itoh gave a construction [IMASES1] for directed
graphs which gives

ni(A,D)=(A/2)P for Aeven.

The nodes are numbered from 0 to (A/2)” — 1. Nodes i and j are connected if
and only if j = id+ a@ mod (n) ori= jd + amod (n; wherea = 0,1,2,...,d - 1.
However reliability and extensibility are also very important for an interconnection

network.

20

2.2.1 Reliability and Extensibility aspects

The simplest criterion for reliability or survivability is considered to be the con-
nectivity of the graph model which represents the interconnection network. It
corresponds to the minimum number of commurication links or switching stations
that must fail in order to destroy the communication between any pair of func-
tional switching nodes. In this respect, it can be said that when all nodes are of
equal importance, the design of a maximally reliable communication network is
closely related to the construction of a graph having maximum connectivity for a
given number of nodes and edges. Another impo-tant criterion for reliability is the
network’s ability to sustain its performance withir, reasonable bounds in the event of
a certa’n number of node failures. In other words, the length of the commun:cation
path should not increase substantially in the presence of node failures.

The extensibility problem can be stated as : Given a graph G, find G; C
G, CG3 C...C G, =G such that G, keeps properties such as optimal connec-
tivity, diameter etc. close to the final graph G. Memmi and Raillard proposed two
constructions to improve the average diameter and maximal connectivity. Later
Bermond et al generalized these constructions and came up with larger (A, D)
graphs. Recently Opatrnyet ¢l have come up with another construction [OPAT86]
based on Balanced Incomplete Block Design(BIE D).

2.2.2 Surviving graphs and surviving route graphs

A routing p in a network is a function which assigns a path between any specified
pair of nodes in the network. A static routing scheme assigns to any pair of nodes
in the network, a fixed path, and ail communications between the two nodes travel
along this path. A minimal routing is one tha: always gives a path of minimal
length for two vertices @ and b in G [BROD84]. The fault tolerance properties of
networks are compared either on the basis of the surviving graph or on the basis of
the surviving route graph. Given a graph G and a set of edge as well as node faults
F, the surviving graph G, = (V,, E,) where V, = {v,|v, € V(G) and v; ¢ F} and
E, = {e, € E(G)le, ¢ F and ¢, is not incident t> any vertex a € F'}. Comparison

21

based on surviving route graph is done in networks supporting static routing,.
Given a graph G, a routing p and a set of faults F, the surviving route graph
is made up of the vertex sct Vg = V(G) — {v, ¢ F} and the edge set Ep = {¢,}
where ¢; = (a,b) for all a,b € Vg such that there is a route between a and b which
avoids F. In the event of faults in the network, although some of the existing routes
in the network are unusable due to the faults, communication between surviving
nodes will still be possible by routing the messages through a sequence of surviving
routes. In this context, the diameter of the surviving route graph is a measure of
the worst case performance degradation caused iy the faults. The diameter of the
surviving route graph D(R(G,p)/F) gives the maximum number of routes that

must be used by any two processors for sending a message [DOLEV84).

2.3 A Look at some recently proposed fauit tolerant networks

2.3.1 Routing in SRG model

A short description of the routing strategies mentioned in [ESFAS85] is given below.
Consider the nodes 7 and j, whose radix-r representations are respectively r(i) =
(tm=1ytm=2,..+%1,%) and 7(j) = (Jm=1,7m-2,---,71,j0)- Node j will be called
a right-neighbor of node ¢ if r(j) = (z,im—1,im-2,...,%;) Where 0 < z < A — 1.
Similarly, node j will be a left-neighbor of node i if 7(j) = (¢mn-2ytm=3,---,%0,7).
The set of right-neighbors of node ¢ can be termed R(7) and the set of left-neighbors,
L(7).

Given an arbitrary pair of nodes ¢ and j, a path, i = vg-v)-vo~- v = j is
said to be right consistent if for all p, such that . < p <k, v, € R(vp—;). Similarly
the path, ¢ = vo-v1~ - -—v = j is said to be left ¢onsistent if v}, is a left-neighboi of
vp—y for all p such that 1 < p < k. When ther: is zero node failure, the routing
scheme of Pradhan and Reddy is based on finding the shortest consistent path (left
or right) between a pair of nodes. 1n brief, the algorithm can be stated as:
step 1 : Find the largest z such that the last z caaracters of 7 are equal to the first

z characters of j.

step 2 : Find the largest y such that the last y characters of j are equal to the first

22

y characters of i.
step 3 : If £ > y then left shift (i) by the last m ~ z characters of j else shift right
r(i) by the last m — y characters of j.

Let F denote a set of faulty nodes, where |F| < r — 1. Given a source node ¢
and destination j, the alternate routing algorithm proposed by Pradhan and Reddy

consists of establishing a route

(im—Zaim—S, s viOa 6).

(im—Svim—h soe siOs €, 3)a

(e?ei"'ﬂe))

(jO’e’es . 'ae)a

(jm-],jm-—2,---,j0) or

(esim—la"'ail)a

(6, ¢ im—]v ey ig),

(e,e,...,€),

(e’ €yoen 9e)jm—1)3

(jm—lajm—2a ve. ’j. 1j0)

such that € is not equal to the most(least) significant digit of the radix-r representa-
tion of any node in F. The algorithm doesn’t guarrantee a route when |F| > r —1.

For r < |F| < 2r — 3, Esfahanian and-Hakimi have given routing algorithms
which are based on finding a node b = (bz-1, bz-2,..., b1, bp) such that there exists
a path from node ¢ to node b and from node b to node j. If |F N (L(t) UR(j))| <
|FN(R(:)UL(7))| then the route would consist of the left consistent path from 2 to b
denoted as PL(i-b) followed by the left consisten: path from b to j. Otherwise, the
route would be a right consistent path from i to b followed by a right consistent path

from b to j. Note that in this case the fault tolerant route is either left consistent

T e e
)

Tt e A emen o

fpnre e

23

or right consistent unlike in the previous case, where a left(right) consistent path
was followed by a right(left) consistent path.

The Shift and Replace Graph, as we have seen, is one of the best known
constructions proposed for large interconnection networks. In comparison with the
existing hypercube network, the SRG gives more optimal diameter and therefore
lesser communication delay for larger values of N(A, D). For example, consider
N(A,D) = 65536. A hypercube with these manv nodes would have a diameter D
as well as degree A of 16. But an SRG with the same order can be constructed
with diameter D = 8 and degree A = 8 (since SRG is an offspring of the DeBruijn
graph which has order N(A, D) = (A/2)P for A even. One deterrent for the hy-
percube is its logarithmic increase in degree(node-connectivity) as the number of
nodes increases. But the hypercube possesses a very desirable property as far as
fault tolerance is concerned. That is, it’s highly regular structure, which makes
reconfiguration much easier in the event of node failure. The SRG as already seen,
is not a regular graph. Further, regular graphs make the routing process less te-
dius. Thus, the not totally independent nature, of the desirable properties of an
IN such as higher order, lower degree and diameter, regularity, and the need for
existence of multiple node-disjoint paths betweena stations present a very difficult

design problem.

24

2.3.2 Network construction based on BIBDD

The following notion of balanced incomplete biock design will be needed in the
construction of the special class of interconnection network which we are studying.
A Balanced Incomplete Block Design (BIBD) essentially deals with the arrangement
of a set of objects into a specified number of subsets or blocks so that the resulting
arrangement has the following properties:
1. Each block(subset) has the same number of elements as every other block.
2. The number of different blocks in which an element appears is the same for
all elements.
3. Each collection of elements say a pair, triple, or quadruple appears in exactly
the same number of blocks.
To be more precise, we use the following definition [HALL67]. A balanced incom-
plete block design is an arrangement of n distinct objects into b blocks such that
each block contains exactly k distinct objects, each object occurs in exactly r dif-
ferent blocks, and every pair of distinct objects a;, a; occurs together in exactly A
blocks.

Thus there is a certain relation of incidenze depicting which objects belong
to which blocks. The fact that not all nCk combinations form blocks makes this ar-
rangement an incomplete block design. But the property that each pair of elements
a,,a, occurs the same number of times makes it balanced. The two elementary

relations among the five parameters, b,n,r, k, A, of a block design are:
bk = nr
rk—=1)=AMn-1)

A block design is said to be symmetric if b = n. Obviously,in a symmetric BIBD,
r = k. Furthermore, in a symmetric BIBD, any two different blocks have exactly A
elements in common. Symmetric block designs zre referred to as (n, k,\) designs.
Let n = n(k) = k? - k+ 1. With reference to [HALL67] we give without proof, the
following theorem as a sufficient condition for the existence of a symmetric balanced

incomplete block design.

25

Theorem 2.1. Given n(k) = k* — k + 1, a symmetric balanced incomplete block

design (n(k), k, A) exists if k — 1 is a power of a prime.

Now let’s look at some examples of BIBD.
example 2.1

Let n=>b=7,r =k =3, and A = 1. The corresponding symmetric BIBD is as

follows:
B;: [1,2,4]
B;: [2,3,5]
B; : [3,4,6)
B, : [4,5,7]
Bs : [5,6,1)
Be: [6,7,2]
Bq: [7,1,3]

Here we can see that there are 7 objects arranged in 7 blocks. Each object appear.
in exactly 3 different blocks and each pair appears together in one and only one
block. This is an example of a symmetric block design.

example 2.2

Letn=9,b=12, r=4, k = 3, and A = 1. The corresponding blocks are:

Bl : [1,2,3] B4 : [1,4, 7] B7 : [1,5,9] B]o : [1,6,8]
B2 : [4,5,6] B5 . [2,5, 8] Bs . [2,6,7] B“ . [2,4,9]
By : [7,8,9] B : [3,6,9)] By ' [3,4,8] By : [3,5,7]

In this case there are 9 objects which are arranged in 12 different blocks. By the
definition of symmetry, this is not a symmetric BIBD. Note that n # band r # k.
Each pair of objects appear together in exactly one block and each pair of blocks
has exactly one element in common. A table 1sting many block designs can be
found in [HALL67].

Here we give a brief description of the interconnection scheme proposed by Opatrny
et al|[OPAT89]. Recall from the earlier discussion of BIBD that the different blocks

form a well-overlapping system of sets. This fact should give some intuition that

TaOERTET AT

26

given a graph G and a certain block design (b, n,r, k, A), one could associate some
sort of mapping from the elements of the blocks to the nodes which would give us
a new structure with possibly many paths between pairs of nodes. And this indeed
is the case. We will look at the constructions g'ven in [OPAT89)] for (b,n,r,k,1)
design with graphs K;, K; and K;; yielding respectively, the network models
(K1,b,n,r,k), (Kg,bn,r, k) and (K, &,b,n,r, k)"".

2.3.2.1 Construction of (Ki,b,n,r,k)

For any integer k, n(k) is defined as n(k) = k> — k + 1. It may be clear from
the discussion on complete graph K, that K, is comprised of a single isolated
vertex. Let B = {B,,B3,...,Bs} be the b blocks of a (b,n,r,k, 1) design on the set
S = {v1,v9,...,vn}.
1. The vertex set V = {v1,v2,...,02} U{uj,uz,...,up} whereu;, for 1 <i<b
represents the block B;.
2. The edge set E = {(v;,u;)|v, € B;}.

The resulting graph is a bipartite graph with degree sequence (r, k).

27

fig. 2.4 (K4,7,7,3,3) model.

The following results for G = (K, b,n,r, k) have been proved in [OPAT89].

1.
D(G) = {3 B VB, #0

4 otherwise cr
2. There are k node disjoint paths of length < 4 between every pair of nodes.
3. For every integer k such that k£ — 1 is a prime power, (K;,n(k),n(k),k,k,1)
is a k-regular communication network model having the properties:

a. G is k-connected.

b. D(G) = 3.

c. |[V(G)|=2(k?>-k+1)

d. For any set F of faults, F C V(G) and |F|< k-1

D(G/F)<4 and

D(R(G,p)/F)=2 fo: any minimal routing p.

28

2.3.2.2 Construction of (Ki,b, n,r,k)

Let By, B,,..., B, be the blocks of the (b,n,r,k 1) design on the set

S = {v;,v2,...,vn}. Let B, = {z,,,Zipy.-.,2i,} for 1<i< b
and1<j<kandz, €S5.

Make b copies of the complete graph K. Label the nodes as u;, i, %iy,iy-« -+ Uiz i
for the graph representing the block B,. Introduce n additional nodes vy, v2,...,v,
corresponding to the elements of S. Join node »; to node u;; for 1 < ¢ < b and
1 £ 7 £ n. The resulting graph G = (K, b,n,r. k) has degree sequence (r, k) and
n(r + 1) nodes.

Fig. 25 G=(K3,7,7,3,3)

It can be seen that there is a loop structure embedded in this graph as in the case
of the SRG. But this graph is more regular. The graph, G = (K, n(k),n(k), k, k,1)

is indeed regular. The following results are true jor G = (K, b, n,r,k):

1. There exists exactly one shortest path between every pair of nodes.

29

5 otherwise
3. The graph (K, b,n,r, k) is k-connected with every pair of nodes having at
least k node-disjoint paths of length < 7.
4. For the network structure, G = (K, b, n,r, k) with minimal routing p and
any set F of faulty nodes such that |F| < (k - 1), d(R(G, p)/F) < 2.
5. For every integer k such that (k —1) is a power of a prime number, the graph
= (Ki,n(k),n(k), k, k,1) is a k-regular communication network model
having the properties:
a. G is k-connected.
b. D(G) = 4.
V(G = (K — k +1)(k +1).
d. For any set F of faulty nodes, |F| < (k—1), D(G*/F) < 7 and

¢]

D(R(G,p)/F) £ 2 for the minimal routing p.

It has also been shown that (Ki,b,n,r,k) and (Ki,b,n,r,k) models give large
networks with smaller diameter. Further, they give better surviving route graphs.
The (K, b,n,r,k)*~* model generates graphs with higher diameter than that of
(Ky,b,n,r, k) and (K, b,n, 7, k) models.

2.3.2.3 Construction of graph (K, k,b,n,r, k)

Construct a complete bipartite graph K, i for each block B,, where 1 < j < b. The
nodes of K; i with degree k are labelled as {z1,, j,22,1,5,---,2i,,;} and the nodes
with degree i are labelled as {u,, 1,j,%,,1,),--+4%j,,1,,}. Corresponding to the n
elements of S, nodes v; 1,v1,2,...,01,, are added to the vertex set V and the edges
(v1,6,ut1,2) for1 <t <nand 1<z < btothe edge set E. The resulting graph has
b(: + k) + n nodes and is of degree sequence (r,k ¢ + 1). For any integer s > 2, the
graph (K, &, b,n,r, k)* is derived from (K., b,n,7,k)*~! as follows:

Make b copies of the graph (K; i,b,n,r,k)*~1. Relabel the nodes of the b*~! copies

of K, such that node u,, now corresponds to ua,,;,m,; and node 24, corresponds

30

to zg,,m,, for the m** copy of K,k for 1 <1< kand 1 < m < b°7'. Further,
relabel the nodes v.,,v.,,... of the j** copy of (Kik,b,n,7,k)* ™! &s vy, j, Ve j) .-
Let w = b°~!. Corresponding to the n elements of S, b°~! new nodes labelled
Vs1,15Us,1,25-+-3Va,1,wyVs,2,15+++1Va,2,wr+++yVanlse-0yVsn,w aIe introduced. Node
VUs,t,z is joined tonode ug ¢z yforl1 <t<n,1<r<wandl1<y< b. The resulting
graph (K;4,b,n,r,k)° has degree sequence (r,k.i + s) and order b*~*(b(i + k) +
sn). It has been proved in [OPAT89] that diarreter of (Ki,b,n,7, k)’ < 4s+ 2.
Furthermore, there exists s + ¢ node disjoint paths of length < 4s + 6 between every
pair of nodes of graph (K, x,b,n,r,k)’. For s = k — i, the resulting structure is
regular. With (k¥ — 1) as a prime power, (X, k,n(k),n(k),k, k)*~' is a k-regular
communication network model. Figure 2.6 gives the 3 regular graph corresponding
to (K2 3,7,7,3,3). These networks not only pos:ess good fault tolerant properties
but also have a hierarchical structure. Furthermore, some of these models are the

largest known (A, D) graphs which are regular.

