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Abstract
Dominance Testing in Economics and Finance
Kuan Xu, Ph.D.
Concordia University, 1994

This thesis proposes new tests for stochastic dominance that have applications in
economics and finance. The existing algorithms and test procedures for stochastic
dominance are noticeably restrictive in the sense that (i) they are not firmly based
on sampling theory; or (ii) they are restricted to a special class of known parametric
distribution functions; or (iii) they do not specify dominance relations properly under
the null hypothesis; or (iv) they need restrictive assumptions concerning the data
generating processes and hence cannot accommodate complex data structures. This
thesis proposes new distribution-free statistical tests which specify the null hypothesis
properly, have desirable asymptotic properties, and lead to straightforward methods
of inference. The finite sample properties of the proposed tests are evaluated using
Monte Carlo simulations. An investigation of the dominance characteristics of real
term premium for U.S. Treasury bills is employed to illustrate the application of these

tests.
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Chapter 1
Introduction

Stochastic dominance analysis has widespread applications in various areas
of economics and finance. For example, it is used for the evaluation of income distri-
butions of an economy over time or across economies. It is also used for ranking risky
prospects in financial economics. The theory of stochastic dominance analysis was
developed by Hadar and Russell (1969), Hanoch and Levy (1969), Rothschild and
Stiglitz (1970) and Whitmore (1970). Later, numerous papers on or using stochas-
tic dominance analysis have been published, in particular in welfare economics and
finance.

The concepts of stochastic dominance are theoretically useful because they
allow for the ranking of income distribution or financial asset returns using criteria
that are generally acceptable to the majority of researchers without making restric-
tions about the ranking of preferences. Empirical tests of a dominance relationship
provide important information concerning real-world income distributions and finan-
cial asset returns.

The applications of stochastic dominance concepts—first-, second-, and third-
degree stochastic dominance (denoted as FSD, SSD, and TSD, respectively)— require
comparing either the distribution functions or the quantile functions of random vari-

ables. In the early stage of this literature, the procedures used for stochastic domi-




nance analysis were typically algorithms rather than statistical tests [See Levy and
Hanoch (1970), Porter, Wart and Ferguson (1973) and Vickson (1977), Vickson and
Altman (1977), Levy and Kroll (1979), and Kroll and Levy (1980)]. In other words,
these procedures generally ignored sampling errors and issues of statistical inference.
For example, Tolley and Pope (1988) point out, “In spite of the numerous applications
of stochastic dominance techniques, sampling errors are seldom considered.”

More recent authors have addressed this issue, although the approaches used
have been noticeably restrictive. Some tests are restricted to classes of known para-
metric distributions [see, for example, Deshpande and Singh (1985), and Stein and
Pfaffenberger (1986)]. Since dominance criteria are attractive primarily because they
allow for a ranking of returns on risky assets or income distributions, while placing
only weak restrictions on preferences, it is important that dominance tests retain a
degree of generality, and hence remain nonparametric in nature.

In addition, existing dominance tests often specify the null hypothesis under
consideration improperly [see, for example, Tolley and Pope (1988), Bishop, Formby,
and Thistle (1989), Bishop, Chakraborti, and Thistle (1989), and McFadden (1989)).
For example, most test procedures make use of the null hypothesis under which
two distribution or quantile functions are identical. The hypothesis of dominance
may be viewed as an hypothesis of inequality in a particular direction between two
distributions. If such an hypothesis is rejected, then dominance cannot be sustained,
a result that may or may not be caused by the equality of the two distributions. On
the other hand, if the null hypothesis of equality is rejected, then the two distribution
cannot be said to be equal, but the cause may or may not be that one dominates
the the other. Thus the null hypothesis of equality is not very helpful in providing
information about dominance [see Levy (1992), p.574].

Finally, existing test procedures are not appropriate for data that exhibit
weak dependence within samples and/or association between samples. This is par-
ticularly important in finance applications, where there is substantial evidence sug-

gesting that returns on risky assets are not i.i.d.; instead, the emerging empirical




consensus suggests that while returns on assets may be unconditionally homogeneous
(i.e. identically distributed), they are conditionally heterogeneous with time varying
conditional variances (and possibly higher-order moments as well). Allowing for as-
sociation between the random variables under consideration is also desirable, because
returns on assets are obviously determined jointly, and a positive correlation between
returns will reduce the variance of the differences between distribution or quantile
function estimates.

This thesis develops new distribution-free tests for FSD and 85D, which avoid
the limitations of the existing test procedures. The rest of the thesis is organized as
follows. Chapter 2 reviews the basic concepts of stochastic dominance. Chapter 3
reviews the literature on the existing test procedures for FSD and SSD and identi-
fies their weaknesses. Chapter 4 develops new distribution-free tests and statistics
for FSD and SSD.! In Chapter 5, the finite sample properties of the proposed test
procedure are evaluated using Monte Carlo simulations. In Chapter 6, an application

is demonstrated. Finally, summary and discussion are offered in Chapter 7.

1These two types of stochastic dominance relations are mostly used in practical work. The author
is working on the third-degree stochastic dominance testing as another project.




Chapter 2

Basic Concepts of Stochastic

Dominance

This chapter reviews briefly the basic concepts of stochastic dominance. It
serves to provide a background for later discussion. In particular, the basic charac-

teristic of the dominance relations will be highlighted.

2.1 Utility or Social Welfare Functions

Scientific decision-making is commonly based on a preference ordering of
available choices. When these choices are uncertain and can be characterized by
random variables defined on a probability space, economists typically use the expected
utility function to order choices. To be more specific, assume that two risky prospects
or random variables X and Y have a joint probability distribution Fxy) with well
defined support. The marginal distribution of X is Fx, and that of Y is Fyy. Under
the expected utility hypothesis, X is said to be preferred to Y if

Ery [U(X)] 2 Ep, [U(Y)] (2.1)




or

| UG (t) 2 [ UEF(), (2.2)
where U(.) is a utility function, Er,(.) and Er, (.) are the mathematical expectations
under Fx and Fy, respectively, and [a,b] is the support of the random variable X
and Y.!

Obviously, two distribution functions and one utility function must be spec-
ified in the above evaluation equation. While the distribution functions could be
estimated from historical data, the selection of a utility function is somewhat arbi-
trary and must be done with great care. When the chosen parametric utility function
is not satisfactory, then the expected utility evaluation also becomes unsatisfactory.

Stochastic dominance may be applied when only general characteristics of
the underlying utility function are known. There is thus no need to impose a specific
parametric form of utility function, as would be required in (2.1) and (2.2). In general,

three classes of utility functions are commonly used.

Definition 1 Denote three classes of utility functions as U; fori = 1,2,3. U; includes
all the functions u with u' > 0; U, includes all the functions v with v’ > 0 andu" < 0;
and Us includes all the functions u withv’' > 0, " <0 and v > 0.

U, is a class of monotonically increasing utility functions. This class of
functions characterizes a preference for higher utility. U, is a class of monotoni-
cally increasing and concave utility functions. This class of functions characterizes
a preference for higher utility and lower risk. Us is a more restrictive class of util-
ity functions. This class, together with third-degree stochastic dominance, are only
briefly introduced. The test procedures developed in this paper are mainly for first-

and second-degree stochastic dominance.

In a more general situation, a = —oco and b = +o0.
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2.2 Decision Rules Based on Distribution Func-

tions

One set of decision rules for stochastic dominance relations is based on dis-

tribution functions.

Definition 2 X dominates Y in the first-degree, second-degree, and third-degree, de-
noted by XD\Y, XD,Y, and X D3Y, respectively, if

Fy(w) — Fx(w) > 0 Vw € [a,b] (XD,Y); (2.3)
J 1R (t) - Fx@ldt 2 0 Vw € [0, (X Dy ) (2.4)

and

/., ) / " [Fy(t) — Fx(t)|dtdw > 0 Yuw,v € [a,b], and Ep,(X)> Eg,(Y) (X DyY).
(2.:5)
Alternatively, strict dominance in the first-degree, second-degree, and third-
degree are defined by (2.3), (2.4) and (2.5) with at least one strict inequality.

Theorem 1 gives a one-to-one correspondence relation between stochastic
dominance in the i-th-degree and a preference ordering based on the expected utility
functions of the i-th-class (i = 1,2,3).

Theorem 1 Stochastic dominance in the i-th-degree, i = 1,2,3, (FSD, SSD, and
TSD) and a preference ordering based on the expected utility funclions of the i-th-
class, E(U;), t = 1,2,3, are related as follows:

Fy(w) — Fx(w) 2 0 Vw € [a,b] <> Ep,u(X) > Er,u(Y) Vu € Uy; (2.6)

/ “[Fy(t) — Fx(t))dt > 0 Yuw € [a,8] <= Er,u(X) > Er,u(Y) Vu€ Uy;  (27)




/ " / “[Fy(t) - Fx(£)|dtdw > 0 Vuw,v € [3,b] and Er,(X) > Er,(Y)  (28)

<= Er,u(X) 2> Eru(Y) Yu € Us.

Proof. See Hadar and Russell (1969), Hanoch and Levy (1969) and Rothschild and
Stiglitz (1970) for the proofs of FSD and SSD. For the proof of TSD, seec Whitmore
(1970). See also Bawa (1975). O

It is clear that FSD is the strongest form stochastic dominance in the sense
that it implies SSD, while SSD implies TSD, i.e., FSD = SSD = TSD.

Figures 2.1 and 2.2 illustrate XD,Y and X D,Y using the distribution func-
tions Fx and Fy. In Figure 2.1, Fx is to the right of Fy,i.e., Fx is less than or equal
to Fy for all w € [a,}]. In Figure 2.2, the sum of the areas created by the two curves

from the point of w = a to any w € (a, ] is always greater than or equal to zero, i.c.,
LY [Fy(t) - Fx(t)]dt > 0 for all w € [a, b].

2.3 Decision Rules Based on Quantile Functions

Decision rules for stochastic dominance relations can also be based on quan-

tile functions.

Definition 3 If the distribution F is strictly monotonic, the quantile function of
order p, Q(p), is the inverse function of the distribution function F. Q(p) is given
by Pr{w < Q(p)] = p. If the distribution function is weakly monotonic, then Q(p) =
inf{w : Flw) > p,0<p < 1}.

Theorem 2 corresponds to Theorem 1 but is put in terms of quantile func-

tions.




Theorem 2 X dominates Y in the first-degree, second-degree, and third-degree, de-
noted by XD\Y, XD,Y, and XD,Y, respectively, if

Qx(p) - Qv(p) 2 0 Vpe [0,1] (XD, Y); (29)
/op[Qx(t) ~ Qv (t)ldt > 0 Yp € [0,1] (XD,Y); (2.10)
/op /;[Q" (t) ~ Qv (¢)ldtdz > 0 Vp, z € 0,1] (X DsY), (2.11)

and
[[1@x(®) - @r(t)e 20

Alternatively, strict dominance in the first-degree, second-degree, and third-degree are

defined by (2.9), (2.10) and (2.11) with at least one strict inequality.

Proof. See Levy and Kroll (1978). O

Figures 2.3 and 2.4 show XD|Y and XD,Y using the quantiles Qx and
Qy. In Figure 2.3, Qx(p) is to the left of Qv(p), ie., @x(p) — Qv (p) > 0 for all
p € [0,1]. In Figure 2.4, the sum of the areas surrounded by the two curves from
the point of p = 0 to any p € (0,1] is always greater than or equal to zero, i.c.,
1Qx(t) — Qv (t)]dt > 0 for p € [0,1].

While dominance criteria and tests of dominance relationships can be based
on either distribution or quantile functions, and their associated empirical estimates,
the tests developed here will be based on sample quantile estimates, although this
is primarily a matter of convenience. Tests based on sample distribution function
estimates (i.e. sample proportions) may be even simpler to compute under more
restrictive conditions than those considered in this thesis [see, for example, Anderson
(1994)].2 However, under the general assumptions considered here, the tests are

roughly equal in computational complexity; the tests based on sample quantiles are

?In the i.i.d. case with two independent samples, the variance-covariance matrix of the differences
in sample proportions is quite simple to compute, while the test based on sample quantiles requires
nonparametric density estimation for the variance-covariance matrix of the estimates.




conceptually simpler, because the domain of the quantile functions for both random
variables being compared is the interval [0,1], while the domain of the distribution
functions are case-specific and may not be the same, which increases the possibility
of ‘sampling zeros’ in tests based on sample proportions.

Applications of stochastic dominance are important in several areas in eco-
nomics and finance. For example, in financial economics, Theorems 1 and 2 can be
applied directly to an analysis of asset choice. Another example is the income distri-
bution literature. Here the terminology used is a little different from that in financial
economics. Consider generalized Lorenz (GL) dominance as given in Shorrocks (1983)
and let Fy and Fy denote two income distributions. GL curves can be defined over
the corresponding quantile functions Qx and Qy, i.e., GLx(p) = J§ @x(t)dt and
GLy(p) = J{ Qv(t)dt. GL (strict) dominance of an income distribution Fx over an-
other income distribution Fy is defined as GLx(p) > GLy(p) Vp € [0,1] (with a strict
inequality for a least one p). This is equivalent to SSD in Theorem 2.3

2.4 Basic Characteristic of Dominance Relations

Since this thesis focuses only on FSD and SSD in terms of quantile functions,
the basic characteristic of dominance relations given in FSD and SSD will be reviewed
in the context of quantile functions or transformations of quantile functions.

Empirically, a researcher must decide whether to treat the sample quantile
functions as stochastic processes or to estimate the functions at points. In the former
case, asymptotic theory has not been developed for these types of tests, although it
certainly is possible. For the latter, asymptotic theory is available, but the number
and locations of points must be determined by a researcher.

Dominance relationship can be defined in either regular (weak) or strict form.

It turns out as shown later that the regular dominance relationship (dominance rela-

3Shorrocks (1983) shows that the GL dominance is equivalent to preference by all increasing,
anonymous, equality-preferring social welfare functions.
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tionship, hereafter) is convenient for developing test statistics. When this dominance
relationship is employed, the tests aim at providing statistical evidence that the weak
dominance relationship does not exist between the two distribution or quantile func-
tions being compared. Because the two objects being compared are interchangeable,
the direction in which a dominance relation is evaluated is important in providing
insight into the relation.

From Theorem 2, it is clear that the dominance relations in the sense of FSD
and SSD can not be simply explained as the equality of two quantile functions (in
the case of FSD) or of two transformations of quantile functions (in the case of SSD).
In other words, testing for stochastic dominance relations is not equivalent to testing
for the equality of two functional forms.

To explain the above point, let x and fy be cither quantile functions (in
the case of FSD) or transformations of quantile functions (in the case of SSD) of
X and Y, respectively. The tests for FSD and SSD should be able to differentiate
the following two cases statistically, viz., Hy: 8y — 0x > 0 (dominance) against H,:
Oy — 6x 2 0 (non-dominance). These hypotheses are very different from another set
of hypotheses, Hy: Oy —8x = 0 (equality) against H,: 8y —0x # 0 (inequality). The
former is a case where dominance is against non-dominance; while the latter is a case
where equality is against inequality. Existing test procedures generally misspecify the
relations to be tested. More specifically, those procedures are d=signed to test the

latter while they are claimed to be useful to test the former.




11

Figure 2.1: The stochastic dominance: XD,Y
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Figure 2.2: The stochastic dominance: X D,Y
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Figure 2.3: The quantile condition of stochastic dominance: XD,Y

a(P). Q,(P)

b

Q,(P)

Qy(P)

13




Figure 2.4: The quantile condition of stochastic dominance: X D,Y
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Chapter 3

Literature Review

This chapter reviews the literature of existing algorithms and test procedures
for stochastic dominance analysis. These are the: early algorithm [Levy and Hanoch
(1970) and Porter, Wart and Ferguson (1973)], conventional quantile approach [Levy
and Kroll (1979)], parametric test procedure [Whitmore and Findlay (1978), Desh-
pande and Singh (1985), and Stein and Pfaffenberger (1986)], randomization test
procedure [T~lley and Pope (1988)], SMM multiple-comparison test procedure [Rich-
mond (1982), Beach and Richmond (1985), and Bishop, Formby, and Thistle (1989)],
Smirnov-type distribution-free test procedure [Whitmore and Findlay (1978), and Mc-
Fadden (1989)], and Wald-type distribution-free test procedure [Bishop, Chakraborti,
and Thistle (1989)].

The early algorithm and conventional quantile approach are the procedures
that are not statistical procedures. The parametric test procedure is a statistical
procedure but is restricted to the family of parametric distribution functions. The
randomization test procedure, SMM multiple-comparison test procedure, Smirnov-
type distribution-free test procedure, and Wald-type distribution-free test procedure
vary in their constructs, but they are actually useful for testing the equality of two
(distribution/quantile or transformations of distribution/quantile) functions, instead

of the dominance relation of the two. Further, these test procedures are not designed
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to accommodate complex data structures such as weak dependence within samples
and/or association between samples. The following review will highlight the deficien-
cies of the existing procedures, and demonstrate the need for new tests that avoid
the deficiencies.

