I*I National Libiary
of Canada du Canada

Bibliothéque nationale

Canadian Theses Service Service des thaéses canadiennes

Ottawa, Canada
K1A ON4

NOTICE

The quality of this microform is heavily dependent upon the
quality of the original thesis submitted for microfilming.
Every effort has been made to ensure the highest quality of
reproduction possible.

It pages are missing, contact the university which granted
the degree.

Some pages may have indistinct print especially if the
original pages were typed with a poor typewriter ribbon or
if the university sent us an inferior photocopy.

Reproduction in full or in part of this microform is governed
by the Canadian Copyright Act, R.S.C. 1970, c. C-30, and
subsequent amendments.

NL-339 {(r. 88/04) ¢

AVIS

La qualité de cette microforme dépend grandement de la
qualité de 1a thése soumise au microfilmage Nous avons
tout fait pour assurer une quanté supérieure de reproduc
tion.

S'il manque des pages, veuillez communiquer avec
université qui a contéré le grade.

La qualité d'impression de certaines pages peut laisser a
désirer, surtout si les pages ornginales ont été dactylogra
phiées a l'aide d'un ruban usé ou si Funversité nous a tau
parvenir une photocopie de qualité intérieure.

La reproduction, méme partielle, de cette microforme est

soumise a la Loi canadienne sur le droit d'auteur, SRC
1970, ¢. C-30, et ses amendements subsequents

Canada

Bibliothéque nationale

National Library
du Canada

of Canada

Canadian Theses Service

Ottawa, Canada
K1A ONA

The author has granted an irrevocable non-
exclusive licence allowing the National Library
of Canada to reproduce, loan, distribute or sell
copies of his/her thesis by any means and in
any form or format, making this thesis available
to interested persons.

The author retains ownership of the copyright
in his/her thesis. Neither the thesis nor
substantial extracts from it may be printed or
otherwise reproduced without his/her per-
mission.

Service des théses canaaiennes

L’auteur a accordé une licence irrévocable et
non exclusive permettant a la Bibliotheque
nationale du Canada de reproduire, préter,
distribuer ou vendre des copies de sa these
de quelque maniere et sous quelque forme
que ce soit pour mettre des exemplaires de
cette thése a la disposition des personnes
intéressées.

L’auteur conserve la propriété du droit d’auteur
qui protége sa thése. Ni la thése ni des extraits
substantiels de celle-ci ne doivent éfre
imprimés ou autrement reproduits sans son
autorisation.

ISBN 0-315-59147-1

Canadi

N sy e,

Distributed Global State Detection System -
Specification and Design

Dimitrios Livas

A Thesis
in
The Department
of

Computer Science

Presented in Partial Fulfillment of the Requirements for
the Degree of Master of Computer Science at
Concordia University
Montréal, Québec, Canada

August 1990

© Dimitrios Livas, 1990

Abstract

Distributed Global State Detection System -

Specification and Design

Dimitrios Livas

Global state is an important concept in distributed systems where a common
clock is not available because in .t lies the key te solving many problems: from
program design to program analysis. In this thesis, a formal model, for specilying a
distributed system and its global state using a partial-ordered model, is given. The
requirernents for local state recording and global state compilation for a periodically
recording system are formulated as well, and algorithms are proposed. We show
that global time, a refinement of logical time is Lelpful in compiling global states.
The compilation algorithm guarantees that there is no avalanche of rolling forward
of local states retained at the compilation process even though global coordination
of recording is purposely removed. An experimental study confirms our resulls and
demonstrates various aspects of such a system. Subsequently an object-oriented
design is proposed of a distributed kernel that provides user and system processes
with global state information.

Key Words: Global state, periodic recording, global time, logical tinne, partial-
order, state compilation, distributed compuling system, object-oviented distributed sys-

tem.

1

Dedicated to my parents, Antonia and Georgo.

Adicpwpevo otovs vyoras pov, Avtwria kat l'wpyo.

iv

Acknowledegments

I would like to express my deepest appreciation to my supervisor, Dr. H. I, Li,
who was always available when I needed him. His guidance, insight and knowledge
gave me the motivation te complete this work. I would also like to thank him for his
finacial support.

Special thanks to my friend, Rick Clark, for proofrcading and helping me to
improve this thesis.

I would also like to thank my friends and colleagues in the Department for all the
good and bad times.

Last but not lcast I thank “rov mioTor€epo pov ¢iro”, l'aojva.

Contents

1 Introduction

1.1 Modelling Distributed Computing

Systems (DCS) . . . o o o o e e
1.2 DCS Specification in Pomsets o000 0oL
1.3 Synchronization in Distributed Systems

1.4 Distributed Global State
Recording and Compilationo 000000

1.5 The Global State Detection Kernel oo oo o ..

2 Pomset Model of a Distributed
Computing System

20 Pomsets ... e
2.1.1 Pomset Algebrao oo 0oL

2.2 Modelling Distributed Systems Using Pomsets . .

23 Process States and Consistency L.

3 Pomset Model of the Global State Detection System
3.1 Recording Process . . . o . o oo o o Lo

3.2 A Complete State Recording and

State Compilation System oL
3.3 Compilation Algorithm L L
34 Refinement of the Model 0 .o oo o oo oo

4 Logical and Global Time

vi

24
26
206

27

4.1 Logical and Global Time and their Properties

.............

State Recording and State Compilation Algorithms
5.1 A State Recording Algorithma
5.2 State Compilation Algorithms . .,
5.2.1 Using Logical Time
5.2.2 Using Global Time
5.3 Implementation and Testing

of the LTCA and GTCA Algorithms

........................

..................

The Design of the Global State Detection Kernel (GSDK)
6.1 GSDK Objectives
6.2 Object Oriented Distributed Systems
6.3 Overview of GSDK

.................
..................

............................

GSDK Processes

7.1 Process Structure
7.2 User Defined Program

7.2.1 Dining Philosophers in GSDKL,
7.3 Process State Variables0 L.
74 ProcessCodeo oo oo
7.5 SitePort

7.6 Implementation Issues

..........................

GSDK Site Control Processes

8.1 Site Controller Structure Lo
8.2 Port Structure L
8.3 Process Table Structure oL
8.4 Site Global Clock Structure

.......................

GSDK Central Sites
9.1 General Central Site Structure

vil

55
59
H9)

68

100
100
103
105
106

108
108

.2 Leaf Central Site Structure.
| 9.3 Central Site Structure e
| 9.4 Global State Database

10 Concluding Remarks and

Future Directions
10.1 Usc of Pomsets for DCS Modelling
10.2 DCS Specification in Pomsets
10.3 Logical and Global Time Properties
10.4 State Recording and
‘ State Compilation Algorithms, ...
| 10.5 The GSDK Distributed Programming Environment .
10.6 Future Directions e
Bibliography

Vil

113
113
114
114

115
115
116

118

List of Figures

1.1

2.1
2.2
2.3

3.1
3.2

4.1

4.2

5.1

5.2

5.3

5.4

5.5

5.6

5.7

Expressiveness of concurrent specification models.

The basic pomset p;,, .

..........................

A pomset of the Distributed Computing System DCS,

A Transition System T'S(p) made out of a pomsct p

.........

A recording algorithm of pomset (af|b)ce

A complete state recording and state compilation system

Logical time labelling of events of pomset p.

Global time labelling of pomset p and Logical time labelling derived

from global time labelling and the Recording Algorithm LSRR, . . .

The compilation algorithm LTCA.
The compilation algorithm GTCA.
Distance (number of recordings) vs. recording interval for fully con-
nected Processes. v v i vt v e e e e e e e

GT average case, GT worst case, LT average case and LT worst

case vs. recording interval for fully connected processes (12 processes),

o,

GT' average case, GT' worst case, LT average case and LT worsl

case vs. recording interval for fully connected processes (12 processes).

GT average case, GT' worst case, LT' average case and L'T' worst
case vs. recording interval for ring connection (12 processes).

GT average case, GT worst case, LT average case and LT worst case
vs. window size for fully connected processes (12 processes, recording

interval = 12).

X

11
16

18

49

49

50

5.8

6.1
6.2
6.3
6.4

6.9

GT average case, GT worst case, LT average case and GT worst case
g)) g

vs. number of processes for fully connected processes (12 processes,

recording interval = 6). L o Lo 0L oL 53
The structureof the GSDK. 69
The structure of the processclass. 70
The structureof the SCP class. 71
The structureof the LCSclass. 72
The structurcof the CSclass. 73

List of Tables

5.1

Test results of 12 processes, fully connected where all processes have
almost equal execution delays (number of recordings and number of
events). o e e e e e e
Test results (number of recordings and number of events) of 12 pro-

cesses, fully connected where each communicating process is twice as

slow as the previous one (assuming the processes are numbered in a

SEQUENCE). & « v v v v e o e e e e e e e e

X1

51

o

-

Chapter 1

Introduction

The need for more computing power from many applications as well as the rapid
progress of microprocessor technology and communication systems have made dis-
tributed computing sysi..us (DCS) a strong focus of interest.

A DCS consists of a number of processor/memory pairs, called nodes or sites,
connected through a communication subsystem. 1t is characterized by the absence of
a common memory and a common clock. Synchronization is achieved via message-
passing.

A DCS provides high performance and reliability. Since an application may be
decomposed into a number of concurrent computations executed in parallel, the
throughput of a DCS may be much higher than that of a centralized system. More-
over, when a node crashes, its computations may be restarted at other functioning
nodes.

However, despite the above mentioned advantages, distributed programs arc dif-
ficult to develop. Software engineering of DCS and distributed algorithm design face

the following problems:

o A well accepted model for specifying distributed computations is still not avail-

able.

o The lack of a common clock and memory makes instantancous global state a

non-existing concept.

1.1 Modelling Distributed Computing
Systems (DCS)

The development of DCS requires their specification, design, implementation and
testing. Several models have been proposed for the specification of distributed and
parallel computations. Eventually these models will lead to the development. of pro-
gramming languages. Thus, distributed applications will be built by specifying their
behaviour in terms of simple primitives provided, rather than dealing with how these
specifications are mapped to an underlying architecture.

The most widely studied models are:

Linear Set Models: In the linear set models the behaviour of a system is defined
as the set of all its possible execution linearizations. Concurrency is not, a prim-
itive notion; it is simulated with sequentiality and non-determinism. Morcover,
nondeterministic choice is not distinguished from deterministic choice and non-

deterministic choice may occur only at the initial state of the system.

Branching Tree Models: In branching tree models, ke the linear set models, con-
currency is not a primitive notion. However, nondeterministic choice is distin-
guished from deterministic choice and where the choice and nondeterminism
may occur can be explicitly defined. The most successful representatives of the

branching «rec models are CCS [30] and CSP [14] models.

Partial Order Event Structure Models: In partial order event structure models
[4], [48] concurrency is considered a primitive notion distinct from nondetermin-
ism. Moreover where concurrency and nondeterminism occur may be defined

explicitly.

Some examples of distributed computations expressed in the above described models
are given in figure 1.1 from [35]. These examples show the expressiveness of these
models. The letters a, b, ¢ are used to identify actions to be executed, The program

a(b + ¢) specifies that either b or ¢ is executed after « has been exceuted. ab + ae

Partial Order Branching Linear
Event Structure Tree Set
o a
a(b+¢) {ab,ac}
(8) ~ () b/ \e
(6) ~ (a) a/\a
ab + ac I {ab,ac}
®» © e -
a/\b
allb @ ® {ab, ba}
b a
(a) ~ (b) af\ b
al +ba {ab, ba}
®» @ Ia
More Discriminating
‘—

More Abstract

Taxonomy of Approaches

Figure 1.1: Expressiveness of concurrent specification models.

specifies that either a fcllowed by b is exccuted or a followed by ¢ is executed. aljb
specifies that a is executed in parallel with b.

We can observe that from the linear sct to partial order event structure, the mod-
els become more discriminating, and following in the opposite direction the models
become more abstract. None of the above models is ideal for specifying all distributed
or parallel computations. The model in which a particular system is specified should
be chosen according to the system needs. A more d' ‘mating model may be

avoided in case the extra primitives provided are not use. ...

1.2 DCS Specification in Pomsets

The partially ordercd multi-set or pomsel model of Gischer [13] and Pratt [36] provides
the same primitives as the partial order event structure model except that nondeter-
minism may only be specified at the initial state of the system. In this thesis Pratt’s
pomsets are used to create a general model for DCS specification due to their ability
to distinguish between concurrency and nondeterminism. Subsequently, this model is
used for the specification of some distributed algorithms useful in many applications.
These algorithms are not sensilive to where nondeterminism occurs, however, the
model is general and it could be used for the specification of algorithms and systems
that are concerned with this aspect. For this purpose, the model can be easily ported
to partial order event structures. In chapter 2 a brief introduction to pomset theory
is given.

Partial order models have been characterized as monolithic. That is, systems
specified using these models cannot be expressed in terms of component subsysteins.
However, in software engineering monolithic system specification and design is not
acceptable. Systems must be defined in terms of reusable, expansible and independent
modules.

In this thesis, a method to specify distributed computations, called process be-
haviours, using pomsets by inheriting the properties of other process behaviours, is
introduced. Thus systems may be specified in terms of their component, modules.

The specification primitive used for this purpose is introduced in chapter 2 and is

called the construction rule.

Using construction rule we define process composition and decomposition by syn-
chronizing the communication events of the component processes. The communi-
cation events of a process model the sending and receiving messages to/from other
processcs.

Construction rule and process composition are the basic tools that we use to specify
a general model of a DCS. This model can be used for the specification of distributed
algorithms and distributed applications where correctness may be proved in an easy
formal way.

Our DCS pomset model is ideal for distributed algorithms that are concerned
with the global state of a DCS. The model provides definitions of component (local)
states of the system and composite (global) states of the system, as well as operations

for state composition and decomposition.

1.3 Synchronization in Distributed Systems

Synchronization is an essential concept in concurrent and distributed computing.
The cooperation of several concurrent processes, in an attempt to achieve a common
goal, requires some means of synchronization. In centralized systems the common
clock and memory serve the purpose. The events of these processes can be uniquely
time-stamped and ordered according to these time labels.

However, synchronization in a distributed environment is much more tricky. With-
out a common clock and memory, conventional methods and tools are not useful.
Lamport introduced a synchronization construct called logical iime [21] which de-
fines a happened-before relationship among the system events. The partial order of
the occurrence of the events produces their logical time labeling.

In chapter 4, we further explore the properties of logical time. We prove that
logical tinie cannot be used for some applications due to its weakness in identifying
the partial ordering of events in a distributed computation. Subsequently, we show
that global time, a refinement of logical time [25], [26], [40], uniquely identifies the

events of a distributed computation and the partial order of the event execution is

revealed by their global time labels. Moreover we prove that global time also satisfics
the logical time axiom, introduced in chapter 4. Thus, all properties of logical time

are properties of global time as well.

1.4 Distributed Global State
Recording and Compilation

An instantaneous global state of a DCS is deiined by the states of the component
sites and channels of the DCS at a given time instance. Due to the lack of a common
clock, the observation of an instantaneous global state is impossible. However, the
use of consistent global states of a DCS may be as useful as instantancous states.
Although a consistent global state S may never be observed instantancously during
the execution of a distributed computation, it is a state reachable from the initial
state and can further lead to the current state of the system. A formal definition
of consistent global state is given in chapter 2. Numerous global state detection
algorithms have been proposed [5], [7], {10, [20], {23]. These algorithms share a
common characteristic: local snapshots are taken with coordination throughout the
system so that each invokation of the algorithm involves O(n?) to O(c) messages
passed among the n processes of a system with e channels. Morcover, these algorithms
assume the recording of one global state so they are not concerned with global state
compilation.

In chapter 5 we present a periodic recording algorithm based on logical time.
Recording of local states is performed without explicit coordination among processes.
The worst case time complexity of the algorithm is O(1). Subsequently, we propose
two compilation algorithms; one using logical time and the other using global time.
Compilation of local states into global states makes use of known propertics of logical
time [6], [31] and its refincment, global time [25], [40]. The compilation algorithms
maintain asmall database of local states while guaranteeing the availability of a recent
global state of the system. Periodically recorded global states may find application

in the following areas:
Fault tolerance: Rollback and recovery is performed at the most recent, global state

6

of the system [11], [17], (18], [16], {43], [45].

Stability detection: Continual detection of deadlock or termination etc. can be

performed [6], [27], (28], [39].

Distributed Debugging: Periodic recording is useful for tracing program execution

in debugging [22], [24], [49).

Programming tool: Interesting application algorithms that make use of global sys-

tem information can be easily supported [41], [46].

The algorithms proposed in this thesis assume a reliable and FIFO communication
subsystem. Protocols that ensure reliable and FIFO delivery, e.g. TCP/IP, buffer
the messages in transit at the sender site until the delivery is acknowledeged. Thus,
a channel state that is defined by the messages in transit, can be revealed by the
states of the sender and receiver sites.

Thus, we assume that the state of a DCS is revealed by the states of its component

sites and ignore channel states in our theory.

1.5 The Global State Detection Kernel

The Global State Detection Kernel (GSDK) is a distributed programming environ-
ment that provides primitives for the development of distributed applications. It
makes process creation, deletion and communication transparent. However, what
makes GSDR special is that it provides applications with global or partial state in-
formation at their request. GSDK also provides a language in which distributed
applications may be specified. It is a primitive programming language whose state-
ments correspond to the programming constructs provided by the kernel.

The design of the GSDK is presented in chapters 6 to 9. It is based on the model
and algorithms specified in chapters 2 to 5.

GSDI is an object oriented system. It is easy to expand, port, and modify. The

objectives of the system are introduced in chapter 6.

Chapter 2

Pomset Model of a Distributed
Computing System

3 e AT CTPICST S N STy A T SRR G

The formalism followed in this thesis is based on pomsets (partially ordered multiscts)
i as used by Gischer [13] and Pratt [36]. A brief introduction of the relevant parts is
given in this chapter (more details arc given in [13], [36]). Subsequently a DCS is

modeled using pomsets.

2.1 Pomsets
A labelled partial order (Ipo) is a 4-tuple (V, X, T, p) consisting of

1. a vertex set V for modelling events,
2. an alphabet ¥ for modelling actions,

3. a partial order I" on V,
'CVxV[ab)bec)eT=c#a A (ac) €T,

(e, /)T <= e— [(e occurs before f),

4. a labelling function g : V — ¥ assigning symbols (actions) to vertices (events),
each labelled event represents an occurrence of the corresponding action; the

same action may occur many times.

