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ABSTRACT

Dynamic Control of Kinematically Redundant Manipulators

Zhengcheng Lin, Ph.D.
Concordia University, 1993

This thesis is concerned with the problem of dynamic control of kinematically redun-
dant manipulators. A robot manipulator is said to be kinematically redundant when it has
more degrees of freedom than are necessary to accomplish a particular task. Kinematic
redundancy in a robot manipulator is a desirable characteristic since such manipulators
have incteased dexterity and versatility due to their self-motion. However, kinematic
redundancy m a manipulator’s structure presents a challenging problem since the richness
in the choice ot joint motions for the sume end-effector trajectory complicates the manipu-
lator Kinematics and control problems considerably.

The main objective of the work presented in this thesis is to design useful control
strategies for kinematically redundant manipulators in order to enhance their performance
to achieve the main task as well as the secondary tasks. In particular, in this thesis the fol-
lowing three problems are coinidered: First, following the impedance control approach,
the problem of minimizing redundant manipulator collision impacts is addressed. The
configuration control approach is used to reduce impulsive forces, while a simplified
impedance control scheme is formulated to minimize rebound effects. Second, a new Car-
tesian control strategy for redundant flexible-joint manipulators, namely the hybrid Carte-

sian-joint control scheme, is proposed. The main idea in this scheme is to control not only
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the manipulator’s end-effector, but also its links so as to achieve specitied positions and
velocities for the end-effector and the links. Finally, a new application of hinematically
redundant manipulators is proposed. namely, that of using redundancy resolution to com-
pensate for joint flexibility. This redundancy resolution scheme is incorporated in a contiol
strategy for redundant flexible-joint manipulators. The problem of possible algorithone
singularities is addressed. and a scheme is proposed which mukes the controller robust

with respect to such singularities.
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1.1 INTRODUCTION

With the pressing need for increasing productivity and quality of end-products, the
use of computer-controlled robots has increased in manufacturing, and in applications in
space, oceans, hazardous environments, etc. Future applications will involve the use of
robots in every aspect of life. To support the development of such broad applications,
robotics has evolved and must evolve, into a systematic approach that addresses all
aspects of the design, manufacture, control and applications of robots.

A robot is a reprogrammable multi-functional manipulator designed 10 move materi-
als, parts, tools, or specialized devices, through variable programmed motions for the per-
formance of a variety of tasks. In short, robot is a programmable general purpose
manipulator with sensors that can perform various tasks. More precisely, a robot in the
1990s is better defined as a machine which (1) is programmable; (2) works in contact with
its environment, for example, a manipulator arm which performs “pick and place”
motions, or “‘compliant™ motion; and (3) behaves in an “intelligent” way, i.e., the robot
senses and reacts to changes in its environment. A robot manipulator usually consists of
several rigid (or flexible) links interconnected in series (or in parallel) by revolute or pris-
matic joints. One end of the chain is attached to a supporting hase while the other end is

free and carries a tool to manipulate objects or perform assembly tasks. The motion of the



Chapter 1

joints results in relative motion of the links. Thus, mechanically, a robot is composed of an
arm with actuators, and an end-effector. The arm is designed to reach any workpiece
located within its workspace, The latter is detined as the space of influence of a robot
whose arm can deliver the end-effector to any point within this space. Based on the dimen-
sionality of the robot workspace, one can define two-dimensional (planar) robots where
the robot movements are restricted to two dimensional space, and three-dimensional
rohots where the manipulator can move freely in three dimensional space. In the case of
three-dimensional manipulators, the arm usually has six degrees-of-freedom in order to
achieve a desired position and orientation of the end-effector in three-dimensional space.

Robot manipulators so far have been used primarily for applications where the work-
ing environments of the manipulators are well arranged - called **artificial environments™.
Also, the workpiece that the manipulator is to grasp is placed at an “easy™ location. and
the path and the goal are both in an ““easy” area within the workspace that is basically free
of abstacles, or where the manipulator configuration is not in the neighborhood of singu-
larities or joint limits. However, setting up environments that meet these assumptions
often costs more than the manipulators themselves, and this obviously limits the applica-
tions of manip..lators in industrial environments.

To overcome these limitations. it is necessary to develop manipulators that possess
functions which allow them to perform more difficut and sophisticated tasks which can-
not usually be done by conventional manipulators. For example, avoiding collisions
between a manipulator and objects in its workspace while maintaining proper end-effector
trajectory tracking. Such manipulators are said to be dexterous and versatile. The need for
dexterous and versatile robotic systems is becoming important for applications in space
and undersea missions, and in hazardous environments.

Dexterity and versatility imply the mechanical ability to carry out various kinds of
tasks in various situations. If a manipulator is to be dexterous and versatile, it should have

more degrees of freedom than a conventional manipulator. For example, a dexterous pla-

9



Chapter 1

nar manipulator should possess more than two degrees of freedom while a dexterous thice
dimensional manipulator should have more than six degrees of freedom. Such manipula-
tors are said to be redundant. Furthermore, mechanical redundancy can be divided into
kinematic redundancy and actuation redundancy. In a robotic system with Kinematic
redundancy, we are able to vary the configuration of the manipulator without changing the
position and orientation of the end-effector, while acruation redundancy is only found in
closed-chain mechanisms. In this thesis, we shall only deal with kinematic redundancy o
kinematically redundant manipulators. Therefore, the term “redundancy™ or “‘redundant
manipulator™ will be used to mean kinematic redundancy or kinematically redundant
manipulator.

Generally speaking. there are a number of advantages that redundant manipulators
have. As in the case of the human arm, they excel in versatility and applicability. More
specifically, they have the potential to avoid singularities | 11][14], avoid obstacles | 2] 10],
avoid structural limitations (e.g., angle limits of a rotational joint), carry out reasonable
actions, e.g., minimum energy motion, optimal velocity motion and minimum torque/
force motion [5]}12], reach behind an object, crawl into concave space, and so on. Redun
dancy can also be used to make a manipulator more reliable in the sense that it can per-
form certain tasks even after a failure of some joints |3, and more accurate |1}, Reliahility
and accuracy are particularly important in some applications such as space and undersea
operations. Therefore, this steadily broadening tield of applications determines the grow-
ing interest towards the analysis, design, and control of redundant robotic systems,

Of course, redundant manipulators have disadvantages as well. They possess more
joints than conventional manipulators. Their structure is more complex, and the richness
in choice of joint motions complicates the manipulator control problem considerably. In
order to take full advantage of the capabilities of redundant manipulators, appropriate and
effective control schemes need to be developed to utilized the redundancy in some uscful

manner.
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Achieving high performance by applying advanced control techniques requires an
increased undersitanding of the dynamics of robot manipulators. A crucial fact in the
dynamic modeling of manipulators that has been realized by robotics researchers in recent
years is the problem of joint flexibility. It has been shown [16][19] that control algorithms
which assume a rigid model for the manipulator are limited in their applicability to real
robots where the assumption of nerfect rigidity is never satisfied exactly. For example,
harmonic drives are used as actuators in many robot manipulators. It has been reported
experimentally in [19] that the torsional flexibility in the drive system provides lightly
damped oscillatory modes in the open-loop response of the manipulators. In addition,
torque transducers, drive shaft stiffness or drive belts are considered as sources of joint
flexibility for robot manipulators. Therefore, it is important to take joint flexibility into
account in the modeling and design of robot controllers if high accurate performance is to

be achieved.

1.2 MOTIVATION AND OBJECTIVES GF THE THESIS

Redundant manipulator control and flexible-joint manipulator control are two rela-
tively complex problems in robotics field. Although a great deal of effort has been made
and many papers have been published in these two areas, e.g. see [6][13][151[17){7][9N
[IR]120]. there still remain several problems which have not been solved adequately.
Moreover, the issues of redundancy and joint flexibility can appear together when we deal
with the problem of controlling a redundant flexible-joint manipulator. This combination
may even create problems that have not been dealt with previously. These are challenging
and difticult problems. The need to solve these problems has provided the motivation for
the research described in this thesis.

Control of manipulator collision impact is a rather complicated problem which cannot
be solved by directly applying a manipulator control scheme developed for free space

tracking, or contact motion tracking. Using redundancy for collision impact reduction is a
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relatively new research topic [4][8][21]. A better understanding of this mechanical phe-
nomenon is needed. and more comprehensive control strategies need to be developed to
cope with this complex situation that arises as a result of collisions between a manipula-
tor’s end-effector and a workspace object. In this thesis, an impedance control based strat-
egy for controlling collision impacts is presented. The control scheme consists of a
simplified impedance controller and an augmented configuration controller. The purpose
of the simplified impedance controller is to reduce both impulsive forces and rebound
effects, while the auginented configuration controller 1s designed for the minimization of
impulsive forces in the redundant manipulator.

Existing flexible-joint manipulator control strategies are only based in joint space and
suitable for non-redundant manipulators [9][18}[20]. However, redundant manipulators
may also have joint flexibility, in particular when elastic actuators are used. In this circum-
stance, existing joint schemes for non-redundant manipulators may no longer be suitable
for the redundant case. Therefore, it is necessary to develop Cartesian control schemes tfor
redundant flexible-joint manipulators. In this thesis, a new control strategy called hivhrid
Cartesian-joint control is introduced, and mmportant issues such as disturbances due o
joint flexibility, manipulator self-motion control, and the relationship between distur-
bances arising from joint flexibility and self-motion are addressed. Stability of the pro-
posed scheme is shown using the Lyapunov function approich.

Using kinematically redundant manipulators for obstacle avoidance, singulanty
avoidance, and kinematic optimization [2]]10][11][13]]14]]17] has become a very active
research area. However, almost no attention has been paid to the possibility of using Kine-
matic redundancy in solving the problem of how a redundant manipulator can compensate
for joint flexibility by appropriate configurations of the redundant manipulator. To address
this problem in this thesis, a Cartesian space based control scheme tor redundant fiexible-
joint manipulators is developed. The pseudo-inverse approach is used for redundancy res-

olution while the arbitrary vector is determined such that the redundancy is utilized to
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compensate for joint flexibility. The main idea behind this approach is to use the manipu-
lator’s self motion to “shape” the posture of the manipulator in such a way that the inter-

nal link motion eliminates the effect of the torsional force due to joint flexibility.

1.3 THESIS OUTLINE

Chapter 2: Redundant Manipulators: Kinematics and Redundancy Resolution
This chapter introduces some fundamental concepts which are extensively used

throughout the thesis such as the concept of the kinematically redundant manipulators, and

various issues in kinematic analysis and redundancy resolution. From a survey of a large

number of publications, we also give an up-to-date review of the existing approaches of

kinematic redundancy resolution. This forms the basis for the construction of the control

strategies proposed in later chapters.

Chapter 3: Dynamic Modeling of Rigid- and Flexible-Joint Manipulators

In this chapter, we present the basic dynamic equations for a rigid-link, open-chain
cobot manmpulator. The tormulation ot a manipulator dynamic imodel 1s given both in joint
and Cartesian spaces. Also, we specify functional relationships between joint and Curte-
sian spaces for the nonlinear inertia matrix, Coriolis and centrifugal, gravitational, and
frictional terms. Furthermore, the general formulation of the dynamic model for flexible-
joint manipulators is introduced using the Lagrangian and the Newton-Euler approach.
Finally, a simplified dynamic model for a flexible-joint manipulator, which will be used in

this thesis, is discussed.

Chapter 4: Impedance Control of Redundant Manipulators for Minimization of Col-
lision Impact
In this chapter, an impedunce control based strategy for collision impact control of

redundant manipulators is presented. The controller consists of a simplified impedance

6




Chapter 1

controller and an augmented contiguration controller. The simphitied impedance controller
is designed to reduce the impulsive forces as well as the rebound effects. The augmented
configuration controller is designed to minimize collision impulsive forces. Contimaton

of the theoretical analysis is shown by computer simulations.

Chapter 5: Cartesian Control of Redundant Flexible-Joint Manipulators

In this chapter, the issue of redundant flexible-joint manipulator contiol is addressed.
A new control strategy called hybrid Cartesian-joint control is introduced which consists
of a Cartestan tracking controller, a link tracking controller, and a motor tracking control-
ler. The construction of the proposed control scheme is based on the analysis of a flexible-
Joint non-redundant joint space scheme. as well as a Cartesian space schome. Important
issues such as the effect of disturbances caused by joint Hexibility, control of the manmipu
lator’s self-motion, and the relationship between the disturbances and selt-motion are also
addressed. A stability analysis for the proposed controller is given, and computer sumula-

tions for verifying the performance of the proposed control strategy are presented.

Chapter 6: Dynamic Control of Reclundant Manipuiators to Compensate for Joint
Flexibility

A general dynamic model of a redundant rigid/fiexible-joint manipulator 18 antro
duced in this chapter. This allows us consider both rigid as well as flexible jomts
manipulator. Based on this model, a Cartesian space control scheme for rigid/Hexible-joint
redundant manipulators is developed. In this scheme, following the psceudo-inverse
approach, redundancy is resolved to compensate against the effect of jomnt flexibility. To
avoid possible algorithmic singularities, a modified damped feast-squares approach s
incorporated in the control scheme. Issues concerning the compensation —apability and
estimation of higher order derivatives are also discussed. Stability of the resulting closed-

loop system is examined. Finally, numerical simulations are given to illustrate the applica-
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tion of the proposed control scheme.

Chapter 7: Conclusions and Future Research

Based on the proposed control strategies and algorithms for rigid as well as flexible
joint redundant manipulators, general conclusions concerning the derivations, analysis,
and results of this thesis are given in this chapter. Possible extensions of the results to

existing and new problems in redundant manipulator control are also discussed.
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CHAPTER

REDUNDANT MANIPULATORS: KINEMAT-
ICS AND REDUNDANCY RESOLUTION

2.1 INTRODUCTION

The desire to obtain robot performance superior to that achievable with conventional
manipulators has led researchers to study the capabilities of 1obot manipulators which
possess more degrees-of-freedom than those of the conventional ones. This, theretore, led
to the development of redundant manipulators that have shown great potentials in vanous
applications. For instance, it is well known that while a non-redundant manipulator is very
limited i performing a task for obstacle avoidance, a kinematically iedundant mampula-
tor may successfully perform this task. It has also been reported that the singular regions
(the neighboring areas around singularities) significantly limit a manipulator’s workspace
[32]. Redundant manipulators can successfully overcome this problem as well. Further-
more, in addition to the main tracking task performed in Cartesian space, 1redundant
manipulators are capable of optimizing various performance criteria such as jomnt limit
avoidance, minimization of joint velocities, joint accelerations and joint torques, ete. In
this chapter, we shall focus on the topic of kinematically redundant manipulators and their
kinematic analysis. From a survey of a large number of publications, we shall also give a
systematic review of the approaches of kinematic redundancy resolution. Based on this we
shall construct the control strategies that are proposed in later chapters in this thesis.

The rest of the sections in this chapter are organized as follows: An introductory anal-
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ysis for redundant manipulators and their kinematics is given in Section 2.2. In Section
2.3, a systematic review and analysis of redundancy resolution methodologies is pre-

sented. and Section 2.4 draws some conclusions.

2.2 REDUNDANT MANIPULATORS AND KINEMATIC ANALYSIS

A robot manipulator is said to be kinematically “redundant™ if it possesses more
degrees-of-freedom than are necessary for performing a specified task. For example, in
two dimensional space, a planar manipulator with three joints is redundant for achieving
any end-effector position; whereas the manipulator is non-redundant for tasks that involve
positioning as well as orienting of the end-effector. Similarly, in three dimensional space,
a manipulator with seven or more joints is redundant since six degrees-of-freedom are suf-
ficient to position and orient the end-effector in any desired configuration. Furthermore, if
we consider a broader class of robotic mechanisms (planar robot manipulators, mechani-
cal wrists, fingers or legs, multi-arm cooperating robots, etc.) and a broader class of
motion tasks, we say that any robotic mechanism is kinematically redundant whenever
n>m, where i denotes the number of the degrees of freedom that the robot manipulator
possesses. and m represents the number of task variables. The difference n —m denotes
the number of degrees of redundancy.

Redundancy for a robotic manipulator is a desirable characteristic since such a manip-
ulator has increased dexterity and versatility due to the infinite number of joint motions
which result in the same end-effector trajectory. This leads to a variety of applications
such as, obstacle avoidance, singularity avoidance, minimum torque motion, etc. How-
ever, this richness in choosing the joint motions complicates the kinematic computation as
well as the control of redundant manipulators considerably. On the other hand, it is noted
that usually for a non-redundant robot manipulators the kinematic relations and the corre-
sponding control strategies are relatively simple. For a prescribed end-effector trajectory

and a given pose (such as elbow up or down), the motion of the manipulator is uniquely
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determined. However. when this motion is undesirable due to collision with obstacles,
approaching kinematic singularities, or reaching joint limits, there is no freedom for the
non-redundant manipulator to reconfigure itself 50 as to reach around obstacles, o1 to
avoid singularities and joint limits. In order to take full advantage of the capabilities of
redundant manipulators, our goal is to investigate new applications of redundant manipu-
lators, and develop effective control schemes to utilize the redundancy for these apphica-
tions.

Before going into the details of redundancy resolution, First we shall establish some
basic kinematic relations for non-redundant as well as redundant manipulators. Forward
kinematics are described by a nonlinear differentiable vector function A. For each joint
space variable g, the function A provides the corresponding vatiable in Cartesian space,

and this is expressed by the equation

A= Ag) (2.2.1)

Then, the mverse tunction of A. which describes the inverse hinematios, can be defined

symbolically by an equation of the form

2
t9
tJ

g = Aty (

This equation is known to describe a far more difhcult problem than the forward kinemat-
ics in (2.2.1). In general, even for non-redundant manipulators, equation (2.2.2) is highly
nonlinear. Usually, the inverse kinematics problem cannot be solved analytically (except
for those manipulators which are of planar type, or for those munipulators with wrist-pai-
titioned structure), and it is solved using iterative numerical procedures such as the New-
ton-Raphson method. As an alternative to these *‘position level” iterative methods for

solving the inverse kinematics problem, we first discretise the Cartesian path aned assume
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¢ to be some initial joint value, then a small increment of g results in a small increment of
x which can be expressed as x+ Ax = f(g+Aqg). For a small value of Ax, we can

express Ax interms of Ag as

Ax =,(q)Aq (2.2.3)

where J, (¢) is defined as the manipulator’s Jacobian matrix corresponding to the func-

tion A (¢), and can be written as

For a non-redundant manipulator, the dimensions of the joint variable ¢ and the Cartesian
variable a are the same, and thus, /,(g) is a square matrix. In this approach to inverse
kinematics, the displacement Ag in joint space that will guide the end-effector in the
direction Ax is determined by solving equation (2.2.3). For accurate path tracking in Car-
testan space, the variables Ay and Ax must be infinitesimal quantities. This leads us to the

equation

X =J.(q)¢g (2.2.5)
The use of this differential relationship to solve inverse kinematics was first introduced by
Whitney [39]. and is referred to as the resolved motion *ate control method. Also, a sec-
ond order differential relationship between joint and Cartesian space variables can be

described by differentiating (2.2.5) with respect to time to get the equation

X=J.(@)q+d,(q) i (2.2.6)
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Thus, the inverse kinematics problem can also be solved using equation (2.2.6) at the
acceleration level, and this method is referred to as resolved acceleration control {24).
Equations (2.2.1)-(2.2.6) are valid for redundant manipulators as well. Theretore. the
above mentioned techniques can also be used to compute inverse kinematics for redundant
manipulators. However, there is an important difference between non-redundant and
redundant manipulators as far as the inverse kinematic problem is concerned. For non-
redundant manipulators, a finite number of solutions is obtained, while for redundant
manipulators, an infinite number of solutions exist. This implies that one must specity a
functional form of the redundant degrees of freedom which characterize the particulan ies-
olution of redundancy when the inverse kinematic problem is to be solved. This leads us to
the problem of redundancy resolution which will be introduced in more details in the next

section.

2.3 REDUNDANCY RESOLUTION

Manipulator redundancy resolution is a way to specify a functional form of the redun-
dant degrees of freedom based on some objective tunction(s) such that, among the inhinite
number of choices, a specific solution of the inverse kinematics problem is determined.
This has been a research topic that has attracted considerable attention in recent years
[20]{30], and has resulted in a number of different approaches for redundancy resolution,

In order to be able to analyze and evaluate the methods for resolving kinematic redun-
dancy in a systematic way, it is necessary to classify them according to some common cii
teria, properties or underlying mathematical formulations. There are a number of ways for
classifying the methodologies which resolve kinematic redundancy. For example, one can
classify the methods based on performance criteria such as kinematic optimality criteria
(e.g., manipulability index [40]) or kinetic criteria (e.g., joint torques). Alternatively, one
may borrow terminologies from optimization theory and consider a classification into two

classes that utilize (1) local optimization approaches and (2) global optimization
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approaches. These classifications may have some advantages, but they have no direct con-
nections with the control strategies used for redundant manipulators. Since the aim of this
thesis is to develop control strategies for redundant manipulators, we shall consider
another classification where the terminology is based on control techniques. In particular,
the classification is based on control strategies that incorporate end-effector measurements
such as those based on resolved-position, resolved-velocity, and res vlved-acceleration.
Depending on which equation (i.e., equation (2.2.1), (2.2.5) or (2.2.6)) has been chosen as
the basis for solving the inverse kinematics problem, we may say that the redundancy has
been resolved at position, velocity or acceleration level. Thus, all of the methodologies
which resolve kinematic redundancy will be divided into the following categories: (/)
Redundancy resolution at the position level, (1) Redundancy resolution at the velocity
level, and (11) Redundancy resolution at the acceleration level.

In the following sections, we provide a brief overview of a4 number of redundancy res-
olution methodologies, and highlight the most important approaches which will form the

basis for the development of our redundant manipulator control schemes.

