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DYNAMICS OF LIQUID SLOSHING IN ROAD CONTAINERS

Gennady Popov, Ph.D.
Concordia University, 1991

The behaviour of 1liquids in tanker vehicles, subjected to different
road manoeuvres, has been identified as an Important problem in the
transportation of liquid cargoes and related industry. Some solutious
of this problem are presented in this investigation. The analytical
steady-state and numerlcal translent liquid responses are carried out
for rectangular and circular cross-section containers undergoing a
braking, acceleration, or a steady cornering manoeuvres. The solutions
are obtained in terms of the main loading factors, such as the liquid
forces, overturning moments, heights of the free surface, and the damped
frequencies of 1liquid vibrations. The inf luence of the various input
parameters on the liquid load is investigated.

A comprehensive nonllnear liquid slosh model, represented by the
two-dimensional Navier-Stokes, the continuity, and the free-surface
differential equations, is solved numerically in an Eulerian mesh
using the finite difference methodology. A special attention is devoted
to the boundary conditions implementation, for which purposes, the
interpolation-reflection technique of the boundary conditions definition
is developed for containers of an arbitrary shape. The dynamic slosh
model is validated through the laboratory experimental testing and then
is applied to investigate the liquid .response in the partially fllled

rectangular and cylindrical circular contaliners. The transient
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solutions are obtained for the variation of the input parameters in a
wide range, which is significantly superior of that given by a linear
slosh model. Within the applicabllity of the 1linear theory, the
computed and theoretical results compare well, which together with
experimental testing underscore a high degree of confidence in the
simulation of a complicated sloshing problem.

A parametric study and following optimization analysis, carried out
for steady-state 1liquid response, yield an optimal height for
rectangular containers that minimizes the overturning moment in a wide
range of input accelerations and show that the optimal contalner height
is lying in the feasible designing region.

The present work provides a new informatio; about the liquid

behaviour in road containers and gives a powerful tool to investigate

directional dynamics of vehicles carrying liquids.
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CHAPTER 1

INTRODUCTION AND LITERATURE REVIEW

1.1 General

Dynamics of liquid motion in bulk transportation is unique in that
the interaction of the liquid with the moving vehicle significantly
affects the stability and controllability of the tank vehicle. The
liquld motion in transporting containers, often called "sloshing", is a
very important problem especially if it is related to toxic, flammable,
and other dangerous liquids. The extensive statistical data, collected
by the National Transportation Safety Board, the American Association of
Automobiles, the U.S. Department of Transportation and other
organizations, gives a clear view of the seriousness of the problem.
For example, fatallties and damages related to transportation of
dangerous liquids in the U.S.A. during 1979 {1] were: accident -
17,324; injuries - 941; damages - 14,733 in terms of millions of
dollars; and fatalities - 18. Other sources indicate that a large
number of road accidents are rollovers of the liquid carrying vehicles.
By estimation from University of Michigan Transportation Research
Institute, the number of single vehicle rollovers per year for all
trucks of the tractor, semi-trailer type can reach in North America as
many as 4,800 [2], while the statistics of Federal Highway
Administration of DOT shows 2872 rollovers per year in non-collision
accidents. The analysis of the road accldents involving single tank
vehicle on Canadian roads during 1981-83 [3] shows that most of the
acclidents occurred while performing‘ a cornering or lane change

manoeuvre, when the liquid sloshing was considered as a major factor
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contributing for the vehicle accident. Although the existing data is
often incomplete and even contradictory, it identifies the problem of
truck stability against a rollover, due to sloshing and other related
factors, as an impcrtant issue.

A great number of investigations on liquid sloshing has been
carried out since the sixties in different fields of application: space
vehicles, large ground tanks and canals, cargo ships, and road vehicles.
A variety of approaches to solve the sloshing problem due to different
requirements, tank characteristics, and peculiarities of input
disturbance gives different, sometimes contradictory, results which may
not be directly applied to the road tanker design. The most important
problem associated with the transport of liquid cargo is the problem of
stability of the vehicle under a sudden manoeuvre such as straight-line
breking, lane change, cornering, and simultaneous turning and braking.
These manoeuvres, executed at limit performance of the vehicle, can lead
to jackknifing, traller swing, plow out or rollover of the latter,
among which the rollover is the mest dangerous mode of instability
arising during the cornering, lane change, or braking in a turn
manoeuvres.

During the last two decades, a significant effort has been made to
develop analytical solutions, computer simulations, and experimental

investigations to improve the performance of the vehicle transporting

s ia,

liquid cargo. One of the most general and logical approaches is to
simulate the liquid motion with the Navier-Stokes and continuity
equations together with the free-surface equation and appropriate
boundary conditions. However, the analytical solution of such a system

of nonlinear differential equations is not yet known. The existing




linear theories of sloshing are based on the assumption§ of Iinviscid
incompressible fluld, where a velocity potential exists, and on small
amplitudes of fluid motion compared with container dimensions, often
with the depth of the fluld. This leads to a significant simplification
of the momentum equations which, upon introducing the velocity potential
function, neglecting the viscous terms, and combining the resulting
equations with the continuity equation, result in a llnear second order
Laplace’'s equation that can be solved analytically. The difficulties
due to the free-surface equation are overcome either by neglecting the
nonlinear terms und:r the assumption that the wave height and the f luid
velocities are small or by linearization of thls equation and
eliminating the liquid helight from the set. This gives rise to the
linear or linearized sloshing theories respectively. In reality, the
fluid motion may not be assumed small in amplitude. Moreover, strong
nonlinearities introduced by the boundary conditions, when the wall
shape drastically changes as for a rectangular tank, for example, and
the damping, neglected in the linear theories, may have a significant
role in the wholz process. The complete nonlinear problems of a viscous
liquid in road containers under different types of vehicle manoeuvre are
not extensively investigated. Also, the questions related to the damped
natural frequencies of sloshing and magnitudes of 1liquid forces and
overturning moments are not answered yet.

The only effective means in reducing the slosh loading, actually
accepted in the design, are the separating walls or baffles both used as
cross-sectional walls and, therefore, belng effective in longitudinal
dynamics. The irfluence of separating walls is not studied enough, and

the design concepts of compartmented and baffled tanks do not have a



solid theoretical btasis. They are designed rather based on the strength
analysis than on the stability considerations. The number of separating
walls and baffles, as well as location and size of the baffle orifices
are chosen intuitively and thelr effect on slosh load have not been
studied in relation to road containers.

The lack of theoretical and experimental investligations of liquid
cargo behaviour is due to difficulties of solutions of the governing
equations and to the high risk of experimental 1limit performance
studies. Most of the reported analytical and experimental studies on
liquid motion are related to harmonic excitation of contalners. The
road vehicles, however, may be subjected to other types of excitation
including accelerations or decelerations due to different manoeuvres,
aerodynamical forces, and others. The effect of manoeuvre has to be
investigated in terms of slosh loading parameters, such as forces and
overturning moment, for different shapes of contalners.

The behaviour of the coupled "liquid-vehicle" system 1s recognized
as an important problem for vehicle stability. Despite this fact, there
1s only a limited number of investigations in this area. Mostly, the
models of such a system include linear slosh models which are restricted
in application due to inherent limitations of the linear theory. Thus,
the development of a sufficlently accurate and reasonably complex

nonlinear slosh model is seen to be very practical and important goal.

1.2 Literature Review

The area related to liquid motion in moving containers includes a
great number of analytical and experimental studles emphasizing on

different aspects of this problem. During the course of this




investigation, nearly fifty of the most important works has been
reviewed in the two classifying groups. The first group includes
physics of sloshing covering such subjects as flow patterns in
containers, slosh loading parameters investigation, and development of
slosh models. The second group concerns with numerical methods for
solutions of the governing equations that are most widely used at the

present time.

1.2.1 Physics of Sloshing

Probably the first and most complete study of sloshing problem,
both theoretical based on linear approach and experimental, was
conducted by Hutton in 1963 [4]. In this work, it has been shown that
in some cases the linearized theory may correctly predict the liquid
behaviour in a harmonically excited vertical cylindrical container. The
theoretical and experimental results agree well if the amplitude of
excitation is sufficiently small and the frequency of excitation is not
in a narrow band of the resonance. It has been also observed three
kinds of liquid motion: stable planar, unstable swirling, and stable
nonplanar (rotary) motions which interchanged to each other while the
frequency passes through the resonance. The theoretical analysis, based
on the pure linear theory, gives only the steady planar harmonic motion
for all frequencies except narrow resonance region for the harmonic
excitation in one direction. Therefore, the experimentally observed
nonplanar stable and unstable swirling motions are due to the nonlinear
coupling between motions in different directions and to the viscous
damping. Including the nonlinear effects on the free surface, Hutton

has analytically obtalned the rotary motion as well as the softening




effect for planar motion and the stiffening effect for nonplanar one.
This study indicates that the coupling between 1liquid motions in
different directions takes place through the free surface mainly, while
the role of the viscosity and wall shape is of secondary significance.
Thus, in partially fllled containers, once induced planar motion may
easily regenerate to a motion in c'her direction.

Further development of the sloshing problem was experimentally done
by Abramson and other researchers in a series of investigations [5 - 10]
in the middle sixties. They enlarged the scope of investigation using
more combinations of excitation parameters and studying the force
response of liquids in cylindrical and spherical tanks with separating
walls. These studies have also shown the softening character of liquid
sloshing and the presence of jump phenomena, as well as the unstable
swirling and stable rotary motions while passing through the resonance.
The large amplitude breaking wave has been observed near first-mode
resonance; the wave, reaching a certain magnitude, breaks down and puts
upper bound on its amplitude. This is accompanied by the change of the
mode of vibration, and also, this limits lateral forces in the plane of
excitation but creates forces 1in the direction perpendicular to
excitation plane. The experimentally obtained 1liquid forces were
compared with their analytical wvalues from Hutton’s theory. The
difference does not exceed 154 for a sufficiently small excitation,
equal approximately to 1% in terms of displacement with respect to the
container diameter, that is, the analytical values are overestimated.

The approach similar to that used by Hutton has been employed by
Moiseyev [11] to find the general solutions in terms of elgenvalues and

eigenfunctions for free vibrations of the liquid and the liquid response



in terms of forced frequencies and velocity potential for forced
vibrations basing the analysis on the linear approximation. The
Moiseyev's theory cannot be, therefore, applied to the resonance region.
tne of the most important conclusions of this theory 1is that the
sloshing frequencies are amplitude dependent, even in absence of
damping. This fact has been confirmed by a number of experimental
studies.

One approach to find the solutions of the sloshing problem is the
use of the “"water" wave theory. As an example of such a study, the
shallow water wave theory was applied to compute the transient response
of the liquid in a ground storage tank [12]. The linear wave theory
yields the results very close to the experimental ones for sufficiently
small liquid depth, between 10 and 30 % with respect to half of tank
width, for nondimensional forcing amplitude of 0.005, and for excitation
circular frequency around resonance. The good correlation is quite
expected because of consistency of the input parameters with choven
theory. The deep water wave theory can also be applied to the slosh
solution [13,!4], however it will fall in the case of road containers
with sufficiently high fill level when the interaction of the top
container wall will destroy the waves and produce the liquid motion of a
complex nature.

One of the basic characteristics of liquid motion in contalners is
natural frequencies. A number of studies dealt with this subject, but
the most important results are summarized in Ref. [S] - (Abramson, 1966)
and [15,16,17,18) - (Bauer, 1981, 1982, 1967, 1972). The natural
frequencies are obtained from the solutions of the Laplace equation and

the boundary conditions on rigid walls and free surface. The sets of



natural modal frequencies were found for different geometrical shapes of
containers: rectangular, upright circular, and inverted parabolic by
Bauver and others [17,18] and for horizontal cylindrical and spherical
containers by Lamb [19], Budiansky [20], and Graham and Rodriguez [21].
These investigations show that natural frequencies strongly depend on
the shape and fill level of the container. For rectangular containers,
the frequencies increase vith increasing of the fill level. They were
first found by Lamb and lately generalized by Graham and Rodriguez in

the form:

Q = ng T ho o
m (2m+1) T tanh [(Zm +1) T ]

0 0

where the integer m defines the order of the natural frequency and the
corresponding mode for vibration in the direction of Lo. A similar
expression can be obtained for frequencies associated with vibration in
the direction perpendicular to Lo. For simultaneous vibrations in both
directions, the motions will be coupled.

For a horizontal cylindrical container the natural frequencles were
analytically investigated by Lamb and Budiansky and experimentally by
McCarty and Stephens [22]). Lamb approximated the fundamental frequency
by the Rayleigh's method for 50% fllled container in terms of the
gravity acceleration and container diameter as

Q =1.169 (2g /D))",
while Budiansky gave the approximate values for this frequency in terms
of eigenvalues for nearly full, 504 f{lled. and nearly empty container

as:
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n1 = ( 27\1 g/Do]

where
172
Al = /3 [f (1 -f) ] nearly full container
2 n
A, = 1/3 [ —_— e ] 50% filled container
1 n 8
A =1 nearly empty container

1

and the fill level f is with respect to the container diameter.
The analytical and experimental frequencies correlate well for small
vibrations of the liquid. The fundamental frequency in the transverse
direction increases monotonically and slowly with the fill level for
small f’s and progressively faster with increase of the f. For the fill
level tending to 1, the frequency reaches to infinity. The f requencies
for higher modes have strongly pronounced maxima at £ ~ 0.5

The natural frequencies in trapezoidal tanks with converging or
diverging upward walls were investigated analytically by Bauer [15]). 1In
the transverse direction for a converging tank, the frequencies increase
with the fill level, while in a diverging tank they increase very
rapidly for small f's and then remain almost constant. In the
longitudinal direction, the frequencies for both trapesoidal tanks
behave as in the case of the rectangular tank, 1.e. they slowly increase
with the fil1 level.

Most of the above conslidered results are based on linear theories
of sloshing which give undamped frequencies and do not take into account
the nonlinearities of the problem. The damping, neglected in these

theories, may have a sufficiently weak influence on the magnitudes of
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frequencies in the case of road containers since most of the transported
liquids are characterized by small or moderate viscosity. The
neglecting of nonlinear effects, such as, for example, introduced by
interaction of the top and bottom container walls, may totally discredit
the linear approach. Hence, a fluid slosh model taking into account the
most important nonlinearities and including damping is needed to
correctly predict the frequencies of liquid oscillation.

Much effort was made to investigate the interaction between liquids
and separating walls [15,16] and [23 - 27]. The combined effect of the
separating walls is as follows:

- reducing of the amplitude of liquid vibration in terms of the

free-surface heights and, consequently, of slosh loading; and

- augmenting of natural frequencies compared with those of

uncompartmented containers.

Usually, the separating walls are thin compared with main container
walls and, therefore being elastic, they do not give the complete effect
expected from them. This question was investigated by Bauer [16] on the
example of the single elastic separating wall in rectangular and
circular containers. His analysis shows that the coupled sloshing
frequency is very close to the uncoupled frequency of the liquid
vibration, which indicates that the wall stiffness is not an essential
factor In affecting the sloshing process in a considered compartment.,

The influence of number of baffles and the size of their orifices
was studied by Partom [27]) who numerically estimated the equivalent
moment of inertia of a liquid in a vertical cylindrical container with
radial separating walls. The calculations, based on the linear slosh

theory, reveal that the role of partial separating walls is such that
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their effect is significantly reduced if partitions are not full even by
a small amount. This fact suggests that the baffled orifices in road
containers must be kept closed during transportation in order to gain
from the baffles as much as possible. Presently, the separating walls,
being the only effective means 1in reducing the sloshing loads, are
widely used in the design of liquid tankers. However, the present
theories do not give a quantitative analysis of their Iinfluence on
sloshing. The experimental results, obtained by Strandberg [28] showed
the tremendous influence of the separating walls installed
longitudinal’y in reduction of lateral sloshing loads. Despite this
fact, the longltudinal partitions did not receive any attention from the
manufacturers because of their additional weight and technological
complexity.

Most of the studies, both theoretical and experimental, deal with
the response of liquids subjected to harmonic disturbances. There are
only a few which consider the sloshing under an arbitrary excitation.
The earthquake sloshing in cylindrical water tanks undergoing an
arbitrary ground motion was studied by Aslam et al. [29]. The
comparison of analytical and experimental results showed a sufficlently
good correlation between the both for a few first cycles of vibration.
However with time, the discrepancy increases and, for an annular tank,
for example, and for amplitude of liquid height at the inner wall, the
computed height is as twlce as small compared with the experimental one.
This fact is doubtful since in the assumed linear theory the damping was
neglected. Such a discrepancy can be attributed to a large amount of
artificial or computational viscosity ‘or to an incorrect treatment of

the boundary conditions. In that study, it has also been found, both



v R

12

analytically and experimentally, that the flexibility of the tank wall
has little effect on the sloshing response which correlates quite well
with the Bauer’s investigation [16].

Summarizing the results of the previous research, it can be said
that actually two theorles of sloshing are used in the design of liquid
tankers, 1l.e., the linear and the 1linearized. The latter includes
nonlinearities of the free surface but does not include the damping and
both theories give approximate values of sloshing parameters.
Comparison with experiments shows that both theories predict quite
accurately the slosh frequencles and less, or significantly less,
accurately the slosh loading. Those theories can not be applied for
sloshing near resonant frequencies nor for a sloshing with large
amplitude.

The coupled problem associated with interaction of the sloshing
liquid with the moving vehicle has been recognized as a crucial one in
investigating of stability of the vehicle. Due to difficulties in
obtaining solutions to this problem, there are, however, not many
reported studies on this subject. One example of such an investigation
is the report of Johns Hopkins University [30] where the numerical
simulation technique, based on a three-dimensiocnal linear slosh model,
was used to study the limit performance of vehicles transporting liquids
for wvarilable fill 1level, cornering and braking manoeuvres, and

compartmented and uncompartmented tanks. The main conclusions of this

investigation are:
- The three-quarter full tank configuration is significantly
less stable than all other ‘configuration: (1/2, 3/4 and 7/8

fill levels have been investigated).
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- The linearized assumptions of the slosh model may not be valid
for limit manoeuvres.
That is, the authors admitted that a more accurate slosh model is needed
for studying of the coupled problem characterized by a sufficiently
strong sloshing.

Another approach for lateral stability analysis was wused by
Strandberg [28]. He combined the experimental and computer simulation
techniques together. The slosh force in lateral direction was measured
and recorded iIn a specially designed test set-up where the displacement
of the container was simulated by a hydraulic servo-drive. Then, this
force was used as an input to a hybrid computer software which solved a
simplified vehicle model. Such a technique 1is very flexible in
accounting for the slosh nonlinearities, but because of the vehicle
model simplification, 1t restricts the degrees of freedom and, in
principle, changes the motion of the systenm. Moreover, it does not
provide the feedback between the liquid load and container body imotions.
Nonetheless, the results obtained are unique especially in connection
with the role of longitudinal baffles. Introduction of the longitudinal
baffles was, at that time, a new concept in the tank design first
introduced by Lindstrom in 1976 [31]. The most important conclusions of
the combined Lindstrom-Strandberg studies 1is that the circular
cross-section tank ls more stable than rectangular, elliptical, or super
elliptical tanks because "the stability losses from the wider tank are
larger than the gains from the lower center of gravity," and that the
separating walls significantly increase the overturning and skidding
stability. The practical recommendatlop given by Strandberg is that the

compartment width must not exceed 0.6 m for a peak lateral acceleration
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of 0.4 g's in order to provide a safe cornering or lane change
manoeuvres.

A quasli-dynamic slosh model was developed and used to estimate the
destabilizing effect of shifting cargo on the lateral stability of the
tank vehicle by Sankar et al [32] and Ranganathan [33]. This approach
assumes that the liquid moves in such a way that the free surface takes
a position orthogonal to the total body force resulting from the gravity
and lateral accelerations. The comparison of the results with those of
an equivalent rigid cargo reveals that the liquid load shift depends
upon the f1ill level, vehicle speed, and steer input and reaches a
maximum at the fill level of 70%. An unfavourable combination of these
parameters leads to a large magnitude of destabilizing forces that can
cause the rollove~ of the vehicle. Although this approach does not
predict the peak slosh 1loading, due to the 1liquid wvibration, the
computed mean values of the roll angle and estimation of the stability
limits are in good agreement with the experimental results.

An approach based on a mechanical analogy which approximates the
complicated sloshing by a simple equivalent mechanical system, usually
by multi-degree of freedom system, has been very popular in the fifties
and sixties [34 - 40]). The simplicity of the analogue equation allows
to be easily combined with equations of vehicle motion for further
analysis. But the complications, associated with definition of pendulum
or spring-mass elements including their number, stiffnesses, and damping
coefficients require the experimental investigations which, in
principle, must be conducted for each specific problem. Too much in
this matter depends on the researcher's‘experience and intuition since a

good guess should be made prior to mathematical analysis and validation
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of the equivalent system. Some good approximations have been made, for
example, for the case of spherical container by Sayar [40] who returned
to this problem a decade later (1981) and composed a mechanical system
including a cubic spring for a pendulum mass which accurately simulates
the slosh force for some values of the fill level but looses the
accuracy for the other fillings. Thus, this method involves either
experimental definition of the parameters of equivalent mechanical model
or can be carried out by use of the linear slosh theory, but in this
case, the approach looses its attractiveness since the linear analytical
solutions are already available and the equivalent model, based on the
linear theory, will have all limitations inherent by the theory.

All previous studies presented reveal the need for a more accurate
mathematical model for fluid sloshing. Such a model can be represented
by the incompressible Navier-Stokes and continuity equations together
with the free-surface nonlinear equation and the appropriate boundary
conditions along rigid walls and free surface. A brief discussion on
the numerical techniques to solve this system of equations is presented

in the next subsection.

1.2.2 Governing Equations and Methods of Solution

Various approaches and methods for solving of fluid flow problems
are available. During the past few decades intensive research effort
was made to develop efficient numerical procedures and to reduce
excessive computer time. This is due to the fact that the exact
theoretical analysis of partial differential equations of a flow is
limited and has feasible solutions for the simplest cases of fluid

motion. The set of governing equations includes the Navier-Stokes
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equations, written with respect to the assumed system of coordinates,
the continuity equation, and the free-surface equation which describes
the kinematic condition at the free surface in terms of the free-surface
velocities and slopes. The numerical solution of the set can be carried
out separately for the Navier-Stokes and free-surface equations, however
the latter imposes a constraint for the former because it defines the
region where the Navier-Stokes equations have to be applied. The main
difficulties in the solution of the whole system stem from the initial
and boundary conditions. Usually, the 1initial conditions for a
free-surface flow assume zero velocitles for the entire flow and
hydrostatic pressure distribution which corresponds to the initially
motionless liquid. If, however, one intends to solve the problem from
some specific state of the flow, a good guess has to be made which, in
principle, 1is hardly possible. The boundary conditions at rigid wall
can be either free- or no-slip type. Physically, the no-slip condition
is correct, but in numerical calculation it may create an
unrealistically large drag on the fluld. This question was investigated
by Nichols and Hirt in 1971 [41] who found that depending on the flow
Reynolds number, the conditions must be taken of one (free-slip for high
Re) or another type. Some preliminary numerical study was undertaken in
this investigation In order to verify this last statement which has been
made heuristically. This matter will be discussed in Chapter 2.

The most broadly applicable computational methods to solve the
Navier-Stokes equations are finite difference, finite element, and
integral representation methods. The finite difference approach gives
many techniques suitable to solve the viscous flow. If the governing

[y

equations are in the stream functlon-vorticity system, then the method
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of Alternative Direction Implicit, ADI, of Peaceman and Rochford [42] or
Successive Over-Relaxation, SOR, by Fox [43] and their later
modifications described 1in [44,45]) are more convenient. If the
equations are used in the system of primitive variables, then the method
of Implicit Continuous-fluid Eulerian, ICE, introduced by Harlow and
Amsden [46] or its development, the Marker and Cell method, MAC, by
Harlow and Welch [47] are more preferable. The history of computational
fluid dynamics shows that no successful computation of problems with
free surface has been accomplished in the stream function-vorticity
formulation because of difficulties of boundary conditions imposition at
the free surface.

Thus, the Marker and Cell method 1is now the most powerful technique
to solve the closhing problem. Lately, some modifications were brought
to the MAC by their inventors [48]), by Viecelli [49], by Chan and Street
{50] and by other researchers. Amsden and Harlow introduced a
simplified version of MAC, SMAC, where the pressure equation is not
solved and the pressure itself is iterated to drive the velocities to
the state when they satisfy the continuity condition. Viecelly has
found a powerful technique of treating of curvilinear boundaries in a
rectangular mesh by adjusting the pressure in the fictitious flow in
such a way that the liquid is forced to move along the boundary. And
Chan and Street introduced the Stanford University Modified MAC, SUMMAC,
in which they improved the free surface-boundary treatment. One of the
specific features of the MAC method is the use of a staggered grid. It
has been shown by Patankar [51] that the staggered grid improves the
computational stability of the central differences discretization by

making disappear the difficulties due to the first derivatives
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representing the convective terms.

