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ABSTRACT

Electron Paramagnetic Resonance Linewidth and Spin-Lattice
Relaxation in Single Crystals: Presence of Dissimilar
Spins, Application of Site Percolation and
Percolation-Limited Diffusion

Ufuk Orhun

An expression, appropriate to calculate the spin-lattice
relaxation time of the host paramagnetic ions, using the EPR
linewidths of the impurity ion, is derived by use of the
second moment for crystals consisting of two different kinds
of spins. Estimations have been made of the spin-lattice

3+ 3+

relaxation time of the R ions in Gd doped

4)2-4}{20 single crystals, with R = Pr, Sm, Ce, and

Nd. Significant differences were found in the values of

NH,R(SO

spin-lattice relaxation +time as calculated using the
presently derived expression from those calculated using the
commonly used incorrect equation.

Three dimensional site-percolation calculations of
Gd3+-doped LinxYl__xF4 and PrxLal-xF3 single crystals have
been made in order to explain the experimentally observed
ca3? EPR 1linewidths in these hosts as functions of
temperature and x. The calculated percolation thresholds are
in agreement with the disappearance of the observed EPR
linewidths at low temperatures for Linxyl—thl crystals with
X = 0.3, and with the disappearance of the observed EPR

lines, when 0.2 < x < 0.8, in Pr la,_ ,F,. It is concluded
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that the that the spin-lattice relaxation process is
ineffective, as far as the linewidths are concerned, below x
= X,

A model combining percolation and diffusion processes,
referred to as percolation-limited diffusion (PLD), has been
proposed, and applied to a sguare lattice. Two
probabilities, one for site occupation and the other for
spin orientation, have been employed to simulate three
distinct cases - spin glasses, magnetically-dilute single
crystals, and 1liquid crystals. Fractal dimension of PLD
cluster, fractal dimension of random-walk, percolation
thresholds, and critical exponents for the various cases
have been estimated. It is found that the resulting PLD
clusters exhibit the same fractal behaviour as those of the
hulls of diffusion fronts. As well, they exhibit some
properties of percolation clusters. In addition, they
possess some unique critical exponents of their own. The
presently-calculated values of percolation thresholds, Por
the fractal dimensions DH and drw’ and the critical

exponents v and ¥, are in agreement, within error bounds,

with those reported previously.
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Chapter I

Introduction

This thesis consists of three distinct yet related
topics, whose detailed introductions are given in the
beginning of the corresponding chapters. They are:

(i) cCalculation of the host-ion spin-~lattice relaxation

time in single crystals containing two different kinds of

paramagnetic ions. Crystals consisting of one kind of

paramagnetic ion, were mostly used in the early days of
electron paramagnetic resonance (EPR) experiments. An
expression was derived to calculate the spin-lattice
relaxation time of the paramagnetic ion using its EPR
linewidth. In the last few decades paramagnetic impurity
ions, in addition to the paramagnetic host ions, have been
used widely in EPR experiments. However, the same
expression, mentioned above, applicable to the presence of
one kind of pgramagnetic ions had been frequently used to
calculate the spin-lattice relaxation time (t) of the host
ions using the impurity-ion EPR 1linewidth. All these
estimates of Tt have, thus, been erroneous, since the second
moment for crystals consisting of one kind of paramagretic
ion, used in these estimates of T, excludes all interactions
between dissimilar paramagnetic ions, which can be quite

significant.




(ii) Percolation. This is a relatively recent subject.

Percolation is basically the study of the extent of the
connectivity via certain sites in a medium. It has been used
to explain various physical phenomena. In this thesis,
percolation phenomenon has been used as a model to represent
the spin-lattice relaxation process and, in turn, to explain
various critical behaviours observed in EPR experiments.
This is the first-ever application of the percolation
process to the study of the spin-lattice relaxation process
in doped and magnetically dilute crystals.

(iii) Percolation-limited diffusion. A model, combining

both percolation and diffusion processes, referred to as
percolation-limited diffusion (PLD), has been proposed in
this thesis. Three specific cases are discussed by way of
detailed computer simulations.

The organization of this thesis is as follows. Chapter
II1 describes the details of the phenomenon of electron
paramagnetic resonance (EPR), EPR 1linewidth, and its
relationship to spin-lattice relaxation, as a background
necessary to understand the research presented in this
thesis. The derivation of the impurity-ion second moment for
crystals which contain two different species of paramagnetic
ions, and the derivation of an equation to calculate the
spin-lattice relaxation time of the host paramagnetic ions
using the impurity-ion EPR linewidth are given in Chapter

III. These will be followed by calculations of host-ion




spin-lattice relaxation times in several samples containing
host paramagnetic ions, and comparisons of these relaxation

times with the previously-reported values, estimated using
the incorrect expression. Finally, a discussion is provided
on how to identify the particular spin-lattice relaxation
mechanism effective; this is accompanied by illustrative
examples. The phenomenon of percolation, percolation
threshold, its relevance to EP. and application to
spin-lattice relaxation are discussed in detail in Chapter
IV. A description is provided of the computer simulations
used for the calculatiorn of the second moment and
percolation thresholds in LinxY F, and Pr_La

1-xF4 xP21-xF3
crystals. An explanation of the reported data, i.e.

single

dependence on concentration (x) and temperature of Gd3+ EPR
linewidths in Li¥b ¥, ,F, and Pr lLa, ,F, is thus provided.
Chapter V deals with the details of percolation-limited
diffusion model. The parameters of interest, such as
critical exponents and fractal dimensions, are calculated
for PLD model. The calculated values of these parameters are
compared, in 1limiting cases, to some previously-studied
models, such as purely percolation <-d purely diffusion
processes. The relationship between th. percolation-limited
diffusion and the spin-lattice relaxation processes is
established. A discussion of the possible application of

this model to various physical systems is also provided.

Finally, the conclusions are given in Chapter VI.




Chapter II
The phenomenon of electron paramagnetic resonance

II.1 The mecﬁanism of electron paramagnetic resonance

Electron paramagnetic resonance (EPR) is a form of
spectroscopy in which an oscillating magnetic field induces
magnetic dipole transitions between energy levels of a
system of paramagnets. A paramagnet with a total angular
momentum of J will have 2J+1 equally-spaced energy levels,
in the presence of a static magnetic field, referred to as
the Zeeman field (B). The spacing between the energy levels,
AE, 1is directly proportional +to the magnitude of the

external magnetic field, B, and is given by
AE = g“BB' (II.1)

where My is the Bohr magneton and g is a dimensionless
constant that determines the magnetic dipole moment, called
the Landé factor. Further splitting of the energy levels may
occur due to spin-orbit coupling aid crystal field effects.
In an usual EPR experiment, the magnetic field wvalue is
varied, while the supplied microwave energy is kept constant
and the resonance occurs when the supplied microwave energy
(hv) equals AE, the spacing between the energy levels of a

paramagnet. This particular frequency, corresponding to AE,
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i.e. v = AE/h, is called the Larmor frequency. Thus, an
isolated, single paramagnet, supplied with " constant
microwave energy hv, while the magnetic field is varied,

1 x-band

would have a single resonance line at Br = hv/guB.
EPR experiments, as those considered in this thesis, utilize
microwave frequencies in 8.5 to 10 GHz. For this frequency
range, for most paramagnets, the resonance condition is

satisfied for external magnetic fields near 3500x10 7 T..

II.2 EPR linewidth

In a typical EPR experiment, crystals consisting of
paramagnetic and/or diamagnetic host ions are doped by
paramagnetic impurity ions, and it is the impurity ion whose
resonance is of interest. The impurity ions are surrounded
with paramagnetic host 1ions, and therefore the 1local
magnetic field at an impurity site depends on the direction
of the host-ion spins surrounding that particular impurity
site. Some host spins contribute to increase the magnitude
of the local magnetic field, while others tend to reduce it.
This results in a distribution of the resonance magnetic
field value for the impurity ion, causing the broadening of

the EPR resonance line.2

The linewidth, AB, is defined as
the full width at half the maximum (FWHM) of an absorption
line. An EPR absorption line along with its first derivative
are depicted in Figure II.1l. It is the first derivative of

the absorption 1line, which 1is recorded in most EPR



Figure II.1. The plot of EPR absorption, A, and ijts

first derivative dA/dt as a function of the external

magnetic field. The linewidth (FWHM), AB, is also indicated.




experiments.

There méy exist other magnetic dipoles in the crystal
(e.g., protons), besides the paramagnetic host ions, which
will also cause variations of the 1local fields at the
impurity ion sites and contribute to the 1linewidth. 1In
addition, non-magnetic interactions can aiso affect the
linewidth indirectly through their effect on magnetic

interactions.

II.3 Spin-lattice relaxation and its effect on EPR lines

The transitions induced between the energy levels of a
paramagnet, by the exchange of energy between the paramagnet
and the rest of the 1lattice constitute spin-lattice
relaxation. There are several spin-lattice relaxation
processes, differing from each other through the way the
energy exchange takes place. For example in direct process
there are two energy levels involved in the spin-lattice
relaxation process, while in the Orbach process there are
three.1

The spin-lattice relaxation process is responsible for
the return of an excited spin system to its equilibrium
state. Assuming that this return has an exponential
behaviour, and that the external magnetic field is along the
z axis, the spin-lattice relaxation time, T, is defined by

the following equation:1




M o= 22, (II.2)

In eq. (II.2), Mz is the component of the magnetization
along the z axis and M, is its equilibrium value.

The spin-lattice relaxation process causes the
paramagnetic host-ion spins to flip from one state to the
other. These flips of the surrounding paramagnets result in
fluctuations of the local field at the impurity site which
affect the local field, and therefore the EPR linewidth. It
has been shown that the host-ion spin-lattice relaxation can
both narrow and broaden the EPR lines, depending on the
ratio of the spin-lattice relaxation time of the impurity

ion to that of the host ion.2

Both the narrowing and the
broadening of EPR lines are measured with respect to dipolar
linewidth as calculated using the second moment. The second
moment represents EPR 1linewidth that would have been
measured in the absence of any spin motion in the lattice.
The EPR 1lines broaden when the host-ion spin-lattice
relaxation time is of the same order of that of the impurity
ion, while they are narrowed when the host-ion spin-lattice
relaxation time is much shorter than that of the impurity
ion.2 Generally, in the former case, the EPR lines broaden
with increasing temperature, while in the latter case they

narrow with increasing temperature. It should be noted that

the spin-lattice relaxation time, always, decreases with



increasing temperature.




Chapter IIl

Calculation of the paramagnetic host spin-lattice

relaxation time from impurity-ion EPR linewidth

I1I.1 Introduction

The effect of dipolar interactions on resonance line

3

shape was first treated by Waller,” and later by Broer4 and

5 Subsequently, Anderson and Weiss6 presented a

Van Vleck.
theory, which treats the motion of spins induced by the
exchange interactions as a stochastic process, and makes it
possible to describe the line shape in a fairly reasonable
way. This stochastic theory was developed further by

7 His step goes a step further than the moment

Anderson.
method of Van Vleck.> More quantitative calculations of
relaxation times were later reported by Mitsuma.®

It has been shown by Anderson and Weiss,6 that rapid
motions of the host spins narrow the impurity EPR lines in
crystals, consisting of only one paramagnetic species and
considered the exchange interactions between the ions as'the

source of random spin motions, with the rate of motion being

W - They derived the EPR linewidth (AB) as

_ 10 .2
BB = 35 Byj, / B (III.1)
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It should be mentioned that the validity of eq. (III.1l) is

subject to the condition: Be >> Bdi .6 In eq. (III.1), B

| o
is, in fact, W, as expressed in magnetic-field units, and

e

B is the 1linewidth due to dipole-dipole interactions

dip
between the impurity ion, responsible for EPR, and the
paramagnetic ions of the host crystal, given by Bczlip = h®

<Av2>/g2u§, (h is Planck’s constant, g is the Lande’s factor
of the paramagnetic ions, My is the Bohr magneton). <Av2> is
the second moment for a simple cubic lattice with one kind

of magneti~s ion, given by Van Vleck,5 as

6 4, . 4_

+A

<Av®> = 36.89%8%h %" 2tAg

[%S(S+1)] (Ai+h 0.187), (III.2)

where d, S, and Ayr A A, are the spacing of a simple cubic

27 73
lattice, the effective spin, and the direction cosines of
the applied field, relative to the principal cubic axes,
respectively. Using eq. (III.2), Anderson and Weiss6 showed

lp

where n is the number of host paramagnetic spins per unit
volume.

In order to explain the highly temperature-dependent EPR

8

linewidths, Mitsumna suggested that the spin-lattice




* 12

relaxation process might be responsible for the narrowiné of
EPR lines in a way, which is similar to that caused by the
exchange interactions, described above. In parallelism to

6

the theory of Anderson and Weiss, Mitsuma® derived the EPR

linewidth as

_ 10 2
The i% factor, both in egs. (III.1) and (IIX.4), is due to
the extreme narrowing, as pointed out by Anderson and
Weiss.® The factor of 2 appearing in eq. (III.4) is due to

Lorentzian line shape of the narrowed resonance lines. As
seen from eq. (III.4), the quantity Bmod replaces Be in eq.
(III.1). B oa is the host-ion spin-lattice relaxation time,

T , expressed in magnetic-field units:8

Bmod = h/tgR (III.5)

Combining egs. (III.3), (III.4), and (III.5), T can be

expressed as

3hAB
102 (g8) 3n2s(5+1)

T = . (III.6)

Thus, Tt can be calculated from eq. (III.6), using the

experimentally observed EPR linewidth.
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As already stated, eq. (III.3) is derived for a simple
cubic lattice, consisting of only one kind of paramagnetic
ion. Thus, eq. (III.6) is invalid for crystals, wherein the
paramagnetic host ions are different from impurity
paramagnetic ions. Papers after papers have been published
in the 1literature dealing with such crystals, wherein egq.
(III.6) has been employed to calculate the spin-lattice
relaxation time of the host ions; for example, see Refs,
9-14. Nevertheless, as discussed above, use of eq. (III.6)
is not, indeed, wvalid in such cases.

In this chapter, an expression is derived in order to
calculate the spin-lattice relaxation time of paramagnetic
host ions in crystals using the impurity-ion EPR linewidths,
taking appropriately into account the presence of two
different kinds of spins in the crystal. The derivation of

this equation is given in Sec. III.2.

III.2 Theory
The second moment, for crystals, containing two kinds of

paramagnetic spins, is given by Van Vleck,5 as follows:

2 1 - 2,2.-3 ,3_2 1,.2
<v®>pp = 3 S(S+1) BT T [-39°67Ey, Gy m DI

II 3

2
1., ’ -2 - 2 - 2 ' nl -3 2
+§S (S’+1) h E '[( 22 ij,) + (1 37jk,)gg B rjk'] . (IIX.7)

In eq. (III.7), S, r 2z, and J. represent the

jkl ijl Jkl
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effective spin, the distance between the j and k ions, the

direction cosine of the vector rjk with the external field,
the number of electrons in unfilled electronic shells of the
host ions, and the exchange integral between the host (k')
and the impurity ions (j), respectively; the primed
quantities describe the host ions, while the unprimed ones
the impurity ion. The external Zeeman field (B) is assumed
to be along the 2z axis.> The impurity and host Lande factors
| (g, g’) are assumed to be sufficiently different from each
% other, so that the resonances of these two different ions do
not overlap each c»ther.3 It should be pointed out, here,
that it is the impurity ion whose resonance is of interest.
Assuming that the distances between the impurity ions are
sufficiently large, the first term in eq. (III.7) can be
neglected, compared to the other terms. If the number of the

neighbors, to be considered, is limited to N, eq. (III.7)

reduces to

N

2. _ 1 aiqar -2 -2 1252, 2 a2 (2.6
<AV©> = 3 S’(s’+1) h [NJp + (g9’)“B Mo E 51 37jk,) rjk'+
23_gg' g2 ’{ (1-372, )33 III.8

pgg Ky £, ij: jkl]l ( .8)

In eq. (I11.8), Jp is the average host-impurity

pair-exchange constant. (Hg is the permeability constant,

required for the purpose of calculations in SI units.) In
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reducing eq. (IIX.7) to eq. (III.8), it should be noted that

the average host-impurity exchange constant,ls stands

pl
for the quantity zjk’ = -222ij,, as defined by Van Vleck;5

J

the same value (Jp) for ijk’ has been assumed for ail the
neighbors taken into consideration. In magnetic-field units,
the full width at half maximum (FWHM) of a Gaussian
distribution, taking into account both the dipole-dipole and

exchange interactions, can be expressed as

2

_ 2,2, 2 2,2
Biip-ex = (2-35)°h%<av> /g%, (III.9)

where <Av2>II is that given by eq. (III.8). Eq. (III.9) is,
in fact, a generalization of eq. (III.3), which is valid for
crystals consisting of only one kind of paramagnetic ion, to
the presence of two different species of paramagnetic ions
in the crystal. In eq. (III.9) the factor 2.35 should be
replaced by 3.46 for the case when the EPR resonance lines
have a Lorentzian shape. It should be noted here, that the
second moment [and, therefore, eq. (III.3) which depends on
it] for crystals consisting of only one kind of paramagnetic
ions does not include exchange terms, whereas the second
moment [and, therefore, eq. (III.9) which depends on it] for
crystals consisting of two different kinds of paramagnetic

ions, does include exchange between dissimilar ions as well.

Further, the exchange between similar ions does not appear

in the expression for the second moment . > Replacing Bgip in
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eq. (III.4) by Bgip-ex' one obtains

aB = 20 2p2

3 2B3ip-ex / Pmod" (II1.10)

Using egs. (III.5), (IXI.8), (III.9), and (III.10) the
spin-lattice relaxation time of the host ions in crystals
with two different kinds of paramagnetic ingredients, T, can
be expressed as

2

T = (3ABgg)/(110hg’<Av2> (III.11)

11!
where AB is the impurity-ion EPR linewidth (FWHM), observed
experimentally; the primed Landé factor is that for the
host, while the unprimed one refers to the impurity.

Eq. (III.ll), derived using the second moment for
crystals with two kinds of paramagnetic ions, is, really,
the appropriate equation for the usual EPR situation, i.e.,
for crystals consisting of paramagnetic host ions, doped
with impurity paramagnetic ions, which are different from
the host ions. One should, therefore, use eq. (III.1ll) in
order to calculate the spin-lattice relaxation time of the
host ions, rather than eq. (III.6), which is valid for
crystals consisting of only one kind of paramagnetic ions.

As seen from eg. (III.1l1l), the host-ion spin-lattice
relaxation time is directly proportional to the impurity-ion

EPR linewidth. Thus, as the temperature increases the
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spin-lattice relaxation time becomes shorter, and the
impurity-ion lines become narrower. Therefore, eq. (III.1l1)
should not be used in cases when the experimentally observed
lines broaden as the temperature increases. Obviously, in
such a case, the EPR linewidths are not proportional to the
host-ion spin-lattice relaxation time since the spin-lattice
relaxation time, always decreases with increasing
temperature. Some data have been reported, wherein the EPR
linewidth is inversely proportional to the spin-lattice

relaxation time,16

to which eq. (III.11) does not apply.
III.3 Illustrative examples

In a typical EPR experiment paramagnetic impurity is
introduced into a host crystal lattice in order to study the
resonance spectrum, consisting of transition lines of the
impurity ion. The host crystal may consist of diamagnetic
and paramagnetic ions. By exploiting the resonance spectrum,
one can get an understanding of the host lattice.

For illustration, the spin-lattice relaxation times of
the host paramagnetic ions will be calculated presently for

the following Gd3+-doped single crystals:

(1)  NH,Pr(so,),-4H,0 (pr3t)
(ii) NH,Sm(SO,),*4H,0 (sm>*)
(iii) NH,Ce(S0,),°4H,0 (ce’)
(iv) NH,NA(SO,),*4H,0 (na3t)

2
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The host ions in the crystals above are those indicated in
the brackets following the formulas.

The reasons for choosing these particular crystals is
that the host-ion spin-lattice relaxation times for these
crystal have been estimated previously using the wrong
exjression, and therefore a comparison of the presently
calculated spin-lattice relaxation times can be made with
those calculated using the incorrect expression. Relevant
expei imental data, e.g. crystal struclare, EPR linewidths,
which are needed to calculate the spin-lattice relaxation
time using the appropriate second moment, are readily
available for these crystals.

The structure, of all the crystals listed above, is
monoclinic, characterized by the space group Cgh: there are

17,18 The unit cell parameters,

four formulas per unit cell.
used in the present calculations, are given in Table III.1.
The effective spin, S’, of the host ion, the Lande factors,
g and g‘, of both the host and the impurity ions, and the
experimentally observed impurity-ion 1linewidths at room
temperature, AB, all required for the present calculations,

are given in Table III.2.19

No pair-exchange constant, Jp,
values have been reported for these crystals. Therefore, the
spin-lattice relaxation times have been presently calculated
for the values of Jp = 0.1, 1.0, 5.0, and 10.0 GHz, thus
covering a reasonable range. These values of the

spin-lattice relaxation times, along with those reported
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Table III.1. The unit cell parameters of the crystals

considered, which are necessary for the calculation of rjk'

and 7jk’ values.

Crystal a(d) b(A) c(A) B
NH4Pr(SO4)2-4H20 6.64 18.96 8.80 97°11"
(monoclinic)
NH,Sm(S0,) ,*4H,0 6.58 18.89 8.74 96°52’
(monoclinic)
NH4Ce(SO4)2'4H20 6.68 19.01 8.82 97 17
(monoclinic)

° ’
NH4Nd(SO4)2°4H20 6.63 18.93 8.80 97 04

(monoclinic)
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Table III.2. T of R in NH4R(SO4)2-4H20 (R = Pr, Sm, Ce,

single crystals calculated at room temperature.

The

values of S, g, g’, and AB used in the present calculations

are also listed. Tt values are given in seconds, while the

figures inside the brackets following T are J

values in

P
GHz.
R Sm Nd Pr Ce
s’ 1/2 1/2 1/2 1/2
g 1.9922 1.9830 1.9949 1.9930
g’ 0.57 2.82 0.80 2.01
AB (Gs) 21 41 30 28
T (0.1)3 1.47x10711  2.41x1071  7.e4ax107Y!  4.e9x107%3
T (1.0)2 2.40x107%2  2.21x107°  2.23x107%%  3.e8x107%3
T (5.002 1.01x107%3  3.79x1071%  1.04x20713  3.81x207}4
z (10.0)2 2.51x1071%  9.99x1071% 2.57x1071*  9.e6x1071°
P 2.10x10"%  2.10x10712 1.00x10" 12

3calculated presently.

bReported in Refs. 18 and 20.
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Figure III.1. The positions of the four R° ions in the

unit cell of the NH4R(SO *4H.0 hosts. They are marked as

4) 2" 4,
1, 2, 3, and 4, respectively. Considering that a Gd3+ ion

3+ 3+ ions

replaces the R” ion 2, the positions of the nine R
(up to and including fifth nearest neighbors) surrounding

the impurity ion are also exhibited.
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18,20

previously, calculated using the incorrect expression,

aré given in Table III.2.

It should be noted that the lattice sums required in egq.
(I1I.8) were calculated taking into account up to and
including fifth-nearest neighbors surrounding the impurity
ion for these crystals. This was found to be quite
sufficient,since the value of the second moment for the
present crystals does not vary appreciably by including
neighbours farther away in the 1lattice. However, depending
on the crystal and the accuracy desired, neighbors located
at larger distances can also be included in the
4)2-4H20 unit cell along with the
neighbouring ions, considered here, is shown in Figure

calculations. A NH4R(SO

ITI.1. A computer program, listed in Appendix I, was used to
locate the host ions surrounding the impurity ion. This
computer program will be described, in detail, in the next
chapter. )

Finally, it should be mentioned that the impurity

linewidth, AB, used in eq. (III.1l1) is ABex - A , Where

P Bdia

AB and AB

exp dia are the experimentally observed impurity

linewidth in isostructural lattices consisting of
paramagnetic and diamagnetic host ions, respectively. This
enables the elimination of the effects which contribute to

AB but do not contribute to the second moment, described

exp’
by eq. (III.8).
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III1.4 Determination of the effective spin-lattice
relaxation process

The values of t, host ion spin-lattice relaxation time,
listed in Table III.2 are calculated only at the room
temperature. It should be noted that, the spin-lattice
relaxation time is highly temperature dependent, always
decreasing with increasing temperature. There are several
processes responsible for spin~lattice relaxation, each
having their own temperature dependence, i.e., direet

process [T Y« exp (-1/T)], and T *x T"

processes.21 One can calculate T as a function of

for some other

temperature using variable-temperature EPR data, thus
allowing the determination of the effective spin-lattice
relaxation process. For NH4Pr(SO4)2°4H20), the spin-lattice
relaxation time, t, of the paramagnetic host ion, Pr3+, has
been calculated in the 266-369 K temperature range. Figure
I1I.2 shows the log-log plot of ™1 versus T. By calculating
the slopes of the fitted straight lines, it is found that

1« T2 in

t Y« T’ in the temperature range 266-296 K, and T
the temperature range 296-369 K. By comparing the
temperature dependences, currently estimated, to those of
the various spin-lattice relaxation processes, it is deduced
that in the temperature range 266-296 K the predominant
spin-lattice relaxation process is the "sum" process, while

in the 296-369 K range the Raman process is dominant.19:21
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III.5 Discussion

As seen from Table 1III.2, the presently calculated
spin-lattice relaxation times, T, using eq. (III.11) are
quite different from those calculated using the incorrect
eq. (III.6). The differences are, in some cases, as much as
four orders (see Table III.2). The large differences arise
from the fact that eq. (III.6) does not include the exchange
and the dipolar interactions between the impurity and the
host ions. Thus in an EPR situation, when the single crystal
consists of paramagnetic host and paramagnetic impurity
ions, and the impurity-ion 1lines narrow with increasing
temperature, egqg. (III.11) should be used instead of eq.
(IIT.6) in order to calculate the spin-lattice relaxation

time of the host ion.
In addition, as has been shown in the previous section,
a variable temperature spin-lattice relaxation time
calculation can be made in order to determine the effective

spin-lattice relaxation process.



