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ABSTRACT

Simulation of Fluctuating Wind Pressures
on Low Building Roofs

Kumaresannair Suresh Kumar, Ph.D
Concordia University, 1997

Wind pressure fluctuations acting on low building roofs are important for the prediction of
peak pressure values and for fatigue design purposes. Collection of several time histories of
pressure fluctuations, using traditional wind tunnel measurements is time consuming and
expensive. Within this context, a systematic study on the development of an efficient and
practical method of digitally simulating realizations of local wind pressure time series has
been carried out.

The stochastic characteristics of wind pressure fluctuations acting on various low
building roofs have been investigated by using systematic wind tunnel measurements.
Thereafter, based on the Fourier representation of time series, a new time series generation
technique capable of simulating Gaussian as well as non-Gaussian wind pressure
fluctuations is developed. Both Fourier amplitude and phase, which are required for the
simulations, are modelled individually. The Fourier amplitude part is constructed either
from sample time history or from sample spectra, while a simple stochastic model is
proposed for the generation of Fourier phase of non-Gaussian time series. In the present
study, the criterion for successful modelling is set to preserve the first four moments (mean,

variance, skewness and kurtosis) and spectra of the corresponding pressure fluctuations.
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The efficiency of this novel methodology is illustrated with several examples.

Several measured wind pressure spectra have been investigated to determine
characteristic spectral shapes and derive a suitable mathematical representation. Based on
the similarities among normaiized spectra, an empirical model has been suggested for the
synthetic generation of normalized spectra. Such artificiaily produced pressure spectra have
been utilized for the generation of Fourier amplitude part in subsequent simulations.
Thereafter, for easy generation of pressure time histories on roofs, normalized spectra are
categorized for each roof and the standard spectral shapes associated with various zones of
each roof and their parameters are established.

Further, potential applications of the proposed simulation methodology in extreme value
as well as fatigue analysis are presented. In particular, the fatigue analysis of roof cladding

using simulated pressure fluctuations has been described in detail.
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Dedicated to

"....The oldest voice in the world is the wind. When it murmurs in summer's leaves, it seems an idle trifler.
When in the night it goes wandering by, setting the old house J[aintly to groaning, it sounds like a pilgrim that
has lost the road. When you see it fitfully turning the blades of a mill lazily to draw water, you think of it as an
unreliable servant of man. But in truth it is one of our masters, obedient only to the lord sun and the whirling

of the great globe itself... "

Donald Culross Peattie,
A Cup of Sky
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A(wy)
ay, a as

Ax

autoregressive parameter
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Fourier coefficient
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width of building

Weibull constant

shape constants

pressure coefficient

mean pressure coefficient
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maximum pressure cycle range
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phase shift parameter

damage index

damage due to Gaussian time series
damage due to non-Gaussian time series
mathematical expectation operator
exponential random variables

reduced frequency
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F@ force experienced by the object due to wind

fow) continuous spectral density of {X;}
ffe frequency

JA sampling frequency

g dimensionless peak factor

mean roof height of the building

by lower eave height

[H] cycle histogram

L) periodogram

I, random variables having the discrete PDF Eq. (B.2)
\/Z Fourier amplitude

k total number of blocks, Weibull constant

K intercept of the S-N curve plotted on a log-log graph
k; Weibull constant

Ku kurtosis

1 length of building

L geometric length

m mean of the time history

m slope of the S-N curve plotted on a log-log graph

m; spectral moments

n time series length

N number of cycles

Ny zero up-crossing or down-crossing rate

NoT number of zero up-crossing or down-crossing in time T
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total number of cycles in the i™ block of constant pressure range, S,;
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number of pressure cycles in model scale

number of pressure cycles in full-scale

positive or negative peak rate

rate of maxima occurring in the interval (x, x+dx)
number of positive or negative peaks in time 7'
mean X-upcrossing rate
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total load cycle distribution

probability of X, less than a particular value
probability of wind coming from a particular direction
number of observed extreme values

rank assigned to an extreme value
autocorrelation function

dispersion of extreme values

spectral density function

spectral density of {X}}

skewness

mathematical spectrum

mean pressure

physical spectrum

pressure range associated with S,,,;

threshold pressure

XX1iv



~

NH

~

U@

U ulu2
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Z
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ultimate pressure of roofing component

time (data points)

time

time, design life

fatigue mean life time

mode of extreme values

wind velocity

uniform random numbers

mean velocity at height Z, mean hourly wind velocity at building height
mean velocity at mean roof height

mean velocity at gradient height Zg

mean hourly wind velocity at building height

root-mean-square velocity

design mean hourly wind velocity at building height corresponding to a
specific return period

random variable associated with extreme values
target time series, time series

mean of {X,}

reduced y-variate

preliminary signal, skeleton signal, test signal
height

gradient height

simulated time series

fundamental Fourier frequency
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Greek symbols

a roof angle

U, Br i.i.d Gaussian random variables

B bandwidth parameter

¥(T) auto-covariance function

Af frequency resolution

AT time step

AV small interval of velocity

€ irregularity factor

& intermittent exponential random numbers
A exponential parameter

1! shape factor

L mean of extreme values

p density of air

c standard deviation

o] standard deviation of extreme values

o’ variance

o variance associated with each frequency w;
T time shift

br , d(@k) Fourier phase
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G Gaussian
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m model scale

NG non-Gaussian

p full-scale

Abbreviations

ACF Auto-Correlation Function

AR Auto-Regressive

ARIMA Auto-Regressive Integrated Moving Average
ARMA Auto-Regressive Moving Average
CDF Cumulative Distribution Function
DFT Discrete Fourier Transform

EAR Exponential Auto-Regressive
EARPG Exponential Auto-Regressive Peak Generation
EPG Exponential Peak Generation

FFT Fast Fourier Transform

GAR Gamma Auto-Regressive

iid independent identically distributed
PDF Probability Density Function

QS Quasi-Steady

rms root-mean-square

SDF Spectral Density Function

SSE Sum of the Squared Errors
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CHAPTER 1
INTRODUCTION

"....we rely on hazard. There is no existence, even for the less imaginative beings, that does not leave room for
it in its most obscure forecasts. To count only on hazard is foolish; counting without hazard is even more
Joolish...."

Remy de Gourmont
Epilogues. Reflexions sur la vie, 1906.

1.1 OVERVIEW

The necessity of providing allowance for expected wind loading in the design of almost all
structures is now recognized. Nevertheless, wind hazards are rather common, as clearly
shown in Fig. 1.1 indicating that 88% of the total insured property loss from U.S
catastrophes during the period of January 1986 to October 1992 resulted from wind storms.
In order to accomplish wind hazard reduction, it is necessary to focus on various areas of
wind engineering which are presented in Jones et al. ( 1995).

Wind induces unsteady (fluctuating) loads on earth bound structures along with steady
(mean) loads. Extreme localized loads over the surface of a structure are the result of wind-
induced pressure fluctuations. The design of cladding and fasteners is based on local
pressures, whereas the structural response/structural design is dependent on the integrated
effect of pressures over the surface. The characteristics of wind pressure fluctuations depend
on numerous features such as mean wind speed and direction, terrain conditions,
surroundings, structural geometry, surface texture etc. In general, the pressure fluctuations

on the surface of a structure are a result of the turbulence inherent in (1) approach flow, (2)



(0]
(@]

% OF 1986-1992 TOTAL
- DD W H OO -~
O O 00O OO O o

|

<

2z g .
2 Zn a S

[7,X 2} o w 4 =

w, fe =2 ZF Op
- oz 20 5 14
g = = (o)
IS5 07 2 @ =24
= g < I o @
g& zZzu 9 & T
r©O 1 LL.IQ_ zi—oz
SE ok Exx g 092 &
I+ O Cw W o O

CATASTROPHE TYPE
Fig. 1.1 Total insured property loss from U.S. catastrophes, after Jones et al. (1995).
flow separation and potential reattachment, (3) induced motion in case of wind sensitive
structures, and (4) vortices shed by upstream structures. It is often assumed that such
pressure fluctuations on a building are directly related to oncoming atmospheric turbulence
and therefore can be predicted by Quasi-Steady (QS) theory (Cook 1985). QS approach
attributes all fluctuations in pressure to fluctuations in wind velocity and its direction.
However, QS theory fails to predict unsteadiness in pressure caused by building generated
turbulence on roof comners and other flow separation zones on the building envelope with
very few notable exceptions (Stathopoulos 1983; Tieleman and Hajj 1995). It has been
noted that the frequency content of the pressure at the separated flow faces is quite different
from that of the approach velocity due to the building generated turbulence (Letchford et al.
1993). Since the time variation of pressure cannot generally be predicted from the time
variation of velocity, it is necessary for design purposes to utilize the characteristics of

actual pressure fluctuations on building surfaces.



1.2 WIND EFFECTS ON LOW-RISE BUILDINGS

Wind pressures acting on low-rise buildings (height to width ratio less than one and mean
roof height less than 20 m, NBCC (1995) ) are highly fluctuating since they are located in
the lower part of atmospheric boundary layer where wind turbulence and gradient of wind
speed dominate. One such pressure-time trace at the roof comner of a full scale multi-span
hangar is shown in Fig. 1.2, where the instantaneous pressure after subtracting its mean
value, is normalized by its root-mean-square value. Suction peaks of the order of 10 to 15
times the root-mean-square pressure are noted and this is important for a realistic estimation
of design loads for roofs. Note also the highly fluctuating nature of wind pressures with

respect to time which is important for fatigue design of roofs.
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Fig. 1.2 Typical pressure time history, after Milford et al. (1992).

Damage to low-rise buildings results from aerodynamic wind pressures that develop as
air flows over and around the building. External negative pressures (suctions) pull walls and
roof apart; only the windward wall is subjected to positive pressure. In addition, high local
suctions develop at wall corners, eaves, ridge and roof corners because of flow separation as
the air particles pass the sharp comers of the building. Such local effects of wind are
pictorially shown in Fig. 1.3. These local pressures tend to dislodge the roof and siding

materials and cause the failure of connections between the roof and the top of the wall.



Roof Corner

Fig. 1.3 Local effects of wind, after McDonald (1985).

Reports of wind damage to low-rise buildings indicate that more serious damage occurs to
roofs. A typical damage to roof is shown in Fig. 1.4 where the eaves of the building are
severely damaged by the high local pressures created by the flow separation at the sharp
edge between the wall and roof. Roof failure includes loss of roof covering, failure of
fasteners etc. Particularly, the failure of roof due to failure of fasteners has been noticed in
many cases. The failure of roofs may lead progressively to the total collapse of the building.

Therefore, the roof has to be designed with utmost care.
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Fig. 1.4 Local roof damage induced by airflow over eaves, after Council on Low-Rise
Buildings (1993).

The importance of wind pressure fluctuations on the design of low building components
has been realized by researchers and designers more than three decades ago and various
attempts were made to incorporate such fluctuating pressures in wind standards and
building codes of practice. However, the devastative effect of long time histories of pressure

fluctuations during storms has received wider attention more recently. The ASCE



Committee on Wind Tunnel Studies of Buildings and Structures (1996) notes that such
fluctuating pressures acting on low-rise building roofs can create stress reversals and may
lead to the failure of fasteners or cladding which is a growing concern in low-rise building
industry. This was previously noted by Leicester and Reardon in 1976 and Kramer in 1985.
After many years of research, the Australian wind code (AS 1170.2 1989) suggests a simple
fatigue loading sequence for cyclone prone areas, while British (Cook 1990) and German
(Gerhardt and Kramer 1986) recommendations propose fatigue loading sequences for
temperate climatic regions where the predominant source of high wind speeds is large-scale
and frequently occurring non-tropical cyclone systems. These traditional cyclic loading
sequences do not represent the broadband features of actual wind pressure fluctuations
(Patel and Freathy 1984). Moreover, such static proof testing methods are found to be
inappropriate if the dynamic response of porous and flexible cladding systems is non-linear
and frequency-dependent (Cook 1992). Therefore, it appears that the actual characteristics
of pressure fluctuations on various types of buildings under different conditions are required

to provide generalized guidelines for the betterment of low building design.

1.3 OBJECTIVE OF THIS STUDY

In the last four decades, boundary layer wind tunnels have been used to investigate wind
pressure fluctuations on low buildings. Wind tunnel experiments are time consuming and
expensive, especially in collecting several time histories of pressure fluctuations needed for
extreme value analysis and fatigue design. Nevertheless, wind tunnel experiments are

indeed necessary: (a) to determine wind loads on complex geometric shapes where the



analytical as well as the numerical methodology may be inadequate, and (b) to validate
analytical/ numerical results. Further to wind tunnel studies, full-scale experiments can also
be carried out but a comprehensive study of pressure fluctuations using full-scale
measurements may not be possible since most of the parameters related to building as well
as wind are practically unchangeable in a particular full-scale experiment. On the other
hand, it may be better to focus one’s attention to the development of a suitable
analytical/empirical model, which could efficiently represent the inherent variability in
pressure fluctuations under different conditions, for easy generation of several time series.

The prime objective of this study is, therefore, to develop an efficient
analytical/empirical representation for the description of true characteristics of wind
pressure fluctuations on low building roofs under different conditions. The work in this
thesis concerns only with local pressure fluctuations which govern the design of roof
cladding elements such as roof panels and fasteners, that are extremely vulnerable to such
fluctuations. The major components of this work include experimental investigation of
stochastic characteristics of wind pressure fluctuations on low building roofs, simulation of
both Gaussian and non-Gaussian wind pressure fluctuations, modelling, classification and
generalization of spectra of wind pressure fluctuations, and application of the simulation
methodology in extreme value analysis and fatigue design.

The development of such representation appears extremely useful in simulating a number
of time histories that are required to carry out extreme value as well as fatigue analysis.
Furthermore, such a model can be an efficient tool to investigate the dynamic behaviour of
roof cladding as well as the influence of various parameters on fatigue damage

accumulation.



1.4 THESIS OUTLINE

This thesis consists of ten chapters, a list of references and four appendices. Digital
simulation techniques are briefly reviewed in Chapter 2 with concentration on the methods
that are suitable for generating Gaussian as well as non-Gaussian wind pressure
fluctuations. Advantages and disadvantages are also cited in relevant cases. The necessary
theoretical background for the present study is described in Chapter 3. The experimental
procedure as well as the results are described in Chapter 4. In this chapter, detailed
discussions about stochastic characteristics of roof pressure fluctuations in time, frequency
and amplitude domains are presented.

Chapter 5 describes the simulation of Gaussian pressure fluctuations using the
conventional Fast Fourier Transform (FFT) approach. The simulation of non-Gaussian
pressure fluctuations are presented in Chapter 6, which includes the development of the
model, the importance of stationarity of the simulated time series, as well as demonstrations
showing the efficiency of the proposed model.

The simulation of wind pressure fluctuations using the proposed model requires power
spectra of the corresponding fluctuations. Though the measurement of spectra is briefly
addressed in Chapter 4, detailed material such as empirical modelling, classification of
spectra and their generalization is discussed in Chapter 7. Furthermore, Chapter 8 presents
the overall simulation methodology with elaborate demonstrations.

The application of the proposed simulation methodology in extreme value analysis and
fatigue design is presented in Chapter 9 including specific illustrative examples. Finally,
Chapter 10 summarizes the findings of this study. Contributions of this study as well as

recommendations for the future work are also provided in this chapter.



CHAPTER 2
A BRIEF REVIEW OF DIGITAL SIMULATION
TECHNIQUES

"...one of the more important areas of future development of random vibration theory is the construction of
improved models for random excitations..."

S. H. Crandall and W. Q. Zhu, 1983.

This chapter briefly presents the general characteristics of wind pressure fluctuations on
building envelopes. This is followed by a brief review of the state-of-the-art on digital
simulation techniques suited for generating stationary univariate Gaussian as well as non-

Gaussian wind pressure fluctuations.

2.1 WIND PRESSURE FLUCTUATIONS: AN OVERVIEW

Pressure fluctuations at near wall surfaces is still a hot topic of research in fluid dynamics
(Simpson 1989). As far as wind engineering is concerned, wind pressure fluctuations on
building surfaces are investigated generally using wind tunnel simulations or full-scale
measurements. Usually, the studies are concentrated on mean, rms (root-mean-square) and
peak values of the pressure time histories without providing much emphasis to other
fluctuating characteristics. For instance, power spectrum, probability density functions,
crossing rates etc. have received very little attention. Most recently, Computational Fluid

Dynamics (CFD) provides another means to evaluate wind pressure fluctuations on building



surfaces (Murakami et al. 1991), though more effort is necessary for such numerical
simulations, especially on turbulence models and computational efficiency.

At present, wind tunnel measurement results are found to be a comprehensive source of
information as far as pressure fluctuation studies are concerned. Since many parameters are
involved in the phenomenon and not all of them are fully understood, statistical descriptions
of such fluctuations are indeed helpful in understanding their characteristics. Such statistical
descriptions can be made in three domains, i.e., time, frequency and amplitude as shown in

Fig. 2.1. The first step in statistical description of fluctuations is to confirm whether the

Single pressure time series

Time domain ; Frequency domain _ Amplitude domain
Autocorrelation Power spectrum  Probability density function

Fig. 2.1 Statistical description of wind pressure fluctuations.

process is stationary or not. In most wind engineering applications, wind velocity as well as
pressures are assumed to be weakly stationary which is a reasonably good approximation

deduced from experience and this postulation simplifies the mathematical theory. In non-
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stationary situations the fluctuations may be transformed into stationary by using the
conventional method of differencing (Box and Jenkins 1976) before any statistical
descriptions can be made.

The assumption of Gaussian distribution for the Probability Density Function (PDF) is
fair only for fluctuations measured on few locations of building surface. Under the Gaussian
assumption a second order moment characterization is sufficient since first and second
order moments uniquely define a Gaussian distribution (Bendat and Piersol 1986).
However, non-Gaussian characteristics of the pressure fluctuations are noted by many
researchers in their studies. Peterka and Cermak (1975) showed that probability densities for
separation regions are skewed such that probability for large negative fluctuations of six
standard deviations is four orders of magnitude greater than that for a Gaussian distribution.
Stathopoulos (1980) noted that PDF's of wind pressures acting on low-rise buildings are
positively or negatively skewed for positive and negative mean pressures, respectively. The
term skewed means that the PDF is unsymmetrical and this measures the deviation of data
points away from Gaussian density function which is symmetrical. Hence, a skewed PDF
indicates the presence of high spikes in the time history of fluctuations. In practice, both
Gaussian and non-Gaussian wind pressures have been observed depending on location and
wind direction; mostly, non-Gaussian types are observed on corner zones and other
separated flow regions (Cermak and Peterka 1975; Stathopoulos 1980). A typical non-
Gaussian PDF observed on the edge pressure tap of a 5 m high gable roof building exposed
to open country terrain is shown in Fig. 2.2. The dominant negative tail clearly shows that
the time series is negatively skewed and this is found to be the case in almost all time series

measured on the roof.
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Fig. 2.2 Probability density function of pressure fluctuations, after Stathopoulos (1980).

Moreover, it is clear from the well-known equation,
1 )
F(t) = =pU(t)* Cp 4 2.1)

that F(¢) exhibits non-Gaussian properties even if U(r) is Gaussian, where F(¢) is force
experienced by the object due to wind, U(f) is wind velocity, Cp is mean pressure
coefficient, 4 is projected area of the object facing wind, and p is air density. Such non-
Gaussian characteristics of probability distribution for dynamic windward wall pressure
fluctuations, when the velocity fluctuations have a Gaussian distribution, has been
analytically derived, taking account of the square-law relationship between pressure and
velocity (Holmes 1981); however, the situation is complex in case of roof pressure
fluctuations where building generated turbulence is involved. Thus, for the prediction of

PDF and other stochastic characteristics of roof pressure fluctuations, an accurate
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simulation of the time history is needed. Within this context, the various digital simulation
techniques more generally used in random processes and suited for simulating wind

pressure time series were reviewed and are briefly described in the following section.

2.2 DIGITAL SIMULATION TECHNIQUES

The various methods examined are aimed at simulating univariate wind pressure time series
without considering cross-correlated fields. For convenience, the simulation techniques are
classified into two categories, namely those for Gaussian and non-Gaussian wind pressure

fluctuations.

2.2.1 Gaussian Wind Pressure Fluctuations

The possible methods that can be used for the simulation of univariate, stationary, Gaussian
wind pressure time series, with specified spectral density, are divided into (1) methods
based on Fourier Series (wave superposition), and (2) methods based on the application of
an appropriate (analytical) filter subjected to simulated white noise process (linear filtering).

Realizations of a zero-mean Gaussian stationary process with given Spectral Density
Function (SDF), have often been generated by using the wave superposition approximation
of the form of the sum of evenly spaced cosine waves with weighted amplitudes and
frequency range subdivided into equal intervals. The variables such as amplitude, frequency
and phase used in the above basic representation denote either deterministic or random

parameters. In the spectral representation method (Rice 1954), the phase is selected to be in
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the form of independent random variables uniformly distributed in the domain [0,27].
Further, the deterministic amplitudes are defined from the power spectrum of the process. In
fact, better approximation of the discrete spectra can be achieved by summing a large
number of waves indirectly providing Gaussian distribution to the time series due to the
central limit theorem. In this method, deterministic frequency selection is adopted in order
to employ the FFT algorithm and increase computational efficiency. However, it is known
that the simulated time series using spectral representation method is periodic. In order to
avoid periodicity, Borgman (1969) attempted the simulation of ocean surface elevation
based on the superposition of cosine waves having constant amplitude and independent
random phase angles uniformly distributed from 0 to 2x; the frequency is chosen in such a
way that the amplitude of each wave is an equal portion of the spectrum. This method is
inefficient due to its time consuming frequency calculations as well as its poor
representation of spectral characteristics. Later, Shinozuka and Jan (1972) tried to overcome
the periodicity involved in spectral representation method by introducing independent
uniformly distributed random frequency fluctuations in a small interval without modifying
both amplitude and phase parts, which is the so-called randomized spectral representation
method. A random frequency algorithm was also developed in parallel (Goto and Toki
1969; Shinozuka 1971). It relies on independent uniformly distributed phase but the
frequencies are identically distributed random variables whose PDF is related to the SDF of
the process. In both cases of randomized spectral representation method and random
frequency scheme, the FFT algorithm cannot be employed due to non-deterministic
frequency selection and, therefore, these methods are not computationally efficient. In

contrary, the spectral representation scheme is computationally efficient and produces time
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series which are Gaussian and approximately ergodic (Grigoriu 1993). Gaussian signals can
also be generated by inverting the Fourier coefficients constructed by linearly combining the
Gaussian white noise with a prescribed target spectrum; the simulated signal attains
Gaussian form due to the linearity of Fourier representation and the property of Gaussian
distribution (Wittig and Sinha 1975). Similarly, Gaussian signals can be generated by
inverting the complex Fourier coefficients obtained by combining the uniform random
phase with deterministic amplitude constructed from a given power spectrum; this is a
different version of the conventional spectral representation method and is widely used for
Monte Carlo simulation. Though the FFT algorithm improves the computational efficiency
of the wave superposition method, computer memory requirements may be excessive
depending on the size of the problem (Kareem 1993). Li and Kareem ( 1993) also
recommended a digital filtering scheme for synthesizing time series segments simulated
using the FFT approach to obtain the desired length of time series. A detailed description of
the above mentioned simulation techniques has been presented by Grigoriu (1995).

From a computational point of view, simulation using linear filters is far more efficient
than the wave superposition method both in terms of computational time and computer
storage (Kareem 1993). In this approach, simulated random numbers having zero mean, flat
spectrum and Gaussian distribution are fed into a linear filter designed to obtain an output
process with a specified spectral density. The various stages, such as model identification,
parametric estimation, and diagnostic checking, involved in this iterative approach to model
building have been well established for practical use (Box and Jenkins 1976; Pankrats 1983;
Chatfield 1989). In addition to the wave superposition method, Borgman (1969) also used

this approach for the simulation of ocean surface waves. As far as wind engineering is
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concerned, Wyatt and May (1973) used a regressive type filter to simulate partly correlated
wind forces with a specified power spectrum. Fortier and Scanlan (1979) investigated the
applicability of Auto-Regressive Integrated Moving Average (ARIMA) models to fit the
pressure time series around a cooling tower. More recently, researchers have attempted to
simulate either pressure or wind velocity time series using ARIMA models (Reed and
Scanlan 1983; Reed and Scanlan 1984; Islam et al. 1988; Mignolet and Spanos 1990; Li and
Kareem 1990). A pertinent application of linear filtering techniques is the simulation of
wind pressure fluctuations on monoslope roofs by using an Auto-Regressive (AR) model of
order one (Stathopoulos and Mohammadian 1991; Stathopoulos et al. 1997). Despite its
advantages over FFT based simulation, the difficulty remains in the selection of proper
model. Moreover this method provides stationarity based on time increment while the EFT

based approach provides unconditional stationarity (Brockwell and Davis 1991).

2.2.2 Non-Gaussian Wind Pressure Fluctuations

Non-Gaussian time series can be simply generated using Auto-Regressive Moving Average
(ARMA) models but replacing Gaussian with non-Gaussian white noise residuals. Typical
examples include Exponential Auto-Regressive (EAR), and Gamma Auto-Regressive
(GAR) models (Gaver and Lewis 1980). Many studies have been undertaken to show the
application of this method (Lawrence and Lewis 1985; Schiess 1986). An AR model of
order one with lognormal residuals has also been applied to overcome the underestimation
of peak pressure coefficients on comers of monoslope roofs caused by the Gaussian

assumption; however, the improvement over the prediction of peak values was only
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marginal (Mohammadian 1989; Stathopoulos and Mohammadian 1991). Though this
method is capable of achieving target Auto-Correlation Function (ACF) as well as non-
Gaussian marginal distribution, parametric control of the higher order moment properties is
practically impossible. Most recently, non-Gaussian velocity time series in turbulent flows
are generated using a bank of linear filters driven by non-Gaussian white noise inputs
(Mengali and Micheli 1994). The filter properties are chosen based on the second-order
characteristics (SDF) at filter outputs and the higher order moments are accommodated by
specifying the statistical properties of the driving noises. However, the analytical solution of
this formulation requires many assumptions which may not be applicable to other cases.
One of the widely recommended methods of simulating non-Gaussian time series is to
generate Gaussian time series using either ARMA or FFT model followed by a nonlinear
static transformation from Gaussian to non-Gaussian. Non-Gaussian vectors with specified
distribution function and correlation matrix can be generated using monotonically
increasing transformations (Mardia 1970). Shinozuka and Tan (1981) extended this
approach to generate non-Gaussian random processes of specified marginal distribution and
correlation function by mapping a zero mean unit variance Gaussian process into a non-
Gaussian process. The same nonlinear transformations have been applied to generate a
translation from the Gaussian process in order to study mean up-crossing rates of non-
Gaussian processes (Grigoriu 1984). In another study, a simple power transformation
procedure has been applied to convert non-Gaussian to Gaussian wind speed data in order
to fit an AR model to the transformed data (Brown et al. 1984). In this case, an undesirable
autocorrelation change after inverse transformation is inevitable. However, Yamazaki and

Shinozuka (1988) proposed a novel method which first generates a Gaussian process and
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then maps it into a non-Gaussian process with the aid of an iterative procedure matching the
target spectral density. A similar transformation procedure has been attempted by Ammon
(1990) where the non-Gaussian process with specified target spectra and probability
distribution function is simulated by combining a linear dynamical filter system and a
nonlinear static transformation using simple polynomials. Logan et al. (1988) expressed the
parent distribution as a five parameter polynomial preserving prominent moments.
Afterwards, the data has been transformed from parent distribution to Gaussian using
probability integral transformation in order to fit an ARIMA model to the transformed data.
A nonlinear instantaneous transformation procedure has also been used to generate non-
Gaussian time series by Janacek and Swift (1990). In this approach, the transformation
function has been expressed as an orthogonal expansion in terms of a Hermite polynomial
deducing the required correlation structure of the Gaussian process to devise a linear filter to
generate a Gaussian time series from normally distributed white noise. Though this method
provides specific autocorrelation structure, it is agreed that certain combinations of marginal
distribution and autocorrelation structure cannot be modelled as the transformation of a
Gaussian process. Iyengar and Jaiswal (1993) used a similar approach to model
irregularities of Indian railway tracks. In a more recent work, Hermite moment models have
been uéed to represent non-Gaussian processes resulting from the transformation of a
standardized Gaussian process (Winterstein 1988; Winterstein and Lange 1995). Using this
approach, the other properties of the non-Gaussian process can be easily developed by
transforming the well-known results of Gaussian process. However, practical difficulties
remain in attaining the target spectral character. In a recent paper by Gurley et al. (1996),

correlation distortion method based on a given target spectrum or autocorrelation as well as
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modified direct transformation method based on a given sample time history have been
presented; both the methods used Hermite polynomial transformation. Overall, the above
mentioned static transformation techniques are adequate only for weakly non-Gaussian
cases according to Seong and Peterka (1993). Most recently, several classes of non-
Gaussian processes and their simulation procedures have been described by Grigoriu
(1995).

Furthermore, a promising approach which simulates wind pressure fluctuations of non-
Gaussian nature with the help of FFT and AR models has been introduced (Seong and
Peterka 1993; Seong 1993). This simulation methodology is based on the following three
major findings: (1) the variation of phase part does not affect the second order
characteristics (variance, ACF, SDF) of the time series, (2) the spikes in the time domain,
responsible for non-Gaussian nature, are strongly dependent on the phase part of the Fourier
transform in the frequency domain, and (3) the spikes can be transformed from one sigral to
the other through the phase part of the Fourier Transform without disturbing the spectral
characteristics. Consequently, the Exponential Auto-Regressive Peak Generation (EARPG)
model combined with a Uniform Phase Shift (UPS) was proposed for the generation of the
phase part of the Fourier coefficient. Afterwards, the time series has been simulated by
inverting the generated Fourier coefficients which consist of specified amplitude and
simulated phase. This model can represent broad band spectra in the frequency domain and
many of the fluctuating features in the time domain. It has control over only one of the four
statistics (higher order moments : skewness and kurtosis; extreme value statistics: mode and
dispersion) of the target fluctuations and has been derived to model pressure fluctuations on

flat roof corner zones only.
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One of the most fundamental tools used in the analysis of any signal is the power
spectrum. In power spectrum estimation, the signal under consideration is treated as a
superposition of statistically uncorrelated harmonic components and the distribution of
power among the frequency components is then estimated. It has been recognized that the
power spectrum of a signal suppresses its phase part. However, the importance of phase part
in producing the spiky features of a non-Gaussian signal has been confirmed in a number of
studies (Kareem 1993; Seong and Peterka 1993; Seong 1993). Recent studies also show that
more accurate representations of spiky features can be made through implementation of
higher-order spectra, which preserve information concerning phase as well as higher order
moments. For instance, the simulation of a non-Gaussian process resulting from a quadratic
transformation of a Gaussian process is presented by Kareem et al. (1995). This
methodology generates non-Gaussian process by inverting the Fourier coefficients after
adding the second order contributions to the complex spectral amplitude components at the
appropriate sum and difference frequencies. Further study in this regard is necessary in

order to comment about the efficiency of this approach.

2.3 GENERAL COMMENTS

A number of methods for simulating stationary Gaussian as well as non-Gaussian time
series have been discussed so far; these can be broadly classified as following into ARMA
or FFT methodologies. The ARMA approach is based on the simple and well-known theory
of linear difference equations and is computationally efficient. However, ARMA models

cannot represent data exhibiting sudden spikes of very large amplitude at irregular intervals
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and having negligible probability of very high level crossings (Tong 1990); therefore, these
are not suitable to represent non-Gaussian time series. On the other hand, the FFT-based
approach is the most widespread methodology in engineering applications due to its ease in
understanding, simplicity and interaction between time and frequency domains. Although
the FFT method is not as efficient as ARMA in computational aspects, recent applications
of this method for the simulation of non-Gaussian pressure fluctuations as well as perpetual
advancement in high speed computers provide considerable amount of optimism to
continue research in this area.

Note that the capability of FFT approach in representing the stochastic properties of
Gaussian as well as non-Gaussian pressure fluctuations on building envelopes is not fully
explored in previous studies. Therefore, further work is required to develop a simple and
efficient FFT representation for wind pressure fluctuations on low building roofs.
Additional work is also required in modelling the amplitude part in the Fourier
representation of pressure time series, which has been neglected in previous studies. Last

but not least, generalization of the proposed model should also be investigated.
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CHAPTER 3
THEORETICAL BACKGROUND

"...we must welcome the future, remembering that soon it will be the past; and we must respect the past,
knowing that once it was all that was humanly possible..."”

