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ABSTRACT : -

*

DYNAMIC ANALYSIS OF TAPERED .STIFFNESS STRUCTURES

A
i

' \
Mahmoud Osama Ahmed Mahmoud

-
.

. ~
The seismic analysis of tall structures requires the nat-

~ ufgt frequencies. and mode shapes to be known. This work pres-
ents the dynamic analysis of a class of tall structures which
> /
are modelled as  uniform mass and tapered stiffness beams, ih.

flexure or in shear. The effect of stiffness taper on modal

‘frequencies, mode shapes, and beam stresses is investigated.
The seismic behaviour of this class of structure is stud-
ied using the response spectrum technigque. A comparison bet-

ween tdpered flexural and tapered shear beams -for the behaviour

in terms of both base shear and overturning moment is made.

e

The effect of stiffnéss taper on the base moment redqction'fac—

.

tor is .also investigated.

¥, ' )
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NOMENCLATURE

SYmbols-a;e defined when %hef first appear in.

those whic¢h appear frequently are listed below for

this text,

reference.

\ .

[ LN
@
A,B,C,D numerical coefficients; t .
B Yoﬁng's modulus; o
. . e '
Cv(r) rth modal~ base shear coefficient;
CM(r) rth modal base dﬁerturning moment
coefficient;
. - }
g acceleration of gravity;
[ ] . .-
H height™wf cantilever §tructure;
\ .. ' ‘ '
- 1,j subscripts designating dlsplacement.'
. ¢ functions; .
I(x) moment of 1nert1a of the area of a
' horizontal cross section of the structure
' about its central axis;
° I, moment of inertia at the base of beam;
J moment reduction_factor;
k{x) stiffness in sheé;; _ .
k shear stiffness at the base of beam; ‘
L length of beam;
m - mass per unit length;
M overturning-momént;
Mo overturning moment due to code static
loading; .
n total number of displacement functions;
s, . velocity response spectrum;
/ . .
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L A

acceleration response spectrum;

subscripts designating modes of non-
uniform structures;
—— . L.

time, in seconds; & T

.-

' *base shear;

base°shéar due to code static loading:

height varlable,-

£

coordinate perpendlcular to the ax1al
dlrectloq,

displacement function;
mode shapé of non—uniform'structure;

angular frequency of the rth mode, 1n
radlans per second;-

> ”

elgenvalue of the rth‘mode-
modal part1c1pat10n factor of the rth:
mode; and -

- stiffness taper in flexural or shear

beams . .



CHAPTER I

INTRODUCTION

1.1, The Problem

A tall structure (tower or highrise building), which has
equal floer weights and where the stiffness decresses towards.
the top of the structure, can be idealizéd as a cantilever
beam with uniform distribution of mass and linear taper in
stiffness. The seEsmic response of such a structure deuends
cn its dynémic properties. Once the dynaﬁic preperties are
known, the seismic res@onse of the‘structure can be‘evaluated

for gLven earthquake excitation. e

The lateral deformation of the cantileve® can be clas—'v
sified into three meln types; namely, flexure, shear and
comblned flexure and shear The actual structural system
determlnes to which class the partlcular structure belongs.
In this study, the combined or hypr%d type is represented by
an idealized cantilever with seismic characteristics equal

to the average of those for shear deflecting and moment

deflecting cantilevers.

[t

1.2 Literature Review

The problem of linearly tapered structures écting in
: I

flexure was studied by Housner and Keightley [1]*

* Numbers in square brackets refer to references llsted at
the end of this text.

D
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who determlned the natural frequency and mode shapes of the
first three modes of v1brat10n of tapered cantilever beams

for twelve different tapers. They considered both rectangular
"and conical shell beams. Tables and graphs to determine mode
" ’shapes and frequencies for different values of taper were
produced. ‘

.Salvadori.and Heexr [2] caleulated the periods of shear,
bending, rocﬁing and translation of a.cantilever beam with
linearly varying shear and flexural rigidities and with or
without concentrated mass at theitop. A formula.for the
approximate evaluation of periods of framed structures was
suggested. Reiations and tables were given for the periods

of the cantilever for different types of behaviour for modes

o’
"

che to fi&e.‘

Humar - -and erght [3] studied the distribution of seismic
forces and overturnlng moments throughout the, height of N
bulldlng structures by using a simplified uniform hybrid
cantilever beam. They examined the effect of building slender;
ness on the distribution of both the horizontal shear and the
seismic overturning moment. Results in the form of tables and
curves for the shear coefficients, moment response for shear
deflecting structures, and momen£ reduction. factor for uniform
cantilevers were presented..

Heidebrecht [4].presented a procedure for evaluation of

the dynamic shear and moment relationship and the overturning

moment reduction factor for a class of uniform shear wall-

y



frame buildings subgectéd to eartthr é excitation. .He used

‘spectrum’ ana1y51s to determlne the-m x1mum values of’ SpelelC

4 ey
S

response parameters. The results of (this ana1y51s, tpgethar

with code specified static base shear and overturning moment-
_ A and A

-~ U

were emplbyed‘to determine‘moment reduction factor. -‘Results

were given for the fundamental mode shapes for shear- wall frame
l

structures, and for the moment reduction’ or'the spectra recom—

mehded in the 1975 Nat10na1-Bu11d1ng~Code of Canada [94, and

. . i * .
a constant spectrum. Reduction factors for the first five

< ¢ '-
o Fre,
'l

modes were obtained. :

Finally; Pekau1[5] atndied_beamaiof uniform mass and -
variable stiffness in shear. The so&ution, préSented in that.
study, is a closed form solution expressed in terms of Bessel
functlons. In this study, the effect of stlffness taper on
beam mode shapes, beam frequenc1es beam modal- masses, modal
base shear coefficients and total base shear coefficients was
investigated. Results were represented in the gtaphical_form
to indicate the‘importance of stiffness taper.

The work proposed in the.following section.attempts to
.provide sim}}ar data for flexural instead of shaar type systems.

o - -
L} N A}

1.3 Scope of Present Study
4
As mentioned in Sec. 1.1, tall structures which have

uniform m@ss distribution and stiffness’ decreasing from bottom
to top can be idealized as cantilever beams with uniform mass

and linearly tapered stiffness. Since dynamic analysis of



R

this class of étfuctures to ?esist grouhd shocks or wind ind-
‘uced vibrations requi:és the knowledge of dynamic properties,
such as ﬁodal frequencies fdr example, the problem of céngilever
bgamé with constant ma;s and lihéarly variable stiffness in
flexure will be'investigateg. | ‘

A continuous cantilever model haé been adopted fbriﬁhis
stﬁdy similar to the one proposed by Pekau (5). Using £his
model will allow for comparisoh of results for flexural and .-~
shear systéms. The choice of this continuous model is feasible
" for the ﬁroblem under consideration_  because it lends itself
to descriﬁtion in terms of simple parameter, whereas a discrete
or lumﬁed éarameter model would re@uire a more complex set of
paraméters for its definition.

'The struct&rai model considered in this'study is a canti-
levér structure with unifafmimass distribution m, léngth L,

" and flexural stiffnegs EIo at the base. The flexural stiff-

) %

. ness variggllinearly along the beam length and the flé#ural
-stiffnesgftéper 2% defines the ration of base Eo top stiffness.
Tﬁe method which<will be used in the analysis for dynamic
properties can be classifagd as modified Rayleigh-Ritz method.
Generalized mass and stiffness of the tapered stiffness beam
are first evaluated for a s;t of assumed displacement shapes,
then the eigenvalue‘probleﬁ is formulated. The non-trivial
solution of the eigenvalue problem gives the:eiqenvalues and
eigenvectors which represent the natural frequencies znd thg

mode shape coefficients of the tapered beam. The mode sHaperof

,\ .
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S

s
the tapered beam is obtained from the superposition of the moda}

dlsplacement functlons of the correspondlng unlform beam multi-
plied by approprlate coefficients or generalized elgenvectors.
The effect of .the flexural stiffness taper on the base ‘
shear and the overturnlng moment. of the beam is evaluated using
o
the re;ponse Spectrum technique. The moment reduction factor
is investigated to determine the importance of structural taper

on this important seismic response parameter.




CHAPTER T1
REVIEW OF AVAILABLE METHODS OF ANALYSIS

2.1 Introduction _ _ : -

ThlS chapter presents ‘a brlef rev1ew of the varlous methods
&thh could be emnloyed to study the dynamlc propertles of non-
-unlform Cantilever structures The solutlon of, the same problem
lfor unlform be ams v1brat1ng in flexure could be- obta1ned for
Certain end COndlthnS, and by substltutlng the end condltlons
in the general solutlon of the differential e uatlon of equili-
brlum, the frequency equatlon for any set of e conditions can
be determlned (See Appendlx I). For non-uniform cantilever .
structures where the Cross- sectlonal d1mensmons are functions
‘i

of the axlal .co-ordinate x, w1th the exception of some special
cases, closed form solutions of the vibnration problem do not
. exist. Ip thisg case the alternative is an approximate method
of analysis. These methods became available by means of digital

computers, with an accuracy adequate for practical and design

purposes,

2.2 Rayleigh-Ritz Method

This method [6] is based on the fact that a closer approxi-

mation to the exact mode shapes can be obtalned by using the

Superposition of more than one function as used in Rayleigh's
method. Upon making a good choice of functions it allows the

calculation of higher mode shapes and frequencies in addition
/

-,

~



to a closer approximation to the exact first mode frequency.-
The deflectlon wix) of any beam can be expressed in terms

of n functions ¢ (x), :1,...,n,‘1n the form _ o

P
T

Wi ety ) e84, (0F Cyly (x)+...+cn¢n G (2.01)

the determlnatxon of the coeffiecients C

x

place so that the superposed functions furnish the-best approx-—

1° C2,... , Cn\xakeé

imation to the natural modes. This can be achleved by adjust—

"ing the coefficients to have stationary frequency at the natural

modes which conforms w1th Raylelgh's prlnclple.' This can be

- done by using the Raylelgh:frequency equatlon " -

EI(x) Ew"(xﬁ 2 ax

/ (2.2)

m{x) wz(x) dx

O OL—-,:t-(

togéther with Eq. (2.I) and differentiating tﬁe resulting
expression partially with respect to each of the coefficients.
These partiai derivatives are set to éero to form a set of n
hoﬁogéneous equations as JFollows

AT 2

(2.3)



This is a set of dinear, homogeneous 'algebraic equations in '

the "coefficients of the mode shape functions which contain

w? as the unknown. This set defines an elgenvalue problem.

