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ABSTRACT

Disturbance Rejection in Multivariable Systems

Salem A.K. Al-Assadi Ph. D.,
Concordia University, 1990,

This thesis is concemed with developing computational algorithms for disturbance rejec-
tion in multivariable systems. The theoretical basis for the algorithms is a factorization procedure
for the transfer function matrix between the outputs and the disturbances. This enable us to usc
the concept of a minimal order inverse to determine the position of "disturbance blocking z¢ros”
which play an important part in disturbance rejection. It has been shown that using the transmis-
sion properties of the disturbance blocking zcros, it is possible to choose closed-loop positions
for these zeros in order to eliminate the stcady-state effect of a class of disturbances at the out-
puts of the system. The algorithms presented in this thesis can be used 1o assign as many distur-
bance blocking zeros as required by any multivariable system described by 4-tuples

p) [A, B, C,E] or 6-tuples 3. |A,B,C,D, E,F|. These algorithms usc state feedback con-
d d

trollers (constant or dynamic feedback) to position these zeros at desired locations in the com-
plex plane, such that certain measurable or unmeasurable disturbances are rejected in the steady
state. In addition, the resulting closed-loop system is stabilized and/or meets some transicnt per-
formance. This is achieved by dcsigning an output feedback controllers to assign all the poles at
desired locations in the complex plane. Moreover, a new approach for designing robust controll-
ers by means of dynamic output feedback is also developed. This provides a way of solving the
general servomechanism problem. The numerical performance of the algorithms proposed in this

thesis is illustrated by applying them to several practical examples.
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NOTATIONS AND ABBREVIATIONS

Throughout the thesis, the notation Y, [A ,B,C, D] (or Y, [A ,B,C ] when D = 0) will

be used to denote the state-space equations of a multivariable system given by

x()=Ax(@)+Bu()
L' y4y=Cx(t)+D ul)

When we refer to a multivariable system with disturbances, we shall use the notation

Y A,B,C,D,E,F](or}: [A,B,C,E] when D = 0and F = 0) to describe the state-
d d

space equations given as

X()=AX@)+Bu(@)+Ed()
Ed : yi)=Cx(@)+Du@)+F d()

A

The notation Y, [A‘ ,B,C,E ] will be used to denote a system Y [A ,B,C,E ] after per-
d d

forming column compressions on the output matrix. This notation is also used to denote a higher
order system obtained by incorporating a dynamic output feedbock compensator at the outputs of

the system Y [A,B,C,D,E,F].
d

In the definitions for zeros of system Y [A ,B,C,D,E,F ] , we will use the following abbre-
d

viations:

ZoD [2 [A ,B,C,D,E,F ] ] for the set of open-loop disturbance zeros of system
d

) [A,B,C,D,E,F
d
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Zf [E [A ,B,C,D,E,F ] ] for the set of open-loop disturbance blouking zeros of
d

system Y [A,B,C,D,E,F .
d

Zf [2 [A ,B,C,E,D,E,F ] | Kz] for the set of closed-loop disturbance blocking zeros
d

of system Y, [A,B,C,D,E,F which are
d

affected by state feedback X ,.

All vectors are denoted by lower-case bold letters.
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CHAPTER1

INTRODUCTION

1.1 THE NATURE OF DISTURBANCES

Most realistic control systems operate in environments where persistent external distur-
bances are present, which may degrade their performance under certain operating conditions.
These disturbances can roughly be classi fied as noise-type disturbances or waveform-structured
disturbances. The former require a statistical description and are studied in stochastic control
theory [1). In some cases the disturbances may be treated by considering them to be equivalent to
plant initial conditions of the system state vectors. In most practical situations, disturbances can-
not be treated in this way, especially for the cases where the disturbances take the form of per-
sistently acting fluctuating forces, torques, voltages, etc, which are no longer cquivalent to state
initial conditions of the system. Disturbance inputs can arise from a number of different sources.
For example, in regulator-type control problems, the unknown external disturbances are: fric-
tional forces, disturbance torques, disturbance voltages and the external loads on the system
which may fluctuate from time to time giving rise to disturbance terms in the control equations.
When considering the automatic guidance and control of ships, aircrafts, rockets, etc. one fre-
quently encounters external disturbing forces acting on the system due to the action of waves,

cross-winds, updrafts, wind gusts, gravity gradients, etc.

The a priori knowledge about the nature of disturbances and their characteristics differs
from one situation to another. If a disturbance is an accurately known function of time, then it
can be considered as a known time-varying part of the plant parameters. In other situations, the
disturbance may be totally unknown. The situation for most practical control systems lies in
between these two extreme cases. In particular, a designer usually has some information concem-

ing the nature of the expected disturbances. This information may take the form of reliable



statistical data which has been collected from previous tests and experiments or it may appear in
the form of some knowledge conceming the possible waveforms, amplitudes, duration, etc. of the
disturbance function. In any case, the a priori information about the disturbance function is usu-
ally not complete enough to allow the design of an appropriate controller to act against this dis-
turbance. Thus, the problem is how to design the most suitable controller using incomplete infor-
mation about disturbances. From the given information, a mathematical model for the distur-
bances can be formulated. The design procedure for choosing a suitable control law then depends

on this model [2-7].

1.2 AN EFFECTIVE MATHEMATICAL MODEL OF DISTURBANCES

Disturbances d (1) = 1d,(1),d,(t),...,d, (1) | are by definition, plant inputs, which

cannot be manipulated by the designer and are not completely known beforehand. Various
schemes have been proposed for mathematically modeling partially unknown functions d (¢) of
this type. The traditional approach consists of using classical Fourier series methods on represen-
tative experimental recordings of d;(#) to estimate the discrete harmonic content of the distur-
bance. Another method consists of treating the disturbance as a random process with a priori
information about its statistical properties. An excellent bibliography and summary of the status
of this subject has becn given by Wonham {8). Practical applications of statistical methods in dis-
turbance problems has so far been severcly hampered by computational complexities as well as
practical difficulties in obtaining reliable a priori statistical data about the expected distur-
bances. A less common, and conceptually different, way to model a partially unknown function
d; (1) is to give a differential equation which d, (1) is known 1o satisfy. This approach, first used
by Johnson {3,6] and called disturbance "state” modeling, was based on the idea of characterizing
the possible waveform modes of disturbances. It was shown (5] that this approach is effective for
the kind of disturbances which consist of any linear combinations of constants, ramps, polynomi-

als in time, exponentials, sinusoids, decaying or growing sinusoids, pulscs, etc. encountered in
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practical regulator and servomechanism control problems. For instance, consider a scalar distur-

bances d (t) and assume that it can be mathematically described as
dit)=c, f,()+ szz(‘)'*---*"xfx(‘) (1.2.1)

where the ¢;, i =1, 2,...,X, are unknown constan! weighting coefficients that may jump in
value every once in a while in a completely unknown manner, and the f; (t) are completely
known linearly independent functions given in the "state” description form:

n; n;-1

d f, 4 f; F i
+B‘n_ + .. +B 4B ;=0 (1.22)
! dr

1,-1

n dr

dt

Let F;(s) denote the Laplace transform of f;(t) and assume that F,(s) is, (or can be closely

approximated by) a rational algebraic function of 5, i.e.

p;(s)

F, ()= iex (1.2.3)

q;(s)
where p;(s), ¢,(s) are finite-degree real polynomials in 5. Then, taking the Laplace transform
of (1.2.1), and collecting terms, gives

P (s)

g )

d(s)= (1.24)

where the numerator polynomial P(s) involves the cocflicients ¢; and O (s) is the monic least

common denominator of the set of denominator polynomials [‘11' [/ DY qx] ineqn.(1.2.3). If

the right hand side of eqn.(1.2.4) is now viewed as the 'transfer function’ of a scalar linear sta-
tionary system with a unit impulse forcing function, then the polynomial Q(s) represents the
characteristic polynomial of that linear dynamic system:

O¢)=s' 40,5V 4. +0oys +a

= T](s ._.)Lj ) (1.25)

j=1



where Xj. j=1,2,...,varethe zeros of J (s).

13 DISTURBANCES ACCOMMODATION IN CONTROL SYSTEMS

Three basic approaches regarding the disturbance-accommodation problem are possible in
control systems: First, one can take the point of view that the effect of disturbances on the plant
response is always undesirable. This leads to the rather common attitude tha, disturbances are
ideally accommodated when the control completely counteracts ( e.g., cancels out ) the effect of
the disturbance on the plant response. Suppose it tums out that one cannot achieve exact coun-
teraction of the disturbance, owing to say, the inherent structural properties of the plant. Then
one might attempt to design a controller which minimizes the effect of disturbances on the plant
response [4] and [9-12]. This represents a second primary attitude to disturbance-accommodation
and can take on many different forms, depending on the particular quantity one chooses to
minimize. However, in practice, some of disturbance effects on the plant response are not neces-
sarily completely undesirable. In fact some of the actions of disturbances may be useful in
accomplishing the primary control task. It has becn remarked that the idea of trying to make con-
structive use of disturbances is not new in science (e.g., the classic idea of hamessing the "free
energy” of tides, storms, etc.), but this idea apparently has not been exploited in automatic con-
trol theory. This leads to a third primary attitude to disturbance-accommodation in which one
choose the controller so as to achieve the primary control task, and, at the same time, make max-
imum utilization of the potentially useful effects of any disturbances that may be present. Need-
less to say, the latter requires some finesse in the choice of the controller using modem optimal
control theory. This approach was investigated by Johnson [4] where he derives bounded optimal

control laws.

1.4 DIFFERENT METHODOLOGIES FOR DISTURBANCE ACCOMMODATION

The disturbance-accommodation problem that has been studied extensively has been con-




cemed with designing a feedback control law which ensures that the effect of some or all distur-
bances acting on a lincar system are completely rejected or reduced to an acceptable level in
steady state. References [7, 9-20] provide different approaches to this disturbance-

accommodation problem.

In some special kinds of applications, particularly in chemical process control, it tums out
that one can directly measure, on-line the instantaneous values of disturbances that are acting on
the system, for example the flow-rate variations in chemical reactors. For such cases, one can
sometimes employ well-known classical methods based on the 'feedforward principle’ to design
a satisfactory controller [5]. In the majority of realistic applications, however, it is either not
economically feasible or not physically possible to perform direct on-line measurements of the
disturbances acting on a system. Our point of interest is to design a feedback controller for the
situation when various external disturbances acting on the system are not accessible for direct

on-line measurement.

Mathematical problems concerning disturbance rejection controllers have received some-
what more attention than those conceming disturbance minimization. In disturbance minimiza-
tion problems, the design objective is to design a controller which will minimize, in some sense,
the effect of unabsorbable external disturbances acting on the plant. Some techniques which have
been previously proposed for disturbance minimization are (i) maximum partial absorption, (ii)
norm-minimization, (iii) critical state variable and (iv) indirect disturbance absorption. These are

explored in details in several papers by Johnson [2-7].

In the case where disturbances can be considered as being equivalent to plant initial condi-
tions, conventional linear-quadratic regulator and servormechanism theories may be used [21]. An
attempt to solve a modified version of the classical linear-quadratic regulator problem in which
persistently acting disturbances have been added, leads to physically unrealizable control laws.
Applications of the general linear-quadratic, time-varying regulator and servomechanism prob-

lem (with disturbances) can be found in the series of research papers by Johnson [2-7,22].



Various approaches based on statistical properties of disturbances have been developed by
several researchers e.g. see [8], to accommodate disturbances. These approaches have high com-
putational complexities as well as practical difficulties in obtaining reliable statistical data about

the expected disturbances.

As early as 1970, a question was raised about the conditions under which there exists a set
of appropriate robust control laws that will stabilize and control a multivariable system in a
desired manner, in spite of allowable unknown extemal disturbances and changes in the system
parameters. Several different versions of this problem have been formulated and examined using
the "Robust Servomechanism Approach” by Davison and his co-worker {15,23,24]. Generally

this approach leads to dynamical compensators of high order.

Anderson and Moore[25], Kwakemaak and Sivan {26], developed an approach for design-
ing a proportional-plus-integral feedback controller to completely counter the effect of unmeasur-
able constant disturbances in the steady state. Then, Smith and Davison [13] derived the neces-
sary and sufficient conditions for the existence of feedforward as well as integral-feedback con-
trollers for multivariable systems with constant disturbances, which may be measurable [13) or
unmeasurable [14]. This control was designed such that it possesses desirable properties: if the
system matrices are arbitrarily perturbed, output regulation is retained, provided that the system
remains stable. Pruess [17) presented a method by replacing the integral feedback by appropri-
ately structured state feedback alone to increase the freedom in the multivariable feedback
design procedure. In the geometric approach [18,27,28], a state feedback controller is used to
ensure that the disturbances are completely decoupled from the outprts. However, for some sys-
tems, it may be impossible to reduce the effect of the disturbances below a certain threshold
value. Hence, the disturbance decoupling problem would have no solution in this case. Peterson
[19] solved this problem by designing a stabilizing state feedback control which reduces the
effect of the disturbances to a prespecified level. The results obtained in [20] are also applicable
toaclass of H~ optimization problems, in which the effect of disturbances is minimized in some

sense. The standard H~ optimization problem {29] is concemed with constructing a dynamic




feedback compensator to minimize the 4~ norm of the transfer function from the disturbance to
the output of the system. Thus, the systematic method presented in [20), in constructing a control
law is arbitrarily close to the H" optimum. However, results on the H* optimization problem
[29] are based on solving several algebraic Riccati equations and lead to quite complicated

design procedures.

Based on combined eigenvalue/eigenvector assignment, 8 procedure for synthesizing mul-
tivariable controllers is developed in Shah et al. [30] to achieve disturbance localization, i.e.
complete "undisturbability” with respect to arbitrary disturbances. But the assumptions and
consequences often impose limitations on the applicability of this method. Another technique
that was used by Patel et al. [31] for linear multivariable systems described by state-space models

> [A ,B,C,E ] is based on the transmission properties of "disturbance zeros". This approach
d

shows that using constant state feedback, it is possible to choose closed-loop positions for a cer-
tain number of these zeros in order to eliminate the effect of a single-disturbance in the steady

state,

1.5 OUTLINE OF THE THESIS

The work described in this thesis is based on the approach of Patel et al. [31]. Algorithms
are developed for assigning as many disturbance blocking zeros (d.b.z.’s) as required for mul-

tivariable systems denoted by Y, [A,B,C,E] and ¥, [A,B,C,D,E,F].These Algo-
d d

rithms use state feedback controllers (constant or dynamic) to position these zeros at desired
locations in the complex plane, such that the class of single as well as multiple exponential type,
measurable or unmeasurable are rejected in the steady state. In addition, the resulting closed-loop
system is stabilized and possibly meets some transient performance requirements. This is
achieved by designing an output feedback controller (constant or dynamic) to assign all the poles

at desired locations in the complex plane. Moreover, a new approach for designing "robust”



controllers by means of dynamic output feedback is also developed which stabilizes and controls
a multivariable system in a desired manner in spite of allowable unknown external disturbances

and changes in the system parameters.

The thesis is organized as follows: In Chapter II, we present different numerical algorithms
for solving the eigenvalue assignment (EVA) (pole assignment) problem in multivariable systems
by means of state and output feedback. Chapter III contains some preliminary results on factori-
zation of transfer function matrices of multivariable systems described by triples (4, C, E) or
4-tuples (A, C, E, F)that can be used to determine the d.b.z.'s of the systems using the concept
of minimal-order inverses. Chapters IV and V are mainly concemed with the use of state feed-
back laws to assign the required d.b.z."s of the resulting closed-loop systems at desired locations,
such that the specified disturbances are rejected in the steady state. It is also shown that when the
system does not have any d.b.z.’s and/or the number of d.b.z.’s is not large enough to achieve
steady-state rejection of all the disturbances, we can generalize the results using dynamic state
feedback to introduce new d.b.z.'s in the system. In Chapter VI, the transient performance of the
closed-loop system obtained after assigning d.b.z.’s, is improved by designing an outpu feedback
controller to position all the system poles at desired locations in the complex plane. It is also
shown that, a "robust" controller can be designed by using dynamic output feedback to achieve
disturbance rejection in the presence of non-destabilizing perturbations in the system parameters.
The numerical performance of all the algorithms presented in this thesis are illustrated by means
of numerical examples. Finally some concluding remarks concemning the research described in

this thesis and suggestions for future work are given in Chapter VII.

The specific contents of each chapter are outlined next.

Chapter II: Eigenvalue Assignment in Multivariable Systems

This chapter introduces the problem of eigenvalue assignment by means of state and output
feedback. A brief survey of existing computational methods for solving the problem of EVA by
state feedback is given and followed by an outline of a numerically reliable algorithm, that can

be considered as the converse of the algebraic eigenvalue problem. The problem of EVA by



output feedback is then stated, and a survey of existing techniques for solving the problem is
given, Two algorithms are considered to solve the problem. The first algorithm uses constant gain
output feedback and the second use dynamic output feedback. Both algorithms are described as
two-stage procedures. The underlying principle of these algorithms is the implicitly shift QR
algorithm. However, for the case when the poles of a compensator are prespecified, we propose a
new algorithm which is a modification of Seraji’s method [32] for the design of dynamic output

feedback compensators having low order.

Chapter III: Multivariable Zeros and Their Properties

This chapter is concemed with the definitions and the relationships of different types of
zeros used in multivariable systems. Some important properties of these zeros are also deter-
mined. The factorizing technique developed by Patel [33] for the transfer function matrices of the
triples (A, C, E) is extended to 4-tuples (A, C, E, F). Based on these results, the problem of
computing the d.b.z.’s for different cases is discussed. This chapter also includes, an approach for
choosing the positions of d.b.z.’s in multivariable systems, such that steady-state rejection of all

exponential type disturbances is achieved.

Chapter IV: Assignment of Disturbance Blocking Zeros : Single Disturbance Case

This chapter introduces the problem of designing state feedback controllers to assign
d.b.z.’s and/or introducing more d.b.z.’s for linear multivariable systems that contains a single
disturbance. The algorithms presented in this chapter are used to achieve arbitrary d.b.z.’s place-

ment, such that complete disturbance rejection is achieved in the steady state.

Chapter V: Assignment of Disturbance Blocking Zeros : Multiple Disturbance Case

This is an extension of the d.b.z.’s assignment problem presented in Chapter IV. The under-
lying principle of the algorithms developed is the reduction of the multi-disturbance problem to
one or more single-disturbance problems. The procedure is sequential in nature, in that for each
disturbance, we compute a local state feedback to assign the required number of d.b.z.'s without

altering those which have been assigned in the preceding steps.



T TR T arm e\t

R

10

Chapter VI: Dynamic Qutput Feedback in Multivariable Systems

In this chapter, we show that two alternative approaches can be used for computing
dynamic output feedback to stabilize and/orimprove the transient performance of the closed-loop
system. It is also shown that, dynamic output feedback introduces additional d.b.z.'s between the
outputs and the disturbances at the poles of the compensator. This important feature is then used
to develop a new approach for designing dynamic output feedback to solve the problem of distur-
bance rejection as well as pole assignment in multivariable systems. In addition, the resulting
dynamic compensator is "robust" in the sense that asymptotic regulation takes place for some or
all disturbances acting on the system independent of any non-destabilizing perturbations in the

System parameters.

Chapter VII: Conclusions and Future Work

The main results and algorithms presented in this thesis are summarized and discussed, alse

suggestions are made for future work in this area.




11

1.6 REFERENCES
(1] K.J. Astrom, Introduction to Stochastic Control Theory, Academic Press, New York, 1970.

[2] C.D.Johnson, 'Optimal Control of the Linear Regulator with Constant Disturbances’, IEFE

Trans. Aut. Contr., vol. AC-13, pp.416-421, 1968.

[3] C.D.Johnson, 'Further Study of the Linear Regulator with Disturbances- The Case of Vec-
tor Disturbances Satisfying a Linear Differential Equation’, /EEE Trans. Aut. Contr., vol.
AC-15, pp.222-228, 1970.

[4] C.D. .ohnson, 'Accommodation of External Disturbances in Linear Regulator and Ser-
vomechanism Problems’, IEEE Trans. Aut. Contr., vol. AC-16, pp.635-644, 1971.

[S] C.D. Johnson, 'Accommodation of Disturbance in Optimal Control Problems’, Int. J.
Contr.,vol.15,No.2, pp.209-231, 1972.

[6] C.D. Johnson, 'Algebraic Solution of the Servomechanism Problem with Extemal Distur-
bar.~2s’, ASME J. Dynamic Systems, Measurement and Control, pp.25-35, 1977.

[71 C.D. Johnson, 'Theory of Disturbance Accommodating Controllers’, Control of Dynamic
System: Advances in Theory and Applications, Ed. C.T. Leondes, vol.12, 1976.

[8] W.M. Wonham, 'Optimal Stochastic Control’ Automatica, vol.5, pp.113-118, 1969.

[9] C.T. Chen, Linear System Theory and Design, Holt, Rinehart and Winston, New York,
1984,

[10] E.J. Davison, 'A Generalization of the Output Control of Linear Multivariable Systems
with Unmeasurable Arbitrary Disturbances’, IEEE Trans. Aut. Contr., vol.AC-20, pp.788-
795, 1975.

[11]) 1.S.Burdess and A.V. Metcalfe, 'The Active Control of Forced Vibrations Product by Arbi-
trary Disturbances’, J. Vib. Acoust. Stress and Reliab. in Design, vol.107, pp.33-37, 1985.

[12] B.A. Francis and WM. Wonham, 'The Internal Model Principle of Control Theory’,
Automatica, vol.12, pp.457-465, 1976.



(13]

[14]

[15]

(16]

(17]

(18]

(19]

[20]

(21]

[22]

[23]

12

H.W. Smith and E.J. Davison, 'Design of Industrial Regulators: Integral Feedback and

Feedforward Control’, Proc. IEE, vol.119, No.8, 1972.

E.J. Davison and H.W. Smith, 'Pole Assignment in Linear Time-Invariant Multivariable

Systems with Constant Disturbances’, Automatica, pp.489-493, 1971.

C.L. Smith and P.W. Murrill, *An Optimal Controller for Multivariable Systems with Dis-

turbance Inputs’, Proc. Joint Automatic Control Conf. , pp.469-470, 1969.

S.AK. Al-Assadi and K.H. Hammed, 'Minimizing the Effect of Disturbances Acting on

Control Systems', Proc. American Control Conf., Minneapolis, MN, pp.1187-1192, 1987.

H.P. Preuss, 'Perfect Steady-State Tracking and Disturbance Rejection by Constant State

Feedback’, Int. J. Contr., vol.35, No.1, pp.75-94, 1982.

W.M. Wonham, Linear Multivariable Control: A Geometric Approach, Springer Verlag,
New York, 1979.

LR. Petersen, 'Disturbance Attenuation and H~ Optimization: A Design Method Based on
the Algebraic Riccati Equation’, JEEE Trans. Aut. Contr., vol. AC-32, No.5, pp.427-429,
1987.

J.C. Willems and C.C. Comault, *Disturbance Decoupling by Mecasurement Feedback with
Stability or Pole Placement’, SIAM J. Contr. and Optimization, vol.19, No.4, pp.490-504,
1981.

M. Athans and P. Falb, Optimal Control; An Introduction to the Theory and its Application,
McGraw-Hill, New York, 1966.

C.D. Johnson, A Discrete-Time Disturbance-Accommodating Contro! Theory for Digital
Control of Dynamic Systems’, Control and Dynamic Systems: Advance in Theory and

Applications, Ed. C.T. Leondes, Academic Press, vol.18, 1982.

E.J. Davison and A. Goldenberg, 'Robust Control of a General Servomechanism Problem:

The Servo Compensator’, Automatica, vol.11, No.5, pp.461-471, 1975.



e

13

[24] EJ. Davison, "The Robust Control of a Servomechanism Problem for Linear Time-
Invariant Multivariable Systems’, IEEE Trans. Aut. Contr., vol. AC-21, No.1, pp.25-34,
1976.

[25] B.D.O Anderson and J.B. Moore, Linear Optimal Control, Prentice-Hall, Englewood Cliffs,
1971.

[26] H. Kwakemaak and R. Sivan, Linear Optimal Control Systems, Wiley-Interscience, New

York, 1972.
[27] S.P Bhattacharyya, J.B. Pearson, 'On Error Systems and the Servomechanism Problem’, Int.
J.Contr.,vol.15, No.6, pp.1041-1062, 1972.

[28] A.Linnemann, 'Numerical Aspect of Disturbance Decoupling by Measurement Feedback’,
IEEE Trans. Aut. Contr., vol. AC-32, No.10, 1987.
[29] B.A. Francis and J.C. Doyle, 'Linear Control Theory with H = Optimality Criterion’, SIAM

J. Contr. and Optimization, vol.25, No 4, pp.815-844, 1987.

[30] S.L. Shah, D.E. Seborg and D.G. Fisher, 'Disturbance Localization in Linear Systems by

Eigenvector Assignment’, Int. J, Contr., vol.26, No.6, pp.853-869, 1977.

[31] R.V. Patel, V. Sinswat and F. Fallside, 'Disturbance Zeros in Multivariable Systems’, Int. J.

Contr., vol.26, No.1, pp.85-96, 1977.

[32] H. Seraji, 'Design of Pole-Placement Compensator for Multivariable Systems’, Automatica,

vol. 16, pp.335-338, 1980.

[33] R.V. Patel, 'On a Factorization of the Transfer Function Matrix of a Multivariable System’,

Int. J. Sys. Sci., vol.7, pp.369-376, 1976.



CHAPTER 11

EIGENVALUE ASSIGNMENT IN MULTIVARIABLE SYSTEMS

This chapter presents numerical algorithms for solving the eigenvalue assignment (EVA)
problem in multivariable systems by means of state and output feedback. These algorithms will
be used to assign "disturbance blocking zeros" in Chapters IV and V, and system poles in Chapter

VL

The outline of the chapter is as follows: In Section 2.1, we briefly review some results from
linear algebra which will be used extensively in the algorithms described in subsequent sections.
The problem of EVA by state feedback in single-input system is stated in Section 2.2, and a sur-
vey of existing computational methods for solving the problem is given. Then a numerically reli-
able algorithm [1] which solves the EVA problem is described briefly. The approach used in this
algorithm is based on the numerically stable QR algorithm for finding the eigenvalues of a
matrix. Section 2.3 is concerned with solving the problem of the EVA by means of constant gain
as well as dynamic output feedback. It contains a brief survey of existing techniques for solving
the problem followed by various approaches described as two-step eigenvalues assignment prob-
lems. A condition under which the eigenvalue of a controllable and observable system can be
assigned arbitrarily close to desired locations in the complex plane by means of constant gain
output feedback is that the sum of the number of inputs (m) and the number of outputs (/) is
greater than the number of states (n). Based on this condition, Misra and Patel [2] developed
accurate and efficient numerical algorithms for EVA by means of .onstant gain and dynamic out-
put feedback. The constant gain output feedback algorithm is oased on the implicitly shifted QR
algorithm, However, for the case when the condition (m + [ > n) is not satisfied, two distinct
approaches for the design of dynamic output feedback compensators are considered such that all
the poles of the augmented closed-loop system consisting of the compensator and the plant can

be positioned arbitrarily in the complex plane. These approaches compute the dynamic compen-
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sator in two-steps, the first step to assign a subsct of poles and the second to assign the remaining
poles while preserving the previously assigned ones. The first approach which was reported in
[2.3], is based on reformulation of the problem to one of EVA by constant gain output feedback.
In the second (new) approach, we give a modification of Seraji’s method [4] for the design of
dynamic output feedback compensators with lower order than required by other existing
methods. By this approach, the simplicity of the unity-rank compensator design is utilized in the
design of a non-unity rank compensator. The proposed approach can be implemented as a two-
step method: In the first step, we assign a number of poles by means of constant output feedback
using a method based on the implicitly shifted QR algorithm for solving the algebraic eigenvalue
problem, while in the second step, the assigned poles are preserved and a number of additional
poles are placed using a unity-rank dynamic compensator computed entirely in the frequency
domain, by solving a set of linear equations relating the parameters of the compensator to the
desired closed-loop characteristic polynomial. The problem of assigning the poles of the com-
pensator has also been considered in this approach to ensure a stable compensator. Finally, the
numerical performance of the algorithms is illustrated in Section 2.4 by means of numerical

examples.

2.1 REVIEW OF PRELIMINARY RESULTS

In this section, we shall review some relevant results from lincar algebra that will be used

in the algorithms for solving the EVA problem.

Definition 2.1 [5,6] : A matrix A € R"™” is said to be an upper Hessenberg matrix if a; =0,
i2j+2, where a;; denotes the element in the i th row and jth column of A. Furthermore, if

a; i1 * 0,i =2,..., n,then A is said to be an unreduced upper Hessenberg matrix.

Definition 2.2 [2] : AmatrixA € R"™" is said to be in real Schur form (RSF) if it is a quasi-
upper triangular matrix with only scalars and 2x2 blocks on the (block) diagonal. Each scalar

corresponds to a real eigenvalue and each 2x2 block to a complex-conjugate (c-c) pair of
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eigenvalues of A. Any matrixA € R ™" can be reduced to an RSF by means of an orthogonal

transformation.

Theorem 2.1 [7,8,1] : Given a controllable single-input, muiti-output system
x()=Ax@)+b u() (2.1.13)
y@®)=Cx(1) (2.1.1b)

wherex(t)e R",u(t)e R,andy(t) e IR’.thetriple(A.b,C)canbereduced 1o an upper

Hessenberg form (UHF) by applying an orthogonal state coordinate transformation such that

'f11 f12 fl.n—l fm}
fafn o Fanafom

0 f32 f3.n—1 f3n

TTar=| . . . . . |AF 2.12)
L0 0 . fypy S
T T
1= [g,0...0] A¢ 213)
and
cT= [hlhz...hn] @.14)

Comments: The matrix F is an upper Hessenberg matrix. Also, it can be easily shown that F is
an unreduced upper Hessenberg matrix and g,# 0 if and only if (A4, b) is a controllable pair. It
may be noted that if any of the subdiagonal elements f; i i=1,2,...,n-1,isequal to zero

then F become a block upper triangular matrix i.e.
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F =

Fll Fl?-
2.1.5)

0 F,

The structure of g then implies that the mode corresponding to the eigenvalues of F,, are uncon-
trollable. Note that F |, is an unreduced upper Hessenberg matrix, and that F ,, together with the
corresponding part of g forms a controllable pair. Note that, the algorithm for reducing a single-

input, multi-output system (A, b, C) to UHF can be found in [3]).

Theorem 2.2 [3,6) : Amatrix A € R™" having linearly independent columns can be written
uniquely in the form A = QR, where Q€ R "7 is an orthogonal matrix and R € R™" isan

upper triangular matrix with positive diagonal elements.

2.2 ALGORITHM FOR EIGENVALUE ASSIGNMENT BY STATE FEEDBACK

Consider a linear, time-invariant, single-input system described by its state equation

X@)=Ax@)+ b u@) (2.2.1)

where X (1) € R " and u(t) € R. Assume that the pair (4, b) is controllable. It is well known
[9] that the eigenvalues of a system can be assigned at any desired locations in the complex
plane, subject to complex-conjugate (c-c) pairing, by means of state feedback if and only if the
system is controllable, Note that if the system is not controllable, the eigenvalues corresponding

to the uncontrollable modes of the system cannot be altered.

The problem that we will consider in this section is to find a 1xn feedback vector k, such

that, under the feedback law

u(t)=v(t) -k x(r) (222)

the resulting closed-loop state matrix

Ay =A-bk, (223)

has n eigenvalues at desired location in the complex plane (symmetric about the real axis). This
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problem has been investigated by several rescarchers and many algorithms already exist for solv-
ing the problem e.g., see [1,7] and [9-20). Some of the conventional techniques require a reduc-
tion of the system to a canonical form e.g.[9-12], where the state matrix is in "companion” form.
The feedback vector is then determined by comparing the coefficients of the characteristic poly-
nomials of the open-loop and the desired closed-loop systems. But, because of the sensitivity of
the roots of a polynomial to perturbations in its coefficients and the numerical ill-conditioning
associated with the reduction of a system to its companion canonical form, this approach is
numerically unreliable. Some other algorithms such as in [13] require the system 1o be in transfer
function form and use polynomial arithmetic which can cause numerical difficulties. The algo-
rithms presented in {1,7] and {15-20] have attempted to address the numerical issues involved in
the EVA problem. In [7], the algorithm is based on the well-known QR algorithm and uses only
numerically stable orthogonal transformations. The algorithm in [15,17] reduces the system to a
block upper Hessenberg form by means of orthogonal state coordinate transformations. However,
the method in [15,17] are not straightforward extensions of the method in [7] and in fact it can be
shown that they can lead to floating point overflows or underflows. The algorithms in [19,20] are
based on the reduction of the system state matrix to RSF by means of orthogonal state coordinate
transformations. If the eigenvalue problem of the state matrix of an open-loop system is ill-
conditioned [5,6}, the RSF (and hence the computed eigenvalues) obtained can be inaccurate. If
the feedback gains are computed using inaccurate values of the open-loop eigenvalues, then on
applying feedback, the closed-loop poles can be far from the desired ones. This is, therefore a

weak point of this and other algorithms that require knowledge of the open-loop eigenvalues.

Numerically, the EVA problem can be solved using an accurate and efficient approach
developed by Patel and Misra [1]. This algorithm can be regarded as the converse of the impli-
citly QR algorithm for eigenvalue determination. A double step implicit shift is applied to assign

two real eigenvalues or a c-c pair of eigenvalues using only real arithmetic.

In computing the eigenvalues of a matrix using the QR algorithm, the shifts converge to the

true eigenvalue while in the EVA problem, the shifts are known, being the desired closed-loop
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eigenvalues which are denoted by A = (A, A,, .. ., A,). The basic idea of Patel and Misra's
algorithm is to use constant state feedback to modify the given state matrix so that it has eigen-

values corresponding to a specified shift.

For sake of completeness, we shall briefly describe this algorithm (denoted by Algorithm

2.1) for assigning the poles of a controllable single-input system (A, b):
Algorithm 2.1: (EVA by Constant State Feedback)

(i) Reduce the pair (A, b) to UHF (F,g) = (TTAT , TTb ), by applying an orthogonal state
coordinate transformation T; F and g have the structure shown in (2.1.2) and (2.1.3) respec-

tively, and the matrix F is an unreduced upper Hessenberg matrix.

Comment: Note that, from the structure of F and g it is clear that the pair (F, g) is controllable
if and only if (4, b) is a controllable pair. Also, the eigenvalues of F are the same as the eigen-

values of A. We can therefore assign the eigenvalues of A by carrying out EVA for the pair
F, ).

(ii) Determine a constant state feedback l-(x e R" by using the implicitly shifted algorithm of

Patel and Misra [1] such that the unreduced upper Hessenberg matrix

has all its eigenvalues at desired locations in the complex plane. The desired locations in the

complex plane, l‘. ,i=1,2,..., nare assumed to be arranged such that the two terms of every

c-c pair of eigenvalues appear consecutively.

Comment: Since l-cx is the state feedback vector in the coordinate system (F, g ), we can write
k, =k T"

Also, it can be easily shown that if F is an unreduced upper Hessenberg matrix, then

F-gk =TT (A-bk)T
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For more details conceming the algorithm and its implementation, the interested reader is

referred to [1,3,8]. The algorithm will be illustrated by a numerical example in Section 2.4.

2.3 ALGORITHMS FOR EIGENVALUE ASSIGNMENT BY OUTPUT FEEDBACK

In this section, we will present algorithms for eigenvalue assignment by constant as well as
dynamic output feedback. In computing the constant output feedback, use is made of the fact that
the closed-loop eigenvalues can "almost" always be assigned arbitrarily close to desired loca-
tions in the complex plane, provided the system satisfies the condition m + I >n, where m, l
and n are respectively, the number of inputs, outputs, and states of the system. We then extend
the results to systems which do not meet this condition for arbitrary EVA and, therefore, require
dynamic output feedback. This can be done by converting the dynamic output feedback problem
10 a constant gain output feedback problem for the augmented system. This approach is numeri-
cally reliable but it may result in an unstable dynamic compensator which is clearly undesirable.
In order to overcome this drawback, we design dynamic output feedback with prespecified poles

by developing a new algorithm which is an improvement over Seraji’s method [4].

2.3.1 Algorithm for EVA by Constant Gain Output Feedback

Consider a linear time-invariant multivariable system described by its state-space equations
x()=Ax(@)+Bu() (2.3.1a)

y@)=Cx() (2.3.1b)

wherex(t)e R" ,u(t)e R™ andy(r) € R'. We assume that (4, B, C) is a controliable
and observable system. It is desired to compute a constant gain output feedback Kp € IR"'XI
defined by the feedback law

u()=v@)-K,y@) (232

such that the resulting closed-loop state matrix
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Ay=A-BK,C (2:3.3)

has a desired set of eigenvalues. We shall assume that the desired locations are such that they can
be achieved by finite output feedback matrix. In eqn.(2.3.3), if the matrix C is an identity matrix
of order n, then the problem is reduced to that of EVA by means of state feedback for multi-input
systems. Notc that, Algorithm 2.1 for EVA in single-input systems considered in the previous
section has also been extended in {1,3) to treat the multi-input case. Eigenvalue assignment by

constant output feedback may, therefore be regarded as a general case.