Gerorge Santayana,
as quoted in Reader’s Digest, Mar. 1972.

This chapter presents the necessary theoretical background for the current work. Basic
Fourier transform properties of time series are highlighted. In addition, stochastic
characteristics of time series such as moment properties, level crossing and peak statistics as
well as extreme value statistics are also presented. For more details on this material, see

Brockwell and Davis (1991) and Robson (1963).

3.1 FOURIER TRANSFORM PROPERTIES OF TIME SERIES

3.1.1 Stationary Time Series

A time series is called strongly stationary, if all its moments and joint moments are time
invariant (Bendat and Piersol 1986). If only the first and second moments and their joint
moments are time invariant, then the time series is called weakly stationary. Note that in the
case of a Gaussian time series, weak stationarity implies strong stationarity since the first
and second order moments are sufficient to compute higher order moments. Time series that

do not meet the requirements for stationarity are called non-stationary.
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3.1.2 Spectral Representation of a Stationary Process

The spectral representation of an arbitrary discrete stationary process is as follows:
% o
X = kz_lA(mk)e k (3.1)

in which -t <®; <®; <...<®, =7 and 4(®y), ....., A(®,) are uncorrelated complex-
valued random coefficients such that

E[4Aw,)] = 0 , k=12,....,n

and

E[4A(w) A" (0)] = o2 ,k=12,...,n

where, * represents complex conjugate. In case X, is real valued, it is necessary that A(wx)
=A"(0pp) fork=1,2,....., n-1. Eq. (3.1) fulfills the condition of stationarity since

EX) =20

E(Xie X.°) = D, of &k

k=l
where the operator E represents expectation and o, represents variance associated with
each frequency.

3.1.3 Discrete Fourier Representation of Time Series

Let Xj, X;,....., X, be observations from a stationary time series with w; = 2rk/n, k € F,,

which are equally spaced n frequencies called Fourier frequencies. Note that
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2rnk -1 _
Fn= ik -n<oi=22 <n)= {-[5) —[nTl]H, ......... G111

The process {X;} can be represented as a superposition of random sinusoids in the form

X = m') Aoy) €%, t = 12,....n. (3.2)
keF,

The Discrete Fourier Transform (DFT) of X, is

Ay = D X, ek (3.3)

=1
Practically, the following DFT representation is used for computation:

n-1

Ak = Z Xt e-izxkl/n 5 k = 0,1,2,......,}7'1. (3.4)
=0

Similarly, the inverse Fourier representation becomes

n-1

Xe = m') Ap & ¢ =012, .n-1 (3.5)
k=0

3.1.4 Periodogram and Spectral Density Estimate

The periodogram of the time series, {X;}, is defined by

2

Lok = ), X, ek (3.6)
=1

which corresponds to the squared amplitude of the coefficients in the Fourier representation

at the Fourier frequencies, w; = 27ti/n, i.e.

I(o) = |A(@f (3.7)
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The periodogram of {X;} in terms of the sample auto-covariance function (y(7)) can be

expressed as

Iy = n?| X7 Jif 0p = 0
- nz (%) e Tk ,if , * 0 (3.8)
fi<n
where,

n-jt|

Y@) = 2D (X, - X)(Xieg - X)
t=]
X=n! i X,
=1

When {X:} is a stationary time series with mean X and the autocovariance function, v(1) is

absolutely summable in the domain of infinite sequence, that is,

> @) <o,

T=-

then a continuous spectral density of {X;} is given by
f@) =@n)' D y@) ™, o el[n,n] (3.9)

1=-x

Thus, knowledge of the autocovariance function is mathematically equivalent to knowledge
of spectral density. The striking resemblance between Egs. (3.8) and (3.9) suggests the
potential value of the periodogram for spectral density estimation.

3.1.5 Asymptotic Properties of the Periodogram

In this section, the asymptotic properties of the periodogram of the vector (X}, X5, ...... Xn)

25



when {X;} is a stationary time series is presented. If {X:} are independent identically
distributed (i.i.d) Gaussian random variables with variance o?, the random variables

oy = Z X, cos(®t)
= (3.10)

Z X, sin(@gt)
t=]

B,

are also iid Gaussian random variables with mean zero and variance %2 due to

orthogonality of sinusoids. Consequently, the periodogram ordinates
o) = [oi + BF] (3.11)
are independent and exponentially distributed random variables, each with mean o°. Even

for the vector (Xj, X5,....., X,;) which is an independent but not normally distributed random
variable with mean zero and variance ¢°, the periodogram vector ({(w)),...., /(®,)) converges
to a vector of independent and exponentially distributed random variables, each with mean
o7, as n—»cw. However, in case of correlated signal, as n—, the periodogram vector
converges to a vector of independent and exponentially distributed random variables, the £
component of which has mean equal to 2nflwy), k=1, 2,..., .

In summary, for a Gaussian time series, each component of the periodogram vector is
asymptotically independent and exponentially distributed with mean 2nflwg) or o>

depending on whether the time series is correlated or not.

3.1.6 The Proposed Stochastic Model

Based on the various properties of DFT discussed in previous sections, the following
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stationary time series generation model is proposed:

n-1

— -1 e g
T Al e G.12)
n-1
= pl Z [ A(w )l @k itog
k=0
where,

[A@) = (o) (3.13)
= 1/27‘[5((0/() ;

¢ (o k) = Uncorrelated random phase (3.14)

where, spectral density S(w;) and periodogram /() are deterministic. Note that the Fourier
amplitude part (lA(mk) l) is constructed from target spectral density; hence the generated
time series X; will have exactly the same given spectral characteristics regardless of the

distributional property of the phase. The random phase ¢ (© ,) is an independent uniformly

distributed random variable in the interval [-m ,m ]. The uncorrelated Fourier coefficients

(A(o,)) due to the uncorrelated phase part will guarantee stationarity to the simulated time

series. The time series .X; follows asymptotically a Gaussian probability distribution due to
the central limit theorem. However, in practice, the time series may not be exactly stationary

or Gaussian as will be discussed in Chapters 4 and 6.
3.2 STOCHASTIC PROPERTIES OF TIME SERIES

3.2.1 Moment Properties of Time Series

The moment properties of time series {X1, Xa,......, X,} such as mean, variance, skewness
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and kurtosis are related to the Fourier coefficients in the Fourier representation of each time

series. The mean value X of time series {X, t =1,2,3,...., n} is determined by
n

X=n') x (3.15)
=1

or by substituting Eq. (3.12) in Eq. (3.15),

X = n'd(@)| *@o (3.16)
which shows that mean of the time series is determined by the magnitude of DFT at zero
frequency. The phase at zeroth frequency indicates whether the mean value is negative or
positive.

The variance (c?) of the time series X, is evaluated by
o2 = n' ) (X,-X) (3.17)
=]

or by substituting Eq. (3.12) in Eq. (3.17),

c? = n? D AP (3.18)
keFp\0

Note that the variance of the signal is related to the amplitude part of the DFT regardless of
the phase part of DFT.

The third order moment, skewness (Sk), of the pressure signal characterizes the degree of
asymmetry of the distribution around its mean. Conventionally, skewness is defined as a
non-dimensional number characterizing only the shape of the distribution. For example, a
positive value of skewness represents a distribution with asymmetric tail extending out

toward more positive x-axis. Skewness is defined as,

Sk = n™! Z [(X.-X)/cT (3.19)
=1
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or by substituting Eq. (3.12) in Eq. (3.19),

-3
k=25 Y 3 A@IA@ N Al 0@k (3.20)
o k=-leF,\0

Thus the skewness of the time series is related to the Fourier amplitude as well as the phase

part of DFT.
The fourth order moment, kurtosis (Ku), of the pressure signal is a measure of relative
peakedness or flatness of a distribution. Conventionally, kurtosis is defined as a non-

dimensional number related with its value for a Gaussian distribution, i.e.,
Ku=n' Y [(X,-X)c] -3 (3.21)
=1

in which, the -3 term makes Ku zero for a Gaussian distribution; however, in all calculations
in this thesis, kurtosis is considered as the normalized fourth order moment excluding the

term -3.

3.2.2 Estimation of Level Crossing and Peak Statistics

3.2.2.1 In time domain

Classical level-crossing and peak statistics theory are briefly reviewed here. The time series
{X:} exhibits one x-upcrossing in time step AT if X; < x and X, > x. Therefore, the average
number of x-upcrossings in AT is P(X; < x, X;+; > x) and the mean x-upcrossing rate of the

series can be obtained from
1 < 22
Nx = EP(X:_X’X:+I>X) (3.22)

Similarly, the time series {X;} exhibits one peak (maximum) in time step AT in the interval
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dx, above the level x, if x <X, <x+dx, X, =0and X, <0. Therefore, the average number

of maxima in AT is P(x <X, <x+dx, X, =0, X < 0) and the mean peak rate of the series

4

can be obtained from

1 . .
Np(x) = == P(x < X, <x+dx, X, <0, ¥, < 0) (3.23)

3.2.2.2 In frequency domain

Estimation of level crossing and peak statistics using SDF is briefly reviewed in this section.
For any zero-mean stationary random process, the spectral density function (S(H) is defined

as the Fourier transform of the autocorrelation function (R(t)) of the process, i.e.

2
T

S(f) = = [ Rx).cos2nfr)dr (3.24)
0

where, S(f) is considered to be non-negative one-sided physical spectrum. The speciral

moments, m;, are defined by

m = [fiS(Hdf . i=012,.. (3.25)
0

in which my represents variance (c7) which is area under S(f). The spectral moments can be

used to establish level crossing rates as well as peak rates of a narrowband stationary

Gaussian random process. The zero up-crossing or down-crossing rate (M) of the process

can be estimated by

No = [ma/ mp]"? (3.26)

whilst, the positive or negative peak rate (NVp) of the process can be estimated by
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N, = [ms/ m]"? (3.27)

The average number of zero up-crossing as well as peaks in time 7 can be estimated by
multiplying Eqs. (3.26) and (3.27) by T. Further, the rate of maxima, N,(x), occurring in the

interval (x, x+dx) for a Gaussian process can be estimated by,

N : 2 1 22
Np(x) = 5= exp(-3) [1 B erf(%) + \g - exp(-1- )J

where, shape factor(u ) = 7
moms - mb

Since Egs. (3.26) and (3.27) have been developed based on narrowband assumption, they
must be used with caution in case of broadband process. The broadband nature of a
stationary random process can be quantified by using irregularity factor () or bandwidth
parameter (B). The irregularity factor (g), a measure of distance to narrowband, can be

evaluated by
£ = ‘NYO / -’Vp (329)

The bandwidth parameter (B), a measure of the dispersion of SDF around its central

frequency, can be estimated by

B =+41-¢2 (3.30)
The irregularity factor as well as bandwidth parameter range between 0 and 1. While € = |
and B = O represent pure narrowband process, € = Qand f =1 represent pure broadband

process. For more precise definition of terms and more details, see Vanmarcke (1983) or

Nigam (1983).



3.2.3 Extreme Value Statistics

Extreme values of time series data are significant in various engineering applications.
Therefore, special importance is provided for the statistical analysis of such extreme values.
It is noted that if the probability distribution of a parent population has an exponential tail,
its extreme values approach the Type-I distribution as the data increases (Gumbel 1958). It
is interesting to note that the central portion of the parent distribution has little influence on
the asymptotic form of the extremal distribution compared to the tail portion of the parent
distribution; however, it has influence on extremal parameters. As far as wind engineering
applications are concerned, the Type-I distribution is a good approximation of the extreme
values though the tail of the parent population does not always follow exponential
distribution (Peterka and Cermak 1975; Dalgliesh et al. 1980).

Let X;, be the random variable associated with the maximum value of the initial variate X.
The Cumulative Distribution Function (CDF) of the Type-I asymptotic form for the

distribution of .X;, is as follows:
P(Xm < x) =P = Fyg (x) = exp (—e 0% (3.31)

where u corresponds to a characteristic largest value of the initial variate X (mode) and s
corresponds to a measure of dispersion of .X,,. The extremal parameters s and « can be
estimated by using either Gumbel's plot or the following equations derived from the mean

(;.Ll ) and the standard deviation ( o, ) of X, (Gumbel 1958):
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3.2.3.1 Gumbel's plot

By taking twice logarithm on both sides, Eq. (3.31) becomes

In[-In (P)] = -(x;u) (3.33)
which can be rewritten as
X =u+sy (3.34)

where, y = -In[-In (P)] is the reduced y-variate. The probability term P can be determined as
follows: the observed extreme values are sorted into ascending order of magnitude, after
which each is assigned a rank, r, where r = 1 for the smallest and r = Q for the largest of O
values. An estimate of P corresponding to each extreme value can be calculated from their

ranks using the following equation,

r

O+1

-~

P = (3.33)

The mode () and dispersion (s) can be determined from plotting Eq. (3.34) (Gumbel’s
plot). Mode corresponds to the x value when the reduced y-variate is zero and the dispersion

is the slope of the line fitting the data.

3.3 SUMMARY

The essential Fourier transform as well as stochastic properties of time series have been
presented in this chapter as a foundation for the current work. Based on the various Fourier

transform properties of time series discussed in sections 3.1.1 - 3.1.5, a stochastic model is



suggested in section 3.1.6 for the generation of pressure time series. This model requires
Fourier amplitude as well as phase for the time series generation. The Fourier amplitude can
be generated either from a sample time history or from target spectra, while the Fourier
phase represented by independent uniform random numbers can be easily generated. The
generated time series using this model will be stationary and normally distributed.
Therefore, modification of this model is required to extend its capability to represent
stationary non-Gaussian time series.

It is shown in section 3.2.1 that the mean and variance of a time series are independent of
the phase part but are wholly determined by the amplitude part of the DFT of time series.
On the other hand, the skewness (a non-Gaussian property) of time series is related to phase
as well as amplitude part of the DFT of time series. Further, as mentioned in Chapter 2, past
studies showed the possibility of inducing non-Gaussian properties through the phase part
of the Fourier representation of a time series without disturbing its amplitude characteristics.
Therefore, Eq. (3.12) can also be used for non-Gaussian signal simulation with a different

phase part. This issue will be addressed in Chapter 6.
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CHAPTER 4
EXPERIMENTAL INVESTIGATION

"...Physical modelling has and continues to be the primary source of information for wind engineering
applications. The capability of boundary-layer wind tunnels to simulate essential features of the atmospheric
boundary layer makes this possible..."

J. E. Cermak, 1995.

The current study focuses on the development of a suitable analytical/empirical model to
simulate Gaussian as well as non-Gaussian pressure fluctuations on low building roofs. To
start with, systematic wind tunnel measurements are required to understand the stochastic
behaviour of pressure fluctuations on roofs. The information derived from wind tunnel
measurements has then formed the basis for developing an efficient model to represent the
true characteristics of pressure fluctuations on roofs. This chapter addresses the

methodology used in the experiments and presents the experimental results.

4.1 EXPERIMENTAL PROCEDURE

This experimental study aims at acquiring a comprehensive knowledge of pressure
fluctuations on various types of building roofs under different conditions. The required
natural wind conditions for the measurement can be simulated in atmospheric boundary
layer wind tunnels. Details associated with physical modelling and simulation of the
atmospheric boundary layer are provided elsewhere (Simiu and Scanlan 1986; Cermak

1995). The roof geometry, tap location, wind attack angle, and surrounding conditions have
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been considered in order to investigate the effect of each one of them on the fluctuating
behaviour of pressures acting on roofs. A brief description of the various elements of this

experimental study follows:

(a) Wind tunnel: The experiments were carried out in the boundary layer wind tunnel of
the Centre for Building Studies (CBS) at Concordia University, Montreal, Canada. The
working section of the tunnel is 12.2 m long, 1.8 m wide, and about 1.8 m high. It has an
adjustable roof height to provide negligible pressure gradient in the downstream direction.
More details about this wind tunnel and its simulation characteristics are given by

Stathopoulos (1984a).

(b) Approach terrain, length scale, velocity scale: Since low-rise buildings are located
at the lowest part of boundary layer where the surface roughness is comparable to the height
of these buildings, the terrain conditions are expected to have influence on the fluctuating
characteristics of wind-induced pressures. Further, the majority of buildings are located
either in open country or in suburban terrain conditions. Therefore, these exposures were
simulated in the tests of this study; their corresponding mean velocity and turbulent
intensity profiles are shown in Fig. 4.1. The boundary layer scale is approximately 1:400.
The wind speed at gradient height was approximately 11 m/s. The velocity scale for this

study was set out to be approximately 1:3.5.
(c) Building parameters: Plexiglass models of common roofs such as flat, monoslope,

and gable types were tested in two terrain conditions for several wind angles. The

dimensions of the models used in this study are reported in Table 4.1. In the first phase of
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Fig. 4.1 Mean speed and turbulent intensity profiles for both terrains considered.

Table 4.1 Models used in this study.

Dimensions
1 b hy
Monoslope Roof (a = 15°)
Full-Scale (m) 60.8 19.2 12.0
Model (mm) 152.0 48.0 30.0
Flat Roof
Full-Scale (m) 43.2 43.2 15.0
Model (mm) 108.0 108.0 37.5
Gable Roofs (o = 19° and a = 45°)
Full-Scale (m) 60.8 39.2 12.0
Model (mm) 152.0 98.0 30.0

Note: 1= length, b = width, h; = lower eave height, & = roof angle
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this study, several roof taps (Fig. 4.2 (a)) were used not to determine detailed aerodynamic
behaviour but to examine variability in pressure fluctuations and possible elimination of
taps from future tests. In the second phase, tests were conducted only for the selected taps
(Fig. 4.2 (b)) from the first phase. The measurements were made for 7 different wind
directions (0°, 30° 45° 60° 90°, 120° and 180°) in case of monoslope roof and for 5

different wind directions (0°, 30°, 45°, 60°and 90°) in case of flat and gable roofs.

(d) Instrumentation: Pressure fluctuations were measured with SETRA 237 pressure
transducers (0.1 psid range) using a Scanivalve. The Scanivalve was connected to
pressure taps with plastic tubes that were 610 mm long and had an inside diameter of 1.6
mm. Restrictors were placed in the tubes to provide a flat frequency response up to 100

Hz. Frequencies of pressure fluctuations at most taps are expected to be below this value.

(¢) Measurements: Pressure data were acquired in blocks of 8192 samples each at a
sampling rate of 500 Hz using a waveform analyzer (DATA-6000) after each signal
passed through a low-pass filter with cut-off at Nyquist frequency (the highest possible
frequency component present in the signal, Brook and Wynne (1988)) of 250 Hz. At a
length ratio of 1:400 and mean velocity ratio of about 1:3.5, the resulting time history of
16.384 seconds providing statistically stable mean and variance is equivalent to 30
minutes in full-scale. At the end of each sampling period, the measured pressure signals
were converted to pressure coefficient (Cp) signals by dividing them by the reference
dynamic pressure at mean roof height. Simultaneously, the pressure coefficient spectrum
(S(f)) was also evaluated with the help of DATA 6000 analyzer. Smoothening of the

spectra has been done by ensemble averaging of 16 records.
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4.2 EXPERIMENTAL RESULTS

A number of pressure time histories have been measured during this investigation;
however, only representative samples of pressure fluctuations have been chosen for the
demonstration of results reported in three conventional domains such as time, frequency

and amplitude.

4.2.1 Time Domain Properties

First, the appearance of the time histories have been closely observed. Figures 4.3, 4.4,

and 4.5 show the time histories of the representative samples. The statistics of the

selected samples corresponding to the ensemble average of 16 records are shown in Table

4.2. The MATLAB function MODM_ST reported in Appendix - A is used to estimate

these statistics. The observations are summarized as follows:

(a) In general, the measured pressure fluctuations on roofs have negative means and
negatively going sharp spikes due to the high suction acting on roofs; however, there
are exceptions. In case of sample S100 where the roof angle is 45°, the tap
experiences pressure rather than suction resulting in positive mean and positively
going spikes. As expected, the mean values of the fluctuations are different at various
locations (see Table 4.2).

(b) The intensity of fluctuations (variance) of the time histories is sometimes quite
different depending on the tap location and wind attack angle. The variances of the

selected samples are provided in Table 4.2. It is noted that sample S18 has the
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Fig. 4.3 Measured pressure time histories on a monoslope roof.
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Fig. 4.4 Measured pressure time histories on a flat roof.
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Fig. 4.5 Measured pressure time histories on gable roofs.
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Table 4.2 Statistics of pressure time series data.

Sample Mean Variance Skewness || Kurtosis
Monoslope Roof (a ~ 15°)
S1 -1.11 0.14 -1.40 7.12
S16 -0.51 0.02 -0.10 3.55
S18 -5.31 1.82 -0.67 3.56
S22 -0.68 0.02 -0.14 3.10
Flat Roof
S50 -0.80 0.28 -2.28 9.80
S64 -1.47 0.14 -0.75 4.44
S28 -1.15 0.12 -0.86 4.89
S24 -0.53 0.02 -0.03 3.03
Gable Roofs (@~ 19° and o~ 45°)
S69 -0.80 0.05 -0.93 5.63
S78 -0.31 0.03 -0.07 3.32
S37 -0.38 0.17 -1.06 6.35
S100 0.37 0.04 0.31 3.02

maximum variance compared to all other signals. It can be observed from the
appearance of sample S18 (Fig. 4.3) that it has patches of broad spikes rather than
simply dropping sharp spikes. The unsteady behaviour of this time series is dominated
by large-scale fluctuaticns (low-frequency fluctuations) which can be associated with
the low-frequency flapping motion of the separated shear layer from the sharp edge
(Seong 1993). Further, it is interesting to note that high fluctuations (variance) do not
guarantee high non-Gaussianness (high skewness and kurtosis values) in a signal. For
instance, though sample S18 (see Fig. 4.3) is highly fluctuating, the fluctuations are
approximately evenly distributed above and below the mean and thus, it is not highly
non-Gaussian. Note that samples S1, S69 and S37 are highly non-Gaussian, but they
have low values of variance compared to sample S18 (see Table 4.2); while sample

S50, which is highly non-Gaussian, has variance greater than the above three samples.
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This shows that there is no clear evidence concerning any relation between the
intensity of fluctuations (variance) and the non-Gaussianness of a signal.

(c) The commonly observed sharp spikes in pressure time series are mainly responsible
for its non-Gaussian nature. A careful observation of the time histories in Figs. 4.3,
4.4 and 4.5 reveals two important characteristics of spikes. First, the frequency of
spikes which varies from signal to ‘signal depending on the different conditions of
each measurement. Second, the magnitude of spikes which also varies from signal to
signal. Both frequency and magnitude of spikes should be taken into account while
modelling pressure fluctuations on roofs since they affect the nature of the time series.
Table 4.2 shows the values of skewness and kurtosis of the selected samples. It is easy
to note that some signals (samples S1, S50 and S37) are highly non-Gaussian; for
instance, it is clear from Fig. 4.3 that sample S1 has more sharp spikes going in
negative direction and, therefore, it must be more non-Gaussian than each of the other
three samples shown in the same figure. It is interesting to note sample S50, which is
one of the most highly skewed signals observed during this investigation. Samples
S16, S22, S24 and S78 are close to Gaussian based on the skewness and kurtosis
values given in Table 4.2.

(d) In general, the high magnitude sharp spikes in pressure fluctuations have been
observed at taps located on windward edges of roofs in separated flow (azimuth 0°) as
well as in vortex flow (say, azimuth 30° - 60°) conditions. A typical example of time
series measured in separated flow is sample S64. This particular tap is immersed in
the separation bubble formed by the sharp edge of roof. The fine sharp spikes

observed in this time series reflect the flow mechanism near the surface inside this
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separation bubble. The intermittent formation and breakdown of the secondary
separation bubbles which are immersed in the main separation bubble might be
causing such spikes (Bienkiewicz and Sun 1992). Typical examples of time series
measured in vortex flow are samples S50, S28 and S37. It is well known that conical
vortices form on the leading edges of a roof in vortex flow. The intensity of the
conical vortices depends on many features such as roof geometry, oncoming wind
turbulence, wind direction etc.; very strong conical vortices are found on flat roof
edges in turbulent flow coming at an azimuth of 45° (Kawai and Nishimura 1996).
The large suction fluctuations as well as the sharp spikes observed in these samples
are caused by the suction induced by conical vortices (Kawai and Nishimura 1996).
Note also that the intensity of the conical vortices weakens as they move far
from the vertex of the roof corner. As a result, the intensity of the spikes is
significantly reduced in the case of sample S28 compared with sample S50. The
detailed characteristics of suction fluctuations on the leading edges of a flat roof under
oblique flow are provided elsewhere (Bienkiewicz and Sun 1992; Kawai and
Nishimura 1996).

Since the level-crossing and peak statistics of the signals are important in time
dependent reliability problems, they have been estimated using the MATLAB functions

CROSS_ST and PEAK_ST reported in Appendix - A. The results are reported in Table

4.3 where the second and third columns represent the number of mean zero down-

crossings (No7) and the number of negative peaks (N,7) where T = 16.384 s (record
duration). It is clear that the number of peaks are always higher than the number of mean

zero down-crossings holding a ratio of NpTto NoT from approximately 1.5 (sample S78)
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Table 4.3 Number of mean zero down-crossings and negative peaks of pressure time

series data.
Sample | NoT N,T
Monoslope Roof (a ~ 15°)
S1 643 1523
S16 1185 1952
S18 338 1638
S22 1064 1935
Flat Roof
S50 796 1973
S64 836 1982
S28 1186 2041
S24 1461 2030
Gable Roofs (= 19° and a~ 45°)
S69 838 1705
S78 1260 1876
S37 703 1791
S100 483 1298

to 5 (sample S18). This shows that all the selected samples are broad-banded since N,T
and N,T are supposed to be equal or close to each other in case of narrowband process
(see section 3.2.2.2). The variation of Ny7 and N,T among signals depends on the nature
of fluctuations at the corresponding locations. Note the enormous difference in NoT
among signals, especially in case of samples S18 and S24; however, in case of N,T, such
huge difference is not observed. Therefore, it can be hypothesized that N,T depends very
much on the broadband nature of the signal. Table 4.4 shows the number of crossings at
different levels of some of the selected samples. All calculations have been made after the
signals were subtracted from their corresponding mean values and normalized by their
corresponding standard deviations. For instance, the number of down-crossings at level] -2

corresponds to the number of down-crossings of time series at 2 below the mean level,
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Table 4.4 Number of down-crossings at various levels of selected pressure time series

data.
Level crossing below mean in terms of o

Sample 0 -1 2 -3 -4 -5 -6

S1 643 312 121 50 24 7 1

S18 338 209 66 21 6

S50 796 227 154 91 32 9 3

S24 1461 834 166 12 1

S78 1260 690 161 21 1

where ¢ is the standard deviation of the time series. The number of downward level
crossings at levels 0 to -6 are presented in Table 4.4. As expected, the number of
crossings decrease as the level increases. Here, samples S1 and S50 are highly non-
Gaussian which is clear from their higher level crossing nature, especially at levels -4, -5
and -6. In case of samples S18, S24 and S78, which are more or less Gaussian, there is no
crossing above level -4. Even at level -4, the number of crossings are negligible compared
to samples S1 and S50.

Further, when each pressure time history is inspected at a number of successive time
intervals, they all have a similar appearance. Especially, the values of mean and variance
of the sub-intervals of a given time history are found to be more or less constant. Such
type of behaviour is idealized by saying that the process is stationary, i.e., the statistical
properties are time invariant. In addition, the invariant nature of the autocorrelation
functions of the measured signals with respect to uniform shift in time (t ) has been
confirmed in a number of cases which further reinforces the overall stationarity of the
complete second order properties of the time series. Typical autocorrelation functions

provided in Fig. 4.6 support this observation.

48



Autocorrelation function

Autocorrelation function

0.2

Open exposure
0.8 ™
o, H
04 \ /t =0
\ 1:/= 0.2 sec
02 |} / T=2sec
N T=28 sec
-0.2 ’
0 0.05 0.1 0.15
Time lag (sec)
1
: Open exposure
0.8 }
a |
: c L !
0.6 -'\\ 30"
\‘.
0.4 B “S‘\f'.
i =0
{‘\T/ t=0.2 sec
02 | v
O =
-0.2
0 0.05 0.1 0.15 0.2

Fig. 4.6 Autocorrelation functions of pressure fluctuations subjected to

Time lag (sec)

uniform shift in time.

49



4.2.2 Frequency Domain Properties

In this section, frequency domain properties of the pressure fluctuations are discussed.
Spectra are shown as a function of the independent variable during the test; the reduced
frequency, F = fh/V, where 4 is a typical building dimension, say mean roof height of the
building, and ¥ is the mean velocity at mean roof height. Since most of the energy is
concentrated at low frequencies, the spectrum is shown in logarithmic scale.

Figure 4.7 shows a typical sample of normalized spectra of pressure fluctuations and the
corresponding longitudinal spectrum of incident wind at building height without the
presence of building. The time histories corresponding to the velocity and pressure spectra

have been sampled at 500 Hz with a cut-off frequency at 250 Hz. It can be seen
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Fig. 4.7 Sample spectra of wind velocity and wind pressure.
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that significant energy in the tap is distributed over a wide frequency range. In low
frequency range, amplitudes of the pressure spectrum which is mainly related to the
turbulence in incident flow are somewhat lower than those of the velocity spectrum. In
high frequency range, pressure spectral amplitudes are significantly higher than wind
spectral amplitudes. This particular observation is found to be consistent for almost all
taps on roof. It is generally believed that small-scale turbulence caused by the interaction
of incident wind turbulence with the building makes high frequency pressure energy
significant.

Figure 4.8 shows typical comparisons between the model and full-scale wind pressure
spectra. The full-scale spectra correspond to taps 50101 and 50123 of TTU building
(Texas Tech... 1992). The full-scale time histories were sampled at 40 Hz with a cut-off
frequency at 10 Hz for tap 50101 and at 8 Hz for tap 50123; the model time histories
were sampled at 500 Hz with a cut-off at 250 Hz. At a length scale of 1:400 and a mean
velocity ratio of about 1:3.5, the model sampling frequency and cut-off frequency were
equivalent to about 4.3 Hz and 2.15 Hz in full-scale. Note that the model and full-scale
cases used for this comparison are slightly different in terms of building geometry and tap
location. In particular, the model height was equivalent to about 15 m in full-scale, while
the full-scale building height was only 4 m. However, the comparisons show that the
model spectra are in reasonably good agreement with the full-scale spectra which is
encouraging. Recently, Xu (1995a) reported the higher full-scale spectral amplitudes in
the higher frequency range in comparison with the lower model scale spectral amplitudes
in the same region. This may be due to the differences in simulation of atmospheric

turbulence between full-scale and wind tunnel (Tieleman 1992). However, it is reasonable
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to accept that model scale spectra compare well with the full-scale spectra at least in the
lower frequency range where most of the energy lies.

Figures 4.9, 4.10 and 4.11 show the measured spectra of the representative samples. As
expected, spectra vary from location to location due to the nature of the physical
processes that occur near the surface in boundary layer flow. The spectra measured at
various locations of the roof under different conditions show that spectra have somewhat
deterministic shape though some spikes occasionally appear at fan blade frequency and at
harmonics of electrical frequency which can be easily cleared. For instance, samples S22,
S24, S69, S78 and S100 (Figs. 4.9, 4.10 and 4.11) have some erratic spikes which are
extraneous. The significance of spikes is estimated by measuring the area under the
spikes. The area under the spikes in various cases is found to be within 5% of the
corresponding variances. It is interesting to note that such spikes are poping out when the
variance of the signal is low. For instance, in the case of sample S18 (Fig. 4.9), there are
no visual spikes due to its high variance suppressing such extraneous spikes.

Though the properties of time series such as variance, the number of zero down or up-
crossings (NoT), the number of negative or positive peaks (N,7), the irregularity factor (g),
the bandwidth parameter () can be deduced from spectra (see section 3.2.2.2). other
properties such as mean, Gaussian or non-Gaussian nature, information about spikes etc.
of the corresponding time series cannot be deduced from them. For instance, sample S1 is
highly non-Gaussian while sample S22 is nearly Gaussian, as per Table 4.2; this
information cannot be drawn from spectra. Furthermore, it is interesting to note that the
sharp spikes present in time histories are missing in spectral information. In particular,

samples S1, S50 and S37 (Figs. 4.3, 4.4 and 4.5) consist of high intensity sharp spikes;

53



Open exposure

D Roof angle = 15o

N

0, |
| L
S1 60

4
°fs16

S1

w

-4 0
10 10 10 10 10
Reduced Frequency, F

S18

-4 ‘-3 '.2 .-1 0
10 10 10 10 10
Reduced Frequency, F

Suburban exposure

457 SI8

S16

-3 - -

100 100 100 10

Reduced Frequency, F

S22

-3 - =

10 10 10 1 0
Reduced Frequency, F

Fig. 4.9 Measured pressure spectra on a monoslope roof.

