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and ¢yclic loading 'programs.

. . ABSTRACT
Elasto-Plastic Two Surface Soil Model and 1ts .
. Finite Element Formulation .and Application

AN

Vladimir Gocevski, Ph.D.
Concordia University, 1984

N
s

This , study formulates elasto—plastic congtitutive relations for

weakly . naturally or artificially cemented soil deposits. For vanlshing
s
cohesion the model proves to be applicable for: both loose. and dense

states of packing of a pure sand. It is based on the theory of bounding
gurface plasticity employing an isotroplc-kinematic hardening rule. It
incorporates a non-associated flow rule and the concept of reflected

plastic potential surface. The predicted soil behavior 1s then compared

with observed response from drained and undrained tests under monotonic

(

Quadrilateral parabolic isoparametric finite element using the
derived constitutive relations is formulated and incorporated 1In a
generai purpose computer program MIXDYN. The moc{el is’ then employed for
the a’nalysis of a footing on sand and an earth dam during construétion.

In the case of the footing analysis the obtained results are compared

with those from an experiment and another analytical procedure, whereas,

/7

for the dam problem the comparison 1is made only ywith a r}oniinear—elastic,

finite element procedure. . '

~

o

]




(i) ‘ , .

The applicability of the proposed model in solving complex T
engin'eering problems 1s evaluated by anaiysis of problems of static

elasto-plastic goil-structure- interaction. The analysis of a mat

-foundation of an eight story building founded on clay-silt 1is presented

.

first, and results are compared with those obtained by conventional

methods and other finite element methods.

L
.

Y

The behavior of a concrete gravity dam founded on "soft” foyndation -
.med{um is analysed next. The imfluence of a cyclic load due to the water

fluctuation in the reservoir on the overall deformations of the dam and

soil plastification is further examined. )

’

Moreovet, for each of the above mentioned structures the effects of

”

an elasto—-plastic soill on the structural behavior is discussed ia detail.

The Anfluence of various important \Karameters in the performed analyses .

’

is also discussed. oo S ;

‘1«
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foundation medium {is ﬁot pure sand, graqﬁ(‘or clay but a mixture of .

CHAPTER I
1.0 - INTRODUCTION ‘ _— S 3
1.1 CENERAL . : ‘ ,
Y, - “ v -

”

Engineering structures often are located in the areas where the

minerals of &1fferent' physical and chemical propertied: ~ Naturally

-'cemented sands are found at various places, on earth and the:

Sy

1

cementation is generally attributed to a small amount of agents at the
point of contact. Cementation or cementation-like effects can also be
produced artificially by a dense patkitig of sand grains with cement’ or

by a matrix of silt and clay particles.
N,

“~
-

*With the constitutive relations déveloped to date,these types of

soils are not modeled to the extent where'the more.siénificant aspects

in soil behavior such as ponlineafity,'inelagticlfy, shear 'dilatancy,

and path dependency, can be simulated for ;ither monotonic or cyclic
1 4 .

loading programs. Therefore, the need for such a model is apparent.

3

>
- ° The stress-strain relations for solls, either theoretical or

empiiical, constitute only one element in the total design pfocedure

that involves analysié, adequate judgement of parameters, quality

va 4

. , '
control, and monitoring of structural performance. The gnalyeis of

any continuum mechanics problem requires that the field equations must

be solved with rgspect‘to the approptiate'boundary cdnditiops. Also,

1

in-%o0il mechanics the effects of the 1n1tialhstate 6§ gtress and the

-1-
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N
1

stress history of ii;Bitd soils have to be conmsidered in a. realistic

- analysis. The finite element method '{s a well recognised numerical

e

technique able .to provide answers tﬁfﬁgl'these.questions. Théréfé§23

" successful application of any new constitutive law in solution of

actual engineering problems~ is related to its Appropriate }1nite

N h)

element implementation.,’ , ~.

‘

The process of verificac;on of any soil model includes two steps:

(a) comparison of the result obtained with appropriate soil tests to
. ’ . -

dewonstrate the vdlidity of tﬁg qbdel, and (b) analysis of~aﬁ actual

+

. . engineering problem parison of results with those obtained by

"

field observation;or other rkliable anal&tical tec?tizfes. However,

the vérificatf§ of a soil model 1is “hot an easy procéss particularly
. o » &
fn the case of cemented sand deposits. Due to the difficulties
. o R ,
T assoclated with representative sampling and sample disturbances,

» results of .laboratory tests of cemented sands under monotonic loading
are rare. At the present, the test data of cemented sands under

*  cyeclic loading conditions is not available. Similar difficulties are

. +
‘ encountered when attempting to simulate results of an actual

engigeering problem published in the literature. The reported soil
»» —properties or soil tests of the analysed problem do ot usually
provide sufficient data.for evaldation of the parameters required by

r
the model used 1in the present study. Therefore, the verification

érocess should include an elaborate parametric study in addition to

-

. soil tegt simulation and anal}sis of acdtual engineering problems.

The applicability of a conmstitutive law and the -reliability of a’

finite element program should be verified by analysing different types

of problems. The verification program may include problems related to
e, . .

¢
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show the capabilities and limitations of the model. For Jnstance, a

-

model capable of simulating shear coupling effect of soil is negesaary

. p ,
for use in the analysis of embankment structures during construction.

Ny -

This 1is espec{giiy‘true if the foundation under the embankment is

»,

sloping. “ On the other hand, a model capable of 'siéulating soil

plastificatibn due to cyclic loading in the low range of stresses is

:haddatory in the_case of a concrete gravity dam on "soft" foundabion,
subjegté&\to fluctuation of water in the~reser;qir.‘ Data sbtained
from. the analysis of these types of structures may demonstrate the
necéﬁsity of a more elaborate'élaeto:plastic soil model. _ '

~

The preceding discussions fggT the general framework of the

present study. An attempt is made

3

(a) develop an elasto-plastic constitutive law for naturally and

artificially cemented sand deposits;
(b) 1incorporate the eonstitutive law into, a finite element

analysis algorithm;

4

(e) verify the correctness of the soil model by means of test

- simulations and by analyses of real engineering ’problems;

- and

. ) ‘ . 1,
(d) 1investigate the effect of soil plastification on nonlinear

soil-structure interaction problems. '

!

.

1.2 REVIEW OF PREVIOUS WORK o -

A number of authors have endeavored to presént some 1nsf§ht into

.

“the real soil behavior. Many different types of soil models have been

developed. Some of them were .implemented into appropriate numerical
! )

4

L N
. .

geotecﬁ%ic&l engineertng and soil-structure interaction; in order to

-
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procedures, however, only few of the advanced coustitutive Jlaws are

-

applied to the analysis of actual engineering problems.

-~ ] -

]

1.2.1 Soil Modeling ' ‘ .

F3 B

Constitutive laws play a s;gnif‘fcant role in providing reliable

N
A

results from any solution \procedure.. Their importarice has been

enhanced with: the 1ncrease 1in development of many todern

LY

computér-based numerical techniques such ‘as finite elements, finite
1 S e ‘
differences and boundary ' elements. Very often, results from a

numerical analysis that mauy have used a less appropriate constitutive

law can be of doubtful validity. _Realization of this 'fact invoked

active research and interest in  the theoretical formilation of

)

constitutive laws and determination of their parameters.

v
“
12

For a long time, Soil Mechanics ‘has[*beer{ based on Hooke's law of

o 'i,i

l1inear elasticity. [In mathematical terms, the mipimal requirement for

a material to qualify as elastic 1s that there exists a one-to-one

corregpondence between stress increment and strain increment. Thus, a ™
Ld

rd

* \

body consisting 6f\‘gz‘this material returns to 1its original state of

deformation whenever “éompletel)_' unloaded. The wuse of linear

1 ;
elasticity laws 13 restricted to a very limited class of materials and

N

certainly is questionable in the context of geological media.

For soils sustaining proportional loading the modelling via non-

[ 4 A

linear elasticity can _be 'quite accurate. Non—1linear elasticity
modelg are the simplest of all models that can be used for closer

N .
representation®of geotechnical materials. Two elastic parameters are

required to wvary with stress and/or strain. This pair can be

o~

L2
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chosen arbitrarily odt of E, v, K or G. I,t)ts convenient and logical

in many instances to use” the bulk modulus,}, and shear modulus, G, - "

instead of elastic modulus, E, and Poisson"s ratio, v. The reason for

<

- \} this is that the behaviour of soill under changing confining stress

measured by K is quite different from that under distortion measured

\ by--G. Furthg:;more,‘ in isotropic elastic models these two modes are

Y )

decoupled, 1,€%, changes in mean stress ‘do, not cause distortion nor
. s

does deviatoric stress (pure shear) cause volume change. Models of (

this type have beeh discussed in numerous papers (1. ol.l11}]. ~ : 3

The most popular models in this category appear to be: bilinear

L ¢ . ’ :
elastic model, K-G model, and hyperbolic model. The bilinear and K-G

~

models are preferred to the hyperbolic on the ground that they are

» -

simpler and involve fever eonstants in their definition. The bilinear

I’d

requires only four constants (Key Gey, ¢, ¢) to be defined as§
against the five (K, G,ay, ag, 5g)for k-G xixoqels and nine .in the :

case of the hyperbolic model. However, due to- the féct the: hyperbolic '

-~ .

model was extensiﬁely' develOp'e'd by Duncan and his associates [l.l1]

<«

I - . hY
and ~s>1ccessfu11y tested on numarous practical problems (ex. in the ' -
- A
analysis ofeOroville Dam, ‘Ref. ,1.125,~it is very popular. There are R
. gerious objections to the use of nonlinear elasticity models. *~ “

o

The main one 1is that, although consistent in a 'mechanical sense,
they may predict an wunrealistic material response for some loading
paths, 1in which case uniqueness in the solution of boundary value

problems cg\’nnot generally be assured. The formulations based on

nonlinear ele;sticity fail to qv‘1gem:1f~y irreversible deformations when
’ \‘\’

“

. -
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unloading takes place. This can, to some extent, bé rectified by
introducing loading criteria as in. the’ deformation theory of

plasticity. In practical implementations of this theory such” a
- - <
loading condition can be applied only after the solution to a boundary

[N

“value -problem has been obtained.

-

t *

Thus, some a priori assumptions as t \loadiﬁ, and unloading
tegio}\s have to be made imn order to obtain the solution. Moreover,
J

the theory is .formulated in such a manner that there is no continuity

between ‘elastic and plaét;ic regions for 0neut:t:al change of stress.

In spite, of all these inconsistencies the deformation theory is -
still a very attractive alternatii‘ré foF the solut#on of largg classes
of soil and soil-structure interaction problems. A summary of

t advantages and limitations of these models is presented in Ref. 1.13.
X - ‘ -

The flow theory of plasticity represents a necessary and correct
R ,
P
extension of elastic Btress—strain relations into the plastic range at

< which permanent plastic strain can be ‘admitted. Pefhapé the first
o “ .

reference in the history of plasticity can be attributed to Coulomb
. (1773), who fjropésed a yleld criterion for soils. Since that time a
comsiderable amount of work has been done £fn this area, however, a

unified’ flow theory began to, evolve only around 1945. A detailed

- hist'ory of this review 1s provided in the text' by Hill [1.<14]. In the

3

area of Soil Mechanics early developments were based on. elastic-
' - )

perfectly plastic formulations lncorporating Mohr—Coulomb ot Drucker-

Prager yleld criteria ‘together with an assoclated or non-associated

-flow rule. In these formulations the yleld surface was dssumed to



-

remain stationary and no Hardening/softening effects were admitted. A
study of strain hardening phe;iomer;on' in soils sta.r’té& with the works,
of Rendulic [i.iS] and varsfév [1.16]. Subsgc}uencly, the findings of
both researchers were \‘investigat‘ed by Rgﬁsc‘oe f1.17, 4.18, -1.19] who

.

proposed ;'1 model based on the theory .of plasticity incorpo;Bting an -

e N .

isotropic hardening rule. The concept developed by Roscoe's group is

. <
known in the literature as.the Critical State model.

-

In this concept the evolution of the yield surface is assumed to
depend on irreversible void ratio variation which 1s propo£t10n31 to
the plastic volumetric strain. The model allows for both stable‘and“
unstable. behavior and assumés the existence of a critical state,
surface defining, an instantaneous locus of elasto-pérfectly plastic
responsé comt;:l‘ned with no plastic volume ghgnge. Several d-iff‘erent
forms o‘f- the yleld criterion known as Cfam—clay, cap model, etc., have

[
been used 8sb far. . N

~The Crjitical State concept;.is applicable to normally coﬁsdlidated
clays Sut(:jected to monotonic load. For overcongolidatled material the

~

; ¢ o -
predictions are poor and for 'sands the concept 1is virtually not
apple g}able. ’ o '

N .

An altefrnative description for simulating sand behaviour 1is the

bne; i which ;Ieviatorin plastic strain is assumed to act as’ the
" hardening parameter (Pooroosgshasb et al. [1.20]). 1In general, both thé
volumetr‘ic an;l deviatoric components of plastic \stt"ain can act
simultaneously as a combined hardening® parameter. In this way, for
in;tahce, the applicability of r.h'e Crit}cai State model can be

extended to both overconsolidated clays and dense sands (Nova and Wood—

~~a

\l
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{1.21], Wilde [l1.22]). Finally, in another category of constitutive
co’nc%pts the multi yield-loci (\heorie‘s ére‘ implemented (Poorooshasb

-

A "
.and Young ([1.23]," Prevost and Hoeg [l.24]). In most ¢of these> .
formulations the mode of ylelding is assumed to be governed by two
different mechanisms; the first responsible for plastic volumetric

".strains and the second associated with plastic ‘distortions. Thus,

both Jhard,ening_parameterp'act independently of each other. .

In general, tklxe combined hardening parametler of multi yield-loci

] theories\ w\aé ‘intended to improve the’acﬁcuracy of predictions based on.
a single t;ardening Patameter. All these concepts are applic'able for
monotonlc loading conditions as they all assume purely elastic
beh;viour for stress paths penetrating the interior of the yield

surface. Recent developments in consti!:utive modelling based on

b '
"‘glasticity have focused wmainly on modelling of’ soil response to

fluctuating loading. 7A very‘conv\enient way of formulating such a
generalized constitutive law 1is to extend some of the 1sotropic
° ) haréﬂening descriptions to include the aspect ?f reverse plastic flow‘
(Piet\ruszczaik“ and Poorooshasb [l1.25}]). A number of existing
formulations utilize the isotropic hardening surface as a so-calleci
"."bournding surface"” (Krieg [1.26], Dafalias and Po'pm; [(1.27, 1.28]) and
th;e respor{se 'of the material during a stress reversal 1is modelled
\_using isotropic and/or kinematic hardening. Among the formulations
maintaining irreversible void ratio variations as the isotropic
hardening parameter thos%due to Da‘falias and Herrmanr‘x [1.29], Carter
‘et'al. [1.30] .and Mroz ‘et al. [l.31, 1.32] are noticable. Bounding

surface formulations admitting plastic distortions as the hardening

parameter are due to Poorooshagb, Pietruszczak [l.33] and Ghaboussi,

, .
. ~ £
\
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Momen {[1.34]. Finally', Nova :and Hueckel [1l.35] wuse a combined
deviatoric/volumetric hardening together with a "paraelastic"” (i.e.,

.path 1n:1ependent between suitably defined streds rkeversal points)

description for stress reversals. )

[

The theory of plastic flow is, at preseant, the most extensively

used framework for formulatin‘g constitutive relations for soils. In

N 5

1971 Valanis [L.36] proposed endochronic plasticity as an alternative v
theory to classical plasticity for the description of rate independent

- response of the material. The two theories differ in certain
Lo

tmportant aspects guch as:-
(1) ~ The endochronic theory does not require the concept of

the yleld surface for its development. .

(11) The\ physic&l assumptions that underline the theory have

their origin in 'irreversible thermodynamics of ianternal

variables.
(114) The material merdory is defined 1in' terms of an intriasic

time scale which is considered to be a material.

-

1

property.

Since 1971 endochronic plasticity has undergone ,a significant evolu-

tion. The original work by Valanis has been extended by Bazant and ;7

Bhat [1.37] for concrete and Bazant and‘K:rizek (1.38) for soils. In
. ’ ]
general, there are a lot of arguments for and against the validity of.

endochronic theory. The models involve a large number of. material o

Iy

parameters and, at present, are not- used extensively.

-

. 2 d
. The response of geological materials is sensitive to the strain

rate. Such sensitiyjty cannot be wmodelled via plasticity as the
governing equations are homogeneous in time. Rate sensitive plastic -

. S
o
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—————7difference process, boundary integral procedures, and trial function
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. ¢
material is referred to as a viscoplastic one. Theory of

elaeio-viscoplasticity has been formulated .by Perzyna [1.39] and

‘incorporated into a numerical code by Zienkiewicz and Cormeau [1.40].

Other visco-plastic mod'els for geological maferials have been
discussed by Akal et a;.'{l.él]. ' _
Numerical metho\ds allied 1Yo powérful’digital computers allow
tbday the '[.;ossibility of solving almost all well_‘defined physical
problems within any accuracy desirable. The finite element process of
discretising and apprqximating continuous problems has proved itself
to be‘ one of the most general and ﬁseful procedures [l.42]. It is
therefore natural to -seek solution with this numerical process when

analysing behavior of important structures such as dams.
? !

1.2.2 Rumerical Techmiques . N

-

The analysis of continuum structures 1involves generally

)

differential equations or integral statements for which closed form

brocesses invollving‘ discretisation are employed. The finite

n;ethods are three fairly general techniques that exist for 'such
discretisation. .
The analysis of the problems .choosen 1in this study may be

performed by any of the above numerical techniques. Therefore a short

review of the maln advantages and li‘mitations, of these uwethods are
‘outlined below. - ' R

The finite difference method 1is a relatively kold numerical

technique. It was first written in 1872 [1.43] and 1s well reported
in the 1literature. Only receatly [l.44] however it was applied in

. ,
analysis® of complex engineering structures. The main advantage is
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'}fqud in 1its geqerality,‘ however the requireménts for relatively

regular ‘tesh pattern, and the difficulty {in intyoducing boundary- -

conditions in the local differentia%,equations governing the problem,

-

are considered as limitations.

¢ N
[

‘ — 9 .

The "boundary integral 'procedure” is considered as a mathemati=-
cally favorable method. Its use in stress analysis however is not
extensive [1.45, 1.46, 1.47]. Symilar difficulties as in the case of .

the finite difference method, related” to the geometry “of the

~

boundaries are encountered here also. The analysis becomes very,

-~

RN
complex for situations other than linear and homogeneous.

The finite element method in its classical form appeared first at

5

the beginning -of this éentury as the Rayleigh-Ritz procedure, or S
Galerkin method [1.48, 1.49],y» From energy or virtual work principles -~
a global integral statement related to the analysed problem is defined

Y ’ -
first. For the domain of interest unknown functions .are assumed. The N

fﬂnctionq"arg such that they approximately satisfy tﬁe interior as
well as the boundary conditions. " The concept of finite elements

f .
employed today is‘relét}vely new [l1.50]. In this new concept the

medium is discretizgll into finite elements and the trial functions are
specified locally. The advantage of this 1is seen in the evaluation of

properties on the element level only; and in the replacemént of a

a

global 1integral statement with a system of algebralic equations

-

following the rules of structural assembly.

“~ A ¢ h
"

-

I4

- -

Different forms of elements are used in the finite element

e,

ﬁrocedure. The"~particularity of the problem dictates which type of
= '} . -

elemént will be employed. For the problems related to geotechnical

s
A
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v

engiheering probably the most efficient of the elements currently 4n

usé are the 1isoparametric parabolic elements [l.41, 1.51, 1.52].

3

Accombanied by the elaborate constitutive relations closely describing,
the elasto-plastic nature of the soil behavior these elements provide
the possibility of accurately solving almost all well defined problexﬁs

A

in geotechnical engineering.

.

A limited number 6f‘advanced constitutive r;lations for sodl have
been implemented ‘1n the development of new fini;e elements. A
literature -survey [1.13, 1.53] shows that oﬁly a few ‘of them are
{.ncluded as part of .a general purpose finite element program. The
results of these implemented models genetally indicate good agréegﬁnf
_$1ch experiments. “However, the >us; of these ‘models in engineering
practice 1is limited. This can be due to either of the problems
analysed, which were designed for simulation of triaxial tests,

small-scale tests of a footing on soll, or passive pressure on a

vertical plate.

Extensive work in the direction of implementing elasto-plastic
constitutive relations in a fiﬁite element algorithm was performed at
University College, Swansea. The algorithms of the program "MIXDYN"

("Finite Elements 1in Plasticity” [1.54}, Critical State Model,

[y

Infinite Number  of Surfaces Model, etc. were formulated by

Zienkiewicz, Naylor, Tabb, Pande, Pletruszczak, Paul, .and Simpson

a
, - > N
[1.53]..

| -4 .
{ Al
.~ 1.2.3 Application to Engineering Probleas

.

A\ The usefullness of a so;ji model can K be assessed by its

s
~\\<fp11cability fo actual engineering problems. In classical soil
. . \
™~

-— -
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L ’ f . . - . '
mechanics, the problems of defoma’tj’on and stability are treated
\ ~r

separately. ‘Past experience demonstrates that the treatments are in

i

general satisfactory.. However, the behavior of soll as structural

uia;erial. or as a foundation medium 1is a continuous, process and

'therefore, the deformation and stability problems cannot’ be treated

separaﬁe\ly. In classical soil mgéhanics the achievement of a high

safe;y factor does not eliminate the ‘possibility of local yielding, or

‘. st f 0 " *
the state of collapse does:not automatically demonstrate that failure *

[)

occurred in all soil e]\.e_menta-’ The application of an appfopriate

t4

deformation analysis is hence a logical approach for evaluatiohn of’ -

stfegses in all loading stages prior to instability. ;rhe integrél .

analysis of‘deformation and stabiltity forms part of the non-classical

or. modern soil wmechanics. . It requires a constitutive relationship

i N

suitable for modelling a correct stress—strain behavior, necgéﬁary for

. a‘fundamental understanding of the mechanical behavior of soils.

<N\
There 18 no single constitutive law which describes adequately -
all features of soil behavior, When compared to - other engineering ~

1] 'l

materials evén under controlled laboratory conditions the behavior of

soil 1is extremely complex. Consequently, the application of the
o, . ]'rr/“ e 4

constitutive laws whigh aim toa model most aspects of soil behavior for |

[
3

pactual engineering structures is difficult. Despite these facts, the
need of a more detailed soil model for analysis 1is apparent {in the:,

study -of (amoné others')v the following engineering problems:‘ (a) mat‘,;f

foundation under a highrize building, (b) embankment stx:uctures during

s

and after constructlion, and (c) concrete gravity dam on .a “soft"

foundation medium.
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Mat Foundations’ . L - .
- - v 4
A mat or raft foundation is a large concretge slab and usually

;upports the en,tit"e structu;'e. Like other types of foundations it
must .satisfy the ‘following basic requirements: it must have 3
gsufficient factor‘ of safety agalnst overall shear failure, and it must
not causg'excessive settlem;nts [1.55}! The methods of design.of m;t
fouhdatiohs are claqsi‘fied as [1.56]: J conventional methods known as
t{\e rigid method {1.57]), and ':‘simplified elagstic foundation m\et;hods"
[1.58, .1.59,.:’1.60]; and numerical methods represented- by finite

difference and finite element methods [l.61]. Generally, 'in. the

conventional method? the subsoil is represented by an infinite number

of elastic springs (subgrade reaction method) or’:, it is considered as

2

an elastic half-space (compression index analysis). The represen-
. A

tation of the subsoil by a system of independent springs implies that

the load distribution is not consid;red in the analysis, while the

elastic halfspace model, although describing the inter dependence

-~ between the structure and subsoil, leads to results predicting

-
unrealistically high stressesg under the edge of the raft.

.

Methods using finite element analysis assume elastic, nonlinear

elastic or elastic-perfettly plastic (von Mises) material behavior of

*"the subsoil (1.55). There are many objections to the use of the

methods based on nonlinear élast'icity or elastic-plaétic (von Mises)

models. The main ones were discussed in Subsection 1.2.1.
. .

0y

Analysis of Embankments

-

¢
"Analytical methods employed in the past for the design of dams
)ﬁ g

were sim% plané analyses.. They involved calculation of force

resultants required to satisfy various design criteria. The middle-

=
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"E}zird rule [1.62] was one of the most frequently used criteria in the

design of concrete gravity dams.

s g : .
. hY t . -

- The deVelopment of digital computérs provided a base for
applfcation of various numerical methods. Stress analysis of

different types of dams have been madé by employing finite difference

4 A

[1.63] and finite element [1.64] méthods. The material was assumed

elastic and a set of new design criteria related to the maximum

allowable direct-and shgar stresses were defined.
S . . ]

The development of the finite element mwathod was prefequigite‘to

its application in analysis of earth dams. °~ The calculation of

" stresses and deformations was lately extended td stdability analysis as

-

well [l.65]. The results obtained from various analyses are being

constantly dimproved by develo‘pments in diécretization, "solution

algérithm, and particularly by development in the constitutive law to

model soil properties.