Let X and Y be two random variables with the marginal distribution func-
tions Fx and Fy, respectively. Denote the samples from X and Y by {z,}7%, and
{y,},T=",, respectively. Tx and Ty are the numbers of observations in the samples from
X and Y. Sometimes, T is used if T = Tx = Ty. Observations in each sample can
be arranged in increasing order, i.e., z(1) < z(g)+-+ < z() and y) < Y2y < Yy
where z(;) and y,) are t-th order statistics of X and Y. The empirical marginal dis-
tribution functions are denoted as Fxr and Fyr. Occasionally, F; is used to denote

a known parametric distribution for a random variable X,.

3.1 Early Algorithm

The early algorithm for empirical FSD and SSD analysis relies on some useful
short-cuts. It implicitly uses the salient features of the stochastic dominance criteria
without actually examining distribution functions directly. These short-cuts ! are as

follows:

1. One risky prospect dominates another only if it has 8 mean equal to or greater

than the mean of the other.

2. If two risky prospects have the same mean, the one with the greater variance

cannot dominate the other.

3. If the lowest observation of one risky prospect is below the lowest observation

of a second, the first cannot dominate the second.

1These were summarised by Kroll and Levy (1980).
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4. Dominance of one risky prospect over another by FSD implies dominance by

SSD, and dominance by SSD implies dominance by TSD.

5. If one risky prospect does not dominate another in terms of TSD, then there is

also no dominance by SSD, which in turn implies no dominance by FSD.

6. If a risky prospect is dominated by at least one risky prospect, it can be excluded
from the efficient set and there is no need for further comparisons between it

and other risky prospects.

The early algorithm is merely an algorithm. It can best be interpreted as a set of
decision rules in a world of certainty. However, the stochastic dominance is about
the decision rules in a world of uncertainty. Thus, the early algorithm is undoubtedly

inappropriate.

3.2 Conventional Quantile Approach

The conventional quantile approach is an ordering algorithm rather than a
statistical test procedure. The basic idea of this approach is to compute the quantiles
of two samples and compare them. If two risky prospects, X and Y, are evaluated in

the sense of FSD and SSD, the following decision rules are used:
1. XD\Y if and only if z(;) > y(,)V ¢ with at least one strict inequality.
2. XD,Y if and only if }:{;, z(y) 2 E{=1 YV j with at least one strict inequality.

This approach is well-known and widely used. However, it ignores sampling
errors, i.e., it treats a sample distribution function as the corresponding population
distribution function, and hence it does not provide any basis for statistical inference.
Stein and Pfeflenberger (1986) use the specific parametric distributions, such as the
normal and lognormal distributions, to show the error probability associated with

this approach for a wide range of parameter values.
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3.3 Parametric Test Procedure

The parametric test procedure was proposed to deal with the problems in
the early algorithm and conventional quantile approaches. Unfortunately, the tests
basically compare either parameters of distribution functions or distribution functions
within a small family of parametric distribution functions. Two variants of parametric
tests are briefly reviewed here.

The first example is a parameter test based on parametric distribution func-
tions due to Stein and Pfeffenberger (1986). In the following, the normal distribution
is used as an example to demonstrate how the test is constructed. X has mean py
and variance 0%, while Y has mean py and variance 0. To test dominance relations,
first transform X to a standard normal random variable with standardized distribu-
tion function F§; then compare the standard normal distribution F} to a normal
distribution Fy with parameters, p = (py — px)/ox and o = oy /ox. The decision
rules for FSD are: XD,Y ifgp <0and e =1; YD, X if p > 0 and o = 1; and there is
no dominance otherwise. The decision rules for SSD are: XD,Y if u < 0 and o > 1;
YD, X if p > 0 and o < 1; and there is no dominance otherwise.?

The second example is the test for SSD due to Deshpande and Singh (1985).
The idea of the test is based on a claim that comparing a random prospect X, which
has the distribution function Fx, with another random prospect X; with a known
parametric distribution function Fj, is equivalent to testing for SSD in the case of
utility functions belonging to U;. The authors propose the following null and alterna-
tive hypotheses: Hy : Fx = Fy against H, : Fx D, F;. It is assumed that distribution
functions, Fx and Fp, are continuous and that their first two moments exist. Let
dry (W) = [U(Fx(£) — Fo(t))dt, where w € [a,b], and Dpy.r, = [P dry 1 dFo(w).
Dry F, is & measure of distance between Fx and Fy. According to Deshpande and

Singh, Dr, i, = 0 under Hy and Dr, i, < O under H,. Let Fxr be the corre-

3See Stein and Pfeflenberger (1886) for details.
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sponding empirical distribution function.? Define dr(w) = [;’(Fxr(t) — Fo(t))dt and
Dr = [." dr(w)dFo(w). Dr is an estimator of Dr, r,. Under Ho, Dr will take values
near zero whereas under H, it will be negative and has a large absolute value. The
authors suggest that the decision rules are: if Dy < C, (where C,, is an appropriately
chosen critical point so that the test has the desired size a), reject Hy; otherwise, do

not reject Ho. The two authors demonstrate that if
1. a random sample, {z;}7_,, is drawn from the distribution Fy;
2. F, is a known parametric distribution;

3. DT = %Z{_—_—] Y- A, where Y = I:‘(w — 3¢)dFo(‘w), t = 1,2,"',T and A =
J? Fo(w)(1 - Fo(w))dw; and

4. Sr = g%i:‘(’%i—‘)?ﬂ, where Ep, (Dr) and o, (D7) denote the mean and standard

deviation of D7 with respect to the distribution function Fy;

then Sr converges in distribution to a standard normal distribution.

Obviously, the above test is only useful if F has a known parametric form.
Furthermore, the test has two other problems. First, the derivation of the test-statistic
relies on an erroneous claim, viz., D, r, < 0 = dry i (w) < 0V w € [a,b]. Obviously,
this is not necessarily truve. Second, the test procedure has the null hypothesis under
which the two distribution functions are identical. This setup is not desirable for
evaluating dominance relationship. The second problem is reflected in several test

procedures for SSD.

IMany possible estimators for a distribution function are available in the literature. However,
Deshpande and Singh (1985) do not give the specification of Fxr.
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3.4 Randomization Test Procedure

The randomization test procedure® was proposed for stochastic dominance
analysis by Tolley and Pope (1988). Although this test can be applied for both FSD
and SSD, Tolley and Pope’s work focuses on a test for SSD. The hypotheses for X DY
can be established as Ho : X]2,Y against H, : XD,Y. Let the sample counterpart of
D(w) = [*(Fy(t) — Fx(t))dt be D*(w) = w (£ — ) + & Tl 3y — & Thy 20,
where w € [a,b]; z(;) and y(,) are the ordered observations of {z,}!X, and {y}%,
respectively; k is such that 24y < w < 2(41); and 1 is such that vy Sw< y(m)."
The critical regions, C, and C, corresponding to the significance level a for the

statistic D*(w) is formulated from the following logical steps for testing H, against
H,:

1. If D*(w) is significantly less than zero for any value of w, then Hj is not rejected.
K min,, D*(w) < C, < 0 for some value of C,, then the test procedure is stopped

and Hj is not rejected in favor of H,,.

2. If D*(w) is not significantly less than zero for any w and if D*(w) is significantly
greater than zero for some w, then Hj is not rejected in favor of H,. Thus, given
that min, D*(w) £ Cq, if max, D*(w) > C. > 0 for some fixed C., then Hj is

rejected in favor of H,.

The remaining work of the test procedure is to determine values of C, and C'.
These are determined empirically using a permutation test procedure on the desired
significance level o.®

Although H, and H, are formulated correctly, the Tolley and Pope test
procedure in fact uses an implicit assumption undex the null hypothesis that the two

distributions are identical [i.e., no treatment effects. See Tolley and Pope (1988),

“The randomisation tests do not require samples to be random. While this is an advantage, the
tests are not appropriate for statistical inference of the population. See Noreen (1989).

SFor the derivation, see Appendix of Tolley and Pope (1988).

6See Tolley and Pope (1988) for details.
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p.696 and Edington (1980), p.11.]. Once again, this test procedure is designed to test
the equality of two distribution functions against a violation of such equality. rather

than the dominance relationship.

3.5 SMM Multiple-Comparison Test Procedure

The multiple-comparison or simultaneous inference procedure is baszd on a
technique devcloped by Richmond (1982) for constructing joint confidence intervals
for all possible linear combinations of means of multivariate normal distributions.
Beach and Richmond (1985) apply this technique to construct joint confidence in-
tervals for Lorenz ordinates. Based on the Richmond’s results, the SMM multiple-
comparison tests were developed [See Bishop, Formby, and Thistle (1989)).

Richmond’s joint confidence interval procedure uses the studentized maxi-
mum modulus (SMM) distribution. The basic idea is given below. Assume x =
(z1,22,.zx )" is a K-dimensional random vector distributed N(p,02X). Let s? be an
estimator of 0%, where v3?/0? ~ x*(v) independently of X. Then, if I is a diagonal
matrix with diagonal elements d;,, dividing by the standard errors, -1/2(x — p)/s
has a limiting multivariate standard normal distribution. The largest of these “stu-
dentized” random variables, M = max;{|z; — p;|/sv/di;}, has the SMM distribution
with K and v degrees of freedom, or ™ ~ SMM(K,v). If mqa(K,v) is used to denote
the upper 100(1 — a) of the SMM(K,v) distribution, then

Pr[m > mu(K,v)] = a. (3.1)

When X is not diagonal, the z,’s are not independent. The above equation becomes

an inequality as shown in Hochberg (1974):
Pr[it 2 mq(K,v)] < a. (3.2)

Richmond extends this inequality to linear combinations of the z;’s. Let

B =[b,-:-b,)’ be a matrix which contains g linearly independent known K-vectors,
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where ¢ < K. Thus, Bx ~ N(Bp, s?’BEB’). Richmond showed that
Pr[|bi(x — p)|/s(b/Zb;)"/? < ma(g,v),5=1,2,...q| > 1 — a. (3.3)

This inequality give the joint 100(1 — &) confidence intervals for all possible linear com-
binations of the means. This inequality is also used to derive the multiple-comparison
tests.

As an example, consider the multiple-comparison test for the differences in
the conditional means of two samples. Suppose My and My are estimators of the
vectors of conditional means from two independent samples of Ty and Ty. Under the
null hypothesis, the two samples are from the same distribution, i.e., Hy: Mx = My.
Let Z = [Z, .-+ Zk]', where Z; is the j-the difference in the conditional means of two
samples that are, it is assumed, from the same distribution. The vector Z has an

asymptotic distribution N(0,I). The Hochberg-Richmond inequality implies
Pr[|Z;| < ma(K,0),j =1,2,... K] > 1 —a. (3.4)

Multiple comparisons of pairs of conditional means can be made using the statistics
Z;. To carry out the multiple comparisons, the Z;’s are tested as SMM(K,x)
variates. Tables of the SMM distribution are given in Stoline and Ury (1979).

The set of K multiple-comparison tests implies a joint test for equality of the
vectors of conditional means. This implied joint test is 8 union-intersection test. The
implied joint test does not reject the overall null hypothesis Hy: Mx = My if and
only if all of the component null hypotheses are not rejected. Formally, the test of the
j-th component hypothesis is : Reject H! if and only if |Z;| 2 ma(K,00); otherwise
do not reject Hi. The test of the overall hypothesis is: Reject Hy if and only if Hg is
rejected for any j; otherwise do not reject Hy. Therefore, the rejection (acceptance)
region of the implied joint test is the union (intersection) of the rejection (acceptance)
regions of the individual component tests.

It is clear that the multiple-comparison tests are designed to test the equality

of two vectors of parameters against the violation of such equality. These tests for
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the equality relation are not completely suitable for testing stochastic dominance

relationships.

3.6 Smirnov-Type Distribution-Free Test Proce-
dure

McFadden (1989) developed a Smirnov-type distribution-free test procedure
for stochastic dominance. A brief summary of his tests for FSD and SSD is given as
below. The tests are suitable to the data generating processes where X and Y are
statistically independent and the samples from X and Y are i.1.d.. It is assumed for
simplicity that T = Ty = Ty. The distribution functions Fy and Fy are not restricted
to any parametric form. Define Fxr to be the empirical distribution function based

on the sample observations from X, i.e.,
17
Fxr(w) = 7 ) I(z S w), (3.5)
t=1

where I(A) is the indicator function: one if A is true; zero otherwise. Fyr(w) is
defined as the empirical distribution for Y. To test for XD,Y, consider Hy : Fy (w)-
Fx(w) > 0V w € [a,}] against H, : Fy(w) — Fx(w) < 0 for some w € [a,b]. For the

null hypothesis, a test statistic is based on

Dy = o Dr(w), (3.6)

where Dr(w) = VT[Fyr(w) — Fxr(w)).

Let {z}?7, denote the ordered pooled observations from the X and Y samples.
Define d; to be the indicator that is +1 if z; is from the ¥ sample, and —1 if 2 is from
the X sample. Let Hyr(w) denote the empirical distribution function from the pooled
observations, and note that 2T Hor(w) = ¢ implies z; < w < 241, where w € [a,b).
Define Dy, = 7— E,—l d;. Then

Dr(w) = x/_ }:d I(z; <w) = D, (3.7)

1-1
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implies
D} = max_Dry. (3.8)

1<t<2T

This statistic is easy to compute using Dry1 = Dy + 47‘*7%.7 Under Hj, the exact

distribution of this statistic is

(T1)?
(T - B)(T + k)
where k > Tq > k — 1 (i.e., k is the smallest integer greater than T'q).® For large T,
this has the limiting distribution

P(D; > qgVT)x e ™ (1 - %@ +0 (%)) : (3.10)

The McFadden distribution-free test for SSD is based on a similar idea. The
hypotheses are Hy: [“(Fy(t) — Fx(t))dt > 0 Y w € [a,b] against H,: [°(Fy(t) —
Fx(t))dt <0V w € [a,b]. The statistic is based on

P(D; > qVT) =

(3.9)

St = nax, St(w) (3.11)

where Sr(w) = VT [(Fy(t) — Fx(t))dt. Using the notation defined above, let
1 L
S'n = ﬁ E dj(zg - z,-). (3.12)

This statistic satisfies the recursion St41 = (2141 — 2¢)Dre + Sre. For w € [a,b] and

t = 2T Hor(w), implying z; < w < 2141, one has

Sifw) = =Y diw - 5)

i=1
= (w— 2)Dr¢ + St (3.13)

Since D7 a1 = 0, S7(w) is constant for w > z,r, implying

St = Jax Sti. (3.14)

7D} is the well-known Smirnov statistic [see Durbin (1873)).
8See Gnedenko and Koroyuk (1961) and Durbin (1985).
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This statistic is easy to compute using St¢41 = (2t41— 2¢) D¢ + S1¢. The distribution
of the statistic S; does not appear to have a tractable analytical form. McFadden
provides a computational method for calculating significance levels.?

McFadden’s SSD test suffers from three problems. The first is that the
SSD test procedure in fact puts the equality of transformations of two distribution
functions under the null hypothesis. The second is that the t.st-statistic S; does not
have a tractable analytical distribution. The third problem is that the test cannot

accommodate weak dependence within a sample and association between samples.

3.7 Wald-Type Distribution-Free Test Procedure

The Wald-type distribution-free test procedure, was proposed by Bishop, Chak-
raborti and Thistle (1989). They developed the two test-statistics, T} and T, which
are used jointly to test the dominance relations between two cumulative quantile
functions in the context of generalized Lorenz curves. Let ¥x and ¥y be K-vectors
of cumulative quantiles for random variables X and Y respectively. The first test-
statistic 7} is used to test H}: Wy = ¥y against H): ¥y # ¥y. T has an
asymptotical x? distribution with degrees of freedom K and is defined as T, =
(Ux — ¥y )[(Rx/Tx) + (Qy /Ty)]"(¥x — ¥y), where ¥x and ¥y represent the
estimates of cumulative quantiles for X and Y, respectively; {}x and §ly represent
the estimates of variance-covariance matrix for ¥x and \i’y, respectively; and Tx and
Ty are the numbers of observations in the X and Y samples, respectively. Bishop and
Thistle claimed that the second test-statistic T, should be used to test H3: ¥y < ¥y
against H!: ¥x > ¥y, T, has an asymptotic standard normal distribution and is
defined as T; = 1k'(¥x — ¥y )'/(1k'[(Qx/Tx) + (Qy /Ty)]'1x)V/?, where 1k is a
K x 1 vector with all elements unity. Tiveir test procedure suffers frcm one fundamen-
tal problem; the test-statistic T; has no power to measure the elementwise distance

of two vectors, ¥x and ¥y. T can test if 1'(¥x — ¥y) > 0 but cannot test if

9See McFadden (1089) for details.
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(¥x — ¥y) > 0 with a strict inequality for at least one case. Clearly, the two inequal-
ity conditions are mathematically different. The relation, 1'(¥x — ¥y) > 0, simply
states that the sum of the differences is greater than zero. This is not a condition for
SSD. The only relation for SSD is (¥x — ¥y) > 0. The former does not imply the
latter, while the later implies the former. A smaller problem is that the two-step pro-
cedure will give a significance level which is far different from the significance levels
for each step of the tests.

