INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UM films the
text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleedthrough, substandard margins, and improper alignment
can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and
there are missing pages, these will be noted. Also, if unauthorized copyright
material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning
the original, beginning at the upper left-hand comer and continuing from left to
right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9" black and white photographic
prints are available for any photographs or illustrations appearing in this copy for
an additional charge. Contact UM! directly to order.

Bell & Howell information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA

®

800-521-0600






Analytical and Experimental Studies for Space Boundary
and Geometry Inverse Heat Conduction Problems

TzU-FANG CHEN

A THESIS
IN
THE DEPARTMENT
OF
MECHANICAL ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
For THE DEGREE OF DOCTOR OF PHILOSOPHY
CONCORDIA UNIVERSITY
MONTREAL, QUEBEC, CANADA

APRIL 1997
© Tzu-Fang CHEN, 1997



i+l

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Bibliothéque nationale
du Canada

Acquisitions et
services bibliographiques

395, rue Weliington
Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
Our file Notre réfdrence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette theése sous
paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.
The author retains ownership of the L’auteur conserve la propriété du

copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it  Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canada

0-612-39790-4



NOTE TO USERS

Page(s) not included in the original manuscript
are unavailable from the author or university. The
manuscript was microfilmed as received.

UMI



Abstract

Analytical and Experimental Studies for Space Boundary and

Geometry Inverse Heat Conduction Problems

Tzu-Fang Chen, Ph.D.
Concordia University, 1997

Inverse Heat Conduction Problems (IHCPs) have been widely used in engineering
felds in recent decades. IHCPs are not the same as direct heat conduction problems
which are “well-posed”. IHCPs are made more difficult since they are inherently “ill-
posed”; that is, a small error perturbation will lead to a large error in the solution
reconstructed. Prediction of an unknown in an IHCP is not an easy event. An IHCP
also handles the desired information from measurements containing noise. A stable

and accurate reliable inversion solver shall be studied.

This dissertation is split into four parts. The first part describes space boundary
IHCPs, and attempts to utilize noisy measurement data to predict unknown surface
temperatures or heat fluxes. A new algorithm, using a Kalman Filter to filter
the measurement noise combined with an implicit time-marching finite difference
scheme, solves a space boundary IHCP. In the second part, errors in reconstruction
of the temperature at each boundary of a one-dimensional IHCP can be presented
by a simple relation. Each relation contains an unknown coefficient, which can be
determined by using one simulation through the inversion solver of a pair of specified
sensor locations. This relation can then be used to estimate the other recovery
errors at the boundary without using the inverse solver. In the third part, an
experimental study of temperature drop between two rough surfaces is conducted.
The experimental data are analyzed by utilizing an inversion solver developed in
this dissertation. In the fourth part, an IHCP with a melting process using the
measured temperature and heat flux at one surface is solved by a new geometry
inversion solver with a heat flux limiter to reconstruct the melting front location

and the temperature history inside the test domain.
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Chapter 1

INTRODUCTION

1.1 Background of Inverse Problems

Problems which attempt to determine effects without a precise knowledge of
the causes, and “find” the unknown causes through limited observation effects, are
inverse problems. Inverse problems are different from direct (forward) problems,
which have enough information to determine the unknown effects. Direct problems

are well-posed or correctly set, as defined by Hadamard (1923) as follows,

Definition of a well-posed problem

1. The problem is solvable and a solution exists;

2. The problem has a unique solution;

3. The solution depends continuously and stably on the given data.
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A problem which is not well-posed is ill-posed. Inverse problems are ill-posed.

1.2 Classes of Inverse Heat Conduction Problems

Inverse heat conduction problems (IHCPs) may have many different classes. Here

are some typical types of inverse solution processes:

1. Space Boundary IHCPs:

The missing thermal information at the boundary of the design domain is to

be found.
2. Time Backward (Retrospective) IHCPs:

An unknown initial condition or temperature distribution in previous time is

to be determined.
3. Parameter Estimation IHCPs:

An unknown spatial and/or temporal parameter multiplier in a governing

equation needs to be determined from measurement data.

4. Geometry IHCPs:

A geometric characteristic of a heated body is to be reconstructed; for exam-
ple, a phase change problem to determine the melting interface between

liquid and solid phases.
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All these problems are inherently ill-posed. The recovered solution may have in-
stability phenomena due to noise in the limited observation effects. So, the numerical

treatment of inverse problems must eliminate the noise from the measurement.

1.3 Examples of Direct and Inverse Problems and

Historical Survey

Consider a one-dimensional heat conduction equations in a dimensionless form,

8T _ T

5 = 922’ 0<z<L, t>0 (1.1)
T(0,t) = fi(t), =0, t>0 (1.2)
T(L,t) = fa(t), z =1L, t>0 (1.3)

T(z,0) = p(z), 0<z <L, t=0 (1.4)

A direct problem with equations (1.1) to (1.4) gives the initial temperature condition
¢(z) at t =0, and the Dirichlet temperature boundary conditions fi(t), f2(t) of the
temperature of both sides z = 0 and ¢ = L. There is the only one temperature
solution T(z,t) at any later time ¢ > 0. Equations (1.1) to (1.4) constitute a well-
posed problem. We use equations (1.1) to (1.4) to explain a space boundary IHCP

and a time backward THCP as follows:

1. Space Boundary IHCP: For example, if equations (1.1) to (1.4) lack boundary
conditions at z = 0, or z = L, or both, use the measured temperature(s) in the

interior region to reconstruct the boundary temperatures at the boundaries.
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2. Time Backward IHCP: A typical inversion associated with the above heat
conduction problem, equations (1.1) to (1.4), is given the temperature at time,

t =t, > 0, to find the temperature distribution at initial state ¢ = 0.

From the examples above, we may realize that inverse problems lack adequate
boundary or initial conditions. Before solving an inverse problem, we introduce the

concept of the Maximum-Minimum theorem of partial differential equations.
Maximum-Minimum Theorem (Miranda, 1954):

Let region € be bounded and let u(z) be a solution in © of the homogeneous
equation Du = 0, where D is a partial differential operator of elliptic type, and

suppose u is a harmonic® function in Q. Then throughout the region {2, we have

minu < u < maxu (1.5)
aq 1)

When the Maximum-Minimum theorem applies to elliptic-type partial differ-
ential equations (Myint-U, 1973), we may interpret this as the temperature of a
conducting body with no internal heat source or sink. The maximum (or minimum)
temperature will pertain to the surface boundary of the conducting body. Again,
when the Maximum-Minimum theorem applies to parabolic partial differential equa-
tions (specifically heat conduction equations) (Street, 1973), we may interpret that
the temperature in the domain ¢ > 0 and 0 < z < L cannot get hotter or colder

than a temperature either occurring initially or applied to the boundaries.

1A function is said to be harmonic in a bounded domain 2 if it satisfies the Laplace equation,
and if it and its first two derivatives are continuous in 2.



Chapter 1: Introduction 5

The application of the Maximum-Minimum theorem in heat conduction equa-
tions agrees with the physical phenomenon, the second law of the thermodynamics?,
and this result makes sense in the view of the well-known fact that heat flows from
hot to cool. We discuss a time backward inverse problems of heat conduction equa-
tions. In general, the initial-boundary value problems for heat conduction equations
cannot be solved inversely in time (Hadamard, 1923; Zachmanoglou and Thoe, 1975;
Lamm, 1993; and Payne, 1993), because of the second law of thermodynamics, which
states that it is impossible for a self-acting machine unaided by an external agency
to move heat from one body to another at a higher temperature (Faires, 1970).
Through the Maximum-Minimum theorem of heat conduction equations, we know

in more detail that heat conduction is one-way in time, and also that heat conduction

is an irreversible process.

Problems of recovery temperatures or heat fluxes on the surface of a conducting
solid from temperature measurements made within the conducting solid are called
space boundary IHCPs. In this dissertation, we are mostly interested in this type

of inverse problems.

1.4 Relevant Literature

From the previous discussion, we know that direct problems have complete in-

formation in order to calculate the state of equations. However, inverse problems

2The second law of thermodynamics was formulated by R. Clausius in 1850.
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only know part of the information, and then calculate the missing information. Di-
rect heat conduction problems are well-posed; the solution of direct heat conduction
problems have existence, uniqueness, and stability with small changes of input data
(Hadamard, 1923). On the other hand, IHCPs are ill-posed in the sense that the so-
lutions do not necessarily satisfy the conditions of existence, uniqueness, and stabil-
ity with small changes of the given data. In the last three decades, IHCPs have been
widely investigated by many researchers, for example, Stolz (1960), Randall (1976),
Hsu et al. (1981), Katz and Rubinsky (1984), Beck et al. (1985), Kurpisz (1991),
Flach and Ozisik (1992), Murio (1993), and others. They have developed different
techniques and numerical schemes to solve IHCPs. Stolz (1960) presented a method
which has uniform initial temperature of the conducting body being quenched, and
solved this THCP by a linear superposition principle (Duhamel’s principle). Stotz
also pointed out that an improper selection of a time step for a given set of condi-
tions will cause an undesirable oscillation. Frank (1963) recommended fitting the
experimental data by the least squares method in solving IHCPs. A general the-
ory for determining the temperature and heat flux at the surface of a solid was
presented by Sparrow, et al. (1964). This theory can accommodate an arbitrarily
varying initial temperature distribution throughout the solid. An integral equation
presented by Deverall and Channapragada (1966) provides the recovery heat flux
in [HCPs. Alifanov (1975) examined possible formulations of the problems of de-

termining temperatures and heat fluxes at the boundary of a conducting solid from
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known temperatures within the solid.