In a controllable and observable single-input system with / outputs, we can always assign [
closed-loop eigenvalues at almost any desired locations in the complex plane by means of finite

constant gain output feedback, e.g., see [10] and [12].

For EVA by means of constant output feedback, considerable theoretical work has been
done and several numerical algorithms are available in the literature. However, many of them are
not based on sound numerical analysis principles and thercfore their numerical reliability is ques-
tionable. The algorithms presented in [9,10,12,21] require the system to be in companion or other
canonical form. Such algorithms will invariably incur numerical difficulties because the reduc-
tion of system (A, B, C) to a canonical form is a numerically ill-conditioned problem. Algo-
rithms that use the transfer function: matrix [9,10,12,21] of the given system will be sensitive to
perturbations in the coefficients of the numerator and denominator polynomials of the transfer

function matrix.

In order to overcome the drawbacks of the above mentioned methods, the algorithm
described in [2,3] was developed. It avoids the use of potentially unstable transformation. This
algorithm, which we shall call Algorithm 2.2, uses only orthogonal (numerically stable) state
coordinate transformations together with constant output feedback to assign the closed-loop
eigenvalues arbitrarily close to desired locations in the complex plane. The problem of EVA
using constant output feedback considered in this algorithm (as that using state feedback) is
treated as the converse of the algebraic eigenvalue problem, the underlying principle being the

QR decomposition of a matrix and the use of implicit shifts.
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In order to achieve EVA for a set of desired locations which we denote by

|+ We reduce the problem to a two single-input EVA problems: the first to

A= [xl,xz,...,x

assign /-1 eigenvalues and the second to assign the remaining n—I+1 eigenvalues while
preserving the /-1 previously assigned ones. This algorithm is similar to the two step procedure
in [22). We assume that the given system is controllable from any one input, and that if the sys-
tem is not controllable from one of the inputs, then, we can use a randomly generated matrix
K e R™ and column vector d e R™ 10 get a controllable single-input system
(A-BK_C,B¢.). It can be shown that this singlc-input system will "almost always" be controll-
able. The effect of X is to make the resulting closed-loop state matrix cyclic, so that if A is
already cyclic, then K, can be chosen as the null matrix. For a controllable pair (A, B) with A
cyclic, it can be shown that almost any linear combination of the inputs (via the vector dr) will
result in a controllable pair (4, Bd, ). Having done that, we can easily reduced the EVA problem
to two single-input multi-output EVA problems. The first EVA problem is to assign /-1 eigen-
values and the second 1o assign the remaining n—I +1 eigenvalues while preserving the /-1 pre-
viously assigned eigenvalues. The design philosophy of the algorithm for EVA in a single-input,
[ -output system is based on using only orthogonal similarity transformations together with output
feedback gains to assign the desired eigenvalues. Therefore the algorithm has good numerical
properties.

Now, for the sake of completeness, we will describe this algorithm considering a controll-
able and observable triple (4, B, C) defining the state equation of a general multi-input multi-
output system. We assume that m+!>n so that arbitrary EVA can almost always be achieved

using constant output feedback.
Algorithm 2.2: (EVA by Constant Output Feedback)
Step I: (Assign the first [ -1 eigenvalues)

(i) Obtain a controllable single-input system (A, b, C), whereb = Bd 1
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Commen: The vector d, can be generated randomly or chosen as described above. If the matrix
is not cyclic, then a randomly generated output feedback K, should be applied to make the

resulting state matrix cyclic.

(ii) Reduce the single-input system (A, b, C) to UHF and compute the constant gain output
feedback using implicit shifts, to assign /-1 eigenvalues to desired locations in the complex
plane. In terms of the system (4, B, C), the constant output feedback afier this step is
K, =dk,, where k is the cutput feedback row vector required to assign the desired /-1
eigenvalues for the single-input system (A, b, C). The compensated system (4,_;, B,_,, C;_,),
will then be in block upper triangular form, where A;_, = (A-BK,C’) is the state matrix of the

system.

Step I: (Assign the Remaining Eigenvalues)

(i) Form the dual system, i.e. set F = (A ,_I)T, G= (C,_I)T ,and H = (B,_I)T. Then partition

[:11 0
FA
2 Fp

(ii) Determine d, € IRI such that G ,d, = 0 and G,d,= 0. If (F,,, G,) is a controllable pair

F,G, andH as

G,

6ol | Ha=[H, by

Gy

go to Step II-(iii), ELSE change A and go to Step I.

(iii) Reduce the system (F,,, G,d,, H,) to UHF and compute the constant output feedback
using implicit shifts to assign n—/+1 eigenvalues for the single-input system (F,,, G,d,, H,).
At the end of this step, we get a constant gain output feedback K, = dk, which preserves the
-1 eigenvalues assigned in the first step and assigns the remaining n -/ +1 eigenvalues, where

K , is the constant output feedback vector of the system (F ,, G ,d ,, H ).

(iv) The constant gain output feedback required to position all n eigenvalues for the given sys-

tem (A, B, C) is then given by
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T
KP=I(,+K1+K2

where K can be set equal to the mx! null matrix if the state matrix of the given system is

cyclic. Note that X , is transposed because we used the dual system in the second step.

For more details about the implementation of this algorithm and the development of various

shift strategies, see [2,3]. Algorithm 2.2 is illustrated by a numerical example in Section 2.4,

2.3.2 Algorithms for EVA by Dynamic Output Feedback

Consider a system described by eqns.(2.3.1), and the case when the conditionm + ! > n is
not satisfied. It is required to compute a dynamic output compensator such that the poles of the

closed-loop system can be positioned arbitrarily close to desired locations in the complex plane.

The problem of designing a dynamic output feedback compensator for pole placement in
linear multivariable systems has been considered by several researchers [23-28]. Brasch and

Pearson [24] developed a state-space method to solve the problem by using a dynamic compensa-

tor of order r = min [(rc—l), (ro-l)], where r,_ and r, are the controllability and observabil-

ity indices of the system. This represents only an upper bound on the compensator order required
for placement of all closed-loop poles. Ahmari and Vacroux [23] have generalized this result to
the case of fixed-order compensators. They obtain a lower bound on the number of poles that can

be placed arbitrarily for a given order of the compensator.

Other methods developed by Chen and Hsu [25], Patel [27] and Seraji [28] used frequency
domain solutions to this problem. The structure of the dynamic compensator considered by these
authors is restrictive in that a unity-rank constraint is imposed on the compensator transfer func-
tion matrix at the outset. This, in effect, transforms the multi-input, multi-output system to a
single-input or a single-output system and thus considerably simplifies the design problem. On
the other hand, the unity-rank structure reduces the number of adjustable parameters in the com-
pensator, and consequently results in a compensator of higher order than would otherwise be

necessary.



25

Recently, Misra and Patel [2], develop an accurate and efficient algorithm for computing
non-unity rank dynamic compensators to achieve eigenvalue assignment in multivariable sys-
tems. Analytically, this algorithm is based on reducing the problem of dynamic output feedback
to that of EVA by constant output feedback for an augmented system. We consider a controllable
and observable linear multivariable system described by eqns.(2.3.1a,b) with a cyclic state feed-
back matrix A . We define the dynamic output feedback compensator for EVA by

u@)=v@®)-Hz(@)-Jy@) (2.3.52)

Z2)=Fz()+ G y@t) (2.3.5b)
wherez(¢) € R andv() = R™ and r is the order of the dynamic compensator that assigns
all the eigenvalues of the resulting closed-loop system arbitrarily close to n + r desired loca-
tions.

We now find the sta'e equation of the ¢ ympensated closed-loop system consisting of the

system in eqns.(2.3.1a,b) and the compensator in eqns.(2.3.5a,b) as

[x'(t)] A - BJC -BH x\t)] [B]
= 2.3.6
20) cc Fllzy]t lo]'? (2.3.62)
[x (t)
y@)= [C 0] 2() (2.3.6b)
The closed-loop state matrix is given by
A -BJC -BH
4a=| 6c F
and can be written as
[AO] [B 0][s H co}
= - 37
At 0Y 011G F-rjlo 1 @3.7)

n37NY e R " is selected such that all its eigenvalues are distinct and different from those




26

of A and the transmission zeros of (A, Bd, C) where d, is chosen as discussed in section
2.3.1. From (2.3.7), we note that the same closed-loop state matrix would result if we were to

apply constant gain output feedback.

J H

GF—Yg

p=v-

to the system (/f , B . ¢ ), where

A=l vl B=lo-r)¢= Lo

It should be noted that the matrices H,J, G, Y, and F define the required dynamic output feed-
back completely. The order of the dynamic compensator (r) can be determined such that

m+l+2r > n+r ,ie,r >n-m-l.

From the above result, it is clear that the dynamic compensator design problem is thus
reduced to an equivalent constant output feedback design problem and Algorithm 2.2 considered
in Section 2.2.1 can now be applied to a higher order system. The resulting algorithm which we

shall call Algorithm 2.3, can be summarized as follows:
Algorithm 2.3: (EVA using Dynamic Output Feedback)

(i) For a controllable and observable system (A, B, C) with a cyclic state matrix A, to design a
dynamic compensator (F, G, H,J), we first form the auxiliary system A,B,C) by selecting

Y such that its eigenvalues are distinct and different from those of A.

Comment: For the case when A is not cyclic, so that the given system is not controllable from
one input or a linear combinations of inputs, we can use the procedure discussed in Section 2.2.1,

tomake (A — 8K C, Bd,, C) controllable with cyclic state matrix (A -BK.C).

(ii) Select the vector d e R™ such that (4, Bd) is a controllable pair. The vector d has the
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form [aIT, &f]’ where &1 and &2 are chosen such that ( A ,Bal) and (Y, -&2 ) are con-
trollable pairs.

Comments: From the structure of d and ¥, we can easily find the vector d such that (4, 8 &) is
a controllable pair. Since the matrix Y can be selected such that its eigenvalues are distinct and
different from those of A, then A will be cyclic if A is cyclic. Then the pair (A, Bd) will be
controllable if (A, B d ) is controllable. The structure of C ensures that (/f , ¢ ) is an observable

pairif (A, C) is an observable pair.

(iif) Apply Algorithm 2.2 to accomplish the EVA for (4, B, C) and get the matrices H,J, G

and F that define the required dynamic output feedback.

This Algorithm is numerically reliable but it may result in an unstable dynamic compensator

which is cl~arly undesirable in practical systems.

Another method, presented by Seraji [4], uses a transfer function approach for the design of
non-unity rank dynamic compensators to achieve eigenvalue assignment in multivariable sys-
tems. The compensator constructed by this method is a sum of a constant output feedback and a

unity-rank dynamic output feedback i.e.
Gr(s)=Kc +kg(s) (2.3.8)

The constant output feedback K € lRmx, is applied initially to assign a number of poles at
desired locations. The unity-rank dynamic compensator k g (s ), where k and g (s ) are m x1 and
11 vectors, is applied subsequently such that the assigned poles are preserved and a number of
additional poles are placed at desired positions. By this method, the resulting dynamic compensa-
tor required for arbitrary placement of all closed-loop eigenvalues has lower order given by
Fmin = [(n ~m=[+1)/max(i,m) ] This technique reduces the state matrix of the system to a
"companion" form and then determines the required output feedback (constant and unity-rank
compensator) by comparing the coefficients of the characteristic polynomials of the open and the
augmented closed-loop systems. However, for the case when the roots of the open-loop charac-

teristic polynomial are sensitive to perturbations in its coefficients, this approach is numerically
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unreliable and may lead to unsatisfactory performance. Also the transfer function approach can
lead to numerical difficulties, especially when the given system description is in state-space form,
and therefore has to be converted 10 its transfer function form. In this method, all parameters of
the compensator including the coefficients of its characteristic polynomial which determine its
stability are calculated so as to position the remaining n + r~I+1 eigenvalues of the augmented
system at desired locations. This design procedure has no restrictions imposed on it to ensure the
stability of the compensator. It is therefore possible that a compensator which achieves arbitrary

pole placement in the closed-loop system is unstable, although the resulting system is stable.

In order 10 case the above mentioned difficulties, we will present a new algorithm for the
more accurate calculation of the dynamic output feedback compensator G, (s ) parameters with
prespecified poles having the same structure as that given by Seraji [4], such that the resulted
closed-loop poles can be positioned arbitrarily close to desired locations in the complex plane.
The proposed algorithm is camied out in two step methods: In the first step, we improve the
numerical performance of Seraji’s method [4] for computing the constant output feedback by
applying Algorithm 2.2 to a single-input system and assigning {—1 eigenvalues. in the second
step, the assigned /-1 poles are preserved by reducing the multivariable system to a partially
uncontrollable single-input system, and a number of additional poles (n+r—I+1) poles are
placed by designing unity-rank dynamic output feedback having prespeci fied poles. The preser-
vation of the poles is achieved by using the fact that in a multivariable system with distinct poles,
the numerator of the transfer function matrix has a unity-rank at the system poles. The approach

used for computing a unity-rank dynamic compensator with prespecified poles is carried out

entirely in the frequency domain using the approach developed by Patel [27]. The ke step in the
design is the formation of a set of linear equations relating the parameters of the compensator to
the desired closed-loop characteristic polynomial. By this method, the designer has complete
freedom in the choice of the compensator poles and uses only the numerator parameters of the
compensator transfer function to assign the remaining poles of the augmented system. Thus, by

using this approach for assigning all the closed-loop poles at desired locations, we can ensure
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that the required dynamic output feedback compensator is stable.

We now describe the algorithm to solve the EVA problem by means of a non-unity rank

dynamic output feedback compensator with prespecified poles.
Algorithm 2.4: (EVA using Dynamic Output Feedback Compensator with Prespecified Poles)

Step I: (Assign the first -1 eigenvalues)

In this step, the unity-rank m X/ constant output feedback matrix K, = pq, where p and
q are mXx1 and 1xI/ vectors respectively, is determined so as to place /-1 poles of the system
(A, B, C) at distinct specified locations denoted by A,, A,, ...,A,_,. The matrix A is either
cyclic or is made cyclic by an initial application of an arbitrary output feedback matrix as dis-
cussed before in Section 2.2, and the matrices B and C have full rank m and ! respectively. The
vector p is specified arbitrarily such that the resulting single-input system (A,Bp, C) is con-
trollable and observable. We shall assume without any loss of generality that the triple (A, b, C)
is in UHF, where b = B p. Moreover, since the pair (A, b) is controllable, the state matrix A is
an unreduced upper Hessenberg matrix. The problem of EVA by means of constant output feed-

. . 1 .
back is to determine a vector q € IR~ such that the closed-loop state matrix

A=A -bqC 2.3.9)

has /-1 eigenvalues at desired locations in the complex plane. The vector ¢ can be computed by
applying Algorithm 2.2. At the end of this step, the resulting closed-loop system is (A, B, C),

where A, has /=1 polesat A, A,, .. ., A,

Comment: Note that the feedback matrix K_ is not unique since p is specified arbitrarily such

that the pair (A, B p) is controllable.

Step II: (Assign the Remaining Eigenvalues)

In this step, the unity rank mx/ dynamic compensator GC (s)=kg(s) is applied to the

system (A |, B, C), where k ismX1 constant vector and
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B(s) ﬁr Sr+ﬂr_1sr-l+...+ ﬁO

(2.3.10)
afs) s +a,_ls'-l+...+a0

is a 1x! rational function vector of degree r. This structure for Gc(s) effectively reduces the mul-
tivariab!l problem to the design of the compensator g(s) for the single-input system

(A, Bk, C), and results in the closed-loop characteristic polynomial given by [4]

HE)=D(s)als) + Bis)w(s) 2.3.11)
where,

D(s) = det [sl -—Al} =s" + dn__]s"'l +...+d,

w(s)=W(sk = w“—ls"'1 + Wn_zs'"2 +...+W,
and

W) =Cadj [s-4,]B

The vector Kk is used to preserve the /-1 poles of (4, B, C)at A}, A, .. ., A,_; in the closed-
loop system. In order to preserve the poles at Ay, Ay, ..., A, imespective of g(s), from

eqn.(2.3.11), we require [4]

WAk =0 i=12,..,1-1 (2.3.12)

since the matrices adj (7»‘.] —-A)). fori =1,2,...,1-1, have rank one [4], each W(?\.,-) con-
tains only one independent row, denoted by @, . Thus the vector k is found from the -1 linear
equations

ok =0 i=12..,1-1 (2.3.13)
It is noted that the required k makes the single-input system (4, Bk, C) partially uncontroll-
able through pole-zero cancellations at s = A,,,,..,A,_; in the transfer function vector
W(s) K" (s),and subsequently the uncontrollable poles remain invariant under the compensa-
tor g(s). Once k is found, the number of closed-loop poles in the single-input system

(4,,Bk, C) that can be placed arbitrarily by the rth order compensator g (s ) is given by [4,27]
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v =1+ rank {RCT [cT,AlcT, e (AIT)'CT] ] (2.3.14)

where R_ = rank [Bk,AlBk, e ,AI"'IBk ] is the controllability matrix of the partially

uncontrollable single-input system (A ,, BK, C) and has rank = (n~/+1) [27].

If we select r such that
rank [CT,AICT, s (A,T)’CT] =n-1+1
Then, the closed-loop poles that can be assigned by an rth order compensator is
v,=r+n- l+1
From eqn.(2.3.11), the closed-loop characteristic polynomial can be factored as

-1
H(s - l‘)

i=]

H(s)

H(s)

-1
H(s - X,)

i=]

[D‘ (s)ous) + B(s)w (s)] (2.3.15)

with
. D(s)
-1
H(S = ;\-,)
i=1

and

~

w(s)
O

H(S"}‘-,')

i=1
where H (s), D(s) and W(s) are polynomials because ll, Az, e n )"1-1 are roots of H (s ). Thus,

the part of the closed-loop characteristic polynomial which is affected by the dynamic unity-rank
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compensator is
H(s)=D(s)a(s)+ B(s) w(s) (2:3.16)
and has a degree v, = [n+r-l+}].
Now, in order to place v, additional closed-loop poles at the desired locations

Apres A

v,+1-1 Using only the numerator parameters of the compensator transfer function g ()

we need to solve eqn.(2.3.16) for B(z). The solution of eqn.(2.3.16) can be obtained by following
the procedure developed by Patel [27]:

Eqgn.(2.3.16) can be written as

H(s)=o(s)D(s) + B(s) W(s) 2.3.17)
Note that, H (s) is a polynomial of degree v +r, where H = n—I +1, and can be written as

H(s)= k., PLAL s hg (2.3.18)

n4r-1
Similarly, we write D (s ) and W (s ) as

D(s)=s"+d. s"'+...+d
n-1 0

A = 3 d +..‘+ A'
Wis)=w, s +W. s W,

To find the solution of (2.3.17), we first express it as a set of linear equations in terms of the
coefficients of the numerator and denominator polynomials of g (s ). Equating coefficients of like

powers of s on both sides of (2.3.17) yields the set of linear equations

®E=h (2.3.19)

where @ is a matrix constructed from the coefficients of D (s ) and W (s ), the vector € contains
the unknown coefficients of o(s) and B(s) defining g(s), and the vector h contains the
coefficients of the polynomial vector H (5) together with the coefficients of the difference of the
polynomials H (s) and D (s). The elements of ®,& and h are shown explicitly in (2.3.20) for

the case where a dynamic feedback compensator of degree r is used.
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In (2.3.20), O is 1x/ null vector and L is the »'x/ matrix formed from the coefficients of the
polynomial vector W (s) as

'

Note that the matrix @ inegn.(2.3.19) is an [(;1 +r)x [r +1 (r+1)] ] matrix. Hence for

(2.3.19) to have a solution for € for any value of the vector h we require that rank (@) = i+r

which also implies that [r +I(r+1) ] 2hH+r.
If the matrix @ is square and of full rank, (2.3.19) has a unique solution for £ given by

E=q7h 2321)

However, in general @ is a rectangular matrix with more columns than rows and if it has full
rank, then eqn.(2.3.19) has an infinite number of exact solutions for . This implies that there
exists an infinite number of unity-rank compensators with the same order, which achieve arbi-

trary EVA,

Using the concept of amatrix pseudo-inverse, the general “exact” solution of (2.3.20) is

given by [29]

E=@'h + ([-07dD)z 2.322)

where the [r+l(r+l)xn‘ +r] matrix ®" is a pseudo inverse of ¢ and z is an arbitrary

[r+l (r+l)] column vector, Since @ has a full rank, &7 is given by O = <I>T(<N>T)"l .
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Solving (2.3.20) for any desired H (s) results in a dynamic compensator g (s) i.e. both (s ) and

B(s) are found to achieve arbitrary eigenvalue assignment.

In order to ensure that the required dynamic compensator is stable and its poles are at
prespecified locations, we use only the numerator polynomial vector of the compensator to assign

the poles of the augmented system. Eqn.(2.3.22) can be written in the form

a 1 S,
o[- [ -

ie

a=T h+S,z (2324)
and

B=T,h+S,2 (2.3.25)
where

T r [T N

G = [aoal...a,_l] B = [Boﬂz“'ﬂr] |r, =Q

and

E:] = [l-cb*cb]

The poles of the compensator can be specified through the coefficients o, @y, ..., &, _, of the
denominator polynomial (s ) of the compensator. Therefore, from eqn.(2.3.24), we can obtain a

set of r equations in the elements of the vector Z as
Sz=(&-T,h) (23.26)
A necessary and sufficient condition for (2.3.26) to be consistent [29] is that
$,8,7(&~T h)=6&-Th (23.27)

where § 1+ is a pseudo inverse of S 1+ When the condition in (2.3.27) is satisfied, the solution of
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(2.3.26)is given by [29]
2o=8," (&~T h)+(1-5S,)n (2.328)

where T is an arbitrary [r +l(r+1) ] column vector. All the solutions given by (2.3.28) achieve
the desired poles for the compensator. For simplicity, we choose the solution corresponding to
1 = 0 . This gives

zy=5,"(&-T,h) (2.329)
Then the numerator dynamics of the resulting compensator are given by

ﬁ =T,h +S,2,
=T,h+5,8 (&-T,h) (2.3.30)

ie
Therefore, all parameters of the compensator including the coefficients of its characteristic poly-
nomial & which determine its stability are determined so as to position v, poles of the aug-

mented system at desired locations.

The compensator required for eigenvalue assignment in the multivariable system

(A, B, C)isthen given by

G,(s)=K +kg(s)

K, +kB)s" + (@K, +kB,_)s " +...+ (@K, +kBy

r r-1
5 +a,_1s +...+(l0

(2.3.31)

and the matrix G ¢ (5) has rank >1. The total number of closea-loop poles that can be assigned

arbitrarily by means of G (s ) is {4]

p=(I-1)+r + rank chT [CT,A,TCT, - (AIT)'CT] } (2332)
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We note that, from [9,30] that
rank [CT, arct,....alyc’ ] = rank [CT, ATcT, . ,aTycT ]
Then from (2.3.32) by using Sylvester’s inequality we obtain [4]

A+r<p<y=1+r (2.333)
where

Y=1+ min(A, n-l+1)
and

A = rank [CT,ATCT, o ,(AT)’CT]

Eqn.(2.3.33) gives bounds on the number of poles that can be assigned by an rth order compen-

sator using this method.

Finally, the lowest order of the compensator for arbitrary placement of all n +r closed-loop

poles by this method is given [4] by

Y in = min r | rank

RT [CT,AITCT,...,(AIT)'CT” = n-l+1  (2334)

From (2.3.34), a lower bound r; and an upperbound 7, onr . are given by

-

r; = minr| rank .CT,ATCT, ey (AT)rCT] =n-l+1

[
r, =minr| rank CT,ATCT,....,(AT)rCT] =n

=(r,~1)
where 7 is the observability index of the system (A, B, C). Hence the minimum order of the

compensator is bounded by
rpsro <@, -1)

From (2.3.34), it follow that r; 2 (n-m -l +1)/l.
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A few remarks are now required in order to clarify certain points regarding the implementa-

tion and properties of the proposed algorithm,

Remark 2.1: When m 2 1, by considering the dual system (A IT, CT,BT). we can show that
the upper bound on the minimum degree of compensator required to achieve arbitrary pole place-
ment in the single-input system (A IT, C Tk , BT) is equal to r,~1 wherer_ is the controllability

index of (AI,B) and is defined as the smallest integer r such that the rank
[B,AIB yeon A;B] =n . Hence we get the result obtained by Brasch and Pearson [24] that

for a controllable and observable multivariable system (AI,B, C) a compensator of degree

r =min [(r .~ 1) (r=1) ] is sufficient to achieve arbitrary pole placement. In general, the value

of r . obtained using this method is smaller than min [(ro—l), (r.-1) ] and is bound by

rySre. < min [(ro -, (. - l)]

A Jower bound 7, is given by (r, 2 (n —m~I1+1)/m).

Remark 2.2: The results of step two depends on the fact that the condition of eqn.(2.3.27) must
be satisfied in order for eqn.(2.3.26) to have a solution for z. It may be observed that when the
matrix S 1 has full (row) rank, say ¥ (2r,)), the condition of eqn.(2.3.27) is satisficd and therefore,
in this particular case, we can specify all the poles of the compensator arbitrarily in addition to
the poles of the closed-loop system using a compensator of order r. If for some chosen compen-
sator order 7, the matrix §; does not have full rank, then the condition of eqn.(2.3.27) may not be
satisfied, in which case it would be necessary to use a compensator of order > 7. This may then
provide the extra degree of freedom required to assign all the compensator poles in addition to
those of the closed-loop system. It is useful to note that the only constraint on r for arbitrary
closed-loop pole assignment is that the matrix & in (2.3.19) has full rank #'+r, and this con-

straint is satisfied forallr 2 r.

Remark 2.3: The method for computing the unity-rank dynamic compensator considered in the
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second step uses the transfer function matrix of the system (4 ,, B, C). Computation of a transfer
function matrix from a state-space description is a potential source of numarical rounding errors.
There are a number of good numerical methods available for computing transfer function
matrices from state-space description [31). The computation of the dynamic compensator via the
characteristic polynomials approach may cause more serious numerical difficulties resulting in
unsatisfactory performance of the algorithm, especially for high order systems or systems with
badly conditioned data. However, *ve had to resort to this approach to assign the poles of the
compensator in addition to the overall closed-loop poles. To our knowledge, solving this problem

in a numerically reliable way remains an unsolved problem. .

2.4 NUMERICAL EXAMPLES

In this section, we illustrate the performance of the algorithms described in this chapter by
means of some numerical examples. The computations were performed on a VAX 11/780 . The
desired closed-loop eigenvalues have been selected for the purpose of illustration and perfor-

mance evaluation of the algorithms and not to meet any specific design criteria.

Example 2.1: This example illustrates the use of Algorithm 2.1 for EVA by means of state feed-

back. The system considered is a 5¢th -order model given in [32}):

P—0.1094 0.0628 00 00 0.0 . [ 0.0 0.0 1
1.306 -2.132 09807 0.0 0.0 0.0632 0.0
x(t)=| 00 1595 -3.149 1547 0.0 [x(t)+ {0.0838 —0.1396 {u(t)
00 00355 2632 -4.257 1855 0.1004 -0.206
00 0.00227 0.0 0.1636 —-0.6125 ] _0.063 -0.0128 ]

(2.4.1)

It is required to assign the eigenvalues by using either of the two inputs, such that the closed-loop

poles are positioned at -0.2, -0.5 , -1.0 and -1.0 £ j . Note that, the system in eqn.(2.4.1) is
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controllable with respect to both inputs separately, and the state matrix A is cyclic.

In solving the EVA problem with respect to each input by applying Algorithm 2.1, we need
to find the constant state feedback vector k: ', i = 1,2 10 modify the given state matrix, so that
A, =A-b ‘.k: ' has the desired eigenvalues. The corresponding state feedback gains obtained

by Algorithm 2.1 are as follows

u
kx'= [74.5894 -200.9530 282.6692 ~177.2991 40.234]

and
u
kx2= [—23.0594 76.601-170.8379 150.7487 —50.4210]

Example 2.2 : This example illustrates the use of Algorithm 2.2 for EVA by constant gain output

feedback. The example is a linearized model of the 5tk -order double-effect evaporator model

given in [32):
- - . -
00 -0.00156 00 00 00 00 -0.143 0.0
00 -0.1419 0.1711 =20 =~10 0.0 0.0 0.0

x(t)= {00 -000875 —1.102 0.0 00 {x@)+ [0392 00 0.0 ju()

0.0 -0.00128 —-0.1489 0.0 0.00013 00 0.108 -0.592
0.0 0.0605 0.1489 0.0 -0.059 0.0 -0.0486 0.0
(2.4.2a)
]
10000
yt)= ({0100 0|x(t) (2.4.2b)
00001

It is required to assign the closed-loop eigenvalues at -50 + j10, -9.0, -8.0 and -7.0. Note that, the

system in eqns.(2.4.2a,b) is controllable and observable withA a cyclic matrix,
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By assigning the first /-1 (=2) poles at -50 £ j10, using Step I in Algorithm 2.2, we
obtained a constant gain output feedback matrix K, as given in Table 2.1a.

In order to preserve these poles and further assign the remaining poles at -9.0, -8.0 and -7.0,
we require a constant gain output feedback matrix K g, to be computed using Step II. This was
obtained as in Table 2.1b. Thus, the constant gain output feedback K, = K ,+K required for

EVA is given in Table 2.1c, and the closed-loop poles are obtained as desired.

Example 2.3 : We have selected this example to illustrate Algorithms 2.3 and 2.4 for EVA by
means of dynamic output feedback. The system being considered is an unstable 5th-order model

given by the following state space equations [4]

blood ’of
00100 00
x()=100010]|x@)+ [00|u() (2.4.3a)
00001 00
10000] 10]
10000
y=[00100]x 2430

It is required to design a dynamic compensator of minimum order to place the closed-loop poles
arbitrarily, forexample at-1,-1,-2and -1j.

In order to solve the EVA problem by applying Algorithm 2.3, we need to design a
dynamic output feedback of order two. This compensator can be computed by the augmented
system (A‘ ) B, ¢ ) and by selecting a matrix Y € R with its eigenvalues located at 4.0 and
-5.0, respectively . Then, we applied Algorithm 2.2 to accomplish EVA in the augmented system

(/: ,ﬁ,C’ ), and get the constant gain output feedback matrix lfp. The constant matrix
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J H

K =
G F

P

] defines the parameters of the dynamic compensator and is given in Table 22.

This assigns all the closed-loop poles at the desired values as shown in Table 2.3.

To solve the EVA problem by Algorithm 2.4, so that the resulting dynamic output feedback
compensator is stable and to have prespecified poles , we need a dynamic output feedback of the
minimum order bounded by 1<r_. < 2 . In fact, if we use Algorithm 2.4, we require at least a
second-order compensator to assign all the poles of the closed-loop system at the desired values
in addition to the poles of the compensator e.g. at -1, -1. This compensator can be computed in

two steps as follows: In the first step, we assign one pole at -1, by computing a constant gain out-

10]
10

In the second step, we assign the remaining closed-loop poles and preserve the the one at -1, by

put feedback

K =

(4

computing a unity-rank dynamic compensator of degree two with prespecified poles located at (-

1, -1). This gives

| [-5057-2505+40 59057+ 1005 + 470
kg(s)=

(s + 102 L 50 s24+2505 -40 -59.052-100s—-47.0

Thus, the required dynamic output feedback compensator for the given system is

| [F4055-2305+50 59057+ 1005 + 470
G ()= —

s +1.0)2 L 60 s24270s =30 —59.05%-10.05 —47.0

and the closed-loop poles are positioned at desired locations.

2.5 CONCLUDING REMARKS

In this chapter, we have described four numerical algorithms for solving the EVA (pole

assignment) problem in linear multivariable systems. Algorithm 2.1 was used to solve the EVA
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problem for single-input, multi-output systems by means of state feedback. This algorithm has
good numerical properties which are similar to those of the implicitly shift QR algorithm for
eigenvalue determination. In the eigenvalue computation problem, the shifts converge to the true
eigenvalues while in the eigenvalue assignment problem, the shifts are known a priori, being the
desired closed-loop eigenvalues. The basic idea is to use constant state feedback to modify the
given state matrix so that it has an eigenvalue corresponding to the specified shift. The algorithm
uses only orthogonal transformations together with state feedback to assign the desired eigen-

values and is therefore numerically robust.

Algorithms 2.2 and 2.3 were used to solve the EVA problem by means of constant and
dynamic output feedback. The problem was treated by generalization of the state feedback EVA
problem. We have also proposed a new approach for EVA using dynamic output feedback com-
pensators (with lower order) which have prespecified poles. The design procedure of this
approach uses Algorithm 2.4 to compvte a dynamic compensator which has the same structure as
that used by Seraji [22). This algorithm is carried out into two step. In the first step, we assign
1-1 eigenvalues by means of constant output feedback using a numerical reliable algorithm
which is based on the QR decomposition of a matrix and implicit shifts. In the second step, we
preserve the previously assigned eigenvalues and assign additional (n +r—-I+1) eigenvalues
using unity-rank dynamic output feedback computed entircly in the frequency domain. The

minimum order (r_. ) of the resulting compensator required for arbitrary placement of the all

min

closed-loop poles is bounded by:

(n-m-l+1)max(I,m) < r_. < min [(ro-l),(rc—l)]

It was shown that the price paid for the prespecification of the dynamic compensator poles is a
reduction in the number of adjustable parameters of the unity-rank compensator. This may result
in higher order for the dynamic compensator. Also the use of a transfer function approach may
cause numerical difficulties due to the inherent ill-conditioning associated with working with

polynomials and transfer functions.




2.542312254408E +04 ~ 5.2933984621732E +06 5.9580875988278E +06
0.0 0.0 0.0
0.0 0.0 0.0

(a) Constant Output Feedback Matrix X,

- 3.2256195788E +11 - 6.7540483777E+08 7.7631373778E +08
- 8.5872336792E +02 - 1.7980605053E +00 2.0666984222E +00
4.1745699796E +03  8.7410331282E +00 - 1.0046987703E +01

(b) Constant Output Feedback matrix K 2T

- 3.2256193246E +11 - 6.8069823622E +08 7.8227182538£+08
- 8.5872336792E +02 - 1.7980605053E +00 2.0666984222E +00
4.1745699796E +03  8.7410331282E +00 - 1.0046987703E +01

(¢) Constant Output Feedback matrix Kp

Table 2.1 Constant output feedback matrices for Example 2.2.
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[— 3.1875E-01 - 4.8617E +oo]
= | 1.0776E+00 —-7.2430E +00

[1.7766E+01 5.837lE+00]
I = 143821E-01 - 1.1410E+00

[— 3.4827E +01 — 2.4889E +01 ]

G = |_ 296435401 —2.3826E 401
2.1806E +00 -2.4111£+00]
H = _ 39194601 - 1.4118E-01

Table 2.2. Parameters of the dynamic output feedback compensator for

Example 2.3.

Desired c¢-1 e.v.'s Computed c¢-l e.v.'s
1.0 +j -1.0000 = 1.0000 j
-1.0-j -1.0000 - 1.0000 j
-1.0 -1.0003 =+ 2.3858 E-7 j
-1.0 -1.0003 - 2.5858 E-7 §
-1.0 -1.0000 + 3.0449 E-4 J
-1.0 -1.0000 - 3.0449 E-4 |
-2.0 ~2.0000

Table 2.3 Desired and computed closed-loop eigenvalues for Example 23

T e
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CHAPTERIII

MULTIVARIABLE ZEROS AND THEIR PROPERTIES

This chapter provides a comprehensive treatment of the concepts of zeros in a linear mul-

tivariable system represented by a state-space model 3, [A ,B,C, D] (ory [A ,B,C ] , when

D =0). Various definitions and properties of zeros - decoupling zeros, transmission zeros, invari-
ant zeros, system zeros and blocking zeros are given, and the relationships between them are dis-
cussed. Then, the zeros of the "disturbance transfer function matrix" i.e. that relating the outputs
to the disturbances (called 'disturbance zeros’) of invertible system represented by a state-space

model ), (A, B, C,D,E,F] (or Yy, [A,B, C, E]) are defined. From these definitions, a
d d

systematic procedure is developed for computing the “disturbance blocking zeros’ of a large class
systems via the concept of minimal order system inverses. In Chapters IV and V, these results are
used to assign these disturbance blocking zeros at suitable locations in the complex plane, such

that the effect of a class of disturbances at the outputs is eliminated in the steady state.

The layout of the chapter is as follows. In Section 3.1 several types of zeros in multivari-
able system as discussed by various researchers, are summarized. A technique for factorizing the
disturbance transfer function matrices of state-space systems is described, and some of the pro-
perties of the factorization are presented in Section 3.2, while Section 3.3 shows the relationship
between disturbance blocking zero positions and rejection of disturbances at the outputs of the
system. Numerical examples to illustrate the main results of this chapter are given in Section 3.4,

and finally in Section 3.5, we discuss the results presented in this chapter.
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3.1 ZEROS OF MULTIVARIABLE SYSTEMS

The concept of zeros of a linear, time-invariant multivariable system, which are not neces-
sarily zeros of individual elements of the transfer function matrix, has received considerable
attention during the past two decades [1-9]. The significance of these zeros has been shown by
the important role they play in several aspects of control system theory and design, e.g. optimal
control {10], system responses [6,7], model matching [11-12], decoupling theory [3], convolution
coding [13], regulator synthesis [14] and disturbance rejection (15]. The occurrence of these
zeros can be thought of as a consequence of the structural nature of multi-input, multi-output sys-
tems. These zeros have been defined in several, mostly equivalent ways, by different researchers

(1-9].