54




Open exposure
1
00
—> ©
307 50 S64
0
10
S50
10
0L T,
S '
- 10 | 1
-4
10 | \
10 : :
-4 -3 -2 -1 Q
10 10 10 10 10
Reduced Frequency,
0
10
r S28
10 |
107 1 /_“wv‘"*w
§ 10 L ", A
-
10 |
10 L
-6
10 : ‘ , :
-4 -3 -2 -1 0
10 10 10 10 10
Reduced Frequency, F

Suburban exposure

45,7 528 457 S
0
10
: S64
10
10- = /\/‘\_{“\
10
<4
10 |
10
" -3 2 -1 0
10 10 10 10 10
Reduced Frequency, F
0
10
| S24
10 -
-2
10 |
S0
“2 e,
-4 {,.\ \
10 !
5 |
10 + V
-6
10 - . , -
-4 -3 -2 -1 0
10 10 10 10 10
Reduced Frequency, F

Fig. 4.10 Measured pressure spectra on a flat roof.

55



Open exposure Suburban exposure Open exposure

N 578
0°—> ® .
569 b 45 837
190
L | J
o Roof angle =19° o
10 10
] S69 B
10 L 10
1071 107
-3 T 3
SE \w"\m ST
-4 v -4
10 l\'l 10 |
-5 J I -5
10 | \f 10
-5 -6
10 ‘ : ' 10
" ) 2 -1 0 ~+
10 10 10 10 10 10
Reduced Frequency, F
[ 0
10 10
) $37 ]
10 | 10 |
2 -2
10 [~ TN A 10 —
X g 5
S0t S0k
i -~ -4
10 | 10 |
107} 100}
10° 10°
-4 -3 -2 -1 0 -4
10 10 10 10 10 10
Reduced Frequency,

307 s100

L |
i

Roof angle = 45

S78

B L W il V

-3 -2 -1

100 100 100 10
Reduced Frequency, F

S100

-

100 100 100 10
Reduced Frequency, F

Fig. 4.11 Measured pressure spectra on gable roofs.

56



however, these spikes are absent in their corresponding spectra. Table 4.5 shows the
sample properties (No7, N7, € and B) estimated from the corresponding spectra shown in
Figs. 4.9, 4.10 and 4.11. The MATLAB function SPECM_ST reported in Appendix - A
is used to estimate these properties. As expected, the spectra are characterized as broad-

banded from the values of € and B (see section 3.2.2.2). This observation is common

Table 4.5 Sample properties estimated using spectra.

Sample | NoT N,T € B
Monoslope Roof (a = 15°)
St1 643 1750 0.37 0.93
S16 1185 2383 0.50 0.87
S18 361 1839 0.20 0.98
S22 1114 2422 0.46 0.89
Flat Roof
S50 898 2452 0.37 0.93
S64 1002 2486 0.40 0.91
S28 1306 2549 0.51 0.86
S24 1386 2396 0.58 0.81
Gable Roofs (= 19° and a =~ 45°)
S69 831 2169 0.38 0.92
S78 1343 2373 0.56 0.82
S37 742 2253 0.33 0.94
S100 494 1334 0.37 0.93

among all roof taps for all geometries tested. Further, it is noted that the number of zero
down-crossings (No7) as well as negative peaks (N,T) estimated using power spectra are
mostly higher than those of the estimated using time series reported in Table 4.3. This is
possibly due to the narrowband assumption used in deriving those estimates. However,
consistency in relative terms is maintained and therefore, these estimated properties using

spectra can be used for comparison purposes. Finally, note that the difference in the value
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of N,T calculated using power spectra and time series is far more than the difference in the
value of NoT calculated using both. This is possibly due to the fourth order moment

involved in the estimation of N,T.

4.2.3 Amplitude Domain Properties

Figures 4.12, 4.13 and 4.14 show the PDF of the selected samples where the abscissa

represents normalized pressure coefficient in the form of (Cp - Cpmean)/CPrms (CPmean

corresponds to mean pressure coefficient, and Cppys corresponds to root-mean-square

pressure coefficient). The probability ordinates are shown in logarithmic scale in order to
show the tail end of the PDF clearly. Further, normalized Gaussian PDF with mean zero
and variance one is also plotted with a view to show the deviation of the measured PDF
from the Gaussian PDF.

In general, the positive tails of the PDFs are close to those of the Gaussian distribution
since the signals are not skewed in positive direction. However, the negative tails of the
PDFs are significantly deviated from those of the Gaussian distribution in case of non-
Gaussian fluctuations (samples S1, S50, S64, S28, S69 and S37). The curvature of
deviation depends on the intensity of non-Gaussianness. A remarkable number of points
are past five standard deviations from the mean, which indicates much higher probability
for the larger negative pressures than a Gaussian distribution would predict. However, in
case of Gaussian fluctuations (samples S22, S24 and S78), the negative tails of the PDFs

do also coincide with that of the Gaussian distribution. On the other hand, in some cases
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(samples S1, S18, S50 and S64) the probability of larger positive pressures are smaller
than that predicted by a Gaussian process. Similar observations were reported by
Stathopoulos (1980) and Xu (1995a). Finally, it is interesting to note the peculiar shape of
the PDF of sample S50 (Fig. 4.13). The pressure fluctuations corresponding to this PDF
have a much higher probability of peak factor in the range around the zero peak factor.
This feature is attributed to a large number of fluctuations of small suction (low
amplitude high frequency fluctuations) around the mean level. It can be concluded from
the preceding discussion that the PDFs of the roof pressure fluctuations follow either

Gaussian or non-Gaussian distribution depending on the tap location and wind direction.

4.3 ZONES OF GAUSSIAN AND NON-GAUSSIAN
PRESSURE FLUCTUATIONS

It appears that the characteristics of pressure fluctuations are dependent mainly on the tap
location and wind direction. Further, Gaussian as well as non-Gaussian fluctuations have
been observed on roofs. As far as modelling of pressure fluctuations is concerned, it is
convenient first to classify the roof into zones of Gaussian and non-Gaussian pressure
fluctuations. Within this context, the statistics of pressure fluctuations are carefully
observed and the zones of Gaussian and non-Gaussian regions are identified for ranges of
wind direction. A particular region is considered non-Gaussian if the absolute values of
skewness and kurtosis of pressure fluctuations at various taps are greater than 0.5 and 3.5
respectively. Based on the wind tunnel measurements, the approximate Gaussian and
non-Gaussian regions of monoslope, flat and gable roofs are provided in Figs. 4.15, 4.16

and 4.17; where z is assumed to be 10% of least horizontal dimension or 40% of lower
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eave height, whichever is less (NBCC 1995). Figure 4.15 shows the zones of Gaussian
and non-Gaussian pressure fluctuations for monoslope roofs. In general, the edges of the
roof, especially windward edges, are subjected to non-Gaussian fluctuations. The middle
portion of the roof except at an azimuth of 0°-15° is subjected to Gaussian fluctuations. In
case of flat roof (Fig. 4.16), the windward edge is subjected to non-Gaussian fluctuations
while the other portions are subjected to Gaussian fluctuations. Almost the same result
prevails in the case of gable roof shown in Fig. 4.17. As far as gable roof with roof slope
45° is concerned, the pressure fluctuations are generally close to Gaussian distribution
eventhough there are some isolated measurements of non-Gaussian pressure fluctuations.
Table 4.6 provides the coefficients of skewness and kurtosis of local pressure
fluctuations on Gaussian and non-Gaussian zones of various roof geometries tested in two
types of terrain. Note that the variation of skewness and kurtosis values among the

terrains is not very significant; however, their variation among roof geometries is notable

Table 4.6 Coefficients of skewness and kurtosis of local pressure fluctuations on low

building roofs.
Region Skewness Kurtosis
Open Suburban Open Suburban
Monoslope Roof (a = 15°)
G 0.0--0.3 -0.1--04 3.0-33 3.1-34
NG -0.5--14 -0.6--1.5 35-75 3.7-8.0
Flat Roof
G 0.0--0.2 0.0--0.3 3.0-35 3.1-35
NG -0.5--2.2 -0.5--2.3 35-9.8 3.7-10.0
Gable Roof (a = 19°)
G -0.1--0.3 -0.1--04 3.0-33 3.1-34
NG -0.5--1.0 -0.5--1.1 3.5-5.7 3.7-6.5

Note: G = Gaussian zone; NG = non-Gaussian zone.
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in case of a non-Gaussian zone. The pressure fluctuations observed on non-Gaussian
zones of flat and monoslope roofs are highly skewed compared to those of the gable roof
as clearly shown in Table 4.6. On the other hand, the skewness and kurtosis values
corresponding to Gaussian zones are more or less in the same range for the various roof
geometries.

During this investigation, a wide spectrum of pressure fluctuations have been measured
on several low building roofs at different conditions in order to draw their overall
stochastic characteristics. Though the measurements have been made at many tap
locations on four different roofs in two different terrain conditions for various wind
directions, several other parameters which may have an effect on wind-induced pressures
are not considered. It is known that wind-induced pressures on a roof also depend on roof
slope, architectural features, immediate surroundings etc. (Stathopoulos 1984b).
Therefore, it would be of interest to carry out further experiments considering these

factors for gathering new stochastic characteristics of pressure fluctuations if any.

4.4 SUMMARY

This chapter presents the experimental procedure and results which are necessary for
developing a suitable analytical/empirical representation fc;r pressure fluctuations on low
building roofs. The results of the experiments are summarized as follows:

(D The characteristics of fluctuations on roofs vary depending on the tap location,

wind direction and roof geometry.
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)

3)

)

&)

(6)

For all practical purposes, the measured pressure fluctuations can be considered as
stationary.

The pressure fluctuations on roofs follow either Gaussian or non-Gaussian
distribution depending on the tap location and wind direction.

The pressure fluctuations on roofs are broad-banded.

There are two distinct properties of spikes, namely the frequency of occurrence
and the magnitude. Both should be given proper attention while modelling the
time series.

With a view to simplify the modelling procedure, the zones of Gaussian and non-
Gaussian pressure fluctuations have been identified for various roof geometries
and wind directions. In general, the edges of the roofs are prone to non-Gaussian

fluctuations.
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CHAPTERS5
SIMULATION OF GAUSSIAN PRESSURE
FLUCTUATIONS

"....An important special class of random process (and fields) are the normal or Gaussian processes......The
importance of normal processes is because.....(if) many real phenomena can be satisfactorily modeled by
normal processes...."

S. H. Crandall and W. Q. Zhu, 1983.

A variety of techniques that have been suggested by various researchers for the simulation
of Gaussian stationary random processes have been discussed in Chapter 2. The method to
be favoured in terms of application of simulation studies has to satisfy the following
requirements: (1) easy implementation, (2) parsimony, and (3) reasonable accuracy
concerning stationarity, ergodicity, and statistical properties. The general impression
obtained from the review was that conventional discrete Fourier transform (DFT)
representation along with fast Fourier transform (FFT) algorithm, a method for computing
DFT with minimal execution time, would be a reasonable choice satisfying all the above
requirements. The stochastic properties of this model described in section 3.1.6 are
revisited.

In case of Gaussian random process, the mean value and the second order properties
(variance, ACF, SDF) uniquely represent the stochastic characteristics of the process
(Bendat and Piersol 1986). Since ACF and SDF are Fourier transform pairs, satisfying
either one of the two will guarantee the other. Further, achieving either SDF or ACF will
satisfy variance. Therefore, the simulation of Gaussian pressure fluctuations aims at

achieving the mean and the spectral density function.
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5.1 SIMULATION METHODOLOGY

Gaussian zero-mean wind pressure time series can be generated by inverting the constructed
Fourier coefficients using FFT algorithm. The simulations can be done using the following
DFT equation (Brockwell and Davis 1991):

n-1
Z, = n kz_(:) JI, % e p =01 n-1 (5.1)

where, Z, corresponds to time series, # is time series length, ‘/1 . is amplitude, ¢ is phase

and the term 2mk/n is the integer multiple of the fundamental frequency 2m/n known as
Fourier frequency.

Knowledge of amplitude (\/-]_k_ ) as well as phase (¢x) are required for the proposed
simulation. Power spectra can be utilized to generate the amplitude part of the Fourier

coefficient (Suresh Kumar and Stathopoulos 1996a) - details are presented in Chapter 7.

However, for the current simulations, the amplitude part of the DFT of target signal (X)),

n-1
‘/7; = I ZXI e—ilzkl/n l (52)

=0
is substituted for Fourier amplitude (\/I—k ). By using the amplitude part of the target signal,

the various second order characteristics (variance, SDF, ACF) are satisfied automatically.
The first order characteristic (mean value) can be added separately to the zero-mean

simulated signal.

The phase part of the Fourier coefficient of a Gaussian signal can be represented by
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independent uniform random numbers (U) ranging between -n and © by

¢, = Ur l<ks< =
2 -
" (5.3)
~Uni §+1 <k < n-1
where, probability density function of U is
fO) = =, nsUs 54
- 2’7 y ~TU = =T ( . )

Theoretically, the mean as well as skewness values of the set of uniform random numbers
(U) are zero, while the variance and kurtosis values of the corresponding random numbers
are /3 and 1.8 respectively. Such uniform random numbers (U) can be easily generated
using pseudo-random number generator as will be discussed in section 5.3.

A flow chart displaying the above mentioned simulation procedure is shown in Fig. 5.1.
The procedure consists of three steps: (1) generation of Fourier amplitude part of a given
time history, (2) generation of Fourier phase part, and (3) simulation of the time history by
inverting the Fourier coefficients, a linear combination of Fourier amplitude and phase
derived from steps (1) and (2) respectively. The MATLAB function GTIME reported in
Appendix - A is used to simulate Gaussian time series samples based on a given time
history. Further, a typical simulation example is presented in Fig. 5.2. The target signal
shown in this figure corresponds to the time series measured on the edge pressure tap of a
monoslope roof (roof angle =~ 15°) of a low-rise building for 180° azimuth in suburban
terrain conditions. The skewness and kurtosis values of the signal are estimated to be -0.21
and 3.08 respectively. The appearance as well as the statistics show that this signal follows

Gaussian distribution. Here, an attempt has been made to reconstruct this time series using
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Fig. 5.1 Flow chart for synthesis of Gaussian wind pressure time series.

the procedure shown in Fig. 5.1. The amplitude part estimated using Eq. (5.2) and the
estimated phase part using Eq. (5.3), where n = 8192, are shown in Fig. 5.2. The simulated
signal also shown in Fig. 5.2, is generated using Eq. (5.1) by means of target amplitude and
phase signal, whereas the mean is added separately to the zero-mean fluctuations. The

general appearance of the simulated signal appears satisfactory; however, detailed

demonstrations are shown in the following section.

As mentioned in section 3.1.6, the above simulation procedure provides stationarity of

the time series by using independent uniform random numbers as the Fourier phase part.
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Fig. 5.2 Pictorial representation of the simulation methodology.
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Therefore, in order to achieve perfect stationarity, complete lack of correlation of the set of
uniform random numbers (Fourier phase part) is required. However, this requirement is
almost impossible to achieve using any commonly available random number genérators. On
the other hand, in practice, no random process can be truly stationary and as a matter of fact,
the phase processes are somewhat correlated. During this investigation, several Gaussian
time series have been measured on many low building roofs at various locations for several
wind attack angles. In almost all cases, the phase processes were found to be somewhat
correlated; correlation values up to 6% (except at zeroth lag) have been observed. A typical
example is shown in Fig. 5.3 where the autocorrelation functions of the phase process of the
measured and simulated signals are comparable; the correlation value of one at zeroth lag in
both cases is not shown. The low correlation values of the phase process observed at higher

Suburban exposure
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Fig. 5.3 Autocorrelation functions of the phase process of the measured and simulated
signals.
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lags are not expected to affect the stationarity of the time series. Furthermore, the

stationarity of the simulated signals is reinforced by verifying the invariant nature of their

autocorrelation functions.

52 EXAMPLE SIMULATIONS

Three distinct pressure time histories shown in Table 5.1 were chosen for demonstration

purposes. The statistics of the time histories presented in Table 5.2 show that they are more

or less Gaussianly distributed. Further these time histories are plotted in Fig. 5.4 using

normplot function available in MATLAB (1994b). Normplot displays a normal probability

plot of the data. The plot has the sample data displayed with the plot symbol '+

Superimposed on the plot is a line joining the first and third quartiles of each data. The plot

will appear linear if the data comes from a Gaussian distribution. Figure 5.4 shows that all

Table 5.1 Sample Gaussian pressure time series.

Sample Roof type Wind Terrain Orientation
direction | condition of model
=1t
S22 monoslope 180° suburban D
—
 I—
S24 flat 45° suburban .
/
S78 gable 90° open .
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Table 5.2 Statistics of selected samples.

Sample| Mean | Variance | Skewness| Kurtosis

S22 | -0.69 0.02 -0.21 3.08
S24 | -0.53 0.03 0.01 3.02
S78 | -0.31 0.03 -0.07 3.39

0.999

0.80

0.50 ¢

Probability

0.10 |

0.001

—

0.5

or

-1 -05
Data

Fig. 5.4 Normal probability plot of the selected samples.

three data samples are approximately linear and therefore, can be considered as Gaussianly

distributed for all practical purposes.

The above mentioned three time histories are reconstructed using the procedure discussed
in section 5.1. The statistics of the simulated and target signals are compared in Table 5.3.
As expected, mean and variance of the simulated signals coincide with those of the

corresponding target signals. The skewness and kurtosis values of the simulated signals are
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Table 5.3 Comparison between target and simulated statistics.

Mean Variance Skewness Kurtosis
Sample S22
Target -0.69 0.02 -0.21 3.08
Simulated -0.69 0.02 -0.09 3.03
Sample S24
Target -0.53 0.03 0.01 3.02
Simulated -0.53 0.03 -0.04 3.03
Sample S78
Target -0.31 0.03 -0.07 3.39
Simulated -0.31 0.03 -0.01 3.04

closer to the expected Gaussian values of zero and three respectively. Note that the target
samples S22 and S78 are not purely Gaussian; however, in simulation, there is no criteria
used to satisfy their small values of skewness and kurtosis and instead, the signals are
assumed to be Gaussian. This will explain the difference in skewness and kurtosis values
between target and simulated signals. Both target and simulated signals as well as their
PDF's and extreme values (Gumbel's plot) for each sample, are shown in Figs. 5.5, 5.6 and
5.7. Target and simulated signals are presented in the form of pressure coefficient (Cp)
versus time. In case of PDF plots, the abscissa represents normalized pressure coefficient in
the form of (Cp-Cpmean)/CPrms (CPmean corresponds to mean pressure coefficient, and
Cprms corresponds to root-mean-square pressure coefficient). Further, Gumbel's plots
represent extreme Cp values (Cppeak) as a function of reduced y-variate (see section 3.2.3.1
for details), where the extreme Cp values are obtained as follows: the 8192 simulated as
well as measured data are divided into 16 segments of 512 values each and the peak value

from each segment is selected. In case of sample S22, the target and simulated signal appear
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Fig. 5.5 Simulation results (sample S22).
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similar. Further, the PDF as well as the Gumbel's plot of the simulated signal are in good
comparison with those of the target signal. Overall, the results are repeated in case of
samples S24 and S78 (see Figs. 5.6 and 5.7). The negligible discrepancies observed at the
tail end of the PDF’s in some cases can be attributed to the Gaussian assumption used in the
simulation as previously mentioned. These three examples are representative of the several
simulations that have been performed during this study.

In addition to the previous comparisons, the number of level crossings and peaks of the
simulated signals have been compared with those of the corresponding target signals. Table
5.4 shows the comparison between target and simulated signals in terms of the number of
negative peaks and down-crossings at various levels. All calculations have been made after
the signals were subtracted from their corresponding means and normalized by their
corresponding standard deviations (o). The number of negative peaks as well as down-
crossings at various levels of the simulated signals seem to be in general close with those of
the corresponding target signals.

Table 5.4 Number of negative peaks and down-crossings at various levels of target and
simulated time histories.

Crossings

Levels below mean in terms of ¢

Sample Peaks 0 -1 2 | -3
S22 T 1935 1064 | 601 | 163 | 18
S 1992 1060 | 648 | 132 | 16

S24 T 2030 1461 | 834 | 166 | 12
S 2021 1441 | 849 | 169 | 11

S78 T 1876 | 1260 | 690 | 161 | 21
S 1936 1278 | 722 | 136 | 12

Note: T = Target signal, S= Simulated signal
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53 REPEATABILITY OF THE SIMULATIONS

It is now necessary to provide some comments concerning the repeatability of simulations
carried out by using different random number sets. For the simulation of Gaussian signals,
uniform random numbers (U) ranging between -n and 7 are required to represent the phase
part of the Fourier coefficients. Though various algorithms are available and listed in Knuth
(1981), good random number generators are hard to find. Park and Miller (1988) presented
the inadequacy of the many available random number generators along with the discussion
of practical and theoretical issues concerning the design, implementation, and use of a good,
minimal standard random number generator that will port to virtually all systems. They
found that the linear congruential generator with proper parametric values is good in terms
of accomplishing full periodicity, randomness and easy implementation. On this basis, this
generator is selected for the random number generation in this study. Three quantities, i.e. a
multiplier, 2 modulus and an initial seed value are required to generate uniform random
numbers by using this algorithm. The value of multiplier and modulus equal to 7° and 2°'-1
respectively, which provide full period, randomness and easy implementation capabilities to
the generator (Park and Miller 1988), are used in this study. The initial seed value is
adopted to be 931316785, the value set by MATLAB (1992) at the start of any simulation.

The basic algorithm is

Ul = seed/(2%'-1),
U=-n+Q2n* Ul),

seed = (7° * seed) mod (2° LD,
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where, Ul corresponds to random number whose value is between 0 and 1 and U
corresponds to random number whose value is between -m and m. Subsequent sets of
random numbers are expected to be different due to the change of initial seed value.
Therefore, an attempt has been made to examine the sensitivity of uniform random number
sequences on simulation results.

For each simulation (n = 8192), 4096 uniform random numbers ranging between -t and
are required (see Eq. (5.3)). One hundred distinct blocks of 4096 uniform random numbers
each have been generated and the variation of their first four moments (mean, variance,

skewness, and kurtosis) is displayed in Fig. 5.8 using boxplot. Boxplot produces a box and

0.8

0.6

Values

04

] ] ]
02 mean variance skewness kurtosis

Fig. 5.8 Variation of the first four moments of the uniform random number data sets.

whisker for each data set (MATLAB 1994b). The box has lines at the lower quartile,
median, and upper quartile values. The whiskers are lines extending from each end of the

box to show the extend of the rest of the data. Mean and skewness of the random number
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sets are supposed to be zero; however, negligible variations up to £5% are noted. Variations
in variance and kurtosis values of the random number sets are also shown in the same figure
after they have been normalized with respect to their corresponding theoretical values.
Again, negligible variations up to +5% have been observed. Simultaneously, the same 100
blocks of random numbers have been used to simulate 100 corresponding time histories
using the amplitude part of the sample S22. Figure 5.9 presents the variation of the first four
moments of the simulated time histories in a boxplot format. Note that mean and variance
of the simulated time histories are always equal to the corresponding target values of -0.69
and 0.02 respectively. This is due to the employment of the same amplitude part of the DFT
of the target signal S22 in all simulations. Further, it is clear that the different random
number sets (phase part) do not have an effect on the simulated means and variances. On
the other hand, they do have an effect on skewness and kurtosis values of the simulated time

histories. Based on the Gaussian assumption, skewness and kurtosis values of the simulated
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25
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Fig. 5.9 Variation of the first four moments of the simuiated time histories.



time histories are supposed to be zero and three respectively; however, due to the varying
statistical properties of the random number sets, variations up to +15% have been observed.
Furthermore, since many time histories are required for extreme value analysis and fatigue
analysis, the average skewness and kurtosis values among many samples are expected to be
close to zero and three respectively. Overall, the performance of the used random number
generator is satisfactory and the small variations noted in simulated skewness and kurtosis

values can be neglected for practical applications.

54 SUMMARY

In this chapter, Gaussian wind pressure fluctuations are simulated by initializing complex
Fourier coefficients in the frequency domain, and then inverting the Fourier coefficients
back to the time domain using FFT algorithm. The amplitude part of the DFT of target
signal is substituted for the Fourier amplitude part. While, the Fourier phase part,
represented by independent uniform random numbers ranging between - m and w, is
simulated using a pseudo-random number generator based on the linear congruential
method. Several simulations have been performed using this approach and only
representative examples are presented in this chapter. The results show that the current
approach is capable of simulating Gaussian wind pressure fluctuations on roofs with
reasonable accuracy. Further, the sensitivity of the random number sequences on simulation

results has been found to be negligible.
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CHAPTER 6
SIMULATION OF NON-GAUSSIAN PRESSURE
FLUCTUATIONS

"...However, because of mathematical difficulties and the lack of observed data, most generation techniques as
well as analytical approaches are limited to dealing with Gaussian fields. In some situations, such a Gaussian
assumption is not appropriate because the observed fields exhibit non-Gaussian characteristics..... Therefore,
the development of a method for generating sample functions of non-Gaussian fields appears to have
theoretical as well as practical significance....."

F. Yamazaki and M. Shinozuka, 1988.

Within the scope of the digital simulation of wind loading, it is frequently assumed that the
involved process possesses Gaussian properties. Although this simplifying assumption may
be justified in case of integral effects of wind load over larger areas, there are many critical
regions of structures where wind load exhibits strong non-Gaussian characteristics. For
instance, the local pressure fluctuations measured at corner as well as other separation flow
regions of roofs of low buildings are found to be highly non-Gaussian, as mentioned in
Chapter 4. The non-normality becomes of significant importance when exceedance
probabilities are under investigation, i.e., the reliability of a structure is being assessed.
Moreover, the non-Gaussian wind loads are found to induce increased fatigue damage
compared to Gaussian loads (Lynn and Stathopoulos 1985; Reed 1993; Suresh Kumar and
Stathopoulos 1996b, 1997d). Though plenty of simulation tools are available for the
generation of Gaussian wind pressures, efficient simulation of non-Gaussian wind pressures
is still problematic. In light of the importance of the non-Gaussian loads and unavailability

of efficient simulation tools for their generation, further work on the representation and
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simulation of non-Gaussian wind loads would be useful.

Within this context, this chapter presents a novel simulation methodology, based on FFT
approach, for the generation of univariate non-Gaussian wind pressure fluctuations on low
building roofs. Modelling of the phase part of the Fourier coefficient of a signal is the key
issue addressed in this chapter. Comprehensive background on the role of phase part in
inducing non-Gaussian characteristics in a signal is provided at the beginning. This is
followed by the description of Seong and Peterka’s (1993) model for phase. Thereafter, the
simulation methodology is described. The development of a new model for phase is
discussed and the proposed model for phase, parametric estimation criteria, demonstration
of the methodology are presented. The stationarity of the simulated time series is examined.
Finally, elaborate demonstrations have been made and the repeatability of simulation has

been discussed.

6.1 BACKGROUND

Some of the important properties of Fourier coefficients in the Fourier representation of a
non-Gaussian signal, noted previously by Seong (1993), are revisited in this section in order
to provide a comprehensive foundation for the proposed model. A pressure time series
measured on the edge pressure tap of a monoslope roof (roof angle ~ 15° of a low-rise
building for 0° azimuth (sample S1 in Fig. 4.3) is used as the target non-Gaussian signal for

all demonstrations.
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6.1.1 The Role of Phase Part

The effect of phase part on the non-Gaussian characteristics of a signal is demonstrated in
this section. Figure 6.1 shows the phase part of the target signal (only half of the phase part
is shown due to symmetry) as well as the independent uniform random numbers distributed

on the interval -n to m (random phase signal). It seems that both phase part of the

Phase of target signal 4 Uniform random numbers

Phase (rad.)
Phasc (rad.)

1 1 1 [ _4 ] 1 1
0 1000 2000 3000 4000 0 1000 2000 3000 4000
Frequency (Data points) Frequency (Data points)

Fig. 6.1 Phase part of DFT of target pressure signal and uniformly distributed random
numbers on the interval - 7t to 7.

target signal and random phase signal are identical. Figure 6.2 shows the autocorrelation
functions of the phase part of the target signal as well as random phase signal. Though the
autocorrelation amplitudes of the phase part of target signal are slightly higher than those of
the random phase signal, both target phase signal and random phase signal are uniformly
distributed and have almost the same statistics as shown in Table 6.1. Further, several
measurements revealed that the phase part of non-Gaussian signals is uniformly distributed
between -nt and . Therefore, it was decided to use the random phase signal as a substitution

for the phase part of the target signal in the Fourier representation of time series. Following

87



ACF of measured phase ACF of random phase

—
[

o

o0
I
o

o
© o
S N o0

L

o
[§8)
T

Autocorrelation
(o] ()
v A o
¥ 1)
Autocorrelation
o

ERIPRALETAERTI SN

500 )

M hepiaerop i W Admisar it i

o
(=]

S
8]

200 300 400 500
Lag (Data points)

200 300 400 100
Lag (Data points)
Fig. 6.2 Autocorrelation functions of the phase of DFT of the target signal and random

phase signal.

2 L
0 100

Table 6.1 Comparison of statistics between (a) the phase part of DFT of the target signal

and (b) the random phase signal.
Mean Variance | Skewness Kurtosis
€)) 0.0004 33312 0.0000 1.7861
(b) 0.0003 3.2352 -0.0000 1.8231

the procedure provided in Fig. 5.1, the signal is reconstructed using the amplitude part of
the target signal and the random phase shown in Fig. 6.1 (only half of the phase part is
shown due to symmetry). The simulated signal presented in Fig. 6.3 shows a dramatic
change in the characteristic spike features in comparison with the target signal, i.e. all the
negatively skewed sharp spikes present in the target signal disappear and, as a result, the
overall distribution becomes symmetric and close to Gaussian. However. it should be noted
that the simulated signal shown in Fig. 6.3 has exactly the same spectral character, the same
autocorrelation, and the same mean and variance by using the identical amplitude part. The
difference in phase part resulted in significantly different features in the time history. This

demonstration illustrates that the uniformly distributed phase process of a measured non-
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Fig. 6.3 Target and simulated signals.
Gaussian time history is somewhat correlated. The correlation of the phase part seems to be
the major source of providing non-normality in time series.
In addition to this, Seong (1993) showed that the magnitude and pattern of spikes is not
sensitive to the change of the spectrum shape in the low frequency range (below 10 Hz).
Clearly, the phase part of the DFT in the Fourier representation plays a major role in

forming the spike features in the time series rather than the amplitude part of the DFT.

6.1.2 Inducing Spike Characteristics

Based on the previous discussion, it has been decided to replace the phase part of the DFT
in Fourier representation of the measured pressure signal by the phase part of the DFT of a
single spike test signal and reconstruct the signal by inverse Fourier transform for further

investigation. Here, the mean of the simulated signal is considered zero for convenience.
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Figure 6.4 shows the single spike test signal and its phase part of DFT. The simulated
signal in Fig. 6.4 is obtained by inverting the modified complex Fourier coefficients which
consist of amplitude part of the DFT of the target signal (see Fig. 6.3 for the time series) and
the phase part of the DFT of the test signal. The simulated signal displays the sharp single
spike at the same location as the test signal but with different magnitude. As previously
shown in section 3.2.1, the variance of a signal is only related to the Fourier amplitude part
of the signal regardless of the phase part. Therefore, the simulated signal must have the
same variance as that of the target signal since identical amplitude part of the DFT of the
target signal has been used in the simulation. As a result, the magnitude of the spike is
scaled to achieve the target variance. Thus the magnitude of spikes in the simulated signal is
not affected by the magnitude of spikes in the test signal but it is dictated by the amplitude
of DFT of the target signal. On the other hand, the location of spikes in the simulated signal
is controlled by the phase part of the test signal. The autocorrelation of the phase part
presented in Fig. 6.4 has a relatively organized pattern and very high amplitude. It appears
that such highly correlated phase is required to provide a single spike in the simulated
signal. Further, it can be conjectured that this spike is the result of the addition of many
sinusoids arranged carefully using organized phase so that their crests coincided to form this
sharp spike.