The solutlon of this problem provides the elgenvalues and the
eigenvectors as well. Each of the n eigenvectors contains n
components in the C's. These components when inserted in

‘Eq.” (2.1) determine the'besf approximatioﬁ to the rth natural

mode El-r (X) . Thus,
N £ S (r) - (r),
3,00 = ¢ SOy Gy () 4 e+ GO0 (g i

2.3 Myklestad-Prohl Method o ) ' J

. This method (1] is a well known numerical procedure for
the eelutiOn of the Bernoulli-Euler equation

'(EIy")"+ pAY = 0 o (2.5)
where : .y = beam 1ateral dleplacement A = cross.sectional
area of the beam E = modulus of elasticity of beam material,
I = moment of.;nertla of beam, and p = mass den51ty of
material.

Consider a cantilever beam vibrating freely in e classi-
cal mode of circular frequency w with zero damping.. If the
beam is divided into segments with the mass for each is con-
centrated at the points of @ivision, the shear and moment at
the;base‘of the beam plus the inertial forces at the concen-

i

trated masses m will produce the shear and the moment diagrams.



[

‘At any section n, the. shear VnJ‘the momen t Mn’ the inclination

?f tangent en and the deflection Y, can be:expgessed in . terms

' B '
of the corresponding characteristics at the base of the beam .

~and the masses, the segmént length Ax, the moment of inertia

I, and Young's modu lus of'elasticity E of the bheam.

-

In general the shear and moment at the free énd of the

beam will be expressed by correspondlng terms at the base of

the beam multlplled by four constants (2 each for shear and
moment). To satisfy the boundary conditions of the cantilever
beam at the free end, the determinant of the four constants
should vanish. Tﬁyé requireﬁent specifies the correct value
of w which can be determined by successive trialé. Upon h
determining the.vaiue of w for which the‘degerminant is cqual
o:'sgfficiengiy glose to zero, the corresponding mode shape is

at

determined by computing the deflected shape of the beam.

2.4 Stodola Method

This is another numerical procedure {1] for the solution
of the Bernoulli-Euler eéuation g@ven by éq.'(2.5). Cogsider
the same beam as discuésed‘in the preceding section vibrating
in a classical normal mode of circular frequency w with zero
damplng. From beam theory thé shear‘v the bending moment M,
the slope angle 6 and the deflectlon @ for'such a cantilever
beam can be obtained. Therefore four integrations of
(pAw?y) /(EI) reproduce the deflection curve y if y is the

exact mode shape. If, instead, pAy/EI is integrated four  times



in the same manner, the resulting function is y/w?. To find

the exact mode shape, a trial function Yo is assumed. In ’
,expanded form in terms of the exact mode shapes, Yop will

take the form
Yp = al¥l + a,y, * seenen toay; - (2.8)

in which a; is 'constant and Y is the exact shape of mode‘i.

~

If the expressibn.pAyT{EI igﬁintegrqﬁéd four times, a deriv?d
function ydl will be p duged. Anothergderived funct;on yd?
can be obtained using y; as a trialJEﬁnction. In each -
advancéd,cycle'the power of:u in-the denominator‘is increased
by two. .The vaiues of w for higher moaes arce larger than those
for lower qodes,‘so Lhe first term in the derived function
yill dominake aftef a sufficient number of repetitions, and
the process wil} converge to the firsf mode. The frequency of
the lowest mode is the quotient of the second last to the last
éeriyed functions.. ’

The highér.modes of vibrgtions can be obtained by the

A%ame'procedure with the application of the @r%perty'of ortho-

gonality of the modes. -

2.5 Modified Rayleigh-Ritz Metﬂod

; This method {6] provides.results identical to those res-
ulting from the analysis using Rayleigh-Ritz. This is why it
is identified in this manner, although it‘doeg not follow the

' k) . ' - 0 ' L +
same reasoning. It is' based on transformation to generalized



coordinates of the-natural coordinates and solution of the
eigenvalue problem in this transformed system.
. Consider a‘system with distributed mass m(x) and étiffneés
EI(x), such as the cantilever beam of Fig. 1.
1
To find the expression for generalized mass, define a’
set of functions ¢i(x) ana EorresPOndiﬁg coordinateg
a; (i = i,.... ,~n). The ﬂisplgcement at any‘point on the

beam can be expressed as

wi{x,t) —=7).: ¢.‘L(x) qi(t) . (2-7)
1

Taking the first derivative with respect to time and using

the dot to denote this type of dffferentiation, Eﬁ. (2.7)

becomes

T wix,t) = i ¢, (x) 4, . .o (2.8)

The sguare of the velocity w(x,t) is given by

.2 _ ‘

wix,t) = T L¢, (x) ¢j(x) Cxiqj (2.9)
1]

The kinetic energy for the distributed mass system can be

written as

T = %fm(x) w2(x,t)dx : (2.10)

G

The integration of the.above expression extends over the

length of the beam.
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Substl;uplng Eg. (2.9) in (2.10}, the klnetﬂf energy expres-—

sion will be P

9]

L .
f mix) (2203 (0 b5 00 84 ax (2.11) -
o ' .

Interchanging the order of summation and integration and re-

arranging the expression to have ‘the mass function beside

. the mode shape functions ¢; and ¢j; 2q. (%.ll) becomes’

L ' . ]
T = %— LD &4, fm(x) b5 (%) ¢ (x) ax (2.12)
. ij S .
or
A ! '
T=2LIzm. 4.4 (2.13)
2 15 ij “i7y \ .
in which J A T { : .2
L ' , . : ‘
miy Im(;c)_¢i(x)¢j(x)dx . (2.14)

The previous expression defines the géneralized mass in
terms of the distributed mass function m(x), and the displace-

ment functions ¢i(x} and ¢j(x) corresponding to generalized

coordinatesqi and q.

3" | | . -

To find the expression for generalized stiffness, dis- ,
placement w(x,t) of Eq. (2.7) is first differentiated twice (f\?\'
with respect to x. Using primes to denote this differentia-
tion, Eq. (2.7) gives - . i}

] . = ‘“ . "1 ’
wo(x,t) = Z¢i(x) d; (2.15)
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»

'ized displacements qj”can be written as

L utoe

The square of the second derivative w (x) is given by K

RN

(w'(x,t)) % =3 £z o)

L 6) (x) ¢j”(x) 939, (2.16) “ o
1] : .

\
The strain energy/for a beam of leﬁgth'l in pure bending and

with distributed stiffness function EI{x) is given by

L- .
EI(x) (w'(x,t))2dx ' ‘ “(2.17)

."O : ' _»‘ ' 4

e,

!
2

Substituting Eg. (2.16) into (2.17), the strain énergy expres-—

>

sion will be
L - . . ._‘.
azy fereo (220 () 6J00qa)dx  (@.18)

- r—

[ I

¥
.

Aftéf:fnterchanging the order of summation and integration and
rearranging., Egqg. (2.18) becomes
L .
=1 ET (%) ¢, (x) 6, (x)d (2.19)
u =3 i qiqj X ¢i x ¢j x) dx . .
o

Usiﬁg Castigliano's first theorem, the generalized force Qi

related to mode i can be expressed as -
i, - . ¢
. ¥ - au .
S S (2.20)
. " . ) R
or L . i ,
: e I - ¢ :
Qi =L qj EI(X)¢i(x)¢j(X)dx - (2.21)
J o . '

The relation between the generalized force Qi and the gene

' A

[



(2;23),respéﬁtively.

14 -

k.. q. | ' (2.22)

P

The right hand terms of Egs. (2.21) and (2.22), when compared

“term by term® give the resulting relationship

L -

_ P ‘ .
kij-j./}ﬂ{x)¢i(x)¢j(x)dx - o (2.23)
O ) B

~which is the generalized stiffness kij expressed in terms of

the bending Stiffnessﬁmodulus EI(x) and the modal‘shapeV
derivatives ¢i(x) and.¢j(x)corresponding to'generalized
co-ordinates q.)and q., respectively.

L i =3 . Ry
‘Finally, in the generalized ¢ coordinate system the

classical eigenvalue problem is obtained as

=(k] -w? ) {q} = {0} - (2.24).
: oo '
where matrices [k énd [M] are defined by Egqs. (2.14) and

*
L]

Iy

Fblleing standard,prdéedures'[G], the solution of

Eg. (2.24) yields eigenvalues m? and eigenvectors {éii .

)
r=1, ..., n.

Using Eq. (2:7),'theﬁrth mode shape of the beam becomes -
n : . "

- _ (r) o :

¢ (x) -‘:Z‘ a5 ¢i(x}. | (2.25)

1i=1
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CHAPTER IIT
EIGEN ANALYSIS OF TADPERED STIFFNESS STRUCTURES

This chapter presents the formulation of the elgenvalue
analysis for non-uniform Structures using the modified
Rayleigh Ritz method described in Sec. 2.5. Both flexural

.~as well as shear systems having uniformly distributed mass

and linear taper .in stiffness are treated.

3.1 Flexural Beams

Selecﬁion'of bisplacementlFunction - Vibrations of ﬁhe
beam of Fig. thaving uniformly distributed méss and linearly
variable stiffness over height is governed by a linear dif-
:ferenﬁiai équation of the fourth order (See Appendix II).

Since a closed form solution could not be‘found for this

equatloq, the modeled Ray leigh- thz method descrlbed in

.