Due to the property of ill-posed problems, no unique and stable solution, it is
obvious that [HCPs are sensitive to measurement errors (Hensel, 1991). In practical
applications, we may deal with noisy measurement data. Also, numerically solving
[HCPs will cause oscillations (Raynaud, 1986). Hills and Hensel (1936) presented
a stabilizer (i.e. digital filter) in an inversion solver through two interior sensors,
and showed the advantage of prefiltering to stabilize the results. Hills et al. (1986)
gave the estimate of the covariance matrix of the measurement outputs, and used an
adjoint formulation to solve the variance of the surface condition. When the missing
information of an inverse problem is constant or a function, we may use parameter
or function estimation to recover the unknown information (Beck, 1970, 1985; Hills
and Hensel, 1986; Alexandrou, et al. 1989; Maillet, et al. 1991; Neto and Ozisik,
1993; etc.). Flach and Ozisik (1992) presented an optimization of a very adaptive
sequential inverse heat conduction method for estimating time-dependent surface
conditions of a one-dimensional region with temperature dependent properties. Ra-
bin and Shitzer (1995) presented an analytic solution of the inverse Stefan problem
in biological tissues, based on the enthalpy method; this analytical solution can also
apply to non-biological materials by simply resetting the model. Sawaf and Ozisik
(1995) used an inverse method with an iterative procedure based on minimizing a
sum of squares function to estimate linearly temperature-dependent thermal con-

ductivity k(T) and specific heat capacity C(T) per unit volume for a conducting
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solid.

Up to the present time, few publications on IHCPs have directly used measure-
ment information and simultaneously imported it to the numerical scheme. Scarpa
and Milano (1995) used a Kalman Smoothing Technique in dealing with the tran-
sient state boundary heat flux, to smooth and reconstruct surface heat flux with
explicit forward or Crank-Nicolson difference schemes. Some useful textbooks by
Beck (1985), Hensel (1991), Murio (1993), and Alifanov (1994) have many examples
of how to handle the measurement error of inverse problems. Those books are gobd

reviews in the inverse engineering field.

Based on the above literature survey, there does not exist an easy on-line and real-
time monitoring inverse solver for space boundary inverse heat conduction problems.
Chen et al. (1996) propose a new on-line real-time filtering method for eliminating
the noise directly from the measurement data. Then these “post-clean” data are
utilized for the inverse solver to recover the boundary temperature and heat fluxes

on the surface.

It is also noted that all solvers mentioned above are based on multiple spatial
position measurement sensors to recover their results. In Chapter 7, we consider a
one-dimensional inverse Stefan problem by measuring one-sided transient tempera-
ture and heat flux to recover the temperature history and the melting front position
inside the body. A semi-explicit time marching finite difference scheme (Chen et al.,

1997b) is developed to recover the unknown temperature history and the melting
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front, with only one-sided temperature and heat flux boundary conditions. In order
to reduce errors caused by instability, here we also introduce a heat flux limiter to
damp the numerical oscillations. Numerical solutions with and without the heat
flux limiter are presented in comparison to an exact solution through N-Eicosene

paraffin wax.

1.5 Objectives of the Thesis

Inverse problems have many applications, for example, heat transfer processes as-
sociated with re-entry of space vehicles, temperature prediction of a combustion
chamber, determination of material thermophysical properties through temperature
functions, nondestructive evaluation (NDE) of material, determination of contact re-
sistance between two rough surfaces, and others. The objectives of this dissertation

are:

1. to find a new approach to solving IHCPs through a real-time filter to handle

noisy measurement data.
2. to develop an inversion solver insensitive to measurement errors.

3. to find an inversion solver which can reduce instability phenomena directly

from noise oscillation of the measurement.

4. to formulate a simple error-sensor-location prediction equation. This equation

can predict the recovery surface temperature error due to different sensor
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locations inside the conducting solid.
5. to compare numerical recovering results with experimental data.
6. to show the adaptation of an inversion solver to a real engineering problem.

7. to determine the temperature difference due to contact resistance between two

rough surfaces.

8. to apply one-sided boundary conditions to predict the interior temperature

profile and melting front.

1.6 Thesis Overview

The dissertation is organized in eight chapters as follows:

Chapter 1, the background and relevant literature on IHCPs.

Chapter 2, an inversion model for IHCPs.

Chapter 3, a Kalman Filter and its recovery solutions in THCPs.

Chapter 4, determination of boundary temperature errors in one-dimensional THCPs.
Chapter 5, the experimental work.

Chapter 6, reconstructing results from experimental measurement.
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Chapter 7, a finite difference inversion scheme with a heat flux limiter to solve a

one-dimensional inverse Stefan problem.

Chapter 8, conclusions and future work.



Chapter 2

Inversion Model for Inverse Heat

Conduction Problems

This chapter considers the inversion model as follows:

e The locations of the two interior temperature measurements are at positions

z = xr and T = xa, as shown in Figure 2.1.

o Temperatures and heat fluxes can be reconstructed on both sides of the bound-

aries at £ = x, = 0 and = = xn.

This numerical scheme (Chen, et al., 1996) will be stated in section 2.2.

2.1 Exact Solutions used for Testing IHCPs

To investigate the inversion error of the numerical solver, two exact heat conduction

solutions will be used, a semi-infinite solid (exact solution I) and a finite thickness

12
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wall (exact solution II), presented in the following sections.

2.1.1 Exact Solution I: A semi-infinite solid

The dimensionless system of equations for the semi-infinite solid containing a time-
dependent Dirichlet boundary condition at the boundary z = xo =0 is formulated

as follows:

ar o°T
5 " ox 1)
T(z,0)=0 (2.2)
T(0,%) = £(2) (2.3)
T(00,t) =0 (2.4)
The exact solution of the problem (Carslaw and Jaeger, 1959) is:

2 R z? 2

- = 2 N\
T(z,t) = = /2,7 At = pg)e™ du (2.5)

The semi-infinite heat conduction equation with exact solution is used for in-
vestigating the recovering results of the IHCP. In this exact model, we address the
problem of the conducting solid with two interior sensors. The temperatures of the

sensor measurements at point z = xz (left hand sensor) and at point z = xum (right
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hand sensor) are known (Figure 2.1). Take the temperature data at the measure-
ment sensor positions, £ = xr and z = X, from equation (2.5) of the exact solution,
as the input of the time marching finite difference scheme. Then, the nﬁmerical re-
covery results are compared with the exact solutions which are at the left boundary
(z = x, = 0) and at the right computational domain boundary (z = xnv =1) of the

semi-infinite solid.
2.1.2 Exact Solution II: A finite thickness wall

The dimensionless system of equations for a wall having finite thickness /, containing
Neumann boundary conditions at both sides, i.e. a zero heat flux at z = xo = 0

and a time-dependent heat flux at z = xn =/, is described as follows:

aT 9*T

T(z,0) = 0 (2.7)
aT(0,) _

s =0 (2.8)
aTa(i, D _ 40 (2.9)

The exact solution of the problem (Hills, et al., 1986) is:
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T(z,t) = Exlq(t) — q(t) 252, SH-cos(mz) + Hho'a(r)dr
(2.10)

+252, (-1 K'a(T) e~#"(t=") drcos(ux )

where

km

BE= T (2.11)

The heat conduction equation with exact solution is used to compare the output
surface heat fluxes of the IHCP simulation results. With the two fixed sensor loca-
tions, the temperatures of the sensor measurements at point = = xr, (one-third of
the length of the test specimen) and at point z = Xum (two-thirds of the length of the
test specimen) are known (see Figure 2.1). The heat fluxes at the left hand bound-
ary (z = 0) and at the right hand boundary (z = xn = 1.2) can be determined by

the numerical scheme of the IHCP.

2.2 Numerical scheme of the ITHCP

The time-marching finite difference scheme can be divided into two classes: the
explicit scheme, which involves only one unknown grid point at the advanced time
level (n + 1)At, and the implicit scheme, which involves more than one unknown

grid point at the advanced time level (n + 1)AL.

An unconditionally stable fully implicit finite difference scheme of dimensionless

heat conduction equations (2.1) or (2.6) can be written in the form:
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Ut = T (2.12)

Where U is a matrix with forward and backward shift operators S; and S_. For

example, the finite difference scheme equation (2.12) is

—ATEE 4+ (L+20TPH - ATP = 17 (2.13)

where A is equal to (—A—T; By using shift operators S; and S_, equation (2. 13)

becomes

CASL TP (1 4+ 20T — AS_TPH = T (2.14)

or
(=AS+ + (1 +2)) = AS_ )Tt =TT (2.15)
where T7 are the elements of matrix .

Applying the left hand boundary heat flux ¢2+! at the (n + 1)At time level to

the finite difference scheme, equation (2.13), gives

(14 X)) TP = AT + Mgt =T (2.16)

Similarly, applying the right hand boundary heat flux gx; n+l at the (n+1)At time

level to the finite difference scheme yields

(14 A)To+ —ATEH = MAzgitt = Th (2.17)
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The corresponding temperatures of the two sensors at points £ = xr and z = xu
(as shown in Figure 2.1) at the (n+1)At timelevel, T7+" and T3, are known. The
unknown heat fluxes at both boundaries, ¢! and gi'', can be substituted into the
positions of the elements TPt and T, respectively, in matrix T™*! of equation
(2.12). The two unknown boundary heat flux coefficients, +AAz for ¢t and —A\Az
for git!, can then be substituted into the corresponding element positions in the
U matrix of equation (2.12). Then the two known sensor measured temperatures,

TP+ and T2, can be put into the positions of elements T7 and T7y, respectively,
L M p L M

in matrix T™ of equation (2.12).