31

21,11

Z2,1,1

21,1,2

%2,1,2

fig. 26 (K24,7,7,3,3)

CHAPTER 3
DISTRIBUTED ROUTING ALGORITHM FOR THE
NETWORK MODEL G(K;.)'

In this chapter, first we give the construction of network models (G, n(k),n(k), k, k)
and (K x,n(k),n(k),k, k)*. We then study their basic properties such as the diam-
eter, the order, and the number of edge disjoint paths. A suitable labelling scheme
is introduced. Using this scheme, we present a class of algorithms called Order Pre-
serving algorithms (OP) for efficient routing of messages. Then we present the
Opportunistic algorithm (0) and prove its optimality with respect to route length.
It is also proved that the route length given by this algorithm may exceed a shortest
path length by at most {2/3Dg| + |2/3Dv].

3.1 Construction of network model (G,n(k), n(k),k, k)

In this section, we describe the construction of (G, n(k),n(k), k, k) by the application
of (n(k),n(k), k, k, 1) design on graph G whenever order of G > k. Select k subsets
51,82,..., 5k of V(G) such that §;NS, = @, for ¢ # j and |S;| = m > 1. Make n(k)
copies of G. Note that corresponding to each block p in the block design, we have a
copy of the original graph G say Gp. Observe that there are k elements in each block
p. Furthermore, G, contains exactly k subsets. Therefore we establish a one to one
correspondence between each element in the block p and the set of subsets in G,.
For example, if p, denotes the i'* element of block p, then the it* subset of G, will
be assigned to p,. Thus a subset can be uniquely identified by a pair of indices of the
form p, p,. Within each subset, the m individual elements can be uniquely identified
8S Up,p,,iy s Up,pyizs -+ 1 Up,pryiie NOdE Vp 5.4 is joined to node vg q,,1; whenever p; =
qi.for 1 < p,q < n(k), 1 < j < m. Theresulting graphis (G, n(k), n(k),k, k). Given
the graph G, its subsets S}, 5,. .., Sk and the block design (n(k), n(k),k, k, 1), the

construction is unique up to isomorphism. Henc: in our future discussions on the

AT P s s

- TrE s vew——es

33

constructirn of network model (G, n(k), n(k), k, k), it is enough to specify the graph
G, the subsets Sy, S,,..., Sk and the block design (n(k), n(k), k, k, 1).

Example 1 '

Let G = (V,E), where V = {a, b, ¢,d,¢, f} and E = {(a, b), (},¢),(c, d), (¢, f), (f,a)}
be the graph on which the symmetric block design (3,3,2,2,1) is to be applied. We

first select the subsets S; and S of V such that $; NS, = 0. Let) = {a, b} and

Sy = {f,c} (refer to fig. 3.1 (a)). The selection is arbitrary or in other words, a
different selection of nodes could be made. First we will make n(k) = 3 copies of
G and call them G;, G; and G3. Further, call the i** subset of G, as Sp,. Refer
to fig. 3.1.(b). According to the labelling scheme described in the construction, a
in S11 will be known as vy;,,, b in S3; as vj3,1, etc. Next we introduce the edges
(Yp,piri; » Vg0,)» Where p; = qi, for 1 < p,¢ < 8,1 < j < 2. The resulting graph is
shown in fig. 3.2.

fig. 3.1.(a) Basic graph G

34

-~

R
S3,3
o m e m—m m——

a

]
]
]
A

P

b1

S
e
a

[

n(k) copies of basic graph G

fig. 3.1.(b)

s B e e S A

fig. 3.2

35

The graph (G, n"k), n(k), k, k)

36

3.1.1 Construction of network model (K x,n(k),n(k), k, k)?

Consider the bipartite graph K} x with bipartition (a, 8). Partition the set of nodes
a into k singleton subsets S;,S,,...,Sk. Now apply the design (n(k),n(k), k, k,1)
on Kij. The resulting graph is called (K x,n(k),n(k), k, k)*. Further, if v, ; j,
wherei = 1,2, ..., k are the labels of a nodes in the pt* copy, then #-nodes appear-

ing in the same copy will be denoted by up ; ;, where 1 =1,2,...,k.

Example 2. (K3 2,3,3,2,2)! is given below:

B-nodes B = {1, 2}
% - {2) 3 }
a-nodes B3 =31}

fig. 3.3 (K2,2,3,8,2,2)!

We now give some of the important results concerning (K k, n(k),n(k), k, k)!. Note
that in the above construction, |S;| = 1. Hence to simplify the notation, we will
denote a node v, j,x simply as v; ;. Further, if there is no need to distinguish between

different 8 nodes appearing in the i** copy, we shall simply denote it as u;.

Theorem 3.1. The network model (K x,n(k).n(k),k, k) is of diameter 4 having
2kn(k) nodes and degree sequence (k,2k — 1). “urthermore, the minimal routing

in (K¢ k,n(k),n(k), k, k) is unique up to B-nodes.

37

proof:

Since there are n(k) copies of A}k, the total nun.ber of nodes is 2kn(k). Note that
B-nodes are not involved in this construction. Hence their degree remains at k. As
per the block design property 2, every element appears in k distinct blocks. Thus
in the construction, each node in a is connected to k — 1 new nodes. Hence the
degree of a node in a is k + (k — 1) = 2k — 1. We now proceed to prove the rest of
the results stated in the theorem. Since the subsets involved in the construction are

singleton, we will discard the last index of the ncde labels for the rest of the proof.

case 1. Consider the pair v; p,v;, € a.

If p=sori=jthen d(v,p,vj,) < 2 and the shortest path is unique up to the
p-nodes. Suppose p ;é s. Then according to the tlock design, there exists a block B,
containing the pair (p,s). Thus there exists a peth v, p — vy p — Uy — vy, = (U
Here u is a2 B-node in the block B;. The above path is a shortest path between v,
and v, ,. Uniqueness up to the selection of u, holds since the pair (p, s) appears in

exactly one block.

case 2. Consider the pair (v, p,u,), where u, € B, N 3.

If ¢ = j, then these two nodes are adjacent and the result follows. Suppose i # j.
Let s be the element common to blocks B, and B,. If s # p then v,p — u, —
Ui,s — U;,s — u; is the unique shortest path between v; ;, and u; (up to selection of

u;). Otherwise, if s = p, v, , — v, — u, is the unique shortest path.

case 3. Consider the pair (u;,u,) wherei# j and u, € SN B,.
Let s be the common element in blocks B; and B;. Then the path u, — v,, —
vj,s — u;j is the unique shortest path between u, and u;.

Thus the diameter of the graph is 4.

Corollary 3.1. There is a path of length 3 between any pair of 3-nodes in graph
(B k,n(k),n(k), k, k).

proof: Refer case 3 above.

Theorem 3.2. Graph (K x,n(k),n(k),k,k)! 1s k-connected with every pair of
nodes having k node disjoint paths of length < 8.

38

proof: The proof is by considering every possible pair of nodes which fall into three
cases. For every I, 1 < | < n(k) let C| be tue set of indices of the blocks of
(n(k),n(k), k, k,1) which contains I. Let C; = {l1,13,...,Ix}, where 1 <1< n(k).

case 1. (v, p,v,,s). Suppose p # s.

The paths v; p = Vp,,p = Up, — Vp,,r, = Vay,re= Ua, — Vsp,0 = Vjsy t =1,2,... Jk
where ry is the common element of blocks B,, and B,, are node disjoint paths of
length < 7 between v;, and v,,. Assume that p = s. First of all note that v,,
and v, , are adjacent nodes and thus there is a path of length 1. Since p appears
in k different blocks, including blocks 7 and j, there exists k — 2 blocks (other than
i and j) in which p appears. Let B; be such a block. Then v, , = vy p — v, is a
path of length 2. Thus there are k — 1 paths of length < 2 between v; , and v;p.
Further the path v, p — u; = v,,, = vs,s = Uy — V,,; — Vj,j = Uj — V;p is a path

of length 8 where s € B, — {p}.

case 2. The nodes v; p,u;.

The paths vip — vp, p = Up, = Vp,\r, = Uy, = ¥;, t = 1,2,...,k where 7y is
common to blocks By, and B; are node disjoint paths of length < 5 between v,
and u,.

case 3. The nodes u; and u;.

The paths u, = vy,p, = V;m,p, = Um = Umy — Ujr — uj, 1 <t < k, where pair
(1i,m) is in block B,, and (m, j) in B, are k node disjoint paths of length 6 between

u, and u,.

3.1.2 Construction of (Kj ;,n(k),n(k),k, k¥, ¢ > 2

Inductively assume that (A% x,n(k),n(k),k, k)'~' has been constructed. with-
out loss of generality assume that a-nodes were involved in the construction of
(K x,n(k),n(k), k, k)'~1. Hence in this step, B-a0des alone will be used. Assume
that S, ,,5; 2...., 5, , were the subsets involved nthe p'* copy of the previous con-
struction. Since 3-nodes are involved in this level, let S} ; = {uq 1,rlvs,1,r € Sp,}- In

this level of construction, the j** subset is constructed as S; = U;(:l)S;,',j. Further,

Y e e g

39

if S, is the ordered set {zp,,zp,,...,2p,} then the order in S, is given by

xl;axlzv---)z1q7m2nx2z"",12,1'-"mn(k)nmn(k)zv--’mn(k),-

Now the network model (K k,n(k),n(k), k, k) is obtained by the application of
block design (Kj,k,n(k),n(k),k, k,1) on the graph (K x,n(k), n(k), k, k)~ with
S1,852,..., S, as subsets. Thus

(K ko n(k), n(k), k, k) = (K g, n(k),n(k), k, k)=, n(k),n(k), k, k).

Example 4. Construction of (K3 2,3,3,2,2)%.
Recall that (example 2) (K2,2.3,3,2,2)! is give:. by fig. 3.4.(a). Now the sets S,
and Sp are Sy = {u3,1,1,,%2,2,1,,u33,1, } S2 = {u12,2,,U2,32,,U3,1.2,}. According to

the construction described, the graph (K &, n(k),n(k), k, k)? is given by fig. 3.4.(b).

Urien Uig,2y Uz g1 U2z, U3 3, Uzy,p,

ﬁg. 3.4.(0) (1{2,2,3,3,2,2)]

v

\Y
Vil,2; 33,1,

fig. 3.4.(b) (K2.2,3,3,2,2)?

Theorem 3.3. (K i, n(k),n(k), k,k)? is a network model of diameter 5 having

2k(n(k))? nodes and degree 2k — 1.

proof:
Since n(k) copies of (K, n(k),n(k),k, k)! are used in the construction of

(Kkxon(k),n(k), k, k)2, there are n(k)(2kn(k)) = 2k(n(k))? nodes. In this con-

struction, #-nodes only are involved and hence the degree of a-nodes remains as

2k — 1. Since each f-node is connected to k — 1 acditional nodes, degree of a -node

is k +(k—1) = 2k — 1. Now we proceed to prove that the network has diameter 5.

We consider the following three cases.

case 1. Two f-type nodes.

Let (uy,0 up 1) be a pair of f-nodes. Ifi =i orj = j orl = I' the proof is

simpler. Hence let ¢ # ¢, j # j', and I # I'. Let B, be the block in which j and

41

j' occur together. Then u; ji — up,j, 3 Up,j 0 — up jr is a path of length 5 (by
corollary 3.1).

case 2. Two a-type nodes (vj 1, vir, jo 1)

Let j; and j; denote the middle indices of the nodes v, ;,; and vy j i in the previous
level of the construction. Let B, denote the blocl. in which the pair (j,,72) appear.
Let s = B; N By:. Now it may be varified that vi ;i = Vi,zp = Uisp — Uyep —
Vit,y,p — Vir,j,rr is a path of length 5 for some values of x and y. Thus there is a
path of length 5 between two a-type nodes.

case 3. A f-type and an a-type node (u; i, v, »). From corollary 3.1, we know
that there is a path of length 3 between u; ;i ard u; j . Hence u; 3 Uy gt 00—
uyr jo.¢ = vir jo v is a path of length 5.

This completes the proof.

Theorem 3.4. There are 2k — 1 node disjoint paths of length < 8 between any
pair of nodes in (K i, n(k),n(k), k, k).

proof: We consider the following three cases whicl. will encompass all the node pairs.
case 1. Two B-type nodes, u, ;;and u,y j r.

Let B, = {j1,72,---,Jk}- Similarly let By = {§],7%,.--,Jk}. Let p € B,NB,. Then
Ui g0 = Vil = Vs jedy = Unple = Uit pl, = Uy 21, = Vit 5, 10 = Uir y 1 15 & path of
length 7 for 1 < ¢t < k. Now there exists valuet 7,23,...,%k-1 (¢¢ # ¢) such that
u; ;1 is adjacent to the nodes labelled u;, j i, %y, 51- .5 %ip_y,51- Choose 7, and s,
such that B; N By = {j'} and B,, N B; = si. Now uy i1 — uy,,j1 S Uy —
— v = U; e Ui is a path of length < 8fort =1,2,...,k - 1.

Ql;',s"l, ;1,31,"

Thus there are 2k — 1 node disjoint paths of length < 8.

case 2. Two « nodes (v; j,1, vy j 1)

Let p = B; N Bys. Let ji,j2,....jk—1 be the k — 1 elements other than p in B,.
Now v; j1 = Via,l, = Ue,p,l, = Uir,p 1, — Vit r, l, — Vir,jo, 0 is & path of length < 5

fort=1,2,...,k—1. Let ji,75,...,jk-, be the other k —1 elements in B,. Let B,

3

be the unique block containing the pair j, and j;. Now v, ;1 — u, 5,1 — U

po U gt = Vi is a path of length < 7Tfort =1,2,...,k-1.

u;t 1t

Thus there are 2k — 1 node disjoint paths.

42

case 3. One a-node and one f-node (v; j 1, ui,j 1)

Let p = B,NB,.. Let j;,jz2,-..,jk—1 be the k—1 elements other than p in B;. Now
Uy gl = Vel = Uip,l, = Uit pl, ER ugr,, v isapathoflength <6fort=1,2,..., k.
Let B, be the block containing the pair (ji,j'). Clearly vi,;1 = ui,jel = u;, 5 3

U; ., — Up,p is a path of length < 6, for ¢ = 1,2,...,k — 1. Thus there are

£,
2k — 1 node disjoint paths of length < 8 between any pair of nodes. For notational

convenience we will denote graph (K i, n(k),n(k), k, k)! also by G(Kii)'.

Theorem 3.5. Diameter of (K x,n(k),n(k),k, k)* is 2 + 3i/2 if i is even and
4 +3(:—1)/2 if i is odd.

proof: We will treat the even and odd cases separately. Let (z, y) be a pair of nodes.
case 1. 1 = 2, where [is any integer > 1.

Proof is by induction on [.

Basis: [=1

Between any pair of B-type nodes, there exists & path of length 4 (by corollary 1
and the fact that there is an edge (u j i, uir,j1). Now, considering any two a-type
nodes, there isa patha — a = 8 = f — o — a of length 5.

Between an a-type node and a S-type node, there exists a patha — f—= f —a —
a—Porf —-a—a— f— F— ain the worst case. Therefore diameter of
G(K32)* =5 =2+ 3(2/2). Hence the result is true for | = 1.

Induction hypothesis: Assume the result is true for all | < n.
i.e diameter of G(H,2)*" = 2+ 3(3).

Induction step: Let I =n + 1.