Sectlon 2.5 was adopted The ch01ce of this method was based
upon the fact that it is convenlent for treating systems

having non-uniform mass and stlffness distributions in terms

of a £inite nunber of degrees of freedom.
The flexural stiffness EIIR) of the beam in Fig. 3 is

a ligear function of x. ThlS functlon can be expressed in

terms of the base stlffness EI o the ratlo of base to top

stiffness Tk, and the overall helght L. It can be written

L

in the form



‘ (Tk-lx
EX(x) = BI [1- —~___~ 4 (3.1la)
' 0 T, L )
, : k ‘
where
EI = EI(o} = flexural stiffness at the (3.1b)
- base
_ EI{o) _ .
T = EI(L) — ratio of base to top flexural (3.1c)

stiffness

_Displacement functions ¢(x) for use in Eq. (2.7) may
- be selected as the mode Shapes for a cantilever beam of

uniform mass and stiffness. These have the form [6]

o{x) = Ay Sin (Bx) + B, Cos (Bx) + _cl sinh (Bx)

+ Dl Cosh (8x) (3.2)
k2
where
\2 s
y _ W
B" = ET: (3.3a)

Al = ~0.50 (cosh(B8L)+cos(BL))/sinh (BL} .
Cos(BL)—Cosh(BL)Sin(Bp) . (3. 3b)

Bl = 0.50 (sinh(BL)+Sin(BL))/(Sinh(BL)

Cos (BL)-Cosh({BL)Sin (8L} ) ‘ {3.3c)
Cl = —Al (3.3d)
Dl = _Bl .. (3.3e)

*;3&? function ¢(x) satisfies both the geometric and:
the natural boundary conditions. The geometric boundary
conditions state that displacement and slope are zeros at

the base of the beam: namelv,



${o) = 0 . : (3.4a)
$' (o) = 0 - (3. 4b)
The corresponding natural boundary conditions require
that bending moment and shear vanish at the free end of the

beam; namely’,

il
o .

. $"(L) (3.5a)

i
=)

LM (L) {3.5b)

Because of these copditions [6], the uniform beam mode
shapes represent desirable choices for displacement functions
¢i(x) (and ¢j(x)).

Generalized Mass and Stiffness Matrices. The generalized

mass mij' expressed in terms of the distributed mass function
m(x} and the displacement functions ¢i(x)and ¢j1x) correspond-

ing to generalized coordinates a; and qj, can be written in

the form
I. :
miy = !m(X) ¢i(xr¢j(><) dx ‘. (3:.6)
' !
For uniformly distributed mass, Eg. (3.6) takes the form
- ' I
mij = m,fq)i(x) ¢j(x) dx | ' . (3.7)

[o]

or, alternatively



where

ey L | o
Mij = f¢i(x) ¢j(x) dx '(3.8)
e}

The displacement function ¢, (x) for the coordinate q; can be

written, from Eq. (3.2), in the form.
cbi(x) = Ai Sin Bix + Bi Cos Bix + Ci Sinh Bix

+ Di (::osh Bix . . ' (3.9)

The displacement function ¢j(x) has the same form.
The integral for Mij can be expanded, using Eq. (3.9),

in the form

I
Mij = f(AiAj Sin Bi(x) Sin Bj(x) dx)
%)
I, - .
+ !(BiAj Cos Bi(x) Sin Bj(x) dx)
I. L
+ f(CiAj Sinh Bi(x) Sin Bj(x) dx)
o)
L
+ [(DiAj Cosh Bi(x) Sin Bj(‘x) dx) .
6}
L
+ _/-(Ai?j Sin Bi(x) Cos Bj(x)' dx)
3)
L
+ _[(BiBj Cos Bi(x) Cos Bj(x) dx)
0



{(C.B. Sinh Bi(x)'Cos Bj(x) dx) '
(DB, Cosh B, (x) Cos B, (%) dx)
(A.C., Sin Bi(x} Sinh B. (x) dx)
(B.C. Cos s;(x) Sinh 8. (x) ax)
(C.C. Sinh Bi(x) S;nh Bj(x)‘dx)
(D, C. c'osp 8 (x) Sinh B (x) dx)

(A.D. Sin Bi(x) Cosh Bj(x) dx)

{(B.D. Cos Bi(x) Cosh Bj(x) dx)

ii
/

&t (CiDj Sinh Bi(x) Cosh Bj(x) dx)

+ (DiDj Cosh Bi(x) Cosh Bj(x) dx) (3.10)

Each of the sixteeé terms between brackets was evaluated
separately and then added to form the generalized mass. The
integrals of Eg. (3.10) are listed in Appendix V.

The orthogonality oflthe mode shape functions with

respect to constant mass yields
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M,. =0, for i ¥ 3j
" 1] (3.11)
: Mi’ for i = j . '

it

where M, = generalized mass for the coordinate q -
The generalized stiffness kij expressed in terms of the
distributed stiffness function EI(x) and the displacement

functions ¢i(x) and”¢j(x), can be written as

Cirg

L

— I I

ki = J[EI(X) o' (1) ¢4 () dx. L (3.12)
Y :

where

¢;'(x) = B; (-A; Sin B (x) - B, Cos B, (x) +
+ Ci Sinh Bi(x) +_Di Cosh Bi(x)) {3.13)

and ¢5’Tx) has the same form.

If Eq. (3.1) is written in the form

EI{x) = a-bx ‘ (3.1l4a)
where
a = EI_ -or flexural stiffness at the base (3.14b)’
Tk—l .
b = TkL EIO (3.14c)
or
Tk—l . ‘
bL =( EI ' (3.144)
T o

Eq. (3.12) can be rearrahged in the form
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L , L .
= il I 1 n i
ki fa o G0 0y (x) dx fb o () 9 (%) x ax
Q [@]
L L
= a”J/}; (x) ¢j“(x) dx - b d/}ﬁ'(x) ¢3'(x)_x dx  (3.15)
0 ° .

I

a IC - bL Iv

in which Ic deﬁotes the stiffness for a beam with uniform
flexural stiffness EI_, I, represents the effect of the'r
stiffness taper Tk;

When expressions of IC are written in expanded form some
terms will be similar to corresponding terms of Mij' with

equal or opposite signs. For the second part, IV may also

be expanded to give
B

H
]

(AiAj Si? Bi(x) Sinxsj(x) x dx)

{B.A. Cos Bi(x) Cos Bj(x) x dx) “—’/>

vij
(C.A. Sinh Bi(x) Sin Bj(x) x dx)

|

(A;B, Sin 8, (x) Cos ‘Bj(x) x dx)

L
'g(
L
gr
L
- f(D.A. Cosh Bi(x) Sin Bj.(x) x dx) -
3} . \ '
L ’
Jr
.j%
o)

(B.B., Cos Bi(x) Cos Bjjx) x dx)},
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ES

4Jf{CiBj Siph Bi(x) Cos Bj(x) ¢ dx)
o

L : ] iy
f(D B] Cosh B {x)} Cos Bj(x) x dx)

L]
L]

(A, Cj Sin B (x) 'Sinh Bj(x)' x dx)
(B, Cj Cos B (x) Sinh Bj(x) x dx)

+ o (C.C. Sinh Bi(x) Sinh Bj(x) X d.x)

0
L
! s f(D.C. Cosh B.{x) Sinh B_(x) ¥ dx)
) 1] 1 . ]
O ’
j

(A.D. Sin Bi‘(x) Cosh.Bj(x) X dx} |

{B.D. Cos Bi(x).Cosh Bj(x) x dx)

[

(B.D. Cosh 8.(x) Cosh Bj(x) x dx) (3.16)

o
/
.0 , : ' :
] L
+ f(c.D." sinh B, (x} Cosh Bj(x) x dx)
8] :
L :
A {
The i"'ntegrals of. Eq..(3.16) are listed 1in Appendix V.
Slmllar to the case of generallzed mass , the second

derlvatlves of the shape functions are orthogonal only with,

respect to the constant part of the stiffness function and
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not for the variable part which concerns the taper. Thus, /
for the tapered stiffness beam, the usual orthogonality con-

ditions for uniform beams

K ..
i3

0, for i # 4 . \

. h ]
kiio for i = j (3.17)

do not apply, and the generalized stiEfneés matrix [k) will
ndt be diqgonal. The orthogohality conditions which are }
agplicable to non-uniform flexural beams are available in
lgbpendix IIT.

To specialize the generalized mass and stiffness matrices
for .a béam having éarticular values of Tk; L, m, and EI_ it

is convenient to denote the specialized beam generalized stif-

fness and mass matrices as gquantities indicated by bars. Thus,

(K] = EI_LIx] - (3.18)

and

M)

mL [M] ‘;' . (3.19)

.
v

With these notations, Eq. (2.24) becomes

((k) - w?M]) {q} = {0}, v (3.20)
The solution of this eigenvalue problem was obta%ned in this
study using subroutine NROOT [7] at the Concordia University
Computer Centre, This subroutine computes the eigenvalués and
éigenvectgrs of a real non-symmetric dynamical matrié of the

form [M] ! (X].
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Substituting Egs. (3.18) and (3.19) into Eq. (3.20) yields

;IOL([k] - w? gf; IM]) {q} = {0} ‘ (3.21)
- | l E. -

For non-trivial solution of Eq. (3.21), the determinant

vanishes; hence,

‘
' [

- 2° :. * '
{1k = w2 B 1) | 0 (3.22)
- O.
Letting T : ) -
N 2 v - y
v - m :
B* = BT . - ‘L3.23a)
s} .
gives '
h' .
’ (BL)* = w? B (3.23b]
EI_
-and, employing this notation, the circular ffequency may be \

expressed as

EI
r. _ ’ o)
o w = (BLY¥ mLY : (3.23c)

Using the substitution

a = 4/—2 (3.24a)

Eq. (3.23c) becomes'
W o= (BL)Z a_ ' (3.24b)
. 12

Once the eigenvalue solution has been obtained, in the

form of W, and fq{r)}, r=1, ..., n, thé rth mode shape for ‘the

tapered structure is obtained from Eg. (2.25),which is repeated

here as



. n
$.(x) = EZ q{r) d (x) o (3.25)
. _

) 3.2 Shear Beams

Il

The dynamic properties of uniform as/ well as non-uniform
shear beamé have been reported extensively in the literatufe
[2,5]. Thus only a summary version of the shear beam analysis
is presented here. If
The analysis of linearly tapered shear‘beams was performed

using, as employed in this study, the same method as used for

linearly tapered flexural beams, i.e. the modified Ray leigh -

'Ritz method.