A pomset (partially ordered multiset) is the isomorphism class of an Ipo, denoted
[V,X,T,). There are scveral types of pomsets classified according to their charac-

Leristics

Multiset : a pomset where I' = § (minimal order)
Tomset : a pomset with a total (maximal) order

(Va,b€ Ve = b V b—ad])

String : a finite tomset

Poset : a pomset where p is one to one and onto

Set : a posct that is also a multiset

Atom : asingleton pomset (both a set and a string)
Unit : an emty pomset € (empty string and empty set)

A process is a sct of pomsets, in the same manner that a language is a s t of
strings. A set of pomsets specifies the nondeterministic behaviour of the process,

where cach member of the set is a possible behaviour.
2.1.1 Pomset Algebra
The following pomset operations are used in this thesis:

e Concurrence pllq of two pomsets p, q is defined as

(Voo Sy T Il Ves B0 T atg] = [GlY VG, By U Zas To UT g o U).
Where | is used to denote the union of two disjoint sets.
o Cloncalenation p:q of two pomsets p, q is defined as
[Vor g Tos ttp); Vs Zqa T) =

[";’w Vo SPUquFp Urq U(Vp R ANT Ul‘q]-

Thus every event of p precedes every event of ¢ in the resulting pomset.

o Projection proj(p.S) is a pomset r derived from pomset p restricted to events

labelled with actions in a set S such that the causality among these events is

9

preserved. Formally,

7"—=p7‘0j(p,5) - (Er=Sﬂzp,

Vi={eleeV, A pple) €Z, },
I = (V. x V)N,
pr = (Ve X Z;) Nty).

Orthoccurrence p X q of two pomsets p,q is defined as
Vo Zpi Ty 1] X [Vo, g, Taatg] = [Vo X Vg, Ep x T, T, 4]

where,
I' = {((a,b),(c,d)) | (a,c) €T, A (bjd) €T, },
o= {((v,u)(a,) | (v,a) € pp A (u,b) « py }.

Orthoccurrence is to concurrence as cartesian product is to disjoint union.

Prefiz closure m(p) of a pomset p is not a pomset but a process (set of pomsets)
consisting of the set of prefixes of p. ¢ is a prefix of p written ¢ <, p , when
q is derived from p by deleting a subset of events of p, provided that if event

u € V, is deleted and (u,v) € I', then v is also deleted.

Example : =(01}|2) = {01}|2,01,0]|2,0,2, ¢}

Suffir closure o(p) of a pomset p is not a pomset but a process (set of pomsets)
consisting of the set of suffixes of p. ¢ is a suffix of p written ¢ <, p, when ¢ is

derived from p by deleting a subset of events of p, provided that if event u € V,,
is deleted and (v,u) € T, then v is also deleted.

Example : ¢(01||2) = {01]|2,01,1]|2,1,2,¢}
Augment closure a(p) is the set of augments of p. ¢ is an augment of p written

p <. ¢, when ¢ differs from p only in its partial order, which must be a superset

of that of p.

Example : «(01]|2) = {01]/2,012,021,201,0(1}2),(0][2)1}

Linearization Mp) is the set of all lincar augments of p.

Example : A(01]|2) = {012,021,201}.

10

Partial lincarization Ax (p) is the set of all augments of p where the events of p

labelled X are totally ordered.

Example : Ax(X1||X) = {X1X, XX1, X(X]|1)}.

Colocation : The next two operations are defined only for alphabets of the
form ¥ = A x B. We say that two events are colocalied when each of their

labels is a pair and the two labels have the same second component.

Example: consider the pomset p = (A, B)||(A, C)||(B,C), the events labelled
(A,C) and (B,C) are colocated because their labels have the same second

component.

Local lincarization A(p) is the set of linearizations of the colocated events of p.

Example :

A((0, DI[0,0)11(2, 1)) = { (0,1)(2,1)[(0,0), (2,1)(0, 1)]|(0,0)}.

Local partial lincarization Ax(p) where (X,Y) € £, (I, is the labelling set of
p) is the set of lincarizations of the colocated events of p where their first label

component is X and they agree in their second label component.

Example :
A4((4, B)||(A, B)|I(4, C(B,C)|(B,C)) =

{(A, B)(4, B)lI(4,C)(B,O)I(B, C)}.

A (4, BII[(A4, B)|I(A, C)I(B,C)) =
{(4,B)(4,B)||(A,C)(B,C), (4, B)(A,B)|(B,C)(A,C)}.
e Sct operations like union, intersection and set difference are used to define new
processes (sets of pomsets).

o Pomset homomorphism h(p) replaces each vertex v of p with a pomset ¢ deter-
mined by h. It is a size preserving homomorphism iff [V,| = 1 and it is used for

the relabelling of events, else it is an expanding homomorphism.

11

S Ta A

o Process homomorphism h(p) transforms p to a set of pomsets Q where each
member of @ is created by the replacement of any event v of p by a set of

pomsets determined by h.

2.2 Modelling Distributed Systems Using Pom-
sets

We model a DCS as a set of communicating sites. Each site is represented by its
computational behaviour specified by a process (in pomset context).

A process P is specified by a set of pomsets (behaviours) {py,p,...}. In the
specification, only the necessary causality among the events in p, is modeled and the

following process rule applies:

Rule 1 (PR (Process Rule)) Let P be a process.

Ppe€E P=>pLaq

0

Intuitively, PR asserts that no behaviour in P is an augment of another behaviour
in P, else the additional causality introduced by the augment is not necessary.
To complete our model of a distributed computation consisting of n processes, we

introduce:

Basic pomset pjux[n).e) The basic pomset p, i,).e.[«) sPecifies a maximal con-
current behaviour of a computation i that exccutes infinite number of internal
events in parallel with the execution of a sequence of k,[j] sending events, that
model the sending of messages to a computation j, and a sequence of {[j]

receiving events, that model the receiving of messages from the computation j.

Basic process Pi,,): Is the set of all possible computations pi,. k(w4)y for a given
. Any two members of P, differ in the arrays k, and ¢,. That is, they send
or receive a different number of messages to or from at least one computation
Jj.

12

Construction rules: They are logical expressions defined using pomset operations.
They are used to define process behaviours using basic pomsets and processes

as basic building blocks.
Definition 1 (Basic pomset p(n;) and Basic process Pn.i))
P(n gk [n] e [n]) = (”oo(l’ 2ﬂ7)) “ (II(J'i’ﬂ)h(S X1 Xj X Akn;)) ” (ll(J»‘vn)h(R Xj XX AI.ﬂ))

where,

flo X = XX | ... X X] ...
(concurrent occurrence of infinite number of X ’s)
loamfG) = S WS - I FG=1) | SG+1)] .. | ()
A, =1=2233-...5(n=-1) —-n
h : 1s a size preserving pomset homomorphism which replaces
cach label (X, 1, j,€) with (X,i3¢)
13,9 ¢ dwinmy integer values (say always 0). They are introduced

so that cvents arc homogeneously labelled.

The basic process P,y is the set of all basic pomsets, i.e. Py = {pmgl k)1,

€EwUoo, 1#j, 1 £j<n} (wis the sel of non-negative integers).

Example :

‘S‘ X 7 x.j X Aa = (S’?7j’1) - ('S"i!.j92) - (S7z1j’3)

WS xixj x Ag) = (8,ij1) = (S,ij2) — (S,3j3)
O

A pictorial representation of p(,) is shown in Figure 2.1. Conceptually, a basic
pomset pg,,y is a behaviour of the basic process P,,,) and contains a set of internal

events labelled (1,i87), a set of sending events labelled (S,ij€) and a set of receiving

13

(Liab) (Liab) (1,iab)

(Liab) (,iab) Tt
(Ljiab)
(Liab) (Liab) (Liab) voo

(S,i11) ——=(5,i12) —» (5,i13) —» ..o

(5,i21) —— (S,i22) — (5,i23) —» .«

(S,inl) i (S,inZ) — (S,in3) — s e e

R211) — (K,2i2) ——p (R,213) — ¢ ¢ »

(R,nil) — (R;ni2) ——p (R,ni3) — ¢ ¢ »

Figure 2.1: The basic pomset p(n,)

14

-

events labelled (R, jif). Semantically, (S,ij¢) represents the ¢** sending event from
Piusy to P,y and these cvents are totally ordered for each combination of 7 and j.
Thus (S,i5¢) — (S,ij(I +1)). Similarly (R, ji¢) denotes the £** receiving event from
Puy) by Py

Process D P, models the concurrent execution of events on a node ¢ of a DCS. The

formal definition of this process is as follows:

Definition 2 (DP,) A distributed process DP; contains a subset of augments of be-

haviours of the basic process Py). Formally,
DP, C a(Puiy) [Bpg€DPi[p<.q], 1<i<n
0

We can apply pomset operations (defined in section 2.1) on the behaviours of
U, D P, to obtain the behaviours of a new process. Different construction rules cor-
respond to diffeient uses of these operations. In general, we denote these rules by
Conust_Rulep (p.p1,...,pn): p € P, is constructed by applying some specific rules to
{r,---ypa}s p € DP,. Formally

P,={p|Vi{1<i<n)3p € DP, [Const-Rulep,(p,p1,--.,pn)] }
D(C'S, models a DCS of n nodes. Formally:

Definition 3 (DCS,) A distributed computing system DCS, ts formed by a set
of distributed processes with linearization of colocated events (sending and receiving

coents). Formally,
DCS,={p|Vi(Q<i<n)dp € DP, [Const-Rulepcs,(p,p1,---,Pn)} }
where,

Const-Rulcpes,(popiv- .. pn) =p € Qrosy(lh 2)) A
(v € Vp, [ip(v) = (S,1j0)] =
(3 u€ ‘/P; [l‘p(u) = (Ra 7.7[)] A (v,u) € FP))

15

p = [V3, Ep, Ty, ttp] and A(ps)(ll:ps) is the set of local partial linearizations of cvents
labelled (S, z),(R,y) of pomset (]|.p,)-

a

An example of a behaviour of a DCS; is drawn in Figure 2.2. FIFO communi-
cation is enforced by including ((S,%j¢), (R,1j{)) in T',. The following properties of
DCS,, follow immediately from the definition.

Properties of DCS,;:

PR1 :
p € DCS, [Const-Rule(p,py,...,pn)] =

Vo =W Vo, S =WE,, tp =Hup, T = tr((t{-J Ty ks
where, t ' ' '
Tors = {(w0) fue Vi, ve Vy, ulu) = (S5,4j1), n(v) = (I,ijl) }.
tr(T) is the transitive closure of the set of elements of T', that is,

((a,b) €T = (a,b) € tr(I)) A ((a,b),(b,c) € tr(T') = (a,c) € Lr(1)).

PR2 : All members of DCS,, are infinite pomsets. This is dvic to the infinite number
of internal events of each p, € DP;. We avoid to deal with finite computations
so that termination is not an issue in our compilation algorithms and it can be
easily handled in implementation.

[09]
The following theorem asserts that if Const_-Rulepes, (p,p1y---»pa) holds then p
uniquely identifies py,...,p, and py,. .., pp uniquely identifies p.
Theorem 1 V7 p,,q, € DP:, p,q € DCSy,

Const_Rulepes, (pypry- .y pn) =

((Const-Rulepcs, (Pyqys--yqn) <= Yilg,=p)) A

(Const.Rulepcs, (¢, P1y...,Pn) &= p=¢q)).

16

(I,1ab)
(I,1ab) ¢
(5,121) —» (5,122) — (5,123) —> o o o
(R,211) —» (R,212) —» (R,213) —> o ¢ »

(Ialab) (I,lab) LI)

The basic pomset |
@2ab) @2ab) @2ab) . .
(1,2ab) ® o

(5,211) —- (§,212) — (5,213) —>
(R,121) —» (R,122) —» (R,123) —>» o + &

The basic pomset Poay

(1,2b) by ee
(S,211) —el (8,212) — (I,Zab);;(S,ZB) ®o o0

N

(R,211) —» (R,212)

(R,213) ——» e o o

e v
(I,1ab) (I,1ab) (I,2ab)
(R,121) R,122) (R23) — e oo
/ /
(S,121) “—» (5,122) —» (5,123) — > oo o
(I,1ab) (I,lab) e+

A pomset of the distributed computing system DCS , .

Figure 2.2: A pomset of the Distributed Computing System DCS,

17

3 Proof: (by contradiction)
Assuming Const-Rulepes, (p,1,- - . ,pn) holds while

1. the predicate =(Const_Rulepcs, (p,q1,..-1qn) <> Vi [q = p]) is satisficd.
Then

B

either ~Const_Rulepcs,(ps q1,---1qn) A V1 [qi = p,] holds which contradicts

aConst-Rulepcs,(PsP1y-. -+ Pn)

| or Const_Rulepcs, (p,q1y---59:) A 31 |g: # p,] holds

i =3¢ #p N A=Xps(li p) N drs)(ll) #0 (Definition 2)
. = Vre AT, = (W)Wl = (8iTq,)Wlens] (Property PR1)
f =>Vil, =T,.

- But pi,qi € DP, = a(p(n,)) = Tp, # Ty, (Contradiction).

,‘ 2. (Conversely) the predicate =(Const-Rulepcs, (¢, 01y pa) &= p = ¢) s
satisfied. Then

either ~Const_-Rulepcs,(q, p1y.-.,pn) A p= q holds which contradicts
~Const-Rulepes, (s Py -y Pn)

or Const-Rulepcs, (q,p15---,pn) AP F ¢ holds
>V, =V, =W, V,, Zp, =5, =W 5, #tp = sty = W, 41, (Property PR1)
Fp = (Wi Tp,) Wlhass Tg = (W Tp) Wy,
Tprs =Tops = {(w,v) [u€ Vo, ve Y, (i #J),
pu) = (8,451), p(v) = (R,151)}
= p = ¢ (Contradiction).
0

Definition 4 (Construction Operator of DCS,,) The following notation s de-
fined for fulure use.

Const-Rulepes,(pyPry---yPn) & p=p1o...0p,

18

2.3 Process States and Consistency

Under the assumption of a reliable and FIFO communication subsystem the state of
a DCS can be defined by the states of its component sites. Moreover a state of a
site is identified by the computation that lead the site from the initial state to the

current one. We denote STATES_P the set of states of a site or a DCS identified

by the computational behaviour P.

Definition 5
1. A process P has one and only one initial state Sinitp.
2. STATES,, p € P, is the set of states of process P defined by all prefizes of p.
Formally,
¢<xp < 38, € STATES, [Sint»95,)
3. STATESp = U,ep STATES,.
4. q€T(P) A (p<aqV q<op) <> 35 € STATESp [SinitppS N SinupqS).

g

Given a pomset p € P there is a one to one mapping from n(p) to STATESp
such that for each prefix ¢ <, p there is a state S, € STATESp and Sinit ¢S, (the
occurrence of ¢ moves process P from its initial state to state S;). If p <, ¢ then
the states S, and Sg (Sinue,PSps SimatpqS,) are considered one and the same state. A
pomset r could lead process P from state Sp to state S, if and only if 8 is a prefix

of v and (/%;7) is an augment of 4. The following transition system results:
Definition 6 (7'S(P) (Transition System of process P))
TS(P) = (STATESp, n(a(P)), TR(P))
TR(P) = {SprS, | v € n(a(P)), B<s v €7(p) A 7 <a Bir)
(]

An example is illustrated in Figure 2.3. The paths of the transition system TR(P)

of a process P define the possible executional observations of P. A snapshot, called

19

]

—>

The transition system TS((allb)c).

Figure 2.3: A Transition System T'S(p) made out of a pomset p

recording, of the state S, of process P may be taken during an observation defined
from a path f = {S;,...,5,} if S, € f. However, a recorded state S, of process P
during an observation defined from a path f starting at statc S; and ending at state
S, is considered consistent if there exists any path ¢ in T R(P) that starts at state S;
and ends at state S, and S, € ¢. A consistent recorded state of P is defined formally

as:

Definition 7 (CRS (Consistent Recorded State)) Let S;,S, € STATLESp,

CRS(P,S:,S,) = {S:] Sr € STATESp A 3ps <upr <apy e p (pEP)
[Sinitppz:sr A Stm'tpprsr A Simt;:pysy]}

A state S, of STATESp is a consistent state of process P recorded between slales Sy
and S, (S:,S, € STATESp) iff S, € CRS(P, 5z, S,).

a

A DCS can be viewed as a computation composed by the computations of the
component sites. Moreover, the state S of a site or DCS is identified by the compu-

tation that lead the site or DCS from the initial state to S. Thus a state of a DCS

20

|

identified by computation p is composed by the states identified by the component

computations of p. A more general definition follows

Definition 8 (CSCS (Composite State, Component State))
A state S, € STATES, (g9 <« p, p € P) is a composite state consisting of component
states S,, € STATES,,,...,S,;, € STATES,, iff

Const_Rulep(q,q1,--.,qn)

wrillen as S; = S5, 0...08,,.

0

The construction rule, process composition/decomposition, and state composi-
tion/decomposition are general tools for modelling distributed computations. DCS,
models a distributed system with n sites.

In the following chapters we use these tools to specify particular distributed com-

puting systems and prove their properties.

Chapter 3

Pomset Model of the Global State
Detection System

The use of the state of a DCS is necessary for a number of applications. A DCS
could provide fault tolerance by saving its states spontaneously. Thus in case cf
crash the distributed computation could restart from the most recent consistent state.
Moreover, stability detection algorithms, e.g. deadlock detection algorithms [28], [27],
use the global state of the system.

In this chapter we expand DCS, to model a complete state recording and state
compilation system. In this system the component processes DP, of D('S, record
their states at a central site process C A. The CA process collects the recorded states
and compiles them into consistent global state (Definition 7 (CRS)). The model can
be used for expressing and proving propertics of arbitrary recording and compilation

algorithms.

3.1 Recording Process

A recording process R(P) is a process superposed on process P. Each pomset ¢ of
R(P) is constructed from a pomset p of P in such a way that cach event ¢ added to p
defines a state S, of P. S, is defined by the prefix a of p and it consists of all events
of p that precede the state definition event ¢ in ¢. All such state definition events

are totally ordered. The set of all such tomsets of R(P) form a compilation process
CP(P).

Definition 9 R(P), R(p)
R(P)={ ¢ |3 pe P [Construlenr)(q,p)] },
Const.Ruleippy{g,p) = g€ R(p),
where,
R(p) ={q | Vo= VoUW, Zg=5,UZ,, pg = ppUpr, Ty =tr(LUT, UG(p, 7))},
2, ={SDi | k € w},
pr V., = X, (one to one and onto),
I, ={ (c,,¢,) | (e,,5Dy,), (&;,SDy,) € pr N 0S ki <k, b
Gp,r) SV, x V,,
{r(I') is the transitive closure of the set of elements of ', that is,
((a,b) € T = (a,b) € tr(T')) A ((a,b),(b,c) € tr(T) = (a,c) € tr(T)).
]

It is easy to observe that each member of R(p) differs from any other only in

their G(p,7) and |V,]. Each member of R(p) is identified with a recording algorithm

because it specifies the states of p being recorded. An event e of R(p) labelled SD;,

defines a state recording of p.

Definition 10 (REC-ALG(P)) A recording algorithm REC_ALG(p) applied on
a pomsecl p € P is a member of R(p).

0

A deterministic recording algorithm applied on P, REC_ALG(P), produces one
and only one member of R(p) for each p € P.

Property (Recording Algorithm (RA))

It follows immediately from the definition of R(p) and REC_-ALG(p) that a recording
algorithm REC_ALG(p) is specified by the sets £, and G(p,r).