Let A denote the subgraph G(Ki i)?" of G(Kk,x)>"*? containing the node
r and A’ that of y. The worst case distance between a and b is when there is no
direct edge from A4 to A’. Let A” be another subgraph G(Kj x)*" of G(Kj ;)*"*?
which is adjacent to A as well as A'. By virtue of construction there exists such
a subgraph. Now there exists a certain node z in A" such that there is an arc
of length 3 from either z or y to z. Further :f z is at distance 3 from z then

there is a path of length at most D(G(A} x)?") from z to y. Similarly if z is at

43

distance 3 from y then there is a path of length D(G(Nk)*") from z to z. This
is due to the fact that there is direct link from each K i subgraph H, in A(A4')
to the subgraph Hy in A" for 1 < p < n(k)?". That is, there exists direct links
from the subgraph say, G} containing node z in A" to the subgraph say, G, in
A(A') containing node z(y). However by construction there are edges from the
K, subgraphs in the subgraph G; containing node z(y) to another subgraph G,
in A(A’). Hence the maximum distance from vertex z(y) to vertex z is the diameter

of graph G(Kj x)*". Hence the maximum distanze (diameter),

D(z,y) = diameter of G(i} x)?" + 3
={2+3(F)} +3
=2+3(4)
= 2+3(%5)

Hence the result is true for I = n + 1.

case 2: ‘=2 -1

For | = 1, the result holds, since by theorem 3.1, diameter of

GEKii) =4=4+ 3(2&;1—’1-)

Induction hypothesis: Assume the result holds for | = n. That is, diameter of
G(Rix)"! =4+ 3(2n5=1).

Induction step: Let [=n + 1.

Let A denote the subgraph G(Kj x)2"~! which contains the node r and A’', that
which contains node y. Consider the worst case situation where there exists no
direct link from A to A'. Let A” be another subgraph G(Kj x)?"~! which has
direct links to both A and A’. By the same reasons as mentioned in the induction
step for the even case there exists a node z in A’ which is at distance 3 from either
z or y and at distance D(G(Ky ,)?>"~?) from y or z. This being the worst case, we

have
diameter of G(Kj x)*®*tV-1 = diameter of G(Ki x)*"~! + 3

=4+3(*7) +3
=4 + 3(2!n+12!—1—1)

Thus the result is true for | = n + 1. Hence the result.

44

Let us now compare the G(Kj i)' graphs for different values of k and i with
respect to the (A, D) graph problem. For k = 2, we have n(k) = 3. With i = 2, the
valueof A = 2k—1=3,D = 5and N(A, D) = 36. For the same value of : but k = 3
we have A = 5, D = 5 and N(A, D) = 2kn(k)? = 294. However we could construct
a graph with 324 nodes, degree 4, and diameter 8 using ¥ = 2 but : = 4. This
graph has more modularity as well as lesser degree compared to the N(5,5) graph
constructed by using k = 3. At this point note that a torus with 324 nodes also
has a degree of 4. However, it is of diameter 18. As the value of k and ¢ increases
this difference in structural modularity as well as degree becomes more and more
pronounced. Keeping the degree of individual nodes in a communication network to
a minimum is of great importance. At the same rime the network should be able to
connect quite a large number of nodes to meet the present day need for computing
power. In this context, the model G(K32)' seems to be the best choice among the
above family of graphs. Hence we choose the special case of (K3 »,3,3,2,2)" for our

further studies.

Theorem 3.6. The graph G(K; ;)" has the properties:
1. There are 4(3)" vertices.
2. The mindegree 6 is 2 + |i/2] and the ma>degree A is 2 + |i + 1/2].
3. For even values of i, the graph G(K2)' is regular.

proof: Proof of (1) is by induction.

basis: 7 = 1.

The result holds in this case since by theorem 3 1, there are 2kn(k) = 4(3) nodes
in G(A,2)'.

Induction hypothesis: Assume the result is true for all i < n. ie., Number of
vertices in G(K3)" = 4(3)".

Induction step: Let 1 = n+ 1.

By construction of G(K3,2)", G(K22)"*! is made up of three copies of G(A;2)n.
Therefore the number of vertices in G(K32)"*? = Number of vertices in G(Az2)" *
3 = 4(3)"*". Hence the result.

Proof of (2) is again by induction.

45
basis: ¢ = 1.
The result holds for i = 1 since the mindegrec of § = k =2 = 24 [1/2] (by
theorem 3.1) and the maxdegree A = 2k —1=3 = 2+ |13],
Induction hypothesis: Assume the result is true for all < n. i.e,, § = 2 4+ |n/2]
and A = 2+ | 28] for G(K;,2)".
Induction step: Let i = n + 1.
Note that, by construction, if a-nodes were involvzd in the construction of G(K3.2)"
then B-nodes are involved in the construction of G(X;)" *?. That is, if a-nodes
were of degree 2 + |n/2] in G(K;2)", then each of the a-nodes will have k -1

new edges incident to it in G(XK;)"*? whereas the degree of G-nodes remain at
2+ =),

§ =2+ |2 and
A=24+|2]+k—-1=2+|3]+1
=2+ 2.

Hence the result holds for i = n 4+ 1 and hence che result (2). Since 6 = A for all

even values of i, part 3 follows.

46

Network | Order Dzgree Diameter
4 2 2

8 3 3

16 4 4

32 5 5

Hypercube 1024 10 10
2048 11 11

4096 12 12

8192 13 13

65536 16 16

4 4 2

16 4,8 4,2

32 4 5

SRG 1024 £,8,16 10,5,2
2048 4 11

4096 4,8,16,32,128 | 12,6,4,3,2

65536 4,8,32,512 16,8,4,2

4 2 2

12 3 4

36 3 5

108 4 7

G(K;) 324 4 8
972 5 10

2916 5 11

8748 6 13

26244 6 14

78732 7 16

Table of comparison of hypercube, SRG, and G(K;2)'.

47

3.2. Routing in network G(K;,)*

It is the function of any message delivery system to find a route along which to send
each message from the originator, the source to its destination. If the same message
is not passed more than once to any intermedia‘e station en route then the route
is a simple path. If the route is known beforehaad then it can be appended along
with the message, thus permitting intermediate stations to send the message on by
looking at the routing information available to it. The selection of the route for
a specific node pair is done by means of a routing function p. In most cases the
routing function p is selected in such a way that the resulting route is a minimal
length path between the source and destination But in cases such as that of the
spokes graph where there are certain nodes whizch are of much larger degree than
the rest of the nodes, the selection of routing function p based on the minimal route

length alone seems to be insufficient.

The scheme in which the choice of route is based on apriory knowledge of
routing information for all possible (source,destination) pairs makes use of a routing
table. The routing table is maintained at each iidividual station and this adds to
the space complexity of the whole system. Since computation of the entire route for
all node pairs is quite time consuming, this kind of routing is generally followed in
networks which have a static topology or networks where reconfigurations are very
rare. Any rerouting in the event of failures or chronic congestion in certain sec-
tions of the network needs elaborate recomputing of the new routes. This problem
along with the inefficient use of valuable memory space has lead to decentralized
or distributed routing schemes. However, a table based routing scheme would be
preferable for very high speed high bandwidth communication network.

In a distributed routing scheme, elaborate routing tables are not maintained.
The absence of a well defined route directory calls for a well coordinated functioning
among the individual stations so as to ensure that the messages originated at a
particular node eventually reaches its destinaticn without looping en route. This
in turn calls for a suitable labelling scheme for the individual nodes. The labels

should be able to convey as clear a picture of the network topology as possible.

48

Furthermore the individual labels should bear a certain relation among themselves
such as to provide information regarding the pattern of connection among the nodes.
With such a labelling scheme and some minimum routing informations provided
along with the message to be routed, the routing task is much simplified. A route
between any specified pair of nodes could be est ablished by suitably transforming
the labels of the source node such that each step of transformation yields an internal
node and eventually the destination is reached.

We are interested in a dynamic distributed routing scheme. Further, we
would prefer providing minimal global information to individual nodes. Each station
would be provided with gencral information such as the network size and local
information such as the labels of immediate neighbors. Informations such as the
source and destination address, the route list which include ‘! :.st of nodes so far
visited etc will be appended along with the message. Further, individual nodes will
have a limited local information regarding the status of the neighbor nodes. The
routing strategy could be expressed informally a.; follows:

1. Node z generates a message to be sent tc node y and appends the message

with the address of the source and the destination; z' « z.

to

Forward the message to node z' such that edge (z',z") is a section of the
path G(;). Include 2" in the list of nodes visited by the message.
3. At node x", check whether the destination addressis z". If not then z' « z";
Repeat steps 2 and 3 until " = y.
4. Otherwise remove the message and acknowledge receipt.
From the above discussion, it can be seen that the selection of the intermediate

nodes plays a rignificant role in deciding the route and hence the route length.

49

3.2.1 Labelling scheme for G(R;)

In the special case of network model (K, ,,3,3,2,2)", we will use the characters
R,S,U,V torepresent the four nodes involved in the basic graph where U and 1" are
a-type nodes and R and S are f-type nodes (see fig. 3.5). Each level of construction
associates a certain element of the block design to these nodes. Further, the value
assigned in the i** level need not necesarily be the same as that of the i — 1°* level.
Hence it would be desirable to include these information in the label. Thus each
node is assigned the label 7,,1;,...,7; where 7, € {R, S,U,V'}, and 7; identifies the
unique copy of (K2 1,3,3,2, 2)!-1 in which node iy, 1,,... ,i, belonged to at the I
level of construction. For example, the label Rj; gives us the information that the
corresponding node belonged to the 3™ copy in level one of the construction and to
the first copy in level two construction. With the convention that 3-nodes (R and
S) are involved in even levels of construction, it becomes clear that the above node
represented one of the elements of the block B; = {1,2} in level two construction.
We will further adopt the convention that U and R nodes always represent the
elements in the particular block which is synonymous with the block index. Then
Rj3, will represent the element 1 in the 1°' copy for level two construction. Similarly
U,, will represent the element 2 which belongs to block B, in level one construction.

Fig. 3.5.(c) shows the complete labelling scheme of graph G(K, ,)2.

R S

/(P

AN
s, 50|

U vV

fig. 3.5.(a) Basic g:aph Kj »

50

fig. 3.5.(0) (K22,3,3,2,2)!

fig. 3.5.(c) (K2.2,3,3,2,2)2

51

Let ¢ = (i1,i2,...,im) and j = (j1,J2,-..,Jm) be a pair of nodes in G(R;)™ 1.
Now we have the following results:
1. If iy € a,f and j; € B, then there exists an edge (7, j) only if iz = j; and
u#j,for2<i<m.
2. If i, = j,, there does not exist an edge (7, 7).
3. If1; € a, P and j; € a, B, then the edge (1, j) exists only if for some I, where
2 <1< m,i;# jiand for p such that 2 < p <m i, = j, for p# l. Further,
if iy = R(U) and j; = S(V) then edge (i,;) exists if iy = jy+ 1 or 4; = j; ~ 2.
Similarly if iy, = S(V) and j; = R(U) then (i,7) exists if i = j; — 1 or
u=n+2.
Having labelled the nodes as described above, we will now present a simple and
efficient distributed routing strategy. Our methcd is based on four basic transfor-
mation schemes. Given any two nodes as source «.nd destination, the required basic
transformations can be easily determined. Further, the path length of the route
established by this method is optimal in the sense that the length of the route thus

obtained exceeds the distance between the nodes by a small fraction.

3.2.2 Basic Transformations

Let P = (p1,p2,-..,Pm) be the source and @ = (q1,92,-..,qm) be the destination.
Recall that py,q1 € {R,S,U,V} and p;,q € {1,2,3} for 1 <1 < m. Define the

difference vector Apg as Apg = (61, 62,...,6m) where

0, if p1 =aq;
0y =41, if p; and g, are adjacent in G(K;z2);
2, otherwise.

and 6; = pr — g for 2 <1 < m. ltis easy to sea that 6, € {-2,-1,0,1,2}. Since
Apg is a null vector only when P = @, the rcuting process can be viewed as a
sequence of steps wherein, at each step called a segment, a particular coordinate of
Apg is made equal to zero. Now each step can ne realized by means of one of the
following four basic transformations.

case 1: & € {+1,~2} and | is even.

52

In this case, we first route the message to node P’ in the same subgraph K3 of
G(K;2)™"!, such that p} = U. Since the source and P' are in the same K3 ,, the
only coordinate changed, is the first coordinate. From the construction and the
labelling scheme described earlier, we know that there exists a node P" adjacent to
P' whose first coordinate p{ =V and p] —q1 =0, p!' — q, = p}, —qi = pi — ¢, for
it =1,2,...,01-1,1+1,...,m. We call such a step, a U — V transformation. Note
that U — V transformatiorn selects a new source P' such that Apg and Apig are
same except for the first and the I** coordinate values. Further A png has its Ith
coordinate value zero. Once P" is selected, message is forwarded to P" and P"
becomes the new source.
case 2: 6 € {—1,4+2} and lis even; [# 1.
In this case, the message is first routed to a ncde P' in the same subgraph K>,
such that pj = V. As in case 1, only the first coordinate is changed. From the
construction, there exists a node P" such that p{ = U and p/ — ¢ = 0; p} —
g =p,—q =p, —q fori=1,2...,1-11+4+1,...,m. This step is called a
V' — U transformation. Once P" is selected, m 'ssage is forwarded to P"” and P"
becomes the new source.
case 3: & € {+1,—2},lisodd and I # 1.
We first route the message to the node P’ in the same K, ; whose first coordinate
value is R. Note that P’ has an adjacent node P"” whose first coordinate value is S
andp/ —q=0;p - =pl—-qo=p—qfori=1,2,...,1-1,1+1,...,m. This
step is called an R — S transformation. As in cises 1 and 2, message is routed to
P'" and P" becor.es the new so.rce.
case 4: 6 € {-1,+2},lis odd and I # 1.
This is the dual of case 3 and hence we omit detailed discussion. This procedure is
called an § — R transformation.

The above four transformations enable us to change the source node succes-
sively so that when §; = 0, for 2 < I < m, the source and destination belong to the

same Iz 2. At this stage, since K, 7 is connectec, there exists a path from the cur-

rent source to the destination of length at most 2. Note that all nonzero coordinates

93

of Apg have to be made zero through basic transformations. The lack of a central
controller in a distributed routing scheme puts forth the need for a certain prespec-
ified global rule for selecting the order in which the coordinates of Apg are made
zero. Clearly, one of the simplest of all possible orderings is the ascending order of
transformation. In this case, § is made zero before §;4; for I =2,3,...,m— 1. The
descending order of transformation is defined similarly. The set of all routing algo-
rithms which possesses a predefined order is called an order preserving algorithm.
In particular, we refer to the ascending order of transformation as the order preserv-
ing algorithm for the rest of our discussion. We will consider a routing algorithm
to be based on systematic transformations if the transformations selected at each
segment are in conformance with the value of §; s specified in the four basic trans-
formations. For instance, consider the case where 63 = +2. The transformation
which is in conformance with this value is V — U. Before formally presenting the

algorithm, we shall illustrate this routing process by an example.
Example 1. Let the source and destination be Ry3;2 and S;33; respectively.