Chapter 1V
Site Percolation

IV.1 Introduction
Site percolation has been used, mostly in the last
several years, as a model for describing the behavior of
many dilute physical systems. Percolation processes have
been employed to study diverse physical phenomena, such as
conduction and phase transitions. Various fractal-related
properties of percolation clusters have also been studied

2

extensively, see, e.g., the reviews by Stauffer2 and

Essam.23 Basically, in site percolation, a random fraction p
of the sites on a lattice structure is assumed to be
occupied, while the rest of the lattice sites remain vacant.
Then, the study of percolation on such a structure is to
check, if there is a path across the lattice, through the
occupied sites. The occupied sites, having other occupied
sites as nearest neighbors form clusters. A cluster which
stretches from one end of the medium to the other, is called
an incipient or percolating cluster. The most remarkable
feature of a percolation process is the existence of a
occupation probability threshold, called the percolation
threshold, below which a percolating cluster does not exist,

thus, the spreading of quantity of interest in the medium is

limited to a finite region only, i.e. to a finite cluster,
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and does not propagate all the way through the sample. at
and above the percolation threshold, the spreading quantity
is always expected to reach from one end to the other end of
the medium. Figure IV.1 shows a small part of a square
lattice and the incipient cluster made up of occupied and
connected sites. It should be remarked, here, that not all
the occupied sites necessarily belong to the incipient
cluster; finite clusters still exist above percolation
threshold. The probability of an occupied site belonging to
the largest cluster in the lattice shows critical behaviour
around the percolation threshold. This characteristic
behaviour of the percolation process is displayed in Figure
IV.2 for a square lattice.

There are several interesting parameters to be studied
in a percolation process, for instance the mass and the size
of the clusters as functions of the occupation probability.
These subjects will be discussed in detail in Chapter V. The
present chapter concentrates on percolation threshold, which
is for two different single crystals. After the calculation
of the percolation threshold, its relevance to EPR situation
will be described.

The single crystals studied here are Gd3+-doped
Livb ¥, ¥, and Pr La,  F,. The reasons for choosing these
particular crystals are: (i) Ample data are available on
their crystal structures. (ii) Detailed temperature and

paramagnetic host-ion concentration (x) dependent EPR data
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circles represent occupied sites which do not belong to the
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are available; and (iii) The EPR data are indicative of the
existence of critical behaviours.

This is the first-ever application of the percolation
process to study the influence of the host ion spin-lattice
relaxation on the impurity linewidth. The details of the
relevant computer programs used in Chapter III to generate

lattices, will also be provided.

3+ :
IV.2 EPR data on Gd~ ~doped L1beY1_xF4

single crystals
X-band EPR measurements on single crystals of Gd3+-doped
Li\{F4 and Li!le4 have been previously reported by Vaills et

al.24 at room temperature, and by Misra et al.25

from room
temperature down to liquid-helium temperature. X-band EPR
measurements on mixed crystals of Gd3+-doped LinXYl_xF4,
with values of x = 0.0, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.9, 0.95, 1.0, from room temperature down to
liquid-helium temperature (LHT), have recently been reported

26,27 who observed that Gd3+ EPR 1lines

by Misiak et al.,
could be observed down to LHT only for samples with x = 0.2,
while the 1lines disappeared much above LHT as the
temperature was lowered for samples with x =z 0.3. Further,

3+ EPR lines could not be

for samples with x = 0.3, Gd
observed below 88 K, although they could be observed down to
4.2 K for samples with x s 0.2. Figure IV.3 displays the

log-log plot of the experimentally observed Gd3+ EPR
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linewidths versus the temperature in the various Livb ¥,  F,
single crystals.

The abrupt variation of EPR linewidth as a function of x
cannot be explained by the increase of dipolar contribution
by the paramagnetic vb3* host ions to cat Epr linewidth.
This will be demonstrated below by means of the second
moment, which is proportional to the EPR 1linewidth, as a

function of x.

IV.3 Percolation model for LivYb Y,  F,

In order tc¢ explain the abrupt variation of ca’?t
linewidths, the process of percolation is described in this
section. In the present calculations,, the sites occupied by
the paramagnetic ions, Yb3+, will represent the occupied
sites, while those occupied by the diamagnetic ions, Y3+,
will represent the vacant sites. The process whose spread
will be studied through the occupied sites is the relaxation
process, in which the relaxation of a host spin (Yb3+) is
carried through the lattice by the mutual spin flips of
other host ions. (Hereafter, spin-lattice relaxation refers
to the relaxation of host Yb>' spins by their mutual spin
flips across the entire lattice.) It is noted that the
presence of paramagnetic host ions and their spin-lattice
relaxation does have a drastic influence on the EPR

linewidth of the impurity ion in the present case (see

Chapter III).
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Before proceeding with the calculation of the

percolation thresheld in LiYb Y,  F,, the second moment,

which is highly x dependent has to be calculated in order to
show that the abrupt behaviour of the Ga>" EPR linewidths as
a function of x does not arise from the x dependence of the

second moment.

IV.4. Crystal structure of LiYb Y, _F,

In order to calculate the second moment, and the
percolation threshold, the details of the crystal structure

are regquired. LiYF4 nd LinF4 crystals are characterized by

28,29

the scheelite (tetragonal) structure. The unit-cell

parameters of LiYF, are a = 5.167 A, c = 10.735 4,>° while
those for LiYbF, are a = 5.134 A and c = 10.588 A.%° There

are three rare-earth ions in the unit cell, which are at the

31

following locations: (0.5,0,0), (0.5,0.5,0.5), and

(0,0.5,1). The unit-cell parameters of the mixed LinxYl-xF4
32

crystals can be estimated using Vegard’s law. In LinF4

there are four nearest (rn = 5.13 A), and four next-nearest

(r = 5,88 A), and four next-next-nearest (r = 7.26 A)

nn nnn

rare-earth neighbors to a rare-earth ion. Thus, the values

of r, and r,, are very close to each other. Similar

considerations apply to the mixed crystals LiYb F The

x¥1-xFa
G4/ (Yb+Y) ratio in the LinxYl_xF4 samples, experimentally

investigated, was 1/200, which is rather small; the present

calculations take this value into account by considering
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that no ca’*t ion is sufficiently close to another ca* ion

to have any significant effect.

IV.5 Calculation of the second moment for LinxYl_xF4

The contribution to the EPR linewidth of the impurity
ion (Gd3+) due to the paramagnetic host ions (Yb3+) is
determined by the second moment. The second moment of the
impurity ion for crystals consisting of two kinds of
paramagnetic ions, e.g., the impurity (Gd3+) and the host
(Yb3+) ions in the present case, when the distance between
the impurity ions is sufficiently large and the number of
the neighbors considered is limited to N, was given by edq.
(III.8) in Chapter III, as follows

2,2 2 6

N
2, _ 1lasar -2 .2 . a2 2~
<Ap©> = 3S (S‘’+1)h [NJp+(gg )°B “o%fl 37jk,) rjk“*

2 XN 2 . _-3
2Jpgg’3 u°£1(1-37jkl)rjk/]- (III.8)
The various symbols appearing quantities in eq. (I1I.8) have
already been defined in Chapter III.

The second moment, as given by eq. (III.8), does not
itself depend significantly on temperature; its dependence
on temperature is indirectly due to change in lattice
spacings due to thermal expansion (contraction) affecting
rjk' and 7jk" The sums in eq. (III.8) are expected to be

continuous and convergent functions of x, determined by the
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fraction (x) and locations of the Yb3+ ions. Thus, the
second moment can not account for the abrupt disappearance
of the Ga’>* EPR lines, i.e. the EPR linewidth approaching
infinity, below certain temperatures for x = 0.3.

The calculation of the second moment for x = 1 is
trivial, since for this case all rare-earth lattice sites
surrounding an impurity ion (Gd3+) are occupied by the
paramagnetic yp3*t ions, thus the calculation of the sums in
eq. (III.8) is straightforward. However, when X < 1, then
some of the sites surrounding the impurity ion are occupied
by the diamagnetic y3* ions, which do not contribute to the
second moment. Thus, when x < 1, the calculation of the sums
in eq. (III.8) is complicated. For, one does not now Kknow

+ .
3 10Ns;

which particular sites have been occupied by the Yb
an extremely large number of configurations are possible
even in a relatively small lattice.

In order to calculate the second moment for x < 1 in
mixed crystals, and to be able to perform calculations for
larger values of N in eq. (III.8), a lattice-generating
computer program was developed valid for any value of x.
(See Appendix I for the program listing. This same program
was also used to calculate the spin-lattice relaxation times
given in Chapter III.)

A 40x40x40 array was utilized for the generation of the

lattices considered presently. The positions of the

rare-earth ion sites in the unit cell given in Sec. IV.4 for
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Lin)'{Yl_xF4 are the initial inputs required by the program.

Next, each ion in the unit cell is assigned a set of array
coordinates, by the user, corresponding to its position
coordinates in the unit cell. Following this, for each
rare-earth ion site, in the unit cell, the number of

s S_.), necessary to

xj’ Tyj' "zj
generate the same site in the next unit cell are entered for

array-coordinate increments (s

each axis. The correspondences between the unit cell
parameters and the array increments, and between the unit
cell position coordinates and the array coordinates are
calculated as well. Thus, with all this information, the
program generates the lattice by simply using a three
dimensional 1loop with appropriate increments in each
direction. After the generation of the lattice, the distance
between any two sites can be calculated, by using the

relation

= - 2 - 2 _ 2.1/2
ik [(rxj rox) +(ryj ryk,) +(rzj Topr) ) (IV.1)
where rxj’ ryj’ and rzj are, respectively, x, y, and z
components of rj, the position vector of the site indexed by
J. T3 is calculated using
Tej = [INT(xj/sxj)axj] + 0y (IV.2)

In eq. (IV.2), xj is the array coordinate of the particular
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site and axj is the distance between two equivalent sites,

along the x axis. oxj is the distance along the x axis
between the origin and an equivalent site in the original
unit cell. It should be hoted, that in eq. (IV.2) INT stands
for "the integer part of". ryj and rzj can be calculated in

a similar way. The direction cosine of rjk’ with respect to

the z axis is calculated from the relation:

(r_.=-r_..)
Yoy, = —2) zx'' (IV.3)
jk rjkl

The LinxYI—xF4 lattice was generated in the same manner
described above. The generation of the lattice points of the
LiYb Y, _ F, lattice along the x, y, and 2z axes |is
demonstrated in Figures. IV.4, IV.5, and IV.6 respectively.
As seen from Figures IV.4-IV.6, the initial unit cell is
represented by the elements of a 3x3x3 array segment, which
have the following array coordinates: (1,0,0), (1,2,0),
(1,1,1), (0,1,2), and (2,1,2). This set of the array
coordinates corresponds to the position coordinates of the
rare-earth ion sites in the unit cell, as given in Sec.
IV.4. It should be noted, from Figures IV.4-IV.6, that three
separate loops are needed to generate the three distinctly
repeating kinds of ions. These different kinds of ions are

depicted as differently filled circles in Figures IV.4-IV.6.

While generating the LinxYl_xF4 lattice, a random number
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Figure IV.4 The generation of the LiYb Y, .F, lattice

along the x axis.
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(0,7,2) (2,7,2)

(0,5,2) (2,5,2)
(0,3,2) (2,3,2) & y axis

.....

% (1.3.1)*
o / .(1.4.0)
(

(1,0,0)

Figure IV.5 The generation of the LiYb Y,  F, lattice

along the y axis. The array-coordinate increments along the

y-axis, for all sites, is 2.
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(0.1,6) (2,1,8)

(1,1,5)
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(1,1,3)
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Z axis
(1,1,1)

7,

(1,2,0)
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Figure 1IV.6 The generation of the L:l!!bx!ll_xf’4 lattice
along the z axis. The array-coordinate increment along the 2z
axis, for solid and spotted circles is 4, and it is 2 for

the sites represented by the hatched circles.
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generator, between 0 and 1, was used to decide whether a
site was occupied by a vp3* ion, according to x, the
concentration of the Yb3+ ions. Thus, for example if x =
0.6, then for random numbers which are less than or equal to
0.6 a site was assumed to be occupied by a paramagnetic Yb3+
ion, otherwise considered to be occupied by a v3* ion.

Ideally, in order to calculate the second moment for a
given value of x, for samples with x < 1, all possible
configurations of the host ions (!{b3+ and Y3+) around an
impurity ion (Gd3+) should be considered. Since this would
have taken prohibitively 1long computer time, the second
moment was calculated for 1000 randomly arranged
configurations of the host ions around the impurity ion.
Finally, the average of these second moments was computed.
Up to next-next-nearest neighbors for each of these 1000
configurations were taken into account in the sums in eq.
(III.8) to calculate the second moment for the various
values of x. The interionic distances Tk and the direction
cosines ij’ values were calculated using egs. (IV.1l) and
(IV.3) respectively. It should be mentioned here, that, the
second moment was calculated for LinxYl_xF4 crystals for
values of x in the range 0.1 - 1.0, in steps of 0.1.

Figure IV.7 exhibits the plot of the second moment <Av2>
versus x. It shows a linear continuous relation of <Mv?> to

x, without exhibiting any abrupt behaviour as a function of

X . This implies that the second moment can not account for
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Figure 1IV.7. A plot of the calculated second moment,

<Av2>, versus ¥ in LiYb_ Y

w¥1-xF4 single crystals.
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the observed abrupt disappearance of EPR 1lines at low

temperatures for samples as a function of x.

Iv.6 Calculation of percolation threshold
for Li¥b ¥, F,

In order to explain the temperature variation of the
impurity EPR linewidth, the spin~lattice relaxation process,
a highly temperature-dependent phenomenon, of the host
paramagnetic ions should be taken into account. The
spin-lattice relaxation influences the impurity linewidth
through the process of random-frequency modulation.7-9 aAs
discussed in Chapter III [see ed. (II1.11)3, the
impurity-ion EPR 1linewidth, as influenced by spin-lattice

relaxation , can be expressed as
' 2 2
AB = 110hg’<Av™>t/ (39 uB) (IV.2)

where T is the spin-lattice relaxation time of the host ion;
T is, in general, highly temperature dependent. It is the
variation of t, as a function of ¥x, the fraction of the
paramagnetic host ions, that is responsible for the
divergent behaviour of the linewidth AB as a function of
temperature. It is seen from Figure IV.3, that the EPR lines
broaden cons.derably for samples with x 2z 0.3, as the
temperature is lowered from room temperature. However, the

linewidths do not change significarntly with temperature for
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significantly with temperature for samples with x < 0.3; the
EPR lines for them can be observed down to LHT. Finally, the
spin-lattice relaxation due to the host paramagnetic ions,
determines predominantly the temperature dependence of EPR
linewidths; as seen below, it has a cutoff for x < 0.3.

It is suggested presently that the complete broadening
of the EPR lines is caused by the existence of the site
percolation of the paramagnetic host ions (Yb3+) in the
Livb Y, F, lattices. A LiYb Y, .F, lattice will be
considered "percolating" if there exists a path from a Yb3+
site at one end of the lattice all the way to the other end

3+

of the 1lattice, through the Yb ions, each of which lies

within a distance of the next-nearest neighbour

Tnn’
distance, from a Yb3+ ion, i.e. when a percolating cluster
exists. A paramagnetic site is considered to be able to
percolate to both the nearest (n) and the next-nearest (nn)
neighbors, since, as mentioned earlier, the difference
between r and r . for the LinxYI_xF4 hosts is very small.
Figure IV.8 shows a yb3t ion and its neighbors (n and nn) to
which percolation is allowed, along with their array
coordinates in the lattice.

After the generation of the LinxYl_xF4 lattice, as
described in Sec. IV.6, the possible lattice sites in the
array were filled randomly, using a random-number generator.
When the random number generated was smaller than or equal

to %, a site was made occupied by a paramagnetic Yb3+ ion by
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Figure IV.8. A yb3* ion in the unit cell of LiYb Y,  F,/

along with its nearest and next-nearest neighbours to which

the percolation is allowed.
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assigning 1 to the appropriate array element. The array
elements, for which the random number generated was greater
than x, were assigned zeros, and considered to be occupied
by the diamagnetic v3* ions.

+
3 ions of

To begin with, all sites occupied by the Yb
the z = 0 plane (see Fig. IV.6) were assumed to belong to
the percolation cluster. Next, all the occupied sites of the
z = 1 plane (these are the center ions at 0.5c, see Figs.
IV.4-1IV.6), which are neighbours to the occupied sites of
the z = 0 plane, i.e. they lie within the distance r o, were
also included in the percolation cluster. In this manner, a
sweep of the z = 1 plane was performed, in order to connect

those occupied sites, which are within r of the occupied

nn
and already connected sites, of the percolation cluster,
i.e. the occupied sites in the z = 0 plane. In the same way,
all the planes along the 2z axis were taken into account one
by one, by considering z = 1, 2, 3,... planes in turn,
attaching to the percolation cluster those occupied sites of
the z = n plane under consideration, which lie within r..,o°of
an ion, located on the 2 = n-1 plane and belonging to the
percolation cluster already constructed. In addition, a
downward sweep, from the current z plane to the z = 0 plane,
was performed in order to ascertain that no possible ions
which should have been included, i.e., those within a
distance of r from a Yb3+ ion of the percolation cluster,

nn
were missed out in the percolation cluster already formed.
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This sweep of the 2z planes continued, alternately, in the
upward and downward directions. The computer program was
terminated whenever, after two successive sweeps, a new site
could not be attached to the cluster already formed. In this
case, a percolating cluster did not exist. The execution of
the program was also terminated whenever a site on the z =
39 plane became connected to the cluster, thus resulting in
a percolating cluster. It should be mentioned, here, that
whenever an occupied site, designated by 1, became connected
to the cluster being formed, it was redesignated by 2. In
this way, a distinction can be made between the occupied but
not connected and the occupied plus connected sites. The
listing of the computer program is given in Appendix I.

The calculation of the percolation threshold was
performed for samples with x = 0.1 to 1 in steps of 0.1l. It
was found that Xgo the critical value of x at and above
which a percolating cluster exists, but not below, lies
between x = 0.2 and X = 0.3. Thereafter, the values of x
between 0.2 and 0.3 were considered in steps of 0.01, using
random integers in the range 1 to 100 to determine the
occupied sites of the lattice in the similar way to that
described in Sec. IV.6 for x between 0.0 and 1.0. This

yielded the critical value of x to be X, = 0.27. Thus, for x

0.26 the 1lattice was not percolating, while it was
percolating for x z 0.27. Better accuracy than this could

not be achieved due to the limited size of the array used:
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however, this value is eminently satisfactory to explain the

experimental data considered here.

IV.7 Discussion of results for LiYb Y, _F,

The present results indicate that the spin-lattice
relaxation threshold is directly linked to X, This is in
accordance with the temperature behaviour of the observed
EPR linewidths. The existence of a path for mutual spin
flips for the transmission of energy of spins in the Zeeman
field, via the host paramagnetic ions through the entire

lattice, is necessary for the spin-lattice process to be

effective. If a paramagnetic yp3* ion is completely
3+

surrounded by diamagnetic Y ions, a spin flip of that Yb3+
ion will not be transmitted to the rest of the lattice
because of diamagnetic shielding by the v3% ions. For the

3+) develop net magnetic moments that

diamagnetic ions (Y
tend to oppose any changes in the magnetic field. In fact,
paramagnetic (Yb3+) ions, situated sufficiently closely, are
needed to transmit the magnetic energy to the rest of the
lattice by mutual spin flips. Thus, the spin-lattice
relaxation process is controlled by x, the concentration of
the paramagnetic ions, which in turn controls the EPR
linewidth and its temperature dependence.

It should be noted here, that when X, 5 X = (1—xc),

there exist both diamagnetic and paramagnetic percolating

clusters in the lattice. In such a case, it is expected that
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the existence of the diamagnetic percolating clusters would
cause shortening of the host-ion spin-lattice relaxation

time. In the case of LinxYl_xF4 crystals, this mechanism is

not clearly visible because of the particular temperature
dependence of the impurity-ion EPR lines. The effect of the
diamagnetic percolating clusters, on the EPR lines, will be

discussed in Sec. 1IV.11, for PrxLal-xF3’ wherein this

mechanism can easily be demonstrated.

3+ (] (] ] )
EPR linewidth data in LlexYl_xF4

hosts can be divided into following three temperature

The experimental Gd

regions for a proper understanding (see Figure IV.3):

(i) High T, x =z 0.3. In this region, the spin-lattice
relaxation mechanism is fully effective because of the
existence of percolating clusters. The linewidths become
larger, as the temperature 1is 1lowered, because the
spin-lattice relaxation time of the host ions becones
larger. Since x > X, (= 0.27), the energy released by the
spin flip of a vb3' ion can be transmitted throughout the

lattice by mutual spin flips of yp3t

ions. The present
percolation results suggest that, as long as x > X there
will be a path via the vb3t jons that spans the entire
lattice even if there are more Y3+ ions present than yp3t
ions in the lattice, i.e. for 0.5 > x > 0.27.

(ii) Low T, x = 0.3. Here, the experimental data

indicate that EPR 1lines <could not be observed at

temperatures below 85 K. Since x = Xoo broadening due to

7 24 D
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spin-lattice relaxation is expected to be fully operative,
and the EPR 1lines will be Dbroadened since at 1low
temperatures the spin-lattice relaxation time is much longer
than that at high temperatures. It should be noted, here,
that EPR lines can not be observed when they broaden beyond
a certain value.

(iii) Any T, x = 0.2. For this case, the experimental
EPR 1linewidths do not exhibit significant temperature
dependence. Since x < Xy the paramagnetic ions (Yb3+) are
not able to span a path all the way through the entire
lattice for percolation; the transmission of energy given
off by the flips of the yb3* ions will be shielded by the
y3* ions, causing the effect of the flips of the yp3* ions
to remain ‘localized. ‘hus, the broadening due to the

spin-lattice relaxation will not be effective for this case;

and the Ga°t EPR lines can be observed at all temperatures.

1v.8 Pr La,_.F, EPR data and percolation threshold
A variable-temperature EPR linewidth study of Gd3+—doped

PrxLal-xF3 single crystals has recently been reported by
33

Misra et al. in the temperature range 4.2 - 295 K. The

behavior of the reported Gd>* EPR linewidth in Pr La,  F, as

a function of x, as exhibited in Fig. IV.9, is quite

unusual. The experimental data can be divided, according to

X, the fraction of the host paramagnetic ions, Pr3+, into

three categories:
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(i) 0 = x = 0.2. In this range, Gd3+ EPR lines are well

resolved and temperature independent; they show increased
broadening with increasing value of x.

(ii) 0.2 < % < 0.8. The EPR lines are too broad to be

observed for these concentrations.

(iii) 0.8 s x s 1. For these values of x, the EPR lines

are observable at room temperature, becoming narrower with
increasing value of x. They are temperature dependent,
broadening with increasing temperature, and are completely
broadened out below certain temperatures.

3

* EPR lines in Pr.la, _F

The sudden disappearance of GA4 %31 -xF 3

at x = 0.3 as x increases from 0, suggests that a mechanism
of EPR line broadening becomes effective somewhere between x
= 0.2 and x = 0.3. As x is increased further, the sudden
reappearance of EPR lines at x = 0.8 suggests that this
mechanism of broadening apparently becomes weakened
somewhere between x = 0.7 and 0.8. The particular
dependences of the linewidths on these values of x between
0.2 and 0.3 and between 0.7 and 0.8 imply the existence of
site-percolation phenomenon, which applies to both, the
percolating clusters formed by the paramagnetic ions, Pr3+,

3+

as well as those formed by the diamagnetic ions, La In

other words, as x is increased to above a critical value,

x ., the formation of a paramagnetic site-percolation cluster

cl
is achieved. Using the same arguments, it can be seen that

for (1-x) = X the diamagnetic site-percolation occurs,
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since the concentration of the diamagnetic ions is (1-x).
The linewidth behavior observed in Pr la,_,F, suggests that
if X, > 0.2, the ca’t EPR lines disappear in PrxLal-xF3 for
0.2 < x < 0.8, because for these values of x there exist
percolation clusters of both the paramagnetic ions, Pr3+,
and the diamagnetic ions, La3+. On the other hand, for x <
3+

x_ and for x > (l-xc) the Gd

c line are not sufficiently

broadened to disappear, because in these cases there exist
only one type of percolation cluster: a paramagnetic
percolation cluster for x = X and a diamagnetic percolation
cluster for x = (l—xc).

The calculation of Xo and an explanation of the
linewidth behavior as governed by the formation of

paramagnetic/diamagnetic clusters are provided in the

following sections.

IV.9 The crystal structure of P::'xLa:l_xF‘3

For the present calculations one needs to know the

positions of the rare-earth ions in Pr_la F single

XT1-x3
crystals. Assuming that all these crystals have the same
structure in accordance with Vegard’s law,32 1='r’_‘:Lal_x1=’3

single crystals can be considered to be hexagonal with six

molecules per unit cell.3? The unit-cell parameters for PrF,

are: a = 0.7061 nm, ¢c = 0.7218 nm, while they are: a = 0.719

nm, ¢ = 0.737 nm for LaF3. The unit cell parameters for the

various Pr La,_,F, crystals can be calculated from those for
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32 The six rare-earth ion

LaF, and PrF, using Vegard’s law.
sites in the unit cell are located at (1/3, 1/3, 0), (0O,
2/3, 0), (2/3, O, 0), (2/3, 2/3, 1/2), (0, 1/3, 1/2), and
(1/3, 0, 1/2), as displayed in Fig. IV.10. It is noted that
different rare-earth sites in the unit cell have different

surroundings. These sites are referred toas 1, 2, ...6, and

their various neighbours are listed in Table IV.1.