The effect of 1incremental cdnstruction on the stresses and
. :

S
deformations developed in an embankment was studied by Clough and

Woodward (L.66] and the significance of layerd as compared to single
step loading Was examined. The same effect and using nonlinear
characteristics was evaluated by Alberro [1.67] in the finite element

. aﬁalysis of the El-Infieruillo dam, and by Kulhawy and Duncan [1.68]

5. ; <

* ]
in the study of stresses and movements of the Oroville c'lam‘. The

' latter assumed nonlinear-elastic material properties. The work was
later extended by Nobary and Duncan (1.69] to compute -the effect of

reservoir filling on the redistribution of stresses and movements in

N

the Oroville Dam. The finite element method was }used ‘also \for
4
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\ - ‘
evaluation of the factor of safety of 48lope stability. Resendis and

Romeo [1376] ,established a potential failure zone by a curve con-

vnecting the points of major principal strafius, and compared the factor
- t

of safety with conventional methods. The - accuracy of equilibrium

methods used fn the past was examined by Wright, Kulhawy and Duncan

°{1.71]. They employed a finite element method and the obtained faétor
of safety did not differ much from the one,fOuna with equilibrium
methods. The effect of foundation compressibility on the development
of cracks in the Duncan Dam was ekxamined by Eisenstein, Krishnayya and
[ g .
Morganstern [1.72]. Here, the tensile zones obtained from the finite
element analysis compared well with‘observagions. The finite element
method was also used by Takahashi and Nakayawa [l1.73] to determine the
obtimum loc;tion of the core of a high rockfili dgm. They éimulated_

construction in layers and the material was assumed to be viseo~

- elastic.

‘Gravity Dams on "Soft” Foundations

R N
Gravity dams founded on "soft” foundations such as weak rock or

soils having horizontal clay seams or sha}es with ‘poor shear stféngth
characteristics present a major design problem. Such foundatioms have
been met all over- the world: (a) in 1India [1.747] at t?g sites of
Kadana Dam, Barna Dam, Dudganga Dam, and Hidkol Dam; (b) Warragamba
Dam in Australia ([1.75]; (c) Maquinenza Da; in Spain [1.76}; (d)
Meadow bank in Tasmania [1.7;]; {e) Green Péter Dam in U.S.A. [1.78];
and (f) 1in other places [1.79, 1.80]. The design of gravity dams on
such foundations encounfered several difficulties due to the complex”

three dimensional character of the formations and the heterogeneity of

the materia}s. X ' -

k)

W
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The simplest procedure for computing the sliding stability is to
divide the base inté a number of two-dimentional vertical slices and

to add up the cc;ntributign to the sliding resistance of eacf\ slice

™~

[(L.74, 1.78]. Safety factors varylhg from 4 to 1.5 are.usuall)}\

assumed [1.81]).

'

RFcently,. there i8 a growiné trend to use the finite element
.analysis or photoelastic methods‘ which take 1into account ' the
compatibility of deformations in preferencé to slmple force equili-
brium a‘nal'yslis [L.80, 1.82, 1.83]}. Howeveij the effeé.t of permanent
(plastic) deformations ;)f the soft subsoill due to static or fluctuat-

N

ing loads of the water was not considered so far.

T.2Z.% Wor Purther Work

From the preceding review of pi'evious work one may conclude that

further research is required in all the areas discussed. New consti-:

tu;:iv'(a laws incorporating the most significant aspects of soil
behavior are obviously needed. | They should provide tﬁe capability to
predict accurately the beha\;ior of soils, such as cemented sands whic;1
has not been analytically modeled previousl)}. Implemeatation of newly
. developed models into the algorithms of existing numerical techniques
such as the finite element 'method .is essential 1in the vali«:igt:lou
process of any constitutive law. Today, very few models have been
required.\' The 1influence of soil plastiffcation on the behavior of
actual structures,‘in both geotechnical engineering as well as the
\

study of nonlinear soill structure interaction, 1is not adequately

investigated, and therefore more research is needed.

a

successfully implemented and further work 1in this direction .1s
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1.3 SCOPE OF THE PRESENT STUDY . .

~ The primary phri:ose: of this study is to .develop a constitutive
_model for 'a granular medium with cohesion. Such a formulation will

be applicable tcla geological'materials,_ composed of sand and gravel
——particles cemented naturally or artiificially with\ calcite (CaC03),
gy;sum (CaS04., 2H20), cement, <;r other agents. In recent yéars
these materials have been 'extensively used in engineering practice

[2.4, 2.5] and the need for an appropriate constitutive description

(which has been lacking so far) seems quite evident.
) wwr

The formulation presented in the thesis constitutes an .extension
of the work by Poorooshasb and Piletruszczak [1.33]. The model 1is

base‘?on the theory of bounding surface plasticity incorporating a

\ non-agsociated flow rule and the concept of reflected plastic

- v

. potential. Details of the mathematical description are provided in
Chax;ter 2. The present formulation/is more comprehensive than that

discussed 1in Ref. 1.33 and differs from it in a number of aspects,

which include for example, -
(1) the form of the yield surface and plastic potential
(i1) mode of accumulation _of plastic distortions '

(111) generalized form of the local piastic potential, etc. mm
Also, the present fotmulat}.on is more detailed as it provides explicit
analytical expressions for the gradient tensors: location of the
conjugate stress point, etc., which are required for implementation in

N

a computer code.

,

The usefulness of elaborated constitutive relations is seen only
if ‘they can be incorporated into a numerical procedure suitable for

analysing boundary value problems. Hence, the second\purpose of this

a
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I -
study 1is to incorporate the derived elasto-plastic relationships in a

*

general "purpose finite element compuier program.

L
ta A

The third burpose of this study is to solve a ‘number of bqundéry
;alue problems of practical significance. These . include typical
problems related’ to geoﬁechanics (footing on subsoll, analysis of-an
earth dam duriné construction; and problems of soil-st;ucture inter~

action (mat foundation, concrete gravity dam on "soft" foundatioh).

o

An elaborate sofl model which -accounts for important soil
properties such as path dependency, dilatancy and soil hardening
becomes an 1mportant part of any refined analysis. Therefore, ché

final purpose of this study 1is to demonstrate the need to use an"

o

elaborate mbdel_in analysis of very 1egortant structures such as dams

\
3

or mat foundations. - . .

/\\144 ORGANIZATION OF THESIS Y '

-

The development of the'analysis and investigation reported herein

is organized in the followiﬁg,manner: .

The formulation of the constitutive equations for work hardening
granular elasto-plastic material with cohesion between the particles
(&Y -

1s presented in Chapger II. Also, the comparison of the derived rela-

~tions with exper{mental results is evaluated. : ’

éhapter 111 1is partially devoted ‘to the developmeﬁt of a finite;
element which Iincludes the relations defined in the previous chapter. -
' The finite element is then attached to a general purpose computer

program. A detailed procedure for evaluation of required model para-

meters is presented in the second half of Cha§bg{\£§1.
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. : . “
The finite -element implemented in a general purpose cbmguter

program 1is validated in Chapter ];V.b:\solvin_g ‘problems related to

L]

.geotechnical engineering. ‘9 footing problem 1is examined and results

are compared with experiments. A comparison withr:another'finite
) - ‘x\

element model (n'onlinear- elastic) of a léfge embankment {is pei‘~

fomeg.

* The study of nonlinear sta‘t:ic soil~structure interaction is
pres®ited in Chapter V. Here, the influence of' elasto-plastic soil‘ on
a mat foundation 1s examined first and results 4are compared with those
obtained by cc;nve;xtional methods and other finite element methods.
The effec§ ‘of water fluctuations and’uplllft water pressures on the
behavior of concrete gravity dam is analysed next. ;

Finaily, general conclusions are listed in Chapter VI.
. Y '

™,

Al
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CHAPTER II
2.0 FORMULATION OF AN ELASTO-PLASTIC WORK-HARDENING MODEL

FOR GRANULAR SOIL WITH COHESION

! - . .

2.1 INTRODUCTION

.
[ -
. Q [ -

‘*?  Many numerical techniques for the solution of load-deformation
problems in Soil Mechanics satisfy the equations of equilibrium, equa-
tions of compability and boundary conditions 'in a routine manner. It
i1s the choice of an appropriate constitutivé relation which determines
whether the iéolution obtained is realistic and meaningful. The
.existing bhenomenological zoncepts describing the behaviour of soil

are based on different fundamental theories. These include nonlinear

) o +

elastiéity, hypoelasticity, so-called endochronié theory, and finaaéy
the theory of‘;lasticity. Among the existing concepts, those.built
within the framework of:plasticity are, in the author's opinion, of
‘advéntage. ' The f§eory has a conaidergble flexibilit;'-to. enable

mddelling of complex behaviour Sf’diffe:ent types of soil. It alsg

proves to be very "cbnvenient: in incorporating the memory rules of .

. particular loading events.

The mathematical,theor& of elasto-plasticity is well established

gnd has been used extensively in many branches of engineering. The
theory postulates the existence of a yiéld locus which represents the
limit of elasticity. During the deformation process this locus. either

»>

remains station&ry (perfect plastfcity) or undergoes evolution

221t | .
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(work-hdrdening). The—flow- rule 1s formulated in such a mannér that

LA 4

the dh'ection of plastic strain rate is uniquely determined by the

stress state itself. _

In Soil Mechanics various combinations of the yield functions and

\
hardening rules have been used so far. Isotropic hardening, kinematic

hardening and mixed hardening rules with hardening due to plastic

' [

volumetric strains and plastic shear strains gave rise to models of’

varying complexities.. The Critical State Model, models due to Mroz et

L]

al (1.31}] ([l1.32], Lade [2.1],” Nova [1.35], Pgorooshasb and

Pletruszczak [1.33] are a few examples of such concepts.
. v
' ©

The present chapter 1s concerned ‘wi~th thﬁa -establishment of
incremental stress-strain relations -for granular‘so{}l with cohesion.
Typical examples of tlpis type of soll are naturally d:" artificially
cemented sand deposits. '~ Cemented sands‘ax.'e found in many areas of the
world. The cementation 1s provided by small amounts of agents, such
as silica, hydrous silicates, hydrous iron oxides, and carbonates
deposited at the points of contact between sand particles [2.2, 2.3].

Cementation or cementation—like effects can also be produced by a

" dense packing of sand grains [2.4], or by a matrix of silt and clay

particles. Natural cementation 1s not uniforuly distributed within

the soil [2.5]. It varies over the entire stratigraphical interval of

any formation. It also varies on a small scale wit\hin any testing

<
<

- € .
sample, and unequal distribution of cementation agents is considered

a8 a main reason. ’ \

By adding a small amount of cement to the .sand it is possible to

obtain a material with strong enough chemical bond between the sand
¢ . “
7

A

AN

A
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grains to 1increase 1its’ strength characteristics and to, prevent -~
F g

possible liquefaction. Y

-

Static and -dynamic strain properties of ‘naturally and
artificially cemented sands h;ve been "s.t:udied by different
lnvestigators [2.6 to 2.11]. The difficulties related to appropriate
undisturbed sampling and testing of" naturaliy cemgnted sand réquirea
use of artificially cemented specimens. Th’ey are \.;sed for better
understanding of the behgavior of natur;lly cemented deposi~ts [2.3,

.2.9], and also they provide enough information for defining -design

criteri‘:i in the stabilization of liquefiable sand deposits [2.4]. ¢

These initial studies indicate thatﬁa}'tifidally cemented sands
. -
simulate the behavior of naturally cemented sands -[2.9]. Recent

research [2.12, 2.13] supports. the conclusions of previous work [2.14,

-

- 2.15, 2.16, 2‘.17] that the probé::::://of cemented sands change with

time period. For example the stiffIéss and the strength of cemented
"sands increase with time. Therefore, a;x underétanding of the effect
of cementation on static and dynamic strength and the deformation
behavior of sands 1s becoming increasingly important in design anci

-

a'ﬂglysis within geotechnical engineering.
\

For vanishi‘ng'cohesion the concept presented in this chapter will
describe .the behavior of pure (uncemented) sand. The*modei is based
[
on the theory of bounding surface plasti¢ity {1.26, 1.27, 1.31, 1.32,

2.18, 2.19], incorporating 4 non-associated flow rule and the idea of

reflected plastic potential. ' s

e

-
«
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The next sec\:tion psovides the derivation of the general "Ehrlee-
dimentional constitutive rela.tionships. . In the subsequent section a
comparison of the predicted behavior and 'gbserved’ response is'
examiqed.. This includes: (a) comparison with resﬁlts of drained
triaxial tests on natufally we?akly—cemented us_ands as reported in Ref.
2.3; (b) comparisor{ with results of dratned triaxial test on
artificialkly cemented sand with 2% cement reported in Ref. ' 2.3; (¢
comparison of results of drained triaxial tests on artificially

\

N .
cemented sand with 5% cement reported in Ref. 2.4; (d) comparison of

- .
-

results of undrained triaxialﬁ test for a cohesionless granular medium
ag reported in Ref. 2.20; (e). comparison of results of predicted
behavior and observed response for cohesionless granuldt medium under
cyclic loading as’ reported in Ref. 2.21; angl (£) parametric study of
the effect of different par;ameters (employed in the mo;lel) on the

results obt‘a‘in'edf for cemented“and cohesionlesgs sand behavior under ”

‘monotonic as well as cyclic loading.

2.2 FORMULATION OF THE+«CONSTITUTIVE LAW .

2201 Conceptual Baseline

+ .

The cgnstitutive concept described in this section represents an
éxtension of the model proposed by Poorooshasb and Pletruszczak [£.33]
to simulate the behavior of na'turally or artificially cemented sand
deposits. The conceptual baseline adopted here is that the respoise
of a l'oose é‘émented sand 1s, in the mechanical sense, similar to that
of pure sslmd with hiéher relative density and 1nherei1t cohesion. The
applicability of the model discussed in Ref. 1,33 extends to pure

sand in a wide spectrum of initial void ratios, ranging from a very

.loose to a very dense one. Therefore,” ‘the mathematical framework

-
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ants p, q and J
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ical Pornhlation,

The formulation of the constitutive law is presented ip relation to
~ N - ’ \l. \
the principal effective st:esses’oi(i-l,2,3). The three stress invari-

3 are defined as follows: %
p=~(0; + gy + 53)/3

e a—— -

| q",/g'[(%+ P2+ (og+ P2+ (?3+‘p)2]’5 (2.1)

I3 = %[(01 +p)3 4 (o2 + p)3 + (o3 + p)3]

+
S Py
The state of stress in a "triaxial"” loading teat is commohly‘ fined as -

01>'02 - 05. Hence; it follows that thesej’nVariénts b;come
' T
p=-(op +2 03)/3 .

. qQ = 03 - 0] : (2.2)

J3 "3,'27\(0'3."'01)3

: ».
For convenience, the angle ‘meagure of the third stress invariant
(analogous to Lode's angle) is introduced and defined by -

o

F

J3
1 27 2.3

‘0 o= b -1'_____ . =T
6 38111(2 qa). EéG(

ola

The angle & can be directly identified in the so-called n~plane, i.e.

3

0] + o3 + 03 = const. The volumetric strain rate év and the distortional

straln rate & represent the strain rate invariants which are compatible

L3
-
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q

.with the above stress invafiants p and q. év and & are exprgsséd as

fol}ow:{ . - 5\ ‘ S
LS
. ) . . .
€ ‘“(£1+€2+€3) .
Y ' y
S L )1k - (2.4)
L] > * L] 2 [ ] .“ 2 L] .‘ ., i
- & = ¢/§»[(el + ev/3) + (€p f ev/3) + (g3 + ev/3) ]
For conventional 'triaxial' loading equations §2.4) reduce to
4
L b m o =(8] + 283)
v ] (=1 ? ' ‘ - (2.5)
- LY . N
e=2¢ -8
) 1
and the rate.of work performance U is equal to )
.P )
[J [ ] ] . . f .
W= PE, + qeq = 0)€; + 2033 (2.6)

~

N
\.

The constitutive concept, as described below, is based on the following

(1)

(1i1)

agsumptions:

-

L}

Actlve loading process 1nposed‘9pon virgin material results in

creation of' so-called “"bounding” surfaég. . This surface

b3

reflects 1isotropic properties of the material and.is assumed to
undergo deviatoric hardening. "
The yleld surface, enclosing the domain of;elastic response, is
assumed ts be activated during stress-reversal programs. This

surface 1s allowed to t{'anslate and rotate within the domain

occupled by the bounding surface (kinematic ﬁardening).

Y

The hardening modulus of the material varies along the stress

rd

path from its initial very, large value (corresponding to the

1

\
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first stress reverdal) to a prescribed value on the bounding

.
~

surface. The appropriate iB&Frpolation tule is provided later
Y
N in this section.

v

~(1v) Plastic‘ flow ié governed by a non-assocgiated flbw rule thai
’ implies the existence of a potential functiﬁh which differs from
the yield function. -
(v) . The viscous effects are neglected.

For a given loading path §, with no stress reversal, the bounding surface
expapds with increasiné'load and 1is confine& within a failure state. At
the onset of  stress reversal, a yleld ;urface .18 created wh;ch is
perm1g2ed only to translate and rgtate wi;hin the bounding surface® For
the state of stréas enclosed by thé yleld surface the behavior is'purely
elastic. 6Bce the stress path £ ébparts the yield surface tﬁe behavior
becomes elasto-plastic.‘ The mode of accumulation of plastic distortions
during the stress reversal process diétacethhe contraction or exparision
of the bounding surface. If the stress pofnt reaches and tends to move
beyond the bounding surface during stress reversal programs, the behavior

is again governed by the bounding surface. Both surfaces and the loading

path are presented in Fig. l.l1.

Consider first an active loading process during ‘which the stress
point 1s located on the bounding surface. The equation of this surface

is assumed "n the form

P

F=q-ag(8)(p +p) ‘ (2.7)

where the parameter m = m(ep) describés ‘the history of plastic distortion

eP

7




' E , eP = [P ar': (2.8)
. - ‘\ . “wy

* The bounding 'surface in the q~p space is presented in Fig. 2,2(a), In O

<:;\w\the efféc&ive stress space, 21, equation (2.7) represents an irregular

cone having its apex displaced by P, from the origin and its axis’ -
f ' v 4
coinciding with the diagonal of Zi—space. ’

.
~

'The function g(0) 1s postulated in the form (William, Warnke

[242]) - .~
’ . . * } - ‘
1-k2)a+ @k - D[ + b)Q - k2) + 5k2 - 4k ]} .
" g(8) = & )a + ( >£( b)¢ ) k' 2.9y
(1.- k2)(T+b) + (1 - 2k)? ‘
’ ) ) ‘\'
where . f
R a =3 cos 9°-gin 0
(\ . - ¢
b = cos 20 ~./3 sin 20 .
k= (3 +s8in ¢_.)/(3 - sind,)
£ . f
N s
and ¢f represents the ultimate internal. friction angle.
AN
— r \
The parametef‘po reflects the tensile strength of the materiak under
//’f ﬁydrostatic conditions and is -a function ofisthe cohesion ¢ and the angle
~ ' . . .
~ ’ of internal friction °f and is expressed as P, = ‘c cot ¢f. . « -
'To define the functign m = m(ep), a simple hyperbolic form is used,
viz. i
) _:/ . ]
\ N \\' .
eP . R
m = o  (2.10)
A+ eP )
?
\ - 4
i
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A

where A is a positive constant and me = 6 s%p ¢f/(3 - sin ¢fY} Although‘
other“functions allow strain hardening as well .28 straln softening

N kS .
behavior (Ghaboussi, Momen [1.34], Prevost, “Hoeg .{l.24], Vernieer.

[2.237)), this type of function describes only strain h&rdening. RN

[

The derivation of the corresponding constitutive relations 1s

presented next. Assume a non-associated flow rule

. s DY ~
sl;' A= . (2.11)
{

in which\W = 0 ;ép?esents the plastic potential postulated in the form

. Pt
¥=q+a(p+ po)s(e)zn(——;;c—f) =0 (2.12)

-

In equation (2.12) mc\apd p, are constants. The parameter P, has the
dimension ‘of stress representing the size of the plastic potential and

mc\defiﬁes the value of q/g(®8)p for which eg =0 (by analogy tb‘Critical
- [

* State concept). S\ The consistency condition, .requiring the state of
. . N

r

stress o, to remain on the bounding surface, reads

[

"dF”-%f-;—&i+°iép-o \ C(2.13)
1 aeP S :

Writing the second equation in (2.4) in the form

.

- f2(banyt L @aey

“where eg represents the deviator of plastic strain rate, and utilizing

-

equation (2.11) one obtains

- -
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»

. e /25 [(dev %Z—i)(de\: %ig—i Ik o @as)

o

Substitution of equation (2.15) in the consistency condition (2.13)

yields‘ : - ' .
S v
oo oF 3
. 60’1 i ]
“ A= ——T{—-—-_- (2.16)
p . i
where y ) : \
. 1 N
Y \ !
2 dF dm )4 oy !
. . HP /_7;‘ Y -a-'-e—p' [(dev -5—0-;)(dev 32!-; ] _(2.17)

“

and Hp represents the plastic hardening modulus.

After differentiation of equations (2.7) and (Z.I,LJ) (with respect

¢ <

‘to m and ep, respectively), the relation (2.17) takes tb}ne form

I

!

' ‘ - (m, - m)? o
- /2 f. Y Y | 1% .
Hp /';- g2(0)(p +‘ Po) T [(dev B-E;)(dev 6&;;)] V(2.18)
.'J * \5
so that H_ + 0 for m™» m_. ~ -
o] ' £

.
¢

/

Iq order to derive the stress-strain relations, assume the addi-

‘ tivity between reversible (elastic) and irreversiblée (plastic) strain

rates .
] L] .e ) L ] L
- e, = €& + & _ | 0(2.19)
Writing the stress rates in the form ‘h
~ v ‘
L] - . - op M . ’ -
, 9y Dij(ej .ej) | o (2.20)

A
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where Dij is thé— elastic constitutive matrix, and- utilizing equations

(2.13) and (2.11) one arrives at ‘ ’
A . D 3¥ 2OF
. ip aop 60q Q.
5y = 0y, - —g B & | (2.21)
. N e p . . .
\
with
aF . 6‘5’ ' e
H M s D .a—'.. 2
Lo e adi i] 601

The above constitutiyve relation holds good whenever the state of

stress is located on the bounding surface F = 0. Nofe that according to

-

equation (2.75 the expression‘for the gradient tensor (aF)/(aoi) takes

the form )
dF _OF dq , OF dp , OF 20 :
N do, q Bo, ~ Bp 3o, EX:) B0,
. ¥ ‘. » \
Differentiating equation (2.3) one obtains
| . 33 ‘
90 36 dq . 28
e + g (2.23)
aci . op aai aJs aoi T
where
20 _% tan 30 20 _ _ 9
. ’
%a. 4 83 2q3 cos 36
Thus, eqhation (.2.22) c;n be rearranged to the form - . i
- aJy
AF op dq
= = C} + c2 + cy (2.24)
aqi aoi ] bci aoi
in which - )
- T
2 ‘ r} % -
¢
¢ \ ’:
N ‘\\ & s
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3 dF _ tan 38 3F 9 OF 1, .
Cl W o ; C2 | oy, - ; C3 B = e——— ——— ¢ (2-25)
op %q q 3% 2q3 cos 39 98
aﬁd"according to eqn. (2.1) v ' :
. 1 . 20)-0p-03] | 2(o+p) 2-(ogtp) 2~( o5+p) 2
1 3 1 : ! I
-g'g— =-3{lp 5‘% - /—__— 205-01-03¢; '&;; =3 2(oytp) 2-(o1+p) 2=( 03+p) 2
1 q -
1 * 203~0)~0, . 2(o3+p) 2=(01+p) 2=(oytp) 2
7 ) ,
(2.26)

1

The gradient vector (a‘i')/(boi) can be evaluated in a similar manner to

n

\

that outlined above.

Consider now the stress reversal process. The plastic flow may be
described by the evolutioh of the yield surface which 1s created inside

tite bounding surface. +Initially, the yield surface ‘remains tangential

Y

to the bounding surface at the stress reversal point. For subsequent

loading, it undefgoes both translation and rotation within the domain

' v {
Define a new set of stress invariants, p , q and & , which are

- . ' \
related to a new axis system Ei . The latter 1s related to the original

system 21‘ through the transformation tensorT,,, and has its diagonal

1]
coincident with the axis of‘the yield swrface. Thus

-
L

t
p -—(cl+o

]
) +o3)/3 y

A
a - /% [, +9)2+ (s, +p)2+ (o, +p)2]% (2.27)

T

(¥
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where mo‘ = constant (m0<< mf) and

Fig. 2.2(b).
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J3' = %[(01' + p')3~.+ (02" +p")3 + (03" +.p")3]

6' = = gin~1(~ &= 3) ‘ . (2.28)
(q")
( : -
Wherg ) “ ci - Tijdj " | (2.29:)

and o! represents the components of the stress vector relative to the
new coordinate system Zi. .

- _ e
1

S

The equation of the yield surface i4 postulated in the form i

L 2%

£=q' -ug(8)p' + p) =0 © s (2.30)

% 0’ « 1

! = ¥ . -
Py ™ P, Tij 6161 ; 6i 1

; ' Y 1)
£ . R .
/ : 9
I -t

\ t

The translation and the rotation of the yield surface is guided by a
« * fl N

“

(2..’51)

c
i

surface and 1its intersection «with the current n~plane is calkled the

conjugate stress vector o, . This stress vector is on the bounding

conjugate stresg point. For any state of stress o, on the yield’surfage

1
5he~stress invariants pc, qc and @° satisfying

/ o

3
Y

(2.32)

c c d c
P=p; q= mg(8)(p+ p); 07= &
. : \\c
define the conjugate stress wvector o, - ‘The location of "the conjugate
stress point for a current state of stress o, is'presented in

v, i

L

aiE




>

e

-34- ) : -
No\Ee that, acc'brding .to equation (2.32), the p:;rameter 8¢

corresponding to%he conjugate point coincides with 0' i.e. local 'Lode'

paraneter (in Ei system). Based on relationg (2.32), the location of

Cc

; is defined by (seeK Ref. 1.54 for the

the conjugate stress point o

details of transformation)

/‘ e ' < s o: - -23-q° a, - pd, (2.33)
,'i 4 : ‘ ;\‘w ' '
where - ‘
;o N -
sin(8 + 2% L@ “.
a, =.'¢ sin 0§ \»
o sin(8 + -;—'—13)

v ( \ P4
' \
.Thenform of the translation rule for the yield surface 1s identical

to that in Ref. 1.33. For clarity and continuity of the presentation the

drivation is taken here in its entire form from thel above referénce.