Clearly, the existing procedures suffer from various problems. Most impor-
tantly, these test procedures are actually useful for testing the equality of two distri-
bution or quantile functions, instead of a dominance relationship between the distri-
bution or quantile functions. In addition, these test procedures are not designed to
accommodate complex data structures. Chapter 4 develops tests for FSD and SSD

that correct these weaknesses.
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Chapter 4

New Distribution-Free Tests for

Stochastic Dominance

4.1 Introduction

As shown previously, the quantile conditions for FSD and SSD are: XD;Y
if and only if Qx(p) — Qv(p) = 0 Vp € [0,1]; and XD,Y if and only if fJ[Qx(t) —
Qy(t)]dt > 0 ¥p € [0,1]. Alternatively, the quantile conditi~n for S§SD can be ex-
pressed in terms of cumulative quantiles. The cumulative quantile function is given
by

¥ = [ Q)i (4.1)

where p € [0,1). Thus, XD,Y if and only if ¥x(p) — ¥y(p) > 0 Vp € [0,1].

Decision rules for FSD and SSD have a common structure, and both can be
expressed in a more general form. Let @ be used to denote either Q or ¥. The general
form of the decision rule is to test if 8y — 8x > 0 or x — fy > 0. Based on this
common structure, the new distribution-free tests for FSD and SSD are developed
below.

For testing hypotheses such as Hy: 6y — 6x > 0 against H,: 0y — 6x 2 0,
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test-statistics can be designed using both the restricted estimator of 8y —8x, 8y -8y,
and the unrestricted estimator of 8y —x, fy ~8x. The unrestricted estimator 0y —0x
are freein a space i, while the restricted estimator éy - 5){ must be in the restricted
space R, where R C U and R # U. A dominance relation can be characterized
by a relation in the restricted space R and this relation is specified under the null
hypothesis. If both restricted and unrestricted estimators are in the restricted space
R, then the null hypothesis should not be rejected. If the unrestricted estimator
is not in the restricted space R, and far away from the restricted estimator in the
restricted space R, the null hypothesis will be rejected. The tests should therefore be
able to measure the distance between the restricted and unrestrictcd estimators.

In the following sections, the tests under general conditions will be developed,

and then two important variants of the tests under relative restrictive conditions will

be derived.

4.2 Tests under General Conditions

4.2.1 Assumptions

The test procedure is proposed under very general conditions that allow for
weak dependence within samples and association between samples. The motivation
for proposing the tests under these general conditions is that the i.i.d. and indepen-
dence requirements are not realistic assumptions for complex data structures such
as financial data. Many financial time series, such as stock and bond returns, are
not i.i.d. but identically weakly dependent. Most of them are also correlated cross-
sectionally.! When ob<ervations in each sample are not i.i.d. and a pair of samples
are not independently selected, the variance-covariance matrix of the difference of

two quantile function eatimators will change. Thus, there is a need for dominance

1For example, Roll and Ross (1980) describe the common contemporaneous comovements of stock
returns as their single most important feature
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tests which can accommodate both weak dependence within samples and association
between samples. In addition, under some additional restrictions, the test-statistics
can be simplified substantially and correspond to the proper tests for FSD and SSD
under familiar conditions.

Denote the two random variables {X,Y;} as the random vector {Z}, where
Z,ij=X,Y,or X; = Zix and Y; = Zyy. Let {Z;,—00 < t < o0} be a stationary
¢-mixing sequence of random vectors defined on a probability space (€2, 4,P). Thus,
if M*_ and M, be respectively the o-fields generated by {Z,¢ < k} and {Z,,t >
k+T}, and if B, € M and E; € M1, then for all k(—oo < k < 00) and T(> 1),

|P(E2|Ey) — P(E:)| < ¢(T), ¢(T)20, (4.2)

where 1 > ¢(1) > ¢(2) -+, and limr_o ¢(T') = 0.

Assumption 1 The ¢-mizing sequence satisfies

f: B(T)]? < oo, (4.3)

Z, has a bivariate density function fxy(z) or fxy(z,y), and distribution
function Fyy(2) or Fxy(z,y), where z = (z,y) € R%. The corresponding marginal
density and distribution functions for X and Y are written as fx(z) and fy(y), and

Fx(z) and Fy(y), respectively.

Assumption 2 Fxy(z) is strictly monotonic in some neighborhood of £ in each of its

two coordinates and admits of a differentiable continuous density fxy(z), suck that

0 < fxy(z) < o0. (4.4)
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Assumption 1 essentially requires that the dependence between observations
dies out as the (temporal) distance between them increases. Assumption 1 is now
standard in empirical finance [see Lo and McKinlay (1988)]. Assumption 2 ensures
that the inverse distribution function exists and is well defined. This assumption is
important for consistent estimation of the variance and covariance matrix of the point
estimates of quantile functions. Assumptions 1 and 2 are required for developing the
asymptotic distribution of the sample quantiles given in Lemma 1.

The empirical distribution function for j-th variate is given by
1 '
Frij(w) = -3 1(Z; < w), (4.5)
t=1

where w is in the support, j = X,Y, and I(A) is the indicator function: one if 4
holds; zero otherwise. K proportions or probabilities and K corresponding quantiles
are chosen for both {X,} and {V;}. £ = [f(’f),f()g),- . -£()§(),£(Yl),£(’;), .. -G{K)]’ denotes a
2K x 1 vector of quantiles defined in R2. P{Zg_, < £{.)} pj,) , where 0 < p’ 5 <1,
and j = X,Y. Since it is assumed that p(,) = p(,) forall ¢, P {Z,J < f( )} = p’) can be

written as P {Z._, < £(‘)} = p;, i.e., the superscript j of p’ i) can be suppressed. Thus,
the 2K X 1 vector, £ , can be alternatively expressed as

¢

Qz(P) (4.6)
= [@x(P),Qy(P)!
= [Qx(m), @x(p2),--- QX(PK)aQY(Pl)v Qv(p2),- QY(PK)]"

Hf we denote the two samples as {2;}"_, and {3:}],, observations in each
sample can be arranged in increasing order, ie., z(;) < z(2)-+ < z(r) and y) <
Yoy *+* < ¥Y(1), Where z(,) and y(,) are ¢t-th order statistics of X and Y, respectively.
The sample quantiles of order p for X and Y are denoted as QT x(P) = z(rp}+1) and
Qrv(p) = ¥(Tp)+1), Tespectively, where [T'p] refers to the largest integers that are less
than or equal to T'p. For a finite set of quantiles, such as Qrx(P) = {z(rpgsyli =

., K}, and Qzv(P) = {y(rpa+n)li = 1,...,K}, associated with the the abscissae
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P = {pili = 1,...,K}, it can be shown that the 2K X 1 vector of the estimated
sample quantiles for a bivariate distribution, QTZ(P) = [QTX(P),QTy(P)]' has an
asymptotic normal distribution as given in Lemma 1.

Lemma 1 Under Assumptions 1 and 2, as T — oo,
‘/T[QTZ(P) - QZ(P)] _‘f, N(O, A)1 (4'7)

where

A=D'y(D')"h
D = diag[fx(@x(p))s -+, fx(Qx(px))s fr(Qy (1)), - fr(Qv(pk)))s

and
v = lim E(mm’),

—+$00

where m =4[FxFy]' with F; = [(Fri(Qi(p)) — 1), -, (Fri(Qi(px)) — k), § =
X,Y.

Proof. See Sen (1972).0

When T and P are suppressed for simplicity, @rx(P) = @x, @rv(P) = Qy,
and Qrz(P) = Qz, Given the simplified notation, the above lemma simply provides

the following result:
VT(Qz — Qz) % N(0,A), as T —s oo.

Lemma 1 is a useful limiting distribution for two sets of quantile points
which are estimated for two associated time-dependent stochastic processes. The
clements of A are fairly complicated and depend on the serial correlation structure
of the data. While it is possible to construct consistent estimates of A using kernel
density estimates and Newey-West style truncation arguments, it is also possible (and
much less cumbersome) to employ a bootstrap resampling algorithm fo estimate the

elements of A. In this context, it is important to note that the resampling algorithm
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must replicate the dependence structure in the data for the bootstrap estimates to be
consistent. For stationary ¢-mixing random variables, the MBB estimation developed
by Kunsch (1989) and Liu and Singh (1992) will provide consistent estimates of A.
As the test-statistics presented below are actually based on differences in
sample quantiles, it is sufficient to estimate the variance-covariance matrix of Qx —
Qy. Since Qx — Qy can be expressed as HQz, where H is a matrix such that
HQz = Qx — Qy, the veriance-covariance matrix of Qx — Qy is given by JHAH'.

The various estimators of + HAH' are given later.

4.2.2 Test for First-Degree Stochastic Dominance

To test XD,Y, i.e., to test Hy: Qx — Qy > 0 against H,: Qx — Qy # 0,
it is useful to employ a version of the general Weld test for equality and inequality
restrictions developed by Kodde and Palm (1986) and Wolak (1989a and 1989b). The
following lemma provides a framework for both FSD and SSD tests, and, is a special
case of the Kodde and Palm result.

Lemma 2 If Q2 can be consistently estimated by Qz based on a sample of size T
such that VT(Qz — Qz) 4, N(0,A), then for testing Hy: h(Qz) > 0 against H,:
h(Qz) 2 0, the test-statistic D is defined as D = |5 -7 ||z = (F —F)YZY(F - 7),
where § = VTh(Qz) and ¥ = VTh(Qz) . § is an unrestricted estimator and has
large sample variance-covariance matriz ¥ = (6h/0Q";)A(OR'/8Qz). 7 s a restricted
estimator solving min.,(§ — 4)E~Y(F — v) subject to the consiraint vy > 0. D has a
large sample distribution

K

supy50Pr(D 2 g|Z) = ) Prlx*(K - i) 2 qW(K,i, £)

1=0

with W denoting the probability that i of the K elements of 4 are strictly positive,

and q denoting the critical value.

Proof. As shown in Kodde and Palm, a vector of parameters of interest @z is formu-

lated in terms of K independent continuous functions h(Qz), which are differentiable
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in some open neighborhood of the true parameters Q7. The hypothesis to be tested
can be written as Ho: k(Qz) = 0, and h2(Qz) > 0 against H,: k(Qz) # 0, and
h2(Qz) # 0. The dimensions of the partition of A(Qz) into h(Qz) and hy(Qz) are r
and K — r respectively.

It is assumed that Q7 can be consistently estimated by Q7 such that \/T_(Qz—
Qz) % N(0,A). Thus, by the delta method, VT(h(Qz) — h(Qz)) > N(0,X), where
% = (0h/0Q)A(BK/0Qz).

The functions of parameters, k(Qz), can be transformed into new parameter
vectors 7 = (7],7;) and § = (§],;)', where % = vThi(Qz) and ; = vThi(Qz) .

It is shown that for Ho: v, = 0, and y; > 0 against H, : v, # 0, and 7, # 0,
the Weld test-statistic is

D = ||3-9l
= ’7;21—1]’71

+(F2 — §2 — 22121_1l“71)'()322 - 22121_11212)_] (72— %2 — 2212'{1171)-

where 7 is an unrestricted consistent estimator, 4; = 0 and 4, is the solution of
71?;%(72 — 72 = ZaZi' 1) (B2 - a2 B02) (2 — 72 — T ZH)-

For the maximum under the null hypothesis the large sample distribution is

K-r
supy>0Pr(D 2 g|Z) = Y Pr(x*(K i) 2 q]W(K — r,i,55 — E2 57 E1a),

i=0
with W denoting the probability that i of the K —r elements of 7; are strictly positive,
and g denoting the critical value.
Now consider the hypotheses Hy: v, > 0 and H,: v, 2 0. This sets » = 0.
The dimension of v, is K instead of K — r. In this case, 4, is not in the parameter
space, and X2, £, and X;; become irrelevant. Simply rename v, as v, §; as 3, ¥,
as 4, and ¥2; as X. Then we have the following result.
For Ho: h(Qz) > 0 against H,: h(Qz) 2 0, the test-statistic D is defined
as D= |7—7lly = (3 - 7YE-(5 %), where § = VTH(Q7) and 7 = VIH({z).
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7 is an unrestricted estimator and has the large sample variance-covariance matrix
T = (0h/0Q%)A(OK' /0Qz). 7 is u restricted estimator solving min,(5—v)'L~!(§~1)
subject to the constraint 4 > 0. D has a large sample distribution

K
sup,>0Pr(D > ¢q|E) =) Pr[x*(K i) > qW(K,i,X)

=0
with W denoting the probability that i of the K elements of 4 are strictly positive,
and q denoting the critical value. When i = K, Pr[x*(0) > g] = 0, for ¢ > 0.
Wolak (1989a and 1989b) provides the same result in a different context.O

The upper and lower bounds for the critical values for testing inequality
restrictions are provided by Kodde and Palm (1986). The reason for computing the
upper- and lower-bonds for the critical value is that computing the weights W can
be nontrivial. The computing of weights involves evaluation of K-multiple integrals,
and closed forms are only available for small K.? Kodde and Palm (1986) provide
a partial solution to this problem by computing the upper- and lower-bound critical

values that do not require computation of the weights. These bounds are given by

o = 5 Pr(x} > ), (4.8)

and
1 1
a, = —2-Pr(x§<_1 > qu) + EPr(xf( > qu), (4.9)

where q; and g, are the lower- and upper-bounds, respectively, for the critical values
of the test-statistic. These are reproduced in Tables 4.1 and 4.2. A lower bound for
the critical value is obtained by choosing a significance level a and setting degrees
of freedom (df) equal to one. An upper bound for the critical value is obtained by
choosing a significance level o and setting df equal to K. Decision rules based on the
statistic D are: if D exceeds the upper bound value, reject Ho; and if D is smaller

than the lower bound value, do not reject Hp. If D is in the inconclusive region,

?See Kudo (1963) for the exact computation.
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then the weights W in the distribution can be determined numerically, and D can be
compared with the critical value corresponding to the chosen significance level a. D
is the basic form of the test-statistics for FSD and SSD.

Theorem 3 Under Assumptions 1 and 2, the variance-covariance matriz of Q x —Qy
is  HAH', where A is given by Lemma 1. Under Ho : Qx —Qy 20, the test-statistic
Jor FSD, ¢,, ts given by:

o= A'[%HT\H’]"A, (4.10)

where A = [(@x — Qv) — (@x — Qv)); Qx, Qv, and A are the unrestricted estimates
while Qx and Qy are the restricted estimates minimizing
~ ~ 1 .. ~ ~
[(@x - Qv)—(Qx - QY)]'[THAH']"[(QX ~Qr) - (@x - Qy)| (4.11)

st. (@x —Qy)=0.

The test-statistic c, is asymptotically distributed as a weighted sum of x> random

variables with different degrees of freedom i.e.
1
sup@x-qy)>0 Prier 2 QITHAH']

K
= Y PriA(K —i) 2 WK, -,}HAH']. (4.12)
1=0
The decision rules based on the statistic ¢, are the same as those for the statistic D

in Lemma 2.

Proof: This result is a consequence of Lemmas 1 and 2. O

The test-statistic, ¢;, employs the unrestricted estimates Qx — Qy and
-}—HKH’, and the restricted estimates Qx —Qy which are estimated by solving the

restricted nonlinear optimization problem in (4.11).
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4.2.3 Test for Second-Degree Stochastic Dominance

The SSD null hypothesis may be written as: Hy: ¥x — ¥y > 0 against H,:
Uy — Uy 20.

Definition 4 The cumulative quantile generator, B, is defined as a (K x K) lower

triangular malriz with every non-zero element equal to unily, i.e.,

111 ..10
111 .. 11]

Given K, B premultiplies Q,- (7 = X,Y) yielding a K-variate vector of

cumulative sample quantiles, i.e.,

8O, = [i:;c?j(p;),...,fz_",:@,-(pi)>'

= (¥i(p),..-, ¥jlox))
- &, (4.13)

where po = 0, px = 1 and piy1 — pi = pjy1 — p; forall 4,5 =0,1,..., K —- L

Theorem 4 Under Assumptions I and 2, the variance-covariance matriz of B(Qx -
Qy) is —}-BHAH’B’, where A is given by Lemma 1. Under Hy: B(Qx — Qv) 2 0,
the test-statistic for SSD, c;, is given by:

6 = (BA)’[%BHKH’B’]“‘(BA), (4.14)
where BA = B[(@x - @v) — (@x — Qv)]. @x, Qy, and A are the unrestricted

estimators while Q x and Qy are the restricted estimators minimizing

{Bl(@x ~ @r)~ (Qx - Q@)Y {7 BHAH'B'} M {B(@x ~Gr)— (@x — Q¥)]} (415
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a.t. B(Qx - Qy) >0,

c2 i3 asymptotically distributed as the weighted sum of x* random variables i.e.:

1
auP(B(Qx—Qy)]N) PT[Cg > ql_BHAHIBl]

ZPr [X2(K - i) > qWI[K,i, —BHAII’B'] (4.16)

=0
The decision rules based on the statistic c; are the same as those for the statistic D

in Lemma 2.

Proof: This result is derived from Lemmas 1 and 2, Definition 4 acting as a linear

transformation. O

As with the FSD test-statistic, c; employs the unrestricted estimates B(Q X—
Qv) and +BH AH'B’, and the restricted B(Q X- Qy), which are estimated by solving
the restricted nonlinear optimization problem in (4.15). It should be noted that A in
(4.10) and A in (4.14) are not identical because the two are computed from different
restricted optimization procedures. A simple example will serve to clarify this point.
Let A be a 2 x 1 vector, which can be written as:

A A - - d, - d,

@x-Qv)-Q@x—-@r)=}- -|.
dy — dp
di]. . . : :

In (4.10), i is chosen by minimizing one objective function subject to the con-

o 1] [

and

d, >0, (4.17)

d, > 0. (4.18)

d
However, in (4.14), [ - ] is chosen by minimizing another objective function subject

. [b by .
to the constraint ’ , the constraint becomes
b2y by
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and

d; >0, (4.19)

dy +d; > 0. (4.20)

Clearly, restrictions (4.17) and (4.18) are different from restrictions (4.19) and (4.20).
The former restricts d; and d, to be nonnegative, while the latter restricts d; to be
nonnegative but not d,.