3.1.1 Definition of Zeros

First, we recall the definition of the zeros of a system described by the state-space equa-

tions

x()=AX@)+B u() (3.1.12)
y)y=Cx@)+D u(@) (3.1.1b)

where x (1) € IR" is the vector of state variables, u(r) € IR™ is the vector of control inputs
(m<n), y(t)e R’ is the vector of outputs (/<n), and A,B,C and D are matrices of

appropriate dimensions withrank (C) =1 ,rank(B) = m and rank (D) = min(l, m).

The transfer function matrix relating the outputs to the control inputs is given by
-1
W, 6)=C [d,-A] B4D (3.1.2)

where /_ is nxn identity matrix.

The matrix

sl -A B
P(s) =

D (3.13)
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plays a key role in the study of the zeros associated with linear dynamical systems and is called
the system matrix [S].

The difference and the relationships between the two matrix-valued functions Wuo(s) and
P(s) can be summarized as follows: The matrix Wuo (s) gives a description of the way in which
the system appears to its environment, and can be thought of as an external description of the
system. The matrix P(s) exhibits the structure associated with the state-space model, and can be
thought of as internal description of the system. The matrix P(s ) is the one used most in studying
the way in which frequency response and state-space methods are inter-related. The matrix
Wuo(s) is a matrix-valued rational function of s whereas P(s) is a matrix-valued polynomial
function of s; this introduces important technical differences in the way in which the respective
matrices are handled. The matrix P(s ) conveys more information about the system than Wuo (s),
which represents only the controllable and observable subsystem [16] associated with the system
defined by eqn.(3.1.2). The difference between the two matrices results in a difference in the sets
of zeros defined via them. In general a larger set of zeros is defined via P(s ) than via Wuo (s)if

the system is controllable and observable, then t>th sets of zeros coincide.

There are in the current literature five important types of zeros of multivariable system.
They are defined as:
(i) Decoupling Zeros (2, ,Z_, ,Z, ) : For a system described by a system matrix P(s), the
input-decoupling zeros (Z;;) are the values of s for which the matrix [sln-A,B] is rank
deficient. The output-decoupling zeros (Z,,) are the values of s for which the matrix

[sl,l —AT, C T ] is rank deficient. The input output-decoupling zeros (Z; ;) are defined as those

values of s for which both [sln—A,B] and [sln—AT,CT] are rank deficient. Input-

decoupling zeros and output-decoupling zeros correspond to the uncontrollable and unobservable
modes respectively in the state-space description. They do not appear in the transfer function

matrix of the system. These zeros can be computed efficiently by reducing the system to block
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upper and lower Hessenberg forms [39).

(ii) Transmission Zeros (Z,) : These are defined in terms of Smith-McMillan form of the
transfer function matrix of the system [5,19-21]. A system described by an I Xm transfer function
matrix Wuo (s) can be transformed by unimodular transformations to its Smith-McMillan form

(5,19-21]M (s)ie.

M(s)=U(s)W, °(s)V(s)

diag {a‘.(s)/B‘-(s)]
= ,I>m
Ol—m.m
or
= diag [a‘.(s)/Bi(s)] J=m
or

= [diag la‘.(s)/Bi(s)] Olm_,} ,l<m

where @ (s ) and B‘. (s),i =1,2,...,min(/,;m) are relatively prime and o (s) divides a; ,,(s)

and B, ,(s) divides B, (s). In all cases, the transmission zeros of the system or of Wuo(s) are

i+
the roots of all the numerator polynomials 0., (s ). The roots of all the denominator polynomials
Bi (s) are the poles of the system. This method can be quite involved as far as determination of
transmission zeros is concemed, and a more direct approach via the minors of the transfer func-

tion matrix is proposed as an altemative by MacFarlane and Karcanias[16]. These transfer func-

tion based approaches are not recommented for computing transmission zeros.

(iii) Invariant Zeros (Z;) : For a system described by a system matrix P(s ), the invariant zeros
are defined as those (complex) values of s for which rank [P(s) ] <n+min(l, m). The invari-

ant zeros of general non-square systems comprise the transmission zeros and some of the
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decoupling zeros.

(iv) System Zeros (Z,) : This set consists of all the transmission and decoupling zeros of the
system. They are defined via a suitable set of minors of (s ), that includes the set used to define

the invariant zeros.

(v) Blocking Zeros (Z,) : A scalar A e C where A ¢ 6(A), is a "blocking zeros" (23] of the

system Y A,B,C,D],withA a cyclic matrix if
-1
¢ [v,-4) B+D=0

Ascaler A e C where A € o(4) is a Mocking zero of ¥, [A ,B,C,D ] with A a cyclic matrix
if
¢ adj (M, -4 8 =0

where adj (¢) denotes the adjoint of the matrix(e).

Some authors define zeros without the need to form the corresponding transfer function
matrix or calculate the McMillan form. Kouvaritakis and MacFarlane [24], use a geometric
state-space approach for square systems, Bengtsson [2] gives a more general formulation by con-
structing the characteristic polynomial of minimal order inverse using a geometric approach
while Desoer and Schulman[6], Wolovich [7] and Davison and Wang [9] define the zeros in
terms of frequencies at which Wuo (s) and P(s) lose rank. The definitions of zeros presented by
Desoer and Schulman [6) and Wolovich [7] are given in terms of a coprime matrix fraction
description of a matrix Wuo(s ), into the product of a polynomial matrix and the inverse of
another polynomial matrix.

Several researchers have developed methods for computing zeros - most rotably transmis-

sion zeros. The algorithm developed by Davison and Wang [9] for determining transmission

P T
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zeros is applicable for general linear, time-invariant, multivariable systems represented by state-
space equations. This algorithm has the advantage that it can deal with most types of systems.
However, it does not give invariant zeros which are not transmission zeros and, in its final stage,
the method involves the computation of eigenvalues of a matrix of dimensicn greater than the
order of the system. Sinswat et al [25] developed an algorithm in the state-space for computing
invariant zeros and transmission zeros of invertible systems with any number of inputs and out-
puts :hat has advantages over the Davison and Wang method [9]. In this algorithm the zeros are
obtained from the eigenvalues of a matrix, derived from the system matrix, of order not larger
than that of the system. In [26-29], the method of computing transmission zeros is equivalent tc
solving a "generalized eigenvalue problem" [30-33], for which the numerically reliable QZ algo-
rithm can be used [34-36). This approach is conceptually simple and is considerably superior
numerically to computing transmission zeros via the Smith-McMillan form. Finally, Emami and
Dooren [27) developed a complete computer package for computing various types of zcros of an
arbitrary state-space systems. This package is also applicable to non-square and/or degenerate
systems. The algorithm uscd by these authors is a modified version of Silverman’s structure algo-

rithm.
3.1.2 Relationship Between Various Zeros

The relationship between the different types of zeros in multivariable systems which we
have denoted by Z,,Z, ,Z,Z,,,Z , and Z, can be summarized as follows. Since ihe set of
decoupling zeros are cancelled by the poles associated with the uncontrollable and/or viobserv-
able modes, they do not appear as zeros in the transfer function matrix Wuo\., ). The set of
invariant zeros, defined via P(s), may differ from the set of transmission zeros, defined via
Wuo (s), by the presence of a sub-set of decoupling zeros. The set of system zeros differs from
the set of transmission zeros in that the former includes all the decoupling zeros of the system.
This corresponds to the situatior: *vhen the g'ven system is not controliable and/or observable.

When a system has more inputs than outputs, P(s) loses rank at an input-decoupling zero. In
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such circumstances the input-decoupling zero involved is also an invariant zero. If the system has
more outputs than inputs, then P(s) loses rank at an output-decoupling zero. In such cases the
output decoupling zero involved is also an invariant zero. When a system is controliable and
observable, the set of transmission zeros, define via Wuo (5), and the set of the invariant zeros,

defined via P(s), coincide.

The relationships between system zeros, invariant zeros and transmission zeros can be sum-
marized as:

2,2, ¢l

The relationship between blocking zeros and various zeros in a given state-space descrip-

tion of a multivariable system is given by Patel [23] as follows:

Let A € Z, , the set of blocking zeros of Y [A,B,C,D].Then

(a) Ae Z if A ¢ o(A)

(b)re Z, but A¢ Z if e Z,; and [<m
or he Z , and[2m

(c)heZ bm A¢Z ifreZ and] >m

orheZ ,andl<m

Note that (a) implies that every blocking zero of ), [A ,B,C,D ] which is not cancelled by an

eigenvalue of A is also a transmission zero of the system.

[

Gttt RN E M e
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3.1.3 Properties of Transmission Zeros
3.1.3.1 Structural properties

(i) Transmission zeros are unaffected by feedback, by non-singular cascade controllers (Davison
and Wang [9]) and under gu.dity.

(ii) For a square system, if the elements of an output feedback matrix are allowed to approach
infinite values, a number of closed-loop poles equal to the number of transmission zeros will
approach the locations of these zeros while the rest of the closed-loop poles will tend to infinity

(Kouvaritakis [4]).
3.1.3.2 Some properties in relation to the dynamic behaviour

(i) A system having one of its transmission zeros in the right half of the 5 -plane is difficult to con-
trol [2,5]. Such a system is said to be non-minimum phase in the multivariable sense.

@ii) If o is a transmission zero of the transfer function matrix W, ®(s), then there exists an m x1
vector B such that Wuo (ox) B = 06,16,38]. This means that if a system has a transmission zeros
at s=a , there exists a (complex) vector §#0, such that the system blocks transmission of an

input of the form P exp (o) in the steady state.

3.1.4 Disturbance Zeros

Let us now consider the system denoted by ¥, [A ,B,C,D,EF ] and having the form
d

X(@)=AXx@)+Bu()+Ed() (3.1.42)
y@)=Cx@)+Du@)+Fd@) (3.1.4b)

where d(t) € IR' is the vecior of some arbitrary disturbances acting on the system which may
or may not be measurable, and £ and F are constant matrices of appropriate dimensions, with
rank [E] = r and rank [F ] =min(/,r).1fD =0 and F = 0, the system in eqns.(3.1.4a,b) is

denoted by ¥ [A,B, C,E].
d
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The transfer matrix relating the outputs to the disturbances is given by

-1
W,°(s)=C [sln —A] E+F (3.15)

where /, is the nXn identity matrix.

We can define the zeros of Wd° (s) in an analogous way to the zeros of Wuo (s ). However,
the “transmission” zeros of W,’(s) (which we shall call 'disturbance zeros’ (d.z.'s)) are not
invariant under state feedback to control inputs. Thus, we can use this property to assign a subset
of these disturbance zeros - the "disturbance blocking zeros’ (d.b.z.’s) - to appropriate positions in
the complex plane, such that the effect of disturbances of the form B exp(cu ) for all 7 X1 vectors
B and scalars @, is rejected at the outputs in steady state. The choice of suitable positions for
these d.b.z.’s follows from their transmission properties which are analogous to transmission pro-

perties of transmission zeros [25]. This will be discussed further in Section 3.3.

In the next two sections, we will present a systematic procedure for computing the sets of

d.b.z.'s for the systems described by Y [A ,B,C,E ] and Y, [A ,B,C,D,E,F ] using the
d d

concept of minimal order right or left inverses (whichever exist).

3.2 FACTORIZATION OF THE TRANSFER FUNCTION MATRIX

In this section, we present a factorization procedure for the transfer function matrix

Wdo(s). This will enable us to compute the db.z.'s for both Y [A,B,C ,E] and
d

Y |A,B,C,D,E,F|.
d
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3.2.1 Disturbance Blocking Zeros of the System ¥° [A ,B,C,E }
d

Consider a linear time-invariant, multivariable system described by eqn.(3.1.4a-b) with D

and F equal to zero. Assume that 3, [A ,B,C,E ] is non-degenerate i.e it has a finite number
d

of transmission zeros and disturbance zeros. We also assume that the I xn matrix C has full rank
I. Then, by means of a state coordinate transformation, the columns of the matrix C can be

"compressed” as
C— [C‘l O]

4 Ixi
whereC1 e R™,

This can be done by using the singular value decomposition (SVD) or the QR factorization (via
Householder transformations). If we use the SVD, there exists / x/ and nxn orthogonal matrices

M and T such that

mcr” = [z, o]

where X, = diag (0,,0,,...,0;) with 6,20,2...20,>0,0;,i=1,2,.. ., | being the
non-zero singular values of C. The SVD of a matrix has been studied extensively in the numeri-
cal analysis literature e.g. see (33]. The important advantages of using orthogonal transforma-
tions based on SVD has been discussed by Patel [39] and its use leads to efficient, numerically
stable and accurate column compression. Therefore, the coordinate transformation on the state

vector is defined as
X@)=Tx(@)

Thus, on performing column compressions on C, the system Y [A ,B.C,E ] is transformed
d

10
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(1) =A%)+ B u@)+E d() (3.2.13)
y@&)=C x(1) (3.2.1b)

where

A=A 5 =18,E=TEand C = CT" = [¢, 0]
with (fl =M Z,. It must be pointed out that, since T is nonsingular, the transfer function

matrix Wdo (s) is invariant under coordinate transformations with T [40].

Partitioningff and E in the form
All A12 El
A=1|. . and E=] . |,
A21 A22 E2

the transfer function matrix W, ° (s) can be written as

-1
sl An -A2 E,

W, °(s) = [C 0] (322)

21 sl,_1=A g E,

From the relation

-A sl
21 n-l"" 22 [ 2]

n-|

-1
shi-Ay—Ap [SIn-I_A 22] An  —Ap

O SII‘I"I—A22

we have

sI,—/f“ 0 Qf(s) —A"l2

Ay Sl - 22] |[5’n » Azz] Ay I 0 sl,;—Apn

n-l
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-1
I, 07 (276 07Oy, ["n—z"fzz]

» (3.2.3)
[S’n-l'Azz] An 0 [SIn-I—AZZ

-1
where we have substituted Q (s) for [sl,—/f “—ff 12 sln_,-A‘ 22] A 21 ] .

Using (3.2.3) in (3.2.2) and simplifying yields the transfer function matrix Wdo(s) in the form
(/] - 0
[/]
W, )= [Qd (s)] P, (s) (3.24)

where Qdo(s) and Pdo(s) are I x/ and I xr rational function matrices respectively, and are

given by

-1
A A - a a=1
0, ()= [sl,—A " ]-Au [sln_,—A 22] Ay ]C1 (3.25)

o
b

)

r -1
P,°(s)= |E+A, sl”_,—Azz] Ez] (3.2.6)

From eqn.(3.2.6), it can be scen that P do(s) is the transfer function matrix of the (n —{)th-order,
r-inpat, [ -output system described by the 4-tuple Y, [ff 22 E 2 A 12 E 1 ] i.e. of the system

E=A,E+E,p (3.2.73)
v=ALE+E p (3.2.7b)

Now, we discuss some properties of the system (3.2.7a-b) which may not necessarily be of

minimal order, and present some results conceming the d.z.'s of the system Y, [A ,B,C,E ]
d

To do this we first make the following assumptions:

Assumptions

In all that follows, we shall assume that the transfer function matrix Wdo(s) has full

rank = min(l, r), where the rank of Wdo (s ) is defined as the order of its largest minor which is
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not identically zero. This assumption implies that the system Y [A,B, C,E } is invenible.
d

Consequently from eqn.(3.2.6) , it follows that P do(s) has full rank (= min(/,r)), which in tum

implies that the system in eqns.(3.2.7a-b) is invertible.

We also assume that the /xr matrix £ , has full rank equal to min (/, ). Since

CE =CT'TE

A

Ey
= [c‘l o] p =C,E,

2

and rank [C 1 ] = [, this assumption is equivalent to having rank [CE ] = min(l, r).

Theorem 3.1: If the system Y, [A,B,C , E ] is observable, then the pair [A‘u, "{22] is
d

observable,

Proof: If the pair (C,A ) is observable, then the pair ((f ,/f ) is observable. Now, the pair

(C,A )isobservable if and only if the rank of the matrix

r[x]=

has full rank = n forall complex values of A [5].

A=\, ]

"

The above matrix I can also be written as

r [x] =| A, Ayp-M, (3.2.8)
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which implies that

A12

rank T [k] = rank [Cl] +rank| ,
Ap~M,

Since the rank [é 1 ] = [, Then the above condition: holds if and only if

for all A, which is the condition for the pair [A'n, A 22] to be observable, completing the proof.

The system Y, [A ,B,C, E] with rank Wdo(s)] = min (!, r) is right invenible for l<r

d

and left inventible for/>r, forl=r right and left inverses are the same as the ordinary inverse. A

rightinverse of Wdo(s) satisfies the relationship
W)W k) =1 (32.9)
d d l “
ie.

w,Rs)= [wd"(s)]T [wd"(s) [Wdo(s)]T]-l (3:2.10)

and aleft inverse satisfies the relationship

WLW, () =1, (3.211)

ie.
w,ks)= [ [w,,"(s)]rwa,"(s)]_l [Wd"(s)]r (32.12)

Note that in general WdR (s)and Wd"(s) satisfying eqns.(3.2.9) and (3.2.11) respectively are

not unique [20).
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Next, we define a minimal right (left) inverse of W da(s) as that WdR ) [Wdl‘ (s)] which has

a characteristic polynomial of lowest degree. A minimal order inverse is also not necessarily

unique [20]). We shall denote a minimal order right (left) inverse of Wdo(s) by

R, L,
W, () [Wd (s) ].The d.z.’sof W, ° (s) can then be dened as follows:

R L.
Definition 3.1: The d.z.'s of Wdo(s) are the poles of W, “(s) for/<r andof W, "(s) forl2r.

Remark 3.1: It can be shown [2,40] that the characteristic polynomial of a minimal order right
(left) inverse divides the characteristic polynomials of all other right (left) inverses. In other
words if a complex number X is a pole of a minimal order right (left) inverse then it is also a pole

of any other right (left) inverse.
Remark 3.2: Taking the transpose of both sides of eqns.(3.2.11) and (3.2.12), it can be seen that

T
a left inverse of Wdo (s) is a right inverse of [Wdo(s)] . Therefore, in the remainder of this

section, unless stated otherwise, we shall assume that /<r and consider only right and ordinary

inverses of Wdo(s ). The case r <l can be treated in a similar way by considering the dual of the

system Y, [A,B,C,E].
d

Since I<r,W,°(s) has full rank / and therefore from the factorization in (3.24), the Ixr

rational function P do (s) has full rank /. Consequently we can express WdR (s)as
R R
W, (s)=P," (5)0,°(s)

where the r X!/ rational function matrix P dR(s) is a right inverse of P do(s ), and is defined in a
R,
similar manner to WdR (s) - Denoting the corresponding minimal order inverse by P, "~ (s), the

d.z.'sof P,° (s) can be defined in an analogous way to the d.z.'s of W, (s).

R.
Definition 3.2: The d.z.’s of P do () are the poles of P, "(s).
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R
Note that P d "(s) is the transfer function matrix of a minimal order right inverse of the

system Y A‘22’ E 2 A 1 E 1 |- Consequently if the system Y A 22’ lfz, A 129 E 1 | 1S a minimal

order realization of Pdo(s), then its d.z.’s are the same as those of Pdo(s) defined above. How-
ever, if the realization is not of minimal order, then it has some cancellation of poles and d.z.’s

which will not appear in a minimal order realization of the corresponding minimal order inverse.

Now, since the pair [A' 122 A 22| is observable (Theorem 3.1), the system
p) A‘zz’ E‘2,A‘ 129 E 1] not having minimal order implies uncontrollability only for the system

{ " A A A
Z Azz’ E2, A 120 E 1 ] Using this information, we can construct a controllable and observable
3

state-space representation (and therefore one of minimal order) 3’ A 223 E 2,/( 120 E ;| Which

has the same set of d.2.’s as P’ (s).
Theorem 3.2: If the system Y [/f 229 E 2 A 129 E 1 J is a non-minimal realization of P do(s). then

a minimal order system 3 ["Tzz’ fz,A',z,E‘ ,] can always be constructed, such that its

transmi.sion zeros are the same as the d.z.'s of P do(s ).

Proof: Consider the system

. T ® AT .
E =A,E +4,1n (3.2.132)
v =B 8 +£ (3:2.13b)

which is the dual of the system (3.2.72-b). Since the pair [A‘ 129 A 57 | is observable (Theorem

AT T
3.1), the pair [A A 12] is controllable. Therefore we can always find a state fecdback
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matrix L define by
* * T »*
p =g -L"¢§
. 2T T T oT T T1. .
such that the pair [E 2 —ElL , Azz"AlzL ] is observable. It is well known [40] that, state

AT AT T
feedback does not affect the controllability of a system, i.c. the pair [A 22-A 12LT, A 12] is con-

trollable. Hence, the system Y [A_ 22 fz,AA 12'5? 1] has minimal order, where

- T I S N ~ T T T T ) . .
A22 = [A 22 —AnL ] and £ 2 = [E 2"E lL ] Next, since transmission zeros are invari-

ant under state feedback, we note that the matrix LT does not change the transmission zeros of
(3.2.13a,b) which we have defined as the d.z.'sof P do (s). To complete the proof, we use the fact

that a system and its dual have the same set of transmission zeros. Then it follows that

Z [A_ 22 Ez’ A 12 E 1 ] is of minimal order and its transmission zeros are the same as the d.z.'s
[/
of Py~ (s).

As a consequence of Theorem 3.2, in the rest of this section we shall assume without loss of

generality that the system ), [ff 220 E 2 A 12 E 1 ] has minimal order.

Theorem 3.3: The d.z.’s of the system ), [A B8,C,E ] are the same as the transmission zeros
d

of the system 3 |40 E 5, A, El].

Proof: The d.z.’s of the system 3 [A ,B,C,E ] are defined as those complex numbers A for
d

which

A, E

A
o) <o
rank ran c o
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{A—Mn E]
= rank <n+min(l,r
¢ o )

The above condition can also be written as

rankl‘[i\]:rank Ay ApM L E,

¢, 0 0
which implies that
Ay, E,
rank T [7\.] = rank [(f ,] + rank| . . (3.2.14)
A22—Mn-l E,

Since rank [(f 1] is equal to /, it follows that rank I" < n+min(l,r) if and only if

"{12 El
rank | . | < (n=l) + min{/, r)
ApM,_ By

A

which is the condition for A to be a transmission zeros of the system E [A‘zz’ Ifz,Alz, El )

thus completing the proof.

with [ =r and rank [CE ] = [ has exactly (n-/)

Theorem 3.4; The system Y, [A ,B,C,E
d

d.z.’s.

Proof: From the coordinate transformation X (1) = T x (1), it is easy to see that CE = [(f llf : ]
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Therefore rank [CE] = | with rank [(f 1] =1, it implies that the rank [Ef 1] =/ . From

Theorem 3.3, the d.z.’s of ihe system 3 [A ,B,C.E ] are the same as the transmission zeros
d

A A

of Z[’fzz' Ez,Alz,El]. Since él is an IxI nonsingular matrix, the system

A A

p) [ff 229 E »ApE; ] has a unique inverse given by

JYs e
H

PA A a=] a s a=1

-E;1A12]§+ [E’,’l] v (3.2.15b)

R =
"

~ A Y

Assuming the system Y [/f apwEpAnE, ] is a minimal order rcalization of Pdo(s ). There-

fore, the unique inverse in eqns.(3.2.15a,b) has minimal order. Then from Theorem 3.3, it fo'lows

that the dz’s of ¥, [A,B,C ,E ] are the eigenvalues of the (n-I)x(n-l) matrix
d

~ Ao A-] A
[A - FEE A 12] , completing the proof.

Based on Theorem 3.3, the problem of computing the set of d.z.s of the system

p) [A ,B,C,E ] is reduced to that of computing the set of transmission zeros of the system
d

A A

p) [A‘ 22 Ez,A 12 Eq ] Therefore, in the remainder of this section, we will compute the set of

A

d.z.’s using the system Y, [ffn, Ez,Alz, E y | with rank (E ) = min(/,r), that has either a

right inverse (/ <r), or a left inverse (/ >r); for | =r, the right and left inverses are the same,
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Case 1 [I<r]:

The general solution of eqn.(3.2.7b) for W is given by

p=E/ [u—A‘ugl + [lr—éflfl] ® (3.2.16)

-1
A AT A AT A .
where E, =E, [E 1By ] is a right inverse of E |, and @ is an arbitrary 7 -vector. Since we are

primarily interested in the eigenvalues of the state matrix of a right inverse of
Y [AA 293 Ez, A 122 E 1] or more precisely in the eigenvalues of the state matrix of its minimal
order right inverse. We can write @, without any loss of generality, as

w=ME
where M is an arbitrary [r x(n=1 )] matrix. Then substituting for . from (3.2.16) into (3.2.72)

yields a general representation of a right inverse f Y [/f 29 E 99 A 122 E 1 ]

= [[A-tit A1) + [£,0,-£7E) i+ [££7 o

(3.2.17a)
At A a At A A
B= [[l,-ElEl]M—E,A]2]§+ [E1 ]u (3.2.17b)
Case 2 [l:r] :
Solving eqn.(3.2.7b) for {, the solution is uniquely given by
p=E; : [u -A 125] (3.2.183)

on substituting this value of jt into (3.2.7a), we obtain

g = [[A‘n—lsz‘;' 'q, ]E,+ [E‘zél' 1]0 (3.2.18b)
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Case 3 [I >r]:
In this case the I xr matrix £ \ has more rows than columns and we can find a left inverse.

However we cannot, in general solve (3.2.7b) exactly for { . To get a left inverse of (3.2.7b), we

consider the dual system

S T T »

B =A,E +4A,p (3.2.192)
T T

v =E 8 +E ¢ (3.2.19b)

The system in eqns.(3.2.19a-b) is an (n = )th-order, /-input, r -output system where I>r. Hence
the procedure of Case 1 above can be used to obtain a general right inverse which can be easily
shown to be a general left inverse of the system in eqns.(3.2.7a-b). This general inverse is given
by

¢ [[ieAlrel) [aelreD i

s |ahEy (3:2:200)
W= [[1,—(Ef)*éf]ﬁ-(éf)"£'§]§' + [(b‘f)*]v' (3.2:200)

where M 1s an arbitrary [1 x(n-r) ] matrix.

Theorem 3.5: The system Y [A ,B,C,E ] with [ >r has at most n—/ d.z.’s.
d

A A

Proof: For an invertible system Y, [A‘ 22 E 2’A12'E 1 ], we can always construct an inverse

given by eqns.(3.2.20a,b) with a characteristic polynomial of degree less or equal to n-l.The
result then follows using Theorem 3.3.
From the above results, we can now give an analogous definitions for the sets of d.z.'s (ZOD)

and the d.b.z."s (Zf) of the system Y, [A ,B,C, E].
d
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Definition 3.3 [I <r] :

4 )
z, MZ [A,B,C.E] =o[[£22-ézé,*,f,2]. [E‘z(l,-é,*é,)]]
d J

z (z [A.B,C.E]W = [xec |xezf[z [A,B,C.E]] A 40[A‘22]
l 4 J d

and P,°(\) = 0]

Definition 3.4 [l=r] :

Z [z [A,B,c,E]}=o[[,f22-é,é;‘,f,2]]
d

z rz [A.B.C,E]]: [xec |re zflz
\ d

d[A.B.C.E]} .kdo[/fn]

and P,° () = 0]

Definition 3.5 [1 >r] :

' ‘ T T T o4T) [T T 4 2T
0 LZ [A'B'C'E] =°[[A22'A12(Ex)+Ez]' [AIZ(II_(ElyEl)”
d J

z; rz [A.B.C.E]] = [xec EX zf,’{z [A.B,C.E]] A ¢o[A'§z]
\ d d

and P,°(A) = o}

In order to justify these definitions, we first review two important results obtained by

Bengtsson [2), which are relevant to the following discussion. One is that the poles of a minimal

order left or right inverse (whichever exists), of a system Y [A ,B,C .D] are the invariant
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zeros of the Y [A,B, C,D]. The other result states that all minimal order inverses of
p> [A ,B,C,D ]. have the same characteristic polynomial and that it divides the characteristic

polynomial of all other inverses of ) [A B, C,D]. Applying these results to the system

(3.2.7a,b), we see that the d.z.'s of the system are the common poles of all inverses of (3.2.7a,b).
The definitions given above for d.z.'s follow from results as poles of minimal order inverses

given in [20].

To justify Definitions 3.3, 3.4 and 3.5, we recall (Theorem 3.3), that d.z.’s of the system

p [A,B,C ,E ] in eqns.(3.2.1a,b) are identical to the transmission zeros of the system
d

p) [/f 220 E 2 A 12 E ] ] with the transfer function matrix P do (5) as given in egns.(3.2.7a,b).

Consider Definition 3.3, since the characteristic polynomial of a minimal order inverse

divides the characteristic polynomial of all other inverses, it follows that those eigenvalues of the
matrix [ [A‘ZZ—E‘TI::;AAH] + [éz(lr'é;él) ]M] which remain invariant when M is varied
are the poles of a minimal order inverse. To determine the poles of a minimal order inverse, we
consider the eigenvalues of the matrix [ [’{22'52[":;“{12] + [Ez(lr —é:él) ]M] This
matrix can be represent as the closed-loop state matrix of the system

+ +

¥ = [A‘n—ézs‘l A ,2] ¥+ [15‘2(1,-5‘1 l'fl)] o (32.21a)

subject to the state feedback law

=MV (3.2.21b)

Hence if the rank of the  controllability  matrix of the  pair
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[[A‘zz'ézé;\’fu]' [Eﬂz(lr-E*;EA])” is n_ , then [(n—l)- nc] eigenvalues of the state
matrix of (3.2.21a) will remain invariant under the feedback law (3.2.21b). Thus, it follows that

the order of the minimal order inverse of [/f 99 E 2,/‘ 12 E 1 ] given in eqns.(3.2.17a-b) is

[: (n-l )-n. ] In order to determine the poles of this minimal order inverse , the pair

-+

[ [ff 22—E zlf 1+ A 12 ], [é oA, -E 1 E 1) ] ] can be reduced to its BUHF, by applying an orthogo-
nal state coordinate transformation matrix U ie F = UT [/f 22—1521:: ; A 12 ] U and
G= UT [[fz(lr -E ; E 1)] ,and the [(n =1)-n_ ] eigenvalues of the sub-matrix F 57 Which are
uncontrollable are the required poles. Thus, the term
~ A At A a P
¢ [ {Azz'EzEl A 12}* [Ez(’,‘ 1 El)]]

represents the set of common poles of all inverses of the system Y [A mE 2,A12,If 1] in

eqns.(3.2.7a-b) and hence they are the d.z.’s of the system.

Now let A€ C, is the set of d.z.'s of the system ¥ [A wB,C,E ] If A are not an eigenvalues
d

of A“22 and the rational function P do (A) = 0, then all A are the d.b.2.’s of the system.
In th case of Definition 3.4, we note that the inverse is uniquely obtained and thus the

definition can be easily verified.

Definition 3.5 can be verified in a similar manner as Definition 3.3, using duality.

It should be noted that, an altemative way to define the sets of d.z.’s and d.b.z.’s is by represent-

ing the state-space equations (3.2.1a,b) for a multivariable system Y [A ,B,C, E] by:
d
,
x(t)=A %(t)+Bu(t)+ Y E.d() (3.2.22a)
i=1
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y@)=C %(r) (3.2.22b)
with

And then Definition 3.3 can be written as

{ [ABCE]] mz[ [A,B,C,E,.]]

i=1

—q[ [[A22 EzlEl‘An] [E (I-E ,,El,)]”

zf[z [A,B,C,E]]:}\Zf‘ [zd [A,B,C,E‘.]]

r
d =1

Similarly Definitions 3.4 and 3.5 can be written respectively as

nelia

(’\zf‘ [2 [A,B,C,E‘.]]
i=1 d

zf[z [A,B,C,E]]: ('\zf" [); [A,B,C,E,.]
d d

i=1

r T
=M [o [ [Azz‘EZ.iEl'iAlz]] ]

zf[):d [A,B,C,E] ] =:zf‘ [);d [A,B,C,E,.]]

i=1
r

Az, [Zd [A’B'C'Ei] ”ﬁ"[’f””

i=]

and

zf[zd [A,B,C,E]} ‘m]z {2 [ABCE]]

o] -ty s ) [ho-elrg] |
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zf[z [A,B,C,E]]: (r\zf‘ [z [A,B,C,E‘.]]
d

d i=1
" D

Theterm ~ Z, ‘ tz [A ,B,C,E, ] ] represents the set of common d.z.’s of all transfer func-
d

r D
mZo'[Z [A,B,C,E,.]]
i=l d

ol

i=1

tion matrices of the system Y’ [A,B, C.E; ] Jd=12,...,r between the outputs and the

| ol

represents the subsct of common d.z.’s which cancel with the eigenvalues of A 57 and hence the

disturbances. The term

r

NZ [): [A,B,C,E‘.]]
d

i=]

term

(’\zf' [zd [A,B.C,E‘]]— {

i=l

"D
mZo'[E [A.B.C.E,.]
1=1 d

Mo [A 22] ]
represents the subsct of common d.z."s which do not cancel with the eigenvalues of A 57 and thus

it is the set of d.b.z.’s of the system Y, [A ,B,C, E].
d

Remark 33: In order to simplify the mathematics, we assume that Wdo(s) has min

[(n =1),(n-r) ] d.z.'s. This assumption is not necessary for achieving disturbance rejection, and

implies that n, = 0, which in tun implies that for r >/, the matrix [E 2(l r—[:: ; E 1)] =0 in

nT AT AT
eqns.(3.2.17a,b) and for r </, the matrix [A 1 —(E, )"LE1 )] = 0 in eqgns.(3.2.20a,b). There-

fore, in illustrating the main results of this section, the first numerical example considered in Sec-

tion 3.4 uses this assumption to construct a left inverse of the system.

Remark 3.4: If rank [CE ] < min(/, r), we can apply the structure algorithm of Silverman [41]
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to the system 3" [/f 22 fz,ff 129 E 1] to get an invertible system Y’ [ff 22 Ez, A, E, ] with

rank [E 1 ] = |. Then the above procedure for constructing a general right or left inverse (which-

ever exists) can be applicd. However, E["fzz- E,AE 1] will have some additional

transmission zeros at the origin which are not the transmission zeros of ¥ [A‘ 22° E 2 A 120 E 1
[20].

Remark 3.5: The factorization of W do(s) given above is a left factorization in the sense that
nonsingular matrix factors common to Qdo(s) and Pdo(s) can be factored out on the left
without affecting Wdo(s). We can obtain a right factorization by applying the above procedure
1G get a left factorization of the dual system represented by the triple (AT,C T,E T), which is then

a right factorization of the system ¥ [A ,B,C,E }
d

3.2.2 Disturbance Blocking Zeros of the System }° [A ,B.C,D,E,F ]
d

Consider an nth-order, m-input, /-output, r-disturbance, linear time-invariant system

Y [A ,B,C,D,E, F] described by eqns.(3.1.4a-b). Assume that rank [F]: min(/,r),a
d

the system Y [A ,B,C,D,E,F ] is non-degenerate (i.e. it has a finite number of transmis-
d

sion zeros and disturbance zeros).

It is possible to obtain a higher order system denoted by [ff ) B , ¢ , E ] from the given
d

system [A,B ,C,D,E,F ], such that the factorization procedure and the concept of
d
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minimal order inverses can be applied to compute the set of dz.'s of the system

) A,B,C,D,E,F].
d

To create the system Y [/f ,B,C E ] we consider a dynamic compensator of order p [2 I]

d
defined by
z(t)=Qz(1)+Oy() (3.2.23a)
y@)=z() (3.2.23b)

where z(1) € IR” is the vector of state variables of the compensator, § (t) € R” is the output
vector of the compensator,  and © are matrices of compatible sizes which should be chosen to
be a controllable pair. It should be noted that, this compensator is not unique and may be

designed in a number of ways e.g. using observer theory or pole assignment {20].