In another attempt, two more spikes are inserted into the previous test signal and the same
procedure is repeated using the same target signal. The test signal, its phase, and the
corresponding simulated signal are shown in Fig. 6.5. The simulated signal has its main
spikes exactly at the same locations as those of the test signal along with some additional

erratic spikes at other locations. However, further investigation revealed that the magnitude
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Fig. 6.4 Synthesis of a signal using the target amplitude and phase of DFT of a
single spike test signal.
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Fig. 6.5 Synthesis of a signal using the target amplitude and phase of DFT of a
three spike test signal.
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of such erratic spikes in a simulated signal reduces as the number of spikes increases in the
test signal. The simulated signal appears to be formed primarily by superimposing small
amplitude fluctuations whereas the large magnitude sharp spikes originate from the test
signal and transferred through the phase part of DFT. Similar to the case shown in Fig. 6.4,
the simulated signal has the same variance as that of the target signal. On the other hand,
note that as the number of spikes in a test signal increases, the magnitude of spikes in the
simulated signal decreases. In this particular case, the magnitude of spikes is automatically
reduced since many spikes are present in the signal to achieve the target variance. This
shows that the magnitude of spikes in simulated time series depends not only on the
amplitude part of the DFT of the target signal but also on the number of spikes in test
signal. Moreover, it is interesting to note the irregular pattern of the phase part compared to
the phase of the single spike test signal. Clearly, as the number of spikes increases in a test
signal, the regularity as well as the autocorrelation of phase decreases and correspondingly,
the magnitude of the spikes in simulated signal decreases as well.

In summary, the phase part of DFT strongly controls the spike features in a signal. The
spike features of the test signal can be transferred to the simulated signal through the phase
part of its DFT with the help of target amplitude part. Thus, the overall pattern of spikes and
their locations in the simulated signal can be controlled by parametrically controlling the
spike features in test signal.

As mentioned in Chapter 4, the measured pressure fluctuations on low building roofs, in
general, have several such simply dropping sharp spikes. The frequency as well as
magnitude of these spikes seem to vary depending on the flow condition above roof.

Therefore, there is a need to control the frequency as well as magnitude of spikes
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parametrically while modelling these time histories. Within this context, the previously
described role of phase in inducing spike features can be utilized to develop a suitable
representation for phase. One such attempt by Seong and Peterka (1993) is described in the

next section.

6.1.3 Seong and Peterka’s (1993) Model for Phase

After an extensive investigation, Seong (1993) concluded that for modelling the phase of
non-Gaussian signals, both the autocorrelation function as well as the spike character of the
target signal must be reproduced. Based on this idea, a stochastic model (EARPG) along
with a uniform phase shift parameter 4 was suggested for the generation of phase. The

EARPG model takes the form,
Yy = aY; _, ¥ 0, with probability b

’ ©6.1)
al | + E_, withprobabilityl-b, 0<b<1 '

where, Y, is known as preliminary signal,  is an autoregressive parameter which represents
the correlation features of the target signal, b is a probability parameter which controls the
magnitude as well as the frequency of spikes in a signal, and E, represents exponential
random variables. The noise term on the right side of the addition can be considered as
intermittent or discontinuous exponential random variables whose properties are addressed

in Appendix - B. The phase part,

n
b, = & +d  for  1sksZ
¢, -d for §+lsk5n—l 6.2)
T for k=0
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is generated by applying a phase shift 4 on the phase part of the DFT of the preliminary
signal (€,) to provide a natural shape of spikes. For the simulation, the selection of

parameters b and d is based on any one of the desired non-Gaussian characteristics
(skewness, kurtosis, mode or dispersion); 3-dimensional figures showing a non-Gaussian
property of simulated signal as a function of b and d are used for such selection.

A typical simulation example is provided in Fig. 6.6 using this model. The Fourier
amplitude part of sample S1 (see Fig. 6.3) is used for this simulation. Figure 6.6 shows the
test signal (preliminary signal) whose parameters are taken from Seong and Peterka (1993).
The test signal is generated using Eq. (6.1). Using Eq. (6.2), the phase shift d is applied on
the phase part of the DFT of ¥, to obtain a modified phase part. The simulated signal is
obtained by inverting the complex Fourier coefficients consisting of the amplitude part of
sample S1 and the modified phase part. The simulated signal has several spikes
approximately at the same locations as those of the test signal but with different magnitude.
Compared to the cases described in Figs. 6.4 and 6.5, the magnitude of spikes in the
simulated signal is reduced dramatically; this clearly shows the dependence of the
magnitude of spikes in a simulated signal on the frequency of spikes in a test signal. The
autocorrelation of the phase part presented in Fig. 6.6 seems to have high correlation
structure which violates the general requirement of a stationary process. Further, the
potential simplification of this model, the adequacy of the model for other building zones
and flow characteristics and the possibility of achieving more than one non-Gaussian
properties have not been explored in Seong and Peterka’s study (1993). The skewness and
kurtosis values of the simulated signal provided in the same figure have been used for

comparison in section 6.3.
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6.2 SIMULATION METHODOLOGY

The present work focuses on the development of a novel simulation methodology based on
FFT approach for the simple and efficient generation of univariate stationary non-Gaussian
wind pressure fluctuations on various low building roofs. The proposed technique is aimed
at achieving the second order characteristics (variance, ACF, SDF) through the amplitude
part of the Fourier transform and the spike features by properly tailoring the phase part of
the signal. These spike features which induce the non-Gaussian character to the
distributional characteristics of the signal are the key issue in this current investigation.
Univariate non-Gaussian zero-mean wind pressure fluctuations can be generated by
inverting the properly selected Fourier coefficients with the help of the FFT algorithm. The
discrete Fourier transform (DFT) equation (Brockwell and Davis 1991) used for such

simulation is described by:
nz-l
Z, = nt JI, €% &™m =01, ,n-1 (6.3)
! par

where, Z, corresponds to time series, n corresponds to time series length, \/Z corresponds
to amplitude, ¢ , corresponds to phase and the term 2mk/n is the integer multiple of the
fundamental frequency 2n/n known as Fourier frequency.

The above simulation procedure requires knowledge of amplitude (\/—I: ) and phase (¢ )
in order to simulate a signal (Z;). The amplitude part of the signal can be easily generated
from known spectra. Wind tunnel measurements show the possibility of modelling spectra
of pressures acting on roofs of low buildings empirically and this will eventually simplify

the whole simulation process (Suresh Kumar and Stathopoulos 1996a, 1997¢). In this

chapter, thrust is given in simulating the phase part assuming that the amplitude is known.
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For all simulations, the amplitude (\/Z ) is taken as the amplitude part of the DFT of target

signal (X;) which is in the form,

n-1
‘/—I: = IZ X, e-i2nkr/n| (6.4)

t=0

Since the target amplitude is used for the reconstruction of signal, the synthesized signal
reproduces the various second order characteristics of the target signal. Here, the zero
frequency component of the amplitude part representing the first order characteristics of
fluctuations (mean) has been kept zero for convenience. The mean of the corresponding
fluctuations can be added separately to the simulated zero-mean signal.

The phase part of the Gaussian time series, represented by independent uniformly
distributed random numbers between - to m (Rice 1954), can be easily generated using
commonly available algorithms. However, in the case of non-Gaussian time series, the
phase part cannot be replaced by uniform random numbers, as previously discussed. In light
of the unavailability of a simple and efficient model for the generation of phase, further
work on this area is required. The model should induce various stationary non-Gaussian
characteristics with minimum number of parameters along with an efficient parametric
estimation technique. Moreover, the efficiency of this methodology should be demonstrated

for various building zones and flow characteristics.
6.3 DEVELOPMENT OF THE MODEL FOR PHASE

During the development stage of an efficient model for phase, the phase shift parameter d of

the EARPG model has been identified as the main source for the highly correlated phase.
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On this basis, it was decided to remove the parameter d from the EARPG model and carry
out the simulation. As a result, the phase part of the ¥, is used for the simulation, where Y, is
generated using Eq. (6.1). The same simulation procedures corresponding to Fig. 6.6 have
been repeated excluding the phase shift operation and results are provided in Fig. 6.7. The
Fourier amplitude part of sample S1 (see Fig. 6.3) is used for this simulation. It is
interesting to note the stunning autocorrelation structure of the phase part where the
autocorrelation amplitudes are extremely low compared to the case provided in Fig. 6.6.
This shows that the parameter d is responsible for the peculiar shape of the autocorrelation
structure of the phase part observed in Fig. 6.6. Further, it is interesting to note the reduction
in the frequency as well as magnitude of spikes and the non-Gaussian properties (skewness
and kurtosis) of the simulated signal in comparison with the case shown in Fig. 6.6.
However, it may be possible to raise the magnitude of non-Gaussian properties by adjusting
the number of spikes in a test signal through the parameter .

Seong (1993) introduced parameter a in order for the simulated signal to have closely
similar fluctuating features of the preliminary signal. However, further investigation
revealed that the parameter a is not very important either in inducing non-Gaussian
properties or in changing the properties of spikes. In fact, it was found in this study that
approximately the same fluctuating features of the test signal can be transferred to the
simulated signal even without using the parameter a in phase generation. Therefore, as a
next step, the parameter a was assumed to be zero and b was the only parameter used in the
simulation of phase part. A typical simulation is carried out under these conditions and the
results are provided in Fig. 6.8. In this case, the same simulation procedures corresponding

to Fig. 6.7 have been repeated with the Fourier amplitude of sample S1; the only difference
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was in the generation of skeleton signal. The test signal in this case is indeed very different
from those of the previous two cases shown in Figs. 6.6 and 6.7. The test signal of Fig. 6.8
seems to be chopped at zero; this is due to the absence of parameter a in its construction.
This test signal depends on parameter b and exponential random numbers. In this study,
exponential random numbers are constructed by logarithmic transformation of uniform
random numbers ranging between 0 and 1, as will be described later in section 6.7. As a
result, the upper limit of exponential random numbers is log(1) = 0; this seems to be the
chopped limit for the test signal shown in Fig. 6.8. Further, due to the autocorrelation
property (or the parameter a) of the test signals in Figs. 6.6 and 6.7, the number of spikes is
higher in both cases compared to the test signal shown in Fig. 6.8. Fortunately, there is no
major change in the autocorrelation structure of the phase part compared to Fig. 6.7. Note
also the similar spike characteristics of the test signal and simulated signal. Higher non-
Gaussian properties (skewness and kurtosis) are induced in this case in comparison with the
cases shown in Figs. 6.6 and 6.7. This is due to the increment in the magnitude of spikes in
the simulated signal corresponding to the decrement in number of spikes in the test signal.
These demonstrations show that the EARPG model is unnecessarily based on three

parameters; only one is really important for simulating non-Gaussian properties.

6.3.1 Exploration of the EARPG Model whena=0,and d=0

Since the EARPG model with a = 0 and d = 0 appears to be promising in the representation
of phase part of the non-Gaussian signals, some of its properties were further explored.

Figure 6.9 shows the effect of parameter b on the frequency as well as magnitude of spikes
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and correspondingly on the non-Gaussian properties of simulated signal. The figure clearly
shows that as the parameter 5 increases, the frequency as well as magnitude of spikes in test
signal decreases, as expected. The smaller the number of spikes in test signal, the higher the
magnitude of spikes in simulated signal and correspondingly, the higher the magnitude of
the non-Gaussian characteristics. Note the wide range of skewness and kurtosis values
covered corresponding to the variation of b between 0.2 and 0.99. This shows that the
model has great flexibility to control a wide range of non-Gaussian properties. The
probability density function of the simulated signals is shown in Fig. 6.10 along with
standard Gaussian PDF. The abscissa represents normalized amplitude (mean of the
amplitudes is subtracted from the amplitude and then divided by the root-mean-square value
of the amplitudes). Clearly, as b increases, the negative tail of the PDF of the simulated

signal deviates more from that of the Gaussian PDF.
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Fig. 6.10 Probability density functions of the simulated signals shown in Fig. 6.9.
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Figure 6.11 shows the autocorrelation functions of the phase processes of the simulated
signals shown in Fig. 6.9. It appears that as the parameter b increases the autocorrelation
amplitudes of the phase process also increase. When & = 0.99, the autocorrelation
amplitudes are quite predominant; however, the increment in autocorrelation amplitudes as
b raises from 0.2 to 0.9 appears negligible. Though this model reduces the phase correlation
substantially in comparison with the actual EARPG model described in section 6.1.3, the
correlation observed when b = 0.99 is still not acceptable for the simulation of a stationary
process. On the other hand, it appears that the skewness and kurtosis values of the simulated
signal for b = 0.99 are really high compared to those of the highly non-Gaussian measured
fluctuations, as mentioned in Chapter 4. These observations lead to further thoughts
concerning the range of b by which the desired stationary non-Gaussian characteristics of

the target signal can be achieved. This issue is addressed later in this chapter.

6.4 PROPOSED MODEL FOR PHASE

Based on the previous discussion, an extreme case of the EARPG model, by fixinga=01in
Eq. (6.1) and removing parameter d, is proposed here to generate the phase. After the
elimination of parameters d and a, the only condition remaining in the selection of the
model for phase is the parametric control of the non-Gaussian statistics. Furthermore, this
methodology takes advantage of the DFT property allowing to transfer the characteristics of
spikes from an arbitrary signal to the simulated signal through its Fourier phase using a
specified amplitude. Here, the arbitrary signal, named as skeleton signal, represents the
distribution of spikes with arbitrary magnitudes. In other words, the skeleton of target signal

only represents the distributional characteristics of spikes. It may be reasonable to assume

106



S o
[« S

o
'

Autocorrelation

S
o

Autocorrelation
o o o
[\ N N o0 —
1 1

=

|
|

o
)

2000 4000 6000 8000 2000 4000 6000 8000
Lag (Data points) Lag (Data points)

o

p—

o o
o o o~

o
S

Autocorrelation

o
o

6=09 b=0.99

o o
(o)} [o 5]
1

e
o

Autocorrelation
o
~n
t

|

-0.2L
2000 4000 6000 8000 0 2000 4000 6000 8000
Lag (Data points) Lag (Data points)

Fig. 6.11 Autocorrelation functions of the phase of the DFT of the test signals
shown in Fig. 6.9.

107



that the PDF of the skeleton signal is exponential based on the fact that the spikes in wind
pressure signals are invariably associated with exponentially decaying tails of its PDF. This
is further supported by the observations made by Dalgliesh (1979), whereby an exponential
distribution has been proposed to represent pressure spikes observed in cladding of tall
buildings. On the other hand, note the discontinuous occurrence of spikes in pressure
signals. This suggests that their intermittent occurrence can be better represented by using
an intermittent exponential PDF for the generation of skeleton signal; however, other PDF’s

with exponentially decaying tails may also be appropriate.

6.4.1 Exponential Peak Generation (EPG) Model

The EPG model is proposed for the generation of skeleton signal from which the required
phase can be drawn. The EPG model takes the form,

Y = 0 ,withprobability b

6.5
E ., with probability 1 -5 0<b<l1 ©.3)

where, ¥, corresponds to skeleton signal, 4 is the probability parameter which controls the
magnitude as well as the frequency of spikes in the skeleton signal, and E, is the exponential
random variable. The skeleton signal Y, represents intermittent exponential random
variables (&). This can be regarded as the multiplication of the i.i.d sequence of exponential
random variables, E; and the i.id sequence /; in which P{/,= 1} =1 - P{/, = 0} = (1-b)

whose properties are discussed in Appendix - B. The Fourier phase (¢ . ) required for the

simulation in Eq. (6.3) can be obtained by taking the phase part of the DFT of skeleton

signal (¥;) by
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n-1

=X Y, sin(2nkt/n)
¢, = arctan "’_TO (6.6)
Z Y, cos(2nkt / n)

=0

where, the result of the mathematical operation arctan representing four-quadrant inverse
tangent will lie in the interval -m to 7 which is the same for phase angles of a signal. This is
in contrast with the result of simple inverse tangent which is limited to the interval -n/2 to

n/2 (MATLAB 1992).

The magnitude of spikes in a simulated signal depends on the number of spikes produced
in the skeleton signal and hence partly on the parameter 4. When b is close to one, few
spikes will be created in the skeleton signal and, consequently, few spikes at the
corresponding locations will be induced in the simulated signal but in order to achieve the
target variance, the magnitude of spikes will be high. Such high magnitude spikes will be

reduced as b decreases and as a result skewness and kurtosis will also get reduced.
6.4.2 Estimation of Parameter 5

In the parametric estimation stage, a signal with specified target amplitude is generated
using Eq. (6.3) with the help of Egs. (6.5) and (6.6) for each value of & selected from the
defined range, O to 1. Thereafter, skewness and kurtosis of the simulated and target signals

are compared before selecting the next value of 4. This procedure will be continued until the |
optimum value of 4 is found. For convenience, a computer code is written to draw the
optimum value of parameter b from the range, 0 to 1, to satisfy the desired non-Gaussian
statistics in least square sense. The Sum of the Squared Erors (SSE) in skewness and

kurtosis are calculated for each value of b and the value which gives the least SSE is chosen
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as the optimum one. The advantage of this estimation procedure is its ability to achieve both-
desired non-Gaussian properties (skewness and kurtosis) in the best way possible from this
modelling approach.

As a typical example to illustrate the parametric estimation scheme, an attempt has been
made to obtain the optimum value of b for the pressure time series (sample S1) shown in
Fig. 6.12. The MATLAB function PAR_EST reported in Appendix - A is used to estimate
the parameter 4. The value of » was found to be 0.87 which gives the least SSE based on
target skewness and kurtosis of -1.38 and 6.90 respectively. The variation of SSE with
respect to b is also shown in Fig. 6.12 where the SSE is normalized by sum of the squares of
the target skewness and kurtosis. It is noted that the value of SSE increases steeply as b
exceeds 0.90. Further, Fig. 6.12 shows the variation of skewness and kurtosis of a simulated
signal using the target amplitude of sample S1 as a function of parameter b. The absolute
values of skewness and kurtosis increase as b increases, in fact drastically for b > 0.90. This
shows that when b approaches unity, the number of spikes in skeleton signal will be
drastically reduced and thereby spikes in the simulated signal will be very high to attain the
target variance. In low ranges of b, say b < 0.5, skewness as well as kurtosis appear to have
very small variation. As expected, the optimum value of b induces skewness and kurtosis
values close to the target values. Note also that this variation of skewness and kurtosis with
respect to the parameter & depends, to some extent, on the Fourier amplitude. Therefore, the
magnitude of variation of skewness and kurtosis may change in case of different signals.

During this investigation, a number of pressure time series have been measured on
various locations of monoslope, flat and gable roofs of low rise buildings exposed to open
and suburban terrain conditions. The measurements have been made for 7 different wind
directions (0°, 30° 45°, 60° 90° 120° and 180° in case of monoslope roof and for 5

different wind directions (0° 30° 45° 60° and 90°) in case of flat and gable roofs. The
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measured time histories have subsequently been classified into Gaussian and non-Gaussian
based on their skewness and kurtosis values. A particular time series is considered non-
Gaussian if its absolute values of skewness and kurtosis are greater than 0.5 and 3.5
respectively. Figure 6.13 shows the skewness and kurtosis values of all the measured non-
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Fig. 6.13 Skewness and kurtosis values of measured non-Gaussian time histories.
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Gaussian time histories. Note that the maximum skewness and kurtosis values of the many
measured pressure fluctuations are -2.15 and 10.4 respectively. Note also that such high
values of skewness and kurtosis rarely occur. Further, the parameter b has been estimated
using the previously described procedure for the corresponding cases noted in Fig. 6.13.
The estimated values of & are plotted against the corresponding  simulated skewness

values in Fig. 6.14. The value of b required to achieve the target skewness and kurtosis of a
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Fig. 6.14 The variation of parameter b for several different cases.

spectrum of non-Gaussian pressure fluctuations is found to be less than or equal to 0.9. Note
also that the same value of b can provide different non-Gaussian characteristics (say,
skewness) depending on the Fourier amplitude characteristics of the signal, as previously

mentioned.
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6.4.3 Simulation of Pressure Fluctuations

The previously established parameter b can be used to simulate time series samples having
the same target stochastic properties. To demonstrate the overall simulation procedure, the
equations provided in sections 6.2 and 6.4.1 have been organized in the form of a flow
chart. Figure 6.15 shows a typical flow chart for the simulation of a non-Gaussian signal,
where the Fourier amplitude is taken as the amplitude part of the DFT of target signal. Non-
Gaussian signals can be generated by inverting the Fourier coefficients which consist of
target amplitude and phase that are generated via the EPG model controlled by a single
parameter b. In this process, exponential random numbers are generated followed by the
generation of skeleton signal (b is known from parametric estimation) from which the
Fourier phase can be extracted using Eq. (6.6). The MATLAB function NGTIME reported
in Appendix - A is used to simulate non-Gaussian time series samples based on given time
history. For illustrative purposes, the pressure time series shown in Fig. 6.12 has been
reconstructed and the step by step procedures are pictorially shown in Fig. 6.16. The target
signal is negatively skewed due to the presence of a large number of negatively going
spikes, as expected from wind-induced pressures on the roof of any low-rise building. The
estimated target amplitude using Eq. (6.4) is also shown in Fig. 6.16 where the value at zero
frequency (first data point) is assumed to be zero, for convenience. The skeleton signal
generated using Eq. (6.5) with b = 0.87 (known from parametric estimation) is also
presented in the form of arbitrary amplitude versus number of data points; however, this
represents the distributional characteristics of spikes. The estimated phase is derived from

skeleton signal using Eq. (6.6). The simulated signal shown in Fig. 6.16 is generated using

114



Start

v

AMPLITUDE
Generate Fourier amplitude (V7. )
-1 .
\/Tk _ l nz X,.e-l‘?nkt/n,
t=20
y
PHASE

Generate exponential
random numbers, E;

Y

Generate skeleton signal, I
Y% = 0, with probability b
E;, with probability /-b

y
Generate phase signal ()

n-1
-2, ¥ .sin(27kt/n)
t=0
n-1
2 Y .cos(2mim)
t=20

e’ = arclan

y

Simulate , Z;

n-1 ib,  i2mkt/n
2 ! S e T

Fig. 6.15 Flow chart for synthesis of non-Gaussian wind pressure time series.

115



Skeleton signal

Target signal 5

[
o
=
=
£
<
4f 6}
: b=0.87
-5 -8
0 5 10 15 0 2000 4000 6000 8000
Time (sec.) Data points
300 Target amplitude 4, Phase signal
250

Amplitude
v
o
Phase (rad.)

—
[=
o

4000 6000 8000
Data points

- -4
0 2000 0 2000 4000 6000 8000

Data points

Simulated signal

-5 , -
10 15
Time (sec.)

Fig. 6.16 Pictorial representation of the proposed simulation methodology.

116



Eq. (6.3) by means of target amplitude and phase signal, whereas the mean is added
separately to the zero-mean fluctuations. Target and simulated signals appear similar;

detailed simulation results and comparisons are provided later in this chapter.

6.4.4 Comparison between EPG and EARPG Models

This section is devoted to carry out a direct comparison between the performance of EPG
and EARPG model in the simulation of pressure fluctuations on low building roofs. The
target signal (sample S1) shown in Fig. 6.12 is again adopted for this demonstration and the
procedure described in Fig. 6.15 is used for all simulations except in case of EARPG
simulation where the skeleton signal is simulated using Eq. (6.1). In addition, a phase shift d
is applied on the phase part of the DFT of the skeleton signal using Eq. (6.2). The
parameter found in Fig. 6.12 is used for EPG simulation whereas the parameters required
for EARPG simulation are estimated as follows (Seong 1993): (1) the parameter a is
determined considering the autocorrelation of the target signal, (2) after deciding the major
target non-Gaussian property as skewness, the parameters b and d are selected by
investigating the 3-dimensional variation of skewness versus parameters 4 and 4. Figure
6.17 shows skeleton signals simulated using EARPG and EPG models. Thereafter, these
skeleton signals have been used with the target amplitude of sample S1 to generate
corresponding simulated signals which are also presented in Fig. 6.17.

A significant difference in skeleton signals generated by EARPG and EPG models has
been observed. Note that more intermittent spikes appear in skeleton signal simulated using

EARPG model, irrespective of the value of b, due to its autocorrelation property. Here, the
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parameters b and d are selected with a view to achieve target skewness only. Though the
target skewness is achieved, the kurtosis value is away from the target value. Such
discrepancies of the EARPG model have also been observed in the example provided by
Seong and Peterka (1993) which is summarized in Table 6.2. The target signal corresponds
to Tap.50501 on TTU model building for 240° azimuth, while the simulated signal is based
on the Fourier amplitude of the target signal and the phase generated using EARPG model
with parameters @ = 0.98, 5 = 0.9 and d = -2.09 rad. In this particular case, the parameters b
and d were determined based on the 3-dimensional variation of a target non-Gaussian
property, mode of the extremes. As a result, mode was achieved; however, the fundamental
characteristics of a non-Gaussian signal such as skewness and kurtosis were not
achieved. Clearly, the inefficiency of the EARPG model in achieving more than one
desired non-Gaussian properties is noted. On the other hand, Fig. 6.17 shows that the
simulated signal using EPG model efficiently represents the spike features as well as the
non-Gaussian characteristics (skewness and kurtosis) of the target signal S1. The simple
EPG model with the parametric estimation scheme introduced in this chapter overcomes the
various limitations of the EARPG model. Table 6.3 briefly summarizes the advantages of
EPG model over EARPG model. Overall, these considerations reinforce the applicability of
EPG model as a replacement of the EARPG model.

Table 6.2 Comparison of target and simulated statistics
(Seong and Peterka 1993).

Target Simulated
Mean -0.80 -0.81
RMS 0.43 0.42
Skewness -1.19 -0.63
Kurtosis 495 3.93
Mode -2.88 -2.89
Dispersion 0.30 0.27
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Table 6.3 Comparison between EARPG and EPG models.

Description

EARPG model

EPG Model

(1) Number of
parameters
involved

(2) Parametric
estimation

(3) Accuracy

(4) Stationarity
of the simulated
time series

(5) Adequacy of the
model in all
roof zones

three

Not efficient; uses cumbersome

3-dimensional figures

Achieves only one of the non-

Gaussian characteristics
(mode, dispersion, skewness,
kurtosis)

The phase part is highly
correlated and therefore this

property is questionable

Not known

one

Efficient; uses computational
algorithm

Achieves two non-Gaussian
characteristics (skewness and
kurtosis)

Good; see details
in section 6.5

Good; verified for many
different cases.

6.5 STATIONARITY OF THE SIMULATED TIME SERIES

As previously noted in Chapter 5, the phase processes of the DFT of measured pressure
signals are somewhat correlated. During this Investigation, several non-Gaussian time series
have been measured on many low building roofs at different conditions as previously
mentioned and in all cases, the phase processes are somewhat correlated. A typical example
provided in Fig. 6.18 shows the autocorrelation of the phase process of the measured
sample S1 excluding zeroth lag. Correlation values are below the 10% level for both
measured and simulated processes. Figure 6.19 shows the histogram of the absolute

maximum phase correlation values (excluding zeroth lag) of all the measured non-Gaussian
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signals, where the estimated phase correlation values are arranged in bins with their
corresponding frequencies of occurrence. Note that the absolute maximum phase correlation
values of measured time series range between 0.05 and 0.08.

During the simulation of non-Gaussian time series, the non-Gaussian properties were
induced through the Fourier phase part generated using Egs. (6.5) and (6.6). It was found
that the produced phase process is uniformly distributed but somewhat correlated. The
correlation of the phase part seems to be the source of providing non-normality in time
series. However, the use of correlated phase for the simulation is against the general
requirement of a stationary process. Note, however, that though the phase process (Eq.
(6.6)) is correlated, the magnitude of correlation really depends on the value of parameter b,
as shown clearly in Fig. 6.20. The ordinate refers to the absolute maximum phase

correlation (excluding zeroth lag) corresponding to various values of b. As the parameter b
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Fig. 6.20 Variation of absolute maximum phase correlation values (excluding zeroth lag)
with respect to parameter b.
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increases, phase correlation value also increases but only marginally as 4 rises from 0 to 0.9.
When b6 > 0.9, phase correlation increases exponentially and this would be problematic for
the simulation of a stationary process. Note however that the very high skewness and
kurtosis values induced for high values of b seemed to be unrealistic based on many wind
tunnel measurements of pressure time series on low building roofs. In fact, Figs. 6.13 and
6.14 show that values of b > 0.9 are not obtained even when modelling highly non-Gaussian
pressure fluctuations. This in association with the low phase correlation values observed
when 5<0.9 is encouraging. The histogram of the absolute maximum phase correlation of
the simulated time histories corresponding to the measured cases shows that the phase
correlation values of the former range between 0.05 and 0.10 compared to those of the
latter ranging between 0.05 and 0.08, as previously mentioned - see Fig. 6.19. Finally, the
invariant nature of the autocorrelation functions of the simulated signals with respect to
uniform shift in time has been verified in several cases. This further reinforces the
reasonable accuracy concerning the stationarity of the time series simulated using this

methodology.

6.6 EXAMPLE SIMULATIONS

For demonstration purposes, two distinct non-Gaussian time series have been selected and
listed in Table 6.4. Figure 6.21 displays normal probability plot of the samples. The
deviation of the data away from straight line (samples follow straight lines if they are
normally distributed) towards negative tail end displays how far the data is away from

normal distribution. Both selected time histories are reconstructed using the amplitude part



Table 6.4 Sample non-Gaussian pressure time series.

Sample Roof type Wind Terrain Orientation of model
direction condition
>is°
S1 monoslope 0° open — H
—
S28 flat 45° suburban E
/
* +
0.9991 ]
0.90 ]
Z
5.
‘T 0.50 f 1
e
a
0.10 ]
S1
0.001 -
+ + F s28
+ ; + . .
-4 -3 2 -1 0

Data
Fig. 6.21 Normal probability plot of the selected samples.
of the DFT of their target counterpart and phase generated using the EPG model. The
parameter of the EPG model has been estimated based on target skewness and kurtosis as
previously discussed. Here, the comparison has been made between simulated and target

characteristics.



The statistics of target and simulated data are compared in Table 6.5. The first and second
moments (mean and variance respectively) of the simulated signals coincide with those of
the corresponding target signals, as is always the case. One common feature of target signals
is that they are negatively skewed but with varying intensity. In general, the skewness and

kurtosis values of the simulated signals are close to their corresponding target values. This

Table 6.5 Comparison between target and simulated statistics.

b Mean Variance Skewness Kurtosis
Sample S1
Target -1.16 0.16 -1.38 6.90
Simulated | 0.87 -1.16 0.16 -1.34 6.95
Sample S28
Target -1.14 0.11 -0.83 474
Simulated 0.49 -1.14 0.11 -0.84 4.76

shows that by properly choosing the value of parameter b (shown in Table 6.5) for each
case, the desired skewness and kurtosis can be achieved. The same trend is also observed in
other cases. Further, the decrement in 5 is noted corresponding to the decrement in
skewness and kurtosis. Both target and simulated signals as well as their PDF's and extreme
values (Gumbel's plot) for each sample, are shown in Figs. 6.22 and 6.23. The simulated
and target signals are presented in the form of pressure coefficient (Cp) versus time. In case

of PDF plots, the abscissa represents normalized pressure coefficient in the form of (Cp-

CPmean)/CpPrms (CPmean corresponds to mean pressure coefficient, and CpPrms corresponds

to root-mean-square pressure coefficient). Further, Gumbel's plots represent extreme Cp
values as a function of reduced y-variate (see section 3.2.3.1), where the extreme Cp values

are obtained as follows: the 8192 simulated as well as measured data are divided into
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16 segments of 512 values each and the peak value from each segment is selected. In case
of sample S1, the target and simulated signals appear similar. Both signals seem to have
high negatively going spikes which induce high skewness. The PDF's of both target and
simulated signals shown in Fig. 6.22 match well except negligible discrepancies at the
negative tail end. This is due to the difference in intensity of spikes between the target and
simulated signals. Gaussian PDF shown in the same plot makes it clear that the sample S1

is highly non-Gaussian due to the highly skewed negative tail end. The extreme values of
the signals are also compared in Fig. 6.22. The mode (Cppeak comesponding to zero

reduced y-variate) of the target and simulated signals is fairly close: however, dispersions
(slopes of data lines) of the corresponding signals seem to be slightly different possibly due
to the difference in number of crossings of the spikes at different levels. The simulation
results for sample S28 are presented in Fig. 6.23. Compared to the sample S1, clear
reduction in magnitude of spikes is observed. The similarity between the target and
simulated signals in terms of time series, PDF's and extreme values seems to be good. It
should be noted that these examples are representative samples of several simulations
performed during this investigation with similar results.