The finite element approach is also successful for solving of many
fluld flow problems. The methodology is based on minimizing of a
related functional and the methods form two basic groups, 1l.e.,
conventional finite element methods, FEM, [52,53] and boundary element
methods, BEM, [54]. These methods as well as the fluid-in-cell method,
FLIC, were used by Washizu [54] to study 1liquid sloshing in a
rectangular tank. Unfortunately, the correlation between these methods
may not be established because the author used different Iinput
disturbances for the three cases of study. Nevertheless, it has been
shown that all three numerical techniques can be successfully applied to
the free~-surface flow problem. Although the finite element methods have
received a substantial development in the eighties, they did not remove
all difficulties assoclated with finite difference methods. In
particular, they did not essentially reduce the computer time,
especially for problems with simple geometries, and did not increase the
accuracy of solutions for problems with high Reynolds number. Some of
the essential drawbacks of the finite element approach are Iits
conceptional complexity and that fact that the variational principle may
not necessarily exist for all differential equations of interest,

The integral representation approach in connection to the liquid
flow problems was initiated, a decade and a half ago, by Wu [S5]. This
group of methods is based on the concept of fundamental solutions of
differential equations and on the use of finite element technique. The
governing equations are recast into the form of integral representations
containing an integral over the fluid domain and an integral over the

[}

fluid boundary, then, they are solved by finite elements. These methods
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are insensitive to the value of the Reynolds number in solving for the
Navier-Stokes equations and are efficient in solving of two-dimensional
flows without free surfaces. However, the free-surface flows
significantly complicate the application of these methods and, in this
case, the problem of the boundary condition at the free surface remains
uncertain.

The analysis of the extensive reseaich in computational fluid
mechanics suggests that the choice of the numerical procedure for the

sloshing problem should be based on the following:

i) Finite difference methodology: preferable for wunsteady and

nonlinear problenms.

ii) Primitive variable formulation: easier and more conclusive in

imposition of boundary conditlions.

iii) Central difference discretization: higher order of accuracy of the
finite difference representation comparing with one-side

differences.

iv) Weighted upstream differencing: eliminates the computational
instability proper to the central differences, however, reduces
accuracy; a compromise between accuracy and stability has to be

made.
v) Staggered grid: increases the computational stability.

As a particular method satisfying all these requirements, the
Marker and Cell method appears to be the most suitable. There is no
avallable computational procedure that tould, however, work reliably and

accurately with nonlinear sloshing problem characterized by the presence
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of the time-varying free surface. Moreover, the methodology of applying
of boundary conditions in staggered grids is not clearly defined at the
present time. These and related questions will be considered in this

investigation in the following chapters.

1.3 Scope of the Present Investigation

The objectives of the present research are to create a sufficiently
accurate and reasonably complex mathematical and computer models for the
sloshing problem, to develop the procedure for numerical solution, and
to study the viscous liquid behaviour in road containers of different
geometrical shapes subjected to road manoceuvres such as straight-line
braking or accelerating and steady cornering. The transient responses
of the liquid motion to a prescribed input are to be evaluated in terms
of damped frequencies and amplitudes of slosh parameters, i.e., heights
of the free surface, forces, and overturning moments. The analytical
steady-state solutions are alsc a part of this investigation.

In Chapter 1, a detailed evaluation of the presently existing
sloshing theories is made in order to establish the state-of-the-art of
the problem. The various methods of numerical solutions and the choice
of the Marker and Cell method are discussed.

In Chapter 2, the mathematical model of the sloshing problem is
developed based on the two-dimensional incompressible Navier-Stokes,
continuity, and free-surface equations. A dimensional analysis of the
governing equatlons is also presented in this chapter. Such an
analysis allows to extrapolate the computational results to the class of
similar problems based on variation of‘the size, viscosity, density, and

input acceleration. The various input and output parameters for the




sloshirg problem are defined as well as the conversion of the
non-dimensional parameters to the dimensional form. Also, the
assumptions and limitations of the developed mathematical slosh model
are discussed in this chapter.

In Chapter 3, the computer model of the sloshing problem is
formulated. This includes the discretization of the governing equations
in an Eulerlan mesh carried out by central differences in space, with a
welghted upstream differencing, and by forward differences in time. The
boundary conditions on the flow variables are derived for free- and
no-slip velocity conditions at the rigld wall and for free-slip
condition at the free surface. The reflection type boundary conditions
have been developed for arbitrary shaped boundary. This technique is
called here interpolation-reflection of the boundary conditions.
Finally, the computer code to solve the formulated sloshing problem is
developed and some aspects of the numerical procedure are discussed.

In Chapter 4, a number of test runs of the computer program is
carried out in order to specify the coefficients of upstream
differencing and the order of interpolation of boundary conditions. The
influence of these parameters on the numerical solution is discussed and
the final choice of the boundary conditions is made. Also, the computer
model of the sloshing problem is experimentally validated for the case
of a rectangular container. The small scale model of a rectangular tank
js tested on a specially created test set-up, where the lateral
acceleration is simulated by an electro-hydraulic actuator. A good
agreement between the experiment and the model Is found.

The behaviour of the liquid motlion in rectangular containers is

studied in Chapter 3. The steady-state solutions are obtained
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analytically by integrating the governing equations in static
equilibrium. The solutions are given in terms of 1liquid heights,
forces, and overturning moments as functions of the input parameters
including the geometry of the container, fill level, and magnitude of
input acceleration. The transient solutions are found numerically in
terms of frequencies and amplitudes of main slosh variables. The
computer results are compared with avallable data from the 1linear
sloshing theory and a detailed discussion on those results is also
presented.

In Chapter 6, the sloshing in horizontal cylindrical containers
with circular cross-section is Investigated in the form very similar to
that of rectangular containers. An additional study is undertaken to
show that in majority of practical cases, the nonhomogenous field of
body forces existing in a 1liquid during the rotational motion may be
reduced to a simpler homogeneous one of the rectilinear translational
motion. The error, arising from such an approximation, is also
estimated.

In Chapter 7, the solutlion to the sloshing problem in compartmented
and baffled rectangular containers 1is presented. The effect of
separating walls 1In reducing the slosh 1loads 1s investigated
analytically for the steady-state motion and numerically for the
transient case. The influence of the size and location of the baffled
orifices and of the number of baffles is also studied in terms of the
slosh frequencies and amplitudes of forces and overturning moments.

In Chapter 8, the analytical steady-state solutlions are utilized to
carry out an optimization study in searching for the optimal geometrical

shape of a rectangular contalner. The overturning moment, chosen as the
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objective function, is minimized in the feasible range of the container
height and input acceleration parameters, and the sensitivity of the
moment to the container height variation 1is analysed.

Finally, a discussion on the results, obtained in this
investigation, conclusions and recommendations for future work are

presented in Chapter 9.

23



CHAPTER 2

MATHEMAT ICAL MODELING OF THE LIQUID MOTION

IN ROAD CONTAINERS

2.1 General

Road containers may be subjected to different forms of external
excitation depending upon the types of vehicle manoeuvre which are
generally classifled into the following groups:

i)  braking or accelerating,

i1) cornering,

1i1) lane change.

iv) evasive or double lane change manoeuvre, and

v) cornering with braking.

In addition to the gravitational field, such manoceuvres produce in
the liquid a fleld of unit body forces, which can be a constant or vary
in time and homogeneous (for braking-accelerating) or nonhomogenous (for
all the remaining manoeuvres) in space. For the purpose of clarity and
generalization, the complicated flelds of body forces may be represented
by simpler forms. Thus, the braking and accelerating manoeuvres can be
similated by a step lnput acceleration in the longitudinal direction
which creates a constant homogeneous force fleld in the 1iquid. The
cornering, lane change and evasive manoeuvres can also be represented by
a step input acceleration, or a combinatlon of steps, but the force
field that they engender, is a nonhomogenous one and will be a function
of the local radius of turn. 1In the present investigation, two types of
contalner motion are considered. Thé first one is that which arises

under a step acceleration and is a rectilinear uniformly accelerated



motion representing the braking-accelerating manoeuvres. The second one
is due to a step centrifugal acceleration simulating the vehicle
steady-state cornering. These two motions, for brevity, will be called
as rectilinear and rotational motions respectively of the container. It
will be shown in the sections for steady-state solutions of Chapters 5
and 6 that the rotational motion can be, for majority of practical
cases, replaced by the rectilinear one with a small and estimated error.

The two-dimensional (2-D) model of the liquid motion is formulated
in this section to study the dynamics of sloshing in steady turn, when
the anomalies of the initial phase of the manoeuvre are neglected, and
in braking-accelerating manoeuvre, when the cross-section of the

container is assumed to be rectangular.

2.2 Governing Equations for Transient and Steady-State Liquid Motion

The equations describing the 2-D flow in a container are the
Navier-Stokes, the continuity, and the free-surface partial
differential equations, that in conservative and nondimensional form are

written as:

]
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The boundary conditions necessary for completing the governing set of
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equations, in the case of an arbitrary shape of the container are:
9

P = Po on the free surface
IJn =0, Vn =0 on the wetted wall for free-slip condition
Uu =0, Vv =0 (2.2)

n " on the wetted wall for no-slip conditinn

= 0’ v = 0
T T

)
The conditions given in the Eqn. (2.2) are written in terms of normal
and tangential components of the U and V velocities with respect to the
local system of coordinates, n-t, with its origin lying on a wall point
and with the n-axis being the inward normal to the wall, (Fig. 2.1).
Such a form allows to treat separately the U and V boundary velocities
vhich themselves are related to the X-Y coordinated system in which a
container body is situated in the first quadrant in such a way that X-
and Y- axes touch the contalner at least in one point each. In a
specific case of a rectangular container, when the n-t coordinates
coincide in directions with X-Y coordinates, the former are dropped to
avoid redundancy.

The nondimensional groups, Included in Egqns. (2.1), are the
Strouhal, St, Froude, Fr, Euler, Eu, and Reynolds, Re, nunbers expressed
in terms of characteristic values of the flow and physical properties of

the liquid as:

2
L v P VL
St =—2 Fr=-—, Euz—2 ,Re = 22 (2.3)
TOVo gLo PV, v

The nondimensional equations, Eqns. (2.1), together with the
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— (centre of curvature)
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At the boundary point B:
Un=0, Vn=0 for free-slip condition
Un=0, Vn=0

} for no-slip condition
U,l_:O, V'r=°

Fig.2.1. Velocity components and systems of coordinate
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boundary conditions, Eqns. (2.2) describe a class of similar liquid
flows, provided that the geometrical similarity of container’s walls and
the similarity of applied external forces (Gx and Gy) is maintained.
The four nondimensional numbers in Eqns. (2.3), that must be equal for
similar flows, constitute the necessary conditions for similarity. The
sufficlent condition for similarity is, however less than four and it
can be established by considering the specifics of the flow. This can
be done through further alteration of the governing equations by
defining the characteristic values of the flow parameters in the

following manner:

9

characteristic length, Lo’ i1s the length of the container

in the direction of applied excitation,

characteristic time, To = Lo/ g

characteristic velocity, V0 = /g Lo , : (2.4)

characteristic pressure, Po =p V§ .

)

Substituting the characteristic values into the expressions in
Eqrs. (2.3), makes the St, Fr, and Eu numbers identically equal to 1 and
the Re = gUZLo:V2 v Now, the sufficient number of parameters
defining the similar flows becomes equal to two, i.e. Gx and Re while
the Gy = -1 is excluded if the gravitational acceleration is assumed to
be a constant. The additional defining parameter, the fill level f,
results from the geometrical similarity and must be the same fo similar
flows. .

For the steady-state response, when the sloshing is absent and




IRV TR WTIRTA T e T AW

29

therefore all fluid velocities vanish, the Egqns. (2.1) reduce to the

followling hydrostatic equations:

ap épP
__S.E =G and __._SS =G (2.5)

ax X

2.3 Dimensional Analysis of the Sloshggg Problem

The numerical integration of the nondimensional governing equations
iIs carried out for a glven set of the defining parameters. Once the
solution is known, the nondimensional analysis allows to extrapolate a
further scolution to other values of the input parameters. This can be
done through the dimensional analysis of these equations. All
parameters and variables of the sloshing problem may be collected in the

following groups:

21 » 35 P Y and tx' Voo P f‘. m (2.6)
where the nine listed groups of dimensional quantities represent the
lengths, accelerations, mass densitles, viscosities, times, velocities,
pressures, forces, and moments proper to the problem, respectively. The
frequencies are omitted, since they may be expressed by the inverse
values of the corresponding time periods.

The 1list (2.6) may be rewritten in terms of the corresponding
characteristic values of the parameters and variables Involved as:

L, g p, vand Tb, Vb, P,F.M (2.7)

0

[y

where the characteristic values are the container width, gravity
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acceleration, density and viscosity of the most dense or viscous liquid
(if more than one liquid is involved); time, velocity, and pressure, as
they are defined in Exp.(2.4); and the force and moment, which are

defined in the following manner:

3 4

Fo = ngo and M o = ngo

Then, two unsteady viscous incompressible flows in horizontally

accelerated containers are similar, if the following conditions hold:

tl ai P Vl 3
-— = idem, = idenm, = idem, —— = idem,
Lo v
t, va P, > (2.8)
- = idem, v - ldem, = idem, Fa = idem, M = idem
0 0 o} )
and St = ldem, Fr = idem, Eu = idem, Re = idem (2.9)

The conditions in Eqns. (2.8) and (2.9) include geometric, kinematic,
and dynamic similarity; the similarity of the fill levels is maintained
by the first term in Eqns. (2.8).

Introducing the scaling factors as

K,K,K,K,K,K, K, K, K, (2.10)

that represent the ratios of the corresponding parameters and variables

of the two compared flow, the expressions (2.8) and (2.9) may be

rewritten in the form:
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2
K K K KK
L =1, v =1, p2= 1'& =1,
KK, KK, KX, K,
(2.11)
KF KH -
s = b KKK !
KK
pgL p gL

This system, contalning 6 equations and 9 variables, can be only solved
if three of the scaling factors are defined a priori, and they must be

chosen from the list of parameters defining the flow, i.e., K, K, K _,

L> g e
and Kv' Some special cases of similarity are considered in the

following subsections.

2.3.1 Container Size Variation, KL = var, Kg = Kp =1

This case corresponds to fixed values of the input acceleration and

mass density of the liquid. The solution of Eqns. (2.11) yields:

) _ L, 1/2 oy 172 .
KV-KL 'KT-KL ' Ky K K=K,
= g3 = !t = o172
KF KL’ KH Kl.' and KQ KL (2.12)

The flows in two similar containers of different size may be similar if
only the viscosity of liquids differ by KL:VZ times. Then the resulting
parameters for the flow In a bigger container (KL > 1) change in the
following manner: the period of the liquid oscillations and all the
velocities will increase by KLW times, the pressure, forces and moment
Increase by the first, third, and fourth powers of the size change
respectively, and the frequency of osci‘llation decreases by K;.Uz times.

Thus, it Is not necessary to vary the size of the contalner, since a
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solution for any container size may be obtained by a simple
recalculation of the solution for one fixed size according to the
expressions in Eqns.(2.12). It has to be noted that 1if the viscosity is
kept unchanged, then the complete simllarity is not possible due to a
contradiction between the second and fourth expressions in Eqns. (2.11),
which represent the Fr and Re numbers. In this case, only the
similarity either by Fr or by Re can be maintained.

In general, only two scaling factors from the four defining ones
can be set equal to 1 with the third factor varying. If three factors
are set equal to 1, then one of the expressions in Eqns. (2.11) becomes
inconsistent with the remaining expressions, and it must be rejected
with the consequence of unsatisfying of the corresponding criterion of

similarity.

2.3.2 Viscosity Varlation, Kv = var, Kg = Kp =1

The expressions in Eqns. (™ 11) for this case yleld:

(2.13)

~
L}
~
P
3
o,
-~
0
~

When the viscosity of two flows 1is different, the complete

2/3

similarity is possible if the sizes of containers differ by Kv and for

the flow with greater viscosity (Kv> 1) the time period of oscillations

1/3

and all the velocities will increase by Kv times. The pressure,

forces, and moment will also increase proportionally to two third,

square, and eight third powers of the viscosity change, while the

frequency of oscillations will be lowered by K:’Us times.
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2.3.3 Density variation, K =var, K =K =1
P g v
This case corresponds to two liquids with different mass densities
and equal viscosities and subjected to the same acceleration. The

expressions 2 and 4 in Eqns. (2.11) imply that the container size should

not be changed to maintain the similarity. Hence, Eqns. (2.11) give:

K =1, K =K =K,=1, K =K =K =K (2.14)

It can be seen that velocities and frequencies are invariant to the
density change in a container of fixed size, and the pressure, forces,
and moment are proportional to the density change. Thus, the density is

not a parameter defining the flow.

2.3.4 Acceleration variation, Kg = var, Kp = Kv =1

The solution of Eqns. (2.11) for the same liquid subjected to

different accelerations is obtained in the form:

KL = Kg , KT = Kg ’ Kv = Kg , KP = Kg , KF =1
_ =173 -1/3
K“ = Kg , Kn = Kg (2.15)

that states that if the input acceleration is varied then the container

size must be changed by K;lla

times in order to obtain a similar flow.
The dimensional theory does not specify the acceleration expressed by Kg
factor. It can be any input acceleration i.e. either horizontal or

vertical (gravitational) acceleration each of which enters only into one

of the momentum equations and they are mutually independent. The Froude
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number includes only the gravitatlional acceleration, while Gx and Gv
represent the input accelerations in the horizontal and vertical
directions. In a specific case of road contalners, the gravitational
acceleration may be assumed constant and the Gy, for the considered
uncoupled problem equals to -1. Therefore, the results obtained in this
subsection for the forces and moment must be attributed only to the
horizontal component of the liquid force and to that part of the

overturning moment which is due to this force, assuming the Kc value
X

istead of Kg. It can also be sald that the change in the gravitational
acceleration does affect only the second momentum equation, while the
change in Gx affects only the first one. Thus, the lateral input

acceleration, Gx' is a defining parameter for the sloshing problem.

2.4. Definition of Input and Output Slosh Parameters

The liquid motion inside an accelerated container 1is dictated by
the acceleration of contalner body, size and shape of the contalner
including also the fill level, and by the properties of the liquid. As
it has been discussed in the previous section, the size and the
viscosity of the liquid are represented by the more general parameter,
the Reynolds number, and the density of the liquid, represented by the
Euler number, ceases to be a defining parameter and the Eu itself
becomes a function of Re. In the case of a rotational motion, the
additional parameter, characterizing the track curvature, appears.
Thus, the set of nondimensional input parameters is as follows:

i) Input acceleration, Gx = -a/g ‘for the rectilinear motion and

Gn = sz/g for rotational motion.

11) Height of the container, h = h0 / Lo for rectangular contalners and
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h=1 for circular cross-section containers.
1ii) Fill level, f = hln / Lo.

iv) Number of compartments for compartmented and baffled containers, n.
v) Track curvature, & = R/Lo.
vi) Reynolds number, Re = V0 Lo/v.

The solution of the hydrodynamic equations is carried out in terms
of thelpressures. velocities, and heights of the free surface as
functions of the time and space coordlinates. The loading slosh
parameters, defined as horizontal and vertical forces and overturning

moment, all driven to the point "O", Fig. 2.2, are found by numerical

integration of the pressure along the wetted walls of the container as

m n
F, = avg_z(PJr -P ), F = 5");=2(Pw -P ) M=FY -Fs (216

where the displacement of the forces from the point "0" are

n
axz;._a(Pib- P,) X, 1
.S, = — - (2.17)

F F 2
H v

m
P - Y
aY;___Z( Ir PJI) |

and the subscripts r, 1, b, and t are referred to the right, left,
bottom, and top portions of the wall respectively. The forces of
friction, due to the shear stress of the liquid, are neglected because
of their very small values comparing with the normal stress forces, that
is correct for flows with high Re-number which is appropriate for this
investigation. Since the pressures in the numerical code are computed
in the middle of each cell, they are extrapolated to the wall in order
to get their values included in the ‘Eqns. (2.16). The extrapolation

technique is considered in the next chapter.
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The dynamic coefficients for forces and moments, representing the
ratios of the dynamic peak values to the corresponding steady-state

values, are designated as

Fn Fv M
C_ = . C = . C = = (2.18)
FH Fnss FV F}ss M Mss

and the damped natural frequencies of liquid oscillations are normalized

with respect to the total unit body force as

g o Y2172
K=Q/ [ T [1 + Gx ] ] (2.19)

2.5 Conversion of the Slosh Parameters to Dimensional Form

The nondimensional slosh forces, computed in this investigation as
their ratios to the liquid weight, and the moment, computed as the ratio
to the product "liquid weight times characteristic length", all per unit
width of the container, can be converted to the dimensional form, as
well as the area occupied by the liquid, by means of the following

expressions, where the width of the container is b:

=12 A )
0 oo
=p¥ a bF
" o "1 (2.20)
fv =pPga, b Fv
m =pga b Lo M

These expressions are valld both for the steady-state and transient
responses, and the characteristic length for a circular cross-section

container is equal to its diameter.
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2.6 Assumptions and Limitations of the Slosh Model

The main assumptions made in the develooment of the slosh model
together with the limitations may be stated as follows:

1) The 1liquid flow inside a container 1is assumed to be
incompressible. This assumption implies a very high degree of accuracy
since the compressibility effect of the flows with free surfaces 1is
known to be negligibly small.

1i) The two-dimensional model of the liquid flow, adopted in this
investiyation, can sufficiently describe the liquid sloshing response in
steady turning manceuvre for any cross-sectional shape of the container
and in braking-accelerating manoeuvre only for rectangular containers.
The more complicated manoeuvres, such as simultaneous braking and
cornering, can be represented only by a three-dimensional slosh model
that can be developed by adding the additional dimension to the
velocities, pressures, and liquid heights arrays. Such an extension
i1s seen as a straightforward procedure.

111) The surface tension and capillarity effect are neglected.
This assumption is quite accurate because the lengths of the capillary
waves are very small, wusually a few centimeters, comparing with
gravitational waves of the liquid. For example, for water and air, the
capillary wave length is of the order of 1.8 cm [14].

iv) It is assumed that the unit body forces are constant and
homogeneous. The first part of this assumption implies that the step
input acceleration approximates the cornering manoeuvre which is usually
characterized by a very steep ramp’ in the initial phase of the

manoeuvre. In the case of braking-accelerating this assumption is even
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more realistic since the brakes are often applied suddenly. Thus, the
more severe case of sloshing is considered. The second part assumes
that the centrifugal acceleration is independent of the local radius of
turn. Such an assumption can be made only if the slze of the container
is small with respect to the radius of the turn which is the case in the
present problen. This assumption, however, will be validated in
Chapters 5 and 6 during the derivations of steady-state responses.

v) The container wall is considered to be absolutely rigid and
therefore the coupling effect of the 1liquid-wall interaction |is
neglected. It has been shown by different authors that such a coupling,
though affects the coupled frequencies of the wall vibrations, has
almost no influence on the 1liquid vibrations, and therefore |in
estimating of the slosh loading, the walls can be considered rigid.

vi) In the case of compartmented and baffled containers, the
separating walls are assumed evenly distributed. This assumption holds
for the steady-state and translent responses throughout this
investigation. However, uneven distribution of partitions can be easlly
introduced for the case of transient response, but in the case of
steady-state response, new derivations are needed.

vii) Identical fill level in all compartments of multisectional
containers has been considered, which is not an assumption as a matter
of fact, but rather a specific case under consideration. As in the
previous case, the assumed model can be easily extended for the
transient solution to different fill levels in a compartmented tank.

viit) The liquid forces exerted by the liquid on contaliner walls

are computed in this study based only on the normal stress or on the

hydrodynamic pressure, while the friction forces due to the shear stress
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are neglected. This assumption is well founded for a flow with high
Re-number. A rough estimation of the friction force shows that it is 3
to 5 orders of magnitude smaller than the pressure forces if the Re is
in the range 10° - 10", However, for very viscous flows, that are not
considered in this investigation, the friction force must be taken Into
account.

ix) The initial conditions for the numerical solution of the
governing equations assume the liquid to be initially at rest. This
assumption 1s a necessary one since it is very difficult to guess the
velocity and pressure fields 1f other then zero-initial conditlons are
considered. An incorrectly assumed initial state of the flow may became
a strong source of computational instability.

x) It is also necessary to mention that the model cannot be used
for study of 1liquid motion under very severe sloshing conditlons
characterized by such input acceleration that creates a breaking wave or
leads to separation of the liquid into parts. A solution of such a flow
faces many difficulties related to rearranging of boundary conditions to
solve the motion of liquid parts and it will result in enormously

increased computational time.

2.7 Summary

In this chapter, the mathematical model of the 1liquid sloshing in
road contaliners is described. The liquid motion in containers under
typical road manoeuvres is simulated by the Navier-Stokes, continuity,
and the free-surface differential equatlons, which include the most
important nonlinearities appropriate to the problem under consideration.

The dimensional analysls of the governing equatlions 1ls presented

e 3 2 s B o S e BT I e 8 BN Db R F

ARt SV 2

S




41

for extrapolating the computational results for more extensive range of
input parameters.

The input and output slosh parameters are defined and the vehicle
manoeuvres, such as steady cornering and braking-accelerating, are
simulated by simplified motions.