2.3.1 Redundancy Resolution at the Position Level
Redundancy resolution at the position level includes methods which “directly”™ map

Cartesian space variables into joint space variables. Symbolically this mapping is defined

space variables, manipulator’s kinematic parameters, and performance criteria for utiliz-
ing the extra degrees of freedom. There are mainly three approaches that can be catego-
rized in this class, namely, a) analytic approaches, b) iterative approaches, and c¢)
configuration control approaches.
a) Analyvtic Approaches

Analytic approaches can be regarded as a generalization of the analytic solutions of

the inverse hinematics of non-redundant manipulators. In this approach, the main objec-
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tive is to express the joint space variables as explicit functions of Cartesian space variables
such that given performance criteria are satisied. The “inverse function™ approach which
has been proposed by Baker and Wampler [6] {7] is probably the best known analytic
approach for resolving kinematic redundancy. This approach is basically a generalization
of the closed-form solution to the inverse kinematics problem for non-redundant manipu-
lators, and cousists of two main steps: (1) based on a global view of the Cartesian space,
an “invertiable™ or “feasible” workspace (i.e., 2 space where there are no singularities) is
selected; (2) a differentiable inverse kinematic function ¢ (¢ = A~") is detined such that
Alg(x)] = x forall x in the feasible workspace. This is used to construct a “tracking
algorithm™ for the function A. To accomplish these two steps, Wampler gives some sim-
ple examples and procedures to derive a simply connected invertible wotkspace as well as
the inverse function g. Comparing with other possible approaches for resolving Kinematic
redundancy, there are two main reasons for considering the inverse function approach.
First it allows real-time path corrections and second, it is cyclic or repeatable ina propes
domain. Some of the shortcomings of the approach are: (i) it restricts the workspace of the
manipulator: (i) there 1s no general procedure for constructing (and optimizing) wiverse
kinematic functions; and (i1i) the use of inverse functions does not allow for any readjust-
ment (self-motion) during the motion. Other examples of analytic approaches can be
found in [¥][13][22].
b) lterative Approaches

Iterative approaches are based on numerical methods for solving a nonlinear set of
algebraic equations. Usually, these equations consist of the equations of forward kinemat
ics and additional equations which optimize some performance criteria. One elegant
method for resolving kinematic redundancy is that proposed in [ 11}, and is formulated as a
constrained optimization problem. This method can be outlined as follows. First, by using
Lagrangian multipliers, the constrained minimization problem is recast as an uncon-

strained minimization problem. Then, assuming that the manipulator Jacobian matrix 1s of
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full rank, a solution is devised based on the nonlinear system of the n algebraic equations
consisting of the forward kinematics equation x = A(g) and a homogeneous equation
Zh = 0, where h is the gradient vector of the constraint function. The matrix Z is com-
posed of the n — m linearly independent vectors which span the null space of the manipu-
lator’s Jacobian matrix. Therefore, the homogeneous equation characterizes the self-
motion of the redundant manipulator. The » algebraic equations can be solved iteratively
using numerical methods. It should be noted that the formulation of redundancy resolution
in this approach is very versatile since the matrix Z depends only on the manipulator Jaco-
bian while the vector i1 depends only on the desired performance criteria. A potential
drawback of the method is the computational complexity since the definition of Z
involves selecting and inverting a full rank submatrix based on the manipulator Jacobian
J,. Some other approaches in this category can be found in [1]]16].
¢) Configuration Control Approaches

The main idea behind configuration control approaches (also called augmented kine-
matics approaches) [33]{34] is that first, the forward kinematics function is augmented in
such o way that its Jacobian matrix is square. and second, the resultant kinematics realiza-
tions are formulated as trajectory tracking problems which can be solved on line using lin-
ear or non-linear control theory. The number of kinematic functions in Cartesian or joint
space is chosen [33] to reflect the desired additional tasks that will be performed using
redundancy. The augmented kinematic function can be viewed as a parametrization of the
manipulator “self-motion™". By self-motion, we mean the internal movement of the link
which does not result in motion of the end-effector. In other words, given an end-effector
position/orientation and the augmenting kinematic functions, the additional tasks are used
to “shape™ the manipulator’s configuration. In this approach, the end-effector Cartesian
coordinates and the kinematic functions are combined together to form a set of “‘configu-

.

ration variables™ which describe the physical configuration of the entire manipulator in

Cartesian space. This task augmentation at the position level produces a kinematic repre-
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sentation of the manipulator which is no longer redundant. i.e.. the dimension of the aug-
mented task space is identical to that of the joint snace. Then. conventional technigues tor
control of non-redundant manipulators are applied directly to achieve task space trajectory
tracking.

Since the configuration control approach will form the basis of our contiol schemes in
later chapters, we elaborate more on this approach. In particular, we describe a kinematic
optimization scheme which can be formulated as a tracking problem within the framework
of configuration control at position level. To see this, let us denote by 1. (¢) the scala
kinematic performance criterion to be optimized by the utilization of redundancy. Then,
applying gradient projection optimization theory [ 19] to L (¢) . subject to the end-etfector
constraint X = J ¢, the optimality criterion for the consuained optimization is given |33}
by

JdL (q)

(J-JF1)y 12 = (2.3.2)
¢t dy

where /" s the pseudo-mverse of the manipulator end-etfector Jacoban matnix J . 'The
matrix (I-J.7J)) e R™*" is of rank r, where r denotes the degrees of redundancy, and

therefore equation (2.3.2) can be reduced to

dL (q)
¢ oy

!

(2.3.3)

where N € R”*" is formed from r linearly independent rows of (/ —.l(,‘ J.) . Notce that
the rows of N, span the r-dimensional null-space of /.. In the conhiguraton conuol
approach, one defines the additional task based on the » kinematic functions of equation
(233)as z(g) = N(,gLa—(qql and the desired trajectory as z, (1) = (0. Then, by combining

the end-effector trajectory with the additional tasks, the augmented configuration vector y

and the augmented Jacobian matrix .J are detined as
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X I,
y = e Jo= |
oL 5 oL
N — 9 (N =
"()(I aq (Nt.aq)

(2.3.4)

Finally, a control scheme is applied to ensure that y (¢) tracks the desired trajectory
y (1) = (2:: ::; ) and at the same time, the kinematic redundancy is resolved such that
the optimal kinematic function L (g) is optimized by the manipulator’s self-motion.

The most important features of the configuration control approach are the following:
(1) By directly controlling the manipulator in Cartesian space, the complicated and time
consuming inverse kinematics computations are avoided. (2) Repeatability of the manipu-
lator's motion is maintained. (3) Because it is a Cartesian space scheme, the method can

be readily extended to hybrid force and position control.

2.3.2 Redundancy Resolution at the Velocity Level

Redundancy resolution at the velocity level involves finding a set of joint velocities ¢
which satisfies equation (2.2.5) for a given end-effector velocity vector x. This approach
is applicable to general manipulators. and is usually well defined in a manipulator’s work-
space except possibly for some numerical difficulties in the neighborhood of the manipu-
lator’s singularities where special care must be taken.

From a linear algebra point of view, depending on the number of joints and the
dimension of the task space, Solution of the inverse kinematics problem at the velocity
level may have “no solutions™ when m > n. a unique solution when m = n, or an infinite
number of solutions when m < n. In practice, in the case that there is no solution, we usu-

ally wish to find the joint velocity which minimizes the error ||/, — x||. and in the case

that there is an infinite number of solutions. we would like to find the minimum norm solu-

tior 1 ¢ll. However. we have m < n in the redundant manipulator case, and thus the prob-
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lem of redundancy resolution results in the solution of an underdetermined linear system
shown in equation (2.2.5). From a mathematical point of view. the solution ot this hinew
system is usually composed of a particular solution. and a general solution or a non-redun-
dant system based solution. In the following, we shall give a briet muoduction to some
important methodologies in this category.
a) Pseudo-inverse based particular solution

A particular solution for the linear system of equation (2.2.5) 15 the minumum norm

solution which is defined by the equation

g =J (g (2139)

. B ~ . .
where the pseudo-inverse /¥ [12] [9] of the Jacobian matris /18 @ genetabized imverse

which satisties the equations

INANEENS NN AR
!
1 —_— + : -— '
Ji1) = dia, Uiy =0 o)

With this definition. the pseudo-inverse .I(,‘ tor the underdetermmed Iimear system of

equation (2.2.5) with J, of full row rank 15 explicitly dehined as

-
g5 =t (23.7)
€ [ (S}

Applications of the pseudo-inverse approach to redundancy resolution has been thor-
oughly reviewed by Klein and Huang [20]. The most important observation they made in
their review is that control of kinematically redundant manipulators based on the pscado

inverse approach produces a dnift in joint space even when a cyche task 1s pertormed
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Cartesian space. Another drawback of the pseudo-inverse approach is that it does not
avoid singulanties. Some other approaches in this category can be found in {21][35][36].
by Werghted pseudo-inverse techniques

The weighted pseudo-inverse approach was first proposed by Whitney [39] who con-

sidered the following solution to equation (2.2.5)

g= (J,) X (2.3.8)

where the matrix (/) ‘ Ts a weighted pseudo-inverse of the Jacobian matrix J,, and is
.

dehined as

to

() F=wrig o awrty (2.3.9)

"
where 91 is a posttive definite weighting matrix. The weighted pseudo-inverse approach is
essentially similar, although not equivalent [35][36]. to the unweighted pseudo-inverse
approach, Thus, tor example. it does not inttoduce algorithne singulatines, and s global
behavior is the same as that of an unweighted pseudo-inverse approach. i.e.. most of the
time the resulting motion is not cyclic,
¢) Psewdo-mnverse based general solution
The pseudo- inverse based general solution of a kinematically redundant manipulator

was hirst suggested by Liegeois {23], and has the form
— Py ] + T o)
g =J v+ U=J71)8 (2.3.10)
where § is anarbitrary vector which can be used for redundancy resolution, and the matrix

(/- ,I!_"‘ J.) v aprojection matrin which projects the arbitrary vector £ onto the null space

of J Hence, the term (/ —.I‘f; J )& in equation (2.3.10) stands for the homogeneous

e

——
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solution of the equation J ¢ = O while the first term on the right-hand side of equation
(2.3.10) corresponds to the particular solution. As can be seen in equation (2.3.10), the
pseudo-inverse based general solution is decoupled in the sense that the particular solution
is used to realize the desired end-effector velocity . while the homogeneous solution con-
tributes tc a motion in joint space only. the so called self-motion of the manipulator.
d) Damped least-squares techniques

Application of the damped least-squares techniques to redundant manipulators
resulted from application to the singularity avoidance problem. As mentioned above, the
pseudo-inverse based solution for redundancy resolution in general does not avoid singu-
larities. To overcome this difficulty, the damped least-sqrares formulation was mdepen-
dently proposed by Wampler [38], and Nakamura and Hanafusa [28]. In {28] the method s
referred to as a singularity robusiness method. The basic idea in the damped least-squares
method is to balance the cost of a large residual error (ie.. the end-effecton tracking cnony
against the cost of a large solution. The singularty avoidance property can be achieved
using a well-conditioned formulation based on weighting the accuracy of tracking ol the
cud-etfector velocity with the norm ot the jomt velocaity., Inother words, m this formula

tion we minimize the sum
15 =1 ,q) 2+ oligh* (2.3.11)

where o is the damping factor. Thus, a damped least-squares pseudo-inverse can be
defined [38]}28] as
+ I i, -1
()7 =J.(al+],1)) (23.12)

or
!

(L) = (al+dl1) " ! (23.13)

23
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As can be seen from equations (2.3.12) and (2.3.13), independent of the rank of J, the

1) (or matrix (al+.l{.l(,) ) is ensured to be of full rank. This implies

¢

matrix (of +.J,J
that even if the n nipulator’s configuration is in the neighborhood of a singularity where
J, loses rank, the solution of the pseudo-inverse still exists. Notice that the first equation
(2.3.12) is simpler from the computational point of view [28] because in equation (2.3.12)
the matrix inversion of a smaller matrix than that of (2.3.13) is required. As can be seen,
the damped least-squares pseudo-inverse (/) ‘;’ approaches the pseudo-inverse .Ij
when the damping factor o approaches zero.

In the formulation of the damped least-squares pseudo-inverse, the damping factor a
plays an important role. Wampler [38] used a fixed value for o, derived from a reasonable
bound on the change in residual error. However, it is desirable to obtain a larger damping

factor near singularities, and a smaller or zero damping factor for nonsingular regions.

Thus, in | 28] the following automatic adjustment technique for o was proposed:

o (l—l—h—) h<h,

o

o = ’u
} >
( h=h, (2.3.14)

where

h = Jdet (] JT) (2.3.15)

is the manipulability measure as detined by Yoshikawa [40], A is a threshold that defines
the boundary of the neighborhood of singular points, and o | is the value of the damping
factor at singular points. Other versions of automatic damping factor adjustment can be
found in [ I8][10]]25].

The damped least-squares technique provides a useful approach for handling critical
situations in the neighborhood of singularities. It is also a useful approach for our redun-
dant flexible-joint manipulator scheme. A damped least-squares based technique will be

developed to avoid algorithmic singularities in Chapter 6.
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e) Extended Jacobian technique

This method for obtaining a generalized inverse of the Jacobian matrix has been pro-
posed by Baillieul [3][4][5]. A similar idea has also been suggested by Oh etal. [31]. This
approach is based on the introduction of # —m additional holonomic constrained tunc-
tions which are normally used to specify various performance criteria such as singulanty
or obstacle avoidance into the underdetermined system of equation (2.2.5), thus extending
the dimension of the task space, and making it equal to that of the joint space. As m the
other techniques, this approach can also be reformulated in terms of particular and homo-
geneous parts of the solution. We note that although the finul formulation is ditferent, this
approach may be considered as a “linearized™ version of the configuation contiol

approach.

2.3.3 Redundancy Resolution at the Acceleration Level

Redundancy reselution at the acceleration level involves finding a set of joint acceler-
ations ¢ which satisfies equation (2.2.6) for a given end-effector configuration accelera-
won v Phis aceeleration fevel approach is i fact a generalizanon ot the redundancy
resolution approach at the velocity level, and is introduced in order to incorporate manipu
lator dynamics (kinetic energy, joint torques, etc.) for better utilization of redundancy.
Most techniques of resolving redundancy at the acceleration level are generalization of
velocity level techniques. The most popular techniques in this category are optimization
based ones and those that are incorporated in the design of dynamic controllers (dynamic
control methods).
a) Optimization based approach

Most of the optimization methods discussed so far in the literature are formulated by
utilizing Lagrange multipliers, Pontryagin’s maximum principle, or the calculus of varia-
tions, and other iterative numerical methods [27][26]] 14}{17]]37]. Based on the forms and

the nature of the criteria functions used in the optimization, we can further classify these
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optimization techniques into local and global ones. Usually, when a criterion function is
defined as the gradient vector of a scalar function that evaluates a global performance
index. in a sense the redundancy is utilized instantaneously (i.e., locally), and the solution
i not a global optimal solution. For a global optimal solution, the performance criterion
needs to be of an integral-type which is evaluated over the entire duration of the motion.
The advantages of instantaneous optimization methods over global ones are obviously the
simplicity of the formulations and signiticantly less computational effort. However, local
techniques have problems with producing cyclic motion [20), avoiding singularities [2],
and reaching global optima (20]. On the other hand, global methods ensure the global
optimality but require a large amount of computation.
b) Dynamic control method

Because of the structure of the robot manipulator dynamics, redundancy resolution at
the acceleration level is suitable for incorporation into the design of manipulator control-
lers. For example, using an acceleration level redundancy resolution approach an optimum
control method is proposed in [29]. An elegant dynamic control scheme, similar to the
resolved aceeleraton control | 24], was proposed by Hsu et al. [15] which guarantees the
tracking of a given end-effector trajectory while provides for the control of the redundant
joint velocities. This approach is appealing because some more sophisticated control strat-
egies such as robust or aduptive control schemes can be developed based on this pseudo-
inverse based resolved acceleration control. Also, we shall see later in this thesis. the
preudo inverse based resolved acceleration control can be extended to the control of flexi-
ble-joint manipulators.

The control law proposed in |15] can be written as
=D (F,+Ke+ Ke=Jog) +0,] +C+G (2.3.16)

whete ¢ =y, =\ is the tracking error, A, and X, are position and velocity gain matrices,
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and @, is an arbitrary vector lying in the null space of the manipulator Jacobian matix.
The terms D, C. G und T denote the manipulator’s inertia matrix, Coriolis and centritugal
forces, gravitational force, and joint torque vector respectively. In [ 151, it is shown that the
control law of equation (2.3.16) guarantees the convergence of Cartesian tracking error ¢,
However, because the scheme is Cartesian in nature. the joint velocity corresponding to
the self-motion (in the null space of Jacobian) becomes unobservable. Thus, the system
may result in some undesirable behavior, or even become unstable unless we use the vec-
tor @, to control the null space joint velocity. As suggested in [15]. a way to provide con-
trol for the joint space velocities in the nvll space of J . tor achieving good system
performance is to define a vector g, and let the null space joint velocity track the projec-
tion of ¢ onto the null space of /. As a demonstration in [ 15], a specihc null space vecton
¢,, was selected in such a way that the manipulator avoids singularity while maintaining

Cartesian space end-effector tracking.

2.4 CONCLUSIONS

In this Chapter, we huve discussed the issues ot hinematic redundancy and its iesolu
tion. A comprehensive overview has also been given. which covers position-level, velo
ity-level and acceleration-level kinematic redundancy resolution  methodologies.
Furthermore, an in-depth analysis of how redundancy resolution can be best incorporated
in the design of manipulator dynamic controllers, or in optimization schemes has paved
the framework for developing control strategies in later chapters in this thesis for the con-

trol of rigid- and flexible-joint redundant manipulators.
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3.1 INTRODUCTION

Munipulator dynamics deals with the study of the forces and torques required to cause
motion of the manipulator links. In order to accelerate or decelerate the manipulator links
from some initial velocity to certain final velocity, the joint actuators must provide certain
torque (or force) functions. These functions could be complicated functions of the path to
be followed by the end-effector as well as the inertial properties of the links and the
manmpulator s payload, ete. Manipulator dynamic modeling and analysis are fundamental
steps towards the development of control schemes.

The main topic of this thesis is the control of kinematically redundant manipulators.
As mentioned previously, the kinematic analysis of redundant and non-redundant manipu-
lators is different. However. there is no distinctive difference between non-redundant and
redundant manipulators froi point of view of dynamic analysis. The only difference that
appears is when we convert a joint-space dynamic model into a Cartesian space dynamic
model. This is due to the involvement of the Jacobian matrix. Hence, in this chapter we
will not specifically distinguish between redundant and non-redundant dynamic models.
we shall focus mainly on the problem of dynamic modeling for rigid-joint as well as flexi-
ble-joint manipulators. This will be used as the basis for the development of r12id-joint

and flexible-joint manipulator controllers. Before going into the details of dynamic model-
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ing, some assumptions that will hold throughout this thesis are stated below.

(a) The manipulators (redundant and non-redundant) under discussion will be assumed to
be open kinematic chains with revolute joints. The control schemes to be developed
can be extended to the cases where revolute as well as prismatic jomts appear in a
manipulator system.

(b) The manipulators are modeled as jointed rigid bodies. This implies that link texibility
is not considered in the modeling. Therefore. the word rigid-joint manipulator means
that the manipulator’s joints as well as links are rigid. The word flexiple-joint manipu-
lator implies that all the joints are flexible but the links are rigid. The tetm rigidiflei-
ble-joint manipulator means that the rigid manipulator links are interconnected by
rigid as well as flexible joints.

(¢) Although all the computer simulations of the proposed contiol stratepies will be car-
ried out in digital computer systems, the theoretical work is based on a continuous
time analysis.

(d) It is assumed that all the dynamic and kinematic parameters of the nigid- and flexible-
joint manipulator we known « prior.

(e) The desired manipulator Cartesian trajectories are assumed to be known, including
first and second derivatives for rigid-joint manipulator control, and first to the fourth
derivatives for flexible-joint manipulator control.

The rest of the sections are arranged as follows. In Section 3.2, rigid-joint manipulu-
tor dynamic model expressed in joint space is discussed, while the Cartesian verston of the
model is analyzed in Section 3.3. A general dynamic model for a flexible-joint manipula-
tor is formulated in Section 3.4, and a simplified version corresponding to the genera!

model is discussed in Section 3.5. Finally, Section 3.6 draws some conclusions.

3.2 RIGID-JOINT MANIPULATOR DYNAMICS IN JOINT SPACE

A rigid-joint robot manipulator can be modeled as a set of # moving rigd links con-
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nected in a serial chain with one end fixed to the ground and the other end free. The links
are joined together with revolute (or prismatic) joints and there is no flexibility in the
j0ints. Several methods are available for formulating the dynamic behavior of a rigid-joint
manipulator [6[{9]] 1]. The recursive Newton-Euler formulation [ 16] leads to a dynamical
system of equations which is computationally one of the most efficient dynamic models
availuble. It involves the succassive transformation of velocities and accelerations from
the base of the manipulator to the end-effector using relationships between the generalized
coordinate systems. Forces are then transformed backward from the end-effector to the
base to obtain the joint torques. The complete derivation of the Newton-Euler formulation
can be found in [6]]9]]1]. The dynamics of a rigid-joint manipulator can be written in the

form ot a vector equation | 1] as follows:

T=D(q)g+Clq.q)+G,(q)+F (q) +]F (3.2.1)
where
e W0, is the vector of Jjoint turques supplied by the actuators.
ge Rl is the vector of joint positions with ¢ = ¢}, ¢ .. ¢,,] T,

D, (q) € R"*": iy the manipulator s inertia matrix,

C,(q.¢) € R :represents the torques arising from centrifugal and Coriolis forces,

G,(g) € R"*': represents the torques due to gravity,

F(q) e Rx1: represents the torques due to friction acting at the manipulator's

joints,

Fe Rxmxt. denotes external forces and moments acting on the end-effector.
For convenience, sometimes the Coriolis and centrifugal vector C (g, ¢) can be rewritten
in the form such that the centrifugal terms are separated from the Coriolis terms. Therc-
fore, assuming free space motion, and that there is no friction, the dynamic equation can

be expressed as

4
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1= DU+ 1C (@) 14l + Co@) 1471+ Gy (320

{nx(n(n—l)«l) (nin Ly M xd

where C, (¢) € I is a matrtx of Cotiohs teims, [ gyl € N

is a vector of joint velocity products expressed by
[99) = 14,9 4143 -y, (324

. . . . . N > A
C,(q) € R"" is a matrix of centrifugal terms, and [¢7] € R 18w jont velooy

product vector which can be written as
.2 L) 2
[¢°] = ltll.(l:.....(/”] (320

Next. in order to get a better idea of the dynamics of robot manipuliatorns, we discuss

the main terms appearing in (3.2.1).

a) The manipulator inertia matriv 1, (¢)

The kinetic energy of a manipulator can be written i a quadratic form [9][2] as
KE = Y4/ j 125
= 54 (g g (325

Here, the matrix D, (¢) reflects the mass distribution of a manmipulator as a funcion ot the
joint vector g. Each element of D, (¢) has units of inertia Chem®). To ensure that the
quantity in equation (3.2.5) is always positive and represents energy, 19, (¢) must be a
positive-definite matrix. On the other hand, the potential energy of a4 mampulator iy
described by a scalar function of joint positions only, say. a function (¢ ) Theretore, the

Lagrangian of the manipulator [2] van be written as
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L= %(}II),((/)(]-—T((/) (3.2.6)

Now, using the Euler-Lagrange equation,

d (9L 9L (3.2.7)
dt dyg dy
the dynamic equation of the manipulator can be expressed |2} by the equation
. 1 IDg) o) ,
I),(q)q+{1),(q)q—§-q (T)(1}+~§-q—— =T (3.2.8)

which verities that the kinetic energy of a manipulator is given by equation (3.2.5).