!
\

“The mode of translation and rotation of thi\e yield surface 1is
governed by the following rules

(1) The axis' of the yield surface (which coiﬁcfdes with the space
: |

-

.

. : !
diagonal of Zi coordinate system) moves garal;el to a plane

containing the stress vector and the conjuéate stress vector,
. 1

i.e. the plane.passing through the‘originf peint 9 and point

c ic plhne .

i

0,° ~ hereafter referred to as the eci

X
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(ii)k The gotatibn of the yleld surface is such that the 'Lode'

parameter corresponding to the set of stress points common to
the plane eooiciciand the new yield 'surface (the yield surface

resulting from the incremental change in stresd point oi-)

a

remains equal to “he 'Lode' parameter of the conjugate stress

c {
vector ¢, .
N i

In order to satsify (i), let the vector normal to the stress vector

and_the conjugate stress vector be denoted by xi N N

c : .
Xi - Eijkoj S . ' _ + (2.34)
where gijk is the alternating tensor. Also, denote. by @ the unit
vector long the space diagonal in Ei system //i I
' a, =T, ., « . ' B .3
17 T3y o @3
with . >
- 1 ‘
; - ap = — 8 : (2.36)
] . - ) ' K /3 ' ’
: . " * -

Ag:cording,to (i). the conddtion A (.11 = () must be satiafied,' in which

_ i
i‘ »
. - - " - ) -~
@ Tjiaj . (2.37) i
v 'Ehis leads to the first equation in térma of nine unknowns TJ:I.:
€, . 050, . a =0 ' © (2.38)
1jk "3 kel s . . . )
. . «, . ' .
- . "\ ‘o - :
Consider a stress point 5, + Yidt' in the neighbourhood of 01
ch\oéerf in such a way that ' , ) ) .

. . -




* . \Q ‘
- - , -36- o : Y
N . :
6,¥; =0 | @39

)

If the stress point: 18 to be located q theé new yield surface as well as

on the 9°1°1c piaﬁe, the following:-two relationshipé must hofd:

» LR . . L4 A . .
o . f-—_—agf TJ+-g-£—-Yi-O . ' (2.40)
A 9 1j kot Vil
R te S ot =0 . - (2.41)'
1k "] ki o )
r“ . ' ! 5.‘ M L . . . ’é'
‘> “Combining equations (2.3%), (2.40), (2.41) and (2.34) ylelds . 3
- . ) . '.- . ' !
® _ ' % :
: o o ‘Yi - - 1jk j k(-6--—-)1‘ /A . )° ‘(2.152)
vhere )l ) : e -
-~y ‘ L ) "" f . . R ’ - “\
' - - of . .
T A=endsSa) M
z - ke v
oL . ) ,
S ‘ g =0" ' o ‘- - ’ k ;” K
, But | - O(Tij,oi) and hgnce T -
> . ' . . N '
' . . ‘s 36 * 00 "o o -
- r o 6 = — T -+—.._.... Y R i, (2.43)
’ ) B s aTij adi ‘l ) } ¢ . I .
»’ . - ::"‘ . ' ' . p
.Therefore rule (1i) whiéh demands 9 = 0 yi&lds for the presel’n: case
: : ° ' , " o )
30 - 90 . \ : .
. [ par AL (ar )/A] T (2.44)
. -y R 13 - , .
g . L . ) ".' « N ' i
. In geneta]: 6n‘é more equation may be obtgined from _the cfgn'sigtency ’
. condition X h
-~ ' - s
v ! - ’ T * . v \>
- . r . e ) !
3 , w:‘ N ‘ :’ ' ‘ » ,
- - ” Ct a - 3




r ¢ \‘
) . ]
, C dE df : .
% . Tt =0, %0 (2.45)
| BT, 11 " B0 1 T .

-and six more relations from the identities

TyyToe * Typlyy = 0 o . (2.46)

L
‘To Tecapitulate: to locate the new yleld surface, the new local coordi-

\ .

L}

"  nate system (L‘j'_ with direction cosiaes 'I,‘i + T, ) 1s to be specified.
\ , W j . dt

This is done using the relations (2.38), (2.44), (2.45) and (2.46)." .
The local plastic potential ¥' = 0O is postulated'x'in the ‘form of a

surface of revolution about ‘az1 axis having one of its generating curves

. {-
in common with the global plastic potential surface .‘F ‘= (0, equation

-

(2.12)., To obtain the invariants q, p in terms of q' and p' the

H

following transformation is made, viz.

T
¢

q=Q_'a*+—3:pa**

V2
n
1 /i R :
p = flax - Ty q arx (2.47y
where - N - ’ .
PN L= - - % ’
n - . ** = .
| ak ai.éi/»’B 3 o (ai 'ai) ' . ‘(2 48)
and ) D -
» a = % 7’ \ Ay y . N
. aai @y + o 61//3 ) , . (2.49)
Writihg eq. (2.12) in the form ' )
. ) i, 4 P+P o }
' : J .50
Y Eqgt Byip + p9),1n ( b ) . ’(2.50)
. .
”t ’ . . -~
g i ALY )



with : - : ’
o By -mc/b)\\ \ g (2.51)

Y

' h,ardenin§ modulus in the course of deformation should be specified. For '

» P

and- utilizing relatipons (2.47), we can express the local plastic

potential ¥' = 0 as ‘

~

/2
3 A Ll e - 5] ‘
L U p'B2+B1[(p™p)) - S5~ q'Jin — 5 =0 (2.52)
¥ 2 ’ £y N . 1] “,
where .
. kY & N ,
By = a*/a** and B3 = pc/a* + (2.53)

‘

To'complete the formulation the rule for variation of the plastic .

& .
the considered reverse loading process the non—associated flow rule can

be conveniently expressed by

-

o . .p « . - :
€y -,h(nk ak) o C / (3.54)'

» * ' /e .
Here n, and 31 represent the unit vectot normal to the yield and plastic

i
potential surface respectively

) BT .Y S 34
: ! . B0, ® . A0 T . ty
n, = 1 s n, m——021 ©(2.55)
1 ’ i ) N . ’ N .
QL ot )E, 2 _gg;_)g \
| Tc; 5% ' 30, Ba, .
. ‘whet:e ’ T .
\ f . df v o2 _ .y . ’
o 3o Tij_'—'—aoj_ " and o7 ™ Tiy 2o #%2.56)

the conjugate ¢

-

1

on the bounding surface

r

. S - _ )
Three stress vectors, the current stress vector o, on the yield surface,

)

ic and the -datum stress vector oid
s :~

A kY
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define the magnitude- of the parameter, h. The datum stress vector is

' #
coplanar with the stress and the conjugate stress vector.

,

Introduce the angle measures, & and 60 where

. T
4 o . o,0
— 5 = cos 1 1'(1: L
y)
. [ckak)(up % ) N

(2.57y
LS

is the angle between the stress and conjugate stress vec)o'rs, and'{)o"is
the maximm angle between #he conjugate and the datum stress vectors.
’

~

%

To obtain .the magnitude of the hardening parameter the following
‘ Y \’ .

type of interpolation rule is introduced

Al
-

' & .y \
h = hy (1r- -5;) (2.58”)

i

r—

where y is a constant and hB is the hardening’modulus on the. bounding °

.

gsurface defined as L . P -
’ , aF 5 a - ‘% a | '. 4 ‘
OF LKL 4 g
hy = (= ) ( ) /4 (2.59)
B bci 601 bck agk P
with Hp given by equation (2.18) and evaluated at conjugate. stres point ,
o.ic. According to equation (2.58), h ~» h as & » O the tase when the -
yield surface approaches the bounding .surfaééb,_ whereas for &6 * §
’ '
(stress reversal) we have h > 0.
Thus for all stress paths penetrating the interior of ‘the bounding :
. / N
susface the canstitutive relation takes the form .
H .
4
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- Dipap"qoqj . ~
ai (Dij - ¥ ) Ej\ (2.60)
‘ hY e
wheré
he - niDijn1 - , . (2.61)

Lo -

Try

} Note .that the unit vectors Bi and ny appearing in equation (2.60)

%

can be evaluated from equations, (2.55) and (2.56). * For example, the:
i f
expression for the gradient vector (af)/(aci) takes the form (equation

T o
.

2.56) A i N2
af . df
bai b} acj y
where, by analogy, to equation (2.24), we have %
of . op' o] - )
. \‘6—0—'- c] a—g;"' C2’-6%I+ Cg—a-a-r (2.63)
. i . . .
; y
with :
ey = O, o, -2 _tan30TRE 9 3 - 2.64)
3 | » él
Bp'- 6_‘- ELM 2(q")3cos 36' 0

»
K

The derivatives of the 1nvariants p', q' and J§ with respect to cx‘i are'

given by l‘é’lations gsimilar to equation (2.26) (with all the variables

/
primed). . ) i : T

Finally, it ,should be noted ;hat during stress reversal programs

the bounding surface can expand or .contract depending on the mode of

'accummulation‘ of plastic distortions, eP. Herein, the following

criterion has been adopted (’after Ref. 2.19):

. o



{
. eP = [ ePde'” ; EP =+ P ' (2.65)

P
e" >0 for sisi>0

where Si = c'i - péi represents the stress deviator vector.

The above presented constitutive relaitonsg, were dérived under the
restriction reggrding- the f}xity of the p"rincipal axes of stress wi‘th
regpect to the material eiement. If such relations are to be implement-
ed in' the finite element code certain coaxiality postulates .har've to be

imposed. Hereafter, it 1s assumed that the principal axes of the
14 ]

E2 -

'plastic strain rate coincide with the principgl.afces- of total stress
tensor. - This' postulate enables the concepts discussed above to be

3
[1

di‘rectly extended te cover any (general) loading program. .
2.;.3 Relation to the 'Vo;k‘ by Poorooshasb and Pietxjt;azczak

Thg formukation presented in the previous section is based on the
stress invariants p‘,‘ q“and 8 which ar\e defined in a different way than
in the work‘ by Poorooshasb and Pietruszczak\[1.33]. \This 13,‘ to a large
extent, a question of convenience. Here, 6 is defined as the angle
measure'of the third stress invariant and is exl')lic‘itely related’to J3
and q. The function g(8), equation 2.9, is postulated in the elliptical
fatm sugg;stedfby Willam and Warnke [2.22]. Such formulation leads
alWways to a convex m-plane sgc’tion (regardless of the value of ¢f),
whereag the' Fourier cosine serie.s proposed in Ref. 1.33 gives the convex

shape only for an infinite number of terms. The hardening functionm = m

(eP) 1s selected in a hyperbolic form analogous to that proposed in Ref.

~
s
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1.33. It seems that this form is suitable for relatively loose deposits
aﬁd it 18 recommended that this equation be generalized to, for example,
an exponential form which will allow for a smooth transition fgom a
sfable to unstable response (typical for.dense deposits).

Derivation of constitutive relation, presented in Section 2.2.2,
follows (as in Ref. 1.33) the coqventiod 6f theory of plasticit;. The
equationg} of the yield surface and plastic potential incorporate
plram?tér P, reflecting the tensile strength (under hydrostatic
conditions) of ' cemented granular material. The section concerning-the
formulation of bounding surface 1is concluded by specifying the éxplicit‘
mathematical form of gradien; vectors 0F/da 3 6¢/bci(not provided in Ref.
1.33) which 1is convenient in the context of future numerical

1)

implementations.

For gpregs-reversal histories, again a diffefent notation gs
compared to Ref; 1.33 is adopted. Local stress invariants p',’q', ©',
are defined in consistency with previously iptréducéd measu¥es and
appropriate transformation equations are provided (e.g. Equat;oq 2.31).
The translation and the rotation rule”of the yield surface is identical
to that of Ref: 1.33 and also presented hére. An explicit mathematical
definition of the conjugate point (lacking in Ref. 1.33), in terms of the
current state of stress, 1is given, viz. equations 2.32 and 2.33. The
equation of the local plastic potential, as proposed in R§¥a 1.33 leads
to a discontinuous transition between the states 1inside and on the
bounding surface when m is constant. For this reason a modified form of

T

this equation 1s proposed (conceptually similar to that in Ref. 2.19) in

which ¥' = 0 is postulated in a form of a surface of revolution about the

N
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A

@, axis haéing one of its‘generatingfcdrves in common with ¥ = 0.
Detalled mathematical ttansformation is provideJ, viz. Equations 2.47 éo
2.52. Finally, Qn explicit mathematical form for the gradient vector
aflaoi(not given in Ref. 1.33) is derived, which again is convenient in

4
the context of numerical implementation.

2.3 NUMERICAL EXAMPLES
L

.To demonstrate the capébiliéy of the pfoposed canstitutive model
for both monotonic and cyclic loading, the drained and undrained triaxial
testé on n;turally and artificiallf“cemented gands repo;fgg in Refs. 2.3
and 2.4, and uncemented (pure) sands reported in Refs. 2.20 and 2.21 a;e
simulated. - The effects of 'various parameters employed in the model on

- {
the predictions of the material behavior is further examined.

:2.3.1 General Procedure for Bvalu‘tion of Parameters Required ¢

by the Model

The féilowiﬁg paraﬁéférs muéf\be epeéifié&: ‘7—M<EEM~; B
1) elastic modplus E and Poilsson's ratio v or equivalently G and K,
where G is the shear modulus and K 1is ‘the so-called bulk
modulus, | \
2) parameters identifying the tensile strength of cemented granular
material (pO ='¢c cotd), the faique envelope (mf) and the zero 5
dilatancy envelope (m.),
" 3) isotr;pic hardening patameteé A (Eq. 2.10) and the kinemaFic

hardening péfameter Y of Eq.'2.58.
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Elastic constants G and K may be evaluated from known values of E
and v by employing relations from the theory of elasticity. The exist-~
ence of'a small elastic domain allows evaluation of shear modulus G from

the initial portion of the stress strain curve of ?niaxial compression/-

extension test.

Alternatively, a more churete estimete of the value of G can be
obtained from the unloading branch of this curve, if such results are
available with known values of G. The bulk modulus is evaluated from the

relation;
L3

K = 2(1'+ v)G . ’
T3 - 2vy)
N 7

Or in the scase of known axial strain € versus:. volumetric strain-

7/
Ey plot:
Ae ’
K= (KE— "G
v o
where (%%—) represents the strain ratio evaluated at either an ‘early
vV o ‘

sfage of loading or du{}ng a unloading phase.

For a given angle of {internal friction ¢¢, the parameter mf
indicating the poéition of the failure line in p;q space may be obtained

from:

6 sin b
mf = 3.- sin ¢f
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The value of m, defining the location of zero dilatancy line 1is

evaluated - from p-constant test.
!

The parameter A of the hardening rule may be obtained from either:

’

i) Conventional triaxial compression test by plotting the results

1
of such a test in q-¢ space and then applying the constitutive
. .
law (Eq. 2.21) to match the experimental data in a trial and

error process; or

“

3 kY

plastic strain eg-o, it follows that s

o odm Tf
Ty .. . de A

-

Since™ m = % one fobtains’

b

dm _ 1 aq,;:_map)

; and 21..3(;0;“: q=0 -

L deP P 3eP 1 aeP aeP
" This gives ' ) 2
4 P -
Thérefore, ,
' r e B 4 i
A= g2
1 % N Q ~, mf
R “

where p 1is ‘the applied effective pressure in a P-constant test, and Go

'represents the initial selastic shear modulus.

-

1) from the strain hardening rule expressed by Eq. 2.10, where for.



A S

-46-

-~

Finaily, the kinematic hardening parameter y can be determined by a

\

- process of trial and error by fitting any\reverse-compression curve. In

] M

general, the regsults of either drained or undrained compression test can
be used for evaluatidn purposes. Alternatively, y can “be evaluated from

an undrained cyclic test by matching the actual rate of pore pressure
: ]

generation.

2.3.2 Monotonic Loading .
2.3.2.1" Comparison vith Experimental Results

Test results of naturally and artificially cemented sand deposits

reported in Refs. 2.3 and 2.4 present a base for comparison with results

obtained by the proposed constitutive law. The properties of the

‘examined materialg are well documented in the above references (Tables 1

and 2 of Ref. 2.3, and Table 5 ‘and Fig. 7 of Ref. 2.4).‘ From' the
presented data it can be seen that the coliesion c (peak and reeidual)
varies between O kPa and 365 kPa, and the friction angle d)f varies

between 20° and 49°. ’ .

Comparisons of stress-strain and ;Jolume change curves fer naturally
weakly cemented sandldeposits, as tested by Clough at al. 12.3], are
shown in Figs. 2.3(a) and 2.3(b5 respectively. Five sets of results
corresponding to confining pressures of 69 kPa, 138 ‘kPa, 207 kPa, 27§ kPa

and 414 kPa, as employed in the test are presented. The model parameters

are evaluated from the soil properties described in 'Ref. 2.3 and are

‘shown in Table 2-I. The ‘common charaeteristic of the predicted and

evaluated results 1s that the stiffness and peak strength increases with
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increasing confining pressure. Also, strong volumetric expansior} is seen

n . ) 5

to occur during shear at the lower c‘onfining pressure lgevels.

The numerical predictions are in close agreement with the experi-
mental behgvior especially at the lower confining pressure levels. At
higher confining pressure levels the model predicts sharper transition

from moderate to excessive plastic flow compared with the 'results

ohtained in the tests.

Figures 2.4(a) and 2.4 (b) simulate the behavior of artificially-
cemented sand prepared to 74% relative density, Dr,.using 2% cement by
weight. \ The test data are.'reported in Ref. ‘2.3. Three sets of results

tack
corresponding to confining pressu;jeé of 103 kPa, 207 kPa, and 414 kP:a as
employed ir‘a the test are presented. The parameters characterizing. the
material properties as evaluated from thesé tests are _ahbwn in Table
2-II. The basic trend observed for the stregs—straln and volume change
data of the naéurally cemented sands in Fig. 2.3 is also exhibited by the

artificially-cemented sands. Here, the numerical predictions are in
. t

reasonably close agreement with the experimental behavior.

Figure 2.5 shows the compa\rison of results obtained by the proposed
model and those obtained from drained triaxial .tests on sand-cement

samples of Ref. 2.4. The cement content in the prepared samples is 5% of

)

the dry weight. . The samples were compacted t;o 100% Maximum Proctor

'density (American Society for Testing and Materials, ASTM, D558) and a

cured under water in the mold for 180 days in an attempt to duplicate the
field conditiomns. 'I'h(;_ model parameters are evaluted from the soil

AN
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properties in Ref. 2.4 and are shown in Table 2~III. Three sets of
results corresponding to confining pressures of 100 kPa, 200 kPa and 500
kPa are presented. Close agreement between the numerical results and

test observations for the three cohfining’pressure levels is observed.

It should be noted that the drained behavior of weakly cemented
sands presented in the above examples dfmonstrates the tendency of slight
material softening after the“failure 1oad is reached. Due to the nature
of the hardening function, employéd in the model which simulate only
strain hardening behavior, the stress-strain curves after the failu;e

occurs are not closely followed. This can be corrected 'simply by assum-

“‘j

ing a different hardening rule.

Figures 2.6(a) and 2.6(b) simulate the undrained behavior Bf a loose
gsand as tested by Townsend aqd Mulilis and reported in Ref. 2.20. Two
sets of results corresponding to confining pressures p, = 275.kPa and
Pc = 550 kPa, as employed in the test are:presented. Bulk moduli of K
= 300 at. and K = 600 at. correspond to the above confining preséures,
respectively. From the test data, Ehebyalues mg = 1.2 and m; = 1.15
were evaluqted. The analysis was performed assuming ¢ = o, with the
angie of internal friction ¢ # 30°. ThHe model parameters are summarized

N

in Table 2~IV.

The effective stress paths are plotted in Fig. 2.6(a), and the

corresponding stress strain curves are plotted in Fig. 2.6(b). The

~ numerical predictions and the experimental behavior are in fairly close

agreement. - The—-numérically predicted stress path differs from ths

experimental one only when the failure line is approached.

. -
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2.3.2.2 Parametric Study

For' tha selected examples, the parameters used by the model are

‘derived from the material properties as reported in the appropriate

references. Due . -to the difficulties associated with representative,

sampling and sample disturbances fhe soil properties obtained from tests
should always be critically examined. Therefore, the sensitivity of each
soll parameter to any slight variation in soil properties should be fully
investigated.. Following \13 a parameﬁfic study of ail the important
paraﬁéters pqu by the model in test simulatioun under monotonic loading

prograﬁs.

The influence of cohesion ¢ expressed through parameter p,=c cot ¢

\ . . ,
on the reéanse under drained conditions of both naturally and arti-.

- ficlally cemented sands is shown in Figs. 2.7 and 2.8. The values of the

cohesion ¢ evadluated by the tests and reported in Refs. 2.3 and< 2.4 are
25 kPa for naturally- cemented. sand, 46 kPa and 220 kPa for artificially
N
: 4
cemented sands with 2% and Sz:eement respectively. Ignoring the presence

A
of the cohesion between the sand particles (po- 0 kPa) leads to reduction

in the magnitude of the failure loads, whereas the overall stress-strain

.bhractefistics shows no significant difference. The reduction of the

“ B .
failure load 1is more pronounced at lower confining - pressures and for

sands with a higher percentage,Gf/ceqentation.-

¥

& ,

Figures 2.9 and 2.10 simulate the undrained behavior of loose ?ﬁnd“\\\{ .

(2.20) with cohesion. Two sets 5f fesults cgrrespon&ing D confining
' . Ed

pressures p. = 275 kPa and p. = 550 kPa and cohesion of ¢ = 0 kPa to

¢ = 100 kPa are presented.

I
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'I'he sand pr0perties reported in Refe 2,20 are for cohesionless loose

¢

sand. 'I’he range of cohesion c = 0 kPa to € = 100 kPa employed in the

2

n :'o perametric study is obtained through analysis of the data for both
naturaliy and artificially cemented sands, reported in Refs.‘ 2.3 and 2.4.

The magnitude of the-.cohesion in naturally cemented sands variea from c=

L :'

0 kPa to ¢ = 175 kPa (Table_'Z. Ref . 2,3),.while in the artificially ‘

b

. . <y ! \«

emented sands the cohesion is a func-tion of the‘/&ebnﬁage of agents

. ' t

N p_roviding thé cementation, and’ is* regulaf:ed by t e'signer oty ‘the
mixture. R - e e ”

S N T The effective stress paths for m_oﬂnotonic loe)%ng are ploted in .the g,
7 .. 7 =..p stress, space in' Figs 2.9(a) "and ﬂ2.10(a), while the plots of .

. . o 2

; corresponding stress differences q versus axi.al strain El» are presented
- . . . .ﬂ‘ ; s

in’ Figs 2 9(b) and 2.10¢by. - 7 S
. o .
The influence of cohesion on the responsz nnder undrained constraint

- - - - ~ .

. is as expected.’ For di,fferentvconfining pressures undrained strength .
. . R N ’ N h

N

.. increases ‘with increasing -cohes,ion.l It gan be further concluded 't'hat

-
[ LY
B

T quaIibatiVe;y similar response is observed for both confining preSSures

W with undrained strength increasing with increasing confining pressure.

.y A -
\ )

o M' " Identical response of cemerited loose sand as the one. prese‘nted above
PN . .Y Yy . , . : fl ;.
' ‘ 1s observed .in- the results of t%e_‘ undrainéd triaxial -tests performed by

- - properties of formation called Vincentovm F-orma’tion, located on-a mar"{—
\ ) b t
'made artificial igland on the east bank of the Delaware River, within the

.
* :

Nev Jersey outer coastal plain. ‘The Vincentown Formation-is composed of

Saxena -apd Lastico in Ref. 2.5. The findings reported are based ‘on the

!

S

«

~
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a cemented fin‘e_ to medium greenish gray sand with a varying silt content.

Due to a lack "of suffictent soil properties in Ref 2.5, the evalu:lation of
t:he'.,requ‘iréd -elasto-‘plastic "model pat"‘ax‘neters'was not possible.. « There=
;:'ore, the reported undrained triaxial tests are not simulated.: How/eygr,

t:he results of - these testzs when complred with the results obtained by
simula,ti.ngfthe undrai’ne\c}w behavior . of loose gand (Ref. 2,20) and with
SR ﬂadd_ed) ;:ot;esion, 1ea-d to ttTe same observations as concluded in Ref. 2.5:
2 . .':(a)- \the stress-strain beﬁa\{itfr, the pore pressure response, and the
‘ ‘é\;:rgs,”s'f-pa.t:hé indicte that the cemented loose sands are strain Hependent;
'.'(.b) ‘_!;}';é:'cement‘ed soil skeleton initially covmp‘resses under a load, with

s further s‘t;‘aiéxing lilt tends to dilate as demonstrated on the st/ress path
{)lots;;'1 (¢) at low axial strain (g, = 1%Z) Figs. 2.9 and 2.10, the cohe-

. . sion ca-L‘.rsed b;z f:he‘cement bond'ing' between particles 1s the ma jor con-
N .tributor of strength. The ;:ohesion‘ strength is‘destroyed around a 1%
strain. 'and at the same time the frictional strenéth becomes pre-

dominant."”
[}

-

. ' The influence of m. (slope of zero dilatancy li‘ne) on drained and
undrained response of cemented densé (Ref. 2.3) and loose (Ref. 2.20)
sands under different confining pressure is presented in Figs. 2.11, and
2.12 respectively,. The actual values of parameters ™ and m f.or the

f
examined materi%‘ls are shown in Table 2-II and Table 2-1V. Numerical

~ L .
predictions on dense naturally or artificially weakl‘y cemented #dands at
. . 2~
confining pressure of 207 kPa, and cemented loose sand with cohesion ¢ =
h : 4
40 kPa and confining pressures of 275 kPa and SSQ.kPa are plotted. From

the data presented it 1is evident that the confining pressure does ndt

influence the qualitative material response. A decrease of m. does nbt




%

_ ) - T
S )

.