Matrix U of equation (2.12) is expressed as,

S 142 =2 0 .. [} 0 AAzx 0 0 s [s} [« BN

-2 1422 0
-2 0 -A
0 1422 =X

=2 142X 1]
-2 0 -
0 142X -2
L. 0 0 o —AAzx e —-A 142A

(2.18)

The unknown matrix T™*! of equation (2.12) can be written as:
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Tn+1 —

n+1
13

n+1
i
1
ot

Tth

n+1
Ty
n+l
aN

n+1
TM +1

n+1
Tx

L

Matrix T™ of equation (2.12) has the form:

-

I 54
Tp_,+ATLH
TP — (2) +1)T7H!
TP, +ATE

T _+XTy™
T3 — (2X + )T
Tiper + ATh

&

-

18

(2.19)

(2.20)

Then, the unknown matrix I™** (including boundary temperatures and bound-

ary heat fluxes at both sides) can be solved by this implicit time marching scheme.
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2.3 Stability Analysis

For a time-marching scheme, a proper time step size must be chosen to account for
the numerical accuracy and stability. A weighted Euler scheme is considered, so

that equation (2.1) or (2.6) can be rewritten as

I}n+-1 — :Z’in 6 n+l1 (1 — 0) 2 n
RN A vt (221)
where
5T = TR — 2T+ + TR (2.22)

The temperature function is expanded in a Fourier series, such that

N-1
T(z,t) = E Ak(t)ei“"z (2.23)
k=—(N-1)

where the discrete numerical approximation has the coefficients Ax(%).
The definition of g in equation (2.23) is shown in equation (2.11).

The amplification factor is defined by:

_ A k(tn+1)
= @) (2.24)

which can be obtained by substituting equation (2.23) into equation (2.21) as

follows:
—1 4+ 4A(1 — 8)sin?(urSE

; 2.25
1+ 4)0sin?(upSE (2.25)

g:
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The numerical stability requires that |g| < 1. Then the stability condition is:

A1 —26)<0.5 (2.26)

The constraint equation (2.26) implies that the explicit scheme (i.e. § = 0) has
a stability bound of A < 0.5. However, if the scheme has the value of # > 0.5, it is
unconditionally stable. The finite difference scheme of equation (2.12) with § = 1 is

a fully implicit and unconditionally stable scheme.

2.4 Numerical Experiments

Numerical experiments are divided into two parts as follows:
(1) Error percentage in Dirichlet boundary conditions

We consider the Dirichlet boundary temperature function f(t) in equation (2.3)

as a linear function

f(t) =50t (2.27)

Use equation (2.27) as the recovery temperature boundary at left hand boundary
z = xo, = 0, and consider the locations of the two temperature sensors at z = 0.2
and £ = 0.4 in the dimensionless scale for the numerical simulation. The values of
the temperature errors at the left hand boundary (z = xo = 0) and at the right
hand boundary of the computational domain (z = xn = 1) are determined to be

0.374% and 2.62% respectively.
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(2) Recovery of surface heat fluxes

To test the stability of the numerical scheme, the exact solution‘ of the finite
thickness wall problem, equation (2.10), with a nonlinear step function of heat flux
q(t) in equation (2.9) at the right hand boundary z = xny = 1.2 is used. If this step
function can be recovered well, then certainly other kinds of continuous functions
of the heat flux could be recovered better. For the simulation, the temperatures of
the sensor positions at z = xz = 0.4 and £ = xu = 0.8 are taken from the exact
solution, equation (2.10). With the mesh size Az = 0.1,At = 0.1 and the mesh
size Az = 0.05, At = 0.05, the surface heat fluxes at z = 0 and z = xy = 1.2 are
calculated as shown in Figures 2.2 and 2.3, respectively. Both of the recovered heat

fluxes are close to the exact heat fluxes.

2.5 Summary

The implicit time marching finite difference scheme in this chapter for recovering
the time history of boundary temperature and heat fluxes is in good agreement for

inversion.
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inverse region ) direct region inverse region
|

i |
0 X, Xp Xn

X, , Xy ‘temperature sensor locations

Unknown conditions: Known conditions:
Q1) =2, Q(XN , )=? T(th) = known
T(O,t) =7, TXy . 1)=? TX,pt) = known

Figure 2.1: One-dimensional inverse heat conduction problem
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1.5 — Exact solution
- ®  Recovery solution (Ax=0.1, At=0.1)
©  Recovery solution (Ax=0.05, At=0.05)

2 1.0
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Figure 2.2: Comparison of the exact heat flux and recovered heat flux at the bound-
ary,z =0
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Exact solution
1.5 - ® Recovery solution (Ax=0.1, At=0.1)
o® o Recovery solution (Ax=0.05, At=0.05)
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Figure 2.3: Comparison of the exact heat flux and recovered heat flux at the bound-
ary, z=101=1.2
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Kalman Filter and Its Recovery
Results

3.1 Background

In order to obtain an accurate recovery boundary temperature or heat flux, it is
necessary to determine and to reduce the errors caused by the temperature mea-
surements. A Kalman Filter is a good method for handling the random noise directly
from the real-time measurement. Because a Kalman Filter is a real-time filter, the
inversion solver can combine a Kalman Filter to invert a real-time IHCP. In this
chapter, a model of [HCPs is formulated by imposing random noise on an exact so-
lution of a one-dimensional heat conduction problem. A “real-time” Kalman Filter
(Sorenson, 1966) for stabilizing noisy measurement data is used with a finite differ-
ence scheme to recover the temperature or heat flux on the surface of the conducting

body.

25
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3.2 Kalman Filter for Measured Temperature Val-

ues

Random noise exists in any experimental measurement, and should be eliminated
for data analysis. There are many kinds of teéhn.iques which can estimate data
from experiments, such as Least Square Estimator, Maximum Likelihood Estima-
tor, Kalman Filter, etc. The Kalman Filter is a real-time estimator, which needs
only the one previous data point at time nAt to predict the following data point at
time (n + 1)At. In this chapter, the Kalman Filter is used to estimate the measure-
ment temperature data from the sensor output. The following is the Kalman Filter

method specifically used for the present inverse problem.

For temperature measurement, it is assumed that at each time t**t1, there are
measurement values, y"*!, available, and that the measured values are linearly re-
lated to the state vector (the true temperature matrix, 2"*!), and the additive white

noise, v"*'. Then

yn+1 _ _C_n-{-lg-n-{-l + Qn-{»-l (31)

Where C™*! is a known observation matrix. In the present paper, C™t' is presented

by:

c+i=[1 0] (3.2)
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The temperature variation at a fixed position may be represented by a second-order

time derivative, and a state vector introduced as follows:

2T
—c-it—z = a(t)
Zl(t)
28 = [Zz(t)]
where
z1(t) = T(3)

Equation (3.3) can then be written in the form:

-0 Juoe )

The solution of z(¢) is obtained by:

!t—‘r!2 ]

z(t) = A(t, ) 2(7) + a(t) [(t i )

Where, A is the state transition matrix as follows:

A—"
0 1

(3.3)

(3.4)

(3.5)

(3.6)

3.7)

(3.8)

(3.9)
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Equation (3.8) can be presented by the following two equations:

z1(t) = z1(7) + (t —1)z2(T) + a—(;l(t — 'r)2
zo(t) = z2(7) + a(t)(t - T)

For numerical calculation, let

t=(n+1)At, T=nAt

Then equation (3.8) becomes

et

28

(3.10)

(3.11)

(3.12)

(3.13)

Equation (3.13) is the difference equation representing the matrix system of the true

temperature and the rate of change of the temperature.

The Kalman Filter contains the following parts (Sorenson, 1966):

(i) Compute Kalman gain G™*':

-G_n+1 — £1n+10n+1T[ Qm+1P1n+lcm.+1T + _@n+1]—l

where R™! is related to the expected value

Rl = E [vn+l, Un+1T]

(3.14)

(3.15)
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and

P,"H = Amtipn gmht (3.16)

(i1) Compute error covariance matrix prtl;

_P_ﬂ+1 — £1n+1 _Q‘n-{-l Q_ﬂ+1£1ﬂ+1 (3.17)

(iii) Update estimate with measurement y™+! (the filtering results of the Kalman

Filter):

§n+1 — ./_1n+1§.n + _G-n+1[gn+1 __Qn+l Aﬂ+1§n] (318)

3.3 Numerical Experiments

The calculation procedures combining the Kalman Filter and the time marching

implicit finite difference scheme are as follows (Chen et al., 1996):

- Step 1: Smoothing the noisy data of the temperature sensor output from the
measurement points at £ = xr and z = xa by the Kalman Filter at the

(n + 1)At time level.

- Step 2: Recovering the surface temperature or heat flux at the (n + 1)At time

level by using the inversion time marching implicit finite difference solver with
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the temperature filtering data treated in step 1.