As we shall see Later in this thesis, the inertia matrix D, (¢) plays an important role in
manipulator controller design. Therefore. it is important to see some of its basic proper-
ties. As shown in [1]. the elements of the inertia matrix are trigonometric functions (sines
atd costnes) ot jemt position variables (tor revolute joints). Now, since sines and cosines
are bounded for any value of their arguments. the inertia matrix D, (¢) is bounded for all
¢ A consequence of this is that 1, (¢) is bounded from above and below. Since D, (¢) s
a positive-definite matiix. its inverse exists. and is also positive-definite. Also, it is

bounded from above and below.

W) The Coriolis and centrifugal term C, (q. q)

When a multi-body manipulator system moves, its internal nonlinear forces are
expressed by a vector tfunction of Coriolis and centrifugal terms. The Coriolis and centrif-
ugal terms are known | 2] to be complex nonlinear functions of the variables ¢ and ¢. and
can be written in several different wayvs. Besides the form in equation (3.2.2), it is also

possible to write €, (¢. ¢) 1n the form

36
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(]1('” (q)(;

Cilg.qy = |4 C{:(‘l)‘/ =C, (¢ q) g (3 2.9)

i
4 ldd

where € (¢) € R are symmetric matrices for § = 1,2, ... n. Furthetmore, trom the

Lagrangian formulation of equation (3.2.8). it can be shown that

A b aDg) R
Cilg.q) = D,(q)q—iq (_T ) g (3.2.10)
from where it follows that [12]
[ :
Crpld.q) = 5 {D(g) + 5} (3.2.11)

where § is some skew symmetric matrix.

¢) The gravity term G, (g)
The gravity term G, (¢) defines the effect of gravity on the manipulator. Equating

equations (3.2.1) and (3.2.8), we find that the gravity term (, (¢) can be wiitten as

dr(q)
r)(/”

G lg) = (3.2 12)

Therefore, it is obvious that G, (¢) isafunction of the joint position ¢ only This tunction
dependence is in terms of sine and cosine functions only, and theretore term G (q) s

bounded.

d) The frictional force term F (4)

37
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Frictional forces in the manipulator joints are described by functions which are usu-
ally complex and are probably represented only by some appr... .nate deterministic mod-
els. Basically, there are two types of frictional effects which are usually considered. One is
due to viscous friction where the torque required to overcome the friction is proportional

to the joint velocity ¢. The other is Coulomb friction which is defined by
Fr Coutomp = CosEN() (3.2.13)

where ¢, is the Coulomb friction constant and its value changes depending on the value of
the jomt velocity.

Usually, Coulomb friction dominates when the motion is slow, while viscous friction
prevails when the motion of the joints is relatively fast. In the dynamic modeling
described in Chapter 4, we consider the Coulomb friction force only because the manipu-
lator velocity is usually kept low when contact between the end-effector and a workspace

object is imminent.

3.3 RIGID-JOINT MANIPULATOR DYNAMICS IN CARTESIAN SPACE

Usually, for redundant manipulator control schemes, the desired input trajectory and
the feedback trajectory information are Cartesian quantities from which the Cartesian
tracking errors can be formulated. Thus, it is possible to directly construct a manipulator
tracking controller in Cartesian space. Therefore, it is often necessary to develop a Carte-
sian space formulation of manipulator dynamics [8]{10].

The Cartesian-space dynamic equation, which relates the acceleration of the end-
effector expressed in Cartesian space to the Cartesian forces and moments acting at the
end-eftector, can be obtained using the joint-space dynamic model of equation (3.2.1), and
the acceleration relation (2.2.6). In the following, the frictional forces are omitted (they

depend only on the sign of joint variables). and we also assume free space motion, i.e.,
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F = 0. Under these conditions, the Cartesian space manipulator dynanue model s

defined by the equation

F =D (¢)V+C (q.4) +G (g) (330
where
F.e ®m> b is the Cartesian force/moment vector acting on the end-etfector,
¥e Rl is the Cartesian position/orientation vector ot the end-effecton,

D (g) € R™*™: iy the manipulator inertia matrix expressed in Cartesian space.

C (4.9) € R"* '+is the nonlinear velocity vector expressed in Cartesian space,

G (g) e R . iy the gravitational force vector expressed in Cartesian space
In the case of a non-redundant manipulator, since the Jacobian matrix J, (¢) 18 square and
its inverse exists when the manipulator’s configuration ts not in the neighbothood ot o sm-
gularity, the above quantities can be expressed in terms of thein joint-space counterparts as

follows:
D gy = o a gy
C, (g.q) = .I;’ () 1Ci(q.q) —[)](q).l;l ((/).7,,((/) l.l(,l (4)

-1 v
G‘(q) = .,‘, (Cl)(ll((/) (%22)

However, in the case of a redundant manipulator, the expressions in equation (3.3.2) can

be modified such that direct inversion of the Jacobian matrix is avoided | 10]
D.(q) = (D (@) @1
C.(q.q) =D (q) 1 (q)D7 (q)Clg,q9) =] (q) ]

G,(q) = D (q)1 (q)D]' (q) G (q) (3.3 %)

3
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The end-effector Cartesian force £, can be mapped into the equivalent joint torque T
through the Tacobian matrix J/ . ie., T = ./;’,F‘. Thus, the dynamic model that relates the

required joint torque T to the end-effector Cartesian coordinates x is given by the equation
T=JID (@)X +1C (g.9) +J1G _(q) (3.3.4)

The manipulator Cartesian-space dynamic model (3.3.1) or (3.3.4) is useful and con-
venient for the construction of Cartesian-space controllers. However, from the computa-
tional point of view, this model is expensive. Moreover, the complete Cartesian-space
scheme requires Cartesian-space sensing to obtain precise end-effector position and veloc-
ity informuation. Now, since Cartesian-space sensing is much more difficult to do than the
joint-space sensing. for our Cartesian-space controller, we shall assume that the sensing
takes place in joint-space and the measured joint outputs are converted to the correspond-
ing Cartesian quantities which are fed back to produce the system error in Cartesian space.
More detarls of the design of these contiollers will be presented in fater chapters v this

thesis.

3.4 GENERAL FLEXIBLE-JOINT MANIPULATOR DYNAMICS

Experimental results have shown that for high precision operations of robot manipu-
lators, the joint flexibility should be taken into account in the dynamic modeling of manip-
ulators |5]. The flexibility in the joints may be caused by the presence of harmonic drives.
These are gear mechanisms having low weight, small size and high gear ratios to accom-
modate motors spinning 10 to 100 times faster than the links. Joint flexibility may also be
caused by deformation of the gears at a joint due to loading.

In this section. we first introduce the general dynamic modetl of a flexible-joint manip-

ulator and then. in the next section we make several simplifications to this model.
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A general formulation of the dynamic model of flexible-joint mamipulators has been
proposed in [3][4]{7][14] using the Lagrangian or the Newton-Eulet approach. In this
case, the inertia of the actuators is modeled about three independent axes. Hence. the inet-
tia forces, Coriolis and centrifugal forces, and gravitational forces depend not only on the
link variables, but also on the motor velocities and accelerations, In particuln, the formu-
lation of the dynamic equations of motion of a general flexible joint mampulator can be

written | 14] as

Dita) Dotap |4, |Cnlapdr g, (Gutap|  |-T.) _ {(,
[);, (ql) l) zI'/n Cr)l(({[‘q/’ qm) Gnl (‘I/) l \t

' nt

(34

where g, € R"*! denotes the link position vector, and g, € K" Liepresents the motor
position vector: D, (¢,) € R"*" is the link nertia matrix, while D, € R"*" denotes the
motor inertia matrix; D, (g,) € K" represents the coupling, or interaction matrin that
gives the dynamic coupling between the motor acceleration and the link acceleration. In a
standard model of flexible-joint manipulator, the structuie of D (¢,) is usually an upper

tiiangular - matniy - with - zero diagonal  elements, (",(q,.q,.qm)e‘)i""

and
G,lq) € R"*1 are the effects on the link shaft due to Coriolis, centritugal, and gravity

forces. Similarly, C,, (¢, ¢, q,) € RV and G, (¢,) € R~ 1epresent the etects on

ni
the motor due to Coriolis, centrifugal, and gravity forces acting upon the motor Tt should
be noted that in the above model, because the motors are modeled as uniform cylinders,
the inertia matrix is a function only of the link variables ¢,. This also mmplies that if we
express the Coriolis and centrifugal vectors ¢y and €, as Cyldryg) = Co ldrapy
and C,, (g, 4)) = C,, (¢,.4) ¢, the matrices C; (¢, ¢q;) and €, (dp q;) will beinde-
pendent of the motor variables [15], where ¢ = [q; (,,’jl e K271 The same is also tue
for the gravity forces acting on the system. However, we note that the motor velocity does

enter into the Coriolis and centrifugal terms since ('j, (4,4 and €, (g, q,) are muln

plied by ¢.
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The vector T, € R"*! in equation (3.4.1) denotes the coupling function between the
motors and the links. In general, this function is a nonlinear function due to backlash and
motor saturation [11]. The typical characteristics of the coupling function between a motor
and a link 1s illustrated in Figure 3.1. In the general model equation (3.4.1), the complete
coupling is considered which includes, first, the coupling torque between the motors and
the links (whose actual characteristics are shown in Figure 3.1), and second, the inertia
coupling represented by the off-diagonal terms of the inertia matrix and the associated

Coriolis forces.

actual coupling
(used in general model)

-
(qm - ql)

éppmx\mated coupling
(used in simplified model)

Figure 3.1 The characteristics of the coupling
function in flexible joint

Obviously. in developing control strategies for flexible-joint manipulators, it is better
to use the general model of equation (3.4.1). However, since this model is highly nonlinear
and coupled. it is very difticult to design adequate and efficient controllers for this compli-
cated system. To avoid this difficulty, in the next section we introduce an approximate

model which leads us to the **simplified flexible-joint manipulator’” dynamic model.

3.5 SIMPLIFIED FLEXIBLE-JOINT MANIPULATOR DYNAMICS

A simplified dynamic model for flexible-joint manipulators derived using the
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Lagrange-Euler technique has been proposed by Spong [13] and 1s based on the following
assumptions:

(a) The kinetic energy of the motor is due to its own rotation.

(b) The motor is symmetric about the axis of rotation.

Assumption (a) implies that the motors are rotated with respect to the nertial frame,
not with respect to the frames attached to moving links. Under this assumption, the off-
diagonal submatrix D, (g,) in the inertia matrix of the flexible-joint manipulator van-
ishes. Furthermore, the Coriolis and centrifugal forces which are the gyroscopic foices in
this case can be ignored and this leads to C, = (). Assumption (b) affects the motor
dynamic equation directly. With a symmetric motor, it con be shown that G, = 0 |7]. In
addition, Spong [13] used a simple torsional spring to model the coupling between the

motor and the link, and the model of torsional spring can be expressed as
T,=K(q,-4q) (3.5.1)

whete K is a diagonal matrix of spring constants. This approximation of couphing s
shown graphically in Figure 3.1 by the dotted line, where the slope of the line is deter-
mined by K .

Under these assumptions, the general dynamic model of equation (3.4.1) is reduced to

the following model [13]

I~ .. . . 1
Dl(ql) 0 .c.{l + C[(qlv ql) + (’I(qI) + —K\(qm.—ql) - ‘]1 (3.5.2)
0 Dm dn 0 0 Kc (¢, ~ ql) T

where C, is the reduced Coriolis and centrifugal term and G denotes the reduced gravity
vector. For the simplitied model of equation (3.5.2), we can make the following two
remarks.

Remark 3.1: It is important to note that the simplified and the general flexible-joint
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manipulator dynamic models possess different properties with respect to the feedback
controller design. In the simplified model of equation (3.5.2) the inertial coupling is
ignored, and the torque is only transmitted through the coupling between the motor and
the link. On the other hand, in the general model of equation (3.4.1) there are two sources
of interaction, namely, the coupling between the motor and the link, and the inertia cou-
pling. The different siructure of the off-diagonal matrix D, (g,) in the inertia matrix of the
generul flexible-joint manipulator leads to different considerations for controller design.
Case 1. D,(q,) = 0. This case cormresponds to the simplified model of equation
(3.5.2). In this case, a static feedback control law can be derived [13] based only on the
knowledge of ¢;, q,,, ¢, and g,,,.
Case 2: D, (q,) is anon-singular matrix. This case corresponds to the general model of
equation (3.4.1) where D (q,) is a non-singular upper triangular matrix representing
the coupling of the acceleration between the motors and the links. As shown in [7], the
motor acceleration ¢, in the link dynamic equation can be eliminated using the motor
dynamic equation. Then the computed torque technique can be applied to formulate the
controtler.
Case 3: D, (g,) #0 but singular. As mentioned above, this is the typical case for the
general model (3.4.1) where D (g,) is upper triangular with zero diagonal elements.
For this case, there is no static feedback linearizing controller suitable for this model.
Therefore, other approaches must be considered [3].
Remark 3.2: As we can see in Figure 3.1 when the dead-zone of the motor is relatively
small, and the motor operates near the linear portion of the curve, the approximation of the
coupling between the motor and the link is fairly good. In practice, this approximation is

usually valid.

3.6 CONCLUSIONS

In this chapter, we have described dynamic models for rigid- as well as flexible-joint
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manipulators. This is an important step in the design of controllers for such manipulators.

We first considered rigid-joint manipulators and their dynamic models expressed in joint-

as well as in Cartesian-space. The Cartesian space model is useful for designing Cartesian

control schemes. This is particularly relevant in the case of designing controllers for

redundant manipulators. However, Cartesian-space dynamic models are computationally

more expensive than their joint-space counterparts. Dynamic modeling of flexible-joint

manipulators was considered and a general model was given. Possible simplifications to

this model were described. Finally, issues concerning controller design for these two mod-

els were briefly discussed.
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CHAPTER

L ~© IMPEDANCE CONTROL OF REDUNDANT

- MANIPULATORS FOR MINIMIZATION OF
| N COLLISION IMPACT

4.1 INTRODUCTION

In the last few years, most of the research on kinematic redundancy resolution has
been focused on utilizing redundancy for achieving secondary tasks which do not require
interaction with the environment, such as obstacle avoidance, singularity avoidance, opti-
mizing some kinematic objective functions, etc. [1][SH9I11][12]. However, kinematic
redundancy resolution can also be used to successfully solve problems where interaction
with the environment 1s necessary. For example, kinematic redundancy resolution can be
used in minimizing collision impact in contact tasks by choosing appropriate configuri-
tions of the redundant manipulator and appropriate control strategies. In this chapter, the
problem of collision impact control for redundant manipulators is addressed and a new
control strategy is proposed.

In many practical applications such as moving objects, assembling parts, cleaning
surfaces, deburring edges, etc., the manipulator must make certain types of contact with its
workspace obijects or environment. In applications of this nature the manipulator has to
come into physical contact with the object before the desired force and moment can be
applied. Thus, in switching from free space motion to constrained force control, one has to
analyze the significant problem of impact forces. These impulsive forces can be very

large, and in many cases, they can cause the manipulator rebound from the environment to
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drive an otherwise stable controller into instability. Also, large impulsive forces can cause
damages to the objects as well as the manipulator itself. Therefore, for safety reasons and
for successful operation, it is desirable to reduce impulsive forces and soften the contact
between a manipulator’s end-effector and the workspace objects.

In this chapter, an impedance control based strategy for collision impact is proposed
|7]. The controller consists of a simplified impedance controller and an augmented config-
uration controller. The simplified impedance controller is based on selection of the
desired inertia matrix such that its inverse is equal to the mobility tensor of the manipula-
tor detined in Cartesian space. Its purpose is to reduce both impulsive forces and rebound
efforts. As we shall see, this judicious choice of the desired inertia matrix reduces the
impulsive forces, and also avoids the oscillatory behavior. The augmented configuration
controller is designed to choose the proper configuration of the robot arm such that the
impulsive forces are minimized. To achieve this goal. the manipulator impulsive contact
model is derived in Cartesian space, and the relation of the impulsive forces with respect
to the manipulator’s configuration is used for the augmentation of the manipulator’s Jaco-
bran matrix. Thus, in this scheme, the selt-motion of the ianipulator is used to conhigure
its posture such that the impulsive forces are minimized at the time of impact. To demon-
strate the effectiveness of the proposed controller, numerical simulations have been car-
ried out using a three-link planar redundant manipulator. The results obtained for
minimization of impulsive forces, and reduction of rebound efforts confirm the validity of
the proposed scheme,

This chapter is organized as follows: Section 4.2 gives a review of the existing litera-
ture concerning rigid body impact modeling, non-redundant manipulator impact analysis,
and the use of redundancy for impact reduction. An impedance control strategy as well as
a simplified impedance control law are introduced in Section 4.3. Section 4.4 presents the
redundancy resolution strategy called the augmentud kinematics approach, while in Sec-

tion 4.5 modeling of a manipulator’s impulsive contact behavior in Cartesian space is
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given. Based on concepts introduced in the previous sections, in Section 4.6, the aug-
mented kinematics approach and the simplified impedance control strategy ate combined,
and it is shown how the manipulator impact effects are altered by the proposed controlier.

Simulation results are shown in Section 4.7, and finally, Section 4.8 concludes the chapter.

4.2 OVERVIEW OF THE EXISTING METHODOLOGIES

A brief outline of previous work on the analysis of manipulator collision effects and
the use of redundancy in contact tasks is given in this section. In [ TO], stability wssue of
manipulators during transition to and from compliant motion is addressed. Two stability
results for manipulators switching to and from compliant motion are established One is
the global asymptotic connective stability, and other is the joint asymptotic connective sta
bility. In [17], an impact model for a single-axis drive system is investigated by Youcet-
Toumi and Gutz based on an energy method. Their investigation shows that integral force
compensation with velocity feedback improves force tracking and rejects impact. Itis also
shown in their study that impact response can be tuned by selecting a favorable dimen-
stonless ratio of foree to approaching velocity, In [ 1S Wang and Mason present o geomet
ric method for modeling impact in the planar case. The basic feature of this method
predicts the mode of contact. the total impulsive force and the resultant motions of the
objects. Their method also includes friction, inertial effects and elasticity for two objects
in collision. Another model for impuct which allows the incorporation of complete spatial
manipulator dynamics was introduced by Zheng and Hemami in [18]. Their approach
reveals two important points. First, the manipulator’s joint velocities have abrupt changes
at the moment of collision with the environment. These changes are defined with a miathe
matical model which they derived for establishing a quantitative relationship between the
abrupt change and the severity of the collision. Second, internal to the mamipulator, fargpe
impulsive forces and torques may develop at each joint because of the collision. This rela-

tionship is also expressed mathematically to establish a quantitative relation between the
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impulsive torces/torques and the collision. In [13] Volpe and Khosla looked at the impact
problem from an experimental pomt of view. They applied various force control strategies
for impact control and compared the results ' ever, this experimental analysis has been
limited to n-redundant manipulators. The idea of using a redundant manipulator for
reducing impact and contact effects was first introduced by Walker in {14]. Based on the
model proposed by Zheng and Hemami | 1X], Walker first derived the impact dynamics by
expressing the impact force in terms of the mode of collision, the relative velocity betwe.n
the manipulator end-effector and the environment, the normal direction of the collision
plane, and the configuration of the manipulator. This model reveals that the impact force
can vary in terms of different configurations of the manipulator while assuming all other
patameters fined. This idea was turther analyzed by Gertz. Kim and Khosla in {2] where
they modelled the impact events as non-instantaneous instead of the conventional impact
modeling of instuntancous eftects. Two strategies were proposed in |2]: One involves add-
ing torques to the joints of the redundant nianipulator to impede motion into the object
with which at collides: the other which is similar in some respects to Walker's approach
mvolves choosing the e conhiguration for the impact event.

As mentioned above. there are basically two ways to model the collision process. One
is to model collision impact as an instantaneous process with infinitesimal time duration
[ H]TR]: the other is to treat the collision impact as a non-instantaneous event with certain
hinite time duration [2]. Both of these models are valid for analyzing the manipulator colli-
sion impact In the collision impuct analysis performed in this chapter, we shall mainly

concentrate on the former approach, i.e., treating impact as a instantaneous process.

4.3 IMPEDANCE CONTROL STRATEGY
4.3.1 Impedance Contro! for Compliant Motion
Impedance control 1s a comphant motion control strategy that involves the regulation

of the mechamcal imnedence of the manipulator’s ¢nd-effector. The objective of an
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impedance controller is to maintain a desired dynamic relationship between the end-etiec-
tor/environment contact force and the manipulatot’s position. In general, a Cartesian t

get impedance is usually specified as a second-order lincar system [3]]4]

M{(X=X)+B, (\=V,) +K, (\~1) = —F (431

where M|, B, and K, € R">" are positive-dehinite matrices representing the desired
mass, damping and stiffness of the closed-loop system respectively: v, and v € R ™!
represent the desired and actual end-effector position. and F € R™ ™! denotes the Cante
sian force exerted by the end-effector on the envitonment. The matrices M|, B and K,
can be selected by the designer to co.respond to various manipulation task objectives. For
example, high stiffness 1s specified along directions where the envitonment 15 compliant
and positioning accuracy is important. On the other hand, low stiftness 1s specified in
directions where the environment is stiff, or when small interaction forces must be main
tained. Similarly. a large value of damping mattix B is specitied when energy must be
dissipated. while My can be used to provide simoothing in the end-cltector response due o
external contact. The coefhcient matrices. M. B and K, of equation (4.3.1) nced not he
diagonal. For some applications, the coupling between the impedance axes due to nond
agonul forms of the matrices M. B and K. may be usctul, while for other tasks MR,
and K| cun be considered to be diagonal, i.e.. the cace of uncoupled impedances

To design an impedance controller for which the desired dosed-Toop charactensucs
(desired impedance) of equation (4.3.1) are uchieved, we proceed as follows The Cuante

stan space acceleration A s related to the jont space acceleration by the equation

N=Jg+J.4 (432

Now. since the desired mass matrix M, has been assumed to he positive definste, we can
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solve equation (4.3.1) for the Cartesian acceleration ¥ to get

X = M;l [Ml'Yd—Bl (x _".‘d) _Kl ('\ _'\‘d) -F ] (4 )

(3%
(s
A

Also, from the joint-space based manipulator dynamic model
Dq)§+C (g, 4) +G (@) +F () = T-J(q)F (4.3.4)

we solve for the joint space acceleration vector ¢. Note that this is always possible since
the mditia ma rix D, (¢) is positive-definite. Then the manipulator joint acceleration can

be expressed as
g =Dy [t=JHg)F=Cl(4.9) =G, (q) =F(g) ] (4.3.5)

Now by substituti. 2 tions (4.3.3) and (4.3.5) into equation (4.3.2), the impedance

-ontroller is deternined by the equation

T= JWTHMT B (3, =) + K (=~ A () +1,

_l . T . r‘-l —l
+ I DUAC+ G F) =g+ U =W MY F (4.3.6)

where A (¢) dehines the forward kinematics function which maps joint displacements into
Cartesian space, and W, = J‘,DI"J{; is usually referred to as the mobility tensor, and its
inverse (which exists at nonsingular configurations) is called the virtual mass [3] of the
manipulator in Cartesian space. Note that the controller (4.3.6) is also applicable to redun-
dant manipulators. As we can see in this case. the redundancy resolution problemis solved

imphcitly by using the mobiliny tensor W, = .l(,l);'.l(l,. 1.e., the redundancy is resolved
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following the weighted pseudo-inverse approach with the manipulator inertia matrin being
the weighting matrix. Also note that by comparing the impedance controller of equation
(4.3.6) with the resolved acceleration control strategy. we can see that impedance control
is actually a dual of resolved acceleration control [8] in the domain of constrained motion.
The impedance controller of equation (4.3.6) forms the basis for our simplitied impedance

controller which will be presented in the following section.