O

An example of recording is given in Figure 3.1 where SD, is associated with state

Sty and S Dy with state Sgyp)e

a\Nc-_—»a

b—"

The pomset (allb)ca_/' SD, » SD,
a
- c—» 2

A recording algorithm of pomset (allb)ca
that records the states S,n and Sgyca
of pomset (alib)ca.

Figure 3.1: A recording algorithm of pomset (a||b)ca

3.2 A Complete State Recording and
State Compilation System

A complete state recording and state compilation system CSys(DCS,) is a process
superposed on DCS,. It models a system constructed from n distributed processes
REC.ALG(DP,), (1 €1 < n) which record the states of DP, processes and forward
them to a central site CS(DCS,,). The latter composes them to form global states of
DCS,. The central site process is formed by the linearizations of the state definition
events of REC.ALG(DP,). The state definition events of different processes for each
i, (1 €1 < n), are distinctly labelled with (SD,ikl). The integers k, [are reserved
for use by specific recording algorithms that we will develop later (e.g. k could be

the k*? recording of process DP,). An example is given in Figure 3.2.

Definition 11 (CSys(DCS,))
CS‘yS(DCSn) = { q I 3}) € DCSn [COHSt-RUICCSw(DCS,.)(q»p)] }

Const_Rulecsy,(pcs,)(9,p) =

g€ Ax(q0...09,) A g.=REC_ALG(p;) € R(p,) AN p=p,o...0p, € DCS,

24

pl: (S,121) = (R,211) —p(1,1ab) ——p> (R,311) —p

P, (§,211) —» (R,121) $-(S,231) (I,2ab) -
Py (1,3ab) -» (R,231) —(§,311) —p

A pomset p of DCS constructed from pomsets p1 p2 X

(SD,1kl)-» (SD,1kI) -~ (SD, 2kl)->(SD 1kl)-p (SD,3KkI) -

Py ¢ (5,121) = (R 211) (I,1ab) -——> (R,311)
P, (521 (R 121) - (5,231) —{l 2ab)

p3 ¢ (I,3ab) —p (R, 231) —p (5,311) —p

A pomset q of CSys(DCS;) where
Const_Rule cgy s,) (@:p) is satisfied.

Figure 3.2: A complete state recording and state compilation system.

25

¢
3
‘»
:
4
¢
;
t

T, w¢ v =

where X = (5D, ikl) and A x(p) is the set of all partial linearizations of events labellcd
X in p.

3.3 Compilation Algorithm
The central site process CA(DCS,) contains events of CSys(DCS,) labelled with
(SD,ikl), (1 £ i< n), formally defined as,

Definition 12 (CA(DCS,))
CA(DCS,) = { ¢ | 3pe CSys(DCS,) | Const-Rulec aipcs.)(0:p) | }

Const_Rulec ypcs,)(¢:p) = q = proj(p, {(SD, k1) (1 <2 < n), k1€ w}).

0

A Compilation Algorithm CALG is invoked by the events of CA(DCS,). It updates
a database of component states and can be viewed as an expanding homomorphism
that replaces all events labelled (SD,iaf) in CSys(DCS,) with algorithm CALG.
Objectively, the compilation algorithm maintains a databasc consisting of at most,
m component states of each component process while guarantecing a recent global
state of DCS, in the database. These will be developed in chapter 5, together with

two compilation algorithms based on logical and global time.

3.4 Refinement of the Model

The state recording and compilation algorithms presented in the following sections
assume an architecture in which a distributed system DC'S,, is constructed from n
processes DP; where all p € DP, are tomsets. That is the sites the DFP, processes

model are uniprocessors executing sequences of actions. Thus DP, is redefined to be
DP, = Mpwmy)-
All the other definitions and theorems remain valid.

26

Chapter 4
Logical and Global Time

The following quote is taken from graffiti seen on a bar wall at Austin, Texas [3]:
Time is nature’s way of keeping everything from happening all at once.

Time is a happened-before relationship defined on a set of events. A clock is a tool
for labelling these events in such a way that the order of occurrence of these events
is defined by their labels.

Real clocks are not the appropriate tools for labelling the events of a distributed
computation, since they are not common to all processes in the system. Real clocks
are never perfectly synchronized thus an event labeled with time 2:50 on site S; could
happen before an event labeled with time 2:00 on site S if the clocks of these sites
have a value difference of 1 hour.

IFor this reason an instantaneous global state cannot be recorded in a distributed
environment. Suppose that the above two sites record their states when their clocks
have value 1:00. The clock of site S, will have this value an hour later than the clock
of site Sy, thus the compiled state composed of the states of the two sites may show
that a message not yet sent from site S; is already received from site S;.

In this chapter we explore some properties of logical time. We show that logi-
cal time is not powerful enough to identify the partial ordering of the events of a
distributed computation. Subsequently we introduce some propcrties of global time,
which is an improved version of logical time. Global time uniquely identifies the
events of a distributed computation and reveals the temporal ordering among these

events,

R S -

el T T T e

~ T e T ey

4.1 Logical and Global Time and their Properties

For the purpose of revealing temporal relationships among events in a distributed
system, the logical time system introduced by Lamport {21] could be used. Consider
a time stamp function LC (logical clock) for process events that satisfies the following

axiom

Axiom 1 (Logical Time Axiom (LTA))
Consider ey,e3 € V, and LC(e;), LC(e2) € w then,

e; — e = LC(e1) < LC(ez)

0

The events of the pomset in Figure 4.1 are labelled according to the algorithin
reported in [21]. LC could be applied as a homomorphism on all events of a process

P. Unfortunately in LTA “<” is not isomorphic to “—”.

Theorem 2 (LT1) Independence (absence of causality) among the evenls of a dis-
tributed computation cannot be revealed by examining the logical clock labels of the

events except in case they are equal.

Proof : We need to prove only the exception:

LC(e;) = LC(e2) = LC(ey) € LC(e2) A LC(e2) £ LC(ey)
= e heAey /e (Axiom LTA)

= e; and e; are independent.

0

A stronger time-stamp function is necessary in order to determine if two arbitrary
events e; and e, have temporal dependency. This can be accomplished by means of a
global time label (defined later), as used in a number of applications previously [24],
[40].

The following definitions (last,,nert,) are used in theoremn proving,.

28

Pl=

P2=

P.:

(5,121) —» (R 211) —p(1,1ab) —p> (R 311) —p

(5,211)—» (R, 121) (S 231) (I,2ab) -

3 (1,3ab) > (R,23l) ~—» (5,311) —»

A pomset p of DCS constructed from pomsets pl.p2 ,p3.

P 1>22 —3 > 6 —
p2: 1 > 2 >3\ /:4—>
Py 1 > 45 —p

Logical time labeling of the events of pomset p.

Figure 4.1: Logical time labelling of events of pomset p.

29

Definition 13 (last;) last;(q) of a prefir g of p € DCS, is the last event of tomset
P: that is also event of . Formally, given that ¢ <, p € DCC,, (p=pyo...0p,)
then

lasti{¢) =u eV, < BveV, [(v,v) €T,
0

Definition 14 (next,) next,(e) of an event e of a tomset p is the first cvent of

tomset p that follows event e inp. Formally, given that c,e € V, then

nexty(e) =€ <= e—e A AaeV,[e—a—¢

Theorem 3 (LTPR)
Given that p € DCS,, p=p1o...0p,, Vi [e,, € V,,] then

3z Vi[LC(e,) <x < LC(neaty(c,))=3r <, p Vi lust(r) = ¢,
Proof : Let A=3 2 Vi [LC(e,) £ z < LC(next,,(e,,)] then

A= Ber, e, aflaeV, Ae, —a—e] (cse LC.,,) > 1)

= 3r < pVilast(r) = ¢ (definition of prefix)
0

The above theorem leads to a recording algorithm where the n processes record
their states right after the occurrence of the event whose logical clock label is the
largest logical clock label that does not exceed a specific z. Then these n local states

can be composed to form a (global) state of DCS,,.

Definition 15 (V},)) V,(¢), (e € V,, p=pio...op, p € DCS,), is the sel of
events of V), of ¢ <, p where ¢ is formed by delcting from p with the cxemplion of ¢

all the events that do not precede ¢ in p. Formally,
VeeV,, V(e)={alaeV, AMla—cV a=¢))} 0

30

Lemma 1 Given thate; €V, e, €V, , p=p1o...0p,, p € DCS, then
‘/pt(c') g Vps(eJ) — (ei — €, V e = BJ)
Proof :

‘/p'((f() (—'—: ‘/Pu(CJ) = 6 € v|(eJ)
< ¢ic{alaeV, A (a—e V a=e;)} (Definition V, (e))

= e —¢ Ve =g

O

Definition 16 (GCL) A global clock label GC of the events of a pomset p € DCS,,
is @ one to one mapping GC : V, — w® applied as a size preserving homomorphism

on the cvents of p such that : Given e € Vj,

GC(e) = (f1(c), -, tale)) = Vi [lie) = [V, (e)l]

An example of global clock labelling of events is given in Figure 4.2.

Theorem 4 (Global Time Property (GTP))
Giwenp € DCS, A p=pro...op, AVi,j [€V, e, €V, (e # ¢

(,‘(C,’) < [’;(e_,) = e —¢€j.
Proof :

() S 0(G) = V(e £V (e))] (Definition GCL)
= V(e) S W, (e)
= ¢, ¢, (Lemma 1 (e, # ¢;))

31

1 3 4 10

pl : (1’0’0) ~— (2’1v0) - (3,1,0) — (49393) —

P,: (0,1,0) —» (1,2,0) % (1,3,0) 1,4,0) »

1 3 4\ 5

pP,: (0’0’1) —ee (11392) —’(173’3) —

3 6 7
Global time labeling of the events of pomset p
and the corresponding logical time labeling
(theorem GTLT).
—¥@BD124)
/(grD.le) (SD,222)
~~a
(SD,111) (SD312)
A
(SD,333)
Pyt 1 J—» 4 10
P 2 : 1 3
Py 1 — 6 7 —

A pomset q of CSys(DCS ;) where Const_Rule g, pes, y(4.p)
is satisfied and q,is member of LSR(p; ,2). ’

Figure 4.2: Global time labelling of pomset p and Logical time labelling derived from
global time labelling and the Recording Algorithm LSH.

According to theorem (GTP) the global clock labels of two events reveal the
temporal causality between them. This property of global clock labelling is used in

the construction of simple recording and compilation algorithms.

Theorem 5 (Global Time and Prefix (GTPR))
Givenp € DCS,, (p=p1o...op,), & €V,, (1<4,5<n).

Ar <epVilastir) =e) <= Vi# j[l(e) > lle;)]
Proof:

Vigjllle) 2 ble)] = Ai#] [lile) < bie;)]
= Ai# 7 [Vila) C Vi(ej)] (Definition GCL,V,,(e))
> Bitj[Fee Vi[e— a—e
(Lemma 1,Definition V;, (¢))
<= Ir <, p [Vilast,(r) = e,] (Definition last,,prefix)

O

Theorem GTPR shows that given any state S; of each site of a distributed system
D(CS,, global time identifies if the state of DCS, composed of these n states is a
consistent recorded (global) state of the system. Theorem GTPR asserts that state
S, of the DCS,, identified by the prefix r, is a consistent recorded state between the
initial state of the system and state S, identified by prefix p, if and only if the it
clement of the global time label of the last event of the state S; of site z (prefix of p,)
is greater than or equal to the i** element of the global time labels of all the other
states S, of the sites S, where ¢ # j.

‘Thus theorem GTPR identifies a compilation algorithm where the received states

of n sites are composed to form consistent global states of the system.

Theorem 6 (Global Time and Logical Time (GTLT))
Givenp € DCS,, (p=p1o...0op,), €D, €, €p, and f(e) =Z",l;(e), e € p.

€ CJ = f(C,) < f(CJ)
Thus the funetion f on the global clock labels satisfies the logical time axiom LTA.

33

Proof : From definitions (V},) and (GCL)

e — e, €= Vk([l(e)<lble,)] A &i(e:) < 6(e,)
= Diob(es) <Tiabile)

a

Theorem GTLT asserts tnat all results obtained from logical time can also be
obtained via this transformation of global time. An example of logical time label

derived from global time label is given in Figure 4.2.

Definition 17 (Partial Global Time (PGT)) Givenr <, p € DCS,, (p=p 0
...0py), Vilast(r) =¢.
GC(r) = (bi(r),...,lu(r)) represents the global time value of the state identified

by r where,

bi(r) = mazx (€ (ey),. .., b(en))

Theorem 7 (Global Time and Partial States (GTPS))
Given p€ DCS,, (p =pro...ops), ei € Vo, (1 4,5 <n), qp=pio...op,

42 = Pr410-..0Pn.
3r <@ ,3n e g 37 pVilast(r) =e AT =701
=
3r <o 3 Sp g Vi€ {1k} [6(r)) 2 bi(ry) AV T € {k+1.u) [l(ry) 2 {.(71)]]

Proof: The proof come directly form theorem 1, theorem 5 (GTPR) and definition
PGT.

a

Theorem GTPS shows that state composition may be done in a hierarchical struc-

ture. The states of the processes are first composed to partial states of the system

and subscquently the partial states are composed to a global state of the system.

Thus the composition process could be distributed to more than one site.

34

Chapter 5

State Recording and State
Compilation Algorithms

In this chapter a state recording algorithm and two compilation algorithms are pre-
sented. These algorithms are based on the properties of logical and global time intro-
duced in chapter 4. They are specified using the pomset model of a DCS introduced
in chapters 2 to 3.

The algorithms are implemented and tested on a network of Sun workstations.
Implementation information and the test results are given in section 5.3. A wider set

of test results is given in [26).

5.1 A State Recording Algorithm

The following recording algorithm is based on theorem LTPR. A process instance
(pomset) p, of DP, records its state when the last event of the prefix of p; that defines
that state has logical clock label that is a multiple of a given number d.

According to property RA a recording algorithm REC_ALG(p;) € R(p,), p1 o
...op, € DCS, is identified by I, and G(p,,7:). LSR(p.,d) € R(p;) is a recording
algorithm presented next. For e € V,, p(e) is denoted by (SD, tk.l.).

Definition 18 (base,of fset) Fora €V, ,d € w

of fset(a,d) & [ESlneztla))-LO@)) _
base(a,d) £ [.’ﬁi(ﬂl]

Algorithm 1 (Local State Recording Algorithm (LSR))

Input : a tomset p; and d € w.
Output : a member of R(p;) satisfying the following.

Lt W ={a|a€V, [offset(a,d) #0 V LC(a) mod d = 0]}. The members of W

are the last events of prefires of tomset p; that correspond to recorded states of p,.
., ={(SD,k.l.) la € W [k, = base(a,d) A l. = k. + of fsci(a,d)]}
Glpiyr) = {(aye) | @ € Vi, €€ Vi, [ke = basc(a,d) A L = k. + of fsel(a,)]}

]

Definition 19 (pref) Considerpyo...op, € DCS,, e € V,, and ¢, = LSR(p,,d) €
R(p:) [11q,(e) = (SD,ikele)].

ti, = pref(qi, (SD,ik.l)) <= i, <sp €V, < (q,e) €1]

Thus t,, is the mazimal prefir of p, that precedes the state-definition event ¢ in q.

The recording algorithm LS R has the following properties :

LSR1: Every process instance p, records its state every time the logical clock is

incremented by d units.

LSR2: Let ¢, = LSR(p,,d) € R(p,), e € V,,, t.. = preflq, (SD,ik.l.)). Sy, is the
state recorded for the Kt (k. + 1), ..., I" increments of the logical clock by d

units.

36

LSR3: Each state (corresponds to a unique prefix) is recorded at most once.

LSR4: Thereis one and only one pomset LSR(p;,d) € R(p:) for a given d € w. This
is easily proved considering the uniqueness of logical clock labels of the events of

p; (assuming that logical clock is implemented using Lamports algorithm [21]).

LSR5: Consider a CSys(DCS,) where REC.ALG(p;) = LSR(pi.d), (1 £1i £
n), p=p1o...op, € DCS,, q; = pref(LSR(p;,d),(SD,ik.l.,)), (1 <i<n)
JzMVik, <z <] According to theorem LTPR and definitions CRS,
CSCS,

Sg 0...08,, € CRS(DCS,, Sintpes, » Sp)

LSR6: Consider a,b € V;, and b is the event that occurs right after a in tomset r,.
Then it is casy to prove (from definition of LSR algorithm) that k, = [, + 1

(recording in a process has numbering that span the entire w).

LSRT7: LSR can be used by CSys(DCS,,) when the events are labelled with global
clock labels according to theorem (GTLT).

An example of the recording algorithm LSR is given in Figure 4.2. Property
LSRPRA4 enables a central site process CS(DCS,) to compose the states of DP;s to
form states of DCS,,. It is preferable to label the events with the global time label
because the extra global information provided permits more flexible retention and
composition of states of DP,’s to form states of DC'S, which logical clock label will

fail to reveal.

5.2 State Compilation Algorithms

5.2.1 Using Logical Time

The compilation algorithm using logical time is defined by a set of rules that specify
if a state should be kept in or discarded from the database. The following predicates

are first defined.

37

Predicate 1 (less_than-m)
Leta € V;; lessithan.m((SD,ikol,), j) is TRUE if there are fewer than m, (m > 2),

states of process D P; in the database right before the occurrence of event a.

Predicate 2 (in_data_base)
Let a,b € V;; the predicate in_data-base((SD,isk4l,), (SD,isksly)) is satisfied iff the

stale S(sp,iykyty) 15 in the database right before the occurrence of event a.

a
Definition 20 (not_deleted)
not-deletcd((SD,i kals), (SD,ipkply)) <
in-data base((SD,i,k.,), (SD,ipksly)) V a = b Va=1b
O
Predicate 3 (can_be_used)
Let a,b € V;. can_be_uscd((SD,i.koly),(SD,1sksls)) is TRUE iff,
(b—sa Va=0b A JzVi#ide eV,
by <z <ly Ak, <x<le, A notdeleted((SD,i k.), (SD, ik, 1.))]
O

Informally can_be_used((SD,i,k. 1), (SD,ikily)) is satisfied if and only if the
state S(sp.,ky,) can be used to form a state of DCS, at or after the occurrence
of event a. According to theorem LTPR and algorithm LSR, S(sp kg, can be
used to form a state of DC'S, at or after the occurrence of event a if there exists
z (ky < z <) such that for all other processes DP, (i # i) the states S(sDak. 1.,)
have not been deleted from the database (either already in the database or yet to be

received at the central site) and k., <z < {,,.