In the present study, the criterion for successful modelling is set up as the reproduction of
the first four moments and the spectral density function. The efforts involved in finding a
non-Gaussian model are further justified if it can reflect the level crossing and peak
statistics of the measured data better in comparison with the simpler Gaussian model. In
Table 6.6, the number of negative peaks and down-crossings of the target signals have been
compared with those of the simulated signals based on non-Gaussian and Gaussian models.

All calculations have been made after the signals were subtracted from their corresponding
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Table 6.6 Number of negative peaks and down-crossings at various levels of target and
simulated time histories.

Crossings
Levels below mean in terms of &
Sample Peaks 0 -1 2 | -3 -4 | -5 -6

S1 T 1523 643 | 312 | 121 | 60 | 24 7 1
SNG| 1469 | 642 | 295 | 136 | 62 | 31 | 11 5
SG 1500 | 662 | 387 | 89 | 7 1

S28 | T | 2041 | 1186 | 579 | 208 | 59 | 24 | 6
SNG| 2049 | 1159 | 649 | 249 | 71 | 17 | 8
SG | 2077 | 1218 702 1139 | 13 | 1

Note: T = Target, SNG = Simulated non-Gaussian, SG = Simulated Gaussian

1

means and normalized by their corresponding standard deviations (o). The number of peaks
is more or less close to the target values irrespective of the model used. However, it is
observed that the non-Gaussian model is consistently better than the Gaussian model in case

of level crossings, especially at higher levels.

6.7 REPEATABILITY OF THE SIMULATIONS

Some comments concerning the repeatability of the simulations are provided here. For the
simulation of non-Gaussian time series, intermittent exponential random number sequence
is required (see section 6.4.1). On the other hand, generation of exponential random
numbers is essential for the generation of intermittent exponential random numbers. Many
algorithms are currently available to generate exponential random numbers (Knuth 1981;
Clark and Holz 1960). For the present study, logarithmic transformation of uniform random

numbers is employed for the generation of exponential random numbers. This is the most
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widely used algorithm. The intermittent exponential random number sequence, controlled

by the parameter b is generated using the following algorithm:

if (0 < UI() <b), &) =0

if (b < UIG) < 1), &@) = log(U2(1)

where, Ul and U2 are two independent sets of uniform random numbers whose values are
between 0 and 1. & represents intermittent exponential random numbers whose upper limit
is obviously zero but its upper limit varies. This algorithm is coded in MATLAB function
NGTIME given in Appendix - A. Subsequent sets of intermittent exponential random
numbers are expected to be different due to the change of initial seed value used in the
generation of uniform random numbers. Therefore, an attempt has been made to examine
the sensitivity of intermittent exponential random number sets on simulation results.

For each simulation, 8192 intermittent exponential random numbers are required. One
hundred distinct sets of 8192 intermittent exponential random numbers each have been
generated using b = 0.87 (the parameter estimated for sample S1). For each set, the first four
moments (mean, variance, skewness and kurtosis) have been computed and then normalized
with respect to their corresponding theoretical values estimated using the equations
provided in Appendix - B. The variation of their normalized moments is displayed in Fig.
6.24 using boxplot. It is clear from the figure that the variation of the statistics is higher than
those in the case of uniform random numbers shown in Fig. 5.8. The mean, variance and
skewness of the sequences vary up to +15%, while the kurtosis values vary up to £25%. It is

suspected that this high variation in statistics is due to the presence of very small values
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Fig. 6.24 Variation of the first four moments of the intermittent exponential random
numbers.

close to zero in some of the sets of uniform random numbers. This can change the statistics
of the exponential random numbers drastically since the logarithm of those values are high.
Since this variation in statistics is suspected to be due to the transformation of uniform random
numbers, other algorithms not using the transformation of uniform random numbers have
been attempted. For instance, the algorithm provided by Clark and Holz (1960) and some of
the algorithms provided by Knuth (1981) were applied but, no significant improvement over
the present method was observed. On this basis, the present method is used in this study.
Simultaneously, the same 100 blocks of random numbers have been used to simulate 100
corresponding time histories using the amplitude part of the sample S1. Figure 6.25 presents
the variation of skewness and kurtosis of the simulated time histories in a boxplot format.
Variations up to +£25% have been observed in both quantities and this high variation is due to

the highly varying statistical properties of the intermittent exponential random number
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sets shown in Fig. 6.24. On the other hand, the noted high variation in skewness and
kurtosis of the simulated signal can be reduced by averaging them for a number of samples.
Moreover, this scenario seems practical since several time histories are required for carrying
out extreme value analysis and fatigue analysis. A typical example provided in Fig. 6.26
shows the average skewness as well as kurtosis values against the number of simulations.
The time histories previously simulated for Fig. 6.25 have been used for this demonstration.
For instance, the skewness value at the 50" number of simulation represents the average
skewness value of the first 50 simulated time histories. As the number of simulations
increases, the average skewness as well as kurtosis stabilize. After 100 consecutive
simulations, the target skewness and kurtosis are achieved within 5%. Overall, the
performance of the used random number generation is satisfactory. Nevertheless, further
research is required to develop a good exponential random number generator which would

produce independent random number sets with stable statistics.
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6.8 SUMMARY

In this chapter. a novel simulation methodology has been developed for the digital
generation of non-Gaussian wind pressure fluctuations on low building roofs whose
amplitude part is known. The method based on FFT approach is set to preserve the first four
moments (mean, variance, skewness and kurtosis) and spectra of the time series. A simple
stochastic model (EPG) based on a single parameter b is suggested for the simulation of
phase part which induces non-normality in simulated time series. The model parameter has
been estimated by minimizing the sum of the squared errors in skewness and kurtosis.
Several computer experiments dealing with the simulation of pressure time series on low
building roofs of various geometries have been carried out in order to demonstrate the
efficiency of the new approach for various building zones and flow characteristics. The

results indicate that the proposed methodology can represent fluctuations of diverse nature.



The repeatability of the simulation has also been verified.

In comparison with the EARPG model, the EPG model in describing the phase part of a
non-Gaussian process appears to be quite effective, especially in conjunction with
increasing simplicity by reducing the number of parameters involved, elevating flexibility
by introducing an efficient parametric estimation procedure and enhancing accuracy by
achieving two non-Gaussian properties. Further, stationarity of the simulated time series is
justified for <0.9.

The proposed simulation technique is capable of generating the data required for extreme
value analysis as well as fatigue analysis. As a result of the successful simulation of a
number of different pressure time histories, generalization of the simulation methodology in
terms of building geometry, terrain conditions and surroundings may be possible. This
would help the user to simulate an unlimited amount of data on any type of roof under
various conditions without the need of extensive experimental measurements. Moreover,
the proposed simulation methodology can be utilized in other engineering problems
encountering random processes of similar nature where the first few moments and the PSD
function are the only available information about the process. Generation of the amplitude
part from target spectra, generalization of the simulation methodology and applications of

the methodology are discussed in the following chapters.
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CHAPTER 7
SPECTRA OF WIND PRESSURES ON Low

BUILDING ROOFS

"...The response of structures to random excitation is of wide engineering interest. The vibration environment
may be generated by such diverse sources as atmospheric turbulence, ocean waves in a rough sea, or ground
motion due to earthquakes.... A frequency domain approach using power spectral density functions to describe
excitation and response, and a transfer function to characterize the system, has proved to be very useful..."”

E. H. Vanmarcke, 1972.

Spectrum (SDF) of wind pressure fluctuations on low building roofs, which is required for the
simulation of pressure time series, is the basic description of the probabilistic nature of the wind
loads acting on them. As previously mentioned, the Fourier amplitude part in the proposed
simulation methodology can be constructed from the given spectrum. This chapter summarizes
a study in which several wind pressure spectra were measured at various tap locations on the
roofs of several low building models placed in two types of terrain in order to determine their
characteristic shape and derive a suitable empirical representation.

In the past there have been several studies on quantifying wind velocity spectra which is
essential for the theoretical analysis of wind loads on buildings (Panofsky and McCormick
1954; Davenport 1961). Most recently, Tieleman (1995) presented unified spectral methods
for the three-component velocity fluctuations in wind-tunnel generated shear flows and in the
atmospheric boundary layer. In contrast with the many studies that have been conducted with
respect to the wind velocity spectrum, wind pressure spectra have received only limited
attention due to their complex nature. Wind pressure spectrum representing energy content in

pressure fluctuations receives contributions not only from mechanical turbulence but also from
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building generated turbulence which makes it complex especially in separation as well as roof
corner zones. As a result of this, only isolated measurements have been made for specific cases
in many studies. However, the classification of spectra of space-averaged pressures over flat
roof panels (Stathopoulos et al. 1981) and the more recent attempt to describe the basic shapes
of spectra (Kasperski and Koss 1996) are notable exceptions. Since the literature shows that
there is no systematic information available on spectra of wind pressures acting on low building
roof, an extensive investigation has been carried out on this area.

This chapter describes the overall characteristics of pressure spectra acting on low building
roofs under various conditions with the help of wind tunnel measurements. The measurement
details as well as some preliminary results have been reported in Chapter 4. An empirical model
for the description of spectra of wind pressures on low building roofs is suggested. Thereafter,
the construction of Fourier amplitude part from synthetic spectra is provided. This is followed
by the demonstration showing the efficiency of the fitted spectra in time series simulations. An
attempt has also been made to classify SDF's complex pattern on roof after they have been
appropriately normalized. Finally, the various zones of the roof and their corresponding
spectral shapes in terms of their parameters are provided for various roof geometries. Some of

these results were reported in Suresh Kumar and Stathopoulos (1996a, 1997¢, 1997¢).

7.1 CHARACTERISTICS OF PRESSURE SPECTRA

Typical samples of measured pressure spectra are shown in Figs. 7.1 and 7.2. A common
feature found in all measurements is that, in general, the amplitude of pressure spectrum dies

out as the frequency increases. However, a small growth in spectral amplitudes at
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Fig. 7.1 Sample wind pressure spectra on flat roof.

dimensionless frequencies () between 0.1 and 0.2 (f = 20 to 40 Hz) has been observed at
taps located in farwind as well as leeward regions of the roof due to the increase in contribution
from small scale turbulence in those regions. Note that farwind region represents the windward
edge region away from the windward corner in case of oblique wind angle. Typical samples are
shown in Figs. 7.1 and 7.2 for flat (sample S56) and sloped roofs (samples S69 and S1). In Fig.
7.1, sample S56 which corresponds to the tap located in farwind region has small growth
between the corresponding frequency range as previously mentioned. However, such growth is

predominant in case of taps located in leeward regions of gable and monoslope roofs
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Fig. 7.2 Sample wind pressure spectra on gable and monoslope roofs.

as shown in Fig. 7.2. Further, the evolution of the above mentioned two spectral shapes and the
transition from one to the other are clearly shown in Figs. 7.3 and 7.4. While Fig. 7.3
demonstrates the evolution of spectral shapes in case of a flat roof building in open terrain
exposure, Fig. 7.4 demonstrates this in case of a monoslope roof building in open terrain
exposure. It is clear from the figures that the spectral hump appeared in case of tap located in
leeward region of a monoslope roof building is predominant compared to that in case of tap
located in farwind region of a flat roof building. This has been attributed to the increasing

contributions from small scale turbulence in case of monoslope roof possibly due to the tap
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Fig. 7.4 Evolution of spectral shapes (monoslope roof).

location and roof slope. Figure 7.5 compares two spectra measured at the same location on a
flat roof in open country and suburban terrain conditions. Eventhough the variances are

different due to the variation in incident turbulence, the normalized spectra appear to be similar.
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Fig. 7.5 Comparison of wind pressure spectra at different terrain conditions.

The same characteristics are also found at other locations. Following the inspection of various

spectra on roof, a number of qualitative conclusions can be drawn and summarized as follows:

(a) Though the spectra change in shape and magnitude depending on the geometry of roof,
terrain conditions, wind attack angle and tap location, they can be classified into two
categories: (1) spectra which die out as the frequency increases and (2) spectra which
die out up to a certain frequency and then grow to have another hump prior to their
dying. The growth in the second type of spectra is attributed to the additional
contribution from pressure fluctuations in the separation layer.

() The variance of the fluctuations (area under S(f)) appears to be different for different

conditions. For comparison purposes, all spectra have been normalized with respect to
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their variance and many normalized spectra seem to be similar in shape and magnitude.
This is a favourable element for the analytical description of spectral curves.

(© The normalized pressure spectra corresponding to the same tap at open and suburban
terrain conditions seem to be similar, though the variance is greater in case of suburban
conditions, as expected.

Since normalized spectra measured at various locations of the roof under different conditions
show similarities, there is a possibility to draw an empirical expression to represent spectral
curves which is discussed in more detail in the following section. Standard spectral shapes may
be proposed for different zones of the roof The actual pressure spectra at the corresponding
location can be obtained by simply multiplying the standard shape by the corresponding

variance.

7.2 REPRESENTATION OF SPECTRA

As previously discussed, spectral curves can be represented by empirical equations and thereby
Fourier amplitude can be generated in a synthetic manner. Though spectra of pressure
fluctuations at various taps appear generally similar in shape, the spectral amplitudes vary
depending on the variances of the corresponding fluctuations. In order to simplify the empirical
modelling as well as to get standard spectral shapes, all spectra have been normalized by their
variance. Thereafter, several traditional curve fitting techniques have been employed to extract
a suitable empirical equation for spectra. Because of the initial lack of success, a different
approach by using trial and error was attempted.

The organization of the curve fitting technique used in this study is shown in Fig. 7.6. The
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procedure is distributed in four M-files (M-file is a default editor in an empty MATLAB
window allowing one to create a new program) and is self explanatory. The code is written in
MATLAB environment with the help of available built-in functions. In this procedure, thé
inputs to the program are data set, initial values of parameters and the function to be fitted. The
program uses traditional optimization methods to estimate the optimum parametric values
iteratively by minimizing the sum of the squared residuals. In this case, the data set consists of
independent variables (f) and dependent variables (S(f)/c?). Optimum results can be obtained in
minimal computer time (of the order of 10 seconds) by choosing good trial values which could
be changed in subsequent trials to obtain optimum values quickly. The least-square error
criterion, minimization of the sum of the squared residuals, i.e. minimization of the sum of the
square of the difference between the fitted spectral ordinates and the measured spectral
ordinates, was used in error M-file for the selection of the optimum parameters. This M-file
keeps the value of the previous smallest error and returns immediately to the optimization M-
file if the error is larger. Several traditional optimization methods such as Steepest Descent,
Simplex search, Gauss-Newton etc., and line search strategies such as mixed polynomial and
cubic polynomial methods are provided in optimization M-files, and the user is free to select a
suitable optimization method and a line search method (MATLAB 1994a). In this study, the
Levenberg-Marquardt algorithm known for its robustness along with cubic polynomial
interpolation line search method has been used to carry out least-square optimization
(MATLAB 199%4a).

Several functions representing approximately the same shape as the target spectra have been
tried. SDF's monotonic decay in amplitude with increasing frequency (a straight line decay in

loganithmic scale) indicates that a power function of the form f* where, a is the power index

143



and f is the frequency might be suitable but not for low frequencies where most of the energy
lies. Moreover, the hump that is noticed in several spectra cannot be represented by this
function. After an extensive investigation, an exponential function has been found to be more
appropriate. Moreover, under general conditions, the periodogram ordinates (linearly
proportional to the spectrum ordinates) at any set of frequencies are asymptotically
independent exponential random variables (Brockwell and Davis 1991) which reinforces the

suitability of this function. The proposed fiinction is
S(f)/o? = a e + a,e?’ (7.1

where, S(f) is the spectral ordinate, o* corresponds to variance, f corresponds to frequency, a,
& a are the position constants and ¢; & c, are the shape constants. The position constants

control the location of the spectra, whilst the shape constants control their dying out shape.

The proposed function consists of two exponential functions; ale_clf represents the

amplitudes at high frequency range, while aze—czf represents the amplitudes at low frequency

range. The four parameters (a1, @, ¢; and ¢) corresponding to a particular data set can be
estimated using the procedure described in Fig. 7.6. Here, the initial guesses are made only for

¢1 and c;, since the other two parameters (@, and @) can be easily found out using Eq. 7.1

written in the matrix form,
(mx1) (mx2)  (2x1)

[S(f)/6%] = [e% e1[a, a, T (7.2)
Then,

[2,a,T = [e% e/ N\[S(f) /0] (7.3)
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is the solution in the least-squares sense to the overdetermined system of Eq. (7.2) computed
by Gauss elimination where, the symbol ‘\’ represents the matrix left division operator

(MATLAB 1992). It is known that

7 df =1 (7.4)

Further, the substitution of Eq. (7.1) in Eq. (7.4) would result in

ac + a.c
12 21___1 (75)

C1 C2

By using Eq. (7.5), one of the spectral parameters can be determined by knowing the other
three. Therefore, SDF can be simulated by knowing any three parameters.

An example of the measured and fitted wind pressure spectra is shown in Fig. 7.7. The
MATLAB functions FIT and FUNFIT (see Appendix - A) based on the procedure shown in
Fig. 7.6 have been used for the fitting of pressure spectra. The fitting has been done as follows:
first, the MATLAB function FIT is initialized by calling its name. Then, the data to be fitted
(format of the data is [f S(f)/c” ]) and the initial guesses for ¢, and ¢, are provided. Next, a
suitable optimization method and a line search method are chosen from a list provided by the
program. Finally, the program will provide the fitted curve and its corresponding parameters as
well as the error. The spectral fit shown in Fig. 7.7 appears satisfactory; the spectral statistics
(No, Np, € and B - details are provided in section 3.2.2.2) of the fit is closer to the
corresponding target values (see Table 7.1). Satisfactory performance of the proposed
empirical expression has also been observed in a variety of other cases. Though the fit is based

on minimizing the squared residuals (i.e. square of the difference between the fitted spectral
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Fig. 7.7 Measured and fitted wind pressure spectra (flat roof).

Table 7.1 Spectral statistics of measured and synthetic spectra.

Sample No N, € B
Measured (Fig. 7.7) 55 150 0.37 0.93
Synthetic (Fig. 7.7) 57 150 0.38 0.92
Measured (Fig. 7.8) 75 154 0.49 0.87
Synthetic (Fig. 7.8) 73 146 0.50 0.87

amplitudes and the measured spectral amplitudes), it is decided to quantify the level of
accuracy of the fit based on four spectral statistics (M, N,, € and B) with a view to provide a
physical meaning to the error caused by the fit. During this investigation. a number of case
studies showed that the above spectral statistics can be obtained within 10% using this

fitting procedure which is reasonable for practical applications.

Further, the evolution of the fitted curve is shown in Fig. 7.7 by plotting ale~cl'f and
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aze_czf separately. It is clear that the term ale—clf controls the position and shape of spectra
at higher frequency region, while the term aze"czf controls the position and shape of spectra

at lower frequency region. The term ale'clf shifts the ordinate of the spectra to the right side

and thereby represents the additional growth noted in some cases. It is interesting to note that
the parameters obtained in the previous fitting are all positive and therefore, the derivative of
Eq. (7.1) at any point is a negative quantity which reveals the fact that the fitted curve does not
have an upward slope. As a result, this function represents only mild growth in spectra and
needs modifications to fit the predominant spectral growth observed in some cases such as

samples S69 and S1 shown in Fig. 7.2. In such cases, spectra show a clear hump and the
proposed Eq. (7.1) requires an additional term ase_c3f to fit the data efficiently; the modified

function is
S(f)/o?* = a e + a, e + a, e (7.6)

The parameters a; and ¢; can be established using the fitting procedure as previously shown in

Fig. 7.6 with some minor modifications in the program; these include the addition of new term
a3e-c3f in Eq. (7.1), the corresponding changes in Egs. (7.2) and (7.3) and the incorporation

of ¢; in the list of initial guesses. Figure 7.8 demonstrates a typical example where the spectral
growth at certain frequencies is predominant. Note the negative value obtained in case of
parameter a, by which the upward slope in fitting is established to represent the hump. The
efficiency of this fitting process is once again demonstrated using the appearance of the fit
shown in Fig. 7.8 and the spectral statistics shown in Table 7.1.

Finally, it is noted that Eq. (7.1) can efficiently represent spectra in most of the locations of
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Fig. 7.8 Measured and fitted wind pressure spectra (monoslope roof).

various roof geometries for various azimuths; however, Eq. (7.6) is required to represent the
predominant spectral growth observed in few cases. These cases will be specified in later part
of this chapter.

A typical example providing the sensitivity of spectral parameters is shown in Fig. 7.9, in
terms of the variation of spectral statistics with respect to the variation of spectral parameters.
The spectral fit shown in Fig. 7.7 is used for this demonstration. Each time, one of the spectral
parameters is varied around its optimum value and the corresponding variations of spectral

statistics are plotted. It is clear from Fig. 7.9 that the spectral statistics is highly sensitive only to
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Fig. 7.9 Sensitivity of spectral parameters (case - Fig. 7.7).

¢1, when varied around its optimum value of 0.01601 - see Fig. 7.7. Note that ¢, determines the
dying out rate at high frequency range representing the energy content in small scale turbulence
generated by the building. Note that the spectral statistics is not highly sensitive to parameters
ay, @y, and ¢, in comparison with ¢;. In case of parameters a, and c), the spectral statistics such
as €, Ny, and N, reduce with increasing parameter values, while f increases with increasing

parameter values. However, in case of parameters a; and ¢, the spectral statistics such as €, N,
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and N, increase with increasing parameter values, while  reduces with increasing parameter
values. Note that as ¢ increases, B decreases and vice versa which is expected from Eq. (3.30).
Moreover, as € decreases, Ny also decreases and vice versa. This is because as & decreases, the
process tends to become broad-banded and consequently, the number of zero up-crossings are

expected to be reduced. Similar trends are observed in other spectra.

7.3 CONSTRUCTION OF FOURIER AMPLITUDE PART OF DFT (‘/ﬂ )

The function which is proposed to generate pressure spectra is expressed in a discrete form as

(7.7)

S = kAf, 1<k<n/2

Sp(fr)/ o =

a[ e’clfk + a2 e'csz :

where, S,(f;) is the spectral ordinate, o* corresponds to variance, f; corresponds to frequency,
Af corresponds to frequency resolution (i.e, inverse of the period of time series = f;71; f; =
sampling frequency, # = number of samples), a; & a, are the position constants and ¢; & c; are
the shape constants. Eq. (7.7) corresponds to physical spectrum that computes only the first
half of the spectral amplitudes in the positive frequency range and Af = 500/8192 is used as the
frequency resolution. However, the mathematical spectrum (S,(f)), symmetric about the
midpoint and ranging both in the positive and negative frequencies, is required for

computational purposes. The desired format of mathematical spectra can be estimated by,

Sulfe) = S,(f)/2 5 Fo = k.Af, 1<k< '2—'
S(f)/2 i fi = (n-k)Af, §+1 < k<n-1 (7.8)
0 ; =0
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Then, the Fourier amplitude ( ‘/ I, ) can be evaluated using,

VI = nyfSa(f) &f (7.9)

Detailed explanations of the above formulation (Eqs.(7.8) and (7.9)) can be found elsewhere
(Bendat and Piersol 1986).

It is appropriate at this point to present an application of the proposed empirical function for
spectra of pressure fluctuations acting on low building roofs. The spectral fit shown in Fig. 7.7
is used for this demonstration. A typical example of the construction of Fourier amplitude part
from synthetic spectra is pictorially shown in Fig. 7.10. The normalized spectrum is generated
using Eq. (7.7) with the help of the parameters established in Fig. 7.7. Physical spectrum is
obtained by multiplying the ordinates of the normalized spectrum by the variance of the
corresponding pressure fluctuations (0.28 in this case). Eq. (7.8) is used to construct the
mathematical spectrum from physical spectrum. Finally, the Fourier amplitude is constructed
from mathematical spectrum using Eq. (7.9). In summary, once the spectral parameters (a;, az,
¢1 and ¢;) are provided, the Fourier amplitude part required for time series simulation can be
easily generated with the help of variance of the corresponding pressure fluctuations. Figure
7.11 shows the simulation of the corresponding time history using the synthetic Fourier
amplitude part from Fig. 7.10. The skeleton signal and its corresponding phase shown in Fig.
7.11 are generated based on the description provided in Chapter 6. The simulated signal is
obtained by inverting the Fourier coefficients which are a combination of Fourier phase and
Fourier amplitude. In order to find the efficiency of synthetic spectra in time series simulation, it
was decided to compare the statistics of the simulated signal using target spectra (Simulation-

I) with that of the simulated signal using synthetic spectra (Simulation-IT). Though Simulation-I
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is not pictorially shown, the same procedure as Simulation-Il was adopted for Simulation-I.
The same Fourier phase from Simulation-IT was used in Simulation-I; the only difference was
in Fourier amplitude part which was constructed from target spectra shown in Fig. 7.7 using
Egs. (7.8) and (7.9). While Table 7.2 compares the first four moments (mean, variance,
skewness and kurtosis) of the simulated signals, Table 7.3 compares the number of negative
peaks and down-crossings of the simulated signals. The corresponding values of both signals

are close and the same result is observed in other cases.

Table 7.2 Statistics of simulated signals.

Mean Variance Skewness Kurtosis
Simulation-I -0.8 0.28 -1.92 987
Simulation-IT -08 0.28 -1.96 10.22

Table 7.3 Number of negative peaks and down-crossings at various levels of simulated

signals.
f Crossings
Levels below mean in terms of standard deviation
Sample : Peaks 0 i -1 -2 -3 4 -5 | -6
Simulation-I 1854 617 i 362 | 189 | 100 | 43 1 22 E 12
Simulation-IT 1939 629 ; 374 1 1931 100 | 45 | 25 !! 12

7.4 GENERALIZATION

As previously discussed, it is possible to group normalized spectra of pressures acting on roofs
due to their similarities. Further, it is of practical interest to categorize all types of spectra on

roofs into certain limited number of groups. Since the simulation methodologies used for
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Gaussian and non-Gaussian time series simulations are different, it would be better to classify
the zones of Gaussian and non-Gaussian regions prior to the grouping of spectra at the
respective regions. The zones of Gaussian and non-Gaussian pressure fluctuations have already
been identified for various roof geometries and reported in Chapter 4 (section 4.3). Following
this, an attempt has been made to group the spectra at previously identified Gaussian and non-
Gaussian zones separately.

Generally, the spectra observed on Gaussian regions appear to have more erratic spikes due
to their low variance; however, normalized spectra seem to be similar irrespective of location

and wind direction. For instance, Fig. 7.12 shows the normalized spectra measured at different
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Fig. 7.12 Measured and fitted wind pressure spectra (flat roof, Gaussian zone).
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locations on a flat roof at different terrain conditions for zero wind direction. The spectra
appear to have more or less similar shapes. This has been noted at several locations of a flat
roof for other wind directions. Since their shapes are similar, pressure spectra are averaged to
obtain the most probable spectra for that region. Thereafter, the proposed empirical function is
fitted in accordance with the procedure shown in Fig. 7.6. Statistics of the fitted spectra is
compared with those corresponding to the observed in Table 7.4. Note that this fitting is based
on twelve measured spectra from this Gaussian region. In most of the cases, the spectral

statistics is obtained within 20% and this discrepancy is due to the averaging of several spectra.

Table 7.4 _Comparison of spectral properties (flat roof, Gaussian zone).

Sample No N, € B
Fit 94.9 169.8 0.56 0.83
S65 70.2 1439 0.49 0.87
S31 88.5 153.5 0.58 0.82
S32 80.1 144.7 0.55 0.83

In the case of non-Gaussian region, two types of spectra have been found: the first dies out
as frequency increases on windward regions and the second has another hump prior to its dying
out on the farwind or leeward regions. Based on this, the non-Gaussian region is again divided
into two zones. Figure 7.13 shows normalized spectra selected from farwind non-Gaussian
regions of the flat roof building in open and suburban conditions. Such spectra appear similar
and they have been averaged and fitted by the empirical expression. The statistics of the fitted
and observed spectra are given in Table 7.5 which shows that fitted spectrum is a good
representative of the observed spectra.

This procedure has been carried out for monoslope as well as gable roofs. In the case of

monoslope roof, two types of spectra in Gaussian zone have been observed; the first type lies
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Fig. 7.13 Measured and fitted wind pressure spectra (flat roof, non-Gaussian zone).

Table 7.5_Comparison of spectral properties (flat roof, non-Gaussian zone).

Sample M N, € B
Fit 80.2 166.7 048 0.88
S56 78.5 1554 0.50 0.86
S61 70.8 160.2 0.44 0.90
Se2 75.7 163.7 0.46 0.89
S26 64.9 1549 042 0.91
S28 79.5 1554 0.51 0.86

on interior and the other type lies on the edges of the roof. In farwind as well as leeward non-
Gaussian regions of monoslope roof, spectra seem to indicate a clear hump. In this particular

case, Eq. (7.6) is required to fit the data efficiently. A typical example provided in Fig. 7.14

157



Open exposure Suburban exposure

15°
956 ‘
S1 45 S17 457519
0
10 ¢
F Eq.(7.6)
-1
10 L
20
10 L
v F
S L f
100
< F
10 | a= 003751 ¢ =003125
F a;=-0.45580 ¢»=0.19920
- a3= 049460 ¢5=0.23900
]_0- IR IR SRR B SR ATTT AR RITT
-4 -3 -2 -1 0 1
10 10 10 10 10 10

Reduced Frequency, F=fh/l

Fig. 7.14 Measured and fitted pressure spectra (monoslope roof, non-Gaussian zone).

shows several normalized spectra from the corresponding regions of monoslope roof (a = 15°)
and the fitted curve. In the case of gable roof (a ~ 19°), the normalized spectra in Gaussian
zone are found to be identical with those in Gaussian zone of flat roof therefore, the same
spectral parameters have been adopted. In the case of gable roof with roof angle 45°, the
normalized spectra from various regions for various wind angles appear similar and therefore, a
single representative spectrum is proposed.

The grouping of spectra has been carried out for various roof geometries. Results are

summarized in Figs. 7.15, 7.16 and 7.17, where the standard SDF shapes associated with
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Fig. 7.17 Standard spectral shapes for gable roof.

different regions of the roofs are provided for various roof geometries. Each spectra is
assigned a subscript where the first letter stands for the type of roof, G stands for Gaussian
zone, NG stands for non-Gaussian zone and the number stands for the type of spectra in that
zone. Since the normalized spectra found in Gaussian regions (Src1, S, Sma1) are somewhat
similar irrespective of the roof geometry, tap location, wind direction and terrain conditions,
they have been averaged and fitted by the empirical expression. As a result, Figs. 7.15, 7.16
and 7.17 show identical spectra at the corresponding regions. The comparison between the
first type of spectra observed on non-Gaussian regions (Sgngi, SanGi, SMngi) among various
roof geometries provided in Figs. 7.15, 7.16 and 7.17 respectively shows that their shapes are

somewhat similar. However, there are variations among SDF shapes in the case of second
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type of spectra observed on non-Gaussian regions among the various geometries tested. Data
available may not be sufficient to group the spectra among various geometries; however, the
provided SDF shapes can be used to establish actual spectra corresponding to a particular tap
of a specific geometry by multiplying the appropriate SDF shape by the corresponding
variance. Parameters of SDF shapes are provided in Table 7.6. Note that the position constant,
a, corresponding to spectra from Gaussian regions is lower than that of spectra from non-
Gaussian regions which reveals that the spectra from non-Gaussian regions are located above
spectra from Gaussian regions in low frequency range. Similarly, the shape constants (c; and
¢) corresponding to spectra from Gaussian regions are lower than those of spectra from non-

Gaussian regions; this shows that the dying out rate of spectra from Gaussian regions is

Table 7.6 Proposed spectral parameters.