4.3.2 Simplified Impedance Control

Equation (4.3.6) defines a relatively complicated nonlinear controller which includes
a position feedback loop as well as a force feedback loop. Moreover, this impedance con-
troller is designed primarily for manipulator compliant motion and free space tiajectory
tracking rather than collision impact control |3{[4]. Theretore. the impedance contioller
shown above must be modified. and the gain matrices have to be adjpusted such that 1t is
specifically suitable for collision impact control.

In the following. we propose a new controller called the simplified 1mpedance con-
irofler. The basic adea in desiving this simphitied impedance contoller is to select the

destred inertia (mass) matrix of equation (4.3.6) us

M= w, (437

Equation (4.3.7) states that the inverse of the desired mass matnix 15 chosen to be identical
to the mobility tensor (or the natural inertia tensor) as expressed in Cartesian space. With
this choice for matrix M, the manipulator is commanded to behave exactly as it would
actually behave in Cartesian space. In other word, it is the exact physical consequence of
accepting the machine’s natural inertia. In this case, it can be seen that since
WTIMTI = [, the terms corresponding to the force F vanish in equation (4.3.6). This does

not imply that the force feedback loop is deleted; rather, because of the specific choree of
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the desired mass matrix M,, the force feedback signal going through the feedback loop
has been cuncelled. With this judicious choice of M, the impedance control law of equa-

tion (4.3.6) becomes the simplificd impedance controller

t= 0B i ~14) + K, (0= A(g))

1 =1 ¥ -7 4
FWILDTC+ G F) +5=J0q ) ) 4.3.8)

which obviously results in coupled Cartesian motion due to the nondiagonal structure of
M,. In the following, we shall demonstrate that the simplified impedarce controller is
indeed suitable for manipulator collision impact control.

Let us choose the following mass matrix
M, = pW}' (4.3.9)

where the scalar p > 0. With this choice ot M|, let us see what the best value iy for the
mass ratio p which results in the minimization of the manipulator’s collision impact force.
Now, substituting equation (4.3.9) into equation (4.3.6), we can express the control force
(obtained from the control torque using the relationship T = .I[F) as a function of the
mass ratio p as follows
gt b S ) ] !

F =W (BH (BN, =X) +K,(x,;=2))) + (I—BWT W])F""p+Vn (4.3.10)
where V) = H';I (.I(,D,"1 (C, -G +F)) +1,-1,g) denotes the nonlinear forces. Equa-
tion (4.3.10) can be simplitied and the relationship between the mass ratio p and the end-

effector force 7 cun be expressed as
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F=—-(p-DF +é(31(f‘,—\')+I\'1(\‘,—\))+\‘,, CRREE

1
E imp

Equation (4.3.11) provides the tunctional relation of the end-etfector torce at the tme ot
impact with respect to the coefticient (mass ratio) p. By choosing a different desired mass
matrix M, by changing p. we can clearly see that the end-effector force F at the time ot
impact will be affected. Note that at the time of impact, the impact force F - is much
larger than other forces expressed on the right-hand side of equation (4.3.11). Also, we
note that the term % (p = 1) in(4.3.11) plays an important role in determining the magni-
tude of the end-effector force at the time of impact. In order to clearly see this effect. we
graphically show the characteristics of the term % (p — 1) withrespect to the mass ratio p

as follows:
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Figure 4.1 Functional relationship of theterm (p—1)/p
with respect to mass ratio »

From Figure 4.1 and equation (4.3.11), we have three possible chorees for p, namely,
(i) O <p<1, (i) p = 1, and (i) p > 1. For these three choices of p, we have the follow-
ing analysis.
(i) 0 <p<1:This implies that (p —1)/p <0 and the values of the term (]) (p-1)cor-
respond to the points on the curve between hy and by in Figure 4.1, Based on equation

(4.3.9). the imphcation of this cheice of p is that we select sialler values for the
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desired mass matrix. With this choice of p, the magnitude of the first term on the
right-hand side of equation (4.3.11) becomes more negative when p deviates from 1
towards zero. If we take into account the rest of the terms on the right-hand side of
equation (4.3.11) and, also consider the closed-loop characteristics of equation (4.3.1),
then we see that the deviation of p from 1 results in an increase in the imaginary part
of the closed-loop system poles, and consequently in the oscillatory behavior of the
manipulator, rather than in an increase in the magnitude of the end-effector force at the
time of impact. This phenomenon was also observed by Volpe and Khosla [13]
through impact experiments. Although in this case the end-effector force at the time of
impact is smaller, the resulting oscillatory behavior is not desirable. Moreover, the
oscillatory behavior may affect stability of the system, thus, it is not advisable to
choose p close to zero.

(ii) p > 1: In this case, the values of the term % (p—1) correspond to points on the curve
between b, and by in Figure 4.1. This choice of p implies that the desired inertia
matrix is larger than the manipulator’s true inertia. This selection has two conse-
quences: From the point of view of reducing rebound effects, a larger value of M| is
desirable. In this case. as pointed out in [13] the manipulator is made to appear so mas-
sive that it cannot bounce back. However, from the point of view of impuisive force, a
larger vulue of inertia results in larger impulsive forces. This follows from the first
term on the right-hand side of equation (4.3.11). This fact has also been verified exper-

imentally in | 13].

(111)p = 1: This case corresponds to the point b, in Figure 4.1. With this choice of p, the

desired inertia matrix M, is selected to be equal to the manipulator actual inertia in
Cartesian space. As can be seen from equation (4.3.11), when p = 1, the first term
vanishes and therefore, the end-effector force at the time of impact is reduced.

From this analysis, it is clear why we select p = 1 in the reduced-order impedance

controller which is intended for use in impact controller. Although in general we cannot
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say that p = 1 is the optimal choice, it is obvious that with this choice we ate close 1o the
optimum. Also, as we shall see in later sections, this choice of p provides a good compro-
mise between reduction of rebound effects and minimization of the magnitude of the

impulsive forces.

4.4 AUGMENTED SIMPLIFIED IMPEDANCE CONTROL

In its present formulation, the simplitied impedance controller is applicable to non-
redundant manipulators. For kinematicully redundant manipulators, sor. * modifications
must be made in order to resolve the redundancy in a useful manner. In this section, we
shall show how we can utilize the redundancy to minimize collision impacts. The redun-
dancy utilization will be based on augmented kinematics and the configuration control
approach [11]{12] which were discussed briefly in Section 2.3.1.

As mentioned in Section 2.3.1, the optimization of a kinematic or dynamic objective
function L (g, D) which will resolve the redundancy is reformulated as a tracking prob-
lem. In this problem, the forward kinematic function and its Jacobian matrix have the form
y = (:/(\q(.qlg) ] and J = (a:'i"an respectively, where the augmentation function = is

usually defined as follows [ 11]:

dL(q.D))

= () 4.4.1
dy

:(q.D) =N,
In (4.4.1) the rows of the matrix N, & R”"*" span the null space of the manipulator’s Jaco-
bian matrix J,. Note that the function z, as dehned by equation (4.4.1), optimizes the
objective function L (g, D,;) subject to the forward kinematic constraints x = A (¢).
Based on this augmentation of the forward kinematics and the augmented Jacobian matrix,

the corresponding augmented simplified impedance control law is written as

=BG +K (=0 + WD)+ G+ Fp +5,-0g |} (442
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where K€ R 7" and B € R" *" represent the augmented stiffness and damping matrices
which are chosen to be symmetric and positive-definite, and have the following structure
K, 0 B,, B

K=" B = nvn

“lo B, B
Kz 21 2 (441)

The augmented stiffness matrix K is composed of the stiffness matrix K, and the gain
matrix K, from the augmentation feedback loop, while the augmented damping matrix B
is computed based on the augmented stiffness matrix K and an augmented desired inertia
matrix M. Details of how the damping matrix B can be computed will be presented later
in this chapter. The matrix W e 7 *" in equation (4.4.2), the augmented mobility tensor,
is defined as W = ./1),“1.11. Then, the augmented desired inertia matrix M is formed as

M= w

45 MANIPULATOR IMPULSIVE CONTACT MODELING

When & manipulator comes into physical contact with its environment during task
execution, the manipulator undergoes an impact with the environment for a very short
period of time. This impact creates an impulsive force at the end-effector that is propa-
gated through the manipulator structure. In this section, the dynamical problem of colli-
ston impact is addressed, and an impact dynamic mode! of the manipulator [14] with its
environment is analyzed.

For the derivation of the impact force. it is more convenient to express the manipula-
tor dynamics in Cartesian space. Therefore, we rewrite the manipulator Cartesian space
dynamic model of equation (3.3.1) with impact force {frictional forces are also included)

as follows:



Chapter 4

FrptF =D (@D3+C (4. ¢)+G (q) +F, (q.q) (4.5.1)

where F, € K> Fe R and ve R’ ! denote the impulsive foree, the Carte-
sian control force. and the end-effector acceleration: and D, € R™*™ is the manipulator
Cartesian inertia matrix (or Cartesian virtual mass) defined as D = l.l‘_l),".l", l'l )
Finally, the quantities C, (q.4q) . G . (¢) and F/\ (q. q) represent the Cartesian space
equivalents of the Coriolis and centrifugal forces. the gravitational forces and the fiic-
tional forces. Now. assume that the initial manipulator/environment impact occuts at time
t and lasts for an infinitesimally short period of time A ¢. Then, by integrating both sides of

equation (4.5.1) from r to r + At, we get

r+A1 1+A ¢ 1+A1 1+A¢
| Fippdr+ [ Far = [ Dxdar+ [ (C+G +F)dr (4.5.2)
{ ! { !

Since F', ¢ and ¢ are finite quantities at all times, the integrals of the finite functions /-

and (C +G +F) from 7 to 1+ At becomes zero as A — 0. Thus, equation (4.5 2)

reduces to
r+At
Fop = lim D [ %dr = lim D {x(r+A1) =X (1) } (4.5.3)
Al=0 Ar—0
t
where
1+A1t
Fip = Jim j F ot (4.5.4)
{

defines the impulsive force at time of impact, and the term {X (¢t + At) =X (1) } =AXrep-
resents the change in the end-effector’s velocity before and after the impact. Note that in
equation (4.5.4), the impulsive force ﬁfnw results from the integration of the infinite value

F,, during a very short time period At. Equation (4.5.3) can be viewed | 16} as a general-
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ization of the point mass impact dynamics and therefore, equation (4.5.3) implies that the
manipulator impact foree is equal to the change in the manipulator’s momentum before
and after impact. Now, if we use the definition of Cartesian virtual mass D,, equation

(4.5.3) can further be expressed as
Ax = 1,07 F,, (4.5.5)

In order to provide a simple analytic definition for the magnitude of the impulsive force

i

F - we assume that the manipulator end-effector collides with a stationary workpiece in

its workspace. This implies that the workpiece has zero velocity before and after the colli-

sion. Also, from the theory of rigid body collisions [ 16], we have
(x+A0 0, = —win, (4.5.6)

where n, is the unit vector normal to the plane of collision impact between the end-effec-
tor and workpiece, and (L 1s the constant coetticient of restitution denoting the type of col-
lision taking place. We note that it has a value in the range 0 Sp <1 when gt = 0 we
have purely plastic collision, i.e., the colliding bodies have zero relative velocity to each
other immediately following the collision, and when g = [ we have purely elastic colli-
ston, i.e., the total dynamic energy right before the collision is equal to the total dynamic
energy immediately after the collision. Finally, we note that the impulsive force I?i,,,,, is
directed along the normal direction », to the contact plane. Therefore, we can write
F",,,,,, = F imph,,» Where the scalar F imp TEpresents the magnitude of F imp- Now, from
equations (4.5.5) and (4.5.6), we can derive the following manipulator collision impact

model

R —(l+u).\'1n“
mp = i ~1 ]
n, Ay (@ I gy T,

(4.5.7)
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Equation (4.5.7) gives an expression for the magnitude of the impulsive force l:',,,,,, m
terms of the manipulator’s configuration ¢ at impact, the end-effector velocity v tight

before collision, and the unit vector n,, normal to the plane of collision impact.

4.6 MINIMIZATION OF MANIPULATOR IMPACT EFFECTS

Collision impact occurs when a robot manipulator collides or comes in contact with
its environment. At the time of collision, significant impulsive forces could be generated
which may jeopardize the stability of the manipulator control system or even damage the
manipulator or its environment. In this section, the augmented kinematics approach for
redundant manipulators is used to reduce impulsive forces, we shall use the manipulato
collision impact model of equation (4.5.7) and the augmented kinematics approach fo
redundancy resolution in order to reduce the impulsive forces. Also, the simplified imped-
ance control strategy is applied to overcome the after-collision rebound effects as well as
the impulsive forces. Thus, as we shall see in this Section, a combination of proper kine-
matics and control strategies results in the minimization of the total impact etlects, (e,
rebound effects and impulsive forces).

Before we present the details of impact effect reduction, we miake the followimng
assumptions: First, we assume that the workpiece with which the munipulator collides
bchaves as a spring with certain stiffness. This implies that the deformation of the work-
piece provides a measure of the impulsive forces. Second, we assume that the links and
joints of the manipulator are rigid. Third, we consider collisions or contacts between the

manipulator’s end-effector and its workpiece only.
4.6.1 Impulsive Force Reduction Using Configuration Control

When a human arm makes contact with an object (for example, a wall) the arnm pos

ture is usually adopted such that it minimizes the shock on the hand or the arm. More spe-
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cifically, if one wants to make a “soft” contact between one’s hand and a wall, most likely
one will adjust one’s forearm to be almost parallel with the surface of the wall rather than
perpendicular to it. This is an example of how human beings use the redundancy in their
arms to perform soft interaction tasks. Bearing this in mind, in this section we shall design
a controller which allows redundant manipulators to perform contact tasks by choosing
manipulator configurations that produce minimum impulsive forces.

Equation (4.5.7) indicates that the severity of the impact depends on the manipula-
tor’s contiguration g. Therefore, as mentioned above, the main ide here is to use a manip-
ulator’s self-motion in order to reconfigure its posture in such a way that i’,ml, 18
minimized. To do this, we define the objective function L (g, D,) in equatior: (4.4.1) as
tollows

-(1+ u),\"rn“

L(g.D}) = 7 — 7 4.6.1)
n, 11 . (qYD; " (q) T, (q)]n,

Next, we assume that the Cartesian space trajectory of the manipulator has been planned,
i.c., the end-eftector velocity profile ¥ has been determined in advance. Also. since the
materials of the end-effector and the workpiece are known, the parameter p (and thus the
type of collision) is assumed to be known. In most cases, we also assume the geometry of
the collision, i.e., parameter n,, is known. Under these assumptions, the minimization of

L (¢.D,) is equivalent to the minimization of the following simple objective function

1

T - = 4.6.2)
n, A\ YDy (@), (q)]n,

L(q.D) =

The minimization of this function requires the augmentation function = defined by equa-
tion (4.4.1). Note that in implementing this scheme, the = has to be computed at each time
mstant that the augmented simplitied impedance controller is evaluated. In other words,

when the manipulator end-eftector tracks a given Cartesian trajectory, this additional aug-
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mented redundancy resolution loop is executed in parallel with the main feedback loop ot
the impedance controller, to control the self-motion of the manipulator. This will contiguie
the manipulator links such that L (¢. D)) in equation (4.6.2) is mmimized. This imple-
mentation is particularly useful when the instant of contact or collision is not known.

It is worth mentioning here that the impact reduction objective function of equation
(4.6.1) (or that of equation (4.6.2)) is a highly nonlinear function with respect to . Thus,
at any location along the Cartesian space trajectory there might be more than one local
optimum for the objective function L (g, D). We shall illustrate this point with a simple
example. Suppose the tip of a three-link planar manipulator moves along a Cartesian space
trajectory and arrives at the point X = 2 (X =1,). Y = 0 (¥ = 1,) . and mahes contacts
with the surface of a workpiece as is shown in Figure 4.2. Assuming that we can freeze the
time ¢ at that time instant, we change the configuration of the manipulator by vanying the

Y
1.5 . : e

AL
-0.5+
-1 - L S - -1X
0 1 -

Figure 4.2 Ditferent configurations for Impact

angle o, between the surface of the workpiece and the third link of the manipulator. Fos

all different configurations of the manipulator the normalized impulsive torces are

1y
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calculated using equation (4.6.2) and are plotted against the angle o,. The plot shown in
Figure 4.3 demonstrates that the impulsive force is highly nonlinear and indicates that

multiple minimum points may exist.
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Figure 4 3 Profile of /~, = with respectto U,

o

In order to avoid being trapped in an undesirable configuration (due to multiple
optima). 1t is desirable to bring the manipulator to a region close to the point of contact
with a desied configuration. Note that it may not always be possible to bring the manipu-
lators to the 1egion of the point of contact with a desirable contiguration. This depends on
the workspace topology. For example. various objects in the workspace may prevent the
mampulator from achieving a desirable configuration. In the following figures, we show
vatious workspace topologies and the corresponding optimal manipulator configurations.
To some extent, Figures 4 4 and 4.5 demonstrate that the problem of choosing the optimal
configurations may not have a solution due to the presence of obstacles. In this case, we

may choose a near-nunimum solution which is the soluton to the combired problem of
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manipulator collision impact reduction and obstacle avoidance. Thus, the solution to this
“optimal™ contiguration problem may require consideration of multiple cniteria i redun-

dancy resolution.

Cartesian trajectory ‘:’;’,’;f,” ace
, \
| Workspace Canos{n!v frajectory
. object T,
\ - |
NN S S SSS NS ‘\ NN NS
Figure 4 4 Constraints in workspace: Figure 4 5 Constraints in workspace:
case 1 case 2

Another point to note in our computer simulations concerns the contiguration of the
last link (to which the end-effector is rigidly attached) with 1espect to the contact surtace

of the workspace object. We denote this by the “contactangle ™, which for the example, in
Figure 4215 given by o,. The impulsive torce generated at the tune of colhsion depends
very much on this angle. It was observed thot the point of contactreceived the smillest
amount of impulsive force when the last Iink is configuied to be in parallel with the su

face of the workspace abject. In our example. all the joints and the Imks were considered
to be rigid and thus, the entire manipulator was treated as a rigid mechanical structure
From the mechanical point of view, the contiguraions of the remaming links obviously
affect the propagation of the impact force from the tip of the Tast link to the base of the
manipulator. Therefore, the variation of the contact angle between the last Hink and the
object surface is important for the magnitudes of both the impulsive torces and the cone

sponding joint torques. However, this variation is usually kept to a small range “This point

is verified in the simulations shown later in this chapter.
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4.6.2 Reduction of Rebound Effects Using Augmented Simplified Imped-
ance Control

The reaction force (which depends on the materials used for the object and the end-
effector) generated at the time of impact tends to push the manipulator end-effector away
from the object surface. Application of an impedance controller will force the end-effector
to bounce back toward the object surface when the position, velocity and acceleration
errors between the desired and actual Cartesian space trajectories generate large enough
impedance forces in the manipulator’s controller. Usually, this will cause oscillatory
behavior for the manipulator end-effector. and may lead to instability in the closed-loop
system. In the worst case scenario, it could even damage the end-effector as well as the
object. Ideally, we would like the collision between the manipulator end-etfector and
object surface to be plastic with small impact forces, i.e., there is no rebound of the end
ettector after contact. However, in practice the object surface is usually hard. and the end-
effector is made ot hard metal as well. Therefore. the collision is likely to happen in an
elastic way: the degiee of elasticity depends on how hard the object surface and the end-
citector are. From the foregomg, 1t 1s necessary to use a control scheme which will supet-
vise manipulator impact control. Here. we propose a simplified impedance control strat-
egy which reduces the end-effector oscillatory behavior and bouncing effects.

As we saw in Section 4.3.2, the simplified impedance controller has been formulated
by choosing the desited inertia matrix M to be identical to the inverse of the manipulator’s
mohilirv tensor Woexpressed in Cartesian space. Based on (4.4.2), the complete aug-

menied simplitied controller can be rewritten as
T= J B I +K (=) Y+ (C+ G+ F) + W s —dg ] (4.6.3)

The terms related to the Cotiohs and centrifugal forces, the gravity force and the frictional

force are included in the control in order to cancel out the corresponding nonlinear terms
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in the dynamic model. This can be implemented using an mner teedback loop as shown i

Figure 4.6. At the same time. an outer feedback loop carties the Cartesian feedback mtor-

4 = 0 + :

>®< Augmcmutmn -

Augmented
impedance
controller

+

F T Manipulator | Forwad
X >/ dynamics Kinematics

Bl

Basic
impedance
controller

Xd’ gt
1éf

Figure 4 6 Block diagram of the simiplified augmented impedance controller

Nonlinearities

mation (calculated through forward kinematics or measuied ditectly) trom which the
desired system impedance is calculated.