38

Predicate 4 (form_new_stale)
Let CGSpes, = S(spakh) O+« - © S(SDmkala) Tight before the occurrence of an event
a€V,.

formnew.state((SD,i.k,l,),z) <

g>man(h,...,la) A (V5,(#1,1<j<n), Je; €V,
ke, Lz L1, N kg L2 1y A in_database((SD,iakals),(SD,ik. 1))}) A
By >z [formnew_state((SD,ik;l;),y)]

O

Informally form_new.state((SD,i.k,l,),) is satisfied if and only if at the occur-
rence of event a there is in the database a state S(SD';,-CC'IQ‘) for each i # 7, that can
be composed together with Sisp,i k.1.) to form a state of DCS,. The choice of this
predicate is justified from theorem LTPR.

The following algorithm is invoked atomically by each event e; € V;. Initially the
initial state Si,,,,D,,' for each process DP,, is stored in the database. According to the
following algorithm a recent state of DCS, is always retained in the database. The
recency of this state will be established in Corollary 1. This state is named CGSpcs, .
Initially

A V4l
CGSD('S,. = nitpp, 0...0 Simtopn'

Algorithm 2 (Logical Time Compilation Algorithm)
Upon receipt of S(SD"kelle') do
R1: if 3 r [formoncw-stale((SD,ikel,,), z)] then

1. Delete from the database all states S(sD ke, l.,) where le, < .

[£<)

. Insert S(SD‘,‘kﬁ[e.) in the database.
3. CGSpes, = q(sn,nquq) 0...0 8D nkele,) (VI ki Sz <)
R2: if ~canbe_used((SD,ik,,1.,),(SD,tk. L)) then discard S(SD.ik,ll,‘)-
R3: if B [formmewstate((SD,ik,1,,), 1)} and less.than.m((SD,ik. 1,),i) and

can.beused((SD, ik 1), (SD, ik, 1)) then insert S(SD.:ke,l,.) in the database.

39

R4 : if /3 z [form-new_state((SD,ik.,l.,),)] and -less.than-m((SD,ik.]l.),1)

and

can.be.used((SD,ik.l.,),(SD,ike,l.,)) then
1. Discard S(SD.ik,.le')-

2. Delete from the database all states S(SD.jke,lej) which do not satisfy
can-be_used((SD,ik.,1.,),(SD, jk.l,)).

An example of algorithm LTCA is given in Figure 5.1.

Definition 21 (state-num) Given that

CGSpcs, = S(SD1ke 1e,) © -+ O S(SDmkeplen)

then

state.num(CGSpcs,) = maz(keyy. -y ke,)-

This means that CGSpcs, is composed of the state_num(CG Spes,) recorded local

states of the component processes.

(]

Definition 22 (nert_statc-num) Given thal ¢, € V;, occurs bctween the compilation

of stales CS; and CS, al the central site.

nexrt_state.num((SD, ik, l.,)) = statenum(C S2)

Theorem 8 (LTCA)
Given two consccutive global states of DCS,, detected by LTCA,
CSy = S(sDakele,) O+ O S(SDnkeyle,)

and

6'5'2 = S(sp'lk‘1 le,) 0...0 .5'(5[)',1;;‘"1‘").

40

Consider that the LTCA is invoked by the state definition
events of pomset q in €igure 7. The maximum number m
of states kept for each process is 2.

Initially
P 1 P 2 p 3
1st state (CGS) S;niDPI SinitDP2 S initDHP3
2nd state - - -
d; 1 1 1

Right after the occurrence of (SD,111) (R3 is satisfied)

1st state (CGS) S imipp) SinitDP2 S initDP3
2nd state S (sp,111) - -
d; 0 1 1

Right after the occurrence of (SD,124) (R4 is satisfied)

P1 P 2 p3
1st state (CGS) S initDP1 SinitDP2 S initDP3
2nd state S(sp,111) S (8D,211) -
di -1 0 1

Right after the occurrence of (SD,312) (R1 is satisfied)
P1 p 2 P3
1st state (CGS) S(sp,111) S(sD,211) S(sD,312)

2nd state
di -1 -1 0

Figure 5.1: The compilation algorithm LTC A.

41

Then

state_num(CSy) = max(k,,..., k)

where S(sp,ik, 1) iS the earliest state that follows state S(SDuke,te,) Wwhich 1s not deleted
from the database for process DP, (for all).

Proof : The theorem can be proved by proving that
max(ke,,y..., ke,) = maz(k,,...,k,)

This is proved by checking that none of the rules of algorithm LTCA would discard

from the database a state S(sp i kata) Where kg < max(k.,,..., k) < la.
l

Consider the database maintained by the central site upon the compilation of CS,.
Let S(sp,ikq,la,) be the most recent state of D P; that does not occur after S(sp',k,',,‘,
(state of DP, used in C§2) and which has already been received by the central site
(though not necessarily kept). Let 6, be the number of states received by the central

site between the compilation of CS; and CS,.

Corollary 1
8; < state_num(GS,) — I,

Corollary 2
nezt.state-num((S D, ik, le,)) = maz(ky,.. . k).

As il is shown in theorem LTCA max(k,, ...k

C5S.

) is known upon the compilation of

n

42

5.2.2 Using Global Time

It is proved in theorem GTLT global time provides more information than logical
time and this enables detection of consistent states of DCS,, in cases where LTCA

fails.

Definition 23 (glabel,) glabel,((SD,jk,l.,)) is the ith element of the global time
label of the last cvent of pref (LSR(p,,d),(SD,jke,l.,)). Formally,

glabel ((SD, jk L)) = E(last(pref (LS R(p,,d),(SD, jk.,l,)))-

0
Predicate 5 (consistent)
Leta,be Vo The predicate consistent((SD,i.kqly), (SD,ivkply)) is satisfied off
glabcd ((SD,iakal)) 2 glabeli((SD,7yksly))
a

Let E be the set of sets of events of V. each of which contains exactly one event

of cach V;,. Formally,
E={D|DCV,[[Dl=nuAN Biabla,be D A a,beV,]]}

Predicate 6 (form_ncw-statc)
Lt CGSPes, = Sspaky)0 058D mklny) Tight before the occurrence of an event

¢, € Voo formoncwostate((SD, ik 1)) s satisfied iff
D€ L[, € D A Ve, € Dlnotdeleted((SD, ik l,),(SD,jke,lc,)) N e, —e] A
Va # b€ D [consistent((SD,ikal,), (SD,ikyly))])
O

Informally formoncw state((SD,1ke,l.,)) is satisfied if and only if at the occur-
rence of event ¢, there is in the database a state S(SD,JkeJIEJ) for all # j that can be

composed with state S(SDake,1.,) to form a new state of DCS,,.

43

Predicate 7 (can-be_used)
Let a,e; € V;. The predicate can_be_used((SD,i.k.l,),(SD, 1k, 1.,)) is satisfied iff

dD € E [e; € D A Ve; € Dlnot-deleted((SD,ik.l.,),(SD, jke,1.,))] A

Vb # ¢ € D [consistent((SD,ivksly), (SD,ick 1))

a

Informally can.be_used((SD,i kaly), (SD,ivksly)) is satisfied if and only if the
state S(sp,i k1) can still be used to form a state of DCS, upon the occurrence of the
event a.

The following algorithm is invoked by each event ¢; € V.. Initially the initial
state S,-m,m,' for each process DP,, is stored in the database. As before, a recent

state CGSpcs,, is maintained in the database. Initially

CGSDCS,, = S"“’Dl‘l 0...0 Smllnpu .

Algorithm 3 (Global Time Compilation Algorithm)

Upon receipt of S(SD,,L.E‘,E.) do

R1 : if form_new-state((SD,ik.l.,)) then,
1. For cach j dclete from the database all states Sispk,i,) where L <.
2. Insert Sisp, 1.,) in the databasc.

3. CGSpcs, = S(sDtke,le,) © - - - © I(SDnkeplen):

R2 : if ~can_be_used((SD,1ik. 1,),(SD, kel)) then
delcle from the database Sispk., 1.,)-

R3 : if ~form.new_stale((SD,ik. L)) A less-than.m((SD,1k.1,,),1) A
can_be_used((SD, ikl),(SD,ikel.,)) then insert Sispak, 1.,y in the dalabase.

R4 : Let v = next.statenum((SD, ek, L))
if ~formmew_state((SD, ik, l.,)) A-lessthanan((SD, 2k, 1,),1) A
can-be_used((SD, ik, 1,,),(SD, 1k, l.,)) then

44

|

if k., <z <., then
1. Delete the most recent state kept for process DP,. That is the state of
process D P; with the mazimum k kept in the database.
2. Delete from the database all states S(SDJ;“J,:J) where the predicate
can_beused((SD,ikel.,),(SD, jk.,lc,)) is not satisfied.
3. Insert S(SD'.;Q';:.) in the database.
else 1. Discard S(SD.ikc,Ie,)-

2. Delcte from the database all states S(SD.Jke,IeJ) which do not satisfy
the predicate can-be_used((SD,1k.le,),(SD,jke l,))

O

An example of algorithm GTCA is given in Figure 5.2. This algorithm has the
following properties (assume z = next_state_number((SD,:kl),(SD,ikl))):
GTCA1 Unlike LTCA, in GTCA a state S(SD_,ke'le.) could be kept in the database

for later use evenif k., < r (R3). This is due to the difference in the definition

of the predicate formmew_state whose validity follows from theorem GT PR.

GTCA2 According torule R4 a state S(sp . is never deleted if k., < z < I,,. Soin
the worst case (where a more resent state cannot be formed) the algorithm has
a performance identical to that of LTCA. The same upper bound §, (Corollary

1) is applicable to both algorithms.

GTCA3 GTCA can be improved by eliminating more states in the database. Sup-
posce that states Sisp i) and Sispakaty), (1 < k2), are in the database and
both can be used to form a new state of DCS,, with states S(SDske,le,)s (VI # 7).

Then only S(sp.k,,) has to be kept in the database.

5.3 Implementation and Testing
of the LTCA and GTCA Algorithms

‘The local state recording algorithm LSR, the compilation algorithms LTCA and

G ICA were implemented and tested on two networks of SUN 3.50 workstations (a

45

Consider that the GTCA is invoked by the state definition
events of pomset q in figure 7. The maximum number m
of states kept for each process is 2.

Initially
P 1 P 2 P 3
1st state (CGS) Sinippi SinitDP2 S initDP3

2nd state

Right after the occurrence of (SD,111) (R1 is satisfied)

Iststate (CGS) S(span) SinibP2 S initDP3
2nd state -

Right after the occurrence of (SD,124) (R1 is satisfied)
P1 P 2 p3

1st state (CGS) S (SD,124) S (SD,211) S initDP3
2nd state - - -

Right after the occurrence of (SD,312) (R1 is satisfied)
P1 P 2 p3

Ist state (CGS) S(sp,124) S(sD,222) S (SD312)
2nd state - - -

Figure 5.2: The compilation algorithm GTCA.

46

network of 4 SUN 3.50 and a network of 10 SUN 3.50) and a SUN SparcStation. Up
to 12 processes (site control) running in parallel on SUN 3.50’s and communicating
in several configurations (fully connected, ring, star) using TCP/IP are used in the
experiment.

The site control processes are synchronized using global time according to property
L.SR7. The central site receives the states of the site control processes and updates
iwo tables (databases) of states; the first table for LTC A and the second for GTC A.
In order to implement the LTC A we convert the global clock labels to logical clock
labels (theorem GTLT).

The algorithms where tested with the following variations:

1. Number of processes: 3, 6, 9, 12.

2. Recording interval (variable d in LSR): 6, 12, 24, 48, 96, 120, 192, 252, 360,
480.

3. Process communication topology: fully connected, ring, star.
4. Process relative delay (between sending/receiving events):

(a) All communicated processes have almost equal delays during execution.

(b) Lach communicating process is twice as slow as the previous one (assuming

the process are numbered in a sequence).

-

Window size (number of states retained for each process at the central site): 3,

6. 9. 12, 15, 18.

For cach combination of the above, a test was conducted 10 times and the aver-
age values of variables of these executions have been used for the derivation of the

following curves. The performance measures used for this study include:

LT worst case The average distance (in number of loval recordings) between the
most recent consistent global state kept in the database and the most recent

state received for each process using LT CA.

47

Distance (number of recordings) belwesen

consecutive global states detected

'2 M L] v T 1] Ll
0 100 200 300 400 500

Recording Intervsl

Figure 5.3: Distance (number of recordings) vs. recording interval for fully connected
processcs.

LT average case The average distance (in number of recordings) between the most
recent consistent global state kept in the database and the most recent state

received for each process using LTCA.
GT worst case The same as “LT worst case” but for GTCA.
GT average case The same as “LT average case” but for GTCA.

LT’ worst case The same as “LT worst case” but the distance is measured in nmumn-

ber of events instead of number of recordings.

LT’ average case The same as “LT average case” but the distance is measured in

number of events instead of number of recordings.
GT’ worst case The same as “LT’ worst case” but for GTCA.
GT’ average case The same as “LT’ average case” but for G'TCA.

For all of the above measures under each combination of test parameters the
standard derivation divided by the average (of the 10 executions) observed is much

less than 0.1. The following can be observed from the test results.

48

40 1

30 4

Distance (number of recordings) between

consecutive global states detecled

-8 LT worstcase

——eo—— LT avg case

—8— GT worst case
GT avg. case

T ? =T
100 200 300

Recording Intervsl

Figure 5.4: GT average case, GT worst case, LT average case and LT worst case
vs, recording interval for fully connected processes (12 processes).

400 1

Distance (number of events) between
two consecutive globel states detocted

g LT worst case
——— LT avg.case

——g—— GT worst case
GT avg. case

L L)
300 400 500

T v
100 200

Recording Interval

Figure 5.5: (/1" average cuse, GT' worst case, LT’ average case and LT’ worst
case vs. recording interval for fully connected processes (12 processes).

49

—-—8== LT worst case
—o— LT avg case
300 - ——g-—~ GT worst case

- GT avg caso

two consecutlve globa) sistes detecied

] L} A Ll
[*] 100 200 300
Recording Intervsl

Figure 5.6: GT' average case, GT" worst case, L1" average case and L1" worst
case vs. recording interval for ring connection (12 processes).

40 -
$ ﬁ —_— case
i LY worst
° o LTavg case
‘1 30-
g —®-— GT worsi case
§.] = GTavg case
'a'l
g
Ce
g
s 20 1
-
°-
"J _
3. * 4 e el
EoO
3
5.: 10
g’
.g- \ "
ry g - » —
i

° M A\ M T T v T Y T

3 6] 12 15 18

Window slze

Figure 5.7: GT avcrage case, GT worst case, LT average case and LT worst casc
vs. window size for fully connected processes (12 processes, recording interval = 12).

12 processes, fully connected, process relative delay: (a)
Recording | Tot. # of | LT worst | LT avg. | GT worst | GT avg.
interval | recordings case case case case

6 924.27 39.99 14.80 16.87 3.55

12 613.33 29.99 13.13 20.85 5.76

24 439.54 27.55 12.36 22.61 7.45

48 336.69 25.61 11.47 21.80 8.17

96 255.24 23.14 9.73 21.15 1.56

120 229.68 17.31 5.51 14.92 3.78

192 178.14 6.63 1.67 5.27 0.98

252 148.36 4.11 1.00 3.53 0.69

360 112.72 3.30 0.98 3.20 0.75

480 87.11 2.62 0.90 2.42 0.73

12 processes, fully connected, process relative delay: (a)
Recording | Tot. # of [LT’ worst | LT’ avg. | GT’ worst | GT® avg.
interval events case case case case

6 3615.38 162.19 58.81 70.71 15.27
12 3630.68 189.05 79.25 131.44 35.52
24 3623.29 244.07 103.78 194.82 63.32
48 3639.88 299.56 126.61 256.65 91.03
96 3625.03 355.52 142.19 319.44 111.42
120 3642.21 305.24 92.38 258.80 66.16

192 3636.48 155.67 43.51 128.40 27.54

252 3627.18 128.67 35.73 107.88 24.71

360 3636.06 133.95 40.05 125.24 34.14
480 3628.62 144.77 44.88 131.22 42.08

Table 5.1: Test results of 12 processes, fully cornected where all processes have almost
equal execution delays (number of recordings and number of events).

51

12 processes, fully connected, process relative delay: (b)
Recording | Tot. # of | LT worst | LT avg. | GT worst | GT avg.
interval | recordings case case case case

6 927.29 39.92 14.80 16.92 3.54

12 612.70 30.46 13.02 20.88 5.61

24 440.65 28.42 13.03 22.50 8.19

48 334.59 26.27 11.88 22.22 8.47

96 254.98 24.11 10.70 21.64 8.36

120 229.09 22.17 9.45 19.46 7.38

192 178.03 6.15 1.37 5.26 0.68

252 149.05 4.35 1.00 3.68 0.67

360 112.56 3.09 0.97 2.99 0.74

480 87.34 2.49 0.82 2.44 0.57

12 processes, fully connected, process relative delay: (b)
Recording | Tot. # of | LT’ worst | LT’ avg. | GT® worst | GT’ avg.
interval events case case case case

6 3629.74 163.53 58.99 69.15 14.98
12 3634.33 194.53 78.65 129.94 34.68
24 3628.36 250.38 108.67 199.12 69.56
48 3624.42 298.80 131.67 253.75 94.22
96 3621.18 371.09 154.98 327.72 122.68
120 3638.94 378.39 153.82 331.08 121.57
192 3620.69 148.86 36.71 126.77 21.50
252 3633.54 132.27 36.27 115.91 24.93
360 3636.57 130.43 39.64 123.43 33.57
480 3630.92 135.82 43.58 131.10 41.08

Table 5.2: Test results (number of recordings and number of events) of 12 processes,
fully connected where each comunicating process is twice as slow as the previous one
(assuming the processes arc numbered in a sequence).

40
~—0— LTw case
30 4 —o— LTav case
g GT w. case
4 ~——eo— GT av case

i
iy
¥
23
i
!3 20 -
-
°—
[}
23
)
?-,: 10 4
83
I
]
58 /
0 L v L) v L] v L] R
2 4 6 8 10 12 14

Number of procasses

Figure 5.8: GT' average case, GT worst case, LT average case and LT worst case

vs. number of processes for fully connected processes (12 processes, recording interval
= ().

e The average distance (number of recordings) between two consecutive global
states detected decreases as the value of recording interval increases. In Figure
5.3 the curves of the average value of GT average for fully connected processes

is given. Similar observation holds for other process topologies as well as for
LTCA.

o In Figures 5.3, we also observe that the smaller the number of processes the
better the GT average is. Similar results hold for GT worst case, LT average

case and GT worst casc.

o lMigure 5.4 show that GT1' everage, GT worst, LT avcrage and LT worst
decrease when the recording interval increases. This does not hold for GT'
average, GT" worst, LT average and LT' worst because increase in recording
interval results in having more cvents executed between two consecutive record-

mgs as reflected in Figure 5.5. Figure 5.6 shows the case for a ring connection.

o In Figures 5.4, 5.5 and 5.6 we observe that GTCA always performs better than
LTCA.

o Figure 5.7 shows that window size does not affect performance significantly.

e Figure 5.8 reveals that increasing the number of local sites may hurt the effec-
tiveness of GTCA and LTCA: this can be reduced by involving more than one

central site organized in an hierarchical structure.

e Tables 5.1, 5.2, show that the relative delay within processes does not affect the

test results significantly. However bigger delays may affect the LT variables for

a ring structure.