Let P = [R,1,3,1,2] and Q = [S,2,3,2,1]. We shall treat P and Q as vectors
and apply the order preserving algorithm to obtain the route. In this strategy, the
first step is to make the second coordinates identical. Now the difference vector
Apg = [2,-1,0,—1,1] implies that we need to apply a V — U transformation for
the second coordinate. Clearly, there is a path o length one from P = [R, 1, 3,1,2]
to i5 = [V,1,3,1,2]. Further, there is an edge setween ¢} and if = [U,2,3,1,2].
Hence the message is routed to ¢; and i is treated as the new source node. The
difference vector is now given by A,I;Q = [1,0,0,—1,1]. Next we pick the fourth
coordinate since the 3™ coordinate is clready zero. 6; = —1 implies that we have
to apply a V — U transformation. Since there is a path from [U,2,3,1,2] to
[V,2,3,1, 2] first, the message is send to [V,2,3,1,2]. From [V,2,3,1,2] we route
the message to [U, 2,3,2,2]. Now the difference vector is given by [1,0,0,0, 1]. Pick
the last coordinate. Observe that by applying an R — S transformation, we can
make the last coordinate zero. The resulting rovte is

Riziz — Visiz — Uasiz — Raaiz — Vasiz — U2zzz — Razzz — Sy

o4
We now formally present the order preserving algorithm.
Algorithm OP {Order preserving routing algorithm }
Input: P = [py,pz,...,Pm) { the source } and @ = [g1,42,.-.,gm] { the destination }
Output: Routing of a message from P to Q.
step 1. If P # @ do the following steps.
step 2. { Initialization } iy « P;T} «~ p;; k « 2
step 3. { looping }
while (¢ < m) do
3.1 { Compute the difference vector }
A=1i—~Q
while (6 = 0) and (k < m) do
ke—k4+1; 4, =1y
3.2 { Determine the basic transformations. }
if k is even then
ifép=—1lor2then Hy «V; Ty U
else H, « U; N« V
else
if 6, =-1or2then H, —« S;Tx — R
else Hy — R; T, — S
3.3 Send the message from the current scurce
ik = [Tko1,92y- - s Qk=15Pky - - s Pm] t0 1 = [Hk, G2, .., Qk=1,Pks - - Prm)-
{ Note that this involves a routing inside a A’ only. }
3.4 Send the message from 7} to the node i = [Tk, q2,...,qk, Pk+1s-- - s Pm)
3.5 if (k < m) then i34, « i}
else send the message from i, = [T\, ¢2,..-,qm]
to the destination [g1,q2,...,¢,].
{ Note that this involves a routing inside a K, only. }

step 4. end

55

Lemma 3.1. Algorithm OP is correct and the path length between any pair of
source and destination is less than or equal to (2m + 1), where m is the number of

coordinates of the difference vector.

proof: In each iteration, one coordinate of the s>urce and destination is matched.
In fact, to be more specific, at the beginning of the k** iteration { in step 3 } the
source node is of the form [Tk-1,42,-..,9k-1,Pk,. .-, Pm]. By steps 3.3 and 3.4, we
make sure that at the beginning of the (k + 1)*! iteration the message has reached
the node [Tk, q2,- .-Gk, Pk+1y--+,Pm) for k = 2,3,...,m. Thus after m — 1 steps,
the source node is of the form [T\n,q2,...,9m]. Now by step 3.5, the correctness
follo“;s.

It may be observed that the transformation corresponding to the second
coordinate may result in a partial route of length 3. For ¢ = 3,4,...,m the partial
route created has length less than or equal to 2if 6,—; # 0 and is at most 3 otherwise.
Therefore the sum of the partial route lengths gen=rated for: = 2,3,...,m {in steps
3.3 and 3.4 } is bounded by 3 + 2(m — 2). Furthermore, step 3.5 may result in an
additional partial path of length at most 2. Hence the total path length is bounded
by 3+2(m—-2)+2=2m+ 1.

Example 2. Let the source be V}3), and the destination R3123. Let P = [V,1,2,1,2]
and Q = [R,3,1,2,3]. The difference vector Apy = [1,-2,1,-1,-1}. The trans-

formations for the various coordinates are given in the following table.

coordinate Ok Hy Tk

2 -2
3 +1
4 -1
5 -1

nx<a
T <

Table 3.1
The route based on the OP algorithm for the above transformations is Vj2,, —
Riz212 = Ui212 = Vaz12 = Raaz = Sanz = Vaine — Uii22 — Sa122 — R3y23. Note

that the route length is 9.

56

Now let us consider an alternate ordering scheme for the above example. To
start with, the current source is of the type V. Now the value of Hy is also V. So
we choose the fourth coordinate in the first iteration which will result in a partial
route of length 1. Then the current source for iteration 2 is [U,1,2,2,2]. Since H;
is U, we will pick the second coordinate for the next iteration. This yields a partial
route of length 1 leaving us [V, 3,2,2,2] as the current source for iteration 3. Since
there are no more U — V transformations needed, we have to select between an
R — S and an S — R transformation. Since the destination is an R-node, we select
the R -- S transformation next. Thus we have tne following route:

V1212 = U222 — Vaz20 — R3z22 — S3122 — R3123 In comparison to the route estab-
lished by the order preserving algorithm, this route is much shorter with length 5.
In example 2, we have seen that it is possible to reduce the route length by prop-
erly choosing the coordinates without necessarily following a predefined order. An

algorithm based on these ideas is presented next

Algorithm O { opportunistic routing algorithm }

Input: P = [p1,p2,...,pm] { the source } and @ = [q1,¢2,- - .,qm] { the destination }

Output : Routing of a message from P to Q.
step 1. If P # @ do the following steps.
step 2. { Initialization } currentsource — P;A — P - Q; K ={2,3,...,m}
step 3. { Determine the basic transformations. }
For k = 2 to m do the following:
if 4 = 0 then
K =K - {k}
else
if k is even then
ifép==lor2then Hy «V; T «U
else Hy —~ U; T «~V
else
if 6y = -1 or2then Hy «~ S; Ty, — R
else Hy — R; T, ~ S

57

step 4.while R not empty do

4.1 { Pick the closest Hy. }
Let X be the first coordinate of the current source.

Choose k such that X = Hi. If no such k exists then
choose a k such that both X and Hy do not belong to
either a or . Break any tie by selecting the H; which
is the same as ¢;. If this is not possible, choose any k;
K « K - {k}.
4.2 Route the message to the node [Hy,...,pi,...] in
the K, containing the current source.
4.3 Route the message to the node {Tk,...,qk,...].
step 5. Route the message from [T, 92,---,m] t0 [g1,925- -+ qm]-
step 6. end

The proof of correctness of algorithm O is similar to that of algorithm OP and

hence omitted.

Lemma 3.2. Let A be the class of routing algorithms based on the systematic
transformation of coordinates of the difference vector Apqg. Let l(v, P, Q) denote
the path length of the route from P to Q as deiermined by the algorithm 4 € A.
Then we have [(O, P,Q) < I(v,P,Q) for all 4, P, Q.

proof: Each route is computed in (m — 1) iterations, where m is the length of
the label. In each iteration, a partial route is generated. A partial route has two
components, an edge e, as determined by the basic transformation selected and a
path t; leading from the current source to the heid node of e,. Any algorithm in A
has to perform the same number of iterations for the pair (P, Q). Further, in each
iteration, an edge e, is always generated. Therefore the only factor that decides the
partial path length during the i** iteration is the length of ¢,. Since the algorithm
O picks the smallest ¢, at each iteration, the partial path generated is always kept
minimum. Therefore the length of the path calcu ated by the algorithm O is always
less than or equal to the length of the path determined by any other algorithm

v € A.

58

3.2.3 Comparison of route length generated by opportunistic

algorithm to the diameter estimate

Let P = [p;,p2y---+Pm+1) and @ = [g1,92, - - . ,gm+1] be the source and destination
nodes respectively and Apg = (61,62, . ..,8m+1] the corresponding difference vector.
Let (Hi, T) represent the basic transformation corresponding to the k** coordinate.
Define |H x| as the number of occurence of X as Hy for 2 < k < m+ 1 and
X € {R,5,U,V}. Ty is similarly defined. Let C:N denote all the node pairs (P,Q)
in V(G(K22)™) such that |Ty| = 0 or [Ty| = 0 and |Tr] = 0 or |Ts| = 0, and
bk #0for 2<k<m+1.

Lemma 3.3. For any pair of nodes (P, Q) in CN, the length of the route computed

by the opportunistic algorithm is at most 2m + 2.

proof: We will assume the case where |Tv| = 0 and |Tr| = 0. The proof of the other
case is exactly similar. If p; € {V, R} it is quite clear that the first transformation
selected by the opportunistic algorithm will result in a partial route length of 1. If
¢1 € {U,S} then the last section of the route will also have a length of one, with
no need for the additional routing with in a X, ;. We will consider the case where
p1 € {V,R} and q; ¢ {U,S} such that no such saving in route length is possible.
Whether p; = U or p; = S, there exists more than one selection of transformation
resulting in the very first section of the route being of length 2. Since P and
Q are in CN, the remaining sections will each have a partial route length of 2
(i.e., of the form Ty — X = H; — T, where k; € {V,R} and H; is adjacent to
(Thy D24+ s Qks Pk+11- - -y Pm+1)). After m — 1 such transformations, we reach some
node [Y,g2,...,9m+1] which could be at a distance of at most two from Q.

Hence the total route length = 2+ 2(m-1)+2 = 2m + 2.

From theorem 3.5, the diameter of G(K3 7)™ is at most 243(m/2) if m is even
and 4 + 3(=51) if m is odd. Hence for any pair of nodes in CN, the route length
computed by the opportunistic algorithm would exceed the diameter by at most
(2m+2)-(2+3(m/2)) =m/2if misevenand (2m+2)~(4+3(m-1)/2) = (m—1)/2
if m is odd.

A et S

59

Let us now consider the case where [|Hg|~|Tg|| =1 > 0 and ||Hy: |- |Tv]|=j > 0.
In this case it can be seen that there are (|Hgl+ |Tr| - 1) + (|Hv|+ |Tv|—j) =
m — (I 4+ j) sections where the resulting partial routes are of length one. That
means, the route length in this case would be (2m+2)—(m—Il—j) = m+1+4j+2.
Then the route length established by the opportunistic algorithm will exceed the
diameter of G(Kz2)™ by (m +1+7+2~(2+4+3m/2) =1+ j —m/2 if m is even
and (m+1+j4+2-(4+3(m—-1)/2) =14+ j~(m+1)/2if m is odd.

3.2.4 Comparison with respect to the shortest path length

Let P,Q be any pair of nodes. |Hy| and |Hg| are defined as in the previous section.
Let H.set denote an array containing the various values of Hx for 2 < k< m + 1.

T_set is similarly defined.

Lemma 3.4. For any source node P and destination node Q, if

1. py € H.set and q) € T _set ;

2. |Hy| =|Tv| and |Hg| = |Tr| then the length of the route computed by the
opportunistic algorithm matches the shortest pah length from P to Q.

proof:

First, note that a shortest path from P to @ also involves transformations but not
always systematic. Hence it is sufficient to show that, under the conditions of the
lemma, a route based on systematic transformations is of lesser length than a route

obtained by any combination of non-systematic transformations. Now, for each

-non-systematic transformation used in a route, & non-systematic transformation of

the same type will have to be used to get the same effect as that of a systematic
transformation.

Since p; € H _set, the very first section of the route yields the shortest possi-
ble partial route length of one for that section. S nce |Hy| = |Ty| and |Hg| = |Tx/,
either |[Hg| or [Hv | number of transformations ere possible successively with each
yielding least partial route length of one. Following that, with an additional edge of
the form (Vor U, R orS), the next successive steps of |Hy| or |Hg| transformations

are possible with least partial route length of one. The total number of transforma-

60

tions required = 2- |Hy| + 2 |HRg]. With no loss of generality, we will assume that
p € {U,V}. If ¢ isalsoin {U,V} and provided |Hg| > 0 we will need another edge
to reach Q. The total route length in this caseis 2|Hg|+1+2|Hy|+ 1. If [Hg| =0
we will have a route of length at most 2|Hy |+ 2. Consider any other route with at
least one non-systematic transformation. It will need at least one extra edge for the
route. Hence the route established by the opporiunistic algorithm gives a shortest
path from P to Q under the conditions of the lemma.

Example 3. Let P = [V,1,1,1,1]; @ = [U,2,2,3, 3]

Apg =1[2,-1,-1,-2,-2]

H,=V, IL=U
Hy=5; T3 =R
H=U, T; =V
Hy=R, Ty =5

|[Hv|=1; |Ty|=1; |Hg|=1; |Tp|=1
Route generated by opportunistic algorithm is as follows:
Vitn = Unn 5 Vaisn = Suar > Resar > Sizas = Uszas This has a length of
6. The value written over — indicates the particular coordinate which had been
transformed. Now consider performing a non-systematic transformation for the
third coordinate of Apg (i.e., performing R — S instead of S — R). We will have
a route: Ving — Uy = Vaiar = Raizn — Szasn — Usssr — Roasy — Sazas —
U2333 — Rasaz — S2233 — Uszas. Note that this route has a length of 11 which is
greater than that of the opportunistic algorithm.

We will now consider the case where |Hg| # |Tr| and |[Hy # [Tyv|. Let
Dpr = ||Hg| ~ |Trl|| and Dy = ||Hv| - |Tv|).
Lemma 3.5. The length of a route established between a pair of nodes by the
opportunistic algorithm will exceed a shortest path length by at most |2/3Dg] +
|2/3Dy .
proof:
case 1. Dp+ Dy = m. That is, either |Hp] = 0 or [Tg| = 0 and either |Hy| =0
or |Ti-| = 0. With no loss of generality, we will assume that |Tr| = 0 and |Ty/| = 0.

61

Now all but the first transformation done by the opportunistic algorithm will have
a partial route length of two for each section. If p; € H,.r and q; € T, then the
route length will be 2|HRr| + 2|Hy| +2 = 2m + 2.

Let p; = U (i.e.,, p1 ¢ Hyet). Then the following scheme of transformation
could yield a shortest path.

vvivvauBvanuLv..

That is, [|Hy|/3] transformations are non-systematic. They need a to-
tal of 2[|Hy|/3] edges. This combined with the (|Hv| — [|Hv|/3]) systematic
transformations has a partial route length of 2[|Hy|/3] + (|Hv| — [|Hv|/3]) =
|Hy|+ [|Hv]/3]. Similarly the other set of rema.ning transformations have a route
length of |Hg|+ [|Hg|/3]. In addition to this, there will be an edge linking these
two partial routes and in the worst case, another edge leading to the destination.

Thus a shortest path length for the above case is

|Hv |+ [1Hv|/3] + |Hr| + [|Hrl/3] + 2. (1)

Now, the equation for the opportunistic algorithm can be rewritten as

|Hv |+ |Hpl+[|Hy|/31+ (| Hv |- [|Hv|/31)+[|HR|/3]+(|Hr|-[|Hr|/3])+2. (2)

Subtracting (1) from (2), we have

(IHv|- [|Hv|/31) + (|Hr| - [|HR|/3]) = |2/3|HVv]|] + |2/3|HR|]
= |2/3Dr| + |2/3Dv .

This completes case 1.

case 2. ||Hy|- |Tv||= Dv >0 and ||Hr| — |Tr| = Dr > 0.

In this case, the very first section of the route will have a partial route length of
one. With no loss of generality we will assume that |Hy| > |Tv| and |Hr| > |Tk|.

Here the length of a route given by the opportunistic algorithm will be at most

2|Tv| + 2|Tr| + 2Dv + 2Dg + 2. (3)

62

A shortest path will have a route length of
2[Dv /3] +2[Dgr/3] + 2|Tv|+ 2|Trl+ (Dv - [Dv/3]) + (Dr - [Dr/31) + 2.
That is,

2|Tv|+ 2|Tr|+ Dv + [Dv /3] + Dr + [Dr/3] + 2.

Subtracting (4) rom (3), we have
(Dv - [Dv/3]) + (Dr — [Dr/3]) = |2/3Dr] + [2/3Dv].
case 3. Dy =0; D =0.

This is similar to case 2. This completes the proof.