The assumptions and 1limitations of the proposed model are
summarized together with the possible modifications which will allow the
extension of the model for treating more complicated cases of the

sloshing.



CHAPTER 3

FORMULATION OF THE COMPUTER MODEL OF SLOSHING

3.1 Description of the Marker-and-Cell Numerical Technique

The numerical method to solve the equations of liquid motion chosen
in this study is the Marker-and-Cell {(MAC) method [41,46-49] generally
characterized by the following features:

1) The use of primitive variables, i.e. velocities, pressure, and
helghts of the free surface.

i1) The finite difference approximation of the differential
equations is made by use of the forward differences in time and central
differences in space. Such a scheme, often computationally unstable,is
made stable by applying the upstream differencing technique to the
central difference formulae. The over-relaxation is used to increase
the rate of computational convergence.

i11) The use of staggered grid, usually implied by the MAC-method,
increases the computational stability by reducing the difficulties
related to the convective terms of the Navier-Stokes equations. A cell
of typical staggered grid is shown in Fig. 3.1, where it can be seen
that the velocities are applied at the sides of the control volume (or a
cell) and the pressure in the middle of a cell.

iv) The markers, used in the original MAC-method to define the
trajectories of 1liquid particles including those which belong to the
free surface, are dropped because the free-surface position is
calculated directly from the equation of the free surface after the
velocity field is computed from the momentum equations and specified

through the velocities and pressure iterations.
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3.2 Discretization of the Governing Equations

The partial differential equations (2.1) are approximated by the
corresponding finite-difference equations 1in accordance with the

statements mentioned in the previous section in the following manner:

X-momentum equation

G 2
K+1 _ K oT _Eu [k _ K x _ 1 K K
U TVt { pe [PM.J Pa.:] Y Fr [(Um" Um,J]

1 14 X K X 13 K
R [[Vl.j * VHI.J] [U,:,f Uf.j+1]+ alvi.f v1+1.j|[ul.1 Ux,;n]

K 13 14 X X X 13 X
- [Vi.j-1+ vu1,3-1] [Ul,j-l+ U1,5] - a]Vi' j-1+ vui, 3-1I(U1, j-1 Ul,j]]

1 [ 1 [ K K o ) 1 [ '3 K 14 ]]
+ —_— |—_]U - 2U + + —| U - 2U + U
Re axz i+1,) 1) i-1,} 5Y2 i,J+1 1,] 1,51

(3.1)
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Y-momentum equation

G
+1 _ UK ST Eu (oK _ ok vy _1 K K
VI:,J 1yt St { _S_Y [Pi,j+1 P1,3]+ Fr [(Ul,j * Ul,j+1]
x[v‘ + V& ]
4, 1+1,)

X X X K K X
te lUs.J * Ui.JuI(v;.J - V1+1,J] - [Ui-x.j * U1-1,3+1]

x[vK + VK ]
i-lrj l!]

. 2
X 1 4 1 4 1 K K
“|W4J+Uhuhtlbhn1 ‘uﬂ Z&[PHFVMM}

!
<

2
K | 4 K K K X
te IV‘»J * V‘DJ’II[V‘)J Vlv."’l] [vllj'1 * va.’ ]
K K ) 4 K
i IV!.J-1+V1.JI[Vi,j-1 Vi.:]]
1 [1 [x K K ] 1 [x 13 K ]]
+ —_— -2V + — -2 v
Re sx2\ 1+1.4 1y ie,g) 0 2l 1,3 1,1

Continuity (divergence) equation

p* = L [uf" -t ] 1 [ Vi - vf*‘_l] (3.3)
l!J ax SJ i.’ 6Y iJ )J
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Free - surface equation

1 1
Ké= K+= K-
g gt o, ST {V 2 _ 1 [UZHK +3'||._J’|2(HK-HK]

St 238X
1 1
- K3 x - K3 X X
- U Hl , -7 |U1I [ H ., —H ]] (3.4)

where the free-surface velocities are expressed as
K+1 1 Vxﬂ X
VT [ l,J‘l‘+Vi,JT]

(3.5)

K’% 1 K+1 K+1 K 14
- .
U = — + U + U + U
4 §1~-1,JT 1,JT 1-1,JT 1,JT

and « and 7 are the coefficients of upstream differencing varying
between 0 and 1. If « = y = 0, then the discretization corresponds to
the pure central difference scheme; if a« = ¥ = 1, then the difference
equations reduce to full upstream form; and if a and ¥ are between O and
1, then some amount of donor cell fluxing is introduced. The partial
and full upstream differencing introduces a false diffusion that 1is
directly following from the Taylor-series expansion of the differential
equations, which is true if the space increments 8X and &Y are very
small. For large values of 8X and &Y, or in the cases of sufficiently
rough computational meshes, the Taylor-series analysis is misleading
[51] and the upstream differencing gives more reasonable results.

The free-surface velocitles, entering the free-surface equation,
are averaged in time between the (k+1) and k-th time levels, and those
are more accurate than usually taken \‘/alues at the (k+1) level. Also,

they are computed for the JT-cell layer that is slightly below of the
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free surface, 1.e. they are not extrapolated outside from the flow. The
calculations show that velocities in liquid increase in the direction
from the bottom of the container to the free surface, and because of
this, it seems more reasonable to extrapolate the free surface
velocities. However, it leads to slightly divergent oscillation of the
free-surface heights that 1s physically incorrect even for
zero-viscosity flow. This fact may be attributed to some local effects
at the free surface, such as surface tension and interaction of the free
surface with ambient air, which are not taken into account by the
present model. Therefore, it has been found reasonable to keep the
velocities at the free surface equal to those in the liquid near the
free surface. This question will be discussed in detail in Chapter 4

while validating the computer model.

3.3. Boundary Conditions

The boundary value problem, stated in Eqns.(2.1) requires a
definition of the boundary conditions for all variables, i.e. U,v,P, and
H. The boundary conditions given by expressions (2.2) are consistent
with the corresponding differential equations, when they are defined
exactly at the boundary including the rigid wall and the free surface.
When the finite difference analogue to the original differential
equations is solved in a staggered grid, then the boundary grid points
may fall either inside or outside of the flow and belong, in the second
case, to so-called fictitious flow.

The definition of the boundary points can be made by the prior
classification of cells into three groups: completely filled by liquid,

partially filled, and empty cells as it is shown in Fig. 3.2 for the
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more general case of an arbitrary shape container. The interior cells,
either physically full or partially filled, constitute the real flow
domain and their velocities must be inside the fiow boundary. If at
least one of the velocities is outside, then the cell is exterior. The
outward layer of interior cells is formed by the JT-cells belonging to
the free surface, JB-cells pertaining to the rigid wall at the container
bottom, simply interior cells located in the gap between the JT-and JB-
cells, and mixed JB-JT-cells as it is shown in Fig. 3.2. The very next
layer of cells surrounding the interior cells is the boundary layer.
The equations of the flow are solved only over the interior cell domain
and the boundary values of the flow parameters are computed for the
boundary layer cells.

The problem under present study needs the definition of the
boundary conditions for the following flow variables:velocity components
of the liquid, U and V, the pressure, P, at the rigid wall and free
surface, and the liquid height, H, in two points of the free surface.
The velocity boundary conditions on the rigid wall may be either
free-slip or no-slip. The choice of one or another condition may be
based on the thickness of the boundary layer formed along the wall, as
it is suggested in [41] where the free-slip condition is recommended for
high Re values, when the boundary layer thickness is small comparing
with the cell size, and the no-slip condition for low Re. The free-slip
condition 1is often called reflection boundary condition which assumes
the tangential velocity and the pressure to be even functions of the
normal distance from the wall and the nnimal velocity to be an odd
function of the same distance. 1In the present investigation, the term

reflection is generalized in the way that both free-slip and no-slip
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conditions are treated as reflection-type conditions assuming the even
symmetry for free-slip and odd symmetry for no-slip. Also, the
extrapolation or interpolation technique to compute the boundary
velocities is developed basing on the first or second order Newton's
interpolation for unequal intervals assuming one or two internal nodes
plus the node lying on the wall for the no-slip condition and zero or
first order, also withk one or two internal nodes but without the wall
node, for the free-slip condition. The different order of extrapolation
for the velocity components is due to the fact that the influence of the
wall on the tangential component of a velocity 1in the free-slip
condition Is absent and also in order to keep the same number of
cell-velocities defining the boundary value. With this technique of
defining of the boundary velocity, the conventional reflection type is
obtained as a particular case by assuming zero order extrapolation for
the tangential component and first order for the normal one.

The second order interpolation and the reflection of the boundary
velocity is illustrated in Fig. 3.3, for the free~-slip condition where
the internal nodes of the real flow are designated as points 1 and 2 and
the boundary node by B which is located in the fictitious flow. The
point B' is the reflection of the boundary point B back to the real
flow. The normal velocity distribution, shown in the first graph of
this figure, is oddly symmetric with respect to the origin of the n-t
system of coordinates that is correct for the free-slip condition, at
least in the neighborhood of the wall. The boundary velocity, Vna’
located in the point B can be either simply extrapolated from the real
flow, as it is shown by the dotted li‘ne, or Interpolated in the point

]
B and then reflected to the point B. It can be seen from the picture,
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that these different approaches give different results; the boundary
velocity computed by simple extrapolation is overestimated, if the
velocity profile 1is convex, or underestimated, if this profile is
concave, comparing with interpolation-reflection procedure. It seems
that interpolation-reflection method gives more realistic result since
it is consistent with the symmetry principal, while the extrapolation
assumes the extension of the real flow beyond the physical border which
has no any reasonable basis. The second graph of Fig. 3.3 shows the
definition of the tangential boundary velocity using the same
interpolation-reflection principal which results in the linear
interpolation but wuses the same number of the internal nodes since the
node at the wall does not participate.

In a real situation, the boundary point B may fall inside the wall,
then a simple interpolation with no reflection has to be made. For the
no-slip condition, the tangential velocity is treated in exactly the
same manher as the normal one and this results in the same orde,
interpolation for both velocity components. At the free surface, the
boundary velocities are defined by using zero or first order
cxtrapolation technique, since only the free-slip condition is possible.

The boundary pressure at rigid wall is computed from the simplified
momentum equation written for the direction normal to the wall, which
results in linear pressure distribution in the neighbourhood of the
wall. Hence, the boundary pressure is adjusted by the amount that
depends on the slope of the wall and the instantaneous value of the
total body force in the node, from where the pressure is linearly
interpolated or extrapolated along the n-axis. At the free surface, the

pressure is maintained equal to the ambient air pressure,while the
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routine for the boundary pressure calculation remains the same.
Different definitions for the boundary 1liquid heights are
considered in this study. They 1include first and second order
interpolation as well as a special development of the reflection
principal carried out in subsection 3.3.4 for a particular case of
rectangular container. The final choice of the boundary conditions will

be made in Chapter 4 while validating the computer model of sloshing.

3.3.1 Boundary Velocities at the Rigid Wall

The calculation of a boundary veloclity involves different cell-
velocities depending on the slope of the n-axis. Possible
configurations of the grid points involved are shown in Fig. 3.4 for one
quarter of the Y-X plane, where for Configuratlion 1, the line, traced
from the boundary point B normally to the wall, intersects the grid
lines at points 1 and 2. The four configurations are established for
two-node interpolation, and in general, the number of configurations
depends on the order of interpolation: the higher is the order of
interpolation the more configurations are to be defined. The velocities
at the nodes 1 and 2 are defined by interpolation between the nearest
cell velocities, for example for Configuration 1, V1 is found using V3
and V6, and Vz using V4 and V7. For the remaining three quarters, the
configurations are symmetrical and, therefore, the derivation of the
boundary velocitlies may be carried out only for the four shown
configurations. The grids for the U-velocity and pressure may be
constructed in the similar manner.

The definition of the boundary velocities starts with breaking of

the rigid boundary into portions corresponding to the given
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Fig.3.4. Configurations of the grid points for V velocity
with two internal nodes
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configurations, which are defined in Table 3.1. Then, the weighting
coefficients, accounting for the contribution of participating
cell-velocities, are computed separately for U and V velocities for each
configuration and for free-slip or no-slip conditions, applied to the
velocity of interest. The derivation of the weightlng coefficients is
given in Appendix I, while Fig. 3.5 illustrates such a derivation for V
boundary velocity for the case of the free-slip condition, and the
welghting coefficients are 1listed in Table 3.2 for the first order
extrapolation and in Table 3.3 for the second order.

In these tables, the quantities entering the weighting
coefficients, 7's, are defines as:

arctan (-ﬁ—)

a =
£ = (Recosa - A) /L
° (3.6)
3Y
m =

8X |tan «f

where the lengths, ¢, A, and B, the radius of the wall curvature, R, and
the angle « are different for U and V velocities and must be computed in
the corresponding grids. In Fig. 3.5 they are shown as for V velocity
with v subscript.

Considering the free-slip second order V velocity case, it follows
from Fig, 3.5 that the normal component of the V velocity in the point
B, VnB, and the corresponding tangential component, VTB, form angles ¥
and (B-a) respectively with the total vector of the boundary velocity,
Vm. The boundary value of the velocity, VB, defined as a projection of

the total vector, Vat' on the Y-axis, forms the angle a with VTB. Thus,

the expressions defining the boundary velocity can be written as:
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Configuration Angle «
1 o < Arctan [ LS ]
258X
(
2 Arctan ( « < Arctan oY ]
28X \  8X
- I 4
Transitional 2 to 3 o = Arctan ]
v 8%
,
3 Arctan [ —&-{— ] o < Arctan 267 ]
8X \ 8%
4 Arctan [ 28y a = -%—
()4
Table 3.2. Interpolation-reflection type rigid wall boundary

velocities by the first order interpolation of the
normal veloclity component for free-slip condition

Normal component
\'4 - v i
nB [ z T); i ] sin &

UnB'[Z'"}_U,_)c“‘“

Tangential component

Ve ™ [an vi] cos «

U P . S E . o S
and > mex+ mSx+8 | 2 m & m
2

3 E (1 -m | - ml . - 1-m; -
and | s P Mg iM m

méxX + ¢ méx + ¢

DD
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Interpolation-reflection type rigid wall boundary

velocities by the second order interpolation of the
normal velocity component for free-slip condition

g’ Normal component Tangential component
’E-’r Ve © [Z n, V1] sin a Ves ™ (Z LR V‘] cos a
-
gl Y " [ rn U;] cos a U * (): n Vl] sin @
(&
2 Lm-1) Lim-2) (3X+2 ) 2(m=1) (8X={) (m=2) (8X+2 &)
M, i, N . ——in
moX méX (25X + £) - néxk méx
.
- . = 2¢ 2L x+2l) o 2(8x+8) - _o_2(8x=20)
8 max ! maX (28X=L) & néX k néX
n, - t(méx*Zt)m o bsx - 2 ; n = méxX+2 ¢ i .- 3X + 2¢
5 m3X (8X+L) 5% (max + ) 3 qex %
g = —t [m6x+2¢ _ (2-m) (8x+20) ] g, = DX = m(2em) (§x~28) + 28
& X (m=~2) m{dX~1{} mdx - ¢ 8 mim=1) OX
2(ax-20) Limég~-2 ) Sx + ¢ mox + 28
7'=-——-——-,‘n ———— nzn____;\nq.-
X imék+l) mé¥ (8X~+{) - 8K méx
3 n = L [m(6x+2£) _ (2m-2) (m&X«ZC)] n = m (EX+28) - (2m=1) (méx+28)
6 sx(l-m b méx~! n(8X-£) s m(l-m 8X
20(1-m) 2¢ 2{1-m (méX+{ 2 (méx+8)
N —me— M noe—
N méx % v méX 8%
Y|, .o taszmmex-at o Gtmswezd | GoimeEeIb ., L 2(méx+2 L)
s m3X (2mEX~£) S sxzméxsh) | ° moX %
2 n = 2t ., _ o bisx-20) L skl L ox + 2¢
o} 8 5% 1e X (26%-0) ¢ 5% e 8%
3
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_ 2 2
Voo =V Ve * Vi
Vs = Vnt cosf {3.7)
v
1B
y = arctan [V ]
nB
Since B -~ a + 7 = _12‘_ , the expression for cosf can be developed in
the following manner:
Vrs v'l'B
cospB = sin(y - a) = sin [arctan [-—V-—]] cosa - cos[arctan [ v ]]sina
nB ns

V__.cos a V__.sina«
B

1
_ _ nBs - _
= - " - - : [V_wcos « VnB sin a],
Y Ve + vV Ve + ¥ Bt
TB nB B nB

and the boundary V velocity can be expressed as

=V - i .
VB g S5 & VnB sin « (3.8)

Expressing the values of the V.”3 and VnB in the general form as
v‘tB = [Z": Vl ]

and substituting these values into the Eqn. (3.8) yields

cosa and vna = [ X n, Vi ] sino

T n

_ 2 _ 2
VB = (z n, Vl ] cos « {z n, V‘ ] sin « (3.9)
T n
B
where ¢ = arctan [ 5 ]

Thus, the Eqn. (3.9) gives explicitly the boundary V velocity for
free-slip condition and for any of the four configurations, provided
that the weighting coefficients are known from Table 3.3 and the angle «
is defined as it is shown in Egqn. (3:9) or by any other way for the

given shape of the container wall.
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For the U velocity, free-slip condition, and second order of
extrapolation, the angles B and ¥ can be redefined in the following way:
B is the angle between the total boundary velocity vector, Uat' and the
X~ axis and ¥ is the angle between Ust and the tangential component,
U_ . Then the boundary U velocity, Ua’ defined as the projection of the

B
UBt on the X -~axis, is expressed with exactly the same expression as
VB, i.e. by Eqn. {3.9). Hence, the Eqn. (3.9) gives the boundary values
for both U and V velocities for the free-slip condition and the second
order of extrapolation. It has to be noted, though the expressions for
UB and VB are identical, the computed values of those velocities will be
different because of the staggered grid.

Now consider the no-slip condition for the second order

extrapolation, when both components of either V or U are defined

similarly. In this case

o ~B+y= —= {3.10)

where 8 and 7 are formed by the total vector, VBt' with the VB and VnB
velocities respectively. Then, the Egqns. (3.7) hold and the expression

for cos B gives:

cos B = sin(a+y) = sina cos[ arctan [ vtB ]] + cosa x
nB

v
B

_ 1
sin[ arctan [ v ]] =V [ V_rB cosa + Vns sina ]
ns Bt

Taking into account that in the following expressions

V_tB = [ Z n, Vi]T cosa and VnB = ( z LA V‘]n sina

the weighting coefficients for both components are identical, because of

the same order of extrapolation, the expression for the cosf becomes:
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L "1v1 2 2 L LA
cosB = cos“a + sin“a| =
\ v
Bt Bt
vhere V.. =V Vvi+Vv® = In Vv /sinza + cos® a‘ =YV
Bt nB TB [ R (|

Finally, substitution of the last expression into the previous one for

the cosf gives

cosB =1 or B=0 (3.11)

This has proved that if a velocity components are interpolated with the
same order for no-slip condition, then the total vector of the boundary
velocity, VBt, coincides in direction and magnitude with the boundary
velocity, VB. In other words, it is not necessary to split a velocity
into the two components but rather to interpolate and reflect it.

Because of this fact, the boundary velocity can be computed as

vV =Y LA (3.12)

The expression (3.12) holds for UB velocity as well and, 1in
general, it holds for any velocity in the X-Y plane. However, the
welghting coefficients for U and V velocities are different because of
the staggered grid, and they can be taken from Tables 3.2 - 3.3 for the
normal component, either for UnB or Vna' depending on the boundary

velocity of interest and the order of interpolation.
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3.3.2 Boundary Velocities at the Free Surface

At the free surface, the shear stress is absent in accordance with
the neglected 1local free-~surface effects. Also, the reflection
principle does not hold since the so-called fictitious flow is an
extension of the real flow beyond the free surface. In this case, the
boundary velocity can be extrapolated outside using an order of
extrapolation between zero and two that, in principle, must be confirmed
by a preliminary investigation as it is considered in Chapter 4. The
weighting coefficlents, %'s, can be taken from Table 3.2 for zero order
extrapolation and from Table 3.3 for the first order both for the
tangentlal components, but in the second case the length & given in Eqn.
(3.6) is to be a positive value if the point B is located outside of the
wall and a negative one, as it is in this table, if the point B is
located inside.

The essential difference in boundary conditions for the rigid wall
and free surface is that that in the case of the rigid wall the
weighting coefficients are computed only in the beginning of the
computer program, while in the case of the free surface, the
coefficients must be calculated for each time step because of the change
of the free-surface position. Therefore, the angle o must be redefined

for this case as:

- d X for the negative slope of the
o = arctan j—m™m™—
H‘_l— H’ free surface

8 X

o = arctan [ T
i+1

i ] for the positive slope
1

where the boundary or B-cell is the i-cell.
In order to avoid the definition of the radius of curvature of the free

surface, the free surface is approximated by a straight line between the

L e
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two cells involved. Then, the length & can be expressed as:
L= [ HB - H}] sina cosa (3.14)

where Ha is the height (or Y-coordinate) of the boundary node B.

It has to be noted, that because of the staggered grid, the heights in
Eqns. (3.13) and (3.14) are different for U and V velocities. For the V
velocity, they coincide with the computed Hl’s while for the U velocity,
they are shifted by -8X/2 distance and must be averaged between the two
surrounding values.

The extrapolation of both the V and U boundary velocities may
appear to be too free and introduce some arbitrariness in the boundary
conditions definition, especially in the case of a coarse mesh. Then,
only one, for example, V boundary velocity can pe found by extrapolation
while the second one is to be defined from the continuity condition.
The continuity, in general, is not satisfied for a free surface cell
because of a positive or negative liquid flux into or out of the cell.
This 1s true when a partial cell, bounded by the free surface, is
considered. If however, the complete cell composed by the real and
fictitious parts is examined, then the continuity condition may be
demanded on that basis that this cell is a continuation of the flow for
which the continuity must be satisfied in every cell, and the free
surface 1is believed to be some fictltlous separating surface moving irn
space with local velocities of the flow. In this case, the continuity

equation gives for the boundary U velocity the following expression

Uiy = Yia,, 5 Y Vi vl.J-l] (3.18)
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vhich is explicit while sweeping in the mesh from left to right and
providing thut the most 1left Ux-LJ is defined from the rigid wall
boundary condition and the V velocities are computed a priori. The final
choice of the boundary condition at the free surface is made in Chapter

4 through comparison of the computed and experimental results of the

liquid motion in a test container.

3.3.3 Pressure Boundary Conditions

The boundary pressure at rigid wall can be computed from the
momentum equation, written for a wall point in the direction normal to
the wall, which can be brought to the following simple form:

2

1 8 vn

Re Eu an2

aP 1

én Eu Fr

(3.16)

[ + G cosa # Gy sina] +

In this equatlon, the Re number is large for the free-slip condition and
the second derivatlive of the normal velocity is small for the no-slip
condition. Therefore, the viscous term can be neglected without
introducing a significant error. Then, the pressure derivative can be

expressed from Flg. 3.6 a, as

= , (3.17)
dn b-a

and the resulting boundary pressure is found to be

1 ''=-a
Pe=F =P - T

+
{ + Gx cosu % Gysina] (3.18)




Fig.3.6. Derivation of the pressure boundary condition, a),
and the corresponding configurations, b)
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where the distance a is between the nodes 1 and B and the pressure at
node 1, P1' is found by interpolation between the nearest cell-pressures
as it is shown in Flg. 3.6 b for each of the possible 8 configurations.
The configurations are defined by th: angle a formed by the inward
normal n with X -axis, and they are listed in Table 3.4 together with
the expressions for the boundary pressure. The assumptions made for the
boundary pressure definition led to a linear pressure distribution along
the normal line in the vicinity of the wall that is expressed by the
second term of Eqn. (3.18). This correction term, introducing a
partially hydrostatic pressure distribution near the wall, does not
assume the hydroslatic condition since the boundary pressure also
includes the cell pressures which are the total pressure values.

The boundary pressure on the free surface can be computed using the
condition similar to no-siip condition for a velocity at rigid wall.
Thi: assumes a constant pressure at the free surface (equal to
atmospheric pressire, in the case of an unpressurized tank) that is
correct iIf the surface tension and the interaction of the free surface
with the ambient air are neglected. Then, the boundary pressure is
found by extrapolation uof the first or second order depending on the
order of extrapolation of the velocity. The configurations for pressure
grid at the free surface are defined similarly to a velocity grid, see

Fig. 3.4, and the boundary pressure is expressed as

P,=L m P (3.19)

where the welghting coefficients can be taken from Table 3.2 for the
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Table 3.4. Boundary pressure at rigid wall
Configu~- Configuraz.on Bouncazy pressurze
raz:zon defznat:uon
-3 4 m=_ 1 ‘ dx+21
< < — e—— 2o * mm— =3 - ’
1 Cs a ar tan[ o ] PE - - P(2) = P(6 ) Tofr [ 35, Gytn a}
v ’ ’ - - G
P acctan ?', s a< -L— P = (iI-myP(E )~ mP(6 )+ M L.
on a e Evtfe *ang .
av ’ - G
3 I s a< 0= + arz:an ‘.’—1 B = (1-mp(E e mp(mys Siosttanal o
‘ 2 6xX | 3 Eufz k tana P
n Y mel rol ] ax+2¢ o
4 —2-+a:::an[6YJ sa<n Ps- - ?(3)“;"?(5')’——5_?:—[\:“‘u tana)]
v M —l 1. . -.+
L nSa<n+ arctan | = |3 -3—1-?(; )»——P(o"')+u G+ G tana
e m m Eufr b3 y
5y in 8v-2{ tana [ °x
ctan s — - g~ ; ") + G
6 T + azctan [ % ] @ ¢ =| P = (1-mP(2)~m P(E"Y+ Tors [ Tana * 5.
5 sy+20 t 5
in 3n X c " +2¢ tana ¥
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first-order extrapolation and from Table 3.3 for the second order for
the normal velocity component in both cases. The quantities, entering
the weighting coefficlents and given in Eqns. (3.6), must be computed in

the pressure grid.