IV.10 Calculation of x_ in Pr_La, _F,

A PrxLa lattice was generated by using a 40x40x40

1-xF3
array. A random~-number generator was used to fill the array

3+ and La3+ ions, according to the particular

elements by Pr
value of X, representing the fraction of pr3t ions. The
occupied paramagnetic sites were designated by the numbers
1-6, depending on to which particular site in the unit cell
the occupied site corresponded, while the occupied
diamagnetic sites were designated by 0. First, all the sites
occupied by the paramagnetic ions in the z = 0 plane (the
plane at one extremity of the array considered), parallel to
the (001) plane in the Pr la, . F, lattice, were assumed to
be connected to the paramagnetic cluster by designating them
by the numbers 7-12 by adding 6 to their original values.
Next, the sites, in the z = 1 plane, lying within a distance

r defining the connectivity, to a paramagnetic ion in the

LI
2 = 0 plane, were checked if they were occupied by

paramagnetic ions. (The choice of the value of Iy, is

o e e e b
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(0,1/3,1/2) (0,2/3,0)

e—©

(1/3,0,1/2) @ /3130

©

(2/3,0,0) (2/3,2/3,1/2)

2/

Figure 1IV.10. A Pr,la,  F, unit cell showing the
rare~earth ion sites as projected on to the ¢ = 0 plane. The
solid circles represent the sites on the ¢ = 0 plane, While

the hatched ones represent those on the ¢ = 0.5¢c plane.



rare-earth sites

Table 1IV.1l.

neighbors,

in Pr_la
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The distances
(see Figure 1IV.10)

F which

X  1=-x 3’

percolation process.

(in nm)

are

included

between the six
and their respective
in the

The numbers in the brackets indicate

the number of the neighbouring ions at that particular

distance.

Site 1 2 3 4 5 6

r, 0.408(1) 0.408(1) 0.406(1) 0.404(1) 0.404(1) 0.391(1)
r, 0.414(1) 0.410(1) 0.408(1) 0.408(1) 0.410(1) 0.406(1)
ry 0.429(2) 0.429(2) 0.428(2) 0.428(2) 0.430(2) 0.434(2)
r, 0.589(2) 0.435(2) 0.430(2) 0.434(2) 0.589(2) 0.592(2)
rg 0.714(2) 0.719(2) 0.435(2) 0.708(2) 0.592(2) 0.701(2)
rg 0.722(2) 0.722(2) 0.722(2) 0.714(2) 0.722(2) 0.722(2)
r, 0.741(2) 0.725(2) 0.797(1) 0.722(2) 0.791(1) 0.725(2)
r 0.793(1)
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described in the next paragraph.) The sites so occupied by
paramagnetic ions were made a part of the paramagnetic
cluster, and appropriately designated as 7-12. In this
manner, all the sites in the various successive planes z =
1-39 were checked, and when qualified, were made a part of
the cluster. The successive 2z = 1, 2, 3, .... planes wvere
defined to be the planes which were located at 0.5c, c,
1.5c,... heights parallel to the z = 0 plane, because these
are the planes in which the rare-earth ions are located. If,
in the first sweep of z = 1 to 39 planes it was found that a
site in the z = 39 plane was connected to the cluster, the
program was terminated, and it was considered that a
percolating cluster extended all the way from one end to the
other end of the sample, i.e. the cluster was percolating.
If this was not the case, a downward sweep from z = 39 to 2
= 0 plane, in a successive manner, was performed in order to
include more sites to the cluster which were missed in the
first upward sweep; thus, the cluster farmed in the first
sweep grew. After this, the sweep of successive z planes was
repeated in the upward direction, then in the downward
direction, and so on. These sweeps were continued until
either a site in the z = 39 plane became connected to the
cluster, in which case the cluster was considered to be
percolating, or if the cluster did not at all grow after two
successive sweeps: an upward sweep followed by a downward

sweep. In the latter case it was considered that the cluster




58

did not extend all the way from one end to the other end of
the sample, i.e. the cluster was not percolating.

The value of Xq depends on the limiting distance r;, or

the connectivity, around a paramagnetic ion, within which
one includes the paramagnetic ions in the percolating
cluster. In the present case, two different values of

limiting distances, r were employed: (i) r, = 0.6 nm and

LI

L = 0.8 nm. The percolation threshold X, was found to

be 0.48 + 0.01 for case (i), while for case (ii) the value

(ii) r

of X, was found to be 0.21 ¢ 0.01. The decrease in the value
of X, for case (ii), as compared to that for case (i), is
due to the increase in the number of connectable neighbors
for case (ii). Following similar considerations, it can be

concluded that for (1-x) = X, a percolating diamagnetic

cluster would exist. Specifically, corresponding to r, = 0.6

nm and r, = 0.8 nm a diamagnetic percolating cluster would

L
exist for x s 0.52 and x s 0.79, respectively. Finally, the

value of X, = 0.21 as found for case (i) (;L = 0.8 nm)

appears to be in good agreement with the experimental data
on Ga>* EPR linewidths in Pr La,_ . F, crystals as a function
of x. The 1listing of the computer program is given in

Appendix I.

IV.11 Discussion of results for Pr la,_ . F,

In the 1light of the presently-proposed percolation

model, a possible explanation of the linewidth behavior can
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be given as follows:

0 s x=0.2. In this case, for ry = 0.8 nm, there are

present percolating clusters of diamagnetic ions only. Being

diamagnetic, their presence does not broaden EPR lines too
much. This is consistent with the experimental data that the
EPR lines are well resolved and temperature independent in
this range. The EPR lines, however, broaden with increasing
X, because then the fraction of paramagnetic host spins
increases, which increases the 1linewidth due to the
dipole-dipole interaction with the impurity Gd3+ion;
however, since x < X0 paramagnetic-site percolation does
not exist, thereby having no dramatic broadening effect on
EPR 1lines. Consequently, in analogy with the case of
LinxYl_xF4, it can be considered that in this range of x
the host-ion spin-lattice relaxation process 1is not

effective in broadening the EPR linewidth.

0.2 < X < 0.8. For this range, percolating clusters

exist for both the paramagnetic and diamagnetic host spins,
since X, < % < (1-xc). Thus, their effect on the broadening
of EPR linewidths is quite significant. The existence of a
paramagnetic cluster has a profound effect on Gd3+ EPR
linewidth. In addition, diamagnetic percolating clusters may
further broaden EPR lines. This is because they respond to
spin fluctuations of the paramagnetic ions by moving in such
a way as to oppose any variation in the local magnetic field

caused by the spin flip of a host paramagnetic ion in
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accordance with Lenz’s law. Accordingly, when a paramagnetic
spin relaxes, the neighboring diamagnetic spins move, thus
providing a wider energy spectrum to the lattice, which, in
turn, enhances the host paramagnetic ion spin-lattice
relaxation process. Thus, the host-ion spin-lattice
relaxation time is further shortened, causing additional
broadening of the EPR lines.

0.8 = x = 1.0. In this range, the diamagnetic-site

percolation does not exist, because the fraction of
diamagnetic ions is less *than (1 - xc) = 0,21. On the other
hand, the paramagnetic-site percolation does exist, as the
fraction of the paramagnetic ions is greater than X, = 0.21.
However, since no diamagnetic percolation cluster exists,
the EPR lines are not too broadened to be unobservable. The
narrowing cof the lines, as compared to the case 0.2 < x <
0.8, in the present |-case, is clearly due to the
disappearance of the percolating diamagnetic clusters.
Further, it should be noted that the broadening o°f 1lines
with increasing temperature for samples with x > 0.8,
suggests that for Gd3+-doped PrxLal_xF3 the spin-lattice
3+

ions is of the same order

as that of the impurity ion, Gd3+.2'16

relaxation time of the host Pr

It is noted that the presence of diamagnetic clusters in

Gd3+-doped LinxYl_xF4 crystals does not have the same

effect on EPR linewidth as in the case of Gd3+-doped

Pr La,_ . F, crystals. This is because the experincatal data
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indicate that the impurity-ion linewidth, AB, is inversely

proportional to the temperature (AB « T *

) in the former
case, while it is proportional to T (AB « T) in the latter
case. Although, in both the cases the presence of
diamagnetic clusters shortens the the host-ion spin-lattice
relaxation time, resulting in larger linewidth, in the case
of LinxYl_xF4 crystals this effect is partially nullified
by the decrease of the impurity-ion EPR 1linewidth with
temperature, caused by the presence of other mechanisms, for

all x = xc.

IV.12 Concluding remarks

From the present calculations it can be concluded that

the spin-lattice relaxation mechanism is closely tied to the
percolation properties of the paramagnetic ions as
demonstrated in both the LiYb_ Y F, and Pr_La F

X" 1-%X" 4 X 1-x"3
crystals. The calculated paramagnetic percolation thresholds

single

for the concentration X, agree quite well with the observed
EPR-linewidth behaviour. In other words, the spin-lattice
relaxation due to paramagnetic host ions is not effective
for concentrations of paramagnetic ions below X7 whereas it

is fully effective above x for which concentrations there

cl
is a percolation path for mutual spin flips of paramagnetic
ions throughout the entire lattice, i.e., a percolating
cluster exists. In addition, the the effectiveness of the

diamagnetic-site percolation, which shortens the
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spin-lattice relaxation time, has also been demonstrated.
Thus, the spin-lattice relaxation process is effective as
long as x z x, due to paramagnetic site percolation, and the
spin-lattice relaxation times are rendered shorter when x =
(1-xc), due to the existence of diamagnetic site
percolation. when x = (1-x.) .

As seen above, the definition of a percolating cluster
depends on the assumed connectivity of the sites, and one
has to make a choice of the ions which should be considered
"connected". In ordef to explain the experimental data, the
connectivity was confined to distances < 0.6 nm in
LiYb_Y. _F while in Pr_La,__F it was confined to

x " 1-x" 4/ X T 1=-x"3
distances < 0.8 nm.



Chapter V

Dual-probability percolation~limited diffusion

on a square lattice

V.1 Introduction
Percolation, is a process which governs how a physical
quantity spreads through a random medium. It has been used,
mostly in the last several years, as a model to study
diverse physical phenomena, such as conduction and phase
transition. The fractal properties of the percolation
clusters have been studied extensively; see, e.g., the

2 23 ana the article by Stanley35

reviews by Stauffer, 2 Essam,
along with the references cited therein. These fractal
properties include the cluster fractal dimension,
cluster-backbone fractal dimension, and self similarity. A
remarkable feature of a percolation process is the existence
in many cases, of a threshold, below which the spread of the
quantity of interest represented by the extent of the
resulting cluster, remains confined to a finite region in
the medium, thus not propagating all the way across the
sample.

Diffusion processes, as described by random-walk, such
as spreading of a solute in a solvent, or the motion of
electrons in a semiconductor, have been well investigated.36

In an ordinary diffusion process the sites of the sample
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available for diffusion are occupied uniformly, and the
guantity of interest propagates in a random-walk manner.
Parts of the cluster, formed due to a diffusion process are
also fractals, and are similar to that formed by a
percolation process, a fact first pointed out by Sapoval et

37 1n many aspects, diffusion and percolation processes

al.
are quite similar. The major difference between diffusion
and percolation processes is that while the randomness in a
diffusion process, which spreads infinitely, arises due to
the randomness in the motion of particles, the randomness in
a percolation process, for which there exists a critical
threshold below which the percolation process is limited to
a finite region, arises due to randomness in the medium
itself. Figures V.l and V.2 display clusters formed due to
percolation and diffusion processes on a square lattice,
respectively. The diffusion cluster, depicted in Figure V.2
is the result of random walkers, introduced at one end of
the lattice. Each random walker makes an attempt, every t
seconds, to jump to a randomly chosen nearest-neighbour
site, if this site is already occupied by another walker,
the attempt fails, and the walker waits in its original site
for t seconds before it making another attempt.

The model, studied in this chapter, combines both
percolation and diffusion processes, in order to be able to
simulate the physical systems that can not be represented by

percolation or diffusion processes alone. Basically, in this
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Figure V.1. A percolating cluster on a square lattice of

size 200x200.
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model a random walk is performed on a randomly-occupied
square lattice, to simulate random spreading of a quantity
in a random medium. Since the otherwise-unrestricted random
walk is now confined to a random medium, this model will,
hereafter, be referred to as the percolation-limited
diffusion model (PLD).

The particular PLD model, considered here, is governed
by another probability (pz) in addition to the regqular
site-occupation probability (pl). Hereafter, P, will be
associated with the orientation of a magnetic spin located
at a lattice site. However, it should be noted here, that P,
can be used to represent any other relevant quantity instead
of the spin direction and, if desired it can also be
neglected altogether. The criterion, chosen here, for a site
to be "walkable", i.e. it is available for random-walk, is
that it be occupied, and its spin orientation be down. (It
is assumed, here, that the external Z2eeman field is pointing
in the upward direction and the magnetic moment of the spin
is negative, so that the energy associated with the
spin-down orientation is lower than that with the spin-up
orientation.)

Three different variations of the PLD model are
simulated and studied, these can be described as follows:

(1) The sites of the lattice are occupied randomly with
P, and the spins of the occupied sites are set down with Py

initially. This site-spin configuration does not change
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during the simulation ,and therefore the random walk, for
this case, is governed by a single probability p = PP, -
This case is also known as "the ant in the labyrinth"

38-41 mnis

problem, studied previously by several workers.
variation of PLD may be used to simulate dilute magnets with
frozen spins, e.g., spin glasses.

(ii) The site occupation configuration, as set initially
with Py remains invariant, while the spin orientation
configuration varies during the simulation. That is, the
spin orientation of the occupied sites on the lattice are
varied randomly with the same probability Py before each
new step of the random walk is taken during the simulation.
This case simulates a dynamic spin system of
magnetically-dilute 1lattice. (iii) Both, the site
occupation and the spin orientation wvary during the
simulation. At every step, each site can either be occupied
or remain empty, regardless of the previous history of the
site; the same is true for the spin orientation of an
occupied site. This case may be used to simulate 1liquid
crystals, where the molecules can slide by each other
exchanging sites.

In each of the cases described above, clusters are
formed by the random walker. These clusters are, hereafter,
defined to be the complex of all those occupied sites
connected by the random walk, which have their spins down

just before the arrival of the random walk. As it will be

N2

PR

s




69

shown below, the PLD clusters are fractals at and above the
PLD threshold, P.- The PLD threshold, Per is defined here to
be the critical threshold below which a PLD cluster will not
reach the 1limits of the lattice. It should be noted here
that in case (iii), the random walk, and therefore the PLD
cluster formed, always reaches the limits of the lattice,
thus, for this case, the PLD threshold does not exist.

The phenomenon of percolation-limited diffusion will be
studied here, as applied to a 348x348 square lattice, for
the three cases mentioned above, for various combinations of
P, and Py each being in the range 0.01 to 1.00. Values of
the critical exponents, fractal dimensions of the PLD
clusters and those of random-walk, and PLD thresholds will
be calculated. These will be compared with those reported
previously for purely percolation, or for purely diffusion
processes. An introduction to the random fractals is given
in Sec. V.2. The details of computer simulations are
described in Sec. V.3, while those of the quantities
calculated in Sec. V.4, followed by the numerical results in
Sec. V.5, and a discussion of the numerical values in Sec.
V.6. An outline of the application of the present results to
the phenomenon of spin-lattice relaxation is provided in

Sec. V.7. The concluding remarks are made in Sec. V.8.

V.2 Random fractals

Fractals, which are the result of random phenomena are
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called random fractals. It has been experimentally shown
that aggregation and sedimentation of particles, as well as
displacement of fluids in porous media result in random
fractals. In addition, certain coastlines, landscapes, and
clouds have also been classified as random fractals. In all
these cases the use of fractal geometry has helped
researchers to rationalize 1large sets of experimental

6 Like any fractal, the random fractals must have

results.3
the following characteristics: (i) A fractal dimension, DH’
which is 1less than the Euclidian dimension, (ii) Self
similarity, and (iii) Decreasing density with increasing
size. The calculation of Dy will be discussed in detail
below. As for the second characteristic, an object is said
to be self similar, if parts of the object are similar to

the whole object. The third characteristic is a consequence

of the definition of DH' which can also be seen below.

V.3 Details of Simulations

All the presently-described simulations were performed
on an IBM-XT computer. VAX 2 and Cyber 835 computers were
available, but could not be utilized because of the very
limited memory available per user and the large memory
requirements of the present programs used. A 348x348 array
was used to represent the square lattice used in the present
simulations. An array of this size requires 121104 bytes, if

a site is represented by one byte. It should be mentioned
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here, that bits can not be used to represent the sites,
since more than two states are required to represent a site
in the present calculations, 1i.e., 0: unoccupied, 1:
occupied-spin up, 2: occupied-spin down, 3: occupied-spin
down and visited by the random walk, while a bit has only
two states. It is noted that, although a 348x348 lattice may
be considered a rather small 1lattice to yield precise
results, the phenomenon of PLD threshold can still be
demonstrated reasonably well on a lattice of this size, as

justified a posteriori by comparison of the present results

with the previous results.

In the computer simulation, the array sites were
initially set to be occupied with the probability Pqs using
a uniform random-number generator between 0 and 1; if the
number was less than or equal to Py the site was chosen to
be occupied, otherwise not. Next, the spin orientations of
the occupied sites were initially set pointing down with a
probability Py using a random-number generator between 0
and 1. Finally, the empty sites on the array were designated
by 0, those occupied with spin up by 1, and those occupied
with spin down by 2. In the random-walk process only those
sites designated as 2 (occupied and having spin down) were
included in the path. The central site, at the 1location
(174,174), was chosen to be the "source" of diffusion of the
quantity of interest, i.e., the starting point of the

random-walk process. A random integer, between 1 and 4, was
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used to choose the direction of the random-walk; the choices
1, 2, 3, and 4 indicate walks along positive x, negative x,
positive y, and negative y directions, respectively. In the
present model, a site that is a part of the cluster can be
revisited without 1limit, i.e., the random-walk is not
restricted to self-avoiding paths.

The three cases described in Sec. V.1 for the formation
of PLD clusters are simulated as follows:

Case (i). The site occupations and spin orientations
chosen initially with the probabilities P, and P,
respectively, using random-number generators between 0 and
1, remain the same at all steps of the random-walk. That is,
the values assigned to the array elements do not change.

Case (ii). Here the occupied sites remain the same as
those chosen initially with the probability Pqs while the
spin orientations of the occupied sites are flipped
completely randomly before a new step of the random-walk is
taken, with the overall probability Py- If the spin of an
occupied site, as chosen by the random walk, was found to be
pointing up, the choice was dropped and the step was not
taken; however, the very same site could be connected to the
cluster by the random walk later on in the simulation, if at
that point its spin was found to be pointing down, and vice
versa. Thus, the wvalue of a certain array element
representing a certain occupied site will vary, and can be 1

or 2 during the simulation.
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Case (iii). Both, the site occupations and spin
orientations of the occupied sites are changed randomly
before every step of the random walk is taken, with the
overall probabilities being P, and 1 2% respectively. For
all the three cases, the simulation was terminated either
when the random walk had arrived at the boundary of tﬁe
square lattice (egquivalent to approaching infinity had the
simulation been performed on an infinite lattice), or, when
the random walk became confined to a finite cluster having
no walkable sites adjacent to it. The simulation was
terminated using these criteria, rather than by limiting the
number of steps taken in each simulation. During the
simulation the formation of the PLD cluster was monitored on
a computer screen.

For all the three cases the simulations were made for a
chosen value of Pye while varying 25 values ranging from 0.1
to 1.6 in steps of 0.1, as well as in steps of 0.01, when
the values of p,p, were in the range 0.50 to 0.65, since the
percolation threshold, for a square lattice, falls in this
range. This process was repeated such that the chosen Py
values cover the range 0.1 to 1.0 in steps of 0.1.
Thereafter, additional simulations were performed reversing
the roles of p1 and p,-

For each simulation, the total number of steps taken and
unsuccessful step attempts made were counted; this number

(T) was used as a measure of the time it took to form the
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particular cluster, while the number of connected sites was
used as a measure of the mass of the cluster (M). It should
be noted, that M = T, since a site can be revisited. i1hnis
increases T, but not M. The critical exponent % was then
calculated from the values of M (details in Sec. IV.4). The
maxinmum linear dimension, as defined by the length (S) of
the longer side of the smallest rectangle enclosing the
cluster was also calculated. Using S, the critical exponent
v was calculated (details in Sec. 1IV.4). The average
distance between 1000 randomly chosen pairs of visited sites
was calculated as a measure of the r.m.s. distance, <s>,
travelled by the rar'om-walk. The effective interval of
time, t, defined to be equal to T/M, was used to estimate
the critical exponents u, u’, as discussed in Sec. IV.4. In
audition, tmwe PLD threshold (when applicable) and the
fractal dimension of PLD cluster and of random walk were
estimated. For each case, a large number of simulations were
performed to <calculate average values; the standard
deviation was used as the error bound in the calculated
average values. The listings of the programs for all the

three cases are given in Appendix I.

V.4 Quantities calculated
The details of the various quantities calculated,
relevant to PLD clusters and random walk are described

below.
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A. PLD threshold (pc) . The percolation-limited diffusion

threshold above which the diffusion spreads all the way
across the sample, i.e. the cluster formed extends from one
end to the other end of the crystal, only need to be
calculated for cases (i) and (ii), since there is no
percolation threshold for case (iii), as the process of
diffusion will reach every site eventually, regardless of
the choice of P,, ©Or Pp,. In case (i), PLD threshold is
controlled by the product of P, and p,, while in case (ii),
it is controlled by Py-

B. Cluster-Fractal Dimension (D The fractal

H)'
dimension, DH' of an incipient cluster was calculated from

the value of M, using the following relation, derived in

Appendix II:

DH = 2 log M/log (ab), (V.1)

where a and b are the sides of the smallest rectangle that

covers the cluster.

C. Random-Walk Fractal Dimension (drw). The random-walk

fractal dimension, d relating the r.m.s distance

rwl
travelled by random walk to time taken to form the cluster,
was calculated, using the relation42
1/
<s> « T IV, (V.2)
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<s> was calculated to be the average of the distances
between 1000 randomly chosen pairs of the visited sites.

D. Maximum linear dimension (S). The maximum linear

dimension, S, exhibiting critical behaviour, can be
calculated for cases (i) and (ii) only. For case (iii), the
measure of S is meaningless since the random-walk, in this
case, will always reach the limits of the lattice.

For case (i), S stretches all the way from one end of
the lattice to the other (see the graphic picture of a PLD

cluster in Fig. V.3) for all values of P,P, > (plpz) The

c.
calculated results are investigated to exhibit the following

dependence:
S o« [(PyP,)=(PP,) o) " ¢ PyP, > (PyP,) - (V.3)

For case (ii), S is independent of P,- This is because
an occupied site will have its spin pointing down sooner or
later regardless of the value of Py since the spin
orientations are varied before every step durinc the
simulation; thus this site will be "walkable" eventually. S
is, finally, found to be governed by
)-v

S « (pl-plc ' pl > plc' (V.4)

E. Mass of a cluster (M). The mass of a cluster, M,
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Figure V.3. The printout of a percolation 1limited
diffusion cluster as displayed on the computer screen. The

picture is somewhat elongated vertically by the printer.
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which exhibits critical behavior in the same way as that
exhibited by S. Likewise, it was calculated only for cases
(i) and (ii). Specifically, for case (i)

M« [(PyP,)=(P1P5) 1774 PyP, > (PP,) i (V.5)
and, for case (ii)

M o (p=Py) "/ Py > Pyg (V.6)

For case (iii), no critical behavior was exhibited.

F. Effective time (t). For case (i), the behaviour of

the effective time, t, exhibits a dependence on P1P,. which

is similar to that of S, or M. Specifically,
t o [(PyPy)=(P1P,) 1 ") P1P, > (P1P,) - (V.7)

As for case (ii), in addition to exhibiting critical
dependence on Py it exhibits a P, power-law dependence in

the following manner:
t « (pl-plc)-u pz-ul pl > plc' (V.8)
As for case (iii), t neither exhibits any critical

dependence on P, nhor on p,. Instead, it exhibits a

power-law dependence:
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t « (p,p,) "

. (V.9)
V.5 Numerical results

For both cases (i) and (ii), Pic and (plpz)c, as defined
‘by egs. (V.3)-(V.5) and (V.7), were all found to be = 0.60.
The fractal dimension, DH’ as calculated using egq. (V.1),
was found to be 1.70 * 0.07 for all the three cases. The
random-walk fractal dimension, drw' calculated using egq.
(V.2) was found to be 2.86 *+ 0.15. By fitting the calculated
values of S, M, and t to egs. (V.3), (V.4):; (V.5), (V.6):
and (V.7), (Vv.8), (V.9), respectively, the values of the
exponents v, ¥, u, M, were estimated to be 1.20 * 0.15,
2.050 + 0.50, 1.80 + 0.12, and 1.0 % 0.01, respectively. The

errors indicated in the various wvalues are the calculated

standard deviations.

V.6 Discussion
The values Pic = (plpz)c & 0.60 calculated here are in
good agreement with P = 0.59275 + 0.00003, as determined by
a computer simulation of the purely percolation process on a
450 x 450 lattice.®®
The presently-calculated value of the fractal dimension

(D suggests that percolation-limited diffusion yields

q)
clusters whose fractal geometry is the same as that of the

hulls of diffusion fronts. The hull, in a diffusion process,
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consists of all those sites which are connected to the
source, and are neighbors to the end part of the sample to
which diffusion did not reach, i.e., the insulating end of
the lattice. The hulls of diffusion fronts, have been
reported to have the fractal dimension DH e

36,43,44

1.72-1.76, as calculated using computer simulations

of diffusion processes on square lattices of various sizes,
in agreement with the presently-estimated value of DH = 1.70
+ 0.07, calculated just above the threshold, P.- Oon the
other hand, all two-dimensional percolation clusters are

36,45

characterized by D, = 1.89, estimated using several LxL

H
square lattices from log-log plots of M versus L. However,
these clusters are not the same as PLD clusters.