. . \ .
affect the stress—-strain drained behavior, but influences significantly

the volumetric chanées in the material. It can also be observed that for

\
.

loose cemented sands :by reducing mc the undrained "shear strength

N X,

“increases.
%

Figure 2.13 describes the influence of varying bulk modulus K on the
drained behavior of naturally or artificially cemented (2%) sands. Here,
the volumeteic strain change 1is affected by increasing the value of K,

.while nds effect on the stress—strain behavior is observed.
Ve

Figures 2.14 Qnd'Z.}S describe the undrained behavior .of" loose sand
with cohesion of 40 kPa _ana varyiﬁg‘ bulk modulus K for ;onfining
pressures of 275 kPa and 550 kPa reépectively. The value of the material
shear m;ﬂulug G was kept constant. The corresponding stresshdifference-
versué axial strain €], ar; preaedted in Figs; 2.14(b) and 2.15(b) for "~
both confiﬁing pressures. The results show the same qualitative trend.

Increase in the value of K resulks in moré signlficant generation of poré'

pressure prior to subsequent reduction.

A common conclusion for all the undrained cases examingd under mono-
tonic load increage, for material with" or without cohesion, 1s that
initial generation of pore pressure 1s followed by subsequent reduction

due to plastic dilatancy of the material.

J‘ -
The influence .of A (hardening constant) on drained response of the

natufally weakiy cemented sand and artific%ally cemented (2%) sand under
. | _
confining pressure of 207 kPa.1s presented in Fig 2.16. - Numerical .

i \ *

predictions on naturally and artificiall icemented sand for A = 0.0001
i;Tsented it is evident that the

and A = 0.01 are .plotted. From the data

-
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hardening constant A strongly influences the stress—strain as well as the

-

volumetric change Wavior .

’2.3.3 Reversal Loading
2.3.3.1 'Cq;n‘parison with Experimental Results

The results of madei simulation of a cyclic triaxial test reported
by Ishihara, Tasﬁoka, and Yasuda (2.21) are summarized in Figs 2.29 and

" Y

2.30. " The physica? prfperties of the Fuji sand are reported in the above

reference and mategfal properties used in model simulation are'determined\

fortaid ' .

Ve
from monotonic test results. The material parameters which could not be
: s

\

directly determined. from the test results are estimated. :

' N

'Figure -2.17 represents comparisons of mea;hred and predicted
undrained paths in‘strakn-confrolfed static test cycled with constant
amplitude. The sensitivity of the predictions to the value of elastic
‘ghear Po&ulhs G was gxamined by employing G = 160 kg/cm2 (Fig. 2.17a) and

G = 120 kg/ca® (Fig. 2.17b). '

* The corresponding stress-strain diagram of this strain-controlled

cyclic undrained test and the model simulation are presented in Figs.

2.17(c) and 2.17(d).

5
.

The overall quality of simulation rvesults are reasonable. Pore

pressure is generated upon both loading and unloading. The rate of pore

¢

. 4
pressure éeneration gradually decreases. Stress amplitudes decrease with

decreasing effective confining pressure. . R

[y

By ghalyzing the experimental results a conflicting behavior can be
¢ ¢

observed as: ' !

A

ot
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1) during tﬁe loading phase negative pore pressure devélops within
the m.atet:ial (which 18 unusual), and
. 11) the number ‘of cycles to produce liquefaction seems excessive "and
the latter is very' sensitive to methods of sample preparation.
L
2.3.3.2 Parametric Study
Parameters influencing the cyclic behavior of pui‘e ?/nd cemented sand
are evaluated next. The effect of the cohesion ¢, bulk modulus K, and
the kinematic hardening y.are examined on the behavior of two sarlnples of
loose sand, reported in Refs. 2.20 and 2.21. Cementation is artificially
introduced by assuming different values of cohesion. All the other para-

- /
meters remaln the same as those defined in Tables 2-IV and 2-V.

- - *

—

Effective stress paths for an undrained two-way strain controlled
test on loose (Ref. 2.21) and cemented Fujl sand are presented in Figs.
2.18, 2.19 and 2.20. The confining pressure in all of the examined cases
i1s pc = 156.6 kPa, the considered cohesion 1is ¢ = 0.0 kPa, ¢ = 30 kPa
and ¢ = 50 kPa, and the value of the kinematic hardening parameter y is

2, 4 and 8.

From the presented results it can be observed that in'crease in the
value of y decreases the rate of pore pressure generation in both loose
and cemented sand. Also the rate of pore pressure generation _is reduced
by larger cohesion between the particles of the examined sand. The
reduction 1is quite significant during the early stagés .of loading

progran. .
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As in the case of monotonic loading programs presented previously

the effect of the G/K ratio on the cyclic behavior of cemented sand is
, ’

shown 1n Fig. 2.21. For the value of y = 4 and c = 30 kPa the plots of

[N

effective stress paths are presented. An increase of K (decrease of G/K)
\

decreases the riig of pore pressure generation. This is more pronounced

‘in ‘the early stéges of the loading program.

Fig. 2.22 simulates the behavior of cemented sand of Ref. 2,20,

'Effective stress paths for strain-controlled cyclic undrained test with

1
i

cohesion of ¢ = 0 kPa and ¢ = 50 kPa ‘and initial confining pressure of
pe = 550 kPa are presented. Two different typéé of loading programs
are 'presented: (a) magerial compréésed at the virgin loading Fig.
2.22(a); and (b) mater{gl expands at the virgln loading Fig. 2.22(b).
The stress—strain diagrams corresponding to the aboye effective stress
paths are shown in_Figs. 2.22(c) and 2.22(d). 1In both cases of loading
thé rate of pore presssure generafion’is the same. However, in the case

of initfal expansion. of the material during the loading process the

decrease of the stress amplitudes is more regular.

2.4 CONCLUQIQG REMARKS

The constit;tive relation presented in this chapter allows modelling
the behaviour of naturally or artificilly cemented sé;d with calcitg,
gypsum cement or other agence; For vanishing cohesion the model proves
to be applicable for both loose and dense states of packing of a pure

sand.

4
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The formulation utilizes a combined isotropic-kinematic hardening
law. Such a law allows modelling anisotropy reéulting from nonhomo~

genefty of deformatfon at the microscale (residual stress anistropy).

The yield locus is assumed to be geometrically similar to the bounding -

surface and 1s allowed to translate and rotate within the domain enclosed
’ 7

by the bounding surfacé?A The kinematic constraints imposed on the evolu~

tion of the yield surface are such that at the limit both the 'yield and

the bounding surface became tangential to each other, the common point

being the stress point itself.

P

The}bnumerical examples provided in Section 2.3 support the major
\ -

4

conceptual assumption involved. Cemented sand of aﬁ“Eertaip initial .

density can be modelled as a pure sand of a higher density with internal
¢ ;
cohesion. In the present framework the differences in qualitative trends
kY )

between loose and dense sand are largely affected by the degree of
separation between the zero-dilatancy and failure envelopes. It seems

that, in order to improve the effectiveness of the present concept, Eq.

2.10 defining the strain-hardening chataéte:istics should be re-examined.

In cemented material the characteristics may display sensitivity to the

. : /
confining pressure and transition from stable to' unstable response.
Unfortunately, due to lack of appropriate experimental data, such assess—

ment is at present impossible.

The above described concept has been implemented in a finite element
code. Subsequent chapters specify the details of finite element formula-
tion and provide the solutions to a number of boundary— value problems of

practical significance. ' /

hat §
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CONFINING ) .
PRESSURES *

: 69 138 207 276 414
PARAMETERS kPa kPa kPa kPa kPa
failure line e 1.68 1.56 1.53 1.64 1.52
dilatancy line m o 1.50 1,42 1.32 1.36 1.35
parameter p_ (kPa) 29.7 29.7 29.7 29.7. 29.7
shear modulus G (kPa) 25112 38062 48546 57693 73583
bulk modulus K (kPa)- 33487 50750 64728 76924 110374
hardening coqstant A 0.0014 |} 0.0014 | 0.0014 | 0.0014 | 0.0018

TABLE 2-I. Values of parameters for proposed elasto—plastic model of
weakly natyrally cemented sands
CONFINING .

PRESSURES h
103 207 414
PARAMETERS kPa kPa kPa
slope’ of the failurg line L 1.51 1.51 1.39
slope of the dilatansy line o, 0.91 1.20 1.05
parameter p (kPa) 54.8 54.8 54.8

initial shear modulus (kPa) 35117 46925 61087 °
initial bulk modulus. (kPa) 45017 | 61466 | 81087

hardening constant A 0.0012 0.0012 | 0.0012

TABLE 2-II.

>\

Values .of parameters for proposed elasto-plastic model
for artifically cemented sands with 2% cement at

relative density 74%
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CONFINING
PRESSURES - 0.1 0.3 0.5
v ' .
\ PARAMETERS ' . MPa MPa ‘MPa
slope of the fatlure line mg 1.72 | 1.74 1.72
slopg of the dilatancy line m, 1.69 1.65 1.69
. parameter p (kPa) . 260 260 260

initlal shear modulus (kPa) ‘| 185000 | 280000 | 555000
fnitial bulk modulus (kPa) 209000 | 295000 | 585000
hardening constant A . 0.0014 | 0.0018 } 0.0018

~

TABLE 2-II1. Valués of parameters for proposed el sto-plastié model
for artifically cemented sands with ?2\qgment at 1007%

Maximum Proctor density

, N\
*.l $ ~
% CONFINING
PRESSURES
. 275 550 T
PARAMETERS kPa kPa
slope of the fallure line"mf 1.2 | 1.2
slope of the dilatancy line L 1.15 1.15
- parameter Py (kPa) 0 0 .
initial shear modulus ~ (kPa) 29430 29430
' |initial bulk modulus (kPa) 29430 | 58800
‘ hardening constant A . 0.0015 | 0.0015

i

r

JTABLE 2-IV. Values of parameters for proposed elasto-plastic model
for pure sands of Ref. 2.20.

-
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.
PARAMETERS "~ VALUE
slope of the failure line mg 1.56 ‘
slope of the dilatancy line L ‘ 1.29
parameter p_ (kg/cm?) 0.0
initial shear modulus (kg/cm?) . . 160’
initial bulk modulus. (kg/cm?) 240
Y . hardening constant A : 0.0025
: Iﬁéﬁitih hardening y — 836—
initial confining pressure (kg/cm?) 1.595
Table 2-V. Values of parameters for _proposed elasto-plastic model

oy

for pure sand of RefF. 2. 21

2
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. ' Lo 'FIG. 2.1: The yield and the bou'ndihg surface ':‘ \ )
- : ~ . in principal stress space . .
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FIG. 2.3: Comparison of model behavior with

experimental data for naturally weakly
cemented sand, (a) Stress difference versus
axial strain, (b) volumetric versus axial strain
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-~ CHAPTER I1lI

e

%E;ZZS; FINITE ELEMENT FORMULATION - . .

-

3.1 INTRODUCTION
' -

With the present state of development in computatiBnal -methods,
o ~ h
inadequate. material models are often the major factor 1in limiting the

capability of rstre§s analysis for soils. Unfortunately, generally

accepted constitutive relations for soil under triaxial states of stress

do not exist. Ne&ercheléss, there exists a large variety of models which
héve been proposed in recent years to model the most significant aspects
of soil behavior such as nonlineariiy, path dependency and shear: *

dtlatancy, among others -{1.13. 1.53].

The development of ' constitutive relations to exptess reai soil
béhavi&r is a difficult task. ~Thé complexity of the model requires‘
considérable effort in its implementation to any numerical algorithm.
Finite eiemeht techniqués employing elastic -or nonlinear elastic models
have been used widely in the past -[1.54, 1.64] and cénsiderabié*‘“
experierice ' has been aécumulated in this ar;a. For elasto-plgstiq o
constitutive relations (inclu&ing the proposed model), on the other hand,
the _complexities of existing formulations and the problems wiFh the

identification of sofl parameters make many of these models rather

difficylt to implement in pradtical problems.

~ Therefore, the objective of this chapter is to'incorporate‘inco an _;
"existing finite element the elasto-plastic constitutive relations;den@ved

in Chapter II, to implement the resulting finite ~element {in a

'

-82- N




L : - .83

. computer program, and to presen{ an elaborate protedure for evaluation of

>

; soil parameters required by the model. ,

The verification phase of the developed model outlined two critical
. o ‘ . + -
points 1n the apalytical proceedings simulating reversal loading p;oj

grams. At the onset of unlcdading following loading step, and at the

‘

ohset of reloading following ‘unloading step, either divergence or con-

siderably‘large number of i;efations'for convergence were req*&red. To

" of the codputation proidss s introduced. At the end of any loadihg or
un{q@ding phagé the state of stress 1s memorized (stored on tape). In

. : ' .
the following  junloading or reloading step of the loading program the

memorized state of stress is idtroduced as an.initial condition, and the

+ bpunding and the yield surface are adjusted accordingly.

- The implemented modiffg?tion limits the application of the proposed
" formulation to monotonic and relatively regular cyclic loading prograus.

"Also a pure- elastic behavior of the soil during reversal loading cannot

prevent dfﬁergenge and reduce the required execution time a modification -

.

e — — —_———— e — e ————— e -

. be simuléted. ) . - -

= )

3.2 REVIEW OF FINITE ELEMENT ANALYSIS - A
3.2.1 Formulation of the Element Stiffness Matrix -

i ' .The basic step in the fornulation of a model in any finite-element

. -

analysis is the derivation of element stiffness matrix K . This matrjx
) ’

relates the’ nodal displacement vector & to the nodal force vector p. In

the case of incremental stress—-strain relations of an element the element

stiffness matrix relates the increments of nodal displacement vector df
' rd ~



[ ' ' -84-'

-

to the’ increments of nodal force vector dp. Toderive this relation the
. ) “
it com‘pa_tibil'ity\ of strains, equilibrium of stresses,; and stress-strain

e

" relations mugt be satisfied. The formulation described below is the same

.

- \

asw:he\ one. adopted in Ref. 1.54 and relates to,/the computei‘ program

s

MIXDYN adopted for implementation of the proposed/hodel.
" ¢ . . SR

4

¢

«
/ ’ -

. To approximate the true displacement behavior of the element in a

’ [

K

continuum, shape functions N are assumed. 'These functions relaté the

increment of internal displacement vector ‘du at.any point within the

/
element ‘with incremerﬁf of nodal displacemené vector d&; thus
’ ‘ . B ,/’ ~ ‘-/
' dy=Ndg ' C31)

.
/

. / .
For flnite element applicatious i/{: 1; necessary to relate strain to
T . . /

‘the -displacement .at, elemént nodes.’ l'/With' known displacements within the

o

element the increment of strain vector de at any point can be obtained by
' L4

taking suitable derivatives of Eq. 3.l1. If the .detivatives of the shape

functions are composed in the matrix B then the incremental strain-

-—displacenent—relationship is exppessed as: ’ .

-

N K ) dg = E . d'é ' . . ” \(3.2) o —

o

. / ' X L
o The matrix B for ap element comprises a row of m (the number, of

N .
-

, ~ .
nodes in the element),submatrices B, which for.plane problems take the

~1
/o - .
form: 4 < . - oy o
. - . -
) *bNilbx 0
0// . '-
- o e gy [T L G
- ///— . ‘ , ' ‘ i ,
. S W ,
J bNi/Oy aNifbx ‘
/ L 7 -
/
’/
/ !
-/ » . .
\ </ L. T
/‘\ . ) ’
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‘Now the principle of virtuall worﬂ is used to establish £he.incre-

mental equilibrium relation between the increment of nodal force vector

¢ . . Lo ‘ .
dp and internal stress vector dg. The virtual work equation in classical -
textbooks on the finite element method is nérmally used on total stfessé§

and forces rather then on incremental forces since the latter are just a

numerical approximgtion technique. However, in the recent textBooks and

.papers related to ‘the incremental flow theory of plasticity [L.54, 3.12],

.

" the virtual work equation 1is used on incremental stresses and foréeﬁ.

This procedure is adopted here. Also as in Ref. 3.12 the procedure is

further simplified by assuming that all forces acting on an_glement.aré

.

concentrated at the nodes.

A set,of virtual displacements d§ is applied to the nodes. Let the

»
v

incremental stress at a point in the element be dg, and the strain
corresponding to the virtual displacements be qE. Equatings the work done

externally (at the nodes) to that done internally gives:

-

: "
=T - -T .
d8 ns'dp =+ [ de » do e dv , (3.4)
o~k ' | Bt
When Eq. (3.2) is sybstituted into Eq. (3.4), we have: "
. ¥ . - J -
. M . +
dg¥ .- dap = a8 [ BT . dg - dv _ T (3.5)

\4
. P

Using the fact that the cbefficients of d§ are independent (which’éllows

d8 to be effectively cancelled), we obtain:

~



’

\ . - ~

> -

."rh:gs‘importa’nt: relation is used whenever a set of nodal forces is requir- -

ed which are to be equivaléx{t to (or in an overall sense to be in egquili-

- -

‘brium -wi'tk{) the. internal element stresses. '__ . '

4

- -

) - b4 ~

To proceed furéhe_r with a solution 'rgquirgs a constitutive reRation--

5\

; sﬁ.ip between dg of Eq. 3.6 and d,g' of Eq. 3.7 to be éstaBlished.' The

incremental form -of the stress—strain relation is expressed as

[N
s

. » .
: dg' Dep vg d£ . . [ l (3'.7),
l‘ :" ‘

. - - . N
where Eep is the elasto-plastic constitutive matrix for. the ‘current

LIS

stress i'eng

-t s ot )

.The | egpression for d§ (Eq. 3.7) substituted in Eq. 3.6 and intro-
T b":. N . ] X ‘ 1) Y
ducing Eq. 3.2 into Eq.. \3.7\ gives for each élemen_t N \

. ® - " . .
- T dp=(f BT 0P eBav) a8 B R Y
. B "v " ) P . .
- :@ A . Y
or \ o =K * db (3.9)
a \ ’
where
_— : . _ ) 4
A K= f§T°De\v'B-dg) - (3+10) ‘
D) « ~ ’ v‘\ ~ -~ ~ N .
1 . N ' . e ) - R - B .
- - . Lo . . ’ ‘ f ;
is the desired.element~ stiffness matrix. T i Foo
- Commonly im geotechhicé&pgoblénis stralns are zero at the start of
loading' so that  the initial strain’ ingjements are equal to the total ’
‘strains. ' ’ X i )
: ] ' L’/’ . : .
- ; ‘ ’ VA
. . o ) . %
~- . , K
L] . = 7 .
2 ~ a - N
. . : , ‘



‘ : The corresponding stress increments age dg.= ¢ - 99\(»90 being the

initial 'stresses). Strains c;a((‘n,v however, occur due to causes other than

load application, e.g. by temperature change in structures, or by creép

"

. or saturation in soils. Such strains g can be viewed as “initial”

__:strains which are subsequently increased by the load-induced strains.

Consequently, the dg  for use in thes constitutive law Eq. 3.7 is more

generally defined -as ' 4

;

-

e ' g mg) =D - . (3.11)

~

'

\ . , ' '3 .
Re-arranging, eliminating £ by Eq. 392 and substituting in Bq. 3.6:

: ) i * s y

o D*Pepedgeav + [ BTeg cav - [BTeDPec av | (3.12)
\4 v -
N -0 . .

g~ [ B
v

—_—— ¢

Denoting the llast two terms of Eq. 3.12 by Bg ,and ge respeé:t—ively we

- 0 o
have: .t
h N .
dg=K *df+RB ~PB . . (3.13)
. . _ o o 2]
. ) o N - ,ow, - ' @ -

Once tHe element stiffness matrices have bm derived: and

transformed from the local to global coordinate system, t’e structure

-stiffness matrix K  which relates the load increment dr to”the nodal

displacement increment 968 of the complete structdre can be formed by

. addition of element stiffness i )
dr_ = K, * 45 : B ‘ \(3.14) .
P

ﬁy.solving Eq. (3.14) the modal displacement vector d§ is fould, ’

The stresses within each element are obtained from:

?" -
1]

¢ . -

Note that dg_iz/ now the actual but not the virtual set of displacements .

-



e®

’ . dg =D e B eds. . LT T 3as

*3.2.2 Numérical‘Procedurg S

. * s\

{ . 9 '
A solution scheme for the nonlinear ranalysis involves three major

computational steps [1.54]): (1) linearization which _constitutes the

evaluation of the tangent stiffness matrix as part of Eq. 3.14, (2)
equation solution, which 1is the computation of -an effective -load, vector,
, and the solution of a set of linear %a?ptlons,_and (3)\state determina;

* tion which involves computation of in¢rementg in stress and strain that

»
*  correspond to the displacement increments obtained after Eq. 3.14 has

. . -

"

been solved.

The structure tangent dtiffness matrix in a finite element formula-

‘e -
i

tion. is generated by assembly, of the element stiffness matrices, and

reqﬁires the material constitutive relationship as stated in the previous

- section. Fqg_elas§o-plastic maierials, the latter varies with the state

, of stress and strain within the elemént. A numerical procedure is then

'+ _employed to establish the dlement stiffness by evaluating the constitu-

-
tive relationships g£¥;31bcted integration points.
» . { R
For the- analysis- of nonlinear elasto;p}astic problems different
i
N approaches have been suggested. They can be 1iterative, incremental or
. R X \

» Y

¢

combination of both. For work-hardening elasto-plastic materials, the

‘ .
most suitable approach seems to be the incrémental application of load

and by iterating within the increment to satisfy ‘equilibrium. By apply-

'ing load in increments and following plastic action as it develops one

[+]
may properly account for the path-dependent nature of plasticity.

"

o



-

’fhe structure is loaded in small increments, and for every step of

N . - i {

N u

loadfflg a new structural- st{ffness. matrix 1is calculated from the up-

" dated material qatrices er. A11 of thegdiechniques using either incre-

mental or iterative or combination of both run into the problem of an

appropriate error control of the numerical results. According to the

1 L]

combined procedure the total load P i¢ added in increments and for every

such*load step the residual force Q(&)‘ is caléulé"ted, as fo}lows,
j ' . d

(3.16)

5’ T. -
¢ fvés & - dv. - B

“ »
'

. Here,” P denot,e;é the total level of externally applied lhoads, and o

denotes the, actual stress level reached at the end of the steb. The

' 2 N

correction (the residual force) vector 5(136 may be applied in the sub~’

sequent load step or may be corrected within the current load step such

t

that essehtiqlly zero gé exist at the beginning of the following load

increment.” .Thus, within a step one analyzes for the successive loads

.
\

“'\ N b o - ’ N -
dB' fkbl, 9‘62, QS?, ‘etc., updating stiffness, strains, and stresses each

" time." Th#s procedure 1is known as the “incremental within one-step

Newton-Raphson correction” [l.54]. . ,
- M > ‘\

- -

-

As correction loads g‘;& serve to return drifting va’I};es to the proper
pat}{, ‘it is not essgﬁtial that the tangent stiffness matrix be used. We
may use the original elastic st;uéture‘ stiffness matrix in all load

steps. This form of solution has been called the "initial stress"”

method. W , N -
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After the displacement incremerits are obtained. byisolving Eq. 3.14,

Ll

it 'is qeéessary'tb coﬁpute the corresponging_increments in stress and

b

strain and hence arrive at a new state. This is the state determination
. * A J

phase, and is as impértant as the linearization phase. . However, it has

-

received considerably less attention in the past. Computatiod of straina

- - u . . . )
increments from displacement increments involves only kinematics, speci-
. " * » . - ’ ~

fically the strain-displacement transformation. The problem of co&pucing

the stress increment from a given strain increment involves the material
e ) \ -

-

0 1

constitutjve relationship.

/ ’ \
" 3.3 IMPLEMENTATION OF THE DEVELOPED FINITE ELEMENT TO THE COMPUTER

' PROGRAM MIXDYN .
. ' o

3.25;1 Features of the Program MIXDYN )

The finite element‘fptogram MIXDYN (1.54], has many attractive

P ~ ~ . « R
features from the point of research related applications. The program

written in modular form with (ge various main finite element operationsis
. ’

being pexforméﬁvby\separate subroutines. Also, it considers geometric or
, . ’ s ( - )

elasto-plastic material nonlinearity. A total Lagrangian formulation

using four, eight-, and nine-noded quadrilateral 1sopaiam¢tr1c elements

1s~ adopted to model the geometric nonlinear behavior, and four types of
<

standard elastq-pldstic material models can be considered (von Mises,

« 2 t

L 4

Tresca, Mohr—Coulomb, Drucker-Pizger). The computér program is based on

ﬁhe Implicit~Explicit time integration scheme of Hughes and Liu [3;11.

‘ .
The profile solvers DECOMP and REDBAC and a few other subroutines.are

based on those given by Bathe and Wilson in reference [3.2}. -

e

\
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h ~ A

The -elasto plastic, q%adrilateral isoparametric finite element

»

"developed in ﬁhis study is added to the existing element library. This

will provide a solution for mgny geotechnical as well as soil-structure
interaction problems.

i
3

3.3.2 Implementation of the Element . . . .

A1l of the existing "donstitutive vconcepts " for soil are first A
formulqted-and verified in the triaxial configuration o, 0y = O3

( \

‘Especially at the early stage of development, none of these formulations

a v

‘have been verified in truly triaxial conditions (beeause of lack of

appropriate experimental data). Subsequently, the stress—strain measures

v

are generalizeg™ro incorporate the general state of stress configuration

and various boundary value problems are solved to confirm the validity of

.

the concept.
*

The model presented in this study 1is applicable for general state of

L -

.stress agg as such 1s  1incorporated in the finite element formulation

after being,extensively verified in triaxial configuration in Chapter II.