The algorithms presented in this thesis can be used for applications such as fault
tolerance, deadlock detection, termination detection, distributed debugging and pro-
gram design tools. Although we do not give a detailed analysis of these algorithmns
it is obvious that the time complexity of LSR is O(1). The time complexity (worst
case) of our implementation of LTCA is O({(numberofprocesses) x (windowsize)),
and that of the GTCA O((numberofprocesses)® x (windowsize)?). In both cascs, the
best case is O((numberO f Processes)). Although global time compilation algorithin
consumes more cpu time per consistency check, the test results we obtain indicate its
performance to be superior to that of the logical time algorithm and is preferred.

Both compilation algorithms share a weakness: the distance between two con
secutive global states detected increases with the number of processes. This can be
solved by having a hierarchy of compilation sites. Our algorithms do not manipulate
the channel states explicitly: we assume a reliable and fifo communication subsysten.
Thus messages on transit are always part of the states of the sender processes until
they are received. This assumption is reasonable if we consider the communication
protocols used by most communication systems. Refinement of the algorithms to

take care of channel states is straightforward in our case and is purposely omitted.

54

-

Chapter 6

The Design of the Global State
Detection Kernel (GSDK)

The Global State Detection Kernel (GSDR) is an object-oriented distributed system
that provides system applications with primitives such as synchronization, global
state management, communication and dynamic creation and delction of active ob-
jects (processes). G'SDK is simple and expansible: the primitives provided can be
used to construct a distributed programming environment that provides services such
as fault tolerance, load balancing and distributed debugging, among others.

The primitives provided by GSDK can be easily ported to existing distributed
opcrating systems such as Mach (1] (2], Demos/MP [34], V kernel [8], Sprite [9],
Locus [33].

In this chapter the objectives of the GSDR, a brief introduction to the basic
concepts of object-oriented distributed systems as well as an overview of the design of
the GGSDK is given. In the following chapters the components of GSDK are explained

in detail.

6.1 GSDK Objectives

Advances in technology have significantly increased the performance of processors
and communication systems and have decreased their cost. In the 1990s it would be
feasible to have 20 or 50 processors per user [44]. Thus we are led to the conclusion

that the key characteristics of computing will be [44]:

e Physically distributed hardware.
e Logically centralized software.

The goal of logically centralized software is to design and implement distributed
applications using the concurrency specification of the product and omitting a de
tailed mapping onto the underlying hardware.

Thus, users will use programming tools for the specification of the execution de-
pendency and security requirements of the parts of their application. These tools
will be responsible for the allocation of system resources such as processors, commu-
nication systems, etc... which are needed to meet the specific requirements of the
application.

Distributed operating systems built on time shared uniprocessor systems like Unix
are not the appropriate environment for supporting such programming tools and
distributed application development. Unix was designed 20 years ago Lo support
uniprocessor applications. Its simplicity and uniformity made it very popular. How-
ever because of the need for distributed computing and network programming it was
expanded to a complicated and nonuniform system. For example, communication
between Unix processes is not natural because processes are not identified by ports,
and it has been added in such a way that it is different for processes running on the
same processor and processes running on different processors. A user has to explicitly
manipulate system structures to realize inter-process communication.

The need for simple and uniform distributed operating systems is imminent. Sys-
tems should be designed with a number of processors and communication subsystems

in mind, and should provide user applications with the following services:

e Network process management.

Uniform process communication.

Fault tolerance primitives.

Stability detection primitives.

Capabilities.

56

e Application development debugging primitives.
o Application development tools.

Network process management should ensure the transparency of the execution
environment of the system. Uniform process communication allows processes to com-
municate through the same mechanism when they run on the same or different pro-
cessors. Fault tolerant primitives are used to specify what functions must continue
to exist in case of some system failure. Stability detection primitives provide stable
state information such as deadlock and termination. Capabilities support system
security by defining the access rights of processes. Debugging primitives are used
for debugging distributed programs. General application development tools provide
users with more abstract constructs that simplify application development.

These are the objectives of the GSDK, the Global State Detection Kernel de-
sighed in this thesis. Our kerrel supports network process management, uniform
process communication, fault tolerance primitives, stability detection primitives and
debngging primitives. It can also be expanded to provide capabilities. Application
development, tools may be built using the kernel services provided.

The GSDR provides global state information management that can be used for

applving fault tolerance and stability detection in two levels:

System level: The state of parts of the system is saved periodically. Thus in case
of a system failure, e.g. in case of a processor crash, the failing part can be
testarted from the last saved state. Deadlock or termination can also be de-
tected applying algorithms such as {27], [28] on the saved consistent global

state.

Application level: At the application level users may specify the parts of their
application that the system should rescue in case of a failure. Thus the state
information that the system is managing for fault tolerance support can be
decreased significantly, Applications may also use the state information to

detect deadloch situations or termination of parts or the entire application.

(11

Global state information can also be used for distributed debugging. For example

consider two consecutive states of an application S; and S, saved by the kernel and
the computation p that leads the application from state S| to state S,. If S, is not
an expected state then there is an error in the computation p. The kernel provides
primitives that make the states S; and S, accessible to the user.

GSDK is an object-oriented system. All components of the kernel are well defined
independent entities that make the design easy to follow, modify and expand. The
system is viewed as a collection of active and passive objects cooperating through
well defined interfaces.

An important feature of the GSDA is that it includes a programming language,
named GSDNL. This programming language allows applications to use the kernel
primitives without the need for understanding the kernel structure. Although this
language is a direct interfacc to the kernel primitives, it also allows complex structures
to be expressed in a sophisticated language such as C++.

For example, at the user level a distributed system of n processes py, ..., py, that
cooperate to achieve a common goal, and a controller process f could be built. The
controller process f obtains the global state of the n processes from the kernel pe-
riodically and checks for faulty conditions which indicate that the goal can not he
achieved. If the goal can not be achieved then the process f will coordinate a re-
execution of the upplication from the previously saved state informing the processes
not to follow the same execution path as before. Using the GSDNL language, the f
process could ask the system for the state of the n processes py, ... ,p, by using the

statement
getStateInfo(WHOLE_STATE, u, pids, pStatcs);

where WIHOLE_STATE is an option that requests the entire states of the 1 processes
identified by the array of process id's pid. The returned states of the i processes are
put in the array of process states pStates.

gelStalcInfo is a very powerful primitive provided by the GSDRIL langnage that
simplifies the design of many distributed algorithims. Such algorithms are developed

in the areas of fault tolerance, load balancing. stability detection and distributed

|

15}

debugging, among others.

6.2 Object Oriented Distributed Systems

Practice in software engineering has proved that systems should be composed of well
defined, independent, expansible and reusable modules. These requirements lead to
object-oriented design. A definition of object-oriented design is given by the following

quotes from [29].

Object oriented design is the method which leads to software architectures
based on the objects every system or subsystem manipulates (rather than

“the” function it is meant to ensure).

Object oriented design is the construction of software systems as struc-

tured collections of abstract data type implementations.

In object oriented system literature, an implementation of an abstract data type
is called a class. Defining a system as a collection of classes implies that classes
are units that are meaningful and useful on their own, without consideration of the
systems to which they belong.

An object is an instance of a class in the same manner that a variable is an
instance of a type in structured programming. Classes, like abstract data types, are
defined by their state and behaviour specification. The state of a class is specified
by a set of objects. The behaviour of a class is specified by a set of actions that may
change and manipulate the class state. These actions are called methods and are
analogous to functions and procedures in structured programming.

For example, using C'+4 [42] notation, a class of an array of integers is defined

as:

class intArray

{

int size;

int *implem;

e aa

Ve e

w et P iy

public:
intArray(int s)
{
size = s;
implem = new int({size];

}

~ intArray()

{

delete implem;
}
int getint(int position)

return implem[position];

}

void putint(int elem, int position)

{

implem[position] = elenm;

}i
The state of this class is composed of two objects, an integer size that is the size of
the array and a reference to an array of integers. These two objects are private, that
is, they cannot be accessed directly by a client of class wntArray. A client cliass of
intArray may manipulate the state of iml{Array only by accessing the public defined
operations which are members of the behaviour specification of the class. An object

z of class intArray with 10 integer elements could be defined as
intArray x = intArray(10);

The function intArrayfini) is the constructor of the class int Array and is only
called at the creation of an object of this class; this function initializes the state of
the object. The function ~intArray is the destructor of the class mlArray and is

called to delete an object of this class.

60

]

Consider that the object z of class inlarray is a member of the state of a class C.

The statement
x.putint(10, 3);

in a function that is member of the behaviour specification of a class Cis called a
message from an object of the class C'to the object z. In this example the message
requests r to put the integer 10 at the third position of the array that the object
represents. Class Cis called a client of class intArray that is a server of class C.
A class is generic if it is defined to accept the classes of some of the objects of

its state as parameters. For example the class

class array(anyClass)
{
int size;
anyClass *implem;
public:
array(anyClass) (int s);
~array(anyClass) () ;
anyClass getElement(int position);

void putElement(anyClass elem, int position);
}i

defines an array of clements of class anyClass that is a parameter of the declaration

of an ohject of class array. Thus,
array(int) x = array(int)(10);
delines an object o that is an array of integers with 10 elements and
array(char) y = array(char)(10);

detines an object y that is an array of characters with 10 elements.
In object-oriented design, genericity is used for achieving reusability of classes.

The same parameterized class definition can be used to specify more than one class

61

. Rl R T

of objects; each of these classes is identified by the parameters passed in the generic
class definition.

A class may acquire the structure of other classes for purposes of reusability and

structured expansibility through inheritance. The following definition of inheritance
is taken from [47]:

Inheritance is a relationship between classes whereby one class acquires

the structure of other classes in a lattice with a single or multiple parents.

For example,

class file

{

public:
file(string fileName);
~file();
void open(mode flag);
void close();
char getChar();

void putchar(char ch);

}s

defines a file class whose structure (state and behaviour specification) can be inherited

by a class directory that is a file with some special characteristies. The file class is

called the parent of the directory class. Thus,

class directory: file

{

public:

directory(string fileName): (filename);

~directory();

62

void open(mode flag);
void close();

file getEntry();

void putEntry(file entry);

}i

defines a class directory that is a class file with a different (special) behaviour speci-
fication.
Another characteristic concept of object-oriented design is polymorphism; a

definition of polymorphism is given in the following quote taken from [47]:

Polymorphism is the ability of an entity to refer at run time to instances
of various classes. Hence, the actual operation performed on receipt of a

message depends on the class of the instance.

In concurrent object oriented systems, classes may be passive or active [47],
[19]. An active class has a thread of control (a process) while passive classes are
used as servers by active ones. A distributed object-oriented system is a concurrent
object oriented system in which the objects are distributed through a loosely coupled
network of processors.

Although the design of the GSDK that follows is general, we include some imple-
mentation detail issues to make clear how the system, which is object oriented could
be implemented in a non object-oriented environment such as Unix, using a static
object-oriented language which does not support active objects like C++. Thus we
show how active objects as well as monitor shared objects [15] could be implemented
in such an environment. These issues may be overlooked when a more sophisticated
cnvironment is considered like concurrent C++ [12] or the Emerald system [19).

Active objects are objects whose class 1s an active class. We consider that active
objects in a distributed environment may communicate through a shared object (in
this document we name such an object a port). Active objects may send or receive
messages to or from other active objects through the port object. An active object S

whose main function is receiving requests through a port from other active objects C,

63

and replying to those requests (through the port) is called a server of objects (', and
objects C, are called clients of S. The difference in the server/client relationships
between objects that communicate through a port, and objects that are members of
the state of other objects, is obvious.

For example, a class port could be defined as

class port

{

public:
port();
~port();
void registerActiveObject(activeObjectId);
void send(message);
message receive(actlveObjectId);

message receive();

An object of class port can be shared among several active objects. Consider the

class active Client defined as

class activeClient

{

activeObjectId id;
port *prt;

message msg,

activeObjectld sid;
service X;

servParam parameter;

64

clientMethod1();
clientMethod2();

public:
activeClient(port* p)

{

prt = p;
prt->registerActiveObject (id);

x.getValue(SERVICE._ID, parameter);

msg.insertContents(id, sid, x);
port~>send(msg) ;
msg = port->receive(sid);

x = msg.getContents();

}

~activeClient();
}s
and the class actireServer defined as

class activeServer

{

activeObjectId id;
port *prt;
message msg;

service Xx;

serviceMethod1();
serviceMethod2() ;

public:
activeClient (port* p)

{

prt = p;
prt->registerActiveObject(id);

while (TRUE)
{
msg = prt->receive();
x = msg.getContents();
switch(x.id)
{
case ID1: serviceMethod1(x);
break;
case ID2: serviceMethod2(x);

break;

}

msg.insertContents(id, x.clientId(), x);

port.send(msg) ;

)

~activeServer();

}i

where both activeClicnt and activeServer accept a reference to an object port as a

parameter to their constructor. By creating an object of class activeServer and several

66

objects of class activeClient and passing as parameters to the constructors of the
activeClient objects a reference to the same port, these objects may use the port object
to communicate. The constructor of an active object invokes the registerActiveObject
method of the port to request the port to initialize and maintain a queue of messages
that other active objects will send to this object. A method of an active object can
invoke the send and receive methods on a port to send a message to another active
object or receive a message from an active object. The receive method of the port is
overloaded (form of polymorphism), the method to be invoked is identified by the
parameters.

In the above example an activeClient object sends a request to an activeServer
vbject by invoking the send method of the port object and then waiting for a reply by
invoking the receive method of the port object with the id of the activeServerobject as
a parameter. The ectiveServer object is executing an infinite loop accepting requests,
executing an appropriate serviceMethod and then replying to these requests.

Active classes in our design have only two methods public to their clients, a con-
structor and a destructor. Other methods used by the constrictor or the destructor
of these objects are declared in the private section of the class and are not accessible
to clients. This is due to the constraint that active objects are implemented using
Unix processes by making a C++ program (a function main) that consists of just
a call to the constructor of the active object. A Unix process that executes this
program represents an active object. Thus, active clients, as in the above example,
request services from eciive servers not by invoking the methods of those servers but
by asking the server to execute a specific service identified by a well known (by both
client and server) id.

In a Unix network environment (e.g. Sun network), where the interprocess com-
munication interface depend on whether the processes reside on the same or different
nodes, port objects provide an abstract interface for communication of objects spread
through the network. Port objects are also useful for applications that need to access
the state of a port, e.g. the message queues. These applications cannot use the Unix

1PC it erface.

67

A

In a Unix network environment, objects residing on different nodes may communi-
cate through a port if the later is implemented as a server of the network transparent
to all processes of the network. SunOS 4.0 (Unix 4.3bsd compatible) provides high
level tools for the implementation of such objects (RPC/XDR interface, rpegen pre-
processor [32]). These objects can also be built by using low level IPC’ primitives
such as sockets or streams provided by the 4.3bsd Unix and Unix V respectively. In
a distributed system like Mach where the IPC mechanism is not dependent on the
location of the communicating processes port objects are not needed, except when
the state of the port has to be accessed. In such a system, active objects are identified
by ports so they can communicate directly by a well defined uniform interface.

Static objects shared among active objects could be critical sections, since more
than one thread of control operates on them at the same time. This can be controlled,
if neceded, by using monitors to implement these objects. An implementation of
monitor objects in a Unix environment using shared memory and semaphores is shown

in chapter 7.

6.3 Overview of GSDK

A high level specification of GSDN is the specification of the CSys process in chapter
3. GSDK is composed of objects of the following classes: (in the following, we use

the name of a class to identify an abstract object of this class).

G'SDR has an hicrarchical structure. The structure of the system as well as the
the communication of the active objects through sitePort objects and port objects is

shown in figure 6.1.

Process: An active class that specifies a user process. The state of an object of this
class includes user defined variables (object of class stateVar), user defined
code (object of class code) that specify a thread of control that manipulate
these variables, and a site port (object of class sitePort) that is used for com-
munication of active objects that reside on the same node. The user program

(variables and code specification) is a parameter of the constructor of an ohject

68

-

communication
through port

communication
through sitePort

CS

LCS

SCP

process

R e T A A

oy

",
",
“
*,

Figure 6.1: The structure of the GSDK.

69

r tagnan

shared object used

for communication
among active objects that
reside on the same host

process

—»{)

The following programming
primitives are provided:

s createProcess
« deleteProcess
o sendMsg

e receiveMsg

« internalEvent

integers
strings
functions

. » getStatelnfo
* while
process id o if
process status _ J

Figure 6.2: The structure of the process class.

of class process; the variables are used for initialization of the object state Var

and the code for the initialization of the object code.

The constructor of class process initializes the process state and activates the
execution of a thread of control that invokes methods of the object state Var
specified by the object of class code. The structure of the object process is

shown in figure 6.2.

Site Control Process (SCP): An active class that specifies the control of process
exccution on a node of the network. It controls the global clock (object of class
globalClock) of the node (that is an implementation of the global time as it
is specified in chapter 4), the site port (objoct of class sitePort) that is used
for communication between active objects on the same node, the creation and
deletion of processes on the node and inter-node communication. It also has
access to the state of the system (that is the state of the objects) that resides

on the node. and is responsible for recording this state and sending it to a leaf

70

SCP shared distributed object,
used for communication
among active objects that
reside on different hosts

sitePort

Q)anessTable

(global(,'lock

shared object used

for communication
among active objects that
reside on the same host

table of process objects
executed on the site

siteInfo

global time
implementation

SCPid
SCP status

Figure 6.3: The structure of the SCP class.

central site object,

The state of an SCP object consists of an object port, used for communication
with other active objects that reside on other nodes of the network, an object
site Port, an object processTable whose clements are process state components,

and an object globalClock.

The constructor initializes the member objects and activates a thread of control
that executes an infinite Joop that accepts requests from process objects (e.g.
communication with processes of other nodes. deletion or creation of a new
process) and leaf central site objects (e.g. process migration). The destructor
deallocates the system resources allocated from the SCP at the termination of
the system execution. The system may terminate after a special request from
the leaf contrar cale.

A high level specification of an SCP object is given in the chapter 2 by the DP,

process of the CSys in which the events of this process are labeled with global

71

LCS

shared distributed object,
used for communication
among active objects that
reside on ditferent hosts

implementation of
GTCA

table of children
SCP object id

host id
father CS id

Figure 6.1: The structure of the LOS class.

time. The tomset elements of DP, model the observations of the concurrent
execution of a number of process objects and the SCP object executing on the

same node. The structure of an object SCP is shown in figure 6.3.

Leaf Central Site (LCS): A high level specification of the LCS is given in chapter
3 by the C'A process. LCS is an active object. The state of this object. consists
of an object port used for communication with SCP objects, other LOS ohjects,

and central site objects, and a global state database (GSDB) object.