We consider the Dirichlet boundary temperature function f(t) at z = 0 in equa-

tion (2.3) as a quadratic function

f(t) = 0.21¢? (3.19)

The method of the Kalman Filter, described in equations (3.1)-(3.18), is used to
eliminate the random noise which is generated by adding random noise of +12.5%
of the data obtained from the exact solution. Figures 3.1 and 3.3 show the exact
solutions with noisy data at positions = = xz and z = xu respectively. Figures 3.2
and 3.4 show the results of the temperature time histories obtained by the Kalman
Filter, which are very close to the exact solutions with maximum errors of 3.6%
and 3.65%, at positions z = xr and z = xa respectively. Figure 3.5 shows three
temperature results with and without Kalman Filter simulation solution (dot points
and plus points respectively), and the exact solution (full line) at the dimensionless
time ¢ = 100 (the maximum error percentages are 1.9% and 20.8% respectively).
Figures 3.6 and 3.7 show the three results of the time history of the recovery heat
fluxes on the left and right hand boundaries respectively: the exact solution (full
line), the simulation with Kalman Filter (dot points), and the simulation without
Kalman Filter (plus points). It can be seen that the solutions of the noisy data
simulation without using the Kalman Filter oscillate further away from the exact

solution, and may diverge away from the exact solution.
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3.4 Summary

The Kalman Filter used in this chapter is a real-time prefilter. It smooths the
temperature noise in a real-time way. The smoothed data are used in the inversion
solver to prevent the instability caused by the random mnoise of the measurement

temperature inside the conducting solid.
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Figure 3.2: Comparison of the exact temperature and Kalman Filtering result at

point L
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Figure 3.3: Comparison of the exact temperature and noisy data st point M
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Figure 3.4: Comparison of the exact temperature and Kalman Filtering result at

point M
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Figure 3.5: Comparison of exact, with and without Kalman Filtering recovering
results at dimensionless time ¢ = 100
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Figure 3.6: Comparison of three time histories of the recovery heat flux at the left
bhand boundary z =0
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Chapter 4

Determination of Boundary
Temperature Recovery Errors in
One-dimensional Inverse Heat

Conduction Problems

4.1 Introduction

Errors in temperature recovery at boundaries caused by variation of the locations of
two temperature sensors in a one-dimensional IHCP have been investigated by using
a time marching implicit finite difference scheme. Numerical simulation results of
selected functions indicate that errors of the reconstruction temperature at each
boundary may be expressed by a simple relation (Chen et al., 1997a). Each relation
contains an unknown coefficient, which can be determined by using one numerical

simulation through the inversion solver of a pair of specified sensor locations. This

39
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relation can then be used for estimating the other recovery errors at the boundary

without using the inversion solver.

In order to have a reliable estimate of the temperature on the surface, errors
caused by the locations of interior temperature sensors shall be investigated. This
chapter considers a one-dimensional THCP in dimensionless form, which is solved
by using the time marching implicit finite difference scheme shown in Section 2.2,
and investigates the errors caused by the variation of two interior sensor locations.
Simple error relations have been established from the numerical results of selected
boundary functions for estimating the errors of reconstruction temperatures at the

both side boundaries .

4.2 An Exact Solution used for Error Prediction

of IHCP

In this section, we use exact solution I shown in Section 2.1.1, a problem of a
conducting solid with two interior temperature sensors located at points z = xr
(left hand sensor) and z = xa (right hand sensor) as shown in figure 2.1. The
solid has two dimensionless specified surfaces at z = 0 and z = xy = 1. These two
sensors are movable between z = 0 and z = xy = 1 (the left hand boundary and

the right hand boundary of the computational domain respectively).

The IHCP considered in this chapter is shown in figure 2.1. It is assumed that
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the temperature data at the two interior sensor locations z = xr and = = xum are
taken from equation (2.5). The inverse problem is to find the unknown time histories
of the temperatures and heat fluxes at the left hand boundary of the solid z = 0
and at the right hand boundary of the computational domain z = xny = 1. The
numerical reconstruction results at £ =0 and z = xn = 1 are then compared with
those of the exact solution, equation (2.5), to obtain the error percentages at z =0

and z = xyn = 1 caused by the change of the sensor locations.

4.3 Numerical Experiments

A fully implicit finite difference scheme of equations (2.12)-(2.20) will be used in
numerical simulation to indicate that the error of the reconstruction temperature
at the left and right hand boundaries, which can be simplified by the following

relations:
e At the left hand boundary, z =0,
ora(%) = ALg - XL - XM (4.1)
e At the right hand boundary of the computational domain, z = 1,

oru(%) = Arg - (1 —xz) - (1 — XM) (4.2)

where

O<xr<xm<l1 (4.3)
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The coefficients Ar g and Arg can be determined by using one numerical simulation
of a pair of specified sensor locations at z = x} and £ = x}s to obtain oz and ogy-
Due to the ill-posed condition of the inverse problem, the distance between the two
sensor locations at £ = x} and z = X}, should be taken as far apart as possible
(Hensel, 1991). In the present study, the distance between the two sensor locations

should not be closer than 0.05 in dimensionless scale, i.e. |x7 — X3l = 0.05.

The coefficients, Ay and Agrg, can then be determined from equations (4.1)-

(4.2) as follows:

(o)
Arw = —ZLE | (4.4)
XL XM
Arg = TRH (4.5)

(1 =xz)- (1 —xh)
To confirm the error relations presented in equations (4.1)-(4.2), the following four

temperature functions for the boundary condition f(t) appearing in equation (2.3)

will be used.

- Case 1: A linear function (a; > 0)
f(t)=ait (4.6)
- Case 2: A quadratic function (b; > 0,52 > 0)
F(t) = byt + bat? (4.7)
- Case 3: An exponential function (¢; > 0,c; > 0)

ft) = cre™ (4.8)
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- Case 4: A periodic function (d; > 0,d; > 0,w > 0)

f(t) = d1 + dasin(w - t) (4.9)

To determined the coefficients ALy and Agg, numerical values of ai, b1, b2, ¢,
¢z, di, dz, and w appearing in equations (4.6) to (4.9) must be fixed. With mesh
size Az = 0.05, At = 0.05, the selected parameter values of the functions and the
calculated results of 6} , ohy » ALg, Arm, and two specified sensor locations are

summarized as follows:

- Case 1: A linear function

@1 =50 ; xi=0.35 ; ofgy=1.070 ; Aprg=4.703
Xir=0.65 ohy=1218 Apg=5.354

The recovery errors at the left and right hand boundaries, from equations

(4.1) and (4.2), are:
ora(%) =4.703 - xr - xm (4.10)
(%) = 5.354 - (1= xz) - (1 x) (4.11)

- Case 2: A quadratic function

by=50 ; x3=035 ; oiy=1373 ; Arg =6.035
by=2 X =065 ohy=1563 Agrg=6.870

The recovery errors at the left and right hand boundaries, from equations

(4.1) and (4.2), are:

orua(%) =6.035 - xL - xm (4.12)
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orer(%) = 6.870- (1 — xz) - (1 — xa) (4.13)

- Case 3: An exponential function

c1=50 ; x31=035 ; opg=2649 ; Arg=11.644
c2=2 X3 = 0.65 ory = 3.015 Arg = 13.252

The recovery errors at the left and right hand side boundaries, from equations

(4.1) and (4.2), are:
ora(%) = 11.644 - xz - Xar  (4.14)
ora(%) = 13.252 - (1 —xz) - (1 — xm) (4.15)

- Case 4: A periodic function

dy =150 ; x3 =035 ; ofg=2868 ; ALy =12.606
dy =40 X = 0.65 Cry = 3.264 Apy = 14.347
w=25

The recovery errors at the left and right hand side boundaries, from equations

(4.1) and (4.2), are:
ora(%) =12.606 - xL - XM (4.16)
ora(%) = 14.347 - (1 — xz) - (1 — xM) (4.17)

Figures 4.1, 4.3, 4.5, and 4.7 show the errors in temperature recovery at the
left hand boundary, z = x, = 0, as a function of the right hand sensor location
with the left hand sensor location as a parameter for cases 1 to 4, respectively.

Similarly, Figures 4.2, 4.4, 4.6, and 4.8 show the errors in temperature recovery
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at the right hand boundary, z = xnx = 1, as a function of the right hand
sensor location with the left hand sensor location as a parameter for cases 1 to
4, respectively. The symbols and lines appearing in Figures 4.1 to 4.8 are the
values calculated by the inverse solver presented in section 3, and by simplified
relations, equations (4.10) to (4.17), respectively. The differences between the
results obtained from the simplified relations, equations (4.10) to (4.17), and
the results calculated by the inversion solver are very small, within a relative

error of 0.5%.

4.4 Summary

From numerical calculations the following conclusions can be drawn:

1. The errors of the reconstruction temperature at the left and right hand bound-
aries, caused by the variation of the two sensors located in 0 < xr < xm <1
of a one-dimensional [HCP, can be approximately determined by the simple

relations, (4.1) and (4.2), respectively.

2. Equations (4.1) and (4.2) are confirmed by the selected four temperature func-
tions, equations (4.6) to (4.9). The characteristics of the errors of the recon-

struction temperatures are summarized by the numerical simulation as follows:

- Case 1, the linear function, equation (4.6):

Equations (4.10) and (4.11) are available for any positive value of a;.
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- Cases 2 and 3, the quadratic and exponential functions, equations (4.7) and
(4.8), respectively:

For cases 2 and 3, the larger the temperature slope, %ﬂ, at z = 0, the

larger are the errors of the reconstruction temperatures at the both side

boundaries.
- Case 4, the periodic function, equation (4.9):

For a given value of w in the range of 0 < w < 5 in equation (4.9), the
larger is the ratio of 5;3;, the larger are the errors of the reconstruction

temperatures at the both side boundaries.