3.3.4 Free-Surface Height Boundary Conditions

The reflection principle, employed for the boundary velocities and
pressure, can be extended for the free-surface boundary height only in
the simplest case when the container wall is perpendicular to the X-axls
if the height of the free surface is defined as Y-coordinate. This is
due tov a specific meaning of the height variable which demand the same
datum for 1its measurement. Thus, for the vertlcal walls of a
rectangular container, the datum for real and fictitious flows' heights
is always the X-coordinate, and in this case, the assumption of symmetry
leads to symmetrical helghts with respect to the wall. In any other
case, the free-surface helght, or some distance characterizing the
location of a free-surface point, must be referred from a datum which
has to be somehow reflected into the fictious flow. This may involve a
complicated transformation of the flow domain, and the flow itself must
be solved in the corresponding system of coordinates.

In order to avold those complications, the boundary height
calculation adopted in this investigation 1s made in the point of
intersection of the free surface and the wall, instead of centre lines
of the mesh columns, by simple extrapolation of the second or first
order, as it 1s shown in the last graph of Fig. 3.3. Hence, for the

linear extrapolation, the boundary height computed at the wall point can

be expressed as:
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Hu = [ 1+ ¢ ] H‘ - —£——-l~l“1 (3.20)
X X

where ¢ can be easily defined for the two points of intersection of the
free surface and wall provided that the wall shape is known.

Such an approach requires a redefinition of the finite difference
formulae for the free-surface equation, given in Eqn. (3.4), for the two
mentioned points because of unequal distances between the grid points.
The modified discretized equations are given in Egqns. (3.21) for the

left and right points of intersection or for the IL and IR columns

respectively:

st [-F 5 R s H R o L
HK+1=H.K + =t v 2 -U 2] 1+1 1~-1 + i 1-1 + i 1+1
11 ! ! X + L, sX +b 28X

1 1rK K _ K K_ K
ik . ST 5 k2 G R 2t H':q .y B ia +H1 Hyw
v St ' oX + CH 25 X + ZH

(3.21)

where: in the first equation i

IL and H =H,
i-1

in the second equation 1 = IR and H“ =H,

1 W

and velocities with bars are those at the free surface.
In the beglnning of this section, it has been mentioned that in the
case of a rectangular tank, the boundary condition on the liquid height

can be, for vertical walls only, developed based on the principle of

flow reflection. Although this approach has a limited application, i.e.
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the interference of the free surface with horizontal walls is not
allowed, it has shown very good result for small amplitude liquid
oscillation which will be discussed in Chapter 4. The 1idea of this
approach is based on the assumption that at the time level, k, the real
and fictitious flows are symmetrical with respect to the wall in terms
of the 1liquid heights and slopes of the free surface, while the
velocities are subjected to odd or even symmetry depending on either
no-slip or free-slip condition is accepted, see Fig. 3.8. At the time
(k+1), the symmetry is disturbed for the no-slip velocity conditions but
it remains for the free-slip condition. The boundary height can be then
derived (the derivation is given in Appendix II) from the free-surface
equation, Eqn. (2.1), for the no-slip and free-slip conditions

respectively in the form:

(3.22)

From these equations, it can be seen that no-slip velocity condition
leads to cancellation of the spatial derivative term because of assumed
symmetry of the real and fictitious flows while the free~slip conditions
results in even simpler expression where both the time and spatial
derivatives are cancelled. It has to be noted that the symmetry

condition for the flow is organized at the beginning of each time step.

3.4 The Pressure-Velocity Iteration Procedure

The discretized momentum equatiéns, Eqns. (3.1) and (3.2) are

solved numerically only once at each time step and such a solution does
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Fig.3.7. Liquid height reflection type boundary condition
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not satisfy, in general, the continuity condition. The obtained values
of the cell velocities and pressures are then specified by iterating the
continuity or divergence equation. The velocity divergence, D, given in
Eqn. (3.3) is computed for each fluid cell and the pressure is adjusted
tv drive the divergence to some prescribed small value defined by the
tolerance which in this study was taken equal to 1075, The pressure

change in a cell for each iteration is calculated as

3P = - wStD (3.23)
28T Eu[ 12 N 12 ]
X Y

where the over-relaxation factor w is used to accelerate the convergence
of the iteration. It has been optimized for each narrow class of solved
problems distinguished by the shape of the container and the fill level,
Typically, it has been varied between 1.8 and 1.9. Then, the new

parameters of the flow are

P =P +&P Vo= v + TR o

1) 3 iy ) o st

R Vi © Vg T 222 o (3.24)
b b axost ' ') 53X St ‘
U v - ST Eu

-1, - 83X St

These new values participate in the next iteration until the desired
accuracy 1is reached. The last computed values of velocities and
pressure serve to calculate the fluid heights, forces, and overturning
moments, and after thls a new time cycle is done. This technique,

introduced by Hirt [56], is reliable and computationally economical

compared with direct iteration of the momentum equations.
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3.5 Development of the Computer Code

The computational procedure, briefly described above, is considered

in detail in the present subsection. The flow-chart of the computer

code given in Flg. 3.8 can be summarized in the following manner:

i)

i1)

111)

iv)

v)

vi)

The constant parameters of the problem including the
definition of the container shape are defined first in blocks
1 and 2.

The initial conditions, prescribing zero velocity and
hydrostatic pressure distribution, are set 1in block 3.
The initial conditions are defined in overlapping fluld region
that include the boundary cells, thereby the boundary
conditions for the first time step are automatically included.
The discretized momentum equations are solved without
iterations in block 4.

The boundary conditions on velocities and pressures are set in
block 5.

The previously obtained velocitles and pressures are iterated
utilizing the over-relaxation techniques, blocks 6,7,8, until
the convergence is reached.

The heights of the free surface are computed using the final
values of the velocities for the current time step. Howaver,
due to incomplete iterations, these helghts are approximate
and the error can accumulate with time. Therefore, the
correction of the helghts has to be done by comparing the
current volume of the liquid with the initial one and equally

sharing the surplus or deflicit of the wvolume between the
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columns having the free surface. Because of this fact, the

algorithm of the block 10 includes the following:

a) compute new free-surface position,

b) compute liquid heights at walls, HL and HR,

c) set BC's on H,

d) correct liquid heights,

e) update array by calculating IL, IR, and JT-cells,
f) update HL and HR,

g) update BC's on H.

The forces and momeut acting on the container body are
calculated bty integrating the pressure that is previously

extrapolated from the centres of cells to the wall, block 11.

viii) By this step, all calculations associated with the current
time step are accomplished and the solution can be marched in
time. The preparation for the next time step is done in
blocks 13 and 14 where the time is advanced by 8T and the
repackage of the flow parameters, i.e. velocities and heights,
is made by giving them the status of old values.

ix) Finally, the solution is passed to the block 4, from where a
new sequence of similar operations is carried out.

3.6 Summary

In this chapter, the computer model representing the 1liquid

sloshing in road containers is descrihed. The main attention is given

to the definition of the boundary conditions of the problem stressing on

the consistency of thelr imposition for different variables of the flow.
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The boundary conditions are defined using the reflection principle and
the interpolation technique of different orders of accuracy is developed
in a general manner for containers of arbitrary shape. The final choice
of the boundary conditions will be made in Chapter 4 after comparison of
the numerical solutions with the results of physical testing.

The computational procedure 1is discussed in detail and all
computational sieps are summarized. The computer model of the sloshing
phenomena 1is general =snough to suit for solutions in a wide range of

shapes of 1liquid tankers. The peculiarity, due to some specific

conditions of baffled containers, will be discussed in Chapter 7.




CHAPTER 4

EXPERIMENTAL VALIDATION OF THE COMPUTER MODEL

4.1 General

The computer model of sloshing phenomena developed In the previous
chapter allows some freedom in assignment of the boundary conditions
imposed on the flow variables, and therefore, the final choice of the
boundary conditions should be made on the basis of acceptable agreement
between the experimental and computational results. On the other hand,
the accuracy of the numerical solution being a function of the spatial
and time increments can be checked through the computational
experimentations since an analytical methodology is lacking for the
nonlinear flow equations. Because of these facts, the objectives of the

present chapter are:

i) Tuning of the computer program by appropriate choice of the

boundary conditions by employing the physical experimentatjon.

11) Estimation of the error of the finite difference analogue

through the computational testing.

The question what must be done first, elther physical or
computation testing, is difficult to be solved without having a prior
information about the behaviour of the computational procedure because
of the coupled nature of the boundary conditions and discretization of
the flow. Numerous computer runs have revealed that the correct
imposition of the boundary conditions is of primary importance for a
successful numerical calculation, The incorrect boundary conditlons

very often led to computational instablility while the space and time
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increments, provided that the time step is not too large, do not result
in instability. That is why, the physical experiment precedes the
computational testing.

The experiment was carried ocut in a small scale rectangular tank
made from plexiglas and subjected to a prescribed input acceleration,
which has been created by means of an electro-hydraulic actuator. As a
criterion for comparison of the real and computed flows, the height of
the free surface at the left vertical tank wall has been chosen under
the assumption that if the correlation between heights in similar points
is good, then the flow velocities and pressures are computed correctly.
The arrangement of the experimental set-up is described in the following

subsection.

4,2 Experimental Set-up and Procedure

The experimental set-up, shown in Fig. 4.1, consisted of the model
tank of size 0.8 m x 0.57 m in height filled with water and mounted on a
horizontal platform with low friction linear ball bearings. An
electrohydraulic actuator fixed horizontally was used to generate the
motion of the tank in the horizontal plane. The displacement and
acceleration of the tank as well as the force developed in the link
between the tank and actuator were recorded by means of corresponding
transdusers. The liquid free-surface oscillations were recorded using a
video camera -Sony Handicam with an incorporated digital timer having 1
sec. resolution time and making 30 frames per second. The time step
used for comparison of results was 0.1 sec. which was obtained by
shifting the magnetic tape by 3 frames at a time.

The input acceleration is of the type "accelerating-braking" as
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shown in Fig. 4.2 together with the corresponding displacement. The
short duration signal, of about 1 sec. long, was applied to the liquid
tank because of the limited stroke of the hydraulic actuator. The total
observation time was 8 sec. that included the time of the free vibratlon
after the input signal has been cancelled. The oscillatlion of the
free-surface height at the left wall of the tank is shown by circles in
Fig. 4.3, where the solid line gives the oscillation computed in the
same tank under the exactly similar conditions and for the final cholce
of the boundary conditions for which the correlation has been found

satisfactory.

4.3 Discussion on the Experimental Results

The final choice of the boundary conditions giving sufficlently
close agreement with the experiment, shown in Fig. 4.3, has been
achieved through numerous trials of the computer model with different
definition of the boundary conditions, variation of the upstream
differencing coefficients, and variation of the cell size. The study of
this problem is summarized by classifying the directions of the search

into the following groups:

1) Type of the boundary condition, which can be either free-slip

or no-slip condition.

ii) Method of calculation of boundary condition, which can be

elther direct extrapolation or interpolation-reflection.

1i1) Order of Ainterpolation or  extrapolation of the boundary

condition that can be zero, first, or second.
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iv) Specification of the upstream differencing coefficients which

can vary between 0 and 1.
v) Influence of the cell size on the accuracy of calculation.

The free-slip and no-slip conditions have been studied on the
example of a cylindrical container and then applied to other cases of
study. This investigation has shown that for high values of the Re
number, i.e. greater then 105, the solutions for both types of boundary
conditions are very close and if Re 1s decreased, then solutions diverge
displaying more realistic results for the no-slip condition at al:?
times.

The extrapolation and interpolatlion-reflection technique have been
tried for the model rectangular tank. The direct extrapolation results
in divergent oscillations of the liquid heights near the vertical wall
for high values of the Re, i.e. 10° ard greater. This is physically
incorrect and, in principle, should not happen at any Re number. It
seems, the extrapolation overestimates the liquid velocitles, especially
ii the region of the free-surface, and therefore must be rejected, no
matter whether the discrepancy is attributed to the overestimation or to
some local free-surface effects which are not taken intoc account by the
present model. The interpolation-reflection type boundary condition, in
contrast, do not glve the dlvergent oscillation even for very low
viscosity liquid like water.

It is usually assumed that higher order of interpolation is more
accurate and this has been confirmed by the test runs for rigid wall
boundary conditions. However, the secqnd order interpolation failed in
some cases when the sharp wave was formed near the vertical wall and the

wave peak was resolved only by one column of cells. Therefore, less
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accurate but more reliable with a coarse mesh first order interpolation
was adopted in this study. In the case of a fine mesh, the second order
should be used. However, the judgment whether the mesh is coarse or fine
should be made in each specific case, based on trial runs. For example,
the mesh used for the model tank, composed of 20x12 cells including the
boundary cells, has been considered as a coarse mesh.

At the free surface, better results are obtalned with zero order
extrapolation of the boundary velocity, which corresponds to the Neumann
type of boundary condition by setting the velocity gradient through the
free surface equal to zero. This partially takes into account the
neglected local free-surface effects, such as the surface tension and
interaction of the liquid wave with the ambient alr. For that reason,
the =zero order velocity extrapolation has been wused 1in this
investigation.

The upstream differencing coefficients were taken equal both in
momentum and free-surface equations and their values were chosen to
provide a stable calculation for a considered class of problem defined
basically by the geometry of the container. The strongest factor
affecting the minimum value of the coefficlents is the level of the
input acceleration which characterizes the intensity of sloshing. In
order to make a consistent comparison of the numerical results, the
fixed maximum values of the upstream differencing coefficients were
adopted for calculation within each ‘lass of problem. Those values have
been established as 0.7 for circular cross-section contalners and 1.0
for rectangular containers. The higher value for rectangular contalners
is explained by their various geometry‘and stronger sloshing compared to

circular containers, especially if the fill level exceeds 50%.
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The influence of the cell slze on the accuracy of calculation was
investigated by the numerical experimentation with the rectangular
container. The solutions have been obtained with meshes of 10 x 10, 25
x 25, and 40 x 40 cells, see Fig. 4.4, where the results are given by
circles, solid 1line, and crosses respectively for one period of
oscillation. The difference in peak value of the liquld height near
vertical wall between 40 x 40 and 25 x 25 meshes s about 2%, while the
same difference between 40 x 40 and 10 x 10 meshes is about 5%. Besides
the difference in amplitude, the small phase shift exists between the
most accurate refined mesh and the most coarse mesh, that 1s of tbh-~
order of 4% with respect ,to the period of oscillatlon. Though this
method does not give the discretization error, it provides, however,
with the trend of the error behaviours. It follows from the previous
consideration that the difference between a sufficiently fine, 40 x 40,
and sufficiently coarse, 10 x 10, meshes is not large and a coarse mesh

can be used for studying of the sloshing problem.

4.4 Final Selection of the Boundary Conditions

Summarizing the results of preliminary investigation, the boundary
conditions employed in this study can be described In the following
manner:

i) At the rigid wall, the first order no-slip '1*erpolation-

reflection boundary conditions are most su.cable for the

adopted coarse grids.

i1) At the free surface, the zero-order extrapolated or
interpolated boundary conditions on velocities and first-order

boundary conditions on pressure are used In order to
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compensate the free-surface local effects missed by the

present model.

111) For the height boundary conditions, the irregular mesh with
the boundary height at the intersection of the free surface
and wall is to be used. Consequently, the Eqns. (3.20) and
(3.21) are to be employed in all cases except for the case of
vertical walls of a rectangular container when the reflection
type boundary condition, first of Egn. (3.22), gives more

accurate results.

The special boundary conditions due to baffles’ orifices in

compartmented contalners will be cons'dered in Chapter 7.

4.5 Summary

In this chapter, the model of 1liquid sloshing, developed in
Chapters 2 and 3, has been experimentally validated. In particular, the
boundary conditions have been selected on the basis of the best possible
correlation with experimental results. The influence of the cell size
and coefficlents of upstream differencing has been also investigated. In
such a way reflined computer model of sloshing was used to study the
sloshing characteristics for rectangular, circular, and compartmented

and baffled containers which is discussed in the following chapters.




o Feve o

CHAPTER §

STEADY-STATE AND TRANSIENT RESPONSES OF LIQUID
SLOSHING IN RECTANGULAR CONTAINERS

5.1 General

In this chapter, the steady-state and transient responses of the
liquid motion in rectangular contalners subjected to a step input
lateral acceleration are studied. Although a rectangular cross-section
1s not used in the road tanker design, it serves as a good approximatlion
for modified rectangular containers which differ from purely rectangular
ones by small roundings in the corners. The steady-state responses are
obtained by solving the hydrostatic equations for two types of the
container motion, simulating the straight line braking and the steady
turn of a tank vehicle. It is shown that these two cases can be
described by the same solution, which actually simulates the first case
(braking) and is sufficiently accurate in the second case for majority
of practical combinations of input parameters. The error resulting in
the simulation of the second case is estimated and appears to be small.

The transient responses are obtained using numerical simulation of
the liquid motion on the digital computer, Cyber 830 D. The computer
model of the sloshing phenomena, described in Chapter 3, includes all
essential nonlinearities of the problem and is seen to be sufficiently
accurate in predicting the dynamic behaviour of the liquid motion. The
solutions are carried out in terms of the free-surface heights, liquid
forces and overturning moments, and the natural damped frequencies of

liquid vibrations.
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5.2 Steady-State Solutions

The steady-state solution is of the interes{. when vibration of the
liquid motion is strongly damped (highly viscous liquid) or when a tank
vehicle manoeuvre occurring under a constant lateral acceleration is
sufficiently long in time. Also, the steady-state solution provides
information for understanding the phenomenon of 1liquid behaviour in
general, as well as it eliminates the excessive computer time needed to
bring the transient solution to the steady-state.

In this section, two types of the container motion are considered,
i.e. the rectilinear motion which simulates the braking-accelerating
manoeuvre and the rotational motion which represents the steady turn as

it has been discussed in Section 2.1.

5.2.1 Rectilinear Motion of a Container

The non-dimensional hydrostatic equations for a 2-D problem are

aPlﬂ aP'ﬁ
GXEW H Gy= 3y (5.1)

where the un’t body forces Gx and Gy are constant and
coordinate-independent. The total differential for pressure in static

equilibrium and the equation of isobars are

dP =G dX + G dY ; G dX + G dY =0 (5.2)
ss x y x y

Integration of Eqns. (5.2) ylelds:
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P =G (X-X)-Y+Y ; Y=Y +G (X-X) (5.3)
ss x o o ° x o

where Xo, Y° are coordinates of a point with known pressure. Depending
on the combination of the geometrical parameter, h, filling parameter,
f, and che level of the input acceleration, Gx, the liquid free surface
can take a position, or Configuration 1, 2, 3 or 4,as it is shown in
Fig.5.1. Configuration * takes place when the free surface intersects
the side walls of the contalner; Configuration 2 appears if the free
surface passes through one side wall and the upper wall; Configuration 3
exists when the free surface passes through the bottom and one side
wall; and Configuration 4 takes place when the free surface intersects
the top and bottom walls. The free-surface equaticns can be found from
the second expression of Eqn. (5.3) by specifying the coordinates Xo, Y°
of one of the two points of intersection of the free surface with the
contalner wall. This can be done by equating the area currently
occupied by the liquid to the initial area. The resulting expressions
for the free-surface equations for the different configurations are
given in Table 5.1.

The horizontal and vertical forces, being the ratio of their

dimensional values to the liquid weight, are expressed as:
F =G ; F_ =G = -1 (5.4)
and the overturning moment with respect to the middle bottom point ‘0’

of the container is taken as the ratio of the dimensional moment to the

product of the weight and Lo, or to the quantity ngi h1n , and is given
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Table 5.1. Free-surface equations and configurations’ Jefinition
for steady-state response in rectilinedr motion
General | Condition from
Configuration| G Free-surface equations |condition|the free-surface|Condition on G
* on Y (X) equations *
6l
20 |
6 >0 PR v om0 6] s 2m-
G, ¥(1)sh
: T TSETETS Y(0)3h ls, |
G <0 f o =20 |6 | = 2f
x 2 x
Y(1)20
6| ¥ =Ggx+h-a YO g cazo ||z 2m -8
3 53 L] Y(l,th X X
2
Yt =G (X-1) +h-A Y(0)zh
ss X hZ
G <0 h-az0 6] 3 so——n
| A=VZE D[] ¥(1)20 x' 2=
2
620 ¥ =G (x-1) +3 YOS oy hso 6] s 2=
x 33 x v(l)sh x 2f
3
G <o| Yia TOGX*E i AR lo | = 2
B = VIETE ¥(1)s0
x
620fY, =G x-1+5 42 Y=o | s |£ Bao | e L0
x Y(l)zh R 2 Is, 2t
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e |£ 2
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in Table 5.2. The values of the moment for a completely filled
cor:tainer can be obtained from the expression for Configuration 2 and
for an empty container from Configuration 3 in the form:

h G
M = X for 100% fill level (5.5)

for 0% fill level

Ni= N

Obviously, the moment must be zero for an empty tank, and its
dimensional value does so because of h’ = 0. But in this particular

non-dimensional form, it is equal to %

N>

, depending on the sign of Gx
The influence of the input acceleration on the magnitude of the moment
is 1illustrated in Fig.5.2. It can be seen that for 1low height
containers, the moment is a nonlinear function of Gx. With increasing
of the h, the function becomes more linear and more steep. The
behaviour of the moment with the fill 1level variation is shown in
Fig.5.3. It can be seen that the moments start from % at f=0 and
decrease to the values corresponding to f=100% stated in Eqn.(5.5).
They drop rapidly for small values of Gx and then remaln almost
constant. For high levels of the input accelerations, greater than Gx=1,
the functions display maxima and drop to the level corresponding to
fully filled containers. The influence of the geometrical parameter, h,

is glven in Fig.5.4. Depending on the fill level, the moment either

drops or rises from the values defined for Conflguration 4 as

(5.6)

<<
]
+

ss 2

lad}
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Table §5.2. Overturning moments for steady-state response
in rectilinear motion

cw direction is positive
Configuration| Moment equation sign + for Gx>0
sign - for Gx<0
Gx G: 1
1 Mss‘-—Z[f+12f+E]
h’G AG
2 M =21+l pe v 2 {2 -
ss £ 2 % 2(h - £) 3 2
G
b3
BG
1 » 1
= % _ = —_— -
3 T [ = 1]
L%}
X
[ 1 £ n’ b’ ] ne,
4 M = * s~ =T " TsT C - + —
5s L t_h 12f 24f G( 2
X
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For fill levels below 80%, the functions have minima occurring at
different values of h, and for fillings above 80% the functions approach
the straight line corresponding to a 100% f{filled contalner. A
comparison of two contaliners having h’'s equal to 0.5 and 2.0 1s shown In
Fig.5.4 to clarify the behaviour of M“. For small f’s, see circles on
vertical lines at h=0.5 and 2.0, it is advantageous to have a container
with greater height, h=2.0, while for £=0.9 h, a contalner with smaller
height is preferable. For instance, the fill level corresponding to a
minimum value of M“ is approximately equal to 0.6h for Gx=0.3, while
for greater Gx’s it decreases. By expressing the functions for the
moment in a dimensional form will affect the positions of minima of
moments, however, these minima will still exist and depend on the
container height as well as on the input acceleration and fill level
parameters. That is, the optimization of the container shape is a

feasible and important practical problem.

5.2.2 Rotational Motion of a Container

The hydrostatic equations for a steady rotation of the container
around some vertical axis remain the same as in Eqn (5.1) but the

horizontal body force is now dependent on the X or £ coordinate, e.g.

G =— (8 -z+X) (5.7)

and the integration of Eqns.(5.2) now gives



G
P =" [x2+(2a-1)x]+v-v
25G °

and Y=Y + "[x2+(za-1)x] (5.8)
° 25

where the coordinate Y‘3 is taken at X=0, see Fig. 5.5. The four
configurations, corresponding to the four different positions of the
free surface, are defined similarly as for the case of rectilinear
motion, but with one difference: the free surface now has a parabolic
shape. The transition from the general solution, Eqns (5.8), to the
particular one can be done separately for each configuration by defining
the value of Yo, which is always located at the intersection of the free
surface or its continuation with the Y-axis. For this purpose, the
system of three equations must be solved. One of those equations is
obtained by integration of the free-surface equation (the second of
Eqns.(5.8)) with respect to the X-coordinate, i.e. by defining the area
occupied by the liquid and equating it to the initial area, and the two
remaining equations result from hne pressure equation (the first of
Eqns. (5.8)) written for two points of intersection of the free surface
with the walls where the gage pressure is equal to zero.