In empirical work, a choice of K must be made and generally this should
be an integer greater than or equal to 10. If K is too small, the comparison will
be made based on relatively large intervals in the support. This may blur the true
relation between the two risky prospects. If K is chosen to be a value greater than 10,
say 20, the comparison between the quantiles (in the test for FSD) or the cumulative
quantiles (in the test for SSD) is clearly based on smaller intervals in the support than
those corresponding to the choice of K = 10. It must be noted that the choice of K
will affect the two risky prospects symmetrically in terms of intervals on which the
comparison is made. This will not change the fundamental relation between the two
compared risky prospects. On the other hand, the upper and lower bounds computed
by Kodde and Palm (1986) are given for df from 1 to 40 (see Tables 4.1 and 4.2).
If df is chosen to be beyond this range, the table has to be extended. Finally, it
should be noted that since the sample quantiles from a given individual sample will
be positively correlated, there will be some point at which increasing K will produce

no gain in power.

4.2.4 Moving-Block Bootstrap (MBB) Estimation

In order to construct FSD and SSD test-statistics, consistent estimates of
%HAH’ are required. Given the complexity of A, a resampling procedure that is

computationally convenient and can provides consistent estimates should be used.
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The MBB is one of such procedures. The MBB estimator of the variance-covariance
matrix for (@x — Qy), 2HAH' , must be used for both ¢ and ¢, . The standard
bootstrap randomly resamples with replacement from a given sample of observations,
as many times, N, as necessary. The variance of the statistic of interest is then
estimated using the sample variance of the statistics calculated over the bootstrap
replications. Rather than resampling individual observations, the moving block boot-
strap resamples blocks of observations with replacement from the original data set.
Let {Z}T, be a finite sample of a sequence of stationary ¢ -mixing random vectors.
Let Qx — Qy be the estimator of the true population parameter of interest, Q x — Qy
. Denote the moving blocks as B;,--:,Br_4;1, where b is the size of each block
and B; stands for the block consisting of b consecutive observations starting from
Z;,ie, B; = {Z;,2Z;.\,...,2Z15-1}. For each moving block bootstrap replication,
a Qx, — Qy, can be computed. If the resampling takes place N times, an empirical
sampling distribution of Qx — Qy can be constructed, along with various statistics
associated with the distribution. In particular, the variance-covariance matrix of
Qx — Qy can be computed using the sample variance of Qx, — Qv,, s = 1,2,...,N.

Consistency for the MBB estimation is achieved if the number of observations
in each block, b, approaches infinity with T in such a way that the number of moving
blocks, k = [T'/b], also approaches infinity with T'. In general, larger values for b are
necessary to capture stronger dependence. Another practical concern is the choice
for the number of bootstrap replications, N. According to Efron (1982), and Efron
and Tibshirani (1986), it is quite adequate for N to be in the range from 50 to 200

for estimating of a variance.
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4.3 'Tests under I.I.D. and Association Conditions

4.3.1 Assumptions

If the weak dependence assumption is replaced with the i.i.d. assumption,
two samples may still be statistically dependent, and hence be characterized by a joint
bivariate distribution. This simplification is suitable for certain income distribution
data where the same individuals are sampled at different points in time.

In order to develop the tests, Assumption 1 is replaced with Assumption 3.

Assumption 3 The sample observations from the joint distribution, Fxy(z,y), of
X and Y are i.2.d..

Under Assumptions 2 and 3, the joint asymptotic distribution of quantiles

from a bivariate distribution is given by Lemma 3.

Lemma 3 Under Assumptions 2 and 8, as T — oo,
VT(Qz — Qz) 5 N(0,A), (4.21)

where the elements of A are given by

Fi'(QJ'(PI’)), Qa(?t)) — PPt
Fi(Qi(P:)) fo(Q4(p:))

forj,s =X,Y (j#3s) andi,t=1,2,...,K;

pi(l - P)
£i(Qi(»:)) fi(Qi(p:))

forj=X,Y (j =s), andi,t =1,2,...,K.

Proof. See Siddiqui (1960) and Weiss (1964).0

The elements of A can be consistently estimated using a variety of nonpara-

metric density estimations. [see Appendix for nonparametric estimation].
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4.3.2 Tests for First-Degree and Second-Degree Stochastic
Dominance

The test-statistic for first-degree stochastic dominance under Aisumptions 2

and 3 is given in Corollary 1.

Corollary 1 Under Assumptions 2 and 8 , the variance-covariance matriz of Qx -
Qv is 2HAH', where A is given by Lemma 3. Under Hy : Qx — Qv > 0, the
test-statistic for FSD, cf, is defined as

o = A’[—;—,HKH']"‘A. (4.22)

The decision rules based on the statistic c? are the same as those for the statistic D

tn Lemma 2.

Proof. Straightforward from Theorem 3 and Lemma 3. O
The test-statistic for second-degree stochastic dominance under Assump-

tions 2 and 3 is given in Corollary 2.

Corollary 2 Under Assumptions 1 and 2, the variance-covariance malriz of B(Q xX—
Qy) is  BHAH'B, where A is given by Lemma 3. Under Hy: B(Qx — Qy) = 0,the
statistic for SSD, c3, is defined as

¢ = (BA)’[-;—,BHKH'B']“(BA). (4.23)

The decision rules based on the statistic c3 are the same as those for the statistic D

in Lemma 2.

Proof. Straightforward from Theorem 4 and Lemma 3. O

In summary, the test-statistics c? and c are used in the FSD and SSD tests,

respectively. These are distributed as a weighted sum of x? random variables.




42

4.4 Tests under I.I.D. and Independence Condi-

tions

4.4.1 Assumptions

When the two samples are drawn independently, Lemma 3 can be further
simplified. This simplification is suitable for certain income distribution data; namely,
samples that are independently selected, each sample having data that are i.i.d..

In order to develop the tests, Assumption 2 is replaced with Assumption 4.

Assumption 4 The sample observations for each random variable are i.i.d. and X

and Y are independent.

Under this assumption, only the univariate distribution functions, Fx(z)
and Fy(y), instead of the joint distribution function, F(z,y), are needed. Under
Assumptions 2 and 4, the asymptotic distribution for the quantile function estimates

of each random variable is given in Lemma 4.

Lemma 4 Under Assumptions 2 and 4, as T — oo,

VI(Qz - Qz) 5 N(0,A), (4.24)
where A = [ AOX Ao ] with elements in A;, j = X,Y given by
. Y
pi(1 - p.)
£i(Qi(pi))fi(Qs(m:))

fori=X,Y,andi,t =1,2,...,K.
Proof. See Mosteller (1946), Rao (1965), Wilks (1962), and Beach and Davidson
(1983). ©

It should be noted that s HAH' = (Ax + Ay) where A is as shown in

Lemma 4.
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4.4.2 Tests for First-Degree and Second-Degree Stochastic

Dominance

The test-statistic for first-degree stochastic dominance under Assumptions 2,

and 4 is given in Corollary 3.

Corollary 3 Under Assumptions 2, and 4, the variance-covariance matriz of (Q X -
Qy) ) %HAH’ = L(Ax+Ay), where A is given in Lemma 4. Under Ho: Qx —Qy >
0, the test-statistic for FSD, c, is defined as

¢ = A’[-;,—HKH']“A. (4.25)
The decision rules based on the statistic ¢} are the same as those for the statistic D

in Lemma 2.

Proof. Straightforward from Theorem 3 and Lemma 4. O

The test-statistic for second-degree stochastic dominance under Assump-

tions 2, and 4 is given in Corollary 4.
Corollary 4 Under Assumptions 2, and 4, the variance-covariance matriz of B( QOx-
Qv) is ABHAH'B' = LB(Ax + Ay)B', where A is given in Lemma 4. Under Hy:
B(Qx — Qy) > 0, the test-statistic for SSD, c}, is defined as

& = (BAY[ZBHRH'B|™(BA). (4.26)
The decision rules based on the statistic ¢ are the same as those for the statistic D

in Lemma 2.

Proof. Straightforward from Theorem 4 and Lemma 4. O

In summary, the test-statistics ¢} and c} are used in the FSI* and SSD tests,
respectively, under Assumptions 2, and 4. These are distributed as a weighted sum
of x* random variables. It should be noted that ¢ and c§ are general forms of ¢} and

ck, respectively. Further, ¢, and c; are more general forms of ¢? and cg, respectively.
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4.5 Concluding Remarks

It has been noted that the existing test procedures for stochastic dominance
suffer from many restrictions. Two prominent difficulties of those procedures are that
the dominance relation is not properly specified under the null hypothesis, and that
the test procedures cannot accommodate complex data structures. This chapter pro-
poses new distribution-free tests under very general conditions. The test procedure
can test the dominance relation properly and has desirable asymptotic distribution.
The test-statistics under Assumptions 1 and 2 are ¢, and c;, as shown in Theorems
3 and 4. When the condition of weak dependence are replaced with the i.i.d. con-
dition, and association still remains, two other simplified tests are proposed. The
test-statistics under Assumptions 2 and 3 are ¢? and cj, as demonstrated in Corol-
laries 1 and 2. When the condition of association is replaced with the independence
conditions, two even simpler tests are derived. The test-statistics under Assump-

tions 2 and 4 are ¢} and c}, as given in Corollaries 3 and 4.




45

4.6 Appendix: Nonparametric Density-Quantile
Estimation

Consistent estimates of the variance-covariance matrices of sample quantiles
in Corollaries 1, 2, 3, and 4, can be provided by various nonparametric procedures.
The description given below is based on the method of kernels. Useful descriptions
are also provided by Silverman (1986), Ullah (1988), and Izenman (1992).

Let {z(}Z_, be a sample of observations drawn from a continuous univariate
distribution with probability density function f. Let f' be the kernel estimator of f
with kernel K. and window width (, i.e.,

o= 73 e (222), (.27)

in which w is a reference point and w € [a,b]. * K is a continuous and symmetric
function which satisfies f° K (w)dw = 1 and K, > 0. While various forms of K, are
possible, the Gaussian K is used here because much empirical evidence suggest that
the choice of kernel is not crucial to the estimates obtained. The univariate Gaussian
kernel is given b

1_g-s(23n)

Ke(w—2) = @n)®

(4.28)

More crucial is the choice of the window width (, since this determines the
amount of smoothing undertaken and may affect the consistency of the estimator.

The nonparametric density estimator has desirable asymptotic properties. 4
Using the L, approach, Parzen (1962) shows that, under regularity conditions on K,
the univariate kernel estimator is both asymptotically unbiased and asymptotically

normal. Using the L, approach, Devroye (1983) proves that, under regularity condi-

31t is much more general if w € (—co, +¢c0). We keep the notations consistent throughout. Thus,
w € [a, b] is defined.

Finite-sample properties of nonparametric density are available for special situations [see Fryer
(1978)).
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tions on K¢, the kernel estimator f is a strongly consistent estimator of f, without
any conditions on f.°

It is also possible to integrate the density estimates to get distribution esti-
mates, and to get quantile estimates with proper transformation. ©

The estimated or empirical density, distribution, and quantile functions can
be used to explore the relations among risky prospects. Furthermore, these estimates
can be used in the new test-statistics for FSD and SSD.

The window width can bc (i) selected manually with the individual re-
searcher’s judgement; (ii) estimated by minimizing the mean integrated square error;
or (iii) determined by the cross-validations. The methods for selecting ¢ are given
below.

When the ( is selected marually, the choices are based on subjective judge-
ment. The window width ¢ can also be chosen by minimizing the mean integrated

square error,

MISE(f) = [ B(f(w) - f())dw. (4.29)
When a Gaussian kernel is being used, then the window width obtained from the
above minimization would be

L
Copt = (§)°0T-% = 1.060T"5. (4.30)

In computing, o can be replaced with 6. Alternatively, using a robust measure of
spread, (op = 0.79RT-5, where Ris the interquartile range of the data. The window
width { can also be estimated by either least squares cross-validation (LSCV) or
maximum-likelihood cross-validation (M LCV). LSCYV is to select a  such that the

5See also Devroye and Gyorfi (1985), Chapter 8.

5The asymptotic properties of the density estimator will be maintained for the estimators of the
distribution function as well the quantile function, due to the Mann and Wald (1943) theorem [See
also Rao (1965), p.104]. In practical terms, the empirical distribution estimator, i’(w) = f: f(t)dt,
is & consistent estimator of F(w) [Reiss (1981) and Yang (1885) provide some discussion of the kernel
density estimator of the distribution function]. The empirical quantile estimator, Q(p) = F~!(p), is
also a consistent estimator of Q(p).
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function LSCV(() is minimized. LSCV(() is defined as

Lsov() = [ f2-217! RPN (4.31)

where the leave-one-out density estimate f.,(z,) is constructed from all the data
points except z;. f..(:c.) is defined as
fee(z) = (T = 1) Y LK¢(z: — =), (4.32)
s#t
where I, is an indicator that is one if observations ¢ and s fall in the same category,

zero otherwise. MLCV is to select a ( such that the function M LCV(() is maximized.
MLCV(() is defined as

MLCV(() =T ilog Foi(ze). (4.33)

t=1
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Table 4.1: Upper and Lower Bounds for the Critical Value for Jointly Testing Equality
and Inequality Restrictions

df. a=.25 a=.10 a=.0 a=.02 a=.01 a=.000 a=.001
0.455 1.642 2.706 3.841 5.412 6.635 9.500
2.090 3.808 5.138 6.483 8.273 9.643 12.810
3.475 5.528 7.045 8.524 10.501  11.971 15.357
4.776 7.097 8.761 10.384  12.583  14.045 17.612
6.031 8.574 10.371  12.103 14.325  15.968 19.696
1.257 9.998 11.911  13.742 16.074  17.791 21.666
8.461 11.383 13.401 15.321 17.765  19.540 23.5561
9.648 12.737 14.853  16.856 19.348  21.232 25.370
10.823 14.067 16.274 18.345  20.972  22.879 27.133
11.987 15377 17.670  19.824 22.525  24.488 28.856
11  13.142 16.670 19.045 21.268  24.049  26.056 30.542
12 14.289 17.949 20.410 22.691 25.549  27.616 32.196
13 15430 19.216 21.742 24.096  27.026  29.143 33.823
14 16.566 20.472 23.096 25.484  28.485  30.649 35.425
15 17.696 21.718 24.38¢ 26.856  29.927  32.136 37.005
16 18.824 22956 25.689 28.219  31.353  33.607 38.566
17  19.943 24.186 26.983 29.569  32.766  35.063 40.109
18 21.060 25.409 28.268 30.908  34.167 36.505  41.636
19 22,174 26.625 29.545 32.237  35.556  37.935 43.148
20 23.285 27.835 30.814 33.557 36.935 39.353  44.646
Source: Kodde and Palm (1986).

R R - AL AT
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Table 4.2: Upper and Lower Bounds for the Critical Value for Jointly Testing Equality

and Inequality Restrictions (Continued)

df. a=.25 a=.10 a=.05 a=.025 a=.01 a=.005 a=.001
21 24394 29.040 32.077 34.869 38.304 40.761  46.133
22 25499 30.240 33.333  36.137 39.664 42.185  47.607
23  26.602 31.436 34.583 37.470 41.016 43.547  49.071
24 27.703 32.627 35.827  38.761  42.360  44.927  50.524
25 28.801 33.813 37.066 40.045 43.696 46.299 51.986
26 20.898 34996 38.301 41.324 45.026 47.663  53.403
27 30992 36.176 39.531  42.597 46.349  49.020  54.830
28 32.085 37.352 40.756 43.365 47.667 50 371  56.248
29 33.176 38.524  41.977 45.128 48.978 51.715 57.660
30 34266 39.694 43.194 46.387 50.286 53.054  59.064
31 35.354 40.861 44.408 47.641  51.585  54.386  60.461
32 36.440 42.025 45.618 48.891 52.881  55.713  61.852
33 37.525 43.186 46.825  50.137 54.172  57.035  63.237
34 38.609 44.345 48.029 51.379  55.459 58352  64.616
35 39.691 45.501 49.229 52.618 56.742 59.665  65.989
36 40.773 46.655 50.427 53.853  58.020 60.973  67.357
37 41853 47.808 51.622 55.085 59.295 62.276 68.720
38 42,932 48.957 52.814 56.313 60.566 63.576  70.078
39 44.010 50.1056 54.003 57.539 61.833 64.871  T1.432
40 45.087 51.251 55.190 58.762  63.097 66.163  72.780

Source: Kodde and Palm (1986).
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Chapter 5

Finite Sample Properties of the
Proposed Tests

5.1 Introduction

All of the test-statistics described in Chapter 4 are based on asymptotic the-
ory. It is also important to investigate whether the asymptotic distributions of these
test-statistics represent a good approximations to the true finite sample distributions
for sample sizes that are typical from an economic perspective. This chapter inves-
tigates the finite sample properties of the test-statistics for first- and second-degree
stochastic dominance using Monte Carlo simulations. The data are generated from
parametric distribution functions such as the normal and lognormal distributions.
The former represent symmetric types of distribution functions which are used as
close approximations for financial asset returns; and the latter represent the asym-
metric type of distribution function which may be used as a good approximation of
income distributions. The dominance relation between two data generation processes
(DGP’s) are known in advance by specifying the parameters of the DGP's. The
sampling distributions of the test-statistics can be obtained through Monte Carlo

simulations. These distributions provide the information on the performance of the
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test-statistics under the specified conditions.