3. The numerical simulation results show that the effect of time on the temper-

ature recovery error is negligibly small.
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Figure 4.1: Temperature recovery error at the L.H. boundary as a function of the
R.H. sensor location for case 1 with the L.H. sensor location as parameter.
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Figure 4.2: Temperature recovery error at the R.H. boundary as a function of the
R.H. sensor location for case 1 with the L.H. sensor location as parameter.
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Figure 4.3: Temperature recovery error at the L.H. boundary as a function of the
R.H. sensor location for case 2 with the L.H. sensor location as parameter.



Chapter 4: Determination of Boundary Temperature Recovery Errors 50

5
o
4 -
(=)
S
o o L.H.sensorat0.1
g L.H. sensor at 0.1 \ e
g o L H.sensorat02 AN
'Tg 9 4 | — — LH.seasorat02
e o L.H.sensorat03
g — — L.H.sensorat0.3
= » LH sensorat04
1 4 | ——— L.H.sensorat04
a L.H.sensorat0.5
-—----- L.H. sensor at 0.5
a L.H. sensorat0.6
0 - | —— L.H.sensorat0.6
o L.H.sensorat0.7
—-— L.H. sensor at 0.7 .
T T T T T T T T T

00 01 02 03 04 05 06 07 08 09 1.0

R.H. sensor location (in dimensionless scale)

Figure 4.4: Temperature recovery error at the R.H. boundary as a function of the
R.H. sensor location for case 2 with the L.H. sensor location as parameter.
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Figure 4.5: Temperature recovery error at the L.H. boundary as a function of the

R.H. sensor location for case 3 with the L.H. sensor location as parameter.
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Figure 4.6: Temperature recovery error at the R.H. boundary as a function of the
R.H. sensor location for case 3 with the L.H. sensor location as parameter.
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Figure 4.7: Temperature recovery error at the L.H. boundary as a function of the

R.H. sensor location for case 4 with the L.H. sensor location as parameter.
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Figure 4.8: Temperature recovery error at the R.H. boundary as a function of the

R.H. sensor location for case 4 with the L.H. sensor location as parameter.



Chapter 5

Experimental Work

In parallel to the foregoing inversion solver to recover surface temperatures and heat
fluxes, the inversion model has also been studied experimentally. The experimental

work is presented in this chapter.

5.1 Experimental Objectives

Experiments will validate the theory and numerical solver which has been devel-
oped for the space boundary IHCP in the foregoing chapter. For this purpose,
a one-dimensional heat conduction experiment with thermocouple monitoring the
temperature profile is designed in order to compare with the numerical recovery re-
sults. Through the temperatures from the interior measurement sensors, we recover
the boundary temperatures and heat fluxes, and compare with the experimental

results at the both side boundaries. The objectives of the present experiments are
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as follows:

1. to reconstruct the boundary conditions by inversion solver;
2. to compare the error of the recovery results with experimental data; and

3. to establish an application of a boundary inverse heat conduction problem,

and to determine the adaptivity and flexibility of the present inversion solver.

5.2 Experimental Setup

Figure 5.1 shows the experimental apparatus (Lin and Chen, 1996, 1997) which
simulates the temperature profile of a furnace wall made of two bricks connected
longitudinally. This apparatus can be separated into three major parts: metal
box, radiation heater and data acquisition system. The metal box, mounted on an
aluminum cross-beam base, can contain two bricks. An insulation material is used

around the outside of the two bricks to form a one-dimensional heat flux process.

The two bricks in the metal box are heated by a radiation heater (figure 5.2)
located on the left hand side of the test apparatus in figure 5.1. This radiation
heater can heat up to 700°C. The temperature of the brick located close to the
heater (i.e. left hand side of the test apparatus in figure 5.1) is higher than that of
the other brick (i.e. right hand side of the test apparatus). Ten copper-constantan
thermocouples (figures 5.3 and 5.4) monitor the temperature profile along the test

bricks in the metal box. The temperature at the heating surface of the test brick
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is controlled by a temperature controller which can provide a desired temperature.
Each temperature signal obtained from these ten thermocouples is recorded by the

data acquisition system (figures 5.5, 5.6).

5.3 Tasks of the Experiment

The experiments are designed to compare accuracy of the recovery results and the
temperature drop between two contacting bricks with the boundary inversion solver

developed in section 2.2. The experimental tasks are defined as follows:
- Task 1: Single brick experiment, to test the accuracy of the recovery results by
the inversion solver at the boundary.
- Task 2: Two bricks experiment, to reconstruct the temperature drop between

two roughness interface surfaces.

The experimental conditions are shown in Table 5.1, where test runs 1, 3, and

4 are for Task 1, and test runs 2 and 5 are for Task 2.
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Run | Test bricks | Effective region Surface temperature | Heating time
1 one 4.76 cm — 27.7 cm | 23 °C — 250 °C 149 mins

2 two 4.76 cm = 73.2 cm | 23 °C — 317 °C 346 mins

3 one 4.76 cm — 27.7 cm | 350 °C — 400 °C 72 mins

4 one 4.76 cm — 27.7 cm | 350 °C — 410 °C 140 mins

5 two 476 cm — 73.2 cm | 28 °C — 350 °C 170 mins

Table 5.1: Summary of experimental conditions
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-

Data Acquisition Syv=tem

Figure 5.1: Experimental setup
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Figure 5.2: Radiation heater
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Figure 5.3: Ten copper constantan thermocouples
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Figure 5.4: Thermocouple setup
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Figure 5.5: Data acquisition system
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Figure 5.6: Breakdown of the data acquisition system
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Chapter 6

Recovery Results of Experiments

In this chapter, boundary reconstruction temperatures will be validated with ex-
perimental data. First, we compare the reconstruction surface temperature through
the inversion solver (Chen et al., 1996) described in Section 2.2 with the recorded
temperature data of the one brick experiment. Second, the temperatures of the two
contiguous boundary surfaces of two contact bricks are recovered by the inversion
procedures, and the temperature drop due to the thermal contact resistance between
the two bricks can be obtained through the recovery results of the two contiguous
surfaces. Errors of the reconstruction temperatures of each sensor location will be

demonstrated in the following sections.
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6.1 One-brick Boundary Recovery Temperature

The experimental thermocouple setup is shown in figure 5.4. Here we present a real
space IHCP by using the inversion solver described in Section 2.2 to reconstruct
the boundary temperatures. For the one-brick case (i.e. inside brick #1 region),
we choose the computation domain shown in figure 6.1. Use T3 and TS tempera-
ture measurement data to recover left hand and right hand boundary temperatures
(i.e. T2 and T6 respectively). Because we have temperature measurements at po-
sitions T2 and T6, we can compare the recovery boundary temperatures with the

experimental results to obtain the temperature recovery errors.

For the numerical calculation, the following data will be chosen:

1. Dimensions of the brick: 38cm x 7.6cm x 15.1cmn

2. Computational domain starts from thermocouple T2 position (left boundary)
to T6 position (right boundary). Total computational domain is 22.94cm (i.e.

4.76cm to 27.70cm from heating surface).
3. Az =1.147em
4. At = 0.1sec
5. Specific heat of the experiment brick, ¢, = 0.88kJ/kg -° C

6. Brick density p = 2867kg/m?
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7. Thermal conductivity of the brick is shown in figure 6.2.

8. Experimental test condition is taken as the test run 1 indicated in Table 5.1

which is selected for numerical reconstruction.

9. Initial temperature for starting the inverse process is interpolated from the
thermocouples’ output in the experiment at the test time £ = 64.32 min by the

cubic spline method and is shown in figure 6.3.

Use the thermal conductivity of the brick as a temperature function to recover
the temperature results. Figure 6.4 describes the recovered temperature results
at the right and left hand boundaries in comparison with the experimental data,
and the recovery errors are shown in figure 6.5. The recovery temperature in the
computational domain is shown in figure 6.6 at ¢ = 400sec. From these figures, it
is shown that the results of the reconstruction temperatures are very close to the

experimental data. The relative errors between them are within 2.0%.
6.2 Recovery Temperature Drop Due to Thermal
Resistance

6.2.1 Background

Since there is no actual perfectly smooth surface, the interface between two solid -

surfaces should consist of a resistance to heat flow and a temperature drop (AT)
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when two surfaces fit tightly together. This kind of interface resistance between
two surfaces is called contact resistance. The determination of contact resistance
is interesting because many industrial thermal systems or furnace insulations have
components like bolted and riveted joints, connectors, hinges, brick connection, etc.
The field of thermal contact resistance has been widely investigated by numerous
researchers, for examples, Clausing and Chao (1965), Forslund and Oliveira (1975),
Thomas (1975), Yovanovich et al. (1976), Ozisik (1977), Wang (1981), Mikic (1982),
Shai and Santa (1982), and Kreith and Bohn (1986) etc. For solving the thermal
resistance problem, various models have been utilized by researchers for theoretical
and experimental prediction of the temperature difference between two contacting

surfaces. Most of these results are based on the steady state heat flow condition.

In this section, we use a space boundary inversion scheme (Chen et al., 1996) to
predict the two interface temperatures. The transient non-stationary temperature

drop (AT) between the two surfaces can be determined.

6.2.2 Numerical Recovery Results

The experimental thermocouple setup is shown in figure 5.4. Here we present an
inversion scheme (Chen et al., 1996) to reconstruct the temperatures at the both
sides of the contiguous surfaces between two bricks. For the region of bricks #1
and #2, we choose the computation domain as shown in figure 6.7. Using the

thermocouples T5 and T6 inside brick #1, and T8, T9 inside brick #2, we recover
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the interface surface temperatures on brick #1’s right hand side and brick #2’s left

hand side. The interface temperature drop (AT) can then be obtained.