As an example, consider the equations for Configuration 2 shown in
Fig. 5.5. The area or~cupied by the liquid can be expressed as:

X
A

J YX)dX +(1 -X)h=1f
o A

where the RHS represents the initial area. Using the second equation of
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Fig.5.5. Schematics for rotational motion of a rectanqular
container
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Eqns. (5.8) gives:
% G XA
J Y dX+ nI[X2+(28-1)X]dX+(1-XA)h=f
o ° 23 o
Integrating the last eqgation with respect to X ylelds
G G (25-1)
2+t ¥+YX +h (1-X)-f=0 (5.9)
A A o A A

63 45

Since only one limit of Iintegration, X‘. i1s unknown, only one boundary
condition is needed that can be obtained from the pressure equation upon

substitution X = XA. Y =h, P"= 0 in the form

Gn 2 Gn (25-1)

L x . X +Y -h=0 (5.10)
26 A 25 Ao

Eqns. (5.9) and (5.10) can be easlly solved with respect to XA using the
trigonometric solution of the third-order linear algebraic equation.
Parameter Yo can be found and then substituted into the general
solution, Eqn. (5.8). The solutions for Configurations 1, 2 and 3 are
glven 1in Table 5.3. For Conflguration 4, the original system of
equations must be added with the equation for )(B resulting from the
pressure boundary condition at XB. The solution for the resulting system
can not be given in an explicit form. In order to obtain an explicit
formulation, an approximation will be effected. For steady turns with
large radii, the curvature of the free-surface parabola 1is very small
and the parabola may be approximated ‘by a straight line. To wvalldate

this approach, the curvature of the parabola must be analyzed and

han AL, AT TR HLTAET



Table 5.3. Free-surface equations and configurations’ definition
for steady-state response in rotational motion
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‘ Config Free-surface equataons, Gn>0 Configuration conditaons, Gﬁ>0
No. '
G‘l Gn
G p € o+ —==P2 0
n 2 1 2 1248
1 '{" g+ 73 .x + (28=-1)1X -8 + '6'] { Gn Gn
£+ -2' 4+ ﬁs sh
t -n+G" %% 4 28-n1x - 8 - 52| [ 28n -6 (8 - 47 2% eos -3 2y
s 28 ! 7 n 2 Go3 3 Te 3T T
2 a @ 3 12 2 a a 3
2 [cos 3 +cos 3 E]] 28 (6-5) [cos -3-+cos§ ;]to
- 8
cos « _965 {h .)3 -1
G (28 - 1)
N
Gn 2 12 ¢
v"-ﬁ.{x +25- 11X - (8+ 3 1262-2°6+3-(6¢£)2
16 2
2 2n a 21 2{fa 2@ a 2t
[cos [-3- =3 + cos (3 —-5]] [coa (3 —3] + coa[s - -3]] s0
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2 ) G
128" - 208 + 3 a 1.2 2[a 2
*——15——}- 6, "z 97 ["“[3"3"
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compared with that of the straight line. In the assumed Y-X Cartesian
coordinates, the curvature of the free-surface can be expressed as
o’y

d x°
C= (5.11)

[ (&)™

Differentiating the free-surface equation for Configuration 1, for

example, and substituting the derivatives into Eqn. (5.11) yields

G
C= n = (5.12)
> 2Gn Gn 23/2
a[4a-4a+z+4c X-—2x+ 2 x]
n s 62

The maximum curvature occurs at minimum X, i.e. X=0, then the Eqn. (5.12)
simplifies to

G

n

Cx=° = 375 (5.13)

5 (48° - 45 + 2)

For the case of road containers, the radius of the track is sufficiently
large compared to the container size. Thus, for turns with radii of 10,
50 and 100 times the tank wldth, the curvature of the parabola is
0.15x10'5c;n. 0.21x1o’7cn, and 0.13x10’°cn. respectively. Such small
values 1imply very flat parabolas which can be replaced by the
corresponding straight 1lines, and hence the rotational motion of a
container can be approximated by the rectilinear motion with the body

force Gx equal to the nondimensional‘centrifugal acceleration, Gn. in
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the middle of the container. A brilef analysls shows that the ratlo of
the difference between 1liquid heights in rotational and rectilinear
motions, AY“ , at the middle of the contalner to the total parabola
deflection, e, computed between X=0 and 1, is the largest for

Configuration 1 and is equal to

AY Yrot _ Yrec G

3] - - D
— = < , e= ' (5.14)

Wi =

while for Configurations 2 and 3 it is expressed as:

Ay 85 v 2(h - £)G

L Bo_ 1 - (25 - 1)2[cos2 4 cos = - 9] and

e G 3 3 4
n
2

128°+125+3 88 v 2fG
AYSS = il -1~ (26+1)2 cos2 e _2r + cos| - nl ¢

e 3 3 3 3 G

4 n

(5.15)

respectively, with the absolute values of the ratio slightly smaller
than for Configuration 1. For Configuration 4, this value must be even
smaller. Thus, the solution for a rotational motlion, expressed in terms
of the free-surface height, can be approximated by the solution of the
rectilinear motion with an upper bound on the error, equal to one third
of the parabola deflection between X=0 and 1, The stralight line
approximation of the iree surface will glve smaller values of the liquid
heights at the sides of the container and greater values in the middle

with an obsolute error not exceeding

LY
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E= e (5.16)
126

Tne pressure, and hence the overturning moment, will also be affected by
this approximation, but the errors will be of the same order as for
liquid heights, since the pressure is proportional to the depth of the
liquid. Finally, it can be recommended to use the solutions given in
the Tables 5.1 and 5.2 for both the rotational and rectilinear motions
assuming that Gn is equal to Gx, provided that the radius of road

curvature is 1\rge.

5.3 Tranclent Solutions

In this section, the transient response of the l1iquid sloshing when
subjected to a step input acceleration 1is Iinvestigated. The input
acceleration can be used to study the longitudinal dynamics of the fluid
in the case of braking-accelerating manoeuvres; or the lateral dynamics
of the fluid, with some approximations, when the tank negotiates a
steady turn. The validity of such approximations have been earlier
Justified for the case of the steady-state response and it is assumed to
be valid for the transient response as well.

The numerical solutions are carried out in accordance with the
numerical procedure and definition of the boundary conditions considered
in Chapters 3 and 4. The three basic input parameters, namely the fill
level, f, the acceleration level, Gx, and the geometry parameter, h,
were varied in the range given in Table 5.4, where the framed values
correspond to baslc values of each parameter, two of which were kept

fixed while the remaining parameter was changed within the given range.




Table S5.4.

Cases of numerical study for rectangular contalners
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Fill level, £ Accelerxation level, Gx Geometrical parameter
h
0.3 h 0.1 0.15
0.5 h [ 0.3 ] 0.35
0.7 h 0.5 0.7
0.2 h 0.7 1.4
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The influence of the Re-number is studied in the case of a circular

cross-section tank and is presented in Chapter 6.

§.3.1 Influence of Fill Level

The fill level is one parameter having a strong Influence on the
character of liquid motion. Sufficiently small and sufficliently large
values of f result in Configurations 3 and 2, respectively (refer to
Fig. 5.1), whlle its Intermediate values give Configuration 1, for which
the bottom and top walls of the container do not interfere. The results
of numerical solutions for different values of f, given in Table 5.5 and
Fig. 5.6 a) and b), display the maxima for coefficients of dynanmic
overturning moment and horizontal force at some values of f occurring
between 0.25 and 0.35, and reaching 55% and 44% in surplus with respect
to the corresponding steady-state values, see Fig.5.6 a), for h=0.7 and
G =0.3. The dimensional values of the fill level, corresponding to the
maxima of the moment and horizontal force, will be of the order 75-85%
of the height of the container. The share of the horizontal force in
creating of the moment increases with increase of f due to a relatively
smaller displacement of the liquid mass that results in smaller arm of
the vertical force. The normalized first natural damped frequency of
the horizontal force and moment vibration 1s approximately the same and
is presented in Table 5.5 and plotted in Fig. 5.6 b), where it is
compared with the frequency resulting from the linear theory and

normalized with respect to the total body force, as shown in Eqn.(5.17):
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Fig.5.6. Influence of the fill level on dynamic coefficients
of the horizontal force and overturning moment, a),
and on the frequency of the sloshing oscillation, b)
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Present Investigation Linear Theory
Q 1 \
K= : K = ——— V/ﬁ tanh (nf) , (5.17)
. : 2,174
V//é(l N G: )1/2 (1 + Gx)
L

(]

where Q 1s the circular frequency from the numerical solution. The
difference between the linear and the numericaily computed frequencies
for Configuration 1 is 5.7% and 7.8% for f = 0.35 and 0.49,
respectively. For very small or large fill levels, the liquid motion is
chaotic and the frequencies are inconclusive. If the rorizontal walls
do not interfere, the motion of the liquid is sufficiently close to the
one given by the linear theory, and it 1is slightly damped and
oscillating with the frequency very slowly increasing in time. 1f,
however, the fill level allows the top horizontal wall to interfere,
Configurations 2, then the liquid motion 1is characterized by a very
strong peak at the "first" period, which is followed by some irregular
vibrations with smaller amplitudes and higher frequencies. These
frequencies could be of higher modes or even their combination.

The behaviour of the dimensional and nondimensional overturning
moment in statics (mss, Mss) and dynamics (m, M) with variation of the
fill level is shown in Fig. 5.7 a) for a tank of h = 0.7 and Gx = 0.3, It
can be seen that, though the nondimensional moment is decreasing with
increase of f, the dimensional moment grows with the fill level and
reaches a maximum value at f approximately equal to 0.65 (or 93% filling
with respect to the container height) in steady-state and 0.62 (or 88%)

in transient.
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4
M, Mg (10, N) ‘ M, Mgg

l I
1.25 h=07 0.5

0.75 | — 03
0.50 M — 0.2
0.25 \Mss ~ 0.1

0
0.2 04 06 08 1.0 1.2 14 1.6 1.8 20 h b)

Fig.5.7. Comparison of dimensional, m, and nondimensional, M,
moments in steady-state and in transient ¥or container
of h=0.7 and G =0.3 under fill level variation, a),
and under cont¥iner height variation, b)
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The behaviour of the dimensional and nondimensional moments with
the container height variation is shown in Fig.5.7 b). It can be seen
that dimensionalizing of the moments, both in statics and dynamics,
shifts the minima for the dimensional moments to the greater values of
the h. In particular, for the fill level of 70%4, the minima of the
moments fall to the value of h approximately equal to 1, or to a square
container, for a tank of 2.565m (101") wide and filled with a crude oil

of density 850kg/m".

5.3.2 Influence of Input Acceleration

The level of the input acceleration is another factor affecting the
dynamics of sloshing. The Gx value was varied between 0.1 and 1.0 and
the numerical solutions are given in Table 5.6 and Fig. 5.8 a) and b).
It can be seen that the dynamic coefficients of overturning moment and
horizontal forcc decrease with 1lncreasing of the input acceleration, at
least in the range of Gx between 0 and 1 g's. The normalized frequency
is very close to the linear theory for small Gx, below 0.1. However,its
deviation from the linear theory Iincreases reaching about 5% for Gx
between 0.3 and 0.5. Further Increase in Gx results in essential change
of the character of the 1liquid motion, which becomes irregular,
similarly to the previous case with high fill level. This means that
Configuration 2 1s fully developed and the upper wall interference
destroys the first mode of the vibration typical to a rectangular tank.
The vibrations, again, after the first strong overshoot, are
characterized by smaller amplitudes and higher frequencies. The share

*

of the horizontal force in generating the moment is almost constant for
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Gx below 0.3, and above thls value, 1t increases and tends to 100% for

Gx urging to infinity.

5.3.3 Influence of Container Geometry

The geometrical parameter, representing the ratio of the container
height to the length of its cross-section, was varled between 0.15 and
2.1. This is the range that covers all possible values of h including
plain containers with no separating walls and fully compartmented
containers. The high values of h may also be related to longitudinally
compartmented containers for analyzing their lateral stability problem.
The results of computer study are given in Table 5.7 and Fig. 5.9 a) and
b). The dynamic coefficient of the horizontal force decreases with
increasing of h and tends to 1.0 for h going to infinity, Fig.5.9 a).
This fact shows that the overall damping is higher in contaliners with
large height than in containers with smaller height. The dynanmic
coefficient of the overturning moment displays maximum at h=1.0 that
corresponds to the square container. An unlimited increase in h must
bring the coefficient to 1.0 or to the absence of sloshing in tanks with
excess height. Thus, the most severe sloshing takes place in a square
container. The normalized frequency, shown in Fig. 5.9 b), is compared
with that of the linear theory, and this comparison glves 54 to 7%
reduction of the damped frequency with respect to the undamped one for
container with h between 0.7 and 2.1. For longer contalners with h
below 0.4, the computed frequency is greater than the one obtained via
the linear theory. This happens because Configuration 1 is replaced by

Configuration 2 or even 4 and the free surface starts to interact with
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Fig.5.9. Influence of the container height on dynamic coefficients

of the horizontal force and overturning moment, a),
and on the frequency of the sloshing oscillation, b)
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the top and/or bottom wall of the container. In this case, the linear
theory can not be applied at all since it does not allow the action of
the horizontal walls. For h less than 0.35, the liquid motion becomes
irregular and the frequency 1is inconclusive. The nature of the
vibrations, in this case, 1s similar to those which are usual in the
previous cases with very high Gx or with very high or very low f, when
the interference of the horizontal walls suppresses the first mode of
vibration and essentially changes the characteristic of liquid wotlon.
The share of the horizontal force in the generation of the moment
increases asymptotically to 100% for a container with large helght
underscoring the fact that the horizontal displacement of the liquid is

decreasing and tending to zero with h.

S.4 Summary

This chapter deals with the dynamics of 1liquid motion 1in
rectangular road containers subjected to a step acceleration input
simulating the braking-accelerating or steady turn vehicle manoeuvres.
The analytical steady-state and numerical transient solutions are
obtained in terms of amplitudes and frequencies of the maln sloshing
parameters such as liquid heights, forces, and overturning moments.
From the steady-state solution, it has been shown that a steady turn can
be sufficiently accurately simulated by the same set of equations
characterizing the braking-acceleration manoeuvre by simply assuming a
homogeneous body fleld in the 1liquid for the former. The error,
introduced by this simplification, is small.

The results and the methodology of the transient response in this
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investigation, can be applied both to the 1lateral and longitudinal
dynamics of liquid motion in a tank vehicle. During a steady turn of a
vehicle, the lateral stablility is of primary concern and the dynamic
overturning moment is *he major parameter affecting the stability.
During the braking-acceleration manoeuvres, the overturning moment is
still of some importance since it dictates the loading on the wvehicle
axles.

The dynamic behaviour of the overturning moment and forces was
studied on a sufficliently accurate model of the sloshing process,
including most of the nonlinear effects relevant to the problem. The
most intense sloshing occurs when f is between 0.2-0.4 or the container
filling is approximately between 30-60% with respect to the container
height. However, the maximum of the dimens.onal forces and moments falls
between £=0.55-0.65 or at 75-93% of fil ing depending on the combination
of h and Gx. These results correspond to only steady turn or uniform
braking/acceleration. For a more complex manoeuvre, the sloshing may
lead to a resonance which can further produce very large forces and
moments.

The level of input acceleration has maximum effect on the sloshing
amplitudes for small Gx. Increase in Gx leads to decreasing of
ampllitudes, at least up to Gx = 1.0. The range beyond 1.0 was not
studied since it is out of the feasible region, but the trend of the
dynamic coefficients shows that they may increase again.

The contalner shape parameter h, produces maximum of sloshing at
hzl, or in a square container, for the overturning moment. The lateral

force coefficient, however, increases while the container height s
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decreased, and this creates large forces which often lead to skidding of
a vehicle in braking.

The natural damped frequencies of the sloshing vibrations are about
5-8% below of those from the linearized theory, if the vibrations do not
interact with the top or bottom walls of the container. If the liquid
vibrations are affected by the top and bottom walls, the frequencies
sharply increase while the amplitude of vibration decreases. The liquid
motion becomes Iirregular. This implies that the linearlzed theory may
not any longer be applicable to the sloshing process. The results
obtained In this chapter for the liquid loading at steady-state reveal
that there exists an optimal geometrical shape for rectangular
containers. The optimization of the contalner geometry will be

presented in Chapter 8.



CHAPTER 6
STEADY-STATE AND TRANSIENT RESPONSES OF LIQUID SLOSHING

IN HORIZONTAL CYLINDRICAL CIRCULAR CONTAINERS

6.1 General

In this chapter, the steady-state and transient solutions for
liquid sloshing in horizontal cylindrical road containers subjected to a
step acceleration input, simulating vehicle manoeuvres such as steady
turns, are presented and discussed. The steady-state solution in terms
of liquid heights, forces, and their moments is derived analytically
from the hydrostatic equations. They are «carried out for the
rectilinear motion of the container and then applied to the rotational
motion to simulate a steady turn. The validity of approximating the
rotational motion by the rectilinear motion is illustrated by estimating
the resultant error which is small.

The transient responses are obtained by solving the liquid slosh
model developed in previous chapters. The mathematical model of the
liquid motion includes all essential nonlinear effects due to the nature
of the governing equations, shape of curved walls, and the free surface.
This allows to obtain the damped natural frequencies of liquid
oscillations as well as the magnitudes of forces and moments due to
sloshing. From this study, it is possibe to investigate the directional
dynamics of a partially filled cylindrical tank vehicle, undergoing
different road manoeuvres, by integrating the nonlinear fluid slosh

model with an appropriate vehicle stability model.

6.2 Steady-State Solutions

Steady-state sclutions, although do not show fluctuations in the
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liquid forces as the transient solutions do, may present some
interesting result in the case of highly viscous liquid or in the case,
when a vehicle undergoes a steady turning manoeuvre for a sufficlently
long time, so that all vibrations are almost damped out. Steady-state
solutions are obtained by integrating the 2-D momentum equations,
reduced for a static case. The Input excitations considered correspond
to two different motions of the vehicle. The first motion corresponds
to the displacement of the container in the lateral direction under a
constant acceleration, producing a homogeneous body force field, which
is rather a rare case In practice. The second one corresponds to a very
common practical case when the vehicle traverses a curved track of
constant radius with a constant velocity and when the body force field

is not homogeneous.

6.2.1 Rectilinear Motion of a Container

The 2-D hydrostatic equations in the nondimensional form are

oP apP

G, = 6;‘ and Gy=—a-y-‘-§ (6.1)

vhere Gx and Gy are coordinate independent, as shown In Fig.6.1.
Equations (6.1) can be easily transformed into the equation for total
differential in pressure at static equilibrium and also into the

equation of 1sobars that include the free surface:

dpP =G d¥{ -G dfY and GdX -G dy =0 (6.2)
x y x y
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Integrating Eqns. (6.2) ylelds:

P =G (X-X)-Y+Y and Y=Y +G (X-X )
x ° ° ° x °

and X =

1
o 3 (6.3)

The isobars represent a family of straight lines with a slope,
tana = Gx. The free surface is a line tangent to a circle of radius r,
see Fig.6.1. This condition is used to find the Xo and Yo values.
Finally, the area of the contalner, Ao' occupied Ly the liquid, the
steady-state values of the liquid heights, the pressure, the horizontal
and vertical forces and the overturning moment around the point ‘O’ are

found to be:

= T 21 1 =1 -
A =Es(r-D fror-r) eqsd (26-D)
1 _ 1 2
B =GX+5(1-6)+(f I/ 1+¢ (6.4)
p =oX-vY+Ll(1-G )+ (f-2) /146
SS X 2 X 2 x
F

G

F =G

HSS X =-1 Mg =

SS

ol x

where the nondimensional forces represent the ratios of their
dimensional values to the 1liquid weight per unit length of the
contalner, and the momex{t, also per unit length, is positlive if it 1is
directed clock-wise around the point ‘0O’.

For a cylindrical container the dimensionless moment, taken as the
ratio of its dimensional value to the‘product of the 1liquid weight and

of the container diameter, is independent of the container filling and
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is a function of Gx alone.
The conversion of the values given by Eqns. (6.4) into the

dimensional form can be obtalined using the following expressions:
2

8 = DAy heg= Dy H o
fuss = pgaob Gx; foes =~ pgaob ; (6.5)

1
m = 5 pgac’bDoGx
which represent a modification of the general expressions, Eqns.(2.20),

to the case of a circular container.

6.2.2 Rotational Motion of a Container

When the vehicle undergoes a steady turn, the free surface takes a
parabolic shape and the unit body force is not homogeneous, see Fig.6.2,
since its horizontal component is expressed by Gx = wZE/g.

By integrating the hydrostatic equations, the following expressions

for the 1liquid height and gage pressure are obtained:

G
- n
Y-Y°+§§[X2+(26-—1)X]
G
_ - _n 2 -
P‘Yo”*za[x*"-a 1)x] (6.6)

The shape of the free surface is completely defined by the parameters Gn
and §, and its position may be found from the pressure equation applied
to a point where the pressure is known. This involves the definition of
the area under the parabola and equating it to the initial area occupied
by the liquid. Such a procedure results in a rather lengthy expression
for the liquid height. An alternate way to approximate the liquid height

uses the assumption that the parabola is shifted downward from the

Vaahr W et S AT
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straight line AB, see Fig.6.2, representing the free surface of the
equivalent rectilinear motion, by a distance equal to one~third of the
parabola deflection, e, in the milddle of the container, where the

nondimensional deflection is given by:

c;n sz
€ F - —-8-8— with Gn = - -—8— (6.7)

Based on this assumption, the liquid height may be expressed as

G
2 n 2 1
)/1+Gn+—2(15 [X+X(26-1) —a+-6-] (6.8)

and the relative error of heights, taken as the ratio of the absolute

N -

error to the container diameter, is given by

E == (X=X +3z) (6.9)

H 28
The above expression gives the maximum possible error as a function of

Gn’ &, and X-coordinate, with the maximum occurring at X = 0 or 1, and

is equal to

G

o (6.10)

The horizontal force, FHSS , on the container walls may be found by
integration of the pressure equation, Eqns. (6.6), along the wetted
perimeter where the coordinate X must be substituted by Y from the
circle equation of the wall. The sinmultaneous solution of these two
equations with the exact definition of the Yo-value results in a very
complicated expression for Fuss that may be hardly recommended for
practical application. Under those circumstances, the horizontal force
may be rather estimated from thé simpler expression for the

translational motion with the definition of the error resulting from
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such a simplification. This can be carried out through the comparison
of the pressures at similar points for the rotational and rectilinear

motions. The difference in dimensionless pressures is found to be

G
8P = PTU-PTC = (- X +% ) (6.11)

The maximum difference occurs at X=0 or X=1. In some cases, it would be
more important to know the error with respect to some real pressure
inside a container. The maximum pressure in the container taking place
at maximum depth, referenced from the free surface in the direction of
the total vector of body forces, may be chosen as the reference

pressure. Then, the relative error is

E = = (612)

Since it is computed for X=0 or 1, this is the maximum possible error.
A plot of the percentage error, is given in Fig. 6.3 with a sample
calculation shown on the diagram by dotted 1lines. It can be seen that
the error on pressure, resulting from the replacement of the rotational
motion by the rectilinear one, is very small for most practical
combinations of parameters Gn, , and f. It also can be seen from the
expression (6.11) that the difference in pressures between the
rectilinear and rotational motions is symmetrical with respect to the
vertical axis of the container, and therefore 1t will be partially
cancelled while computing the liquid forces. Then, the error of the
horizontal force will be even smaller than that of the pressure for all

fillings of the container, except f = 1 vhen the errors coincide.
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Fig.6.3. Diagram of error of pressure due to replacement of the
rotational motion by the rectilinear motion
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As an example, consider a tanker contalner performing a steady turn
of radius equal to 5 times the container diameter, & = 5, filled up to
20%, £ = 0.2, and subjected to a centrifugal acceleration in the middle
of the contalner of 45% of g, Gn = 0.45. The maximum possible error of
the pressure, computed for the rectilinear motion, does not exceed 3.4%
as it is shown in Fig.6.3 by the dotted lines. The error of the
horizontal force will be smaller than the estimated error of 3.4%. For
the same parameters, but 60% filled container, the upper bound on the
error, Ep , is only 1.2%.

The vertical force at the steady-state 1s always equal to the
liquid weight with its nondimensional value equal to -1. The
overturning moment for the rotational motion is slightly increased due
to the upward shifting of the horizontal force and to the outward
shifting of the vertical force. However, it can be still computed using
the expression for the rectilinear motion with the error estimation
given by Eqn. (6.12). It has to be noted that this expression becomes
invalid when the fill level tends to become zero because of the
assumption made above for its derivation, but the small fill levels are
unimportant in the case of the road contailner.