As mentioned previously, the desited mertia matrix M plays an ftaportant 1ole an
impedance control for impact minimization. Obviously, the Targer the inertia that an object
has, the more difhicult it is to change its state. The object obstructs the motion of the end
effector when the manipulator makes contact with it. In order to change the state of the
end-effector, a greater effort is needed due to the larger mertia matnix M. Therefore, i
larger impulsive force is generated. At the same time, since the impedance controller i
usually set to be in critically damped condition, a farger inertia matrix A7 will also result in
larger damping and stiffness matrices. This will further generate larger impedance and,
therefore, result in larger impulsive forces. On the other hand. a smaller desired inertia
matrix M results in smaller impulsive forces. However, a small inertia matrix M results in
oscillatory behavior of the end-effector, and increases rebound etfects. Sometimes 1 may

even cause instability in the system. Therefore, considering these two opposite scenanios,
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the simplified impedance controller provides an “optimal™ solution for this problem.
Practically speaking, there are always some mismatches in dynamic models, and the

stiffness of an object surface may be variable. This will affect the impuct dynamics and

consequently may produce oscillations. However, these oscillations can be damped out by

setting the impedance controller to provide critical damping.

4.7 COMPUTER SIMULATION RESULTS

In this section, we demonstrate the impact reduction property of the proposed control
strategy presenting computer simulations of some examples. The manipulator which we
use 1 these examples is a rigid three-link planar redundant manipulator shown in Figure

4.7. The joint space dynamic model of this simple three-link planar redundant manipulator

VAl

ooooo

Rigid joints

--------------

..............

i

Figure 4 7 Three-link planar redundant manipulator

is described m [6] with the following equations

=D g+Cilg.q) +G,(g) +F, (q) +I.F (4.7.1)
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Each link is assumed to have the same length [, = [y = {; = Im and the same masy
my, = m, = my = 10hyg. For simplicity, the links are modeled with point mass at then
distal ends. The surface of the workspace object is modeled as a spung with stittness
K, = 10% ~ 10° to represent a hard surfuce.

Simulations were performed using MATLAR on a SUN/SPARC-2 workstation. In
order to verify that the end-effector receives minimum impulsive torce with respect to an
appropriate configuration at the time of collision, (see Figuie 4.1), we first caiculated the
impulsive forces using equation (4.6.1) with respect to ditferent configurations at the
impactpoint (X =2 (X=y)).Y =0 (Y =y,)) with desired Cartesian velocity v, The
impulsive force profile for different configurations of the manipulator is shown m Figuie
4.2, where the parameter o, defines the angle between the surface of the object and the
third link of the manipulator. Note that there is no end-effector in this simplified example
Therefore, the tip of the third link is to come in contact with the envitonment. Also, note
that euch different value of o, represents u different configuration of the manipulator As
we can see from Figure 4.2, the manipulator receives the minimum mpulsive torce when

o, € [10%15"]. Knowing the minimum impulsive torce configuration, we design the tol

lowing Cartesian trajectory

I

y T
Y 1.5+ 0.5./2¢0s (w1 — 4)

n
0.5 - ().Sﬁsin (Wt~ 4 )

1

Va2
‘ (4.72)

and select the objective function for redundancy resolution as in equation (4 6.2) The sim
plified impedance controller of equation (4.6.3) was used as the controller for the redun-
dant manipulator in our examples. Figure 4.8 shows the manipulator imitial configuration
at g = 90”7, =90, 0”] " the motion along the desired Cartesian tryjectory (defined by

(4.7.2)), and the collision between the tip of the third link and the workspace object at the
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point (2,0). As can be seen in this figure, at the time of collision the angle between the
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e trajectory
Base ' R A . ,
7% ///7/ %rkspacewfecf* \
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Figure 4 8 Manipulator configurations before and at the time of collision

object surface and the third link of the manipulator has a value in the interval [107,15°] as

predicted in Figure 4.2. This tmplies that the impulsive force at the tip of the third link at

impact is minimized. This confirms the theoretical analysis presented in the preceding sec-

tions.

Further details of this computer simulation can be illustrated by analyzing the actual

end-effector trajectories in Cartesian space, the actual joint-space trajectories, and the

actual torque prohles. Two different simulations were performed. The first simulation,

with results shown in Figures 4.9-4.17, uses the proposed simplitied impedance controller,

1e.. the desired mass matrix is defined as M = [.ll),".lr] _l. This should be compared
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with the results of the second simulation shown in Figures 4.18-4.26 whete thete 1s signif-
icant mismatch between M~! and the mobility tensor .117,“1.11. As can be seen trom Fig-
ures 4.9 and 4.10, the end-effector rebound effects are conuclled within acceptable levels
in comparison with those in Figures 4.18 and 4.19 where the desued inertia mattix A7 ' is
selected to have much higher value than the mobility tensor .II),“‘.I'. Also, it can be seen
that the resultant impulsive forces/torques in the tirst simulation (Figures 4.14-4.17) wie
much lower (at least by a factor of 2) than those in the second simulation (Figures 4.23-
4.26). This is to be expected because the desired inertia matrix in the second simulation is
large enough to ensure that the end-effector has hardly any rebound. but internally the
impulsive forces/torques are very large due to the high value of the desired inertia matni.
As far as the control of collision impact is concerned, this clealy indicates that the simpli-
fied impedance control scheme is supetior to the conventional impedance conuoller. It

also verifies the assumptions and the analysis which were made carlier in this chapter.

4.8 CONCLUDING REMARKS

In this chapter the problem of controlling redundant manipulators to reduce collision
impact effects has been considered. and an augmented kinematics and impedance contiol
scheme has been proposed for its solution. The proposed scheme achieves satisfactory
performance by minimizing the magnitudes of impulsive forces as well as reduaing
rebound effects of the end-effector.

In order to resolve the manipulator’s redundancy, the augmented kinematics approach
was used so that the manipulator Jacobian matrix is augmented to a square matnix In the
proposed control scheme, the augmentation ot the Jacobian matrix is based on an impact
model derived using the Cartesian space dynamic model of the manipulator. This results in
a configuration of the redundant manipulator that gives the smallest amount of impulsive
force at the end-effector while the end-effector still follows a prespecihed Cartesian trajec-

tory.
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The impact controller is also based on a simplitied impedance control scheme aimed
at reducing the impulsive forces as well as the rebound effects. In the simplified imped-
ance control scheme, the inverse of the desired inertia matrix is chosen to be identical to
the mobility tensor of the manipulator in Cartesian space. This ensures that the end-effec-
tor at the time of impact generates acceptable rebound effects while keeping the internal
impulsive force at an acceptable level. The performance of the proposed controller has
been illustrated by computer simulations for several examples.

The topic of impact control and, in particular, impact control using redundancy, is rel-
atively new. The approaches proposed here form only the first step towards the develop-
ment of more general control schemes which can be applied to a variety of practical

manipulator/environment contact situations.
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Figure 4.9 Actual end-effector Cartesian trajectory
along X axis (proposed approach)
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Figure 4.13 The third joint trajectory
(proposed approach)
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Figure 4.19 Actual end-etfector Cartesian trajectory
along Y axis (conventional approach)
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CHAPTER

CARTESIAN CONTROL OF REDUNDANT
FLEXIBLE-JOINT MANIPULATORS

5.1 INTRODUCTION

Contrel of rigid-joint robot mampulators has been thoroughly studied m the Tast two
decades [1ZI1O]121117]121]123]. Many of the approaches have been successtully
implemented on industrial robot manipulators. However, with the increasig aemands
being placed on robot manipulators to perform high speed. igh-precision tasks, the prob
lem of dealing with joint flexibility has become important

Joint flexibility asually comes from gear elasticity, shatt wind up.and the use of hai
monic drives. The:efore. the dynamics describing rigid-joint manipulators, and the strate-
gies designed to control manipulators with rigid joints may not be apphicable to tlesible
joint manipulators. In order to control manipulators with joint flexibility, fist we must
consider a more accurate representation of a manipulator’s dynamics that involves “flexi
ble” modes, and develop control strategies that can control these modes. As we will see
the literature review in the next section, almost all the existing control schemes tor e
ble-joint manipulators have been based in joint space. These schemes are suitable tor non
redundant flexible-irint manipulators. However, as m the non-redundant case, redundant
manipulators may also have joint flexibility. Because of the need to resolve redundancy,
existing joint space control schemes for non-redundant manipulators may not be suitable

for the redundant case. Therefore, it is necessary to develop Cartesian control schemes for

%4
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redundant flexible-joint manipulators. The dynamic model of a flexible-joint manipulator
wis den ed in Chapter 3. This chapter will focus on the issue of designing a control strat-
egy for a redundant Hexible-joint manipulator.

In this chapter, A new control strategy called hvbrid Cartesian-joint control is intro-
duced. The construction of this control scherne is based on the analysis of flexible-joint
non-redundant joint-space schemes and flexible-joint non-redundant Cartesian-space
scheme. The important issues of disturbance due to joint flexibility, control of the manipu-
lator’s self-motion, and the relationship between joint disturbances and self-motion are
also addressed. This leads to the proposal of a hybrid Cartesian-joint control scheme.
which is compose of a Cartesian tracking controller, a link tracking controller, and a
mator tracking controller. At the same time, redundancy can still be used for the secondary
tasks to be pertormed by the manipulator while the end-effector wacks a Cartesian trajec-
tory. The rest of the Sections in this chapter are arranged as follows: Section 5.2 gives an
overview of the existing approaches for the control of flexible-joint manipulators. In Sec-
ton 5.3, a brief 1eview of joint control of flexible-joint non-redundant manipulators based
ona nonlinear control strategy 15 presented. and the extension of this scheme to Cartesian
contral of flexible-joint non-redundant manipulators is discussed in Section 5.4. Section
5.5 discusses some difticulties in directly extending the approach discussed in Sections 5.3
and 5.4, and presents a new method called hvhrid Cartesian-joint control. Stability analy-
sts for the proposed controller is given in Section 5.6 using the Lyapunov approach. Sec-
tion 5.7 discusses some computational issues in the control strategy. Finally, computer
sunulations to test the proposed control strategy are given in Section 5.8, and Section 5.9

draws some conclusions concerning the topic o this chapter.

5.2 OVERVIEW OF EXISTING CONTRCL STRATEGIES
The techniques currently used for controlling manipulators with joint flexibility can

be categorized mainly into: (1) a singular perturbation formulation of the dynamic model
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and the integral manifold approach [13][25)[26]: (2Y an exacr hinearization approach
[I[25]: and (3) a passivity-bused design approach { 2] 160][28]. All ot these approaches are
in joint space. and have been developed for non-redundant manipulators,

The singular perturbation formulation for flexible-jomt mampulators was used by
Spong. Khorasani and Kokotovic [13}] 25]126]. The model detived using the smgular per-
turbation technique is useful for cases where the elasticity in the joints 18 of greater signit-
icance than gyroscopic interactions between the motors and hnks, The singular
perturbation parameter  is defined as the inverse of the joint suffness. In this formula-

“

tion, the link positions and velocities are the “slow™ variables, while the joint torques and
their rates are defined as the “"tast™ variables. In[13]]26], the concept of an imvariant man

ifold is utilized. This leads to a reduced-order dynamic model ot the same dimension as
the rigid model, but incorporating the ettects of joint flextbility. Bused on this reduced

order flexible model, a corrective control strategy is formulated to compensate for flexibil-
ity in the joints. The overall control strategy consists of arigid connoller designed toy the
rigid system, and a corrective controller to compensate tor deviations of the flexible sys

tem response.

Feedbuck linearization and decoupling of flexible-joint manipulator dynamics were
discussed in [8]]9](24]. In contrast to nigid manipuiator dynamics, lincarizability of flext
ble-joint dynamics depends on what type of model is used. It is pointed out in [25] that the
manipulator dynamics are feedback linearizable using static state feedback only 1 i s
plified model is used, while the full model is lincarizable using dynanmic feedback. Control
strategies and robustness properties for the linearized system are discussed 1 [24]]25].

The concept of passivity is traditionally defined as an input/output condition deserib
ing a class of physical systems that do not gencrate energy | 18], This property has been
used in feedback stabilization for rigid manipulators [27] and flexible-joint manipulators
[2][28]. The passivity property for flexible-joint manipulators, i.e.. the fact that the motor

torque and motor velocity form a passive pair, was recognized in [2], and was used in

h{{)
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proportuonal-derivative (PD) type controller design. The method requires inherent damp-
ing 1n botiy hinks and motors. However, results that do not require inherent damping have
recently appeared in [28), where system stability and robustness analysis using a simple
PD controller are given with respect to uncertainties on the manipulator parameters. But in
[2¥], only the regulation problem has been considered. The trackiag problem was solved
in [20] by adding a feedforward controller to the original feedback system. This feedfor-
ward controller basically generates the nominal operating point for the feedback control-
ler. Based on the feedforward and feedback structure, an adaptive version of passivity
design has been proposed in [ 16] where it has been shown theoretically that joint position
and veloaity tracking errors converge to zero, and all the signals are bounded. The advan-
tage of the approach in [16] is that the joint flexibility value is not assumed to be known «
priori.

In another recent approach proposed in {3][15], a two-stage controller was designed
consisting of a link controller and a motor controller similar to the feedforward and feed-
back control structure in the passivity design approach.

The above mentioned contiol schemes tor flexible-joint manipulators are all based in
joint spuce. In order to solve the redunduncy resolution probiem effectively for redundant
Hlexible-joint manipulators, we neecd to address the problem of Cartesian control of flexi-
ble-joint manipulators. We start with a joint-space control scheme for non-redundant
rigid-joint manipulator. Based on this scheme. we construct an equivalent Canesian-space
scheme. We then propose a hybrid Cartesian-joint controller for redundant flexible-joint

mampulators.

5.3 JOINT CONTROL OF NON-REDUNDANT FLEXIBLE-JOINT MANIPULA-
TORS

Consider the simplified flexible-joint manipulator dynamic model (3.5.2) proposed in

Chapter 3
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D, 0]yt [ K Yol
Ky (’iJ(’/ R M (5 3.1)
0D ] ‘luJ ()JI \k( I\ (‘II ([m)! lr!
The link dynamic equation can be rewritten as
Dig+C+G+Kyq, = K (q,,,-¢,) (5 3.2)

, nxl s e 230 TR - Nt .
where ¢, € N 1s the motor error vector defined by ¢, = ¢, ~q¢,. Extending the
resolved acceleration control strategy for a rigid-joint manipulator 117} 1o the flexaible

joint case. the desired motor position. ¢, ,. is given by
- . .o -, . . .
Gpug = K AD gy + K@+ K e 1+ Cpr G R g, (534

nxl 1>

where ¢; = (q,;~¢;) € R and ¢, & K" represent the link position and velocty

e ]‘l! < 4

ertor vectors: and K, € and K ;& """ wie the constant Link posttion and vela

ity feedback gain matrices respectively. Actually, we can treat equation (5.3.3) as a feed
forward signal which provides the nominal motor position trajectoty in terms of the
desired link trajectory as well as link dynamics. This feedtorward signal is somewhat dit
ferent from those in [ 3][15]. and results in different closed-loop stability properties,

Once the feedforward nominal motor position is obtained, the motor controlier can be

constructed based on the motor dynamic equation in (5.3.1):

+K + K

m(l pm "m pm m)

Tt =D, {4 -K (q,-qy (5.34)

I'l)

nxl

wheie T € R is the motor control torque, and K, € R*“" and K, & R"7" are

I)I)I

constant feedback motor position and velocity gain matrices respectively. Equation (5 3.4)

X¥
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can be regarded as the representation of a feedback controller. Therefore. the overail joint
level controller is composed of feedforward and feedback controllers.
For the feedtorward controller. we substitute (5.3.3) into (5.3.2). The closed-loop

equation at the link level 1s given by
., : IS P
('1+K\,IL'I+K,,1(', =D, Kz, (5.3.5)

The matrices K, and K, can be specified so as to ensure that the left-hand-side of equa-

tion (5.3.5) has characteristic roots in the left-half of the complex plane. But the link track-

mg crror ¢, approaching zero asymptotically depends not only on the motor tracking error
¢, approaching zero asymptotically on the right-hand-side of (5.3.5). but also on the mag-
nitude of the product 1),_'1(". However. we note that the link inertia matrix 1), (g,) s pos-
itive-definite, and cun be bounded as D, <D, (q)) < D, corresponding to any given 4,
within the manipulator’s workspace [6]. Therefore, its inverse D,"l is also bounded as
D, s D, ] (q) = 1),”'. The matrix K. which is a diagonal matrix of the spring constants,
is clearly bounded. This implies that the product of D7' and K is bounded.

Substituting (5.3.4) into the motor dynuamic equation in (5.3.1), we obtain the motor

tracking closed-loop equation

¢+ K, +K = (5.3.6)

)
poiCm

By properly selecting the motor gain matrices K, and K

o .~ WE can ensure that ¢, as well

as ¢, approach zero asymptotically. To prove stability of the system, a state-space equa-
tion is formed based on the combination of the closed-loop equations (5.3.5) and (5.3.6).

Knowimng that 1);‘1\'\ is beunded. stability of the system can be proven using the

39
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Lyapunov approach. Details of the proot can be tound in {3]]15]
The joint-based controller shown above is sinmbat to the schemes in [ 3} 15] where the
intermediate variable = = ¢ — ¢, isdetined as the system state inntead of - However

appears that using ¢, rather than = requires less computation.

5.4 CARTESIAN CONTROL OF NON-REDUNDANT FLEXIBLE-JOINT
MANIPULATORS

For rigid-joint non-redundant manipulators, a Cattesian convoller can be casily
derived from an equivalent joint-space one. The connection between the Cartesian contiol
force F and the joint control torque T is usually obtained using J ,c.p. T = ./‘I,I- [5]
However, little attention has been paid to Cuttesian controllens for flexible-jomt matupula
tors. The reason for this is that the control of jomnt elasticity can be diectly done i joint
space. Since fiex:bility exists between a manipulator’s motors and inks, it s much more
difticult for the controller at the motor side to indirectly control the ink position A Cante
stan control scheme goes one step further in that the controllers at the motor side mduectly
control the end-etfector of the manipulator through appropriate contiol of the hok poss-
tion. A joint-based control scheme, however, prevents us from applying more sophisti
cated control scheme to a flexible-joint manipulator, such as hybrid control. nnpedance
control, and redundant manipulator control which are achieved using Cantestan space con
trol.

We first develop a Cartesian control schemie for flexible-jomt non-redundant manipu
lators based on the joint-space scheme described in the previous section ‘The controlier

can be written as
_ 1 “fye ) Y . .
g, =K, {DJ, "‘A+B\-1"\+Bp/‘\”'/v‘/l | +C,+G,+Kqg,} (54 1)
where ¢ = (a,—-1) € RV and ¢ e R"7! are the Cartesian position and veloon
v d v P y

90
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tracking error vectors, v .and a; are the desired Cartesian position and velocity vectors,
while v and v are the actual Cartesian position and velocity vectors respectively:
[5”& R and B, R denote the Cartesian position and velocity gain matrices.
Assuming that the manipulator configuration is not in the neighborhood of a singularity.

the closed-loop system can be formed by substituting equation (5.4.1) into the link

dynamic equation in (5.3.1)

; 3 » — _‘l , 9
“ + B\ 14 + Bplc v ‘lt'l)l Ks( m (54._)
Agam, by arljusting the gain matrices [3/,/ and B ;. we cen ensure that the left-hand-side of

equation (5.4.2) has a characteristic polynomial that is Hurwitz. It is also noted that the

/ 'I\'\ 1s bounded. A proof of stability tor this control scheme will be given later on in

J.D
this chapter

Remark: Since this is the non-redundant case. the differential mapping between joint
space and Cartesian space is one to one (after on appropriate Kinematic branch has been
selected). At the motor level. there s o miotor tracking contreller which already takes into

account the hink dynamics. This controller ensures that the motor follows the computed

feediorwand signal ¢, . while at the link level the unique differential inverse kinematic

solution i, = JU (v, +p o +B ¢ =J.4,) transforms Cartesian motion into corre-
ld ¢ d W ARRY ’)[ \ ey

sponding oint motions, Theretore, asymptotic Cartesian uacking guarantees asymptotic

joint ttacking due to the strict kinematic relationship. Howeyer, we will see in the next

section that this o not always true for redundant tlexible-joint manipulators.

5.5 CARTESIAN CONTROL OF REDUNDANT FLEXIBLE-JOINT MANIPULA-
TORS

The contol of redunazat manipulators falls into two categories. The first category

Yl
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features separate kinematic and dynamic processes, The desired Cartestan trajectory s
converted into joint trajectories using an appropriately designed  Kinematic contiol
scheme. and at the same time redundancy is resolved for the desited jomt selt-motion
[4]129]130]. The generated joint trajectories are then fed into a joint space control scheme
On the other hand. the second category combines the hinematics as well as the dynamics
of the manipulator. The controller is established 11 Cartesian space, and the inverse kine-
matics and redundancy resolution problems are solved implicitly in the process ol
dynamic control {11][19]. In this Chapter, we will use the latter approach to developa Ca
tesian space based redundant manipulator controller.

We first recall the resolved-acceleration pseudo-inverse control for a rigid-jomt

redundant manipulator:
To= DTGB B e —deg) D (=050 )8 Ot G (5.5.1)

Notice that the first term on the right-hand side of (5.5.1) is the Cartesian trajectory track
ing torque which lies in the range ot /. and the second term represents the jomt selt
motion torque which lies in the null space of . we apply this controller to a flexible-

joint redundant manipulator, equation (5.4.1) becomes

Qma = K:] {l)/‘lt';ﬂ ('.1:11 + B\/(;\ + B/’1“. —']l'(]/ )

+D, (=171 )E+C+G+K g, } (5.5,

Together with the motor controller (5.3.4). this feedtorward controller can be applied to
the flexible joint manipulator. However, in some cases this controller causes the manipula-
tor's joint configuration to deviate from its designated path, which may also resultin devi-

ation of the manipulator’s end-effector from its Cartesian trajectory. This could eventually

Y2
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lead to instability. This situation is best illustrated by an example.
The three-link planar fliexible joint manipulator is required to truck a Cartesian trajec-

tory, and the redundancy resolution is set to minimize the joint acceleration ||g,|| . Figure

Y Y

' . r 2 T

wv

1Y . ) 3 X -:
Figure 5 1 Desired configuration history Figure 5.2 Actual configuration history
5.1 shows the desired joint configuration history while the tip of the manipulator follows a

circular tragectory. In Figure 5.2, equations (5.3.4) and (5.5.2) are used as the motor and

link controllers 1espectively. By contrast with Figure 5.1, it is obvious that in Figure 5.2

o

ra
T
1

St

0 6.2 0.4 0.6 0.8 1

Figure 5 3 The first link tracking error



Chapter 5

the manipulator’s joint configuration deviates from its desied path when it s m the pro-

cess of completing the upper half circle. This deviation causes the tip of the manipulator to

move away from its nominal Cartesian trajectory. Figures 5.3, 5.4, and 5.5 show the hink
tracking errors. It can be seen that the links are actually not tacking the desired tajecto-

ries. This is a fairly typical example. In the next section, we will analyze this phenomenon
< Ty
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Figure 5.4 The second link tracking error
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Figure 5 5 The third link tracking error

5.5.1 Disturbances Due to Joint Flexibility
For a redundant flexible-joint manipulator, there are two points worth noting. One

concerns the torsional forces existing in the Hexible joints, and the other s the redundant

94
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manipulator’s self-motion which 1s not controlled by the feedback loop.