Plane strain condition is echieved by imposing appropriate constraints on
the general formulation [1.54]. .
Any nonlineer finite element prograﬁ must essentially: contain all

the subroutines necessary for elastic analysis. These consist of a

subroutine to accept the input data, a subroutine for element stiffness
. o ) e

" “formulation, subroutines for equation assembly and solution and

@

subrougihe for"outpur of the final results. . ' .

.
. ’( a ) A

L]
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A Y
‘In order to iﬁg;ement the solution algerithms for nonlinear problems
additional subroutines are required. This consists of subroutines to

evaluate the ‘residual forces and also to monitor convergence of the

. #
solution and DO LOOPS are necessary to iterate the solution until.

. -
convergence of the solution occurs and to increment the applied loading,
if appropriate. Co
X

o . ;
The flow .diagram for MIXDYN is shown in Fig. 3.1. The mastet

>

\vroutinefaorganises the fcalling of the main routines as outlined in the

3

flow diagram. The formation of the new elasto-plastic material matrix

p&P (and its incorporation in Eq. 3.10 te form the element stiffness

-~

matrix) was' introduced within the subroutine‘RESEPL which calculates the

" nodal forces that are statically equivaleﬁt to the stress.field satisfy-

\

ing elasto-plastic conditions. Since the constitutive model has no

linear range for start ‘of logﬁing, all elements are characterized by

A}

»

elastijlastic behavior and D ®P nust be evaluated for even the.first Lload

increment. o

.

All stress and strain ’quantities are monitored & each Gaussian
integration point and therefore one can determine the magnitude‘ of
plastic deformations at such points. The flow chart for integration of

stress histories penetrating the bounding surface 1is shown 1in Fig. 3.2

~
\

~ The iﬁtegration of the stress histories ‘penetrating the yield
)
surface during the unloading'and reloading, programs follow the same flow
. 1 *
chart, however, the equations used are those of Chapter II related to the

s x

yleld surface.

14
L]
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Elaborate description of all the subroutines composed in the program .

-

MIXDYN 1is presented in Ref. 1.54 and hencé not repeated here. The

' A

program code of the subroutine RESERL which incorporates major part of

~

o

h \
the modifications is listed in Appgp{ix A.

\ .
A -

-

3.4 EVALUATION OF SOIL PARAMETERS

3.4.1 Description of Required Parameters

v

To perform a finite element analysis by means of the proposed
3 N - . \, . .

o

elasto-pladgtic model, the required material parameters and thelr evalua-

tion ffom a triaxal tegt'arg defined in this section. The material para-

meters for the prbposed model can be classified into the folléwing
categories: elastic moaulif failure paiameters, hardening (or deforma-

tion) parameters and dilatancy parameterss
. M N »

The elastic constants E and v, with' E representing the initial

elastic modulus, and v Poilsson's ratio, or alternatively G and K

Al

where G is the shearing modulus and K is the bulk modulus, represent the
. . \ . .

category of elastic moduli. Two elastic parameters are'required to vary

with stress and/or strain. This pair can be chosen arbitrarily out of E,

«

v, K or G.

-
-

Two ~ parameters df and p, define the failure parameters. The

parameters mg defines the slope df state line‘ at - failure, po 1is aé
\

parameter related to the cohesion ¢, and both paraheters are related to

the internal angle of friction. \\\\

-

-

The three parameters required for the isotropic and kinematic hard-

S

ening functions are A, y and qp. The hardening parameter A is a positive-

4

constant used in Eq. 2.10 “which describes strain hardening only. The

— ——— - N - s

T

H
-
J
N\
.
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parameters y and 50 play an important role in the cyclic behavidr of the’

material. They control the kinematic hardening and reduction of

hysteresis with increase of number of cycles. t

AN

The material parameter controlling the dilatancy is m; and .

i

represents the slope of state line at zero dilatancy.

+

3.4.2." Tests for Soil Properties

- Among construction. ‘materials used 1in structural and geotechnical

engineering the soil is- the most variable material. Its properties

change irregularly in all directions and therefore, areé difficult to be

.“determined. The other\féctoxs directly iafluencing the'evaluation of

-

soil‘prOperties are {3.3]: (a) factors related to the sampling pro-
cedﬁre, and (b) the sophistication-of the emﬁioyed testing method: There
are many différent techniques employed for sample extraction and con-
servatiﬁn [3.3). The advantages and limifations of shese. techniqu s~;re

/

well reported in standard books in soil mechanics.

: Common tests frequently employed for evaluation of soil properties

are: (a) direct shear test [3.6], (b) triaxial test [3.7], (c) borehole

-;ﬁear test [3.8], and, (d) vane shear test [3.9]. They are all suitable

. ——
for evaluation of the properties related to 5he strength parameters of

the model. Other tests may provide more realistic values for properties

such as ’compresibility indexes, permeability, volumetric data such- as

-

void ratio, and gravimetric data such as unit weight.

Different grons of parameters described in Subsection 3.4.l1 depend

on varipus- factors related to the method of testing and the
! Y
characteristics of the tested soil sample. For example the failure

o ]

i o~
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(strength) paraéeters e s ¢f and c are strongly influenced .by [3.3, 3.4,
3.5]: ¢a) method of testing, (b) confining (cell) pressure, and (c) size
of soil particles, their shape, density, moisture content, and mineral
cénposition. In particula;, the value of the angle of internal friction
¢f for example increases with‘increase of the grain size and’angﬁlariéy,

lower water content, and -for tests conducted under low coﬁfiniﬁg

-

ressure. -
P , , w

i«

The elastic parameters. E, v or G, K obtained from various tests
depend on the following factors £3.3]: (a) method of testing, (b) cell.

pressure, (c) material composition, its density and moisture.

For the two groups of. parameters describe above ;he ﬁethod of
. )
testing appears to be the ¢ritical element in adequate evaluatiop of
their cha;acﬁéristics. Different tests, as reported above, employed to
evaluate a particular parameter may produce relatively different values
_.for the same parameter. For example, the investigations reported in the
literature [3.10] agree that under drained conditions the plane strain:

L 4
angle, of internal friction obtained from a triaxial test may by up to 8°

" lower then the actual value or that obtained from a plane strain test.
The difference is more pronounc%d for dense sands tested under low
confining pressure, while small difference is associated with loose

sands, or dense sands at high confining pressure [3.10].

-

,
el

‘ At the present tilme the triaxial test has been widely accepted for

desigh problems and for research in soil mechanics. It provides useful

- v

'‘data and 1is popular in the practicing engineering officéﬁ. Many

important structures were designed in the past on data obtained from
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trid§ial test. They are simple 'to perform, the interpretation of the

results is in relation to Mohr~Coulomb failure criterion, and the inter~

t considered. Howeyer, Iin many cases the °
4

field condition. This

is particularly true "in ' cases ain behavior- (landslide

problems, strip footing; retaining wall, long earth or concrete gravity

dams) where single plane shear fallure is typical. Therefore, the pléﬁe

strain test for strength evaluation seems more appropriate. .

N .

- -

~ . .
The plane strain tests are usually moge difficult to perform than

3 ~

triaxial tests (3.10), and unleés it ~can be) shown that the plane sttain
. ad )
results are significqntly different from those -obtained by triaxial

tests, it ié unlikely that piane strain will become widely accepted‘in

routine soii’mechanics investigations. Discussion related to different

\

testing methods is not in the scope“of this work and therefore will not

be provided here.

7

3.4.3. Procedure for Evaluation Model Parameters "

.

TQF following example demonstrates detailed procedure for evaluation

of required parameters for the proposed elasto-plastic model.

Chapter. On the coubined

diagram both stress difference—axial strain/ and volumetric sfrain-aiial

v
~
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s

strain. paths are presented. From:-the test data 'the deviatoric stress at

Y

. state of fallure qf and state of zero dilatancy q. are evaluated as

. LY
2.32 kg/cm2 and 2.25 kg/cm2 respectively. The value of qc‘represents the

-

stress difii:ence at the onget of large plastic strain increase.
R

.
]

-

' Fig. 3.4 rebresénts a q-p stress space Wwith q representijng devi-,

catoric and p hydrostatie stress. ‘Line n_représents the effective stress
{ ' v . ’

path for the triaxial test. perforumed at initial confining pressure of 1.0
*»

kg/cm?. Also shown .are lings qf = 2.32 kg/cm? -and qo = ,2.25

kg/cm?. The slope:of state line at fgilure mf and the slope of state

line at zero dilatancy m; are obtained as slopes of lines éaqsing

-
. .

'ghfough the origin and intersection points. of lines qf~n and qc-n

respectively. ’ All'fhe‘xeqpired data for Fig; 3.4 is‘easily'obféinabie

from Fig: 3.3. In the presenf example'of Chatahoochi Rivér sand the

- values.of mf and m; are evaluatedyas 1.34 and 1.308 respectively.
‘ N ‘ . * " ‘ | //
The value of ithe angle of internl friction ¢ obtained by uging the
. \ ' e /
i .
relation mfg = 6sin'y /(3«sin 9 ) 1s ¢ =33.2°. ' 35 ' /’

-

[}

. T
" - .
I« 3 4 ’

~"The same triaxial test data are further, used for evaluation of

elastic constants G amd K. In Fig. 3.5 the q;eq adquv—ed.diagramsl
+ ' * ‘. ~

are presented:. Qhe deviatoric strajin .component eq and the volumetric

-~

strain componeﬂt sv_;re defined with Eq. 2.5. The initiab?slopés of

-

the presented'curvesjare directly related to G and K. Both,_tﬁe shear

and bulk modulus for the considered gand are 55 kg/cm? and 75.26
¥ ‘ 3 .

i

kg/cm? respectively.

. - ~ : . Y

™~

-/
Ll "
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The hardening constant A is defined from Fié. 3.6...-Here, based on

A

the triaxial test data m-eg d'iagram is -plc;tted. The slope of ‘the/

. S _ \ )
state-line bounding surface m = q/p, and the dev'iator."ic plastic strain y

confporient eg are evaluated at different stress levels. W=1t:h_a trial and

‘error proéedu:;e the parameter A 'is used so the ha~fd;z;ing function m =~

. mf ’
—. hardening rule with values for A of 0.12, 0.01% and 0.0012 -are presented. D

p —

'efl/(A + e,g) best fits the m-sg plot. 1In Fig. 3.6 three plots of the ' -

) ‘ o .
It can be seen that for the value of A-0.0}g‘the best fit isl obtained.

-

A . . ’ . AN Bt

The kinematic hatdening parameter y is détermined from any

N reverse-compresion curve obtained” of either drained or undrained -

. ) . \ . N
- compression test. For thé sand described here tiese tests were not

- - ~

available. Also due to the.'modifications introduced in the coﬁputational

%
phase and discussed ' above (clause 3.l1), this parameter will not be
employed ig the model. . .
«) « o0 r N
hY ~ N ., %
4 . .
" N
- . il . P
- e - -
. . . N .
» N ) ’ .E .
' . 4
\ ’ ‘ .
. i A .
’ ‘ R " . )
. L4
’ ) ! R
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S - b4

., : . ' ¢’

ndij’ "eij, nTij = inifial values correponding
. to n~th iteration

J—-“d.. applied strain increment _‘éij .’
locateconjugate stress boint cgj Eq. (2.33)

It

evaluate 9933 from Eq. 22.223 ) ’

AN ' calculate Hp from Eq. (2,15)

calculate h _from Eq. (2.58)

-

L

. - 3
evaluate 0y and 0y 5y Eqs; (2.?5) o -

X .

calculate stress increments 811 Eq.'(2.60)

: wl p . n.py 2P
evaluatg\fp and . EF = € er

I
update the size of the boutiding surface to

n=m(eP) Eq. 2.10) : .

-y |

{Load increment Toop}-

A

locate new local coordinate systém Z'“+I;T13-nTij+Tij

calculate “+1oi - "ci + 61 and correct stresses
back to the updated yield surface '

Yes

next increment

no

end ‘

&
v

Fig. 3.2. Flow chart for integration of stress histories penetrating:
the bounding surface - ¥,

.

¢
v’,
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Evaluation of mode1 barameters: (a) typical results -

of standard triaxial test at low confining pressure
(Test no. B-10 Ref. 3.11); (b) slopes for failure and
zero dilatancy lind$ . .
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4,0 VERIFICATION OF THE .MODEL; SOLUTION OF CHOSEN PROBLEMS RE‘LATED TO
GEOMECHANICS ‘

<

4.1 INTRODUCTION

In order to ensure reliability, the newly developed elasto-plastic

finite element must be verified. The nature of \tjhe s0il behavior and the

J

complexity of the model demand extensive testing of the adopted finite

element procedure before its results can be relied upon. ——
< < ,
A limited number of advanced constitutive relations for soil have

been implemented in the development of new finite elements. A literature
/ , * .

gurvey by Saleeb and Chen [1.13/,{ and Pande and Pietruszczak [1.53] shows

that only a few of .them are included as part of a general purpose finite

L] <
element program. 'The results fromsthese -‘implemented models generally

{ndicate good agreement with experiments. H3wever, the use of these

models fin eng‘inéering practice today is not extensive. The reason is -

that many of them were only applied to simulate small-scale tests amd not
< - . .

on large engineering structures, thus they were not adequately tested.

A

-

The ekisti#ng formulations cannot describe adequatel'y the response
for a wide range of initial void ratios. In the context of cyclic

loading they either predict complete liquefaction or cyclic mobility. 1In

the case of monotonic 1lpading a number of proposed formulations can

perform satisfactorily provided the stress path is close to proportional.

-

This includes nonlinear elasticity formulations for properly defined

. elastic parameters. v . -

\
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The proposed model describes irreversible deformations on the stress

reversal. There are other models capable of ‘describing the same effect.

‘To provide couvincing arguments which_one i the most effective requires-

-
L

extensive numerical ,vet'ification. A number of international. workshops

* e [4
, .

were organized with the objective to compare the performance of various
k> .

.

models. The existing experimental evidence 1s very fragmentary at the

-

™ ©

©

moment and objective eva_luation'is‘ difficult if not impossible. .

The proposed model 1s capable of predicting all the fundaméntal
trends of the response of granular materials .to both monotonic and
fluctuating load. These Include transition from compaction to dilatancy,

liquefaction and cyclic mobility effects. ‘

i .,
¥

- .

The foating problem phbliahed by Duncan anH'Chang (L.11] 1s first

°
(]

chosen for comparison. The " data reported in this reference is based on

o v

small-scale tests and analytical” solutions.

+Thelr analytical approach

A

’ employé the finite element procedure as8uming n nlinear elaétic material

behavior. . . .

— -

In -order to verify the general applicability of the present model,
. + . ¢ i

it {is imperative to_  perform analysis:on an actual engineering boundary-

.

X va]r? problem; as for example an embankment structure. Unfortunately, a
f .

review of the 1literature on elastic-plastic boundary-value problems |
"\-‘ A

reveals that cldsed form solutions or experimental data for such complex
structures are uncommon or not reported in detail. Experimental data
reported in Ref. 1.68 for the stresses and movements_of the Oroville Dam

1s extensive. However the complexity of this structure and the variety

%
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of the materjals used in 1its construction make, it unsuitable for the
purpose ‘of verification of a newly developed elasto-plastic model. This

-

lea:ga to the fact that the results\from the présent model may only be

~ compared with those from o‘the}r numerical procedures applied to embankment

structures which are relatively less complex and smaller in scale.

s

Time finite elemerit method usiqg av nonlinear ‘elastic material model
developed by Kulhawy et al.-[4.2, 1.12] in the late’ 1}960".3 has been
applied extensively on many structures, and the resul%s are génerally
considered ’acceptable. In ~this regard the ailalysis of an embankment

structure 1is sgelected as the basis for comparison of results obtatned

from both procedures.

Experime'ntal evidence shows that shear stress induces volunme
changzs. Thi's‘ could Pe‘either compaction or dilation depending on the
act&a]‘ confining pressure. Any of the ex;.sting nonlinear elastic
formu\;.ations ::an take t:his;effz‘&t into account. Displacement field as
\predicted by an elasto—plastit‘:\ constitutive modFl is far wmore accurate
than that predicted by linear or nonlinear elasticity [4.5]. This

8 .
applies also to; the stress field. The;'ef‘ore, the shear coupling will
have signif‘icanéﬁimpact on the predicted displacement field in the

context of boundary value problems. .

The proposed formulation incorporates the intermediate principal

str%ss through definition of stress 1invariants and the function g('e). '

Numerical -evidence '[4.5] demonstrates that this principal stress has a
~significant influence on the*"predictéd stirength of the soil. However,

there 18 no appreciable experimental evidence related to the effect of

-~ . N e
. a .
. & . [ . Y

- o

’
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thé intermediate principal stress on the material response.  Triaxfal

tests do not provide any since Oy = Oye

Pt 1}\ i N ' . -
“ K \
'The iutfluence of introducing cohesion in the sands used in the

i)

3

analysed footing and embankment is further examined. The latter investlZ
gation is purely qualitative in nature as there 1is no eiperimental

evidence of cemented granhlar materials availble -4n the 1literature.

\

4.2 FOOTING ON SAND
For the nonlinear-elastic analysis of the footing by Duncan and

Chang [l1.11}, the values of the parameters *xequired are evaluated from

-

the data .of Ref. 3.ll. The same reference’ is used for evaluation of

\ (
ters for the proposed elasto-plastic analysis‘:and the

AN

the required parame
/"\ N

detailed procedure fgr their evaluation ‘has been presented 1in previous

, chapter. Table 4-1 summarféng the values of all parameters used in both

analyses of the model footing.

The footing is 62 mm wide and 320 mm long and for the experiment it

was installed at a depth of 508 mm within the sand {4.3].

1

* The finite‘element mesh used in the analysis is shown in Fig. 4.1.
The mesh size 18 coarser then tge one used in Ref. l.1l1. It contains f4
elements and 161 nodal points. The reduction of the mesh size is justi-
fied by the use of 8-node instead of 4-node elements. Each q?de has two

»
translational degrees of freedom.

9 ~

The nodal points along the centerline beneath the footing and those

% A

on the right vertical boundary are constrained to move only in vertical

. direction, whereas those onjthe bottom boundary are constrained from both
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& v ‘

horizontal and vertical movement. The rest of the nodal points are

~ . &

unconstrained. . Eight node quadrilateral isoparametric finite elements

. *
v ' )

with plane-strain behavior are used.
N

The -stresses due to gravity loads qf the sand are introduced in the

proposed analysis as initial stresses.

°

Loads are applied:to the elements repreéenting the footing in incre-
ments ‘of 6.89 kPa. Typical results generated from this analysis are

shown . in Figs. 14.\2, 4.3 and 4.4.

v

Fig. 4.2 shows the ‘load—displaaement csxrves pro‘duced from the test
and from both \an,.:alytical procedures. It should be noted that in the
analysis the footing 1s considered riéid and therefore equal settlements
are expected for any contact point under the fc})oting. The load-displace-
ment diagram 1nd1<§eg f:lose agreement between th‘\< present results and

those from the experiment. At the early loading stage, the computéd

settlement is 30% larger than that from experiment. This indicates the

significance of the estimated initial modulus E on the behavior during’

the initial phase of loadihg. Aithough there .is only a small difference
il:I the overall load—displacement characterigtics between the two fi[;ite
ele:x{ent models, the prediction of the load at large values of settlément
for the final portion of the curve 1is clearly seen to be different. -The

load at the end of 'the expgrimént: predicted by “the proposed elasto—-

-——

plastic analysis coincides with the value from the experiment, whereas

the_analysis using nonlinear elastic model underestimates this load by 30

percent. .

-

»
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" Fig. 4.3 shows the mode of deformation of the sand medium under the
ldﬂded -footing while Fig. 4.4 represents the - vértical pressure distribu-
tion plotted along. vertical sections at large values of settlement at the
end of the expeﬁiment (170 kPa). The results presented in both Fig.” 43
and 4.4 are obtained from the perfo;med’elasto—plastic analysis. Similar

. . L4

data ?or. the footing behavior 1is not reported in' the literature and

therefore cannot be compared: The alm of the presentation of these

results is to show the versatility of the progfam. Also,‘by inspection

of thé magnitudes of. the stresses and «deformations close to the

boundaries it can be concluded that the size of the defined fin1Ce
v

element mesh 1s appropriate ard the boundaries do not have  an effect'6g

the obtained results. oo .

K}

The contours of the minor principal stresseg and accumulated plastic

-

strain“below the footing are shpwn in Fig. 4.5.  The presented stresses.

are due to a load of 170 kPa near the end of.-the experiment as defined in

Fig. 4.2. According to Eq. 4.2, 9 is assumed to be the major principal

stress. The signe convention used is tension positive, and o, 18 greater

L ; oL

algebraically than that of Ty Thé minus sign in the figurés showiné
’ * ”

stress magnitudes is omitted. A variation of> minor principal stresses,

~
°

. Fig. 4.5(a), from 7 5@9 to 211 kPa is observed. Fig. 4.5(b) represents
the contours of accumulated plastic strain for the stress level shown in
Fig. 4.5(a). Thé diagram shown is only a local zone under the footing.
The plastic strain concentration afound the edges of l;he footing 1is
clearly shown. Very high plaétic strain of 19.08 percent ig developed at

the edges, whereas only 0.5 percent is obser;ed at the center line under

' .

the footing. . yjfyﬁﬂ' ' .

e
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Fig. 4.6 presents a\comparisbn of the load—settlement characterist-

’

fcs of cemented sands . By simple variatioa of the cohes;ion' from ¢ = 0.0

vkPa to ¢ = 14.5 kPa different degrees of cementaktion are simulateds

Although there is no difference in the overall load-settlement character-

‘ -~

istics betwée;i the casés analyzed, the loa@s at the end of the analysis

vary from 200 kPa ‘to 2100 kPa for cemented sands with cohesion ¢ = 0.0

kPd and ¢ = 14.5 kPa respectively. 1In all® cases, the computation was
. \ ]

terminated by divergence of the results in the " last loading increment
~9 g . - ’

'/' -*

-after a large number.of jiterations. .

.

Fig. 4.7 represents-the model footing on two different layers of
. . . [l N v . o4 . "' .
soil. The top- layer depth equals 0.7 of the footing width. The soil

properties for this layer are assumed the same as those for the sand ip

B

Table 4~I with the addition of ¢ = 7.25 kPa and \Q"= 20.0 'kPa for

~cohesion. The lower layer 1is sand with properties described iIn Table

u

4-1. Fig. 4.8 shows a comparison of load-settlement characteristics for

. . . y

the foyting. Improvemer{t of the stre;lgth characteristics of the top
‘iayer by 1ncrgasing the material c;)t.xesion to 7._2/5 kPa and 20.0 kPa' leads
to significant increase o-f‘ the fafilure loads, by 50 and 125 percent
re;pectively.- : | .

4.3 ANALYSIS OF AN EARTH DAM DURING CONSTRUCTION

For both finite ‘element’ procedures employea here in the analysis of

.

-

a dam during construction, the properties of the rockfill mfterial used.

P -

for the %roville Dam {1.68] forh the basis for evaluation of required

parame;etfs. Prior to the construction of the Oroville Dam extensive

\ SN - |

-
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material testing-was performed and the results are published in Refs
4.2, 1.68 and “4.4. The program "‘LSBUILD" [L.68] for nontinear elastic

analys;'i‘s o‘f embankments waé'used_ in th'é anal)igis‘ phase of the Oroville
» N « 1

dam. For com;iarisonf\ this pfogram is also ‘used for the analysis of the

- ,

present dam, in which the required ‘soil parameters are based upon . the

_Oroville Dam taken from Raf. [1.68] ‘and presented in Table 4-11 (a).

The necessary soll parameters for the:present model are derived from

- .o , . ¢

Refs. 1.68, 4.4 and tabulated in Table 4-II (b). The ‘valies of the angle .
‘o . . N ' ’

of internal friction. ¢ and Péisson's ‘ratio v are employed as calculated

v ~ ’ '

in Ref. 1.68, whereas the other ‘required pafa{neters are calculated using

v !

the relations, described in Chapter II... For the value of ¢ = 43.50 as

£ is callculated

= 6,s'in %/ (3-81in Q). Analysing the tes'ts ;;erformeg

estimated in Ref. 1.68 the slope of the failure line m
) N '

using the relation mf

on the shell matérial of Oroville Dam as reported in Ref. 4.4 the slope

of the zero dildtency line mc-i's evaluated to be 0.89 m The value of

£,

E, the initial elastic modulus, is reva.lua,ted based on the values of the

¢
[y

modulus number K', and wmodulus exponent n reported 1in Ref. 1.68

(o

(‘E=Kpa(—£~) n).- With the two elastic constants E and v known, theé initial

a '

-

. shear modulus G can be calculated by using the rejation from the theory

of elasticity. The hardening parameter A 1is then evaluated as A =

mf‘g,‘i/3G where Py ig the value of the confining pressure of the low con-

fining P-constant test. Due to the lack of this type of tests a value of

’

Py = 13,7 kPa correésponding to the in-"si‘tu’pr'essure within a llayerv;_

immediately after placement is employed and justified by the fact that

- the magnitude ‘of stresses in an embankment are generally relatively low

and as demonstrated in the parametric studies performed in Chapter I1I,

4

&
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the hardening constant A-at low stress ranges has no effect on the médel °
& tis

. —
- -
1

prgdictiopp. . ~ L -

~ty

. I

The cross-section of the dam -under 1n;}esciga§i‘on is shown in Fig.

-.

4.9(a). The width of ‘the dam 1s 273.0 m 'at the base and '1"5.0 m at the

cregt, with ad ovefali height of 80.0.m. The slopes of the upstream and

downstream faces are both at a r&io of 1:2. As can be seen in‘ the’

o

.‘diagrém, the baaeas sloped at app}‘oximately 10° forvhalf of its width.