Thus, the considerations above show that the analytical
steady-state solution for the rotational motion can be reduced to the
solution for equivalent rectilinear uniformly accelerated motion
occuring under the step input acceleration of the same magnitude. Such a
simplification provides good accuracy if the real values of the steady
turn parameters are assumed. Strandberg suggested in his investigation
[28] that the threshold of the lateral acceleration may not exceed

0.4 g's for large capacity liquid tankers. On the other hand, the radius
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of the turn is also limited, and usually is greater than 50m, or in the
nondimensional form, & >25. Taking into account those limitations, the
expression (6.12) approximates the upper bound of the error on the
pressure, forces, and moment in the range 0.4 to 0.12 percent for fill

levels between 30 and 100% ,respectively.

6.3 Transient Solutions

In this section, the transient solutions for cylindrical road
containers with circular cross-section, undergoing a cornering
maneouvre, are presented and discussed. Though the solutions have been
obtalned with a homc;geneous body forces, simulating the rectilinear
motion, they can aiso be applied to the rotational motion characterized
by the coordinate dependent centrifugal acceleration as it has been
discussed in the previous section.

The three input parameters, namely, the Re-number representing the
viscosity, the input acceleration, and the fill level of the container
were varled In order to investigate their influence on the transient
response of the liquid. The numerical values of these parameters are
given in Table 6.1, where the framed values indicate the two fixed

parameters while the third one was varying.

6.3.1 Influence of Re-Number

The Re-number was varlied in large range, from 103 to 107, while the
remaining parameters were kept constant at f = 0.6 and Gx = 0.306.
These values correspond to a container with diameter Do = 2,032 m (80
inches), a liquid density p=850 kg/ma,‘and a lateral acceleration a = 3

ws.® The computational grid was 22 x 22 cells,including the boundary
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Table 6.1. Cases of numerical study for cylindrical circular

containers

Viscosity variation Input acceleration Fill level
variation variation
Re v, mz/s G a, m /s2 £
X
1 x 10 0.907 x 10°° 0.1 - 0.981 0.3
1.52 x 10° 0.600 x 10" 0.2 - 1.862 0.5
1 x 10° 0.907 x 10°° 0.306({]- 3.0 0.6
1 x 10° 0.907 x 10°° 0.4 - 3.924 0.7
1 x 10° 0.907 % 10°° 0.5 - 4.905 0.9
1 ox 10°
Table 6.2. Effect of Re-number on numerical solution for £=0.6,
G,=0.306, (light crude oil, p=850kg/m°, v=0.6x10""n/s;
80" container diameter)
fe Peak values of Share of FH First d ed Undamped
P u in creating natural theoretical
H of the moment frequency frequency
3
107 0.4053 0.2038 1.151
106 0.4053 0.2038 1.151
10° 0.4053 0.2037 a 70 1.151 1.201
10° 0.4031 0.2027 1.143
10° 0.4008 0.2016 ‘ 1.139
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cells, and the time increment was AT = 0.002 corresponding to real time
of 0.02 sec.

The 1liquid motion due to a suddenly applied step 1lateral
acceleration is as follows. Under the influence of the body forces, Gx,
the liquid begins tc move from the right to the left, see Fig.6.4 a) and
b). The drag effect of the wall leads to creation of a higher mode wave
with its crest initially occurring near the left wall, curve 1 in Fig.
6.4 a), which travels to the right and slowly dissipates, curve 2. The
liquid helght on the left reaches its maximum sooner (T = 0.8 sec.) than
the liquid height on the right reaches its minimum (T = 1.0 sec.). This
causes the free surface to bulge and to generate the wave that is
superimposed on the lower mode wave. Curve 3 gives the free surface when
the height at left reaches a minimum while the wave on right is running
up the wall. Fig. 6.4 b) shows the two extreme positions of the free
surface at the 4th overshoot; here the presence of the higher mode wave
with its considerably smaller amplitude is seen even better.

Time histories of the liquid heights at the left and right walls,
HL and HR, are given in Fig.6.5 a) and b) and the corresponding plots of
FH . Fv » and M in Fig.6.6 a). The displacement of FH from the X-axis
YH , and the displacement of Fv from the point ‘0, Ev . are shown in
Fig.6.6 b); all these correspond to Re = 107, Gx = 0.306, and f = 0.6.
The peak values of the sloshing parameters are greatest at the first
overshoot and they slightly decrease with time. The fundamental
frequency varies insignificantly from period to period and the average
frequency, computed over the first five periods, show a very weak
dependence on the Re-number within the range 107 - 103. From the plots

of Fig. 6.6, it can be seen that all sloshing parameters, i.e. the
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Fig.6.4. Typical shapes of the free surface for Re=10 , f=0.6,
and 6,=-0.3
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forces, thelr coordinates, and the moment, oscillate in phase, and that
there 1s a small decrease in vertical force occurring twice during each
period of vibration at the time when the free surface reaches the upper
position near the left or the right wall of the container. This means
that the inertia force of the part of the liquid directed upward, or
against the liquid weight, leads to a temporary decrease of the vertical
reaction of the liquid exerted on the contalner walls. These results
are summarized in Table 6.2, where the peak values of the horizontal
force and moment are given for the first overshoot. The computed
normalized damped natural frequencies, K, are about 5 percent less than
the undamped frequencies computed from the Budiansky's linear theory
[20]. For the majority of practical cases, which corresponds to Re
values from 10° to 105, the main sloshing parameters are almost

independent of the Re-number.

6.3.2 Influence of Input Acceleration

The input acceleration, Gx, was varied from 0.1 to 0.5 which
approximately corresponds to the lateral vehicle acceleration between 1
and 5 ms.  All remaining parameters were kept constant as they are
given in Table 6.1. The results of this investigation are presented in
Table 6.3 and Figs. 6.7 and 6.8.

As It can be seen from Fig.6.7 a), the steady-state values of the
horizontal force and moment are proportional to the magnitude of the
input acce..ration, while their dynamic values become relatively smaller
with increasing of the Gx due to the nonlinear effects of the wall shape
and of the viscosity of the liquid. ‘'The dynamic coefficients for the

lateral force and moment are given in Fig.6.7 b). The graphs in Fig.6.7
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a) and b) correspond to the filling of 60% when the contribution of FH
in the generation of the overturning moment varies between 57% and 71%
depending upon the Gx. For smaller Gx, the displacement of the liquid
mass in the horizontal direction is sufficiently large, however the rate
of its further increasing decreases with Gx. Hence, the moment arm of
the vertical force increases progressively slow with increasing of Gx
and this causes the continuously diminishing contribution of the
vertical force to generation of the moment. This effect is stronger for
small filling and it tends to zero for the filling of 100%.

The frequencies of the sloshing appear to be dependent on the
magnitude of Gx. decreasing with increase of the input acceleration. The
plot showing the behaviour of the normalized first damped natural
frequency is given in Fig. 6.8. A similar behaviour was observed by
Peterson in his experimental investigation [58] for liquid sloshing at
low gravity condition. Of course, this phenomena is not related to the
low gravity itself, but it is rather produced by damping and, in

principal, must be seen under any gravity forces.

6.3.3 Influence of Fill Level

In this study, the fill level of the container was varied from 0.3
to 0.9 with other input parameters fixed. The results are given in
Table 6.4 and Figs.6.9 a), b),and ¢) and 6.10. The last row in Table 6.4
represents the steady-state values of the corresponding parameters for
the completely filled contalner when the sloshing is absent. The peak
values of the horizontal force and moment slowly decrease with the fill
level as shown in Fig 6.9 a) and tend to reach their steady-state values

at £ = 1. The fill levels less than 30% were not studied slince they

v
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£
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have no importance for practical cases, however at f=0, the forces and
moments must vanish. This implies that FH and M reach a maximum value
somewhere between f = 0 and 0.3. Fig.6.9 b) represents the dynamic
coefficients for FH and M and Flg.6.9 c) shows the dimensional values of
the horizontal force, fH, and moment, m, per unit width of the container
for the following set of parameters: tank diameter of 2.032 m (or 80
inches), crude oil with density & = 850 kg/m3 and viscosity v =
0.6x10"°n°/s, and input acceleration of the container, a =-3 m/s2. It
can be seen that the maximum loading (r‘H.m) occurs for a filling between
80 and 90%. For smaller input acceleration, the maximum values of fH and
m are shifted to smaller values of the fill level.

The fill level has a strong influence on the frequency of liquid
oscillation. An increase in fill level 1mplies an Increase of the
damped natural frequency as shown in Fig. 6.10. The normalized damped
natural frequencies are also compared with the results from the linear
theory of Budiansky [20]. The good agreement is seen only for small
input accelerations and for small fill levels, and the difference
progressively grows with increasing of Gx and f. Thus, it can be
concluded that the linearized theory holds only for small amplitudes of

liquid vibration.

6.4 Summary

The steady-state and transient solutions for 1liquid sloshing in
horizontal cylindrical road containers subjected to a step acceleration
input, simulating the steady cornering, have been obtained in terms of
amplitudes and damped natural frequencies of the main sloshing

parameters such as liquld helghts, forces, and overturning moments.
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Analytical method for steady-state and numerical solution for transient
responses of the liquid are presented.

From the steady-state solution for the liquid response, it has been
shown that the non-homogeneous pressure field of the rotational motion
may be replaced by the homogeneous one for the rectilinear translational
motion with a small error. The same approach of replacing the
rotational motion by the rectilinear motion has also been used 1n
transient response since the error is of the same order as in statlcs.
This has been confirmed by comparison of the computer outputs for
rotational and rectilinear motions at ldentical conditlions.

The main parameters affecting the liquid motion are the Reynolds
number, the level of input acceleration, and the fill level of the
container. The Re-number has insignificant influence on the magnitudes
and frequencies of the sloshing parameters, at least in the range

107-103. For Re = 103, the frequency is only a half percent smaller

7

than that for Re 10°, but for Re < 10? the difference in amplitudes

and frequencies rapidly increases in such a way that the more viscous
liquids vibrate slower, with smaller amplitude, and with stronger decay.

The input acceleration, Gx has a significant influence on the
magnitudes and frequencies of sloshing parameters. Increasing of Gx
increases the magnitudes of the lateral force and moment and decreases
the oscillation frequency. Thus, for Gx = 0.5, the frequency 1is 25%
less than that for Gx = 0.1, while the peak value of the moment is 3.5
times greater.

The fill level is another strong factor influencing the sloshing
parameters. Increasing of f leads tc the decrease of the amplitude of

slosh parameters and oscillating frequency, referring to the
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nondimensional form of calculation. However, in the dimensional form,
the slosh loads experience maxima which occur at sufficlently high fill
levels, i.e., between 80 and 90% depending on the set of input
parameters. The normalized damped natural frequencies compared with
those from the linearized theory show a good agreement only for small
input accelerations and for small fill levels, and the difference

progressively grows as Gx and f increase.




CHAPTER 7

STEADY-STATE AND TRANSIENT RESPONSES OF LIQUID SLOSHING
IN CONTAINERS WITH SEPARATING WALLS

7.1 General

In this chapter, a study of 1liquid sloshing behaviour in
compartmented and baffled road containers subjected to a step
acceleration input are presented and discussed. The analytical
steady-state and numerical transient solutlons are given in terms of the
liquid heights, forces and overturning moments exerted by the liquid on
the container body. The influence of the number of separating walls,
the size and the Jlocation of the baffle orifices is studied for a
container with rectangular cross-section. The transient response of the
liquid is obtained using numerical solution of the incompressible 2-D
Navier-Stokes, the continuity, and the free-surface differential
equations as it was discussed in Chapter 3.

The solutions for steady-state and transient responses of the
liquid sloshing are obtained for different combinations of the main
parameters: the relative height of the contalner, h; the fill level, f;
the horizontal acceleration, Gx; and the number of compartments, n. The
study includes uncompartmented (plain), compartmented, and baffled
containers with different size of baffle orifices and different number

of baffles.

7.2 Steady-State Sclutions for Compartmented Containers

Under the influence of the applied lateral acceleration, the free

surface of the liquid can take different positions, or configurations,
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which are similar to the configurations for an uncompartmented
rectangular container described in Chapter 5. The existence of these

configurations is defined by the following general conditions:

Y (X _)
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6 s o { v(xk_l)
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where the subscript k represents the number of a compartment counting

from left to right in Fig. 7.1.
The free-surface equations are found separately for each

configuration by integrating the differential equation of isobars:

GdX + GdY =0 with G =-1 (7.2)
X y y
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Using the conditisn at the free surface:

Q)

= 2
Y (Xk) Y (XH) =5 (7.3)
Maintaining the mass conservation by equating the current
cross-sectional area occupled by the 1liquid to the initial area, and
taking into account that the spacing of each compartment from the center

of the container is

2k - n - 1

>n (7.4)

The resulting expressions for the free surface and the configuration
conditions are summarized in Table 7.1, where the parameter n in the
last column is an integer and must be the nearest superior, for 2
inequality, or the nearest inferior, for s inequality.

The total horizontal force at steady-state is equal to the
algebralc sum of the forces exerted on vertical walls and it must be
equal to the force of inertia of the liquid. The total vertical force is
equal to the liquid weight. In the non-dimensional form, they may be

expressed as
F =G , and F =G =-1 (7.5)
for the unit width of the tank and both values are ratios of their

dimensional values to the liquid weight. Thus, the separating walls

have no influence on the magnitudes of forces in the steady-state, but
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they obviously affect the overturning moments, since the moment arms for
the forces depend on n. The overturning moment for a compartmented
tank, M:s, taken around the middle bottom point '0' is computed as the
sum of the moments of all forces for each configuration separately. As
an example, consider Configuration 2 given in Fig. 7.1. The total

roment is found as

n
M =nF Y +F 1 +nF _Y _ +F 21 (7.6)

where the nondimensional values are

3
F =hkl ki 1 22k -n-1, Gx .
ki £ k2 n 12 n °f
_2k-n-1 1 A = 1 (hen).
lm‘—_z‘n_"*?;ﬁ‘*ﬁ;' Y = 5-(h-A); ¢ (7.7)
_h_ h®
k3 2 12[Gx h ]
—_—t == A
n 2

and hkl are the depths of the center of gravity of each wetted wall
under the free surface, s, are the wetted wall lengths, the second
subscript coming immediately after k, i.e. 1=1,2,3,4 refers to the wall
of a compartment in the following order: left, bottom, right, top, and A
is defined in Table 7.1. After substituting of the expressions (7.7)

into (7.6), the equation of the moment becomes
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Table 7.1. Free-surface equations and configurations’ definition
for steady-state response in compartmented containers
Conf.| Free-Surface equat:ons Conditions £from the| Condition on n
heignt equa tions
G, IGxI
- H E
. For Gx 2 0 £ 5a 0 n TE
G|
2k~1 . X l x
Y Gxx + £ > Gx £+ 5o = h n 2 ThF)
G
- -5 18,1
Y-Gx+h--k—1G-A;G>0 h-az090 n-Z(h')x
x n X X 2
h
le | |G |
2 v k x x
i=- + - — - A; - z h
GX+h — G - Ai G <0 a 0 I T
) -
where A = ¢(h=2) Gx
n
K ls | |G‘|
Y=GX = — G~ 8: G >0 B~—=3s30 a =
x n x x n 2f
L kel 22| |
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X “~ X X <
h
where B = 2f E
o
G | 2z|G |
h k £ h I 4 £ x
R e E et B
G >0 )
4 X
£lG | 2(h-£) [G |
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G 2 )
M:s=-—“-(h-A)3+ = +—}l-—[3c+nh-3m]
6f 12n°f  6f x
' (7.8)
2 G
__1-(1__3_] _2a+m]
6f n x

/

This equation, as well as the similar equations for the remaining
configurations can be simplified, and in the reduced form, they are
given in Table 7.2 together with the expressions for the horizontal and
vertical forces and their moment arms. The values of A and B are the
same as in Table 7.1. The overturning moment for a compartmented tank,
M:s, is a function of the four nondimensional parameters: h, f, Gx. and
n, in general. However, for Configuration 1 the height of the tank has
no influence on M:s.

The behaviour of the moment with variation of number of
compartments and the level of acceleration for fixed values of h and f
is illustrated in Figs. 7.2 and 7.3 for two different geometries of the
tank and for the same filling of 60% with respect to the container
height. In particular, Fig. 7.2 can be referred to a long tank (13.5 m
x 2 m) and Fig. 7.3 to a short one (2.56 m x 1.83 m). It can be seen
that the magnitudes of M:s rapldly drop from those of uncompartmented
tanks and tend asymptotically to fG*/Z. The reducing effect due to
separating walls 1s significantly stronger for long tanks. This effect
is even better 111ustrat9d in Figs. 7.4 - 7.8, where the ratios of the
moments of the uncompartmented tank to those of the compartmented one
are plotted against Gx,or f, or h. The ratios MB#/ M:s for a long tank
are given in Fig.7.4, from where one can read that four separating

walls, n=5, can reduce the moment by 12 times for sufficiently small
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Table 7.2. Overturning moments and forces for steady-state
response in compartmented containers
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Fig.7.2. Steady-state overturning moment as function
of the number of compartments for a Tong
rectangular container
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Fig.7.3. Steady-state overturning moment as function
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in length container
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value of Gx, however this effect decreases with increasing of Gx. The
dotted lines in Fig.7.4 define the regions of configurations. The
similar plot for a short tank, h = 0.713 in Fig.7.5, displays the
smaller influence of partitions. Thus, for the same n = 5, the maximum
gain In the moment reduction is slightly above 200%. Figs. 7.6 and 7.7
show the reducing effect of the separating walls as functions of the
fill level for two tank geometries. The functions have strongly
pronounced maxima occurring at some values of f which decrease with
increasing of number of compartments. The moment reducing effect also
depends on the geometric parameter h, as shown in Fig.7.8. It can be
seen that the effectiveness of separating walls is significantly greater
for long tanks, besides, for very long tanks it decreases again. For
short tanks, h = 0.6 - 0.8, the reduction is still essential; for
example for h = 0.7, one separating wall reduces the moment by 160% for
Gx = 0.3 and f = 0.6 h. Relating to the lateral stability of a tanker,
the 160% reduction is considerable. Thus, one longitudinal separating
wall is quite efficient in reducing of the overturning moment. However,
further increasing of the number of walls 1s not so gainful. For
example, for 2 ,3 ,4, and infinite number of separating walls, the
reducing effect is 179%, 187%, 191%, and 199%, respectively.

These results are also applicable for baffled containers provided
that the baffle orifices are closed during transportation. If this is
not the case, then the baffled tank behaves as an uncompartmented tank
for all fill levels exceeding (}~d)/2 value, where d 1is the
nondimensional diameter of the baffle orifice. For fill levels less

than this value the solution for a baffled tank is quite different.



159

M /Mg
I
| n=o h=0.148
N\ f= 0,089
20 \
10 \
i8 5 —\ \\\
16 - X
1 \'\ \\
PR
AN
. \\\\x\\\
6 : ‘\=i:::::::::::::;:::::::7‘-;“--"“-~
i OIS
o= =
1~ -1 4 -
0

0.2 0.4

G«

Fig.7.4. Moment reduction factor as function of input

acceleration for a long container



M/ Mcq
e 0713
0428
2.2
! /——\ -
2.0 /\\Q&
://-\\nzs .
18 — \\\\\\
\ ‘]
P N3
16 :___/ \/ ,/-’K
1.4 / \
- 7 \k
_ @ / e
1.2 /,'/ @ — “
- / /// ——
1.0 | /l// //1/ @ n=1,
8 12 16 GOy

Fig.7.5. Moment reduction factor as function of input
acceleration for a short in length contairer

160



Mo/ ME,

g N\ [h=0148 [
) %10 \ 16,03
NEERR

RN NN
EITARNN
TN
NN AN
VAN

10 /{///5/’§\\;3<§3§&

s 1L/, AN\
A TIRN
NS N\
i NN

Fig.7.6. Moment reduction factor as function

0.04 0.08 oz f

of fill level for a long container

lel



Mss/ Mg

|

3.8

|

a1

e

h=0.713

3.0

2.6

i

i

1.8

A\

Qo

1.4

N\

1.0

r\:1

N

Fig.7.7.

Moment reduction factor as function of
fill level for a short in Tength

container

01 02 03 04 05 06 07

f

162



13

1"

f=0.6h
G:=0.3

3
N\
2 '\\\
0.2 4 0.6 0.8

Fig.7.8. Moment reduction factor as function
of the container height

163



164

7.3 Translent Solutlons for Compartmented Contaluners

The detalls of the computational procedure for the transient
response are described in Chapter 3, however, in this section some
computational procedures relevant to the case of baffles are presented.
A 3-D array for the velocities and pressures and a 2-D array for liquid
heights are used in order to avoid a confusion between the boundary and
working values of the flow parameters. Thus, the horizontal velocity
array, for example, 1s expressed in the code as U(k,i,J), where k is
referred to the k-th compartment and 1 and j to the number of the cell
in horizontal and ver:ical directions. If however, the free surface
passes through the baffle orifice, then the boundary values are defined
as for a continuous flow.

The transient solution for a compartmented tank can be obtained
from the solution for a rectangular tank, given in Chapter 5. The
vertical and horizontal forces are equal to the sum of the corresponding
components of the constituting sections of the container. The total
moment is also equal to the sum of the moments of each compartment. The
component moments must be translated to a new peint, which is the middle
bottom point of the compartmented contalner, point 'O’ in Fig. 7.1. The
non-dimenslonalizing must be done with respect to the value ngzhm'
where Lo is the total contalner length, in contrast to the ngihln,

vhere Lk is the length of the k-th compartment. Assuming that the

compartments are equal in size and the fill level is the same for each

section of the tank, the following expressions for a compartmented tank

can be obtalned:
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(7.9)

The solutions for a long tank, h = 0.15, and for a short tank, h =
0.7, are glven in Table 7.3 for Gx = 0.3 and the fill level
corresponding to 70% with respect to the container height. The
corresponding plots are shown in Fig.7.9 (long tank) and Fig.7.10 (short
tank) as functiuns of number of compartments. It can be seen that
increasing of number of separating walls leads to a strong decrease of
the overturning moment both in statics and dynamics, but the sloshing
becomes more intense, dotted line, Fig. 7.9 a). An increase in number
of separating walls changes the geometry of the compartments from a
rectangular cross-section to almost a square cross-section, and a
further increase of n leads to a narrow cross-section. Also, it has been
shown in Chapter 5 that the most strong sloshing occurs in a square
container. Therefore, the further increase in n, producing the narrow
compartment, forces the dynamic coefficient for the moment to decrease.
The dynamic coefficient of the horizontal force monotonically drops from
its maximum value corresponding to an uncompartmented tank {(n=1) and,
in principle, tends to 1. The damped natural frequency, Fig. 7.9 b), is
below of that from the linear theory for number of separating walls
equal to 3 and more, however, for n=2 or 1 it is somehow higher than the
linear one because, for those compartment shapes, the vibrations occur
in a mode that is not accounted by the linear theory.

The plots of Fig. 7.10 a) and b) give the simiiar quantities for a
short contalner, h = 0.7. This case can be interpreted as the lateral
sloshing in a container filled with longitudinal separating walls. The

dynamic coefficient of the moment decreases with increase of n and tends
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Table 7.3. Influence of number of compartments on numerical solution
for h=0.15 and 0.7, Gx=0.3, f=0.7h

Compar:t- Pe?k Peak F: c
N Brearl I R el B O R IR B RS
(;ﬂ)'~ F; ¥ FPss M;s (.T')
Long tank, h = (.15
b 13.500 |0.1550|0.4305(0.2¢6306]1.438 |1.2482] =~ -- |0.979 ]0.8832
2 6.750 |0.0696(C.4266]C.087¢|1.422 |1.2623]1.7284]2.4062 |2.319 [1.626L
3 4.500 |0.04321C.42271C.0832]1.409 ]1.2784712.2557]1.494 |1.810 [2.27¢8¢
4 3.375 {0.032310.4.58)J0.042011.386 |>.30E3|2.6988{2.548 [1.615 |2.8257
5 2.700 |0.0257|C.4C83]0.023511.351 |1.3i86)3.0798]1.580 |2.672 [3.258¢81
E 6 2.250 }0.0227(0.206010.022211.320 |21.3206|23.42CCJ2.587 |2.702 |3.6342
E Shert tank, h = 0.7
| 1 2.5€65 |0.225210.4089]C.2650|2.3630)2.3189|3.2442{1.572 |2.657 |3.3.28
2 1.283 {0.0864]C.368270.223211.227311.2102]4.54€2}2.607 |1.732 |4.8657
3 0.855 0.0752|0.25C5]0.02C82|1.1682]1.2563(5.6049|2.618 |2.7235 16.00¢8
4 0.642 |0.0768C.343210.003311,2437012.2285C]€6.4775(2.620 |1.735 |6.9409
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compartmented container.
Moment, horizontal force, and their dynamic
coefficients, a), and natural damped frequency, b)
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to reach unity as n 3 « , and so does the coefficient of the lateral
force. The damped frequency is always below of the undamped one and, as
an average, is about 6% less than the latter.