Torsional forces piay an important role in flexible-joint manipulators. On the one
hand, torsional forces are atfected by link movements; on the other hand. control torques
are transmitted from motors and generate torsional forces in order to control the motion of
the links. These forces are highly nonlinear and vary in a wide range. It can be assumed
that joint flexibility behaves as a spring which stores and releases energy, providing signif-
icant disturbances to the system. Furthermore, joint flexibility in one joint has an effect on
the other joints, which makes it even more difficult to control the links. Another issue is
that because of the differential kinematic one-to-one mapping for non-redundant manipu-
lators, closed-loop control of the end-effector cun be translated into closed-loop link/joint

control (see Figure 5.6). However. because of self-motion in redundant manipulators. end-

(R T Non-.redundanl XX
Controller manipulator —
- dvnamic model

Figure 5.6 Non-redundant manipulator contro! block diagram

effector Curtesian tracking control and motor control do not necessarily translate into
closed-toop link control. Usually. we introduce a vector, for example &, for the purpose of
clhow contiol, obstacle avoidance, ete.. or we optimize some kinematic and dynamic cri-
teria by defining a function f(g, ) € R"* ! . and then choosing £ in the negative gradient
direction & = ~V f(g,) . The manipulator then adjusts its link configuration and gradually
approaches the optimal point while the end-effector tracks a desired Cartesian trajectory.

v
-

But we note that the null space or self-motion vector & is not inside the feedback loop (see
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Figure 5.7), and its convergence depends only on the negative gradient.

¥
+ diN
D, (I-J71)
XXy + +£ T | Redundant v
Controller —->O-—> manipulator .
- + dynamic model

Figure 5.7 Redundant manipulator control block diagram

Based on the analysis above, it is clear that o distwrbance ©, € R~ Vi itroduced

in the system by joint flexibility

~1 £ . . . i
qmd = K.\ {D ‘](" ('\11+ B“I(’\ + [SI)I“\ —'I"ql ) +“I(I —'Ir‘ ',v )g

FC+HGH K g v, (55 1)
Theoretically. T, could atfect the Cartesian tracking variables A and v, or through ¢, .
influence the motor tracking variables ¢, and ¢,,. However, these vanables are inside the
feedback loops of the Cartesian tracking and the motor ttacking contiollers respectively
The sensitivity function of Cartesiun tracking with respectto T, 1+ usually proportional to
the inverse of the gain matrices B,,/ and ;. Hence, the tacking errors due to T, can he
made arbitrarily small by making [3/7, and B suthciently large. A similar procedure can
be used for the motor controller to make motor ttacking ertors as small as possible. How-
ever, the sensitivity function of the self-motion £ with respect to T, can be large because

£ is outside the feedback loop. Therefore, the influence of T, on the self-moton torque
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D= .I','L.ll, ) £ cun become significant. Two possibilities car be observed:

) It [T, | (=, i g, [—-Vf(q,) ] H the disturbance 1, is relatively small
and it affects the self-motion torque, but it does not prevent £ from approaching the

optimal point. This implies that using joint self-motion to reach the optimal pointis still

feasible but it may take a longer time.
(i) 1t T, | ~HD,(I—.I(,+.I,, ) I-Vitg) ] “ the joint torsional force disturbance

T, 1s large enough to affect the magnitude as well as the direction of the self-motion

diy
torque. In other words, T, can prevent £ from approaching its optimal point. The
manipulator i this case may lose the desired redundancy resolution. In the worst case

scenatio, this loss of redundancy resolution means loss of link control and may even

result in instability.

5.5.2 Hybrid Cartesian-Joint Control

The above analysis indicates that we must either add another controller to the self-
motion of the manipulator, or somehow bring the self-motion vector & into the feedback
loop such that all the link motions can be controlled. Unfortunately, the desired link trajec-
toties ¢, Gy, and g, are not directly available for constructing a tracking system for the
links. However, it is possible to compute the desired link trajectories indirectly. Therefore.,
we propose a hvbrid Cartesian-joint controller for flexible-joint redundant manipulators.

Using ditferential inverse kinematics for a redundant manipulator, the acceleration

i, can be expressed as
iy =J.) (0, + B¢ +B,e - Jog )+ U=J3T)E (5.5.4)

Since the initial desited link position ¢, () and velocity q,,(0) are known. we can



Chapter 5

compute the desired future link acceleration usmg equation (5.5.4). and trom where the
desired future velocity ¢, and the position ¢, , can be obtained oy integration.

If all the link motions, resulting from Cartesian ttackmg and hnk self-motion, e con-
trolled by feedback. this could prevent T, from affecting link self-motion, In addition to

the Cartesian tracking control, this controller reinforces tink control. The sttuctine of the

controller is given by

-] .. . -
g = K3 ADYT Gyt Byé +Be =dugy) +Dy(0=0100)8

where K, € R and k € R are link position and velocty gain matiees, and ¢,

and ¢, are the desired joint position and velocity variables. To control a flexible-jomt

redundant manipulator, we need Cartesian tracking control as well as joint control. This
can be achieved using (5.5.5). In addivon to this, the motor controller that takes the same
structure as the one for non-redundant manipulator joint contiol, i ¢.. equation (5.3 ), 18
also used to control the motor dynamics. The properties of the closed-loop system result
ing from applying the controllers (5.5.5) and (5.3.4) to the sysiem (5.3.1) can be analyzed
as follows.

It should be noted that the overall system has three controllers Frrom the outer-loop to
the inner-loop. it has a Cartesian tracking controller, u link-level controller and a moto
level controller. Let us start with the Cartesian tracking controller. Based on the ditteren

tial inverse kinematics and equation (5.5.5). the joint acceleration can be expressed as

G0 = T+ Be +Be —dug) + (1-10, )¢ (5.5.0)

¥
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Premultiplying by ./, on both sides of (5.5.6), and using the property J, (/ —-.I‘,* J,) =0,

we can express the Cartesian tracking closed-loop equation as
i;x + B”(}‘ + ﬁp[g‘ =0 (5.5.7)

where asymptotic stability can be ensured by proper choice of [3[)1 and B ,. For the link-

level controller, express (5.5.5) based on (5.5.6), we get
G = K\-‘ DG+ K (g =q) +X (4= 4q) | +C,+G,+Kqg, } (5.5.8)

Note that equation (5.5.8) denotes a joint space controller. The closed-loop characteristic
equation can be formed by combining the controller (5.5.8) and the link dynamic equation

in(5.3.1)

O+ K G+ K 0= DK e (5.5.9)

S m

5.6 STABILITY ANALYSIS

System stability can be shown using the Lyapunov function approach. First, note that
for equation (5.5.7) the Cartesian tracking errors ¢, and ¢, are not coupled with other
variables, its stability can be ensured by proper choices of the gain matrices Bpl and B,
independently. Second, for the two sets of closed-loop characteristic equations shown in
(5.5.9) and (5.3.6) for link tracking and motor tracking, the equivalent state-space repre-

sentation can be written as

Y = AY (5.6.1)

vy
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S

, ocan be witien as
}

i
where Y € R % iydetinedas Y = [(11 (;1’ ol ‘;1} cand A € s
i ni

0 I, 0 0|
e e =] .
Alg) = | NN Dy tap K, 0 (5.0 2)
0 0 0 l,
L () () —I\'[”H - v'hi
Moreover. for the purpose of analysis, we partition Y and A (¢,) a
A A ’(q,)]
Alq,) e and Y =
(g, 0 A J 1
= (5.6 3

We note that the system matrix A (¢,) is time-varying because the submatiin Ay, (¢} n
A (¢, is a function of the manipulator inertia matrix. Of course, this time-varying prop-
erty of the matrix A (¢,) makes stabihity analysis more ditheult since the standard

approaches for analyzing linear time-invariant systems cannot be used [22]. Thus, it s
necessary to consider the application of Lyapunov’s direct method for studying the stabal-
ity of this nonlinear time-varying system.

The main idea in proving stability of (5.6.1) is to derive a simple scheme which s
similar to applying Lyapunov’s direct method to linear time-invariant systems. In the cise
of linear time-invariant systems, a necessary and sufticient condition for x| = A 1 to be
strictly stable is that, for any symmetric positive-detinite matrix (., the unique solution
P, of the Lyapunov equation A,l,‘P”+P”A” = —Q,, must be positive-defimite. In the case
of a time-varying system such as the system in (5.6.1), some moditications must be made
to accommodate the time-varying property when we apply Lyapunov’s direct method

The following Lemma is required in the proof of stability of the system n (5.6.1). Its
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proof is givenn [ 14},

) > An,

{
LemmaS5.1: Letmatnix Ze R'7 *"™7’ have the structure

7 = [:r Q‘J (5.6.4)

where He ™7™ and Se R™™™ are symmetric positive-definite matrices. Then the

matrix Z is positive-definite if

Koy (HY X, (S) > IRI (5.6.5)
and
“nnn (Zmln) ln, +m, SRS }\mu\ (me) In, +m, (5-6-6)
2x2

. 2 2x2
where matrices Z, € R~ andZ, , € R~"" are

)R]

lmm - (5.6.7)
L IRl )me (S)J
A H R
may = U “, (5.6.8)
I R“ )\mu\ ('S)

and (Rl denotes the 2-norm of R,
Now consider the system (5.6.1) with matrix A defined in (5.6.2), we shall show the
stability of the system using an approach similar to that in [3][15].

Consider the equation

A'P+PA = -0 (5.6.9)
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where the matrices P and Q are partitioned into four 2 \ 2» submatrices as

P, 0
p= U (5.6.10)
0 Ps
0,0/
o=t (5.0.11)
012 O

To show that there exist P and Q whuch are uniformly positive-detinite, we substitute A

in (5.6.3), (5.6.10) and (5.6.11) into (5.6.9), and express the Lyapunov equation as

T —
A11P11+P||An = -0 (5.6.12)
PllAll = ‘QJ: (5.0.13)
A§3P32+P:3/‘33 = -0 (5.6.14)

In order to ensure the stability of the systems (5.6.1), a proper procedure to fnd the
matrices P and Q must be followed. First, given any positive definite matrix (. the
matrix £, can be obtained using (5.6.12). The positive definiteness of 2|, is guarameed
since A is a time-invariant asymptotically stable matrix. We can then caleulate (),
using (5.6.13). It should be noted that Q,, is time-varying because of the tune-varying
nature of A ,. Next, we note that since A,, is a time-invariant asymptotically stable
matrix. a constant matrix P,, can be obtained by choosing a constant positive-detinite
matrix ,, and solving equation (5.6.14). Since the matrices @, and @, have been
formed already, the matrix Q0,5 should be selected so as to guarantee uniform posttive def-

initeness of Q. This can be ensured as follows: First from (5.6.13) we get
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Q0 = 1PnA2g)|
<A (PH)“AI?. (({1)”

nmax

= A (PH)“DI—] (‘lz)K:“

nas
-1
< }"mm (Pl 1) )\'mu,t (K\) [—)1
= Om (5.6.15)
Then by Lemma 5.1, Q is positive-definite if
1212]®
(Q1) > 75— (5.6.16)
i Q“ 7Lmm ( Q 11 )
Theretore, using the resultin (5.6.15), if Q,, is chosen such that
O
Ao (Qa) > (5.6.17)

nin

)\'mm (Q]l )

then, Q will be uniformly positive-definite. Thus, we can always find uniformly positive-
detinite matrices P and Q such that equation (5.6.9) is satisfied. This implies that the sys-

tem (5.6.1) is asymptotically stable.

5.7 COMPUTATIONAL CONSIDERATIONS

It is obvious that control of flexible-joint manipulators is much more difficult than
control of rigid-joint ones. This difficulty can be illustrated by the amount of computa-
tional etfort required to form the flexible-joint manipulator controller.

The link-level controller (5.5.5). which provides the desired motor position, is a func-

tion of both Cartesian and joint variables
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Dnd = Gna X Ve Ve Nl g 41 ) (3.7

it requires only position and velocity information of both Cartesian and joint varables
which are both measurable. However, careful examination ot the motor-level controllen
(5.3.4) tells us that not only the desired motor position g, , is tequired, but the desied

motor velocity and acceleration are also needed:
Dot = Dt Ko X X X X XNy e Qg gy i) (57.0
v N €} IV & §' . (3 Lo (Y
Gud = G QX XV g XNy G Qe Gy A A Gty ) (570

This means that higher derivatives are required in the feedback loop. However, from a
practical point of view, the measurements tor higher derivatives ate not feasible yet. Even
though it is possible somehow to measure (o1 estimate) the acceleration, the measurement
is usually corrupted with noise. Therefore, we must rely on some algotithm(s) to compute
these higher derivatives.

In (5.7.2) and (5.7.3). the key point is to evaluate ¢, and q/' Y The other higher deny
atives can be computed from g, and q; RS Fortunately, because of the special stucture of
the flexible joint dynamics, the higher-order derivatives of ¢, can be calculated recursively

. . . 3
in terms of its lower-order ones. Then, ¢, and (/,( " can be evaluated usiny

4, = -—D,"1 (q) 1Cilgrq) +Glg) +K (q,-q,) ) (5.7
(3)

. . .. () . . .
Having obtained ¢, and ¢, h higher order derivatives of 1 can be calculated using for-
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ward kinematics, while higher order derivatives of ¢,, can be computed using equation
(5.5.4) and its derivatives. The higher-order derivatives of the desired Curtesian trajectory
x, will be obtained by directly differentiating the given trajectory up to the 4th derivative

(4)

(3,
and Yy

to get 1,1, x4

Another important point from the computational point of view is the integration used
to calculate the desired joint position and velocity from (5.5.4). This integration is very
difficult to perform analytically because of the complicated nonlinear nature of (5.5.4).

Theretfore, in general numerical integration is required.

5.8 COMPUTER SIMULATIONS
To demonstrate the applicability of the proposed hybrid Cartesian-joint control strat-
egy tor redundant flexible-joint manipulators. we apply the scheme to the three DOF pla-

nar redundant flexible-joint manipulator shown in Figure 5.8. Each link is assumed to

Flexible joints

/7777777

Figure 5 8 Three-link planar redundant flexible-joint manipulator
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have the same length /; =/, = [; = Im, and the same mass nry = my = m; = 10Ag.
The links are modelled under the assumption of point masses at theur distal ends, The

motor inertia matrix is assumed to be D, =diag{D,.D, .D, } with

Dm, =D, =D, = lkg. Itis also assumed that the joint stitfness constant matiy

K, =diag{K, . K K5t with K| = K, =K = 100Nr. The dynamic model ot
the entire manipulator is formed by combining the dynamics of the standaid thiee DOV
planar robot manipulator and the joint flexibility. In the simulations, we must solve tor-
ward dynamics of the manipulator in order to mimic the dvnamic behavior of the real
manipulator. Because of the joint flexibility, the differential equations descnbing the
manipulator dynamics become sriff. Using a higher-order Runge-Kutta method (7/8th
order) in the simulations, the results are satistactory with respect to the relatively fleaible
stiffness matrix K _.

Simulations were performed using MATLAB on a SUN/SPARC-2 workstation. The
three controllers, namely the Cartesian tracking controller, the joint tacking contoller,
and the motor tracking controller, were designed to stabihze the end-etfector Cartesian
motion. the link motion and the motor motion. For the Cartesian controller, the gain matri-
ces [3,,, and B, were selected as BPI = diag {200,200} and = diag {28.5, 2.5}
to ensure proper Cartesian tracking. At the same time, the link tracking controller was also

designed with its gain matrices K, = diag {150, 150, 150 } and
K, = diag{245.245,24.5} 1o effectively control link positions as well as velodities.

The motor controller was also set up in a similar way to guarantee that the motors track
their “desired” trajectories. Typical values of the gain matrices for . motor contioller

are K. = diag {100, 100, 100 } and K., = diag {10,110, 10} .

pm v
In the simulations, various Cartesian trajectories were tested. To show the applicabil-

ity of the proposed control strategy, two sets of the typical examples from g number of
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simulations are given in this section. The first set of simulations involves straight line tra-
jectory tracking in Cartesian space, while the second set illustrates the redundant flexible
joint manipulator following a circular Cartesian trajectory. Each set of simulations has dif-
ferent redundancy resolution criteria.

For the first set of simulations, minimum acceleration || g,| is selected as the redun-

dancy resolution criterion. Figure 5.9 illustrates the evolution of the redundant manipula-

tor configurations. The manipulator was initially at rest with ¢ (0) = [:6()“ —120° 6“(]T
which corresponds to v (0) = [2 (EIY in Cartesian space. As show in Figure 5.9, the
manipulator end-effector tracks a straight line trajectory and finally reaches the goal point
V(1) =10 ()_5]1. Figures 5.10 and 5.11 show the Cartesian position tracking errors
along X axis (X =2a,) and Y axis (Y =x,) respectively. while Figures 5.12 and 5.13
illustrate the Cartesian velocity tracking errors along X and Y axes respectively. Corre-
spoading to the straight-line motion of the end-effector in Cartesian space, the actual link
position and velocity profiles are shown in Figures 5.14-5.19. With respect to the
“desited™ link positions ¢,, computed using equation (5.5.4). the link tracking errors are
shown in Figures 5.20-5.22, while the motor tracking errors between the desired motor
position ¢, , and actual motor position g, are shown in Figures 5.23-5.25. Finally, the

control torque profiles resulting in the straight line motion of the manipulator are plotted
in Figures 5.26-5.28.

The second example involves the redundant flexible-joint manipulator tracking a
curved Cartesian trajectory. For redundancy resolution. a quadratic function of joint posi-

tions was chosen

. I .
flgp = Y 54, i=123
- (5.8.1)
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The redundancy resolution vector & cun be expressed as & = AV F(q;) . where A 1y a

constant gain. The evolution of the contigurations of the redundant flexible-joint manipu-

lator is shown in Figures 5.29 and 5.30, where the manipulator starts from the configura-

tion g,(0) = [6()” —120° 60° ! at A (0) = |:2 (ﬂrl“ and the end-effector follows the
elliptical path clockwise for two complete circles, and tinally comes back to the minal
point. In order not to overlap the configurations, the evolutions of the configurations for
the first and the second circles are illustrated in Figures 5.29 and 5.30 espectively. It can
be seen in Figure 5.29 that the actual end-effector motion for the first halt of the circle
deviates from the desired trajectory because of joint flexibility and initin} over-shoot. But
after the initial period the tracking errors are reduced to an acceptable level for the rest ol
the motion. The details of the Cartesian position and velocity tacking etrors can be seen
in Figures 5.31-5.34. while in Figures 5.35-5.40 the comesponding link positon and
velocity profiles are shown. To see hoaw good the link controller and the motor controller
are, the link tracking errors and the motor tracking errors are lustiated in Figores 541

5.43, and in Figures 5.44-5.46 respectively. The control torques transmitted to the actuato

in the joints during the tracking of the elliptical trajectory are shown in Figures 5.47-5 49,

5.9 CONCLUDING REMARKS

A novel scheme called hypnrid Curtesian-joint control for controling a redundant flex-
ible-joint manipulator has been developed in this chapter, In order to develop this scheme,
we have studied joint-space control of flexible-joint non-redundant manipulators, Carte-
sian-space control of flexible-joint non-redundant manipulators, and Cartesian-space con-
trol of flexible-joint redundant manipulators. The effect of disturbances due to jomt
flexibility, and manipulator link self-motion were analyzed. The hybrid Cartesian-jomnt

nonlinear control scheme proposed in this chapter consists of a Cartesian tracking control-
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ler, a hink tracking controller, and a motor tracking controller. A stability analysis for the

proposed control scheme has also been given. The applicability of the proposed hybrid

C'artesian-joint control scheme has been illustrated by computer simulations for a three-

link planar redundant flexible-joint manipulator. In formulating the controller, we have

assumed that the Hexible joint stiffness matrix K is a constant diagonal matrix. However.

the proposed scheme can also be extended to the case where K is nonlinear and time-

varying.
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CHAPTER
DYNAMIC CONTROL OF REDUNDANT

MANIPULATORS TO COMPENSATE FOR
JOINT FLEXIBILITY

6.1 INTRCDUCTION

Using kinematically redundant manipulators for obstacle avoidance, singularity
avoidance and kinematic optimization [3][8][10][15]{16][22] has become a very active
area of research. However, almost no attention has been paid to the possibility of using
hinematic redundancy in solving the problem of how a redundunt manipulator can com-
pensate for jomt Hexibility by appropriate configurations of the redundant manipulator. To
our knowledge. there is no published literature on the topic of control of rigid/flexible-
jomnt coupled redundant manipulators whose redundancy is resolved to compensate for
jomt flexability. This problem 1s addressed in this chapter.