By incorporating of the above compensator at the output of the system of eqns.(3.1.4a,b),

the following augmented system Y [A‘, B , (f, E ] is obtained:

d

(=A%) + B u@)+Ed@) (3.2.242)

§@)=C %) (3.2.24b)
with

y(@)= [0 C]i(r)+D u(t)+F d(@) (3.2.24¢)
where

o

X(t)= X (1)
and
) QG)C] _ [ep] @F]
A=lo a "= 18 I =E’é=[IP0]




Remark 3.6: The output y (1) and the output y (¢) are related by

§(s)=G_(s)y(s)
where y(s) and y(s) denotes the Laplace transform of y(¢) and ¥ (f) respectively, and
G (s)= [slp -Q ]_19 is the transfer function matrix of the dynamic compensator. This rela-
tionship can be obtained by first computing the output y (s) to the inputs u(s) and d (s) of the

system Y, [A,B,C,D,E,F] ie.
d

u(s)
y@)=[ﬁf@)ﬂf@ﬂ acs)

where Puo (s)and P do (s) are rational function matrices given by

-1
P (6)=Csl,-A| B+D

-1
pd"(s)= C [sln—A] E+F

Then, we compute the output ¥ (s ) to the inputs u (s) and d (s) of the system ) [ff ,B,C,E ]
d

ie.

o=1 s 0 s 0 u(s)
yi)=0 (S)[Pu (s) P, (S)] dGs)

where Q_l(s), ﬁ“o(s) and F’do(s) are pxp,pxm and p xr rational function matrices given
by
-1 -1
g ()= [slp—Q]

P °G)=0P, ()

P, (s)=0P,°(s)

]

Thus, it follows that

§6)=0")0y(s)
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=G (s)y(s)

Now, in order to relate the d.z.'s of the system ¥, A,B,C,D,E,F} and 3 [/f,é,(f,f]
d d

and to use the augmented system in assigning d.b.z.'s, we need the following results.

Theorem 3.6:

(i) The augmented system ¥ [A‘ ,B,C, E] is stabilizable if the pair (A, B ) is stabilizable
d
and € is stable

(i) The system 3° {/f B.CE ] is detectable if and only if the pair (©C ,A) is detectable.
d

Proof:

(i) Stabilizability:

The system (3.2.24a-b) is stabilizable, if and only if, the pair

l Q 9c) [ep
0 A J, B (3.2.25)
is stabilizable, i.e. if and only if the matrix
Q—Mp ecC oD
r [K] = [ 2.26
0 A-M, B (4226

has full rank n+p for all A equal to the unstable eigenvalues of A. Then the matrix T has full
rank, if

rank [A -M, Bi=n (3.2.27a)
i

and

rank [Q—)Jp =p (3.2.27b)

o




9

Now (3.2.27a) holds for Ae C " since Q is a stable matrix. If (4 ,B) is a stabilizable pair, then
(3.2.27a) holds for all unstable eigenvalues of A which are also the unstable eigenvalues of A.

Therefore rank (I) = n+p for all A which are unstable eigenvaiues of A implying that

p) [/: . B , ¢ s E ] is stabilizable.
d

(i1j Detectability:

The system (3.2.24a-b) is detectable, if and only if, the pair

[ [Q ec ]

R 2.28
o) Lo =
is detectable.

Let us form the matrix
Q—?Jp eC
A [l] = 0 A—?Jn (3.2.29)
Ip 0

Then [A‘, ﬁ, é, If] is detectable if and only if the matrix A has full rank (n+p) for all A
d

equal to the unstable eigenvalues of A . Now

ec

rank [A [k] ] =p +rank [ A\ (3.2.30)
n

Since Q is a stable matrix, the unstable eigenvalues of A are the same as the unstable eigen-

values of A . Therefore

eC
rank A—“n =n
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for all A equal to the unstable eigenvalues of A if and only if the pair (OC,A) is detectable

completing the proof.

If the system )’ [ff ,B,C,E ] is stabilizable and detectable, then we can always stabil-
d

ize the system by state or output feedback. However, if it is required to achieve arbitrary pole

assignment in the overall closed-loop system using state (or output feedback), then the system

A

) [A‘ .B,C,E| should be controllable (and observable). In that case in Theorem 3.6, we
d

replace the stabilizability and detectability conditions by controllability and observability condi-

tions respectively with the additional requirement that the pair (£2,®) should be controllable.

To show the mechanism by which the additional d.z.'s are introduced in the augmented sys-
tem (3.2.24a,b) due to the dynamic compensator (3.2.23a,b), we assume without loss of general-
ity that the pairs (A, E') and (C, A) are controllable and observable respectively. Note that, this
assumption is made to simplify the presentation and implies that the system

p [A,B,C,D,E,F] has at most n d.z.’s.
d

Remark 3.7: If the pairs (A, E) and/or (C, A) are uncontrollable and/or unobservable, then the

system Y, [A ,B8,C,D,E,F ] has less than n d.z.'s. This is due to cancellation of zeros and
d

poles which correspond to uncontrollable and/or unobservable modes.

Theorem 3.7: Let 12r. Then the set of d.z.'s of the transfer function matrix relating the outputs

¥ (£ to the disturbances d (¢) of the system Y, [A“, B,C,E ] consists of?
d

(i) the d.z.’s of the system Y [A ,B8,C,D,E,F ] together with,
d

(ii) the poles of the dynamic compensator.
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Proof: The d.z.’s of the system ), [A ,B,C,D,E,F ] between the outputs y (¢) and the dis-
d

turbances d (¢ ) are defined as those values of A for which

A-—Mn E
rank <n+r

C F

while the d.z.s of the system Y [A' ,B,C.E ] between the outputs ¥ (¢) and the disturbances
d

d (¢) are defined as those values of A for which

Q—Mp eC ©F

rankl"[l]=rank 0 A-M, E |<n+p+r

L 0 C F

from which it follows that the values of A for which

rank T [X]<n 4+p+r

are those values for which

A-M_ E
< n+r

k
ran c F

or
rank [Q—Mp ]<p
and the result of the theorem follows.

Now, to compute the sets of d.z.'s and d.b.z.’s of the system Y [A‘ ) B R ¢ R E ]. we first find the
d

transfer function matrix Wdo () between the outputs ¥ (z) and the disturbances d (¢) of the sys-
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tem Y’ [A‘,BA,C,E‘].'misisgivenby
d
[sl -Q -6C ]" [@p]
W, = I
)= 0] s -4l LE

By following the factorization procedure as discussed in Section 3.2, the transfer function matrix

Wdo (s) can be written as
-1
/4 /] o
W, ()= [Qd (S)] P, (s)
where Qdo(s) and Pdo(s) are pxp and p xr rational function matrices respectively, and are
given by

0,° )= [sl,, -Q] (3:2.312)

P)=0]C s, ]-IE +F] (32.31b)

From eqn.(3.2.31b), it can be seen that Pdo(s) is the product of the matrix © and the transfer

matrix of an n th-order, 7 -input and /-output system described by the 4-tuple Y [A E,C,F ]

i.e. of the system

& =AE+Ep (3.2.32a)
v=CE+Fp (3.2.32b)
Assumptions:

From now on we shall assume that the /xr matrix F has full rank equal to min(l, r). We
alsv assume that the transfer matrix Wdo (s) has full rank [: min(l, r) ].The latter assumption

implies that Wdo (s) is invertible. Consequently, it follows that Pdo(s) is invertible, which in

turn implies that the 4-tuple system Y, [A ,E,C,F ] is invertible. Therefore we can always con-
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struct controllable and observable right or left inverses (whichever exist) for the nth-order, r-

input, {-output system Y, [A ,E,C,F ]

1
Remark 3.8: From the above discussions, it follows that, the system 3 [A,E yC,F| in

4
)

eqns.(3.2.32a-b) can be treated in the same manner as the system 3 [/f 229 E 2» A E | in

eqns.(3.2.7a-b). Thus, whatever properties are true for the system Y [.422, Ifz,ff 122 E 1] are

also true for the system 3, [A, E, C,F].

Therefore the problem of computing the d.z.'s of the system 3, [AA B, cC, E ] is reduced
d

to that of computing the transmission zeros of the system Y [A ,E,C,F ]

For l <r ,a general right inverse of the system Y, [A ,E,C,F ] is given by

JYs »
L]

.[A—EF+C]+ [E (l,-F+F)]M]§ + [EF*]u (3.2.3%)
L

[ + 4 ot +
k= [l,—F F]M—F C]ﬁ+ [F ]0 (3.2.33b)
-1
where F* = FT [FF T ] is a right inverse of F and M is an arbitrary r xn matrix.

Forl=r ,the inverse of Y, [A ,E,C,F ] is unique and is given by

- [ [A -EF"C] ]g + [EF"]u (3.2.342)
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p= —F“c]!; + [F“]u : (3.2.34b)

For I>r , the system Y, [A .E,C,F ] has a left inverse which is the transpose of the right

inverse of the dual system given by
g =aTE + ™y (3.2.352)
*=ETE 4R (3.2.35b)
A right inverse of the system (3.2.35a-b) is given by
£ - [[AT_CT(FT)+ET ]+ [CT(I’_(FT)+FT)]M-—]§¢ . [CT(FT)+]u-
(3.2.36a)
p o= [ [1,-(FT)*FT ]M-(FT yET ]g' + [(FT)*]u‘ (3.2.36b)

where M is an arbitrary I xn matrix.

We shall now give an analogous definition for the scts of transmission zeros and blocking
zeros of the system Y, [A ,E,C,F ] , which are consequently equivalent to those of d.z.’s and
d.b.z.’s of the system 3 [A,B, C,D, E,F].

d

Definition 3.6 [I <r]

z; (z :A,B,C,D,E,F: =o[[A-EF*c], [E(l;F*F)]

\ 4 P,

Q

z. |y |A.B.C.D,EF

Q

= {leC | e zf[z [A,B,C,D,E,F]
d

Ad G[A] and Pd”(l)=0]
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Definition 3.7: [I =r]

d)> A,B,C,D,E,F] =o[[A-EF“c]]
{ d . )

22y A,B,C,D,E,F] = [leC |xezf[z [A,B,C,D,E,F]]
\ d L d

Ad o[A] and Pd°(7t)=0]

Definition 3.8: [1 >r]

zf[z [A,B.C.D,E.F] } =o[[AT-CT(FT)*ET]. [CT(I,—(FT)*FT)]]
d

zf[z [A,B,C,D,E,F]]: [keC | Ae zflz [A,B,C,D,E,F]]
d d

Ad o [AT] and P,°(A) = o]

Remark 3.9: As a consequence of Remark 3.3, in all that follows we shall assume that the
transfer matrix Wdo (s) has n d.z.’s. This assumption is made to simplify the mathematics and is

not necessary for achieving disturbance rejection. The assumption implies that either (i) l=ror

(ii) for [ <r [E(i,—F*F)] = OforI>r [CT(l,—(FT)*FT)] =0.

3.3 CHOICES OF DISTURBANCE BLOCKING ZERO POSITIONS

In general, the positions of zeros in multivariable systems play an important role in regula-
tion and asymptotic tracking problems [6}. Desoer and Schulman (6] have shown that a transmis-
sion zero at s = ot of the transfer matrix W, ° (5) has the property that for appropriate initial con-

ditions, it completely blocks the transmission of some input proportional to exp(ar), in the
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steady state. Therefore, if o is a transmission zero of an /xm transfer function matrix, then there
exists an m x1 vector B0, such that if the input of the system isu(t) = B exp(ou), the effect of

mode exp(ouw ) will not appear at the outputs in the steady state i.c. the condition [38,44)

W), .oB=0 (3.3.1)

is satisfied. Note that (3.7 1) is satisfied only for some specific vector B. For single-input system
P is a scaler and the result is therefore true for any . In order for (3.3.1) to hold for any vector B,
we must have Wuo(s)| s=o = 0. This condition is satisfied when « is a blocking zero of
Wuo(s ). As we have noted earlier, in the single-input case ( and by duality, in the single-output
case), transmission zeros are also blocking zeros so that (3.3.1) holds for all B. Based on this
result, Patel et al. [15] developed an algorithm for single-disturbance state-space system

p) [A ,B,C,E ] for assigning d.b.z.'s at appropriate locations e.g. at § = @, to completely
d

block the effect of exponential disturbances B;exp(a, t), for all complex B; and ¢, in the steady
state.
A generalization of this algorithm to block the effect of multiple disturbances on systems

described by ¥ [A,B,C,E] and Y, [A,B,C,D,E,F] will be developed later on in this
d d

thesis.
3.3.1 Multiple Disturbances in Multivariable Systems

In Section 3.2, the system described by the state-space model Y [A,B ,C,E ] or
d

p [A ,B,C,D,E,F ] has been represented by the rith -order, m -input, 7- disturbance, f-
d

output system )’ [A‘ ,B,C JE ] defined by
d

@) =A%) +Bum)+Ed@) (3.3.22)
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§¢)=C %@) (3.3.2b)

where A, B, € and E are matrices of appropriate dimensions, d (1) € R is the vector of dis-

turbances which may or may not be measurable and ri'=n and f=1 for Y [A ,B,C, E] and
d

n=n+p and [ =p for Y}, [A ,B,C,D,E,F ] Assume that, each element of the disturbance
d

vector is described by

d;(t)=B;exp(o;2) i=12,...,r (3.3.3)

where B‘- and o, are arbitrary complex scalars with real(c; )2 0.

Partitioning the matrix E as

E= [El E,... E] (3.34)

[4

The disturbance transfer function matrix of the system in eqns.(3.3.2a-b) i.c. relating the outputs

?0 the disturbance is given by
W, ()= [wjl(s) wo(s) ... w:'(s)] (3.2.5)

where W : (s), represents the transfer function vector relating the cutputs and i " disturbance

and is given by
wa(s)=C [slﬁ—A' ]-IE‘,. i=12...,r (3.3.6)
The response at the outputs due to w. i —th disturbance is
7, 6)= [¢[s,-4 ]’lé,. Jae) i=12.r (3.47)

The condition under which each exponential disturbance leads to an identically zero output in the

steady state is given by the following theorem:

Theorem 3.8: The condition under which complete rejection in the steady state of all
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-

exponential disturbances B, exp(a, ¢) affecting a system 3, [A' ,B,C,Elis
d

Wil q=0 i=1,2,.. .1 (3.3.8)

We shall show later how these conditions can be satisfied by assigning one or more d.b.z.’s

between the outputs and each disturbance at s = ¢, by means of state feedback.

3.3.2 Effect of State Feedback on the Disturbance Transfer Function Matrix

The results to be derived in this section are concerned with the effect of constant state feed-

back defined by
u@t)=v()-K x()

on the disturbance transfer function matrix relating the outputs to the disturbances.

On implementing the feedback law in eqn.(3.3.2a,b), the resulting closed-loop system is

%(1) = [A‘-EK‘] %)+ B v(t)+ L Ed.(r) (3.3.92)

i=]

§a)=C k(1) (3.3.9b)
The closed-loop transfer matrix w;‘ (s) relating the outputs to each disturbance is given by
-1
w,(s)=C|sl - [A‘—B‘K]] E, i=1,2..,r (3.3.10)
Partitioning B , E; and X as
B, E,;

o
B = JE = K= [Ifl 162] (3.3.11)

and following the factorization procedure described in Section 3.2, w;, (s) can be expressed in

the form
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-1
w:‘_(s)= [Qd‘,c(S)] Pd.c(s) ier (3.3.12)

where

-1
~ -~ L) ~ A - - - L] ) (d - —l
0, )= [s’f“ [A n=B K, ]' [A 1278 1K2] [s’x.f’Azz“Bz"z] [A21'32K2] ]éx

(33.133)
c A A A A A A A -l A
P6)=E, + [A,z—lez] [slﬁ_’.— [Azz—BzKZ]] Ey; (33.13b)

From eqn.(3.3.13b), it can be seen that P, ¢ (s)fori =1,2,...,r isthe transfer function vector

of the (i =) Jth-order, single-input, l‘-outpul system given by

E = [Azz—ézlleﬁi +E, 1 (33.142)

v, = [A 12‘31’(2]5: +E W (3.3.14b)

From Definitions 3.4 and 3.5, it follows that the set of d.b.z.'s of the system in cqns.(3.3.9a,b) for
i =1,2,...,risequivalent to the set of blocking zeros of the system in eqns.(3.3.14a,b). There-
fore, it follows that only the submatrix K , aff=cts the position of the closed-loop d.b.z.’s between

the outputs and each disturbance, and that K ; has no effect on these zeros. Consequently a state
feedback matrix [If 1 O] has no effect on the d.b.z."s and is used to assign the system poles. It

should be noted that after the coordinate transformation, the outputs of the system in
eqns.(3.3.9a,b) are simply the first [" elements of the state vector. Therefore it is clear that d.z.'s

and d.b.z.’s between the outputs and the disturbances are invariant under output feedback. The

algorithms for assigning the d.b.z.’s and system poles for the systems > [A ,B,C, E] and
d

Yy |A.B,C,D,E,F ] by means of state and output feedback will be described in Chapters
d

IV, V and VI
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3.4 NUMERICAL EXAMPLES

To illustrate the main results of this chapter, we consider the following examples:

Example 3.1: Consider a 4th-order system Y, [A ,B,C,E ] which represents the linearized

d
model of a nuclear rocket engine {44,45)
- . R - ( .
-65 65 -19.5 19.5 65 0 50
01 -01 0 0 0 0 0
x()= 10 0 -05 -1.0 x(1)+ 0 0 u@?) + 0.1 d(t) (3.4.12)
0 0 04 -O.4J 0 04 0
[0 01 o]
y@)= 0001 x(t) (3.4.1b)

where, X () = [T,p,N,c]T.u(t)= [Sd,V]T,y(t)= [T,p]T,d(z)=8c and

T : Thrust chamber temperature,

p : Thrust chamber pressure,

N : Nuclear power,

¢ : Delayed neutrons,

3, : Control drum reactivity,

8, : Change in flow of delayed neutrons,

V : Turbine power control valve.

It is required to determine the sets of d.z.’s and d.b.z.’s for the following pairs:

(@)d(t)and y (1)
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(b)d(r)and y ().

In order to implement the factorization procedure on the system given in eqns.(3.4.1a,b), we

need to compress the columns of C io get [é ) O],where ¢ y is 2X2 nonsingular matrix. In this
example this can be accomplished by a rearrangement of the state of the system

Y [A,B,C,E].'l‘hisresultsinthesystemz [K.é.é,f],givenby

d d
05 =10 1.0 00 00 00] -0.1
_ 04 —04 00 00 00 04 0.0
o ) ;
2= 1_105 105 -65.0 650 F©* 650 00" D * [500|9®
00 00 01 -01 0.0 00 0.0
(3.4.2a)
[1.0 0.0 0.0 0.0
YO =100 10 00 00] *® (3.4.20)

T T 4 oT
Note that for I>r and the condition [Au(l,—(E 1 )+E1) = 0 is satisfied. Therefore the

transfer function vector relating the outputs to the disturbance has (n—1) d.z.'s.

(a) Between d(t)and y (1)
o [ [A;-A‘fz(sz)*ég] ] - [- 0.115 ,435.015]

o[,a‘;] = [0.0,-—65.1]

Therefore, from Definition 3.5, there are two d.z.'s and (since this is a single-disturbance system)

two d.b.z.’s located at -0.115,435.015.
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(b) Between d (¢) and y4(0)
¢ [ [A‘zz—ézs‘{‘A‘u] ] = [- 0.115 ,—0.40,435.015]

o [A‘n] = [o.o ,—0.40,-65.1]

Therefore, from Definition 3.4, there are three d.z.’s at -0.115 , -0.40,435.015 and two d.b.2."s at

-0.115,435.015.

Example 3.2: Consider a 3rd-ordersystem ' |A,B,C,D,E,F| givenby

d
[
-10 0 21 10
x@)=10 -1 0 |x(@)+ |03 u@)+ |0 1|d() (3.4.3a)
-6 2 -3 05 02
[1 0 1] [0 2] [1 1]
y@)= 110 x(t)+ 30 u(t) + 10 d(t) (3.4.3b)

It is required to determine the sets of d.z.’s and d.b.z.’s for the following pairs:
(@) d,(t)and y (1)

(b) d,(r) and y (r).

In order to compute the sets of d.z.’s and d.b.z.’s for this example, we note that these zeros

are the same as the transmission zeros and blocking zeros of the 4-tuple system Y, [A E,C,F ]
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given by egns.(3.2.32a,b).
(a) Between d,(r) and y (1)
Since ! >r and the condition CT(I,—(.F‘T)+FT)] #0, system Y, [A,E, C, F] has at

most n wransmission zeros. Therefore, we choose several arbitrary values of M and find that the

eigenvalue of

o [ [AT-CT(FT)*E" ] + [CT(J,-(FT)*FT)]A?]

at 0.0 is invariant under M. Since

ofa] - {-10.-10.-50].

it follow. that the system (3.4.3a,b) has one d.z. and (since we have a singie-disturbance case)

one d.b.z. located at 0.0.

(b) Between dl(t) and y,(r)

c[[A-—EF"c” = L0.0,—I.O,—S.O]

ofa]- -10.-10.-30]
Therefore from Definition 3.7, there are three d.z.’s at 0.0, -1.0, -5.0 and two d.b.z."s at 0.0, -5.0.

3.5 CONCLUDING REMARKS

In this chapter the zeros of invertible linear, time-invariant, multivariable systems have

been defined and relationships between them have been discussed. Based on the concepts of
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invariant zeros and blocking zeros, derinitions were given for the disturbance zeros (d.z.’s) and
the disturbance blocking zeros (d.b.z.’s) of systems described by state-space models

p) [A ,B,C,E ] and ¥ [A ,B,C,D,E,F ] The relationship between d.b.z.’s locations
d d

and the steady-state of rejection of a class of disturbances at the outputs of the system was also

discussed. An orthogonal state coordinate transformation on the state-space system

p [A,B, C,E ] was used to compress the columns of the output matrix into the form
d

[é 1 0] , where ¢ pisan I x! nonsingular matrix. Following this transformation, a factorization

procedure was described which enabled the sets of d.z.'s and d.b.z.'s of the system to be com-
puted using the concept of minimal order system inverses. It was shown that the d.b.z.'s were
only affec.>d by feedback of that part of the state vector which was not contained in the output
and were invariant under output feedback. Two numerical examples were given to illustrate the

methods of determining the sets of d.z.'s and d.b.z.’s for the systems Y, [A ,B,C,FE ] and
d

) [A,B,C,D,E,F].
d
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CHAPTER1V

ASSIGNMENT OF DISTURBANCE BLOCKING ZEROS :
SINGLE DISTURBANCE CASE

In this chapter some new results conceming the assignment of "disturbance blocking
zeros"(d.b.z.’s) for a linear, time-invariant, multivariable system with a single disturbance are
presented. The chapter is organized as follows: In Section 4.1, we present algorithms for solving
the problem of assignment of the d.b.z.’s by means of state feedback using a constant gain as well

as a dynamic compensator for the system described by Y, [A ,B,C,E ] . The theoretical basis
d

of the algorithms is the factorization procedure of the disturbance transfer function matrix
between the outputs and the disturbances. This enables us to use th2 concept of a minimal order
inverse to determine the positions of d.b.z.’s which can be assigned by the state feedback laws. In

Section 4.2, the results are then extended to the system described by ¥ |A,B,C,D,E,F ],
d

where it is shown that the assignment of d.b.z.’s can be achieved by increasing the order of the
system, such that constant gain or dynamic state feedback can be applied to position the d.b.z.’s
to appropriate positions in the complex plane, so as to eliminate in the steady state the effect of
disturbances at the outputs. Numerical examples to illustrate the proposed algorithms are given

in Section 4.3, followed by a brief discussion of the main results presented in this chapter.

4.1 ASSIGNMENT OF D.B.Z.’S OF THE SYSTEM }° [A B,C,E ]
d

Consider a linear, time-invariant multivariable system described by its state-space equa-
tions

x(=Ax(@®)+Bu(®)+E d{) 4.1.13)




y@)=Cx()
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4.1.1b)

where x(t)e R”, u(t)e R™, y(t)e R, d(1)e R and A, B, C, E are of appropriate

dimensions. In order to apply the factorization procedure considered in the previous chapter, we

need to compress the columns of output matrix C i.e. CT T, [é 1 0] by using the SVD algo-

rithm to get the system

f)=A ) +Bu@)+Ed@)
y(t)=C %)

where

with € ; @ nonsingular [ x/ matrix.

4.1.2a3)
(4.1.2b)

It was shown in Section 3.3, that the d.b.z.’s of the 'disturbance transfer matrix’ w;(s).

(i.e. relating the outputs to the disturbances) are not invariant under state feedback applied to

(4.1.2a,b) of the form [O K 2], where K 2 € R™CD Therefore, this property can be used to

assign the d.b.z.’s of the system in eqns.(4.1.1a,b) at desired locations, in order to eliminate the

steady state effect of a class of disturbances at the outputs.

4.1.1 Assignment of D.B.Z.’s by Constant Gain State Feedback

The problem that we consider now is to show the effect of an mxn constant gain matrix

[0 K 2] defined by the feedback law

ur)=v()- [o K‘z] (¢)

4.1.3)

on the d.b.z.’s of the system (4.1.2a,b). Note that the state feedback matrix [O K 2] in 4.1.3)

corresponds to state feedback matrix K o for (4.1.1ab), where K 2TT = [0 K 2]. On
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implementing the feedback law in eqn.(4.1.3), the system in egns.(4.1.2a,b) becomes

ru iy A A A A

. Ay sz"Ble Bl El

xXM=1. ., L ,xk@O+|, v+ |, |d@®) (4.142)
LAZI A22—32K2 Bz E2
FA

y@)=|C, 0] (4.1.4b)

Then by using the factorization procedure, it was shown in Section 3.2 that the d.z.’s of the sys-
tem in eqns.(4.1.4a,b) are equivalent to the d.z.’s of the (n—/)th-order, single-input, /-output sys-

tem given by

&= ["{22’3‘2 2|+ EqH @.1.5)

v= [A'lz—éllfz- E+E 1 (4.1.5b)

Now, by using the concept of a minimal order inverse (assuming that the system in (4.1.5a,b) is
invertible), we can examine the problem of assignment of the d.b.z.'s of the system (4.1.5a,b). We
also assume that, the open-loop system in eqns.(4.1.2a,b) has (n~/) d.z.'s. This assumption is

made to simplify the mathematical formulation (see Remark 3.3 in Chapter III), and implies that
AT AT ‘T
A, [1,—(5, )'E, ] =0 (4.16)

We also assume further that, the closed-loop system in eqns.(4.1.4a,b) has (n—/) d.z.s. This
assumption is not necessary for achieving disturbance rejection and implies that a condition of

the form
2 T|T aT 42T
K, [Bl [1,-(5,)*51]]=0 4.1.7)

must be satisfied. This condition can be satisfied by implementing a unity-rank m x(n-l) con-
stant matrix K, = q, p, , where q, and p, are mx1 and 1x(n-I) vectors respectively. The

vector q, can be specified arbitrarily such that
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q2T [BT [11‘(’§{)+EA{” =0 (4.1.8)

By restricting the constant gain matrix K , 10 have unity-rank, the system in eqns.(4.1.5a,b) can

be written as
E= ,4'22-b2p2 E+ b‘zp (4.1.9a)
v= |A,-b,p,|E+ E,p (4.1.9b)

where b, = lflq2 andb, = B}q2 , respectively.

For [I 21 ], the system ineqns.(4.1.9a,b) has a left inverse which is the transpose of a right

inverse of the dual system

o [ AT T Tle* AT T. T *
v = _Eg]g' + [E‘Z']p' (4.1.10b)

Aright inverse of the system inegns.(4.1.10a,b) is given by [1],

: T AT T T T T 4 oT
ﬁ' = [[Azz‘A12(51)+Ez]"pzT {bz ‘blT(El)+E2”‘v51.r

) [[Asz_pszlT](éf)*]u' @1112)
g o= [-(Ef)*ég]z;' + [(E,T)*]n' @.1.11b)

Now, we can define the sets of the transmission zeros and blocking zeros of the system (4.1.9a,b)

which are equivalent to closed-loop d.z.’s (Zf ) and d.b.z.'s (Zf) of the system

) [A ,B,C, E] and which ar¢ affected by the constant state feedback K 2
d
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Definition 4.1:

f T s T
Z2|% [4.8.C.E) Iy | =0 [[{G-an@yE] )0 [b707E0E]) ]
d

z |y [A,B.C.E]|, =zf[z [A.B,C.E]IK]
d l‘ d | 3
- [zj’[z [A.B.C,E]l,(.} O [A‘Iz-p,’bz’]]
d
From the above definition, it follows that the closed-loop d.b.z's are those eigenvalues of
AT T T 4oT ' T 4.aT
[ [A 2~A,(E ) )+E 2}-p27 [sz-blT(E ; Y'E 2 ] ] which are not also the eigenvalues of

[ 22-p2 ] Now the matrix

[[Azz-—/fn(E y'E ] [b[—b,’(s‘f)*tfz”

is the transpose of the closed-loop state matrix of the system
d ) A A oa A A
Y= [[AZZ—I;‘ZElA12 ]‘1’4-[[1)2—122El bI]]tb 4.1.12)
subject to the state feedback law
=_p2\y (4.1.13)

T
Similarly the matrix [A 2P 2Tb2T ] is the transpose of the closed-loop state matrix of the sys-

tem

¥=A,, ¥+b,0 (4.1.19)

subject to the state feedback law in eqn.(4.1.13).
It is well known (2] that if the system in eqn.(4.1.12) is controllable, then all the eigen-

. » 2 2 + o - . - .
values of the matrix [A 9~E,E | A, | can be arbitrarily assigned by state feedback, otherwise

only those eigenvalues of [A 2~ 2E A12 can be assigned arbitrarily by state feedback
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which correspond to the controllable modes of the system.

From the above results, we can now outline an algorithm for the placement of the d.b.z.'s of

the system Y, [A ,B,C,E ] using constant state feedback:
d

Algorithm 4.1: ‘Assignment of the d.b.z’s of the system Y, [A ,B,C,E ] using constant state
d

Jeedback)

(i) Apply an orthogonal state coordinate transformation on the system Y, [A,B, C, E] to
d

compress the output matrix C to [é 1 O] where € y is an I'xI nonsingular matrix, and obtain a

system Y [A B, c, E ] given by eqns.(4.1.2a,b).
d

(ii) Specify q, arbitrarily such that the condition in eqn.(4.1.8) is satisfied.

(iii) Calculate the eigenvalues of the matrices [A 22—!5 2If ; A j2 | and [ff 22 ] Then, the open-
loop d.b.z.’s of the system (4.1.2a,b), are those eigenvalues of [ff 22—5 2[5 1+ A 12 | which are not

also the eigenvalues of [ff22 ]

(iv) Determine if the system in eqn.(4.1.12) is controllable; if it is not controllable, determine
which eigenvalues of [ff 22—If 2If ; A 12 ) correspond to the controllable mode of the system.

(v) Calculate the state feedback p, in eqn.(4.1.13) using Algorithm 2.1, such that those eigen-
value of [.Af 22—If zl'f ; ,‘f12 which are the d.b.z.’s and which correspond to controllable modes

of the system in eqn.(4.1.12) are positioned at decired locations in the complex plane. These
assigned eigenvalues are the required d.b.z.'s and their locations are chosen such that disturbance
rejection is achieved in the steady state.

(vi) The unity-rank state feedback muatrix is then obtained as K 2= q,P, for the system
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Y [A‘,B‘.é,If].sothatformesystemZ [A,B,C,E].K2= [0 Ifz]T,whercTisme
d d

orthogonal coordinate transformation matrix.

(vii) Implement the feedback law
u()=v(@)-K,x() 4.1.15)

on the system in eqns.(4.1.1a,b) to get the closed-loop system

x@)=Ax@)+Bv(@)+E d() (4.1.162)
y@)=Cx(1) (4.1.16b)
where
A= [a-8K,)

which has all its d.b.z.’s assigned at the desired values.

4.1.2 Assignment of D.B.Z.’s by Dynamic State Feedback

For the system described by eqns.(4.1.2a,b), the problem of assigning the d.b.z.’s that we
investigate is to determine a dynamic state fecdback matrix K 2(s)= K 2(s)TT. which is the

transfer function matrix of the system

Z,(1)=F,yz,(t) + [0 éz] X(t) (4.1.17a)

u,(1)= H,z,(0) + [0 fz] %(1) (4.1.17b)

with dynamic state feedback defined by

u(t)=v{t)-u,) 4.1.17¢)

In(4.117),z,(t) e R 7 is the state vector of the compensator, u,(t) € R"™ is the output of the
dynamic compensator and F ,, G pHoy J o are matrices of appropriate dimensions. This type of
control law introduces additional d.b.z.’s and at the same time assigns d.b.z.’s of the resulting

closed-loop system at appropriate locations in the complex plane. These locations can be chosen,
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such that complete disturbance rejection is achieved in the steady state. On implementing the

feedback law in eqn.(4.1.17c), the system in eqns.(4.1.2a,b) becomes

. Ay AyBY, BH, B, E,

xM=1. . ..I1xX@O-1. z,(0)+ | . v+ |, |d(@) (4.1.18a3)
Ay Agy—Byly B,H, B, E,

yi= |C, O]i(t) (4.1.18b)

Combining eqns.(4.1.18a,b) and eqns.(4.1.17a,b), the augmented closed-loop feedback system is

described by
. AnAu’Br’z 'Ble Bl El
Li(r)] [i(t)]
, = Ay Apy-BoJ, -B,H + |B, [vi)y+ |E,|d@) (4.1.19a)
o 2 ApBol, -BoH, 2,(1) 2 2
0 G, F, 0 0
L = - = -l

i(t)]

4.1.19b
2,(1) ( )

y@) = [C‘, 0 0][

Then, by following the factorization procedure, the closed-loop disturbance transfer function

matrix w ;(s) can be written as

-1
w,(s)= [Qdc(S)] P, () (41.20)

where,

0, (5) = [SII‘AAu - [(Alz—élj2) ‘étz] [Q (5):

(4.1.21a)

E,]
PfGs)= lé,+ [(A‘,z-é,fz) —B‘IHZ] [Q (s)]" [0 | ] (4.1.21b)
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and

(o, - Brin) B,

il IR P

The matrix P dc (s) is the transfer matrix of the (n — +¢ )th, single-input, / -output system given

by
] Ay Byl, -BoH, [Ez]
= . + (4.122a)
§ 6, F §+ (o 1H
v= A B J, -B\H,|E+E 1 (4.1.22b)

It was shown in Chapter III (Theorem 3.3) that, the d.z.’s of the system in eqns.(4.1.19a,b) are
equivalent to the transmission zeros of the system in eqns.(4.1.22a,b) and that there are at most
(n-1+q) such zeros. Also, the problem of computing the d.b.z's for the system in
eqns.(4.1.19a,b) is reduced to that of computing the blocking zeros of the system in
eqns.(4.1.22a,b), which are the same as its transmission zeros when there are no pole-zero can-

cellation, since it is a single-input system.

In order to compute the d.z.'s and d.b.z.’s of the system in eqns.(4.1.22a,b) using the con-
cept of minimal order inverses, we assume that the transfer matrix w;(s) is invertible. Then, it
follows that PdC (s) is invertible, which in tumn implies that the system in eqns.(4.1.22ab) is
invertible. We also assume without loss of generality that, the open-loop system in

eqns.(4.1.2a,b) has (n=!) d.z.’s. This assumption implies that
T aT 4 2T
A, [1,-(131 )'E, ] =0 (4.123)

We assume further that, the closed-loop transfer matrix w :(s) has (n—I+q) d.z.'s. This assump-
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tion is made to simplify the analysis and is not necessary for achieving disturbance rejection. It

implies that a condition of the form
AT A
AN
aT 4. aT
[[ll-(El) E, ]] =0 4.1.24)

is satisfied. This condition can be satisfied by implementing unity-rank constant matrices J ,and
H, given by

f2=q2|’2
H,=q,h,

where q, , p, and h, are mx1, 1xq and 1x(n-1I) respectively.

The vector q , can be specified arbitrarily such that a condition of the form
‘T AT AT
! [B] [I,—(El )'E, ] ] =0 (4.125)

is satisfied. Therefore, on implementing the unity-rank constant matrices J o and H,, the system

in eqns.(4.1.22a,b) becomes

. |Axn7bop, Db, E,
= . £+ 1 (4.1.26a)
“lea &l
v= .A‘n-bipz ~bihy |G+ E (4.1.26b)

where b, = élqz and b2 = ﬁzqz , respectively.

For [121 ]. the system in eqn.(4.1.26a,b) has a left inverse which is the transpose of a right

inverse of the dual system [1]

[[An ", ] ‘ [[Au-vz 2 ]]

(4.1.27a)
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A AT
v = [51‘ o]g' + [El]p' (4.127b)
A right inverse of the system in eqns.(4.1.27a,b) is given by

[Azz‘l’z b, ] [sz"Pz b, ](" V'E; G,

€ - 3
—h ", 40, " (E )Ez] F}
[[Alz “P2 bl ]]
ED*y’ (4.1.282)
_h2
p=— @& [EZ o]g' + [(éf)*]o' (4.1.28b)

Now, we can define the sets of transmission zeros and blocking zeros of the system (4.1.26a,b),

which are equivalent to those closed-loop d.z.’s (ZCD ) and d.b.z.’s (ZCB) of the system

p [A,B,C ,E ] which are affected by the dynamic state feedback compensator
d

[Kz(s) =K,(s )T] :
Definition 4.2:

S T, T), 4T T AT
[Azz"Pz b, ]"[sz"Pz b, ](Ex)‘Ez G,

T

‘ [—h]b,’+h{b,’(é,’)‘5‘§] F

[z [A B,C E]|m] { [A B,C, E]lm]

W "Pzrsz ] GI]

_hZTbZT F;

- Z,D[Z [A,B,C.E]IK.(,)](WU
d
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From above definition, it follows that the closed-loop d.b.z.'s are those eigenvalues of the

matrix

T

o] T T AT AT 2T

[[Azz‘l’z b, ]‘[’412‘1’2 b, ](51)+Ez G,
Ty T,y Ty T, 2T 42T

-h2 b, +h, b, (E,)+E2] F,

which are not also the eigenvalues of the matrix
T 1, T| AT
[Azz'pz b, ] G,

Now the matrix

T T, T, 2T .+,T AT
[A 2 p2 b, ]‘[Au‘pz b, ](El)+E2 G,

T T T, 2T+ T
[’hz bz b, (E ) Ez] Fa
is the transpose of the closed-loop state matrix of a system given by:
Y= ¥+ 0 ) (4.1.29)
G 2 Fy ‘
subject to the state feedback law
- [p2 hz]‘l’ (4.1.30)

Similarly, the matrix

[Azz -p, b, } ¢,

T
‘F2
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is the transpose of the closed-loop state matrix of the system

b2
@ 4.131)

subject to the state feedback law in eqn.(4.1.30).