Parameters (x 10?)

a ar ’ as Cy (45 !! C3
Monoslope Roof (a = 15°)
I
NN 0.9756 1.9560 0.9725 16.5200 |
Sxc2 0.8203 12.4900 1.2020 32.9600
SaexGt 1.2220 10.8000 2.2230 24.0400
SaevG2 3.7510 -45.5800 | 49.4600 3.1250 19.9200 : 23.9000
Flat Roof
Sra1 0.9756 1.9560 0.9725 16.5200
Srxa1 1.2070 11.6100 1.9770 30.1500
SknG2 0.8162 12.0500 1.0840 38.2300
Gable Roof (a ~ 19°)
Sca1 0.9756 1.9560 0.9725 16.5200
Scnei 1.0620 7.1800 1.4990 22.1600
SenG2 1.2920 7.4560 1.4730 44.1200
Gable Roof (a = 45°)
2.4560 17.6900 4.1050 49.5300

161



generally lower than that of spectra from non-Gaussian regions. The effects of such variations
of parameters on SDF shapes is clear from Figs. 7.15, 7.16 and 7.17. The detailed results are
provided in Appendix - C in the form of envelopes of the measured spectra along with fitted
spectra for various roof zones for several roof geometries.

Though the results provided are based on limited measurements, it is believed that a
large database of measurements in the future could improve the proposed zoning as well
as the associated spectral parameters, and include spectral parameters for various other

geometries.

7.5 SUMMARY

Spectra of wind pressures acting on low building roofs vary with respect to location, wind
direction, roof geometry and terrain conditions. The results show that spectra have a low
frequency concentration of energy for taps on windward roof regions, whilst they show a
growth between certain frequencies for taps on the farwind and leeward roof regions.
Based on the similarities between appropriately normalized spectra measured under
different conditions, an empirical relationship between the normalized spectral amplitude
and the frequency has been suggested for the generation of normalized spectra. Thereatfter,
normalized SDF's are classified based on whether the region of interest experience
Gaussian or non-Gaussian fluctuations. Finally, the standard spectral shapes associated
with various zones of each roof and their parameters are provided for the synthetic
generation of spectra; this is useful in establishing Fourier amplitude part in the simulation

of Gaussian and non-Gaussian wind pressure fluctuations on low building roofs.
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CHAPTER §8
SIMULATION OF PRESSURE TIME SERIES ON Low

BUILDING ROOFS

“..In designing structural systems reliably, effects of adverse natural environments must often be
considered....An exact deterministic prediction of the loads generated by these natural phenomena often
requires precise global models of the atmosphere, the seas, and the ground motions. In this regard, many
concurrent factors that render the exact physical modeling practically impossible must be considered. Thus,
the designer is led to use either simplified deterministic representations or realizations of stochastic processes.
In the latter case, the natural loads are described by means of stochastic processes whose characteristics such
as probability densities and power spectra have been estimated from available data..."”

P. D. Spanos and M. P. Mignolet, 1988.

This chapter presents schematic diagrams and brief descriptions of the overall simulation
methodology for Gaussian and non-Gaussian pressure fluctuations. Further, a number of
distinct simulation examples have been provided to demonstrate the efficiency and
practicality of the proposed methodology in representing the wind pressure fluctuations on

low building roofs.

8.1 OVERALL SIMULATION METHODOLOGY

It is necessary at this point to describe the overall simulation methodology and demonstrate
its efficiency. Since the details of the proposed simulation methodology have been
described at various occasions in Chapters 5, 6 and 7, the focus here is only on the overall
methodology. First, the simulation of Gaussian pressure time series is discussed. The
schematic of the simulation of Gaussian time series using a sample Gaussian time history

(X)) is shown in Fig. 8.1. Using this procedure, a number of samples of similar time series
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Fig. 8.1 Sc}.lematic of the simulation of Gaussian pressure time series using a sample time
series.
having the same spectral density function, variance and mean can be generated. The
MATLAB function GTIME (see Appendix - A) can be used to simulate realizations of
Gaussian time series by provjding a sample time series. The Gaussian time series samples
can also be simulated by providing a power spectra of the fluctuations and the procedure is
schematically shown in Fig. 8.2. The MATLAB function GSPEC (see Appendix - A) can
be used for this simulation, in which the physical spectrum (S,(f;)) and mean (m) of the
pressure fluctuations are provided as inputs. Sp(f) can be either a measured spectrum or a
synthetic spectrum. The previously established standard shapes of spectra for various zones
of the roofs can be used to generate synthetic spectra with the help of variance of pressure

fluctuations.

Spf) , m —>— Eq.(1.8) >~ Sm(f,) >~ Eq.(7.9) -)-\/Ik_)_l

Eq. (5.1) Z,+m

Eq.(53) P>~ @, —)—'

Fig. 8.2 Schematic of the simulation of Gaussian pressure time series using power spectra.

Contrary to the simulation of Gaussian fluctuations, the simulation methodology for non-

Gaussian fluctuations provides the required emphasis on the generation of phase part of the
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DFT which induces the non-normality in time series. Figure 8.3 shows a schematic of the
simulation of non-Gaussian time series using a sample non-Gaussian time series. The
estimation of parameter b, which induces the required skewness as well as kurtosis, is
included in this sketch along with the simulation of time history. The MATLAB function
PAR_EST can be used for parametric estimation, while NGTIME can be used for the

simulation of non-Gaussian time series using a sample non-Gaussian time series (see
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Fig. 8.3 Schematic of the simulation of non-Gaussian pressure time series using a sample
time history.
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Appendix - A). The details of the estimation of parameter b as well as simulation of non-
Gaussian time series have already been presented in Chapter 6. The non-Gaussian time
series can also be simulated by providing a physical spectrum (Sp(f)), mean (m), skewness
(Sk) and kurtosis (Ku) of the pressure fluctuations to be achieved. Figure 8.4 shows the
schematic of this simulation procedure. The generation of the phase part of the DFT is

exactly the same as that of Fig. 8.3; the only difference is in the generation of amplitude
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Fig. 8.4 Schematic of the simulation of non-Gaussian pressure time series using power
spectra.
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part of DFT. The MATLAB function PAR_EST can be used for parametric estimation,

while NGSPEC can be used for the simulation of time history (see Appendix - A).

8.2 SIMULATION OF PRESSURE TIME HISTORIES

A number of distinct simulation examples are provided in this section in order to show the
efficiency of the proposed simulation methodology using generalized parameters. Table 8.1
shows typical simulation results regarding the pressure fluctuations acting on low building
roofs. Twelve distinct cases are provided with details. All the simulations have been carried
out using the standard spectral shapes associated with the corresponding tap locations. The
parameter b required for the simulation of non-Gaussian time series has been estimated
based on the target skewness and kurtosis. The statistics (mean, variance, skewness and
kurtosis) as well as peak (maximum suction) of the simulated and target signals are
compared in Table 8.1. Note that the statistics of target and simulated signals are based on
16 records, while each peak value corresponds to the maximum suction of the
corresponding 16 simulated or measured records. Results indicate the capability of the
proposed methodology to represent the most pertinent statistics in a simple manner.
Considering the sensitivity of the peak values compared to statistics, simulated and
measured peak values are rather close. Furthermore, the corresponding target (T) and
simulated (S) signals are shown in Fig. 8.5. In general, the target and simulated time series
appear similar. Figure 8.6 displays the similarities between target (T) and simulated (S)
PDFs; their deviation from Gaussian PDF is also shown. Overall, the proposed simulation

methodology is promising; however, note the negligible discrepancies in some simulations
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Table 8.1 Typical simulation resuits.

Geometry and
Sample| Orientation b Spectra Description| Target | Simulated
1 x b x hy(mm), & (T) (S)
& mean -1.75 -1.75
D variance | 0.19 0.19
$2 30w 0.81 SMNGI skewness | -1.31 -1.43
152 x 48 x 30, 15 kurtosis | 7.21 7.36
Monoslope roof peak -6.76 -6.74
Open terrain
) mean -0.95 -0.95
o:.B variance | 0.05 | 0.05
S3 . 1059 S skewness | -0.82 -0.93
152 x 48 x 30, 15 MNG1 kurtosis | 4.67 | 4.84
Monoslope roof eak -2.90 281
Open terrain P ) )
[ mean -1.07 -1.07
D variance 0.13 0.13
S9 e 0.56 SvnG2 skewness | -1.05 -1.12
152 x 48 x 30, 15 kurtosis 4.95 5.38
Monoslope roof peak -3.85 -4.10
Open terrain
= mean -0.65 -0.65
D variance | 0.0l 0.01
S12 NE Smaca skewness | -0.07 -0.01
152 x 48 x 30, 15 kurtosis 3.03 3.01
Monoslopq roof peak -1.19 -1.07
Open terrain
5 mean | -0.38 | -0.38
D«—‘SO variance | 0.02 0.02
549 . SMma1i skewness | -0.01 -0.00
152 X 48 X 30, 15 kunosis 3.04 3.01
Monoslope roof 116 1.01
Open terrain peak i o
C mean |-0.47 | -0.47
A variance | 0.02 0.02
S60 Tl S EG1 skewness | -0.01 -0.00
II-'?S X 1(%8 x37.5 kurtosis | 3.00 3.01
atroo
Open terrain peak -1.10 -1.10
Note: 1= length, b = width, h; = lower eave height, & = roof angle, b = model parameter

168



Table 8.1 Continued.

Geometry and
Sample| Orientation b Spectra Description| Target | Simulated
1 x b x hy(mm), A (T) (S)
= mean | -1.78 | -1.78
0 . variance | 0.31 0.31
S29 0.48 SenGi skewness | -0.83 | -0.87
%:(1)8 X 1%8 x37.5 kurtosis 4.20 4.64
at roo - -6.17
Suburban terrain peak 379 6.1
| mean -0.51 -0.51
¢ variance | 0.04 0.04
S27 5 0.41 S ENG2 skewne:ss -0.74 -1.05
108 x 108 x 37.5 kurtosis | 5.48 5.42
Flat roof peak -2.85 -2.27
Suburban terrain
m— mean | -1.22 -1.22
variance | 0.13 0.13
S56 30y 0.0 S EnG2 skewness | -0.93 -0.89
108 x 108 x 37.5 B kurtosis | 4.69 4.85
Flat roof peak -4.00 -4.11
Open terrain
D mean -0.38 -0.38
U:] variance | 0.16 0.16
S37 e 0.63 SGNGI skewness | -1.06 -1.31
152 x98 x 30, 19 kurtosis 6.35 6.56
Gable roof peak |[-3.66 | -4.54
Suburban terrain
Q mean -1.19 -1.19
m variance [ 0.10 0.10
S75 g 0.13 SonGa skewne-ss -0.83 -Zgz
152 x 98 x 30’ 19" kurtosis 4.18 .
Gable roof peak -3.64 -3.92
Open terrain
Q mean -0.31 -0.31
. variance | 0.03 0.03
S78 ‘ S skewness | -0.07 -0.00
o8 7% - GGl kurtosis | 3.32 | 3.01
152 x98 x 30, 1 . _
Gable roof peak 1.27 1.08
Open terrain
Note: I=length, b = width, h) = lower eave height, & = roof angle, b = model parameter
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Fig. 8.5 Target and simulated pressure time histories (cases - Table 8. 1).
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in terms of difference in statistics, time series and PDF’s. These are possibly due to (1) the
difference in spectra between the target (spectra at a particular location) and the simulated
(generalized spectra of that roof zone) and (2) the difference in statistics of random number

sets in subsequent simulations.

8.3 GENERAL COMMENTS

In these demonstrations, the statistics (mean, variance, skewness and kurtosis) of the time
series are known from wind tunnel experiments. However, in practice some of these
statistics can be obtained from literature. For instance, the values of mean and variance of
pressure fluctuations on different locations of common roof geometries for various
conditions can be obtained from past studies. On the other hand, the skewness and
kurtosis values of pressure fluctuations are seldom known; however, these values can be
established by conducting wind tunnel measurements. Once the mean, variance,
skewness, and kurtosis of pressure fluctuations acting on a particular roof location are
known, the desired time series at specific locations can be generated with the help of
standard spectral shapes provided in this study. Furthermore, this methodology can be
integrated with the wind tunnel experiments to develop an automated pressure generating

system without the need of sophisticated expensive instrumentation.
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CHAPTER 9
POTENTIAL APPLICATIONS OF THE PROPOSED
SIMULATION

“...Experience suggests that unserviceability due to repeated loading effects is a more likely occurrence than
unserviceability or collapse from the single application of an exceptionally large load. The action of repeated
loading by wind can cause a variety of forms of structural unserviceability. The first of these is fatigue
damage..."

A. G. Davenport, 1968.

This chapter presents potential applications of the proposed simulation methodology in low
building roof design. The developed simulation methodology can be used to derive the
desired number of peaks necessary to carry out an extreme value analysis. This analysis
results in producing peak pressure coefficients versus probability of exceedance, i.e. design
risk level. Such representation which is important for reliability-based design, is currently
lacking in most codes of practice. The methodology can also be used to generate time
histories necessary to carry out fatigue analysis either analytically or experimentally; this is

elaborated in this chapter.

9.1 EXTREME VALUE ANALYSIS

The peak values (extremes) observed in pressure time histories are important for the design
of building components. They vary from sample to sample. However, this random variation

of peak values can be quantified statistically by constructing either a PDF of the pressure
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signal or PDF of the extremes from different samples. The PDF of the pressure signal,
called parent distribution, needs a large sample for its construction. The main drawback of
the parent distribution is the lack of a microscopic view of the data and, as a result, the tails
of the distribution are the most poorly defined parts (Siddall 1983). On the other hand, the
PDF of the peak values focuses only on the extremes. This approach shows a magnified
view of the extremes compared to parent distribution. Following the results of several
studies, Type-I distribution is widely accepted in wind engineering as the PDF of extremes
(Peterka 1981).

The proposed simulation methodology can be used to conduct extreme value analysis.
Long time histories of data can be simulated in order to derive several peaks necessary to
carry out this analysis. Finally, the peak pressure coefficients can be plotted with a specified
risk level, i.e. probability of exceedance. Since there is no adequate information provided in
the wind codes for reliability-based design of buildings, such results will indeed be quite
useful and can be suggested for codification. The efficiency of the present methodology in
the prediction of peaks has already been noted in many cases; however, an extensive
comparison has been provided in this section.

The simulation examples provided in section 8.2 have been revisited here. The simulation
of time histories has been carried out using the proposed methodology with the help of

generalized spectra from the corresponding zones as explained in section 8.2. Figure 9.1

shows peak pressure coefficients (Cppeak) for various cases. In the analysis, simulated peak

pressure (suction) coefficients have been obtained as follows: 16 records of 8192 values
each were simulated and the peak value from each record was selected and plotted against

the relevant risk level; measured data was also obtained in the same format. The probability
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of exceedance (risk level) of each peak value has been evaluated using Eq. (3.35) - see
section 3.2.3.1 for details. The comparison shows that the simulated suction peaks are
somewhat closer to the measured values. However, differences up to +20% have been found
in some cases. This discrepancy is possibly due to ( 1) the difference in spectra between the
target (spectra at a particular location) and simulated (generalized spectra of that roof zone)
and (2) the difference in statistics of random number sets in subsequent simulations.
Considering these issues, the comparison of peaks is satisfactory; the small differences
observed in some cases can be tolerated for practical applications. Diagrams such as that of
Fig. 9.1 can be used to establish design-pressure coefficients according to any desirable risk

level, presumably consistent with reliability-based design.

9.2 FATIGUE ANALYSIS

9.2.1 Background

Low buildings have generally been designed for static wind loading. However, the failure at
relatively low wind speeds of building components, which are actually rated to sustain high
wind speeds by static design, has received wider attention more recently. Fatigue due to
repetitive sequences of high pressure fluctuations has been identified as the main reason for
the extensive damage to building components in many violent storms (Walker 1975;
Assessment of damage..... 1993). For the first time, DABM (1976) incorporated provisions
for proof-testing of roof systems against wind-induced fatigue based on the subsequent field

investigations and laboratory tests carried out after the severe damage caused by the cyclone
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Tracy in Darwin, Australia (Walker 1975). Thereafter, a series of investigations by Morgan
and Beck (1977), Melbourne (1977), and many others led to the development of new
recommendations such as TR440 (1978), AS 1170.2 (1989) etc. where wind-induced load
cycle distributions are proposed for cyclone prone areas. While, British (Cook 1990) and
German (Gerhardt and Kramer 1986) recommendations proposed load cycle distributions
for temperate climatic regions where the predominant source of high wind speeds is large-
scale and frequently occurring non-tropical cyclone systems. Despite the allowance
provided in some codes and standards for proof-testing of building components against
wind-induced fatigue, damages during storms are still common. This shows the need for
further investigation in this area.

In the past two decades, several researchers have investigated wind-induced fatigue using
either wind tunnel or full-scale measurements - see Xu (1993). More recently, Xu (1993)
and Letchford and Norville (1994) investigated wind-induced fatigue of roof cladding using
measured pressure fluctuations on a full-scale building. Regarding analytical studies,
Davenport (1966) proposed a method to estimate wind-induced fatigue damage by
assuming the wind loading as a broadband Gaussian process. Later, Lynn and Stathopoulos
(1985) improved the predictions by including the effect of non-normality by using a mixed

Gaussian-Weibull extremum model. The suggested model to evaluate the mean life time
(T)is,
=N (g)dg|"
- J‘ p (9.1)

s N

in which N,(g)dg is the number of maxima per unit time with magnitudes between g
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and g + dg; and M(g) is the required number of cycles to failure at level g. The suggested

model for the rate of maxima (N ,(g) ) is

o - s {2 E) o

when the dimensionless peak factor (g) is greater than 2.5; the approximate range of
Weibull parameters ¢ and & was provided by Stathopoulos (1980). In case of g less than or
equal to 2.5, the rate of maxima corresponding to Gaussian process, Eq. (3.28), has been

used. N , 1s the cycling rate which represents the rate at which pressure exceeds the mean

value. Both Eqgs. (3.28) and (9.2) are based on the assumption that the process is broad-

banded. In case of narrowband Gaussian process, the rate of maxima N ,(&) can be

estimated using the familiar Rayleigh form (Nigam 1983):

._g2 -
N, (g) = Nogexxn[ 5 J (9.3)

o~

Later, Winterstein (1988) derived Hermite moment models to predict fatigue damage rates;
these models use moments (skewness and kurtosis) to form non-Gaussian contributions.

The developed ratio of actual non-Gaussian to Gaussian damage rate is

0 _ (£ o

v = E[D,] 27! (ﬂ],
L

where,
J4(1+h4 +h)-m
Vv =
R T
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M = (1+27132+6i742)“/2

Ku-3
h =
4 24
5o J1+15(Ku—3) -1
O 18
- Sk
h =
3 4+21+15(Ku—3)

where, Sk and Ku represent skewness and kurtosis values of the time series and m
corresponds to the slope of the S-N curve of the material under consideration. The three
inputs required to compute Eq. (9.4) are Sk, Ku and m;. This model is based on the
assumption that the process is narrow-banded; however, according to Winterstein (1988).
the damage ratio is not affected much by the bandwidth effects and therefore, is usually
conservative with respect to the rainflow counting assumption.

Recently, analytical models have been incorporated into computer programs to simulate
fatigue behaviour of roof cladding during the passage of a tropical cyclone (Jancauskas et al.
1994). This approach included a number of tasks such as deriving the time history of wind
speed and direction for a design cyclone event of five hour duration, integration with wind
tunnel data and calculation of fatigue damage. Mahendran (1994) applied a different
treatment for the simulation of cyclonic wind forces on roof cladding by providing a
random block loading, which is more realistic than the usual cyclic loading, based on
fatigue wind loading matrices obtained from wind tunnel testing and computer modelling.
Further, Mahendran (1995) suggested a new fatigue loading sequence for codification after

considering the wind speed as well as wind direction variation during a tropical cyclone.
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Note that the previously suggested analytical models such as Egs. (3.28), (9.2), (9.3) and
(9.4), which were derived based on linear random vibration theory, represent the number of
cycles present in a time history. Unfortunately, these models cannot reproduce the effects of
spikes, sequences etc. present in actual time history. Furthermore, these analytical models
are based on the peak cycle counting method; this method is not suited for counting cycles
in the case of wind pressure fluctuations on low building roofs that are broad-banded and
non-Gaussian. Therefore, it appears that time history of loading and more accurate cycle
counting method are required for the meaningful prediction of wind-induced fatigue.

Several studies in the past showed that it is reasonable to assume that pressure
fluctuations on building envelopes are stationary random processes. Therefore, the theory of
stochastic processes can be used to quantify such loadings. For instance, the power spectra
of the pressure fluctuations may help in the simulation of representative sample time
histories. Thereafter, an appropriate cycle counting technique such as the rainflow
algorithm, and a damage accumulation hypothesis such as Miner's rule can be used to obtain
fatigue life estimates (Fuchs and Stephens 1980; Osgood 1982). Goodman's method can be
employed to approximately account for the effect of mean load; however, the conventional
damage hypothesis cannot take into account the sequence effects present in actual wind
pressure fluctuations. As a matter of fact, the simulated wind pressure fluctuations can be
applied directly on a roof with the help of facilities like BRERWULF (Cook et al. 1988) in

order to represent the actual effects of wind pressure fluctuations on cladding elements.

Though the above mentioned procedure is simple, it may have a number of limitations
which must be addressed before it can successfully be used. For instance, the conventional

simulation of a time history based on power spectra assumes that the process is Gaussian.
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However, both Gaussian and non-Gaussian wind pressures have been observed depending
on roof point location and wind direction; mostly, non-Gaussian wind pressures are
observed on comner zones as well as on other separated flow regions as previously noted in
Chapter 4. Therefore, the new simulation scheme which can generate both Gaussian as well
as non-Gaussian pressure fluctuations (Suresh Kumar and Stathopoulos 1996a, 1997b) and
whose efficiency has been verified for a number of cases can be used. The evaluation of
fatigue life estimates using this simulation scheme has been first attempted in the
framework of the present study.

The main objective of this section is therefore to address the application of the simulated
pressure fluctuations in predicting the fatigue behaviour of roof cladding using rainflow
algorithm, Miner’s rule and Goodman’s method. The rate of fatigue damage accumulation
both under Gaussian and non-Gaussian wind pressure loadings has been investigated.
Furthermore, the long-term wind climate was integrated with the simulated fatigue
characteristics of roof pressures to evaluate total fatigue loading on roof cladding of low
buildings located in temperate regions. Simulated results were compared with existing
models such as Rayleigh, Gaussian and Weibull extremum models in terms of fatigue mean
life time, while they were compared with the German and British recommendations in terms
of cycles of fluctuating pressures for fatigue design. A few preliminary results were reported

in Suresh Kumar and Stathopoulos (1996b, 1997d).

9.2.2 Methodology

9.2.2.1 Simulation of pressure fluctuations

Time histories of Gaussian and non-Gaussian local roof pressures can be generated with the

help of discrete Fourier transform equation as described in Chapters 5, 6, 7 and 8. Fourier
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amplitude as well as phase are required for this simulation. The Fourier amplitude can easily
be constructed from power spectra of the pressure fluctuations. A simple stochastic model
with a single parameter b, inducing non-normality in time series has been suggested for the
simulation of phase. In the case of Gaussian wind pressure fluctuations, phase is represented
by independent identically distributed uniform random numbers ranging from -7 to n. Many
successful simulations have been performed at various locations of the roof by using
synthetic spectra derived from several wind tunnel measurements. The same procedure has
been adopted in this study to simulate wind pressure fluctuations on roof cladding for
fatigue evaluation.

Fatigue characteristics of pressure fluctuations have been investigated at few locations
over flat and monoslope roof buildings although only two representative examples have
been provided in this thesis. Pressure taps have been selected in zones of very high energetic
fatigue loading of a 15 m high flat roof building and the simulation details are provided in
Table 9.1. Statistics of the simulated fluctuations provided in Table 9.1 show that both

Table 9.1 Simulation details of time series.

Geometry and
Sample Orientation b Spectra Description Simulated
1 x b x hy(mm)
mean -0.80
1 variance 0.28
S50 o o 0.84 SeNGI skewness -1.86
30~ kurtosis 9.57
108 x 108 x 37.5
Flat roof, Open terrain
o — mean -1.47
S64 00— |; 2 0.54 SFNGI variance 0.14
skewness -0.85
108 x 108 x 37.5 kurtosis 4.46
Flat roof, Open terrain
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samples are non-Gaussian and sample S50 is highly non-Gaussian compared to S64. The
importance of the inherent non-normality of the samples in fatigue damage accumulation
can be demonstrated by comparing the damage caused by the actual non-Gaussian loading
with that of the corresponding simulated loading based on Gaussian assumption. Within this
context, Gaussian counterparts for both cases were also simulated using their corresponding

spectra.
9.2.2.2 Damage estimation

Wind-induced fatigue damage, D, can be estimated using the well-known damage

accumulation hypothesis of Miner's rule:
kg

D = -+ 9.5
; N )

in which »; = total number of cycles in the i block of constant pressure range, S,; N; =
number of cycles to failure under S,;; and & = total number of blocks. Failure occurs when D
= 1. More details about the various models including Miner’s rule that designer’s use to
predict fatigue under variable amplitude and random loading are provided elsewhere
(Wirsching and Light 1980; ASCE Committee on Fatigue...... 1982).

As previously mentioned, the wind pressure fluctuations are broad-banded and
sometimes non-Gaussian too; therefore, the description as well as counting of load cycles
are not easy as in the case of a narrowband Gaussian process. Dowling (1972) summarized
several cycle counting methods and showed the superiority of rainflow count method over

others in estimating the number of cycles present in a broadband non-Gaussian process. The
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ASCE Committee on Fatigue and Fracture Reliability (1982) also recommended the
rainflow count method in case of broadband non-Gaussian process. In this study, the recent
standardization of rainflow method by Amzallag et al. (1994) has been adopted to count the
number of cycles, n,, present in pressure fluctuations. This method is presented in Appendix
- D. The number of cycles to failure A, is obtained from the constant amplitude S-N curve
of the corresponding roof cladding material (Xu 1995b). By applying Goodman's
simplification to estimate the pressure range equivalent to nonzero mean pressure (Fuchs

and Stephens 1980), the conventional S-N relationship becomes

-ml

Sri 2 Su (9.6)

where, S,; = pressure range associated with mean pressure S,;, S, = ultimate pressure of
roofing components, S, = threshold pressure below which there is no damage to roof, and X
and m; are constants representing intercept and slope respectively of the constant-amplitude
S-N curve plotted on a log-log graph. The parameters S,, K and m, for any particular roofing
material can be established by conducting conventional constant-amplitude tests (Xu
1995b). Further, two common roof types used in Australia have been chosen from Xu
(1995b) to demonstrate the fatigue damage caused by the simulated pressure fluctuations;
their constant-amplitude test results are provided in Table 9.2.

Table 9.2 Constant-amplitude test results of typical roofing sheets.

K m Sy (kPa)
Trapezoidal roofing 6.248 x 10° 3.008 9.2
Ribbed roofing 2.088 x 10° 2.531 7.6
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9.2.3 Fatigue Characteristics of Roof Pressures

The number of data in each record of the simulated and measured pressure time histories is

8192, corresponding to a duration of 16.384 s in model scale. The results of rainflow

method in terms of the maximum pressure cycle range (Cprmax), the number of load cycles

in model scale (Ny,), and full-scale (N,) of the corresponding time histories are listed in

Table 9.3. The MATLAB function RFLOW (see Appendix - A) was used for this

Table 9.3 Typical results of rainflow counting method.

Sample % Type CPrmax Nm Np= n

. NG 5.30 1803 180

Ss0 | G 425 1 1882 188
M1 440 | 1974 197

NG | 312 1817 181

Ss¢4 ¢ G 1 301 1882 188

M i 370 1983 198

Note: NG - Simulated (non-Gaussian), G - Simulated (Gaussian) ,
M - Measured

computation. While applying rainflow algorithm, no hysteresis threshold limit has been
used to eliminate small cycles since it was decided to use such threshold in the estimation of
total fatigue loading and corresponding damage. Note that each sample of Table 9.3 depicts
the rainflow results of the simulated non-Gaussian time series (NG), their Gaussian (G)
counterparts and the corresponding measured non-Gaussian time series (M). As expected,
the maximum pressure cycle range of simulated non-Gaussian time history is greater than
its corresponding Gaussian counterpart; however, the difference between the two depends

on the intensity of non-normality. For instance, the difference between the maximum
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pressure cycle range corresponding to the simulated non-Gaussian time series and its

Gaussian counterpart in case of S64 is less than that of S50 since sample S64 is not highly

non-Gaussian (see Table 9.1). On the other hand, the Cpppax of simulated non-Gaussian

time series is different from the corresponding measured non-Gaussian time series. This is

because the simulations are based on generalized spectra of that zone and moreover,

CPrmax is sensitive to peaks which vary from sample to sample. Note that the total number

of cycles in model scale corresponding to both samples are close, though they usually vary
according to tap locations.

For actual damage estimation, the number of cycles corresponding to model scale has to
be converted to full-scale. Additional information required for this conversion is the
relationship between the wind speed and the number of cycles. In the present study, the
similarity equation associated with the Strouhal number which provides the linear
relationship between number of cycles and wind speed (Lynn and Stathopoulos 1985; Xu
1993; Jancauskas et al. 1994) has been used to evaluate the number of cycles per hour per
one mV/s of mean hourly wind velocity at building height in full-scale (N,,) provided in Table
9.3. The number of cycles in both full-scale and model scale wind pressures, counted by the

rainflow method, are expected to approximately satisfy the similarity equation,

Lm Vo T
Np = Np — &+ £

9.7
P m Im

where, N is number of cycles, L is geometric length, T is time, V is hourly mean wind
velocity at building height, and the indices p and m stand for prototype and model

respectively. The number of cycles per hour per one m/s of hourly mean wind velocity at
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building height, N, = 7, is evaluated with the help of corresponding Np's and by taking
Ln/Lp = 1/400, V, =1 m/s, Vqiu = 5.5 m/s, T, =3600 s, and Tr, = 16.384 s; #7 corresponding
to various cases is provided in Table 9.3. Later, the total pressure cycles in full-scale
corresponding to a particular wind velocity for a period of time in hours can be evaluated by
multiplying N, by the corresponding wind velocity and period.

The distribution of pressure cycles over both cycle ranges and mean levels provided by
rainflow count method can be displayed using the three-dimensional cycle histogram.
Figures 9.2, 9.3, 9.4 and 9.5 display typical cycle histograms of the simulated and measured
samples. The vertical axis shows the ratios of the number of cycles in each cell to the total
number of cycles. The two horizontal axes refer to the range and mean level of cycles
expressed as a ratio of the maximum pressure cycle range of the corresponding simulated
time history obtained from rainflow counting method. Low cycle ranges have been
included. Clearly, the low level cycle ranges comresponding to low cycie mean levels are
filled with more cycles and this is typical for most cases; however, various patterns of
distribution of cycles have been noted depending on the location of the tap on the roof and
the wind direction. For instance, compared with sample S64 (Figs. 9.4 and 9.5), the cycles
corresponding to sample S50 (Figs. 9.2 and 9.3) are more or less concentrated on the cells
of lowest mean cycle levels. The cycles of S64 are more uniformly distributed compared
with those of S50. It is also noted that the maximum pressure cycle range of a time series is
consistently greater than the maximum pressure cycle mean level for the cases studied. In
general, the cycle histogram of simulated pressure fluctuations corresponding to S50 and
S64 are similar to those of the corresponding measured pressure fluctuations. This similarity

of cycle histograms and the number of cycles between the simulated and the measured cases
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indicate that simulated pressure fluctuations can be used to determine fatigue characteristics
of wind pressures on roofs. The cycle histogram and the number of cycles, together with the
information on long-term wind climate, can be used to determine the total fatigue loading
on roof cladding. Furthermore, the cycle histogram of the corresponding simulated
Gaussian time histories is shown in Figs. 9.6 and 9.7. The cycle histogram for both cases
obtained using Gaussian assumption is certainly different from those of the actual non-
Gaussian cases shown in Figs. 9.2 and 9.4. Note that the cycles are more or less uniformly
distributed under the Gaussian assumption.

Though the similarity between the simulated and measured cases has been shown in
terms of distribution of cycles, it may be of interest to show the comparison between the
damage caused by simulated and measured fluctuations to a roof system. On this basis, the
simulated as well as measured pressure fluctuations have been applied to the trapezoidal
roofing (see Table 9.2) and the corresponding fatigue mean life time of the roof was
estimated using the MATLAB function DAM_TH (see Appendix - A). The results are
provided in Fig. 9.8. Note the reasonable similarity between the measured and simulated
cases which is encouraging. One of the advantages of the current simulation methodology in

fatigue analysis is its flexibility in carrying out a parametric study. For instance, the effect of

variance (o %) of pressure fluctuations on fatigue mean life time of the roof is shown in
Fig. 9.9 with variance ranging from 0.1 to 0.3. For all simulations, the normalized spectrum
Sengt was multiplied with different variance to obtain the actual power spectrum. The
MATLAB functions NGSPEC and DAM_TH (see Appendix - A) were used for time
series simulation and fatigue evaluation respectively. Clearly, when the intensity of

fluctuations (variance) increases, the fatigue mean life time decreases. Further, note that as
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the wind velocity increases, the fatigue life time decreases. Overall, this section
demonstrates the potential of the proposed simulation methodology to represent fatigue

characteristics of roof pressures.