The circular frequency of 1liquid vibrations is a function of the
container length alone, if the height, input acceleration, and fill
level are flixed. In Fig. 7.11, an example of such a functional
dependence 1s shown. Since in the calculations, the heights of the
short (1.8 m) and of the long (2.0 m) contalners were not equal, a small
discrepancy between frequencles appears and can be seen in the
overlapping region of the two considered cases. Also, it can be seen
that there is the tendency for intersection of the damped and und
(linear theory) frequencies at the length of compartment approachii
In a compartment of thls length, the character of vibration changes
because Configuration 1, corresponding to smaller lengths, is replaced

by Configuration 2 and the latter is not accounted by the linear theory.

7.4 Transient Solutions for Baffled Containers

The liquid motion in a baffled container significantly differs from
that of compartmented one because of the liquid flow from one section to
another. This interflowing affects all parameters of the sloshing
including the forces, moments, and freguencies of vibrations which
become coupled. In the present study, an attempt is made to investigate
the role of the location of the baffle orifice, the size of the orifice,
and the number of baffles.

The location of the orifice has a negligible effect on the main
sloshing parameters, unless the free surface does not pass through the

orifice. 1f, however, it happens, then the interflowing of the liquid
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can be significantly delayed. The two cases with middle and near-bottom
location of the orifice, with the area of 5% from the cross-sectional
area of the container for both cases, have been considered for a
container with one baffle initially filled with a liquid at 70% with
respect to the container height. Thus, the orifice situated in the
middle of the baffle was initially completely covered by the free
surface. During fluild oscillation, this orifice was partly opened and
partly closed depending on the phase of oscillation. The difference
between those two cases can be seen from Fig. 7.12 a). For the orifice
located near-bottom the liquid height at the right wall of the second
compartment reaches the top wall (h = 0.7) at the fifth cycle while for
the middle orifice it happens at the seventh cycle. After this time,
the continuously fed right compartment accumulates such an amount of
liquid that it leads to the change of the vibration frequency that
becomes higher while the amplitude decreases. The vibrations of the
vertical and horizontal forces, as well as the moment, are shown in Fig.
7.12 b). The vertical and horizontal forces, do not depend on the
interflowing of the 1liquid from one compartment to another and they
vibrate around the corresponding steady-state values. The moment, in
contrast, does depend upon the amounts of liquid in the compartments,
and its peak value increases with time until the interflowing 1is
stabilized, that happens approximately at the fifth cycle, in accordance
with the liquid height vibrations. It also can be noted, that the
vertical force reflects the variation of the pressure field in the
container, and the pressure recasts as twice as fast as the velocities
and heights do. '

The increase of number of baffles affects the flow in such a way
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that the interflowing of the liquid is delayed. Thus, for two baffles,
the time required for the mean value of the moment to reach the
steady-state value is almost twice larger compared with one baffle. In
Fig. 7.13 c), the stabilizing of the moment occurs at 11th cycle.
However, the liquid heights achleve this point at different times, see
Fig.7.13 a). In the last, 3rd, compartment, fed from the 2nd and 1st
compartments, the mean height reaches 1its steady-state value at 6th
cycle, while in the 1st compartment it takes 11 cycles. The
intermediate compartment loses some amount of liquid during the first
8-9 cycles and later it gets it back. Thls shows that the process of
liquid flowing happens with different rate for different compartments
and that there is some low frequency vibration of interflowing. The
horizontal force oscillations are very similar to those of the moment,
Fig.13 b), with one difference: they occur around the steady-state all
the time.

The size of the baffle orifice was varied from 5% to 20% of the
container cross-sectional area. It has been found that even the
smallest orifice has a significant effect on the peak value of the
moment, Fig.7.14 a). The shaded area gives the limits for the peak
moments, where the lower line corresponds to the first cycle of
vibration and the upper line to that cycle when the interflowing is
practically ceased. The baffle area of 5% Increases the peak value of
the moment by 29% compared to a corresponding compartmented tank, and
further increase in the orifice area introduces very litile change to
the moment. The horizontal force is practically independent of the
orifice size variation. The dynamic ‘coefficients of the moment and

force are shown in Fig.7.14 b). It can be seen that a baffle in a tank




175

(9 *sS3juatl144300 dweudp 413U U0 pue
‘(e ‘juawou pue 3240j |PJUOZLAOY UO BZLS 3213140 S,3]jJeq 3y} 0 dduanjju] “y1-/ b14

DaJD 34O D34D 231110
) Sl'0 1’0 S00 ] o0 1Y) 1’0 S00
| i i ot | _ | 0
€0=" 1
AR b m (Z=u)SSp
- e SO ) —— Y
r A o i
B Dmﬂ..hl swoad 3saiy €l W y
| offl SHDad WNWIXON g
o D .\.4\ T Q.p - 1 N.Q
-
E —s . .
SSiy L I e i )
N
Lol .EE:LW = DA >
Syoad wnwixop * © H,
kX - qd —{ »o
1 ! |
SSH P H
4 PR

@3 (D




L

can increase the dynamic moment by 167%, 172%, and 173% with respect to
the static moment for the area of the orifice 5, 10, and 20%,
respectively.

The number of baffles has a positive effect in reducing of the
moment, compared with a container without any baffle. However, the gain
is smaller when it 1is compared with the corresponding compartmented
tank. Increasing of number of baffles diminishes the peak values of the
moment, Fig.7.15 a). The horizontal force also decreases with increase
of number of baffles, approximately by 10, 14, and 17% for one, two, or
three baffles, respectively. The relative magnitudes of the force and
moment with respect to the corresponding ones of the compartmented tank
are shown in Fig.7.15 b).

The comparison of the horizontal forces, FH, and moments, M, for
uncompartmented, compartmented, and baffled tanks is given in Fig. 7.16,
where n is the number of vertical sections and corrcsponds to (n-1)
separating walls or baffles. It can be seen that baffles give a smaller
reduction in force comparing with a compa-tmented tank, and this
reduction tends to increase with increase of number of separating walls.
After n > 4 the peak values of the forces are practically identical,
Fig.7.16 a). The difference in moments is, however, more significant.
The shaded area, Fig.7.16 b), shows the maximum and the first peak
values of the moment. The band limiting the peak values of the moment
becomes more narrow with increasing of n and asymptotically tends to the
line of a compartmented tank. This indicates that a large number of
baffles has such a strong damping that orifices have no longer their
negative effect and the entire flow behaves like in a compartmented

tank.
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The normalized damped natural frequencies are shown in Fig.7.17,
where the upper lines show the undamped natural frequencies resulting
from the linear theory and the columns represent the damped frequencies.
In compartmented tanks, the frequencies increase with refining of the
tank by separating walls. In baffled tanks, the trend 1s rather
inverse: frequenclies decrease with increasing of the number of baffles.
This 1s due to the coupling between the baffled compartments and the

damping effect of the baffles.

7.5 Summary

In this chapter, the analytical steady-state solutions for
compartmented road containers and the transient numerical solutions both
for compartmented and baffled containers are presented. The quantitative
analysis of the 1liquid sloshing, provided in this investigation,
includes the influence of the main parameters of the liquid container,
1.e. number of compartments both isolated and coupled by baffles with
orifices, fill level, level of input acceleration, and shape of the
rectangular container. The influence of the location, size, and number
of baffled orifices has also been included in this study.

It has been found a sufficiently close agreement between the linear
theory and the present method results only for such a combination of
input parameters for which there is no interaction between the liquid
free surface and the top or bottom walls of the container. In such
cases, the damped natural frequencies, obtained by numerical
integration, are S to 7% below of the frequencies resulting from the
linear theory. In practice, howe;er, those cases are not often

feaslble, since the range of most severe loading occurs when the fill
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level (between 70 and 90%) and the input acceleration (between 0.3 and
0.5 g's) produce the sloshing with interaction with the top wall. In
these cases, the linear theory does not predict the slosh loading
parameters, but the present approach does. The study reveals that in
these cases the frequency of sloshing becomes higher than it |is
predicted by the linear theory because of the change 1in the
characteristic of vibration,

The compartment has significant influence in reducing of sloshing
amplitudes, while that of the baffle 1s somewhat less because of the
coupling between compartments. The magnitude of the overturning moment
decreases by 30% for a tank with one full separating wall comparing with
the similar case of one baffle.

The location of the orifice in the baifle is found to be not
significant 1f the free surface does not intersect the orifice area.
But if it does so, then the process of interflowing of the liquid may be
significantly delayed, and this can happen if the baffled compartnents
are long enough and the fill level allows the orifices to be partly
immersed. In such cases, the baffles can be as beneficial as the
compartmented tanks are but only for short duration.

The size of the baffle orifice has a significant influence on the
magnitude of sloshing parameters, even if it is sufficiently small, i.e.
5% or less of the cross-sectional area. Practically, the orifices are
from 16 to 20 inches in diameter and this constitutes from 4 to 6% of
the total cross-section of area of the tank. Further iacrease in the
orifice size has a very little additional influence.

The methodology used in this lnvéstigation allows to significantly

enlarge the fields of study in the sense of the ranges of input
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parameters comparing with the linear theory of sloshing. In many cases
it can give the only solution to the sloshing problem when the linear
theory does not work, l.e. in the cases of very small or very high fill
levels, of high values of the input acceleration, and of course, in
baffled containers. An accurate simulation of the rotational motion of a
contalner by the rectlilinear one, justified in previous chapters, allows
to apply the results, obtained in the present chapter, both for the
cases of longitudinal and lateral input acceleration, or for
braking-accelerating and steady turning manoeuvres, of rectangular and
modified rectangular tanks. In principle, this method can be applied to
achieve a solution for any kind of input acceleration and any type of

road container.
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CHAPTER 8
OPTIMIZATION OF GEOMETRICAL PARAMETERS OF

RECTANGULAR CONTAINERS

8.1 General

In this chapter, an optimization study is presented for rectangular
liquid tankers subjected to step input acceleration. The optimal
geometrical parameter, given by the ratio height/width of a container,
is computed based on the nonlinear static analysis of the liquid loading
arising during a steady cornering of the vehicle. The objective
function is selected to minimize the peak overturning moment around the
middle bottom point of the container, described in Chapter 5. For this
purpose, the hydrostatic equations are modified in this chapter. The
container cross-sectional area is assumed to be a constant and the fill
level and the lateral acceleration are considered as parameters. This
study introduces a new concept to liquid tanker design and can be, in
principle, extended to the dynamic case accounting for magnified
amplitudes of slosh loading.

The lateral stability problem, associated with transportation of
liquid cargoes, imposes specific requirements for design of 1liquid
tankers, one of which consists in bringing the centre of liquid mass to
the lowest position with respect to the road level. This requirement is
quite correct, however, it keeps in shadow the question of an optimal
container shape. It has been noticed by Strandberg (28] that in some
cases, the circular cross-section tank may be more stable in lateral
direction than the associated elliptical tank despite the fact that for

the latter the CG position 1s lower than for the former. This is due
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to a larger possible displacement of the liquid mass in a wider tank
which leads to larger overturning moment compared with a narrow tanx.
The similar situation exists with rectangular contalners, when the
excesslve reduction of the height with a corresponding increase of the
wldth may give 2 negative effect in some range of fill levels.

In practice, however, there exists a restriction on the container
width dictated by traffic requirements, but actually it is not known if
the existing tank widths are in the optimal range. It seems quite
reasonable to design a container of optimal shape, if thls does not
contradict the traffic requirements, and then bring it as low to the
ground as the frame and suspension of the vehlcle can allow.

The results of this optimization study can be applied, with some
degree of accuracy, to the shapes close to rectangular, i.e., modified

rectangular and, perhaps, modified oval.

8.2 Recasting of the Moment Equations

The steady-state solutions in terms of overturning moment computed
around the middle bottom point of the container, have been obtained in
Chapter S5, where the moments are given for four possible configurations
constituted by the free surface with the contalner walls. The behaviour
of the overturning moment, 1s illustrated in Fig. 5.4 where the r&s
function is plotted against the container height with fill level as a
parameter and for a fixed value of the lateral acceleration of 0.3 g.
It can be seen that for fill levels below 0.8, these functions display
the minima occurring at different values of the container height. A
comparison of two containers having h’s equal to 0.5 and 2.0 is made to

clarify the behaviour of the moment. For small fill levels, see circles
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on the vertical lines at h= 0.5 and 2.0, it is advantageous to have a
container with greater height, while for high fill levels, for example
f = 0.9, see squares on the figure, a tank smaller in height but wider
is preferable. The transition from an advantageous to a disadvantageous
container happens at the fill level of approximately 0.6 for Gx = 0.3.
For greater Gx's this transition shifts to smaller values of f. This
effect is due to larger displacement of the liquid mass in transversal
direction in containers with smaller h. The dimensionalizing of the
functions for Mss will affect the positions of minima and hence the
optimization of the contaliner shape is a feasible problem.

The solutions, given in Table 5.2, were derived in the most general
form with no restriction placed on the container size. In practical
design, however, the problem of searching of the optimal form becomes
more meaningful if the r.oss-sectional area of the container is kept

constant. This puts an additional constraint of the form

a =h Li = const (8.1)
Then, introducing the new fill level definition as

(8.2)

R
il
gl o]

and incorporating expressions (8.1) and (8.2) into the moment equations,
given in Table 5.2, the new form solutions, taking into account the
condition of the constant area, can be obtained in the form given in
Table 8.1. It should be noted that the configuration conditions are

written with respect to the container height. The dimensionalizing of
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Table 8.1. Steady-state overturning moments for rectangular
containers of fixed cross-sectional area

Configu- Configuration cw dizection is positive

ration conditions : sign + Sor G > 0
Ovec-turning mement gn x

sign - for G‘ <90

s, |
h 22— 2
2 1 -a) G 5 G + 2
b3 G Ma-_;- a h#.—‘——]
htl.l i 12h vh
2 a
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h = - 2 vh
(1 - 2a) G
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the new expressions for the moment and its relationship with previously

defined moment are given by

m =8ga’ly and M = —= (8.3)

88 [ 88 ES

7

8.3 Search for the Optimal Parameters of the Container

Considering the overturning moment, M:s, as the objective function,

the general optimization problem can be formulated as follows:

Minimize M =f (G , « G) , 1 =1, 2, 3, & W
%3 i X

i=1 i= i= i=4

Subject to: h { b’

v
Y
=2
A,
v A
(o] [
=2
——
AWV
o o
=2
——r——
A A
o o

+ (8.4)
a, b,c,d= fJ (a, Gx), j=1, 2, 3, 4

0=oa =1

G=0

X

where the objective functions are given for each configuration in Table
8.1, integer 1 accounts for the configuration number, construints on h
are expressed in terms of a, b, ¢ and d which represent the limits for
each configuration and are encountered twice in the column corresponding
to configuration conditions in Table 8.1, and integer j is the number of
each of the four pairs of the configuration conditions.

The solution of this optimization problem appears to be very
cumbersome, either carried out analytically or numerically. Moreover,

there exists some pitfalls due to the fact that the objective function
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may not have minimum at all or may have it on the boundary as, for
example, for @ = 0 or « = 1 when the optimal value of the container
height tends to infinity or to =zero, respectively. This problenm,
however, can be simplified by making a preliminary analvsis of the
moment equations and reconsidering the status of the variables involved.
The standard optimization technique, once being accomplished, fixes the
optimal values of variables which provide with the minimum of the
objective function. In this specific problem, there is only one such a
variable, namely the container height, while the fill level and input
acceleration may not be specified since they are uncontrollable
variables. Refering to Fig. 8.1, where the fill level is considered as a
parameter and the lateral acceleration is fixed at Gx=0.5, the
analysis of the functions for the overtirning moment can be made based
on the behaviour of the corresponding plots. It can be seen, that for
each fill level there exists a local minimum of M:s which shifts from
infinity to zero while the fill level is varied from O to 1. The line
composed by circles shows positions of the local minima. It is obvious
that a properly designed tank must have the height corresponding to the
crest of this line, which is a saddle point. In this case, the ~==11
variation of the fill level will give sufficiently small magnifi. - 1
of the moment limited by the line of a = 1 from the right and by lines,
corresponding to smaller fill levels, from the left. Increasing of the
h from the value lying on the crest results in a moderate increase of
the moment, corresponding to the line of « = 1, while decreasing of h
results in a very large augmentation of the moment since all those
curves tend to infinity with h going to zero. The overturning moment

for 100% filled container, corresponding to the case of rigid cargo, is
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Fig.8.1. Behaviour of the overturning moment with the
container height and fill level variations
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given by

M° =X (8.5)

’

From Fig. 8.1, it can also be seen, that the global minimum of the
function M:s » With fixed Gx, does not exists in the strict meaning of
the word and the limiting minimal values of the function are lying on
the boundary, i.e., at h=0 for a =1 and at h = o for a = 0.

By virtue of the reasoning above, the optimization problem can be
restated in the following manner: search for the saddle points of the
functions M:B = f, (h, ) considering the G as threshold of the
lateral acceleration. This can be done separately for each of the four
configurations satisfying the conditions of their existence. The
necessary condition for the stationary points, saddle points in

question, is

F] M; 3 M:s
75 '« "%  Fa |, o =0 (8.6)
The sufficient condition is
M &M° a%m° 2
] [ 3
= — 5 - [ ] . . <0 (8.7)
h a 8hda h,a

where the stationary points are designated as (h.. a'). and ze 0

is considered in the analysis of the corresponding equations.




Configuration 1

The necessary condition, Eqn. (8.6) applied to the moment equation

for Configuration 1, gives:

2
G+ 2
az - —x_-"’_ =0
4h (8.8)
G, « vh =0
with the two stationary points
h h =0
1 0 ° 2
. and . (8.9)
a =0 o = ®
1 2

which are both infeaslble. Thus, in the practical range of the

variables, there is no stationary point.

Configuration 2

For Configuration 2, the stationary points can be found from the

solution of the following equations:

a-1+hG (2a-1)=0 , 5
x 1/2 c=(1-G) /-—5- (8.10)
2hcx+c¢h (1~a) =-1=0 x "

Eliminating « from this system of equations, 1leads to the cubic

algebraic equation for the h:

4
1+th2_

n -
403 462 . 8¢

=0 (8.11)

The analysis of this equation shows that two of the three roots are
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complexe-conjugate and the third one is real. The real root has been
computed numerically and the results are given in Table 8.2 where the

corresponding « is found from the expression

, 1+Gh
@ = —— (8.12)
1+2GC h

The calculation also shows that the determinant for the sufficient
condition, Eqn.(8.7), is negative in the feasible range of Configuration
2, that is, the statlonary point is the saddle point. If the h  is
varied, Configuration 2 may lead to Configuration 1 or Configuration 4,
but never to Configuration 3. Thus, the region for h', when
Configuration 2 may lead to other configurations, 1s defined by the
corresponding inequalities from Table 8.1, as
G

R s —— X with Config. 1
2(1 - a)

(8.13)

h o2 2 G, (1- a") with Config. 4

Substitution of numerical values for the stationary point into the
constraints, Eqns. (8.13),shows that Configuration 2 may be replaced by
Configuration 1 only at Gx = 0 while the change for Configuration 4
occurs at G.’r = 1. Hence, 1in the range of Gx from 0 to 1, Configuration

2 1s taking place, and for Gx > 1 it is replaced by Configuration 4.

Configuration 3

The necessary condition for a stationary point in this

configuration is given by the equations
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& =0
b VB (8.14)
l1-cvYah =0

where c is given in Egn. (8.10).
These equations yleld the only stationary point with « =0 and h' = o
which 1is not in the range of practical interest and, therefore, its

nature is not examined. Thus, Configuration 3 is not in the study.

Configuration 4

Differentiation of the moment equation with respect of h and «
gives the following system of equations for stationary points:
1+ 2G°
2 x

« +a(th—1)-h2——-—-—=0

2
4Gx (8,15)

2a-1-hG =0
X

The solution of this system yields two roots for h  one of which is
infeasible since it gives a negative value for the container height.

Then, the feasible stationary point is given by

., -Gl+gG ﬁc‘-zc2-1
x X X X

h =
36t -2¢6% -1 (8.16)
J X X
»
. 1+th
A = c————

2

The analytical solution of Eqns.(8.15) 1is shown in Table 8.2.

Substitution of the expressions (8.16) into Eqn.(8.7) reveals that, in
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the feasible region of the variables, this statlonary point is the
saddle point. The feasible region for the stationary point is defined
by the inequalities which bound Configuration 4 from Configurations 2

and 3 in the following way:

h" =26 (1 -« ) with Config. 2
. . * (8.17)
h' sa G 4ith Config. 3

The boundary with Configuration 2 has already been investigated, where
the saddle point was found to be located at Gx=1. The boundary with
Configuration 3, as it follows from the second expression of Eqn. (8.17)
may be lying only at Gx<1 or in the region physically infeasible for
Configuration 4. Thus, practically, in an optimized contailner,
Configuration 4 is never replaced by Configuration 3.

It has been shown above that the saddle point can belong either to
Configuration 2 or to Configuration 4 depending upon the level of the
lateral acceleration. The plot of the optimal container height, h.. as
a function of the Gx is given in Fig. 8.2. This height is here called
optimal conventionally: it does provide with minimum of the overturning
moment in presence of the arbitrary varylng fill level, however, it has
nothing to do with mathematical global minimum which does not exist. It
can be seen from Fig. 8.2, that increasing of the threshold acceleration
requires decreasing of the container height if the cross-section area is
kept constant. The breaking point of the h" curve corresponds to the
change of configurations and, for Configuration 4, the optimal helght

drops monotonically to 0 with Gx tending to infinlty.
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Fig.8.2. Optimal container height, h*, as function of
Tateral acceleration
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8.4 Sensitivity of the Objective Functlion to the Container
Height Variation

For some reason, if the container height does not correspond to its
optimal value, then it would be interesting to know what 1is its
influence on the overturning moment. For this purpose, a sensitivity
analysis of the overturning moment to the deviation of the container
height from its optimal value is here investigated in the following
manner. The height variation 1is expressed as the ratio of the real
height to its optimal value, i.e.,

(8.18)

and the ratio of the moment, corresponding to real h, to the minimum

moment, corresponding to h., is designated as:

= &5 (8.19)

=
-]
.

Then, the post optimal analysis of the function

M=f (h, Gx) (%.20)

is formulated. The moment is computed for that value of the fill level
which provides the maximum expected moment for the chosen h and fixed
G, by finding the local maximum of the M:s function. For

Configurations 2 and 4, the expressions for this fill level are found as:

(1 -2h6)° 1+hG
=1 - X and o = ——r (8.21)

¢*h 2
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For Configuration 2, however, the first expression above may not work
for all h's of interest. This can be seen from Fig.8.1, for example,
where the region to the right from the saddle point can be split into
two parts. The first part is understood between the boundary between
Configurations 4 and 2 and the point of intersection of the a« with the
a=1, where the corresponding container height, called here critical, can
be found from the first expression of Eqn.(8.21) by setting a=1. This

results in the following expression for the critical height:

(8.22)

For the h exceeding hcr. a is maintained equal to 1 for Configuration 2.

The plots of the function M are given in Figure 8.3, where Gx is
considered as a parameter. It can be seen that increase in moment is
siguificantly larger if the height is taken smaller than the optimal
one, i.e., when h<l. This is true for sufficiently small values of Gx.
However, with increase of Gx, the trend 1is rather reverse;
i.e., increasing of the container height generates larger moment with
increase in Gx. It also can be noted that a small increase of the
height, within 20% for example, gives a sufficiently small augmentation
of the moment, i.e., about 10% for Gx=1 and about S% for smaller values
of Gx. A quantitative 'example for the container of typical height,
h=0.7, shows that in this case of h=0.559 and h=1.252 the increase of
the moment is of the order of 4% comparing with the optimal contalner
for the threshold of acceleration equal to 0.4 g. If the acceleration

is increased to 1 g then, for the same container, the moment increases

by 13.8%.
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8.5 Summary

This study provides an optimization of the geometrical shape of
rectangular liquid road tankers for the simplest case of static liquid
load, and represents a first step towards more complicated cases related
to dynamic loading due to liquid sloshing. It has been found that there
exists an optimal height of the container which corresponds to the
minimum overturning moment for a particular fill level and input lateral
acceleration. It 1s also shown that increase of the threshold
acceleration requires a reduction of the optimal height of the container
if the cross-sectional container area is maintained constant. These
results can be used for a practical implementation in the liquid tanker

design, in order to improve the container characteristics.
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CHAPTER 9

CONCLUSIONS AND RECOMMENDATIONS

9.1 Highlights of the Investigation

The present investigation attempts to show that certain practical
solutions to the nonlinear sloshing problem in road containers can be
achieved, prior to full scale testing, using analytical and computer
simulation techniques. The analytical approach ylelds the steady-state
responses of the liquid in different shape containers subjected to input
acceleration simulating such vehicle manoeuvres as straight-line
braking-acceleration and steady turn. The practical importance of
steady-state solutions is that they can serve as a basis for determining
of the dynamic slosh loacding during the liquid tanker design by simple
introduction of the necessary corrections obtained from corresponding
transient solutions.