A LCS object is the manager of a number of SCP objects. It keeps a database
GSDB of states of these SCP objects and guarantees that at any given tine
there is a consistent global state in the database, consisting of one state for cach
SCP. GSDB is an implementation of the GTCA algorithm presented in chapter
5. An LCS object sends the compiled consistent global states to a central sile
(C'S) object that is responsible for the management of global state information

of a number of LCS objects.

72

CS

shared distributed object,
used for communication

among active objects that
reside on different hosts

implementation of
GTCA

table of children
LCS object id

host id
father CS id

Figure 6.5: The structure of the CS class.

We name the SCP objects that are managed by a LCS object children SCP
objects of that LCS object.
The constructor initializes the GSDB and then executes an infinitely accepts
requests and fulfills the following:
e Serves requests of SCP objects, controlled by different LCS objects, for
communication.
e Receives the recording states of its children SCP objects and invokes the
GSDB to be updated.

e Records the consistent states compiled by the GSDB to the parent CS

object (this is not specified in the CA process in chapter 3).
The structure of LCS object is given in figure 6.4.

Central Site (CS): A central site {CS) object is the parent (controller) of a number

of either LCS objects or ('S objects. It has exactly one parent CS object or it

73

is the root CS object. A CS object is an active object.

The state of a CS object is coniposed of an object port used for communication,
an object GSDB that collects the local states of the children of this ('S object
and compiles them in consistent global states of the subsystem that has this

CS object as root.

The constructor of a CS object initializes the member objects of 'S and then
executes an infinite loop that accepts requests from the children objects for
communication with other children objects of CS objects that have the same
parent as this CS object, receives states of children objects and invokes the
GSDB object to be updated, and sends consistent global states compiled by
GSDB to the parent CS object (if it is not the root). The destructor, under
special request, deallocates the children objects by sending them messages (Lo
deallocate themselves) and deallocates the member objects port and GSDB.

The structure of a C'S object is given in figure 6.5

The need to distinguish between sitcPort and port objets arises because at the
kernel level we need to distiguish between active objects exeenting on different nodes.
Morcover, sitePort objects are part of the recording state of a site and are totally
accessible by the kernel. The state of port objects is not accessible by the kernel when
it is implemented in user mode on a Unix like system. However the communication
interface of user processes is uniform for processes that run on the same or different

nodes.

74

Chapter 7
GSDK Processes

A GSDK process object is the basic unit of execution of a user defined program.
However, a user defined program may specify the parallel or sequential execution of
any number of processes.

A process is an active object that, during construction, accepts a user defined
program as a parameter. A user defined program consists of state variables and code.
code is a sequence of operations to be applied to the state variables. A state variable
may be an integer, a string, or even a user defined program. An operation may be the
request for the execution of a function, the receipt of a message, or even the creation
of a process using as parameter of its constructor a user dcfincd program.

In this chapter we explore the structure of the class process and its components

as well as the notation definition of a user defined program.

7.1 Process Structure
The class process in ('++ notation is defined as follows:

class process

{

sitePort port;
code events;
stateVars vars;

statelnfo info;

process(int option,pid id, uDefProg prog,

state pState);

~process() ;

port is the communication subsystem used by process to communicate with other
active objects. The object events is an ordered set of actions to be executed (invoked)
on the object vars. The object info contains process information such as pid, stafus,
etc. pid uniquely identifies a process in the system; status identifies if a process is
live, terminated, migrating.

The process constructor accepts as parameters:
option: is an integer object that may take the value of the following descriptions:

OUT.OF_PROG This option creates a process out of a user defined program.
The constructor uses the user defined program proy passed as parameter
to create and initialize the objects events and vars. This option is used Lo

create the initial state of a process as well as that process.

OUT_OF_STATE This option creates a process out of a stale object. A stafe
is a combination of a code object and a state Vars object. The constructor
uses the pState object passed as parameter to create and initialize the
objects events and vars. This option is used to create a process that has
pState as starting state. pState is a state reached from an other process of
the system. Using the QUT.OF_STATE option processes may restartoed
from a previous or current saved state of them. Thus process migration

and roll-back and recovery is trivial.

INHERIT_VAR This option creates a process out of the code defined in prog

object and the state Vars defined in the pState objeet. This option makes

it possible for multiple processes to access and manipulate the same state

variables.

76

| 2 o S A e et A

id: is a part of the unique process id. It contains the user name and a user defined
process name. The user is responsible for not running processes with the same

process name at the same time.

prog: a specification that can be used for the creation of an object of class code and

an object of class state Vars.

state: an object that consists of an object of class code and an object of class state-

Vars.

"The process constructor first initializes its site Port to support communication with
the parent SCP. In a Unix system a sitePort is implemented in shared memory and
it has a standard well known key, thus processes may be attached to this segment
of shared memory. After initialization of the sitePort, the constructor creates the
cvents and stale Vars objects and initializes them according to the prog parameter. It
then informs the parent SCP about how these objects can be accessed by the parent
SCP. In a Unix system the events and statc Vars objects are implemented in shared
Hemory.

After initializing the state of the process the constructor invokes the methods on
the crenls object to access the actions that this process has to execute. Each action
contains a number of variable identifiers on which the action should be performed.
The constructor uses these variable identifiers to get these variables from the object
state Vars and perform on them an operation identified by the action. The constructor
continues this procedure until the actions of the events object are executed in the

order defined.

7.2 User Defined Program

The user defined program is a specification of:
1. State variables such as integers, strings, functions and user defined programs

2. The erdering of exccution of a set of operations, provided by the class process

behaviour specification, where these operations operate on the state variables

7

of this program.

Thus a user defined program can be viewed as a pomset whose actions operate on a

set of data.

A user defined program can be written in the GSDKL (GSDK Language) pro-

gramming language that is defined by the following BNF:

program

stateVars

varType

commandList

condCommand
whileCommand
ifCommand

command

createCommand

deleteCommand

sendCommand

receiveCommand

GSDKL BNFE

::= Program(stringldentifier, stringldentifier)

stateVariables

stateVars

behaviourSpecification

commandList

endProgram

identifier : varType ; stateVars |

identifier : array[n] of varType ; stateVars |

NULL

process | state | integer | string | function | program
command commandList | condCommand commandList. |
NULL

whileCommand | ifCommand

= while integerldentificr do commandList endWhile

if integerldentifier then commandList endIf
createCommand | deleteCommanad | sendCommand |
receiveCommand | internalCommand | migprateCommand |
getSateCommand
create(integerldentifier,processidentifier,

programStateldentifier)

= delete(processldentifier)

sendMsg(processldentifier, n, identy, ..., ident,,)

receiveMsg(processldentifier, n, ident,, ..., ident,,)

78

internalCommand ::= internal(functionldentifier, n, ident,, ..., ident,)
getSateCommand ::= getStatelnfo(integerldentifier, processldentifier,
stateldentifier)

The keywords of the language appear in boldface and are language primitives.
Literal punctuation marks appear in boldface as well. The vertical bar (|) repre-
sents a choice between alternatives. Other primitives are the identifiers (identifier,
integerldentifier, stringldentifier, functionldentifier, processldentifier, stateldentifier,
programldentifier, programStateldentifier, ident;) and the n. An identifier is a string
up to 16 characters long that contains no blank. n is a string of digits used to
represent an integer.

The following description explains the semantics of the language.

Program(stringldentificr, sivingldentifier): This keyword defines the starting point
of a user defined program specification. It is followed by two string identifiers
(character strings). The first string is a user identification, called user name,
and the second a process identification, call process name. The process iden-
tification is user defined. The pair (user identification, process identification)
must be unique in the system. This pair is part of the process id (the process

created to execute the program).

stateVariables: This keyword defines the starting point of the user defined vari-

ables. A variable can be specified as,
identifier : varType;

where identificris a string that uniqucly identifies a variable of type varTypc in
the behaviourSpecification section of the program. A wvarType may be process,

state, inleger, string, function, program or array[n] of varType.

process: A variable of type process represents the id of a process, used for interaction

with other processes.

state: A variable of type state holds the part of the state of a process that is composed
of a stateVars object and a code object. The current state of a process may
be saved into a state variable and this process may restart execution from that
state if it is needed (e.g. crash recovery. migration). Processes can also use the
state information of other processes as will be explained later using the internal

command.
integer: An integer variable.
string: A variable that represents a character string up to 32 characters long,.

function: A variable of this type is an identifier of an internal action that may be
requested to be executed through the internal command. A variable of type

function is an identifier of a function implemented in C4+4.

program: A variable of this type is an identifier of a program that can be used for
the creation of a process. It is implemented as a string that is the name of the

exccutable program out of which a process will be created.

array [n] of varType: A variable of this type is an array of n clements of variables

of one of the above described types.

behaviourSpecification: This keyword defines the starting point of the behaviour

specification of the process.

identifier: In the above BNTF, a string up to 16 characters long that contains no

blanks.

rIdentifier: Where z is an inleger, string, function, process, slale or program 1ep-

resents a variable of type .
programStateldentifier: Represents a variable of type program or state.
ident,: Represents a variable of any type.

n: Is an integer variable that is used to define the number of arguments that follow

this variable in a command (e.g. sendMsg, receiveMsg etc).

80

while #ndegerldentifier do commandList endWhile: The while statement is used
for loop construction. The integerldentifier that follows the while is the condi-
tion variable. While this variable is non zero the list of comm:ads in the body

of the while statement is executed.

if indegerldentifier then commandList endIf: The if statement is used for condi-
tional command execution. The integerldentifier that follows the if is the con-
dition variable. If this variable is non zero the list of commands in the body of

the if statement is executed.

create(infegerldentifier, processldentifier, programStateldentifier): This statement
requests the creation of a process. The first parameter is an integer that defines
the option for a process creation called option. The three options for process
creation are defined in the previous section. The second parameter is a process
variable called processld. processld is initialized before the create statement
execution, thus the created process has an id partially defined by processid.
The stringldentificr values that follow the Program statement are members of
the state variables of the process and they are initialized with the values of

processld.

delete(processldentifier): This statement deletes a process from the system. The

parameter accepted by this statement is the id of the process to be deleted.

sendMsg(processldentificr, n, identy, .. ., ident,): This statement sends n (second
parameter) variables identified by the ident, parameters to the process with

processldentifier id.

receiveMsg(processldentifier, n, identy, ..., ident,): This statement assigns to the
n (second parameter) variables identified by the ident; parameters values sent
by the process with processldentifier id, if the processldentifier does not have
a null value. If the processldentifier is null then the process waits to receive a

message by any process that has sent a message to it.

81

internal(functionldentificr, n, ident,, ..., ident,): Thisstatement calls the function
identified by the functionldentifier variable, and passes to it the n ident, vari-

ables as parameters.

getStateInfo(integeridentifier, processldentifier, stateldentifier): This statement
assigns to the stateldentifier variable the state of the piocess defined by the
processldentifier variable. The first parameter is an integer that defines the
different options that may be requested of a state. Depending on the value of
this integer, partial or full state information may be requested. Partial state

information includes only the state variables of the process.

There is a one to one mapping between the commands of GSDINL and the primi-
tive services provided by the GSDA. Although the GSDK is an object-oriented system
the programs specified in GSDK'L arc not object-oriented programs. The design of
a language that provide data-abstraction in a distributed environment is heyond the
scope of this work. GSDN is designed to support concurrent programming prini-
tives. Thus, the instruction set of GSDK includes commands for process creation
and communication between processes. The internal statement however, permits the
invokation of a method on a user defined object in a language like C++. Thus, object-
oriented concurrent systems may be implemented on GSDR under the restriction that

concurrency is distinguished from data-abstraction.

7.2.1 Dining Philosophers in GSDKL

In this section the Dining Philosophers Problcin is presented as an example of how the
GSDKL can be used for the implementation of concurrent and distributed algorithims

on the GSDK.

A philosopheris an object of class process created out of the following wser de fined

program:

Program(aUser, philos)
stateVariables

selfNyfnber : integer;

82

numQOfPhilos : integer;

forks ! process;
true : integer;
reply : integer;
getLelt : integer;
getRight : integer;
leaveleft : integer;

leaveRight @ integer;

gettingForks : integer;

initState : function;
setReply : function;
eating : function;
thinking : function;

setGetlorks @ function;
clearGetForks: function;
behaviourSpecification
internal(initState, 10,
philos, selfNumber. numOfPhilos,
forks, true. reply, getLeft
get Right, leaveLeft, leaveRight);

while true do

internal(setGetForks, 1, gettingForks);

internal(setReply, 1, reply);

while reply do
sendMsg(forks, 2, selfNumber, getLeft);
receiveMsg(forks, 1, reply);

end“Vhile

internal(setReply, 1, reply);

while reply do

(v 4]
(V)

sendMsg(forks, 2, selfNumber, getRight);
receiveMsg(forks, 1, reply);
endWhile
internal(clearGetForks, 1, gettinglorks);
internal(eating, 0);
sendMsg(forks, 2, selfNumber, leaveLeft);
sendMsg(forks, 2, selfNumber, leaveRight);
internal(thinking, 0);
endWhile

endProgram

Each philosopher has access to the following variables:

selfNumber: an integer variable with a unique value for cach philosopher. We
assume that the initState function assigns a unique value to this variable when

it is invoked by a philosopher.

numOfPhilos: an integer variable. It represents the number of philosopher objects

of the system.

forks: a process variable. It is the id used for communication with the process forks

(defined later).
true: an integer variable. It is assigned a non-zero value by the initState function.

reply: an integer variable. It is assigned an non-zero value by the sctlteply fune-
tion and it is assigned zero by the receiveMsg(forks, 1, reply) statement as an

indication that a get fork request has been granted.

getLeft: an intcger variable. It represent a gel fork request. Request to get the left

fork.

getRight: an integer variable. It represent a get fork request. Request to get the

right fork.

84

A

leaveLeft: an integer variable. It represent a leave fork request. Request to leave
the left fork.

leaveRight: an integer variable. It represent a leave fork request. Request to get

the leave the right fork.

gettingForks: an integer variable. It has a zero value while a philosopher is trying

to get the forks and a non-zero value while the philosopher is cating or thinking,.

initState: a function variable. It is invoked to initialize the non-function variables

of a philosopher.

setReply: a function variable. It is invoked to set the reply variable to a non-zcro

variable.

eating: a function variable. It is invoked to simulate an cating philoshopher. Tt is

implemented as a bounded random length delay.

thinking: a function variable. It is invoked to simulate a thinking philoshopher. It

is implemented as a bounded random length delay.

setGetForks: a function variable. It is invoked to set the gellinglForks variable to a

non-zero value.

clearGetForks: afunction variable. It is invoked to set the gettingForks variable to

a zero value.

According to the behaviour specification, a philosopher first initializes its state
variables by invoking the initSef function; then it performs an infinite loop executing

the following commands:

o Invokes the setReply function to set the reply variable to a non-zero value; then

while the reply variable has a non-zero value executes the following:

1. Sends a message to process forks indicating that the selfNumbcr philoso-

pher wants to get the left fork.

85

2. Reccives a message from process forks that sets reply to zero if the request

has granted or to a non-zero value otherwise.
¢ Repeats the above step for the right fork

e Invokes the function eating

e Sends a message to process forks indicating that the selfNumber philosopher

wants to leave the left fork. This request is always granted

e Sends a message to process forks indicating that the selfNumber philosopher

wants to leave the left fork. This request is always granted

Jorks is an object of class process created out of the following user defined program:

Program(aUscr, forks)
stateVariables

numOfPhilos : integer;

fork : array[10] of integer;
philos : process;

true : integer;

request, : integer;

doReply : integer;

initForks : function;

set Philos : function;

serve : function;

behaviourSpecification
internal(initForks, 10,
numOfPhilos, fork, philos,
true, request, doRegly);
while true do
internal(setPhilos, 1, philos);
receiveMsg(philos, 2, philosNum, request);

internal(serve, 3, philosNum, request, doReply);

86

;e

Corawrvors shoert B b Snad AWK 1t o bar b o FirA it

etk

#

if doReply then
sendMsg(philos, 1, request);
endif
endWhile

endProgram

The forks process has access to the following variables:

numOfPhilos: An integer variable. It represents the number of philosopher objects

of the system.

fork: An integer array variable. It represents the forks that the philosophers share.
The philosophers share the 1% to numOfPhilos** forks. If fork[s] is zero it

means that it is free otherwise it is being used.

philos: it is a process variable. It is initialized to null by the setPhilos function. Thus

forks uses the recciveMsg statement to receive messages by any philosopher.
true: An integer variable. It is assigned a non-zero value by the init Forks function.

request: An integer variable. It is assigned the value of the getLeft or getRight
or leaveleft or lcaveRight variable of a Philosopher process through the re-
ceiveMsg(philos, 2, philosNum, request) statement. It represents the request of

a philosopher.

philosNum: An integer variable. It is assigned the value of the selfNum variable of

a Philoshopher process through the receiveMsg(philos, 2, philosNum, request)

statement.

doReply: An integer variable. It is assigned a non-zero value by the invokation of
the serve function if the request passed as parameter to serve has the value of

the getLeft or getRight variables of a philosopher, else it is assigned zero.

initForks: A function variable. It is invoked to initialize the non-function variables

of the forks process.

87

setPhilos: A function variable. It is invoked to set the philos variable to null.

serve: A function variable. It accepts as parameters the philosNum, request and
doReply variables. If the request identified by request is a gelLeft or getRight
request and can be granted for the philosopher identified by philosNum then

the request is set to zero and the doReply is set to a non-zero value.

The behaviour specification of the ferks process is straightforward. The program
that specifies a diner process that creates and initializes the philosopher and forks

processes, can be defined as follows:

Program(aUser, diner)
stateVariables
numOQfPhilos : integer;
philos : array[10] of process;
forks . process;
philosProg : string;
forksProg : string;
initDinner : function;
decrease : function;
behaviourSpecification
internal(initDinner, 5, numOfPhilos
philos, forks, philosProg, forksProg);
create(OUT.OF_PROG, forks, forksProg);
while numOfPhilos do
create(OUT-OF_PROG, philos[numOfPhilos], philosProg);
internal(decrease, 1, numOfPhilos);
endWhile

endProgram

The philosProg and forksProg variables are strings that identify the files where
the forks and philos programs are stored. The invokation of the initDiner function

initializes the state variables of the diner process. The create statement creates a

88

process using the user defined programs accepted as the third parameter to construct
the stafe and the code objects of this process. The OUT_OF_PROG option indicates
that a process is to be created out of a user defined program.

The function variables of the philosopher processes, foiks process and diner process
are implemented as references to C++ functions implemented by the user. Although
these C++ functions accept parameters, they have full access to the state variables
of the process objects.

It is obvious that the philos processes will deadlock when all of them pick up the
left fork and start sending requests for picking up the right fork continuously. These
requests will never be satisfied and the processes will be in a deadlock state. This
problem, in any concurrent environment including GSDL, can be solved by modifying
the forks process so that it does not allow more than numOfPhilos - 1 philos processes
to be served at the same time.