The rth mode shape ¢r(x) can be expanded using Eg. (2.25)

with the displacement function ¢i(x) assumed as

¢, (x) = Sin (2i-1) %% - (3.25)

Thése functions réprésent thé‘mode shapes for a cantilever

shear beam which has uniformly distributed mass and stiﬁfnesé.
. ‘The generalized mass is obtained from Eg. (2.14) for this

displacement shape and, after integration, the elements of the

mass matrix are [12]
-, —=  BL (3.26a)

-0 (3.26b)
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The mass matrixX can be written in the form [12]

M) = 3¢ (1) ' - (3.27)
ot o '

‘there'[I] is the identity matrfx..

The generalized stiffness of the beam ci:‘be written in

the form [12]

fk(x) HEIED (x) dx - | (3.28)

where ¢i(x), ¢j(x) are the first derivatives of the displace- . Ty

1
.ment functions, and S.e : rj !

- .
ag e

: (
k{x} = ko [ l - —m——

where
ko = k(o)/,/-”’hear stlffness at the base " {3.29b)
_ k(o) _ N -. ‘_‘
Tk = k(D) - rathIOf base to top shear stiffness 5

(3.29¢) . -
After integration has been performed, Eq. (3.28)- leads

" to the elements of the stiffness matrix expressed as [12]

’ - 1 n?7? Co2n2 : '
. kii_“ ko 5 ( 5 + 0.5): 161k {(n*n 4) 21(3.30)
. ’ .‘ ’ . ’ \
Eq. (3.30) prescribes the general form for the diagonal .

terms of the stiffness matrix. fhe similar form for the off

diagonal terms of the ctiffnkss matrix is expressed as [12] e



<

. series which is related to one of the dynamic properties of

, - 27 -
- ' . )
V.
(n-m)
_ 1 (nm) 1 ( ) )
= k = -1 - - ,
1] O[ (Tk l) 2 {(n-m) ' :
‘ , {n+m) |
PR (— 1* 2 —'1)} (3.31)
(n+m)? : _ |

where n =.2ir1, and m = 2j-1. )

-

With the generalized mass and sti?%ness matrices as defined
above, the solution Bf,the elgenvalue problem was obtalned

as for the E}gxural bean of the precedlng section, by using
subrout1ﬁé/ﬁ300T. ) S . T

-
7

3,3 Convergence of the Solution

Since the dynamic properties of the tapered stiffness

-
-t

beams were determlned as a sum of a series of terms, it 4is

leportant to investigate the convergence of the solution.

Definition - The series

L}

ul + u2 + u3 f ceeeasewnt un (3.32)

is,saidlto be convergent when tﬁe sum of the terms approaches

a finite limit, as the number of terms. is indefinitely increased
[10]. When tﬁis sum does not approaéh a finite limit, the
series is divergent.. “

3.3.1 Convergence Criteria

To select the required number” of terms to be used in a

-
/

the tapered stiffness_.beam, it is‘known ([6} that the accuracy of.

the solution improves with increasing numbers of terms and, that



'
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* the use of a finite number of terms results in an‘approximate
representatlon. In praCthce,'the required number of natural
modes is finite, To compoee‘the‘required highest mode functrons
having the general characterlstlcs of all sought modes must
be included.’ Stlll it is desirable to 1nc1uce functlons

.corresponding to higher modes as this»will improve accuracy.

P P e
3.3.2 Convergence of Modal Response Parameters

The convergence of the elgenvalue solutlon giving dynamic
properties was examined in order to determine number of terms
to belconsidered in Eg.'(2.25)."

Since it is known that natural frequen01es are stationary .
with respect.to aSSumed mode shape, convergence of frequency
ooes not provide the numher of terms that are requiredrto‘
achieve adequate accuracy_for‘other dynamic %foperties, such
as the'mode shaoes, for examﬁle. Convergence of beam mode shapesA
in addition to frequency, was therefore examlned Convergence
test consisted of plottlng the ordinate of the first mode
shape at.mid“height (an arbitrary point) and the peak ordin-
\Etes for the'following three mode shapes resulting from.Ec.
(2.25) mith numbeé‘of terms, n, varied from two to six.

The results of the test for convdrgence are summarlzed
in Appendix VI. Figures VI- l to VI-4 present the test results

* with respect to medal frequen01es, whereas figures VI-5 to )
VI 8 present similar results with respect to mode shape dls—
placement, both are for the flrst four modes. in addttron,

Figs. VI-9 to VI—lG.demonstrate convergency with increasing n,
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for modal seismic response parameters discussed in the next
. =~ (\‘"" ’
chapter-, : _—
o * .
Figures 'VI-1 to VI-16 present the results of the: conver-

v

. “/ - .
. gence study for flexural beams. The data- indicate that the

solutioﬁ of the problem is convergen&, and coﬁvergence increases
with an increase of.the number of terms n.
The maximum number of terms that could be“considered in -

» the case'of flexure was limited to six.' This occured due to

the difﬁiculty encounﬁered-;ﬁ calculating the eigenvalues for

‘the uniform beam (expressed in a form identical to that of

Eq. (3.23c)) whiéh were required for the qgneralized mass and

stiffness matrices. These initial eigenvalues are the solutions

of the frequencyiEquation [6].

-
.

Cosh (BL) Cos (BL) + 1, = 0 a (3.33)
The hyperboliec function in this equation is highly sensitive to s -
? .
changes in the eigenvalues thﬁs°making it difficult to cbtain o o

more than six roots with the required accuracy. The roots of
the frequency equation were obtained with gn accuracy up to
thirteen decimal places by means of subroutine ZREALI [11]
available at. Concordia University Computing Centre. This rou-
tine calculates n real zeros of a ;eal'funcéion F where the
initial guesses are not known tc be good.

Convergencé for the analyéis of the shear beams of Sec. 3.3

was similarly studied. No numerical difficulties arose and

an arbitrarily large number of terms could be accommodated in

4
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Eg. (2.25), limited on-ly by the s-i‘ze of the dynamic matrix.
Convergen_ce for the modal propértiés of the first four modes
of the_ nor;.—uniform shear beam was obtained with n':':‘; or 6.

For the data presented in Chapter V, the number of terms

employed in the calculations was kept constant at.: '(a) n==56"

for flexural, and /Lb) n=8 for shear beams.

[



"is defined by

CHAPTER IV
DERIVIATION OF SEISMIC RESPONSE PARAMETERS

This chapter presents the formulation of seismic response
parameters, assuming that the structure's dynamic properties
have been made available, according to the procedure of the "
preceding chapter, for example. Although the effect of struc-
tural taper T, is not explicitly involved, the seismic response
parameters presented here are used to examine the stiffness

taper behaviour discussed in Chaoter V.

4.1 Base Shear and Overturning Moment
The rth mode shape of the non-uniform structure-is given

by Eg. (2.25) as

To obtain seismic response analysis, it is convenient to intro-

‘duce a factor which introduces the effect of the mode shape.

This factor, the modai'participation~factor, for the rth mode,

jm(x) Er(:-c) dx

Fr = L. !4.1)

b[m(x) ?6;(x) dx

which, for uniform mass distribution becomes




1,
J 9,00 ax

r, =% | (4.2)
.f E;(x) dx

o

The numerator of Eq. (4.2) can be rewritten, using Eg. (2.25),

as
L

] .
b/’ar(x) dx = z qi(r) j¢i(x) dx (4.3)
, i=1 ‘ .

Recalling Eq. (3.9), the mode shape of a uniform flexural beam

for mode "i" was given as

- ¢i(x) = Ai Sin (Bix) +'Bi Cos (?ix) + Ci Sﬁ9h (Bix)
+ Di Cosh (Bix)
8
Thus, the R.H.S. of Eq. (4.3) can be evaluated, for the values
of qir) obtained from the eigenvalue problem of Eq. (3.21).

The integration of displacement function ¢i(x)"yields

L - L _ _ L
‘f¢i_(x) ax = A, fsm (B, (x)) dx + B fCos (B, (x)) dx
0 o . o
L L |
+Cy fSinh (B; (x)) dx + D, fCosh (B, (x)) ax

o . o (4.4)

Thé integrals of Eg. (4.4) are listed in Appendix V.
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Similarly, the denominator of Eq. (4.2) can be written

in the form . (

1 n n ] L L
: -2 _ o () (x) ? j‘ '
ufﬂ\d;r(x) dx = Z: 2: _qi qj #u}ﬁ y (x)dx mj(x)dx.
o 1=l j=1 0 o

 , L2 () o (x)
(g " 7y2 J‘¢l(x) dx+q f¢1(x) b, (%) ax
s .

-~

L
5 (.:;{2(1-))2 f@i(x) dx

L .
. 2
P + (qn(r))2 f&n {(x) Qx (4.5)
o :

-

The even terms in the previous expression are egual to zero

because of the orthogonality condition for the uniform beam (6);
/ ’ Ey

thps Ea. (4.5) reduces to the form
L

L T2 1, ‘ .
$2(a) ax = (dy (), 2 (%) ax + (g (r),2 f 2 (x) dx
S S 2 )4

-

L L
(r) 2 2 E (r) 2
+ .. q d (x) dx (q @ {x) dx .
‘of“ oj

' ' (4.6)

Ea. (4.6) can be evaluated using the previously determined

(r).and'the integration of the sguare of the mode

- coefficients a;
shape functions of the uniform beam. The latter is given by
the same expression as the generalized mass of the beam divided

by unit mass m, listed in Appendix V. /



Once the modal participation factor ' has becen evaluated
for each mode, the modal absolute maximum acceleration for the

rth mode is given by

|a(x) =1 w. s{P 3 (x) (4.7)

r r r r

in which §t%
-V

is the spectral velocity at frequency wr.
The inertia force' for mode "r" is the product of the

mass and absolute acceleration . v

F(0) =mT_w_ sér)' 3, () (4.8)

The resulting maximum base shear for.mode "r" is obtained by

integration over the beam length

L .
_ (r) -
v, =m T _u S JfErjx) dx (4.9)
max ' 4

where the integral on the R.H.S. is listed in Appendix V.