The present value of the random-walk fractal dimension,
d = 2.86 + 0.15, as defined by the exponent in eq. (V.2),

rw
is in good agreement with that based on a conjecture of

Alexander and Orbach (drw = 2.85),41 known as AO conjecture,
according to which there exists the relation drw = % DH

between the fractal dimension of the substrate (DH) on which
the walk takes place and that of the random-walk (drw). On
the other hand, the conjecture given by Ahorony and
stauffer,42 known as AS conijecture, proposes drw = DH + 1.
Both, A0 and OS conjectures, have been tested not to hold
exactly.as'40

The critical exponent (v) for the maximum linear

dimension (S), both, for the purely diffusion, and for the
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purely percolation processes, have been reported to have the

value of 4/3,46

as calculated by the application of the
variational method. This value is within the error bound of
the the presently-calculated value v = 1.2 * 0.15. As for
the critical exponent (7) for the mass of clusters (M), the
presently-calculated value of ¥y = 2.05 * 0.50 is also in
agreement with that for the purely percolation process (y =
2.43),47 within error bounds, as estimated by a series

expansion method, there being no corresponding exponent for

the diffusion process.

V.7 Application t6 EPR

Percolation-limited diffusion, as proposed presently,
can easily be applied to the study of EPR and spin-lattice
relaxation in magnetically-dilute lattices, consisting of
both paramagnetic and diamagnetic host ions, wherein one
studies how the energy given off by an impurity or a host
paramagnetic spin, as it relaxes by a mutual spin flip with
another paramagnetic ion, spreads through the sample. The
problem discussed in Chapter 1V is, indeed, an application
of case (ii) of PLD to EPR, as discussed in this chapter. It
should be noted here, that in Chapter 1V, Py the
spin-orientation probability was not considered, since in
Chapter IV only the percolation threshold was being
calculated and this does not depend on Py the spin

orientation probability, as seen previously for case (ii).
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Relationship between the effective time (t) and the

spin-lattice relaxation time v. When the spin orientations

are allowed to vary, as in cases (ii) and (iii), it is seen
from egs. (V.8) and (V.9) that, for a fixed value of Pyr t «
p;”: The value of u’ was determined to be 1.0 # 0.01.
Assuming now that pu' = 1, t « 1/p2. Now, the spin-down
probability, Py is directly proportional to the number of
sites in the spin-down state, n,. In thermal equilibrium, n,
o exp(—l/kT),l where T is the temperature; thus t'l o
exp(-1/KT). Since in the case of the "direct” process,21the
spin-lattice relaxation time <t has the temperature
dependence -c-l « exp(-1/kT), it can be concluded that the
effective time t, in PLD process, is proportional to the
spin-lattice relaxation time, t, as governed by the "direct"
process. In the '"direct" ©process, the spin-lattice

relaxation process occurs between only two spin levels, the

same as that considered presently in the PLD process.

V.8 Concluding remarks
The present results indicate that percolation-limited
diffusion yields clusters that exhibit some properties of
percolation <clusters, such as thresholds and critical
exponents. On the other hand, at and just above Po: they
exhibit the fractal behaviour of the hulls of diffusion
fronts. In addition, the values of u and u’, as estimated

presently for «clusters formed by percolation-limited

¥
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diffusion, are the first~ever reported. The critical
exponents v and 7 for PLD clusters have been presently
calculated to be in agreement, within error bounds, with
those calculated previously using other techniques.

In addition to the application of the present results to
the spin-lattice relaxation process, they can also be used
to study other physical phenomena. To this end, the
following examples may be cited:

(1) Travel of conduction electrons through a medium,
consisting of a mixture of conducting and non-conducting
atoms, the conduction electron belonging to the conducting
atom. In this case, an "occupied" site is that occupied by
the conducting atom, while P, represents the temperature
distribution determining the probability of an electron
being in the conduction band.

(ii) The spread, or diffusion, of particles, or
molecules, e.g. that of a liquid through a porous medium.

(iii) Absorption and emission of photons, such that
exists in laser materials, characterized by a triggering
chain~-reaction like process. The lasing action is controlled

by a threshold, below which it does not occur.



Chapter VI
Conclusion

The main results of the calculations presented in this
thesis can be summarized as follows:

Eq. (III.85 is the correct expression to calculate the
second moment in crystals with two different Kkinds of
paramagnetic ions, as 1is the typical EPR situation.
Consequently, eq. (III.11) should be used, instead of the
frequently-used incorrect eq. (III.4), to calculate the
spin-lattice relaxation time of the host ions in crystals
wherein the experimentally observed impurity-ion EPR lines
become narrower with increasing temperature.

(ii) The host-ion spin-lattice relaxation process has a
critical cut-off in diluted paramagnetic single crystals,
below which it is not effective; the cut-off is governed by
paramagnetic-site percolation threshold. In this way an
explanation of the unusual temperature and paramagnetic-ion
concentration (x) dependence of the Gd3+ EPR linewidths in
LinxYl_xF4 and PrxLal_xF3 single crystals can be provided.
In addition, it has been shown, that the diamagnetic-site
percolation is responsible for the shortening of the
host-ion spin-lattice relaxation time.

(iii) Percolation-iimited diffusion process results in

random fractal clusters, and has characteristics of both the

P T T YL R S T T Oy T, R

P

T L VR
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percolation and the diffusion processes. It is also
suggested, that PLD can be used to simulate a number of
physical systems and processes, e.g. the spin-lattice
relaxation process. Specifically, it has been demonstrated,
that case (ii) of PLD model can be used to simulate the

Direct process in magnetically dilute crystals.
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APPENDIX I
Algorithms and listings of the computer programs

The computer programs used in this thesis are written in
Pascal programming language, using the Turbo Pascal compiler
for IBM PC/XT/AT and compatible computers. Monographic (TTL)
display is adapted in the following 1listings, however,
modifications to the programs can be made for use with other
graphics adaptors. In addition, the lattice sizes may be
increased, if the particular compiler and the computer used
allow such a change;

A typical Pascal program has the following structure:

l. Program name;

2. Definition of global variables;

3. Procedures and functions

4. Main body of the program, which calls the procedures

and functions above.
The programs listed here have the form given above.
Algorithms for all program are given prior to their

listings.
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Program I
Purpose: To generate lattices, calculate the second moment,
and the spin-lattice relaxation time.

Algorithm I

read ( unit cell parameters,
nunmber of ions in unit cell,
unit cell coordinates of ions,
array steps along x, Y, z for each site,
distances between equivalent sites )

read ( EPR data )

do 3D loop for each ion in the unit cell to generate
the lattice

choose an occupied site near the center of array
and calculate the distances of  other
occupied sites around it

calculate the direction cosines
calculate the second moment
calculate T
write {( distances of neighbours, second moment, T )

end.

Listing I

program lattice Generator;

const
beta=9.27;
h=6.63;
mu=l.26;
var
filename:string([8):;
crint:file of integer;
creal:file of real;
points : array (0..36,0..36,0..36] of byte;
distx:array [1..6) of real;
disty:array [1..6) of real;
distz:array [1..6]) of real;
locx:array [1..6] of real:;
locy:array [1..6] of real:;
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locz:array [1..6] of real;
stepx: array [1..6] of integer;
stepy: array [1..6] of integer:;
stepz: array [1..6] of integer;
xlim, ylim, zlim, nk, fm, ran : byte:

along, counter, px, PY, P2, €X, ¢y, €2, n, rmin, sx, sy,

sz, m, X, ¥, 2, i, j, k, xo0, yo, zo, inx :integer;
jp, second, third, suml, sum2, gam, s, g,
supersunm, slrt, lw, gp, pro, r3, r6é, rx, ry, rz, rad,
rxl, ryl, rzi, a, b, ¢, alpha, bheta, gamma, cosgamma,
alphar, betar, gammar : real:

key,dim :char:;

procedure zero;
{Initialize the array elements)

begin

for sz:=0 to 36 do begin
for sy:=0 to 36 do begin
for sx:=0 to 36 do begin
points [sx,sy,sz]:=0;
end;
end;
end;
end;

procedure zerol;
{Input of values for a new crystal)

begin

write (’‘enter # of master ions:’);
readln (n);

write(crint,n);
write (’enter unit-cell parameters in nm: a=’);
readln (a):

write(creal,a);
write (' b=");
readln (b):

write(creal,b):
write (' c=');
readln (c):

write(creal,c):
write (’external field along alpha
readln (alpha):;

write(creal,alpha);
write (’beta ?’);
readln(bheta);

write (creal,bheta);
write (‘gamma ?’);
readln(gamma);

write (creal,gamma);
write (’effective spin of host ? /);
readln (s):

)

) ;



93

write(creal,s):;
write (’g-host ? /):
readln (gp):
write(creal,gp):
write (’g-impurity ? ’);
readln (qg):
write(creal,qg):
write (’avg. J-pair in GHz ? ’);
readln (3jp):
write(creal,jp):
alpha:=(alpha*3.14159)/180;
bheta:=(bheta*3.14159) /180;
gamma:=(gamma*3,14159)/180;
end;

procedure creator;
{Occupy the proper sites in the array)

begin

i:=(36-%0) div stepx[m]};

j:=(36-yo) div stepy([m]:
k:=(36-2z0) div stepz[m];

for sz:=0 to k do begin

for sy:=0 to j do begin
for sx:=0 to i do begin
if random(10)+1<=ran then
points[xo+ (sx*stepx[m]) ,yo+(sy*stepy[m]) ,zo+(sz*stepz[m])] :=m;
end;
end;
end;

end;
procedure origin;
{More input about the new crystal)

begin
writeln (’enter array-coordinates of master ion: #/,m);
write (’a=’); readln (xo):;

write(crint,xo):
write (’b=’'); readln (yo):
write(crint,yo);
write (’c=’):; readln(zo):
write(crint,zo);
write (’enter # of array steps along a :’);
readln(stepx[m]);
write(crint,stepx[m]):
write (' along b :’);
readln (stepy(mj}):
write(crint,stepy[m]):
write (' along c :’);
readln (stepz[m]):;
write(crint,stepz[m]);
creator;
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write(’enter distance between master ions along a in a:’);

readln (distx[m]):
distx[m] :=distx[m]*a;
write(creal,distx[m]):

write(’ along b in

readln (disty[m]):
disty([m] :=disty[m]*b;
write (creal,disty[m]);

write('’ along ¢ in c:’);

readln (distz[m]):;
distz[m] :=distz[m]*c;
write(creal,distz[m]):;

write (‘enter location of master ion along a in a:’)

readln (locx[m]):
locx[m):=locx[m]*a;
write(creal,locx[m]):;

write (’ along b in b:’)

readln (locy[m]);
locy[m]:=locy[m]*b;
write(creal,locy[m]);

write (’ along ¢ in c:’)

readln (locz[m]);
locz[m]:=locz[m]*c;
write(creal,locz[m)):
end;

procedure findcenter:
{Make note of the central ion in the array)

begin
repeat
write (’enter array-coordinates of near-center ion
readln (cx);
write ('
readln (cy):
write ('
readln (cz);
until points{[cx,cy,cz]}<>0;
write(crint,cx);
write(crint,cy):
write(crint,cz);
end;

procedure distance;
{Find components of r vector)

begin

rx:=((sx div stepx[inx])*distx[inx])+locx[inx];

ry:=((sy div stepy([inx])*disty[inx])+locy[inx]:
rz:=((sz div stepz[inx])*distz[inx])+locz[inx];

end;

procedure sums;

L1

~e

-e
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({Calculate the sums of the second moment)

begin
nk:=nk+1;
gam:=(1-(3*sgr (cosgamma)))
r3:=rad*rad*rad; ré6:=sqr(r3):
suml :=suml+(sqr(gam)*(1/r6)):
sum2 :=sum2+ (gam# (1/r3)) H
end;

procedure nearest;
{Find neighbours)

begin
SX:=CXx;
sy:=cy;
sz:=cz;
inx:=points(sx,sy,sz):;
distance:
rxl:=rx;
ryl:=ry:;
rzl:=rz;
for sz:=cz~-(stepz[inx]*3) to cz+(stepz[inx]*3) do begin
for sy:=cy-(stepy(inx]*3) to cy+(stepy[inx]*3) do begin
for sx:=cx-(stepx[inx]*3) to cx+(stepx[inx]*3) do begin
if points [sx,sy,sz]<>0 then begin
inx:=points(sx,sy,sz]:
distance;
rad:=sgrt (sqr(rxl-rx)+sqr(ryl-ry)+sqr(rzl-rz));
if round(1000*rad)=rmin then begin
writeln (rad:5:3,’nm at ’,sx,’,’,sy.’.,’.sz):
alphar:=(rx-rxl)/rad:
betar:=(ry-ryl)/rad;
gammar:=(rz-rzl)/rad;
cosgamma:=(cos (alpha)*alphar)+(cos(bheta)*betar)
+ (cos(gamma) *gammar) ;
. sums;
points[sx,sy,s2]:=0;
end;
end;
end;
end;
end;
end;

procedure neighbors;
{Locate surrounding ions)

begin

SX:=CX;
sy:=cy:
sz:=cz;
rmin:=10000;
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inx:=points(sx,sy,sz};
distance;
rxl:=rx;
ryl:=ry;
rzl:=rz;
for sz:=cz-(stepz[inx])*3) to cz+(stepz[inx]*3)do begin
for sy:=cy-(stepy[inx]*3) to cy+(stepy[inx]*3)do begin
for sx:=cx-(stepx[inx]*3) to cx+(stepx[inx]#*3)do begin
if points [sx,sy,sz]<>0 then begin
inx:=points(sx,sy,sz];
distance;
rad:=sqrt (sqr(rxl-rx)+sqr(ryl-ry)+sqr(rzl-rz));
if (round(1000*rad)<rmin) and
(rad<>0) then rmin:=round(1000*rad) ;
end;
end;
end;
end;
end;

procedure neighborsl;
{Calculation of direction cosines)

begin
sx:=i;
sy:=j;
sz:=k;
inx:=points[sx,sy,sz];
distance;
rxl:=rx;
ryl:=ry;
rzl:=rz;

for sz:=k-zlim to k+zlim do begin
for sy:=j-ylim to j+ylim do begin
for sx:=i-xlim to i+xlim do begin
if points [sx,sy,sz]<>0 then begin
inx:=points[sx,sy,sz};
distance;
rad:=sqrt (sqr(rxl-rx)+sqr(ryl-ry)+sqr(rzl-rz)):;
alphar:=(rx-rxl)/rad;
betar:=(ry-ryl)/rad;
gammar:=(rz-rzl)/rad;
cosgamma:=(cos(alpha) *alphar)+(cos (bheta) *betar)
+ (cos (gamma) *gammar) ;
if (rad<>0) and (round(rad*1000)<=rmin) then sums;
end ;
end;
end;
end;
end;

procedure moment;
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{Final calculations of the secsnd moment)

begin
second:=(1/3) *s*(s+l) ;
third:=(nk*sqr(jp)*1el8)+((1/sqr(h)) *leld*sgr(g*gp) *sqr (sqr(
beta) ) *sqr (mu) *suml)+( (1/h) *1lel6*2*jp*g*gp*sqr (beta) *mu*sum2) ;
second:=gecond*third;
supersum:=supersum+second;
end;

(kK Main Program hhdkk)
begin
randomize;
ran:=10;
clrscr;
write (’Enter 1 for new file, 2 for disk-file :’);
readln (fm):
write (’Filename :’):
readln(filename);
assign (crint,’b:’+filename+’.int’);
assign (creal,’b:’+filename+’.rel’);
zero H
if fm=1 then begin
rewrite (crint):
rewrite (creal):; clrscr;
zerol;
for m:=1 to n do
origin;
findcenter:;
close(creal):;
close(crint):
end H
if fm=2 then begin
clrscr; writeln (’Reading crystal data ......’);
reset (crint);
reset (creal):;
read(crint,n):;
read(creal,a);
read (creal,b):
read(creal,c):
read (creal,alpha);
read(creal,bheta);
read (creal ,gamma) ;
read(creal,s):;
read(creal,gp):;
read(creal,qg);
read(creal,jp):
for m:=1 to n do begin
read(crint,xo):
read(crint,yo);
read (crint,zo);
read (crint,stepx(m]):
read(crint,stepy[m]):
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read(crint,stepz[m]);
creator;
read (creal,distx[m]):
read(creal,disty[m]);
read(creal,distz(m]):
read (creal,locx(m]):
read(creal,locy[m]);
read(creal,locz(m]);
end H
read (crint,cx):
read(crint,cy):
read(crint,cz);
close(creal) ;
close(crint) ;

clrscr;

write (’Alpha :’,alpha,’ ?’);
readln(alpha) ;

write (’Beta :’,bheta,’ ?/);
readln (bheta) ;

write (’Gamma :’,gamma,’ ?’);

readln(gamnma) ;
alpha:=(alpha*3.14159)/180;
bheta:=(bheta*3.14159)/180;
gamma:=(gamma*3.14159)/180;

writeln (/Number of master ions = /,

n);
writeln (’Unit cell a:’,a:5:3,’ b:’,b:5:3,’ c:?,c:5:3,’ nm.’);
writeln (/Exchange constant :’,jp:5:3,’ Ghz.'’):;
writeln (’Effective nost spin ¢’,8:5:3);
writeln (’g-host :’,gp:5:3,’ g-guest :’,g:5:3);

end;
writeln (’change J to ? ’);readln(jp):
writeln (‘’change g-host to ? ’); readln(gp):
writeln (’change host spin to ?’); readln(s):
randomize; ran:=10;
nk:=0; suml:=0; sum2:=0;
write (‘Upto ?-nearest ¢’): readln(fm);
for m:=1 to fm do begin
neighbors;
writeln(m, ’-nearest= ’/,rmin);
nearest: end;
repeat
second:=(1/3) *s*(s+1) ;
writeln(’Total ions :’,nk);
write (’change J to:’):;

readln(jp):
write (’change g-host to:’);

readln(gp):
third:=(nk*sqgr(jp)*lels8)+((1/sqr(h)) *leld*sqr (g*gp)

*sqr (sqr( beta) ) *sqr(mu) *suml)
+((1/h) *1lel6*2*jprg*gp*sqr (beta) *mu*sum2) ;

second:=second*third;
writeln (’second moment = /,second:9,’ Hz~2’);
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write (’observed LW along ’,along,’-axis in T ? ?);
readln (1lw):;
slrt:=(3*1lw*sqr(g)*beta*le-24)/(110*h*le-34*gp*second) ;
writeln (1st,’3j=’,jp,’ g9=’,gp,’ tau=’,slrt:9);
second:=0;

until jp=0;

end.

Program II
Purpose: To find the percolation threshold value X, in
LiYb Y, _F,.

Algorithm II

generate the lattice sites

occupy proper sites randomly,
occupied=1, unoccupied=0

connect all sites in 2=0 to cluster,
site=2

connect all occupied sites
negihbouring percolating sites to
the cluster

sweep { in #x, *y, and #z directions )}
until a site in last plane becomes connected
o no new site can be connected
repeat for various values of x

end.

Listing II
program 3_D_percolation (for L1beY1_xF4}
var

points : array [-2..47,-2..47,-2..47) of byte;
sx, sy, sz, h, m, a, b, ¢, d, e, f, g, 1, i, 3, k,
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X, Y, 2, s:integer;
ia, ja, ka, ir, jr, kr, r:real:;
key,dim:char;

procedure first; {(on z = 0 plane all occupied neighbors
are connected, all assumed percolating)
begin
k:=0;
for j:=0 to 17 do begin
for i:=0 to 18 do begin
if points[i*2, (2*j)+1,k])=1 then begin
points[i*2, (2*j)+1,k]):=2;
if points[(i*2)+2, (2*j)+1,k]=1
then points[(i*2)+2, (2*3)+1,k]:=2;
if points[(i*2)=-2, (2*j)+1,k]=1
then points[(i*2)=-2,(2%j)+1,k]:=2;
if points[(i*2), (2*))+3,k]=1
then points[(i*2), (2*j)+3,k]:=2;
if points[(i*2), (2*j)-1,k]=1
then points[(i*2), (2*j)-1,k]):=2;
if points[(i*2)+1, (2*j)+1,k+1]=1
then points[ (i*.,+1, (2*j)+1,k+1]):=2;
if points[(i*2)-1,(2*j)+1,k+1]=1
then points[(i*2)-1,(2*j)+1,k+1]:=2;
if points[(i*2)-1, (2%*j)+1,k+1]=1
then points[ (i*2)-1,(2*j)+1,k=-1]:=2;
if points([(i*2)+1, (2*j)+1,k+1]=1
then points[(i*2)+1, (2*j)+1,k=-1]:=2;
end;
ena,
end;
end;

procedure second;
{connect sites on the next plane)

begin

for i:=0 to 18 do begin
if points[i*2,]j,k]=2
then
begin
if points[(i*2)+2,3,k]=1
then points([(i*2)+2,3,k]:=2;
if points[(i%*2)-2,3,k])=1
then points[(i*2)=-2,3,k]):=2;
if points[(i*2),j+2,k]}=1
then points[(i*2),j+2,k]:=2;
if points[(i*2),j-2,k]=1
then points[(i*2),j-2,k):=2;
if points[(i*2)+1,j,k+1]=1
then points[(i*2)+1,]j,k+1]):=2;
if points[(i*2)-1,j,k+1]=1
then points[(i*2)~-1,j,k+1]:=2;
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if points[(i*2)-1,3j,k-1]=1
then points[(i*2)~-1,j,k-1]:=2;
if peints[(i*2)+1,j,k-1]=1
then points[(i*2)+1,j,k-1]:=2;
end;
end:;
for i:=18 downto 0 do begii.
if points[i*2,j,k]=2
then
begin
if points[(i*2)+2,j,k]=1
then points[(i*2)+2,j.k]:=2
if points{[ (i*2)-2,j,k]=1
then points[(i*2)-2,9,k]):=2
]:=2

if points{(i%2),3j+2,k])=1

then points[(i*2),j+2,k]:
if points[(i*2),j=-2,k]=1

then points[(i*2),j=-2,k]):=2;
if points[(i*2)+1,j,k+1])=1

then points[(i*2)+1,5,k+1]):=2;
if points[(i*2)-1,j,k+1]=1

then points((i*2)~1,j,k+1]:=2;
if points[(i*2)-1,j,k-1]}=1

then points[(i*2)-1,j,k-1]:=2
if points[(i*2)+1,j,k-1]=1

then points[(i*2)+1,j,k-1]:=2

-

end;
end;
end;

procedure third;
begin
for i:=0 to 17 do begin
if points[(i*2)+1,3,k])=2
then
begin
if points[(i*2)+3,5,k]=1
then points((i*2)+3,3,k]:=2;
if points[(i*2)-1,3,k]=1
then points([(i*2)-1,j,k]:=2;
if points[(i*2)+1,j+2,k])=1
then points[(i*2)+1,j+2,k]}:=2;
if points((i*2)+1,3-2,k]=1
then points[(i*2)+1,3-2,k):=2;
if points[(i*2)+1,j+1,k+m]=1
then points[ (i*2)+1,j+1,k+m]:=2;
if points[(i*2)+1,j-1,k+m]=1
then points{ (i*2)+1,3j-1,k+m]:=2;
if points([(i*2)+2,j,k-m)=1
then points([(i*2)+2,j,n-m]:=2;
if points[(i*2),j,k-m])=1
4 then points[(i*2),j,k-m]:=2;
end:;
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end;
for i:=17 downto 0 do begin
if points[(i*2)+1,j,k])=2 then begin
if points[(i*2)+3,j,k])=1
then points{(i*2)+3,j,k]:=2
if points[(i*2)-1,3,k]=1
then points[(i*2)-1,j.k]):=2;
if points[(i*2)+1,j+2,k]=1
then points[(i*2)+1,3+2,k]:=2;
if points[(i*2)+1,j-2,k]=1
then points[(i*2)+1,j-2,k]:=2;
if points[(i*2)+1,j+1,k+m]=1
then points[(i*2)+1,3+1,k+m]:=2;
if points[(i*2)+1,j-1,k+m]=1
then points[(i*2)+1,3j-1,k+m}:=2;
if points[(i*2)+2,3j,k-m]=1
then points[(i*2)+2,7,k-m]):=2;
if points[(i*2),j,k-m])=1
then points[(i*2),j,k-m]:=2;

end;
end;
end;

procedure fourth;
begin
for i:=0 to 17 do begin
if points[(i*2)+1,3,k]=2
then
begin
if points[(i*2)+3,j,k)=1
then points[(i*2)+3,3j,k):=2;
if points[(i*2)-1,7j,k]=1
then points[(i*2)-1,j,k]):=2;
if points[(i*2)+1,3j+2,k]=1
then points[(i*2)+1,j+2,k]:=2;
if points[(i*2)+1,j-2,k]=1
then points[(i*2)+1,j-2,k]):=2;
if points[(i*2)+1,j+1,k-1]=1
then points[(i*2)+1,j+1,k-1]):=2;
if points[(i*2)+1,j-1,k-1])=1
then points[(i*2)+1,j-1,k-1]):=2;
if points[(i*2)+1,j+1,k+1]=1
then points[ (i*2)+1,9+1,k+1]):=2;
if points[(i*2)+1,j-1,k+1])=1
then points[(i*2)+1,j-1,k+1]):=2;
end;
end;
for i:=17 downto 0 do begin
if points[(i*2)+1,j,k]=2
then
begin
if points[(i*2)+3,3j,k])=1
then points[(i*2)+3,7,k]):=2;
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if points[(i*2)-1,3j,k]=1
then points[ (i*2)-1,j,k]:=2;
if points[(i*2)+1,j+2,k]=1
then points[(i*2)+1,j+2,k]:=2;
if points[(i*2)+1,j-2,k]=1
then points[(i*2)+1,j-2,k]:=2;
if points[(i*2)+1,j+1,k-1])=1
then points[ (i*2)+1,j+1,k-1]:=2;
if points[(i*2)+1,j-1,k-1]=1
then points[(i*2)+1,j-1,k-1]:=2
- if points[(i*2)+1,j+1,k+1])=1
then points[ (i*2)+1,j+1,k+1]):=2;
if points[(i*2)+1,j-1,k+1]=1
then points[(i*2)+1,j-1,k+1}:=2
end;
end;
end;

procedure threed;
begin
draw(119,187,338,187,1);
draw(338,187,517,149,1):
draw(517,149,298,149,1);
draw(298,149,119,187,1);
draw(119,76,338,76,1);
draw(338,76,517,38,1);
draw(517,38,298,38,1);
draw(298,38,119,76,1);
draw(119,76,119,187,1);
draw(338,187,338,76,1);
draw(517,149,517,38,1);
draw(298,149,298,38,1);
sx:=300;sy:=150;
for c:=0 to 36 do begin
for b:=0 to 36 do begin
for a:=0 to 36 do begin
if points[a,b,c]=2
then plot((a%*6)+sx,b+sy,1):;
end;
SX:=sSxX~-5
end;
sxX:=300;
sy:=sy-3;
end;
end;

procedure twod:;
begin
sx:=0;
sy:=0;
for c:=0 to 36 do begin
for b:=0 to 36 do begin
for a:=0 to 36 do begin
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if points(a,b,c]=2
then

plot(a+sx,b+sy, 1)

end;
end;
sSX:1=8X+60;

if sx>602 then begin
sy:=sy+40;

sx:=0;

end;

end;
end;

procedure occupier;
begin

for k:= -2 to 47 do begin
for j:=-2 to 47 do begin
for i:==2 to 47 do

points([i,j, k]):=0;
end;
end;

for k:=0 to 9 do begin
for j:=0 to 17 do begin

for i:=0 to 18 do begin
if random (1000)+1<=265

then points [i*2,(2%j)+1,k*4]):=1;
end;
end;
end;
for k:=0 to 8 do begin
for j:=0 to 18 do begin

for i:=0 to 17 do begin
if random (1000)+1<=265

then points [(i*2)+1,j*2, (k*4)+2)

end
end;