(4)

CHAPTER 4
NETWORK FAULT TOLERANCE AND DISTRIBUVED
FAULT TOLERANT ROUTING ALGORITHM

In this chapter, we first look briefly at the ways and means of achieving fault
tolerance in a multicomputer system and the imp ortance of network fault tolerance
in the system level fault tolerance. Conventional criterion for network fault tolerance
is considered to be the network connectivity. Network connectivity however cannot
exceed the minimum degree § of the network model. So robustness of the network
is equally important. Hence we give a set of conditions under which the network
could allow faults which exceed by far the degre> of the network. In fact this in a
way. takes into account the total number of nodes in the network and hence reflects
the network’s resilience. In section 4.2 we give a distributed routing algorithm for

the case when some faulty nodes occur in G™.

4.1 Resilience of the network

The trend towards constructing computing syste ns incorporating many processing
elements has resulted in a complex phenomenon involving reliability and fault toler-
ance considerations. The multiplicity of processing elements can be used to enhance
the system reliability. With a good number of processing resources in the system,
the failure of one or several of them could be gracefully tolerated in a way that does
not seriously affect the overall system performaice. But that is only one side of
the issue. With several active elements in a computing system, the probability of
a failure at some point in the system at any time is also non zero. As the num-
ber of processing elements increases, the probability of component failure tends to
increase with it. With the growing emphasis on decentralized(distributed) control
in such systems, the ways and means to deal w :h such failures also have become

increasingly complex.

64

According to Kuhl and Reddy [Kuhl86), hardware fault tolerance in a computer
system is achieved in one of two ways:

1. By masking the effects of faults

2. By identifying the sources of failure and then following the appropriate ac-

tions to compensate for the effects of identified failures.

In the case of masking, some kind of hardware redundancy in the form of
replication and masking is employed to mask tiie failures. This is considered to
be a reliable but expensive option. The other of tion works out to be cheaper but
has its own nontrivial subtasks such as fault detection, fault diagnosis, reconfigu-
ration and system recovery. The above two options are system-level fault tolerance
methodologies based on the exchange of information between processing nodes of
a multicomputer. The irﬁportance of reliability and fault tolerance of the underly-
ing communication facility, the interconnection network in successful execution of
message transfers cannot be overlooked.

The communication facilities generally fall into one of the following three
catagories:

1. link-based
2. bus-oriented

3. connection network based

Nodes connected by discrete communication links make a link-based system.
There will be several links incident on & node, linking it to neighboring nodes in the
system. Communication with nodes having no direct links is achieved by routing
messages to the non neighbor node over severa' links through several intermedi-
ate nodes. Bus oriented architecture places several processing nodes on a common
shared bus. Use of connection network as inter-node communication facility allows a
large number of node pairs to establish direct conmunication paths simultaneously
by use of a switching circuit such &; crossbar, multistage interconnection network
etc. Robustness and reconfigurability are the two essential features the communi-
cation facility should possess to ensure system reliability and fault tolerance.

Robustness refers to the inherent redundancy of communication paths pro-

65

vided by the interconnection structure. This in turn is a measure of the ability of
the system to maintain reliable communication tetween processors in the presence
of failures of nodes or links. Informally speaking. reconfigurability is a measure of
the degree to which the inherent redundancy can be practically exploited. The flow
of information between nodes in large systems is controlled by complex routing al-
gorithms. It is essential that the overheads associated with these routing algorithms
be kept as minimum as possible to enable fast and efficient flow of information in the
system. Reconfigurability is also closely linked tu the level to which the simplicity,
efficiency and well structured nature of a good routing algorithm is preserved in the
presence of failures. Robustness on the other hand is directly related to the connec-
tivity of the network topology. Recall that a network is modelled as a graph with
the nodes being the processors and the edges, :he communication links between
nodes. Connectivity is also defined as the minimam number of edges or nodes that
have to be removed to break a graph into two or more components. Thus it is a
measure of the communication facility’s ability to function in the presence of node

or edge faults.

It can be seen that the network model (K &, n(k), n(k), k, k)* fits in well with
the description of a link-based structure. Since the model (K7 ,,3,3,2,2)" is the
most interesting in the above family of graphs, in terms of larger order to degree ratio
and fine structure. we will concentrate on this type of network topology. In chapter 3
we have seen that the minimum degree 6§ of G(A7 2)" is 2+ |i/2] and the maximum
degree Ais 2+ |(i + 1)/2]. Furthermore, the network G(K3,)' is i-regular for even
values of i. Therefore the minimurm number of nodes to be removed to disconnect
this network is §. Thus presence of any é — 1 faults pause no threat of the graph
getting disconnected. We will view the network Jault tolerance as a measure of the
number of faults the network can cope with before being disconnected. Since node
failures are much more serious and cornmon than link failuret, we will consider only
node failures. With & faults in the network, there is nonzero probability of some
node getting disconnected from the network, since it could be that all the 6 faults fall

in the neighborhood of a single healthy ncde say z. But so far as message routing is

66

concerned, this situation doesn’t affect the successful message transfer between any
pair of nodes in V(G) ~ z. Here V(G) denotes tae vertex set of G(K>,)'. Failure
of 6 + 1 nodes doesn’t pose any additional threat so long as 6 > 3.

As few as 6 nodes could result in the network disconnection. But as many as
2/3'd of the total number of ncdes could fail and still the surviving network could
support communication between any surviving pair of nodes. For a network with
large number of nodes it is quite difficult to track cown all the different ways in which
an arbitrary large number of nodes failures could occur and still leave the network
intact. However we could pin down quite many of these different fault distributions
by a set of general conditions. But first we will give few more definitions.

Any basic graph A2 in G(K32) has two types of connections, one involv-
ing the o-type nodes and the other involving tl e A-type nodes. Then a network
G(I\'22)' could as well be identified in terms of rows in the a-direction and -
direction respectively. Here an a-row consists of a basic graph K, , and all the
L2 2 graphs to which it has a-type connections. Similarly a B-row will include any
K, ; graph and all the K, ; graphs with which it has #-type connections. To make it
simple we will use the term row for a-row and column for f-row with no loss of gen-
erality. In the network G(A32,2)™, there are n(k)™/* rows and n(k)[™/* columns.
We will call a row in G(K3.)?, a row.element and a column in G(K,,)? graph a
column.element .

Consider any node r. A node y will be called its zero_neighbor if there
is an edge (z,y) in the basic graph K3, conta'ning node z. A node y' will be
called a two_neighbor of node z if there exists an edge (z,y') in the G(K; 5)? graph
containing node z. Note that z and y’' would either belong to the same row.element
or to the same column_element. Let D be a class of fault distributions which satisfy

the following conditions :
1. Every node in the surviving graph G(K32)™ /F has at least one zero.neighbor.
2. Every node in G(K;2)™/F has at least one two_neighbor which is not a

zeroneighbor.

3. At most one third of the number of nodes in any G(K3;2)? could be faulty.

67

Lemma 4.1. If G(K,,2)™ has a fault distribution d € D then there will be at most
one G(K32)° in any G(K; ;)? with all four node; faulty.

proof: Proof is by contradiction.

For simplicity we will use the notations G°® and G? respectively for G(K3)" and
G(K32.2)*. Let us assume there are two G° subgraphs in a G? with all four nodes
faulty. Then eight nodes in these subgraphs alene will be faulty. Now each node
in a G? is linked to some other node in a different G° belonging to either the same
row.element or the same column_element. Corsidering that the two G° graphs
under consideration belong to the same row(column)_element there are still seven
more nodes belonging to seven different G° subgraphs which are adjacent to the
above two subgraphs. That means altogether there are fifteen nodes in fault in the
G? under consideration. This obviously violates the third condition for d to be in
D. Hence the G? in G™/ F cannot have two G st bgraphs with all four nodes faulty

and we have a contradiction. Hence the lemma.
Lemma 4.2. For aG™ with fault distributiond € D, every G! in G™ is connected

proof: Proof is obvious since by condition 1, each G° in G! is connected and by

condition 2 each G? in G! is linked to at least ore other G in the same G'.

Lemma 4.3. If G™ has a fault distribution d ¢ D then every column.element in

G™/F is connected.
proof: Proof is similar to that of lemma 4.2 and hence omited.

Lemma 4.4. Every G? in G™/F has at least 01e G from which there exists one
or more links to each of the other G! in the san e G? provided, the corresponding

fault distribution belongs to D.

proof: Here again proof is by contradiction.

We will assume that there exists no G? in G™,'F which has links to each of the
other G*(row.element)s.

First we will consider the case where there exists a row_element m which has a

G° which is fully down (all four nodes in fault). Then by condition (2) the four

68

neighbors of this G has to be faulty, which brings the number of faults to eight. By
conditions (1) and (2) at most two more nodes ould be faulty in the m** row. If
so, the neighbors of those two nodes in the other two rows say, I'* and p'* rows will
have to be faulty too taking the total number of faults to twelve. If the surviving
links of row m are one each to the I** and p** rows, we are done (m* row has links
to each of the other rows and hence contradiction). If not, let us assume that the
two surviving links are to row p alone. Then if p doesn’t have any links to row !
then there is no row_element which has links to each of the other two row_elements.
However, in that case, all the three nodes in row p responsible for p — [links and
their neighbors in row ! will have to be faulty (by condition (2)). This would bring
the total number of faults to eighteen which exceeds the limit set in condition (3).
Therefore row p has links to row m as well as row I. Hence we have a contradiction

and so the lemma holds.

Lemma 4.5. No! one row.element or column.element in G™/F could be fully

down provided the fault distribution belongs to D.
proof: Proof follows directly from lemmas 4.1, 4.2 and 4.3.

Lemma 4.6. For a network G™ with fault distribution as in D, every G? in G™/F

has at most one connected component.

proof: Proof is evident from lemma 4.1 and lemma 4.2. That is, each row_element
in itself has at most one connected component. Further, there is a connected
row.element in each G? with a minimum of one iink to each of the other connected

row.elements. Therefore G?/F has at most one connected component.

Theorem 4.1. If network G™ has a fault distribution which belongs to the class
of fault distributions D then the surviving graph G™ /F is connected and hence

reconfigurable.

proof: By lemma 4.6 the smallest subgraph whica could be a connected component
of G™/F is a G*. Since every G? in G™/F is connected in itself it is sufficient to

show that any G? possesses at least one link to each of the other G? neighbor in the

69

a direction as well as 3 directon. Assume there is at least one G?/F say G 4, which
has no links to any other G2. Now the smallest subgraph of G™ which contains G 4
is a G3. The above assumption would then mean that none of the row_elements
in G4 will have a surviving edge which links that row_element to the correspond-
ing row_elements of the G? neighbors in G* D G4 — G4. Similarly, none of the
column.elements of G4 will have surviving edg~s linking it to the corresponding

column_elements of the G? neighbors in the f-direction.

We will now consider the case of G4 not having any surviving edge to each
of the other G? neighbors in the f-direction of G D G 4. We will assume there is a
column_element, say the i**, in G, which has no surviving edge linking it to each
of the other column.elements in the i** column. By lemma 4.1 and condition (1),
this could not be due to the failure of all # nodes in the i** column_element of G 4.
At most four 8 nodes in a column.element could be faulty. But this can happen
only if a K2 subgraph in the i** column.eleraent of G4 is fully down. Let us
now consider the remaining column.elements, say the I'* and the p'*, of G4. By
lemma 4.1 there cannot be any A’ subgraph which is fully down in either of these
column_elements. For the I** column.element tc not have any edge to each of the
other column_elements in column ! of G™/F, each of these column_.elements should
have at least four / nodes in fault which is possible only if each of them (this
excludes the I'" column element in G 4) has a K, ,; subgraph which is fully down.
Now two of the three column.elements of G4 dc not have any links to each of the
remaining column.elements in their respective colamns. We are now left with the p'”
column.element of G4. We have seen that the respective G? subgraphs containing
the I'* column cannot have any more column_elerent with a K, , subgraph which is
fully down. By conditions (1) and (2) each of the column_elements in the p*® column
has fonr # nodes which are surviving, two R nodes and two S nodes each. So is
the case with the p"‘ column_element of G4. Pence there should be a minimum

of one surviving edge from the p'* column.element of G4 to each of the other

column.elements in the p'* column.

Assume there is a row_element, say the i**, in G4 which has no links to
3}

70

any other row.element in row { of G* O G4. Tais could happen only if all three

th row_element of G4 to each of the ith

edges from the K, subgraphs in the ¢
row._elerr-uts in G* D G4 are down. By condition (2), this is possible only if at
least four a-type nodes in each of the above row._elements are in fault. But by
condition (1) this would not happen unless there is a K7, subgraph in each of the
above row_elements which is fully down. By lemma 4.1, there cannot be any more
K 2 subgraphs in G4 or its G? neighbors in G* D G4 which is fully down. That
means, from each of the remaining row_elements in G 4, there exists 2 minimum of
one link to each of the corresponding row.elements in the G2 neighborsin G2 D G 4.
Hence there exists a minimum of two edges linking G4 to its G* neighbors in the
a-direction of G® D G 4. Since every G? has this property, any G? has a minimum
of two links to each of its G2 neighbors in the a-direction.

Thus it is quite clear that G4 has a minimum of one surviving edge to each
of its G? neighbor in the #-direction and a minimum of two surviving edges to each
of its G? neighbor in the a-direction. Since every’ G? in G™ /F possesses the above

property G™/F has at most one connected comj onent and hence is connected and

thus reconfigurable.

4.2. Fault tolerant distributed routing in G™

In a communication network with a large number of processing stations, there is
always the possibility of some stations being dow¥n. This would mean that in the
link-based structure we are considering, some links could be down due to either one
of its end nodes or both being faulty. Hence a routing algorithm designed for the
ideal faultless situation would not be sufficient to ensure reliable communication
between the nodes. It is evident that there should be a mechanism to diagnose
and detect the faults in the system as and whan it hanpens. Furthermore, the
information regarding the faults should be conveyed to the relevent nodes. Now,
the state of a node as being faulty or fault free could be made known to all the
nodes in the network. This is particularly suited for routing algorithms based

on elaborate routing tables. This approach can result in undue tying up of the

71

communication links. Also, it is quite impossible to have the table of healthy nodes
made up to date at all times. In a totally distributed routing environment, it is not
necessary to broadcast the fault information to ail the nodes in the network. It is
just sufficient to let the state(faulty, fault-free) of a node be known to its immediate
neighbors. To show the state of its neighbors, eick node can at regular intervals,
send a test message to each of the neighbors. If no acknowledgement is recieved
from a node within a specified time, such a node is considered faulty. Now it is up
to the routing algorithm to avoid routing the message through the links and nodes
which are down, and at the same time, find as optimal a path as possible between

the source and destination.

There are two possible strategies for a distributed fault tolerant routing. The
first strategy is to use a backtracking algorithm. With this scheme, the local as well
as global information available to individual nodes could be kept very minimum.
The dissemination of information regarding a node's state can be limited to its
adjacent nodes. One could proceed as far as pcssible till a node is reached, from
where, there is no further links to nodes other than what has already been visited.
At this juncture, the algorithm could retrace the path to some convenient node from
where there exists an unexplored path. This could go on till finally the destination
is reached or till there is no further path to explore. This is quite time consuming
Further, extensive book-keeping must be done t. avoid the possibility of cycles in

the route.

The other approach is to use a non backtracking algorithm. In this type of
algorithm, restricting the dissemination of fault information to the adjacent nodes
alone could cut down the chances of successful message routing even when there
are paths still existing in the network. This situation could arise when the fault
distribution is such as to leave leaf nodes in the network. Barring this, the non

backtracking algorithm is less complex.

We propose a non backtracking algorithm. for the routing of message in net-
work G(Kj2)'. It is assumed that the nodes are able to detect the faults in the

adjacent nodes by regular probes. The algoritl m essentially selects the internal

72

nodes and edges as suggested by the transformations described in chapter 3. But
before selecting a certain transformation it does make sure that the corresponding
nodes and hence the edges are healthy. In a faultless situation, it creates a route
very similar to that of the algorithm O. But fi'st let us look at some examples.
Consider the network G(K32)? shown in figure 4.1. Here, ® represents a faulty
node and all the edges incident on such nodes are removed.