Characteristically,” this inclination will produce relatively high shear

ot -

stresses near this region. Due to ~the dilatancy effect, the latter will

- \

in turn induce higher normal . stresses. This 1s known as -a -co‘qp'ling

effect. ™It iz; note(i that the coubling effects of normal anmd sbear‘

.stresges, which "are accountéd for in the present model, ' has not been

<

"
- -
)

fncluded in ,the nonlinear elastic model. Therefore, it clan’be expected
; C LN

‘that the proposed model will predict higher normal and shéar.‘ stresses,

-

hence higher deformatio;ls., o . .

.-

L .
, ’

The, finite element mesh‘{ as shown 1In Fig. 4.9(b), consists of a

total of 36 elements and 51 nodal points. Eight node quadrilateral

- . >

finite elements with plane-strain behavior are used_. Each node has two

. translational degrees of freedom.

B

I3

.The construction of aix _embankment _ structure is carried out by

]

1

fuccessive plécefnent of layers of. £111.

&
The number of layers, to some degree, -affects the behavior of the
dam during as %e¢ll as after the cémpletion of construction [1.68]. 1In

this, comparative study eight construction sequences are®considered.

\ . :

?



_]_\!72-

eooay “

Results generated from both analyses are shown in Figs. 4.10 to
. v .

4.80. The displaqement curves shown in Fig 4.10(a) to J.IO(e) fepresent

g L. .
ot M/f:T;;:;ZEttlement induced at points 1 to 4,. (Fig. 4.9(a)) when -successiv
Y N

layers” four téieight (Fig. 4.9(b) are applied. Also, the settlement at
points 5 to 8 are shown in Fig. 4.10(a') to 4.10(d'). The data shown in
these diagrams indicate a close agreement'between the results obtained
from the, nonlinear elastic and the proposed elasto-plastic analysis.

Specifically, for e points 1 to 4 above the sloped base, the settlement

obtained by the proposed analysis are larger than those by the nonlinear

' o, .
elastic analysis. This Increase in settlement 4s believed to be due to

the shear coupling effect, considered only by the proposed model.

——

The influence of the éuccessive placements of layers 4 to 8 on the

horizontal displacements Tt points 1, 2 and 3 are demonstrated in Fig.
. ¥ ]

4.11, The results show larger horizontal movements when com- pared with
4

.

those from nonlinear elastic model.

From the formulation of the constitutive relations in Chap&er fI, it
. ]

was shown that the angle of internal friction ¢ and the cohesion’ c, have
- 7

an-influence on the magnitude of plastic flow. Figs. 4.12 and 4.13 show
comparisons’' of calculate& movements when values of ¢ = 43.5° and ¢ =

30.0° with ¢ = 0 to ¢ = 75 kPa are considered. The vertical and hori-
zoqﬁai movements are found to differ by up to 50%.
5’\

Fig. 4.14 1illustrates the contours of calculated settlements in the

<

analyzed dam. Here, as well as in the following figures, the contours of
deformations and stresses are related to the final pHase of the construc-

tion sequence. The contours {in Fig. 4.14(a) are obtained from the non-

v
.

4

.
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linear - elastic analysis and they are approximately 30% lower than those
) - 1S

xcalcula;‘ed with the proposed model in Fig. 4.14(b). :

]

. In analyzing the present structure, 1f the effects due to the

successive placements of fill layers were not considered, the contours
- \ —

qf)_se/u;lemaft’s‘would be as those presented§ in Fig. 4.15. " These contours

o .

are seen to be significantly different than those shown on Fig. 4.14.
This clearly 1indicates the importance of considering the influence of

€

construction sequence in the analytical solution, as also demonstrated in

Ref. 10660 i
. o

The stresses calculated by means of these two analysis précedu‘;:es
are shown in Fig. 4.16 to Fig. 4.20. ‘Contours of minor principal stress,
sho»wn in Fig. 4.16 are nearly the same for both methods of analysis. The
stresses obtained by the proposed elasto-plastic analysis are sli\ghtly
higher ~(13‘Z). The contours of the major'principal stxkss determined by
bo;h no~n11nnear~ elastic and elasto-plastic analysis -are sh?wn in lFigs.
4.17(a) and 4.17(b) respectively. The stresses at the base of the

embankment are 30% higher when obtained by the proposed analysis. Fig.

4.18 represant "the magnitudes and orientations of principal stresses

»

determined by both analyses. As discussed previously, their magnitudes

-

differ (13%Z and 39%Z), however, their orientations are similar for both

-

methods. Contours % calculated shear stresses are shown #in Figs. 4.19

and 4.20 for both nonlineaf.eiastic and elastozplastic analysis. Here,

both’' the maximum shear sttest’;és (Fig. 4.20) as well as Txy stresses (Fig.
4.19) are compared. From the concentration of the maximum shear stresses
the location of the potential sliding plane 1s easily identified. The
purpose of compar;.son ‘of the shear' stress cont%urs of txy is that the

S AN

»
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. concentrationt of these stresses on the side of t)he dam with a sloped

foundation base;\i’s-'stt_'onglyﬂ -emphasized when the proposed analysis {is

.

used. In bgth cases, the diagramé indicate the incidence.of high shea'r”
‘ .

.,

stress zones 1in the embankihent. However, the wmaximum shear sfresses

v -

3

obtained with the proposed ‘analysis are, found to be approximately 60

N\,

* percent higher. Thet higher values of the shear stresses determined by

th'% proposed analysis is believed to be due to the shear coupling effect-

congidered ‘only by the present 'el’ast:o-plastic model.

. Simijr findings resulted from the dilatancy effeéts are reported in,

Ref. 4.5 ‘where the calculated stress” paths when nonlinear elastic

analysis 1is wused differ considerably. then: those obtained by an

" elasto-plastic anaiysis capable of simulating dilatant behavior. v

The results from both analyses presented above\are now discuss‘ed

with ret®tion to the conclusions stated in Ref. 1.68. There, the field

measurements of the stresses and movements in Qroville Dam are compared
P ' .
with results obtained from the same nonlineat‘elas'tic analysis used here.
For the shell mat‘erial, considered also in the embankment structure
analysed, it was found ‘that the magnitudes of the settlements and hofi-
zontal movements, measured after the construction was terminated, are 2.52
larger than those obtained by the nonlinear elastic ‘a'nalysis. Further,

it was also found that the measured stresses are up to 41% higher than

that calculated by the analysis.

Comparison of the results 6bta1ngd here shows the same trend.

-

Namely the magnitudes of the stresses and movemex‘fte in the analysed

~
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embankment aré‘hi&@r by the same percentage. rdange when calculated by the

proposed elasto-plastic analysis. - .
. N - - ‘

The bghavior of the embankment due 'to horizontal water pressure

after the reservoir is filled is examined next. , The cross—secfion of the

v A ' ,\ *
embankment with.the maxfmum water level in the reservoir is shown in Fig.

—

‘ %.21(a). :

-~
\

’,Fig. 4.21(b) shows 'the calculated movement of the dam surface for

)

the maximum water lével, ‘and Figs. 4.22 and 4.23 represent contours of

major. principal stresses, minor principal stresses, and maxim&gx shear

stresses respectively.

E

A considerable increase in all three types of stresses is observed.
It should be noted that the last set of results is obtained -with the

- .
proposed elasto-plastic analy‘sia. .

‘The procedure adopted in this chapter in order to verify the applic-

ability of the new model consisgts of:

.« (a) analysis of a footing on sand; and “

(b) analysis of an embankment during construction.
b ]

"In the case of the footing, the analytical results obtained were

compared with available experimental data, and those from another finite

. element procedure. Also, in the analysis of the dam, the results were

compared only with those obtained from another finlte element procedure.



Based on the’ numerical results for the footing, . the following
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conclusions are made:

-,
(2)
, o
- (3)
(4)
(5)
1

&

)

(1) A close agreement of the results was obtained between the pre-

sent analysis and the experiments. This demonstrates the

validity of the present model.
: >

As expected, it was shown that the value of the elastic modulus

. influence the. material load deflection behavior considerably

during the 1initlal phase of 1loading. Therefore, the
predictions in the early loadihg stages are largely affected by

the proper evaluation of the elastic parameters.

.

o

At large values of settlement both' the experimental and the

"ealculated load-settlement curves exhibit similar character~

istics.
P4

N

At low magnitude of the settlements the overall load-displace-
%, " '

ment characteristics from both finite element procedures are

[N

approximately the same. However, at large values of settlement

they differ considerably.

The contours of plastic ~strains show high plastic strain

accumulation around the edges of the footing. This is 1in
agreement with experimental observations where extensive plati-

fication occurred at the edges of. a rigid fdoting on sand."

This again demonstrates the validity of the proposed model.




(6)

1
\

()

LI

N
-

The comparison of lqad-settlement charac¢teristics of cemented

*

~sands . with vgifous degrees 2£~cementation Bhows no difference

in the overall behavior. The degree of cementation simulated

.by the material c¢ohesion, as expected, produces considerable

difference in the magnitude of the failure load.

.

Improvment of the strengéh characteristics of the soil layer
under the foofing increases significantly the failure load. f
The 1nf1ue6ce of this layer, frequently used in engineering

practice, on the bearing capacity of the foundations, -can be

closely determined by the proposed model.

From the results obtained in the analysis Bf an embankment'structure

during construction, the following conclusions are noted:

(1)

R

(2)

The settlements calculated with the proposed model are larger

than those obtained from the nonlinear elastic procedure, This

i

difference \{s more pronounced on the sloping side of the base
and theérefore higher shear stresses have develop. The shear
coupling effect 1s considered as being the main factor. The

higher settlements as predicted by the model are in accordance

wiéh the observations stated in Ref. 1.68.

The horizontal movements are found to be larger when the

AN
\

proposed elasto-plastic model is used. Here, tﬁe sloped side

also shows relatively higher horizontal displacements when

\compated with those on the levelled side of the dam.
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“(3) A good judgment in selecting material properties and a proper

“

evaluation of model .parameters are found to be an ‘import‘:ant
factor in determining the validity of thé results. Hence, a

variety of soll tests must be conducted prior to the evaluation

of parameters. -

“
b

(4) For the proposed elasto-plastic model the contours of calculat;
ed settlements and shear stresges shﬁw.iﬁc;eases of 30% and 60%
respectively.' This is in accordance with the‘findings in Ref.

N " 1.68 where the measured settlements and stresses are found

Y
respectively 25% and 41% higher then calculated by the -

nonlinear elastic analysis.

1

o

\ .

\ B

(5) It was demonstrated that the effects of successive placements
3 ¢ & N

_of fill 1ldyers must be. considered ' in'the analysis of a dam
h , during construction.' The proposed model behaved satisfactorfily

in the process of simulation of construction sequences.

v
hY

(6) - The effect of the angle of internal %rictign\and cohesion on

©

the displacements was found s}gﬁificant. For soils having low

) ‘ . .
angle of ‘inter nal friction a trace of cementation (cohesion)

il may have an influencé of up to 30% on the fiGvements . ’

\
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_ PARAMETER , i SYMBOL . VALUE

-~ .
modulus number K 300
modulus exponent n : . 0.55
failure rat:io :*\ Rf \ 0.83
cohesion c 0.0
friction angle (deg.) ¢ ) 35.5
unit weight KN/m3) ’ -y 14.3

' pt;issoh's ratio ‘ v’ 0.35

<

: I
TABLE "4~I.(a): Values of p\aramet.ers used 'in t‘?e _nonline;r
o 3
.elastic analysis of the footing -

\ . . . )
© PARAMETER SYMBOL * \V%U_i-:
: s

young's mod. (KPa) - _E ' © 1882
\ poisson's ratio v ' 0.35

friction anéle (deg.j - 35.5

failure line m ' 1.34
dilatency line . o.om, «. 1.308
{nardening constant: * — A 0.012

1 cohesion ' .. o c o -~ 0.0

)
LI

TABLE 4-I.(b): Values of parameters for proposed elagsto~—
p(].ast‘iq,modei in,,,tlie footing analysis

f
4
A4 °

- ?‘V [4 -
L s % \
“
\ . )
o ' N
. ; *
a
> ‘ ’
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PARAMETER SYMBOL VALUE , o
. A —
unit weight (KN/m3) Y 23.57
cohesion (KN/m?) )~ c 0.0
friction angle (deg.) i ¢ 43.5
modulus number ) TOK 3780
modulus expqun{ n 0.19°
failure ratio i} ) Rf 0.76 ,
poisson's v 0.43
ratio F 0.19
parameters d - 14.8 .

TABLE 4-11 (a)s: Values of stress-strain\parameters for
non~linear elastic analysis of the earth

dam.
. / %

PARAMETER SYMBOL VALUE
initial young's mod (KN/m?) . 335000
initial poisson's ratio ;“&th 0.43

" frictional angle (deg.) ) ( 43.5
failure line T 1.786
dilatancy line - 1.6
‘hardening constant : 0,b0067
cohesion (kN/mz) c 0.0

1~

TABLE 4-II.(Db):.

Values of parameters for proposed elasto-

plastic analysis of the earth dam.

«

RN

§
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CHAPTER V 7

v

5.0 MODELING OF NONLINEAR SOIL-STRUCTURE INTERACTION PROBLEMS

5.1 INTRODUCTION

In order to describe‘the behavior of\structures founded on elasto-
plastic soil, two static soil-structure interaction problems are analysed
and presented in this chapter. The analysis of a mat foundation of an
eight storey building reposing on clayey-silt [1.55] is pfeseﬁted first.

t

The results obtained when the proposed model 1is used are compared with
those reported in Ref. 1.55 where the mat: was analysed by the conven-
tional ‘methods (subgrade rgaction method, and compression index
analysis), and also the finite'elehent methods considering .nonlinear

elastic and elastic-plastic material behavior of the subsoil. The
behavior of a concrete gravity dam on an elasto-plastic "soft"” ;ubsoil is
aqal&seg next. The principal parameters exaéined are the eff;cts of the
construction prd%ess; uplift water pressure, and cycling loading due to

fluctuation of the yetained water level.

‘5.2 HA& FOUNDATION ON CLAYEY-SILT

An eight storey prefabricated office buildiﬁg withﬂa plan area of
60 m by 20.4 m, founded on alluvial clayey silt of 30 m deep, is shown in
;Fig. 5.1. The floor loads are transferred to the mat foundation by the
use of concrete walls. The prefabricated concréte floor slabs are
assumed hingedv to thelr sﬁpports. This implies that the stiffne§$ of

the upper storeys has no influence on the mat foundation.

-144- _ | .
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The required soll parameters for the conventional Amethods of
analysis and the finite element nonlinear-elastic and elastic—pléstic
(von Mises) analysis‘are reported in Ref. 1.55. The sgil properties are
typical for silts or clayey silts. The title of the Ref. 1.55 clearly

states that. However in the text of the same reference the material is
mistakenly referred as clay. The reported data in Ref. 1.55 is used for
the evaluation of required parameters for the proposed elasto-plastic

analysis. The conducted tests used for evaluation of the soil properties

are not reported. Therefore, the values of the initial elastic modulus

and the hardening constant required by the proposed analysis are

apﬁroximately evaluated from the parameters specified for the nonlinear
. .

elastic analysis, while the values of me and m, are calculated with the

relations deséribed in Chapter TII. The values of. all parameters used in

t he analyses are summarized in Table 5-I.
- -

The finite element structural representation of the mat and the

subsoil is shown in Fig. 5.2. Due to the symmetry of loading, only half
- N\
of the structure is modelled. The finite element mesh contains 53 iso-

-

tropic eight—-node plane-strain elements with %\total of 188 nodal points.

Each node has two translational -degrees of freedom. At the silt-rock

boundary both the horizontal and vertical movements of the boundary nodes

are constrained. Along fhe vertical boundaries the nodes are constrained
to move odiy in the vertical direction. The soil above the foundation
level 1is accounted for by considering the equivalent vertical pressure
‘ dge to the weight of sofl. The initfal analysis i3 performed by assuming

a 300 mn thick mat.

[=3
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The finite element mesh used in Ref. 1.55 is composed of triangular
elements and differs from the mesh used in the present calculation. To

evaluate the accuracy of the proposed finite element discretlzation;

separate analyses are carried out wusing different mesh slzes and

elements. Fig. 5.3 represents the significance of different finite
element discretizations on contact pressure distributions and bending
moments in the mat. It is thus concluded that satisfactory precision can

be achieved by using a mesh containing 53 - 8-node elements.

o
S

The stresses due to gravity loads of the subsoil are introduced in
the analysis as initiél stresses. They were calculated previously without

3
considering any loads from the structure. Drained condition of the

subsoil is investigated in the present analysis.

]

.

The working kphds of the structure as evaluated in Ref. 1.55 are

applied to the elements representing the mat foundation in 40 increments,

Frad

shown in Fig. 5.2 «(a). -
* as

N}

_The results calculated by the proposed method are fifst compared -

with those reported in Ref. 1.55 and were eyaluated by conventiopal

[,
methods. The(subgrade reaction method %as extensively used in the past

under the strip or - -

R

to évaluate the distribution of the cogtact pressu
mat foundations. The subsoil 1in this method is simylated by elastic,
springs for which the stiffness is ;elated to the spbgrade modulus of the
soil. The other conbéntio;al method used for compayison of %?e results (/iﬁ—ﬁh\
is the compression index analysis. Heée, the subsoil 18 considered. as an ,

eiastic isotropic halfspace. Both classical methods are well explgined

, in the literatire and need not be discussed here. '

k.4

.
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Fig. 5.4 shows the comparisons of ;:é.mtact: ‘préssure distributions and

bending moments bet‘ween/ the proposed‘anaiysis and conventional methods.

v
o

.Since the conventional methods predict unrealistic results at the edges
of footings (i.e. preassure = =), hence comparison will be made at

interior bbint:s. The . proposed - elasto-plastic analysis 1indicates

—-

comparatively higher stress concentrations beneath the interior walls ahd
the edges of the raft, which lead to smaller bending moments between the
walls and larger bending moments under the walls in the mat. The maximum

calculated contact strésses by the ,propgsed analysis are 2)2%5 % and 27%

a A U
higher then the stresses calculated with the comp/r/essioﬁ index a%d
./ . -
subgrade reaction analysis respectively. The resulting bending moments

in the mat footing between the walls, evaluated by Xhe proposed analysis

®

ar&52% lower then those calculated with the subgrade modulus analysis,

Ao

and 35% lower fhen moments obtained with the compression index analysis.

-

Under the walls however, the bending moments 'in the mat calculated by the

s
proposed analysis are higher. Compared, with those obtained by the

gubgrade modulus method and compression indéx a;alysis the moments under
the i‘nt:erior wall;; are higher by 34% and 12% and under the extefior walls
are higher by 90% and 447% respec‘zively. \ It should be noted that the
above differences in either contact stresses or bending moments pertain
only to a Specif%'c mat thickdess a;ld soil characteristics. Thus the

interaction between mat foundatlion having other thicknesses and subsoil

v
-

characteristics will be examined. °
' 1

. The comparison of contact stresses obtained with the current analy-
sis and other §inite element procedures 1s shown in Fig. 5.5. The finite

element procedures employed in Ref. 1.55 and used for comparispn of

results assume nonlinear elastic or elastic—-plastic soil behavior. The

I

=Y
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nonlinear elastic procedure is based on the constitutive model incor-

t

porated in the computer program LSBUILD [1.68] by Kulhawy and Duncz{n,

while the elastic-plastic procedure uses as a failure criterion the von

i

Mises yield criterion incorporated in a se;;arate computer finite element
algorithm. Similar corit:actl stress distributions Iare obs;arw.;d in- all’ ’
analyses. The maximum stresses obthined from the elastorplastic model
under the interior wall are found to be 15% and 9% ,high‘er than those from
the von Mises yield criterion and the nonlinear elas-t‘ic models respec-—
t\:i‘vely. At the edge of thelmat foungation the contact pressure

calculated by the proposed analysis is similar to the one obtained by the
nonlinear elastic procedure, howeveF it is lQZ higher then the pressure
calculat‘ed by the eléxstic—plastic procedure assuming vc;p\*ms s yield'
criterion. It can be seen from Fig. 5.5(b) that the differences in the
bénding moments developed 1in ‘the mat are negligible. A maximum
difference of only 1.2% in the bending moments is observed’ between those

calculated by the present model and that of the von Mises yileld

criterion.

A
A

Due to lack of laboratory test data of soll properties as reported

L4

in Ref. 1.55, the values of the initial elastic modulus and the hardening
constant used in the prese'n‘t analysis were .approximat:ed. Therefore,
analyses are performed to evaluate the sensitivity of the results to .

these parameters.

<

Fig. 5.6 shows the effect of the subsoil Mnitial elastic modulus on

N '

the magnitude and distributions of the contact '\E-ressure and bending

moments. A difference of 270% in the initial elastic modulus produces a<y

relatively small maximum difference of 12% in the contact stresses-andy
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less than 1% in ben&ing moments. Similar comparison qg contact stresses

and bending moments is sﬁown~in Fig 5.7 where the hardening constant "A"

-

ib the proposed constitutive relations is varied. Here, a variation of

100% in the hardening constant results in a maximum change of 18% and 30%

¥

in contact stresses and bending moments respectively[
. , -

~

Figs. 5.8 presents the contact pressure distribution in the subsoil
Cow .
and ‘the bending moments rin the mat foundation obtained with the elasto-

B ) 'Y 4 - .
plastic analysis. From the results it is apparent that with an increase
- N ) ‘ i \
of a 100Z in the mat thickness, the maximum stress concentratioan in the

subsoil under the interior bearing wall reduce by 17.5% , whereas the

maximum bending moment in the mat at the same location increases by 30%.

Figz 5.9 shows the differential settlement, between the center and
the edge of the mat foundation, as L function of the mean contact stress
calculated by the ;lasto;plassis anaiysis. | The ;ebtlements d;e to the
actual (working) load are found to be I21 mm at the center and 112 mm at
the edge of the m;t. Thus the differential settlément,is only 9 am.

Generally speaking, the strength of a mat foundation is'governed by the

v

following limiting states:

-

i) Maximum permissible settlement; ‘ .

AL ¥
A Y

ii) «ltimate strength of the reinforced concrete mat;

1ii) Local sheér failure of the soil; and

|

/
l
I
‘\ ;

iv) General shear failure of the soil.

-
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The ultimate strength of the analysed mat foundation is aétained at

a bénding moment of 370 kN.m, for a slab thickness of '300 mn, and at 2

<,

bending moment of. 20” kN.m for a slab thickness ’of 600 mm. The values.
were calculated using the National Building Code of Canada (Rgﬁ.S.l) witﬁ
a concrete sErength of fé = 30 MPa and a reinforcement ratio Pg ™ 0.75
Py For the 300 mm sléb fhe ultimate momept of 370 kN.m corresponds‘to a
mean contact pressure of approximately 120 kPa. Using Terzaghi's bearing

capacity equatiog (Ref:S ), the conditions of local shear failure (large

P
so0il compaction under e entire footing) and general shear failure (soil
! b

!

- laai ‘
undergoes sudden failure) of the 4g6i1 are’ reached at mean contact
¢

pressﬁ}e of 614 kPa and 1754 kPa, xrespectively. It can therefore be

~

concluded that the ultimate strength of mat fohndatio?s is Ebverned by

the concrete strength and that local as well as general shear failures
»

cannot occur. N

For the ultimate loading (120 kPa) the observed miaximum settlement
P i ¢

is 190 mm (Fig. 5.9). Depending on the structural applicafion of the
building under consideration, this magnitude of settlement may or may not

be acceptable.

-

5.3 CONCRETE GRAVITY DAM ON ELATO*PLASI;C‘SOIL

,

In this section, the soil-structure interaction between a tipical

-concrete gravity dam and its supporting soil exhibiting elasto—-plastic
7 ’ .

behavior 1is described. The configuration of a typical concrete gravity
l .

dam and foundation is illustrated in Fig. 5.10. The width of the dam is

«

50.0-m at the base and 9.0 m at tﬁe‘crest, with an overall height of 50.0 '

m. - To¥prevent sliding a 10.0 m deep shear key is incorporated at the

base of the dam. If required, a water barrier and a drainage system may

Y

be installed on the shear key.

P
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The materfal properties used in the analysis are similar to those

AN

'a .
used for the Orovill Dam (Ref. 1.12). The required p"ara;flete,rs for the

present model are derived directly from these material properties and
‘tabulated in Table 5-II. The cementation in the soil masses 1s simulated
by introducing Mesion of 20 kPa. This value 1is within the range of

cohesion for naturally cemented sands as reported in Ref. 2.3.

The depth of the cemented alluvial sand’and gravel deposit is assum-

¢

ed 70.0 m. "t possesses low permeability and is bounded at the bottom
. - . . \
with impermeable rock. . '

The finite element mesh, as shéwn in Fig. 5.11(a), consists of a
total of 38 elements and 143 nodal points. Both the gravity dam and the
foundation are ide;lized by twoc-dimentional, plane-strain, 8-noded
1soparametric elements. A 2x2 Gauss integration rule 1is used for the
stiffness evaluation. The 'modclel base 1s assumed tf:o be fixed in bﬁth

horizontal and vertical directions, and side boundaries are represented

by vertical rollers, i.e. restrained in the horizontal direction.

4
.

The watér pressure loads considered in the analysis areqy showr; in
Figs. 5.11(b) and 5.11(c). Three types of uplift pressure patterns are .
gshoyn: (1) no uplift pressure (neglected due to coqplé!e impermeabil-

ity), (11) upl‘ift pressute"wlth cutoff bas‘e;l on a normal design practice,

>
]

and (iii) complete uplift -pressure without cutoff with its maximum value

at the toe and zero at the heel.