=1
.
!

end;
for k:=0 to 17 do begin

for j:=0 to 17 do begin
for i:=0 to 17 do begin
if random (1000)+1<=265
then points [(i*2)+1, (j*2)+1, (k*2)+1]:=1;

end;
end;
end;
end;
(Kkkhdkkdkkk Main Program *hkkdkkhhd )
begin
randomize;
occupier;
1:=0;

write(’dimension ?7);
read (kbd,dim):;

" s
PRI
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hires;
first;
repeat
k:=0;
for y:=0 to 16 do begin
Ji=(2%y)+1;
second;
end;
for y:=16 downto 0 do begin
Jei=(2%y)+1;
second;
end;
ke=1;
m:=1;
for y:=0 to 16 do begin
ji=(2%y)+1;
third;
end;
for y:=16 dewnto 0 do begin
Ji=(2%y)+1;
third;
end;
k:=2;
for y:=0 to 17 do begin
Ji=(2%y):
fourth;:
end;
for y:=17 downto 0 do begin
Jai=(2%y):
fourth;
end;
k:=3;
mi=-1;
for y:=0 to 16 do begin
Ji=(2%y)+1;
thirq;

end;
for y:=16 downto 0 do begin
Je=(2%y)+1;
third;
end;
i=4;
for y:=0 to 16 do begin
Jim(2%y)+1;
second;
end;
for y:=16 downto 0 do begin
Jr=(2%y)+1;
second;

end;
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for y:=0 to 16 do begin
Ji=(2%y)+1;
- third;
end;
for y:=16 downto 0 do begin
Ji=(2%y)+1;
third;
end;
:=Kk+1;
for y:=0 to 17 do begin
Ji=(2%y);

fourth;
end;
for y:=17 downto 0 do begin
Jer=(2%y);
fourth;
end;
k:=k+1;
m:=-1;
for y:=0 to 16 do begin
jei=(2%y)+1;
third:;
end;
for y:=16 downto 0 do begin
je=(2%y)+1;
third;
end;
ki=k+1:;

for y:=0 to 16 do begin
je=(2%y)+1;
second;
end;
for y:=16 downto 0 do begin
Je=(2%y)+1;
second;

0 to 16 do begin
=(2*y)+1;
third;
end;
for y:=16 downto 0 do begin
j:=(2*%y)+1;third;
end;
k:=k+1;
for y:=0 to 17 do begin
js=(2%y);
fourth;
end;
for y:=17 downto 0 do begin
Ji=(2%y);
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fourth;
end;
k:=k+1;
m:=-1;
for y:=0 to 16 do begin
Ji=(2%y)+1;
third;
end;
‘ for y:=16 downto 0 do begin
f Ji=(2*y)+1;
third;
end;
ke=k+1;
for y:=0 to 16 do begin
Ji=(2%y)+1;
second;
end;

for y:=16 downto 0 do begin
Ji=(2*y)+1;
second;
end;
k:=k+1;
m:=1;
for y:=0 to 16 do begin
Ji=(2%y)+1;
third;
end;
for y:=16 downto 0 do begin
Jei=(2%y)+1;

third;

end;
k:=k+1;
for y:=0 to 17 do begin
¢ Je=(2*%y);
fourth;
end;
for y:=17 downto 0 do begin
Ji=(2%y);
fourth;
end;
:=Kk+1;

—r

m:==1;
for y:=0 to 16 do begin
je=(2*y)+1;

P e e i

‘ third;
end;
for y:=16 downto 0 do begin
Je=(2%y)+1;
third;
end;
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k:=k+1;
for y:=0 to 16 do begin
je=(2*%y)+1;
second;
end;
for y:=16 downto 0 do begin
Je=(2%y)+1;
second;
end;
K:=k+1;
m:=l;
for y:=0 to 16 do begin
Ji=(2%y)+1;

third;
end;
for y:=16 downto 0 do begin
Je=(2%y)+1;
third;
end;
k:=k+1;
for y:=0 to 17 do begin
Ji=(2%y);
fourth;
end;
for y:=17 downto 0 do begin
Ji=(2*y);
fourth;
end;
k:=k+1;
m:==1;
for y:=0 to 16 do begin
ji=(2%y)+1;
third;
end;

for y:=16 downto 0 do begin
je=(2%y)+1;
third;
end; ki=k+1;
for y:=0 to 16 do begin

Je=(2%y)+1;
second;
end;
for y:=16 downto 0 do begin
Jei=(2*y)+1;
second;
end;
k:=k+1;
m:=1;

for y:=0 to 16 do begin
Je=(2%y)+1;
third;
end;
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for y:=16 downto 0 do begin
Ji=(2*y)+1;
third;
end;
t=k+1;
for y:=0 to 17 do begin
Ji=(2%y);

fourth:;
end;
for y:=17 downto 0 do begin
Ji=(2%y);
fourth:
end;
k:=k+1;
m:=-1;
for y:=0 to 16 do begin
ji=(2%y)+1;
third:;
end;
for y:=16 downto 0 do begin
Je=(2*%y)+1;
third;
end;
k:=k+1;

for y:=0 to 16 do begin
Ji=(2*%y)+1;

second;
end:;
for y:=16 downto 0 do begin
Ji=(2*%y)+1;
second;
end;
k:i=k+1;
m:=1;

for y:=0 to 16 do begin
Ji=(2*y)+1;
third;
end;
for y:=16 downto 0 do begin
Jei=(2%y)+1;
third;
end;
k:=k+1;
for y:=0 to 17 do begin
Ji=(2%y);
fourth;

end;
for ,:=17 downto 0 do begin
Ji=(2%y);
fourth;
end;
1=k+1;
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m:=-1;
for y:=0 to 16 do begin
Ji=(2*y)+1;
third;
end;
for y:=16 downto 0 do begin
Je=(2*%y)+1;
third;
end;
k:=k+1;
for y:=0 to 16 do begin
Jei=(2%y)+1;
second;
end;
for y:=16 downto 0 do begin
Jer=(2*y)+1;

second
end;
ki=k+1;
m:=1;
for y:=0 to 16 do begin
Ji=(2*y)+1;
third;
end;
for y:=16 downto 0 do begin
Jei=(2*y)+1;
third;
end;
k:=k+1;
for y:=0 to 17 do begin
ji=(2%y):
fourth;
end;
for y:=17 downto 0 do begin
ji=(2%y);
fourth:
end;
k:=k+1:;
m:==1;

for y:=0 to 16 do begin
Ji=(2*y)+1;
third;
end;
for y:=16 downto 0 do begin
Ji=(2*y)+1;
third;
end;
k:=k+1;
for y:=0 to 16 do begin
je=(2*%y)+1;
second;
end:;
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for y:=16 downto 0 do begin
Ji=(2%y)+1;
second;
end;
k:=k+1;
m:=1l;
for y:=0 to 16 do begin
Ji=(2*y)+1;

third;
end;
for y:=16 downto 0 do begin
Jr=(2%y)+1;
third;
end;
k:=k+1;
for y:=0 to 17 do begin
Ji=(2%y);
fourth;
end;
for y:=17 downto 0 do begin
je=(2%y):
fourth;
end;
if dim=’3’ then threed else twod;
k:=36;

for y:=0 to 16 do begin
je=(2*y)+1;
second;
end;
for y:=16 downto 0 do begin
j:=(2*y)+1;second;

end;
k:=35;
m:==1;
for y:=0 to 16 do begin
Je=(2%y)+1;
third;
end;

for y:=16 downto 0 do begin
Je=(2%y)+1;
third;
end;
$=34;
for y:=0 to 17 do begin
Je=(2%y);
fourth;
end;
for y:=17 downto 0 do begin
Ji=(2%y);
fourth;
end;
1=33;
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ms=1;
for y:=0 to 16 do begin
Ji=(2*y)+1;
third;
end:;
for y:=16 downto 0 do begin
Ji=(2%y)+1;
third;
end;
k:=32;
for y:=0 to 16 do begin
Je=(2*y)+1;
second;
end;
for y:=16 downto 0 do begin
Ji=(2%y)+1;
second;
end;
k:=31;
m:=-1;
for y:=0 to 16 do begin
Je=(2%y)+1;
third;
end;
for y:=16 downto 0 do begin
Jei=(2*y) +1;
third;
end;
t=k=-1;
for y:=0 to 17 do begin
Ji=(2%y):
fourth;
end;
for y:=17 downto 0 do begin
Ji=(2*%y);
fourth;
end;
k:=k-1;
m:=1;
for y:=0 to 16 do begin
je=(2%y)+1;
third;

for y:=16 downtc 0 do begin
Je=(2%y)+1;
third;
end;
s=k-1;
for y:=0 to 16 do begin
Je=(2%y)+1;

b



D o L o ainindadiii i L A At &

113

for y:=16 downto 0 do begin
Je=(2%y)+1;
second;
end;
k:=k-1;
n:=-1;
for y:=0 to 16 do begin
je=(2*y)+1;
thirad;
end;
for y:=16 downto 0 do begin
Ji=(2%y)+1;
third;
end;
k:=k-1;
for y:=0 to 17 do begin
Ji=(2%y);
fourth;
end;
for y:=17 downto 0 do begin
Ji=(2*y):
fourth;
end;
:=k-1;
me:=1;
for y:=0 to 16 do begin
Je=(2*y)+1;
third;
end;
for y:=16 downto 0 do begin
je=(2*%y)+1;
third;
end;
k:=k-1;
for y:=0 to 16 do begin
Je=(2%y)+1;

second;
end;
for y:=16 downto 0 do begin
je=(2%y)+1;
second;
end;
ki=k-1;
ms=-1;
for y:=0 to 16 do begin
Ji=(2%y)+1;
third;
end;
for y:=16 downto 0 do begin
Ji=(2%y)+1;
third;
end;
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k:=k-1;
for y:=0 to 17 do begin
ji=(2%y) ;
fourth;
end;

for y:=17 downto 0 do begin
Ji=(2%y);
fourth;
end;
k:=k-1;
m:=1;
for y:=0 to 16 do begin
ji=(2%y)+1;

third;
end;
for y:=16 downto 0 do begin
Je=(2*y)+1;
third;
end;
k:=k-1;
for y:=0 to 16 do begin
Ji=(2%y)+1;
second;
end;
for y:=16 downto 0 do begin
Ji=(2%y)+1;
second;
end;
ke:=k=-1;
m:=-1;
for y:=0 to 16 do begin
ji=(2%y)+1;
third;
end;
for y:=16 downto 0 do begin
Jr=(2%y)+1;
third;
end;
k:=k=-1;
for y:=0 to 17 do begin
Jei=(2*%y):
fourth;
end;
for y:=17 downto 0 do begin
Je=(2*y);
fourth:
end;
:=k-1;
me=1ly

for y:=0 to 16 do begin
Ji=(2%y)+1;
third:;
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end;
for y:=16 downto O do begin
ji=(2%y)+1;
third;
end:;
k:=k-1;
for y:=0 to 16 do begin
Ji=(2*y)+1;

second;
end;
for y:=16 downto 0 do begin
Je=(2%y) +1;
second;
end;
k:=k=-1;
m:==1;
for y:=0 to 16 do begin
ji=(2%y)+1;
third:;
end;

for y:=16 downto 0 do begin
Ji=(2%y)+1;

third;
end;
k:=k-1;
for ':=0 to 17 do begin
Ji=(2%y);
fourth;
ond;
for y:=17 downto 0 do begin
Ji=(2%y);
fourth;
end; k
t=k-1;
m:=1l;
for y:=0 to 16 do begin
Ji=(2*y)+1;
thirad;
end;
for y:=16 downto 0 do begin
je=(2%y)+1;
third;
end;
ki=k-1;
for y:=0 to 16 do begin
je=(2%y)+1;
second:;
end;
for y:=16 downto 0 do begin
Ji=(2*y)+1;
second;

end;
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r y:=0 to 16 do begin
Je=(2*%y)+1;

for y:=16 downto 0 do begin
ji=(2%y)+1;
third:;
end;
k:=k-1;
for y:=0 to 17 do begin
Ji=(2%y);

fourth;
end;
for y:=17 downto 0 do begin
Ji=(2*y):
fourth;
end;
k:=k-1;
m:=1;

for y:=0 to 16 do begin
Ji=(2%y)+1;
third:;
end;
for y:=16 downto 0 do begin
Jei=(2*y)+1;
third;
end;
k:=k-1;
for y:=0 to 16 do begin
Ji=(2%y)+1;
second;
end;
for y:=16 downto 0 do begin
Je=(2%y)+1;
second;
end:;
k:=k=-1;
m:=-1;
for y:=0 to 16 do begin
Je=(2*y)+1;
third;
end:;
for y:=16 downto 0 do begin
Je=(2*y)+1;
third;
end;
:=k-1;
for y:=0 to 17 do begin
Ji=(2%y)
fourth;
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end;
' for y:=17 downto 0 do begin
Ji=(2%y);

m:=1;
for y:=0 to 16 do begin
Jer=(2%y)+1;

third;
end;
for y:=16 downto 0 do begin
je=(2*y)+1;
third:;
end;
k:=k-1;
for y:=0 to 16 do begin
Jei=(2%y)+1;
second;
end;
for y:=16 downto 0 do begin
Ji=(2*y)+1;
second;
end;
k:=k=-1;
mi==1;
for y:=0 to 16 do begin
Jei=(2*y)+1;
third;
end;
for y:=16 downto 0 do begin
Ji=(2*y)+1;
third;
end:;
k:=k~-1;
for y:=0 to 17 do begin
Je=(2%y);
fourth;
end;
for y:=17 downto 0 do begin
ji=(2%y);
fourth;
end;

if dim=’3’ then threed else twod;
until keypressed;
read (kbd,dim);
if dim=’2’ then begin hires; twod;
if dim=’3’ then begin hires; threed;end;
end.

end;
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Program III

Purpose: To calculate the percolation threshold value X

PrxLa1 xF3

Algorithm IIIX
.Similar to Algorithm II.

Listing IIX

program 3D_percolation {for Pr la,  F.}i

1-x"3

uses graph,crt;
var

site:array [0..38,0..38,0..38) of byte;

mode,driver,yes,y,p,%,2,i,j,k,1,m,n:integer;

path:string[15]);
yc:char;

procedure graphics:;

begin

mode:=1; driver:=1; path:=’cga.bgi’;

initgraph (driver,mode,path);

end;

procedure connector:

begin

case site [x,y,z] of
7: begln {master # + 6)
if 51te[x+3 y+2,2-1)<>0 then 51te[x+3 y+2,2-1]:=10;
if 51te[x+3 y+2,2+1]<>0 then 51te[x+3,y+2 z+1] =10;
if site[x,y,2z-2]<>0 then 51te[x,y,z 2]:=
if 51te[x,y,z+2]<>0 then 51te[x,y,z+2] —7,
if site[x-2,y-1,2-1)<>0 then site[x~2,y-1,2-1):=10;
if 51te[x- /¥Y=1,2+1)<>0 then site[x~2,y-1,2+1]:=10;
if site[x+3,y,2-1]<>0 then site[x+3,y, -1] =11;
if site[x+3,y,2+1]<>0 then site[x+3,y,z+1]: 11,
if s1te[x+2 y+1,2]<>0 then site[x+2,y+1,2]):=
if site[x~-1,y-1,2]<>0 then site[x-l,y-l z].—lz,
if 51te[x+1,y+1 z2-1]<>0 then site[x+1,y+1,2-1):=8;
if site[x+1,y+1,2z+1]<>0 then site[x+1,y+1,2z+1]:=8;
end;
8: begin

if site[x-2,y-2,2-1]<>0 then 51te[x-2,y-2 z-1):=12;
if site[x-z,y-z 2+1]<>0 then site[x-2,y-2,2z+1]:=12;
if 51te[x,y,z-2]<>o then site[x y,2-2):=8;
if site([x,y,2+2]<>0 then site[x,y,z+2]:=8;
if site[x+3,y+1,2~1]<>0 then site[x+3,y+l,2-1}:=12;
if site[x+3,y+1,z+1]<>o then site(x+3,y+l,2+1):=12;
if site[x+2,y+1,z]<>o then 51te[x+2 y+1,2]:=10;
if sxte[x+2,y-1 2]<>0 then site[x+2,y-1,z]:=11;
if site{x-1,y-1,2~1]<>0 then site[x-1,y-1,2-1]):=7;

in
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if site[x-1,y-1,2+1)<>0 then site[x-1,y-1,2z+1

if site[x+1,y,2z-1]<>0 then site[x+1,y,2-1]:

if site[x+1,y,2z+1]<>0 then site[x+1,y,2+1]:
end;

“lhﬂ
WO O eo

“~e we “

9: begin

if site[x,y,2~-2]<>0 then site[x,y,z-2]:=9
if site[x,y,2z+2]<>0 then site[x,y,2z+2]:=9
if site(x+3,y+2,2]<>0 then site[x+3,y+2,2]:=
if site[x+2,y+1,2]<>0 then site[x+2,y+1,z]:=12;
if site[x-2,y-1,2]<>0 then site[x-2,y-1,2]):=7;

°
L4
e
I

7:

if site[x+1,y+1,2-1]<>0 then site(x+1,y+1,2-1):=10;
if site[x+1,y+1,2+1])<>0 then site[x+1,y+1,2+1]:=10;
if site[x+1,y~-1,2-1]<>0 then site[x+1l,y-1,2-1]:=11;

if site[x+1,y-1,2+1]<>0 then site[x+1,y-1,2+1]:
if site[x-1,y,2-1)<>0 then site[x-1,y,2-1):=8;
if site[x-1,y,2+1]<>0 then site[x-1,y,2+1]:=8;
end;
10: begin
if site[x+2,y+1,2-1]<>0 then site[x+2,y+1,2z-1
if site[x+2,y+1,2+1]<>0 then site[x+2,y+1,z+1
if site[x-3,y-2,2-1]<>0 then site[x-3,y=-2,2-1]:
if site[x-3,y=-2,2+1]<>0 then site[x-3,y-2,2+1]:
if site(x,y,2z-2]<>0 then site[x,y,2-2]:=10;
if site[x,y,2+2)<>0 then site[x,y,z+2):=10;
if site[x+3,y+2,2]<>0 then site[x+3,y+2,2]:=8;
if site[x,y-2,2)]<>0 then site(x,y-2,2]):=11;
if site[x-2,y-1,2]<>0 then site[x-2,y-1,z]:=8;
if site[x-1,y-1,2-1]<>0 then 1te[x-1,y 1,z-1]:
if site[x-1,y-1,2+1)<>0 then site[x-1,y-1,2+1):
if site[x+1,y,z-1]<>0 then site[x+1,y,2z -1]'-12;
if site[x+1,y,z+1]<>0 then site[x+1l,y,z+1]:=12;
end;
11: begin
if site[x,y,z-2)<>0 then site[x,y,z-2]:=11;
if site(x,y,z+2]<>0 then site[x,y,z+2]:=11;
if site[x+3,y-2,2]<>0 then site[x+3,y-2,2z]:=8;
if site(x-3,y,2-1]<>0 then site[x-3,y,z~1]:=7;
if site[x-3,y,2+1]<>0 then 51te[x-3,y,z+1] =7;

=11;

9;
9;

if site[x+1,y+2,2-1]<>0 then site[x+1,y+2,2z-1]:=12;
if site[x+1,y+2,2+1)<>0 then site[x+1l,y+2,2+1]:=12;

if site[x,y+2,2]<>0 then site[x,y+2,2]:=10;
if site(x-2,y11,2]<>0 then site[x-2,y+1,2]:=8;

if site[x-l,y+1 2-1]<>0 then  site[x-1,y+1,2-1):=9;

if site[x-1,y+1,2+41]<>0 then site[x-1,y+1,z+1]
end;
12: begln
if site([x+2,y+2,2-1])<>0 then site[x+2,y+2,z-1]:
if site[x+2,y+2,2+1]<>0 then site[x+2,y+2,z+1):
if site[x,y,z-2)<>0 then site[x,y,2-2]:=12;
if 51te[x,y,z+2]<>o then s;te[x,y,z+2]'~12.
if site(x-3,y-1,2-1]<>0 then site(x-3,y-1, 2z~ 1]
if site(x-3,y~-1,2z+1]<>0 then site[x-3,y-1,z+1]:

:=9;

3
l
I
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if site[x-1,y-2,2-1]<>0 then site[x-1,y-2,2-1]:=11
if site[{x-1,y-2,2+1)<>0 then site[x-1,y-2,2+1]:=11
if site[x+1,y+1,2]<>0 then site[x+1,y+1,2]):=7;
if site[x-2,y-1,2]<>0 then site[x-2,y-1,2}:=9;

if site[x-1,y,2-1]<>0 then site[x-1,y,2-1):=10;
if site[x-1,y,2+1]<>0 then site[x-1l,y,2z+1]1:=10;

-e weo

end;
end;
end;
procedure major_down;
begin
case site [x,y,z] of
1: begin {master # + 6)
if site[x+3,y+2,2-1]>6 then site([x,y,2]:=7;
if site[x+3,y+2,2+1]>6 then site([x,y,2]:=7;

if siteix,y,2-2])>6 then site[x,y,2]):=7;
if site[¥x,y,2+2]>6 then site(x,y,z2]:=7;
if site[x-2,y-1,2-1]1>6 then site(x,y,2]):=7;
if site[x-2,y-1,2+1]>6 then site[x,y,2]):=7;
if site[x+3,y,2-1]=11 then site([x,y,2]:=7;
if site[x+3,y,2+1]=11 then site([x,y,2]:=7;
if site[x+2,y+1,2]=9 then site(x,y,z]:=7;
if site[x-1,y~1,2]=12 then site(x,y,z]):=7;
if site[x+1,y+1,2z-1)=8 then site(x,y,2]):=7;
if site[x+1,y+1,2+1]=8 then site(x,y,2]:=7;
end;
2: begin
if site[x-2,y-2,2-1]>6 then site[x,y,z):=8;
if site[x~-2,y-2,2+1]>6 then site[x,y,z]:=8;
if site[x,y,z-2]>6 then site(x,y,2]:=8;
if site[x,y,2z+2]>6 then site[x,y,2]:=8;
if site[x+3,y+1,2-1]>6 then site[x,y,2]:
if site[x+3,y+1,2+1)>6 then site[x,y,z]:
if site[x+2,y+1,2]=10 then site[x,y,z]:=8
if site[x+2,y-1,2]=11 then site[x,y,2]):=8;
if site[x-1,y=-1,2-1]=7 then site(x,y,2]:=8;
if site[x-1,y-1,2+1]=7 then site(x,y,2]:=8;
if site[x+1,y,2-1)=9 then site([x,y,z]):=8;
if site[x+1,y,2+1)=9 then site[x,y,2]:=8;
end;

-~ 00 ®
up %y

3: begin
if site[x,y,2-2]>6 then site(x,y,2):=9;
if site[x,y,z+2])>6 then site[x,y,2):=9;
if site[x+3,y+2,2]>6 then site[x,y,z2]):=9;
if site[x+2,y+1,2z]=12 then site(x,y,2]:=9;
if site[x=-2,y-1,2]=7 then site([x,y,2z]:=9;
if site[x+1,y+1,2-1]=10 then site[x,y,z):=9
if site[x+1,y+1,2+1)=10 then site[x,y,2]):=9
if site[x+1,y-1,2-1]=11 then site[x,y,2]:
if site[x+1,y-1,2+1]=11 then site[x,y,2]:
if site[x-1,y,2-1]=8 then site(x,y,z2]:=9;
if site([x-1,y,2+1)=8 then site[x,y,2]):=9;
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end;

4: begin

if site[x+2,y+1,2-1)>6 then site(x,y,2]):=10;
if site[x+2,y+1,2+1])>6 then site[x,y,2z]):=10;
if site[x-3,y-2,2-1]>6 then site[x,y,2]):=10;
if site[x-3,y~-2,2+1]>6 then site[x,Y,2]:=10;
if site[x,y,2-2)>6 then site[x,y,2]:=10;

if site([x,y,2+2]>6 then site(x,y,2]:=10;

if site[x+3,y+2,2)>6 then site(x,y,z]:=10;

if site[x,y=-2,2])=11 then site[x,y,2):=10;

if
if
if
if
if

5:

site[x-2,y-1,2)=8 then site[x,y,z]:=10;

site[x~-1,y~1,z~-1)=9 then site([x,y,2]:=10

site[x~1,y-1,2+1]=9 then site(x,y,z]:=10

site[x+1,y,2-1]=12 then site([x,y,2]):=10;

site[x+1,y,2+1]=12 then site([x,y,2]:=10;
end;