Since the base shear is considered as one of the most

“important parameters in earthquake analysis, it is important

to investigate the relation between this parameter and the

-

flexural or shear stiffness tapers.

(r)
v

If velocity response spectrum S is assumed to be

.constant in Eg. (4.9), the normalized modal base shear -can

be.exbressed‘as (See Appendix IV)

/
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vV L fw L ' " _
__r . = L C{r) T (4.10)
am S(n) : a v
v
where v
EI
a —al-2
m
and Cér) is the rth modal base shear coefficient, defined by

(See Appendix IV)

- (Af$r(x) dx) ?
C(r) - ' (4.11)

v I
(d[¢;(x) dx)

It should be noted that'Cér) represents also the modal unit

effective mass [5]. From Eg. {4.11l), one can determine the
relation between the flexural (and shear) stiffness taper
Ty and the unit, effective mass for different modes.

The overturning moment at the base of the structure is

another important parameter which-was investigated.

The ovdrturning moment of mode "r" is the integration
R ) ' )
over the béam length of the product of the inertia force
Fr(x) at a level x and the distance x to the base of the beam.
It can be expressed, using'Eq._(4.3), as
L

- ) (r) - : .
Mr = m I‘r mr SV fx ¢r(x) -d}; . (4.12)

Q
The integration on the R.H.S. of Eq. (4.12) can be rewritten

in the form



AN

- L ‘ n L ‘ ‘
fx$r(x)- dx = Z qi(r) fxfbi-(x) dx ‘ (4.13) -
o a

o} i=1

v

Again, the integration on the R.H.S. of Eqg. (4.13) can be

written -in the. expanded form

'L L L
fx¢i(x) dx = As fx Sin Bi(x) + Bi fx Cos Bi'(x)
o o) o
L L
+ Ci fx sinh'_Bi(x)‘ + Di fx Cosh Bi(x) . {(4.14)
0 o :

The integrals of Eq. _(4.14) are lisfed in Appendix V.

The maximum overturning moment for mode "r" can be evaluated
by using Eq. (4.13) togeth?r with the previously calculated
value of the modal pérticipation factor Fr. |

The normalized modal base overturhing moment assuming

{r)

v is (See Appendix IV)

' constant velocity response spectfum S

M 2 3
¥ nax A RS o (4.15)
—r ==
ams3 (r) a M :
v
where CM(r) is the rth modal base overturning moment coefficient,
in the form (See Appendix IV)'
¢ L L
dfrbr(x) dx d[ X% _(x) dx
(r) _ : 4.16
Cy = — (4.16)

JI-“—z
$°(x) dx
s T

From Eg. (4.16), the relation between the stiffness taper T, -

. -
and the effective modal moment CM(r) can be investigated.



Inlqrder to determine maximum valuces of a specific

responsedparameter, the maximum responsc of that parameter
in each mode must bé determined and the resulting modal maxima
will then be combined using the "square root sum of squares"
summation (SRSS) to obtain anlestimate of the overall maximum
for, that parameter.

" Using the SRSS approximation for the determination of the
maximum value of response parameters, énd including “n"
contributing modes in the totai response of the structure the

maximum base shear and overturning moment are obtained, resp-

ectively, as

max (4.17)

max (4.19)-

An alternate method to determlne the maximum value of
a response parameter is to add the absolute modal values, thus
obtaining an upper bound This criterion for the determlnatlon
of .the maximum value of response is termed the ABS method.

Using the ABS criterion and including n contributing modes
in the total response of the structure, the maximum base shear

and overturning moment are expressed as



n ) .
v s> v,
max max . (4.19)
Ml < & om |
max EE rmax (4.20)
' r=1

In this investiéation of the effect of stiffness taper on
the résponse.parameters of shear and flexural systems, the
SRSS method will generally be used. However, SRSS and ABS
assumptiqns will be éémpared when investigating the effect of

-

stiffness taper on the base shear. 4

4.2 Moment Reduction Factor

The static seismic loading provisions of the 1975 National
Building Code of Canada [9] include an Qverturning moment red-
uction factor. This factor was included in order to recognize
that the overturning moment computed from the static load,
distribuﬁioﬁ is likely to be larger than the actual maximum
dynamic moment."'

The overturning moment reduction factor can be defined as
"the ratio of'dynamic base moment to static base moment when
the dynamic base shear and the static base shear are taken to
be equal”. fThis definiéion,tan be expressed in terms of the

maximum overturning moment and base shear in the form [4]

M Mo '
J = T V;H .- (4.21)



£

in which J is the moment reduction factor computed for n modes
in the dynamic response, Vo and Mo ?re the bése shear and over-
turning moment computed from the static loading, and H is the
height of the structure.. The static non-dimensional moment to
shear ratio can be subsgituted by a factor which depends on

the form of the struétgrea Using notation "ao" for this ratio’

allows the moment reduction factor to be expressed in the form

- L fu
Ce () e
(@]
where ' ' H
. o ‘
4% T ¥ (4.23)
O = ":l

ey

=
kg

The 1975 National Building Code of Canada discussed in more

detail the choice of factor a,. It specifies that the factor

a, equals 0.667 in case of the normal triangular static loading.

In case of slender bui;dings, the code requires an additional

concentrated forcq F

¢ at the top. of the structure, as shown in

Fig. 3. The maximum value of this top force if 15% of the base

shear, and the corresponding vglue of a, is 0.715.



CHAPTER V  *

RESULTS AND DISCUSSION.

- .

In this Chapter, modal freguencies and shapes, obtained

from the dynamic analysis described in~Chapter-III for non-~
uniform beahs of both the shear and'flexural types, are pre—
sented as functions of, stiffness taper Ty varied between 1 and
24. In addltlon, the seismic response parameters, dlscussed
in Chapter IV, are similarly 1nvest1gated for both types of

beams, and the importance Qf the effect of stiffness taper is

evaluated from the data.
% .
5.1 Effect of Taper on Modal Frequencies

' Fiéure 4 presents the effect of flexural stiffness taper
on beam modal frequencies. The purves indicate that increasing
Ty leads to a continuops decrease in the nérmalizedfbeam fre-
quencies. For the fundamental mode, the decrease in frequency‘
due to increasing Ty from 1 to 5 represents 78% of the total
decrease that would result from iacreasing Tje up'to_24. The
behaviour of the higher modesbis seen to be similar. Thus,
structures with small flexural’stiffness taper are more sensitive
to variation of T} than those haviné large taper.

The effect of shear ‘stiffness taper on:beam modal frequenc-

les is preseﬁted in Fig. 5. It can be seen that the behav1our

of the tapered stiffness shear beam for lncrea51ng Tk "is similar

"to that Qf the flexural beam? ' T

2
"
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5.2 Effect of Taper on Mode Shapes

Figures 6 and 7 show- the flrst and second mode shapes for
tapered flexural and shear beams, respectlvely. *Both beams
indicate larger fundamental mode dlsplacements at the tdp than
~ occur in the eorresponding uniform beams. ;f-the top displace-
ments are‘normaiized to the value of the-top displacement for
the uniform beam, the modal displacements of tapered stiffness
beams along_the height of the beam wili be less than those of
uniform beams.

In order to examine the valrdlty of this c¢onclusion, &he
- effect of taper on mode shapes has been verlfled using both
‘the Myklestad-?rohl and the Stodola‘methods [(11. The results

obtained from both methods conform with' the pointed conclusion.

-

5.3 Effect of Taoer on Distribution of Modal Strains ’

-

Figures 8 and 9 examlne modal strains as glven by 5' and

E',respectlvely, for-beams with tapered stiffness in flexure
L
for the first twotmodes. " The figures confirm the conclusron g

by Pekau [S] that "the effect of 'increasing Tk-lS to shift the,

reglon-of max1mum straln towards the upper- portlons of the '~

I

»
r

structure - 5 The whlnlash" phenomenon is ev1dent in the
fgrst and second modes presented here.

Fig. 10 shows the effect of shear stiffness taper on the
first derivative of mode shapes for the first two modes. The
e . ® ‘ .

"whiplash" effect is evident in both modes.
. \ .t L
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=T 42 | :

. Figs. 11 and 12 show the shear,force distribution* for
P . . .

tapered flexural-and-tapered shear beams, respectiVeiy, for the
first two modes. - , : _ ]; L |
The shear distribution presented in Fig. ll shows a slight
decrease wath»increaSing values of stiffness taper for both
» modes. . ) ‘ ) | |
e : In Fig. 12, increasing values of stiffness taper leads to
a slighthincrease in the shear force distribution fbr the first
mode. As for the secondﬂyode, the figure shows an increase in
',‘ ~ 'the lower portions accompanied by a similar decre@yse in the
uPpé£ portions of the structure with increasing v eeiof.stiff:'
'néss'taper.*-Moreover, the stresses are shifteq_towards the_- -

. * k . -
. upper portions of the structure.

iv ': 5.4 Effect of Taper -on Base.Shear1 ' //\

' The effect‘of flexural stiffness taper on *beam modal'base
v 'shear coeffiCients C (r) is shown 1f Fig 13 for the first
four modes. 'Increa51ng T leads to a decrease in the modal shear.
boeffieient for the first two modes and a corresponding increase

in the higher modes. ' "

*  Shear force is given by

T

Vo (x). = K(x)¢_(x) o " for shear beams
Cf (gD S
_ — 'k ET(x) « .  _;
Vr(x)_EIo -¢r (.x) o L BEI +_ EI . 'q)r (x}
k. o - o

Lo T ' . for flexural beams
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Fig. 14 sho the effect of flexural stiffness taper on
the togal base shear obtained from the first four modes, cal=-
culated by ‘the SRSS, using Eg. (4.11). Increasing Ty resulté
in a significant decrease in the total base shear. The decreasc
in the total base shear for Ty = 24 is approximately 24% of.