9.2.4 Total Fatigue Loading

Roof cladding is exposed to a spectrum of wind speeds during its life time. Corresponding
to the variation of wind speed, the number of cycles present in pressure fluctuations vary as
well. On the other hand, the fatigue damage of roof cladding usually accumulates
throughout its life time depending on the material type. Therefore, for the design of roof
cladding corresponding to a particular wind return period and specific life time, such
fluctuations in wind speed have to be taken into account. In this study, the long-term wind
climate of the corresponding location was integrated with the simulated fatigue
characteristics of the pressure fluctuations to obtain the total fatigue loading using a
probabilistic approach similar to that of Xu (1993). For demonstration purposes, it was
assumed that the building is exposed to temperate climate of Montreal. The design mean
hourly wind speed, corresponding to a 50-year return period (¥ ) was used for all
computations; the design mean hourly wind speed at building height in an open country

terrain exposure was estimated to be 26 m/s based on NBCC (1995).

9.2.4.1 Integrating long-term wind climate

The Weibull distribution has been adopted in this study for describing the probability
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density of mean hourly wind velocity (2(V3). The probability that the mean hourly wind

velocity V;is in a small interval of specified velocity AV is

AV AV
P[Vi-T < V: < V’+T] ~ P(Vi)AV 9.8)

Considering the mean hourly wind velocity at building site in Montreal from all 16
directions, the Weibull probability density function P(¥V;) (Wu 1994) has been estimated

using

c ki

k
. (!’J J
16 ) a b
PU) =2 p, ——Vhte (9.9)
=1 ]

where, p; = probability of wind coming from a particular direction and constants ¢ and k;
determine the shape of the distribution; the corresponding values of the parameters shown

in Table 9.4 are taken from Wu (1994). Consequently, for a given mean hourly wind

Table 9.4 Weibull constants based on meteorological records for Montreal,

after Wu (1994).
i Sector D, (%) k ¢; (m/s)
I N 4.10 1.51 3.34
2 NNE 8.10 1.05 3.11
3 NE 7.46 1.30 4.47
4 ENE 2.62 1.69 4.29
5 E 2.21 1.62 3.23
6 ESE 242 1.79 3.69
7 SE 4.45 1.81 435
8 SSE 5.07 1.76 4.33
9 S 3.39 1.57 3.14
10 SSW 5.39 1.62 3.80
11 SW 11.74 1.26 4.17
12 WSW 14.07 1.40 5.06
13 W 11.81 1.45 5.02
14 WNW 5.73 1.83 3.10
15 NW 3.59 1.67 3.97
16 NNW 2.83 1.43 3.07
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velocity (V) at building height, the number of cycles at a point N,; has been estimated using

N, =7V PWV)AVT (9.10)

where, 77 = number of cycles per hour per one m/s of mean hourly wind velocity at building
height; and T = design life of roof cladding in hours. The distribution of the cycles N,; over
all cycle ranges and mean levels can be estimated by

[N,] = N_[H] ©.11)

where, [H] = cycle histogram. Thereafter, the following equation gives the total load cycle

distribution of the designated tap:

[NV,] = Z V] (9.12)

where, the mean level and range of [N7] are expressed as the ratio of design wind pressure,

1 — _
Spx 72 x Cprmax (CPrmax is the maximum pressure cycle range and ¥ is the design

mean hourly wind velocity at building height corresponding to a specific return period).
This shows that the above summation is not straightforward since each [N,,] is a function of
velocity, i.e., the cycle mean levels and ranges are a function of velocity. Therefore, it is
necessary to carry out a proper summation according to the mean levels and ranges of each
[Vyi]. This summation is coded in MATLAB function namely, DAM_TOT (see Appendix -

A) which estimates the total number of cycles and the corresponding damage.

While estimating the total fatigue loading with respect to a given wind return period and
design life, the threshold cycle range in all computations has been kept initially at 5% of the

design wind pressure; this was also done by Xu (1993) to eliminate small cycles which
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contribute little to fatigue damage. However, it was later decided to use a 4% of the global
maximum design wind pressure corresponding to the maximum pressure cycle range as the
hysteresis threshold in order to have a reasonable comparison of number of cycles at various
taps. The global maximum design wind pressure out of the cases considered is %p x V?x
CPrmax = 0.65 x 262 x 5.3/1000 = 2.37 kPa, which corresponds to the design mean hourly
wind speed of 26 m/s at building height and the largest pressure cycle range of 5.3 of
simulated time series of S50 - see Table 9.3; the threshold used in all computations was 0.1
kPa. Admittedly, finding an appropriate threshold limit for fatigue design considerations is
debatable, since such a limit is a function of the type of cladding material. Depending on the
threshold limit, the number of cycles as well as the estimated damage can increase or
decrease.

Figures 9.10 and 9.11 show the total load cycle distribution for S50 and S64. Both cycle
ranges and cycle mean levels are expressed as a ratio of the corresponding design wind
pressure. The design life of roof (7)) is taken as 50 years. Figures 9.10 and 9.11 show that a
large number of cycles are concentrated at both low cycle ranges and low cycle mean levels.
As cycle ranges or cycle mean levels become larger, the number of cycles becomes smaller.
Another interesting feature of the total load cycle distribution is that the maximum number
of load cycles for a given range is approximately located at a mean level which is half of the
cycle range; this was also observed by Xu (1993). This property is discussed in detail in the

next section.
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9.2.4.2 Mean levels of load cycles

As previously mentioned, the total cycles are jointly distributed over both cycle ranges and
mean levels. Though it is ideal to directly use the total load cycle distribution for fatigue
tests, such an approach may be expensive and inconvenient. Therefore, it may be necessary
to simplify the total load cycle distributions for practical applications. The typical nature of
total load cycle distributions noted in Figs. 9.10 and 9.11 indicate that there is a possibility
for further simplification of the loading.

An attempt has been made to clearly show the concentration of cycles in a given range.
Figures 9.12 and 9.13 display the concentration of cycles in the case of sample S50 for the
Montreal design hourly mean wind speed of 26 m/s and a design life of 50 years. The
horizontal axis refers to the ratio of cycle range to the design wind pressure, while the
vertical axis refers to the ratio of cycle mean level to the design wind pressure. The number
in a cell is a proportion of the cycles in the cell to the total number of cycles in the same
range in which the cell lies (i.e., the total number of cycles in the column in which this cell
lies). The plus sign in a cell indicates that the proportion of this cell is less than 10% but
larger than zero. The solid oblique line is a particular case in which the cycle mean level is
always half of the given cycle range. Surprisingly, for a given cycle range, especially for
cycle ranges of high values, most of the cycles in the corresponding range are concentrated
in the cells around this solid oblique line. This result shows the possibility of simplifying
the fatigue wind loading matrix; however, further work concerning this issue is required
before drawing any conclusions. The similarity between simulated and measured cases
shown in Figs. 9.12 and 9.13 respectively demonstrates once again the suitability of the

proposed simulation method for wind-induced fatigue life prediction.
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9.2.5 Effect of non-Normality on Fatigue Damage Accumulation

The non-conservative effect of assuming Gaussian distribution of pressure fluctuations in
simulations is shown in Fig. 9.14 in terms of pressure cycles. The horizontal axis represents
the number of cycles exceeding the cycle range, while the vertical axis represents cycle range
as a percentage of design wind pressure. The data provided are again based on design hourly
mean wind velocity of 26 m/s at the height of the Montreal building and a design life of
50 years. In this analysis, the design wind pressure of the non-Gaussian pressure fluctuations
has been used as the datum for their corresponding Gaussian counterparts. It is interesting
to note the absence of cycles at higher cycle ranges (80% and 90% levels) in the case of
simulated Gaussian fluctuations corresponding to S50; however, this is not valid in case of

S64. A common feature found in both cases is that as the cycle range increases, the
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Fig. 9.14 Effect of Gaussian assumption in terms of cycles.

205



number of cycles corresponding to simulated Gaussian fluctuations greatly reduces
compared to simulated non-Gaussian cases; however, such reduction depends on the
intensity of non-normality. For instance, such a reduction is negligible in case of sample
S64 which is less non-Gaussian compared to S50.

Further, this loading has been applied to the previously referred trapezoidal as well as
ribbed roofing sheets. Using Miner’s rule and the constant-amplitude S-N curves, damage D
has been estimated using Eq. (9.5) as follows: the estimated total cycles corresponding to
each mean and range values, #;'s, (Figs. 9.10 and 9.11) were divided by the corresponding
number of cycles to failure, Ny's, obtained from the known behavior of roof cladding under
constant-amplitude loading represented by Eq. (9.6). The ratio corresponding to each mean
and range values represents an index of contribution of the corresponding pressure cycles
towards damage. Thereafter, the ratios corresponding to each mean and range level were
summed up to obtain the damage index, D. The estimated damage indices are provided in
Table 9.5 where D, and D, represent damage due to non-Gaussian process and Gaussian
process respectively. Based on the calculations, the ribbed roof fails under the loading given

in Fig. 9.10; however, the roof does not fail under the Gaussian assumption. In both cases

Table 9.5 Estimated damage indices.

Dyg/Dg
Dy D, present Winterstein
study (1988)
Trapezoidal roofing
S50 0.25 0.14 1.78 1.91
S64 0.063 0.05 1.26 1.27
Ribbed roofing
S50 1.05 0.67 1.57 1.51
S64 0.33 0.27 1.20 1.17
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analyzed, the damage indices corresponding to Gaussian assumption are smaller than
those of the actual non-Gaussian cases; this implies that the roof cladding designed based
on Gaussian assumption is expected to fail prematurely. Since sample S50 is highly non-
Gaussian compared to sample S64, the corresponding indices are also higher for sample
S50. Furthermore, the ratio D,/D, increases as the non-normality (expressed, say by
skewness) increases; this ratio for sample S64 is consistently lower than that of sample
S50 irrespective of the type of roof. Moreover, for the same loading, this ratio can be
different depending on the strength of roofing. For instance, under the same loading
conditions, D,g/D, for trapezoidal roofing is always higher than that of ribbed roofing.
Finally, Table 9.5 presents the ratio D,,/D, estimated using the analytical expression (Eq.
(9.4)) suggested by Winterstein (1988). Interestingly, these estimated ratios are closer to
those predicted by the present study which reinforce the validity of the present results.
Figure 9.15 shows the effect of non-normality on total fatigue damage accumulation at
tap 1 for a trapezoidal roofing sheet of 50-year design life. For all simulations
corresponding to this figure, the spectrum (Sgngi) of the same pressure time history has
been used; however, the intensity of non-normality (for instance, in terms of skewness)
was varied using the parameter 5. The MATLAB functions NGSPEC and DAM_TOT
(see Appendix - A) were used for time series simulation and damage estimation
respectively. Note that the ratio D,g/D, is always greater than one even in case of pressure
fluctuations with very low skewness; the minimum ratio is around 1.2. The ratio shoots
up to very high values in case of highly non-Gaussian fluctuations; however, the ratio
started increasing consistently when b > 0.7. The dependency of D,s/D, on strength of

roofing already reported in Table 9.5 is pictorially shown in Fig. 9.16. For this
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demonstration, five non-Gaussian time histories with different intensity of non-normality
(in terms of skewness) have been simulated using the synthetic spectra of tap | and five
different 4 values. Thereafter, the total cycles counted from each of these time histories have
been applied to five roofing materials having different strengths (in terms of m;). Note that
the ratio D,g/D,, based on Egs. (9.5) and (9.6), is independent of the intercept X of the S-
N curve, but depends on its slope m,;. The combined effect of non-normality (in terms of
skewness) and strength of roofing (in terms of m;) on ratio D,g/D, is shown for tap 1. As
m, increases, Dyg/Dg increases drastically in case of very high non-Gaussian fluctuations.

Similar observations have also been made in an analytical study by Lutes et al. (1984).

9.2.6 Comparison of Simulated Results with Other Sources

Figure 9.17 shows the comparison between the actual simulated non-Gaussian data with the
simulated Gaussian data as well as with predictions made by Weibull (Eq. (9.2)), Rayleigh
(Eq. (9.3)) and Gaussian (Eq. (3.28)) models in terms of mean life time in hours for tap 1.
The parameters of the analytical models have been estimated by the expressions given in
Lynn and Stathopoulos (1985). The required Weibull parameters ¢ and & for peak factor (g)
less than 2.5 have been estimated by fitting the tail part (g < 2.5) of the PDF of the
simulated fluctuations with the Weibull probability density function suggested by
Stathopoulos (1980); the estimated parameters are ¢ = 0.5 and & = 0.7. Additional
parameters required for the evaluation of the fatigue life time by analytical models include

shape factor, p (see Eq. (3.28)) and cycling rate (Vo) which are found to be 0.41 and 52.46

respectively based on wind tunnel measurement results for this specific case. The
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computations concerning simulated, Weibull and Gaussian cases have been carried out
using MATLAB functions DAM_TH, DAM_W, and DAM_G (see Appendix - A)
respectively. It is clear that the Gaussian assumption can lead to non-conservative estimates
of cycles and mean Ilife time. The difference between the results obtained from the
Gaussian model and the simulated Gaussian data can be attributed to the different cycle
counting methods used in these cases; the Gaussian model is based on peak cycle counting
method while the simulated Gaussian data is based on rainflow cycle counting method. In the
case of simulated Gaussian, since the cycles have been counted from the simulated time history
using the more adequate rainflow counting technique, the mean life time predicted is more
reliable than that predicted by the Gaussian model. The Weibull model is also based on peak

cycle counting method; in addition, the selection of constants associated with this model causes
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further uncertainty. The Rayleigh form is based on the assumption that the pressure fluctuations
are narrow-banded and normally distributed for which case there is only one maximum and one
minimum for every cycle. Therefore, this formulation overestimates the number of cycles
present in broadband fluctuations and correspondingly, increases the damage and reduces the
mean life time as shown in Fig. 9.17.

The simulated total fatigue loading (Figs. 9.10 and 9.11) has been compared with full-
scale results (Tap 50501, Xu (1993)) as well as the British (BRE) and German (FRG)
recommendations. Note that both BRE and FRG recommendations are based on 50 years
of design life and 50-year return wind speed, as in the simulated case. Results of this
comparison are shown in Fig. 9.18 in terms of cycle range, expressed as percentage of
design wind pressure, and number of cycles exceeding the cycle range. The number of cycles

computed by the present simulation in ranges above 50% of the design wind pressure
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Fig. 9.18 Comparison of simulated results with full-scale and standard data.
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are somewhat closer to those predicted from full-scale measurements. Differences in tap
locations might be one of the reasons for discrepancies occurring towards lower ends of the
data. It is interesting to note the increase in number of cycles at higher cycle ranges in the
case of present simulations as compared with the other loadings. Note that these taps are
located in zones of high pressure fluctuations and correspondingly, the fatigue loading
sequences associated with these taps are also high. Note that the results of the present
simulations are more or less close to the FRG recommendations. On the other hand, the
BRE recommendations underestimate the number of cycles in the high cycle range levels.
The number of cycles corresponding to both taps are more or less the same. Though sample
S64 narrowly exceeds S50 in terms of number of cycles, the design wind pressure for
sample S64 is only 1.4 kPa compared to 2.37 kPa for S50. This indicates that the cycles
corresponding to sample S64 are at low mean levels and ranges compared to S50.
Therefore, the estimated damage in case of S64 is expected to be less than that of S50 as
previously shown in Table 9.5.

Overall, the previous demonstrations show that the roof pressure fluctuations generated
using the simulation methodology proposed in this thesis can be used to investigate fatigue
characteristics of roof cladding. Moreover, it is convenient to use the proposed simulation
methodology to investigate the effects of various parameters such as intensity of non-
normality and strength of roofing involved in the fatigue damage process. In addition to the
above mentioned fatigue analysis of roof cladding, the simulated time history can also be
used to investigate fatigue behaviour of roofs by applying it directly on a roof using
facilities like BRERWULF, and by using it as a forcing function in Finite Element analysis

of a modelled roof.
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9.3 FURTHER THOUGHTS

The simulation of stationary Gaussian time series is straightforward and applicable in many
fields. Note that the non-Gaussian time series simulation technique developed in this thesis
is based on the stochastic characteristics of many measured roof pressure fluctuations on a
variety of low buildings. As previously noted, the measured non-Gaussian time histories, in
general, have only one sided negatively going sharp spikes. Based on this observation, a
skeleton signal having negatively going spikes has been introduced to simulate the observed
spike characteristics of the fluctuations. However, in order to simulate positively going
sharp spikes in a time series, a skeleton signal having positively going spikes is possibly
required. This would help the modelling of pressure fluctuations appearing on roofs with
high slopes and walls of low buildings. For demonstration purposes, it was decided to
reconstruct the modified target signal S1 shown in Fig. 9.19; this was obtained by reversing
the spikes of sample S1 (Fig. 6.3). The modified target signal S1 has the same mean,
variance, kurtosis and spectra as those of sample S1. The simulation procedure shown in
Fig. 6.15 was also followed here by using b = 0.87; the only difference was in the
simulation of skeleton signal. In order to simulate positively going spikes, the exponential
parameter A was taken as 1 (see Appendix - B). As a result, positively going sharp spikes
were created in the skeleton as well as the simulated signal as shown in Fig. 9.19. Note that
the spikes are just reversed in this simulated signal compared to the simulated signal shown
in Fig. 6.16 corresponding to A = -1; the absolute value of skewness is the same in both
cases. This demonstration shows the capability of this methodology to model the time series
having positively going spikes. Further, the same methodology can be used to simulate

stationary random processes of similar nature encountered in other disciplines.

213



Skeleton signal

5=0.87

Amplitude

f

_iff; il

0 ;
0 2000 4000 6000 8000
Time (Data points)

Modified target signal S1 Simulated signal

Skewness = 1.34

Skewness = 1.38
Kurtosis = 6.95

Kurtosis = 6.90
0 5 10 15 0 5 10 15

Time (sec.) Time (sec.)

Fig. 9.19 Simulation of a signal having positively going spikes.
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9.4 SUMMARY

The potential applications of the proposed simulation methodology have been described in
this chapter. Simulated pressure fluctuations can be used to carry out extreme value as well
as fatigue analysis; the later was fully elaborated.

Wind-induced fatigue characteristics of roof cladding have been investigated using
digitally simulated pressure fluctuations on roofs. The reduction of time varying loading
into pressure cycles has been carried out using the standardized rainflow technique. The
long-term wind climate has been taken into account for the evaluation of total fatigue
loading on roof cladding of low buildings located in temperate regions. Miner's law and
Goodman method were employed to compute the corresponding damage caused by the total
estimated loading cycles. The influence of non-normality as well as strength of roofing on
fatigue damage accumulation were clearly demonstrated. Finally, simulated results have
been compared with the existing analytical models as well as the British and the German
recommendations. The results of the present study clearly indicate that the non-normality of
the wind pressure fluctuations can significantly increase the rate of fatigue damage
accumnulation, and can result in non-conservative fatigue life estimates if its effects are not
accounted for. Overall, the wind-induced fatigue life prediction of roof cladding using the

proposed simulation methodology appears promising.
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CHAPTER 10
CONCLUSIONS

"....Research is to see what everybody else has seen, and think what nobody has thought..."

Dr. Albert Szent-Cyoryi,
as quoted in Reader’s Digest, Feb. 1958.

The emphasis of this dissertation is mainly on the development of a simple and efficient
digital simulation methodology for the generation of wind pressure fluctuations on low
building roofs under various conditions with application to extreme value analysis and
fatigue design. The thesis consists of five major parts: (1) introduction, comprehensive
review and theoretical background (Chapters 1, 2 and 3), (2) experimental investigation
(Chapter 4), (3) modelling and simulation of pressure fluctuations (Chapters 5, 6 and 8), (4)
modelling and classification of spectra on roofs (Chapter 7), and (5) application of the
proposed simulation methodology in extreme value analysis and fatigue design (Chapter 9).
Summaries of findings from each chapter are collapsed here to draw the final conclusions of

this study.

10.1 CONCLUDING REMARKS

The results of this study can be summarized as follows:
(1) A comprehensive review of digital simulation methods shows that the FFT model

has the potential to represent non-Gaussian pressure fluctuations compared to

ARMA models.
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)

Extensive wind tunnel measurements show that wind pressure fluctuations on low
building roofs are broad-banded and have either Gaussian or non-Gaussian
distributional characteristics depending on the situation. Two distinct elements of
sharp spikes responsible for non-normality are the frequency of occurrence and the
magnitude of spikes.
Wind pressure fluctuations are modelled using the FFT approach. The simulation
methodology requires Fourier amplitude and Fourier phase as inputs; the former is
constructed either from sample time series or from sample spectra, while the latter is
represented as uniform random numbers ranging between -n and n for Gaussian
fluctuations and by using a simple stochastic model with a single parameter b for
non-Gaussian fluctuations. This parameter b has been estimated by minimizing the
sum of the squared errors in target skewness and kurtosis. The ability of the
proposed methodology to represent the characteristics of the pressure fluctuations is
summarized as follows:

(a) This technique can control the probability distribution properties of a time series
by controlling the magnitude and frequency of sharp spikes through the phase
part of the DFT without disturbing its spectral properties.

(b) This technique can induce wide range of desired non-Gaussian properties such
as skewness and kurtosis in time series by using a single parameter 5.

(c) The proposed model is capable of representing pressure fluctuations from
various zones of several roof geometries under various conditions. The
efficiency of this approach is verified by matching statistics (mean, variance,

skewness, kurtosis, PDF, extreme values and crossing rates) of the target signal
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)

with those of the corresponding simulated signal.

(d) The proposed model is proved to be successful in providing stationarity in the
simulated signals.

(e) Overall, the proposed methodology is simple, in terms of the reduced number of
parameters involved; flexible, in terms of the efficient parametric estimation
procedure used; and accurate, in terms of preserving the first four moments
(mean, variance, skewness and kurtosis) and spectra of the time series.

Investigation concerning overall characteristics of pressure spectra on roofs shows
that, although pressure spectra at various roof locations are different, certain distinct
spectral shapes can be identified. Based on the similarity between normalized
spectra at various locations, an empirical equation has been suggested for their
representation. Spectra have been classified for each roof (monoslope, flat and
gable) and fitted with the proposed empirical equation. The standard spectral shapes
for various zones of different roof geometries have been used for the synthetic
generation of Fourier amplitude part in the simulation.

Potential applications of the proposed simulation scheme in extreme value analysis

and fatigue design have been described. The results indicate that simulated pressure

fluctuations can be used to determine extremes as well as fatigue characteristics of
pressures on roofs. The fatigue analysis of roof cladding using simulated loading
strongly shows the non-conservative effect of assuming Gaussianity in conventional

signal simulation.
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10.2 CONTRIBUTIONS

The major contributions of the present research work can be summarized as follows:

M

(2)

4)

Extensive wind tunnel measurements followed by analysis of local wind pressure
fluctuations on several low building roofs provide comprehensive knowledge of
their stochastic as well as fatigue characteristics under different conditions.

The development and application of a novel digital simulation technique based on
the FFT approach contribute an effective means for the representation of non-
Gaussian wind pressure fluctuations.

Investigation of various measured spectra from several low building roofs
establishes their overall characteristics. Similarity between normalized spectra
measured under different conditions assists not only in suggesting a simple
empirical equation for their representation but also in classifying their complex
shapes on roofs. The standard spectral shapes and their parameters for various roof
geometries established as a result of this exercise are useful for the synthetic
generation of spectra.

The development and application of a new approach for fatigue analysis of roof

cladding based on simulated pressure fluctuations and long-term wind climate prove

to be successful.

10.3 RECOMMENDATIONS FOR FURTHER STUDY

The potential improvements and possible extensions of the present study are:



1)

()

4)

)

(6)

Extension of the proposed model to apply for area-averaged pressures by
considering the cross-correlation function of time series from adjacent taps.
Extensive investigation of the present model to find out a means to accommodate
the non-stationarity present in some full-scale fluctuations.

Improvement of the present skeleton model by considering better exponential
random number generators. Further, a study to explore new skeleton models for
controlling various different fluctuating features of similar time series observed in
other fields with a view to extend the application of the proposed model.
Improvement of the present categorization of spectra on roofs by carrying out
extensive wind tunnel measurements of pressure spectra on several low building
roofs. Further, extension of the present categorization of the spectra as well as
associated parameters of the model for various zones on other building geometries
including walls. This procedure will help in systemizing pressure fluctuations on
building envelopes for practical applications. The present work covers pressure time
series only on roofs by considering three different roof geometries.

Extensive fatigue analysis study using simulated pressure fluctuations to investigate
the influence of several parameters on fatigue damage accumulation process.
Further, it would be of interest to carry out fatigue analysis of roof cladding by
directly applying the simulated pressure fluctuations on roofs using test rigs such as
BRERWULF, and by using the simulated pressure fluctuations as forcing function
in Finite Element Analysis of modelled roof.

Codification of pressure time series as well as pressure spectra by utilizing the

proposed simulation methodology and empirical equation for spectra.
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APPENDIX - A
MATLAB FUNCTIONS

The MATLAB functions developed for all numerical applications in this thesis are provided
in this appendix. The functions are grouped under four directories: statistics, simulation of
random processes, empirical fitting, and estimation of fatigue damage. The MATLAB
High-Performance Computation and Visualization Software (1992) and a personal
computer are needed to use these functions. All the numerical results in this thesis were
obtained using Pentium-60 computer system. Further, these functions can be converted to

stand-alone C programs using MATLAB C compiler.

A.1 STATISTICS

In this section, there are four functions. The function MOM_ST can be used to calculate the
first four moments (mean, variance, skewness and kurtosis) of a given time series, x. The
function SPECM_ST can be used to estimate the basic spectral properties such as number
of zero up-crossings and peaks, bandwidth and irregularity factor based on given spectrum.
The function CROSS_ST can be used to compute the number of mean up-crossings or
down-crossings at specified levels of a given time series. The number of positive or

negative peaks of a given time series can be estimated using the function PEAK_ST.



A.2 SIMULATION OF RANDOM PROCESSES

There are five functions provided in this section. The functions GSPEC and GTIME can
be used to generate Gaussian time series samples based on given spectra and time history
respectively. While, the functions NGSPEC and NGTIME can be used to generate non-
Gaussian time series samples based on given spectra and time history respectively. The
parameter b, which induces the specified non-normality in terms of skewness and kurtosis

in a time series can be estimated using the function PAR_EST.

A3 EMPIRICAL FITTING

There are two functions included in this section. The functions FIT and FUNFIT can be
used to fit any spectral data. The user can even change the equation to be fitted, but the

program should accordingly be modified based on the new equation.

A.4 ESTIMATION OF FATIGUE DAMAGE

There are five functions in this section. The function RFLLOW can be used to calculate total
number of cycles involved in a time series as well as the histogram showing the number of
cycles at various range and mean level of cycles. The standardized rainflow algorithm
(Amzallag et al. 1994) is applied to count the number of cycles. The function DAM_TH

can be used to estimate the damage rate caused by a given time series on to a specific



building component, and the mean life time of the building component. The function
DAM_W can be used to calculate the wind-induced damage based on Gaussian-Weibull
extremum model suggested by Lynn and Stathopoulos (1985). The function DAM_G can
be used to estimate the wind-induced fatigue damage based on Gaussian model (Robson
1963). Finally, the function DAM_TOT can be used to compute the total fatigue wind
loading matrix after including the long-term wind climate and the corresponding damage

caused by the total loading.



MOM_ST

function [m1,m2,m3,m4}=mom_st(x)

%mom_st

% Estimates mean(m1), variance(m2),
% skewness(m3), and kurtosis(m4) of a
% time series, X.

%

% x = data in column vector format.

%

ml=mean(x);

m2=var(x);

m3=mean(((x-m1)./std(x)).*3);
m4=mean(((x-m1)./std(x)).”4);

SPECM_ST

function [No,Np,irf,bp]=specm_st(sdf,T)
%specm_st

% Estimates the basic spectral properties

% assuming that the given spectrum corresponds

% to stationary narrowband Gaussian time series

%

% No = number of zero up-crossing or down-crossing

% Np  =number of upward or downward peaks

% irf = irregularity factor

% bp = bandwidth parameter

% sdf = one sided physical spectrum (column vector (n,2))
% Ist column corresponds to frequency and the other represents
% spectral ordinates.

% T = time in seconds (length of time history)

%

f=sdf(:,1);

df=f(3)-f(2);

s=sdf(:,2);

mO=sum(s.*df);

m2=sum(s.*((£"2).*df));
m4=sum(s.*((f."4).*df));
No=sqrt(m2/m0)*T;
Np=sqrt(m4/m2)*T;
irf=No/Np;
bp=sqrt(1-(irf"2));



CROSS_ST

function Nu=cross_st(x,Ic)

%cross_st

% Estimates the number of mean up-crossing or down-crossing
% of a time series (x) at specified levels (Ic)

%

% Ic = vector showing the levels to be considered.

% X = data in column vector format.

%

% Note: First the data is normalized with respect to
% its standard deviation after the mean is subtracted.

% Therefore, the levels (Ic) can be either negative or
% positive.
%

z=(x-mean(x))./std(x);
[m,n]=size(z);
l1=length(Ic);
zl=z;
22=[z(2:m);z(1)];
for i=1:11,
Nu(i)=sum(zl<=lc(i) & z2>Ic(i));
end

PEAK ST
function Np=peak_st(x)
Yopeak_st
% Estimates the number of positive and negative peaks
% of a time series, X.
%
% x = data in column vector format.
%
[m,n]=size(x);
=L
jI=1
fori=1:m-2;

s1=x(i+1)-x(i);
s2=x(i+2)-x(i+1);
if(s1>0 & s2<0),
z1()=i+1;
=L
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PEAK_ST (Cont.)

elseif (s1<0 & s2>0),
22(j1)=1+1;
jl=1+1;
end
if (s1>0 & s2==0),
s3=x(i+3)-x(i+2);
if (s3<0),
z1()=i+1;
=it
end
end
if(s1<0 & s2==0),
s3=x(1+3)-x(i+2);
if (s3>0),
22(j1)=i+1;
151+
end
end
end
Np(1)=sum(ones(size(z1)));
Np(2)=sum(ones(size(z2)));

GSPEC
function [t,y]=gspec(spp,me,vari,fs,n,nl)
%gspec
% Generates Gaussian time histories
% based on given spectra
%
% spp = one sided normalized spectra (variance=1)
% (length =n/2-1)
% me = mean of the time series
% vari = variance of the time series
% fs = sampling frequency
% n = length of time series (data points)
% nl = number of samples to be generated
% t = time vector
% y = simulated time history
%
% Estimation of time vector and



GSPEC (Cont.)

% frequency resolution (df)
%

df = fs/n;

t =[1/fs:1/fsi/fs]';

%

% Construction of amplitude
%

spl = spp.*(vari/2);
sp2 = [0;spl;spl((1/2)-1);flipud(sp1)];
amp = ((sp2.*df).*(length(sp2)"2))."(1/2);

%

% Construction of phase
%

rand('seed’,0)

foril =1:1:nl;

unif = unifimd(-pi.pi,n/2,1);
phase = [0;unif;-flipud(unif(1:(n/2)-1))];

%
%
%

z

Construction of signal

= amp.* exp(sqrt(-1).* phase);

y(1:n,i1) = real(ifft(z))+me;

end

GTIME
function [t,y]=gtime(th,n1)
%gtime
% Generates Gaussian time histories
% based on given Gaussian time history (th)
%
% th = given time history in column vector format,
% Ist column represents time vector, t and IInd
% column corresponds to the ordinates.
% nl = number of samples to be generated
% t = time vector
% y = simulated time history
%
%
t=th(;,1);



GTIME (Cont.)

thl = th(:,2);
[n,c] = size(thl);
me =mean(thl);

%

% Construction of amplitude
%

amp = abs(fft(th1-me));

%

% Construction of phase

%

rand('seed’,0)

foril =1:1:nl;

unif = unifrnd(-pi,pi,n/2,1);
phase = [O;unif-flipud(unif(1:(n/2)-1))];

%

% Construction of signal

%
z = amp.* exp(sqrt(-1).* phase):
y(1:n.il) = real(ifft(z))+me;

end

PAR_EST

function b=par_est(spp,vari,fs.n,sk.ku) % use this if spectra is given

Yfunction b=par_est(th) % use this if time history is given

Yepar_est

% Estimates the parameter (b) which induces

% non-normality in time series.