However, in GSDK, the deadlock state can be detected. When the philos pro-
cesses are deadlocked their gellingForks variable is set. Thus, the forks process can
be modified to periodically get the states of the philos processes using the gelStale-
Info statement and determine if the system is deadlocked or not. If the system is
deadlocked, forks can send a message to one of the philos processes to put down its
left fork until the rest of the philos proces-es get served.

Thus, the getStatelnfo primitive provides the optional solution of letting a system
react naturally and applying a recovery procedure when an undesirable situation oc-
curres. This is very important for many applications e.g. fault tolerant applications,

applications that require safety property checking etc.

89

|
:
4
!

7.3 Process State Variables

A state variable of a process is an object of the following class defined in C++

notation:

class stateVariable

{
varType type;
varName name;
varValue value;

public:
varType getVarType();
varName getVarName();
varValue getVarValue();
void setVarType(varType);
void setVarName (varName) ;

void setVarValue(varValue);

}

The type object may take a value indicating a process, state, inleger, string, function
or program. The meaning of these values is the same as the meaning of the values
of a varType expression, as given in the GSDKL BNF in the previous section. The
name object is a string that uniquely identifies the variable in the program. The
value object keeps the current value of the variable. The getVarX methods, when
they are invoked on a stale Variable object, return the X state member object of this
stateVariable. The setVarX methods set the X state member object to the value of
the parameter of the method.

An object of class state Vars represents the state variables of a process. It is an
object that controls a variable length array of variables. For each variable defined in
the GSDNL program, out of which the state of the process will be initialized, there is
an entry in the array of variables controlled by the stateVars object. For each array

of cardinality n of variables defined in the GSDKL program, there are n consecutive

90

entries in the array of variables controlled by the state Vars object.

A stateVarsobject is a passive object. The state of a state Vars object is composed
of an object numQOfVars of class integer, and an object variable that is an array of
stateVariable objects.

The class state Vars using C++ notation is defined as follows:

class stateVars

{

int num0OfVars;

stateVariable =*variable;

public:
stateVars(int numOfVariables);
~stateVars();
int getVarIndex(varName name);

varType getVarType(int base, int offset);
varName getVarName(int base, int offset);

varValue getVarValue(int base, int offset);

void setVarType(int base, int offset, varType type);
void setVarName(int base, int offset, varName name);
void setVarValue(int base, int offset, varValue value);

}

numOfVars is an integer that indicates the cardinality of the array variable. The
behaviour specification functions use a base and an offsct value to access a variable.
This makes possible the declaration and manipulation of array variables in languages

like GSDK'L implemented in GSDK.

The behaviour specification of the class state Vars consists of the methods:

stateVars(int numOfVariables): This method is the constructor of the class. It
initializes the numOfVars to have the value of the parameter numQOfVariables

and then allocates an array of namOfVaurs state Variable objects.

91

~stateVars(): This method is the destructor of the class. It deallocates the re-

sources allocated by the constructor at the termination of the process.

setVarType(int base, int offset, varType type): This method sets the type of
the (base + of fset)™ state Variable to the value {ype passed as parameter. This
method is called only at initialization of the state Vars objects from the specifi-

cation of a user defined program in GSDKL.

setVarName(int base, int offset, varName name): This method sets the name
of the (base + of fset) stateVariable to the value name passed as parameter.
This method is called only at initialization of the stateVars objects from the

specification of a user defined program in GSDK'L.

setVarValue(int base, int offset, varValue value): This method sets the value

of the (base + of fsct)!* stateVariable to the value type passed as a parameter.

getVarType(int base, int offset): This method returns the type of the (base +
of fset)* stateVariable, used for type checking.

getVarName(int base, int offset): This method returns the name of the (base +

of fsct)* stateVariable, used for variable identification.

getVarValue(int base, int offset): This method returns the value of the (base +

of fset)h state Variable, used for accessing the current value of the variable.

getVarIndex(varName name): This method returns the position in the array
stateVars, of the variable with name name, used for accessing variables given

their name.

In a Unix environment a state Varsobject is implemented in shared iaemory. Thus,
it can be shared between a proce.s and its parent SCP. The SCP needs access to the
state Var objects of the site since it is responsible for the recording of the state of the

site to the parent LCS object.

7.4 Process Code

A process is the basic unit of execution of a user defined program in GSDK. 1t
executes statements (actions) in the order defined in the events object. The events
object controls the set of actions to be executed by a process.

The class action is defined as follows:

class action
{
actionType type;
actionParam param;
int next;
public:
actionType getActionType();

actionParam getActionParam();

int getActionNext();

void setActionType(actionType);
void setActionParam(actionParan) ;
void setActionNext(int);

}

The type object may take the value create or delete or sendMsg or receiveMag or
internal or getStatelnfo. The meaning of these values is the same as the meaning of
the values of the command expression, as given in the GSDKL BNF in the previous
section. The param object is a structure that holds and manipulates the parameters
of the actions. The parameters of an action are variable name objects. These name
objects identify variables of the stateVars object of the process and are used for
accessing and manipulation of the indicating variables from the process according
1o the type of the currently executing action. The next object is used to identify
the position of the next action to be executed in an array of action objects. The
getActionX methods, when they are invoked on an action object, return the X state

member object of this action. The setActionX methods set the X state member object,

93

to the value of the parameter of the method.

An object of class code represents an ordered set of actions to be executed by the
process. It is an object that controls a variable length array of actions. For each
statement defined in the GSDKL program, out of which the code of the process will
be initialized, there is an entry in the array of actions controlled by the code object.

A code object is a passive object. The state of a code object is composed of an
object numOfActions of class integer, an object act that is an array of action objects
and an integer object current that is the pcsition of the current action to be executed.

The class code is defined as follows:

class code
{
int numOfActions;
action *act;
int current;
public:
code(int numOfAct);
~code();

action getCurrent();

void setCurrent(int) ;
void incCurrent();
int end0fCode();

}

numQOfActions is an integer that indicates the cardinality of the array act. The

hehaviour specification of the class code

code(int numOfAct): This method is the constructor of the class. It initializes
the numQOfActions to the value of the parameter numOfAct and then allocates

an array of numOfActions action objects.

~code(): This method is the destructor of the class. It deallocates the resources

allocated by the constructor at the termination of the process.

94

AL . 5 . K 4 g Y E o L - s

getCurrent(): This method returns the current'™ action of the array act.
setCurrent(int 1): This method sets current of :.

incCurrent(): This method increases i to indicate the position of the next action

in the array act to be executed.

endOfCode(): This method returns a non-zero value if there are more actions to

be executed otherwise it returns zero.

In a Unix environment a code object like a stateVars object is implemented in
shared memory. A code object is part of the state of the site and it is periodically
recorded by the SCP to the LCS object.

7.5 Site Port

A sitePort is a shared object used for communication among active objects that are
children of the same SCP. It is also used for communication among a process and its
father SCP. In a Unix system sifePort objects are implemented in shared memory.

The sitePort class is defined as:

class sitePort,

{

int num0fProcs;

nsgQueue queue [NUMoFpROCS] ;

public:
sitePort();
~sitePort();
void registerProcess(pid);
void send(message) ;

nessage receive(pid sid, pid rid);

message receive(pid rid);

95

numQfProcs is the number of active objects that communicate through the
sitePort object. queue is an array of up to NUMoFpROCS msgQueue objects. A
msgQueue object controls a queue of messages to be received by a process. It contains
the pid of the process to which the queue is associated, and a list of messages. The
first queue of a sitePort object is associated with the SCP object. The remaining
queucs are used by the children processes of this SCP object. The messages contain

information about the sender and receiver objects.

sitePort(): This method initializes the state members of of a sitePort object and

reserves the first queue for the SCP object.
~sitePort(): This method deallocates the resources allocated by the constructor.

registerProcess(pid): This method reserves a queue for the process identified by

the pid passed as parameter. It is called at the creation of new processes.

unregisterProcess(pid): This method sets a queue free, that is, the queue is not

assigned to any process. It is called at the termination of a process.

send(message): This method inserts the message passed as parameter to the queue
associated with the sender of the message. The pid of the sender of the message

is contained in the message.

receive(pid sid, pid rid): This method deletes the oldest message sent by the pro-
cess with id sid to process rid and returns this message to the caller. If there
is not any message send from process sid to process rid then the process rid is

blocked until a message from process sid is inserted in the queue.

receive(pid rid): This method deletes the oldest message sent by any process to
process rid and returns this message to the caller. If there are no messages
in the queue of the rid process, then the process is blocked until a message is

imserted in the queue.

A oitePort object is part of the state of the site and is implemented in shared

memory. It is recorded periodically by the parent SCP object to the LCS object.

96

7.6 Implementation Issues

In a Unix environment objects of classes stateVars, code and site Port must be imple-
mented in shared memory. Thus these objects may be shared among active objects of
the site. Unfortunately, available object oriented languages like C++ do not provide
primitives for the implementation of shared objects. A C4-+ object is implemented
as a record (struct) that contains the state variables of the object and the addresses
of the functions that represent the behaviour specification of the object. This makes

the implementation of shared objects in shared memory difficult for the following

reason:

Assume two Unix processes P, and P, are attached to the same segment
SM of shared memory and P, copies the value of an object O, of its state
in SM. The methods of 0, are represented in the object by the addresses
of functions that reside in the code of process P;. However, the cede of P,
is not shared among P, and P,. If P, invokes a method of O, it accesses

the code of another process and the Unix kernel will kill P, to protect P,.

GSDK provides a generic monitor class that is a primitive that bypasses the above
described difficulties.

A generic monitor class is defined as follows:

class monitor(stateStruct)

{

public:
monitor(stateStruct)(int creatAttach, int shmkey,
int semkey, method* op,
stateStruct init);
~monitor(stateStruct)();

void* methodInvoke(int methodId, void* param);

97

For exarnple the declaration,
monitor(stateSruct) x = monitor(stateStruct)(CREAT, SHKEY, SEKEY, op, init);

defines a monitor object z with state specification stateStruct and operations the
members of the arcay op. stateStruct is a record type that contains no pointer vari-
ables.

The state of a monitor object is allocated in shared memory and access to it is
controlled by semaphores. The methods that specify the behaviour of the object are
allocated in t} e state of the Univ nrocess that owns the monitor object. Information
is shared between active objects by monitors that belong to different active objects
and arc attached to the same shared memory region.

The behaviour specification of the monitor class consists of the following methods:

monitor(stateStruct)(creatAttach, shmkey, semkey, op, init): This is the
constructor of the class. creatAttach is an option that indicates if the mon-
itor should be attached to a shared memory region already allocated by an
other process, or 1t should be attached to a new allocated region of size of stat-
cStruct. shmkey is the Unix shared memory key to be used. shmkey is the Unix
semaphore key to be used. op is an array of operations to be invoked on shared
memory. init is the initial value of the shared memory region; it is used when

the ercatAtftach option indicates creation.

~monitor(stateStruct)(): This is the destructor of the class. It deallocates the

resources of the Unix system allocated by the constructor.

methodInvoke(methodId, param): This method invokes the opfmethodld] func-
tion and passes to it the address of the shared memory region the parameter
param as parameters. paramis a free type parameter to be used by the invoked

function. It returns what the invoked functions ceturns.

methodInvoke locks the shared memory region before call the opfmethodld] func-
tion using the semaphore associated with the monitor and unlocks it before returning

the result of the invoked fuuction. Thus, a function may be invoked on the shared

98

TRl

AT T

L e -

-t

memory region from only one method and from only one process at a time. As a

result, memory objects are safe from race conditions.

99

Chapter 8
GSDK Site Control Processes

The GSDK is a system distributed over a set of processors. On each processor there is

an active object that interfaces the user processes (process objects) executed on that

processor, with the kernel services. This active object is called a Site Control Process
or SCP. SCP is responsible for the creation, maintenance and deletion of the system

objects that reside on its site. In this chapter we explore the component objects of
an SCP object.

e AN i

8.1 Site Controller Structure

The SCP controls the objects at a site of the system and sends the recorded states
of the site to the parent LCS object. The objects at a site are a port, a sitePort, a
globalClock, a processTable and a siteInfo. The recordable state of the site consists of

all the above objects except the port object.

The class SCP is defined as:

class SCP

{

port gPort;

sitePort sPort;

B St TSP BN M T L G T 3o AR LA MR 5 % s L i it e s LI PV SR,

processTable proc;
globalClock gClock;

siteInfo info;

public:
SCP(scpld, portlInfo);
~SCP();

}

The state of an SCP object is composed of the following objects:

gPort: An object of class port. It controls the global communication of the active

objects of the site with active objects that reside on other sites. It is accessible
only by the SCP object.

sPort: An object of class sitePort. It controls the on-site communication among the

active objects of the same site. It is described in de*- ™" - section 7.5.

proc: An object of class processTable. It is an array of 1ableEntry objects. Each
tableEntry object consists of the stateVars object and the code object of a
process of the site. Thus a process shares the code and the stale Vars with the

SCP object. This makes the recording of the process state information to the

LCS by the SCP possible.

gClock: An object of class globalClock. It is an implementation of the global timne

concept, introduced in chapter 4.

info: An object of class siteInfo. It contains information about the id of the SCP, the
status, etc. The :d of a SCP is unique in the system and contains information
about the host on which the SCP resides. The status contains information
like the number of process objects controlled by the SCP, how frequently the
state of the site should be recorded, the last time that the state of the site was

recorded, etc.

The constructor of SCP accepts as parameters the id of the SCP object and an
object portInfo, that is, information for the construction of the port object. portinfo
contains the network addresses of port objects that reside on other nodes. It uses this

information to connect to them.

101

R X NPT P S

P

The SCP constructor first creates and initializes the site objects gPort, sPort,

proc, gClock and info. Then it controls the following tasks:

Global clock management: The globalClock object is invoked to increase its global

time value when:

¢ A message is received through the port object from another site.

o Each time the site real clock value increases z units of time, for a given
constant . All internal events of the site which have occurred during the
time interval r are considered one atomic action. This is a valid assumption

given that on a single node the execution of events is totally ordered.

State recording: The LSR algorithm is used for the recording of the state of the
site and sending it to the parent LCS object. The state of the site is recorded
every d increments of the logical clock value which corresponds to the value of
the global clock (globalClock object) of the site. d is an integer value that is the
same for all the SCP objects of the system.

Inter-site communication: A message sent by a process object of the site S; to a
process object of the site S is first sent using the sitePort object to the SCP
of Si. Then the SCP of S, sends the message to the SCP of S, using the port
object. Finally the SCP of S; sends the message to the receiving process object

through the sitePort object at the 3 site.
Process creation: At process creation SCP is responsible for the following:

o Allocation of the shared memory regions used by the process object for the

accommodation of stateVars and code objects.

e Registration of the new process to the process maps of the port objects
at all the sites in the system. Each port object of the system has a map

object that addresses all the active objects of the network.

Process deletion: At process deletion SCP is responsible for the following:

e Deallocation of the shared memory regions used by the process object for

the storage of stateVars and code objects.

o Deletion of the process network address from the process maps of the port

objects at all the sites in the system.

Site shut-down: At the request of the parent LCS object, SCP calls the destructor

to deallocate all the objects in the system allocated at the site.

In the following sections, the structure of the component objects of an SCP object

is explained. The structure of the sitePort object is given in the previous chapter.

8.2 Port Structure

An SCP object, like a process object communicates with other active objects through
the sitePort at that site. The SCP receives requests from other active objects in the
system from the sitePort object. The port object at the site is used for jorwarding
messages from the sitePort of the sender object to the site Port of the recciver object.
when these objects reside on different nodes. The need for two-layered communication
system comes from the need to access the state of the communication subsystem that
is part of the state of the system. The state of a sitePort object is accessible in a
Unix environment, under the assumption that it is implemented to be executed in
user mode. A port object state is not accessible if it is implemented using BSD4.3
Unix IPC primitives. The methods of the port object can be casily implemented in a
Sun network system using the RPC/XDR libraries for creating servers that access the
sitePort structures of the site. Then the port methods 'will be clients of thase servers.
The stubs for the clients and servers can be built using the rpcgen stub genecrator
provided by the system.

The port class is defined as follows:

103

& e o T

class port

{

pidMap map;
public:
port(portInfo);
~port () ;

void register(pid);
void unRegister(pid);
void send(message);

}

The description of the information about how the RPC server wili be accessed is
considered too low level to be explained in this document. The map object is a table
that contains the id and the corresponding network addresses of the active objects of
the system.

The behaviour specification of the system consists of the following methods:

port{portInfo): initializes the statc of the port according to the information port-
Info passed as parameter. portInjo contains information about the creation of

the RPC port server of the site and its naming,.

~port(): Deallocates the resources allocated by the constructor and terminates the

RPC port server of the site.

register(pid): This method registers a new active object, identified by the pid pa-
rameter and its network address, to the maps of the ports of all the sites of the

system.

unRegister(pid): This method removes the pid and the network address of the
active object identified by the pid parameter.

send(message): This method invokes the send method of the sitePort object of the

receiver site of the message to send a message passed as a parameter. The

104

identification of the receiver of the message is included in the message.

A port object contains information about the invokation of the RPC port servers
at all the sites in the system. It could also contain information about only the RPC
port servers of the parent site and the sites that have the same parent. In this case

two ports that don’t have the same parent have to communicate through a common

ancestor.

8.3 Process Table Structure

A processTable object can access the stateVars and code objects at the site. These
objects are shared among the process objects and the SCP object. Thus the SCP
may record the state of a process and send it to the parent LCS object.

The tableEntry class specifies an entry of the table and is defined as follows:

class tableEntry

{

code events;

stateVars vars;

public:
void set(code, stateVars);
code getCode();

stateVars getStateVars();

void clear();

}

The state of the object consists of an object of class code and an object of class
stateVars. The structure of these objects is explained in the previous chapter. The
behaviour specification of the object is defined by three methods: set, get and clear.
set sets the state of the object to the accepting parameter. get returns the state of
the object. clear clears the state of the object.

The processTable class is defined as follows:

105

class processTable

{

tableEntry *state;
int num0fStates;
public:

processTable() ;

~processTable() ;

void set(int, code, stateVars);
tableEntry get(int);
void clear(int);

}

The state of a process Table object is composed of an array of tableEniry objects and
its cardinality. The behaviour specification provide methods for setting, getting and

clearing the i** element of the array.

8.4 Site Global Clock Structure

The site’s globalClock is an implementation of the global time concept introduced in
chapter 4. It is used by the SCP for the implementation of the LSR algorithm.
The globalClock class is defined as:

class globalClock

{

int numOfSites;
int *gt;
public:
globalClock(int);
~globalClock();
void increase(globalClock) ;

int* getValue();
int logicalValue();

106

}

The state of a globalClock object consists of an array of integers gf and the cardinality

of this array numQOfSites. The cardinality is equal to the number of SCP objects of

the system.

The behaviour specification of the class globalClock consists of the following meth-

ods:

globalClock(int): It allocates an array of integers of cardinality equal to the pa-

rameter passed.
~globalClock(): It deallocates the resources allocated by the constructor.

increase(globalClock): This method accepts a globalClock object as a parameter
and applies the global clock algorithm {40] to modify the value of gt.

getValue(): This method returns the value of gt.

logicalValue(): This method returns the logical time value of the globulClock ('T'he-
orem § (GTLT)).