. the correspbnding value.fbr'% =1,

Fig. 15 shows the effect Sf shear'stiffness taper on the
médal base sheér coefficient Cv(r) for tapered stiffness shear
beams. Increasing value of Ty leads.to a decrease in the beam
modal base shear coefficient for the first mode and a corres-
ponding increase-for the higher modes.

Fig. 16 shows the effect of shear stiffness taper on the
'total,base sheéar obtained from the first fouf modes, calcul-
ated By the SRSS using Eg. (4.11). It can be noticed that the
'shear beam behaves in a manner similar 10 the flexural beam;
i.e., Enqreasing 7y from 1 to 24 results in decreasing the
base sheér by 26% approximately.

Table I lists'the‘vélues of'the Cv(r), the modal base
shear coefficiénts (or the unit effectivg modal masses), for
taééred shear, flexural and élso hygrid beams. The latter was
defined as a beam whose behaviour is given by the'average of
the céefficients for tapefed flexural and tapered shear beams.

Fig. 17 compareévthe variation of the total base shear

with T) for shear and flexural beams using ABS and SRSS com-

bination rules for modal contributions. It can be seen that



increasing Ty decrecases the total base shear, using both rules

of combination, for both shear as well as flexural beams.

5.5 Effect of Taper on 'Overturning Moment

Fig. 18 shows the effect of flexural stiffneéss taper on -«

(r) for the first

beam modal overturning moment coefficient Cy
four modes. Increasing stiffness taper Tk results in a decreasec
in the modal overturning moment cocfficient for the fundamental
mode and a correspanding increase in the higher modes.
| Fig. 19 shows the effect of flexural stiféness taper on

the tdtallbase overturning moment obtained from Egq. (4.16) using
the first four modes and the SRSS metﬁod. Increasing t, results
in‘a significant decrease in the total base overturning moment.
.The decrease in'thgltAtal oVefturning moment at Tk = 24 is
approkimately 13% of the value of T, = 1.

Fig. 20 shows the effect of shear stiffness taper on beam
ﬁodal overturning moment cogfficient CM(r) for the first four
modes. Increasing 1y leads to a decrease in the beam modal
overturning moment coefficient for the first mode and correspon-
ding increases in the higher modes. ]

Fig. 21 shows the effect of shear stifﬁncss taper 7, on
the total overturning moment obtéingd from Eq. (4.16) for
the first four modes and the SRSS method. Increasing Ty
results in a significant decrease in the total overturning

moment. The decrease for T = 24 is approximately‘26% of ;hev

value at T, = 1.



5.6 Base Shear and Qverturning Moment for Taperced Hybrid Beams

The results obtained by Pekau [5] as well as those of this

study for the base shear and'overturning moment of tapered stif-

fness shear beams can be combined with the corresponding data

-for tapered stiffness flexural beams to estimate the behaviour

of tapered hybrid beams.

It is well known that a cantilever structure is a combin-

ation of a pure shear and a pure flexural beam. The ratio of
the base shear stiffness ko té the base flexural stiffness
EI0 determines its location between thg two limiting types
of behaviouf for a particular taper-t . If, for example, the

k
ratio [4]

aH = 2 A (5.1)

for the hybrid beam ébprdaches zero, the base shear or the
overturning moment can be determined from the curves of a pure
shear beam. On the other hand, if the same ratio approaches
infinity, the required parameter can be obtained from the
curves of a pure flexurai beam. For any value of the ratio,
other than zero and inf{nity, the required parameter can be
approximated by interpolation between shear and flexural

behaviour.

5.7 Effect of Taper on Moment Reduction Factor

-~y

Figure 22 shows the effect of flexural stiffness taper

on the non—dimensional base moment reduction factor J obtained

A



from Eq. (4.22) for both normal ;nd slender structures.
Incregsing Tx leads to an incrcase in the moment reduction
facto; for both types of structures. Morevoer, the maximum
effect of variation in Ty occurs for sﬁructures with small
valués of stiffness taper but for those already having large
values of taper further increase in Ty has_little sigpificance.
Similarly, Fig. 23 compares the effect of shear stiffness
taper on Fhe non-dimensional base moment reauction factor J
for both normal and slender strucﬁures. The behaviour is sim-
ilar to that of flexural taper except.that the varlatlon in J
with shear taper is pPractically insignificant compared to that
of the flexural taper (14% for flexural taper'vs. 0.54% for
* shear tapér over a change"in the stiffness taper from 1 to 24),
Fig. 24 gives the moment reduction factor J for tapered
hybgid peams as the average of the facﬁors for tapered shear

stiffness and tapered flexural stiffness beams.



CHAPTER VI

CONCLUSIONS

This étudy presents an investigation of the dynamic pro-
perties of tower -like structures which have been idealized as
cantilever beams with uniform mass and linearly-tapéred stiff-
ness distributions. The results of Ehis study are applicable
to tall structﬁres having uniform mass and non?uniform stiff-
ness'distributions { e.g., as is common for high-riﬁe bﬁildings).
The frequencies, mode shapes ané seismic responsc paraﬁeters for
such structures known to be similar to thése of the idealized
peam models treated in this study.

The analysis which has been performed in this study of the
behaviour of tapered étiffness beams shows that structural taper
in both flexure..and shear has a significant effect on both the

dynamic properties as well as seismic response parameters.

Data has been.presented in graphical form, representing
the results of this study. These provide a firstlestimate of
expected seismic behaviour of tall structures where the effect
of slenderﬁess may be examined in terms of taper in structural
stiffness.

In particular, the 1975 National Building Code of Canada
[9] gives the wvalue of the momént reduction factor fog uniform
stiffness structures. The results presented here havéishown.
that moment reduqtidn factor J for tapered stiffness structurcs

is largér than that for corresponding uniform stiffness struc-

L
!

/
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tures. The increase in some cases may be as much as 14%
(Tk = 24). This mean? Fhat the vélue given in tﬁe NBC Code
is not conservative for structures with tapered stiffness
since it underestimates the value of fhe dynamic;base moment
In order to analyze the effects of earthquake forces on
tall or unﬁgual buildings Ehe NBE Codﬁ-recommepds the use of
dynamic analysis. The dynamic'analysis may be simplifi;a by
using the resultg obtained in this stﬁdy to treat tall and
slender structures.
A suggesééd future study is an investigation of a more
refined hybrid shear-flexural system to model actual struc-

tural behaviour where both column axial deformation as well

as frame action are important.

-
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TABLE I - SUMMARY OF MODAL SHEAR COEFFICIENTS
Type’ of (1) (2) - (3) (4) I (0
Beam , Tk C_v y v Sy rélcv
/
1.0 0.811 0.090 0.032 0.016 0.949
é 3.0 0.765 0.110 0.040 '0.020 0.935
5 .
0 6.0 0.765 0.119 0.044 0.023 0.928
9.0 0.730 0.123 0.046 0.024 0.923
1.0 0.613 0L188_ 0.065 0.033 0.899
5 3.0 0.597 0.186 0.069 0.036 0.888
2
5 6.0 |+ 0.591 | 0.184 0.071 0.038 '0.884
ey 9% .
9,0 0.588 0.183 | 0.072 0.039 0.882
1.0 0.712 0.139 0.049 0.025 0.9.25
o 3.0 0.681 0.148 0.055 0.028 0.912
> o
g% '
S 6.0 0.667. 0.152 0.058 .1 0.031 0.908
9.0 0.659 0.153 0.059 0.032 0.903




e pm——

[1]
2]
13
4]
5]

(6]

171

{8]

(9]

[10}

[1i] |

[12]

on Earthgquakes, Istanbul, ?u;key, 1975.
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APPENDIX I

VIBRATIONS OF UNIFORM SLENDER CANTILEVER BEAMS

1. Flexural Beams
The equation of equilibrium of a uniform cantilever beam

[6]1, for free'vibrations and neglecting the effect of shear

deformations and rotary inertia is

) 2 ‘ 2., o .
3 gT 2 Y[ + M 9——% = 0 ' (1.1)
3t ' ]

ax? | ax?
separation of variables gives the solution

With m constant,

in terms of variables “respectively as

+ and X;
g(t) = A sin (wt) + B cos (wt) (I.2)

)
“in. which A and B are arbltrary constants.

The second part of the solution, in terms of x, is in the

form
' W ' 4 .. ",
¢ (x) - B'9(x) = 0 (I.3)
The eigenvalue problem of Eg. (I.3) for boundary conditions
of a cantilever beam\hés the frequency equation '
= 0 (I.4)

'cosh (Bi) cos (BL) + 1
i 5 - S
T

i
.

The corresponding natural frequencies are exnrdssed in the

form ' . o
| B : : w = (BL)2 nL" L g , (I.5)

»
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The followmng equatlon deflnes the mode shapes normallzed to

unit top dlsplacement

@(x/ﬁ)‘= BN [COSh (BL) + cos (BL) ] [sinh (BL)(x/L) - 51n(BL)(x/1)]

2 sinh(BL} gos (8L} = cosh (BL) 51n (BL)

- cos (BL) x/L)]

_ l..[sidh (8I) + sin (8L)1 [cosh (BL) (x/L)
. 2 )

sinh (AL} -cos (BL) . - cosh (BL) sin (BL)

2. Shear Beams o o .

-

(1.6)

From Ref. [5];'the equation defining the mode shapes is-

given in the form.

e
e s’ .
o Z s j_1) I
¢ (x/L) = sin (2i-1) 77
LS the‘mpde.number.
- L3
" b

s -

€

-

1

e

T e ——

T b

JEORIT T

e

NI
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. APPENDIX II

-~
- o
e

GOVERNING EQUATIONS FOR TAPERED STIFFNESS BEAMS '

1. Flexural Belms

]

The équat{bn éf equilibrium of a non-uniform cantilever

beam, for free vibrations and neglecting the effect of shear

deformatlons and rotary 1nert1a is

. ' ) [
* b .