-y W

begin

if site[x,y,2z-2]>6 then site[x,y,z]:=11;

if site[x,Y,2+2]>6 then site(x,y,z]:=11;

if site[x+3,y~2,2]>6 then site[x,y,2]:=11;

if site[x-3,y,2-1]=7 then site[x,y,z]):=11;

if site[x-3,y,2+1])=7 then site[x,y,z]):=11;

if site[x+1l,y+2,2-1)=13 then site[x,y,2]:=11;
if site[x+1,y+2,2+1]=13 then site[x,y,2]:=11;
if site[x,y+2,2]=10 then site(x,y,2z]):=11;
if site[x-2,y+1,2)=8 then site[x,y,z]:=11;

if site[x-1,y+1,2-1)=9 then site[x,y,z]:=11;

if site[x-1,y+1,2+1]=9 then site[x,y,2z]:=11;

end;
6: begin
if site(x+2,y+2,2-1]>6 then site[x,y,2]:=12;
if site[x+2,y+2,2+1]>6 then site[x,y,z]:=12;
if site[x,y,2-2)>6 then site[x,y,2):=12;
if site[x,y,z+2)>6 then site[x,y,2]):=12;
if site[x-3,y-1,z-1]>6 then site([x,y,2]:=12;
if site[(x-3,y-1,2+1]>6 then site(x,y,z]:=12;
if site[x-1,y-2,2-1]=11 then site[x,y,z]}:=12;
if site[x-1,y-2,z+1])=11 then site[x,y,2]):=12;
if site[x+1,y+1,2])=7 then site[x,y,z]:=12;
if site[x-2,y-1,2]=9 then site(x,y,z]:=12;
if site(x-1,y,2-1]=10 then site[x,y,2]:=12;
if site[x~-1,y,2+1]=10 then site[x,y,z}:=12;
end;
end;
end;
procedure generator:
begin

for z:=0 to 18 do begin
for y:=0 to 5 do begin
for x:=0 to 3 do begin
if random (1000)+1 <=p
then site [ (x*10),(y*6)+3,(2*2)]:=1;

o

o i
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if random (1000)+1 <=p
then site [ (x*10)+1,(y*6)+4, (2%*2)+1]):=2;
if random (1000)+1 <=p
then site [ (x*10)+2,(y*6)+4,(2%2)]):=3;
if random (1000)+1 <=p
then site [ (x*10)+3,(y*6)+5,(2z*2)+1]:=4;
if random (1000)+1 <=p
then site [ (x*10)+3, (Y*6)+3,(2*2)+1]):=5;
if random (1000)+1 <=p
then site [ (x*10)+4, (y*6)+5,(2*2)]:=6;
end;
end;
end;
for z:=0 to 18 do begin
for y:=0 to 6 do begin
for x:=0 to 2 do begin
if random (1000)+1 <=p
then site [ (x*10)+5,(y*6),(2*2)]:=1;
if random (1000)+1 <=p
then site [(X*10)+6, (Yy*6)+1,(2%2)+1]:=2;
if random (1007)+1 <=p
then site [ (xX*10)+7, (y*6)+1, (2%2)]):=3;
if random (1000)+1 <=p then
site [(x*10)+8,(y*6)+2, (2*2)+1]:=4;
if random (1000)+1 <=p
then site [ (x*10)+8, (Y*6)+40,(2*2)+1]:=5;
if random (1000)+1 <=p
then site [ (x*1.)+9, (y*6)+2,(2*2)]:=6;
end;
end;
end;
writeln (’Lattice generation complete....’);
end;
procedure first_plane;
begin
for x:=0 to 38 do begin
for y:=0 to 38 do begin
if site [x,y,1]<>0
then site([x,y,1):=site[x,y,1]+6;

end;
end;
end;
procedure upward_sweep:’
begin

for z:=1 to 37 do begin
for x:=2 to 36 do begin
for y:=2 to 36 do begin
if site [x,y,2]>6 then connector;
if (site [x%,y,2]<7) and (site [x,y,2)<>0)
then major_down:
end;
end;
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end;
end;
procedure downward_sweep;

begin

for z:=37 downto 1 do begin
for x:=2 to 36 do begin
for y:=2 to 36 do begin

if site (x,y,2]>6 then connector;

if (site ([x,Y,2)<7) and (site [x,y,2]<>0)
then major_down;

end;
end;
end;
end;
procedure left_sweep:
begin
for x:=36 downto 2 do begin
for y:=2 to 36 do begin
for z:=1 to 37 do begin

if site [x,y,z]>6 then connector:;
end;

end;
end;
end;
! procedure right_sweep;
‘ begin
for x:=2 to 36 do begin
for y:=2 to 36 do begin
for z:=1 to 37 do begin

if site [x,y,2)>6 then connector:;
end;

end;
end;

end;

procedure front:;

begin

for y:=2 to 36 do begin
for x:=2 to 36 do begin
for z:=1 to 37 do begin

if site [x,y,z)>6 then connector;
end;

end;
end;
end;
procedure back;
begin
for y:=36 downto 2 do begin
for x:=2 to 36 do begin
for z:=1 to 37 do begin

if site [x,y,2z)>6 then connector;
end;

end;
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end;
end;
procedure zeroer:
begin
for x:=0 to 38 do begin
for y:=0 to 38 do begin
for z:=0 to 38 do begin
site[x,y,2]:=0;
end;
end;
end;
writeln (’Initializing is complete....’):
end;
procedure plotter:;
begin
for x:=0 to 38 do begin
for y:=0 to 38 do begin
for z:=0 to 5 do begin
if site [x,y,2+6]>6
then putpixel (x+(z*50),y,1):;
if site [x,y,2+12])>6 then
putpixel (x+(z*50),y+40,1);
if site [x,y,2+18]>6
then putpixel (x+(z*50),y+80,1);
if site [x,y,2+24)>6
then putpixel (x+(2*50),y+120,1);
if site [x,y,2+30]>6
then putpixel (x+(z*50),y+160,1);
end;
end;
end;
end;
procedure checkif;
begin
for x:=0 to 38 do begin
for y:=0 to 38 do begin
if site [%,Y,37]>6 then yes:=1;
end; )
end;
end;
{Main Program)
begin
yes:=0;
randomize;
p:=200 ;
clrscr;
zeroer;
generator;
first_plane;
graphics;
repeat
upward_sweep:;



125

downward_sweep;
front;
back: }
plotter:;
until keypressed;
end.
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Program 1V

Purpose:
parameters of interest.

To simulate a PLD process in 2D and calculate

Algorithm IV

occupy the sites randomly with P,

set spin of occupied sites

start from center to
to sites occupied

keep track

vary

down randomly

walk randomly
and have spin down

of time

site occupation ({only for

case iii)

vary spin orientation (for cases ii and
iii)

continue until stuck or limits reached

calculate parameters of interest

end.
Listing IVa
program PLD_full_memory; (Case i)
uses graph,crt,printer;
type latl=array(0..173,0..347) of byte;

large=~latl;
var
p,rms_sum,rms_r,n,d,time:real;
ymax,ymin,
centerx,centery,
rndy2,rndy,rndx2, rndx, rms_count, rms_check,
super,rt,kl,11,xmax,xmin, i, j,k,1,m,wh,check,mode,
drive:integer:;
pth:string;
lat,lat2:1large;

procedure graphics;
begin

drive:=7;

mode:=0;

pth:=’herc.bgl’;

initgraph(drive,mode,pth);
end;
procedure occupy_and_spin;
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begin
for j:=0 to 347 do begin
for i:=0 to 173 do begin
if random(10000)+1 >p then lat~[i,j]:=0
else lat~[i,j]):=1;
end;
end;
for j:=0 to 347 do begin
for i:=0 to 173 do begin
if random(10000)+1 >p then lat2~[i,j]:=0
else lat2~[i,j]:=1;

end;

end;
end;
procedure pathfinder:;
begin

wh:=random(4)+1;
time:=time+1;
case wh of
1: begin
if k<=172 then begin
if (lat~[k+1,1]}=1) or (lat~[k+1,1]=3) then begin
kK:=k+1;
check:=1;
lat~[k,1]:=3;
if k>xmax then xmax:=k;
end;
end;
if k>172 then begin
if (lat2~[k-173,1]=1) or (lat2~[k-173,1])=3) then

begin
1=k+1;

check:=1;

lat2~[k-174,1):=3;
if k>xmax then xmax:=k;
end;
end;
end;
2: begin

if k<=174 then begin
if (lat~[k-1,1]=1) or (lat~[k-1,1]=3) then

begin
k:=k-1;
check:=1;
lat~[k,1]:=3;
if k<xmin then xmin:=k;
end;
end;

if k>174 then begin
if (lat2~[k-175,1]}=1) or (lat2~[k-175,1]=3) then
begin
kei=k=-1;
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check:=1; ?
lat2~[k=-174,1]:=3; :
if k<xmin then xmin:=k;
end;
end;
end;
3: begin

if k<=173 then begin
if (lat~(k,1+1)=1) or (lat~[k,1l+1)=3) then
begin
1:=1+1;
check:=1;
lat~[k,1}):=3;
if 1>ymax then ymax:=1;
end;
end;
if k>173 then begin
if (lat2~([k-174,1+1]=1) or (lat2~{k=-174,1+1)=3) then
begin
1:=1+1;
check:=1;
lat2~[k-174,1]):=3;
if 1>ymax then ymax:=1;
end;
end;
end;
4: begin
if k<=173 then begin
if (lat~[k,1-1])=1) or (lat~[k,1-1]=3) then
begin
1:=1-1;
check:=1 ;
lat~[k,1]:=3;
if l<ymin then ymin:=1;
end;
end;
if k>173 then begin
if (lat2~[k-174,1-1]=1) or (lat2~[k-174,1-1]=3) then

begin
l:=1-1;
check:=1;
lat2~[k-174,1]:=3;
if l<ymin then ymin:=l;

end;

end;

end;
end;
end;
procedure fractal;
begin

n:=0;
for i:=xmin to xmax do begin
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for j:=ymin to ymax do begin
if getpixel (i,j)=1 then n:=n+1;
end;
end;
d:=2*1n(n)/(ln(xmax=-xmin)+1n(ymax-ymin));
restorecrtmode:;
writeln (’d= ’/,d,’ time= ’,time):
eng;
procedure rms;
begin
repeat
rndx:=xmin+(random(xmax-xmin)) :
rndy:=ymin+ (random(ymax-ymin)) ;
if getpixel (rndx,rndy)=1 then rms_check:=1
else rms_check:=0;
until rms_check=1;
repeat
rndx2:=xmin+ (random(xmax-xmin) ) ;
rndy2:=ymin+ (random(ymax-ymin));
if getpixel (rndx2,rndy2)=1 then rms_check:=1
else rms_check:=0;

until rms_check=1;
end;

procedure rms_calc;
begin
rms_r:=sqrt (sqr(rndy2-rndy)+sqr(rndx2-rndx)) ;
IMS_Sum:=rms_sum+rms_r;
end;

begin
graphics:;
randomize;
pP:=5700;
time:=0;
new(lat):;
new (lat2):
occupy_and_spin;
check:=0;
k:=173;
1:=173;
m:=1;
xmax:=k;
xmin:=k;
kl:=k;
11:=1;
ymax:=1;
ymin:=1;
lat~[k,1]):=3;
putpixel (k,1,1):
repeat
pathfinder;
putpixel (k,1,1):
until keypressed;
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fractal;
rms_sum:=0;
for rms_count:=1 to 1000 do begin
ms; '
rms_r:=0;
rms_calc;
end;
dispose (lat):
dispose (lat2):;
rms_sum:=rms_sum/1000;
restorecrtmode;
writeln (lst,’ mld:’,rms_sum,’ P:’.,p);
end.
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Listing IVb

program PLD_Sitememory:;: {Case ii)
uses graph,crt,printer;
type

latl = array(0..173,0..347] of byte;
large=~latl;

var
probl, prob2, ymax,ymin,
spir,spin,centerx, centery, count,
xmax,xmin,i,j,k,1,m,wh,check,mode,drive,span,spana: integer;
pth:string;
lat,lat2:large; d,n,na,timea,da,time:real;

procedure graphics:;
begin
drive:=7;
mode:=0;
pth:=’herc.bgi’;
initgraph(drive,mode,pth):
setgraphmode(0) ;
end;

procedure occupy_and_spin;
begin
for i:=0 to 173 do begin
for j:=0 to 347 do begin
if random(1000)+1 >prob then lat~[i,j]:=0
else lat~[i,j]:=1;
end;
end;
for i:=0 to 173 do begin
for j:=0 to 347 do begin
if random(1000)+1 >prob then lat2~[i,j]:=0
else lat2~[i,j]:=1;
end;
end;
end;

procedure pathfinder;
begin
time:=time+1;
wh:=random(4)+1;
spir:=random(1000)+1;
case wh of
1: begin
if k<=172 then begin
if (lat~[k+1,1]=1) and (spir<=spin) then begin
putpixel (k+1,1,1);
ke=k+1;

if k>xmax then xmax:=k;
end;



132

end;
if k>172 then begin
if (lat2~{k=-173,1]=1) and (spir<=spin) then begin
putpixel (k+1,1,1);
kKi=k+1:;
check:=1;
if k>xmax then xmax:=k:

end;

end;

end;

2: begin
if k<=174 then begin
if (lat~{k-1,1]=1) and (spir<=spin) then begin
putpixel (k-1,1,1);
k:i=k=-1;
check:=1;
if k<xmin then xmin:=k;
end;
end:;
if k>174 then begin
if (lat2~[k-175,1]=1]) and (spir<=spin) then begin
putpixel(k-1,1,1);
K:=k-1;
check:=1;
if K<xmin then xmin:=k;
end;
end;
end;
3: begin
if k<=173 then begin
if (lat~[k,1+1])=1) and (spir<=spin) then begin
putpixel (k,1+1,1);
1:=1+1;
check.:=1;
if l>ymax then ymax:=1;
end;
end;
if k>173 then begin
if (lat2~[{k-174,1+1}=1) and (spir<=spin) then begin
putpixel (k,1+1,1);
s=1+1;
check:=1;
if 1>lmax then ymax:=l;
end;
end;
end;
4: begin
if k<=173 then begin
if (lat~[k,1-1]=1) and (spir<=spin) then begin
putpixel(k,1-1,1);
1:=1-1;
check:=1;
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if l<ymin then ymin:=1;
end;
end:;
if k>173 then begin
if (lat2~[k-174,1-1])=1) and (spir<=spin) then begin
putpixel(k,1-1,1);

l:=1-1; .
check:=1; {

if l<ymin then ymin:=1:

end; ;
end; 3
end; 4
end; 4
end; ;

procedure fractal;

begin

n:=0 ;
for i:=xmin to xmax do begin
for j:=ymin to ymax do begin

if getpixel (i,3)=1 then n:=n+1;

end;

end;
if (xmax-xmin) > (ymax~-ymin) then
span:=xmax-xmin else
span:=ymax-ymin;

d:=2*1n(n)/(1n(xmax-xmin)+1ln(ymax-ymin)) ;
end;

begin
graphics;
randomize;
spin:=1000;
prob:=600;
new(lat):
new (lat2):
occupy_and_spin;
k:=173:;1:=173;

m:=1;
xmax:=k;
xmin:=k;
ymax:=1l;
ymin:=1;
putpixel (k,1,1):
time:=0;

repeat
pathfinder;

until keypressed or (k=0) or (1=0)
or (1=347) or (k=347):
fractal;
dispose (lat):;
dispose (lat2):
writeln (lst,’Spin=’,spin,’ Site=’,prob):
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writeln (lst,’D=’,d,’ mass=’,n,’ time=’,time,’ span=’,span):;
end.
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Listing IVc

program PLD_no_memory; ({(Case iii)
uses graph,crt;

var

nl,n2,probl,prob2,times,driver,mode,
i,j,%x,1,m,wh,check:integer;

wrd:string;

mass,atime,time,RT1l,rl,r2,rt,centerx,
centery,ymax,ymin, xmax,xmin:real;

procedure graphics;

begin
driver :=7:
mode:=0 ;

wrd:=’herc.bgi’;
initgraph(driver,mode,wrd) ;
end;

procedure fractal;
begin
centerx:=xmin+ ( (xmax-xmin)/2):
centery:=ynin+((ymax-ymin)/2);
r2:=(sqrt (sqr (xmax-xmin)+sqr (ymax-ymin)))/2;
rl:=r2 /2; r2:=sqr(r2); rl:=sqr(rl):
for i:=round(centerx-sqrt(r2)) to
round (centerx+sqrt(r2)) do begin
for j:=round(centery-sqrt(r2)) to r
ound (centery+sqgrt(r2)) do begin
rt:=sqr(i-centerx)+sqr(j-centery):
if (rt<=rl) and (getpixel(i,j)=1)
then nl:=nl+l;
rtl:=sqr(i-centerx)+sqr(j-centery):
if (rtil<=r2) and (getpixel(i,j)=1)
then n2:=n2+1;
end;
end;
restorecrtmode;
writeln (’y ’,ymin,’ ’/,ymax,’ x ’,xmin,’ /,xmax):

writeln (’rl1 /,rl1,’ r2 ’,r2);
writeln (’nl ’,nl1,’ n2 ’,n2);
writeln (’cx ’/,centerx,’ cy ’,centery):
writeln (’D ’/,1n(n2/nl)/1n(2)):
end;
procedure pathfinder;
begin
repeat
wh:=random(4)+1;

nl:=random (1000)+1;
n2:=random (1000)+1;
case wh of
1l: begin if (nl<=probl) and (n2<=prob2)
then begin
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putpixel (k+1,1,1);
k:=k+1l;
if k>xmax then xmax:=k;
end;
end;
2: begin if (nl<=probl) and (n2<=prob2)
then begin
putpixel (k-1,1,1):
k:=k-1;
if k<xmin then xmin:=k;
end;
end;
3: begin if (nl<=probl) and (n2<=prob2)
then begin
putpixel (k,1+1,1);
1:=1+1;
if l>ymax then ymax:=1;
end;
end;
4: begin if (nl<=probl) and (n2<=prob2)
then begin
putpixel (k,1-1,1);
1:=1-1;
if l<ymin then ymin:=l;
end;
end;
until (keypressed) or (k=0) or (1=0)
or (1=347) or (k=347);

end;
begin
graphics;
mass:=0;
randomize;
1=174;
1:=174;
xmin:=174;
xmax:=174;
ymin:=174;
ymax:=174;

putpixel (k,1,1):;
probl:=800;
prob2:=1000;
pathfinder;
fractal;
end.




Appendix II
Derivation of the equation to calculate DH

For a cluster of a finite size, made up of particles,
represented by discs of radius R, (Fig. AII.1l), the fractal

dimension is given by36

DH = log M/log [p(R/RO)], (AII.1)

where p, R, and M are the density, the radius of the
smallest circle containing the cluster, and the number of
unit discs inside this circle, respectively. Eq. (AII.1)

can, alternatively, be written as

DH = 2 log M/log(p (A/Ao)], (AII.2)
where A and A, are the areas of the circles of radii R and
Ro respectively.

For the present calculations, a cluster is considered to
consist of particles, being represented as rectangles (Fig.
AII.2). Eq. (AII.2) can then be expressed as:

D, = 2 log M/ log [p (ab/aobo)], (AII.3)

H

where a, and bo are the sides of the rectangle, representing

a particle.
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For perfect tiling, the area of each particle is matched
exactly by the unit rectangle: aob° = 1, with p = 1. Egq.
(AII.3), then, leads to

DH = 2 log M/ log (ab). (V.1)
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(o

Figure AII.l1. A cluster of a finite size of a circle of

radius R, constituted by unit discs of radius R,.
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Figure AII.2 A rectangular cluster of size a x b,
constituted by unit rectangles of dimension a, x b, each, as

used in the simulation considered in this paper.
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An expression, appropriate (o calculate the spin-lstte relaxstion ume (SLRT) of the host
parsmagnetic wons, using the EPR linewidths o1 the impunty won, 13 denved by use of the second
moment for crystais consisting of two different kinds of spins. Estimatwons have been made of the
SLRT of the Yb** ion in Gd’*-doped YbCly- 6H7O and LiYbFa single crystals, as well as that of
the Co’* ion in a Mn**-doped Cs7Co(Se04)-6H:O singie crystal. Sigmficant differences are
found in the values of SLRT as calculated using the presently denved expression {rom those cale

culated using the commonly used expression.

L INTRODUCTION

The cffect of dipolar interactions on resonance line
shape was first treated by Waller,' and later by Broer?
and Van Vieck.’ Subsequently, Anderson and Weiss*
presented a theory, which treats the motion of spins in-
duced by the exchange interactions as a stochastic pro-
cess, and makes it possible to describe the line shape in a
fairly reasonable way. This stochastic theory was
developed further by Anderson.® His method goes a step
further than the moment method of Van Vieck.} More
quantitative calculations of refaxation times were later re-
ported by Mitsuma.*

It has been shown by Anderson and Weiss.* that rapid
motions of the host spins narrow the impurity EPR lines
in crystals, consisting of only one paramagnetic specie.
Anderson and Weiss® considered the exchange interac-
tions between the ions as the source of random spin
motions, with the rate of motion being w,. They derived
the linewidth as

AH= % Hi./H,. n

In Eq. (1), #, 13 not really a magneuic field but rather w,,
expressed 1n magnetic-field units, and H ¢yp 13 the linewidth
due to dipole-dipole interactions. Anderson and Weiss®
also showed that, subject to the condition H,» M.
Hip=h*(av®),/g°p% where A is Planck’s consiant, g 18
the Lande’s factor of the paramagnetic ions, J is the Bohr
magneton, and (avY),, is the second moment (mean-
square deviation from Larmor frequency). As a sample
calculation, Anderson and Weiss* used the second mo-
ment for a simpie cubic lattice with one kind of magnetic
jon, given by Van Vieck,’ as

(Av3) =36.8g48h ~ " S(S+1))
x(Af+Ai4+1$-0.187), Q)

where d, S, and Ay, A3, A) are the spacing of & simple cubic
lattice, the effective spin, and the direction cosines of the
applied ficld, relative to the principal cubic axes, respec-

k! ]

tively. Using Eq. (2), Anderson and Weiss* showed that
Hig=5.1(gpn) S(S+1), Q)

where n is the number of host paramagnetic spins per unit
volume.

In order to explain the highly temperature~dspendent
EPR linewidths, Mitsuma® suggested that the spin-Jattice
relaxation process might be responsible for the narrowing
of EPR lines in a way, which is similar to that caused by
the exchange tnteractions, described above. In paralielism
to the theory of Anderson and Weiss,* Mitsuma® derived
the EPR linewrdth as

AH = R2H} /e (4)

The % factor. both in Egs. (1) and (4), is due to the ex-
treme narrowang, as pointed out by Anderson and Weiss.*
The factor of 2 appeanng in Eq. (4) is due to Lorentzian
line shape of the narrowed resonance lines. As seen from
Eq. (4), the quaniity Hue replaces M, in Eq. (1), Again,
1t is noted that A me is 701 2 magnetic field, but rather the
hosteion spin-lattice relaxation time, fae, expressed in
magnetic-field unus, ie..*

Homas ™ h/ theugP ()

(ten Will be referred (o us SLRT, hereafter).
Combining Eqs. (3), (4), and (5), faeu can be expressed
o

— JhaH ©
102(g8) 'n°S(S+1)

ThUs, Thee can be cakulated from Eq. (6), using the ex-
perimentally observed EPR linewidth (44).

As stated earlier. Eq. (3) is derved for & simple cubic
lattice. consisting of only one kind of paramagnetic ion.
Thus, Eq. (6) is invalid for crystals. which consist of two
different kinds of psramagnetic ions.

Recently, numerous EPR experimental studies have
been reported on doped crystals, wherein the paramagnet-
ic host ions are different from impurity paramagnetic ions.

Thon ™

2836 ©1989 The American Physical Socwety
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Papers continse %0 bs pudlished in the litersturs dealing
with such crystals, where Eq. (6) has bess smpioyed to
caiculste the SLRT of the host ions (for cxampie, sse
Refs. 7~12). However, as discussed above, ws of Eq. (6)
is not, indeed, valid in such cases.