107

Chapter 9
GSDK Central Sites

The GSDK central sites are responsible for managing the partial and complete global
states and communication among the active objects of the system. Central sites are

classified into types:

LCS: Lcaf Central Site objects are responsible for managing the states of their chil-
dren SCP objects. LCS objects are also intermediators in the communication

among active objects that are descendants of different LCS objects.

CS: Central Site objects are responsible for managing the consistent states compiled
from their children LSC objects or CS objects. LCS objects are also inter-
mediators in the communication among active objects that are descendants of

different CS objects.

('S objects and LCS objects share some common functionality and state structure.
Thus, a General Central Site G'CS is first designed to specify the common structure
and functionality of a central cite. Then the LCS class and the CS class are defined
by inheriting the common GCS class and specifying the additional components of

their state and behaviour specification.

9.1 General Central Site Structure

The GCS class defines the common structure and functionality of the central site

objects of the system. It is defined as:

o -

I & de - e

class GCS

{

port gPort;

sitePort sPort;

gsdb states;
public:

GSC(gscld, portInfo);
~GCS();

}

The state of the GCS is composed of three objects: gPort of class port, sPort of
class sitePort and stales of class gsdb. The structure and functionality of the port
and sitePort objects is given in the previous chapters. An object of class gsdb is
an implementation of the GSCA algorithm introduced in chapter 5. It collects the
states of SCP objects and forms consistent global states of the corresponding process
objects.

GCS defines the structure and functionality of the children classes LCS and 'S.

LCS objects and CS objects are the central sites of the system.

9.2 Leaf Central Site Structure

An LCS object is a GCS object whose children are SCP objects. It collects the states
of the children SCP objects and compiles them into consistent global states using
the GTCA algorithm. The consistent global states of the corresponding part of the
system monitored by a LCS object are sent to the parent CS object to be used in the

compilation of the state of the entire system.

The class LCS is defined as:

class LCS: GCS

{

SCPtable scp;

1scInfo info;

109

public:
LCs(gcsId, portlnfo);
~LCSQ);

]

The LCS class inherits the structure of the GCS class. Thus, a LCS object is a
G'CS object with additional state components: an object scp of class SCPlable and an
object info of class Isc/nfo. The scp object controls a table that contains information
about the children SCPobjects. The info object contains information about the node
on which the LCS object is located and the parent CS object.

The behaviour specification of the LSC class consists of two methods, a construc-
tor and a destructor. The constructor first initializes the component objects of the

state of the object and then fulfills the following tasks:

Subsystem start-up: It starts-up the children SCP objects on a given set of pro-
cessors identified in the SCPtable.

Subsystem shut-down: Under special request from the parent CS object, it asks

the children SCP objects to destroy themselves.

State compilation: It receives the states of the children SCP objects through the
port and silcPort objects and invokes a method of the gsdb object to compile

them into a consistent global state of the controlled subsystem.

Siate recording: Reccords the consistent global states compiled by the gsdb object
and sends it to the parent CS object to be used in the compilation of a more wide
part of the state of the system. A compiled state of the monitored subsystem
is recorded as a single state with global time value GT. The i** element of the
vector GT is equal to the maximum :** element of the global time values of
all the compiled states. GT is used from the parent C'S objects for revealing

consistency using the LTCA or GTCA. This is feasible as proved in theorem

7

110

Inter-site communication: Forwards messages through the port object, allows

communication between active objects controiled by different LCS objects.

9.3 Central Site Structure

CS objects and LCS objects are very similar. The basic difference is that the class
CS state has an object of class CStable as a member that keeps information for the

children CS or LCS objects. The class CS is defined as:

class CS: GCS

{

CStable cs;
¢sInfo info;
public:

CS(scpld, portInfo);
~CS();

}

The only difference between CS objects and LCS objects is that they control
active objects of different classes. CS objects control objects of class LCS or of class
CS. LCS objects control objects of class SCP. A CS object receives states of SCP
objects compiled from the dominated CS or LCS objects. Then it compiles these
states into global states of the controlled subsystem. The compiled statc is the state
of the entire system if this CS object is the root of the system. If the CS object is

not the root, it records the compiled states at the parent CS object.

9.4 Global State Database

A gsdb object is an implementation of the GTCA algorithm introduced in chapter
5. A gsdb object controls a database of states of SCP objects. When a new state is
entered in the database it executes the GTCA algorithm and the database is updated
accordingly.

The class gsdb is defined as:

111

class gsdb

{

public:
gsdb(int num0fSCP) ;
~gsdb();
void enterState(int numOfSCP, SCPstate *state);

SCPstate* ~getCGS();
}

The state of an gsdb could be implemented using an available data-base system,
c.g. a relational or an object oriented database system. The behaviour specification

consists of the following methods:

gsdb(int numOfSCP): Accept as parameter the number of the descendant SCP
objects and creates a database that may accommodate up to a given number

of states for each descendant SCP object.
~gsdb(): It deallocates the resources allocated by the constructor.

enterState(int numOfSCP, SCPstate *state): This method accepts as param-
cters an array SCP states and the cardinality numOfSCP of this array. These
states are the consistent global state of a part of the system. They are entered
in the database according to the algorithm GTCA in an attempt to compile a

more recent consistent global state of the controlled subsystem.

~getCGS(): This method returns the most recently compiled consistent global state

of th~ controlled subsystem.

In the above description, SCPstate is a class with a number of process Table ob-
jects, sitePort objects, and one globalClock object as component objects. Compiled
states of the controlled subsystem form a new SCPstate object that contains all the
process Table objects and sitePort objects of the component SCPstate objects. How-
ever, The globalClock object of the new SCPstate is formed from the globalClock

ohjects of the component states (theorem 7).

112

Chapter 10

Concluding Remarks and
Future Directions

10.1 Use of Pomsets for DCS Modelling

The pomset model is a flexible tool for specifying concurrent systems. In this model
both concurrency and nondeterminism areconsidered primitive notions. Unlike the
event structure and branching tree models, and like the linear set model, the be-
haviour of a system is expressed as the set of its possible deterministic behaviours.
However, unlike the linear set model, concurrency is expressed explicitly.

Systems which do not conside: where nondeterminism occurs, is better specified
in a model that does not consider nondeterminism [35]. It is better to use a simpler
model than a more complicated one when the extra tools provided are not needed.
Since the distributed system specified in this thesis is not concerned with deadlock
avoidance, the pomset model is the most appropriate. Although the pomset model
is not powerful enough to deal with deadlock avoidance, it can be used to specify
algorithms that detect deadlock.

The use of a formal model like pornsets makes precise expression possible. After
introducing the formal modelling of a system (e.g. definition of processes, states,
composition, etc...), theorems and statements that express the properties of this
system are proved in a simple and clear way.

The formal mathematical notation is not well accepted by programiners/inmple-

mentors but should not be regarded as a disadvantage since the design that posseses

a clear specification has obvious advantages.

10.2 DCS Specification in Pomsets

A method for designing distributed computing systems using pomsets has been given.
Processes are expressed as sets of pomsets. The construction rule, introduced in
chapter 2, is a structured way to construct processes by inheriting properties of other
processes.

The composition of processes to composite processes and the decomposition of
them to components has been defined by synchronizing their communication events.
This synchronization is a result of the added causality on the events of the process
that represents the parallel execution of a set of processes.

The stales of a process have been defined in the pomset context. Consistent
global states of a distributed system have been defined through the state composition
to composite states introduced in chapter 2. State decomposition to component states
is defined as well.

The operators introduced fo- nrocess construction, process composition /decom-
position and state composition/decomposition are general and can be used for the

design of distributed systems and algorithms.

10.3 Logical and Global Time Properties

The properties of logical and global time have been studied in depth. They are power-
ful tools for synchronizing distributed computations without affecting their specified
coneurrency.

Theorem 3 shows that logical time can be used for recording consistent global
states of a DCS. However compilation of consistent global states cannot always be
guaranteed because logical time does not uniquely identify the causal relationship
between two events of a distributed computation.

Global time can uniquely identify the events of a distributed computation and, as

proved from theorem 5, can reveal the causal relationship between two events. Thus,

114

Pl

CRPI P9y

ek

F SO E SR WL PP

PR

EETORT LN

A eaem

5 ot i

given the states of the component processes, global time can detect all global states
that can be formed.
Global time is more powerful than logical time as proved in theorem 6 and the

global time properties. All the properties of logic: . time are properties of global time

as well.

10.4 State Recording and
State Compilation Algorithms

Cooperative recording algorithms have a complexity that is proportional to the num-
ber of processes or the number of channels of the system. Moreover, many of these
algorithms also assume only one recording of the system in it's lifetime. These al-
gorithms make this assumption to avoid the development of a compilation algorithm
that composes the recorded states in to global states.

Probabilistic algorithms cannot guarantee the availability of a consistent global
state. Thus, they are not appropriate for a class of applications such as fault tolerance
and distributed debugging.

The periodical recording algorithm LSR introduced in chapter 5, has worst casc
complexity O(1) each time it is executed. It is executed periodically and records
the component states of the system to a central site. The central site may execute
the LTCA or GTCA compilation algorithm to compile these component states to
global states of the system. Both LTCA and GTCA guarantee the availability of a
consistent global state of the system.

As shown in chapter 5, GTCA has superior performance to that of LT'CA with
respect to how recent the available state is. However, the performance of both algo-

rithms deteriorate as the number of component processes of the system increases.

10.5 The GSDK Distributed Programming Envi-
ronment

GSDK provides parallel programming primitives in a distributed environment for:

115

e Process creation.

Process deletion.

Process communication.

Global State Information.

GSDK introduces the request for global state information as a programming primitive.
This is useful for applications such as fault tolerance, stability detection etc... at the
user level, It also provides the GSDK'L language that facilitates the use of these
primitives.

GSDH is an object-oriented system. It is designed as a collection of independent
entities that are meaningful and useful on their own. Thus, it is easily expansible

and modifiable.

10.6 Future Directions

The pomset specification model of the DCS introduced in this thesis is general and can
be used for the specification of distributed algorithms. However, in our specification
model we purposely omit the channel states because our algorithms assume a reliable
FIFO communication subsystem that guarantees that a message is in the state of the
sender site as long as it is in transit. Thus channel states can be revealed from the
site states.

There are, however, a variety of distributed algorithms that consider channel
states. These algorithms cannot be specified with our model in its current form.
However, the model may be expanded to provide channel state specification.

Although the logical and global clock algorithms are very convenient for process
synchronization, they have a disadvantage. The values of the logical and global clocks
increase to infinity as the number of totally ordered events of the system increases
to infinity. Some reactive systems like airline reservation systems, banking systems,
ctc... are designed to be executed forever. Thus, algorithms for resetting the logical

and global clocks should be desig..ed to extend the use of these tools.

116

The GSDK design includes details related to the mapping of the system on a
Unix like environment. More sophisticated environments like MACH may be easily

modified to provide the services of GSDK.

117

Bibliography

[1] R. V. Baron et al. Mach Kernel Interface Manual, Department of Com-

puter Science, Carnegie-Mellon University, January 1990.

[2] D. L. Black. Scheduling Support for Concurrency and Parallelism in the
Mach Operating System, IEEE Computer, Vol. 23, No. 5, May 90, pp.
35-43.

[3] J. Boslough. The Enigma of Time, National Geographic, vol. 177, no. 3,
March 1990, pp. 109-132.

[4] G. Boudol, I. Castellani. Concurrency and Atomicity, Theoretical Com-
puter Science 59 (1988) pp. 25-84.

[5] K. M. Chandy and L. Lamport. Distributed Snapshots: determination of
global states of distributed systems, ACM Trans. on Computer Syst., Vol.
3, No. 1, Feb. 85, pp. 63-75.

(6] K. M. Chandy and J. Misra. Parallel Program Design, A Foundation, Ad-
dison Wesley, 1988.

[7] K. M. Chandy. The Ess:nce of Distributed Snapshots, California Institute
of Technology, March 1989.

(8] D. R. Cheriton, W. Zwaenepoel. The Distributed V Kernel and its Perfor-
mance for Diskless Workstations, In Proceedings of the 9th Symposium on

Operating System Principles, October 83, p.p.129-140.

118

[9] F. Douglis. Process Migration in the Sprite Operating System, Tech. Rep.
UCB/CSD 87/343, Comp. Sc. Division. University of California, Berkeley,
Feb. 1987.

[10] M. J. Fischer, N. D. Griffith and N. A. Lynch. Global states of a distributed
system, IEEE Tran. on Software Enginecring, May 82, pp. 198-202.

[11] A. Gafni, Rollback mechanisms for optimistic distributed simulation sys-

tems. Proc. of SCS Conf. on Distributed Simulation, 1988, pp. 61-67.

[12] N. H. Gehani, W. D. Roome, Concurrent C Project. Computer Technology
Research Laboratory Technical Reports, AT&T Bell Lahoratories Murray
Hill, New Jersey 07974.

[13] J.L. Gischer, The Equational Theory of Pomsets. Theoretical Computer
Science 61 (1988) 199-224.

[14] C.A.R. Hoare. Comunicating Sequencial Processes, Prentice Hall, En-

glewiid Cliffs, N.J., 1985.

[15] C. A. R. Hoare, Monitors: An Operaling System Structuring Concepl.
Comm. ACM, Vol. 17, No. 10, Oct. 1974, p.p. 549-557.

[16] R. Koo and S. Toneg, Checkpointing and rollback recovery for distributed
systems. IEEE Transactions on Software Enginecring, SE-113 (1), 1987,
pp.23-31.

[17] D. R. Jeflerson. Virtual time, ACM TOPLAS, 7 (3), 1985, pp. 404-425.

[18] D. R. Jefferson et al. Distributed Simulation and The Time-warp Operaling
System, Operating Systems Review, 2 (5), 1987, pp. 77-93.

[19] E. Jul et al. Fine-Grained Mobility in the Emerald System, ACM Transac-
tions on Computer Systems, Vol 6, No. 1, Feb 88, p.p. 109-133.

[20] T. H. Laiand T. H. Yang. On distributed snapshots, Information Processing
Letters, 25 (3), 1987, pp. 153-158.

119

[21] L. Lamport. Time, clocks and the ordering of events in a distributed system,
CACM,21 (7), 1978, pp. 558-565.

[22] T.J. LeBlanc and J.M. Mellor-Crummey, Debugging Parallel Programs with
instant-replay. IEEE Transactions on Computers, C-36 (4), 1987, pp. 471-
482.

[23] H.F. Li, K. Venkatesh and T. Radhakrishnan, Global states of a distributed
system, manuscript. Department of Computer Science, Concordia Univer-

sity, 1987.

[24] ILF. Li, B.M. Dang, C.B. Lea, T. Radhakrishnan, Debugging in a Dis-
tributed Environment, manuscript. Department of Computer Science, Con-

cordia University, 1989.

[25] H.F. Li, D. Livas, Spontaneous Global State Detection Using Global Time,
Proc. 1989 International Symposium on Computer Architecture and Signal

Processing. pp. 444-449. Oct. 1989.

[26] NL.F. Li, D. Livas, Periodical Global State Detection, manuscript. Depart-

ment of Computer Science, Concordia University, February 1990.

[27] D. B. Lomet, A Partial Deadlock Avoidance Algorithm for Data Base Sys-
tems, Proc. ACM-SIGMOD Conf. on Managment of Data (1977), pp. 122-

127,

[28] D. B. Lomet, Coping with Deadlock in Distributed Systems, Data base
Architecture, North Holand (1979), pp. 95-105.

[29] B. Meyer. Object Oriented Software Construction, Prentice Hall, Englewild
Cliffs, N.J., 1988.

(30} R. Milner. Communication and Concurrency, Prentice Hall International

Ltd., 1989.

[31] C. Morgan. Global and logical time in distributed algorithms, Information

Processing Letters, 20 (1985) pp. 189-194.

[32] Network Programming, Sun Microsystems, 5/9/88.

[33] G. J. Popek, B. J. Walker, editors. The LOCUS Distributed System Archi-

[34]

[35]

[36]

37]

[38]

[39]

[40]

[41]

tecture, Computer Systems Series, The MIT Press, 1985.

M. L. Powell, B. P. Miller. Process Migration in DEMOS/MP, In Proceed-

ings of the 9th Symposium on Operating System Principles, October 83,
pp- 110-119.

A. Pnueli. Specification and Development of Reactive Systems, Information

Processing 86, pp. 845-858.

V. R. Pratt. Modelling concurrency with partial orders, Int. Journal of

Parallel Prog., Vol. 15, No. 1, 1986, pp. 33-71.

D.K. Probst and H.F. Li, Abstract Specification, Composition and Proof
of Correctness of Delay-Insensitive Circuits and Systems. Department of

Computer Science, Concordia University, CS-VLSI-88-2. April 1988.

M. Raynal, A Distributed algorithm to prevent mutual drift belween n logi-
cal clocks, Information Processing letters (Netherlands), vol. 24, no. 3, pp.

199-202. February 87.

M. Raynal, Distributed Algorithins and Protocols. John Wiley and Sons
Ltd. 1988.

H. Shang, Consistent Global Statc: Algorithms and an Application in Dis-
tributed Garbage Colection. Masters Thesis, Concordia University, August,

1988.

S.H. Son and A.K. Agrawala, A non-intrusive checkpointing scheme in

distribuled database systems. Proc. of FTCS 1985, pp. 99-104.

121

e et R

[42)

[43]

[44]

[16]

[17]

43

[49]

B. Stroustrup, The C++ Programming Language. Addison-Wesley, Read-
ing, Mass., 1986.

R. Strom and S. Yemini, Optimistic recovery in distributed systems. ACM
Transactions on Computer Systems, vol. 3, no. 3, 1985, pp. 204-226.

A.S. Tanenbaum, The Amoeba Distributed Operating System. Department
~f Mathematics and Computer Science, Vrije Universiteit, Amsterdam.

Collection of papers on Amoeba system.

K. Venkatesh, T. Radhakrishnan and H. F. Li, Optimal Checkpointing
and Local Recording for Domino-free Rollback and Recovery. Information

Processing Letters (Netherlands), vol. 25, no. 5, pp. 295-303, 1987.

K. Venkatesh. T. Radhakrishnan and H. F. Li, Discrete Event Simulation
in a Distributed System. COMPSAC Proceedings, 1986, pp. 123-127.

A. I. Wasserman ct al. The Object- Oriented Structured Design Notation for
Software Design Representaion. IEEE Computer, Vol. 23, No. 3, March 90,
pp- 50-63.

G. Winskel. Event Structures. Proc. Advances in Petri Nets 1986. Lecture
Notes in Computer Science 255 (Springer, Berlin, 1987) 325-392.

L. Wittic and R. Curtis. Time Management for Debugging Distributed Pro-
grams. Proc. of DCS Conferance, 1985, pp. 549-550.