The Monte Carlo simulations are implemented for the test-statistics ci, ci,
4, and ¢. While ¢} and ¢} are suitable for ..i.d. samples from independent random
variables, c?, and ¢ are appropriate for i.i.d. samples from random variables that are
dependent. The test-statistics, ¢! and ¢}, are given by Corollaries 1 and 2; and the
test-statistics, cJ, and cd, are illustrated in Corollaries 3 and 4. The test-statistics are
distributed as a weighted sum of x? distributions under the null hypotheses. The tests
are similar in construct but have different variance-covariance matrices depending on
the data structures.

The size and power of the test-statistics are good indicators of their pei-
formance. But the test-statistics developed herein have very complex asymptotic
distributions and hence have no statistical tables readily available. Generally, the
empirical size and power can be computed for a test-statistic for a single pair of pa-
rameters from its sampling distribution if one theoretical critical value is chosen for
an appropriate significance level, say 5%.! It should be noted that the test-statistics
developed in Chapter 4 involve the multiple comparision of K pairs of parameters
and a composite null of a special form thereby making problematic the computation
of unique critical values. For this reason, upper and lower bounds for critical values
are used. Thus empirical power must be calculated for the upper (rejection) bound
and empirical size must be calculated for the lower (acceptance) bound. If the precise
critical value, that is in the interval bounded by the lower and upper bounds, were
provided, the precise empirical size might be smaller and the precise empirical power
might be greater. Because the complexity involved in solving the problem, this issue
is left for future research. In this setting, the Monte Carlo simulations are designed
to evaluate:

1. the performance of the test-statistics for various DGP’s; and

!Alternatively, to evaluate the test-statistic for a finite sam;fe, the sampling distribution of the
test-statistic can also be integrated to get an empirical critical value for a certain significance level.
Then this empirical critical value can be compared with the theoretical critical value for the same
significance level,
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2. the effects of misspecification on the test-statistics, in particular, the impact on

a test-statistic when it is applied to mismatched data.

5.2 Data Generating Processes and Experiment

Design

To investigate the finite sample performance of the test-statistics, Monte

Carlo simulations with following characteristics are used:

1. a pair of samples of size T are randomly selected from specific parametric dis-

tribution(s);

2. the dominance test-statistic (for either FSD or SSD) is then computed using

nonlinear optimizztion with a set of constraints imposed on the parameters;

3. this process is repeated N times and the test-statistics are computed each time,

thereby yielding a sampling distribution; and

4, the basic statistics such as the mean, standard deviation, minimum, and maxi-
mum, and the empirical size and power of the test-statistics are computed from

the sampling distribution.
Several factors must be selected for each simulation:

1. Normal and Lognormail Distributions
The normal and lognormal distribution functions are used. Clearly, to evalu-
ate the finite sample properties of the proposed test-statistics, the DGP’s must
be specified for the random variables X and Y. These distribution functions
are chosen for relevance and feasibility. Relevance requires that the paramet-
ric distributions can represent the key features of distributions tested. Normal
distributions are used to approximate financial asset returns; lognormal distri-

butions are are probably the simplest models for income distribution. Feasibility
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demands that the parameters of the parametric distribution should reveal the
true dominance relation between two random variables. Both normal and log-
normal distributions can be characterized by their mean and variance, and hence

are suitable candidate distributions.

. Parameters—means, variances, and covariances

The parameters of the parametric functions are chosen such that a dominance
relation between two DGP’s is well specified. A normally distributed random
variable, say X, with mean px and variance % is denoted by X ~ N(ux,0%).
A random sample can be generated using the normal random variable generator
with specific px and ¢%. Let random variable, say X', be a specific transfor-
mation of X, like X’ = eX. X’ is lognormally distributed with mean etx+ox/2
and variance e?#X+7% ("% — 1), i.e., X' = eX ~ LN[e#xt7%/2 e2hx+7% (%% —1)].
To generate a random sample from the lognormally distributed random variable
X', a randem sample from the normally distributed random variable X is first
generated, and then transformed into a random sample of the corresponding
lognormally distributed random variable X’. It is important to note that px
and o% affect both the mean and variance of X’ and care should be taken in
selecting uy and 0%. When X and Y are associated and assumed to be dis-
tributed jointly, the covariance, oxy, must also be specified in addition to the

mean and variance of each marginal distribution.

To apply the test for FSD, two cases are considered: When gy > py and
ox = oy, X dominates Y in the first-degree. When px < py and ox = oy,
X does not dominate Y in the first-degree. To apply the test for SSD, again
two cases are considered: When gy > py and oy < oy, X dominates Y in the
second-degree. When px < py and ox > oy, X does not dominate Y in the

second-degree.

. Sample size (T')

The sample size is directly related the issue of finite sample properties of test-




54

statistics. For this purpose, Monte Carlo simulations for samples of size 400
are conducted, because this size approaches the sample size in the empirical
application in Chapter 5. Of course, 400 is much smaller than the usual sample

size that income distribution data have.

. Number of point estimates on a quantile function (K)

The issue of optimal spacing of order statistics has been the subject of much
research [see, for example, David (1981)]. Given the optimal spacing of order
statistics, the central tendency and dispersion can be uniquely and efficiently
determined. From this literature, spacing into twenty order statistics at most
is characteristically recommended. For the simulations, the number of point

estimates is therefore chosen to be 20.

. Number of replications (N)

In general, the choice of N is ad hoc depending on the criteria of the experiment.
Davidson and MacKinnon (1993) suggest that the number of replications in the
Monte Carlo simulation be 1000, 2000, 5000, and 10000. They also say that it
may be as small as 50 if estimation is very time-consuming and accurate results
are not needed. N in our simulation is chosen to be 1000. The simulation
reported here is extremely time-consuming because each replication requires
standard iterative nonlinear estimation. In general, 1000 replications take an
IBM compatible 486 computer (33MHz and 50 MHz) more than 24 hours to

complete.

. Size of the test (a)

The size of the test is denoted a. To evaluate the empirical size of the test,
the empirical distribution of the test-statistic should be generated. From this
empirical distribution, the empirical size of the test can be computed usirng the
theoretical critical value that is related to a. In this paper, a is set equal to

0.05. If the number of the point estimates on a quantile function is 20, at
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5% significance level, the lower- and upper-bounds of the critical value for the

tes-statistics are 2.706 and 30.814, respectively.

Two types of simulations are implemented. The first type of simulations is
for ¢} and ¢} with the DGP’s which have i.i.d. samples from independent random vari-
ables X and Y. The second type of simulations is for ¢? and ¢4 with the DGP’s which
have 1.4.d samples from dependent random variables X and Y. The size and power of
the tests are evaluated empirically for various DGP’s. In addition, the experiments

are conducted for the misspecification of c? and ¢} as ¢} and ¢}, respectively.

5.3 Simulation Evidence

In the following, the simulation results for ¢} and c} are reported first. Among
thirty-six experiments, the first 18 experiments for FSD and SSD based on the normal
are reported in Tables 5.1 and 5.2. The remaining 18 experiments for FSD and SSD
based on the lognormal distributions are reportcd later.

In Table 5.1, the Monte Carlo simulation results for FSD are reported. The
first five DGP’s (see the first five rows) for X and Y satisfy the FSD relation. Cases
6-9 do not satisfy the inequality condition specified under the null hypothesis. Thus,
cases 1-9 represent a spectrum of cases from FSD to non-FSD. The mean of the
test-statistic ¢} changes from 0 to 735.001. The sampling distributions of these test-
statistics are of our primary concern. When the DGP’s follow the FSD relation,
such as cases 1-4, the empirical probability of accepting the null hypothesis ranges
from 1.00 to 0.982 if the critical vclue at tue 5 % significance level is chosen based
on the asymptotic distribution. In case five where the two DGP’s are identical,
sampling errors blur the relation so that the empirical probability of accepting the
null hypothesis is 0.817 at the 5 % significance level. In Cases 6-9, there is no FSD. If
the lower-bound of critical values is used, there is no evidence that the null hypothesis

of FSD should be accepted in cases 7-9. The empirical power for cases 7-9 ranges
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from .94 to 1 except for case 6 where the two DGP’s are too close for the test to have
any power. For each case, the sampling distribution of the test-statistic is graphed.
These are presented in Figures 5.1-5.9.

Table 5.2 presents the results of the Monte Carlo simulation for SSD. The
first five DGP’s (see the first five rows) for X and Y satisfy the FSD relation. Cases
6-9 do not satisfy the inequality condition specified under the null hypothesis. Thus,
cases 1-9 represent a spectrum of cases from SSD to non-SSD. The mean of the test-
statistic ¢ changes from 0 to 234.676. When the DGF’s have the SSD relation as in
cases 1-4, the empirical probability of acceptii.g the null hypothesis is always equal
to 1.00 if the critical value at the 5 % significance level is used. In case five where
the two DGF’s are identical, sampling errors blur the relation so that the empirical
probability of accepting the null hypothesis is 0.914 at the 5 % significance level.
Cases 6-9 are for the DGP’s that do not satisfy the condition of SSD. When the
lower-bound of critical values is used, there is no evidence for the null hypothesis of
SSD to be accepted in cases 6-9. The empirical powe: for cases 7-9 are ranging from
0.699 to 1 except for case 6 where the two DGP’s are too close to allow the test has
any power. For each case, the sampling distribution of the test-staiistic is graphed.
These are presented in Figures 5.10-5.18.

The remaining eighteen experiments for FSD and SSD are based on the log-
normal distributions. For these experiments, eight lognormally distributed random
variables are generated. The random variables used are numbered with bold type
numbers from 1 to 8, and their parametric specifications are provided in Table 5.3.
The first column of Table 5.3 lists the identification numbers of the 8 random vari-
ables. The second and third columns give the specifications of mean and variance of
the corresponding normally distributed random variables. The dominance relations
among the lognormally distributed random variables are obvious, i.e., the variables
with smaller identification numbers dominate ones with greater identification num-
bers.

Among eighteen experiments conducted for the lognormally distributed ran-
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dom variables, 1-8, the first nine experiments are for tests for FSD and the other nine
experiments are used to evaluate the tests for SSD. A summary of the experimental
results are reported in Tables 5.4 and 5.5.

In the upper part of Table 5.4, the first five cases where X and Y satisfy the
FSD relation are listed in iae first five rows. Cases 6-9 (see rows 6-9 in the upper
part of the table) deviate from the FSD relation by construction. In the lower part of
Table 5.4, the mean, standard error, minimum, and maximum of the test-statistics,
c}, are given in columns 4-7, respectively. The percentages of the test-statistics that
are less than 2.706 and greater than 30.814 are listed in columns 8 and 9, respectively.
The mean of the test-statistics, ¢}, changes from 2.222 in row one to 210.314 in row
nine. When the DGP’s have the FSD relation, such as in cases 1-4, the empirical
probability for the test-statistics less than 2.706 range from 0.828 to 0.871. In case
5 where two DGP’s are identical, sampling errors lead to 66.4% of the test-statistics
being less than the lower-bound 2.706. Cases 6-9 are the cases where there is no
FSD. If the lower bound is used, there is little probability that the test-statistics are
less than the lower-bound 2.706.

In Table 5.5, the first five cases where X and Y satisfy the SSD relation are
given in the first five rows in the upper part of the table. Cases 6-9 (see rows 6-9
in the upper part of the table) deviate from the SSD relation by construction. In
the lower part of Table 5.5, the mean, standard error, minimum, and maximum of
the test-statistics, c}, are given in columns 4-7, respeciively. The percentages of the
test-statistics that are less than 2.706 and greater than 30.814 are listed in columns
8 and 9, respectively. The mean of the test-statistics, c, changes from 0.329 in row
one to 205.408 in row nine. When the DGP’s allow the SSD, such as in cases 1-4,
the empirical probability for the test-statistics less than 2.706 ranges from 0.979 to
0.963. In case 5 where two DGP’s are identical, sampling errors lead to §1.4% of
the test-statistics being less than the lower-bound 2.706. Cases 6-9 are the cases
where there is no SSD. If the lower bound is used, there is a low probability that the

test-statistics are less than the lower-bound 2.7086.
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To see the size and power of the tests clearly, let the empirical and theoretical
size be a® and a, respectively. While a is selected, a® and 3° are computed from the
sampling distributions of the test-statistics. Note that the asymptotic (i stribution
of the test-statistics is a weighted sum of x? distributions and hence is not easy to
compute. However, the lower- and upper-bounds of the critical value, ¢ and g, are
tabulated for a given a, as given in the previous chapter. If the test-statistics are
less than g, then the null hypothesis of a dominance relation should not be rejected
at the corresponding significance level. If the test-statistics are greater than g, then
the null hypothesis of a dominance relation should be rejected at the corresponding
significance level. Thus, the empirical size and power should be computed using g
and g,, respectively. The lower (higher) the value of a°, the more (less) reliable the
test will be. The higher (lower) the value of f°, the greater (smaller) power the test
will have.

Table 5.6 reports a® and 8¢ for Table 5.1 that summarizes the FSD experi-
ment results for various normal distributions. It is clear that the empirical size a®’s
shown in column 4 are smaller than the theoretical size a in cases 1-4, Case 5 has
of that is greater than a because the two DGP’s are identical. While the power of
the test, ¢, for cases 7-9, are very high, the test has no power in case 6 because the
two DGP’s do not differ sufficiently enough. Table 5.7 illustrates a® and 3° for Ta-
ble 5.2 that summarizes the SSD experiment results for various normal distributions.
In Table 5.7, the empirical size a®’s are smaller than the theoretical size a in cases
1-4. In case 5, af is only slightly greater than a when the two DGP’s are identical.
While the power of the test, 3%, for cases 8-9, are very high, the test has lower power
in case 5, and no power in case 6 because two DGP’s being compared do not differ
sufficiently enough. Similar patterns can be observed from Tables 5.8 and 5.9 from
the FSD and SSD experiments of lognormal distributions. In general, the empirical
size of the FSD or SSD test for lognormal distributions is slightly higher than that
for normal distributions. When the two DGP’s being compared are very close, the

power of the FSD or SSD test for lognormal distributions is slightly lower than that
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for normal distributions.

The above are the summaries of the simulations for the test-statistics ¢ and
¢, using both normal and lognorinal distributions. In addition, the simulation results
for ¢# and ¢J are given in comparison to the simulation results of misspecification of ¢?
end ¢ as ¢ and ¢}, respectively. The comparison is made using the bivariate normal
distributions. For the DGP’s, data are generated under the assumption of nonzero
covariance (assume oxy = 0.7). One set of simulations takes the nonzero covariance
into consideration (oxy # 0). Another set of simulations imposes a zero covariance
restriction (0xy = 0) on estim..tion and inference, this represents a misspecification.
The simulation results for FSD and SSD are reported in Tables 5.10, and 5.11, respec-
tively. The top parts of the tables list the simulation results for the correctly specified
test-statistics (cd and c?) which take the nonzero oxy into consideration; the lower
parts of the tables show the simulation results for the misspecified iest-statistics (c}
and c}) which impose the zero restriction on oxy. As expected for the same DGP’s,
the average values of the misspecified test-statistics are generally lower than those of
the correctly specified test-statistics for both FSD and SSD. This can be explained
with an example. When random variables X and Y can be characterized by a bivari-
ate joint distribution and have a positive covariance, oxy > 0, a correctly specified
test-statistic for the difference between the two means, say px — py = 0, should use
the sample counterpart of 0% —20yy + 0% . One of possible misspecified test-statistics
for the same relationship under identical conditions may use the sample counterpart
of 0% + o}, thereby imposing the restriction oxy = 0. Thus, the misspecified test of

similar nature uses a greater sample variance and hence has a smaller value.

5.4 Concluding Remarks

The empirical size and power are computed for various cases in Tables 5.1,
5.2, 5.4, and 5.5. The empirical size and power are listed in Tables 5.6, 5.7, 5.8, and
5.9. In Table 5.6, cases 1-4 have empirical size smaller than the theoretical size; and




60

cases 7-9 have empirical power close or equal to one. For marginal cases, such as
cases 5 and 6, while the empirical size of the test for case 5 is higher, the test has no
power for case 6. Table 5.7 has a similar pattern. When the tests are applied to the
lognormal distributions (see Tables 5.8, and 5.9), a similar pattern is observed, except
that the empirical size is generally greater than its theoretical counterpart for FSD.
Thus, it can be concluded that the proposed tests for FSD and SSD are remarkably
effective when the DGP’s are significantly different. However, if the DGP’s only
differ marginally, the test performs reasonably well when the DGP’s conform with
the specification of the null hypothesis; it performs poorly when the DGP’s do not
conform with the specification of the null hypothesis. When the tests are not properly
specified for the data structures (such as using c} and ¢} for ¢ and cJ, respectively),

the misspecification will cause inaccurate statistics to be computed.