For the numerical calculation, the following data are chosen:

1. Dimensions of two bricks: 76cm x 7.6cm x 15.1em

2. There are two inversion computational domains as follows,

e For brick #1, start from thermocouple T2 position to the end of the right
hand side of the brick. Total computational domain is 33.24 cm (i.e. 4.76

cm to 38.00 cm from the heating surface).

e For brick #2, start from the left hand side of brick #2 to the position
33.24 cm from the beginning of brick #2. Total computational domain

is 33.24 cm (i.e. 38 cm to 71.24 cm from the heating surface).

3. Az =1.662 cm

4. At = 0.1 sec

5. Specific heat of the bricks, ¢, & O.SSkJ kg -°C

6. Brick density p = 286Tkg/m?

7. Thermal conductivity of the brick is shown in figure 6.2.

8. Experimental test condition is taken as the test run 2 indicated in Table 5.1,

which is selected for numerical reconstruction.
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9. Initial temperatures of the two bricks for starting the inverse process are in-
terpolated from the thermocouples’ output in the experiment at the test time

t = 121.84 min by the cubic spline method.

The calculation procedures for the temperature drop recovering simulation are

as follows,

1. Reconstruct the left and right boundary temperatures in brick #1 through

TS5, T6 temperature measurements.

2. Reconstruct the left and right boundary temperatures in brick #2 through

T8, T9 temperature measurements.

3. The temperature difference between the right boundary temperature in brick
#1 and the left boundary temperature in brick #2 is the temperature drop

(AT) between the two contact bricks due to thermal resistance.

Figure 6.8 shows the temperature recovery results of bricks #1 and #2 in com-
parison with the experimental data at ¢ = 400sec. Figure 6.9 shows the errors of
the recovery temperatures in comparison with the experimental data obtained by
the thermocouples T2, T3, T4 and T7 respectively. Figure 6.10 shows the time
variation of the recovering temperature drop (AT) between the two contact bricks.
At the time ¢ = 400sec, the recovering temperature drop (AT) is about 10°C as

shown also in figure 6.8.
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6.3 Summary

The inversion solver developed can reconstruct well the unknown boundary tem-
peratures of the experimental heating single brick. This inversion solver can also

predict the thermal contact resistance between the two contact bricks.



Chapter 6: Recovery Results of Experiments 72
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22.94cm

Inverse model:

- Two interior measurement temperatures (T3, T5)

- Recover unknown boundaries at positions T2 and T6, then compare
the recovered boundary temperatures with the experimental monitoring

results at positions T2 and T6
Mesh size:
-Ax=1.147cm
-At= 0.1 sec

Figure 6.1: Computational domain for the single-brick experiment
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Figure 6.2: Thermal conductivity of the brick (manufacturer’s data)
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Figure 6.3: Initial condition for numerical simulation
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Inverse model:

- Two interior measurement temperatures (T5, T6) in Brick #1
and (T8, T9) in Brick #2, respectively

- Recover two unknown boundary temperatures in Bricks #1 and
#2, respectively

- Obtain temperature drop (AT) from Brick #1 RHS and Brick #2
LHS boundary temperatures

Mesh size:
- AX=1.662cm
-At= 0.1 sec

Figure 6.7: Computational domain for the two-brick experiment
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Chapter 7

A Flux Limiter Finite Difference

Scheme in Solving a
One-Dimensional Inverse Stefan
Problem

7.1 Introduction

This chapter presents an enthalpy formulation of a finite difference scheme for solv-
ing an inverse Stefan problem in one space variable. When measurements cannot
access the inside of the intended test domain, experimental information may be
taken only from one side of the surface. The current inversion procédure considers
one side surface boundary conditions (i.e. both the surface temperature and the
heat flux at one side of the boundary) to recover the unknown interior tempera-

ture history and the melting front position. A semi-explicit time marching finite
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difference scheme with a heat flux limiter (Chen et al., 1997b) is used to handle the
recovered temperature oscillation caused by the ill-posedness of the inverse problem,
and to accelerate the rate of convergence. Numerical solution with and without the

heat flux limiter are presented in comparison with an exact solution.

7.2 Mathematical Model of a Stefan Problem

Mathematical models of melting problems can be classified into two categories: the
two-region approach and the single-region approach. In the two-region approach,
the energy equation is separated for the solid and liquid phases. Each phase has its
own governing equations, with the continuity of temperature and moving boundary
conditions at the solid-liquid interface. In the single-region approach, the energy
equation is modified and applied to both the solid and liquid regions. In this chap-
ter an enthalpy method is used, neglecting the surface kinetics, the crystallization
process at the interface, and the change in density across the moving phase front.

The one-dimensional Stefan problem of melting a pure substance is defined as follows

(Crank, 1984):

In the liquid region:

oT, d o1,
p[(T)Cz(T)a—tl = —a; (k((T)—a-z—:) ,t>0,0<z< :L‘me[t(t) (7.1)

In the solid region:
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oT, 0 a7,
ps(T)es(T) 5 = 5 (k’(T)a—z) 8> 0,Zmee(t) <z < d (7.2)
At the melting interface:
T'l(zmelt(t)y t) = Ts(xmelt(t)a t) = Tmelt (7-3)

With the Stefan condition (moving boundary condition):

dzmelt(t)

o 0> 0,2 = Tmen(t) (7.4)

(N2 =o(T)L

Let H(T) denote an enthalpy function with temperature variation; the enthalpy

function (Crank, 1984) can be written as
T
H(T) = [ p(T) (L) + (T = Tone)) dT (7.5)
where T, < T .

The “weak” enthalpy formulation (Date, 1991) can be defined as follows:

= (}F) (7.6)

Equation (7.6) or (7.7) automatically satisfies equations (7.1) to (7.4).

From equation (7.5), an apparent heat capacity is defined as follows:

aH(T)

CA(T) = = p(T) ((T) + LS(T = Trmetr)) (7.8)
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Substituting equation (7.8) into equation (7.7) gives

CA(T)%T = -3% (k(T)g—:) (7.9)

7.3 One-dimensional Inverse Stefan Problem

The inverse Stefan problem considered in this chapter is shown in Figure 7.1. It
is assumed that the material properties, the initial temperature, the melting tem-
perature, the measured surface temperature and the heat flux at position z = 0
are known. The inverse problem is to find the time history of the temperature

distributions in the solid and liquid regions, and the location of the melting front.

In order to introduce a heat flux term into equation (7.9), denote heat flux q as

follows:
orT
¢=kT) 5 (7.10)
Equation (7.9) becomes
T Oq
a9t _ 99 i
c4(T) 5% = 5a (7.11)

The initial and boundary conditions at the left-hand side (z = 0) are as follows:
T(z,0)=T; (7.12)

T(0,t) = To(t) (7.13)

q(0,%) = qo(2) (7.14)
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The boundary condition at the right-hand side, z = d, is unknown. Due to this
unknown boundary condition, the problem mentioned above, equations (7.11) to

(7.14), cannot be solved directly. It is an inverse problem.

7.4 Numerical Scheme

For numerical calculation, equations (7.10) and (7.11) can be written in the following

discrete form:

T+l _ it

n+1 — 1 i—1 .
o = kT (7.15)

1 At [ .0 .
Ty s (6~ 4) (7.16)

Tl =Tn 4
Define
1 At

= AT Az (7.17)

A

where apparent heat capacity in equation (7.17), C4(T?), can be approximated by

the following function (Bonacina, 1973),

( PsCs, ' T< Tmclt —¢€
CAT) =1 (o) (259) + 85, Tnew—€<T < Tme+e¢ (7.18)
L pic, T > Tmelt + €

€ in equation (7.18) is a very small number. In this chapter, we choose € = 0.1°C.
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Applying a weighted approximation, and introducing a heat flux limiter into the

heat flux term q"+1 presented in equation (7.16),

G = (60 g7 4 00 G + S (TR — T ) (7.19)

Where ¢, is defined as the heat flux limiter, with the following characteristics:
2

Case I. To¥l —Tr+l =90 |,

$iL = (7.20)
Case IL: Tri! — 77+ #£0
n+1 /\ QH-I g; (7.21)

i+ L, -1r
and w is the coefficient of the heat flux limiter, with the constraint

0<w<l1 (7.22)
In equation (7.19), 8; and 6, are weight coefficients with conditions

0<b, <1 ; 0<b:<1 (7.23)

and

91 + 92 =1 (7.24)

The heat flux term, ¢!} in equation (7.16), can be similarly transferred through
2

equations (7.19) to (7.24).
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Equation (7.16) with the initial condition of equation (7.12), and the boundary
conditions at the left hand side (z = 0), equations (7.13) and (7.14), cannot be solved
directly because the boundary condition at position z = d is unknown. Therefore,

an iteration method has to be used. The numerical iteration involves the following

four steps:

Step 1: Apply the measured surface temperature and heat flux at (n +1)At time
level, T3t*and ¢j*', with the interior temperatures and heat fluxes at the previous
nAt time level for mesh 1 = 1 and determine the temporary temperature T by

using equation (7.25) as the starting of the iteration process,

Frtl — 4 ) (*"ﬂ qg“) (7.25)
where
gt = (B0 @ + 6 GV 4 JdpH (I — I (7.26)
2
Q;'H = (8- ég+1 + 02 ~n+1 + wq5"+1(Tn+1 T(;H-l)) (7'27)
and ) R N
0 ; TpHi_Trtl—y
putl — (7.28)
2 g5 —qp nt1 Fint1
AR Totl it £ g
0 ; TP -Tptt=0
S = (7.29)
2 ~
\ ,\;.n:;n R I Y |

Where 77! = T2 and ¢3! = ¢+ are boundary conditions. As the first iteration

cycle, the temporary temperatures T7+!, 77+ presented in equations (7.26) to (7.29)
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and the temporary heat fluxes §i*' , §3%! presented in equations (7.26) and (7.27)

are replaced by the previous recovered values of the temperatures T , T? , and the

heat fluxes ¢} , ¢ respectively.