Therefore, if the system in eqn.(4.1.29) is controllable, then all the eigenvalues of the

matrix
A A A% A
Ap=EE A O
G, F,
can be arbitrarily assigned by state feedback (4.1.30), otherwise only those eigenvalues of the

above matrix can be assigned by state feedback which correspond to the controllable modes of

the system. We now examine the controllability of (4.1.29).

Theorem 4.1: The system in (4.1.29) is controllable if the matrix G 2 is selected such that

-1
Py ~ A Aad A A A
rank |-G, | (AR |-, ] [o,££)b, ] [, ] ] =q
4.1.32)
for all complex values of A € © (F,).
Proof: The system (4.1.29) is controllable if, and only .* we matrix
A A A A A ad
[A nEE A M, 0 [bz'EzEn bl]
r [?»] = . 4.1.33)

G, (Fy-M,) 0

has full rank [=n -l +q] for all complex values of A.
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Postmultiplying I" by

/

n-l

0 01,

00

01,0

we obtain the matrix

At A A At
[Azz 2E Ay |~My [bz'EzElbll 0

A [K] = 62 . [Fz-uq ] 4.1.34)

Assuming that A ¢ © {ff 22—1:: zl'f 1+ A 12 |» we can factor the matrix A as

[[Azz ELE) sz] ~M,, 0

I,

-1
A Ad
- [[Azz 2E Au] un—l] [bz'EzElbl] 0

A

[[Azz 2E '412 “n-l 0 [I"_, 0]
Iilg, 1,

-1
A A A A ad
[[Azz EE A Mu—l] [bz'EzEl bl] 0

0 -G [[A22 zé%,z] u,_,]-l [bz-ézél* b,] (Fy—M,)
(4.1.35)

which implies that
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(CFEE RV R Y% B
rank A [A] = rank -1
0 'Gz [ [Azz‘EzE;A‘n] uu—l] [bz"ézé;M] [Fz‘uq)]

= n-l +rank [-d [[An-E,E‘,‘A,,] u,_,] [bz—EzE, b ] (FZ-M,)]

Therefore the above matrix A has full row rank [=n—l +q] if and only if
-1
2 ) a ot A +
rank ['62[['422‘ Au] ] [bz'éz’f1 bx] (Fz‘“«s)] =4q
Note that we need to check the above rank condition only for A € © [F 2] since the rank condi-

tion is always satisfied foral A ¢ © [F 2 ] . This completes the proof of the Theorem.

Using the result of the above Theorem, we can find the state feedback [p 2 h2] given in

eqn.(4.1.30), such that all the d.b.z.’s consisting of:

(a) the eigenvalues of the matrix [ff 22"E 2If 1+ A 12 | which do not cancel out with the eigen-
values of [A 22]. and

(b) the eigenvalues of [F 2 ] '

can be assigned arbitrarily at any locations in the complex plane, in order to asymptotically reject

the effect of a class of disturbances at the outputs.

Remark 4.1: The matrix F, can be selected such that its eigenvalues are stable and different

from the eigenvalues of [Xzz-fzf 1+ A 12]; the matrix ﬁz can be chosen to ensure that

Ae O[F ]1snotatmnsmnssmnzemof2[[Azz—lfE Au] [bz-l'lef;bl],ézli.e.

-
+. A st
G, [[A E, 12] n-I] [bz’EzEl bl]“o
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This is necessary 10 satisfy Theorem 4.1.

We now outline an algorithm for the placement of d.b.z.'s of systems described by

3 [A ,B,C,E ] using dynamic state feedback:
d

Algorithm 4.2: (Assignment of the d.b.z.s of the system Y. [A ,B,C,E ] by means of dynamic
d

state feedback)

(i) Apply orthogonal state coordinate transformation on the system Y, [A,B ,C,E ] to
d

compress the output matrix C to [é ) 0] and obtain a system ), [ff Jb,CE ] given by
d

eqns.(4.1.2a,b)

(ii) Specify q , such that the condition in eqn.(4.1.25) is satisfied.

(iii) Calculate the eigenvalues of matrix [Af 22—E zx‘f ; AAIZ] and [/f 2 ] and select a mairix F 2
-ch that its eigenvalues are different from those of [ff zz"é zé 1+ A 12 ] The d.b.z.’s wich are
affected by the state feedback law in eqn.(4.1.30) are those eigenvalues of the matrix
[AA 22—E Zé 1+ A 12 | Which are not also the eigenvalues of [AA 2 ] , logether with the eigenvalues

of the matrix [F 2] .

(iv) Ensure that the system in eqn.(4.1.29) is controllable using Theorem 4.1, otherwise only
those eigenvalues of the system can be assigned by state feedback which correspond to the con-

trollable modes of the system.

(v) Calculate the state feedback [p2 h2] given in eqn.(4.1.30) using Algorithm 2.1 to achieve

desired values for those eigenvalues of
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) A At A
Ayp~EEAp| O
G, F,

which are the d.b.2.'s.

(vi) The dynamic state feedback is then given by eqns.(4.1.17ab) for the system

Y [A',B‘,C:,If] so that for the system Y, [A,B,C,E]. the dynamic state feedback is
d d

given by
Z,(1) = F,z,(1)+G x (1) (4.1.36a)
u,(1) = H,z,(1)+J X (1) (4.1.36b)
where G, = [0 éz]r andJ, = [o fz]r.
(vii) Implement the feedback law
u(r)=v(t)-u,@)
on the system in eqns.(4.1.1a,b) to get the closed-loop system

%(z):ﬁ(:)u;'v(t)ufd(z) (4.1.372)

y)=C x(t) (4.1.37b)

This system will have d.b.z.'s assigned at the desired locations in the complex plane.



4.2 ASSIGNMENT OF D.B.Z,’S OF THESYSTEM Y} |A,B,C,D,E,F ]
d

In this section, the results of the preceding section are extended to solve the problem of

assignment of d.b.z.’s by means of constant gain as well as dynamic state feedback for systems

described by the state-space model [A ,B,C,D,E,F ] ,ie.

d
X()=Ax@)+Bu@)+Ed@) 4.2.1a)
y@)=Cx@)+Du@)+Fd() (4.2.1b)

where x(t) e R",u()e R™, y(1)e R',d(t) e IR and the matrices A,B,C,D,E,F
have appropriate dimensions.

To handle this problem (see Section 3.2), we created a higher order system denoted by

3 [AA ,é s ¢ , E ] obtained by incorporating at the outputs of the system in eqns.(4.2.1a,b) a
d

dynamic output compensator of order p . The resulting system Y, [ff ,B, ¢, E ] is described by

d
the following equations
RN =A%)+ Bu@)+Ed@) 4.2.23)
j@O)=C @) (4.2.2b)
and
y() = [0 é,] %(t)+D u(t)+F d() (4.2.20)
where
) [Q (-)c] ep| @F}
A<lo al' Bl ) E= 1k 'é=[’PO]
with
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Note that, the above system enables us to use the factorization procedure and the concept of
minimal order inverses to determine the positions of the d.b.z.’s which can be assigned by state

feedback laws.

4.2.1 Assignment of D.B.Z.’s by Constant Gain State Feedback

Let us define the constant state feedback by

u@)=ve)- [0 K, ] ) @23

Implementing the feedback law in eqn.(4.2.3) on the system in eqns.(4.2.2a-c), we get

Q o [c-Dk
, [ 2] [@D] @F]
X(t)= X(@)+ v(t)+ da(t) (4.2.42)
0 [a-Bx,] B E
y)= :l,, O]i(:) (4.2.4b)
y0)= [0 [c-Dk,] |x+DvyeFde) (4240)

Then, by using the factorizaticn procedure, the transfer function matrix between the outputs ¥ (¢)

and the disturbances d (r), can be expressed as:
-1
wis)= [0,°0)] P “25)
where QO dc (s)and P dc (s) are pxp and p x1 rational function matrices, and are given by

0, ()= [sl,, - Q] (4.2.63)

P (s)=0 [F+ [c-oK, ] [s,-a -BKz)]-IE] (4.260)

From eqn.(4.2.6b) it can be seen that the rational function matrix Pdc (s) is the product of the
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matrix © and the transfer matrix nf the n-th order, single-input, / -output system given by the fol-

lowing state space model
E= [A -BK, ]§ +Ep (4.2.7a)
V= [C -DK 2] E+Fp (4.2.7b)

Based on Theorem 3.7 in Section 3.3, the problem of computing the d.z.’s of the system in
eqns.(4.2.5a,b) is reduced to that of computing the d.z.'s of the system represented by
eqns.(4.2.7a,b). The system in eqns.(4.2.7a,b) is the same as the system in eqns.(4.1.4a,b) with the
only difference being that A, B,C,D,E,F and K, are replaced by AAzz, 52, ffn, él, El, Ez
and K o » respectively. Therefore, we can compute the d.z.’s of the system in eqns.(4.2.7a,b) in the

same manner as those of the system in eqns.(4.1.4a,b) using the concept of a minimal order

inverse.

We first assume that the system in eqns.(4.2.1a,b) has n d.z.’s. This assumption implies that

a condition of the form
c’ [1,-(FT)*FT ] =0

is satisfied. We also assume that the system in eqns.(4.2.7a,b) is invertible and has n d.z.’s. This
assumption is made to simplify the mathematical analysis presented in the rest of this section. It

implies that

K} [DT [1, ~FTy'FT ] ] =0
and is not necessary for achieving disturbance rejection. The above condition can be achieved by
means of a constant matrix K, having unity-rank i.e. K, = q,p,, where q, and p, are mx1

and 1xn vectors respectively. We can specify the vector q, arbitrarily such that a condition of

the form

q, [DT [1,-(FT)+FT ] ] =0 4.2.8)
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is satisfied. Therefore, on implementing the unity-rank constant feedback, the system in

eqns.(4.2.7a,b) becomes
'§= [A -b p2T] E+Ep (4.2.93)
V= [C—d pzT ] E+Fp (4.2.9b)

where b=Bq, and d =D q,, respectively.
For [l 21 ]. the system in eqns.(4.2.9a,b) has a left inverse which is the transpose of a right
inverse of the dual system
¢ - [[AT—pszT} g+ [CT—pszT] n (4.2.102)

-

v = [ET]t;' + [FT_ n (4.2.10b)

A right inverse of the system in eqns.(4.2.10a,b) is

é. _ [[AT_CT(FT)+ET ] "92T [bT—dT(FT)+ET ]] '

¥ “CT’pszT ](FT)+] v 4.2.11a)

p [-(FT)*ET] £+ [(FT)*]u' (4.2.11b)
Now, we can define the sets of transmission zeros and blocking zeros of the system in

eqns.(4.2.9a,b) which are equivalent to the closed-loop d.z.'s and d.b.z.'s respectively of the sys-

tem Y, [A ,B,C,D,E,F ] and which are affected by constant state feedback K ,.
d

Definition 4.3:

Zf {Z [A,B,C,D,E,F] |K2] =0 [[AT_CT(FT)+ET]_p2T [bT_dT(FT)+ET]]
d
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zf[z [A,B,C,D,E,F]|Kz]=zc”[z [A,B,C,D,E,F]Ix,]
d d

chIZ [A.B,C,D,E,F]|K2]no [AT-pZTbT]]
d

From the above definition, it follows that the closed-loop d.b.z.’s are those eigenvalues of
[ [AT-C T(F T)+ET ]-p 21 [bT-dT(F T)+ET ] ] which are not also the eigenvalues of
[AT—pZTbT ] Now the matrix
[ [AT_CT(FT)+ET ]_pzr [bT_dT(FT)+ET ] ]
can be represented as the transpose of the closed-loop state matrix of the system
Y= [ [A —EF*c] ] ¥+ [ [b-EF*d ] ] @ 4.2.12)

subject to the state feedback law

@ =-p,¥ (4.2.13)
Similarly the matrix [A T—p 2Tb T ] is the transpose of closed-loop state matrix of the system

Y=A¥+b O 4.2.14)

subject to the state feedback law in eqn.(4.2.13). Therefore, if the system in eqn.(4.2.12) is con-
trollable, then all the eigenvalues of the matrix [A —-EF +C] can be arbitrarily assigned by the
state feedback in eqn.(4.2.13), otherwise only those eigenvalues of [A -EF*C ] can be assigned

arbitrarily by state feedback which correspond to the controllable modes of the system.

From the above results, we can now outline the following algorithm for the placement of

d.b.z’sof the system Y’ |A,B,C,D, E, F| by means of constant state feedback:
d
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Algorithm 4.3: (Assignment of the d.b.2.'s of the system Y, [A ,B,C,D,E,F ] by means of
d

constant state feedback)

(i) Create a higher order system Y, [ff , 5, ¢ . E ] so that the factorization procedure for the
d

transfer function vector between the outputs and the disturbance can be used.
(ii) Specify the vector q , such that the condition in eqn.(4.2.8) is satisfied.
(iii) Calculate the eigenvalues of the matrix [A -EF +C] and A. The d.b.z.’s which are affected

by unity-rank constant state feedback ie. K, =q,p, are those eigenvalues of the matrix

[A -EF +C] which are not also the eigenvalues of A.

(iv) Determine if the system in eqns.(4.2.12) is controllable, if it is not controllable, determine

which eigenvalues of [A -EF*C ] correspond to the controllable modes of the system.

(v) Calculate the state feedback vector p, in eqn.(4.2.13) using Algorithm 2.1 so as to achieve

desired values for those eigenvalues of [A -EF +C] which are the d.b.z.'s and which
correspond to the controllable modes of the system in eqns.(4.2.12). These assigned eigenvalues
are the required d.b.z.’s which achieve disturbance rejection in the steady state.

(vi) Implement the feedback law in eqn.(4.2.3) on the system in eqns.(4.2.1a,b) to get the closed-

loop system

x(@)=AXx@)+Bv(@)+Ed({)
y@)=C x(@)+D v(t)+F d()

where

A=A-BK,
and

Ct=C—DK2

This system will have d.b.z.’s assigned at the desired locations in the complex plane.
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4.2.2 Assignment of D.B.Z.’s by Dynamic State Feedback

In this section, we will discuss the cases when the system 3° [A ,B8,C,D,E,F ] has no
4 .

d.b.z’s or the d.b.z.’s assigned by a constant gain state feedback are not sufficient for the steady

state rejection of all the disturbances acting on the system.

Based on the results of section 4.1.2, a dynamic state feedback compensator of the form

£(6) = Fy2,0) + [0 G,] %) 4.2.15)

uy(t) =H,z,(1) + :o 12] 0 (4.2.15b)

is needed to introduce additional d.b.z.’s as well as to assign all the closed-loop d.b.z.’s at desired
locations in the complex plane such that the effects of all the disturbances at the outputs are elim-

inated in the steady state.

The dynamic state feedback is implemented on the system (4.2.2) using the feedback law

u@)=vQ)- u,(r) 4.2.16)

The closed-loop system is therefore described by

.

@ e(c-ps,] -e0H, r
. ) @D oF
Lx(:)] [x(t)]
o) 0 [A—B.12] By ||, o]t |2 PO+ |E a0 2
0 0
0 G, Fy | |

x@)
(4.2.17b)

§(0) = [1,, 0 o] [z,(t)
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( i(r)]
yo = [0 {c-01,) ~DH, | 2 | PPV ORI (42.170)
where
z(t)]
xo= X (1)

The disturbance transfer matrix w:(s) i.e. between the outputs ¥ (¢) and the disturbance d ()

can be written as

wi(s)= [Qdc(s)]-lPdc(s) (4.2.18)
where

0,5) = [slq -0] (42.19)
and

PlGs)= e{n “C—Dlz] ~DH, | lo (s)]“ [;3] ] (42.19b)
where

sln—[A—B.Iz] BH,
Q(s)=

From eqn.(4.2.19b), the p X1 rational function vector Pdc(s) is the product of the matrix © and
the transfer function vector of an [n +q ]th-order , single-input and [ -output system represented

by the following state-space equations

‘ [[A—312] -BH, [E]
§= 6, F, E+ o (4.2.20a)
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V= [[C—DJZ] —DHz]g + [F]u (4.2.20b)

From Theorem 3.3 and the results of Section 4.1.2, it follows that the transmission zeros of the
system in eqns.(4.2.20a,b) are the closed-loop d.z.’s of the system in eqns.(4.2.1a,b) together with
those introduced by the dynamic state feedback in eqns.(4.2.15a,b), and there are at most n +¢g of

them.

Since the system in eqns.(4.2.20a,b) can be treated in the same way as the system in
eqns.(4.1.24a,b), the procedure given in section 4.1.2 can be repeated now to compute and assign
d.b.z.’s. We start by assuming without loss of generality that, the system in eqns.(4.2.20a,b) is
invertible and has (n +¢) d.z.’s. This assumption is made to simplify the mathematical analysis

and is not necessary for achieving disturbance rejection. It implies that the following conditions

are satisfied:
c’ [1,—(FT)*FT ] =0 @.221)
e
T\+pT
I~(F')'F ] =0 4.2.22)
HDT [ :

The condition in eqn.(4.2.21) is satisfied by assuming that the open-loop system in
eqns.(4.2.1a,b) has n d.z.'s; while the condition in eqn.(4.2.22) can be achieved by using unity-

rank constant matrices J, and H , given by
J2=49;P,
Hy=q,h,

where q,, P, and h, aremx1 , 1xg and 1xn respectively. The vector q, can be specified such

that the condition in eqn.(4.2.22) is reduced to the form

q, [DT [l,-(FT)*FT ] ] =0 (4.2.23)
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Therefore, on implementing the unity-rank matrices J, and H,, the system in eqns.(4.2.20a,b)

becomes
[ T
| [4-bp,) -bn, [E
= 2.24
4 G, F, .§+ 0¥ (4.2.242)
v= '[C—dpz] —dh2.§+ [F W (4.2.24b)

where, b =Bq,andd = Dq,respectively.

For [1 21 ], the system in eqns.(4.2.24a,b) has a left inverse which is the transpose of a

right inverse of the dual system

.[AT—pZTbT] 6! [Ci‘_pszT]
o L

JYe
»
1|
~3
b |
e
*
+

T (4.2.253)

-n, " F) -h,7d

v = (B o]g' + [FT ]p' (4.2.25b)
A right inverse of the system in eqns.(4.2.25a,b) is given by

[AT_CT(FT)+ET ]_pzT [bT_dT(FT)+ET ] Gg

§

Jree

T
[—hZTbT+h2 dT(FT)*ET] F)

[CT-pszT]

s Pyt FTy* (4.2.262)

2

po=-F)* [ET o]g' + [(FT)*]u' (4.2.26b)
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Now, we can define the sets of transmission zeros and blocking zeros of the system (4.2.24a,b)

which are equivalent to the closed-loop d.z.'s and d.b.z.'s respectively of the system

> [A ,B,C,D,E, F] and which are affected by the dynamic state feedback K ,(s).
d

Definition 4.4:

D
z! [z [A,B,C,D,E,F]|K2(s)]=
d

[AT_CT(FT)+ET]_p2T [bT_dT(FT)+ET} G

[-—hszT+hszT(FT)+ET] F}

B D
z {z [A,B,C,D,E,F]l,(z(s)]=zc [z [A,B,C,D,E,F]Ikz(s)}
d d

[AT—pszT] G;

D
- 121X [A'B’C'D’E’F]I"z"’]mo h,b" F!
d 2 2

From the above definition, it follows that the closed-loop d.b.z.’s are those eigenvalues of the

matrix
[AT_CT(FT)+ET]_p2T [bT—dT(FT)*ET] G!
[-h b +n, aFTYE ] F)

which are not also the eigenvalues of the matrix



oo T7) ]

Now the matrix
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[AT_CT(FT)+ET]_p2T [bT-dT(FT)"ET] 6!

[-—hszT+h2TdT(FT)*ET ]
is the transpose of the closed-loop state matrix of a system

[A —-EF +c] 0 [b -EF’d ]
¥ = 6, F, ¥+ . °
subject to the state feedback
®=- [p2 hz] ¥
Similarly, the matrix
[AT—pszT ] G!

T, T

T

Fy

is the transpose of the closed-loop state matrix of the system

AO [b]
L)
G, Fy)  *lo

subject to the state feedback law in eqn.(4.2.28).

¥ =

F

4.2.27)

(4.2.28)

(4.2.29)

(4.2.30)

Therefore, if the system in eqn.(4.2.27) is controllable, then all the eigenvalues of the

matrix
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[A -EF *c] 0
GZ F 2
can be arbitrarily assigned by the state feedback (4.2.28); otherwise only those eigenvalues of the

above matrix can be assigned by the state feedback which correspond to the controllable modes

of the system.

Remark 4.2: By Theorem 4.1, the system in eqn.(4.2.27) is controllable if the matrix G,is

selected such that

rank [Gz[[A—EF+C]—M"]-1 [b-£F*a] [Fz—Mq” =q

for all complex values of L € © [F 2] .

Using the above results, we will now outline an algorithm for assigning d.b.z.'s of the sys-

tem ), [A ,B,C,D,E,F ] using a dynamic state feedback control law.
d

Algorithm 4.4: (Assignment of the d.b.2.'s of the system p [A ,B,C,D,E,F| by means of
d

dynamic state feedback)

(i) Create the higher order system Y [/f ,B, ¢ E ] so that the factorization procedure for the
d

transfer function vector between the outputs and the disturbances can be applied.

(i) Specify a value of q , such that the condition in eqn.(4.2.23) is satisfied.

(iii) Calculate the eigenvalues of the matrices |A—EF C | and A, and select a matrix F . such
2

that its eigenvalues are different from the eigenvalues of the matrix [A -EF*C ] The d.b.z.’s

which are affected by the state feedback law in eqn.(4.2.28) are therefore equivalent to those
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eigenvalues of the matrix [A -EF*C ] which are not also the eigenvalues of A together with
the eigenvalues of lF 2 ]

(iv) Ensure that the system in eqn.(4.2.27) is controllable using the extension of Theorem 4.1
described in Remark 4.2, otherwise only those eigenvalues of the system can be assigned by state

feedback which correspond to the controllable modes of the system.

(v) Use Algorithm 2.1 to calculate the state feedback [p2 hz] which achieves desired values

for those eigenvalues of the matrix

[A ~EF*C ] 0
G, F,
which are the d.b.2.’s.

(vi) Implement the feedback law in eqn.(4.2.15a,b) on the system in eqns.(4.2.1a,b) to get the

closed-loop system

SO =ARM+BEv)+Ed@) 4.2.31a)
y=Cx(®)+D v@)+Fd() (4.2.31b)
where
A-BJ ] —BH
[ 2 2 [B [E
| = . } = ,E =
4 G, F, B=1o 0
and
¢ = [ [c-p1,) -DH, ]
with
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This will have d.b.z.’s at the desired locations in the complex plane.

4.3 NUMERICAL EXAMPLES

In this section, we illustrate the performance of the algorithms described in this chapter by

means of some numerical examples.

Example 4.1: This example illustrates the use of Algorithms 4.1 and 4.2 considered in Section

4.1 for the system ), [A ,B,C,E ] The example is a 4th-order linearized model {3-5], whose
d

parameters were given in the previous chapter (eqns.(3.1.2a,b). For the purpose of illustration, we

require the rejection of the following class of disturbances:

@d)= [Bew® ]

b)d@) = 'Bl exp(t) + B, + B t].

where B,, B, and B, are unknown constant values.
Note that eqns.(3.1.2a,b) are already in the form of eqns.(4.1.2a,b). We also note that this system
has two disturbance zeros at -0.115 and 435.01 , and hence the condition in egn.(4.1.5) is

satisfied.

(a) Disturbances of the form B,exp (t):
For this case, it is required to assign at least one d.b.z at 1.0, to achieve complete steady-state

rejection of all disturbances of the form 3, exp (f). Since the system has d.b.z's at - 0.115 and
435.01, a constant state feedback matrix [0 K 2] is sufficient to assign at least one of the d.b.z.'s
at 1.0, while the other can be placed at any location e.g. -0.1. To compute the constant gain K ,,

we need to apply Algorithm 4.1.

We specify the vector q, as
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=

such that the condition in eqn.(4.1.7) is satisfied. Now to assign the d.b.zs, we write the closed-

loop state matrix given in eqn.(4.1.12) for the system

. [435.0 65.0] 65.0
Y= 43.1
o1 —01)¥* loo)® “3.1
The state feedback law is
®=-p,¥ (4.32)

The system in eqn.(4.3.1) is controllable, and hence a state feedback p, can be found to position
the two eigenvalues of the state matrix at 1.0 and -0.1. Since one of these eigenvalues at 1.0 is the
desired d.b.z, then complete steady-state disturbance rejection will be achieved.

In order to compute p,, we use Algorithm 2.1 for state feedback pole assignment to position the

eigenvalues of the system in eqn.(4.3.1) at 1.0 and -0.1. The vector p, was found to be
P, = [6.676923 1.0]

Hence the required constant gain matrix K, is

[6.676923 1.0]
K2=1 00 00

By implementing the constant matrix K, using the state feedback control law

ut)=v()- [O K 2] x (1) in eqns.(3.1.2a,b) , the following closed-loop system is obtained

05 <10 10 00| [oooo] [

. 04 —04 00 00 0.0 04 0.0

0= 1 195 1950 4990 0.0 [*“*|65.0 00" |s00 | (#4332)
00 00 o1 -01 0000 |00]



{1 00 0]
yio)= 0100 x(1) (4.3.3b)

The above system is stable and has two d.b.z.'s located at 1.0 and -0.1. When Bl = 1.0, the
response at the outputs y,(r) and y,(¢) to exponential disturbances are shown in Figs.(4.1a) and
(4.1b) for the open-loop system and in Figs.(4.2a) and (4.2b) for the closed-loop system. It can be
readily seen that in the closed-loop system the exponential disturbances are rejected completely
in the steady state. An attempt was then made to position the poles of the above system at desired
values [3,4],i.e.-0.1,-50 £ j 10.0, -500.0, by means of constant output feedback matrix X ,- The

corresponding constant output feedback matrix K'; was found by implementing Algorithm 2.2:

[32.78354069 5.091974235+4]
K, =
1 0.20036029 2.50249999E +2

Therefore, the overall state feedback X = [K K 2] is given by

32.78354069 5.09197423E +4 6.6769230769 1.0]
0.20036029 2.50249999E +2 0.0 0.0

By implementing the constant output feedback matrix K, on the system in eqns.(4.3.3a,b), the

resulting closed-loop system is

-0.5 -1.0 1.0 0.0
0.3198558 -1.005E +2 0.0 0.0
x@)= —2.15043E +3 -3.30976375E +6 —4.9900E+2 00 [ “

0.0 0.0 1.0 -0.1
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(00 00] _0.1]
00 04 0.0

*les0 00|V O |s00(%® (.342)
00 00! 00 |

1.0 0.0 0.0 0.0
yt) = x(1)

0.0 1.0 0.0 0.0 (4.3.4b)

which has two d.b.z.'s 1.0 and -0.1; and the closed-loop poles are assigned at the values specified
above. It can be observed that pole-zero cancellation occurs at -0.1 , and thus the output response
of the closed-loop system will be extremely fast compared with the open-loop system. The
responses at the outputs y ,(r) and y 5(¢) to the exponential disturbance are shown in Figs.(4.3a)
and (4.3b) for the above closed-loop system. It can be seen that all the disturbances are rejected

and the system has a good transient response.
(b) Disturbances of the form B,exp (1)+B,+B,t :

For this case it is required to assign three d.b.z.’s at 0.0, 0.0 and 1.0 10 achieve complete steady-
state rejection of all disturbances with combination of step, ramp and exp () functions. Since,
the system has d.b.z.’s at -0.115 and 43:".01, we need to introduce an additional d.b.z in the sys-
tem by means of dynamic state feedback of order one. Hence, Algorithm 4.2 can be applied to

compute the parameters of the dynamic state feedback compensator.

We first specify the vecior q, as
[1 .0}
2= |00
such that the condition in eqn.(4.1.23) is achieved. Then, we select the eigenvalue of the dynamic

compensator F, (e.g. at -5) which is different from the eigenvalues of the matrix




134

[A22—E2E;A21 ]
The vector G ,is chosen as
G,= [1.0 0.0]

such that the condition in eqn.(4.1.32) is satisfied.

In order to assign the d.b.z.'s, we write eqn.(4.1.29) for this case

4350 65.0 00 65.0

¥=| 01 -01 00 |w+|0.0 |0 (4.35)
10 0.0 -50 0.0
| [

subject to the state feedback law

®=- [p2 hz]‘l' (4.36)

The state matrix of the system in eqns.(4.3.5) has three eigenvalues at -0.115, 43501 and -5.0.
Since the system in eqn.(4.3.5) is controllable, the state feedback in eqn.(4.3.6) can be used to

position the eigenvalues at 0.0, 0.0, and 1.0.1t can be easily verified that these three eigenvalues

correspond to the closed-loop d.b.z.s of the system ¥, [A ,B,C,E ] subject to the dynamic
d

state feedback compensator. In order to compute the constant state feedback in eqn.(4.3.6), we

use Algorithm 2.1. The result was found to be

[p2 h2] = [6.5984615384 0.9965463108 0.4709576138]

Hence the required dynamic state feedback can be writien as

Z,(1) = [—5]22(1)+ [0.0 00 1.0 0.0]X(t) (4.3.7a)



[0.4709576138]
u,()= 0.0 2,(2)
[0.0 0.0 6.5984615384 0.9965463108
*loooo 00 00 O
On implementing the dynamic state feedback using the control law
u(t) = v(@)-u,r)
the following closed-loop system was obtained:
" h
-05 -1.0 10 0.0 0.0
. 4 4 0 . 0.
() 04 -0 0.0 0.0 0 X (1)
@) = |-19.5 19.5 -493.9 0.022449 -30.612245
z,(t
2 00 00 01 -0 0.0
i 00 00 10 0.0 -5
00 0.0 —0.1W
00 0.4 0.0
+ 1650 0.0 |v(r)+ |50.0|d(e)
00 0.0 0.0
00 0.0 L0.0

[1 000 o] [x(t)
YO=10100 0,0

Zz(t)
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4.3.7b)

(4.3.8a)

(4.3.8b)
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The above system is stable. It can be easily verified that the resulting closed-loop system has

d.b.z'’s at 0.0, 0.0 and 1.0.

Example 4.2 : To illustrate Algorithms 4.3 and 4.4 for system Y [A ,B,C,D,E,F ], we
d

consider a linearized model of a d.c. motor described by the following state-space equations [6]

008 5.2 ] [o.o -4.7 o.o]
X0 =1 205 -1990]*D* L1880/ @* oo 00[*® @3
v = [10 00]x()+ [00]ue+ [10 10]ac) @.39)

where

x,(t) : The motor speed, rad./sec.,

X ,(t) : The armature current, Amp.,

u(t) : The armature voltage, Volt,

d (t) : The load torque, Nm,

d,(1) : The speed set point, rad./sec.,

¥(t) : The speed error, rad./sec.

In order to illustrate the results for a single-disturbance case we shall only consider disturbance
d,(t). It is required to control the speed of the motor by designing a state feedback controller, to

reject in steady-siate the following classes of disturbances ford,(z):

4

@d,0) = B, + Bew ().

.

) = [B, + Bysin(o) |

where Bl and B2 are unknown constant values. The system Y, [A‘ ,B, ¢ , E ] for this example
d

is given by
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. -10 1.0 0.0 0.0 -1.0 10
Z(t) z(r)
[. ]= 00 008 5.2 [ ]+ 00 {u@)+ |-4.7 00{d(t) (4.3.10a)
x(t) x (1)
00 -205 -199.0 188.0 0.0 00
| . | d L d
- 2 0)]
y@)= .1.0 0.0 0.0] x(0). (4.3.10b)
2 ()]
yt)= [0.0 1.0 0.0] x@). + [0.0]u(t)+ [—1.0 I.O]d(t) (4.3.10¢)

with [Q, 9] = [—1, 1 ] has been chosen to be controllable pair (see Section 3.2.2). The condi-
tion of eqn.(4.2.8) is satisfied and there are two d.z.’s for the system(4.3.9) located at -10.43319
and -193.3468.

(a) Disturbances of the form B,+P,exp (1) :

Since the system(4.3.9) has d.b.z.’s at -10.43319 and -193.346, it follows that constant state feed-
back is sufficient to assign these at 0.0 and 1.0, in order to achieve steady state rejection of all
disturbances with step and ex;» (¢) functions. Then, following the procedure of Algorithm 4.3, the

constant unity-rank k , which assigns the d.b.z.’s at 0.0 and 1.0 was found to be

k,= [-1.062164 —1.089255]

By implementing the constant gain K, (in the state feedback law u (1) = v(z)-k x (1)) on the

system (4.3.9a,b), the following closed-loop system is obtained

[ 008 52 ]

[ 0.0 ] [-4.7 o.o]
XO= | 531315 5778/* O l1880)** oo 00)¢®) @311

y@t)= :1.0 0.0]x(r)+ :0.0]v(t)+ [—1.0 l.O]d(t)
(4.3.11b)

The above system is unstable and has d.b.z.’s located at 0.0 and 1.0.
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By implementing dynamic output feedback (Algorithm 2.3) defined by

il(') -50.023642 ~29.415894 -36.558466 z,(r) 0.0
[ ] = | 53.465260 26.323642 44.009066 L ) ] + |00 |y() (4.3.12a)
0.0 0.0 -1.0 l.OJ

z2(2)

z,(r)

2(0) (4.3.12b)

v(t)=v(t)- [1.224944 0.138980 1.433032] [

we can stabilize the above system and assign all the poles of the augmented closed-loop system
consisting the system (4.3.11a,b) together with dynamic output feedback in (4.3.12a,b) at desired
values,e.g. at -2,-3,4,-5%j5.

(b) Disturbances of the form B +B,sin(t) :

For this case it is required to assign the d.b.z’s at 0.0, j and -j in order to achieve complete
stcady-state rejection of this class of disturbances. Since the system(4.3.9) has two d.b.z.’s, we
need to implement dynamic state feedback of order one, which will introduce another d.b.z and
assign all the resulting d.b.z.’s at desired locations i.e. 0.0, j and -j. Using Algorithm 4.4, it was

found that the required dynamic state feedback is given by

z'z(t)= [—l]zz(r)+ [1.0 1.0]x(t) (4.3.13a)

u(@)=v()- [—1.184665685 -3 ]zz(t) - [-1.05989042 1.08925531 ]x () (4.3.13b)

The resulting closed-loop system is

-008 52 00 0 -4.7 00

x() x(1)
. = |=5.7406 5.78 0.22717 + |188(v(t)+ | 0.0 00|d(r) (4.3.142)
1.0 10 -10 0 0.0 0.0
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x(t)

. (,)] + [O-O]V(t)+ [—-1 l.O]d(t) (4.3.14b)
2

y()= [1.0 0.0 0.0] [

The above system is unstable and has d.b.z.’s located at 0.0, j and -j.

By using one of the approaches discussed in Chapter II for computing the dynamic output feed-
back, we can stabilize and assign all the closed-loop poles at the desired values, e.g. at -1, -2, -3,
-4, -5 £ j 5. The dynamic output feedback that achieves our requirement was found by imple-

menting Algorithm 2.3 to be:

]
[z-l(, )] ~83.485535 ~56.495068 —-58.930760 [Zl(,)] 0.0
= +

. 02.842644 59.785535 69.390866 00 |y(@)
2(t) 2(1)
0.0 0.0 -1.0 1.0
L o
(4.3.153)
z,(r)
v()=v()- [1.453465 0.690141 1.373860] 2(1) (4.3.15b)

4.4 CONCLUDING REMARKS

In this chapter, we have presented Algorithms for assigning d.b.z.’s of a linear time-
invariant system by means of state feedback, such that the effect of a class of disturbance signals
at the outputs are eliminated in the steady state. In the proposed algorithms, the factorization pro-
cedure described in Chapter 111 and the concept of minimal order inverses are used to determine

the positions of the d.b.z.’s for systems ¥ [A,B,C,E] and 3" [A,B,C,D,E,F].
d d

In Algorithm 4.1, it was shown how a unity-rank constant matrix [0 K 2] can be com-

puted for the system Y, [A ,B,C,E ] such that its d.b.z."s can be assigned at desired locations
d
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in the complex plane. For the case where the system has no d.b.z.’s or the number of d.b.z.’s is
not large enough to achieve the rejection of all disturbances in the steady state, Algorithm 4.2
can be used. It was shown how dynamic state feedback can be employed to introduce additional

d.b.z’s and to assign all the d.b.z.’s at desired locations in the complex plane. In Section 4.2,

these results were extended to systems ¥, |A,B,C,D,E,F ] and Algorithms 4.3 and 4.4
d

were proposed.
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Fig.(4.3) Output responses of the closed-loop system in Example 4.1-a

to an exponential disturbance.
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CHAPTER YV

ASSIGNMENT OF DISTURBANCE BLOCKING ZEROS:
MULTIPLE DISTURBANCE CASE

In this chapter, the results of the previous chapter are extended to solve the problem of
steady-state rejection of measurable and unmeasurable multiple disturbances by means of state
feedback. The problem of multi-disturbance rejection is first reduced to one or more single-
disturbance rejection problems, and then the required state feedback compensator is constructed
as a sum of dyads. The dyadic design is carried out by implementing (with slight modifications)
the algorithms proposed in the preceding chapter, to assign the required number of d.b.z.’s at
specified locations in the complex plane so as to achieve complete disturbance rejection in

steady state.