2 2 2 )
2 |er(x) X taqn X2 o .. (II.1) .
N © o 9x? ax? - at?

The solution of- this equation is ‘a functionjof x and t in the

form

’

Yix,t) = ¢(X)g(t) o (11.2)

The partiaf'differentiation'with respect to each of x and t

-leads to the equations

a“z(x,tj

~r = $V(x)g(t{ (IT1.3)
X
2 .
a—‘-’%"—;ﬂ = 6 (x) g (t) » . (II.4)
t , .

. .
The flexural stiffness of the beam EI(x) is a linear

&
This function can be expressed in the form

- i x
A ~ (1= 1) |
EI(x}) = EI l - ——— | x N (IT.5a)
-~ o TkL ) O



“ | o )

where 2 l
.
EI = EI(o) = flexural stiffness at the base (II.SP)
. P !
1 = EI{o) °_ ratio of base to top flexural (11 5¢)
k EI(L) stiffneﬁs”‘r T
, Substitutiﬁg Eq.. (5) into Eq. (1) leads, after rearranging
terms, to
w T. =1 ne --‘
$ (x) _ 2 k . S (%) 4+ M g(y) _ 0 (LI.6)
$(x) AT L = T X + X ¢ (%) EI(x) gl(t) i

1 ‘ E . '\

The” corresponding eigenvalue problem consists of the following ‘}

‘governing equation

¢°(x) = 2 (Ax + B)O" () + C 6(x)- = 0 (I1.7)

[N

for which a closed form solition is not available.

,2;‘ Shear Beams -
From Ref. [5), the differential equation for tapered

stiffnéss\iteaf beam is ' | . ;

F 2 — ' i
a’s | + A% = 0 - ' (II.8) ;
v2 : < :

<=
<l&

o}

(where the bars denote transformed variables) with the trans-

formaiion N
(-1 :
VE= 4l - S— x|, v 0 ’ (I1.9)
and ' . !
ek __k

c (Tk—l)



The boundary conditions, in the transformed form,
. & '

$=o,v=_,2

Il
o

The non-dimensional frequency of the rth mode is

L L _ (1 -1)- )
c Tk r

The corresponding eigenfunction is

— JO(ZAr) \
¢ (V) = JO(Arv) T;TET;T YO(Arv)
. ¢
. “'."r‘r

are

(I1.10)

© (II.11)

A

(IT.12)

(I1.13)

-
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APPENDIX III

ORTHOGONALITY CONDITIONS FOR ’NON-UNIFORM BEAMS

N

1. Flexural Beams '\\‘ _ ' N L

. N g :
The orthogonality cohditions for flexural beams having con-

stant mass and non-uniform stiffness distributions can be sum-

'marizéd as..[8] _ . '

L _ .
_ dx = 0 - (ITI.1)
f¢r 3, . .
O, .
‘ o L -d2$r dz'as .
, Jfﬁx x) —= dx = 0 - (III.2)
A dx*  ax? -

. L 2— ‘
~ 2 | a“¢ : {
Q{¢S 9—; EI(x) —= | ax =0 (III.3)

dx dx?

Egqs. (IITX.1), (IiI.2)and (III.3) are true for r ¥ s for

uniform and non-uniform beams for any combination of free,

simply supported anc clamped ends. For end conditions containing
’ n N M .
'elastic constraints, Egs. ({II.l,zi/ﬁ{e valid but not =q.’. (III.2).

For the special(case of r = sdjth orthogonality ‘co {tion is

given as IB]

.

o (IIT 4

-



2. Shear Beams -

*

The ,orthogbnality condition for non-uniform shear beams is
given in Ref [5] as
o

/

L a3 2 ... L 2
' . vl _ 2 -
fk {x) [ax— (x)] dx = m W f[¢r(x)J-- dx p (I1I.5)
o) , § o . ﬁ
. . ,
Fl
]
TN

i e
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APPENDIX IV * .

- - -

DERIVATION OF MODAL BASE SHEAR AND MODAL BASE
OVERTURNING. MOMENT EXPRESSIONS
e Coe

1. Modal Base Shear

The base shear of the beam can be expressed in terms

The normalized base shear can be expressed as

of
the spgctral velocity in the form
. L . '
_ {r). : T Al
v, =ml_wS ffsr(x) dax | . {4-9)
B} max / . _ ‘
f?- (x) dx LT
* (r}
v = m w. S’ p(x) dx ’
J32 0 ax o .
3. o
L _‘l ¢r(x) dx 1
[ L [« 2 ’ (r)
= m T ~ wrSV L f$r(x) dx
L éf_gi(x) dx o .



2. Modal Base Overturning Moment

e

4

The overturning moment at the base of the beam can b

expressed in terms of the spectral velocity in the form

: T L
= (x) s ~ -
M =m T, w. S f x ¢_(x) dx o~ (4-12)
max : 5 -

Using Eg. (4.2) fc;r r in the preceding equation yields

g J@(x) ax
M = m

L
(1) [x3 ; .
w2 .
6[¢r(X) dx o
T L (x) dx L
=m - : w  SiT) - szx $ _(x) dx
'’ Tr v
02 (x) dx o .
0 >

where

i N
jar(x_) dxfxiir(x) dx
O

f'tffi‘_(x) dx -
o

ol

The normalized base overturning moment can be expressed as

M

r w L2 ' -
S ( : ) o ' (4=
da m Svr a N

-

. L " P l'
r L .
max (“’r ) e fr) . (4-10)
. a .‘V
ams§s
v

e e W
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APPENDIX V

EVALUATION

l. Generalized Maés and Sti

OF INTEGRALS

ffﬁesé'

L’

L) f Ain (B, x) A (B, x.) f

’ US.na the %ms&rmal—.on
lads +o

f Aln (8L !t) Ain (&L x ) clx

IF aL pL

f A’ (8L, .2) dz (___

é
AR ) . ‘ ?

.J-' cos (Biy.2) Ain (g,L-L.Z)JZ =
(3) f'm'nh (p&i.z) Ain (p1-2) dz =

ke oL - [

J ninh (BL.7) Ain ( L; .Z) 42 =

Ain (pL x) A (ﬁLi __) dr

?.:3&.--

dx - LJZ

no.

Lf Ain (BL, . Z) ain (BL 1.)47.

- L (A.n(ui. BL;) . 4in (BL!'?BLJ)
QCBL BLJ)' R (B, BL;

» ‘the previous expression -l-ahs the form

T .A'm (2 BLi.)) -
@) flcos (BL;.2) an (pL:].Z) 4z =

1 (.CDS (BL.'+8.Lj)+ Cos‘(“Bl-j.. L)
2OBLy By 2 (BY- BLy)
l |

B 2 (ﬁ'ﬁ- BL'j) 2( Bl.j— L)

| 3 .
———— Ain (BL.)
2(§L) -

FT (L Am(BL ) Cash (BL)
L+

3

- By Cosl(BLJ) 5'"“(%))_.

(Afn (ﬁ‘-l) 955"‘ (pLy) .
- Co3-(BL;) stah (BL;))

e

A pLy
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R CY) flcosh (v, .2) ain(éL-.l) 4t =
o . o ' al.~f+ BL;
< . . = pL ces (pL)c°=h(pLJ+BL)

I.’r BL: =~ BL . .

2

(Bl A\n(BL ) ainh (BL; )

f Cosh (BL 7) ain (pL; . 2) AL =

o

( Mn (BL; ) aink (BLJ
~ €03 (BLY) Cosh (BL;) + l)
(S)f A'in (BL,.2) C"-’*(ﬁkj'.z)az“ = ( cos(BL;4 aLJ)+ Cos (BLi- BLy) .

2By Bl 2(BL-BL)
A

1
2 (B4 BY) 208, Bl-j))
o /

L

I"F e'LL- BL ;
f Ain (BL; z) Cos (PL;.T) Az SRS Ain® BL;
2 B\,

(&) f ws(ﬂL z_) cos (fL;-2). dz = Am(ﬂ—ﬂh) Ain (Bl 4 BL)
1-? FLL._ ﬂ 2(pL;. BLy) 2(BL;+BLJ)
fm CBL 7_)41 - AmQBL) 1

48 2

1 .f Air\h (ﬂLL 7.) Cos (BLJ'L) d1 =;f (@L ﬁw\(BL&) Ainh (ﬁL )

| ﬁLL + 5"
) - . + By tos () cosh (pL)
- - B
If Bl B,
| ¢
f Ainh (pL..7) cos (pl;.2) dT = b ( ain (BL) Ainh (BL )
a L. .
S ' o ' +C°s(pL)cosh(pL)-|) :
(8) [ cosh (pL,-2) o5 (prii1) Sz = LB ain (B cosh (B
° o fL f BL;

| ‘ | - . &L Cos (PLJ) Ainh (pLJ)
IF By= By : , ‘ :

'[I Cosh CPIL'L.’Z)- Cos (ﬁl.'l.'f-) dz =

(ain (pL;) tosh (L)
-+ 3 (L) amb (L)) .

L
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() f Mn (BL:.Z) ainh (bLj.zr) dz = = CBL; Ain CBL 1) cosh (BL))

BL; 4+ B»L
S : - Bty cos (BL; )y ainh (pLj)).
BBy | e
f Ain (B, 1) Am\n (1) 9z = —— (AinBL) tosh (L)

ZBM

1

~ Cos (Bl;) Aink(p\.#,)) .
- By, ain (L)) sinke (BL)
BLy + Bl oy |
-+ BLy con (L) cosh (BLY)
- Fk&) :
it BL= By Y~ P
[ cos (B 1) aink (BL.2) dz = ( Ain (BL,) sink (BLY -
L. : .
2 Yo ces (L) (jns\'\ (@L-l):.l) .