Many controt strategies have been proposed in the last two decades for the dynamic
control of tobor manipulators whose dynamics are modeled by the rigid body equations of
motion ot open kinematic chains [1][6][9][11][14]{24][25]. However, most of these
approaches are limited in their applicability to real robot manipulators where the assunip-
ton of petfect rigidity is never satistied. For example, manipulators with harmonic drives
[29], tyque transducers [20] or drive belts [21] exhibit joint flexibility. Therefore specific
controf schemes must be designed to deal with these non-rigid joint manipulators. As
mentioned in Chapter 5. there are a few approaches that have been proposed to solve the

problem ot controlling robot manipuliators with joint elasticity [2][7]1 12111311271 28]{30}.
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All of these approaches are designed in joint space and they have been developed tor non-
redundant manipulators only. Besides, there is another fact worth noting: all these
approaches including the Cartesian space approach proposed in Chapter § we only suit-
able for the situation where all the joints of & manipulator are flexible, Hence, the existing
methods for the control of flexible-joint manipulators may not be apphcable tor the cases
where manipulators possess rigid as well as flexible joints. Due to the increasing applica-
tions of robot manipulators and the rapid development of robotics technology, new types
of robot manipulators, and different kinds of actuators are being developed. We may have
a robot manipulator equipped with several different types of actuators. We may also have a
manipulator with one type of actuators, but different sizes may be used 1o diive difterent
joints. These actuators may exhibit rather different dynamical characteristics under ditter-
ent payloads. Some of them may exhibit flexibility, while others may remain relatively
rigid. For these reasons we shall focus on developing a control suategy in this chapter
which is suirable for a control of the rigid/Hexible-joint coupled redundant manipulator,

In this chapter, we first develop a Cartesian space based control scheme tor flexible
Joint redundant manipulators. A pseudo-mverse based approach s used tor redundincy
resolution where the arbitrary vector £ is defined such that the redundancy is utihzed 10
compensate for joint flexibility in Cartesian space. The main idea behind this is to use the
manipulator’s self-motion to ““shape™ the posture of the mampulator such that the mternal
link motion eliminates the effect of the torsional force due to jomnt flexibility. Atter redun
dancy resolution, the robot arm can be viewed as a “rigid-joint™ manipulator,

The rest of the sections in this chapter are organized as follows. In Section 6.2, a brief
review of the relevant literature is given. A general dynamic model of a rigid/flexibile-joint
redundant manipulator is formulated in Section 6.3, Section 6.4 describes the framework
of redundancy resolution for compensating for joint flexibility. An approach to avoiding
algorithmic singularities is proposed in Section 6.5, while in Section 6.6 the ability of the

cot ol scheme to compensate for joint tlexibility under different degiees of redundancy 1s
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discussed. In Section 6.7, the issue of calculating higher order derivatives of I+ nt vari-
ables is discussed and an estimation algorithm is proposed. Stability of the closed-loop
system is shown in Section 6.8. To show the applicability of the proposed approach,
results of numerical simulations are given and analyzed in Section 6.9. Finally, Section

0.10 draws some conclusions concerning the approach proposed in this chapter.

6.2 LITERATURE REVIEW

As shown in Chapter 5, there are several approaches to the control of flexible-joint
manipulators. As pointed out earlier, these approaches are only suitable for the joint con-
trol of non-redundant manipulators. To our knowledge, there are no publications yet con-
cerning modeling and control of rigid/flexible-joint coupled redundant manipulators
whose redundancy is used to compensate for joint flexibility. However, in this Section. we
give a brief review of two issnes which are closely related to this topic in order to show the
status of redundancy resolution in the context of compensating against joint flexibility.

Nguyen et. al. [IR][19] have proposed a scheme using redundancy to compensate for
hnk flexibility. A computed torque based nonlinear controller is used. Howevel, theu
scheme only deals with the regulation problem for flexible-link manipulators. It is not
clear that their approach is able to solve the tracking problem in the flexible-link case. This
implies that the problem of using redundancy to compensate for link flexibility is still far
from completely solved. Another point is that their scheme creates algorithmic singulari-
ties in resolving redundancy, and there is no indication that they can avoid singularities.
Our experience tells us that this kind of singularities is encountered very frequently in a
manipulator’s workspace, and the redundancy resolution algorithm fails if the manipula-
tot’s configuration is in the neighborhood of an algorithmic singularity. A similar problem
has also been mentioned in [10], and this is still a open research problem.

In a recent paper [4]{5], Baillieul discusses the relationship between manipulator

redundancy and flexible components (flexible joints or flexible links). Both kinematic and
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dynamic aspects are addressed for flexible robots. To deal with redundancies, Baillicul
uses the extended Jacobian method by placing the off diagonal submanin D, ot the
manipulator’s inertia matrix into the Jacobian matrix. It is known that in the general model
of the flexible-joint manipulator, the magnitudes of the elements in submatny D, wie
usually very small. Therefore, the extension of the Jacobian matrix may not be well-condi-
tioned. In the rest of the paper, he focuses on the problem of generating a tiajectory for the
manipulator such that the end-effector moves between prescribed endpoints without any
net storage of elastic energy in the flexible joints. He uses an interpolation technique such
as fifth-order splines to construct Cartesian trajectories for a flexible-jomt mampulator.

In this chapter. we first give a general dynamic model of the rigid/fiexible-joint cou-
pled redundant manipulator, and then propose a contiol strategy for this type of mampula-

tors.

6.3 GENERAL DYNAMIC MODEL OF REDUNDANT RIGID/FLEXIBLE JOINT
MANIPULATORS

A dynamic model ot a robot manipulator with flexibility in all its jomts has been
described in |26]. However, a more general model. can be developed to show that a
manipulator may have flexibility in some (or all) of its joints. The main reason tor consid-
ering flexibility only exi<ting in some joints is that there may be different types of actua-
tors used in different joints, or there may be difterent transmission distances tor joints
closer to the base of the manipulator from those farther away. Another reason is that even
if the same type of actuator is used for the joints of a manipulator, the dynanic perfor-
mance of each actuator will be different due to different loads imposed on each joint. Con-
sequently, some of them may exhibit more flexibility than others. Therefore, a model ot a
manipulator which allows for rigid as well as flexible joints (and different jomt flexibili
ties) is much more general than that proposed in {26].

It is assumed that the manipulator has n+ 1 nigid links interconnected by nojoints,
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and 1t 1s turther assumed that there are s fiexible joints (s £ n) . while the remaining joints

(n—s) arerigid. The eeneral dynamic model can be expressed as

{ ar. N .
Dy (g g +D,, Dyalagagn) O Hangt (Cutay g dn- 450

Dy g4 Dalgnaqp) O (14pl+(Chlg-qp 4y 4;)

“ () l)l)l z}nl ()
Ir("/l (4;y-45) 0 1 {t“
GIZ((/[]~(/[2) + Kl(qll_qm) =10
Y L‘Kz (42— 4, T,

(6.3.1)

where ¢, € R represents the vector ot link angles (motor angles) corresponding
I ! g

v

to the nigid joints, ¢, € X% and ¢ e N represent the vectors of link angles and
2‘ l l/_ /m &

motor  angles  respectively,  corresponding  to the  flexible joints: the submatrix

1), = I“)Il +I)/m 1)15I
: DD,

e "X represents the symmetric and positive-definite inertia

matiin of the manipulator (D, = I)il ). while D, € g (7= < =S gnd D, re R

denote the inertia matrices of the actuators corresponding to rigid and flexible joints

(n—»s)x]

respectively. The vectors €, e R . C;ye R =1 represent the Coriolis and cen-

, . . s (=) x 1 < o
tritugal forces, G, e R Goe RE*! represent the gravitational forces. and

V) x|

T, € R .1, €N *1 denote the input torques to the actuators at the rigid and

flexible joints respectively. The term K € R*** denotes the diagonal stiffness matrix for
the flexable joints.,
Due to the special dynamic structute of the manipulator, the existing rigid-joint as

wellas flevible-joint manipulator controllers are no longer applicable. Therefore. it is nec-
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essary to construct 4 new controller for this type of manipulators,

6.4 REDUNDANCY RESOLUTION FOR COMPENSATING AGAINST JOINT

FLEXIBILITY
_ |9n _ . g TR : .
Let ¢, = cand ¢ = 2 for the rigid joints, the conttoller can be castly con
4 o

structed as

1, = [1)“ 1)12] LGB 4B, =Ty

+ (=708 +C +G
( AP I S ST N O (6.1 1)

where £ e R"*" iy the redundancy resolution vector which will be specihied later i this
Chapter. Similai to the controller specified in Chapter 5. the hnk-level controller tor Hlews

ble-joint munipulator can be designed as
_ ] l' Vo . b
Ypa = K l_l)ll 1)22] {0 (0, + [5\,(’\ + (5/),4'\ =Joy;)
+(l—.,(,..1(,)E_ } +(I3+(llz'+'l\’(l[} ((’41)

Here, the problem becomes one of finding the vector & as an implicit contioller to com

pensate for the joint flexibility.

We rewrite the motor dynamic equation in (5.1) as

l)m/q.m - Kl ((112 - (/,,,) = Tnl' (64 %)

The motor-level controller can then be detined as

1 3%
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= I)mj Iil'l)ltl + Krm (C]nn/ - qm) + Kpm (qmd - qm) ] - Kl (q12 - qm) (644)

nt

where K, € R and K, € R*™* are motor control gain matrices. Notice that the
term corresponding to the torsional force K, (¢ —g¢,,) in motor controller (6.4.4)
attempts to cancel the torsional force in motor dynamic equation (6.4.3) so that the rest of
the terms in (6.4.3) and (6.4.4) form a standuard second-order system. However, in order to
use redundancy to compensate for joint flexibility. instead of directly calculating the term
K, (q;,—q,,) in(6.4.4), the crucial point here is to utilize self-motion to cancel out the
torsional force in (6.4.3). In other words. at any time instant the configuration of the
manipulator evolves in a way that enables the link angles to equal the corresponding their
motor angles for the flexible joints. This implies that the torsional forces existing in the
flexible joints vanish as a result of the manipulator’s configuration change due to its self-

motion. This can be achieved using the redundancy in ¢,,, in (6.4.2). Therefore. the

motor-level controller can be written without ihe term K, (¢,» ~¢,,) as

T, = I)m/li/'"“,+K‘.m(q"“,—c]m) + K/,m Yy =) | (6.4.5)
The details of the controller design e as follows:

We propose two different approachies to resolve manipulator redundancy to compen-
sate for joint flexibility. The first approach directly obtains the redundancy resolution vec-
tor F;I, (a transformed version of &, which will be specified later in this section), while the
second approach finds F,/, in an indirect way.

Direct approach:

We first detine ¢©  as
nid

4", = K [”:1 1’23}“ (Y4B +B,e ~Jg ) +Cp+Gp+Kg b (6.4.6)



Chapter 6

Hence. the link-level controller ¢, , in (6.4.2) can be rewtitten as
o —1 n : v
qmd =4 md + ]‘l [1)21 1)12' t ‘-‘Iv‘ 'Iv) < (6 -4.7)

Taking the first and the second derivatives of ¢, in (6.4.7). and substituting ¢, . ¢,

and ¢, , into (6.4.5). we obtain from equation (6.4.5)

t P D"'f[ zI.Onul + K\'m (qonnl - (I,,,) + K["H (qonul - ‘Im) l + TN (6.-4.8)

n

The torque Ty, can be expressed as

Ty = D, AQ (=} )E+Q, (=1 FI)E+Q (=1} T)E (0.-4.9)

¢

where matrices Q. €, and Q, € """ are given by

Q, = KDy Dy (0.4 10)
Q, = 26" ([, Dy = [Py D110 KK [0y Dy (0.4.11)

Q, = K 4By Do)+ [Doy Dt F 20 F =) =2y Doyl )

1 . . 1 -1
+ KK, ([sz Dzz] - [DZI ’):;]"v 1) + KK, [”21 ”32] (6.4.12)

They are functions of known variables and constants so that €, €, and € can be com-
puted a*  ch step. Therefore, the torque 7, could be used to produce the same amount of

torque as the torsional force in the flexible jomnts so as to ehminate the effect of joint Hexi
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bility. This can be achieved by letting T, equal to the torsional force K, (¢,, —¢q,,) ,
DA U=IT)E+Q, (=131 )E+QU=1FT)E} = K (gp-4q,) (6.413)

The matrix (/ —.l(f‘.l(,) is symmetric with rank n —m, and can be written as PPT where
PeR" "™ hay rank n-m. Furthermore, writing E, = PTEe Rin-mx1

&/, = P'E, E/} = PTE, we cun express equation (6.4.13) in the form
WE +WLE FWE =T 6.4.14)

where [T = Kl(ql.’. _qm); \{;l e cﬁ.\x (n-m) . \P., e RX (n—nm) and lP} e REX (n—=m) are

formed as ¥, = D Q P WY, =D €,Pand ¥, = Dm/QxP- Usually, the redundancy

mf

nf

resolution vector E_,p can be obtained by solving the second-order differential equation
(6.4.14) directly, and Ej,l, can then be substituted into the controllers (6.4.1) and (6.4.2) to
compensate the joint flexibility by using the manipulator’s self-motion. However, care has
to be taken i solving for E’/’ because algorithmic singularities may arise in (6.4.14). This
problem will be addressed in the next section.

Indirect approuch:

(sxl

We let the second term in equation (6.4.7) be denoted by ye 9 ie.,

- /*l — ‘i‘ = l
Y= KDy Dy U=IFINE o =K (D2 D) P, (6.4.15)
and

Gt = 4" gt (6.4.16)
The vector y represents the amount of link movement produced by the manipulator’s self-

motion. Differentiating (6.4.16) once and twice, and substituting ¢, , ¢,,, and g, into

the motor controller (6.4.5), we get the following expression for the motor controller:
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_ ..o - .0 . » N
rm - Dmf[q rd + K\'nr ((l md qnz) + [\/vm ((/ md ll,,,) l

+ Dm[[‘y*— K.Y+ Kpmyl 0417

The first term in square brackets on the right-hand side of (6.4.17) 1epresents the torgque
required for tracking the motor variables, while the second term corresponds 1o the null-
space torque which is used to eliminate the effect of the torsional torces. Then, the tollow-

ing equation holds
.. . -1 ,
Y+ K\'r11Y+ Kme = l)m/K! (‘/,,, - ql.’.) (6418

The link position y due to self-motion can be obtained by solving (6.4.18). This value of y
can be used in equation (6.4.15) to solve for the redundancy resolution vector &I,. Finally,
§P is substituted in the expressions for the rigid as well as flexible link controllers (6.4.1)
and (6.41.2) to ensure that the manipulator self-motion will compensate for the joint flexi
bility. However, the product of the inertia mutrix [I)21 1)22] and the projection matiia
(/- JL,"'J(,) in equation (6.4.15) may . always be full rank along some prespecitied wa-
jectory and its inverse may not exist. Hence, it is necessary to develop an algorithm which
avoids this algorithmic singularity. This problem will be addressed in the next Section.
Comparing the direct and the indirect approaches, we tind that the indirect approach
is superior over the direct approach from accuracy as well as stability pomt of view. we
will discuss these issues later in this Chapter. As can be seen in equations (6.4.10), (6.4.11)
and (6.4.12). the coefficient matrices of the second order ditferential equation (6.4.14) for
direct approach are highly nonlinear and time-varying. It is thus difficult in gencral to
prove the stability of this differentiul equation. Therefore, in the following discussion we

will mainly focus on the indirect approach.
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6.5 AVOIDING ALGORITHMIC SINGULARITIES: A DAMPED LEAST
SQUARES APPROACH
Since the matrix K, is always positive-definite, equation (6.4.15) can be written in the

following form
([l)2I DzzJP)ép = K,y (6.5.1)

In order to solve for E"/' in equation (6.5.1) after obtaining the vector v, the inversion of the

matrix Irl)wl I)”]l’ e R 7" must be performed explicitly, i.e.,

g, = ([0, 1)22]/')_1K,y o1 e, = ([Dy, DyP) K,y 652
However, the matrix ([1)2‘ D::]P) might be rank-deficient at certain points along a tra-
jectory. Therefore, it is necessary to analyze this case, and find a way to overcome the
problcm caused by rank deficiency of ( [l)21 l)zzilP) .

Notice that the matrix li[)31 (q) 1)32((/,)} is a part of the manipulator’s inertia
matiix, and the matrix P (¢,) results from the independent columns of the projection
matiix II—.I‘,+ (¢q))J,.(q;)]. Both of them are time-varying. When the manipulator
moves along a prespecified trajectory. and its configuration evolves, these two matrices are
updated continuously. At some point in the trajectory, the matrix [Dm D:z:l‘p becomes
rank deficient. We call these singular points algorithmic singularities because they result
from the specitic algorithm that is used. As mentioned earlier, a similar problem has also
been encountered when redundancy was utilized to minimize joint torques for rigid
manipulators [10}]17].

As shown in Chapter 2, the application of the damped least-squares technique to

redundant manipulators is related mainly to the problem of singularity avoidance [16]{31].
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In the case of avoiding singularities due to rank deticiency of the Jacobian matiin, the
basic idea in the damped least-squares method is to balance the cost of a large tesidual
error (i.e.. the end-effector tracking error) against the cost of a large solution by minmus-
ing the objective function in (2.3.11). This idea can be moditied and applied here in owm
flexible-joint redundant manipulator control scheme for avoiding algonthmic singulan-
ties. Details of the modifications and the derivations of the damped least-squares tech-
nique for our scheme are as follows.

In our case, corresponding to equation (2.3.11), the following objective function must

be minimized for the system of equation (6.5.1):

Rk (6.5.3)

[0z 0P8, - Koy
where o > () is a dumping factor. The sum in (6.5.3) can be written as

H ([“21"%’122]’));,_ (K(r)y)“ (0.5.4)

Applying standard least-squares theory, the unique minimizer E"/' IS given by

e (P22 1)
-I) )
Jad

= {al+ ([Dy, DJQ]P)"([z)zl D ([Dy, 1)22]/’)'/(,7

(6.5.9)

1
Note that the matrix ([L)21 DZZ]P) ([[)2] Dzz]m is symmetric positive semi-definite
! -
while o > () can be found «uch that { o/ + ([I)21 1)221/‘) ([I)21 I)Zz}l’) bois always pos-

itive definite. Thus, using equation (6.5.5), instead of using equation (6.5.2), we are able to
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avord algorithmic singularities. Then, substituting ép into the original controllers (6.4.1)
and (6.4.2), we can control the manipulator so that the manipulator self-motion compen-
sates for joint flexibility while avoiding algorithmic singularities.

Note that the damping factor o plays an important role in the damped least-squares
formulation of equation (6.5.5). Large values of o result in good performance of singular-
ity avoidance, but produce relatively large errors between the damped and undamped solu-
tions for é/’ in nonsingular regions. On the other hand, very small values of o will not
give satisfactory performance for singularity avoidance, but result in accurate solutions for
ép in nonsingular regions. However, Nakamura et. al. [16] have proposed an automatic
adjustment technique for o where the damping factor o is adjusted based on the manipu-
lability measwre 132], and the adjustment procedure is based on equations (2.3.14) and
(2.3.15). In our algorithmic singularity avoidance scheme. proper values of o and 4, in
equation (2.3.14) can be selected based on the value of ” [D?.] D:z]PH and manipulator
kinematic parameters. Moreover, It can be seen in equation (6.5.5) that if o approaches
zero, the damped least-squares pseudo-inverse formulation reduces to the original pseudo-
inverse formulation of equation (6.5.2).

Although we have only applied the damped least-squares technique to the indirect
approach, the sume technique can also be applied to direct approach that we discussed in
the last section. Notice that in equation (6.4.14), we need to invert the matrix
Woe R G The matrix W, can be expressed as ¥ = Dmfl(l~1 ([DZ] I)ZZJP) Ctis
therefore possible for ¥, to be rank deficient because of the time-varying property of the
mattices [I)z1 1)22] and P. Thus. technique similar to that discussed above can be applied

in order to avoid algorithmic singularities in this direct approach.

6.6 REDUNDANCIES AND COMPENSATING CAPABILITY
The capability of using redundancy to compensate for joint flexibility largely depends

on the degree of redundancy. and the number of flexible joirn:s to be compensated for.
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Hence, it is necessary to analyze the compensating capability of a redundant manipulator.
Depending on the degree of redundancy and number of tlexible joints, there are thiee dit
ferent scenarios that can be identified:

(1) n —m = s, the number of degrees of redundancy is equal to the number of flew
ble joints. In this case, joint flexibility can in general be fully compensated tor by
all degrees of redundancy.

(2) n—m> s, the number of degrees of redundancy is greater than the number of
flexible joints. In this case. joint flexibility can in general be fully compensated
for using only some of the degrees of redundancy.

(3) n=m< s, the number of degrees of redundancy is smaller than the number ot
flexible joints. In this case. full joint flexibility compensation cannot be achieved
even though all the degrees of redundancy are utilized.

In the following. we will give specitic analysis of how the compensating capabthity tor
flexible joints zffects the solution of equation (6.5.4) as well as the pertormance of the
manipulator.

Scenario (1): n-m =

In this scenario, [Dn Do, P is a square matix The damped least-squares solution ot

E is

P

1

- /
g ({Dy D1 Kt (661

/ !

= {ol+ ([D,1 Dy P ([Dy Dyl P
P 2l Loy

- . I . .
Since the matrix {of + (I:Dz] Dz:][)) (]:“11 [)ZZJI’) bois square and nonsingulan, the
solution for E_p given by (6.6.1) is unique. This uniqueness implies that all the degrees of
redundancy must be utilized in order to compensate for all the flexible jomts In this sce
nario, the redundant manipulator is able to track the prespecified Cartesian uajeciory with
complete compensation of joint flexibility by self-motion

The trade-off between the manipulator tracking performance and the algonithnue sm
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gularity avoidance capability depends on the priorities assigned by the designer. This
assignment can be done by changing the value of the dainping factor o (or o and h, in
equation (2.3.14) if the automatic adjustment technigue is used). Note that this assignment
of «. for different priorities of tasks is also applicable to the following scenarios.
Scenario (2): n—m >«

In this case, the manipulator has more degrees of redundancy than the number of flex-

™ iy rectangular with more columns than

ible joints. The matrix [[).,I [)M]P e R
rows. From (6.5.1) with rectangular [[)11 1),,JP, the general solution of ﬁp based on the
pseudo-inverse approach is

ES

E,= ([Dy Dy P) Ky = [y Dz_]P)d' ([Dy, 1)22]1))(1)0 (6.6.2)

d
where o is an arbitrary vector that can be used to resolve the remaining redundancies after
those for  compensating for joint flexibility have been resolved. The matrix
) i s{n—m}xs - . .
([[),l l),,}l ) eRN i a damped least-squares pseudo-inverse of  matrix
R B

[_“:1 D5 P oand is given by

nDyP) = ([I)zll)zsz)’{(xﬁk([1)31 D 3,|P) ([1)2,1)2:]/3)2—1‘ (6.6.3)

( [l)ﬁ .
Note that in equation (6.6.2) the damped least-squares pseudo-inverse based general solu-

tion of  consists of the first term ([D,1 l)ﬁ,:lP)

!

j K,y which corresponds to the mini-
‘

mum norm solution, and the second term (f - (|:D21 Dzz]P): { [[)21 Dn]P)d)c which
correspunds to the homogeneous solution. In this scenario, joint flexibility can be fully
cempensated for using only some of the degrees of redundancy, while ensuring end-effec-
tor Cartesian tracking. The remaining redundancies can be reso' ed by defining additional

objecuve functions to determine the arbitrury vector ©.