Example 1

Consider the source node as S;, and the destination node as U; ;. We have the
difference vector, A = [1,1,—~1]. this calls for -n § — R transformation for the
third coordinate and a U — V transformation for the second coordinate. If one
were to construct a route by the algorithm O, we will have the route S3; — Ry —
Uz — Vi2 — Ryy — Ujz. Now the edges (S3;,R2;) and (Ra23,Uz2) are down.
Since the node S2; could ascertain that the only healthy neighbor available is I7,;.
it should pick up the edge (521, Us1) instead of (533, R2;). Then we have the route

S2y = Ugy = V13 = 51y — Ry = Uy,

73

Vi3

fig. 4.1 Surviving graph of G(A; 3)?
Example 2.

Let the source node P = [R,2, 1] and the destinstion @ = [U,3,2). The difference
vector is Apg = [1,-1,-1]. The transformatioas for the second and third coor-
dinates are V' — U and § — R respectively. From the node R3;, the state of 1%,
is detected as faulty. So the link (V3;,Us,;) is known to be unusable and hence of
course the V — U transformation is not possible at this point. But the effect of a
V — U transformation is equivalent to that of tvio U = V transformations. Which
means we could use the links (Uz, V1) and (U;_, Vy;) instead of (V,;,Us;). From
R21, Uy is closer compared to S;. That is, we could pick P’ = U, and P" = V,.
With P" as the new source, the difference vector Apng = [2,~2, —1]. The required
transformations are a U — V for coordinate 2 ard S — R for coordinate 3. S, be-
ing closest to Vi), we pick P' = §); and P" = R, ;. From R;; we hav- two possible
options to pick, either Uj; or V),. But since the difference vector Apg = [1,-2.0]

which means a U — V transformation it the best choice, we will pick the node

4

U;2. But once node Ui, is reached, we find that both V;; and S;; are faulty. With
no provision for backtracking, this would mean the message would not be routed
further. The partial route thus far being Ry, — Uy — Vi; — S11 — Ryy — Uy,
That is, with still more than one path existing in the network, the algorithm could
fail to find a path. This could be avoided to a great extent by allowing the node
being probed to pass on the information regarding its immediate neighbor. That is,
while at node R;;, had we known that the link ‘U,2, V32) required for the U — V
transformation is down by letting the node Uy, :o inform R;; of the state of V3,

we could have picked the alternate path.
It is desirable that the routing algorithm possess the following features:
1. It is optimum or at least near optimum.

2. The message is not caught in a cycle that ould prevent it from reaching the

ultimate destination.
3. The algorithm doesn’t give up the search for a route too quickly.

The first of the above features could be met by picking the transformations according
to algorithm O. The second feature could be a .hieved by appending information
about the nodes visited, to the message and thu; enabling the choice of a node as
close as possible to the current source and at the same time not already traversed.
The third feature could be best accomplished by a backtracking algorithm, which
has other disadvantages as well. In a nonbacktracking algorithm, the third feature
could be achieved by avoiding leaf-nodes enroute. Features 2 and 3 are contradictory
and hence a suitable balance must be chosen. YWe will try to avoid leaf-nodes by

the following approaches:
1. Substitution
2. Look-ahezad

Substitution: Consider the nodes Sz312 and V3;,:. If we were to set up a path from
S2312 to V3123 a8 near optimum solution is to follow the transformations indicated

by the coordinates of the difference vector [1,~1,2, —1,~1] given in the table below

75

coordinate tra.nsfo‘mation
2 V-=U
3 S—R
4 VU
5 S—-R

which gives a possible route S2312 — Ra2313 — Vaz13 = Ua3zzz — S2323 — Rajz3 —
V2123 — Uszj23 — R3123 — Vipz3. But due to the construction of the network we
can breek up one transformation of the form X = Y into two half-transformations
of the form ¥ — X, with the two half operations being not necessarily contiguous.
This would have the same effect in nullifying a coordinate of the difference vector
as the single operation, with obviously different >artial route lengths. We call this
a substitution. This could result in a shorter route length as in the case of the
above pair of nodes. For instance, let us substitute for the fourth coordinate’s

transformation. We then have the following route:

Tg - 74/2 T2 T4/2 T
S2312 = R231z3 = Uzaya = Vazas = Uszas = Viaoz — Sasza = Raizs — Vaoa.

In a fault prone network, such a substitution car lead us to an existing path since
the likelihood of both the nodes of the a or # group getting disconnected is much

lesser compared to that of a single node getting disconnected.

Look-ahead is airned at making sure that a selected transformation is indeed
possible. Let N(X) denote the list of neighbors of node X. Let the current source
be P" = [p},p},...,Pm+1)- Let head[k] denote [Fiy,py,...,plh ;] and tail(k] denote
[Tks P53k Pigar- - s Pmaa)- I head[k] € N(P") then the link (head[k],tail]k])
will be selected as a possible transformation only if head(k] as well as tail[k] are
not faulty. With both substitution and look-ahead permitted, we will have the
following route established for the pair of nodes in example 2 which was otherwise
not possible: Ry — Uy — Vi1 — Sty — Ry — Vig — Uzp — Sz3 — Voy — Us,.
The route length is 9 which is one short of double the nominal route length, which

in this case is the diameter of the network G(A’;2)%.

Before presenting the algorithm, we will introduce a few terms and notations

76

that are used in the algorithm.

N(P) : The set of immediate neighbors of some node P.

P The current source, [p,p7,. .., Pmi1)-

Zero-neighbor : The set of neighbors of node P which belong to the same
of P K, as P.

current loc : The node at which the message is currently resident.

basic.transform : The procedure that determines the basic transformations.
(Hie, Ti) : The transformation called for by the kt* coordinate of the
difference vector. It also represents the edge (head[k],taillk]).
head[k] : A node in the same R’; 7 as the current source with first
coordinate Hi.i.e [Hy,py,. -,Pmi1)-
tail(k} . The node [Ti.pyy. - s qksPiiyse s Pima1):
badlinks : The set of all transformations (H.Ty) for which head k]
is a neighbor of P" and for which head[k] or taillk]
or both are faulty or marked visited.
substitute : A procedure which performs substitutions for the
badldinks non-usable badlinks and th :n assigns the weight maxint to
those transformations which are still impossible.
weight [k] : The distance from P" to head|k] which is
zero if P" = head|k], one if
P" and headlk] are zero-neighbors,
two if P and head[k] belong to the
same K;;, and maxint if head[k] or tail[k] is faulty.
Noroute : A boolean variable which will be true if further routing
is impossible.
kman : The coordinate whose weigl.t is minimal among all
ke K.

At each intermediate node, the node is marked visited and a copy of the
message is forwarded to the next node. A routelist is maintained which keeps

track of the nodes so far visited.

7

Algorithm FT { Fault-tolerant routing algorithm }

Input : P =p),p2,...,Ppm+1], the source and Q@ = [g1,¢2.... ,gm+1},
the destination.
Output :
A route from node P to node Q if possible or else a partial route

and a message of “Further routing impossible.”

step 1. If P # Q do the following.
step 2. { initialization }
currentdoc « P; badlinks « 0;
K ~ {2,3,...,m + 1}; noroute « false;
step 3. { looping }
while K not empty and noroute = false do
3.1 { Compute the difference vector.}
P" « current loc:
A=P'-0Q;
failure « false; K «— K - {k|6; =0};
3.2 { Determine the basic transformations. }
basic_transform(A);
for ke K do
headlk] « [He,p5,..., Prmyr)i
tail(k] [T}, P2, ... sqk’P'kl-Ha- .- vp’r'n-H];
3.3 { locate the bad.inks. }
For headlk] € N(P") and k € K do
if bead[k] or tail(k] faulty or n arked visited then
badlinks «— badJinks U(hezd[k],tail[k])
3.4 substitute bad_links;

78

3.5 { Assign weights to the possible transformations. }

for k € K do
if head[k] faulty or marked visited then
weight|k] «— maxint
else if weight[k] # maxint then
if head(k] = P" then weight[k] — 0
else if (head|k] of type a and P" of type §)
or (head[k] of type 8 and P" of type o) then
weight[k] « 1
else weight[k] — 2
3.6 choose kmin
3.7 if weight[km,n] £ 1 then
{P' is either the current source or its zero-neighbor.}
forward the message to tail[k] via head[k];
mark P" and head[k] as visiied:
current loc « tail[k];
KR « K - {k}
else if weight|kmn] = 2 then
{P' is a two.neighbor but not a zero.neighbor of currentloc. }
if there exists a zero-neighbor P of P"
which is not faulty and not visited then
mark P” as visited;
forward the message to head[k] via P;
current_loc « head[k];
if taillk] not faulty and not visited then
forward the messwuge to tail[k);
mark head[k] as visited;
currentJoc « taillk}; K « K — {k}

else failure « true;

79
if failure= true or weight[kpn,n] = mazint then
{P' is any other healthy non-visited neighbor of currentJoc. }
if there exists P, a non-faulty non-visited neighbor of current loc
then
mark current loc as visited;
forward the message to P;
current Joc « P
else noroute « true;
step 4. if currentloc # Q and currentloc ¢ N(Q) then
{ currentloc is in the destination basic block. }
if there exists Q. a non-faulty and non-visited neighbor of current loc
then
forward the message to Q via Q:
mark @ and Q as visited
else noroute « true;
step 5. if noroute = true then further routing impossible
else successful completion of task.

end

procedure basic_transform(A)
input : The difference vector A
output: The values of H; and T} for k € K
begin
for k€ K do
if k is even then
ifép=—1lor2thenHy «V; T} « U
else Hy «U; T, «~V
else if 6y = —1or 2 then Hx «~ S;Tx — R
else H, —« R ;T +~ S

end

80

procedure substitute (badlinks)
input : The set of badlinks
output: The set of links which substitute the bailinks.
begin
for e in badlinks do
begin
head[k] « [Tk, p3,.. ., Phts);
tail(k] « [Hk, P,k Piy1s- -+ s Pt
{ Here p; stands for the k'* index of the label of the
neighbor of node T4, p}....,piny
if head[k]or tail{k] faulty or visited then
weight[k] «~ maxint;
end

end
4.2.1 On the performance of algorithm FT

In the event of no faults, the algorithm FT generates a route similar to that
of the opportunistic algorithm. We will view the performance of the algorithm in
the light of its success in tracking down an existir.g route. First we will examine the
situation when the fault distribution is of type D mentioned in section 4.1. In this
case, it can be seen that pendant vertices are absent in the surviving graph G™.
Further, due to conditions (1) and (2) mentioned in section 4.1, there exists at least

two vertex-disjoint paths between every pair of vertices in G™/F for m > 1.

Lemma 4.7. The routing algorithm FT will suzceed in finding an existing simple
path between any pair of healthy nodes in the surviving graph G™ / F if the fault
distribution belongs to D (from section 4.1).

proof: First of all, the surviving graph G™/F is a connected graph (by Theo-
rem 4.1). The algorithm can fail in tracking down an existing path in one of two
ways:

1. It reaches a pendant vertex from where there is no way out.

81

2. Tt reaches a certain vertex whose surviving neighbors have all been previously
visited.
Scenario (1) cannot happen in this case since there are no pendant verticesin G™ /F.
Scenario (2) could happen in the following way. In a certain K 2 say G 4, a transfor-
mation H; of weight 2 is performed. In the course of further routing, due to faults
enroute, we are forced to come back to a node say r in G 4 by some substitution. At
this point x has no more non-visited neighbors ir G 4. If there are no other surviv-
ing neighbors for z then further routing is impossible. However, the algorithm FT
always selects the transformation with the least possible weight. Every surviving
node has a surviving zero.neighbor as well as a surviving two_neighbor which is not
a zeroneighbor. As a direct consequence of the above, selection of a transforma-
tion with weight < 1 will not take place, unless the source and destination belong
to the same row or column. In such a case, by .emma 4.2 and 4.3 as well as due
to the existence of two or more vertex-disjoint paths between every pair of nodes,
scenario (2) cannot happen. Thus none of the situations leading to the failure of
the algorithm in finding an existing route can occur if the fault distribution belongs
to D. Note also that the algorithm always avoids visiting a previously visited node.
Hence the lemma.
We will now consider another type of fault distribution. Let D' be any class
of fault distribution such that
(a). Every column_element in G™/F has at least one K ; subgraph with surviv-
ing links to each of the other K32 subgraphs in the same column_element.
(b). Every row.element in G™/F has at least one K3, subgraph with surviving

links to each of the other K3 ; subgraphs in the same row.element.

Lemma 4.8. If G™ has a fault distribution d' € 7/, then
1. Every K3, subgraph will be connected in itself.
2. There will be no K3 2 subgraph with both a or both f type nodes in fault.

3. Graph G™/F is connected.
proof: Proof of (1) and (2) is obvious from (a) and (b). Proof of (3) is similar to

that of Theorem 4.1 and is hence omitted.

82

Claim 4.1. For a fault distribution d' € D', algorithm FT will succeed in finding

a route between any pair of healthy nodes in G™ /F.

This claim is based on the following observations:
1. Algorithm FT always selects the transformation with the least weight.
2. Even if a transformation is not possible due to faulty nodes either
a) It’s substitution will be possible or
(b) Another transformation with similar or lesser weight will be possible
or
(¢) A non-visited non-faulty neighbor P will be available.
Observation (2) stems from the fact that between each column_element in a column
there exists a minimum of one edge and between each row.element in a row there

exists a minimum of one edge.

CHAPTER §
CONCLUSION

We have discussed in the previous chapters, different aspects of interconnec-
tion network G(K32)*'. Interconnection network plays a very significant role in any
large distributed system. Quite many improvements are possible over the existing
networks such as cube, cube-connected cycles etc. Maintaining the degree of a node
to a minimum is of great practical interest in n=twork design. At the same time,
minimizing the delay and distortion is extremely important in the efficient operation
of the network. With more and more communicating processors in present day sys-
tems, there is increasing stress on the design of gracefully degradable systems. We
have seen some of the network designs aimed at achieving the above requirements in
chapter 2. It was also seen that the network models based on balanced incomplete
block design, in addition to meeting the above requirements gives surviving route
graphs of diameter 2 for a minimal routing p.

Chapter 3 and chapter 4 contains the major contribution of this thesis. In
chapter 3, we studied some of the significant properties of network model G(h)"
We then showed that the network G(K7;,)' is the most interesting of the above
family of graphs in terms of better order-to-de;ree ratio and modular structure
A labelling scheme for G(R; ;)" was proposed. Four basic transformations such
as U -V, VoU,S— Rand R — S were then defined. Based on these
transformations, a class of distributed routing algorithms called order preserving
(OP) was presented. It w s shown that the length of the route computed by the
OP algorithm for a network G(K32,)™"! is at most 2m + 1. An improved version
of the above algorithm known as algorithm O was then presented. It was proved
that the length of the route computed by algorithm O is optimal among the class
of routing algorithms based on systematic transformation. It was also proved that

the maximal length of the route computed by such an algorithm is 2m + 1 for the

84

graph G(HK;,)™~!. In fact, m is equa! to the mindegree 6 of G(K>,)™. We also
proved that the diameter of G(K ;)™ is equal to 2 + 3(m/2) for even values of m
and 4 + 3(ﬂ{—’) for odd values of m. We also proved that there are 4(3)™ vertices
in graph G(J,;2)™. Furthermore, it was shown that the mindegree 6 of G(K22)™
is 24 |m/2] and the maxdegree A is 24 |2+l]|. A comparison of the route-length
computed by the opportunistic algorithm with respect to the diameter of the graph
G(K3,2)™ as well as the shortest path length between any source and destination
was also done.

In chapter 4, we first saw the general techniques of achieving fault tolerance in
a system. In the context of network fault tolerance, the connectivity of the network
is the conventional criteria for the measure of fault tolerance. However, in networks
with high order to degree ratio, this doesn't take into account the significantly large
number of nodes in the system.