%

% spp = one sided normalized spectra (variance=1)
% (length = n/2-1)

% th = given time history in column vector format
% vart = variance of the time series

% fs = sampling frequency

% sk = skewness of the time series

% ku = kurtosis of the time series

%

% Construction of amplitude

% (Use this section if spectra is given)

df = fs/n;



PAR_EST (Cont.)

spl=spp.*(vari/2);
sp2=[0;sp1;sp1((/2)-1);flipud(sp1)];
amp=((sp2.*df).*(length(sp2)"2)).~(1/2);
%
% Construction of amplitude
% (Use this section if time history is given)
Yovari=var(th);
%][n,c]=size(th);
%osk=mean(((th-mean(th))./std(th)).*3);
%ku=mean(((th-mean(th))./std(th)).”4);
Y%amp=abs(fft(th-mean(th)));
%
%
sqd1=10"51;
b1=0.0:0.01:0.99;
rand('seed’,0);
unif=unifrnd(0,1,2*n,1);
for k=1:100;
%
% Construction of phase
%
e =99999* ones(n,1);
1=0;
fori=1:2:(2*n)-1;
if (unif(i) < b1(k) & unif(i) > 0),
e(i-1) = 0;
else
e(i-1) = (1).* log(unif(i+1));
end
I=1+1;
end
index = find(e == 99999);
e(index) =[];
z = ffi(e);
phase = angle(z);
%
% Construction of signal
%
Z =amp.* exp(sqrt(-1).* phase);
y =real(iff(Z));
%
% Finding the optimum value of b which
% achieves the given sk and ku



PAR_EST (Cont.)

%
skew(k) = mean(((y-mean(y))./std(y))."3);
ersk = (sk-skew(k));
kurt(k) = mean(((y-mean(y))./std(y))."4);
ertku = (ku-kurt(k));
sqd(k) =ersk"2 + erku™2;
if (sqd(k) <=sqdl),
sqdl  =sqd(k);
res = [bl(k)sqd];
b =bl(k)
end
end

NGSPEC
function [t,y]=ngspec(spp,me,vari,b,fs,n,nl)
%ngspec
% Generates Non-Gaussian time histories
% based on given spectra (spp).

%

% spp  =one sided normalized spectra (variance=1)
% (length = n/2-1)

% me = mean of the time series

% vari = variance of the time series

% b = parameter which induces non-normality
% fs = sampling frequency

% n = length of time series

% nl = number of samples to be generated

% t =time vector

% y = simulated time history

%

%

% Construction of time vector and

% frequency resolution (df)

%

df = fs/n;

t=[1/fs:1/fs:n/fs]';

%

%

% Construction of Amplitude
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%
spl=spp.*(vari/2);
sp2=[0;sp1;sp1((n/2)-1);flipud(sp1)];
amp=((sp2.*df).*(length(sp2)"2)).~(1/2);
%
%
% Construction of Phase using EPG model
%
rand('seed’,0);
foril =1:1:nl;
unif=unifind(0,1,2*n,1);
e =99999* ones(n,1);
1=0;
fori=1:2:2*n)-1;
if (unif(i) < b & unif(i) > 0),

e(i-l) =0;
else
e(i-1) = (1).* log(unif(i+1));
end
I=1+1;
end
index = find(e == 99999);
e(index) =[];
phase=angle(ffi(e));
%
%
% Construction of signal
%
z = amp.* exp(sqrt(-1).* phase);
y(1:n,il) = real(ifft(z))+me;
end

NGTIME
function [t,y]=ngtime(th,b,n1)
%ngtime
% Generates non-Gaussian time histories

% based on given non-Gaussian time history (th)
%

% th = given time history in column vector format,
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% Ist column - time vector, IInd column - ordinates
% b = parameter which induces non-normality

% nl = number of samples to be generated

% t = time vector

% y = simulated time history

%

%

t=th(:,1);

thl = th(:,2);

[n,c] = size(thl);
me =mean(thl);
%
%
% Construction of Amplitude
%
amp = abs(fft(th1-me));
%
% Construction of Phase using EPG model
%
rand('seed’,0);
foril =1:1:nl;
unif=unifrnd(0,1,2*n,1);
e =99999* ones(n,1);
1=0;
fori=1:2:(2*n)-1;
if (unif(i) < b & unif(i) > 0),
e(i-)=0;
else
e(i-1) = (1).* log(unif(i+1));
end
I=1+1;
end
index = find(e == 99999);
e(index) = [J;
phase=angle(fft(e));
%
% Construction of signal
%
z = amp.* exp(sqrt(-1).* phase);
y(1:mn,il) =real(iffi(z))+me;
end
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FIT

function [c]=fit(sdf,c);

echo on; clc

%fit (This is a modified form of the demo file available in MATLAB)

% This program can be used to fit a nonlinear function to a

% set of data. It determines the optimum parameters of the

% proposed function described in the M-file 'fitfun'.

% Many of the different methods, available in

% the OPTIMIZATION TOOLBOX, are introduced here in order to

% provide the user to have full freedom about his choice of

% method.

%

% sdf = [fr s], data to be fitted

% The data has two columns. The first column is independent variable (frequency) %

and the second column is dependent variable (spectral ordinates).
%
% We would like to fit the function
% exp(fr.*(-c(1))). *a(1)+exp(fr.*(-c(2))).*a(2)
% to the data. This function has 2 position parameters (a(1)
% and a(2)) and 2 shape parameters (c¢(1) and ¢(2)).

%

% Here ¢ (2,1) vector is assumed based on experience; The optimum parametric %
values and the fitting will be shown in a figure window.

%

% Note: This program can be easily modified to fit other

% functions of the user's choice.

%

Data=sdf;

fr = Data(:,1);

s = Data(:,2);

clf

plot(fr,s,'0"), title('Input data'),

cle

%

echo off

disp('Please Wait - Compiling Optimization Routines")

%

% test_long is a variable used for auto testing of this routine
if ~exist('test_long") test_long = 0; end

if exist('method')~=1 method = 8; end

if ~length(method) method = 8; end

1=2;

%

while 1
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%
if ~test_long

cle
disp(")
disp('" Choose any method for datafit')
disp(")
disp(UNCONSTRAINED: 1) Broyden-Fletcher-Golfarb-Shanno')
disp(’ 2) Davidon-Fletcher-Powell")
disp(’ 3) Steepest Descent')
disp(’ 4) Simplex Search')
disp(LEAST SQUARES: 5) Gauss-Newton ')
disp(’ 6) Levenberg-Marquardt )
disp(MINIMAX 7) Seq. Quadratic Progr.")
disp(")
disp(' 0) Quit")
disp(")

disp('Note: Options 1:6 perform a least squares fit')
disp( Option 7 minimizes the worst case error’)
disp( Gauss-Newton is the fastest method')

end
%
if test_long
if >=2
method=method-1;
1=0;
end
else
method=-1;
end
while (method<0 | method>7)
method = [];
while ~length(method)
method = input('Select a method number: ');
end
end
%
if (method == 0)
return
end
%
OPTIONS=0;

if method==2, OPTIONS(6)=1;
elseif method==3, OPTIONS(6)=2;
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elseif method=—4, OPTIONS(5)=1;
elseif method=5, OPTIONS(5)=1;
end
if test_long
I=1+1;
else
I=[;
end
%
if method~=4&method~=7
disp(")
disp(' Choose any of the following line search methods")
disp(")
disp(’ 1) Mixed Polynomial Interpolation')
disp(' 2) Cubic Interpolation')
disp(")

while ~length(l)
I = input('Select a line search number: ");
end
if =2, OPTIONS(7)=1; end
end
%
%
disp(")
OPTIONS(2)=le-3;
tO=clock;
%
if method==5|method==6
%

%

disp('[c,OPTIONS]=leastsq("funfit", c,OPTIONS,[],Data);")
[c,OPTIONS]=leastsq('funfit, c,OPTIONS,[],Data);
%
elseif method=—=4
%
disp('[c,OPTIONS|=fmins("norm(funfit(x,P1))",c, OPTIONS,[],Data); ")
[c,OPTIONS]=fmins('norm(funfit(x,P1))',c, OPTIONS,[],Data);
%
elseif method~=7;
%
disp('[c,OPTIONS|=fminu("norm(funfit(x,P1))",c,OPTIONS,[},Data);")
[c,OPTIONS]=fminu(’norm(funfit(x,P1))',c,OPTIONS,[],Data);
%
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else
%
OPTIONS(15)=length(t);
disp('[c,OPTIONS]=minimax("f=funfit(x,P1); g=[];".c, OPTIONSR,[],[],[1,Data);"
[c,OPTIONSJ=minimax('f=funfit(x,P1); g=[];', ¢, OPTIONS,[],[].[],Data);

%
end
%
if test_long
if (method<=4) OPTIONS(8) = OPTIONS(8).~2; end
if OPTIONS(8)-0.03 *(method==7)-(method==3) > 0.15,
error('Optimization Toolbox in datdemo"), end
end
%

execution_time=etime(clock, t0)
disp('Strike any key for menu")
pause

%

end

FUNFIT
function f= funfit(c,Data)
Yofunfit
% Returns the error between the data and the predicted
% values computed using
%

fr = Data(:,1); s = Data(:,2);

A 1)=exp(fr*(-c(1)));

A(:,2)=exp(fr.*(-c(2)));

a=Als;

z=A*a;

f=(z-s);

sq=sum(f. *f);

% Statements to plot progress of fitting:
loglog(fr,z,'-b' ft,s,'-1")

xt = 0.01 *max(abs(fr));

yt=max(s);

text(xt, yt,['(c ="' num2str(c(1)) ' ' num2str(c(2)),)'])
text(xt,0.5*yt,['(a =" num2str(a(1)) ' ' num2str(a(2)),")'])
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RFLOW

function [tot_cyc,fwim]=rflow(x)

Yorflow

% Cycle counting using RAINFLOW algorithm from pressure
% fluctuations. Based on Amzallag.C. , Gerey, J.P.,

% Robertt, J.L. and Bahuaud,J. (1994), "Standardization

% of the rainflow counting method for fatigue analysis."

% Fatigue, 16, 287-293.

%
% X = data in column vector format
% tot_cyc = total number of cycles in data set, x
% fwlm = cycle histogram with m rows and n columns;
% which shows the ratios of the number of cycles
% in each cell to the tot_cyc; the two axes refer
% to the range (rows) and mean level (columns)
% of cycles expressed as a ratio of the
% largest pressure coefficient range of the
% time history.
%
%
% EXTRACTING EXTREMA
%
% ext=sequences of extrema;
zZ=X;
[r.c] = size(z);
i=L
jI=1
fori=1:r-2;

sl = z(i+1)-z(i);
s2 = z(i+2)-z(i+1);
if(s1 >0&s2<0),
z1(G) =i+l;
j=ith
elseif (s1 <0 & s2>0),
22(j1) =i+1;
jl1=]j1+1;
end
if (s1 >0 & s2=0),
s3 = z(i+3)-z(i+2);
if (s3 <0),
zI(j) =i+,
J=ith
end
end

A-17



RFLOW (Cont.)

if (s1 <0 & s2==0),
s3 = z(i+3)-z(i+2);
if (s3> 0),
22(G1) =i+1;
jl=jl+1;
end
end
end
zl =z1";
2 =272
z3 =[1;z1;22;r];
z4 = sort(z3);

ext = z(z4);
clearrcjjlzlzZ2231

%

%

% EXTRACTING CYCLES
%

[r,c] = size(ext);
cycl=[0000];
1=1;
while ((i+3) <=1),
sl = abs(ext(i+1)-ext(1));
s2 = abs(ext(i+2)-ext(i+1));
s3 = abs(ext(i+3)-ext(i+2));
if (s2 <=sl & s2 <=53),
cycl = [cycl; ext(i+1) ext(i+2) abs(ext(i+1)-...
ext(i+2)) abs(ext(i+1)+ext(i+2))/2];
ext = [ext(1:1);ext(i+3:r,1)];
r=r-2;
1=1;
else
1=1+1;
end
end
res = ext;
clearircsls2s3
%
%
% TREATMENT OF THE RESIDUE (res)
% [residue] + [residue] ------ > [residue] + {cycles}
%
[h1,h2] = size(res);
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rl =res(1);

12 =res(2);

ml =res(hl-1);
m =res(hl);

if ((m-m1)*(r2-r1) > 0 & (m-m1)*(ri-m) < 0)
resl = [res;res];
end
if ((m-m1)*(r2-r1) > 0 & (m-rm1)*(r1-m) >=0)
resl = [res(1:h1-1);res(2:h1)];
end
if ((m-m1)*(r2-r1) <0 & (m-m1)*(r1-m) <= 0)
resl = [res;res(2:h1)];
end
if((m-m1)*(r2-r1) <0 & (rn-m1)*(rl-m) >=0)
resl = [res(1:h1-1); res];
end
[r,c] = size(resl);
cyc2 =cycl;
i=1;
while ((i+3) <=r1),
sl = abs(res1(i+1)-res1(i));
s2 = abs(res1(i+2)-res1(i+1));
s3 = abs(res1(i+3)-res1(i+2));
if (s2 <=5l & 52 <=53),
cyc2 = [cyc2; resl(i+1) res1(i+2) abs(res1(i+1)-...
resl(i+2)) abs(res1(i+1)+res1(i+2))/2];
resl = [resl(1:i);res1(i+3:r,1)];
=r-2;
i=1;
else
1=1i+1;
end
end
mi = max(cyc2(:,3));
mil = max(cyc2(:.4));
cyc3 = [cyc2(:,3)./mi cyc2(:,4)./mi];
cleari rcsl s2s3rl r2mml
%
%
% APPLYING THRESHOLD LEVEL
% 0.05*mi is considered as the threshold level.
%
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%cl = find(cyc3(:,3) >= 0.05);
Yecyc =cyc3(cl,:);

%clear cl

cyc =cyc3;

%

%

% QUANTIFYING THE MEAN AND RANGE VALUES INTO CLASSES
% mea = mean value of a cycle; ran = range of a cycle.
%

[r.c] =size(cyc);

mea =cyc(l:r,2);

ran =cyc(l:r,1);

me =mea;
ra =ran;
cl =0:0.1:1;
cd =cl;
cll =0.05:0.1:0.95;
cll =cll;

fork2 =1:10;

12 = find(ra > cl(k2) & ra <= cl(k2+1));
ra(r2) = ones(size(r2)).*cl1(k2);
clear r2
end
fork3 =1:10
rl = find(me > cl(k3) & me <= cl(k3+1));
me(rl) = ones(size(r1)).*cl1(k3);
clearrl
end
clearrl r2 k2 k3
%
%
% STORING CYCLES IN MATRIX FORMAT
%
FWLMI = zeros([10,10]);
ral =(1a-0.05).*10+1;
mel = (me-0.05).¥10+1;
rl = find(ral <=10 & mel <=10);
[r,c] = size(rl);
me2 =mel(rl);
ra2 =ral(rl);
fori=1;
k1 =ra2(i);
k2 = me2(i);
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RFLOW (Cont.)

FWLMI1(k1.,k2) = FWLMI1(k1,k2)+1;
end
ss =sum(FWLMI);
tot_cyc = sum(ss);
fwlm =FWLMIl./tot_cyc; % Cycle histogram
clearkl k2 k3 hsscl

%

%

% 3-D Bar plot

%

xr =0.05:.1:0.95;
XTr=xr";
ym=0.05:.1:0.95;
ym =ym’;
bar33(ym,xr,fwlm)

DAM_TH
function [D, life]=dam_th(fwlm,V,n1,mi,Su,cl,bl)
%dam_th
% Estimation of mean life time (life) and damage rate (D)
%
%
% fwlm = cycle histogram
% v = mean hourly wind velocity range of interest
% (column vector format)
% nl = number of cycles per hour per 1m/s of mean
% hourly wind velocity at building height
% mi = largest pressure coefficient range
%

% Note: fwlm, V, nl, mi can be obtained from RFLOW function.
%

% Constant-amplitude test results of the specimen
%

% Su = ultimate static strength of specimen
% cl = multiplying constant for S-N curve
% bl = slope of S-N curve

%

[m,n]=size(V);
xr =0.05:0.1:0.95;
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DAM_TH (Cont.)

ym =0.05:0.1:0.95;
i3=1;
fori=1:m;
D1 =0;
foril =1:10;
Sf=xr(il)*mi*(V(i)*2)*0.65/1000;
fori2 =1:10;
Sm = ym(i2)*mi*(V(i)*2)*0.65/1000;
Sre = Sf/(1-Sm/Su); % Goodman method
Ns = c1*(Sre”b1); % Number of cycles to failure
n=nl*V(i)*fwlm(il,i2); % Cycles in each cell
D1 =DI1+(n/Ns); % Miner's law
end
end
D(i) = D1; % Damage rate for corresponding wind velocity
if (D@E) > 0)
life(i3,:) = [V(i) 1/D(i)); % Mean life time in hr.
13=1i3+1;
end
end
semilogy(life(:,1),life(:,2))

DAM_W
function [life,D]=dam_w(mu,Cpmean,Cprrns,c,k,V,gg,nu 1.T,Vh,Su.cl,bl)
%dam_w
% This program calculates the wind-induced damage
% based on Gaussian-Weibull extremum model.
% (Ref: Lynn and Stathopoulos, 1985)
%
% mu = shape factor
% Cpmean = mean pressure coefficient
% Cprms = rms pressure coefficient
% c. k = weibull constants
% \" = wind velocity range of interest (m/s)
% in column vector format
% gg = peak factor range of interest
% in column vector format
% nul = cycling rate of measured time series
% T = time scale



DAM_W (Cont.)

% Vh = wind velocity at building height
% in full-scale

% Sy, cl, bl = constant-amplitude test results
%

dg=gg(2)-gg(l);

il=1;

[m,n]=size(V);

[m1,n1]=size(gg);

fori=1:m;

Sm = Cpmean*0.65*(V(1)"2)/1000; % Estimating mean pressure
D1=0;
nu = (V(1)/Vh)*(nul/T); % Estimating cycling rate
forj=1:ml;
if (abs(gg()) > 0),
Sf= Cprms*gg(j)*0.65*(V(1)"2)/1000;
Sre = abs(Sf/(1-Sm/Su)); % Applying Goodman method
Ns =c1*(Sre”bl); % Estimating number of cycles to failure
if (abs(gg(j)) > 2.5)
% weibull extremum model
gg(j) = abs(gg()));
nwl = (k/e)*((k-1)/c)* (ggG)/e) k-2))*exp(-(ge()/c)k);
nw2 = ((gg(§)/c)"(2*k-2))*exp(-(gg()/c) k) *(-(k"2)/(c"2));
% Estimating number of cycles (n) corresponding to a peak factor
n = -(sqrt(2*pi)*nu*(nwl+nw2));
D1 =D1+(n/Ns)*dg;
else
% gaussian extremum model
ngl = I+erf(mu*gg(j)/sqrt(2))+sqrt(2/pi)*(1/(mu*gg(j)))*
exp(-(mu"2)*(gg()"2)/2);
n = (1/2)*nu*gg(j)*exp(-(g2()"2)/2)*ngl;
D1 =D1+(n/Ns)*dg;
end
end
end
D(i) = D1; % Damage rate for corresponding wind velocity
if (D@) > 0),
life(il,:) = [V(Q) 1/(D(@1)*3600)]; % Mean life time in hr
il =11+1;
end
end
semilogy(life(:,1),life(:,2))
axis([40 70 0.1 1000])
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DAM G

function [life,D}=dam_g(mu,Cpmean,Cprms,V,gg,nul,T,Vh,Su,c1,bl)

%dam_g

% This program calculates the wind-induced damage

% based on Gaussian extremum model.

% (Ref: Robson, 1963)

%

% mu = shape factor

% Cpmean = mean pressure coefficient

% Cprms = rms pressure coefficient

% A% = wind velocity range of interest (m/s)
% in column vector format

% gg = peak factor range of interest

% in column vector format

% nul = cycling rate of measured time series
% T = time scale

% Vh = wind velocity at building height

% in full-scale

% Su, cl, bl = constant-amplitude test results of roofing
%

%

dg=1gg(2)-gg( 1);

il=1;

[m.n]=size(V);
[ml.nl]=size(gg);
fori=1:m;
Sm = Cpmean*0.65*(V(i)*2)/1000; % Estimating mean pressure
D1 =0;
nu = (V(1)/Vh)*(nul/T); % Estimating cycling rate
forj=1:ml;
if (abs(gg(})) > 0),
Sf=Cprms*gg(j)*0.65*(V(i)"2)/1000;
Sre = abs(Sf/(1-Sm/Su)); % Applying Goodman method
Ns = c1*(Sre”bl); % Estimating number of cycles to failure
% gaussian extremum model
ngl = I+erf(mu*gg(j)/sqrt(2))+sqrt(2/pi)...
*(1/(mu*gg(j))) *exp(-(mu”2)*(gg(5)"2)/2);
n = (1/2)*nu*gg(j)*exp(-(ge()"2)/2)*ng1;
D1 =D1+(n/Ns)*dg;
end
end
D(i) = D1; % Damage rate for corresponding wind velocity
if (D) > 0),
life(il,:) = [V(i) 1/(D(i)*3600)]; % Mean life time in hr.
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DAM_G (Cont.)

il =il+1;
end
end
semilogy(life(:,1),life(:,2))
axis([40 70 0.1 1000])

DAM_TOT

function [N,D]=dam_tot(fwlm,mi,Pd,V1,n,T,Su.cl,bl,Pth)
%dam_tot

% First, the program estimates the total fatigue wind

% loading matrix (N) considering the long-term climate.

% Then, it computes the total damage (D) caused by this loading

% on to a specified roofing material.

%

% N = total fatigue wind loading matrix

% D = total damage caused by this loading on to a specified
% roofing material whose constant amplitude properties
% are Su, bl and c1.

% fwlm =cycle histogram

% mi = largest pressure coefficient range from the time series
% n = number of cycles per hour per Im/s of wind velocity
% in full-scale

% \'2! = wind velocity range of interest (m/s), column vector
% Pd = design wind pressure (kPa)

% T = design life

% Pth = threshold level

%

% Integrating Fatigue Wind Loading Matrix (fwlm) or Cycle
% Histogram with Long-Term Wind Climate
%
p=([4.18.17.462.622212424.455.073.3953911.74...

14.07 11.81 5.73 3.59 2.83].*0.01)';
k=[1.511.051.301.691.621.791.81 1.76 1.57 1.62 1.26...

1.40 1.45 1.83 1.67 1.43]’;
c=[3.343.114.474.293.23 3.694.354.333.14 3.804.17...

5.065.02 3.10 3.97 3.077;
% p, ¢ and k are constants for Weibull pdf of wind velocity. The above
% provided data corresponds to Montreal climate. In case of other locations,
% the above data (p, k and c)should be changed.

A-25



DAM_TOT (Cont.)

dv=VI1(5)-V1@4);
Tr =T*365*24; % design life of structure
H = fwlm; % Cycle histogram
[ml,nl]=size(V1);
ii=1;
fori3 = 1:ml
Pi=0.65*(V1(i3)*2)*mi/1000;
if(Pi>=Pth)
V(ii)=V1(3i3);
ii=ii+1;
end
end
V=V’
[m2,n3]=size(V);
C=0;
cl=0:0.1:1;
N = zeros(10,10);
rang = 0.05:0.1:0.95;
meaa = 0.05:0.1:0.95;
fori=1:m2
P2=0;
forj=1:16

P1 = sum(p()*(kG)/(cGYkGN*(VEONKG)- 1) *exp(-(VE/cG)KE))):

P2 =P2+P1;
end
P(i)) =P2;
Cl1 =n*V(@)*P(i)*dv*Tr;
Pi=0.65*(V(1)*2)*mi/1000;
forjl =1:10
if (rang(j1)*Pi >= Pth),
forj2=1:10
if (rang(j1)*Pi > cl(j2)*Pd & rang(j1)*Pi <= cl(j2+1)*Pd)
forj3=1:10
forj4 =1:10
if(meaa(j3)*Pi > cl(j4)*Pd & meaa(j3)*Pi <= cl(j4+1)*Pd)
N(2,j4) = N(j2,j4)+H(j1,j3).*C1;
end
end
end
end
end
end
end
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DAM_TOT (Cont.)

end

%

% Estimating damage using Miner's rule, Goodman's model
% and S-N curve.

%

Sm = ([0.05:0.1:0.95].*Pd)'; % mean pressure
Sr=([0.05:0.1:0.95].*Pd)'; % pressure range

D=0;
foril =1:10;
fori2 =1:10;

Sre = Sr(il)/(1-Sm(i2)/Su); % Goodman method
Ns = c1*(Sre”bl);
D1 = N(il1,i2)/Ns;
D=D+DI;
end
end
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APPENDIX -B
INTERMITTENT EXPONENTIAL RANDOM VARIABLES

The intermittent exponential random variable (¢, ) required for EARPG as well as EPG

model has the form,
g, = I E, B.1)
where, /; is the iid sequence of random variables having the discrete probability density
function,

I [ 0 1

P d=1i) | b (1-b)
for 0<b<1 (B.2)

and E, is the iid sequence of exponential random variables having the continuous
probability density function,

fe(e) = A exp(=he) ®B.3)
where, the parameter A governs the properties of this distribution. Seong (1993) used
A =1 and as a result, the simulated preliminary signal has positively going spikes;
however, through phase shift operation, negatively going spikes have been generated to
represent negatively skewed roof pressure fluctuations. In the present study, A = -1 is used
which directly generates negatively going spikes. From the previously discussed properties
of I, and E,, the first four moments (mean, variance, skewness and kurtosis) of g, are
derived using the principles of mathematical expectation (Papoulis 1984). The derived

moments are
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mean (e,) =pu= E(s{) = (b-1 B4

variance (€,) =o? = E[(g, -€)’1= (1-b%) (B.5)
_ ElE-€)1 201
Sskewness (8,) = 3 = mz— (B6)
E —-F )4 _9p2 _ 124
kurtosis (8’) _ [(81 48:) 1 _ 3(3—-2b b™) ®B.7)

c (1-52%)?
Since, /; and E, are iid sequences, theoretically, €, must also be an iid. sequence.

Therefore, €, at two different times are uncorrelated.



APPENDIX - C
MEASURED AND FITTED WIND PRESSURE SPECTRA

Measured pressure spectra from several low building roofs have been classified and fitted
with the proposed empirical expression as discussed in section 7.4. The results are provided
in this appendix in the form of fitted spectra along with the envelopes of measured spectra

(shaded region) for various roof zones of different roof geometries.
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Fig. C.1 Measured and fitted wind pressure spectra
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C-2

R
10



S(f) o2

Nt
-165 | ~_165°
4 ‘IZI [¥4] \Z
757 \ios \105°
0
10 ¢
-1
10
-2
107 L
-3
107
4
10 Sme
F ¢] =0.012020,c,=0.3296
[ a =0.008203,a, =0.1249
-5
10 | L et T L el L g NET|
10” 10” 10” 107 10° 10"

Reduced Frequency, F = fA/V

Fig. C.2 Measured and fitted wind pressure spectra
(Monoslope roof, Gaussian zone, 2nd type).

C-3



T zw\lss" 165"
T PREBaERoRsNgei A et 3z
12t ‘lZl ‘IZ.I iz
75’/‘ \108 \105°
V]
10 .
- Eq. (7.1)
I /
10 |
-2
107 L
%
S |
-3
100 L
10" | Smno
F ¢ =0.022230, c5 = 0.2404
[ a; =0.012220,a, =0.1080
-5
IO i . RS | ; i el . el NN v P I3}
10” 10” 10 10" 10° 10’

Reduced Frequency, F = fh/V

Fig. C.3 Measured and fitted wind pressure spectra
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APPENDIX -D
RAINFLOW COUNTING METHOD

One of the major tasks of fatigue analysis is to establish a proper expression for the load and
its relationship with time or frequency. Generally, the loads can be classified as true random
process or a single-amplitude sine wave or a set of discrete amplitude sine waves. For the
latter two cases the definition of cycle is clear and the number of cycles can be determined
by simple counting based on the type of events to be counted such as peaks, level crossings
etc. However, the wind pressure fluctuations are random in nature for which the term cycle
is rather confusing and counting of cycles is complex. Common cycle counting techniques
in use today are peak. range, range-pair and rainflow. Of these various methods, rainflow
has been shown to be superior and yields the best fatigue life estimates, especially in the
case of broadband non-Gaussian process (Dowling 1972). The rainflow method can identify
cycles as closed hysteresis loops and can provide range and mean values for each cycle.
This method was recently used by Xu (1993) and Jancauskas et al. (1994) to count cycles of
wind-induced roof pressures. Moreover, the recent standardization of this methodology by
Amzallag et al. (1994) eliminates the presence of half cycles appearing in the conventional
rainflow method. Therefore, this method has been adopted in this study to count the number
of cycles present in pressure fluctuations. The complete procedure is coded as a MATLAB

function, namely, RFLOW and is presented in Appendix - A.
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D.1 EXTRACTION OF EXTREMA

A basic treatment of the loading, namely extraction of extrema, is required before the
rainflow procedure has been applied. Peaks as well as valleys (S) of a pressure time series
can be identified and stored using simple MATLAB program. The first part of MATLAB
function named RFLOW (see Appendix - A) is used to identify peaks and valleys of a

given time series in all the calculations.

D.2 EXTRACTION OF CYCLES

The cycle extraction procedure starts with the first four successive points (1,2,3, and 4 in
Fig. D.1) in a sequence of extrema (S). Thereafter, three consecutive ranges are determined:
ASi=[S:-Si],AS:=[S;-S,| and AS; = [S, - S;1. If AS, < AS; and AS, < AS;, then:
(1) the cycle represented by its extreme values S; and S; is extracted; (2) the two points S»
and S; are discarded; (3) the two remaining parts are connected to each other. If not, the
following point is considered and the same procedure is applied using points 2,3.4 and the
new point, 5. The procedure is repeated until the last point of the sequence is reached. The

leftover points (points which are not included in cycle extraction) constitute the residue.

D.3 TREATMENT OF RESIDUE

The residue is a sequence representing number of half cycles left out after the extraction of
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Fig. D.1 Principles of cycle extraction, after Amzallag et al. (1994).

cycles. Further, the cycles can be extracted from a residue by adding the residue to itself and
applying the previous rainflow technique to the sequence composed of two residues. The
residue left out of this procedure is identical to the first one. In this way, the sequence can
be decomposed into cycles completely. Note that care should be taken while joining the two
residues. Depending on their initial and final relative values and slopes, AFNOR A03 - 406

(1993) provides some special way of joining two residues as shown in Fig. D.2

D-3



Case 1 Transition
(Rn - Rp4) (R2-R;) >0 and
(Rn - Rn+) (R; -Rp) <0

Ry Ry
Rn-1 N Rn-1 -
Rn RZ Rn Rz
Case 2 Transition

(Rn - Rp) (R2 - R;)>0 and
(Rn - Rp) (R1 -Rp) >0

Ro Ro

-

R,

- Rn-l Rn-]_

% . Rna
Rn Rl\

Ro Ro™

Fig. D.2 Joining two residues, after AFNOR AQ3 - 406 (1993).



Case 3 Transition
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Fig. D.2 Continued.
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D.4 STORING CYCLES

The application of rainflow method will result in number of cycles corresponding to various
mean and range values of pressures. It may be further necessary to quantify these
established cycles in a more comprehensive and simplistic way so that it can be applied in
practice. Within this context, the mean and range values of cycles are divided into certain
number of classes of constant width interval, and all values (mean and range) located in a
given class are replaced by a representative value of this class (the mean value is usually
chosen). Finally, the number of cycles corresponding to representative mean and range of
each class are stored in a matrix format for further analysis. A flowchart showing the

complete rainflow procedure is presented in Fig. D.3.
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Initialization
i=1;j=1
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End

Reading of points i=i+1

Si,8:11»Siun » Sias

i+1° 7i+2 ° T+

A 4

Ranges calculation
AS;  =[Sis - si
ASy  =ISip- Sit]
AS3 =[Sii3- Sitg]

S, < As; and AS; << AS;

Storage of extracted cycle
(Si+1-Si+2)

Joining the 2 parts of the signal
after extraction

(Sg= Sy ; fork=i+2, j+2, -1)

j=j+2

1=

Fig. D.3 Rainflow algorithm, after Amzallag et al. (1994).
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