Table 5.1: Simulation Results of Test for XD,Y: Normal Distribution

(1) (2) (3)

X Y Relation

(1) | N(2.0,1.0) | N(0.0,1.0) | XD,Y

(2) | N(1.0,1.0) | N(0.0,1.0) | XD,Y

(3) | N(0.5,1.0) | N(0.0,1.0) | XD,¥

(4) | N(0.1,1.0) | N(0.0,1.0) | XD,Y

(5) | N(0.0,1.0) | N(0.0,1.0) | XD,Y

(6) | N(0.0,1.0) | N(0.1,1.0) | XP,Y

(7) | N(0.0,1.0) | N(0.5,1.0) | XP,Y

(8) [ ¥(0.0,1.0) | N(1.0,1.0) | XP,Y

(9) | N(0.0,1.0) | N(2.0,1.0) | XD,Y
(4) (5) (6) (7) (8) (9)

Mean | Std. Error | Minimum | Maximum | % < 2.706 | % > 30.814

(1) 0.000 0.000 0.000 0.000 1.000 0.000
(2) 0.000 0.000 0.000 0.000 1.000 0.000
(3) 0.000 0.000 0.000 0.007 1.000 0.000
(4) 0.294 0.653 0.000 4,547 0.982 0.000
(5) 1.496 1.886 0.000 14.626 0.817 0.000
(6) 5.080 4.022 0.000 23.259 0.320 0.000
(7) | 50.275 13.475 17.604 107.330 0.000 0.940
(8) | 188.402 28.252 112.850 291.170 0.000 1.000
(9) 735.001 65.506 552.780 980.920 0.000 1.000
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Table 5.2: Simulation Results of Test for XD,Y: Normal Distribution

) B ®

X Y Relation

(1) | N(0.5,05) | N(0.0,2.0) | XD,Y

(2) | N(0.5,1.0) | N(0.0,2.0) | XD,Y

(3) [ ¥(0.5,1.5) | N(0.0,2.0) | XD,Y

(4) | N(0.5,1.8) | N(0.0,2.0) | XD,V

(5) | N(0.0,2.0) | N(0.0,2.0) | XD,Y

(6) | N(0.0,2.0) | N(0.5,18) | XP;Y

(7) | N(0.0,2.0) | N(0.5,1.5) | XP.Y

(8) | N(0.0,2.0) | N(0.5,1.0) | XP,Y

(9) | N(0.0,2.0) | N(0.5,0.5) | XP,Y
(4) (5) (6) (M (8) (9)

Mean | Std. Dev. | Minimum | Maximum | % < 2.706 { % > 30.814

(1) 0.000 0.000 0.000 0.000 1.000 0.000
(2) 0.000 0.000 0.000 0.001 1.000 0.000
(3) 0.000 0.000 0.000 0.000 1.000 0.000
(4) 0.000 0.000 0.000 0.010 1.000 0.000
(5) ¢.725 1.332 0.000 11.697 0.914 0.000
(6) { 18.288 8.018 2.608 58.603 0.000 0.074
(7) | 37.585 11.706 10.574 87.340 0.000 0.699
(8) | 108.786 19.885 57.655 193.760 0.000 1.000
(9) | 234.676 34.506 135.890 364.310 0.000 1.000
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Table 5.3: Definitions of Ten Lognormally Distributed Random Variables

Random Variable No. | g? | ertr /2| gmtet (g7 1)
1 0.900 { 0.200 | 2.718 1.636
2 0.800 | 0.300 | 2.586 2.339
3 0.700 | 0.400 | 2.460 2.975
4 0.600 | 0.500 | 2.340 3.551
5 0.500 | 0.600 | 2.226 4.072
6 0.400 | 0.700 | 2.117 4.543
7 0.300 | 0.800 | 2.014 4.970
8 0.200 | 0.900 | 1.916 5.356

63




Table 5.4: Simulation Results of Test for XD,Y: Lognormal Distribution

M@ @

X | Y | Relation

(1) 1] 8} 1D, 8

@2 7| 2D, 7

(3)| 3| 6| 3D, 6

@ 4| 5| 4D 5

(5| 5| 5| 5D, 5

6| 5] 4| 5P 4

M 6| 3| op 3

@8] 7| 2| ™2

@ 8| 1| 8h1
(4) (5) (6) (7) (8) (9)

Mean | Std. Dev. | Minimum | Maximum | % < 2.706 | % > 30.814

(1) 2.226 6.296 0.000 120.160 0.828 0.007
(2) 2.320 9.811 0.000 148.460 0.804 0.016
(3) 1.833 9.035 0.000 174.450 0.908 0.014
(4) 1.887 6.647 0.000 98.088 0.871 0.015
_(5) 3.697 10.743 0.000 217.420 0.664 0.014
(6) 8.005 6.823 0.309 75.607 0.107 0.012
(7) | 35.438 9.604 5.198 86.127 0.000 0.673
(8) | 95.191 17.811 40.833 195.130 0.000 1.000
(9) | 210.314 | 32.619 124.250 325.260 0.000 1.000
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Table 5.5: Simulation Results of Test for XD,Y: Lognormal Distribution

Mie| @

X | Y [ Relation

M1 8] 1D 8

2 2] 7| 2D, 7

(3) 3| 6| 3D, 6

(4 4| 5| 4D, &

5)| 5] 5| 8D, 5

(6)| 6| 4| 5P, 4

(M| 7] 3] 6,3

(8)| 8| 2| 7h, 2

(9)| 9| 1| 8P, 1

(4) (5) (6) (M (8) (9)
Mean | Std. Dev. | Minimum | Maximum | % < 2.706 | % > 30.814

(1) 0.329 2.682 0.000 35.916 0.979 0.002
(2) 0.340 2.697 0.000 36.578 0.978 0.002
(3) ] 0.496 3.906 0.000 63.990 0.976 0.004
(4) | 0.570 3.273 0.000 55.516 0.963 0.003
(5) | 2.008 5.221 0.000 79.269 0.814 0.008
(6) | 6.272 8.229 0.007 172.440 0.217 0.009
(7) | 32.397 9.636 9.355 90.429 0.000 0.529
(8) | 90.949 16.464 46.029 159.770 0.000 1.000
(9) | 205.408 32.375 119.140 307.600 0.000 1.000
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Table 5.6:

Empirical Size and Power of Test for X D,Y: Normal Distribution

M @ G @[ ®
X Y Relation | af B
(1) | N(2.0,1.0) | N(0.0,1.0) [ XD,Y |0.000| —
(2) | N(1.0,1.0) | N(0.0,1.0) | XD,Y [0.000] —
(3) | N(0.5,1.0) | N(0.0,1.0) | XD,Y [0.000 | —
(4) | N(0.1,1.0) | N(0.0,1.0) | XD,Y |0.018| —
(5) | N(0.0,1.0) | N(0.0,1.0) | XD,Y [0.183| —
(6) | N(0.0,1.0) | N(0.1,1.0) | XD,Y — 10.000
(7) | N(0.0,1.0) | N(0.5,1.0) | XP\Y — [0.940
(8) | N(0.0,1.0) | N(1.0,1.0) | XY — [ 1.000
(9) { N(0.0,1.0) | N(2.0,1.0) | XP\Y — | 1.000
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Table 5.7:

Empirical Size and Power of Test for X D,Y: Normal Distribution

(1) (2) 3) (4) | (5)

X Y Relation | a° e
(1) | N(0.5,0.5) | N(0.0.2.0) | XD;Y [0.000]| —
(2) { N(0.5,1.0) | N(0.0,2.0) | XD,Y |[0.000| —
(3) | N(0.5,1.5) | N(0.0,2.0) | XD,Y |0.000 | —
(4) | N(0.5,1.8) | N(0.0,2.0) | XD,Y |0.000 —
(5) | N(0.0,2.0) | N(0.0,2.C) | XD,Y |0.086 | —
(6) { N(0.0,2.0) | N(0.5,1.8) | XP,Y | — ]0.074
(7) | N(0.0,2.0) { N(0.5,1.5) | XP.Y | — |0.699
(8) | N(0.0,2.0) | N(0.5,1.0) | XP.Y | — | 1.000
(9) | N(0.0,2.0) | N(0.5,0.5) | XY | — | 1.000
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Table 5.8: Empirical Size and Power of Test for X D,Y: Lognormal Distribution

@] ® @ [0
X | Y | Relation | of B
(){ 1| 8| 1D, 8 (0172 | —
(2) 2{ 7| 2D, 7 {0106 | —
3)| 3| 6 3D, 6 [0.092| —
@1 4] 5| 4D, 5 (0120 —
) 5| 8| 5D, 5 |0336| —
6)| 5| 4| 5P, 4 | — |0.012
M6 3| 6P, 3| — |0673
@®!' 7| 2| 7Th2 | — [1.000
@1 8| 1] 8p, 1| — |1.000
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Table 5.9: Empirical Size and Power of Test for X D;Y: Lognormal Distribution

M@ 3) 4) | (5

X | Y | Relation | a° Be
(1){ 1| 8| 1D, 8 |0.021| —
(2)| 2| 7| 2D, 7 [0.022| —
3)] 3| 6| 3D, 6 |0.024| —
(4)| 4| 5| 4D, 5 }0.037| —
(5)| 8| 5| 5D;5 [0.186 | —
6)| 5| 4| 5P, 4 | — |0.009
()} 6} 3| 6p,3 | — [0.529
@8)| 7{ 2| 7h,2 | — |1.000
9| 8| 1| 8p,1 — | 1.000

Table 5.10: FSD Simulati

on Results for Bivariate Normal Distributions
¢ for Gxy # 0 when oxy = 0.7

Relation Mean Std. Dev. % <2706 % > 30.814
N(2.0,1.0°) D, N(0.0,1.0%) 0.0002 0.0067 1.0000 0.0000
N(1.0,1.0°) D, N(0.0,1.0%) 0.4056 7.2975 0.9970 0.0030
N(0.5,1.02) D N(0.0,1.02) 1.1017 6.3916 0.9540 0.0160
N(0.0,1.0?) P, N(0.5,1.07) || 121.7563  21.6127 __ 0.0000 1.0000
N(0.0,1.0°) P, N(1.0,1.0%) || 478.8015  56.5744 0.0000 1.0000
N(0.0,1.0°) P, N(2.0,1.0%) |[ 1878.7408 177.6798 0.0000 1.0000

c) for Gxy =0 when oxy = 0.7

Relation Mean Std. Dev. % <2706 % > 30.814
N(2.0,1.0%) D, N(0.0,1.0%) 0.0000 0.0000 1.0000 0.0000
N(1.0,1.0°) D, N(0.0,1.0%) 0.0000 0.0000 1.0000 0.0000
N(0.5,1.0%) D, N(0.0,1.0%) 0.0000 0.0000 1.0000 0.0000
N(0.0,1.0°) P, N(0.5,1.0%) 49.6783 7.5864 0.0000 0.9970
N(0.0,1.0°) P, N(1.0,1.0%) || 187.3682 18.5791 0.0000 1.0000
N(0.0,1.0%) P, N(2.0,1.0%) || 735.6198 53.2142 0.0000 1.0000




Table 5.11: SSD Simulatj

on_Results for Bivariate Normal Distributions
0‘2' for xy # 0 when oxy = 0.7
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Relation Mean Std. Dev. % <2.706 % > 30.814
N(2.0,1.0%) D, N(0.0,1.0%) 0.0000 0.0000 1.0000 0.0000
N(1.0,1.0%) D, N(0.0,1.0%) 0.3741  11.8288 0.9990 0.0010
N(0.5,1.0%) D, N(0.0,1.0%) 0.0176 0.5578 0.9990 0.0000
N(0.0,1.0%) P, N(0.5,1.0%) || 99.1427  16.7883 0.0000 1.0000
N(0.0,1.0%) P, N(1.0,1.0?) | 389.9762  37.6839 0.0000 1.0000
N(0.0,1.0%) P, N(2.0,1.0%) [ 1558.7752  114.4085 0.0000 1.0000

¢, for xy =0 when oxy = 0.7

Relation Mean Std. Dev. % < 2.706 % > 30.814
N(2.0, 1.02) D, N(0.0,1.02) 0.0000 0.0000 1.0000 0.0000
N(1.0,1.0%) D, N(0.0,1.07) || 0.0000 __ 0.0000 __1.0000 0.0000
N(0.5,1.0°) D, N(0.0,1.07) || 0.0000 __0.0000 __ 1.0000 0.0000
N(00,1.0%) P, N(0.5,107) | 45.4145 __ 7.8072 __ 0.0000 0.9820
N(0.0,1.0%) P, N(1.0,1.07) | 179.8408 _ 18.0693 __ 0.0000 1.0000
N(0.0,1.0%) D, N(2.0,1.0°) | 715.2807 _ 51.3608 ___0.0000 1.0000
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Figure 5.1: The empirical distribution of test-statistics when the null hypothesis is
XD,Y,and X ~ N(2.0,10)and Y ~ N(0.0,1.0)
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Figure 5.2: The empirical distribu.'on of test-statistics when the null hypothesis is
XDit,.. "X ~ N(10,1.0)and Y ~ N(0.0,1.0)
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Figure 5.3: The empirical distribution of test-statistics when the null hypothesis is
XD\Y,and X ~ N(0.5,1.0)and Y ~ N(0.0,1.0)
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Figure 5.4: The empirical distribution of test-statistics when the null hypothesis is
XD,Y,and X ~ N(0.1,1.0)and Y ~ N(0.0,1.0)
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Figure 5.5: The empirical distribution of test-statistics when the null hypothesis is
XD,Y,and X ~ N(0.0,1.0)and Y ~ N(0.0,1.0)
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Figure 5.6: The empirical distribution of test-statistics when the null hypothesis is
XD,Y,and X ~ N(0.0,1.0) and Y ~ N(0.1,1.0)
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Figure 5.7: The empirical distribution of test-statistics when the null hypothesis is
XD,Y,and X ~ N(0.0,1.0)and Y ~ N(0.5,1.0)
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Figure 5.8: The empirical distribution of test-statistics when the null hypothesis is
XD,Y,and X ~ N(0.0,1.0)and Y ~ N(1.0,1.0)
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Figure 5.9: The empirical distribution of test-statistics when the null hypothesis is
XD,Y,and X ~ N(0.0,1.0) and Y ~ N(2.0,1.0)
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Figure 5.10: The empirical distribution of test-statistics when the null hypothesis is
XD,Y,and X ~ N(0.5,0.5) and Y ~ N(0.0,2.0)
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Figure 5.11: The empirical distribution of test-statistics when the null hypothesis is
XD,;Y,and X ~ N(0.5,1.0)and Y ~ N(0.0,2.0)

Empirica! Distribution Function of Test Statistics

T T T T T d T Y T Y T T T | E—

x 104
3.6

1.6 2.0 24 28 3.2

12

Empiricc! Distribution Function
0.8

LAAI_‘I 1 i (l A I S | I i 1 " I

0.0002 0.0004 0.0006 0.0008 0.0010 0.0012 0.0014 0.0016 0.0018
Test Statistics

0.0 0.4




82

Figure 5.12: The empirical distribution of test-statistics when the null hypothesis is
XD,Y,and X ~ N(0.5,15)and Y ~ N(0.0,2.0)
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Figure 5.13: The empirical distribution of test-statistics when the null hypothesis is
XD,Y,and X ~ N(0.5,1.8)and Y ~ N(0.0,2.0)
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Figure 5.14: The empirical distribution of test-statistics when the null hypothesis is
XD,Y,and X ~ N(0.0,2.0) and Y ~ N(0.0,2.0)
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Figure 5.15: The empirical distribution of test-statistics when the null hypothesis is

XD,Y,and X ~ N(0.0,20) and Y ~ N(0.5,1.8)
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Figure 5.16: The empirical distribution of test-statistics when the null hypothesis is
XD,Y,and X ~ N(0.0,20)and Y ~ N(0.5,1.5)
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Figure 5.17: The empirical distribution of test-statistics when the null hypothesis is
XD,Y,and X ~ N(0.0,2.0) and Y ~ N(0.5,1.0)
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Figure 5.18: The empirical distribution of test-statistics when the null hypothesis is
XD,Y,and X ~ N(0.0,20)and Y ~ N(0.5,0.5)
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Figure 5.19: The empirical distribution of test-statistics when the null hypothesis is
1D,8
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Figure 5.20: The empirical distribution of test-statistics when the null hypothesis is
2D\7
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Figure 5.21: The empirical distribution of test-statistics when the null hypothesis is
3D,6
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Figure 5.22: The empirical distribution of test-statistics when the null hypothesis is
4D,5
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Figure 5.23: The empirical distribution of test-statistics when the null hypothesis is
5D,5
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Figure 5.24: The empirical distribution of test-statistics when the null hypothesis is
5D,4
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Figure 5.25: The empirical distribution of test-statistics when the null hypothesis is
6D,3
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Figure 5.26: The empyirical distribution of test-statistics when the null hypothesis is
7D,2
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Figure 5.27:
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Figure 5.28: The empirical distribution of test-statistics when the null hypothesis is
1D,8
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Figure 5.29: The empirical distribution of test-statistics when the null hypothesis is
2D,7
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Figure 5.30: The empirical distribution of test-statistics when the null hypothesis is

3D,6
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Figure 5.31: The empirical distribution of test-statistics when the null hypothesis is

4D,5
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Figure 5.32: The empirical distribution of test-statistics when the null hypothesis is
5D,5
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Figure 5.33: The empirical distribution of test-statistics when the null hypothesis is
5D,4
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Figure 5.34: The empirical distribution of test-statistics when the null hypothesis is
6D,3
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Figure 5.35: The empirical distribution of test statistics when the null hypothesis is
7D,2
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Figure 5.36: The empirical distribution of test-statistics when the null hypothesis is

8D,1
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Chapter 6

Application: Dominance Relations
Among T-bill’s Holding Period

Returns

6.1 Introduction

This chapter illustrates an application of the distribution-free test-statistics
for FSD and SSD, ¢, and c;, given in (4.10) and (4.14). The application is to an
analysis of holding period returns of US Treasury bills. This chapter discusses the
motivation for such an application, analyzes the basic statistical properties of the
returns, implements the dominance tests, and offers concluding remarks.