It io the purposs of this paper to derive an equation, ap-
propriste to caiculats the SLRT of paramagnetic host
joss is crysals from the impurity ion EPR lisewidtha,
teking into scoount the presence of two different kinds of
spins in the crystal. The derivation of this equation is

given in Sec. 1. Sample calculations snd discusion are
given in Sec. 111, followed by the concluding remarks in
Sec. 1V,

1L THEORY

The second moment, for crystals, containing two kinds
of peramagnetic spins, is given by Van Vieck,’ as follows:

By =SS +1)h ";l-u’p'r;’(} R=$N+$5E+ DA "1;((-2:’.1,.-)4'(! =3pieg'Pra)’,

In Eq. (7). S, s, y4. 2, and Jy represent the effective
spin, e distance between the j and k ioas, the direction
cosine of r;a with the external Seld, the number of elec-
trons not in complete shells of the host ioas, and the ex-
change integral beiwsen the host (k') and the impurity
jons (/). respectively; the primed quantities descrit= the
host ions, while the unprimed ones the impurity ion. The
external field is assumed 10 be along the z axis.’ The im-
purity and host Lande factors (g.g°) are assumed to be

J

(0}

.
sufficiently different from each other, so that the reso-
nances of these two different ions do not overlap each oth.
er.’ (1t should be pointed out, here, that it is the impurity
ion (unprimed) whose resonance is of interest.) Assuming
that the distances between the impurity ions are
sufficiently large, the 8rst term in Eq. (7) can be neglect-
od, compared 10 the other terms. If the number of the
neighbors, 10 be considered, is limited 10 N, Eq. (7)
reduces to

N L4
@vihp = $ SUS+ 1A =2 NI,’+(a')’p‘u3‘Z( 1 —h}ﬂ’r,f-‘*-?.l,u'p’uo‘z( t —3,].-):,:-‘] . ®
—
In Eq. (8), J, is the average host-impurity pair-exchange Hiyin Eq. (4) by Higes, one oblains
constant. (uo is the permeability constant, required for 5= $ Wiyl Hoa ao

the purpose of cakulstions in SI units.) In reducing Eq.
(7} to Eq. (8), it should be noted that J,, the sverage
host-impurity exchange constant,? stands for the quanti-
ty Au'= =222, as defined by Van Vieck:’ the same
value (J,) far A, has been assumed {or all the neighbors
taken into consideration. In magnetic field units, the full
width at half peak (FWHP) of a Gaussian distribution,
tsking 1nto account both the dipole-dipole and exchange
interaciions, can be wrilten as

Hiye ™ (235 8%av)n/g '8, ®

where (8v )i, is 35 given by Eq. (8). Equation (9) is a
generalization of Eq. (3), which is valid for crysials con-
sisting of only one kind of paramagnetic ion. to the pres-
ence of two dissimilar kinds of paramagnetic ion in the
crystal. 1t should be nc..ed here, that the second moment
(and, therefore, Eq. (3) which depends on it} for crystals
consisting of only one kind of paramagnetic ions doss not
include exchange terms, wheress the second moment
{and, ihersfore, Eq. (9) which depends on it for crystals
oonsistieg of two different kinds of peramagnstic ions,
does include exchange between dissimilar ions as well.
Further, the exchangs between similar ions does not ap-
pear in the expression lor the second moment. > Replacing

Using Eqs. (5), (8), (9). and (10) tage. the SLRT of the
host ions in crystals with two different kinds of parsmag-
netic ingredients, can be expressed as

e ™= (JAHE*B)/(110Ag" 4V Ny, ) aun

where AH is the impurity-10n EPR linewidth FWHP, ob-
served expenimentaily: the primed Landé factor is that for
the host, while the unprimed one refers to the impurity.

Equation (11), denved using the second moment for
crystals with two kinds of magnetic ions. is, really, the ap-
propristie equation for the usual EPR situation, i.e., for
crystals congisting of paramagnetic host ions, doped with
impurity paramagnetic ions, which are different from the
host ions. One should. therefore, use Eq. (11) in order to
calculste the SLRT of the host ions, rather than Eq. (6),
which is valid for crystals consisting of only one kind of
paramagnetic ions.

11l ILLUSTRATIVE EXAMPLES AND DISCUSSION

Using Eq. (11), the SLRT of the host paramagnetic
Yb** jons in Gd’*-doped YbCly: 6H;O and LiYbF, and
that of the host paramagnetic Co®* ions in Mn?* «doped
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TABLE |. The spin-lattics relaxation times (SLRT, in sec) of the host YD’* ioms in YOCly-6H0
and in LiYbFs, and that of the host Co'* ions in CasCo(5e04):- $H1O at room temperature, a8 caicy-
Iated using the correct Eq. (11), and thess calculated wsing the incoerect Eg. (6). The required gg'

values have also been included.
Impurity ion Host ion SLRT SLRT
Lattice (g valwe) (g’ value) (Eq. (11)) (Eq. (6))
YbCly 6H0 Gd’* (1.992) Yo't (1.238) 1.0x10°"? 40x10~"
LiYbF, Gd?* (1.992) Y’ (1.339) 4Ix|0=" 25%x10-"
C31Co(Se0s )y 6HO Mn2® (1.998) Co* (1.1) 3Ix10°1 1.8x10="

Cs:C0(S¢04);- 6H10 single crystals at room temperature
are estimated in this section for illustration, Equation
(11) requires rather detailed crysial structure informa-
tion, such as the location of the host ions with respect to
the impurity ion and the external magnetic field for the
evaluation of lattice sums required in (Av3)y,, (Eq. (8)).
The following crystal structures and EPR linewidth data
were used for the estimation of SLRT.

(3) Gd**~doped Y3Cly' 6H,0. The structure of this
crystal is monoclinic, with the unit cell parameters,
a=0953 nm, b5=0643 nm, ¢=0.780 nm, and
P=93°40"."* The average Ga** EPR linewidth, with the
external magnetic field being along the 2 axis, at room
temperature, was reported to be 14x 10 ¢ T. "

(b) Gd’*-doped LIYBF .. The structure of this crystal
is tetragonal, with the space group /4i/a. and the lattice
constants a=0.51335 nm, and ¢=1.0588 nm.'* The
average Gd** EPR linewidth, with the exteraal magnetic
ﬂelg being along the z axis, was measured 1o be 10x10 ~*
T

(c) Mn**-doped Cs;Co(Se0.)y 6H:0. The structure
of this crystal is monoclinic. ! the unit<cell parameters are
not known. Therefore, the unit-cell parameters of the iso-
structural crystal (NH);Mg(SeO:)s 6H1O were used:
a=0.94 nm, b=1.27 nm. ¢=0.63 nm, and p=106°."
The average Mn®* EPR linewidth, with the external
mageetic field being along the = axis, has been reported (o
be 14x10°* T, "

In the present calculations, up to third-nearest neigh-
bors, for the three cases, were taken into account.

SLRT of Yb'* in Gd’*-doped YbCly-6H:0 and
Gd**-doped LiYbF,, as well as that of Co** in Mn?*-
doped Cs5;Co(Se0,)1:6H20. calculated using Eq. (11),
are given in Table I, which also lists the g and g’ values
used. For comparison purposes, SLRT values, as calcu-
lated using the incorrect Eq. (6), are also included in
Table I. The exchange constant J,, for 3 Ma?*-Co*
pair is not known; various typical J, values (0.2 -4 GHz),
were, therefore, used to calculate the SLRT of Co?*.
Since the resulting SLRT values did not vary in order of
magnitude for these J, values, only the average SLRT
value is listed in Table I. The exchange conmstant for a
Gd’*-Yb'* pair has been calculated to be 2.8 GHz in Li-
YbF.'® As for the exchange interaction in YbCly-6H,0,

between Gd** and Yb’* ions, it was assumed to be negli-
gible, since the Gd’*-Yb?* distance in this crystal is con-
sidersbly greater than that in LiYDFs. As seen from
Table I, the SLRT calculated using the correct Eq. (11),
and those calculated using the incorrect Eq. (6), are quite
different from each other. It should also be noted that the
Yb’* SLRT, as estimated from Eg. (11), is shorter in Li-
YbF, than that in YbCly- 6H;0 at room temperature. On
the other hand, the SLRT as estimated from Eq. (6) indi-
cates that the opposite is true.”'* Physmcally, Yb** ions
are expected to have shorter SLRT in LiYDF, than that in
YbCly- 6130, in sccordance with that estimated from Eq.
(11), since in this crystal the paramagnetic Yb’* ions are
packed more closely than they are in YbCly 6H:0. As
well, one notes that the SLRT of Co?* inm
C3;Co(Se04)3 6H,0, calculated from Eq. (11), is three
oden)olf. magnitude smaller than that calculated using
Eq. (6).

1V. CONCLUDING REMARKS

As pointed out earlier (Sec. 1), the use of Eq. {6) to cal-
culate the host-ion SLRT in crystais with two different
kinds of paramagnetc ions is not, indeed, valid, since in
deriving Eq. (6), the second moment due to only one kind
of paramagneuic ions is considered; the important dipolar
and exchange interactions betwsen the host and the im-
purily ions are not taken into account. Equation (11) is,
instead, the correct expression to calculate the host ion
SLRT. since it takes into account appropnately the n-
teractions between the host and the impurity ions. in the
calculation of the second moment. as well as the interac-
tions amongst the host ions.

As soen in Sec. 111, the correct Eq. (11) yields SLRT
values, which are significantiy different srom those Jre-
dicted by the incorrect Eq. (6).
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Effect of paramagnetic percolation on Gd** EPR lisewidths in LIYD, Y, - . F, single crystals
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Mowmres!, Quebec, Conade H3G IME
(Receved 13 June 1989)

Three-dimeasional peramagsstic-site percolation omiculstions of Gd’*.doped LiYD,Y..,F.
mixsd crvsuals have besn made in order 10 explain the exparimentally ebeerved Gd'* EPR
beewidths in these hosts as funciions of temporsture. The salowlaied pereolation threshold,
2, =027, u in agreement with the disappearanse of the shoerved EPR liaewidile ot low tompens-
tures for LiYi-, YD, Fo erysiaks with x 2 0.3, It is conciuded thet the coatribution to the spua
lattsce relanation by the paramagaeuc hos: ions is insignifonnt below x =z,

L INTRODUCTION

X-band EPR measurements on single crvmtals of
Gd’*-doped LiYF. and LiYDF, have besn praviously re-
ported by Vaills, Busaré, and Gesland' at room tempers-
ture, and by Misrs ¢f al.? from room temperaturs down W
liquid-helium tsmperature. X-band EPR measyrements
on mixed single crystals of Gd?*<doped LiVD,Y)..Fa
with vaives of x =00, 0.0, 0.05. 0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.9, 0.95, 1.0, from room tnperature 10
liquid-helium temperature (LHT), have recestly been re-
ported by Misiak and co-workers.™* who obesrved that
the Gd?* EPR lines could be observed down 1o LHT oaly
for samples with x£0.2, while the lioms dissppearsd
much above LHT as the temperature was lowered for
sampies with x 2 0.3. Specifically, although Gd** EPR
lines for samples with x 55 0.2 could be obessved down 1o
4.2 K, they could not be observed bslow 88 K for sampiles
with x=0,3, Such an abrupt bshavior of EPR linewidth
a3 » function of x cannot be axpiained by the increase of
dipolar contribution by the psramagnetic Yb** bost 1ons
10 the sescond moment, which is proportional to the EPR
linewidth, as the tempsraturs is lowsred, sinoe the second
momest is 8 coatinwous function of both the fraction x of
the paramagnetic host ions and the temperature.

Site percolation has been used, mostly 12 the lant several
vears, as & mods! for describing the behavior of many di-
lute physical systens. Percolation processss have besn
smpioysd 1o study diverse pbyncal pbesomens, such s
conducuon and phase transitions. Vanous fractal-related
propsrues of percolation clusters bave also besn studied
sxiaasivaly; 00, ¢.3.. the reviews by Stauffer® and Essem.*
Basically, in site psroolation, s random fraction p of Lhe
sites On & Jattice 8 assumed to be oocupied. while the rest
of the lattice remains vacant. The most remarkable
feature of 3 parcolstion process is the existeace of & per-
colation threshold, below which the spreadisg of quaatsty
of interest in the medium is limited to 8 finite regon ealy.
and doss nol propegaie throughout the sampic. la the
present study, the sites cccupred by the paramagnetic ions
will represent the oocupwad mtes, while those occumed by
the diamagnetic ions represent the vacant sits. The pro-
cess whose spread will be studied through the occupeed
sites is the relaxstion process. 1n which the reiaxatios of 8
bost spia (YD?*) is carned through the latucs by the my-

tual spis flips of other host ions. (Hersafter, spin-lattios
relaxation will refer 1o the relaxation of host spins by their
mutual spin flips through the lattice.) This is the frst-
ever application of the percolation process 1o study the
iafluence of the hast ioa (Yb*®) spin-lstucs relaxation oo
the impurity (Gd’*) linewidth. 15 should be pointed out,
bete, that the pressncs of paramagnetic host ions can have
o drastic influsnce oo the spin-lattice relaxation, see, &.g.,
:;)w‘ article by Misra’ Uor more deusils ses Sec.

The purposs of the preseat paper is W investigats the
relationship betwesn the paramagostic-sits percolation
properties of the muxed LIYD, Y -,F ungle crystals, and
ibs experimentally obesrved Gd’® EPR lisewidths, as
funcuions of the fraction x, represseting the Yb** ions in
these sampies. In Sec. I11, tbe second moment is calculat.
od for sampies with x *=0,]=1, in steps of 0.1, t0 show that
ths sscond moment doss a0t expisin the obwerved
linewidths as functions of x. It is followed in Sec. IV by
computer simulations of the peroolation effect to ses if the
relaxauon of paramagaetic host ioss percolates all the
wey through the sampile for variows values of x. in order 1o
relats it 1o the disappearasce of EPR lines st low temper-
sturss for x 2 0.3. The discussion of Lbe pressnt calcula-
tions is provided ig Sec. V.

0. CRYSTAL STRUCTURL

in ovder w caiculate the ssoond moment. the details of
the crysial siructure are reguired. LiYF, sad LIYVF.
erymals sre characierissd by the scheslie (lstragonal)
nructure.'* The uaitecnll parameters of LiYF, are ¢
=5.167 A, ¢=10.735 A." while thoss for LIYDF, are
€=5.134 A a0d ¢=10.588 A.* There ars five rare-earth
isas in the usit osll, which are at the followng locations: '
(0.5,0.0), (0.5.1.0), (0.5.0.5.0.5), (0.0.5,1). and (1.0.5.1).
The unit-csll parameters of the mixad LiYD, Y =, F¢ crys.
tals can be ssumatad wnng Vegard's law.’ 1n LIYDF,
there are four mearest {rx=45.13 A, four mexi-mearest
(ran=5.08 A), and four next-nexi-nearest (raen =7.26
A) rare-earth amaghbors 10 8 rare-earth won. Thus 7 and
Poen Are vary closs 10 each other. Similsr situstions spply
1 e mixed orysials LIYD, Y, Fe The GA/(YV+Y)
ratio in the LiYD, Y «.Fq samples, axpenmentally inves-
tigawd, was 17200, which is rethber small; the present cal-

4 »n ©1990 Ths Amarisns Physiol Sevisty
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culations taks this value into account by sot comsideriag
sny Gd’* ios sufficiently cioes 10 asntber Gd’* ioe to
have any effect.

0L CALCULATION OF THE SECOND MOMENT
The EPR linewidth of the impurity ioa (Gd’*) dwe w0
the paramagnetic host jons (Yb'*) is detsrmined by the

S|

SUSHIL K. MISRA AND UFUK ORHUN 4

sscond moment. The second moment of the impurity ion
for crysuals consisting of two kinds of paramagnetic ions,
&8 the impurity (Gd**) and the host (YD’*) ions ia the
present case, has been considered by Van Vieck. '3 If the
distance betwesa the impurity rons is suficiently large. the
sacond moment as given by Van Vieck' can be sim-
pliied!? a3 follows

N
@v) e $ S+ 1A "2 N3+ (g2 05T (1 =) A ) rat + 2, gg B (1 = drp)rt | a
) »

where the subscripts / and &' refer 10 the impurity asd
bost ious. respecuvely, while S°, & N. Jp, £, s 704 725 81
and g' are. respecuvaly, effective spen of the han ioa,
Planck’s constast, the number of asmghboring ices cone
sidered, aversge pair-exchange coastant, the Pohr magne-
108, the parmeability constant, the cosine of the angis be-
twesn 7y aad the external magnetic fSsid. and the dis-
tance betwesn the impurity {/) and the host (k") ioas, the
¢ facroe for the impurity ion, and the g factor of the bost
ion. The second moment, as given by Eq. (1), doss oot ite
sslf depend significantly on temperature: its dependence
oo temperaturs is indirectly dus to chasge in lattics spec-
ings dus to thermal expansion (contraction) affecung ru
and 7, The sums in Eq. (1) are expected to bs costanu-
ous and convergent fuactions of x. determined by the
sumber and locations of the Yb'® ioax. Thus. the sscoad
moment cansot acoount for the entire disappearancs of
Gd’* EPR lines. namely, the EPR linewidth approsching
infinity below certain tsmperatures for x & 0.3.

The calculation of the second moment for x= | is trivi-
al. since for this cass all lattics sites are occupied. s or-
der to calculate the second moment for x < | 3 computer
program was used to generats the LiYD,Y) <, Fq lattioss
a8 thres-dimensional arrays of rare-earth ion sites. An ar-
ray size of S0%x50% S0 was employsd for the pressat cal-
culations. The initial unit csll was repressated by the sle-
ments of & Ix3x] array segment. with the following five
possible rare-earth sites is the uait call: (0.1.0). (2,1.0),
(1.1.1), (1.0.2), and (1.2.2), & depecred is Fig. 3. The
uftit-csll parzmeters were inputs to the program, is order
to cakculats the distance betwesn any two 1as (ry) and
the direction comnes (yx). After choomng propsr seps
aloag sach direction an array was created. using 3 three-

n”n"l_

F1G. 1. The misulsted sosond memesnt 28 » fuaction of x in
Gd’*doped LIYD, Y) -, Fosingle crystals.

as e or
L]

dimensioas! loop, whose oocupied elements represent the
Yb* ions o the lattice. [n order to detsrmine the sites
occupied by the paramagnetic Yb’* jons random intsgers
between cas and ten were used to fiil the lattics sites one
by one, correspoading to the value of x betweea 0.1 and |
in seps of 0.1. For example, if x=0,3, thea for any ran-
dom integer 53 a lattios sits will be considered cocupied
by a paramagnetic Yb’* ion, otherwise it will be con-
sidered cocupied by s diamagnetic Y?* joo. Ideally, in
ender to calculats the second moment for a givea vaine of
x. for sampies with x <1, all possible configurations of
the host ioas (Yb?* and Y?*) around s impurity ica
(Gd?*) should be considersd. Sinos this would have tak-
oa prohibitively loag computer time, the second moment
was calculsted around 1000 randomly chosea sites: fisally,
the aversge of these second momeats was computed. Up
10 next-next-aearest aeighbors around ssch of thess 1000
sites were taken into account in the sums ia Eq. (1) tocal-
culats the second momeat for the various values of x. Fig-
wre | exhibits the piot of the sscond moment (Av) v x. It
shows & lisear relstion of (av®) to x, wmithout exhibditing
any divergence, implying that the second moment does not
explain the observed disappearance of EPR lines at low
temperatures for sampies with certain values of x

V. CALCULATION OF THE PERCOLATION EFFECT

1a order 10 sxplain the temperature variation of the im-
purity EPR lisewidth, the spin-lattcs relsxation (SLR)
process, a highly temperature-dependent phenomenos. of
the host paramagnetsc ions shouid be taken into.acoount
The SLR influences the impurity linewidth through the
process of random-frequency modulation.'? =" Misra and
Orhun'? showed thst the impurity linewidtb, inflsenced
by SLR. can bs expressed as

AN =110Ag"av3)e/Gg%D) , Q)

where ¢ is the spin-lattics relaxation time (SLRT) of the
homt ion, which is highly temperature dependent. It is this
variation of t, as & function of x, the fraction of the
paramagnetic host ions. that determines the divergeat be-
havior of the linewidth AN for csrtain values of x. It is
sosn from Fig. 2, exhibiting experimental data, that the
EPR lines broaden considerably for samples with x 22 0.3,
as the temperature is lowsred from room lsmperatsre.
However, the lisewidths do not change significantly with
semperature for sampies with x <0.3; the EPR Lines for
them caa be obsarved down to LHT. The SLR mechs:



41 EFFECT OF PARAMAGNETIC PERCOLATION ON G4** PR . ..

L.

™0
FI1G. 2. The axperimentally chesrved Gd** EPR Lisswidths
(AH) a funciion of wmpernture ia LIYD,Y o, F; for varioms
valvstof x (Refs. Jand 4}, & QO0:m 0.4;8: 02 n: O3 ¥
04 0:0.60: 0.5 0: 0.9 +: !.0..

aism, due Lo percolation of bost joas. determines predom-
insntly the tempersture depesdence of EPR linewidths; as
sesn below, it bas a cutoff for x < 0.3,

It is suggested pressstly that the cutoff of whe SLR
mechanism is due 10 the site percolstion of the paramag-
netic bost ions (YD’*) in the LiYD, Y -,Fs latticss A
LiY) =, YD, Fs lattics will be considered “percolating™ if
thers axists & path from s Yb'* sits at one end of the lat-
tics all the way 1o the other ead of the lastics, through the
Yb?* ions, ssch of which liss within s distance of run
from a Yb?* ica. Thst js. 2 percolation cluster exists, A
paramagnetic site was allowed 10 percolats to both the
nearest (N) and the next-seerest (NN) acighdors, since,
a8 mentioned in Sec. 11, the differsnce betwesn i and
run for the LIYb, Y« Fi bosts ia very smail. Figure 3
shows & Yb’* jos and its seighbors (N and NN) to which
percolation is allowed, along with their coordinates 1a the
lantice. The pomible iattics sites in the arrey wers firm
Siled randomly with concentration x, wsing random swmne
bers a1 described in Sec. [IL. Next. the lattios was divided
isto = planes: 20,1.2...., in wnits of ¢/2, whers ¢ is
the unit-csll dimension along the = axis. To begia with, ail
sites occupied by Yb’* ioms of the 2=0 plass wers as-
susned 10 balong 10 the percolation cluster. Next, all the
oocupied sites of the s = | plase, which sre withia rigy of
the percolating ions of the 2 =0 plane. i.e.. the senrest sad
ssxi-pearest neighbors, were incinded ia the percolatics
cluster. 1n the same way, all the planes aloag the o axis
were taken ino account oas by ome, by seamsidering
2=1.2.).... planes 1 turn, sttachiag to the parcolation
cluster the occupied sites of the ==n plane under soa-
sideration. which lie within »nn of aa ioca. located oa the
2=n=] plane, belonging to the percolation cluser sl
ready sonstrucied. Ia addivion, 8 dowawsrds swesp, frem
the cutrent 2 plane to the 2 =0 plass, ves performed ia
order 10 ascertain that 80 possible icas which should beve
besa included, i¢.. thoss withia a distance of v from 8
Yb?* jon of the peroolation cluster, wers missed out ia the
percolation cluster alresdy formed. Finally, the sigorithm
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FIG. 3. The arrey wgment showing the ster i asd the
surreunding Aearen tad the BEXI-AOAIVR as, threugh which
the percaistion i allewed. The eerrespending arrey indisss (lace
tite penusas) of soch e are ales indissied.

weed checked if thers was a percolation path from the
2=0 all the way 1o the 2=49 plane. through the
parumagaetic Y2* ioas, within 7y of each other, Le.. if
the peroolation clumer extended all the way {rom one ead
of the lattics to the other ead of the lattics comsidersd, for
the vanous values of z soasidered.

The calculation of the percolstios clustsr was per-
formed for x=0.1 to | ia steps of 0.1, This inhtial con-
sideration of values of x revealed that x,, the critical valve
of x sbove which percolation exats, but sot below, lies be-
tween x=0.2 and x =(., Therealier, the vaiues of x be-
twesn 0.2 and 0.3 were considered ia steps of 0.01, wmng
random {ategers in the raage | 10 100 10 determuns the oc-
cupied sites of the lattic in the similar way 0 that de~
scribed in Sec. 111 for x betwesn 0.0 snd 1.0. This yielded
the critical value of z 10 be x,=0.27. Detier sccuracy
thas this could sot be schioved due 10 the Limuted sizs of
the arTey weed; however, this valve is ressosably setisfac-
tory to explain the present experimental data.

V. DICUSSION

The prasent resuits indicate that the SLR threshold is
directly linked 0 x,. This is in socordance with the tem-
persture behavior of the sheerved EPR lisewidth. The ex-
imencs of s path fer mutsal spin flips for the tranamission
of saergy of spims is the Zasman feld. vis the parameg-
netic was through the eatire lattics. is secamsary for the
SLR process o be effective. If a Yb’* jon is sompletely
surrousded by diamsgoetic Y** jens, & spin Sip of that
YV'* ica will not bs transmitiad 10 the rest of the Jettios

sioatly cicesly, ars nesded 10 transmit the megastic ener-
£Y 10 the rest of the lattios by mutual spis Sips.

The experimental EPR linewidth data eas bs divided
!dh;)h;mmu for a proper uaderstand-
Fig. 2):
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(i) High T. x20.3. In this region, the SLR mecha-
aism is fully effective because of the existence of a pere
colation cluster. The linewidths become larger, as the
temperature is lowered., because the spin-lattics relaxatios
time of the host ions becomes loager. Sincs x > x,, the
spis flip of a Y5'* ion can be transmutisd through the lat
tios by mutual spin flips of Y5 joas. The preseat pere
colation results suggest that, as lons as x > x,, thers will
be & peih via the Yb’* jons that spans the entire latics
even il thers sre more Y ions present than Yb** jos in
the lattics.

(i) Low T. x 22 0.). Hers, the experimeatal dats indi-
cats that EPR lines could not be observed at tamparatares
below §5 K. Sincs x & x,, broadenag dus to SLR is &x-
pected to be fully operstive, and the EPR lines will be
broadesed sisce at low temperatures the SLRT is much
longer than that at high temperatures.

(i) Any 7, x5 0.2. For this case, the experimestal
EPR lisewidths do sot exhibit significant temperstare
dependencs. Sings x < x,, the paramagnstic joms (Yd’*)
are 0ot abis 10 span & path all the way through the astire
lattice for percolstion: the fips of the Yb'* ioms will be
shisided by the Y* ions, causing the effect of the ftips of
the Yd'* icas 10 remain localized. Thus, the broadening
due 10 SLR will oot be effective for this case: and the
Gd?* EPR lioes can be obwerved as all temperstures.

VL CONCLUDING REMARKS

From the present calculations it can be coscluded ths!
the SLR mechanusm is clossiy tied to the percolation
properties of the paramagoetic Yb'* jons ia LiYd,.
Y)~sF4 single crystals. The caiculated paramagnetic per-
colation thresbold for the conceniration x, =0.27 sgres
quite well with the observed EPR-linewidth behavior. 1a
other words, the SLR due to paramagnstic host ions is sot
at all effecuve for concentrations of Yb'* ions below x;
whereas it is fully sffective above x,, for which comoratra-
tons thers is a percolation path for mutual spin fSips of
Y53* ions throughout the eatire lattics, ie.. .percolation
cluster exists.