The transient responses are achleved by numerical solution of the
Navier-Stokes, continuity, and free-surface equations using the modified
Marker-and-Cell method developed in this study in a general form
suitable for solving the sloshing problem for containers of arbitrary
shape and subjected to arbitrary input acceleration. Further, the
dynamic responses of the liquid are found in terms of the main sloshing
parameters, such as heights of the free surface, forces and overturning
moment exerted on the container body, which allows the 1linking of the
developed slosh model with an appropriate vehicle dynamics model to
study the coupled dynamics of the “tank-vehicle" system. Such an
attempt has been made in [33] and has shown a good efficliency and

adequate accuracy.
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In this investigation, special attention was given tc development
of the boundary conditions for the numerical solution in conjunction
with the coarse computational grid that provides a great saving of the
computer time without excessive loss of accuracy. The boundary
conditions were derived based on the assumption of the reflection
principle and checked by laboratory testing which has shown a good
correlation between the theory and experiment.

The ‘ralidation of the computer slosh model has been carried out
with a rectangular container and a specially created experimental set-up
in 1he laboratory. It has been assumed that the method of calculation
of the boundary conditions, verified for a rectangular tank, can be
extended to other container shapes since the boundary conditions is a
matter of general nature.

The results for transient solutions have been compared, wherever it
was possible, with those from the linear sloshing theory. This
comparison reveals a sufficiently close agreement between the two
approaches but only within the applicability of the linear theory, which
is limited by the assumption of small oscillations and simplified shape
of the container. Thus, this investigation confirms the applicability
of the linear theory within some limits and, on the other hand, glves
the solutions beyond of these limits that is an essential contribution
to the fluid sloshing problems.

Finally, the optimal geometrical shape, yielding the minimum
overturning moment, has been defined for rectangular containers
utilizing the standard multivariable optimization technique. Although
the optimization was made for the steady-state, it can be extended to

the transient solutions provided that the parametric study is done in a
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full form.
The original aspects of this work can be summarized in the following
statements:

i) An effective mathematical model of the sloshing phenomena,
developed in this investigation, combines both adequate accuracy and
complexity to reflect the actual dynamic behaviour of the sloshing
liquid. The accuracy is sustained by including the most essential
nonlinearities of the problem due to the nature of the governing
equations and to the boundary including rigid walls and free surface.
In order to eliminate an excessive computing time, the coarse
computational grid has been wused in conjunction with appropriate
boundary conditions that provides a sufficient accuracy.

11) The computer model includes a careful calculation of the
boundary condition compatible with adopted coarse grid and derived in a
general way suitable for implementation for a large class of sloshing
problenms,

{ii) The analytical steady-state solutions for circular and
rectangular containers as well as for containers with separating walls
vere developed.

iv) The transient responses in terms of slosh loading have been
obtained for road containers of rectangular and circular cross-sections
and for compartmented and baffled containers. The influence of the
number of baffles and of the size and location of the baffle orifices
has been studied. All this provides with a new information about liquid
behaviour and can be used in the liquid tanker design.

v) Available analytical optimization technique was applied to

rectangular containers to specify the optimal geometrical shape that
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would minimize the overturning moment in steady turn.

9.2 Discussion of the Results

In this section, the most important results and general conclusions
are summarized to reflect the findings of the present investigation.

Comparison of the solutions obtained from the developed computer
model hardly can be done in a direct way because of lack of experimental
data. An indirect comparison, however, was done by other authors, [57]
and [33], who Investigated a coupled "liquid-vehicle" system and
verified their quasi-dynamic model against the field testing results and
the results given by this slosh model incorporated into the considered
system. The present model correlates well with the experimental results
in terms of the vehicle roll angle and axle loads, and hence,
demonstrates a high degree of confidence in the slosh model employed in
this investigation.

The analysis of the steady-state solutions reveals that the input
lateral acceleration for a steady turn, being a function of the
instantaneous radius of the track curvature, can be replaced with high
degree of accuracy by the coordinate-independent equivalent lateral
acceleration. The error arising from such a simplifying procedure is
very small and estimated for most practical cases of road containers
subjected to steady cornering. However, it can be dangerous to use this
recommendation in the case of evasive manceuvres when the radius of turn
is relatively small and underestimating of the loading becomes
essentlial.

The transient solutions obtained for circular and rectangular

cross-section containers indicate both similarities and non-similarities
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of the liquid behaviour under identical input conditions. The response
in a compartmented baffled container, however, displays a significant
damping effect of the baffles. The main parameters, strongly affecting
the liquid response in terms of amplitudes and frequencies of the
sloshing forces and overturning moments, are the fill level, the
magnitude of input acceleration, and the container geometry and also the
number of separating walls, the number, location, and the size of baffle
orifices for compartmented and baffled containers. The influence of the
Reynolds number, or of the liquid viscosity, was found negligible for
most practical cases covered by the Re number above 105, sufficiently
small for Re lying in diaposon 10° - 103, and essential for Re below

10°.

The practical significance of this result is that the liquid
vibrations can be considered as undamped fer such liquids as gasoline,
light crude oils, and other liquids close in viscosity to these ones.
This leads to the conclusion that for these liquids a strong resonance
can be expected in the case of a periodic input disturbance, while for
very viscous liquids like heavy mineral oils at low temperature and
tars, the vibrations are strongly damped. Thus, for most of transported
liquids, some artificial measures to suppress the excessive sloshing
such as longitudinal and transversal baffles are needed.

The fill level is one of the most important factors influencing the
output slosh parameters. Comparison of the slosh responses for circular
and rectangular containers shows that manifestation of the container’'s
form nonlinearity is stronger in rectangular tanks due to the stronger
damping effect of the horizontal walls. In rectangular containers, the

dynamic force and moment coefflclients display maxima for medium values

of the nondimensional fill level while such maxima for circular
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containers fall to smaller filling. In the range of fill levels of
practical interest, i.e., between 50 and 100%, the dynamlc coefficients
are sufficiently close in values for both types of container. The
natural damped frequencies, in these two cases, behave differently. In
circular containers, the frequencies are much closer to those predicted
from linear theory and always lower than the latter, while |in
rectangular containers, the frequencies behave simlilarly only in a
sufficiently narrow region of fill levels when the interference of the
horizontal walls 1s absent. If, however, the horizontal walls are
involved, then the frequencies increase but the amplitudes decrease and
the liquid motion is becoming chaotic. The decreasing of the amplitude,
in this case, happens only for cycles following the very first one which
is characterized by a large amplitude. Practically, this fact means
that the rectangular shape is preferable since the resonance, if it
appears, happens in a different mode than the fundamental mode and
therefore the expecting loading must be smaller. As for the loading due
to the first overshoot, the rectangular container has no advantage. The
peak values of the load, recomputed to the dimensional form, shows that
the most dangerous fill levels fall to 80 -~ 904 with respect to the
container height. It is also known, from the different sources, based
on experimental investigations, that the critical fill level Iis
somewhere between 60 and 75%. This difference is explained by the fact
that the mentioned experimental results were obtained for vehicle
tankers where the vibration of the suspension induced a partial
resonance which can develop stronger for relatively smaller fill levels,
while in this investigation the resonant phenomena has not been

considered.
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The magnitude of the input acceleration is another factor affecting
~the 1liquid response in road containers. The results of this part of
parametric study indicate that the horizontal force and overturning
moment are monotonically and almost linearly increasing with increase of
the input acceleration while their dynamic coefficients decrease in the
practical range of the acceleration displaying a relatively weaker
sloshing. This fact is due to a greater allowable displacement of the
liquid occurring under smaller horizontal acceleration, especially in
circular contalners. The damped frequencles branch below from the
theoretical undamped frequencies for rectangular and circular containers
in the range of the input acceleration between 0 and 0.5 g's and they
sharply increase for the rectangular containers only above this range
leading to an irregular liquid sloshing due to interaction of the upper
wall. 1In such a case, the liquid behaviour becomes somehow similar to
the case when the fill level allows the horizontal walls to Interact
with the free surface. This fact leads to the following important
conclusion: the damped natural frequency of liyuid oscillation, being a
funct‘on of many parameters, depends the most on the length of the free
surface. Thus, in circular containers, the free surface length is
weakly dependent on its orilentation, while in rectangular containers,
when the horizontal walls interfere with the free surface, its length
becomes shorter and this affects the frequencies. This statement fully
explains the behaviour of the frequencies that can not be made on the
basis of the linear theory.
The liquid response in rectangular containers strongly depends on
the contalner form expressed in this study as ratio of the height to the

width or length. It has been found that the more Intense sloshing, in
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ter.~. of the dynamic moment coefficlient, happens in a square container,
while the maximum of the dynamic horizontal force coefficient falls to
the smallest value of the ratio. The practical significance of this
fact is that for good lateral dynamics of a vehicle, associated with
lateral stability, the height/width ratio must be smaller than 1.0, but
not too small according to the results of optimization study, while for
longitudinal dynamics, the separating walls are strongly advisable in
order to diminish the excessive horizontal force often leading to
skidding or Jack-knifing. Besides the instability modes related to
longitudinal dynamics, the separating walls are also beneficial in the
sense of the reduction of the overturning moment which can produce
excessive loading on the axles, suspension elements, and tires of the
vehicle. Thus, for a tanker of 13 m in length the arrangement of five
evenly distributed separating walls reduces the dynamic overturning
moment by approximately 6.5 times and the dynamic horizontal force by
1.34 times which is, of course, a great reduction. In practical
aesigning there can be encountered the recommendation to install the
separating walls at the distance not less than 64" which corresponds to
eight compartments or seven separating walls for the container in
question. This will give a very small additional gain, about 7 times,
comparing with five separating walls (6.5 times) because of the
exponential character of the moment as a function of the number of
partitions. Hence, the design concepts may be reconsidered in the light
of the present investigation.

The study of baffled tanks has shown that the effect of partitions
with orifices is reduced comparing with full separating walls because of

interflowing of the 1liquid from one compartment to another. Fecr
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example, the overturning moment for a tank with one opened baffle can be
reduced up to 30% by closing the baffle. Therefore, the requirement to
keep baffle orifices closed during the transportation is lmportant. It
has also been found that the location of an open orifice has no effect
on the sloshing parameters unless the free surface does not pass through
the orifice. In the opposite case, the interflowing of the liquid is
delayed and the baffling effect is increased. The size of the orifice
affects the magnitude of sloshing parameters suddenly, when even a small
opening between compartments is arranged. However, the increase of the
orifice size from 16" to 20", that is in practical range of existing
orifices, has a very little additional effect. Thus, if the orifices
are intended for use, they may be of the full size, i.e., 20", for
practical commodity and without losing too much of their efficiency.
The influence of the number of baffles on the horizontal force is
sufficiently small and manifests stronger only for tanks with 1 or 2
baffles. If their number is 3 or more then their effect is vanishing
and the peak force values are almost equal to the corresponding cases
with closed baffles. As for the overturning moment, the large number of
baffles makes the flow behave like full partition are installed instead
of baffles. The small number of baffles has a strong effect for a few
first cycles of oscillations and this effect is loosing with time due to
the 1liquid interflowing. The summarized effect of baffles can be
formulated in the following statement: the contalner baffles delay the
interflowing of the liquid and increase the overall damping which is a
positive effect; however this effect may become negative in the case of
longitudinal baffles when after a sﬁort duration turn the wvehicle

performs a second turn in the same direction. In this case, the liquid
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has no time to come to the equilibrium state and the second manoeuvre
can result in larger loading.

The optimization of the rectangular container shape, carried out
for the steady-state response of the 1liquld, has shown that the
favourable ratio height/width 1s lying in the range 0.7 - 0.5 for the
input acceleration from O to 1 g, respectively, and equal to 0.56 for
the threshold acceleration of 0.4 g. Since the maximum of sloshing
intensity falls to a square shape container, the optimal ratio will be
slightly decreased in dynamics. The expected difference in optimal
values in statics and dynamics should be sufficiently small because of
relatively small and smooth variation of the dynamic moment coefficient
with the container’s shape ratio. The more accurate optimization study
can be easily extended to the dynamic case provided that the full
parametric study data is available.

Finally, the present investigation has confirmed the applicablility
of the linear sloshing theory for small amplitude of 1liquid oscillation
which are induced by relatively small input acceleration, not exceeding
0.2 g's, in presence of narrow range of fill level centered around the
50% filling, and for containers with medium values of the ratio
"height/width" also centered around the square container, in the case of
rectangular tankers. For a large number of practical cases, when those
conditions are not satisfied, the present approach gives solutions for a
complicated sloshing problem essentially extending the knowledge of this

important phenomena.

9.3 Recommendations for Future Work

The investigation presented in this work provides new information
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on the dynamics of liquid sloshing arising under specific conditions of
the cornering or braking manoeuvres. The nonlinear mathematical and
computer two-dimensional models and the analytical met..ods used for the
solutions obtained in this study may be easily extended to study the
lateral dynamics in contalners of other shapes of interest such as
elliptical, superelliptical, modified rectangular, and lately introduced
iInto the design T-shape. The two-dimensional model of sloshing, in the
form as it is presented in this investigation, can also be applied to
evasive manoeuvre of the tank vehicle, while the combination of turning
and braking-acceleration can be only solved by means of the
three-dimensional slosh model.

The methodology, used for development of the 2-D model, can be
applied to create the three-dimensional slosh model which will allow to
solve more complicated problems characterized by the coupling of liquid
motions in the transversal and longitudinal directions. As an example of
such an limportant problem, the 1liquid response for cornering-braking
manoeuvre can be considered. Because of the generality of the approach
employed here, especially with respect to the definition of boundary
conditions, such an 1implementation is seen as a straightforward
procedure.

One of the most important problems associated with dynamics of
liquid carrying vehicles 1is the coupled sloshing problem considering the
behaviour of the complete "liquid-vehicle" systenm. The present 2-D
slosh model has been tested in combination with a vehicle model,
separately from this investigation by other researchers, and has shown a
high degree of confidence. As a logical extension of this direction of

study, the coupling of the 3-D slosh model with a reasonably simplified
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vehicle model can be considered in the future; the results obtained
could be hardly overestimated.

The accumulation of results for transient liquid responses for an
exhaustive number of combinations of input parameters, made through
detailed parametric studies, will allow to radically simplify the liquid
tanker design procedure by eliminating of complex and time consuming
solutions of dynamlc slosh models. Instead, the steady-state model
results, duly adjusted by the coefficlients accounting for sloshing
effect due to variation of the main input parameters involved, can be
used for estimation of the slosh loading. Such an approach becomes
especially beneficlial for coupled problems.

The resonant phenomena due to periodic or repeating input
disturbance often arises during transportation of liquids. It was not
the subject of study in this investigation, however, the developed
mathematical models allows, with minor alterations, to obtain the
frequency responses which would essentially extend the knowledge about
this practical and impertant problem. The above-mentioned topics form a
continuing spectrum of research efforts in this wvital field of

engineering.

Bt
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APPENDIX 1

THE WEIGHTING COEFFICIENTS FOR RIGID WALL
VELOCITY BOUNDARY CONDITIONS

In Chapter 3, the general expressions for interpolation of the
boundary conditions were derived in terms of the welighting coefficients
accounting for the concribution of nearest cell velocities. In this
appendix, these coefficients are derived for different configurations of
the cell velocities involved by using the Newton's interpolation
technique for unequal distribution of the nodes, see Fig. 3.4. These
derivations are carried out through the use of divided differences
written to express a liquid velocity as a function of the distance along
t . n-axis, Fig. 3.5. Considering maximum second-order extrapolation,
the two nodes, 1 and 2, and the node lying on the wall are needed.
Hence, the argument (distances), functions (normal velocities), and
first and second-order divided differences can be expressed as it is

given in the table below:

n \') First order divided Second order divided
n differences differences
- = _ a0
n0 =0 Vnw 0 [ ] - an Vnu [n.,n_]-[n_,n ]
n,n|=  ———— 1’72 0’ 1
o' 1 b [n ,h ,n ]=
o' 1’2
b+c
n=b VvV, V_ -V
n n2 n1 v v
nl,n2 z —_— _ _n2 _ n1
n, =b+c Vn?. ¢ c(b+c) be

where the normal velocity components account both for U and V velocitles
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and for simplicity are designated as Vn' The normal component of the
boundary velocity can be expressed by reflecting the Vxlm into the

fictitious flow, i.e. V. =-V! as:
ns nB8

) v v
_ _ 20 _ M Ay - | p2 _ m _ _
VnB = Vnw 5 (a-0) [c(b+c) Be ] (a-0) (a-b) (I.1)

where the distance a is positive for the point B located both inside or
outside of the wall. The normal and tangential components of nodal

velocities are

V1 sin « and V2 sin o

n na2

(1.2)

V1 cos « and V2 sin «a

\
T1 72

The interpolation of the V1 and V2 between the cell velocities, shown in
Fig. 3.4, is made by the linear interpolation formula, which can be
written in the form

V= K, Vx T v (1.3)

1+1

where the interpolation length B is from the side of velocity Vm

u is from the side of velocity Vl, and the velocity of interest, V,

1+1
is located between V‘ and V:u' The distance between V\ and V1+1 may be
equal either to &X or &Y depending on the considered case and the
subscripts 1 and (i+1) have no relationship with the computational mesh
but rather serve to express the nearest cell velocities both 1in
horizontal and vertical directions. The expression (I.3) is also used

to linearly interpolate the tangential component v-ra’ in which case the

interpolation lengths and the tangentlal boundary velocity are
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1 c '

1.1 Config_uration 1. V velocity

In this case, the normal line, n-axis, intersects the mesh llnes
between points 3 and 6 for V1 and between points 4 and 7 for Vz.

Defining the value m as

me —3 (1.5)
&X tana

the interpolation lengths lying on the n-axis as

] _ 8X+l _ X

A == e—— T ———— c =
’ ’ cosa

cosa cosa

(1.6)

rearranging the expression (I.1) for linear and quadratic extrapolation

as

.. _a __.a b-a _ala-b)
v 5 Vm @ V-3 [1 * _c_] Vi T eBe) 'n2 7D

and expressing the V1 and V2 velocities through the factor m as

V1 N mx;l v3 + _:T' Ve
(1.8)
m-2 2
vz == Vet V¥

the expressions for the normal components of the velocity are obtalned,

for the first and second~order interpolation respectively, in the form:

Vo= ! n-1) v3+-—z-—v sina (1.9)
n(dX+2) n(dX+¢8)
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- 28 (m-1) v o+ 28
m 8X 3 nmax

_ Um-2)(sx+2e,  20(3X#20)
naX(25X+8) * moX(25X+L) |

v

nB v

sin a
[

where complexes accompanying the cell velocitles are referred as 7's
weighting coefficlients in Tables 3.2 and 3.3.

For the tangential components of the V velocity zero and first-
order interpolation is carried out. In the first case, the boundary
tangential velocity is set equal to the tangential velocity at the node
1, in the second case, it is linearly interpolated using the formula

(1I.4), 1.e.

=V and V__ = [ 1+

b-a b-a
v =V - ) v, v (1.10)

c T2
vhere

V =V cose and V__ =V cosa (1.11)
T1 1 T2 2

and V1 and V2 velocitles are given in Eqn. (I.8).

Substitution of Eqn. (1.6) and (I.11) into the Eqns (I1.10) yields:

_ m-1 1
VTB = [ m v3 + ru V6 ] cosa
(1.12)
v =[ 2(m-1) (8X+¢) V.- (m-2) (8X+2¢8) v 2(3X+L) V- 2(ax+2£)v7 ]cosa
B n&X maX m3X m3X

for zero and first-order interpolation respectively.
For Configurations 2, 3 and 4 the boundary V velocity is derived
similarly but the Iinterpolation lengths and the velocities at nodes 1

and 2 are deflned differently.

S WRTRE ATy Wy e T =
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1.2 Configuration 2. V velocity

For this configuration, the cell veloclties involved are V3 and V6

for V1 and V6 and V7 for Vz. The interpolation lengths are

a= - ¢ . b = SX+¢ . c = 8y _ &X (1.13)
cosa cosa sink cosa
The nodal velocities can be expressed by means of the m factor as:
v=1y o by
1 m 3 m 6
(I.14)
V2 = (2-m) V‘5 + (m-1) V7

Since the expressions for a, b, and V1 are similar to those of
Configuration 1 and ¢ and V2 do not affect the first-order interpolated
velocity, exactly the same expressions can be obtained for the normal
and tangential components of the V boundary velocity in the case of
linear interpolation, i.e. the first expressions in Eqns. (I.9) and
(1.12). For quadratic interpolation, substitution of Eqns. (I1.13) and
(I.14) into Eqn.(I1.7) for the normal component and into Eqn. (1.10) for

the tangential component gives:

vnB={e(max+2e)Vz+ ¢ [ méX+2¢& _ (2-m)(5x+2e)]v _ bex+2t) } cina
msX(8X+£) 2 8X(m-1)L m(8X+8)  mdX+L § sX(mdX+L)

v__ = { max+2£v3 , m3X-m(2-m) (8X+2£)+2¢ v - 3X+2¢8 v, } cosa
mdX m(m-1)3X X

(I1.15)

1.3 Configuration 3. V velocity
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For this configuration, the initial quantities needed for

derivation, are defines as:

¢ b oY 4 X 8Y

T — cC = ———
cosa ' sina cosa ' cosa sina '

(I.16)

<
it

m V6 + (1-m) Vs.

vV = 2m-1 vV o+ 1-m v
2 m 6 m 9

The solutlons for the boundary velocity components are obtained in the

following form:

_ 1 ¢1-m) né
"m'[m"s*m"s] sina

(1.17)

<8 [ (1-m) V5 +m V6 ] cosu

for the linear interpolation of vnz and zero-order interpolation of VrB,

and

v { g(ax+2) ., ¢ [m(ax+2z)_ (2m-1)(m6X+22)] v,

SX(m&X+8) ° X(1-m)l mox+8 m(3X+2)
o bexs2t) } sina
meX (5X+L) ° (1.18)
2
- { meX+2¢ . m (6X+2£)-(2m-1)(m6X+2£)v6 m8X+2¢ v, } cosa
8 méX 3 n{1-m)&X néX

for the quadratic interpolation of VnB and linear interpolation of vra'

1.4 Configuration 4. V veloclity

Configuration 4, for the case of the first-order interpolation, is

identical to Configuration 3, therefore, the boundary velocity
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components are given by Eqn. (1.17). For the second-order

interpolation, the interpolation lengths and nodal velocitles are

- 2 _ &Y ¢ oY
azs- —— , b= - , C & =———
cosa sina cosa sina
V =(1-m) V_+mV
! s ¢ (1.19)
V2 = (1-2m) V8 +2m V9

Then, the transformations, similar as for Configuration 1, lead to the
following expressions for the boundary velocity components by the

second-order interpolation of the normal component:

_ 28(1-m) 28 _ 2(1-2m) (m5X+2¢) _ 2¢(mdX+2¢)
Ve = [ moX— Vs * ax Ve T T maX(zmeX+D)  's ~ 3X(2moK+l Vg] sina
(1.20)
_[ 2(1-m) (m8X+¢) 1(mdX+8) , _ (1-2m) (m8X+2¢)
Van '[ meX (> el mex Ve
_ 2(ms¥+28)
——32—————V9] cos

The expression for the first-order interpolation coincides with those of

Configuration 3, i.e. with Expr. (I.17).

1.5 U boundary Velocities

The derivation of U boundary velocities is quite similar to that of
V velocities. However, the nodal velocity components, given by Eqn.

(1.2) for the V velocity, in this case, will be expressed as:

U
ni1

U cosae and U U cos «
1 n2 2

(1.21)

U
T1

U sina and U ' U sina
1 T2 2
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Taking into account that the interpolation lengths, a, b, and ¢, and the
nodal velocitles, U1 and Ua' are expressed by the same equations as for
the V velocity, the weighting coefficients will also be expressed by the
same formulas where the length ¢ must be computed for U velocity in
U-velocity grid. Also, the sinax and cosa will be interchanged in the
expressions for UnB and U_L_B,as it is shown in Eqns.(I.21). The 1listing
of the weighting coefficients for U boundary velocities is given in

Tables 3.2 and 3.3.
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APPENDIX 11

THE REFLECTION TYPE BOUNDARY CONDITION ON THE
LIQUID HEIGHT FOR A VERTICAL WALL

The boundary liquid height for a vertical wall can be derived from

the Eqn. (2.1) rewritten in the following form

(I1.1)

where the barred velocities are the free-surface velocities.
The symmetry of the real and fictitious flews, see Fig. 3.6, assumes for

the no-slip velocity condition the following:

Gk = - [-jk
B 2
ok _ _ gk
Ve= V2 (11.2)
Hk=Hk
B 2
[_é.*_*_ = - [_aH_]
X /s 12).4 2

From the Eqn. (II.1) written for the boundary point B in the fictious
flow and for the point 2 in the real flow, the heights at the next time

level (k+1), upon the substitution of the last expression of (11.2),

are
k k
H - H
gt oo S (g 2= ]
B B 5 X
k (I1.3)
H - H
T LAE T 6T 7 - O 3 2
2 St 2 2 5 X
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where the spatial and time derivatives are both approximated by forward
differences. Subtracting the second equation of Eqn. (II.3) from the
first one and substituting the first three expressions of (II.2) yield
the following expression for the boundary height:

B =H;-—-2-8—L\7k (11.4)

For the free-slip velocity condition, the second expression of (II1.2)

be:comes

and the similar procedure of derivation leads to the boundary height in

the following form:

H " =H (11.5)