-

~ ©

N
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s
5.3.1 Construction Stresses and Deformations '
The construction process of the dam 1s simulated by applying 40
successiye layers o€ concrete of equal weight. Deformation of the dam
upon completion of construction 1is shown in Fig. 5.12(a). It is worth
noting that in practice this deformation is normally adjusted during
construction and(hence the analysis is based on the undeformed geonmetry.
The contours of maximum tensile stresses (major principal stresses) are

shown in Fig. 5.12(b). The developed tensile stresses may be avoided or

reduced at this stage by proper modification of the dam geometry.

The contours of maximum compressive stresses (minor principal
stresses) of the dam upon completion are ploted in Fig. 5.13ka). The
corresponding plastic strains are shown in Fig. 5.13(b). It should be
noted that at the vertical subsoil boundary on the reservolr side the
vtlues of Lthe accumulated’ plastic strains are higher than normally
éxpected. The reason being 1s the effect of the boundary.conditions
assumed for the finite element mesh.

5.3.2 Effect of Water Fluctuation and Uplift Pressure '
| Consider the dam subjected to a rise in water level to EL. S0.0lm

and an uplift pressure with cutoff, the resulting deformation and stress .

contoyrs are shown in Figures 5.14 and 5.15. 1t should be noted that the

ed stresgses (Figure 5.13) are prestribed as initial
PR
resent analysis. Due to the fluctuation of the water

previously obta
_stresses for the
level in the reservoir, it is apparent that the dam will beNgubjected to
a loading of cyclic nature. FOr convenience initial filling of the
reservoir 1is defined as the first load cy;Le, following each fall and

rize constitutes an additional cycle of loading. Fig. 5.14 shows the

-
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deformation of the structure after the first load cycle.

The response of the dam to three different uplift pressure distri-
}

butions and cyclic loads is presented in Fig. 5.16. In Fig. 5.16(a), the

’

effect of uplift pressure 03 the overall deforxmation of the dam after the
h ’ :

first load cycle 18 clearly demonstrated. The horizontal displhcement of

the crest increases by 39% for full uplift, and by 30% for uplift with

cutoff. On the other hand, the difference 1n crest displacement between
-~

full uplift and uplift #ith cutoff is about 7% after the first cycle, and

36% after the twelfth cycle (Fig. 5.16(b)).

The permanent dam deformations after the first, fifth, tenth, and
twelfth load cycles with and withouﬁ uplift, are shown inr Figs. 5.17(a)
énd‘5.17(b) respectively. The water fluctuation of 20.0 qufor each load-
ing cycle is considered. 1In both instances it is shown thag the deforma-
tion increases with progressing load cycles, with larger deformationmns
observed for the case when uplift pressure is considered. The load-dis-
placement relations at the crest of the dam are ;hown in Figs. 5.18(a)

and 5.18(b). The total load WT is related to the water at El. 50.0 m

while W is the current elevation load. These curves illustrate the accu-
mulation of plastic deformations with increasing load cycles, regardless

of the presence of uplift. :

It can be expected that the effect of plastification of the soil is

more pronounced if the amplitudes of the load cycles. are 1increased.

Consider that the fluctuation in water level increases to 40.0 m and
remalns constant for each load cycle, the modes of deformation of the

dam and the upper layers of the foundation for the first, fifth and tent
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loading cycles are shown in Figs. 5.19(a), 5.19(b) and 5.19(c) respectiv-
ely. The accumulated plastic displacement of the coacrete dam is
presented in Fig. 5.20(a), and the complete lﬂad-displacemeﬁt history of
the crést of the dam is shown in Fig. 5.20(b). These results when
compared with those obtained with water fluctuations of 20.0 m show
consideFably larger plastification of the foundation soil. Specifically
- the horizontal displaceméent of the dam at the crest, after twelve load

cycles, is found to be 269.0 mm or 38% larger.’ '

The contours of the minor principal stresses (compression) developed
in the dam af%er the first and twelfth loading cycles, for two amplitudes
of water fluctuation (20.0 m anL 40.0 m)\ are shown in Figs. 5.21 and

5.22'

The minor principal stresses of the dam after twelve loading cycles
increase (in zones with stress concentration) by 304 to 424 and 47% to
75% when water fluctuations in the reservoir ate considered 20.0 m and

40.0 m respectively.

, The tensile stress zones of the concrete dam are shown in Fig. 5.23.
After the first cycle a maximum tefsile- stress of 1140 kPa is developed
at the middle of the base of the dam (Fig. 5,23(3), Qhereas after the
twelfth cycle a maximum tensile stress of 3548 kPa 1s observed at the toe

]

of the dam. The latter indicates craking of the concrete 1in the toe

area, since the rupture strength has been exceeded (ft = 2.7 MPa for:

P

concrete fé = 20 MPa) «
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‘ -

The sliding ‘stability of a gravity dam is directly related to the

b
\

shear strength of the foundation soil. Fig. 5.24(a) shows the contours
of maximum shear stresses in the subsoil subsequent to the first .loading
cycle. As shown in Fig. 5.i4(b), after twelve loading cycles, the zones

with ﬁigh shear stresses are clearly marked, indicating possible sliding

[

planes:

i -

Figs. 5.25(a) and 5.25(b) present the contours of accumulated
¢ * -

plastic strains in the foundation, After twelve loading cycles an
incrdase of 27%Z in the maximum plastic strain is observed. The zoﬂeg__
with high soil plastification occur around the heel and the shear key of

u

«the concrete gravity dam. .
5.4 CONCLUSION

¢

The behavior of structures founded on elasto—-plastic, soil was

¢ .

examined in this chapter. The static nonlinear soil-structure™inter-

action examples were:

(a) analysis of mat foundation; and )

(b) analysis pf concrete gravity dam on soft foundation.

In the case of the mat foundation the results obtained were compared
with those prediéted by conventional analytical procedureg. and from
anothey finite element procedhre. .The concrete gravity dam (was analysed

v,

with the proposed elasto-plastic analysis and the effect of the permanent

soll deformations du$ to water fluctuation in ;he reservoir was examined.
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/ . o :

Based on” the numerical results obtained" for the mat foundation

analysis the following conclusions are made:

~a

(1) * The maximum stress concentrations beneath the mat, calculated with

the proposed model are 22.5% and 274 higher then those obtained by
the compression index and subgrade . reaction modulus analyses

respectively. § a

*

Counsequently, the bending moments 4in the foundation between the

walls calculated l;y the pr;sent ar;alysis are respectiyeiy>?2% and
35% smaller then those obtained by the subgrade reaction and

compressed 1ndex analyses. Under the interior walls the moments

calculateqd by the proposed model are higher by 344 and 12% and under

' the exterior walls by 90% and 44% compared with those obtained by

(2)

¢

the subgrade modulus method -and compressiod_inaex analysis
respectively. Both counventional methods assume elastic soil

behavior. Therefore, the more realistic soil modeling procedure of

the proposed model 1s tegarded as the main reason for the difference
in the predicted response.

v

From the point of view of a design engineér the found difference

does not affect the overall quantity the reguired reinforcement,

and therefore will not optimise the design process.
- , ,
The comparison of the present results with those obtained by .the

»

other finite element procedures show a smaller difference in both

contact stresses (9Z)to 15%) and befnding moments, (1.2%).

-~
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(3) The initial elastic modulus does not have a significant effect on

N

the results obtained by the present analysis. However, in order to

u [ ]
reduce the error in the calculated stresses and moments care must <be

taken in ‘evaluating the hardening constant of the model.

~

(4) An increase 1in the mat thickness results in a better distribution of
contact stregsses but larger bending moments. A 100% increase. of the
mat thickness (from 300 mm to 600 mm) reduces the maximum contact

stress by 7.5% while the bending moment in the mat increases by

R 332N

(5) The failure loads corresponding”to the local shear failure or over-
all shear failufe ian the soil gre respectively 8 to 20-times higher

' \
then those based upon the ultimate strength of concrete. Similarly,
4 )

these loads will produce settlements larger than those acceptable

.

for majority of the structures. Hence, they do not govern the

-

ultimate éapacity of this type of foundations.

’

From the results obtained in the analysis os the concrete gravity dam,

the following conclugions are noted:

"

!
(1) Proper geometry of the gravity dam 1s necessary to reduce or

avold tensile stresses in the concrete gravity dam during the

construction phase.

"(2) Depending upon the compressibility of .the foundation soil

considerable settlement of the dam may occur during the

1

construction period.
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*(3) The "overall stress distribution in the fourjdftion is -similar for

ol

»
both the construction phase and the first application of loading

due to the water in reservoir.

~

(4) The influence of uplift pressure on the calculated displacements

—

is significant. The horizontal displacement at the crest of the

. dam 1is 30% and 39% Bighe:}wﬁkn calculated coasidering full or

partial uplift pressureg respectively, than those when 'the

tplift pressure 18 neglected.

(5) Variations_ in the uplift pressure pattern due to the watér
w b

(6)

.

barrier underneath the dam does not sigaulficantly affect the
magnitude of displacements. A maximum difference of 7% was

observed between those complete and partial uplift pressure
..7 w
cases.

The fluctuation of the water in the reservoir is found to have
o

considerable effect on both (a). the permanent dam deformation,

and (b)~ on the magnitude and distribution of stresses in the dam

and the foqﬁndation.
—

Y

With or without uplift pressure underneath the dam, per‘manent

plastic deformati¢on accumulates following any loading c;'cle.

[
1]

\\(8) The magnitude of accumulated plastic deformation is directly

®

related to the amplitude of'v_fat:er fluctuations. The calculated

plaséic deformation was found to differ by 384 between the cases

analysed with variations of 20.0 m and 40.0 m.

T~
-

.\\

\ L \\

A ’ \ L '
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The magnitude of stresses and the stress distribution in the dam
and foundation are influenced by the water fluctuation. A 75%

% . . v
increase 1in stress in the dam after the twelfth load cycle‘ is

&

’ ~observed. /ZOnes with tensile stresses develop in the concrete

(10)

(1)

dam after a few loading cycles. These tensile stresses exceed

the rupture strength of concrete and hence cracking was

predicted. ) ' | .

-
e

The magnitude of shear stresses in the foundation which relates
.q a

directly to the sliding stability of the gravity dam, increases

with successive load cycles. An average increase of 50% in the

e %

maximum shear stress in the  soil occurs after twelve loading-

-

cycles. — — N

The .accumulated plastic strains that relate to “the shear stress

incr‘ea:se by 27% after a twelve loaaing cycles.

o~ f

§ T - - e o
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PARAMETERS SYMBOLS VALUE -
- . X
SOIL
SUBGRADE REACTION MODULUS (kH/m3) . kg 520.0
COMPRESSION INDEX MODULUS (kH/m?2) c,
* depth: from 0.0'to 10.5 m ' 206040
from 10.5 to 30.0 .m ! y 3460.0
+COHESION (kH/m?) | : c. 3.5
FRIGTION ANGLE'(degrees) - ¢ 27
MODULUS NUMBER K 125
MODULUS EXPONENT ' ) n . 0.5
FAILURE RATIO - ' Rg 0.9
POISSON's RATIO C v 0.354
CONCRETE o -
YOUNG's MODULUS (kH/u?) E, gfI?TETJ\
POISSON's RATIO v, 0.2
(a)
PARAMETERS SYMBOLS vaLUE |
INITIAL YOUNG's MODULUS (kN/m?2) Eg 12135.0
INITIAL POISSON's RATIO vy f 0.354
FRICTIONAL ANGLE (degrees) Co ¢ 27
FAILURE LINE q/p : me o, 1.07
DILATANCY LINE m, 0.963
HARDENING CONSTANT ‘. A" 0.0012
COHESION (kH/m?) c 3.5

W
1

" TABLE 5-1:

* (b)

for the mat foundation

.

Values of pdrameters for (a) conventional methods ;nd
nonlinear FE ahalysis (b) proposed elasto-plastic analysis
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R |
' PARAMETERS SYMBOLS VALUE
® \ SOIL ™
1 : INITIAL YOUNG's MODULUS (kH/m?) E, 335000.0
. INITIAL POISSON's RATIO : v 0.25
: FRICTIONAL ANGLE (degrees) , ) 47.5
o _ | FAILURE LINE q/p . m 1.95
v o o ' H f vt
4 DILATANCY LINE [ ; m 1.6
. , N c
, HARDENING CONSTANT * : A | '0.00012
'COHESION (kH/m?) c . 20.0
. L
v , CONCRETE - _ , ;
YOUNG's MODULUS (kH/m?) . E 2.1(10)7
" [
POISSON's RATIO v 0.2
4 - . c ®
MASS DENSITY (kH/m?) 24.5
. - ! LYol
", . — T : —
TABLE >-II: Values of parameters for elasto-plastic analysis of
LR concrete gravity dam ‘
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FIG. 5.24: Contours of maximum shear stresses. (kPa): (a) first
load cycle; (b) twelfth load cycle’
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CHAPTER VI

[ S

-~ _ 6.0 SOMMARY AND CONCLUSIONS , . i ’

I A N

Constitutive lmodel for granular soil with inherent cohesion hav‘e'

’

been developed. The " model 1is based on the tt{eory of bounding surface

plasticity incorporating a non-associated .flow rule’ and the concept of

reflected 61ast£¢: potential. The formulation con;e.titutes an,extension of

A}

the work by Poorg?ashasb and Pletruxzczak and differs from i a number
v/ “ X . \

of aspects; for example, the forms of the yileld surface and ‘;)lascic
poﬁential, the mode of .accumulation of'pléscic distortions and the

geheralized form of the local plastic potential. Aleo,'g‘;- it is wmore

Wt A

detailed as it provides the expleit analytical expres‘sicx)ns' for the

gradient .tensors and the location of the conjugate stress p‘oint, which

‘are required for implementation in a computer code. To examine the

validity of . the constitutive relations developed here, for monotonic

loading, comparisons with theCfollowi’ng tests. were performed:  (a)
; .
[jrained.triaxial test on naturally weakly-ceménted sands as-reported in

Ref. 2.3; (b) drained triaxial test on artificially cemented sands with '

2% and 5% cement reported in Ref.'~2.3 and Ref. 2.4 respect:i‘vely; (c)
undrained triaxial test on loose sand reported 1o Ref. 2.20. For cyclic

loading, the developed model was tested simulating the experiments on
cyeclic behavior of Fujli sand per@ed by Ishihara, Tatsuoka and Yasuda

»
(2.17). Good agreement of results in both the monotonic. and cyciic load

comparisons “vas obtained. Due to the 1lack of experimental data on

cemented sand deposits under éyclic loading, an extensive simulation of

Y

the behavior of a hypothetical similar material ‘was conducted. The

re -

sﬂ"imulated behavior showed the expected results. Finally, an extensive

parametric study of the developed copgtitutive relation was conducted

4 -
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following monotonic or cycling loéding histories.

¢ \A - )

Further, a quadrilateral finite element incorporating the constitut-

[

“

" ive model was added to the existing element library of the program

MIXDYN.

s ' -

-

To ensure its validity the . newly developed elasto-plastic. finite

e

L4 -
element was used to solve a number of boundary value problems of

practical significance. ' i ‘ ‘

#

These included typical problems related to geomechanics (footing-on-

subsoil, analysis' of an earth dam during cqnstfu'ction),‘ and .problems of

nonlinear sofl—agtucture interaction (mat foundation on silt, and con-

crete gravity dam on "soft"” foundation). -

The model footing 62 mm wide and 320 mm long was rested on cohesion~

? 4 .
less sand. The results of the analysis were compared with those obtained

from small-scale testing and analytical nonlinear-elastic solution publi-

shed'by Duncan and Chang (l.11). They were in close agreemeént with those
from the ~experiments, while the ,e‘val.uated load at the end of the experi-
ment was fo.'und to be different from that obtained by the analytical solu-
tion. In tt;e early 1?ading stage' the computed settlements were slightly
larggr then those from experiments. It was concluded t}.xa_t this deviation
is depe'ndent‘ upon the precision in evaluating the initia_l' elastic soil

\s

modulus. vt

4
Itii’??tder to ‘ensure rellability and to verify the general applica-
bility of the proposed model, analyses of complex boundary value l;roblems

were performed. Problems related to geomechanics as well as nonlinear
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&

.
’

soil-structure interaction were analysed. An extensive study on the

influence G:f_ t!'he ela_s;:o-‘-piastic soil properties-on the beihavior of struc=

,

tures was also conduc.,ted: “The conclusions reached juétify the use of an

elaborate soil model in the analyses. B . ) ~

\ . Lo
-

An embankment structure founded on sloped base was analysed first
with two different finite element procedures: (a) the proposed elasto-

plastic analysis and tb) nonlinear~elastic analysis develo/ped by Kulhawy

....m,,ﬂw\hgt;’»«alml (1.12). “The analyses were carried out by taking into account the

gsequence of placehent of layers of fill duri‘ng congtruction. + The sget-

tlements as well as horizontal hovements obtained by the propgsed an.;]:ys-

.

1is were' fx;urid to be lArger than those by the \nonlinear-elas'tic procédure.
Thi’é'increase in movement was probabl; due to the shear coppli‘r.lg effect,
considered only by the present elastc;r-plastic model. The effect of the
angle of internal friction and f.ohesion was also examined. It was found

that a reduction of 13.5° in the angle of internal friction leads to a

. . -, ) A .
50% 1Intcrease 1in settlements. The contbitrs of settlements as well as
- f

_shear é;:resses in the dam were obtained by both analyses. A difference
of 30% in settlements and 60Z in maximum shear stresses was_obtained.

- The contours of settlements were significantly different when the corist-‘

ruction sequence was not simulated in the analysis.

The effect ~of the‘/elasto-p}.’astic foundation medium in problems of

. |
static soill-structure interaction was examined next. The analysis

AR

of the mat foundation of an eight story building was analysed with the
. - . . 1
proposed elasto—plastic analysis and results were compared with those

obtained from: (a)" conventional subgrade modulus, and compression index

-f 7

methods™ 'and kb) other finite -element procedures assuming nonlinear-eldst--,
’ . E - '

-

. ) : : LN

3



- -190-
L :

-

. }-’.'
ic and elastic-plastic (von Miges) mate:\riql behaviors:  The .stress

-

’

’

i

" concentrations beneath the mat foundé\tidnm calculated by \t‘h_éf proposed

A\
model were found to be up to 27% higher\ then those obtained by conven-

a—— \

A} . -~ .
tional methads and up to 15% higher™ fron}\ those obtained -by the .other

~.

finite element procedures. Cons,equehtl'y,, the bending moments ‘in, the mat

‘alculated by the proposed elasto-plastic analysis were up to 52% spaller

than those calculated with conventional methods and only 1.2% smaller
. . . A N
from those obtained by other finite element methods. The initial-elastic

modulus’ did not have a-significant effect ‘on the results; however, the

hardening constant in the prqposed model was found to have a considerable

S )
effect on the results. The increase of the mat thickness provided a

better distribution of contact stresses. The ultimdte bending moment

caﬁacity of the mat was found to dictate the failure load.

N i
.

The versatility of the constitutive proﬂfadsed» model and its “finite
element implementation. were evalquated',for a mn;re complex engineering
structure. \A conc ete gravity‘dam on "soft” foundation was .analyséd. In
particular, the :;ect' of uplift‘ pressure .;md water fluctuation in the
reservo¥r—uan—_hr -deformations ;md stress distributions was examingd. It
was found that to avold tensile stresses in the concrete d;: on "soft';
foundation during construct'tion séquénce, an’ adequate -geometry‘ of the dam
was required. The distribution of streéses deve10péd in the foundation

2
during the construction-phase was not sign_ifi’cantlhy affected by the'water
bressures after the initial water accumulation in phe reségvolir. Deform-
ations were signifi;::antly influenced by the magnitude of the uplift pres-
sure. Up to 39% ﬁigher displacements at the crest of the dam were calcu-

v

lated when the uplift pressure, was conslidered. However, the effect

.
b
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5

. ofldiffgrenc uplift pressure .patterns on the overall displacements was

foung not to exceed 7%. Regardless of the presence of uplift pressure,

>

the fluctuation of the water in the reservoir was found to have' a

_ considerable effect on bdth the deformations and stress distributions in

the' dém and the .foundation. Calculated displacements after twelve cycles

; 6 .
. ® of 40.0 m water fluctuation were 38% larger compared to those calculated

.{ . - - .
considering water fluctuation of 20.0 m. The stresses in the dam after

‘

twelve loading tycles lncreased by 75%, while the maximum .shear stress in

the foundation inereased by an average of 50%Z . The accumulated- plastic

. ¢

strains in sthe foundation were’ found to increase by 27% after twelve

I3

. loading cycles. ' :
t

During the course of this research various concldsiqps have beén

reached in connection with: (a) the formulation of the developed

N cbnstitukivé model; (b) its finite element implementation in the librany
of the general éurposg_program; kc) finite element analysis of‘problems
related to geomechaniés and soil structure 1nteracgion; (d) the effects

on the overall‘sgrpcturgl behavior from employment of the advanced soil
models (é) the eiasto-plastic soil behavior; (f) the influence of cyclic

loading on nonlinear soil properties.

N

The conclusions summarized above show that the objectives of the
. research effort were accomplished. Undoubtedly, the constitutive relat-

ions for the cemented sands are realistic, the finite element model works

©

well at all stages of loading and the proposed- nonlinear analysis can be

- applied to large and complex engineering structures in p;actice.

-
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6.1 RBCOMMENDATIONé FOR FURTHER STUDY'

The developed finite element procedufe ﬁay be gs?d‘in its present
form in performing further studies on complex geofechnicql and engineer-~
ing structures. However, attenéion should be focussed on factors which
have, possible effects on the analysis. They are related to: (a) accuracy
of experimental and analytical resg}ts that form the basis for oc¥mpar-
ison; (b) inﬁlgenée of soll parameters and precision in their evéiuation;
and (c) approximations related to the finite element analysis.
Thérefore, further studies are needed_ in both analytical and experimenta;
areas. Eipegiments leading to better evaluation of the behavio; of soilé
are a prerequisite for realistic modeliné. Extensive testing on soils
simulated in this \study is required. &he performed tests will éllow
further improvement of the dgveloped conetituqije relagions and a closer

-

evaluation of the soll parameters needed in the analysis.

¢

A better understanding of the behavior of the soil modeled here may °*
. » '
provide further simplifications of the proposed relatively complex model.

This will reduce the amount of effort necessary for itd finite element

. 3
implementation. Tegts on full or small scale structures are urgently

required to fill the present void in experimental data'and to serve as a
‘ !

basis for comparison with the present analytical results.

At the present state, a limited number of general purpose finite
element programs are structured for inclusion of more elaborate models of
the type developed in this study. Therefore, extensive developments in

this area are needed.

-~
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» and soil-structure interaction whgré _soil -nonlinearity cannot . be
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APPENDIX A

Al. L1§t1ng of the Modified Subroutine RESEPL

——
c.'lv
b ¢
c eve
c

Cevee

C o=~

SUBROUTINE RESEPL (COORD ,DISPL ,EFFST _ELOAD $EPSIN [ITER ,
INTGR ,LEONS ,LNODS .MATNO .NCRIT NOIME ,
. NDOFN ,NELEM  NGAUS ,NLAPS _NMATS _NNODE
" NPOIN ,NSTRE _NTYPE ,POSGP .PROPS .RESID .,
STRAG .STRIN ,STRSG ,WEIGP ,IPRED .ISTEP .
KUNLD., ESCUV.
L MCALC ,SSJZ€ ,REVST  ALPM2 ,GTHED ,NEON§ , =
PPTOT ,[CONS .RKPLS) -

 E BRI PP I I P 0P s eeel PP RIEIIN I I P Esertesssadederitnsorensocsedsasnne

Mt e s 4 a— =

-

EVALUATES RESIDUAL FORCES

..‘l.'li“.t.C!lI'....QQ....l..!..!l'..l'.!"‘......'In...l-l..‘...

DIMENSION COORD(NPOIN, 1) ,DERIV(2.9),DMATX( Ry 4) AVECT(4) MATNO(1),
PROPS(NMATS . 1),0LCOD(2.9),BMATX{4, 18),DEVIA(4) DISPL(1),
UNODS(NELEM, 1), GPCOD(2,9).DUACM(2, 2),STRAN{4) POSGP(1),
ELOAD(NELEM, 1) CARTO(2.9),SHAPE(  9),STRES(4) WEIGP(1),
STRIN( 4.1),ELCOD(2,.9),SIGMA(  4) SGTOT(4) EFFST(1),
STRSG( 4,1),€L01$(2,9),DESIG(
STRAG( 4,1) . RESID( 1), LEQNS( 18, 1) INTGR(1),PPTOT(1),
SSIZE(4,1), REVSTI4, 1), ALPH2(4,1), ALPA2(4),
Escuv( 1).
GTHEJ( 1), STREV(4)., VECTA(4), STRST{4), ALPAJ(4),
1CONS(1). RkPLST1)

KUNLD = ©

TWOP1+6 283185307179586

NEVAB=NNODE *NOOFN

NTQTV=NPOIN*NOOFN

NSTR{sd .

DO 530 IELEM=1 NELEM '

TF{INTGR(TELEM) £0.2 AND [1TER GT 1 AND,IPRED £0 1) GO TO 530

DO %40 [EVABv 1 NEVAS '

ELOAD(TELEM, LEVAB)=0.0 !