Scenario (3): n—-m <
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This scenario refers to the case where the number of flexible jomts 18 greater than the
number of degiees of redundancy. In this scenario, ‘:D,l 1),,]P e R G ectan-
gular matrix with more rows than columns. The corresponding damped least-squares

pseudo-inverse solution of s";p is written as
’i‘ ',
£, = ([D:l DZZ]P)J K. (6.0.4)

where the damped least-squares pseudo-inverse of the matrix [l)’l I),,J P is detined as

([Dy DyJP) "o jars ([p,, 1)22]1))' ([t D3P b ([, 1)2;]1')' (6.6.5)

d
Axs can seen, of the s flexible joints. only n —m can be compensated for by the #n-m
degrees of redundancy. There are no extra degrees of redundancy available for compensat-
ing for the remaining flexible joints (& — n +m). This implies that the uncompensated flex
ibility at the joints will affect the tracking performance of the manipulator. This may even
cause instability for the system eventually. In this case, it 1s advisable that appropriate con-
<iderations be given to flexible-joint effects in designing controtlers tor the flexible joimts

that are not compensated for by redundancies.

6.7 COMPUTATIONAL CONSIDERATIONS FOR HIGHER ORDER DERIVA-
TIVES
Control of manipulators with flexible joints is always more difticult than that of
manipulators with rigid joints. One of the reasons for this difficulty is that the controller
requires higher order derivatives of the states. However, in the case when all the jomnts are
flexible, as discussed in Chapter 5, we can compute the higher order derivatives recur-
sively from lower order ones. This is a result of the special structure of the flexible-joint

manipulator dynamics which can be seen in equation , (5.7.4) and (5.7 5, In this chapter,

1.4
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we deal with the flexible-joint manipulator dynamic model that contains flexible as well as
rigid joints. Unfortunately, this rigid/flexible coupled structure creates difficulty when it
comes to calculating joint accelerations and jerks. To solve this problem, one possibility is
that we could construct an observer to estimate the joint accelerations and jerks [27]. But
then the observer needs to be reformulated in a way that it is suitable for the control strat-
egy used in this chapter. However, this problem has motivated the investigation of other
possiule approaches for estimating the higiier order derivatives for the rigid/flexible cou-
pled system We propose an approach in this section that is essentially based on the esti-
mation of the torque corresponding to the rigid joints. Details of this method are as
follows.

In equation (6 ~ 1), if only the link dynamics are considered, the link acceleration can

be expressed as

ol
o (Pu by ” Uy _|Cul _|Gn
ql ] . (671)
DDy (Kila,—di2)| (Crf (On

Obviously, we cannot directly feedback torque T, in order to compute the link accelera-

!

tion But we cun estimate the rigid joint torque T, using the computed torque control.

Therctore, the estimated torque can be written as
T, = [1)” 1),3] 17+ B e+ B,,,e\—](,q, y+ (U =JFIVEY +C) +G, (6.72)

Furthermore, the estimated jerk can be calculated recursively based on differentiating

(6.7.1) as
n, D] ' D
(3 N g C G Dy,
PR b Tt 48 At P 4, (6.7.3)

! . T
D1 D Kild,=am| S (G [Py Dy

where the detivative of T, will be evaluated by differentiating the estimated control
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torque (6.7.2)

Ty = ([Dn Dll:l - [Py AR (Fy+Bye +Be = Jedp)
+U=I}1)E Y +[D 1)]{1*(\“’+ﬁv+ﬁu-'iz-i")
Tede 11 Y e Wy € TP T e T ey

+ (I—JL,J‘JL,)E; }+Cpy+Gy) (6.7

This procedure to estimate joint acceleration and jerk can be summarized in the followmg

flow chart:
qr4 \ .
.\‘d, .\:d, J\’d g t“ (I[
——»| Compute & [ | Compute T gl Compute ¢, >

N R}
4y

. ALY
> Compute T, L | Compute ¢,

Figure 6.1 Estimation of joint acceleration and jerk

Theoretically speaking, real values of ¢, and q,m could be obtained if torque T, and
its derivative T, were measurable. Now, instead of measuring 7, and t,; we use the esti-
mated values %, and 5[11' Assuming that the system dynamics do not change fast enough
(or the sampling period At is chosen small enough), the errors between the real and est-
mated values for torque and its derivative will be kept within acceptable tolerances.

As far as the computational effort for calculating the estimated joint accelerations and
jerks are concerned, obviously a large amount of computing effort 1s required. But what
we gain is the saving in the expense of instrumentation to directly measure higher order

derivatives, which is difficult or even impossible to accomplish with present techinology.
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Although the algorithm for estimating ¢, and q,m is not realistic at present for real-time
apphcations, it might be possible someday with much more powerful computing and real-
time systems.

From the implementation point of view, it muay be possible to avoid the heavy compu-
tational burden of estimating higher order derivatives (as discussed above) by using differ-
ence formulas to obtain these derivatives (joint accelerations and jerks) from position and
velocity measurements. Moreover, the present limitations on sensing technology as well
as the presence of newse in the measurements may make the estimation of the higher-order
detivatives inaccurate. Also, the problem is made more difficult by the fact that the higher-
order derivatives are more sensitive to variations of the parameters in the dynamic model.
Theretore, further research is needed to find feasible and efficient means of dealing with
higher-order derivatives before the controf strategy proposed in this chapter can be imple-

mented effectively.

6.8 STABILITY ANALYSIS OF THE CLOSED-LOOP SYSTEM

System stability for this coupled rigid/tiexible-joint redundant manipulator can be
proven using the Lyapt yov function approuch. Before showing system stability. let us
obtain the corresponding ciosed-loop system equations,

Firstly, based on the dynamic model in (6.3.1), the link dynamics can be expressed as

D+ D
11 mt +

. = (6.8.1)
“2! “33_1 qp> CIZ + GIZ K’ql:_.l K! ( Dopd ~ ()n.')

“l:] dn| |Cnt Gy 0 | _ Ty
whete ¢, is the desired motor position. and ¢, is the motor tracking error defined by
Cp = {44, The closed-loop equation corresponding to Cartesian tracking is formed
by substituting the rigid link controller T, in (6.4.1) and the link controller corresponding
to the tlexible jont (g 1 (6.4.2) into (6.8.1). After some algebraic manipulations, the

Cartestan tachking closed-1oop equation can be written as
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0

K 'l,PH

e+ B\lt"\"'BpI"\ = ‘I('Dl_l (0.8.2)
Secondly. the motor-level closed-loop equation can also be formulated in terms of the
motor dynamic equation in (6.3.1), and the motor tracking controller (6.4 17). Notice that
in the motor tracking controller (6.4.17). not only the motor tracking torque but also the
dynamical relationship between the redundancy resolution vector E—‘/’ and the torsional
force K, (q—q,,) is included. It should be noted further that in (6.4.18) the wim
(y+K,, 7+ Kpmy) atten >ts to cancel out the torsional force K, (q;5-q,,). Theretore,
when we include the motor tracking contioller. it also takes into account the dynamical
relationship of the second-order differential equation in (6.4.18). Fuithermore, stabihity of
the second-order differential equation (6.4.18) depends very much on the motor traching
gain matrices Kpm and K. Fortunately. these two matrices can be selected such that
equation (6.4.18) as well as the motor tracking controler is stable. The motor tacking

closed-loop equation can then be written as

(’I}I + K\'HI(-’HI + I\/HH(’IH = (, ((‘ x ‘)

O

where ¢, = ¢,,,— ¢, and ¢, , = ¢° +7. Now, we consider the two closed-loop equa
tions (6.8.2) and (6.8.3) together. The equivalent state-space representation can be wiitien
as
y=11y (084
n 5 . !
where Y € 9‘"""‘+s) is defined as ¥ = {(:f (;{ (,,l” (;;"] ,and I e 9{2“/1 t8) £ 20mv sy .y

be expressed as
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0 1, 0 0
a0
n=|Bu By =D [KIUJ 0 (6.8.5)
0O 0 0 I8
00 Ko Ko

where [, and I denote identity matrices with dimensions mxm and s X s respectively.
The system matrix [T possesses the same structure as the matrix A in (5.6.2) in Chapter 5.
Hence, closed-loop stability of the coupled rigid/flexible-joint redundant manipulator with
the control scheme of equation (6.8.4) can be shown using the Lyapunov approach as was

done in Chapter 5.

6.9 NUMERICAL SIMULATIONS

In this Section, we apply the preceding control strategy to a model of the three DOF
planar redundant manipulator shown in Figure 6.2 whose third joint is taken to be flexible.
while the first and the second joints are assumed to be rigid. Each link has the same length

[y =4, =1, - Tmoand the same mass my = my = oy = 10hg The links are modelled

)

with point mass at their distal ends. The motor inertia mairix is assumed to be

_ D/ml 0 D = lho. D
- l D ( mr, 8-

Mmr,
= lhe. Ttis also assumed that the joi%n stiffness'constant K, = 100Nt The dynamic

= lhg) and

ni ni

D, =diug{Dh,,. l)m, bowith D

T S

D,,
muodel of the entite mantpulator is formed by combining the dynamics of the standard
three DOF planar robot manipulator [23], and the joint flexibility for its third joint. The
dynamic model possesses the same structure as in (0.3. 1) withn = 3, m = 2and s = 1.
Having three DOFs, this planar manipulator is redundant when only the positioning of the
cnd-effector is considered. This implies that there is an extra degree of freedom that the
manipulator possesses when it performs a positioning task in two dimensional space.
Theretore, an mhnite number of joint trajectories will in general yield the same end-effec-

tor tagectory, and we can exploit this redundancy by imposing that the condition of com-

—_—
n
"0
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pensating for the joint flexibility be performed at the same time as tracking A« in Chapter

Flexible joint

Rigid joints

Figure 6.2 Three DOF planar redundant
rigid/flexible-joint manipulator

5. due to the presence of joint Hexibility. the dynamic model of the redundant mampulator
results in stiff differential equations. In order to simulate the dynanne behavior ot the
manjpulator. the stiff differential equations we solved numetically using a seventh/eighth
order Runge-Kutta method. The results obtained are satistactory with respect o the reli

tively flexible stiffness K, = 100N1. In addition, we must also solve the second-order dif

ferential equation (6.4.18) to obtain the variable y from which we calculate the
redundancy resolution vector é,,' Some simple but tast methods can be used here For
example. trapezoidal integration or low-order predictor-corrector integration method are
appropriate for this differential equation. In the simulations, a low-order predictor-corre

tor integration method was used for the purpose of solving vanable 7.

The proposed algorithm together with the dynamic model were coded in MATLAB
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and implemented on a SUN/SPARC-2 workstation. To ensure stability of the rigid/flexible
manipulator system, the gain matrices corresponding to the Cartesian tracking controller
as well as the motor tracking controller were adjusted such tha. the Cartesian space and
the motor tracking controllers were stable. Notice that both the rigid-joint controller and
Hexible-joint controller contain the Cartesian tracking controller. For this Cartesian con-

troller, the gain matrices [3/)1 and B, were sclected as Bpl = diag {700,700} and
[5‘,, = diug {135, 135} to ensure proper Cartesian tracking. At the same time, the motor

tracking contioller was also designed with typical gain values Kpm =730 and K, = 90
to guarantee that the motor in the third joint tracks its *“*desired™ trajectory.

To show the applicability of the proposed control scheme, Simulations were carried
out using the three DOF planar redundant manipulator with two rigid joints and one flexi-
ble joint. Numerous Cartesian trajectories were tested by simulatien. Some of the typical
simulation results are shown here to demonstrate the use of the manipulator’s self-motion
to compensate for joint flexibility while ensuring that the end-effector tracks a Cartesian
tajectory. The simulation results show the three DOF manipulator tracking a Cartesian
space straight line tigjectory while the one degree of redundancy compensates for the flex-
ibility 1 one joint. The manipulator was initially at rest with ¢ (0) = [6()" ~120" 60 !
which conesponds to v (0) = [2 (ﬂ’ in Cartesian space. As shown in Figure 6.3, the
manipulator end-effector tracks a straight line trajectory and ftinally reaches the goal point
Vi) = [()'() -1 _(ﬂl. The manipulator’s Cartesian tracking performance as well as the
evolution of the configurations are illustrated in Figure 6.3. Besides, the manipulator’s
end-etfector Cartesian position and velocity tracking errors are shown in Figures 6.4 10 6.7
tespectively. Figures 6.8 to 6,13 illustrate manipulator’s joint position and velocity pro-
tiles, while Figures 6.15 to 6.17 show the joint-space position tracking errors. For the flex-
ible thitd joint. its motor tracking error is shown in Figure 14. To demonstrate the

compensation tor joint flexibility by the self-motion of the manipulator, we plot the curve
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of the quantity g, —¢,, in Figure 6.18. Tt can seen that the quantity ¢, = ¢,5 1y contiolled
close to zero by the self-motion of the manipulator. This directly implies that the torsional
force K, (q;,—q,,) isalso controlled to zero due to self-motion. This, therefore, venhies
the theoretical analysis in this Chapter. Finally, in Figures 6.19-6.21, the contiol towque
profiles are shown.

Remark I: In Figure 6.3, we find that the manipulator’s posture varies 1 a way that
involves both rotation and translation when it is in the mitial oscillation petiod. This
should be compared with the results shown in Chapter 5 (Figure 5.9) where the manipula

tor’s posture changes almost “in parallel™ one configuration after another. This ditference
is obvious because in the case of compensation for joint flexibility, when the end-etiecton
oscillates about the nominal trajectory or deviates from it, the errvor driven contioller gen-
erates certain amount of cantrol torque to reduce the error. This torque attects the torsional
force in the flexible joint. Therefore, due to the special sttuctuie of the iedundancy 1esolu-
tion vector QI). the manipulator uses its self-motion to reconfigure itselt such that the tor-
sional force K, (¢, -¢,,) approaches zero. This is the 1eason why we see a tait amount of
link movement in the initial stages of tracking in Figure 6.3, On the other hand. i the case
of other redunduncy resolution objective functions, for example, mmimum joint aceelera

tion as shown in Chapter 5. the deviation of the end-etfector does notdirectly relate to the
self-motion of the manipulator. That is why we do not see much self-motion when manip-
ulator’s end-effector has small oscillations in the carly stage of tracking the staght-line in
Figure 5.9.

Remark 2: In the Cartesian and motor tracking controtlers, some damping has been added
via the gain matrices. However, some oscillatory behavior can still be observed in the joint
position and velocity profiles. This oscillation results first from the joint flexibility of the
manipulator, and second from the way the redundancy 15 resolved As mentioned
Remark 1, the manipulator must be reconfigured such that the torsional force vanishes.

This reconfiguration creates another torque which affects the toraonal force agam
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Although this process converges, it produces more oscillations than in those cases where
the redundancy resolution objective functions are selected for functions other than com-
pensation of joint flexibility. Therefore, more damping is needed to damp out these oscil-

lations in this case.

6.10 CONCLUDING REMARKS

In this chapter, an unified theoretical framework has been presented for control of
redundant flexible-joint manipulators whose redundancy is resolved to compensate for
joint flexibility. A novel nonlinear control strategy for the rigid/flexible-joint coupled
redundant manipulator system has been proposed. A Cartesian-space controller has been
constructed in order to control the redundant manipulator in Cartesian space. The redun-
dancy resolution vector ép has been derived so as to enable us to resolve redundancy for
the purpose of compensating for the joint flexibility. Moieover. the problem of possible
algorithmic stngularities has also been discussed, and the modified damped least squares
approach has been incorporated to avoid numerical difficulties due to these singularities.
Because of the special stiucture of the nigid/tiexible-joint coupled system. not only the
position and velocity information but also the higher-order derivatives are required in
order to construct the controller. Therefore. in Section 6.7 a scheme to estimate the higher-
order derivatives was developed. It was shown that stability of the proposed control strat-
egy can be established using a Lyapunov function approach. Finally, Numerical simula-
tions were given to demonstrate the main results presented in this chapter.

Finally, it should be noted that the nonlinear control strategy for rigid/flexible-joint
coupled redundant manipulators presented in this chapter can be used as a basis for devel-

oping other advanced control strategies: robust control, adaptive control. etc..
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Figure 6 4 position tracking error in X direction
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Figure 6 10 The actual trajectory for the third link
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Figure 6 12 The actual velocity trajectory for the second link
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Figure 6.13 The actual velocity trajectory for the third link
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Figure 6 14 The third motor tracking error

166



l'[

I

1 L " " " 1 i

?
‘.

N O

(04 06 1R i 12 14 1.6

1.5

[ ]

1 L N i 4 L "

04 06 us

_
y
-
z

Figure 6 16 The second link tracking error
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Figure 6.17 The third link tracking error
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Figure 6.18 The error between the third motor and the third link
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Figure 6 20 The control torque for the second joint
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Figure 6.21 The control torque for the third joint
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CHAPTER

CONCLUSIONS AND FUTURE RESEARCH

7.1 CONCLUSIONS
In this thesis, various issues of dynamic control of kinematically redundant manipula-
tors have been addiessed. In particular, within the framework of kinematically redundant
manipuluator contiol, three main contributions have been made:
(1) Development of an impedance coatrol based redundunt manipulator control scheme
for collision impact minimization.
(2) Desrgn oof achybrid Cartesian-joint controller for redundant flexible-joint manipulators.
(3) Development of a Cartesian space based control strategy for rigid/flexible-joint redun-
dant manipulators where the redundancy is utilized to compensate for joint flexibility.

Briefly. these contiibutions are summarized below.

7.1.1 Impact Control for Redundant Manipulators

The problem of controlling redundant manipulators in order to reduce the effect of
collision impacts has been solved using an augmented kinematics and an impedance con-
trol approach. The solution to this problem is achieved by minimizing the magnitudes of
impulsive forees, and reducing rebound effects of the end-effector. Following the aug-
mented kinematics approach. the manipulator Jacobian matrix was augmented in terms of

an impact dynamic model. so that the resulting configuration of the redundant manipulator
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produced the smallest amount of impulsive torce in the end-effector at the time of impact.
Furthermore, in order to reduce the impulsive forces and the rebound etfects, a simphitied
impedance control scheme was designed by setting the mverse of the desited inerta
matrix to be identical to the mobility tensor of the manipulator in Cartesian space.

The proposed controller has a modular structure and. theretore, other redundancy res-
olution methods can also be incorporated into the formulation of this control stiategy. Fon
example, the pseudo-inverse approach [4] can be used such that the arbitary vector is uti-
lized for impact minimization.

The problem of manipulator impact control is a compiex one whose solution depends
not only on theoretical analysis but also on experimental experience. This problenias t
from completely solved, and turther work is needed in order to develop a scheme suitable

for real-time practical applications.

7.1.2 Cartesian Control of Redundant Flexible-joint Manipulators

The Cartesian control scheme for Hexible-joint redundant manipulators that has been
proposed in this thests iy a new contribution: A novel controller called the hybid Carnte
sian-joint controller has been formulated. This consists of a Cartesian tuckmg controller,
a link tracking controller, and a motor tracking controller. This hybrid conuoller ensures
not only Cartesian trajectory tracking but also link and motor motions, which i turn
ensure proper self-motion of thc manipulator and reject disturbance due to jomnt flexibibity.

The dynamic model of the flexible-joint redundant manipulator that we have used for
analysis as well as for computer simulations is a simplitied model where the nonlinea
coupling between the motors and the links is represented by simple torsional springs with
constant stiffnesses. However, as mentioned in Chapter 3 this motor-link coupling 15 a
nonlinear, time-varying function. With a small change in formulation, the Cartesian con
trol scheme proposed in Chapter 5 can be extended to the case where the couplmyp

between motors and links is nonlinear and ume-varymng
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7.1.3 Contro! of Redundant Manipulators to Compensate for Joint Flexibil-
ity

A new application of kinematically redundant manipulators has been proposed in this
thesis, namely, that of using redundancy resolution to compensate for joint flexibility. This
redundancy resolution scheme has been incorporated in a control strategy for redundant
flexible-jomt manipulators. The extension of this strategy to rigid/flexible-joint coupled
redundant manipulators to our knowledge, appears here for the first time in the published
Interature. The basic idea in this approach is the use of redundancy to compensate for joint
Hexibility. Moreover. the problem of possible algorithmic singularities was analyzed, and
a scheme was proposed which makes the controller robust with respect to such singulari-

ties.

7.2 SUGGESTIONS AND FUTURE RESEARCH

Kmematcally redundant manipulators and corresponding control problems are very
active tesearch areas i roboties, The issues tackled in this thesis are relatively new topics
inrobotics. There are many interesting issues arising from the research work described in

Chapters 4-6 of this thesis for which further systematic research is needed. It is also worth-

while extendmg the ideas and algorithms developed in this thesis to other problems of

simufar type in robotcs. Some suggestions and ideas for future work are as follows:

() In Chapter 4, we have considered only the minimum impact problem when we applied
the augmented kinematics approach for optimization of the kinematic/dynamic objec-
uve function L{gq. D). In fact, this problem can be extended to the case where the
issues of minimum impact and manipulator link collision avoidance are considered at
the same time. This can be achieved by formulating the optimization problem us a con-
strained optimization scheme where the constraints are derived based on geometric

congitions between manipulator links and workspace objects.
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The impact problem for rigid-link and rigid-joint manipulators was discussed in Chan-
ter 4. This can be extended to the case where a manipulator has rigid links but lexible
joints, or rigid joints but flexible links, or even both flexible joints and flexible hinks

We may expect a manipulator to receive smaller impulsive torces when the tlevable
components are present in its structure. However. it 1s possible that inpacts can exae
higher frequency modes, and thus result in oscillatory or unstable behavior,

An adaptive scheme for Cartesian control of tlexible-joint tedundant manipulators can
be developed based on the control strategy proposed in this thesis, and the jomt space
adaptive schemes in [3][5]]6]. This adaptive scheme will be especiatly usetul when the
parameters of the flexible-joint redundant manipulator dynanuc model we not known
or are partially known.

The Cartesian control scheme developed in Chapter 5 can be extended o a Cartesian

space based impedance control scheme for Hexible-joint redundant manipulators to
perform compliant motion. The advantage of using a flexible-jomt manipulator in pes

forming compliant motion is that a flexible-joint mamipulator has higher frequeney
range However. i this case care has to be taken to ensure sysiem stability due 1o the
higher frequency modes.

The redundancy resolution and control scheme proposed in Chapter 6 were designed
for flexible-joint redundant manipulators. The same idea can also be applicd with
some changes in formulation to the case where a manipulator s redundant with flea

bie links. It may be noted that although this topic has been discussed i JTH2|[7](8].

the problem is still far from being completely 1esolved
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