Substituting temporary temperature T7*! from equation (7.25) into equation

(7.15), which gives the corresponding temporary heat flux §f+!,

Fn+1 n4-1

andl __ it | — 40
a =kT) ——x—— (7.30)

From this step, we obtain the temporary temperature T7*! from equation (7.25),
and the temporary heat flux ¢{*'from equation (7.30).

Step 2: Repeat the procedure described in step 1 by using the values of the tem-
porary temperature and temporary heat flux, 77t 'and §7t!, to calculate T7+'and
g3*1. Then, the procedure is repeated to calculate all the temporary temperatures
and the temporary heat fluxes at the mesh points 7 (i.e. TP and ¢#*!) in the

computational domain, to complete the first iteration cycle of the (n + 1)At time

level.

Step 3: Apply the measured surface temperature and heat flux at (n + 1)At
time level, T3*'and g3+, with the interior temporary temperatures and temporary
heat fluxes from step 1 and 2, and then repeat the procedures of step 1 and 2 again
to obtain another set of the temporary temperatures and the temporary heat flux

for the second iteration cycle of the (n + 1)At time level.

Step 4: Repeat the procedures of step 3 for the third, fourth, ... and nth
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iteration cycles until the difference of the temporary temperatures of the two se-
quential cycles converge within an allowable small difference. The final convergent
temporary temperature 77+ and the final convergent temporary heat flux Gg**1 are

the recovered results which represent the temperature 7**! and the heat flux ¢f*?,

respectively, of (n + 1)At time level.

7.5 Numerical Experiments

An exact solution with the material properties of N-Eicosene paraffin wax is used
for the purpose of comparison with the numerical recovered results. The material

properties of N-Eicosene paraffin wax are listed as follows:

- Specific heat:
cs =221kJ/kg-° C
c = 2.01kJ/kg-° C

- Density:
ps = 856kg/m3
p1 = T18kg/m>

- Thermal conductivity:
k, = 1.5002 x 10~*kJ/m - s-° C
Ky = 1.4996 x 10~*kJ/m - s -° C

- Thermal diffusivity:
a, =T7.93 x 1078m?/s
o = 9.59 x 10~3m?/s
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- Latent heat: L = 247kJ/Kg

- Melting temperature: Ti,.;: = 36.7°C
The following data are the input for numerical calculation:

- Computational slab length: d = 5.0cm

- Initial temperature: T; = 25°C

- Heating surface temperature at z = 0 : T, = 60°C
- Computational mesh size: Az = 0.1cm

- Computational time step: At = 0.01sec

- The coefficient of the heat flux limiter w = 0.34

The exact solutions (Carslaw and Jaeger, 1959) in the liquid and solid regions of
the melting problem of a semi-infinite slab placed along an x-axis with the heating
surface located at ¢ = 0 are as follows:

(To - Tmelt)erf(’zvxaﬁ)

Ti(z,t) =T, — ot () , 602> 0,0 < z < Tmene(2) (7.31)
Tmet: — T3)(1 — exf N
Ts(:c,t) =T; + ( It )( (2 a't)),t >0,zpen(t) <z <d (7.32)
1 —erf(n,/2L)

where the value of 7 is determined from the following equation:

e—ﬂ2 _ Ks'\/a_l(z-'l' - Tmelt) e—a"lz/a‘ —_ TIL'\/;F (7 33)
el'f(n) Kl\/as-(Tmelt - To) (1 — erf(n\/gf-)) cl(To - Tmelt) )
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in equations (7.31) to (7.33), a1 = ;’:’5 and a, = p_,:ZT are used.

The exact solution of the melting front = z.1(¢) is:

Tmelt (t) = 277\/57 (7.34)

The heat flux at the heating surface z = 0 can be obtained from the exact solution

equation (7.31) as follows:

@) = a(0,1) = k(T) 20 (7.35)

Figure 7.2 shows the heat flux at the heating surface with the surface temperature
T, = 60°C and initial temperature T; = 25°C. The values of T, and ¢,(t) are used as

the known inputs to the above-mentioned inversion solver with the heat flux limiter.

The exact transient temperature distributions at various locations in the lig-
uid and solid regions in the computational domain are shown in Figure 7.3. The
recovered temperature distributions, using the weighted coefficients §; = 0.95 and
62 = 0.05, with and without heat flux limiter at various locations in the liquid and
solid regions in the computational domain, are shown in Figures 7.4 and 7.5, respec-
tively. It is obvious that the heat flux limiter improves the instability phenomena
considerably. A comparison of the exact temperature with the recovered tempera-
tures at 2000 sec is shown in Figure 7.6. It can be seen from Figure 7.6 that the
recovered temperature obtained without the heat flux limiter oscillates and diverges,
while the recovered temperature with the heat flux limiter maintains good stability

and is close to the exact solution.
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Figure 7.7 shows a comparison between the melting front obtained from the exact
solution and those obtained from the inversion solver with different combinations of
weighted coefficients (61, 0,), and the same coefficient w = 0.34. From this Figure,
it can be seen that the recovered melting front obtained from the weighted coeffi-
cient (6,62) = (0.7,0.3) is better than that obtained from the weighted coefficients
(0.5,0.5) and (0.95,0.05) for recovering time less than 1300 sec. For recovering
time 1300 < ¢t < 6000 sec, the recovered melting front obtained from the weighted
coefficients (6y,82) = (0.95,0.05) is better than that obtained from the weighted
coefficients (0.5,0.5) or (0.7,0.3). Figure 7.7 also shows that the recovered melting
front diverges away from the exact solution if the heat flux limiter is not used in the
recovering procedure. On the other hand, the numerical scheme with the heat flux
limiter shortens the computational time. For example, the scheme with the heat
flux limiter may use only one-fifth the computational time required for the same

scheme without using the heat flux limiter.

7.6 Summary

A semi-explicit time marching finite difference scheme with a heat flux limiter is
developed based on the enthalpy formulation of the energy equation, for solving an
inverse Stefan problem in one space variable. The advantages of the scheme are

summarized as follows:
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1. The process may apply to the structure in which sensors are not allowed to
be installed inside and/or to maintain structural integrity. For example, in
an electric arc furnace, sensors are not able to be installed inside the furnace
to measure the melting of the metal skull formed on the inside wall of the

furnace.

2. The scheme can handle the phase change problem (Stefan problem) with sur-

face boundary conditions measured at only one side.

3. The scheme developed with the heat flux limiter can stabilize the recovered

results of the inverse Stefan problem, and also accelerates rate of convergence.
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Figure 7.1: Schematic diagram of the inverse Stefan problem
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Figure 7.2: The heat flux at the heating surface with the surface temperature T, =
60°C and initial temperature T; = 25°C.
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Figure 7.3: The exact solutions of the transient temperature at various locations in

the computational domain
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Figure 7.4: The recovered transient temperatures with heat flux limiter at various
locations in the computational domain
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Figure 7.5: The recovered transient temperatures without heat flux limiter at various

locations in the computational domain
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Conclusions and Future Work

8.1 Concluding Remarks

Solving an ITHCP depends not only on a mathematical model, but also on the sta-
bility of the reconstruction results when noisy experimental data are used. With
the reconstruction results of the numerical inversion solvers and experimental data
presented in this dissertation, the following conclusions and contributions can be
established. In Chapters 2 and 3 (Chen, et al, 1996), a new implicit inversion
solver for a one-dimensional space IHCP is presented and exhibits good agreement
between the exact solution and reconstruction results of the surface temperatures
and heat fluxes. The developed inversion solver can also combine with a real-time
Kalman Filter. We find that this on-line monitoring inversion solver is very sta-
ble in handling noise directly from measurements. Chapter 4 (Chen et al., 1997a),

numerical recovery errors of the selected functions, indicates that the errors of the

102
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recovery temperature at both side boundaries and two positions of the interior sen-
sors can be expressed by simple linear relations. Each relation contains an unknown
coefficient which can be determined by using one numerical simulation through the
inverse solver of a pair of specified sensors. These simple relations, equations (4.1)
and (4.2), can then be used to estimate the other recovery errors at the boundary
without using the inversion solver. An experimental bench test model (Lin and
Chen, 1996, 1997) for comparison with the inversion solver, presented in Chapter 5,
has been established. The error between the numerical recovery results and exper-
imental data is small, and has proven that the implicit inversion model is reliable
in Chapter 6. One application of the present implicit inversion solver is to deter-
mine transient temperature drops due to thermal resistance across two contiguous
surfaces between two contact bodies. The present implicit inversion solver can also
be extended to reconstruct the temperature distributions in multi-layer composite
solids. In Chapter 7 (Chen et al., 1997b), we introduce another new semi-explicit
inversion solver by placing the sensors at one side of the surface, which is not limited
by the general fact that when two sensors are placed close together, the errors of
the recovered temperature and heat flux are increasingly magnified (Hensel, 1991).
The recovery temperature profiles and melting front results show that the solution
obtained by the semi-explicit inversion solver with the heat flux limiter is much

better than those obtained without it.
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8.2 Future Work

In order to reconstruct the unknown temperature and heat flux acting on the bound-
ary, or to determine the interior temperature and melting front position through
one-sided surface conditions, inversion procedures have to be applied. There are

several possible directions in which this dissertation can be extended. The immedi-

ate future projects are as follows:

e Use a higher order finite difference approximation, instead of first order, to
formulate the unknown left and right hand heat fluxes ¢**! and gi'' at the

(n + 1)At time level.

e Apply the real-time Kalman Filter to filter the noise directly from the on-line

measurements, and to recover the surface temperatures and heat fluxes.

e Change the heat flux limiter in equation (7.21) to recover an Inverse Stefan

problem.
e Optimize the coefficient of the heat flux limiter in equation (7.22).
e Optimize the weighted coefficients 8; and 6, in equation (7.23).

e Develop a new inversion solver, together with information on average temper-
ature obtained from an ultrasonic sensor, to recover the temperature history

inside the conducting body.