Hence we explored the robustness of G(h'; ;)" network under a set of con-
ditions. These conditions accomodate quite many fault distributions with as much
as one-third the number of vertices of G(A;)" in fault. We did prove that the
network has at most one connected component for any fault distribution satisfying
the above conditions. A distributed fault toleraat routing algorithm FT was then
presented. Since the algorithm does substitutions for the basic transformations.
when confronted with failed nodes. it is a non-systematic algorithm. No backtrack-
ing is involved. The algorithm assumes status fred back from the adjacent nodes

as well as their immediate neighbors of a node.

[AKERG5]

[ARDENTS)

[AVIZ76)

[BEAUDTS)

[BERMS2)

[BRODS4

[CHENSO,

[DOLEVS4

[DUTTSS]

[ESFASS]

REFERENCES

S. B. Akers, Jr, “On the construction of (d, k) graphs”, IEEE Trans. Electron
comput., vol. EC-14, p. 488, June 1965.

B. W. Arden and H. Lee, “A multi-tree structured network”, in Proc. COM-
PCON 78, pp. 201-210, Sept. 1978.

A. Avizienis, “Fault-Tolerant Systems”™, .EEE Trans. Comput., vol. C-20.

pp- 1304-1312.

M. D. Beaudry. “Performance-Related R:liability Measures for Computing
Systems”, JEEE Trans. Comput., vol. C-27, pp. 540-547.

J. C. Bermond, C .Delorme. and J. J. Quisquater, “Tables of large graphe
with given degree and diameter™, Inf. Prcc. Lett., vol 15, no. 1, pp. 10-13.
1982,

A. Broder. M. Fischer. D. Dolev, and B. Simons, “Efhicient fault tolerant
routings in networks.” in Proc. 16** Annual ACM Symp. on Theory of Comn-
puting. pp. 536-541. 1984

M. Y. Chen, K. G. Shin. and D. D. Kandlur, “Addressing. Routing. and
Broadcasting in Hexagonal mesh Multiprocessors”, JEEE Trans Comput .
vol. C-39. pp. 10-18, January 1990.

D. Dolev, J. Halpern, B. Simons, and R. Strong. “A New Look at Fault-
Tolerant network routing”, Proc. of Sixteenth Annual ACM Symp. on Theory
of Computing, pp. 526-535, 1984.

S. Dutt and J. P. Hayes, “Design and Reconfiguration Strategies for Near-
optimal k-Fault-Tolerant Tree Architectures”, in The Eighteenth Interna-
tional Symposium on Fault-Tolerant Computing, pp. 328-333, June 27-30.
1988.

A. Esfahanian, S. L. Hakimi, “ Fault-Toler int Routing in De Bruijn Commu-
nication Networks ”, IEEE Trans. Compu'., vol. C-34, pp. 777-788, Septem-
ber 1985.

86

[FORTS83] J. Fortes and C. Raghavendra, “Gracefully degradable processor arrays",
IEEE Trans. Comput., vol. C-34, pp. 1033-1044, Novembver 1985.

[HALL67] M. Hall, Jr, Combinatorial Theory, New York: Wiley, 1967.

[IMASES81] M. Imase and M. Itoh, “Design to minimize diameter on building-block net-
work”, IEEE Trans. Comput., vol. C-30, pp. 439- 442, June 1981.

[KUHLS86] J. G. Kuhl and S. M. Reddy, “ Fault-7olerance Considerations in large
Multiple-Processor Systems”, IEEE COMPUTER, pp. 56-67, March 1986.

[LOSQ76) J. Losq. “A Highly Efficient Redundancy Scheme : Self-Purging Redun-
dancy”, IEEE Trans. Comput.. vol. C-25, pp. 569-578, 1976.

[MEMDMIS2] G. Memmi and Y. Raillard, “Some new results about the (d, k) graph prob
lem™, IEEE Trans. Comput.. vol. C-31, pp. 784-791. 1982.

[NAJJ90] W. Najjar and J. L. Gaudiot, “Network Resilience: A measure of Network
Fault Tolerance”, IEEE Trans. Comput., vol. C-39, pp. 174~ 181, Feb 1990.

[OPATS80] J. Opatrny, N. Srinivasan. and V. S. Alagar, “ Construction of Large Fault-
Tolerant Communication Network modes ™, Proc. Int. Symp. on Fault-
Tolerant Computing. Vienna, Austria, pp 110-116, July 1986.

[OPATS9] J. Opatrny, N. Srinivasan. and V. S. Alagar, “Highly Fault-Tolerant Com-
munication Network Models”, JEEE Trans. on Circuits and Systems, vol. 36.
pp. 23-30, January 19§9.

[ORE62] O. Ore, “Theory of graphs”, Amer. Math. Soc., Providence, RI, 1962.

[PRADS2] D. K. Pradhan and S. M. Reddy, “A Fault-Tolerant Communication Ar-
chitecture for distributed Systems”, IEEE Trans. Comput., vol. C-31, pp.
863-870, September 1982.

[PRADSS] D. Pradhan, “Fault-tolerant multiprocessor link and bus network architec-
tures”, JEEE Trans. Comput., vol. C-34, pp. 33-45, January 1985.

[WILK70] R. S. Wilkov, “Construction of maximally reliable communication networks
with minimum transmission delay”, Proc. IEEE Int. Conf. Commun., vol. 6,

» s

87
pp. 42-1042-15, June 1970.

(RENXNS86] D. A.Rennels, “On implementing fault-tolerance in binary hypercubes”, in
Proc. IEEE Symp. Fault-Tolerant Comput., pp. 344-349, 1986.

[RENNS4] D. A.Rennels, “Fault-Tolerant Computing- Concepts and Examples”, IEEE
Trans. Comput., vol. C-33, pp. 1116-1126, December 1984.

APPENDIX

e TR

89

Given below are the procedures which were used in the implementation and testing

of the algorithms, order preserving, opertunistic, and FT. The muin programs are
also enclosed.

)

function mth$random(var formalseed :integer) : real;
fortran;

function random : real;
begin

random := mth$random(globalseed);
end;

{ }

function differ(P, Q : string; len : integer): vect;

{ }
{ Given the source P, destination Q and the lenzth of the label used to represent
the node, this function wil! return the difference vector.

}

var
i: integer;
tem : vect;
begin
if p(1] = q[i] then tem[1] := 0
else
if ((p{1] in alpha) and (q[1] in beta)) or
((p[1] in beta) and (q[1] in alpha)) then
tem[1]:=1
else
tem[1] := 2;
fori:= 2tolen do
tem(i] := ord(p{i]) — ord(q[i]);
differ := tem;
end;

90

procedure make.fault ;
var
¢ : real;
numfault, i, r : integer;
begin
writeln(‘* How many faults ?7°);
readln(numfault);
writeln;
writeln(* Number of faults, not necessarily distinct = *,;numfault);
writeln;
writeln(* The globalseed ?°);
readin(globalseed);
writeln(‘ globalseed = ’,globalseed ;;
for i := 1 to numfault do
begin
¢ := random;
r := trunc(n * random);
ifr =0thenr:=1;
writeln(* fault[’, i:3,'] = "r);
vertices[r) 1. fault := true;
end;
writeln(* GLOBALSEED = ', GLOBALSEED);
end;

{

procedure pringraph;
var
i, numnodes : integer;
t : node;
begin
writeln(‘ How many nodes ? ');
read(numnodes);
for i := 1 to numnodes do
begin
t := vertices|i J;
while t <> nil do

begin
write(t] .index:4, ‘(’, t1 .nazae,) ",t7 fault,' ’, t1 .visit);
t := t .link;

end;

writeln;

end;
end; { of procedure pringraph }

{

st

91

procedure readgr;

{ This procedure reads the input graph from the file ingraph and
stores it in the form of an adjacency list named vertices. }

var
rear,t : node;
i, k, s: integer;
nodlab : string;
begin
reset(outc);
read(outc, n, len);
writeln(‘ len = ’, len);
fori:=1tondo
begin
read(outc, k, nodlab);
new(t);
tT .index := k;
tT .name := nodlab;
tT .link := nil;
vertices| k] := t;
rear := t,
while not eoln(outc) do
begin
read(outc, s, nodlab);
new(t);
t] .index := s;
tT .name := nodlab;
t1 .link := nil;
rear? .link :=t;
rear (= t;
end; { of while not eoln(outc) }
readlin(outc);
end;
end; { of procedure readgr }
{

92

procedure createhead(divect : svect; n : integer; var headlist, taillist :nstring);
{ Inputs : The difference vector divect, the length of the label
Outputs: The headlist which is a2 one dimensiona) array which contains
the type of head node involved in the i position of the label,
the taillist which stores the type of tail node for the i position. }
var
i: integer;
begin
fori:=2tondo
if divect[i] =0 then
begin
headlist[i] :="*";
taillist[i] := * "
end
else
if odd(i) then
case divect] i] of
-1, 42 : begin
headlist[i] := 'S’
taillist[1] := ‘R’

end:
41, —2 : begin
headlist[i] := ‘R’
taillist{i] := ‘S’
end;
end
else

case divect| i] of
—1,2 : begin
headlist[i } := ‘V;
taillist[i } := ‘U,
end;
+1, —2: begin
headlist[i] := 'U’;
taillist{i] := V"
end;
end; { of case }
fori:=2tondo
begin
writeln;
writeln(‘headlist’, i:3, ‘] =, headlist] i]);
writeln(‘taillist[’, i:3,] =, taillist| i]);
end:
end; { of procedure createhead }

93

procedure generate(divect : svect;len : integer; var hl, t1 : nany);
Given the difference vector, this pocedure generates two arrays H1 and T1
where H1 contains all the headnodes for the transformation of coordinates [2 .. lim)]
and their respective distance from the current source. Note that lim is the length
of the label. Similarly T1 contains the names of the tailnodes for transformations
[2 .. lim].
var
i) : integer;
begin
for i := 2 to lim do
' if divect[i] <> 0 then
begin
h1{1i].lab[1] := headlis|i };
t1] i].1ab[1] := taillis[i };
for j := 2 to limdo
begin
hl[i].Jab|j] := first[] };
t1[i].Jab[j] := first[j };
end;
t1] i).Jab[i] := chr(ord(t1[i].lab[i]) — divect[i });
if first| 1] = h1{[i].lab[1] then
hl[i).leng:= 0
else
if ((first[1] in alpha) and (h1[i].lab! 1] in beta))
or ((first[1] in beta) and (h1]i).lab[1] in alpha)) then
hl[i]leng:= 1

else
hi{i l.leng := 2;
end
else begin
h1[i).Jab := blank;
t1[i].Jab := blank;
hl[i]leng := maxint;
end;

end; { of procedure generate }

94

procedure Attatch(P : integer; S : étring);

{ Adds a node to the rear of the routelist. The integer
as well as the label for the node are stored. }

var
leaf : node;
begin
new(leaf);
leaf] .index := P;
leafT .name := S;
leaff .link := nil;
if routelist = nil then
routelist := leaf;
if rearlist <> nil then
rearlist] .link := leaf;
rearlist := leaf;
end;
{ }

procedure route.order(p.q : integer);

{ Inputs : The integer values of the source P aad the destination Q, the starting
and ending locations of the label.

Output : Creates the route.

This procedure generates a route between nodes P and Q according to the order
preserving algorithm. }

var
divect : svect;
axle : vect;
t : node;

k,Jast,start : integer;
headnode, tailnode, temp, first, second : string;

95

begin
attatch(p, vertices[p]T.name);
start := 2;

first := vertices[p)T.name;
second := vertices[q]].name;
writeln(‘ source = ’, first);
writeln(‘ Destination = ’, second);
if p <> q then
begin
last := len — 1;
x := differ(first, second, len);
write(The difference vector = ’);
fori:= 1tolendo
write(x[i):3);
for k := 2 to len do
divect[k] := x[k);
if substr(first, 2, last) = substr(second, 2, last)
then state := 5
else
state ;= 1;
while (start <= len) and (state <> 6) do
begin
case state of
1: begin
if divect[start] <> 0 then
begin
createhead(divect, len, headlis, taillis);
headnode|l] := headlis[start];
tailnode[l] := taillis[start);
fork := 2to limdo
begin
headnodelk) := f-rstlk);
tailnode[k] := first[k];
end;
tailnode[start] := chr(ord(tailnode[start]) —
divect([start));
writeln(* headnode = °, headnode);
writeln(* tailnode = -, tailnode);
if headnode[1] = first'1] then
state ;= 3
else
state := 2;
end

else

begin
start := start + 1;
end;
end; { end of state 1 }
begin

t := vertices[p]1.link;
axle := differ(first, headnade, len);
if axle[1) = 2 then

begin
while substr(t{.name, 2, last) j; substr(first, 2, last)
do t := t1.link;

if substr(t1.name, 2, last) = substr(first, 2, last)
then attatch(t{.index, tT.name);
t := vertices|t].index;1.link;
end;
while (t <> nil) do
if tT.name = headnode then

begin
attatch(t7.index, t{.name);
t := nil;
end
else
t := t1.link;
state := 3;
end;
begin

t := vertices[rearlist T.index]7.link;
while (t <> nil) do
if tT.name = tailnode thea
begin
attatch(tT.index, t].name);
p := tf.index;
first := tT.name;

t := nil;
end
else
:= t1.link;
state := 4;

end;

97

4 : begin
x := differ(first, second, len);
write(‘ The difference vector = *);
fori:= 1tolen do
write(x[i]:3);
for k := 2 to len do
divect[k] := x[k];
if substr(first, 2, last) = substr(second, 2, last)
then state := §
else
begin
state ;= 1;
start := start + 1;
end;
end;
5: begin
if p <> q then
begin
:= vertices[p]T.link;
if x[1) = 2 then
begin
while t <> nil do
if substr(tf.name,2,last) = substr(first,2,last)
then begin
attatch(t7.iadex, t7.name);
t := nil;
end
else
t := t1.link;
end;
attatch(q, second);
end;
state := 6;
end;
end; { end of case }
end;
end;
end;

The program for the implementation of order-preserving algorithm is given below.
program orderroute(input, outc, o

const

type

var

maxnodes

lim

irange
vrange
string
vect
svect
nstrir.g
atype
node
pointer

graphnodes
list

state

M\, routelist,rearlist
vertices

table

outc

p. q, level

len, i, rlength

X

alpha, beta
divect, null
headlis, taillis

98

utput);

4000;
10;

1. 6

-2..2;

packed array [1 .. lim] of char;
array [1 .. 10] of vrange;
array [2 .. 10] of vrange;
array [2 .. 10] of char;

set of char;

T pointer;

record

index : integer;
name : string;
visit - boolean;

link node;

end;

array (1 .. maxnodes] of node;
array|l .. maxnodes] of string:

irange;
node:
graplnodes;
list;
text,
integer;
integer;
vect;
atype;
svect.
nstring;

99

{ main program for OP algorithm begins here. }
begin
alpha := ['U’, '"V};
beta := ['R’, '§’];
readgr;
pringraph;
writeln(‘ Source please :’);
readln(p);
writeln(‘ Destination please :’);
readin(q);
route_order(p, q);
M := routelist;
writeln;
writeln(‘ The route is as follows : ’);
writeln;
rlength := -1;
while M <> nil do
begin
write(M?.name.' ’);
rlength := rlength + 1;
M := M1.link;
end;
writeln;
writeln(* The length of the route = ’, rlength :
end.

100

procedure route.oper(p,q : integer);

{ Inputs : The integer values of the source P ar.d the destination Q, the starting
and ending locations of the label.