CONT INUE

KGAUS*0 ' ‘ N
00 20 1ELEM® 1 NELEM $
IFUINTGR(TELEM) EQ 2 AND TITER GT 1 AND.IPREDREQ 1} GO TQ 20
LPROP<NATNO( TELEM)
IF ( NCRIT €EQ 5 ) GO 10 610
UNG*PROPS({ LPROP. 1)
1SS*PROPS{LPROP,2)
THICKsPROPS(LPROP,J)
UNIAX=PROPS(LPROP.6)
HARDS*PROPS(LPROP,7)
FRICT.PROPSILPROP,8) * O 017453292 -
TF(NCRIT €Q 3) UNITAXSUNTAX*COS{FRICT),
IF (NCRIT €0 4) UNJIAX®6 O*UNIAX¢COS(FRICT)/ * -
(1.73205080787°(3 O-SIN(FRICT))) °
IF (NCRIT NE 6) GOTO 620 -
AMF « € *SINCFRICT)/(3 -SIN(FRICT))
AMC * PROPS(LPROP,12) "
ACON+ PROPS(LPROP,13)
CF= HARDS
SPHIF = 3.0 = AMF /(AMF + §.0)
SMO » CF * SQRT(1.0 - SPHIF * SPHIF)/SPHIF

GO TO 6
INS-MODEL *°* T 20
CONT [NVE -

4),0VECT(4) EPSTN(Y), -

~620

[+

Cere

c
[

RKAPA = PROPS{LPROP, 1)
STIFG « PRQPS(LPROP, 2)
VOIDO = PROPS{LPROP,7)
THICK = PROPS(LPROP,J)
BULK = PROPS(LPROP, 15)
BETA = PROPS(LPROP, 17)
IRIGD = PROPS{LPROP, 18)

CONTINVE

COMPUTE COORDINATE -AND I‘NCREﬂENYAL DISPLACEMENTS OF THE
ELEMENT NODAL POINTS

IPOSN+Q )

00 30 INODE=1,NNODE

ALNODE *LNODS( TELEM, INODE )

0O 30 IDIME= 1 NOIME

LPOSNSIPOSNS 1

NPOSN*L EONS( TPOSN, 1ELEM)

OISPTeO

IF(NPOSN NE O) DISPT=DISPL(NPOSN)

OLCGD( 10TME . INODE }=*COORD( LNODE . LD IME }+DISPT
€LCOO( 10 IME , INODE } *COORD( LNODE . TOTME }

-

A

(\'
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, 30 ELOIS(IDIME, [NODE)=DLSPT
[ ’
¢ .
IF ( NCRIT NE 9 ) |
. CALL MODPS (DMATX LPROP,NMATS NSTRE NTYPE PROPS.
. TRACE. NRIT ) )
KGASP =0
DO 40 1GAUSE®1,NGAUS
00 40 UGAUS®1 . NGAUS
EX1SP=POSGP( 1GAUS)
ETASP=POSGP(JGAUS)
KGAUS=KGAUS * 1 ¢
KGASPKGASP+ ¢

IF ( NCRIT NE 5 ) GO TO €%0

¢ .
‘e € ®v* INS-MODEL °°° »
4
, DO 640 ISTRY o 1, NSTR1
. , 1F ( ISTEP €0 1 AND I17ER €0. 1 ) GG, 70 €30
. hY STRST(ISTIRI) = SYRSG{!SYR| KGAUS)
. GO TO ‘640 ’
630 CONT INUE .
STRST(LSTRY) . STRIN(ISTRI KGAUS) ‘o
, 640 CONTINUE
TRACE » ( STRST{1) ¢ STRST(2) ¢ érnsnu )/ 30
.. CALL MODPS ( OMATX, LPROP, NMATS “NSTRE, NTYPE, PROPS,
. \ TRACE. NCRIT ) .
c ---
c 630 CONTINUE

CALL SFR2 (DERIV,NNODE , SHAPE  EX ISP, ETASP)
CALL JACOB2 (CARTD,DERIV,OUACH,ELCOOD, GPCOD ..

' T1ELEM KGASP NNODE, SHAPE)
CALL JACOBD (CARTO,DLCOD,DJACM, NDIME,NLAPS NNODE )’
OVOLU*DUACBWE IGP( IGAUS ) *WE IGP(JGAUS)
TFINTYPE'EQ J) DVOLU*DVOLU*TWOPI *GPCOD( 1, KGASP)
IF{NTYPE EQ 1) DVOLU-OVOLU*THICK
CALL BLARGE (BMATX . GARTD.DUACM, DLCOD,GPGOD,

KGASP  NLAPS NNODE,NTYFE, SHAPE)

CALL UINGNL (CARTD,DUACM, DMATX ELDIS,GPCOD .KGASP,
KGAUS ,NDOFN NLAPS  NNODE NSTRE ,NTYPE,
PSISS,SHAF[_s"uN,SYﬂ(S.S"?AB.NCHIY)

ess FOR DISPLACEMENT CONTROL *°¢ .
|
r
1F { NCRIT NE 8 ) G0 TO 200

INS -MODEL °~*

IRIGD €Q 1) GO 70 70 . .
TF (1%57€P EO 1 AND IITER EQ 1) GO YO 760
If (IITER EQ 1) GOTO 19Q

«
ICONY » [CONS(KGAUS)
STZAY o SSTZE(1.XGAUS)
SIZAZ » SSIZE(2,XGAUS)
SI1ZAd v SSIZ2E(3I.XKGAUS)
ALPAY *~SS1ZE(4 ,XGAUS)
GTET3 + GTHEI(KGAUS)
660 ISTRY « 1, NSTRY
STREV(ISTR1) = REVST(ISTRI KGAUS) =
ALPA2(ISTR1) » ALPMZ(ISTR! KGAUS) )
660 CONTINUE .
681 CONTINUE [ v
JF ( McaLCc €Q 0) GO YO 670
READ (8) OMATX, VECTA, SIZAD. GTET3, ALPA3, FaCTA,
.GMEAN . . .
c - - -
GO 10 680

3

[ .
870 CONTINUE M
CALL INSDEP ( SIZAY, STZA2, SIZA3, ALPAY, ALPA2, ALPAD, OMATX, .
SIRST, STREV, VECTA, GVETI, GMEAN, LPROP, NMATS, .
“PROPS, FAGTR, FLOWY. ISTEP, [ITER, ICONT, AKPLA) :

660 CONTINUE
1F ( SI743 €0 00 ) Ga 10 720
DFUN3 + 0 O . °
00 690 ISTRY = 1, NSTRI

OFUND = DFUND ¢ VECTAIISIR() o STRES(ISTRI)

. €90 CONTINUE

.
/I’,I_,J DFUNI GT -1 OE-3 ) G0 10 710
"

&
< v/ ERROR & O O '
DO 699 [STRIet NSTR?Y ' . . , -
~1F (ABS{STRST(ISTRI))" LY 1t 0€-2) GOYO €88 ,
CONST ¢« aBS(1 O - l!SHSYltSHIS'l!)‘SYNS(ISYNH/S'ISNYSYOH))




i (consr G ERROR) ERRORSCONST

€95 CONTINUE

If (ERROR LT 0 ,001) DFUNIei O

IF (11TER NE 2)  DFUN3=1 O

“IF (DFUN3 GT O O) GOTO 710 { -

ICONS{XGAUS) = O
SEZA2 = S51IA) .
sta3 » B o .
GTETD = GMEAN
00 700 ISTRYI = 3, NSTRi

ALPA2(ISTRY) = ALPAJ(ISTRY)
ALPAJICISTRI) = STRST(ISTRY)
STREV(ISTRI) = STRST(ISTRY) .
700 CONTINUE . .
GO 10 730

CONT [NUE
00 720 ISTRY1 = 1, NSTRY
STRES(ISTR1) » O O %,
00 720 JSTRY = 1, NSTRY
STRES(ISTRI) oSTRES(ISTRYI) + OMATX(ISTRI, USTR1)*STRAN(USTAY)
CONTINUE
730 CONTINUE t
DO 740 ISTRY = {1, NSTRt
STRST(ISTRY) » STRST(ISTR1) o STRES(!SYRU
740 CONTINUE »
IN CASE OF A “RIGID" ELEMENT

I¥ ( 1R1GO .EQ ¢t ) GO 1O 760 - p)

DPDEV * 0 O

re FACIt » 1 0 N
. OTVOL = -(STRANLT) sSTRAN(2) 'é'“‘"“" \
 1F (OFUN3 LT =+t OE-1) GOTO 7

STIFg = «(1 O ¢ VvO1DO) / RKAPA * TRACE
DEVOL » -( STRES(1)*STRES(2)+STRES(4) ) / (3 0 * STIFK)
DPVOL = DTVOL - OEVOL \
IF (BETA LY O t) GOTO 742 n
DIOEV ¢ 2 O/3 O*SQORT(STRAN( 1)%¢24STRAN(2)**2+STRAN(4)4¢ 2
. STRAN(1)*STRAN(2)-STRAN(1)*STRAN(4) -STRAN(2) STRAN(4)~
e ! 3 O'STRAN(3)**2)
DEDEV » SORT(STRES( 1)¢°*2+STRES(2)**24STRES(4)**2- srnts(cl-
. STRES(2)-STRES(1)° srnts(a)-srn(s(:)'STnEsl4)-
. 2 Q*STRES(I)**2)/(3 O*STIFG)
%  oeOtv « DIDEV - DEDEV : .
742 CONTINUE
FACTt s FACTR*(BETA®OPDEV+(1 O+VOIDD)*DPVOL) + t O
SIZA1 = SIZAt * FACTH
' SIZA2 « SIZA2 ¢ FACTH
ALPA) » ALPAY * FACTY

.

748 CONTINUE

SSIZ2E( 1 .KGAUS) »
SSIZE(2.KGAUS) =
SSIZE(I,KQAUS) =
‘ SSIZE{ 4 KGAUS) »
RKPLS{KGAUS) »

D0 780 ISTR1 = ¢,

S1ZAY
S12A2
S12A3
ALPAY
RKPLA
NSTR1Y

ALPH2(1STR1 KGAUS) = ALPA2(ISTR1)*FACTY
REVST(ISTRY KGAUS) = STREV(ISTRt)*FACT?

180  CONTINUE

PPTOT(KGAUS) = PPTOT( KGAUS ) -BULK*DTVOL

- ' GOTO 760

CONT INUE

CONT INUE

IF ( 1GAUS NE O ) GO 10 190
. « JF ( IRIGD €O V) GO YO 190 -
IF (1ITER LY 2 OR. 1ITER GT J) GOYD 190
1 FORMATY (2X, 1SHPORE PRESSURE =.£15.8)

CAL
CALL ADUMP (

"

CALL INVAR ( DEVIA,

JCONS(XGAUS) = 1

00 770 ISTRY « 9, .
. STRSG(ISTRY KGAUS) = STRST{ISIRY)

. GTHEI(KGAUS) * GTETJ
1F (DFUN3 LT -1 OE-3) GOTO 760
IF ( (FLOWY LT -1 OE-6°S1ZAY) AND {(ICONS(KGAUS) NE 1) )

ADUMP™( STRST, 4,

STRES,

hel

b

LOWER STRESS POINT ONTO BOUNDARY SURFACE

LPROP, NCRIT,

. STRST, VARJ1, SIGMt, YIELD )
CALL INSLOW ( LPROP, NMATS, PROPS, SINJY, SIGM1, SBARY, '
ALPAY, SIZAt, STRST ) . ) .

NSTRY

WRITE(S, 1) PPTOT{KGAUS)
CALL, ADUNP _ ( SSIZE(1,.XGAUS), 4, *SSIZE-RES” )

Y ‘S\'NS'Y_RES' ) . !
CALL ADUMP { STRAG(!.KGAUS), 4, *STRAG-RES® ) o .
“STRESS-R®

4,

\ I} .

»

NMATS, PROPS, SINTI, SBAR1,

, »




' CALL ADUMP ( STRAN, 4, *STRAIN-R® )

o0 TO
NOT INS-MOOEL <*** .

CONT INUE
IF(ISTEP.GT 1 OR IITER GY 1) GO 10 *60 . .
JF(NCRIT NE 6) GOTO 185 -

DO 187 ISTRI=) NSTRY :
, STRSG(ISTR 1, KGAUS) * STRIN(JSTR?T KGAUS)
SIGMA(ISTR1) o STRIN(ISTR! XGAUS)
tF (UNIAX GY 100 O) GOYO 1$Q. . ~
CALL INVAR(ODEVIA . LPROP NCRIT NMATS, PROPS. sm\':l STEFF, .
.. S1GMA THEYA, VAR, YIELO)
SMEAN « STGMA( 1)+SIGMA(2)+SIGMA(4)
. SPHI * -COS({THETA)*STEFF/(SMEAN/] -SMO-STEFF SIN({THEYA)/SQRT(I )}
AM « 6 O*SPMI/(3 -SPHI)
EPSTN(KGAUS) o ACON®AM/ CAMF -AM)
(GO T0 160

159 oo 170 JSTR1s1 NSTRI -
170 STRES(ISTR1 ). smts(xsrmbsrnmusm KGAUS) "
160 CONTINUE
on:vs-umu~:psm(uolus)~unos v
DO. 150 ISTRts 1 NSTRY -
DESIG(ISTR L} «STRES(ISTRY) . ,
150 SIGMA(ISTR1)}sSTRSG(ISTRY KGAUS)+STRESIISTRY) .
IF(NLAPS EQ 2 OR NLAPS £Q O) GO T0 60
. IF (UNIAX GT 100 O) GOTO 6C

- L4
CALL INVAR (DEVIA,LPROP,NCRIT NMATS, PROPS,SINT3I, STEFF,
» SIGMA THETA ,VARU2 YIELD)
1F (NGRIT NE 6) GOTO 44 .
AM = AMFCEPSTN(KGAUS )/ (ACON+EPSTNIKGAUS))
SMEAN = (SIGMA(1)+SIGMA(2)4SIGMA(4))/2 O
SPHI = 3 O*AM/(6 0+AM)
YIELO®(SMEAN-SMO ) *SPHT +(COS(THETA)-SIN(THETA ) *SPHI/SORT(] ))* srtrr
ESPREEFFST(KGAUS)-PREYS .
IF(ESPRE GE.O O) GO YO %0
ESCURSYIELQ-PREYS
ESCUV{KGAUS) » ESCUR
IF{ESCUR LE O O) GO TO 60
ancv-:scue/(nuo EFFST(KGAUS))
GO 70 70 '
ESCURCYIELOD-EFFSTIKGAUS) N .
ESCUV(KGAUS) = ESCUR : -
IF ( ESCUR QT 00 )
KUNLD = 1 -
Go 10 €0 *»
CONTINUE

REACT1 Q

MSTEP »

TF(NCRIT £Q 6) GOTO 7%

MSTEPTESCURS O/UNIAX+1 O

1F(MSTEP GT (O} MSTEP=10

ASTEPSMSTEP

REDUC1.0-RFACT

DO 80 ISTR1e1 NSTRI

SGTOT(ISTR1)eSTRSG(ISTRY ,KGAUS )sREDUC*STRES(ISTRY) <

STRES(ISTR1)eRFACT*STRES(ISTRI)/ASTEP e

00 90 USTEP=1 MSTEP

CALL INVAR (DEVIA,LPROP NCRIT NMATS, PROPS, SINTI, STEFF,
SGTOT, THETA, VARJ2,YIELD)

IF(NCRIT €0Q 6) FRICT®ASIN(SPHT)

CALL YIELDF (AVECT . OEVIA . FRICT NCRIT, SINTI STEFF .
THETA,VARJ2.0)

IF(NCRIT NE 6) GOTO 82 )

INT = O

SMEAN s SGTOT(1)+5GTOT(2)+SGTOT(4)

CALL YIELOF(STREV,DEVIA FRICT INT AMC STEFF, YHETA, SMEAN, SMO)
CONTINE

CALL FLOWPL (AVECT,ABETA OVECT , HARDS NYYPE,POISS,YOUNG) |

IF (NCRIT NE 6) GOTO 89 + :
DENOMs O

00 83 ISTR1=1 NSTRY

OENOMSDENOMSTREVIISTR 1) *OVECT{ ISTAY)

SMENT (STREV( 1)+STREV(2)+$TREV(4))/I ©

ALPAJ(1) = STREV(H) - SMEN

ALPAI(2) = STREV(2) - SMEN '

ALPA3(T) = STREV(I) N
ALPAJ(4) = STREV(S) - SMEN -
RCTR « O -
D0 84 ISTRI=) NSTRY

FCTR » FCTR & ALPAJ(ISTRI)CALPAI(ISIRI)

~




FGIR » SORT(2 *FCTR/3 O}
- DAR o AMF * ACON/ (ACON+EPSTN(KGAUS) ) **2
SMEN » SMEAN/D O .
HPL = -18 O° ( SMEN-SMO-SIN(THETA)}*STEFF/SORT(I™T)/ ]
{6 O“")"?’DQ“'FC'H —
ABETA s 1 O/(HPLSDENOM)

88 CONTINUE
AGASHO O . .
DO 100 [STR1=1 NSTRI

100 AGASHeAGASHeAVECT(ISTR1)*STRES(ISTRY) - .
DLAMD®AGASH*ABETA
IF{OLAMD LT O O) DLAMO=O O
IF(ISTEP EQ 913 ANO IITER EJ‘J)
AM _HPL ,ABETA DLAMO STREV
IF(ISTEP EQ '3 AND TITER EQ &) WRITE(6,1014)
L(DESIG(I) 1= 4) 4
IF(ISTEP EO 13 AND IITER EQF¥) WRITE(6.1014)
(SIGMALT) =1 4)
IF(ISTEP EOQ 13 ANO 1ITER £Q 4) WRITE(6,1014)
(SGTOT(1) . i=1.4)
IF(ISTEP EQ 13 AND 11TER EQG 4) WRITE(6,1014)
(STRES(I).1v1.4)
IF(ISTEP EQO 13 AND IITER EQ 4) WRITE(S,10%4) '
(AVECT(1), 1%1.4)

1014 FORMAT(7GI10O 4)

. IF (NCRIT NE &) GOYC fO8

IF (DLAMO €Q O O) GOTO 60

PRINTS,

OO ODON

CALL FLOWPLI(STREV,BBETA,OVECT HARDS, NTYPE POISS, YOUNG)
00 107 ISTR1=) NSTRY . - .
SIGMA{ISTRY) v STRES{ISTRI)-OLAMD*DVECT(ISTR?) '

{02 ALPA3(1STRT) = DLAMO*STREV(ISTRY) . s

EPSTN(KGAUS) « EPSTN(KGAUS)*OLAMD FCIR

AMeAMF *EPS TN (KGAUS Y/ {ACONSEPSTNIKGAUS))

SPHI*3 O°ANM/ (6 Q+AM)

F(ISTEP EQ 13 AND IITER €Q.4) PRINTS, \
E AM

c
y < . ..
IND » O ,
IF(ABS(SIGMA(4)) LT ABS(SIGMAT 1))} IND=1
. IF(ABS(SGTOT(4)) LT ABS(SGTOT(1)))~INO*1
, IF(IND €0 O) GOTO 114
c

116 DO 112 TSTRI=1 ,NSTRY
112 SGTOT(ISTR1)=SGTOT(ISTR1)+SIGMA(ISTR1)

CALL INVAR(DEVIA,LPROP,NCRIT ,NMATS, PROPS,SINTI, STEFF,

SGTOT, THETA, VARY2, YIELD)
SME » (SGTOT(1)¢SGTOT(2)+SGTOT(4))/3 O
FAC » ((SMO-SME)*SPHI)/((COS(THETA)-SIN(THETA) *SPHI/SORT(I ))
SSTEFF )
SGTOT( 1) -\;;c-otva(')osu:

. -

SGTOT(2) = GAC*DEVIA(2)e+SME

SGTOT(3) = FRC*DEVIA(I) -

SGTOT(4) = FAC'DEVIA(4)eSME,

60T 90 . .
114  CONTINUE

IF(ISTER €O 13 ANO TITER €O 4) PRINT®.FAC

GO0

CON1=(SGTOT(1)-SGTOT(2))*(SIGMA(1)-SIGMA(2))+4 O°SGTOT(D)*
| SIGMA(3) -SPHI*SPHI*(SGTOT(1)¢SGTOT(2))*(SIGMA( 1)+
SIGMA{2))+2 *SPHI*SPHI*SMO*(SIGMA(1)+SIGMA(2))
CON2a(SIGMA({ 1)-STGMA(2))*°244 *SIGMA(D)**2-SPHI *SPHI*(SIGMA( 1)+
S o SIGMA(2))°2¢4 SSPHISSPHI *SMO*(SIGMA(1)+SIGMA(2)) -4 O°
. (SPH1SMO)**2
1F{ ABSICON2) LT O tE-6) CON2*1 O
. CONDe(SGTOT{ 1)-SGTQT(2))**2+4 O°SEGTOT(I)**2-(SGTOT( 1)
" . . SGTOT(2)) "2°SPHI *SPH]
DO » 4 O°CON1°CONI-4 O%CON2°CON3
IF (OO GT O O) GOTO 103
srop
A 103 0D = SQRT(DO)
- FAC1(-2 O*CON1-00)/(2 O°CON2) .
FAC2°(-2 O*CONI+DD)}/(2 Q*CON2) . -
FACFAC!
IF (,(FAC1_LT O O) OR (FACt GT 2 O)) FAC=FAC2
IF ( (FAC LT O %) OR (FAC GT 2 O)) GOTO 116 '
DO 104 ISTRi=t NSTRI m
104 SGTOT(ISTR1)eSGIOT(ISTRYI)}*FAC SIGMA{ISTRY) ’
TF{ISTEP EQ 13 AND.IITER EQ 4) PRINTS, -
FAC,CONY,CON2,CON3
Q0TO 90 N

108 CONT INUE

O O oo

BGASH=0 O . v .
00 110 ISTRIe1 NSTRY

< BGASHBGASHeAVECT(ISTRT)*SGTOT(ISTRY)

« 110 SGTOT{ISTR1)=SGTOT(ISTR l)’S'm&S( ISTR1)-DLAMO*DVECT{ISTRY)

e




H

Fa

\
<,

- €

EPSTNIKGAUS ) *EPSTN(KGAUS ) +DLAMO*BGASH/YIELD
CONTINUE

CALL INVAR (DEVIA,LPROP NCRIT NMATS PROPS, SINTI STEFF,
SGTOT, THETA VARY2.Y1ELD)
If (NCRIT NE €) GOTO 96 .
SME = (SGTOT( $}+SGTOT(2)+SGTIOT(4))}/3 O
YIELD e (SME~-SMOY " SPHI‘(COS(YHFYA) SIN(THETA) vSPHI/SQRT(3 ) )*STEFF_
BRING = 1 O -
GOTO 98

h 3
96 CURYS=UNIAX+EPSTN(KGAUS ) *HARDS
BRING = CURYS / YIELD
98 00 130 ISTRi=1,NSTR?
130 STRSG(ISTRY, KGAUS)-BRING'SGtO¥([Stn|)
EFFST(KGAUS) « Cudvs
C*** ALTERNATIVE LOCATION OF STRESS REDUCTION LOOP TERMINATION CARD
C 90 CONTINUE
C. ..
GO TO 190
60 DO 180 ISTRI=1 NSTRY °
. 180 STRSG(ISTRY,KGAUS)»STRSG(ISTRI, chUS)oo:Sba(Istu')
EFFST(KGAUS)*YIELD ,
4
Cees CALCULATE THE EQUIVALENT NODAL FORCES AND ASSOCIATE WITH THE
c ELEMENT NODES
190 MGASH®O . -
D0 140 INQDE= 1. NNODE
D0 140 I1DOFN=1 NDOFN
MGASH=MGASHS* 1
DG 140 ISTRE=1 NSTRE T,
TOTPP « PPTOT(KGAUS)
IF (ISTRE EQ 3) TOTPP+O O
ELOAD({IELEM MGASH)"ELOAD(TELEM MGASH) +BMATX(I1STRE  MGASH)*
(STRSGUISTRE,KGAUS) >STRIN(ISTRE KGAUS )+ TOTPP)*DOVOLU
CONTY INUE
CONT INUE
CONT INUE

CALL ACLEAR ( RESID, NTOTV )

D0 500 IELEM=1 NELEM

DO 500 [EVABe | NEVAB

LMVEB*LEONS|{ IEVAB, IELEM)

TEMPS » ELOAD(IELEM, IEVAB)

IF ( LMVEB GT NEONS ) TEMPS « -TEMPS
RESID(LMVEB)=RESID(LMVEB) + TEMPS

CONT INUE .

CONT INUE . N

IF ( NCRIT €0 8 AND MCALC EQ° ! ) REWIND 8

RETURN
ENO

[l
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. ’ APPENDIX B -~

 INPUT FOR MATERIAL PARAMETERS )
The material pa/gmeters tequired by the soil model are read in the
subroutine INBUTB”of the program MIXDYN in the following order: !

/
CARD SET 7 MATERIAL CARDS - Three cards for each different material, a

total of NMATS*3 cards.

! t M

‘ 1st Card MATERIAL IDENTIFICATION CARD (15)

_Cols: 1-5"  NUMAT N (\ Material’ m number. -

2nd Card MATERIAL PROPER‘I‘IES’ CARD-(a) (8E10. 4)

”

Cols. 1-10 PRQPS (NUMAT, l) Young's Modulug
11-20 PROPS (NUMAT, 2) , Poisson's ratio < .
21-30 PROPS (NUMAT, 3). " Thickness for plane stress problem
31-40 PROPS (NUMAT, 4) 0. ,
41-50 PROPS *(NUMAT, 5) 0.
51-60 PROPS (NUMAT, 6) . 0.
61-70 >PROPS (NUMAT, 7) Cohesion

“71-80 PROPS (NUMAT, 8) . Friction angle .

3rd Card MATERIAL PROPERTIES CARD ~(b) (8E10.4) -

Cols 1-10 - PROPS (NUMAT, 9) +0.
11-20 PROPS (NUMAT, 10) Y - constant i . .
' 21-30 PROPS (NUMAT, 11) ' 5 - gonstant ’ e
31-40  PROPS (NUMAT, 12) ' Zero dilatancy line . '
- 41-50 PROPS (NUMAT, 13) A - constant
’s ¢
N
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