Nomenclature

a;: coefficient of the linear temperature function, equation (4.6)

b1, ba: coefficients of the quadratic temperature function, equation (4.7)
¢: specific heat, kJ/Kg-° C

c1, ¢: coefficients of the exponential temperature function, equation (4.8)
C4: apparent heat capacity

d: computational slab length, cm

d, dy, w: coefficients of the periodic temperature function, equation (4.9)
D: partial differential operator

erf(-): error function

H(T): an enthalpy function with temperature variation

k: thermal conductivity, kJ/m -° C - sec

| : dimensionless specimen thickness in exact solution

L: latent heat, kJ/Kg
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g: heat flux, kJ/m?2 - sec

o : heating surface heat flux at z = 0 in Chapter 7, kJ/m? - sec

g: temporary heat flux at (n + 1)At time level, kJ/m? - sec

S_ : backward shift operator

S+ : forward shift operator

¢ : dimensionless time variable in Chapters 2-6, and time variable in Chapter 7, sec

T : dimensionless temperature variable in Chapters 2-6, and temperature variable

in Chapter 7, °C

T : temporary temperature at (n + 1)At time level, °C

T; : initial temperature, °C

T, : heating surface temperature at z = 0 in Chapter 7, °C
At : time mesh size of finite difference scheme

U : correlation matrix for nAt and (n + 1)At time levels

v : additive white noise

xr: left hand sensor location in dimensionless space

xI : left hand specified sensor location

xu: right hand sensor location in dimensionless space

X3 © right hand specified sensor location
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Xxn: right hand specified boundary in dimensionless space
Az : space mesh size of finite difference scheme

z : dimensionless space variable in x direction in Chapters 2-6, and space variable

in x direction in Chapter 7, m

Az : dimensionless space mesh size in x direction in Chapters 2-6, and space mesh

size in x direction in Chapter 7, m
y : measured vector

: state vector

=

: linear estimate from Kalman Filter

N

Greek symbols:

€: a very small number, € = 0.1°C in Chapter 7

w: heat flux limiter coefficient

01, 0,: weighted coefficients

¢: heat flux limiter function

é: temporary heat flux limiter function at (n 4+ 1)At time level
a: diffusivity, m2/ sec

I': temperature integration variable, °C

p: density, Kg/m?3
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8(-): Dirac function

A: ﬁy in Chapter 2, and C_AI(T) 2% in Chapter 7
2: a bounded region

0Q: the boundary of a bounded region

org: error of the reconstruction temperature at the left hand boundary; %

org: error of the reconstruction temperature at the left hand boundary with two

specified sensor locations; %
org: error of the reconstruction temperature at the right hand boundary; %

oy error of the reconstruction temperature at the right hand boundary with two

specified sensor locations; %
A constant coefficient for simple relation at the left hand boundary

ARrg: constant coefficient for simple relation at the right hand boundary

subscripts:

: : mesh point location in x direction

[ : liquid phase

L: mesh point of left hand sensor location in finite difference scheme
melt : melting front

M: mesh point of right hand sensor location in finite difference scheme
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N: mesh point of right hand specified boundary in finite difference scheme
o: mesh point of left hand boundary in finite difference scheme

s : solid phase

superscript:

n : time level
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Appendix A

Inversion model I for Inversion

Heat Conduction Problems

Inversion Heat Conduction Problems: the temperature at position z = xar, T

(measured temperature), and the heat flux at position z = xy, qn, as shown on

figure A.1, are known. Matrix U of equation(2.12) is represented by:

[ 14X -2 4] . o] 0
- 1422 =x 0
-2 142X -2 .
- 142X 0
U = - 0
0
L. o 0

AAz

[ 0

-A
142 -
-2 1422 =2

-2 142
-2

The unknown matrix I™*" of equation (2.12) is:

128

-

14+ 1

(A1)
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+1
Iy

= | g+ (A2)

n+41
TM +1

n+1
L TN J

The matrix T™ of equation (2.12) is:

TR + ATt

B™ = | T3 — (21 + 1) T3 (A.3)
Tiyer + A3

TR + AMzgit™t |
Because at position z = xar, the temperature Tp™*! is known, by applying the
left hand side unknown boundary condition g;"*!, we can substitute ¢;"+! (the heat

flux at the left boundary = = 0 as shown on figure A.1) into the left side T™t! matrix.
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Then, the unknown elements of the matrix T™*! can be solved by the time-marching

scheme.



Appendix A 131

inverse region direct region
0 Xy Xy
X,, temperature sensor location
X, boundary point
Unknown conditions: Known conditions:
QO,t) =? Q(Xy.t) = Known heat flux at X,

TOn="? T(Xyt) = Known temperature at X,,

Figure A.1: One-dimensional inverse heat conduction problem: model I



Appendix B

Inversion model II for Inversion

Heat Conduction Problems

The temperatures at the measurement position z = xar and boundary position

z = xn~ (as shown on figure B.1), are known from the measured values. Matrix U

of equation (2.12) is:

[' 14 A -A 0 . 0 0 Aldx 4] 0 . 0 b
=X 1422 =2 )
-2 142X - .
-2 1422 o

U= -2 0 -A (B.1)
4] 1422 —A
-2 1422 —-A
. . -2 1422 —-A
L. o 0 . -2 142 1

The unknown matrix T of equation (2.12) is:

132
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[ T{t-{-l 7

Tn-i_-.ll
= | gt (B.2)

n41
TM +1

The matrix I™ of equation (2.12) is:

Tiy-1 + AT

T = | Tp — (27 + 1)TH (B.3)
Tiepy + AT

Tn-1™ + ATN™H
Because at measurement position z = xas, temperature Ty"*! is known, by

applying the left hand side unknown boundary condition ¢;"*! , we can substitute

@1™*! (the heat flux of the left boundary z = 0 as shown in figure B.1) into the
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left side matrix T™*!. Then the unknowns of the matrix T™*! can be solved by the

time-marching scheme.
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inverse region direct region
0o lXM Xy
X,, temperature sensor location
X,, boundary point
Unknown conditions: Known conditions:
QO,t) =7 TX\»t) = Known temperature at X,

T(O,t) =? T(Xjt) = Known temperature at X,,

Figure B.1: One-dimensional inverse heat conduction problem: model II



Appendix C

Derivation of Right and Left Hand
Inversion Boundary Conditions in
Chapter 2

Derive equations (2.16) and (2.17) as follows:

The dimensionless one-dimensional heat equation is:

aT _ &°T

s (C.1)

Apply heat flux q at the right hand boundary and discretize the heat equation into
an implicit finite difference form. Then apply the unknown boundary temperature

Txt!) and heat flux (gi'!) at the right hand side as follows:
N

9T _ dq

B = Bz (C.2)
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where q is heat flux. Then

TFH T 1 [, TR —TR
At 2z | T T Az (C.3)
At ntl At il At ndl

Similarly the left hand boundary is:

At At . At .
(1 + (AZ)z) T:+1 - (—A—.'B?Tl +1 + EQO+1 = To (C'5)

It can be seen that the coefficients ¢**! and ¢*+! are +%:; and —%, respectively.
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Derivation of Equations (3.3) to
(3.11)

Derive equations (3.3)-(3.11) as follows:

Assume the second order differential equation has the following form:

2T dT
d—tz‘-*-CIE +CZT= a(t) (Dl)

where T is the temperature variable, t is the time, a(t) is the external temperature

“force” function, ¢; and ¢, are constants. We may rearrange equation (D.1) by

letting

T = 21 (D.2)
and

dT

—d"t— = 29 (D‘3)
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rewrite equation (D.3)

d
A (D.4)

dt

then equation (D.1) can be represented as follows

ng

E = —C221 — C122 + a(t) (D.5)

In matrix notation, equations (D.4) and (D.5) become:

E-[ S b)e e

For example, assume ¢; = 0 and ¢; = 0, we have

& 1 0
2 T e (D.7)
dz 002 1

This is the matrix form of equation (3.7) in Chapter 3. Then, we integrate the

following two equations with respect to time variable from ¢ to 7

d21

E‘ = 22 (DS)
dz,
to obtain
A) = 2(r) + (¢t = T)m(®) + Xt — )2 (D.10)
zy(t) = zo(T) + a(t)(t —7) (D.11)

Equations (D.10)-(D.11) are equations (3.10)-(3.11) in the Chapter 3.