{ Output : Creates the route. }

var
divect : svect;
axle : vect;
t : node;
hl, t1 : nany;
prime, dprime, blank : string;
last, small, i,) : integer;

{ }
begin

first := vertices| p |1 .name;

second := ._rtices| q]T .name;

writeln;

writeln(* source = ', p,'(’first, *)');

writeln;

writeln(* Destination = ', q. ‘(’, second, ')');
writeln:

attatch(p, first):

if p <> q then

begin
last := len — 1;
if substr(first. 2, last) = substr(second, 2, last)
then state := 5

else

state := 1;
x := differ(first, second, len);
writeln:

write(‘ The difference vector = ’);
fori:=1tolen do

write(x[1): 3);
while (state <= 5) do

case state of

1:

2:

end;
3:

101

begin

for i := 2 to len do
divect[i] := x[1i];
createhead(divect, len, headlis, taillis);
generate(divect, len, hl, t1);
small := 2;
for i := 2 to len do
if h1[i].leng < h1srall].leng then
small := i;
prime := hl[small].lab;
dprime := t1[small].lab;
case hl[small].leng of
0 : state := 4;
1 : state := 3;
2 : state := 2;
end; { of case }

end; { end of state 1 }
begin

t := vertices[p]T .link;
while substr(t1 .name,2,last)
<> substr(first,2,]last) do

t :=t7 .link;
attatch(t] .index, tT .name);
state := 3;

begin

t := vertices[rearlistT .index]7 .link;
while (tT .name <> prime) do
t :=t7T .link;
attatch(t] .index, t1 .name);
state := 4;

102

4: begin
t := vertices[rearlist] .index]7 .link;
while (t .name <> dprime) do
t := tT .link;
attatch(tT .index,t] .name);
p := t] .index;
first := t1 .name;
x := differ(first, second, len);
writeln;
write(‘ The difference vector = ’);
fori:=1 to len do
write(x[i]: 3);
if substr(first, 2, last) = substr(second, 2, last) then
state := §
else
state := 1;
end;
5 : begin
if p <> q then
begin
t := vertices[p]7 .link;
if x[1) =2 then
begin
while t <> nil do
if substr(t1 .name, 2, last) = substr(first, 2. last)
then begin
attatch(t? .index, t7 .name);
t := nil;
end
else
t := {7 .link;
end;
attatch(q, second);
end;
state := 6;
end;
end; { end of case }
end;
end;

{

103

The following program generates a route between two given nodes P and Q
according to the opertunistic algorithm. The graph is stored as a one-dimensional
array of linked lists where each list corresponds to the adjacency list of that node.
Each node in the list is a record containing the fields index, name, visit, and link.
The index is used for the easy access of the neigabor nodes of a particular node.

program Opertunist(anput, outc, output);

const
maxnodes = 4000;
lim = 10;
type

irange = 1..6;
vrange = 2.2
string = packed array {1 .. lim] of char; .
vect = array [1 .. 10] of vrange; ‘
svect = array (2 .. 10] of vrange;
nstring = array {2 .. 10] of char;
atype = set of char;
node = T pointer;
pointer = record

index : integer;

name : string,

visit : boolear.,

link : node;

end;

next = record

lab : string;

leng : integer;

end;

nany = array (2 .. lim of next;
graphnodes = array (1 .. maxnodes] of node;

list array[l .. maxnodes] of string;

var

104
state : irange;
M, routelist, rearlist : node;
vertices : graphknodes;
table : list;
outc : text;
P, q, level : integer;
len, i, rlength : integer;
X : vect;
alpha, beta : atype;
divect, null : svect;
headlis, taillis : nstring;
first, second : string;

{ main program for opertunistic algorithm begins here. }

begin

end.

alpha := [‘U’, ‘V';
beta := [‘R’, ‘S’};
readgr;
read(p);
while p <> 0 do
begin
read(q):
readln;
route.oper(p, q);
M := routelist;
writeln;
writeln(‘ The route is as follows :
writeln;
rlength := -1;
while M <> nil do
begin
writeln(M7 .name,* —’);
rlength := rlength + 1;
M := M7 .link;
end;
writeln;
writeln(‘ The length of the route = ', rlength :3);
routelist := nil;
writeln;
read(p);

/,]
~

end;

105

procedure routefault(p,q : integer);

{ This procedure tries to establish a route between two given nodes P and
Q in a faulty environment. If successful, it will give the route and its length as the
output. Otherwise a message, ‘Further routing i-apossible!’ and the route thus far
will be given.}

var
divect : svect;
axle ' : vect;
hi, t1 : naay;
tem : cher;
prefer : string;
t, s, temper : node;
done, found : boolean;
last, small, i, j, count, ch : integer;

begin

first := vertices[p]T .name;
second := vertices[q]T .name;
writeln(* source = ’, p, ‘(’, first, ‘)’);
writeln(‘ destination = ’,q, ‘(’, second, ‘)’);
if (vertices[p]t .fault or vertices[q]t .fault) then
writeln(‘ Routing impossible between faulty nodes.’)
else
begin
attatch(p, first);
if p <> q then
begin
last := len ~ 1;
x := differ(first, second, len);
if substr(first, 2, last) = substr(second, 2, last) then
state := 6
else
state := 1;
while (state <= 6) and not(noroute) do

s

R B LU Vp—————-e e

L L LY

case state of

106

1. begin

writeln;
writeln(‘p =, p);
writeln(‘first = ’, first);
writeln;
fori:=2tolen do

divect[i] := x[i};
createhead(divect, len, headlis, taillis);
generate(divect, len, hl, t1);
t := vertices[p];
while t <> nil do
begin

=2

found := false;

while (i <= last) and not(found) do
if t7 .name = hl{i}.lab then

else

found := true

i=141;

if (found) then
begin

s := vertices(t] .index]t .link;
while s1 .name <> t1[i}.lab do
s := sT link;
hl[i].ind := t7 .inde>;
if hl{i].ind > n then
hi[i).leng := maxint;
if ((vertices[sT .index]T .fault)
or vertices[s] .index]T .visit
or vertices[t] .index]” .fault)
or vertices[t] .index]T .visit
and (h1[i}.lab[l] <> ‘aillis[i]) then
begin
tem := hl[i].lab;1];
hi{i].lab{1] := t1[i].lab]1];
tl1[i).lab[1] := tem;
ch := ord(t1[i).lab[i]) — divect|[i];
if ch = ord(‘0’) then
ch := ord(‘2")

end;
end;

107

else
if ch > ord(‘3’) then
begin
ch := ch mod ord(‘3’) + ord(‘0’);
end
else
if ch < ord(‘0’) then
ch:=ch + 3;

t1[i].lab[i] := chr(ch);

s := vertices[p];

while ((s <> nil) and (s .name <> hl[i].lab)) do
s := st .link;

if s = nil then

begin
s :=vertices| vertices[p]? .link?7 .index];
while (s .name <> hl[i].lab) and (s <> nil) do

s := sT .link;

end;

hifi).ind := s7 .index;

if vertices[s7 .index|? .fault or

vertices[sT .index|T .visit or (h1[i].ind > n) then
hlli].leng :=: maxint

else

if first[1] = h1[i] lab[1] then
hifi).leng := 0

else

if ((first[1] in alpha) and (h1[i].lab[1] in beta))

or ((first{1] in beta) and (h1[i].]ab[l] in alpha)) then
hilfi].leng :=1

else
hlfi].leng := 2;

t := t7 .link;
end;{ end of while t <> nil }

state ;= 2;

vertices[rearlist] .index]T .visit := true;

end; { of state 1 }

2: begin
small := 2;
for i := 2 to last do
if (hli].leng < hl[sm.all].leng)
then small := i;
writeln(* h1{’, small:3, ‘}.lab = *,h1{small}.lab);
writeln(‘ h1[', small:2,].ind = ’, h1[small}.ind);
writeln(‘h1[’, small:3,].leng = ’, hl{small}.leng);
case hl{small}leng of
0 : state := 5;
maxint : state := 4;
2 : state ;= 3;
1 :begin
if (h1[small].ind < 1) or (h1[small].ind > n)
then state := 4
else
if not(vertices[hl[small).ind]7 .visit)then
begin
writeln!' hl.ind = ’, hl[small).ind);
attatch(hl[small].ind, h1[small].lab);
vertices|hl{small].ind]? .visit := true;
state := 5;
end
else state := 4;
end;
end; { end of case }
end; { of state 2 }

109

t := vertices|p]T .link;
done := false;
while t <> nil do

if (substr(t? .name, 2, last) = substr(first, 2, last))
and (not(vertices[t .index]T .fault)
and not(vertices|t] .index] .visit)) then
begin
attatch(t? .index, tT .name);
done := true;
vertices[t] .index]T .visit := true;
t := nil;
end
else
begin
= tT .link;
end;
if (not done) then
state := 4
else
begin
t := verticesrearlist] .index]? .link;
while t1 .name <> hl{small].lab do
t :=tT link;
if vertices[tT .index]7 .fault then
state := 4
else
begin
attatch(t? .index, tT .name);
vertices[tT ..ndex]T .visit := true;
state := 5;
end;
end;

end; { of state 3 }

110

4: begin
j=0;
prefer := blank;

:= vertices[rearlist] .index]T .link;
writeln(‘ t1 .name = ', tT .name);
while t <> nil do
if not(vertices[t] .index]? .fault) and
not(vertices{t] .index]{ .visit) then
begin

j = t1 .index;
prefer := t1 .name;
t := nil;
end
else
t := tT link;
writeln(* j =, j, ‘prefer = ', prefer);
if prefer = blanl. then
begin
writeln(‘* Further routing impossible.’);
noroute := true;
end
else
begin
attatch(j, prefer);
pi=
first ;= prefer;
x := differ(first.second,len);
state := 1;
end;
end; { end of state 4 }

111

5: begin
;= vertices|rearlistT .index]1 .link;
done := false;
while t <> nil do
if (tT .name = t1[small].lab) and
not(vertices[t] .index]{ .fault) and
not(vertices[t] .index]! .visit) then
begin
attatch(t] .index,t] .name);
done := true;
p := t1 .index;
first := t1 .name;
t := nil;
end
else
t := t7 .link;
if not done then
state 1= 4
else
begin
x := differ(first, second, len);
if substr(first, 2, last) = substr(second, 2, last) then
state := 6
else state := 1;
end;
end; { of state 5 }

112
6: begin
if p <> q then
begin
done := false;

t := vertices|p]1 .link;
if x[1] = 2 then
while t <> nil do
if substr(t] .name, 2, last) = substr(first, 2, last) then
if not(vertices|t] .index]t .fault) then
begin
attatch(tt .index,tT .name);
done := true;
tT .visit := true;
t := nil;
end
else t := tT .link;
if (not(done)) and (x[1] = 2) then
begin
noroute := true;
writeln(‘ Further routing impossible due to
disconnected block.’);

end
else
attatch(q, second);
end;
state := T,

end; { end of state 6 }
end; { of case statement }
end;
end;
end; { of procedure fault_route }

113

{ Declarations for program Fault.}

{
const
maxnodes = 4000;
lim = 10;
type
irange = 1.6;
vrange = 2.2
string = packed array [1 .. lim] of char;
vect = array [1 .. 10] of vrange;
svect = array [2 .. 10] of vrange;
nstring = array (2 .. 10] of char;
atype = set of char;
node = T pointer;
pointer = record
index : integer;
name : string;
visit : boolean;
fault : boolean;
link : node;
end;
next = record
lab : string;
leng : integer;
ind : integer;
end;
nany = array [2 .. lim] of next;
graphnodes = array [1 .. maxnodes] of node;
list = array[l .. maxnodes] of string;:
var
blank : string;
state : irange;
M, routelist, rearlist : node;
vertices : grapknodes;
table : list;
outc : text;
P, q, level, n, len, i : integer;
globalseed, rlength : integer;
X : vect;
alpha, beta : atype*
divect, null : svect:
headlis, taillis : nstring;
first, second : string;

noroute : boolean;

114

{ main program begins here }
begin
alpha := ['U’, 'V,
beta := ['R’, ’S"];
noroute := false;
fori:=1 to lim do
blank[i] :=* "
readgr;
make fault;
writeln(‘ source ? °);
read(p);
writeln(‘ destination ?);
read(q);
writeln;
writeln;
routefault(p, q):
pringraph;
M := routelist;
writeln;
if noroute then
writeln(‘ Route thus far : ’)
else
writeln(‘ The route is as follows : °);
writeln;
rlength := -1;
while M <> nil do
begin
writeln(M7T .name,' — ’);
rlength := rlength + 1;
M := M7 .link;
end;
writeln;
writeln(* The length of the route = ’, rlength :3);
routelist := nil;
writeln;
end.

115

The following program for the creation of the graph G(K3,2)' is an adaptation of
Dr. J. Opatrny’s program COPIES.

program copy(input,inn,inpairs,outc,output); .

(* Program that generates and labels the graph G(K32)'.*)

const
maxdeg = 10;
size = 4000;
lim = 10;
type
string = packed array[l .. lim] of char;
node = record
index : integer;
name : string;
end;
graph = array[l .. size,l .. maxdeg] of node;
var

ind, m, i, no, sh. k, j, level, po : integer;
deg : array|l .. size] of integer;
G : graph;

inn,inpairs,outc: text;

T

116

procedure incop(var no, level : integer);
var
1, j : integer,;
begin
readin(inn, no, level);
writeln(‘no = ’, no);

ii=1;
while not eof(inn) do
begin
=0
while not eoln(inn) do
begin
j=j+ 1
read(inn, Glj, j].index, G[i, ji.name);
end;
degli] := j;
=14 1;
readln(inn);
end;
(Mork:=1toido
begin
forj:= 1 todegl{k]do
begin
write(* G[’, k:3, j:3, ‘]index ="', Gk, jindex:3);
write(* G[°, k:3, }:3, ‘.name =", G[k, j].name);
end;
writeln;
end; *)

end; (* of incop *)

{

117

procedure makepair;

var

begin

end;

shift, norep, i, nopairs, perl, per2, j : integer;
tagl, tag2 : array[l .. 100] of string;
pl, p2 - array[l .. 100] of integer;

writeln(‘how many pairs ?°);
readln(nopairs);
writeln;
for i := 1 to nopairs do
readln(inpairs, pl{i], p2i});
writeln(‘what are the periods ?’);
readln(perl, per2);
writeln(‘number of repetitions ?’);
readln(norep);
shift := 0;
for i := 1 to norep do
begin
for j := 1 to nopairs do
begin
deg[pl{j]] := deg[pl[j]] + 1
Glp1[j), deg[pl[j]}].index := p2{j};
Glp1[j], deg[pl[j]]].name := G[p2(j], 1}.name;
deg(p2[j]] := deg[p2[j]] + 1;
G[p2(], deglp2(j]] index := p1[j];
G[p2[j], deg[p2[j]]].name := G[p1[j], 1].name;
p1{j] == p1[j] + perl;
p2(j] = p2[j] + per2;
end;
shift := shift + perl;
end;

fRaid =

procedure copout;
var

i, j : integer;

begin
writeln(outc, no * k : 5, level:5);
fori:=1tono* kdo

begin
for j :=1 to deg[i] do
begin
Gli, j]-name[level] := '1’;
write(outc, Gli, j].index:5, G[i, j].name)
end;
writeln(outc);
end;

end; (* of procedure copout *)

{

119

(* main program begins here *)

begin
reset(inn);
reset(inpairs);
rewrite(outc);
writeln(‘ how many copies 7°);
readln(k);
incop(no, level);
sh := no;
po = 1;
forj:=1tok -1do
begin
for ind := 1 to no do
begin
for m := 1 to deg[ind] do
begin
G[sh + ind, m].index := G[ind, m].index + sh;
G[sh + ind, m].name := G[ind, m].name;
G(sh + ind, m].name level]] :=
. chr(ord(Glind, m].name[level]) + po);
end;
deg[sh + ind)] := degfind];
end;
sh := sh + no;
po = po + 1;
if po > 3 then po = 1;
end;
makepair;

level := level + 1;
writeln(' level = ’level);
copout;

end.