This chapter is organized as follows. In Section 5.2, we show how disturbance rejection can

be carried out for a multivariable system described by 3 [A ,B,C,E ] having multiple distur-
d

bances by achieving disturbance rejection for single-disturbance systems Y, [A ,B,C,E; ]
d

fori = 1,2,...,r; where r is the number of disturbances. A numerical Algorithm is developed
to assign max (n—! +m-1) d.b.z.’s arbitrarily close to desired locations in the complex plane by
means of constant gain state feedback, such that a class of exponential disturbances can be
rejected in steady state, where n, m and [ are the state, input and output dimensions of the sys-
tem, respectively. It is also shown that when the system does not have any d.b.z.’s between the
outputs and each disturbance and/or that there are not enough d.b.z.’s to reject completely in

steady state all the disturbances, we can introduce more d.b.z.s in the system by using dynamic
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state feedback. In Section 5.3, we generalize these results to systems Y, |A,B,C,D,E,F|.
d

General remarks conceming the implementation and advantages of the proposed algorithms are
given in Section 5.4. Numerical examples are provided in Section 5.5 to illustrate the use of the

proposed algorithms, and finally in Section 5.6, we discuss the results presented in this chapter.

5.1 STATEMENT OF THE PROBLEM

In gencral, in multivariable systems with multiple disturbances, state feedback affects all
the d.b.z.’s between the outputs and each disturbance. In order to treat this problem, we first
reduce the multivariable system with measurable or unmeasurable multiple disturbances to one
or more single-disturbance systems depending on the class of disturbances affecting the system.
And then, under centain conditions, we can use the Algorithms developed in the previous chapter,
to solve the single-disturbance rejection problem by means of state fecdback. The problem of
designing a statc fecdback compensator for the single-disturbance case considered in this chapter
consist of two subproblems: First, for a given disturbance, it is required o assign at most m-1
d.b.z’s at desired locations by means of state feedback without altering the number of d.b.z.'s
corresponding to any other disturbance; and second, it is necessary to ensure that the state feed-
back used to assign d.b.z.’s for any subsequent disturbances preserves those assigned from the
preceding ones. The design procedure is therefore sequential in nature. For each single-
disturbance system, we assign the required number of d.b.z.’s at desired locations in the complex
plane by means of state feedback to eliminate the steady-state effect of that disturbance, without

altering those which have been assigned from the preceding disturbances.

The algorithms described in subsequent sections use the dyadic design procedure in order
to compute constant or dynamic state feedback to assign the required number of d.b.z.’s at
specified locations in the complex plane. In developing the algorithms, we need to specify some

conditions, under which the required state feedback law exists.
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5.2 MULI-DISTURBANCE REJECTION FOR THE SYSTEM Yy [A ,B,C,E ]
d

For simplicity of presentation, we assume that we have a multivariable system with two dis-

turbances (i.e. r = 2) described by

X(t)=Ax(t)+B u(t) +E,d (t) + E, d,(1) (5.2.1a)
y@)=Cx(t) (5.2.1b)

wherex(t)e R” ,u()e R™, y()e R, 4;(r) e R fori = 1,2and A,B,C,E, and
E, have appropriate dimensions with rank (B) = m and rank(C) = I. The disturbances d(t)

may or may not be measurable. Also, we assume that m 2 r. We assume further, without loss of

generality that [A ,B,C,E 0 EZ] is non-degenerate (i.e. the system in eqns.(5.2.1a,b) has a

finite number of transmission zeros and disturbance zeros), and the matrices [A ,B, C] with E 1

En}
Eypl’

and E, can be partitioned as follows:

E]l Alz
A=
21 A22

and

¢ = [c, o]

with rank [C 1] = /. Note that C can be brought into this form by means of a nonsingular

(orthogonal) coordinate transformation (see Chapter III). We also assume that, the transfer
matrices of the open-loop system and the closed-loop system (with state feedback), relating the
outputs to the disturbances have (n-/) d.z.’s. This assumption implies that for the open-loop sys-

tem, the following equations hold (see Section 4.1):

1

Ay [1~E)'E] | =0 (5.2.22)

r T 3
A [1~(E}p)"AT, | =0 (5.2.2b)
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while for the closed-loop system, we require that

By |I,~E)'EY | =0 (5.2.32)
r 1
B |1 ~Ep) Epp | =0 (5.2.3b)

This assumption is made to simplify the mathematics and the presentation in the rest of this sec-
tion. Furthermore we assume that the number of d.b.z.’s between the outputs and the first and

second disturbances are n, [s m-1 ] and n, [S n-l ] , respectively.

52.1 Assignment of d.b.z’s by Constant Gain State Feedback

In this section, a numerical algorithm is developed for determining an m Xn constant state

feedback matrix of the form [0 K 2], given by the feedback law u (1) = v(1) - [0 K 2]x (),

where v () is an m xn external input vector, such that the n, and n, d.b.z.’s between the outputs
and each disturbances are placed at any specified locations in the complex plane (subject to
complex-conjugate pairing). The constant state matrix K 5 18 constructed as a sumn of two unity-
rank matrices K él) and K éz). The first assigns n, d.b.z.’s at specified locations to achieve
asymptotic rejection of the first disturbance; the second, while preserving the n, d.b.z’s which
have been assigned in the preceding step, assigns an additional n, d.b.z.’s at desired positions to
achieve asymptotic rejection of the second disturbance. Thus, max n, + n, < [m-1+n—l]

d.b.z.'s of the system Y [A ,B,C,E ] are placed arbitrarily by a simple calculation of two
d

unity-rank matrices. The design procedure is sequential in nature and can be described by the fol-

lowing steps:

StepI: (Assignn, d.b.zs)

In this step, the mx(n -I) unity-rank constant matrix Kél) = q;l) pél) , where qél) and

pél) are mx1 and 1x(n=1) vectors respectively, is determined so as to place n, d.b.z.’s at

specified locations to eliminate the effect of the first disturbance at the outputs in steady state. It
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will be shown later that the design mechanism can be carried out by using Algorithm 4.1 (with a
small modification).

Let us define the state feedback law as
u@)=v,() - [0 Kz(l)]x(t) (5.2.4)

On implementing the feedback law (5.2.4), the system in eqns.(5.2.1a,b) becomes

X()=A,x(t)+Bv,(t)+E d(t)+E,d,t) (5.2.53)
y@@)=Cx() (5.2.5b)
where

(1)
An A12‘31K2

A =
1 m
Ay ApBK;

is the closed-loop state matrix. By following thc factorization procedure in Section 4.1.1, the sets
of d.b.z.’s between the outputs y (¢) and each disturbance d,(¢) and d,(¢) can be computed by

using the following (n—! )th-order, single-input, ! -output reduced systems:

4

[ 1
€ = [AnBK; | &+ Ey by (5.2.63)
’ )
v, = LA 128K, ] E+E 1, (5.2.6b)
and
. _ ( (1)1
[ (1)1

Now, by assuming that the systems in eqns.(5.2.6a,b) and (5.2.7a,b) are invertible and using the
concept of a minimal order system inverse, we can examine the problem of assigning of the n,

d.b.z.’s of the system in eqns.(5.2.6a,b).
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For [I 21 ) the system in eqns.(5.2.6a,b) has a left inverse which is the transpose of a

right inverse of the dual system

P T _WTT|pe T WTT| *
g’ = [Azz—Kzf) 32] E’+ [Au—Ké) Bl]ul (5.2.82)

* T * *
v, =E} & +El n (5.2.8b)
A right inverse of the system in eqns.(5.2.8a,b) is given by [1]

p* T T poT \+.T MT [T _pT poT +pT ,
& “Azz'Alz(Eu)Ezl)‘Kz [32’31(511)521]]51

+ [ [A {2-1(2‘"’3,’](5{, )*] vy (5.292)
b = ['(ElTl )+E§1] g’ + [(Elrl )+] v (5.2.5b)

From Definition 4.3, the closed-loop d.b.z.’s of the above system are defined as those eigenvalues

of [[Agz—Afz(Efl )+E§1 ]—K ;DT [Bg—B{(Efl )+E:2r1 ]] which are not also the eigen-
T
values of [[A;-—sz Bg} ].Now the matrix
T T ,oT +pT WT | 5T pT T T
[[Azz"Au(En) Ezll'Kz [32’31(511) 521]]
is the transpose of the closed-loop state matrix of the system [2]
¥, = [AZZ-EZlE;lAlZ]‘PI'.' [Bz-—EmE;’Bl] D, (5.2.10)

subject to the state feedback law
@, =0-kY, 5.2.11)

where 61 is the external input.

Similarly the matrix [A §2 -K 20)85] is the transpose of the closed-loop state matrix of the sys-

tem
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subject to the state feedback law in egn.(5.2.11). It is well known [3] that if the system in
eqn.(5.2.10) is completely controllable, then all the eigenvalucs of the matrix

[A 2~EE 1+1A 1 | can be arbitrarily assigned by state variable feedback, otherwise only those

eigenvalues of [A wEyE ,‘;A 12 | can be assigned arbitrarily by state variable feedback which

correspond to the controllable modes of the system.

We restrict the constant gain matrix K él) 10 have unity-rank ie. K él) = qél) pél). The

vector qél) is specified such that the controllability matrix of the single-input system
+ + (1)
[ [Azz‘EnEnA]z] , [B,—EzlE“Bl ] q, ] has rank at least n—/< [nl ] We can use the

generic results in [4-6] to generate such a controllable pair. This involves using a randomly gen-

. 1 . .
erated matrix K ; and vector qé ) to get a controllable single-input system

+ + r + (1)
[ [ [Azz'EzlEuAlz]" [32‘52‘51131 ]Kzl ’ [Bz"EzlEl'Bl]qz }

It can be shown that a single-input system generated in this way will "almost always" be controll-

able. The effect of K 2’ is to make the resulting closed-loop state matrix cyclic, so that if
[A 2—EqE 1+1A 17 | is already cyclic, K 2' can be chosen as the null matrix. Having done this,

we reduce the design of the constant state feedback matrix X él) for the multi-iaput system

)

(5.2.10) to that of a constant state feedback vector p, ° which achieves arbitrary assignment of

the eigenvalues in the single-input system describzd by the following equations

Y + +
with feedback defined by
o, =b-pVw (5.2.13b)
1 1~ P2 1 o

where <f>l is the external input anu b, = quz(l) b, = quél)-
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From the above results, we can now determine the vector pél) which places the n; d.b.z.s
of the system (5.2.13a,b) at any specified locations. The vector pél) can be computed by apply-
ing Algorithm 2.1 to the system in egns.(5.2.13a,b). Note that the resulting state feedback matrix

K 2(1) =q ;l) p él) obtained is not unique since q él) is not unique.

At the end of this step, the closed-loop system is ¥, [A B, C,E ] which has n, d.b.z.’s
d

between d y(H)andy (¢) assigned at specified locations.

Step I : (Assignn, d.b.2’s)

In this step, we determine the mx(n-/) unity-rank state feedback matnix

K éz) = qéz) p 2(2) for the system - [A »B,C,E ] which preserves the n, d.b.z.’s assigned in
d

the first step and assigns additional n, d.b.z.'s at specified locations, such that the effect of the
second disturbance at the outputs is eliminated in steady state. The preservation of the n, d.b.z.’s
is achieved by a suitable choice of the vector qz(z), while the placement of the n, d.b.z's at

desired locations is accomplished by an appropriate choice of the vector péz) .

On applying the state feedback matrix K 52) (in the state feedback law

v, (1) = vy(1)- [0 K§2) ]x(z) ) to the system Y, [AI,B,C E ]. the resulting closed-loop

d

system is given by
X(0)=A,x(t)+ B v,(1)+E d,(t) + E, d,(t) (5.2.14a)
y)=Cx(@) (5.2.14b)

where
Y )]
An A 12"8 1K 2

A.=
2 Y (2)
A2l Azz“BzK 2

with



{ - (1
Ap= [A12’81K2 ]

and

C (1)
Ap= [Azz"Bzxz ]
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By applying the factorization procedure to the above system, the sets of d.b.z.’s between the out-

puts and the two disturbances can now be computed using the following systems

[ ¢ @
&= |AnBK; ] G +Eniy

.

C )
v, = [AB K, ]ﬁ, +Enm

.

and

_ s 2
&= |AnB XK, ]§2+Ezzuz

_ 4 @)
v, = (A BiK; ]§2+512“2

(5.2.153)

(5.2.15b)

(5.2.16a)

(5.2.16b)

Assuming that the system in eqns.(5.2.15a,b) and (5.2.16a,b) are invertible and using the concept

of a minimal order system inverse, we can examine the problem of assigning an additional n,

d.b.z.'s while preserving the n, d.b.z.’s which have been assigned in the first step.

For [121 ]. the system in eqns.(5.2.15a,b) has a left inverse which is the transpose of a

right inverse of the dual system
et _ |7 T_p@TpT)p e c T_p@TpT|  *
& = [Azz -X, 32]51 + [A12 -k, 311“1

* T * T .
U =Ey) & +E; I
Similarly the dual of the system in eqns.(5.2.16a,b) is

L]
*

T T T e, [ T_p@TgT)
& = [Azz K, 82]5_,2 + [AIZ K27 By K,

(5.2.17a)

(5.2.17b)

(5.2.182)
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v, =EL &) +E, 1y (5.2.18b)
The system in eqns.(5.2.17a,b) has a right inverse given by [1]
S . [ - T - T, T +-T QT [pT T, T \+pT *
& = 422 Ay (Eyy) Ey|-Ky  |By-ByEREy ][
+ | |A, k2T T](E“) ]u, (5.2.199)
n = |-E], )*E;] g+ [(Ef, )*] v, (5.2.19b)

The closed-loop db.z.’s of the system in eqns.(5.2.19a,b) are defined as those eigenvalues of

which are not also the eigen-

s T -~ T T +.T T | oT T, T \+T
[[Azz Ay En)Ey K, [32’31(511) E3

~ T T
values of [A 22 -K éz) Bz] Now the matrix

- T - T T +.T AT | 5T oT,poT \+-T
[Azz —Ap Eyy) Ey K, [Bz"Bl (1) Ey ] ]
is the transpose of the closed-loop state matrix of the system

1 Y + 5 + 3
subject to the state feedback law

& =3 -kPw, (5.2.21)

where 51 is the external input.

Since the constant state feedback is restricted to have unity-rank and can be written as

K, @ - qéz) péz). the closed-loop characteristic polynomial of the system in eqns.(5.2.20) and

(5.221)ie.

Hf,l(s)=de:[s1" [[A22 EzlE“A,z] [B ~E,EB, ]K‘”]
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can be expressed as [7,8]

c _ e 2),,0 ()
Hy (s)=Hg (s)+ 5"V, (5) q; (5.2.22)
where, V3 (5) = adj [sl"_, - [[A22-32K2‘"]-52151*, [AIZ—B 1K§”] ] ] and

are the numerator poly-

0, \_ M + )
Hy, () = det [S’n-l‘ [[Azz"Bsz ]‘521511 [A12‘31K2 ]]

nomial matrix of the closed-loop transfer function matrix and the characteristic polynomial

respectively at the end of the first step.
In order to preserve the n, d.b.z.'s at A, A,, .. .,Anl which were assigned in Step I, we
need Hy (A)=0 fori=1,2,...,n,. Since n;Sm~1and Hy (A)=0 fori=1,2,...,n,,
1 1
from eqn.(5.2.22), we require that

P Vs (A)as) =0 i=12...,n (5.2.23)

For eqn.(5.2.23) to hold irrespective of the value of pzm. the vector q2(2) must be chosen to

satisfy the equations

Vi =0 i=12...,n (5.2.24)

It can be shown [9] that each of the matrices V:‘ (7&,.) Jg=1,2,..., n, contains only one
independent row. Let us denote these rows by VVo, e an. Thus eqn.(5.2.24) will be satisfied

fori =1,2,...,n,ifthe following n, [S m-1 ] linear equations are satisfied:
vq7=0 i=1,2
|q2 - 1=1, ’-'-vnl (52.25)

Equation (5.2.25) implies that the vector q2(2) can be chosen to be any mx1 vector which is

orthogonal to the vectors Vi Vo, ,\"nl.

It should be noted that, the acquired qz(z) makes the system in egns.(5.2.19a,b) partially

uncontrollable through pole-zero cancellations at A, A,, .. ., A

. inthe transfer function vector
1
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2
v, &) q( )/H ? (), and subsequently the uncontrollable d.b.z.’s remain invariant under the

constant vector p f) .
Once q, @ ; is found, the multi-input system in eqns.(5.2.16a,b) becomes
é = |4 De,+ 2.26
2 27boP; ‘ E,+EpM,y (5.2.263)
v,= [4b,p@ e, + E (5.2.26b)
2 12721P2 |52t Eq2 Hy 2.

where b, =B ,q, @ b, =B,q, @ A general left inverse of the above system is given by

%2. = [[Azz —Ap (EIZ) Ezz] PmT [bz b, (1) Ezz]] £,
[[Au DTy T ](Eu) ] (5.2.27a)
B, = [—-(E{2 )+E§2] g, + [(Efz)*] v, (5.2.27b)

The closed-loop d.b.z’s of the system in eqns.(5.2.27a,b) are those eigenvalues of the matrix

which are not also the eigen-

[[Azz A (E 2) 522] P(Z)T [ (E 2) Ezz

-T T
values of [A 22 péz) sz ] Now the matrix

- QT |y T . T, poT \+pT
[[Azz Ay, E}) Ezz] [bz b, (Ey,) Ezz]]
is the transpose of the closed-loop state matrix of the system
: - + - +
¥, = [Azz‘E 2E 12"12] ¥+ [bz‘EzzE 12"1] 6, (5.2.28)

subject to the state feedback law

= Q@
é,=0-p ¥, (5.2.29)
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- T T . .
Similarly the matrix [A 22-P 52) sz ] is the transpose of the closed-loop state matrix of the

system
¥,=4,,¥,+b,d, (5.2.30)
subject to the state feedback law in eqn.(5.2.29). If the system in eqn.(5.2.28) is completely con-

trollable, then all the n—! eigenvalues of the matrix [A' 9~E 9oE 1+2A' 12] can be arbitrarily

assigned by state variable feedback, otherwise only those eigenvalues of [A- smEpE LA 12]

which correspond to controllable modes of the system can be assigned arbitrarily by state feed-

back.

From the above results, we can now use Algorithm 2.1 to determine the vector pz(z) which
assigns n,<(n—I) d.b.z’s for the system in eqns.(5.2.28) and (5.2.29). At the end of this step, the

closed-loop system is ¥, [A 2,B, C.E ] and has n, (for d 1(1)) and n, (for d,(1)) d.b.z’s

d

assigned at specified locations. Thus the constant state feedback matrix K, = K ;” +K 2(2)

assigns n, + n,Sm—1+n-/ d.b.z’s of the original system ¥ [A ,B,C, E] at specified loca-
d

tions to achieve complete disturbance rejection in the steady state.

It should be noted that, for the case when we have r disturbances, we need to carry out r
steps in the above procedure to compute the constant state feedback matrix K ,. where K , is con-

structed as a sum of dyads, i.e.

r
K= 2K

i=1

r
i
= Z%f ) pé” (5.2.31)

i=1

From the above results, we can now outline an Algorithm for assigning the d.b.z.’s of the




B e < e T AT T T R R RERRERRBBEE SRR DRI a—_A—Ae A _— ———eeem o

157

system Y, [A ,B,C,E ] using constant state feedback.
d

Algorithm 5.1 : (Multi-disturbance rejection for the system 3, [A,B, C,E ] by means of
d

constant state feedback)

Step I: (Assignment of n | d.b.2’s using unity-rank feedback matrix K él) )
(i) Set i = 1 to select the first single-disturbance system 3, [A ,B,C,E,| ]
d

(ii) Let n,

Sm-1 ] be the number of d.b.z.'s for the system 3 [A ,B,C,E, ]
d

(iil) Specify the vector g arbitrarily, such that the controllability matrix of the single-input
+ + (4D

(iv) Apply Algorithm 2.1 to the single-input system in eqns.(5.2.13a,b), to determine the vector

pél) which places the 71, d.b.z.’s at the speci fied locations.

(v) The unity-rank state feedback matrix is then obtained as K,= qél) pél) and the resulting

closed-loop system is 3, [Al, B,C, E] withA, = [A -B [0 K;l)] ]
d

Step I: (Assignment of n, d.b.2”s using unity-rank feedback matrix K ;2) )

4

(i) Set i = 2 to select the second single-disturbance system 3,
d

LAI,B,C,E,].

(i) Let n, [.<.n -l ] be the number of db.z.’s forthe system Y, |A,, B, C, Ez]-
d .

(iii) Determine the vector qéz) to preserve the n, d.b.z.’s which were assi gned in the first step.

(iv) Apply Algorithm 2.1 to the single-input system in eqn.(5.2.28) , to determine the vector péz)
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to place additional n, d.b.z.’s at the specified locations.

(v) The unity-rank state feedback matrix is then given by K éz) = q§2) péz) , and the resulting

closed-loop system is ¥ [A 2B8,C,E ] withA, = [A 1B [0 K éz)] }
d

Step r: (Assignment of n_ (Sn—l) db.z’s using unity-rank feedback matrix K g). while

preserving then, ...,n,_, [max(m -1) ] db.2's assigned in Steps 1-(r—1)).

The above procedure allows us to assign at the desired locations a maximum of
[m—l+n—1] d.b.z.’s between the outputs and the r disturbances in r steps. We note that at
each step, those d.b.z.'s which are not preserved by choice of qi(i) , 122 and which are not being

moved to desired locations will move in an arbitrary manner. However, after r steps, all the sets

{ni }; i=1, ..., rof the required d.b.z."s would have been moved to the desired locations pro-

vided enough freedom exists in the feedback matrix K, to accomplish this.

5.2.2 Assignment of d.b.z.’s by Dynamic State Feedback

In this section, we discuss the cases when one or more single-disturbance systems

) {A ,B,C,E; ] fori =1,2,...,r does not have any d.b.z.’s and/or there are not enough
d

d.b.z.’s to completely eliminate all the effects of the disturbances at the outputs in steady state.

To solve this problem, we assume that the system (5.2.1a,b) with disturbances d,(r) and
d,(t) has n,<m=-1and n,<n —/ d.b.z.’s, respectively. It will be shown later that the design pro-
cedure used to solve this problem is an extension of Algorithm 5.1 using a dynamic state feed-

back compensator defined by the following equations
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Z,(1)=F,z2,(t) + [0 G2] x(t) (5.2.322)
u,(t) = H,2() + [o 12] X(1) (5.2.320)
u@)=vQ)-uy) (5.2.32)

where 2,(r) € IR? is the state vector of the compensator, U,(r) € R" is the output of the
compensator, v(t) € R™ is the external input vector, and F,, Gz, H, and J , are constant
matrices with H, and J, obtained as sums of dyads i.e H, = H ;l) +H §2) andJ,=J 2(1) +J 52) .
It was shown in Chapter IV, that dynamic state feedback of this form introduces g additional

d.b.z.'s between the outputs and each disturbance.

We now consider the assignment of the required number of d.b.z.’s for the two single-

disturbance systems " [A ,B,C,E,; } i = 1,2, by means of a dynamic state feedback law.
d

The following three cases can arise:
Casel:

In this case, we consider that the first single-disturbance system Y, [A ,B,C,E, ] does
d

not have any d.b.z.’s and/or the number n, of the d.b.z’s is not large enough to achieve complete
steady-state rejection of the first disturbance, while the second single-disturbance system

) [A ,B,C, Ez] has the required number n, of the d.b.z.’s, such that if we assign them at
d

desired locations, the second disturbance will be rejected completely in steady state.

The above situation can be resolved in two steps: In the first step, the additional number of

the d.b.z.’s (¢ ) needed for the first single-disturbance system ¥ [A ,B,C,E 1 ] are introduced
d

by means of dynamic state feedback of order ¢. Note that, the dynamic state feedback introduces

q db.z’s (equivalent to the poles of the compensator) as well as assigns all the d.bz’s
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(consisting of the d.b.z.’s of the open-loop system together with those introduced by the dynamic
compensator) at desired locations in the complex plane. Second, while preserving the
n,+q<m-1 closed-loop d.b.z.s which have been assigned in the preceding step , we compute a
constant state feedback law to assign additional n, d.b.z.’s for the second single-disturbance sys-
temn at specified locations in order to reject completely the effect of the second disturbance in

steady state.

From the above discussion, the design procedure can be described by the following two

steps:

Step I : (Reject the effect of the first disturbance by means of dynamic state feedback)

In this step, let us assume that the first single-disturbance system Y, [A »B,C,E, ] has
d

n, d.b.z’s which are not enough to eliminate completely the effect of the first disturbance in

steady state. It is required to introduce an additional g d.b.z.'s by using dynamic state feedback

defined by the following equations

2,(6)=Fz,(1) + [o 62] X (1) (5.2.333)
u,()=H 2,0) + [o J§"] X (1) (5.2.33b)
u(t)=v 1(t) = u,(r) (5.2.33¢c)

where H él) andJ 20) are mxq and m x(n-I) unity-rank matrices, respectively and are given by

Q) _ )M
Hy" =q;" hy
a__ @ 1)
J2 =47 Py
witha” b and p.® bei .
q, ,h, " andp,’ being mx1, 1xq and 1x(n~I) vectors respectively.

On applying the state feedback law defined by eqns.(5.2.33a~ c) to the system in eqns.(5.2.1a,b),

we obtain
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%(1) = A, %)+ B v,(0) + B, dy(0) + Eydy0) (5.2.342)
y)=Cx() (5.2.34b)
with
x(t)
XO= 10

andA-l,B-,E-l, E-zand C are given by

) 1) ] ] ]
Ay Ayp-ByJ," -B\H, B, E, E,,
- ) Wl 5. = _ = _
A=Ay Ap=ByJy -BHy | B= |By|.Ey= |Ey | Ep= [Ep]s
0 Gv'2 F2 LO - L 0 | . 0 |

and
¢=lc,00]

Then, by using the factorization procedure on the above system, the sets of d.b.z.'s between the

outputs and the disturbances can be calculated using the following systems

) ()
. AypBy, -B,H, Ey
§ = G, F, Bt o IM (5.2.352)
v, = [AIZ-BIJ o -31H§‘)] E + [Eu] M, (5.2.35b)

and

é2=

) )
Ay=Byly” —BoH, E,
E,+ K, (5.2.36a)

G, F, 0
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= [A B 5P -Blflz(l)] £, + [En] ™ (5.2.36b)

Now, assuming that the systems in eqns.(5.2.35a,b) and (5.2.36a,b) are invertible and using the
concept of a minimal order system inverse, we can examine the problem of assignment of n 14

closed-loop d.b.z.’s of the system in eqns.(5.2.35a,b) at specified locations in the complex plane.

For [I 21 ]. the system in eqns.(5.2.35a,b) has a left inverse which is the transpose of a

right inverse of the dual system

T ,)T,T T T .07
[Azz""z Bz] G, [ 127/, B ]
r|& +

1 MT T T ,T
-H,’"B, F, -H, BT

u1
1

(5.2.37a)

* *
= [E; o] g, + [Ef,] " (5.2.37b)
A right inverse of the system in eqns.(5.2.37a,b) is given by

T (T ,T T T, T]| T +p.T AT
[Azz‘fz Bz]‘["xz"z 31](511)521 G,

_._rn
]
Jye

o

T, T MT T, T \+ T T
[‘Hz By +H, B (E},) Ey Fy
T T, 1
[Alz‘Jz Bl]

T .+ %
g7 g7 (Ey) v, (5.2.38a)
2 1

;==L £ 0] &, + [T ] vy (5.2.38b)

The set of n | +4 closed-loop d.b.z's of the system (5.2.34a,b) between y (r) and d, () are those

eigenvalues of the matrix
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T

l[AzZ-J“)TBT] [Au J“)TBT](EH) el 6!
T T , 1 OT pT (5T \+T
[ -H," B,+H, BI(E11)+E21] F,

which are not also the eigenvalues of the matrix
(1)7' T
T T

(1)T

Now, the matrix

T _, T ,T T ,MTT|, T +pT AT
[Azz‘Jz Bz]"["xz"z Bl](Ell)EZI G,

[-H Mgl kO BT €l y'E] | F
is the transpose of the closed-loop matrix of a system given by
[Azz E EnAu 0 [32'5215;131]
¥, = G, Pl 0 o, (5.239)
subject to the state feedback law
o,=d - [J;” H‘”] ¥, (5.2.40)

where 61 is the ex:ernal input.
Similarly the matrix

(l)T T T
T

T
-H{'B] F

is the transpose of the closed-loop state matrix of the system
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o, (5.241)

[A n 0 ] [Bz
¥ = ¥, +

1 1

G 2 F 2 0
subjcct to the state feedback law in eqn.(5.2.40).

If the condition in Theorem 4.1 is satisfied for system (5.2.39), then all the eigenvalues of

the matrix
-+
A22—E21E11A12 0
Gz F 2

can be arbitrarily assigned by state feedback, otherwise only those eigenvalues of the above
matrix can be assigned arbitrarily by state feedback which correspond to the controilable modes

of the system.

- . 1 . .
By restricting the constant state matnices J;l) and Hé) to have unity-rank i.e.

Jél) = qél)pél) and H;l) = qé“hé”;thc vector qé” can be specified such that the control-

lability matrix of the single-input system

)

A22‘521511A12] 0 [32”5215;131}
q,

G, Fol’ 0

has rauk 2n +q. The system (5.2.39) with feedback (5.2.40) is then equivalent to the single-

input system

+
Ap EjEpAyp) 0 [bz‘EmE; b,

= ¥
¥, Gz F, 4

0 o, (5.2.42)

subject to the state feedback law

o =, - [pz‘” hé’)] ¥, (5.2.43)
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where b, = quél), b, = quél).

The state feedback vector [p ;l) hél) ] can then be computed using Algorithm 2.1. At the

end of this step, the closed-loop system is ¥, [ff »B.C.E ] This has n,+q d.b.z.'s placed at
d

specified positions, such that the effect of the first disturbance at the outputs is eliminated in

steady state.

Step I1 : (Reject the effect of the second disturbance b means of constant state feedback)

In this step, we determine the ¢ xm and m x(n—I) unity-rank matrices J;z) = qf) p ;2)
and H ;2) =q ;2) h ;2) , respectivesy defined via the feedback law
v =v)-HP 2, 0)- [o Jf’] X (1) (5.244)

for the system Y [A-l. B.C,E ] which preserves the n,+q<m—1 d.b.z.'s obtained in the first
d

step and assigns additional n,+q<n—I/+q d.b.z.’s al specified locations in the complex plane.
The prescrvation of n,+q d.b.z's is achieved by suitable choice of qéz). while the assignment
of ny+q d.b.z’s at desired locations is acco .plished by appropriate choice of the vectors héz)

and péz).

On applying the control law defined by eqn.(5.2.44) to the sysicm Y [ff P B,C.E ]. the

d
following closed-loop system is obtained
K(1) = A, % () + B v(t) + E d (1) + E, d,(t) (5.2453)
y(t)=C %(t) (5.2.45b)

where A o is given by



with

and

B,
B,

- 2 g5 (2)
Au AlZ—Bl‘IZ 'Bl‘Ble

- Q g 2)
A2l Azz'lez ‘Bz‘Bsz

o G, F,

N o]
= _Alz“ijz ]

_ - (1).
= |AnByJy |

_ ¢))
-BlH%])
=B,H,
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Then, by applying the factorization procedurc to the above system, the sets of n,+q and n,+q

closed-loop d.b.z.’s between the outputs and the disturbance d (1) and d ,(r) respectively can be

calculated from the following reduced-order systems

and

[ - @ g )
Azz'B 2’ 2 -B 2"3 2H 2 521
E + K

G, F, 0

-

i @) _g )
= _[A12_Bl‘,2 ] -B-B \H, ]51’“ [En]H

[ - @ 5 @
Ay—Boly" ~ByByH, Ey
&+ )

G, F, 0

e

iIn @) _5 @
_[AIZ-BI‘,2 ] ~B,-B,H, ]52'* [EIZ]’J‘Z

(5.2.46a)

(5.2.46b)

(5.2.47a)

(5.2.47b)

e o RN S

et g E
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Now assuming that, the systems in eqns.(5.2.46a,b) and (5.2.47a,b) are invertible and using the
concept of a minimal order inverse, we can preserve the n,+q closed-loop d.b.z.'s which have
been assigned in Step I, and assign additional n,+q of d.b.z.’s at specified locations in the com-

plex plane.

For [1 21 ] the system in eqns.(5.2.46a,b) has a left inverse which is the transpose of a

right inverse of the dual system

-T T, T T - T QT ,T
. [Azz‘Jz Bz] G, [AIZ -3 Bl]
§l. - gll + ul‘
ugTsl-a]) 1) | [wTel6)
(5.2.48)
v, = [ET 0]5' + [ET] ) (5.2.48b)
1= |52 1 1| My -

A right inverse of the system in eqns.(5.2.48a,b) is given by

-T T LT - T OT,.T T +pT T
[Azz‘Jz Bz]‘{Au -5 31](511) E; G

g
|

3
QT T 5T) AT T 5T, oT \#poT T

- T T ,T
[AIZ =J2 31]
T +

+ . ) E]) "; (5.2.49a)
["Héz) BnT'B-ll

u, =-E)"* [E,f,l o] g+ [(Ef, )"] v, (5.2.49b)

Similarly the dual of the system in eqns.(5.2.47a,b) is
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T T, T T - T T, T
. Ap—J, Bz] G, [[Anz -J2 Bl]
52. = §2‘ + “2‘
T T 5T T QT 7 ;5T
["Hz 32'32] Fy [‘Hz 31‘31]
(5.2.50a)
v, = [E; 0] g, + [51T2] M, (5.2.50b)
which has a right inverse given by
- T ,T - T T, T T +.T T
. [Azz'-’z BZ]_[AIZ -J3 Bl](El2) En G,
§2. = gzo
QT , 75T QT T T T 4T T
[-H2 82-82]+[H2 Bl-rBl](I;‘“)E21 F,
c T, T ,T
[Anz =/ Bl]
+ ) . ET) Y, (5.2.51a)
QT ,T 5
My, =~ [E;Z 0] g, + [(E,Tz)*] v, (5.2.51b)

The set of the closed-loop d.b.z.’s between y(r) and d 1(r) for the system in eqns.(5.2.45a,b) are

those eigenvalues of

T T, T s T T, T, T \+T T
[Azz‘Jz Bz]‘[Alz =J3 B:](Eu) En G,

c

- QT ,7 5T QAT LT 5T, T \+oT T
[—H2 82—82]+[H2 Bl+Bl](E“)E21 F,

which are not also the eigenvalues of

T T, T T

[Azz‘Jz Bz] G,

QT T_5T| T
[‘Hz 32‘32] Fy

1 OIS iy PR IS TS IOEIRS T Y N TR ., PP R LR M )~ WIS T 4 1o WO T My £ T >

Ry ‘v.'—-u.-l
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Now, the matrix A, ¢ 18 the transpose of the closed-loop matrix of the system

AyEyE ;1“-12] [_B-2+E21E ;151] [32'5215;131]
‘i‘l = G, F, ¥, + 0 61
(5.2.52)
subject to the state feedback law
¢ =3 - [J @y ‘2’] ¥, (5.2.53)

Since the constant state feedback J 52) and H ;2) arc restrictied to have unity-rank, i.e.

J @ _ q2 p;z) and H, @ _ qéz) h ;2) , then the closed-loop characteristic polynomial

- + - - -+ =
Azz‘EzlEnAn] ["Bz*EzlEnBl

c
H, (s) = det Sty peg ™ G, F,

[ |
(2) (2)

can be expressed as [9]:
H (s)=Hg (s) + [p"‘” hm]V (s)q? (5.2.54)

where

- .- 8 .os
[A 2 EnEnh 12] [‘B 2+EpnEpB, ]

[+] .
le (s) = adj sln_Hq— G, F,

and
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ApEpnEnA 12] [‘B- +EnE B, ]

Hy (s)=det sl - G, F,

are the polynomial matrix of the closed-loop transfer function matrix and characteristic polyno-
mial, respectively of the system obtained after the first step.