The existence of term premia in returns for US Treasury bills has long been
recognized as an important feature of the term structure [Roll (1970,1971), and Fama
(1976)). While it appears that term premia increase with terms-to-maturity and are
statistically significant, it also appears that the variance of holding period returns
increases with terms-to-maturity. As a result, it is not clear that investments in long
bills would necessarily be preferred to short bills, even though the former offer higher

returns on average. This chapter evaluates the economic significance of real term
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premia in US Treasury bills across terms-to-maturity using the tests for first- and
second-degree stochastic dominance advanced in Chapter 4.

In finance, dominance criteria can potentially provide an unambiguous rank-
ing of the desirability of two different assets while placing only general restrictions
(i.e. non-satiation and/or risk-aversion) on the preferences of arbitrary investors. Al-
though there are alternative procedures for evaluating the relative attractiveness of
different securities, these typically make restrictive assumptions concerning the dis-
tribution of returns or the nature of investor preferences. Stochastic dominance is
conceptually attractive since it allows comparisons between distributions to be made
in a very general way.

The test-statistics, ¢; and c;, allow time series of individual returns to be
weakly dependent, identically distributed random variables,! and permit dependence
between the random variables whose distributions are to be compared. For the term
premia considered in this chapter, the sample correlations between real holding period
returns of different terms-to-maturity (one- to six-month) are at least 0.7. One general
conclusion from previous research that employs dominance criteria is that first-degree
stochastic dominance does not provide discriminatory information concerning the
relative rankings of assets such as the one- to sixth-month Treasury bills (Levy 1992).
But this conclusion has been derived from procedures that ignors both statistical
testing and the tests that will accommodate the dependence among returns. Thus
the conclusion is invalid in the sense that its quantitative basis relies on methods
which cannot accommodate the data used to reach conclusion. This is not to say
that the conclusion is wrong, of course; it may indeed be right—but for the wrong

Ieasons.

In particular, the sequence of returns is assumed to result from ¢-mixing. Under this assumption,
returns may be conditionally heterogeneous but must be unconditionally homogeneous. The tests
will be valid for standard ARCH processes, for instance.
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6.2 Data and Basic Statistical Properties of Data

The yields of 1-6 month Treasury bills for the period of 1952:02-1987:02
are obtained from J. H. McCulloch.? These are denoted as r(t,t + m), m =1,...,6,
where ¢ represents the time index and m represents the number of months to maturity.
To transform yields to nominal holding period returns, Shiller’s (1990) equation is
used. The nominal holding period return from ¢ to ¢’ on a bond maturing at time
T,t <t <T,is denoted as h(t,t',T). Shiller’s equation depends on the concept of

duration. The duration of a bond of term m at time ¢ is defined as:

Looioi(ti — t)sie(ti=tr(tetm)
21.-): s;e-(ti=t)r(t.t+m) ?

D(m,t) = (6.1)

where s; is the coupon payment or principal payment and r(¢,¢ + m) is the yield to
maturity from time t to ¢ + m. If the bond is a discount bond, then duration equals

the term m, i.e.,
D(m,t) =m. (6.2)

This is because the coupon payments, s;, are all zero and the last principal payment
is one. The nominal holding period return from ¢ to ¢’ on a discount bond maturing
at time T, t < t' <T,is defined as:

D(T - t)r(t,T) = [D(T,t) = Dt )}r(t,T)

'y —
h(t,t',T) = D@ —1) (6.3)
Given that D(m,t) = m, the above definition can be simplified to:
— — 4 !
h(t, t', T) — (T t)T(t, T) (T t )T(t 3 T) . (6.4)

=D
Equation (6.4) is used to transform yields to nominal holding period returns. Since

stochastic dominance tests are to be applied to monthly holding period returns, the

3The data are printed in the Appendix of Shiller (1980).
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difference of t’ —t is always equal to one. The holding period returns are h(t,t+1,¢+
m), (m = 1,...,6). The actual transformation causes a loss of one observation in
1987:02. Thus, the data range is 1952:02-1987:01. For simplicity, h(t,t + 1,t + m),
m=1,...,6, are denoted as h(m),m =1,...,6.

In order for the test procedures to be appropriate, the holding period returns
should be stationary. However, the augmented Dickey-Fuller tests in Table 6.1 sug-
gest that nominal holding period returns have a unit root, a conclusion that is also
supported by Figure 6.1.3 This nonstationarity is due to the nonstationarity of the
rates of inflation. Thus, nominal return series need to be transformed into the real
return series.

To transform nominal holding period returns to real holding period returns,
the time series of the U.S. consumer price index, C PI, is used to compute the time

series of the monthly inflation rates,

_CPI, - CPI,_,
=TT oPLL,

Given the nominal holding period from time ¢ to ¢ + 1 on a Treasury bill with m

(6.5)

terms-to-maturity, k(¢,¢ + 1, + m), and the inflation rate in the corresponding time

period, m4;, the real holding period return from ¢ to ¢ 4 1 is
L (t,t +1,¢ + m) = h(t,t + 1,t + m) ~ 741, (6.6)

for m = 1,2,3,4,5,6. For simplicity, A"(¢,¢t + 1,¢ + m), m = 1,...,6, are denoted
as h"(m), (m = 1,...,6). Real holding period returns are stationary, as verified by
the augmented Dichey-Fuller tests in Table 6.2. The graph for real holding period
returns are contained in Figure 6.2.

The basic statistical properties of the return series are also examined. Ta-

ble 6.6 provides additional summary information regarding each of the time series.

3The augmented Dickey-Fuller test-statistics are computed by estimating the regression (y —
Yi-1) = a0+ a1 +E_','=|(!Il—j ~ Yt—j-1) + €, and testing the null hypothesis Ho: o) = 0 using
the Dickey-Fuller tables. The Akaike information criterion is used to select the number of lags, I, to
correct the autoregression in the time series 3. It turns out that all the test-statistics for properly
chosen I's were less than —2.75, the asymptotic critical value at 10%.
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Figure 6.3 and Table 6.6 indicate that both the mean of real holding period returns
and the variance increase as the term-to-maturity becomes longer. In addition, skew-
ness and kurtosis also increase with term-to-maturity.

One of the important features of the test-statistics advanced in Chapter 4
is that they can properly account for the intricate dependence structure that is a
characteristic of most financial data. Practical implementation of these test-statistics
requires that the variance-covariance matrix of the differences in sample quantiles be
properly estimated; in turn, this requires that the data are in fact weakly depen-
dent, and that some diagnostic information can be used accurately to determine an
acceptable moving block size.

Inspection of the sample autocorrelation functions for each of these series
(see Table 6.3) indicates that real holding period returns have a non-trivial serial cor-
relation structure, and that the extra complexity associated with the MBB variance-
covariance matrix estimate is warranted. However, the autocorrelations die out very
slowly. This suggests that real holding period returns may actually be characterized
by long- rather than short-range dependence, i.e. real holding period returns may be
fractionally integrated (Lo, 1991).

To examine if the time series (the rcal return series of Treasury bills) are
weakly dependent but without a long memory structure, the modified rescaled range
test(R/S) developed by Lo (1991) is applied to the series. This test for long-memory is
robust to short-range dependence. As:ume the time series is denoted as {z,,z,,...,zr}.

The R/S statistic, R/S(l), is defined as:

k k
RIS = 3205 e e - ) - g, e 2|, 61

where Z7 is the mean of {z,,2;,...,27} and G7(l) is defined as:

: I _avi iy !
er(l) = T&(z.—aﬂ) +T§(l—l—;—1

i (2, — &r)(24-2 — iT)] .(6.8)

=41

Under the null hypothesis of no long-memory, the test-statistic has an asymptotiz
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distribution:
1

vT

where the distribution Fy of V is given by

Vi(l) = —5=R/S7(1) > V,

Fy(v) =1+2) (1 — dk??)e~ 27, (6.9)

k=1

Using (6.9), critical values can be computed for any significance level. Lo (1991) pro-
vides a table for commonly used significance levels and corresponding critical values
[Lo (1991), Table II]. When a test is conducted at the 95 percent level of confidence,
the decision rule accepts or rejects according to whether Vi(I) is or is not contained
in the interval [0.809,1.862]; this assigns equal probability to each tail.*

As reported in Table 6.4, starting from [ = 40, the statistic, V7 (I), computed
for the real holding period returns of 1-6 month Treasury bills appears to level-off.?
That implies that there is little evidence that the six series have long-memory and
the application of the more general test-statistics, c; and c;, that can accommodate
weak dependence within each time series, is appropriate. It also suggests that the
tests should use a large value of b.

Table 6.5 contains contemporaneous correlation estimates for the six series.
As mentioned previously, the values of the sample correlation coefficients between two
real holding period returns ranges from 0.7082 to 0.98181. In addition, it appears that
the correlation decreases as the difference in terms-to-maturity increases. When two
return series are compared in terms of FSD and SSD, the level of dependence should
be duly considered. The MBB estimation introduced in Chapter 4 can accommodate
the dependence between the two return series as well as the weak dependence within
each series.

4One practical issue is the choice of 1 in (6.7). While Andrews (1991) does provide a data-
dependent rule for choosing I, that is still based on an asymptotic mean-squared error criterion,
Lo (1991) realises that little is known about how best to pick { in finite samples and reports the
statistics for different choices of I. The test is applied to the six return series of Treasury bills at
various lags. Note that I should equal b — 1.

5That is, these statistics fall in the 95% acceptance region [0.809, 1.862]. Please also note that
the autocorrelation functions indicate that the the dependence dies out at about lag 50.
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6.3 Testing for Stochastic Dominance for T-bill’s

Holding Period Returns

Figures 6.4, 6.5, and 6.6 are graphs of the empirical quantile functions for the
six holding period returns. In general, graphical evidence may provide some useful
information regarding the nature of the dominance relationships between returns. For
example, Figures 6.4, 6.5, and 6.6, suggest that k"(2), A"(3), and A"(4) may dominate
h(1); however, it is important to emphasize that tests for stochastic dominance
must reflect the fact that distribution and quantile function estimates are subject to
sampling errors. Obviously, it is not possible to come to proper statistical conclusions
regarding dominance relationships without performing tests. For the null hypotheses
of first- and second-degree stochastic dominance at a = 0.05, each null hypothesis
will be rejected if the test-statistic is greater than 30.841; it will not be rejected if the
test-statistic is less than 2.706.

Table 6.7 contains the test results for first-degree stochastic dominance re-
lations among selected pairs of the holding period returns. The moving block boot-
strap estimates of the variance-covariance matrix for the difference between two sets
of quantile estimates are computed through 200 replications with various block sizes
b=10, 20, 30, 40, 50, and 60. The test results are then computed using these es-
timated MBB variance-covariance matrices. For each pair, dominance relations in
both directions are tested. For the reported test-statistics, 20 equally spaced quan-
tiles are selected. The first column of Table 6.7 reports dominance relations under
the null hypothesis and test-statistics corresponding to b=10, 20, 30, 40, 50, and 60
are given in columns 2-7, respectively. From Table 6.7, the test-statistics show that
the longer-term returns k7(2), k°(3), k"(4), h"(5), and A"(6) dominate, in the first-
degree, the one-month return (h"(1)), at the 5% level. But as noted earlier, the lower

bound of the critical value is very conservative. Thus, there are strong evidence that

SIf the test-statistic is in between these iwo critical values and there is a need for a clearer decision
rule, the weights in the test-statistic must be calculated.
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the long-term returns indeed dominate the very short-term return. As some kind of
backup of the above conclusion, it might be useful to consider tests in the opposite
direction. From the Table 6.7, it is evident that there is less evidence supporting the
null hypothesis that the short-term-end return dominates the longer-term returns in
the first-degree (the test-statistics are almost always larger), because the statistics
are generally higher than the lower bound of the critical value. But it is not clear
that this evidence is statistically significant since the upper bound of the critical
value is much higher that the calculated statistics.” It could be concluded that the
short-term-end return is clearly dominated by the long-term returns, in the sense of
first-degree stochastic dominance.

Table 6.8 shows the test results of second-degree stochastic dominance re-
lations among the selected pairs of the holding period returns. These test-statistics
reveal that the longer-term returns k7(2), 4"(3), h"(4), h"(5), and k"(6) dominate,
in the second-degree, the one-month return A7(1). All the null hypotheses can safely
be accepted at 5%. Thus, there are strong evidence that longer-term returns indeed
dominate the short-term-end return. When considering the tests in the opposite di-
rection, it is found that there is less numerical evidence showing that the opposite
dominance relations hold, although it is not clear that the evidence is statistically
significant.

It is important to realize that the structure of the data must be accommo-
dated by the assumptions of the test-statistics used to make inferences. For example,
the test-statistics for FSD are applied to test whether one-month returns dominate
long-term returns, as shown in the lower portion of Table 6.7, h"(1)D,,"(2) has very
large values for the calculated test-statistics for various choices of b (viz. 10.726-
13.676) while A"(1)D;h"(6) has very small values for the test-statistics for various
choices of b (viz. 2.054-2.426). This seems to contradict the observations obtained
from the top-left figure of "(2) vs. A"(1) in Figure 6.4, and the bottom-left figure of

k7(6) vs. k(1) in Figure 6.5. The empirical quantile curves are much closer to each

"This implies that the weights must be computed for the precise critical value.
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other for A"(2) vs. h"(1) than for h"(5) vs. h"(1). Similar observations could be made
for the results in the lower portion of’ Table 6.8.

The question is: What cavses such a puzzle? As shown in Chapter 4, the
test-statistics need a correctly specified variance-covariance matrix for Qx—Qy (FSD)
which involves the estimation of ZHAH'. The variance-covariance is a function of
variance-covariance matrices of Q x and @y minus two covariance matrices for Qx and
Qy. It is noted that the dependence between the two returns being compared affects
the variance-covariance estimates of zHAH'. Generally, the higher the dependence,
the smaller the variance-covariance matrix will be. As shown in Table 6.5, for h"(1)
and h7(2), the estimate of the correlation coefficient is 0.96835, while it is only 0.70824
for h™(1) and k7(6). Thus, the variance-covariance matrix of @x — Qy is smaller
for A7(1) and A7(2) than for A"(1) and h"(6). Because of this, the test-statistic for
h'(1)D;h"(2) is higher than that for h"(1)D;h"(6).

The direct interpretation of the above tests is that term premia are not only
statistically, but also economically, significant. In an uncertain world, dominating
and dominated assets do exist. One important distinction between dominance in a
world of certainty and stochastic dominance in a world of uncertainty is that the state
probabilities are irrelevant in the former case while being crucial in the latter. In a
world of certainty, dominated assets cannot exist or investors could make unlimited
arbitrage profits. In a world of uncertainty, stochastically dominated assets may
exist, although not as optimal holdings for any investor. Investors might hold a
stochastically dominated asset as a part of a portfolio with other assets.®

In comparison with Levy and Brooks (1989), it is interesting that our results
suggest that at least some longer bonds dominate the shortest bond, in both first-
and second-degree. Levy and Brooks ignore the sampling errors associated with the
distribution function estimates, yet concluded that no assets are dominated in the
first-degree for their entire sample period. Our results, however, indicate that the

short bond is dominated, when sampling errors are taken into account. This result

8See Ingersoll (1987), p.72-73.
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occurs because the sample quantile (or distribution) functions for the shortest and
the longer holding period returns cross in the tails of the distributions which implies
that no FSD relationship could be found if sampling errors are ignored. However,
when sampling errors are properly taken into account, the crossing empirical quantile
or distribution functions must be evaluated statistically. More generally, the result
that FSD does not appear to be useful in reducing the size of the efficient set [as

suggested in Levy (1992)] can be questioned, if sampling errors are duly considered.

6.4 Alternative Procedures For Ranking Assets

As a useful comparison, several other measures besides the mean and stan-

dard deviation are considered. These are:

1. Sharpe’s index _
Ig= Ei=r) (6.10)

oy

where R; is the average return on the i-th investment, r is the risk-free rate, and
the risk index is ;, the standard deviation of returns [Sharpe (1966)].

2. Treynor’s performance index

I = LR-‘—’L), (6.11)
Bi
where J; is the slope coefficient of the market model [Treynor (1965))].
3. Jensen’s excess return a;, derived fromn the regression
(Ri — ) = a; + Bi(Reme — 7¢) + €it (6.12)

[Jensen (1968)).