(11) f ainh (RL.2) Am\, (pL ) dz = Anh(PUaBL) _ pink (BLI-BLYD
d(Bhypp)  2(py-pLy

. | :
(m)'f_c.'os (BL.Z) sinh (ptj.'l.)c\z =

1? e By
' in L;
f»mh ($.1)dz = A_k_é%i_)_ -

Cox?t\_(FLi+ BLi) . Cosh (PLi-BLj)
ZCRL By 2CRL-py)
! {

2(BL+ By 2(RG-hy)

(12) fCosk (gL, .z) pinh

L.2) dz -

1? Bl By

/ Cosh (B z)nm\\([sL ) iz - GGy |
ARy 4 By,

3

~

( BL i (BL) ainh (BLy)
- P, cos(R\) Cosh (PL )

+ PL)

B

(Iﬂ)'f Ain (BL.I'.':.) Cosh (BL5-1) A?_ ._.__1__.._
s L ‘ . - &L‘- + ﬁL

o= BTN

) f Ain Lu‘l) Cosh (BL.Z) cl-L = a
. " . '-’.

(i (B Aink (8 - Cos CBL) cosh (Bl )
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/
C14) flc.os(BL;.'!.) Cosh (BL;.2)dz = ._;_ (8L, Ain (BL;) Cosh (8L
° _ \ L pL
P+ + B cos (B Ainh (BL)
IR py
f cos (B, 2) Cosh (BL,.2}dz = T (nm(al.\cosk(m)
2

+ Cos (BL:) Aink (gL;)) :

P . . 4 BL: ll\(BL'_ L')'

LP Ainh [pL.2) cosh (BL.2) dz = Cosh (B4 BL) Cos . Bl

( ).f " t@, ) Sosh (B4 2 (R 4Bl i 2(BL-BL)
| |

2(8L Ry . 20BL-BY)
o B gy A

) Goh By !
f Ainh (@L 7.) Cash (R 1) 37— -_ af,  ap

(i) [ cosh (pi;.2 Cosh (BL.z) dz = Anh (P BL)  aink (P-BL3)
f sh (B;.2) Cosh (ply.2) 2B By 2 (LT BY)

N /- ' /
_[ Cosh® (§..2) d2 .= A"‘“(Zm L '
4 pL; 2
' ! : 7Y A . _ At ( BL; = BL3) _ Ain (B ij')
(l?]./”Z Atn (PLI 1) A“.(N‘J 1) 41 z(gL;_ng) 2(9‘-31'5"_])"
g Coo CBU-BL) - cos (B 4 BLy)
o et 2 (e gy

Ty |

- — +
2 ( ?L'. - ﬁLJ)z 2(PL 4 PLi)z

It B= By s

f Z ain (FL ‘7_“.,_ = _ Ain(2BL)  Cos(2p4) + ‘l + ' -
CooAp e ny 4 8By
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(8)  ['2 cos (W;2) ain () dz = - Con BB Cos (g Bl
. ) 2O - 2 (B )
+ Aln (BL - BLy) + Ain (Pli+ By)
2T 2By

'. IF P."z FL" .
[ zoeos (i) min (Byn)dz = ARG Gs (3B
SRS - S T

(B ain (BLy) cosh (pLy)
- B Con (BLy) sinh (L)
&EL.__ (B nin () inkn (313)

By - By o3 (Bl Cash-C(BLy) 4 BL3)
_&,__ (gt ain (B Aink (BL;)

+
(PL"‘

Il

(1q) f‘z Ainh (BLi.1) ain (pL..7) dz
, { d PL Z+P .]

? @l. = bL ) _
fz sinh (BY.Z) 4in ( pL;.2) A-r_ = ._'_._(Ain (BL;) Cosh (pLs)
s (L) Ainh CBLY)

+ |CD5(BL)CDSL\(PL)———-——- .
." szl ZBL

(ﬁL‘ mn(PLJ) Aink (BL3)
| -y Cna(FLJ)Cash (pL)+pL)
BL;
- L- Ain (BL
TIPS ‘(6 BL,) Cosh (Bl
. = By ©s () Sink (@Li))

. /f_ﬂi__ (@Li Ain (B3 Cash (E(*T

(20) f 2 cosh G ) ain (B;.2) dz -
\ f’” h

/" : (N-il L.':.)Z
, * B + fL cos (@L&) S'mh(@b')) 2
IF M N ;sL )
f Z Cosh (BL 1) Ain (8L,2) 4z =.———(Am(5L)nmh(pL) ..Cos(al.)(o:\m(ﬁl.‘))
2 pL;
S B l Cas (FL,) Smh (BL) |

2 ‘PL' \\

(. . -
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(21) f Z 4in (BL;.2) s (P 1)dz=\.f~ Cos (BB, Cos(Bliy B)
2(pu. FLJ) 2(5“-'& BLy) ¢

o Ba (Bl BLY . Sin (Bl BL) '

o 20BL- g.L P2y pl.j)l

1% B = 6‘{1 ; See exrvesnon B . '

. o J ' .
(@) f 2 Cos (B;.2) Cos (BL;.2) dz =" Ain (BL-BL) - ain (B + BLY)

2 (hL;-BLy) 2 (BLiaply)
. Cos (B~ BLY) 4 Cos (BLi 4 BLY)
- 2By 2(BLi+ BLY
N C .
’ RO B 2By By
foRel s B
f Z cos (PLUA-:. . anaBl) | Ge@bd) 0
af e 4 s Rt
(9.3) f'z /A.tn l.i‘.'L) Cos (bLJ ) dt = / (ﬂ\. Ain (BL )nm‘\ (p\_]
' ' %L * bLJ 3 By Cus (o) ceth (BL.) - PL)
.._..EE:L_._.... (b\.; Ain (PLJ) Cash (BLY)
Ll gty
N (@.)_Sinh (@L))
( BLy Ain (BLy) Aink (BLY
Lm’l + ﬁLt)
| + B oo e Cosh (&L;_)) .
1‘F p‘%: PLJ H .

' f ‘ Z ainh (PL, 1) cos (L 2) 4z o ! in (BL)) Aint (BL)
, . | *h Cos (B Cosh (pL}))

(Am (M) Cosh (pL))

T et
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H

I ' .
(24) f Z Cosh (BL;2) cos (BLy2) dz = .

LA
L‘Ll .FL.L)‘

BL,
(py*y Ptf 3

IF o= B, |
_/' Z Cosh’ (§L"'L) cos (BL;2) dz

B e

o (B n;n(eij) cosh (BL) -
B s (B sink ()
(B A () Ain\? ()

- By cos () sk (B) 4 L)

_ { BLy Amn (f&L‘-‘)“ﬁinh (pY)

. (in (p1;) Cosh (L)

Li ,
. S s () mnh (BL))

—

2 BL

(QS) "/'lZ,A"“ (N.-l 7.) AihL\ ( ﬁLJ z)A'Z_ ) .
oY v N pL

By
3 (BL;*s le o

* ) BL;

1 BL. = PLJ , See Txpression 19 .

(26)'f12 Cos (BLib‘Mnb:(pLj 7) di . ]
| : ‘ R

BL,

(mﬁ L 'Y

_5..1_
U‘” BL r.

. It B - Bty 5 See expression 23

_ ( Ain (BLY Ainh (aL-,))

P (§L ain (BL;) Cosh (BL;)

- By cos (L) Ak (pL ))
(fy pin (BL) Ainh (BL)
- B cos (@L)&sh(pL)+ B.)
(@L Bin (BL) Aink (BLy) |

\sL Cos (F.L) Cosh B _pL) :

(BL mn(ﬁL)mnh(pL)

+ pL- Cos (BL) Cosh (f1) - BL)
(pL ain (B Gosh (L)
- B Cns(al.}/\mh(gl))
(pL Ain (BLY Cosh (pL;)
+B Cos (BL) ainh (BL))

1

I3
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(z7) f'z ainh (BL;2) sink (§L;2) d2

lI.F PL‘. = PLJ

2

97 -

_ ainh (BL;_ BL)

2B 2 (Bl py)
_Cosh (BL 1 BL) | Cosh (LI L)
'z(BLM.pL) 2(§L-.-Ptj)z

t \
+

2(8L;, puJ)‘ N 2(BL;- éLj)z

J'2 dink (Byz) dz - AhQBL) T cshCaby 1 T
. . 4 B, .8 N_.;" ' 4 , 8 BL;I
| ‘ }‘/ : '
(28 f-z_'Cosh(pL-,z) ninh (BLi2) 4z = Cosh (BLi 4 BL)) | Cosh (BLj- BLY)
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2. Expfeséions for Modal Analysis

Q) ‘flm'n ("pLiz)A-.v_ =
1 C
@) [ cos (pLz)dz =
) fiAinh(éLiz)Az -
t |
(a) f Cosh (L, 2)dz =
) ['2 in (W23 e -

| .
(6)[ 7 Cos (ﬁ\.-'?_) dz =

(ﬂflz Ainh (BL2)d7

(aij'z Cosh (BL;2) dz

I~ cos (BL;)

B

Ain {BL)
pLi -
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Ainh (BL;)

BL; .

Ain(BL;)
b

: Cos { PL;)
PL;

Cos (BL) | Ain(BLj) _ :

BL A pL®

Losh (BL) _ aAinh(BLy)
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APPENDIX VI
RESULTS OF TESTS FOR CONVERGENCE

The following figures show the results obtained when the
number of terms, n, used to compute dynamic properties and.

Seismic response parameters was varied over the range 2 < n £ 6

for the case of flexural beams. For the shear beams convergence:-
was less of a problem; hence,’'the data for this case is not

presented here.
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