The vector qéz) is used to preserve the set n,+g<m-1 of the d.b.z.’s obtained in Step I at

A, .. ")‘n, +q in the closed-loop system. In order to preserve the dbz’s a

@ h (2)
2

AL, .. "7‘,.,+q irmespective of [p2 ] , from eqn.(5.2.54) we require

Vi) =0 i=12..,n+q (5.2.55)

Since the matrices V;,’l (A).i=1,2,...,n,+q, have rank one [9], each matrix VZ: (A;) con-
tains only one independent row. Let us denote this row by ¥,. Thus the vector q éz) is found from
the n,+q [S m-1 ] linear equations:

vqP =0 i=1,2...n+g (5.2.56)

It is noted that the acquired qéz) makes the single-input system

~ + - 5 + 5 +
Azz’EzlEuAn] ['Bz+EzlEnBl] [Bz‘EzlEnBl]

q )
G, F, ’ 0 2

partially uncontrollable through pole-zero cancellation at A, &,, .. ., )‘n, +q in the transfer func-
tion vector V:l (s) qéz) /H :l (s ), and consequently the uncontrollable d.b.z.'s remain invariant
under the control law given by eqn.(5.2.53).

Once qéz) is found, the multi-input system in eqns.(5.2.51a,b) becomes
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; QT T - T T-T| T TgT T

[Azz"Pz b, ]‘[Alz -p; b, ](EIZ) Ep G

§2t - §2.
DT-T 5T =T )T - T T

[_h;> b, -32]+[Bl+h§’ blT](E12)+E§2 F;

- T T-T
[AIZ =P, b, ]
T +.*
+ (Eyp) v (5.2.57a)
[0 75,741

M, ==y’ [Elz 0] &, + [(Efz f] v, (5.2.57b)

whereb, =B.q D and b, = q @) , respectively.
1 112 2 2 2

The set of the closed-loop d.b.z.'s of the system in eqns.(5.2.57a,b) are those eigenvalues of

c AT T - T T T |, T \+T T
[Azz'P b, ]_[Al2 P, b ](EIZ) En G,

[hmT T‘le [B h(z)TbT](En) Ezz F;

which are not also the eigenvalues of

(2)T T
a8, ) o

(2)T T T
427583 ]

Now, the matrix A_ is the transpose of the closed-loop state matrix of the single input system

- + - - + o - .
[Azz"EzzEleu] ['32‘52251231] [bz'EzzE;zbl]

(5.2.58)

subject to the state feedback law
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A _ = (2) @
Similarly, the matrix
- QT T T
“Azz"l’z b, ] G,
OT- 1T ;T T
l["‘z b, "32] F

is the transpose of the closed-loop state matrix of the system
) Ay ~By b,

¥, =

¥, + 6, (5.2.60)

G, F, 0

subject to the state feedback in eqn.(5.2.59). If the system in eqn.(5.2.58) is controllable, than all

the n-{ +q eigenvalues of the matrix
- + - - + T
[A 27E pf 1A 12] [‘Bz'EzzEnBl ]
G2 F2

can be arbitrarily assigned by state feedback; otherwise only those eigenvalues of the above
matrix can be assigned arbitrarily by state feedback which correspond to the controllable modes

of the system.

The final closed-loop system ¥ [A' »B,C,E ] will then have the n,+¢ (ford\. », d
d

n, (for d2(t )) d.b.z.'s assigned at specified locations in the complex plane. The required dynamic

state feedback is

i) =F,2,00+ [0 G, ] x() (5.2612)

u ) =Hyz,0)+ [0 7, | x) (5.261b)

It should be noted that the matrices H, = H él) +H ;2) and J,=J ;1) +J 52) are not in general
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unique because of the freedom in the choice of qél) in the first step.

CaseII:

In this case, we consider the complement of the above case for which the first single-

disturbance system Y, |A,B,C,E, | has the required number n, of the d.b.zs; while the
d s

second single-disturbance system Y |A,B,C, E,| does not have any d.b.z.'s and/or the
d .

number ., of the d.b.z.'s is not large enough to reject completely the effect of the second distur-
bance in steady state. To solve this problem, we first use a unity-rank matrix J él) =q ;l) p él) in

the state feedback law:

u, () = v, ()= [0 Jé”] X (1) (5.2.62)

to assign n, d.b.z.’s for the system 3, [A ,B,C,E, ] at specified locations, such that the effect

d

of the first disturbance is eliminated in sicady statc. The unity-rank matrix J ;l) = qél) pél) can

be calculated by carrying out Step I in Algorithm 5.1. The closed-loop system at the end of this

stepis 3 [A],B,C,E].whcrcAl= [A-—B [0 J;“]].
d

In the second step, while preserving these n,<m—1 closed-loop d.b.z.'s, an additional ¢ d.b.z.’s

are introduced by means of dynamic state feedback defined by

i) = Fyz,(1) + [0 Gz] X (1) (5.2.632)

w(t) = H,2o(0) + |0 1(2)])&(1) (5.2.63b)
) =M, 2 M) o

v)=v()- u,(r) (5.2.63c)

such that the resulting n,+q closcd-loop d.b.z.’s are placed at specified locations in the complex

plane to achieve complete rejection of the second disturbance in steady state. Note that this
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compensator can be determined by carrying out the procedure in Step I of Case 1. Therefore, the

resulting dynamic state feedback compensator is of order ¢ and is given by

-

Z(1)=F,z,(t) + :0 G,y [x() (5.2.642)

u,(1) = Hyz,(0) + Eo 7,]x) (5.2.64b)

o

where the matrix H2=q§2)h2 has unity-rank and the matrix 12=J§1)+J§2) with

J éz) = qf) péz). The final closed-loop system Y’ [/f 29 B,C.E ] has the n | (for d,(t)) and
d

n,+q (ford,(t)) closed-loop d.b.z.'s assigned at specified locations where

Ay A8y, -B\H,
Ay= |Ay Ay-ByJ, -BH,

0 G, F,

Case I1I:

This is the general case, for which the two single-disturbance systems do not have any
d.b.z.’s and/or the numbers n, and n, of the d.b.z.’s are not large enough to achieve complete
disturbance rejection in steady state. The design procedure can be carried out in two steps using
dynamic state feedback K (s ): In the first step (Step I in Case I), we compute a dynamic state
feedback K ;l) (s ) of order q(l) depending on the required number of d.b.z.’s for the first single-

disturbance system Y, [A,B,C,E 1]' Then the resulting closed-loop system
d

2 [/f 1 B , c s E ] has n1+qm d.b.z.’s assigned at desired locations to achieve complete rejec-
d

tion of the first disturbance in stcady state. In the second step, the assigned n 1+qm [Sm—l ]
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d.b.z’s arc preserved and a set of upto n2+qm+q(2) (or n2+qm) additional d.b.z.’s are

assigned by using a unity-rank dynamic state feedback compensator K éz) (s) of order q(z) (or

constant state feedback matrix [.I éz) H 52) ]) depending on the number of additional d.b.z.’s to

be assigned for the second single-disturbance system Y, [/f l,lf ,C, E 2]. Thus the resulting
d

dynamic state feedback K ,(s) is constructed as a sum of two unity-rank compensators
K 2(s) =K él)(s)+K éz) (s) (or a sum of a unity-rank compensator K él) (s) and a unity-rank

)

constant matrix [J ;2) H 132)]) and has order ¢ = qm+q (orq = qm). For the case when

dynanic compensation is used in both steps, the overall compensator is given by:

iz(t)ze z,(1) + [0 G, [ x(1) (5.2.653)
u,(1) =H,z,(t) + [O 121 x (1) (5.2.65b)
where
F" o 9%
F - G -
2 @2 )
[ 0 F, G,

_[,0 5@ O

Now, for the sake of completeness we will outline the Algorithm used to reject in steady

state all distrrbances affecting a system Y, [A ,B,C,E ] by means of dynamic state feedback.
d

Algorithm 5.2: (Muli-disturbance rejection for the system p) [A B, C,E] by means of
d

dynamic state feedback)
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Step I: (Reject the effect of the first disturbance)

(i) Seti = 1, 10 select the first single-disturbance system ¥ [A ,B,C,E, ]

(i) let n, [Sm-l ] be the number of d.b.z.’s for the system ¥ [A ,B,C,E, ]
d

(iii) Suppose that 1, [Sm-l ] is the number of the d.b.z.’s required to achieve complete rejec-
tion of the first disturbance in steady state.

Gv)If o lSn1 g0 10 Step (v); else go 10 Step (vi).

(v) Assign i} d.b.z’s by means of unity-rank constant state feedback matrix J 2(1) = qél) pz(l)
given by the feedback law in eqn.(5.2.62):

(a) Specify qzm soch that the controllability matrix of the single-input system

+ + N
{[Azz“EnEnsz] ’ [32‘52151131] q; ]

has a rank at least n',.

(b) Apply Algorithm 2.1 10 the single-input system given in eqn.(5.2.13) by using the state
feedback law in eqn(5.2.14) and determine the vector p ;" which assigns the set of i, closed-

loop d.b.z.’s at specified locations.
() The resuling closed-loop system is Y [A], B,C,E ], where
d
- M
(d) Go to Step I1.

(vi) Assign 1, d.b.z’s by means of a unity-rank dynamic compensator K él)(s) of order

q(l) = (r',—n,), defined by the feedback law given in eqns.(5.2.33a-c).

(a) Specify q 2(1) arbitrarily, such that the controllability matrix of the single-input system
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+ +
Azz'EzlEnAlz] 0 [32‘52151131]

q "
G, F, 0

has rank at least ri ;.
(b) Apply Algorithm 2.1 to the single-input system given in eqn.(5.2.42) by using the state
feedback law in eqn.(5.2.43) and determine the vector [pél) hél) ] which assigns #, closed-

loop d.b.z.’s at specified locations.

(c) The resulting closed-loop system is Z [A' I,B' ,C ,E' ] and is given by
d
eqns.(5.2.34a,b).

Step II: (Reject the effect of the second disturbance)

(i) Set i=2, to select the second disturbance system 3, [AI,B,C ,E2] (or
d

5 [4,5.C.5)
d
(i) Let n, (or n2+q(1)) [S n-l (or n-1 +q(1))] be the number of d.b.z.’s for the system
> [AI,B,C,Ezl(orZ [A',,B',C,éz]).
d d
(iii) Suppose that r, [Sn -1 (or n-l +qm ) ] is the number of d.b.z."s required to achieve com-

plete rejection of the second disturbance in steady state.

(iv) If risSn, (or n2+qm) go to Step (v); else go to Step (vi).

Comment: Since the case ri,<n, is considered in Step Il of Algorithm 5.1, here we will present

only the case when n’2.<_n2+qm.
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(v) Assign the sct 1, d.b.z.'s by means of a unity-rank matrix [J ;2) H éz)] defined by the state
feedback law in eqn.(5.2.44).

(a) Calculate the vector q éz) which preserves the set /7, Sm~1 assigned in Step 1.

() Apply Algorithm 2.1 to the single-input system given in egn.(5.2.58) using the state

feedback law in eqn.(5.2.59), and determine the vector [péz) h: ] to assign #, closed-loop

d.b.z.'s at specified locations such that the effect of the second disturbance is eliminated in steady

state.

(c) The resulting closed-loop system 3, [/f 2 B,C.E ] is given by eqns.(5.2.45a,b).
d

(d) Go to Step 111

(vi) Assign ri, d.b.zs by means of a unity-rank dynamic feedback compensator K 52) (s) of

order q(").

Comment: In all that follows, for the purpose of illustration and simplicity, we will consider the

system Y [A »B,C,E ] with dynamic compensator of order q(z) = ri,~n, given by the feed-
d

back law in eqns.(5.2.63). Note that the system Y, [A" 1 B,C.E ] with dynamic compensator
d

of order q(z) can be tre.ted in a similar way to that given in Case I
(a) Calculate the vector qf’ which preserves the i, closed-loop d.b.z.’s assigned in Step L.
(b) Apply Algorithm 2.1 to determine the vector [p 52) hz] which assigns n2+q(2) addi-

tional d.b.z.'s at specified locationc
(c) The resulting closed-loop system is ¥ [A'Z,B' ,C,E ] and has i, and A, dbz.'s

d

between the outputs and the first and second disturbances respectively, which are assigned at
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specified locations by means of the dynamic state feedback compensator given in

eqns.(5.2.64a,b).

Step r: (Reject the r disturbance).

Continuing in the above manner, it can be seen that this procedure allows us to compute a
dynamic compensator of order ¢ and assign a maximum of (n -l+m-1+g) d.b.z."s between the

outputs and the r disturbances at desired locations in r steps.

5.3 MULTI-DISTURBANCE REJECTION FOR THE SYSTEMY, (A,B,C,D,E, F ]
d

In this section, the results of the preceding section are extended to solve the problem of

assigning sets of d.b.z.’s by means of constant gain as well as dynamic state feedback for the sys-

tem described by the state-space model ¥, |A,B,C,D,E,F } Jie.

d

x(t)=Ax()+Bu@t)+ Y E dr) (5.3.1a)
i=1

y)=Cx(t)+Dut)+ Y F, d,(1) (5.3.1b)

i=1
wherex (¢) e R ™ is the state vector, u(#) € IR”™ is the input vector, y (1) € lR' is the output

vector and 4;(t) € R fori = 1,2,. .., r are the disturbances which may or may not be measur-

able, with m2r. It is assumed that the systems ¥, |A,B,C,D,E,,F;|,i = 1,2,...,rare
d
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non-degenerate and that rank (B)=m and rank (C)=1.

We also assume that, the transfer function matrices relating the outputs to the disturbances
for the open-loop systems and the closed-loop systers with state feedback have n disturbance

zeros. This assumption implies that for the open-loop system, the following equations hold:

AT [In—(E,T )*E{] =0 i=1,2,...r (5.32)
while for the closed-loop system, we require that

BT [ln—(Ef ) F] ] =0 i=1,2,...r (5.33)

Furthermore we assume that the number of d.b.z.’s 10 be assigned between the outputs and d; ()
r-1
aren;,i =1,2,...,rwith Y n,<m~landn <n.

i=1
We have shown in Sections 3.3 and 4.1 that the system in eqns.(5.3.1a,b) can be

A

transformed into a higher order system denoted by ¥, [/f ,B,C,E ] described by the following

d
equations:
k(=A%) +Bu)+ TE d,0) (5.342)
i=]
ya)=C %(t) (5.3.4b)
yit)= [0 C] X@)+Du@)+ Y F;d,() (5.3.4c)
i=1
where,
Q ec @D OF;
A= B= E = ¢=lr o]
0 A ’ B 1 &4 El ’ lp
with
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and £, © and Ip are constant matrices defining the dynamic output feedback of order p .

The system (5.3.4a-c) enables us to use the factorization procedure of Section 3.2 and the
concept of a minimal order inverse to determine the numbers and locations of the d.b.z.’s which
can be assigned by state feedback. Hence, the procedures described in Algorithms 5.1 and 5.2,

using either constant or dynamic state feedback, can be applied to the system Y, [/f ,B,C, f]
d

and used to assign the setsof m,,i = 1, 2, .., r d.b.2’s at specified locations. From the p.operty

of the factorization, it then follows that the d.b.z.’s of the system Y [A .B,C,D,E,F ] will
d

also be assigned by the constant or dynamic state feedback together with the dynamic output

A

feedback used to get the system Y, [AA ,B.C,E ]
d

5.4 GENERAL REMARKS

The following remarks are required to clarify certain points regarding the implementation
and advantages of the proposed algorithms to reject multiple disturbances affecting the multivari-
able systems described by 3 [A,B,C,E] ory, [A,B,C,D,E,F :

d d
Remark 5.1: For measurable disturbances the computations and the structure of the controllers
in the proposed algorithms can be considerably simplified. To see this, consider the system
p) [A ,B,C,E ] with two disturbances given by

d

2
x()=Ax(@)+Bu(t)+ T E; d1) (5.4.1a)

i=]

y(t)=Cx@) (5.4.1b)

Assume that the disturbances d (#) and d 2(t) are measurable. Consider two cases:
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(@) d (1) =P andd,(1) = B,

(b)d () =P, andd,(t) = B, + By exp (1)

where B,, B, and f3, are known constant values.

(a) In this case, since the disturbance d,(¢) and d(¢) are of identical type (i.e step disturbances)
but with different amplitudes, the problem of multi-disturbance rejection can be reduced to that of

single-disturbance rejection for the system Y, [A,B, C.E ] where E = E \By + E,B, We
d

can then apply Algorithm 4.1 or 4.2 to assign at least one d.b.z at 0.0 to achieve complete rejec-

tion of the step disturbances in steady state.

Note that, for unmeasurable disturbances, (i.c. when 3, and B, are unknown) this reduction

cannot be used, and the problem should be solved by applying Algorithms 5.1 or 5.2.

(b) In order to reject this type of disturbances, we note that from the design point of view, it is

desirable to split the problem into that for two single-disturbance systems : The first denoted

Y [A,B,C,E-'1 ], is affected by a step disturbance and the second, ¥, [A,B,C,b:z]. is
d d

affected by an exponential disturbance, where the disturbance vectors E , and E 5 are given

respectively by

E\=EB, +Ep,
and

E,=Eqf,
Then we can apply the two step procedure of Algorithm 5.1 or 5.2 to find the state feedback con-

troller which assigns at least one d.b.z each for the system Y’ [A ,B,C,E 1 ] at 0.0 and for the
d

system Y, [A ,B,C, Efz] at 1.0. Note that in this way the construction of the state feedback
d
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controllers could be considerably simplified and may also have simpler structure because of the

possibility of lower crder.

Remark 5.2: In some cases, it may not be possible to position d.b.z.’s at the same location, say A,

for two or more disturbance inputs using the approach described above. These situations may

arise where (i) the 4-tuple (A, B, C, D) is degenerate i.e. the system Y [A .B,C, D] is not

invertible or (ii) the system . [A ,B,L, D] has a blocking zero at A. This is a consequence of

the way in which a d.b.z.’s assigned at A for the i *hdisturbance is preserved while assigning

d.b.z.'s for subsequent disturbances.

Remark 5.3: In the case that the conditions in equations (5.2.2a,b) or (5.2.3a,b) are not satisfied

for system Y. [A,B,C,E] or system ¥, |A,B,C,D,E,F|, we can carry out Step I
d d

using cither Algorithm 4.1 or 4.2 to assign the required number of d.b.z.'s to achieve complete
steady-state rejection of the first disturbance. Then in Step 11, we can apply dynamic output feed-
back (or use a servocompensator) to reject the other disturbances. It will be shown later (see
Chapter VI), that dynamic output feedback introduces additional d.b.z.’s (corresponding to the

poles of the compensator).

5.5 NUMERICAL EXAMPLES

In this section, we illustrate the use of the algorithms described in the preceding sections by

means of some numerical examples:

Example 5.1: Consider the following 4th-order system (2] whose parameters were given in
Chapter III (eqns.(3.4.2a,b)). To demonstrate the steady- state rejection of multiple disturbances,

the following input and disturbance matrices were used:
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(10 00| 01 04

00 00 00 00
B =100 s00|"E= |s00 2500

200 20 00 00

Hence, we have a system Y, [A ,B,C,E ] described by
d

iU)ana)+Bu0)+[ElE5]da) (5.5.1a)

y@)=Cx(1) (5.5.1b)

For the purpose of illustration, suppose that it is required to reject the following measurable dis-

turbances:

[5.0]
@Hd(@)= 3.0 ,and

ro] Fo] ]
(id@) = 0.0 * o exp(t) | .

Note that the given system with these disturbances satisfies the conditions given in

eqns.(5.2.2a,b) and (5.2.3a,b).

(i) From Remark 5.1a, the system Y, [A ,B,C,E ] can be reduced to a single-disturbance sys-
d

tem denoted by Y’ [A ,B,C,E ] which has two .. rurbance zeros between the output and the
d

disturbance. Hence the condition in eqn.(5.2.2ab) is satisfied. The disturbance vector

E =50E, +3.0E,, where
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E= [—1.7 0.0 1000.0 o.o]T

In order to reject the effect of the unity-step disturbances d (¢) on the system ¥ [A ,B,C.E ]
d

it is required to assign at least one of the d.b.z.’s at 0.0. Since the system [A ,B,C,E ] has
d

two d.b.z."s (at 523.2477 and - 0.11242), it follows that a constant state matrix K 2 is sufficient to
assign the d.b.z.’s at 0.0 and as some other value, say - 0.1. To compute the constant feedback

matrix K ,, we apply Algorithm 4.1, and obtain

0.0 0.0 ]

K.=
27 110412974 1.29329

By implementing K , using the state feedback law u (1) = v(z)- [O K, ]x (¢) to the system in

eqns.(5.5.1a,b), we obtain the closed-loop system

-
-05 -10 1.0 0.0

04 -04 00 0.0
X()= | 195 105 -585.6487 0335285 | X

0.0 0.0 -20.7259 -2.686588

(10 00] (7]
00 0.0 00 |
* oo s00{"“* |10000(%® (5.5.22)
200 20 | 00
1.0 0.0 0.0 0.0
Y®= 100 10 00 00/ *® (5.5.20)

This system is stable and the responses at the outputs y,(¢) and y ,(1) to the step disturbances are



186

shown in Figs.(5.1a) and (5.1b) for the open-loop system and in Figs.(5.2a) and (5.2b) for the
closed-loop system. It can be readily seen that in the closed-loop system, the step disturbances

are rejected completely in steady state.

(ii) From Remark 5.1b, system Y [A ,B,C,E ] with multiple disturbances can be reduced to
d

two single-disturbance systems, such that the conditions in eqns.(5.2.2a,b) and (5.2.3a,b) are

satisfied.

The first is denoted by 3, [A,B, C,E 1] and is affected by a step disturbance (E 1 = E))
d

while the second system Y [A ,B,C,E 2] is affected by exponential disturbance (£ .= Ey).
d

)

Note that, the two single-disturbance systems Y, [A,B, C,E ]] and )} [A,B,C .E:2
d d

L

9

satisfy conditions (5.2.2a,b) and (5.2.3a,b). The transfer matrices of systems [A ,B,C.E 1
d

.

and Y, [A,B, C ,l'fz] have two d.b.z.’s located at ( 523.2477, -0.11242 ) and ( 560.0116,
d

-0.11160) , respectively,

In order to reject the disturbances, we need to assign one d.b.z. for system Y’ [A ,B,C,E \ ] at
d

0.0 and one d.b.z. for system Y [A ,B,C, Ez] at 1.0. Therefore we use Algorithm 5.1 and
d

compute the constant state feedback matrix K, in two steps: In Step I, the unity-rank matrix

K él) given by

0.0 0.0
k® -
27 11041297 1.293294
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is obtained to assign the d.b.2.’s of the system Y [A ,B,C,E 1] at 0.0 and -0.1. In Step I,
d

while preserving the d.b.z at 0.0 for the first disturbance, we assign d.b.z.’s at 1.0 and -0.1 by

using a unity-rank feedback matrix K 2(2) , where

" [0.9607’769 ~0.0059635 ]
K =
2 -11.294833 0.070107100

Thus, the total constant feedback matrix K, =K §I)+K éz) to assign d.b.z.’s for both distur-

bances is given by

K,= (5.5.3)

0.9607769 —0.0059635]
-0.881859 1.3634014

By implementing the constant matrix K, (in the state feedback law u (1) = v(r)- [0 K, ] x (1))

on the system in egns.(5.5.1a,b), the following closed-loop system is obtained:

05 -1.0 00392233  0.0059635
04 04 00 0.0
X(O= | 195195 -20907037 -3.170070 | ¥

00 0.0 -17.3518152 -2.70753186

1.0 0.0 -0.1 -04

00 00 00 00
* oo 500| " |s00 2500(4® (5.5.42)

200 2.0 00 00
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[1.0 0.0 0.0 o.o]
Y®= 150 1.0 00 00} *® (5.5.40)

The system is stable and the responses for the open-loop and closed-loop systems to a unit step
disturbance are shown in Figs.(5.3a,b) and (5.4a,b) and for the exponential disturbance are shown
in Figs.(5.5a,b) and (5.6a,b). Figs.(5.7a,b) and (5.8a,b) show the output responses for the open-

loop and closed-loop systems when both disturbances affect the system at the same time.

Example 5.2: We have selected this example to illustrate Algorithms 5.1 and 5.2 for rejecting
three unmeasurable disturbances which affect a Sth-order system [10], whose parameters are

given in Chapter 11 (Example 2.2). The output and disturbance matrices are assumed to be:

00 00 Ou l
[1 000 O] -0.74 0.143 0.5
C=01000 , E=1-0936 10 -0.1
00 1.0 =035
00 00 0.2

For the purpose of illustration, we also assume that it is required to 1eject the following distur-

bances:

B,exp (1)
M) = | Bep @)

By+PBysin(t)

b
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B,exp (1)
@ dQ) = Bexp (21)

By+B,sin (£)+Bs¢

L

where B,, B,, B5, B, and 5 are unknown constant values.

Note that, the given sysiem with these (isturbances satisfies the conditions (5.2.2a,b) and
(5.2.3a,b). The transfer function vectors between the outputs and disturbances d,), d,(1) and
d3(t) have three d.b.z’s eack located respectively at (-1.104, -0.0155, -0.0497), ( 12.809,

-1.12608, -0.054637) and ( -1.021631j0.0581, -0.0836).

() In order to reject these disturbances, it is required to assign the d.b.z.’s at (1.0), (2.0) and (0.0,
J.+)ien,=1l,n,=1ny=3 This can be done by applying Algorithm 5.1 in three steps: In

Step I, it is found that a unity-rank matrix K 1 where

1

2572554 23478649 6.842427
KD =| 00 0.0 0.0
0.0 0.0 0.0

assigas d.b.z.'s for the first disturbance at (0.0, 0.5, 1.0). In Step II, the following unity-rank

matrix

029375363 22577222 -0.2567452
K = |-0.13560431 ~1.042223240 0.118520295
15607582 -11.9956254 1.364127205




190

preserves one d.b.z for the first disturbance at 1.0 and assigns an additional d.b.z for the second
disturbance at 2.0. Finally, in Step III, while preserving the d.b.z.’s at 1.0 and 2.0 which have
been assigned in Steps I and II respectively, additional d.b.z.’s for the third disturbance are

assigned at 0.0, -j and +j using & unity-rank matrix K f) , where

~5.1952017 21.7477965 43.458829
kP = | -2.189447 9.16531570 18.3151378
-13.8006 57.771336 115.445012

Thus, the final constant state feedback matrix K, required to assign all the dbz’s is

K,= Kél) +K§2) +K§3) and is given by:

-2.27880097 4.60558718 6.585681
k,= | -€.135604 -1.042223 0.11852029
-1.5607582 -11.9956254 1.3641272

By applying the constant feedback matrix K, using the state feedback law

u(@)=v()- [O K, ] X (1), we obtain the closed-loop system

-0.0 -0.00156 0.0 0.0 0.0

0.0 -0.1419 -0.897682 1.7685338 6.156365
x(1) = |0.0 -0.00875 12.35288 ~44.64362 -95.81752 | x(r)
0.0 -0.00128 -8.551914 24.659209 64.66801
LO.O 0.0605 4.65160 -14.772331 —35.607789‘
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- o '1
00 00 00 00 00 00
-0.143 00 00 ~074 0143 05

+| 1.0 0392 0330 |v@)+ |-0036 1.0 -0.1 [d() (5.5.5a)
0.108 -0.05 -0.592 00 10 —0.35
-0.0486 1.3 0.120 00 00 02

[1.0 0.0 0.0 0.0 o.o]
YO =100 1.0 00 00 00) *® (5.5.50)

which has closed-loop d.b.z.'s located at (1.0), (2.0) and (0.0, -j , +j) for the three disturbances.
The above system is unstable. We can stabilize it and improve its transient performance by per-

forming pole assignment using dynamic output feedback. This will be discussed in Chapter VI.

(ii) For these disturbasices, we need to assign the d.b.z.’s for the three disturbances at (1.0),
(2.0) and (0.0, 0.0, -j, +j) to achieve corplete rejection of all three disturbances in steady state.
This can be done using Algorithm 5.2 in three steps. Note that in Steps I and 11, the unity rank
matrices J 2(1) and J 2(2) have the same values as those values of K él) and K éz) obtained by
applying Algorithm 5.1. In Step II1, in order to assign additional d.b.z’s at (0.0,0.0, -j ,+j) , while

preserving the d.bz’s at (1.0) and (2.0) assigned in Steps I and II respectively, we need a

dynamic state feedback compensaior K 53) (s ) of erder one. This compensator is found to be

(1) = —5.0] 2)t)+ {0001 1] x (1) (5.5.63)
] i ]
-21.80046932 -0.2781697 13.3517006 11.2237299
uy(t) = | -9.1875139 | z,(r) + [-0.1172309 5.6268942 4.7300897 | x()
-57.9112569 -0.7389364 35.4677579 29.8149688
L ] 5 i

(5.5.6b)
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Thus, the dynamic state feedback K ,(s ) required to assign all three sets of d.b.z's is given by

2'2(1) = L-S.O] 2,(1) + [0 001 1] x(1) (5.5.7a)
-21.80046932 ~2.5569707 17.9572878 17.8094118
u,(t) = | -9.1875139 | z,(1) + -0.2528352 4.5846710 4.8486100 | x(1)
-57.9112569 -2.2996947 23.4721324 31.1790960
(5.5.7b)

Ry applying the above dynamic state feedback using the feedback law u (2) = v(t)-u,(1), the

following closed-loop system is obtained

(0 -0.001560 0.0

0 -0.00875 2.312981

[i(r)}
Z,(t)

0.0
0 -0.14190 -0.1945468 0.56789216
-27.5002826 -29.9991686 44.5126895

0.0
1.5467459

0.0
-3.1174671

o
zz(‘)

0 0.00128 -1.246808 12.1853489 16.7771688 -32.3883891
0 006050 0629280 79040040 -9.2382471 17.8336161
o 00 00 10 10 _5.0
00 00 00 ] 00 00 00 ]
0143 00 00 074 0.143 05
10 0392 0330 0036 10 -0
+| o108 005 -0592]"®* | 00 10 -035|%® (85.52)
00486 13 0120 00 00 02
| 00 00 00 | | 00 00 00 .
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y@t)= (5.5.8b)

1.0 0.0 0.0 0.0 0.0 o.o] x (1)
0.0 1.0 0.0 0.0 0.0 0.0

22(')

This has closed-loop d.b.z.’s located at (1.0), (2.0) and (0.0, 0.0, -j, +j) for the first, second and
third disturbances respcciively. The above system is unstable. So in this case also, we need to
stabilize the system and shape its transient performance by assigning the closed-loop poles at
desired locations in the complex plane by means of (dynamic) output feedback. This will be dis-

cussed in Chapter VI

5.6 CONCLUDING REMARKS

In this chapter, we have presented algorithms for assigning d.b.z.’s of a linear time-
invariant multivariable system by means of state feedback, such that the effects of a class of
measurable or unmeasurable disturbances acting on the system are eliminated in the steady state.
In the proposed algorithms, the dyadic feedback design mechanism was used to compute con-
stant and dynamic state feedback compensators for arbitrarily assigning the required number of
d.b.z.’s at specified locations in the complex plane. The design procedure is sequential in nature
in that at each step we assign additional d.b.z.’s while preserving those which have been assigned

in the preceding steps.

In Algorithm 5.1, it was shown how a constant feedback matrix K, can be computed as a

sum of dyads for the system ) [A ,B,C,E ] , such that the required d.b.z.’s can be assigned at
d

desired locations in the complex plane. For the case where the system has no d.b.z.’s or the
number of d.b.z.’s is not large enough to achieve the rejection of all disturbances in the steady
state, Algorithm 5.2 was proposed. It was shown that dynamic state feedback of appropriate order
can be used to introduce additional d.b.z.'s as well as to assign all the closed-loop d.b.z.’s at

desired locations in the complex plane. In Section 5.3, we extended these results to the multivari-

able system Y, [A ,B,C,D,E,F| and showed how Algorithms 5.1 and 5.2 can be applied
d
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by creating a higher order system ¥, [A‘ . B , ¢ , E ] .
d

It should be noted that Algorithms 5.1 and 5.2 can be applied to reject both measurable as
well as unmeasurable multiple disturbances in steady state. However, the problem of measurable

multiple disturbances can be reduced to one or more single-disturbance problems.

Finally, it should be pointed out that, our approach does not have the robustness property of
the robust servomechanism approach [11,12). However, the state feedback controllers con-
structed by the proposed algorithms have simpler structure than the servocompensators used in
the robust servomechanism problem. Also, the proposed algorithms allow us to selectively reject
some parts of disturbance signals in steady-state, ‘e.g. only the step part from a disturbance
d,(t)=B, + B,sin(t) and the exponential part from a disturbance d,(t) = By + B,exp (1)
Such a situation arises in designing what is called a "disturbance utilizing controller" {13}, where
some parts of disturbance signals may have not need to be rejected and may sometimes produce

effects that are beneficial to the system.
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CHAPTER VI

DYNAMIC OUTPUT FEEDBACK IN MULTIVARIABLE SYSTEMS

In this chapter, the cffect of dynamic output feedback on linear time-invariant multivariable
systems is studied and it is shown that a dynamic compensator introduces additional d.b.z.'s in
the closed-loop which are located at the poles of the compensator. This important feature will be
used to assign the poles of the dynamic compensator at prespecified locations in the complex
plane, such that complete rejection of some disturbances is achieved in the steady state. The
problem of assigning the poles of the augmented closed-loop system consisting of the plant and

the compensator is also considered.

The layout of the chapter is as follows: Section 6.1 contains a brief review of some results
presented in Chapter II for the design of dynamic output feedback to achieve pole assignment in
multivariahle systems. In Section 6.2, we show how a dynamic compensator introduces addi-

tional d.b.z.’s at the same locations as the poles of the compensator for systems described by

\

E [A,B,C ,E|. It is then shown that similar results can also be obtained for systems
P

d

described by . |A,B,C,D,E, F|. Section 6.3, gives some general remarks conceming the
d

problem of designing controllers consisting of state feedback and/or dynamic output feedback
which achieve asymptotic regulation of all disturbances in the steady state and which stabilize
the resulting closed-loop system by assigning all the closed-loop poles arbitra:ily close to desired
locations in the complex plane. It is also shown that we can design a dynamic output feedback
compensator which is robust in the sense that it achieves the specifications of the servomechan-
ism problem even in the presence of certain perturbations in the system parameters. In Section
6.4, a number of illustrative numerical examples are given to show the usefulness and efficiency

of our approach in designing dynamic output feedback in multivariable systems, and finally a
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brief discussion of the results is presented in Section 6.5.

6.1 POLE ASSIGNMENT USING DYNAMIC OUTPUT FEEDBACK

In this section, we will discuss the problem of designing dynamic output ‘eedback compen-
sators to achieve arbitrary pole assignment in multivariable systems with n 2 m +l, wheren, m
and [ are the number of states, inputs and outputs respectively, i.e. the conditions for "almost”
arbitrary assignment of all the poles by using constant output feedback is not satisfied. In Chapter
11 two approaches were discussed to handle this preblem. Both methods design the dynamic out-
put feedback such that the poles of the closed-loop system consisting of the compensator and the
plant can be positioned arbitrarily close to the desired locations in the complex plane. These
approaches compute the dynamic output feedback in two steps: The first step assigns a subset of
the poles and the second assigns the remaining poles while preserving the previously assigned
ones. The first approach uses Algorithm 2.3 which is based on a reformulation of the problem to
one of eigenvalue assignment by constant gain output feedback. This algorithm is numerically
reliable, but does not assign the poles of the compensator at prespecified locations in the complex
plane. The second approach uses Algorithm 24 to compute a dynamic compensator with
prespecified poles and achieves arbitrary pole assignment for the resulting closed-loop system.
This advantage of Algorithm 2.4 will be used later to design a dynamic compensator with
prespecified poles to achieves pole assignment as well as (o introduce a model of the system’s
"environment”, i.e. of the disturbances acting on the system. This aspect of the design is known
as the "Internal Model Principle” [1], and is based on incorporating a model of the “outside
world" in the controller structure. This is accomplished here by introducing additional d.b.z.'s (by
means of dynamic output feedback) at the poles corresponding to the dynamics of the distur-
bances acting on the system. The mechanism by which the d.b.z."s are introduced in the overall

closed-loop system is illustrated in the next section.
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6.2 DYNAMIC OUTPUT FEEDBACK AND DISTURBANCE BLOCKING ZEROS

Tn this section, we will show how dynamic output feedback used for pole assignment in

multivariable systems described by 3, [A ,B,C,E ] and [A ,B,C,D,E,F ] introduces
d d

additional d.b.z.’s located at the poles of the compensator.