It should be noted that Sharpe’s index evaluates the standardized excess

returns of an asset or a portfolio. Treynor’s performance index is similar to Sharpe’s
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index, but §; is used. However, Treynor’s measure assumes risk aversion and various
other assumptions of the capital asset pricing model (CAPM); in particular, riskless
borrowing and lending, and normality. Jensen’s performance index makes the same
assumptions as Treynor’s; but it does not necessarily yield the same ranking.

The real series are used to compute the measures. The S&P 500 index is used
as the market proxy. The real return is computed from the S&P 500 index. Table 6.9
shows that the three measures for Treasury bills of different holding periods. While
2-month returns are clearly superior according to Sharpe’s Index and Treynor’s Index,
Treynor’s index reaches the peak at the 5-month returns.

Mean-variance efficient frontiers are also computed to see if some asset is not
in the efficient set. Table 6.10 presents the efficient frontier without the market index,
while Table 6.11 illustrates the efficient frontier with the market index. In both cases,
no particular asset is excluded from the eflicient set. However, it can be observed that
the weights for the longer maturities Treasury bills (and the market index) get higher
as the requited return of the portfolio is increased.

The differences between these alternative ranking methods and the domi-
nance criteria are that the latter is much more general and place less restriction on
the way investors evaluate risky prospects. It is clear that the mean-variance efficient
frontiers provide minimum variance portfolios at various desirable level of expected
returns.

The Sharp, Treynor, and Jensen all use a risk-free rate as a benchmark. This
will automatically exclude the one-month Treasury bill from consideration. Within
this smaller set of assets, the two-month Treasury bill gets the highest ranking by the
Sharp and Treynor indices. It should also be noted that both Treynor and Jensen
measures require similar assumptions as CAPM does, which is rather restrictive. But
Jensen’s measure behaves so different from Treynor’s measure that it judges that
five-month Treasury bill to be superior.

When there is a need to identify the least preferred assets without imposing

strong assumptions on preferences, dominance tests become useful. First, these tests
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are less restricted compared to the other ranking measures. For example, Sharp’s
index, Treynor’s performance index, Jensen’s excess return, and mean-variance effi-
cient portfolio approach need strong assumptions concerning distributions. Second,
the test-statistics are statistically reliable, because the data structures can be prop-
erly accommodated by the test-statistics. Third, there is no need to use a risk-free
asset in constructing the ranking measures as Sharp’s index, Treynor’s performance

index, and Jensen’s excess return do.

6.5 Concluding Remarks

In this chapter, the new distribution-free tests for first- and second-degree
stochastic dominance are applied to evaluating the economic significance of real term
premia. These test procedures are advantageous because (i) they allow for returns on
different assets to be dependent, (ii) they do not restrict sample observations for a
particular return to be independent, and (iii) they are distribution-free. These tests
were applied to McCulloch’s U.S. T-bill data as given in Shiller (1990). The results
of first- and second-degree stochastic dominance tests suggest that only the return
of the one month Treasury bill is significantly dominated, in the first-degree, by the
returns of all the longer term returns in the data set. It is also significantly dominated
in the second-degree by the returns of all the longer term returns in the data set. In
comparison with existing results, the results in this thesis indicate that it is impor-
tant to place dominance analysis properly within a proper framework of statistical
inference, in the sense that standard results concerning FSD that are derived without

accounting for sampling errors may be incorrect.




Table 6.1: The Augmented Dickey-Fuller Tests on Nominal Returns: 1954:02-1987:01

Table 6.2: The Augmented Dickey-Fuller Tests on Real Returns: 1954:02-1987:01
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Series | Test — Statistict | Asymptotic Critical Value at 10% | 1
R(1) 71.08 2.57 5
h(2) 71.89 2.57 7
h(3) 1.98 2.57 7
h(d) 2.01 2.57 8
h(5) -1.90 2.57 10
h(6) 2.00 2.57 10

Series | Test — Statistic t | Asymptotic Critical Value at 10% | !
kT(1) -2.74 -2.57 8
h"(2) -3.15 -2.57 7
k" (3) -4.18 -2.57 4
B (4) -4.08 257 1
kT (5) -4.19 -2.57 4
h'(6) -4.48 -2.57 4

Table 6.3: Autocorrelation Functions for Real Returns: 1954:02-1987:01

lag5 [ lag 10 [ lag 15 | lag 20 | lag 25 | lag 30 | lag 35 | lag 40 | lag 45 | lag 50
hT(1) | .313 | .353 281 236 | .089 | .116 | .042 058 | -.073 | -.051
hT(2) | .323 | .338 314 241 | 124 | .022 | .076 .061 | -.062 | -.041
hT(3) | .326 | .321 S17 208 | 119 | .090 | .074 016 | -.048 | -.024
hr(4) | 322 | .273 .256 J47 | 100 | -.032 | .056 045 | -.045 | -.048
h7(5) | .306 | .248 220 008 | .062 | .049 | .022 | -.007 | -.049 | -.036
hT(6) | 273 | .211 171 053 | .041 | -.055 | .014 .018 | -.045 | .023




Table 6.4: R/S Analysis of Real Holding Period Returns of Treasury Bills

Vr(l) | 1 month | 2 month | 3 month | 4 month | 5§ month | 6 month
Vr(10) 3.203 3.048 2.869 2.828 2.656 2.532
Vr(20) 1.892 1.768 1.663 1.672 1.586 1.532
Vr(30) 1.437 1.321 1.246 1.270 1.216 1.182
Vr(40) 1.214 1.102 1.043 1.072 1.033 1.009
Vr(50) 1.086 0.976 0.927 0.957 0.930 0911
Vr(60) 1.010 0.898 0.856 0.884 0.866 0.848
Vr(70) 0.964 0.852 0.812 0.839 0.827 0.810
Vr(80) 0.942 0.829 0.790 0.814 0.806 0.790
Vr(90) 0.942 0.827 0.788 0.807 0.802 0.784

Vr(100) 0.961 0.843 0.802 0.817 0.813 0.795

Table 6.5: Correlation Matrix for Real Returns: 1954:02-1987:01

) | B@) | K(3) | &@&) | & () | k(6)
A7(1) | 1.00000
7'(2) ] 0.96835 | 1.00000
#7(3) | 0.90843 | 0.97070 | 1.00000
77(4) | 0.84126 | 0.91277 | 0.06482 | 1.00000
k°(5) | 0.77704 | 0.85711 | 0.93046 | 0.98151 | 1.00000
77(6) [ 0.70827 | 0.79990 | 0.88763 | 0.05484 | 0.99064 | 1.00000

120




121

Table 6.6: The Basic Statistics of Real Returns: 1954:02-1987:01

Series | Mean | Variance | Skewness | Kurtosis
h7(1) | 0.06780 | 0.08100 0.06921 1.80701
hT(2) |0.11238 | 0.08584 0.14013 1.78988
h7(3) 10.13600 | 0.10052 0.07462 2.00694
hT(4) 10.15140 | 0.11646 0.32890 1.86587
kT(5) 10.16031 | 0.13935 0.50792 2.58086
hT(6) |0.17006 | 0.16877 0.75224 3.68112

Table 6.7: Test-Statistics of First-Degree Stochastic Dominance Using MBB of Dif-
ferent Block Sizes (b)

H, b=10]b=20 |5=30 |b=40 |b=50 | b= 60
k'(2)D; k(1) || 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
R(3)D,h'(1) | 0.052 | 0.055 | 0.051 | 0.049 | 0.054 | 0.064
h(4)D, k(1) || 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
h(5)D,h'(1) | 0.004 | 0.005| 0.004 | 0.004| 0.005| 0.004
K7(6)D:k'(1) | 0.101 | 0.093 | 0.107 | 0.107 | 0.118 | 0.119
h*(1)D;h'(2) || 13.676 | 13.633 | 12.564 | 11.069 | 10.726 | 10.930
W(1)D,h'(3) | 3.824 | 3.687 | 4.370 | 5.178 | 6.133 | 4.802
W (1)D,h'(4) | 4.454 | 4.713 | 4.761 | 4.583 | 5.181 | 4.992
K (1)D,h'(5) | 3.272 | 3.441 | 3.150 | 3.715 | 3.405 | 3.826
W (1)D.h'(6) || 2.054 | 2.304 | 2.268 | 2.426 | 2.361 | 2.419

Note: The sample points selected, X, is 20. The number of samples in the moving block bootssrap is 200. At

a = 0.08, Hg, under which either Qy(P) — Qx(P) 20 VP € [0,1] or Qx(P) — Qy(P) 2 0 VP € [0,1], will ba

rejected if the test.statistic is greater than 30.841; it will not be rejected if the test-statistic is less than 2.708.
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Table 6.8: Test-Statistics of Second-Degree Stochastic Dominance Using MBB of

Different Block Sizes (b)

H, b=10 | b=20 | b=230 | 6=40 | b=50 | b= 60
k(2)D.h'(1) | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
R (3)D,h7(1) | 0.045 | 0.052 | 0.054 | 0.051 | 0.057 | 0.057
k" (4)D.h"(1) || 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
k" (5)D,h7 (1) | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
h"(6)D,k™(1) | 0.114 | 0.109 | 0.109 | 0.091 | 0.126 | 0.126
kT (1)Doh' (2) | 12.067 | 9.342 | 10.087 | 8.719 | 6.360 | 7.707
T (1)D.h7(3) || 2.880 | 2.369 | 3.161 | 2.286 | 2.742 | 2.476
T (1)Doh7(4) | 2.778 | 2.810 | 2.888 | 2.992 | 2.727 | 2.788
h™(1)D,h7(5) | 1.558 | 1.493 | 1.381 | 1.584 | 1.855 | 1.494
k" (1) Dok’ (6) | 0.693 | 0.710 | 0.752 | 0.818 | 0.756 | 0.792

Note: The sample points aelected, K, is 20, The num

ber of samples in the moving block bootstrap is 200. At

a = 0.08, Hg, under which either 93 (P) —® x(P) > 0 VP € {0,1] or ® x(P) — 9y (P) > 0 ¥YP € [0,1), will be

rejected if the test-atatistic is greater than 30.841; it will not be rejected if the test-statistic is less than 2.706.



Table 6.9: Performance Measures

Month | Sharpe | Treynor | Jensen
1 0.0000 | 0.0000 | 6.0000
2 0.6096* | -0.0251* | 0.0124
3 0.5144 |-0.0323 | 0.0199
4 0.4531 | -0.0358 | 0.0267
5 0.3936 | -0.0353 | 0.0302*
6 0.3525 |-0.0347 | 0.0293

Note:*—Peak.

Table 6.10; Efficient Frontier Without S & P 500 Index
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Mean | Std. Dev. | 1 month | 2 month | 3 month | 4 month | 5 month | 6 month
0.42 0.25 1.00 0.00 0.00 0.00 0.00 0.00
0.42 0.25 0.92 0.01 0.04 0.00 0.00 0.00
0.43 0.25 0.87 0.01 0.02 0.01 0.06 0.00
0.43 0.26 0.69 0.27 0.00 0.00 0.01 0.00
0.44 0.26 0.60 0.28 0.08 0.00 0.01 0.00
0.44 0.26 0.59 0.19 0.09 0.05 0.03 0.02
0.45 0.27 0.53 0.20 0.10 0.06 0.05 0.03
0.45 0.27 0.19 0.79 0.00 0.00 0.00 0.00
0.46 0.28 0.54 0.00 0.00 0.13 0.29 0.02
0.46 0.28 0.35 0.18 0.17 0.12 0.08 0.07
0.47 0.29 0.33 0.29 0.01 0.00 0.00 0.36
0.47 0.31 0.41 0.02 0.00 0.01 0.13 0.39
0.48 0.30 0.00 0.44 0.38 0.09 0.03 0.04
0.48 0.30 0.01 0.06 0.90 0.00 0.00 0.01
0.49 0.32 0.14 0.08 0.25 0.0% 0.16 0.29
0.49 0.33 0.00 0.32 0.16 0.00 0.03 0.46
0.50 0.33 0.01 0.00 0.37 0.00 0.60 0.00
0.50 0.35 0.00 0.00 0.24 0.18 0.35 0.21
0.51 0.37 0.02 0.00 0.00 0.31 0.16 0.48
0.51 0.38 0.00 0.00 0.00 0.01 0.49 0.49




Table 6.11: Efficient Frontier With S & P 500 Index
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Mean | Std. Dev. | 1 month | 2 month | 3 month | 4 month | 5 month | 6 month | Index
0.42 0.25 1.00 0.00 0.00 0.00 0.00 0.00 0.00
0.43 0.25 0.83 0.01 0.13 0.00 0.00 0.00 0.00
0.44 0.26 0.70 0.02 0.19 0.00 0.00 0.06 0.00
0.45 0.27 0.50 0.19 0.11 0.07 0.06 0.04 0.00
0.46 0.28 0.41 0.07 0.15 0.22 0.10 ').02 0.00
0.47 0.28 0.30 0.18 0.14 0.12 0.10 0.09 0.03
0.48 0.31 0.09 0.00 0.58 0.18 0.12 0.00 0.00
0.50 0.44 0.18 0.20 0.00 0.27 0.20 0.00 0.12
0.51 0.36 0.02 0.00 0.11 0.24 0.19 0.42 0.00
0.52 0.84 0.21 0.07 0.00 0.15 0.24 0.04 0.25
0.53 0.66 0.13 0.00 0.00 0.00 0.00 0.66 0.19
0.54 0.62 0.00 0.00 0.00 0.00 0.04 0.77 0.17
0.55 1.27 0.00 0.00 0.32 0.17 0.02 0.08 0.38
0.56 1.63 0.01 0.16 0.13 0.00 0.10 0.08 0.49
0.57 1.93 0.00 0.22 0.00 0.07 0.11 0.00 0.57
0.59 2.08 0.00 0.05 0.15 0.04 0.04 0.07 0.62
0.60 2.40 0.07 0.01 0.00 0.00 0.19 0.00 0.71
0.61 2.50 0.00 0.00 0.00 0.00 0.21 0.02 0.74
0.62 2.81 0.00 0.00 0.00 0.08 0.65 0.01 0.83
0.63 3.08 0.00 0.00 0.00 0.00 0.05 0.01 0.91
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Figure 6.1: The Nominal Holding Period Returns: 1954:02-1987:01
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Figure 6.2: The Real Holding Period Returns: 1954:02-1987:01
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Figure 6.3: The Relation between Mean and Variance across Terms-To-Maturity
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Quantile Functions (Continued)
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Figure 6.6: Empirical Quantile Functions (Continued)
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Chapter 7
Summary and Discussion

Stochastic dominance is an important concept in economics and finance. For
example, it is frequently seen that income distributions are compared using stochastic
dominance criteria, and that asset returns are ranked according to stochastic domi-
nance criteria in finance. The theoretical criteria of stochastic dominance do not of
themselves provide tests for stochastic dominance but merely a foundation for such
tests.

To make the criteria testable, it is necessary to establish test procedures.
Unfortunately, existing algorithms and test procedures are very restrictive. Some
eschew sampling theory; some are restricted to a special class of known parametric
distribution functions; some have no clear relation to dominance characteristics; and
some have no asymptotic justification.

This thesis advances a new test procedure for first- and second-order stochas-
tic dominance, and its specific forms under various data structures. In Chapter 4,
under Assumptions 1, and 2, Theorems 3 and 4 give the tests for first- and second-
order stochastic dominance, respectively. c? and ¢, given in Corollaries 1 and 2, are
the FSD and SSD test-statistics under Assumptions 2 and 3. ¢} and c}, given in
Corollaries 3 and 4, are the FSD and SSD test-statistics under Assumptions 2 and 4.

Monte Carlo simulation results suggest that the test statistics are powerful
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in the following sense. When one data generating process strictly dominates another,
the empirical size of the test is generally smaller than its nominal theoretical size. On
the other hand, if the data generating processes do not follow a dominance relation,
in whatever degree, under the null hypothesis, the power of the test is generally very
large. In other words, when one data generating process fails to dominate another, the
empirical power of the test is very close to one. When two data generating processes
are similar, the test generally has lower power as one would expect.

The empirical work has demonstrated how to apply the tests when the data
can be characterized by a mixing process. In the economic evaluation of the holding
period returns of U.S. Treasury bills, it is clear that previous research ignores sampling
errors and hence its conclusions do not have a sound scientific basis. Using the tests
proposed in this thesis, it is found that the returns of the one-month Treasury bill
are clearly dominated by the returns of the longer-term Treasury bills. While the
existence of the dominated asset is itself an interesting issue worth exploring, the
dominance tests proposed are revealed to be useful in identifying its existence.

The thesis identifies a research area in stochastic dominance, and advances
a useful test procedure and two important extensions. The finite sample properties
are now understood through the Monte Carlo simulation. An application also serves

as a useful demonstration. Several issues are left for future research. These are:

1. The theory and concept of the third-degree stochastic dominance are still de-
bated and in a process of further development. The test issue related to the

third-degree stochastic dominance should be a focus in future research.

2. Income distribution analysis is also a dynamic research area. The proposed tests
are readily applicable to the income survey data over time and across countries.
This task is left for the future.

3. Stochastic dominance tests can be further extended to conditional distribution

and quantile functions, which may provide links between dominance relations
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and the variables in the relevant information sets. This extension will undoubt-

edly provide a richer analysis of data in hand.

. It is noted that when the data generating processes are similar, the test statistics
are often in the inconclusive region, the critical value must then be determined
by a numerical method (i.e., simulating the weights used in the distribution of

the test statistics). This topic has not been pursued and is left for the future.
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