6.2.1 Dynamic Output Feedback in The System Y’ [A ,B,C,E ]
d

Consider the n th-order, m -input,  -cutput, r-disturbance, linear, time-invariant multivari-

able system Y, [A ,B,C,E ] described by its state-space equations

d

X()=Ax@)+Bu@)+ Y E, d1) (6.2.1a)
i=1

y)=C x(1)

x(t) (6.2.1b)

€ |

where A, B, C and E; are constant of appropriate dimensions. To show the effect of dynamic
output feedback on the closed-loop d.b.z.'s between the outputs ¥ (¢) and the disturbances 4; (),

we assume that the triples (4, E;, C)) are non-degenerate (i.e. the system (6.2.1a,b) has a finite
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number of d.z.'s). Note that [2] for the case [=r =1, the maximum number of d.z.’s that system
(6.2.1a,b) may possess is equal to n—1. We also assume that the pairs (A, B) and (A, E;) are
controllable and the pair (C i A) is observable. This assumption is made to simplify the presen-
tation and is not necessary for achieving disturbance rejection. If the pairs (A, E;) and/or
(o I A) are uncontrollable and/or unobservable, then the number of d.z.’s between each output
yj(t) forj =1,2,...,1and each disturbance d,(¢),i = 1,2,....7 of the system (6.2.1a,b) is
less than n—1. This is due to cancellation of the poles and zeros which correspond to uncontroll-
able and/or unobservable modes of the system. Therefore, it is necessary for the pairs A,E ;)and
(C i A) to be completely controllable and observable for these .0 be n~1 d.z.'s between ¥ ()
and d; (7) [3".

Without loss of generality, we assume that the disturbance d, (1) fori=1,2,...,rmayor

may not be measurable but satisfies a differential equation of the form [4]

(4:) i (q.-1)
4 +am4

+o40,d +0 d =0 i=12...0 (622
Further, we assume that the characteristic roots of equation (6.2.2) are

[7:; ],K= 1,2,...,q;,i=12,..,r lie in the right half of the complex plane, ie.

Re [X;] = 0. The initial conditions for (6.2.2) are assumed to be unknown.

Now, it is required to design a dynamic output feedback compensator, such that complete rejec-
tion of all disturbances satisfying (6.2.2) is achieved in the steady state and that the resulting

closed-loop system is stable with all poles assigned at desired locations.

Let the control input u (t) to the system (6.2.1a,b) be given by the feedback control law
u(t)=v(t)-ﬁj(t) (6.2.3)

where v(t) € R™ is the external input and 1 | (r) € R™ is the output of the dynamic compen-

sator whose input is the j"l output of the system (6.2.1a,b).

ij(t) =F; z;(1) + G; y;(0) (6.2.42)
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ﬁj (3] =Hj z,(t) +Jj y;(t) (6.2.4b)

where 7 (t)e RY is the state vector of the compensator and q; is the order of the dynamic
compensator which introduces q; d.b.z.’s between the output y f (¢) and the disturbances d, (¢)
4 =12,...,r, so that asymptotic regulation takes place. Note that [5] when the value of
q; 2 (n—m)/m~1, we can also use the dynamic compensator to "almost always" assign all the
eigenvalues of the resulting closed-loop system arbitrarily close to n +q i desired locations in the

complex plane.

By substituting for y f (¢) from eqn.(6.2.1b) into eqns.(6.2.4a,b) we obtain

ij (#)=F; z;(1)+ G, C;x(1) (6.2.5a)
ﬁj @) =Hj zj(t)+.lj Cj x() (6.2.5b)

It should be noted that for multiple outputs Y] (), j=1,2,...1 the design procedure is
sequential in nature in that we compute the required dynamic compensator for each output in turn
5o that asymptotic regulation takes place for all disturbances acting on the system.

On implementing the feedback law in eqn.(6.2.3), the resulting closed-loop system, consist-

ing of the open-loop system (6.2.1a,b) and the dynamic compensator (6.2.5a,b), becomes

[(a-BJ.C. | -BH.
[i(:)] [ J f] J [x(t)]
ol L o6 Rl o

E.

[

0

PB ’
+ O] vit)+ Y ]d‘-(t) (6.2.6a)

i=]

()
b [

Let us now find the sets of d.z.’s between the output yj(t) and the disturbances d,(t),

J=12,..,1 (6.2.6b)
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i=1,2,...r. These are defined (see Chapter III) as those ccmplex numbers A for which the

(n +q; +1)x(n +; +1) matrix

. ) -

[a-81,c; )01, -BH; E,

G,;C; Fj-llq} 0
C; 0 0

has rank less than [n +q; +1 ] Next, we has a rank less than [n +4; +1 ] . Next, we premultiply

the last row of the above matrix by G]. and subtract the resulting q; Tows from the q; Tows

immediately above the last row. Also, we premultiply the last row by BJ f and add the resulting n

rows to the first n rows. Note that these operations do not alter the rank of T'; [?» ] . Therefore, we

get

r -

A-M, -BH; E,
0 Fi-A, 0

C; 0 0

Rearranging the last ¢ i +1 columns and 4 +1 rows yields

b

A-M1, E; -BH,

¢ 0 0
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which implies that

-\, E,

A
rank T [l] = rank [ + rank [Fj—llq‘] i=12,...,r
I

Cj 0

Therefore, all the values of A for which rank T; [l] <n+q; +1 are those complex numbers for

which
@
A-AI, E;
rank [ Cj 0]<n+1
and/or
(i)

rank [FJ.—X ]‘71] <q;
Since (A, E;) is controllable and (C j,A) is observable, condition (i) is equivalent to A

being a d.z. of ) [A,B,Cj,E‘.] which for a single-output, single-disturbance case is
d

equivalent to A being a d.b.z. of the open-loop system p) [A ,B,C I E; ] Condition (ii) holds
d

if and only if A is an eigenvalues of F T Therefore, the closed-loop d.b.z.’s between ¥; (1) and
d‘. (¢) under the effect of the dynamic output feedback (6.2.4a,b) consist of the open-loop d.b.z.'s
between the y; (1) and d; (1) together with the poles of the dynamic compensator (eigenvatues of
F i

The above procedure allows us to introduce separately q; additional d.b.z.'s between each
output yj(t). Jj=1,2,..,1 and the disturbances d;(t), i =1,2,...,r at the poles of the

corresponding dynamic compensator. By continuing in the above manner for / outputs we get a
I
dynamic compensator oforderg = ¥ ¢ f defined by

j=1



208

z()=Fz(t)+G y(t) (6.2.7a)
u@)=Hz@)+Jy(@) (6.2.7b)
where
F =diag{F ,F,,.. .. F;}, G=diag[Gl,Gz,...,G,
and

H=ng“ﬂd,1=h1r””

which introduces additional q; j=12,...,1db.z’s between each output y i () and the dis-

turbances.

6.2.2 Dynamic Output Feedback in The System Y, [A ,B,C,D,E,F ]
d

To consider the effect of dynamic output feedback on the d.b.z’’s of the system

Y |A,B,C,D,E,F|, consider an nth-order, m-input, [-output system with r disturbances
d

described by

X@)=Ax@)+Bu()+ T Ed() (6.2.8a)
i=l

r

y(t)=Cx(t)+D u() + Y F,d;(t)

i=1
Cy D, Fyi
¢, D, Fy;
r
= x(M+ | . (u@+ X | . |4@) (6.2.8b)
i=1
Cr | D, | Fii
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By using the feedback control law in (6.2.3) and the dynamic output feedback compensator

defined in (6.2.4a,b), the following closed-loop system is obtained [6):

A-BM.J.C. —BM.H.
[*0) Rt g x(»]
£ le [’_D ,-M,-J,-]cj [Fi'GinMj”j] i
[ Y E-BMJ,TF;;
BMf ] i=1 i=1
*lopM, v+ . 4o (6.2.99)
G; [’ -D;M;J; ] TFj ]
i=1
x(t)
y;(0) = [[I—DijJj]Cj —DijHj] o
; [Dij]v(tH [I-DijJj]ZFj". d,(1) (6.2.95)
- i=1

-1 \
where M ;= [1 +J jD i ] and [I +J jD f is assumed to be nonsingular.

The d.z.’s of the augmented closed-loop system (6.2.9a,b) between the output Y| (t) and

each disturbance 4;(¢), i = 1, 2,...,r, are defined as those complex numbers A for which the

(n +q; +1)x(n +q;+ 1) matrix

[a-Bu,0,; )21, ~BM; H, (i-8M,,F,, |

Ti [" ] =G [’ D;M;J; ]Ci [F i‘GiDJMj”i]’“q, G, [’ -DiMi"i]Fii
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has a rank less than {n+qj+l].

We premultiply the last row of the above matrix by G f and subtract the resulting ¢ ; TOWS

from the q ; TOWS immediately above the last row to get

: :
[A—BMJ.JJ.CJ.]-XI" -BMH, [E‘.—BMJ.JJ.FN]

T, [x] = 0 Fi-AI, 0

71

[I-DJ.MJ.JJ.]F,.J. -DMH. [I-DijJj]FjJ.
L o

Reananging the last ¢ i+ 1 columns and ¢ ; +1 rows yields

i ]
[a-8M9,¢; )21, [E-BM0,F, ] -BMH,
rr)= [-om0;)c;  [1-0,m0; Py Dyt

from which it follows that the values of A for which

rank T; [X} <n+q;+1
are those values for which
@)

rank [Fj—l ’q,] <g;

and/or
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Gi)
[a-Bm,0.c; )01, (E-BM,0,F,, )
rank <n+l
-pma;)c; (1m0, )F

It is easy to see that condition (i) holds for A equal to the eigenvalues of F T Now in condition

-1
(ii), since M 1 = [I +J jD i ] »it can be easily shown that

y-1
[1-p;m,0; )¢ = [1+0,,] ¢
X \-1

and
1 "'l

3

-1
[El.-BMijFj'i J = E‘-—BJJ. [1 +Dj.lj ] Fj.i

Thus, denoting the matrix in condition (ii) by A2 [A ] , We can write

-1 -1
[a-85; [14D,3;] ;)21 E-B3; [140,3;] F,
- ! ’

[+0,7;] [1+0,9;] F;,

By nremultiplying the last row of the above matrix by BJ f and subtracting the resulting n rows

from the n rows immediately above the last row, we get

A-M E,

rank [A2 [7\] ] = rank -1 -1
[I+Dij] C; [1+DJ.JJ.] Fi;
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The matrix on the right-hand side can be written as

A=), E, 10 A-M1, E,
-1 -1 = -1 [ C. F}
[I+Dj.lj] C; [I+Dij] F.| |o [I+Dj.lj] i T

implying that
A-A1, E;
rank [1\2 [l] ] = rank ]
C i F T

And, by assuming that the pair (4, E;) is controllable and (C i A) is observable, it follows that

[A—Mn E..]
k +1
ran F. <n

the values of A such that
Cj j'.
are the d.z.'s of the open-loop system (6.2.9a,b) between the output Y; (t) and the disturbances

d; (t). Therefore, the values of A for which rank T, [7&] is less than [n +q; +1 ] correspond to

the d.z.’s between the output y j (1) and disturbance d;(r) in the open-loop system together with

the poles of the compensator (eigenvalues of F i ). Now, for a single-disturbance, single-output
system Y [A, Ei, Cj, Fj". ] with (A, E;) controllable and (Cj,A) observable all d.z.'s are also

d.b.z.'s. Therefore, the closed-loop d.b.z.’s between ¥ (t) and d,(r) under the effect of the

dynamic output (6.2.4a,b) are the open-loop d.b.z.’s between Y (t) and d, (r) together with the

eigenvalues of [F f ]

6.3 GENERAL REMARKS

In the rest of this section, for the sake of simplicity and to illustrate the main features of

using dynamic output feedback in multivariable systems, we consider system Y [A ,B,C, E]
d
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with two disturbances which may or may not be measurable, described by the following equa-

tions
X(t)=Ax(t)+B u(t)+E]dl(t)+E2d2(t) (6.3.1a)
y@)=C x(t)
Cl
_ C2 x(1) (6.3.1b)

We shall assume that the triples (A, B, C) and (4, E;, C) are non-degenerate, i.e. system
(6.3.1a,b) has a finite number of transmission and disturbance zeros. We also assume that the

pairs (A, B), (A, E,), are controllable and the pair (C i A) is observable.

Now to discuss the main results of this chapter, we consider the problem of finding a con-
troller for the system (6.3.1a,b), such that the disturbances are rejected at the outputs in steady
state and that the resulting ciosed-loop system is stable with all poles assigned at or arbitrarily

close to desired locations in the complex plane.

The following situations can arise in solving this problem:

Remark 6.1: The first case occurs when the open-loop and closed-loop (with state feedback)
transfer matrices relating the outputs to each disturbance (d,(t) and d,(r)) have n—I d.z.’s, i.e.
conditions (5.2.2a,b) and (5.2.3a,b) are satisfied. This situation can be resolved in two stages: In
the first stage, we reject the disturbances by suitably locating one or more closed-loop d.b.z.’s at
desired locations by means of constant or dynamic state feedback. This controller can be con-
structed using either Algorithm 5.1. or 5.2. Then in the second stage, the resulting closed-loop
system is stabilized and/or its transient performance is improved by means of dynamic output
feedback by placing the closed-loop poles arbitrarily close to desired locations in the complex

plane. This dynamic output feedback can be computed using either Algorithm 2.3 or 2.4.

Remark 6.2: In the second case, the open-loop transfer matrix between the outputs and one or
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both of the disturbances has n~-I d.z.’s, i.e. condition (5.2.2a,b) is satisfied while condition
(5.2.3a,b) is not. We solve this problem in two stages: First, we use a state feedback controller
(constant or dynamic) to assign the required number of d.b.z.’s between the outputs and one of
the disturbances (which satisfies the condition (5.2.2a)) at desired locations, to reject the distur-
bance in the steady state. This controller (constant or dynamic state feedback) can be calculated
using either Algorithm 4.1 or 4.2, In the second stage, we can use the results obtained in Section
6.2 for designing dynamic output feedback with prespecified poles to introduce additional d.b.z.’s
between each output and the disturbance that is not rejected in the first stage, such that asymp-
totic regulation takes place for this disturbance. In addition, the resulting closed-loop system is
stabilized by assigning all the poles at or arbitrarily close to desired locations in the complex
plane. Note that, in this case the minimum order of the dynamic compensator depends on the
required number of additional d.b.z.’s that are introduced as well as the number of closed-loop
poles that are to be assigned. This type of dynamic compensator can be computed by using
Algorithm 2.4. It should be noted that in many problem, it may be required to position the d.b.z.’s
in the right-half plane, in which case the resulting compensator would be unstable. However, the
results of Section 6.2 may prove useful in rejecting step, ramp and sinusoidal disturbances in the

steady state, for which the additional d.b.z.’s introduced are located at the origin or on the ima-

ginary axis.

Remark 6.3: The third case includes the general problem for which the open-loop and closed-
loop (with state feedback) transfer matrices relating the outputs to each disturbance do not have
n-l d.z.'s, i.e. conditions (5.2.2a,b) and (5.2.3a,b) do not hold. This problem was solved by
Davison [7,8] , and is essentially the problem known in literature as “the servomechanism prob-
lem" [9,10](-it includes the problem of tracking some reference signal). It can be stated as fol-
lows: Find a linear time-invariant controller for the system (6.3.1a,b), such that the resulting con-
trolled system is stable and the steady state error is zero (i.e. asymptotic rejection take place) for
all disturbances acting on the system. In addition, the problem considered by Davison required

that the controllers be "robust”, i.e., asymptotic rejection of all disturbances should take place
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even in the presence of certain perturbations in the parameters of the system i.e. matrices
A,B, C, E. Such a controller consists of two parts: a "servocompensator” which is completely
determined by the disturbances, and a "stabilizing compensator” which stabilizes the overall sys-
tem. The robust controller obtained by Davison for solving the servomechanism problem is basi-
cally a dynamic compensator of order equal to the sum of the orders of the servocompensator and
the stabilizing compensator. We can use the results of Section 6.2 to design a dynamic output
feedback controller with prespecified poles which achieves the same requirements as those
obtained by solving the servomechanism problem. Note that the order of the dynamic output
feedback obtained by this approach will depend on the total number of d.b.z.’s required to be
introduced to achieve complete rejection of all disturbances as well as the number of closed-loop
poles that are to be assigned arbitrarily close to desired locations in the complex plane. This type
of compensator with prespecified poles which has robust properties can be constructed by using
Algorithm 2.4. Such a design will be robust in the same way as Davison’s solution to the robust
servomechanism problem. This is because in this scheme, the disturbance rejection property of
the closed-loop system depends on the d.b.z.’s introduced by the dynamic compensator via its

poles and not on the system parameters A, B, C . .etc.

It is worth pointing out that in some applications, the robust dynamic output feedback
obtained by our approach may have lower nrder as compared to that obtained by solving the
robust servomechanism problem [7-10]. This advantage appears in the case of constructing
dynamic output feedback compensators to achieve asymptotic rejection of some specific distur-
bances from certain outputs e.g. step disturbance from the first output and a combination of step
and ramp disturbances from the second output etc. This important feature of our approach will be
illustrated by an example in the next section. It is also worth noting that in the servomechanism
problem, the design of a robust dynamic output feedback compensator using our approach
requires the outputs of the system to be measurable while the state may not necessarily be

measurable.

Remark 6.4: The approach proposed in this thesis for disturbance rejection can be used to solve
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the servomechanism problem i.e. the problem of asymptotically tracking some specified refer-
ence signals y_., (t) and asymptotically rejecting a class of disturbances d (). This can be done
by using the error signal e (1) = y (1) - ¥, (1) in place of y (¢) in the analysis. In other words,
we assign blocking zeros between € (1) and d (¢) and between € (1) and y, ., (t) at appropriate
locations using feedback. Note that when y ., (1) = 0 for all ¢, this problem reduces to the

asymptotic disturbance rejection problem.

6.4 NUMERICAL EXAMPLES

In this section, we illustrate the use of dynamic output feedback for disturbance rejection
and pole assignment in multivariable systems by means of some numerical examples. The
desired closed-loop poles have been sclected for the purpose of illustration. The only constraints

on the pole locations were stability and reasonable transient behaviour.

Example 6.1: In this example, we illustrate the performance of Algorithm 2.3 in designing
dynamic output feedback to stabilize and assign all the resulting closed-loop poles at or arbi-
trarily close to some desired values. The system being considered is the Sth-order system [11]
given in the previous chapter . The model that we considered is the one obtained afier imple-
menting a state feedback controller to reject the effect of disturbances in steady state. The param-
eters of this closed-loop system (with constant and dynamic state feedback) are given in the

Chapter V (Eqns.(5.4.5a,b) and (5.4.8a,b), respectively).

(i) For the system given in eqns.(5.4.5a,b), we need a dynamic compensator of order one to stabil-
ize the overall system and assign all the poles of the augmented closed-loop system at desired
values, e.g. (-4, -5, -6, -7, -10 £ j10). The dynamic compensator that achieves our requirements

was found by implementing Algorithm 2.3:

i(t) = [0.5028921653E+ 04] z(t)

+ [—0.31049607826672E +08 0.1932730883E +04] y@) (6.4.1a)
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-

-0.9161572475E +04
u(t) = | 1.4313823045E+04 | z (1)
6.493273120E +04

5.65776460263852E +08 -3.5469817217E +04
+ |-0.88297788428924E +08 0.5501451858E+04 | y(¢) (6.4.1b)
-4.0033002815027E +08 2.4976818402E +04

For the purpose of illustrating the characteristics of the resulting closed-loop system responses,
we let B, =P, =B,=PB,=10 . The responses at the outputs to each disturbance, i..
exponential (exp(t) or exp(2t)), step, sinusoidal and combinations of these are shown in
Figs.(6.1-6.5) for the open-loop system, and in Figs.((.5-6.10) for the closed-loop system with
controllers consisting of both state feedback and dynamic output feedback. It can be readily seen
that in the closed-loop system all the specified disturbances are rejected completely in the steady
state and the system has improved transient behaviour obtained by assigning all the closed-loop

poles at the specified locations.

(i) The unstable system given in eqns.(5.4.8a,b) needed a dynamic compensator of order two to
stabilize and to assign all the closed-loop poles at the desired values i.e. 4, -5, -6, -7, -8, -9, -10.0
£ j10.0. The parameters of the dynamic compensator were found by applying Algorithm 2.3 and
are shown in Table 6.1.

When B, =B, =5 =B, =B5 = 1.0, the responses at the outputs for each disturbance, i.c.
exponential (exp(t) and exp(2t)), step, ramp, sinusoidal and combinations of these are shown in
Figs.(6.11-6.16) for the open-loop system and Figs.(6.17-6.22) for the closed-loop system with

controllers consisting of state and dynamic output feedback. From these responses, it can be seen
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that asymptotic rejection takes place for all the specified disturbances acting on the system. In
addition the resulting closed-loop has improved transient performance resulting from assigning

all the closed-loop poles at the specified locations.

Example 6.2: For this example, the system being considered is the 3rd-order system given by

010 10 03

x(O=1001}x@)+ |1 0lu@+ |14]|d@) (6.4.2a)
000 11 25
[1 1 0]

y@)= 010 x(t) (6.4.2b)

For the purpose of illustration, suppose that the disturbances acting on the above system are

unmeasurable and have the following form
B, exp (1) ]

d(t) = [ Bz

where B, and [3, are unknown values. Note that the given system has one d.b.z. at -2.0 between
the outputs and the exponential disturbance. This implies that conditions (5.2.2a,b) are only

satisfied for the open-loop system between the outputs and the first disturbance.

To demonstrate the steady state rejection of multiple disturbances, it is required to construct
a stable controller having lower order which is not necessarily robust, such that the exponential
disturbance is rejected in steady state at both outputs, while the step disturbance is rejected in
steady state only at the first output. In addition, the resulting closed-loop system should be stable

with all the closed-loop poles assigned at specified locations in the complex plane.

From Remark 6.2, we can solve this problem by constructing a controller consisting of a

combination of state feedback and dynamic output feedback in two stages: In the first stage, we



usc Algorithm 4.1 to find a constant state feedback matrix given by the following control law

0.0 0.0 0.0

u(t)=u,()- [

0.0 0.0 -3.0] x(0) (6.43)

such that the d.b.z between the outputs and the first disturbance is assigned at 1.0. This will reject
the exponential disturbance at the system outputs in steady state. At the end of this stage the fol-

lowing closed-loop system is obtained

-
010 r1 0 03

X(@)=[001[x()+ [10[u, )+ |1 4]d() (6.4.42)
003 01 15
. ] L |
110

y@)= [o 1 ol*® (6.4.4b)

which has one d.b.z. between the outputs and the first dicturbance located at 1.0 .

In the second stage, we design dynamic output feedback of order one between output y (1)
and the control inputs ul(t), to introduce an additional d.b.z located at 0.0 so that complete
rejection of the step disturbance is achieved at y 1(#) in steady state In addition, all the resulting
closed-loop poles are assigned at desired locations e.g. at -2, -4, -1 % j. The parameters of this

compensator can be computed by applying Algorithm 2.4 (Step II):

() = [o.o] 2(t) + [1.0 0.0] y () (6.4.52)
5.25 55 0.0
Uy =vE) = [ | 20= |46 00 [YO (6.4.5b)

By implementing the dynamic output feedback (6.4.5a,b) on the system in eqns.(6.4.4a,b), we get

the overall closed-loop system

D
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55 4500 -525
[i(:)] -55 5510 =525 | [x()
iyl ~ -390 39.0 3.0 -31.75 [z(t)]
| 10 10 00 00

-1 0~ -0 3.
10 14

+ 11 v(t) + 2 d@) (6.4.6a)
_0 0- -0 0-

[1100]
Y®O=1o100

x(1) }
20 (6.4.6b)

which has one d.b.z at 1.0 between the outputs and the first disturbance, and one d.b.z at 0.0
between output y,(¢) and the second disturbance. In addition, the resulting closed-loop system is
stable with all poles at the specified locations.

When f, = B, = 1.0, the responses at the outputs y, () and y ,(1) to exponential disturbance are
shown in Figs.(6.23a) and (6.23b) for the open-loop system and in Figs.(6.24a) and (6.24b) for
the closed-loop system (with the controller consisting of both state and dynamic output feed-
back). It can be readily seen that in the closed-loop system the exponential disturbance is asymp-
totically rejected in the steady state at the system outputs and improved transient behaviour is
obtained. For the step disturbance, the responses at the outputs y,(t) and y,(t) are shown in
Figs.(6.25a) and (6.25b) for the open-loop system and in Figs.(6.26a) and (6.26b) for the closed-
loop system (with the controller consisting of both state and dynamic output feedback). It is

clearly seen that, the step disturbance is completely rejected only from output y, (¢ )
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Example 6.3: We have selected this example to illustrate the special features of Algorithm 2.4

for designing a robust dynamic output feedback controller. The example chosen is a 3rd-order

system described by
[ [
001 10 14
x(@)=[000{x@)+ {2 1|u@)+ [25]d@) (6.4.7a)
010 01 36
[1 0 1]
y@)= 001 x(t) (6.4.7b)
with

"
d(t)= th

where B, and {3, are unknown constant values. Note that, the above system does not satisfy both

conditions (5.2.2a,b) and (5.2.3a,b).

For the purpose of illustration, suppose that it is required to construct a robust controller so
that (i) all step disturbances are completely rejected at the outputs in steady state and (ii) all ramp
disturbances are rejected only from the second output y,(t) in steady state. In addition, we
require that the resulting closed-loop system consisting of the open-loop system and the con-
troller is stable with all closed-loop poles assigned at or arbitrarily close to specified desired
values.

In order to solve the above problem using our approach (with dynamic output feedback),
we first reject the step disturbance from the first output y,(¢) by designing a dynamic output
feedback controller of order one between the output y 1(#) and the control input u (¢). Note that,

this compensator can be used to introduce an additional d.b.z at 0.0 between the output y, (£) and
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the disturbances. This is to reject the step disturbance as well as to assign all the resulting
closed-loop poles at the desired values, e.g. -2, 4, -1t j. The parameters of the dynamic compen-

sator which achieves the above requirement can be computed by applying Algorithm 2.4. The

compensator was found to be
!
Z,(t) = [0.0] z,(t) + [1.0 00]y@) (6.4.8a)
10.0 Bouﬂ
- - - 4.
u()=u,) 40 2,(1) 0.0 00 y@) (6.4.8b)

On implementing the above compensator in the open-loop system in (6.4.7a,b), the following

closed-loop system is obtained

(80 00 ~7.0 -100]
x0)]  |-16.0 00 -160 -160| [x()
L@Jz 00 10 00 40 LNJ
10 00 10 00 |

Fl O. .1 4.
‘ 21 25
f[ + 01 u,(t) + 36 d() (6.4.93)
E .0 0d .0 0-
1010f [x()
y@) = [0 01 0] L (r)] (6.4.9b)

which has one d.b.z at 0.0 between y,(r) and each disturbance (d,(¢) and d,(t)). In addition,

: the poles of the resulting closed-loop system are assigned at the specified desired values.
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Now, 10 reject the combination of the step and ramp disturbances from the second output y,(),
we need to design a dynamic output feedback compensator of order two connected between the
output y,(¢) and the control input u 1(¢) which will enable us to introduce two d.b.z.'s (‘0.0 and
0.0). Note that this compensator can also be used to preserve all the poles which were assigned
before at -2, -4, -1 X j as well as to assign the remaining closed-loop poles at, e.g. (-3, -5). The

parameters of this compensator can be computed by applying Algorithm 2.4. The compensator is

given by
[o.o 1.0] [o.o o.o]
Z,(1) = 0.0 0.0 zz(t)+ 00 1.0 y() (6.4.10a)
200 5.0 0.0 -4.5
u,@)=v)- 160 16.0 z,(1)- 00 8.0 y(t) (6.4.10b)

By implementing the above compensator on the system in eqns.(6.4.9a,b), we get the overall

closed-loop system

(-8 0 -2.5 -10 =20 -5 ] 1 0] 1 4]
-16 0 -15 -16 -56 -26 21 25
x(1)
[ 01 -8 4 -16-16] [*®] o1 36
A= 1001 0 0 o | [AOF foo|*®* oo®
lzz(‘) 000 0 0 1]|!lz2MW Joo 00
001 0 0 O] 00) 0 0]
(6.4.11a)
[10 1 ooo] x()
= 4,
y() 001000 2,(1) (6.4.11b)

z,(1)

which has one d.b.z.’s at 0.0 between the output y , (1) and the disturbances and two d.b.z.’s at 0.0
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and 0.0 between the output y ,(1) and the disturbances. In addition, the poles of the resulting aug-

mented closed-loop system are at the specified values ie.-2, -3, 4,-5,-1%j.

When B, = B, = 1.0 the responses at the outputs y,(r) and y ,(¢) to the step disturbances
are shown in Figs.(6.27a) and (6.27b) for the open-loop system (6.4.7a,b), and in Figs.(6.28a) and
(6.28b) for tixc closed-loop system (6.4.11a,b). It can be readily seen that the step disturbances
are completely rejected from both outputs of the closed-loop system in steady state. For the ramp
disturbances, the responses at the outputs y,(r) and y,(t) are shown in Figs.(6.29a) and (6.29b)
for the open-loop system and in Figs.(6.30a) and (6.30b) for the closed-loop system. It can be

seen that the ramp disturbance is completely rejected only from output y,(1).

6.5 CONCLUDING REMARKS

In this chapter, we have shown how dynamic output feedback can be used for pole assign-
ment as well as for disturbance rejection in multivariable systems. In Section 6.1, it was shown
that dynamic output feedback can be designed by using two alternative approaches: The first
approach uses Algorithm 2.3 to compute an accurate dynamic compensator which achieves arbi-
trary pole assignment, while the second approach uses Algorithm 2.4 for arbitrary pole assign-
ment as well as for assigning all the poles of the dynamic compensator at specified locations in
the complex plane. Then i. Section 6.2, for multivariable systems described by

3 [A.B,C,E] and Y, [A,B,C,D,E,F},we showed how dynamic output feedback
d d

introduces additional d.b.z.’s located at the poles of the compensator. The important feature of
designing dynamic output feedback with prespecified poles was then used in Section 6.3 to solve
the general problem of disturbance rejection. It should be pointed out that in some applications,
the dynamic outpu feedback controller obtained using our approach has some advantages and
flexibility over other approaches [7-10], e.g. in rejecting a specific class of disturbances from cer-
tain outputs. Finally in Section 6.4, we have given some examples to illustrate the main features

of our approach which allow us to design dynamic output feedback to achieve sicady-state
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rejection of some disturbances acting on the system and to ensure closed-loop system stability by

assigning all the system poles at desired locations in the complex plane.
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Fe -0.90568277763057E +08 5.55000029258728E +06
-0.15424422439795E +068 0.94522185469363L +06

G = 3.8472739926037E +09 —0.00008687432818EF +09
0.85522041157581F +09 —0.00001476045421F +09

1.208683952356000F =10 ~0.00002786104582F <10
J = |0.48368162185338E +10 -0.00001045292928F ~.10
0.682744182823875 +10 -0.00002213613413E =10

-0.28620888205495E +07 1.77231126561236EF —07
H = |-0.10822514663015E +07 0.66534244098447F <07
-0.23134468002850F +07 1.41771188918938EF +07

Parameters of the dynamic output feedback compensator for Example 6.1(ii).
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CHAPTER VII

CONCLUSIONS AND FUTURE WORK

An important problem in linear multivariable control is that of synthesizing controllers that
make the outputs of a physical system respond in a desirable manner to reference inputs and dis-
turbances. In this thesis, we have proposed one way of solving this problem. Our approach can be
regarded as a logical extension of the pole assignment problem in that disturbance rejection is

achieved by assignment of disturbance blocking zeros using the concepts of pole assignment.

The main contributions of the research described in this thesis have been to provide compu-
tational algorithms for designing feedback controllers that reject some or all disturbances acting
on a linear time-invariant multivariable system. In addition, the resulting closed-loop system is
stabilized and desired transient behaviour is obtained for the outputs by assigning the closed-loop
poles at specified locations in the complex plane. We have shown that, the problem of distur-
bance rejection can be solved using the fact that by selecting suitable locations for the distur-
bance blocking zeros (d.b.z.'s) of the transfer function matrix between the outputs and the distur-
bances, some or all of the disturbances can be rejected at the outputs in steady state. These
results have been used in Chapters IV and V to develop algorithms for designing constant or
dynamic state feedback controllers to assign as many d.b.z.'s as required for disturbance rejection

in a linear multivariable system described by Y [A,B.C,E] ory [A,B,C,D,E,F.
d d

In developing the algorithms, extensive use was made of the factorization procedure for the
transfer function matrix of a linear multivariable system, the concept of a minimal order inverse
and the unity-rank dyadic design mechanism. A key property of disturbance zeros that was used
in the algorithm is that there are zeros unaffected by output feedback and are only affected by that
portion of the state feedback that is not contained in the outputs. The problem of stabilizing

and/or improving the transient behaviour of the resulting closed-loop system obtained by imple-
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menting state feedback was carried out by using an output feedback controller (constant or
dynamic). Two alternative approaches were used to design the dynamic output feedback which
assigns all closed-loop poles at or arbitrarily close to some desired values. The first approach is
based on reformulation of the problem to that of the pole assignment by constant output feedback
and then using the implicitly shift algorithm [1,2]. This approach is numerically reliable but does
not aliow for the assignment of the poles of the dynamic compensator at specified locations. To
overcome this difficulty, a new approach was developed for pole assignment using dynamic out-
put feedback compensator with prespecified poles. This approach was used later in Chapter VI to
solve the problems of pole assignment as well as disturbance rejection in multivariable systems.
It was shown that dynamic output feedback introduces additional d.b.z.’s located at the poles of
the compensator. This important feature of designing dynamic output feedback with prespecified

poles was used to solve the more general servomechanism problem [3,4].

The results presented in this thesis and related issues that may benefit from further investi-
gation are summarized next. Algorithm 2.4 uses unity-rank dynamic compensator computed
entirely in the frequency domain, by formation of a set of linear equations relating the parameters
of the compensator to the desired closed-loop characteristic polynomial. The computation of the
dynamic compensator via coefficients of the characteristic polynomials however may give rise to
serious numerical difficulties thus resulting in unsatisfactory performance of the algorithm. An
interesting problem that needs further investigation is the modification of this algorithm, such
that it can be applied directly to a linear multivariable system described by its state-space equa-
tions. Such modification might result in some improvement in the numerical performance of the
algorithm. Another interesting problem would be to determine how the numerical performance of
the proposed algorithm for pole assignment varies with the use of different methods of computing
transfer function matrices from state-space descriptions.

The assignment of d.b.z.'s for single-disturbance system by means of constant and dynamic
state feedback was considered in Chapter IV and extended to system with multiple disturbances

in Chapter V. In both the single and multiple disturbance cases, it was assumed that the given
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open-loop has the maximum number of disturbance zercs, i.e. n—I for Y, [A ,B,C,E ] and n
d

for ¥, [A,B,C ,D,E,F ] These assumptions were made to simplify the mathematical
d

analysis and reduce the complexity of the proposed algorithms. We leave the problem of treating
systems with fewer than the n=! or n disturbance zeros as one to be investigated in the future.
The proposed algorithms for assigning d.b.z.’s use unity-rank state feedback matrices. The use of
such matrices may not be desirable from the numerical point of view especially for higher order
systems. Better numerical performance may be achieved if the rank of the feedback matrices is
not restricted to be equal to 1. In this thesis we have not concentrated specifically on developing
numerically robust algorithms for d.b.z.'s assignment. Our main intention has been to show that
disturbance rejection can be achieved by assigning d.b.z.’s and how this assignment problem can
be solved using the techniques of pole (eigenvalue) assignment. The development of robust
numerical algorithm is not a trail task and is proposed as an extensive project for future investi-

gation,

It should be pointed out that the robustness of the assigned d.b.z.’s to uncentainties in the
system model parameters has not been investigated in this thesis. We believe that it should be
possible to obtain some measurcs of robustness of d.b.z.’s using concepts similar to those
employed to study sensitivity of eigenvalues of a matrix. Such measures would allow us to incor-
porate such robustness features in the rejection of disturbances by assignment of d.b.z.’s using

state feedback.

Finally, it is worth mentioning that the algorithms developed in this thesis are being applied
to a practical problem of controlling the temperature and relative humidity for indoor environ-
ment in buildings. In a particular system of interest for example, the overall system consists of
three subsystems: (i) Primary plants (boilers, chillers, heat pumps), (ii) Distribution systems
(ductwork, fans), (iii) Environmental zones (interior spaces in buildings). The indoor environ-

ment control problem can be stated as the production of conditioned air in (i) distributed through
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(ii) to the thermal comfort of the occupants of zone (iii). The overall system is acted upon by
multiple disturbances. For example, the variations in temperature and mass flow rate of feed
water to a boiler can be represented by step and exponential functions. The variations in outdoor
ambient temperatures can be represented by sine/cosine functions. Also, the disturbances caused
by changing occupancy pattemns of spaces can be represented by step functions. Thus, by linear-
izing the indoor environment control problem about an operating point, state-space models with
multiple disturbances can be developed as shown in [5]. To provide improved thermal comfort, it
is required to design feedback controllers which will reject the multiple disturbances acting on

the system. This can be easily achieved by applying the algorithms developed in this thesis.
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