SUSHIL K. MISRA AND UFUR ORHUN 4

The paramagnetic ions interact with each other vis the
exchange interaction, which s a short-range interaction,
and via dipole-dipole interaction, which is a loag-rangs in-
tersction. The definition of s percolating clurter depends
crucislly on the assumed range of connectivity. la the
prasant calculation only the nearest (N) and nexi-msarest
(NN) seighbors have been considered, which is cdviously
jusified for the short-range sxchangs intaraction. As for
the long-range dipolar isteraction. one has to make a
choice of the ions which should be considered “coanect-
od.” Since the dipolar isteraction falls off as cae cuds of
the distasce, it becomes wesker, in the preseat case, by a
facior of 10 for two ions separated by the sexi-sxt.
searest-neighbor (NNN) distance. As for the other ions,
this factor increases eves further in proportion 10 the cube
of the distance. In this way, the neglact of dipolar isterac.
tions from ioms separated by a distance equal to, or

account the spin-lattics reiaxation mechanisms, as spe~
cifically considered in dewil by Misiak, Misra and
Orbun.* applying the theories of Anderson and Weiss'*
and Miuuma. ! For more detauls ses Ref, 4,
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Study of Temperature . ariation of EPR Linewidth
of Gd**-Doped LiYh.Y,_.F, Single Crystals

Estimation of Yb3+ Spin-Lattice Relaxation Times

Bv
L. E. Mistak?), S. K. Misra. and U. ORHeN

X-band EPR linewidths of Gd*.doped LiYb,Y;_,F, crystals (0.0 < r < 1.0) are measured
in the temperature range 4.2 to 280 K. It is found that the peak-to-peak linewidth of the first
derivative lineshape (MHpp) can be fitted to T'—# (T = temperature), where generally n < 2,
in the various temperature regions. for all the crystals, AHpp is, in general, found to be quite sensi-
tive to the mole fraction (z) of Yb?* ions. The Yb?+ spin-lattice relaxation times (r;) are estimated
in these crvstals. using the theories of Anderson.\WVeiss and Mitsuma, taking into account the fact
that there are present two different kinds of paramagnetic ions, Gd®* and Yb®*. It is concluded
that the dipole-dipole interactions play an important role in the spin-lattice relaxation of Yb3*
ions.

On a mesuré les largeurs des raies RPE & bande X pour I'ion Gd®* dopant les cristaux de
LiYb. Y- .F, (0.0 < r < 1.0) dans I'intervalle entre les températures de 4.2 et 300 K. La largeur
d’un pic & "autre selon la forme de la premiére dérivée de raie (AHpp) peut étre adaptée a T=n
(T = température), ot n < 2 en général. dans les divers intervalles de température, pour tous les
eristaux. On trouve. en général. que MHpp est trés sensible & ln fraction mole (r) des ions Yb3*.
Les temps de relaxation (r;) résenu-spin de Yb* ont été estimés pour ces cristaux, en utilisant
les théories d*Anderson-Weiss et de Mitsuma. en tenant compte du fait qu'il y a. en présence. deux
sortes différentes d'ions parnmagnétiques. Gd** et Yb?*, On en conclut que les interactions di-
polaires jouent un réle important dans la relaxation du réseau-spin des ions Yb3+,

1. Introduction

Detailed EPR study of Gd3“.doped LiYh,Y,_,F, single crystals. dealing with the
evalnation of spin- Hamiltonian parameters at various temperatures. including angular
variation of EPR spectra for the orvientation of the Zeeman fielid in various planes.
has been previously reported {1]. Although. some of these crystals have heen previously
investigated by EPR [1 to 3). the present study of temperature dependence of EPR
linewidths AHp in Gd3=-doped LiYh,Y,_,F,. over an extended temperature range.
is the first-ever study on these crystals. Very few systematic studies have. so far.
heen reported on EPR linewidth [+ to 7). as compared with those on the determina-
tion of spin-Hamiltonian parameters. As for the Gd3+ EPR linewidth variation with
temperature, they have heen reported in the YbCl, - 6 H,O. Yh,Y,_,Cl;- 6 HyO. and
La,Ce; - F, single eryvstals by Misra and Sharp [4] and Malhotra et al. [5]. by Misra
and Mikolajezak [6]. and by Korcezak et al. {7], respectively.

1y 13533 de Maisonneuve Boulevard West, Montreal, Quebee H3G TMS, Canada,

) Permanent address: Department of Experimental Physies. Maria Corie-Shlodowska Uni-
versity, PL M, Curie-Sklodowskiej I, PL-20-0931 Lublin, Poland.
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The measurements of linewidths in Ga3+.doped LiYh,Y,_,F, single ¢rystals have
heen macde in the present stucdy for crystals with 2 = 0. 0.01. 0.05. 0.1. 0.2. 0.3. 0.4,
0.5. 0.6. 0.7. 0.8. 0.9. 0.95. 1.0. With increasing mole fraction r of Yh3* ions. the EPR
lines become broader due to Gd?*-Yb3+ dipole-dipole interaction. similar to that
in Gd3*-doped Yb;Y;_,Cl;- 6 H,O host lattices (x = 0). The LiYb,Y;_,F, crystals
have been chosen for the present study. because in the pure LiYbF, crystal the Gd®*
EPR lines broaden and disappear completely at liquid-nitrogen temperature. with
lowering temperature. In the LiYh,Y;_.F, crystals. with a sufficiently large fraction
of diamagnetic Y3+ ions. it is possible to observe well-resolved EPR spectraeven below
liquid-nitrogen temperature. The temperature dependence of EPR linewidths in these
crystals is a measure of theinteraction of the Gd3* ion with the host Yb?* ions. It is
the purpose of the present paper to analyse the Gd*+ EPR linewidths. as observed in
the LiYb,Y,_.F, crvstals. in the temperature range 4.2 to 290 K.

9. Sample Preparation, Crystal Structure, and Experimental Details

LiYb,Y;_.F, crystals, to which 0.2 mol%, Gd®* were added as dopant. were grown
by modified Bridgman.Stockbarger method, using induction furnace (460 kHz r.{.
and 10 kW maximum power); the method is described in [8]. Since both the LiYF,
and LiYbF, crvstals have the same structure (tetragonal. Scheelite type. space group
14,/a [9. 10)). it is assumed that the LiYb,Y,_.F, crystals also have the same struc-
ture. The lattice constants for LiYF, are: a = 0.5167 = 0.0003 nm and ¢ = 1.0734 +
- 0.0003 nm [8], for LiYbF;: a = 0.31335 = 0.00002 nm and ¢ = 1.0388 =
— 0.0002 nm [10]. The lattice constants for the various LiYb,Y;.,F, crystals can be
calculated by the use of Vegard's law [6. 11] from the lattice constants of LiYF,
and LiYbF, crystals. In LiYb,Y,_,F, host crystals Gd** jon substitutes either for
Yb3+ or Y3+ 10n (S, local symmetry).

The EPR experimental arrangement has been described elsew here [1]. The magnetic
z.axis was found to be parallel to the crystal c-axis. while the z-axis was found to be
at 34° 30’ — 30’ from the crystal a-axis in the ab plane. The magnetic z. y. z axes are
those directions of the external magnetic field (H) for which the overall splitting of
the allowed lines exhibit extrema {1]. The measurements of EPR linewidths were per-
formed for H parallel to both the z- and z-axes. For I || &. there were observed seven
clearly-resolved allowed resonance lines for LiYF, single crystal at all temperatures.
while for LiYb, Y, F, with x = 0. two of the allowed lines were not clearly resolved
dne to overlap by other lines at those temperatures at which corresponding well-re-
solved EPR spectra could be o bserved. except for LiYb, Y, ,F, at ioom temperature.
for which only one line was not clearly resolved. Fig. 1 displays typical spectra for
|z and H || r at room temperature for LiYh, ¢ 3, 4F,: it also serves to identify the
resonance transitions. The lines were found to be predominantly of Loventzian shape.

3. Linewidths
3.1 Dependence of Mg, on T

The log-log plots of the Gd** peak-to-prak EPR linewidths, Al versus tempera.
ture (T) for the various LiYh, Y, _ F, hosts ave displaved in Fige. 2 aand b for the tean.
sitions 3/2 — 3,2 (Hj| =) and =12 — —3/2 (H || &). vespectively. These are two of
the four clearly-resolved teanxitions, not overlapped by other transitions at any tem-
perature. the other being 3,2 — V2 (H |} 3) and =3/2 ~- =7 2 (/) ). Wis. further,
seen from Fig. 2a and b that the linewidths increase rapidly with lowering tempera-
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Fig. 1. EPR spectra for Gd**-doped Li¥b, ;Yo ;F, crvatal, for Il || @ and A'|| 5 at room tempera.
ture. The lineshupes are Lorentzian. since jiere 3 3 A, /4. < 6, where A, is the height of the peak of
the first derivative lineshape from the base line and A, is the height of the {irst derivative lineshape
at 33//pp /2 from the centre of theline. The forbidden transitions are those found by diagonalization
of the spin-Hamiltonian matrix, for which JJ = =1

ture. especially for samples with larger values of z. (Similar results are found for ali
the observed transitions.) It is seen from Fig. 2 a and b that there are regions. where
AHpp is linear with respect to T on the log-log plot. The snccessive linear regions are
connected by jumps. Over these linear regions one can express AH,, ~ T=". The
values of n. as found from numerical fitting of T=* to the ohserved linewidths. in
the various temperature regions in the LiYh,Y;_F, hosts. for the various observed
transitions. are listed in Table 1.

It is. now. nated that spin-lattice relaxation time (r{) is proportional to MHy,. 88
given by (4.4) below, The jumps in the MMy, versux T log-log plots as seen from
Fig. 2 a and b and Table 1, i.e.. the change in the # values with change in temperature
in the rmnges 200 to 180 K. 180 to 30 K. and 30 to 4.2 K. can he explrinet to be due
to simple relaxation processes or by processes. which are combined with those respon.
sible for the jumps, being effective in these ranges.

il
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Fig. 2. Log-log plot of the peak-to-peak first derivative EPR linewidth (AHpy) vs. temperature
for Gd¥+.doped LiY'h,Y; — ;F, ervstals for the transitions: a) 3/2 « 3/2 (M || 5) and b) — 1/2 — ~3/2
(]} x). The points represent the values which are least-squares fitted. The various symbols cor-
respond to different r values. @ x = 0,m 0.1, =, 0.2, ~ 0.3, 7 0.4, 0 0.6, 0 0.8,0 0.9, ~ 1.0

The jumps in the log-log AHpp versus T plots are not due to the changes in the effec-
tive spin of Yb?* ions. contrary to that pointed out in {3] and [6]. For. the occupation
of the excited crvstal-field levels changes smoothly with temperature, as can be seen
by calculating the relative popul:tions using Boltzmann factors and the energies of
the excited levels, (Miller and Sharp [12] determined the energies of the three higher.
Iying doublets, relative to the ground.state doublet, to be 212. 364, and 435 ecm=1.)

3.2 Mechanisms responsible for the observed n calues

The spin-lattice relaxation time (r;) of Yb?* ion is proportional to Al (see (4.4)
below). Thus the same » values. as those given in Table 1 for MH . governther; ~ T-#
relationship. It is seen from Table 1. in all temperature ranges over which resolved
lines can be ohserved. that n £ 2. except for the —3/2 - —7/2 (M || x) transition in
LiY'bF,. for which n = 2.23 in the temperature range 180 to 290 K. It is, therefore,
concluded that the processes. such as Orbach resonance and two-phonon Raman scat-
tering {13]. and their combinations (r; ~ ¥ T-%; » =5,6.7, 8,9 [5)), for which
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Tablel

The vnlues of the slopes (a) in the relation Mipp ~ T =%, as obtained from fits of the

experimental data for the various Gd3*-doped LiYb,Y..:F, crystals for the magnetic-

field orientations H |} & and M {| 2, in the various temperature ranges. ™ denotes the
n.

values of the slopes n, and n, for the ~ 1/2 =~ — 3/2 and — 5/2 ~ —7/2 resonance transi-
tions, respectively, for M || &, while they are for 3/2 — 1/2 .nd 3/2 — 3/2 transitions,
respectively, for M || =

concen- 280 to 180 K 180 to 100 K 100to 50 K. 50to42 K
o™ Hiz Mi= Hjs Hiz Hilz HNlz Hir H|z
0. 0.03 0.02 0.03 0.02 003 0.2 0.03 0.02
0.00 0.01 0.00 0.01 0.00 0.0l 0.00 0.01
0.1 0.03 0.00 0.43 0.92 016 031 0.11 0.06
0.07 0.04 0.11 0.29 0.11 0.20 0.08 0.08
0.2 0.07 0.11 0.65 1.13 0.06 1.13 0.23 -
0.10 0.12 0.20 0.50 020  0.05 0.16 0.08
0.3 0.51 0.24 1.19 1.45
0.13 0.08 0.31 1.09
0.4 0.43 0.42 1.05
0.31 0.22 0.36
6.6 0.94 1.26 1.4
Kii 118 1.19
0.8 1.68 1.95
147 1.82°
0.9 1.58 1.58
1.33 1.48
1.0 1.53
225

2> 2 are not effective in the LiYb,Y;_,F, hosts. over the temperature ranges for
which resolved EPR lines can be observed. The presently observed values of n (< 2)
are most likely due to the dipole-dipole interactions between gadolinium and the
host paramagnetic vtterbium ions as discussed by Misra etal. in Gd**.doped
Yb:Y,_.Cl; - 6 H,O [14]).

3.3 Dependence of AHpp on the mole fraction x of Yb3~ ions

Fig.3a and b show the dependence of the Gd** linewidths on the mole fraction (x)
of the LiYb,Y; _.F, crystals. for the various well-resolved EPR lines at room tempera-
ture. Ingeneral. it is seen that AH , increases nearly linearly with the concentration
(z) of the paramagnetic Yb3* jons with increasing z up to £ = 0.8. All transitions.
except for —1/2 — —3/2. for which AHy, increases linearly with z in the entire range
0 < x < 1.0. exhibit a small decreases of AHp, with increasing z in the range 0.8 £
< & < 1.0. (See Fig. 3 a and b.) These vesults are different from those obtained for
Gd3+-doprid LagCe, F; erystals [7]. in which thelinewidthsfor 1/{| z are approximate.
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Fig. 3. The dependence of the first-derivative peak-to-peak EPR linewidth (AHpp) upon the mole
fraction (x) of Yb%* jons at room temperature, in Gd®*.doped Li¥Yb, Y, ,F, crystals for a) H|| =
and b) H|| =. The various symbols correspond to different allowed transitions, 0 —3/2 « —17.2,
2=32 = =52, 0—-12—3/2,07/2~5/2,732~1/2, x 5232

ly constant in the range 0.2 £ z < 0.8. while they increase as z increases from 0 to
0.2. and decrease as z increases from 0.8 to 1.0

The observed AHp, versus z dependence can be explained as follows. One can ex-
press AHy s, which is related to AHy, (see Section 4), as follows [15, 16]:

20-\H ﬁlp-ex

In (3.1) AHjpex is the dipolar-exchange field. which increases with z in the range
0 < r £ 0.8. and then remains constant in the region 0.8 < z < 1.0; on the other
hand. Hpeq is the magnitude (in magnetic field units) of ¥y, the Hamiltonian.
consisting of spin operators of Yb®* jon. representing the modulation of the dipolar
fields at the Gd3* ions by the spin-orbit and orbit-lattice coupling in Yb3* ions {6, 15],
which increases with increasing z for 0 £ z < 1.0. With these behaviours of AHyjpx
and Hpoq in (3.1), the observed AHp, dependence on z can be well explained.

Kittel and Abrahams [17] estimate that. when more than 109} of the lattice sites
are populated by paramagnetic ions. the EPR linewidth is proportional to the square
root of the concentration of the paramagnetic ions. On the other hand, for lower con-
centrations (< 10°,) of paramagnetic ions the linewidth is directly proportional to
the concentration. Although the estimates of [17] were made for cubic crystals, with
randomly-populated identical paramagnetic iong, without taking into account the
exchange and hyperfine interactions. they appear to be in agreement with the present
experimental data on LiYb,Y, _F,.

AHys = . 3.1)
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3.4 Dependence of Ay, on magnetic field

1t is found that the Gd3* linewidth in the LiYb,Y;_,F, hosts depends on the value
of the magnetic field (H) at which a transition occurs. Plots of AH, versus H at
room temperature reveal that. generally, AH, increases linearly with H for both
H || zand H || x for all values of x. The only departure is found for the second highest-
field transition for H || & in samples with z = 0.4. for which the linewidth is the largest
of all the transitions. No serious theoretical attempt has been made in the present
paper to explain this. The overall increase of AHp,, with H may be ascribed to the
dipole-dipole interaction of the Gd3* ion with the surrounding Yb3®* ions.

3.5 Effect of hyperfine interactions on the linewidth

The Gd3+ linewidths are also modified by (i) the hyperfine splittings (HFS) of Yb3+
ions (11Yb, I = 1/2:1”Yb, I = 5/2 are the responsible isotopes with non-zero nu.-
clear moments), (ii) the superhyperfine interaction (SHF1) of *F with Gd*+, and
(iii) the direct Gd3+-8*Y superhyperfine interaction (SHF2) [18]). Their relative
strengths are HFS > SHF1 » SHF2. The Gd** EPR linewidth in the purely dia-
magnetic host LiYF, is practically independent of temperature in the entire range
4.2 to 290 K, because of the absence of paramagnetic Yb3* ions.

4. Host Spin-Lattice Relaxation Time (r;)

In the past. ;. the spin-lattice relaxation time of the host ions (Yb3* ions in the pres-
ent case), has been estimated from the impurity (Gd**) EPR linewidth (AHpp), using
the theories of Mitsuma [15] and Anderson and Weiss [19]. The required conditions
are clearly satisfied for the present X.band experiment. as discussed in context with
Gd3*.doped Yb;Y,_,Cl;- 6 H,O single crystals [6]. The final expression. to be used,
is

_ h AHy

T 3g AR atsS(S -1’

where & is Planck's constant, the primed quantities refer to the host ions (Yb3+),
while the unprimed quantities designate the impurity ions (Gd**); the effective spin
of Yb3* jon 8’is 5/2 in the temperature range 180 to 290 K. and »n’ is the number of
Yb3* host ions per unit volume. A2 in (4.1) is 1.73\H, for Lorentzian lineshape
and 1.18AH, for Gaussian lineshape.

Many authors have nsed (4.1) to caleulate spin-lattice relaxation times. However.
(4.1) is not valid to estimate 7 in doped paramagnetic crystals. for the following
reasons [16]:

(i) This expression is valid only for crystals with one kind of magnetic ion. i.e.,
when there is no «doping.

(i) Anderson-Weiss expression [19]. used to derive (4.1). is applicable only to a
simple cubic lattice. for which the total number of the nearest and the next-nearest
paramagnetic neighbour ions is six. The correct expression for r; in the presence of
two different species of parnmagnetic ions is now developed. The second moment has
been calculated to be as follows [16]:

(4.1)

71

— ,
(Ar?) = L S(S" + 1) a2 [NJ? = (99') Buis ;_‘, (1 — 3con? 0,2 1 —

N .
+ 2ggBipe T (1 — B cos? 0,) 150 » (+.2)
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where J is the effective pair exchange-interaction constant (between one pair of host.
impurity ions): V is the number of nearest and next-nearest neighbour ions: g. g" and
8. 8" are the g-factors and the effective ionic spins of the impurity and host ions,
respectively; 6;. is the angle between r,;- and the field direction. 8 is the Bohr mag-
neton. and g, (= 1.26 x 10-* Hm-!) is the magnetic permeability constant.

The spin-lattice relaxation morlulation can now be introduced in the same way as
that done by Anderson and Weiss {19j. Thus. assuming strong narrowing. the line-
width at half maximum can be expressed. in frequency units. as

. (&)
Ymod
where (Av?) is given by (4.2) and vmea = 1/71. Thus.

' (4.3)

Avug =2 139 (2.35)

N 3AV],2 (4.4)

t‘ = .
110.45¢A»*)

The Avyo and (Ar?), required in (4.4) to estimate 7;, are respectively the experimental
value of EPR linewidth (in frequeney units) and the second moment given by (4.2).
TheJ valuesfor LiYb, Y, _.F,, required to calculate (A»*) in (4.2) have been estimated
in [20]. The calculation of 71, using (4.4), requires very precise crystal-structure data
(10, 21 to 23]. Inorderto take into account the change in the lattice constants with
temperature. the contraction of the unit-ceil parameter @ by 0.3°;. and that of ¢
by 0.29,, as the temperature is lowered from 290 to 90 K. have been taken into account
for both the LiYF, and LiYbF, crystals [8]. For LiYb.Y,_,F, erystals (x =0, 1),
the use of Vegard's law to estimate the respective unit.cell parameters a and c. as
described in Section 2. has been made. The spin-lattice relaxation times (r;) for the
various hosts LiYb,Y; _,F, (z = 0t01.0). asestimated from the correct expression (4.4),
at room temperature, 250, and 200 K are plotted in Fig. 4 for H|| 2. For illustration.
Fig. 5 exhibits the temperature dependence of 71 in LiYb, (Y, ,F, (H }| 2). as estimated
using the correct expression (4.4) and AHp, values at different temperatures. It is clear.
from Fig. 4. that 7] becomes shorter as the mole fraction (z) increases. On the other
hand, it is seen from Fig.3 thatfora gi ~n x value 1; decreases as the temperature in-
creases, This is in agreemant with the predictions of Mitsuma [13] and Kittel and Abra.
hams [17]. The calculation of z; from the incorrect equation (4.1) vields the value r; =

(5

N ' { i I L BB 1

Ty(s) — - —»
E <
3

W
1

70‘73
X —————ty

Fig. 4. Spin-lattice relaxation time (17), we caleulated nning (4.4), of Y13+ jons as function of Yb3+
mole fraction ) for Gd3* «doped LiYh Y- F, crystals at room temperature (3), 230 (¢), and
200 K (\). for £ {] =. Continnous lines juin data points obtained at the same temperature
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T 50( L L A Fig. 3. Spin-lattice reluxation time(r;). as calculated
L 1 using (4.4, of Yh!'* jons as a function of terapera.
, 40, =1 ture for Gd¥.doped LiYbq Y, F, host tor M|} =
-~ o -';
“ +
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=2.5 X 10~ sat room temperature for LiYbF, (H |} 2). whereas the use of the correct
expression {4.4) yields 71 =1.45 x 10-¥* s: these two 7; are different from each other
by two orders of magnitude.

The following conclusions can be drawn regarding the various mechanisms that
may be effective. From the slope of the log-log plot of 7; versus T in Fig. 5 one finds
71 ~ T'-12 for GA®*-doped LiYh, Y, F, (H || 2). This power dependence suggests
that the dipole-dipole interactions might be effective in the LiYbggY,,F, crystal. in
the temperature range 180 to 290 K [14).

3. Concluding Remarks

The present X.band EPR investigation of linewidths in Gd3*.doped LiYb,Y,_,F,
single crystals has led to the following conclusions:

(i) The processes which dictate AHp, ~ T-". with 2 > 2 for Gd3-. are not at all
effective at any temperature for Gd3“.doped LiYu,Y,_,F, cryvstals: it is found that
n < 2 at all temperatures of investigation.

(ii) The observed decrease in AH |, with decrease of the mole fraction (z) of Yh3*
ions can be understoodl to be due to the magnetic dilution of the crystals. which weak-
ens the dipolar and exchange interactions.

(iii) The spin-lattive relaxation times. as calculated from the correct equation (4.4).
are different by two orders of magnitude from those calculated using the incorrect
equation (4.1). heing used previously.

(1v) The observed dependence r; ~ T=1-2. in the temperature range 180 to 200 K.
in Gd3*-doped LiYhy¢Y, F, crystal for M {| = indicates that the dipole-dlipole inter-
actions in this crystal might be effective, when the dilution of paramagnetic lattice
by Y?3* ions is taken into account.
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DETERMINATION OF HOST-ION SPIN-LATTICE RELAXATION TIMES FROM Gd'* EPR
LINEWIDTHS IN NH,R(S0,), - 4H,0 (R = Pr. Sm, Ce. Nd) SINGLE CRYSTALS
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Spin-lattice relaxation times (r) for the host rare-earth ions R'*
(R = Sm, Ce, Nd) in NH,R(SO,); - 4H,0 crystal lattices have been
estimated at room-temperature from X-band EPR linewidths of Gd**
impurity ion, using an appropriate expression based on the second
moment for crystals consisting of two different kinds of paramagnetic
spins. In addition, the t values for Pr’* ions in NH,Pr(SO,), - 4H,0
lattice have been estimated in the 266-410K temperature range from
EPR linewidths of the impurity ion Gd’*. The values of t for Pr*
indicate that t~' varies as T’ (T = temperature) in the 266-296 K
range, and as T? in the range 296-410K. It is concluded that the T’
behaviour is predominantly due (o the sum process, while the T?

behaviour is predominantly due to the Raman process.

1. INTRODUCTION

NH,R(SO,); * 4H.O (R = rare-carth) compounds.
forming a series of isostructural crystals (1), are
interesting because they exhibit multiple phase tran-
sitions below room-temperature (RT) as revealed
by EPR, infrared [2-5), and differential scanning
calorimetry (DSC) (6] studies. As for EPR, tempera-
ture variation of EPR linewidth (4.8) of the impurity
ion, e.g. G4’*, in these host crystals, being sensitive to
temperature variation of the host crystal lattices {7),
has been exploited to study phase transitions.

The impurity ion linewidths can aiso be used to
estimate spin-lattice relaxation times (r) of the host
paramagnetic ions [8]. For the NH,R(SO,), - 6H,0
hosts. characterized by R = Sm. Ce and Nd. estimates
of spin-lattice relaxation times have been reported by
Malhotra er a/. [2] and by Buckmaster et al. [3), using
Gd’* EPR linewidths. However. in their cakculations,
they employed a frequently-used erroneous expression,
applicable to the presence of only one kind of magnetic
spin in the system. valid only for a simple cubic lattice
{9]. Misra and Orhun [8] denved the correct expression
for 1. for the presence of two different kinds of
magnetic spins in the system. typical of the EPR
situation wherein the host ions are paramagnetic. The

* On leave of absence from the Center of Materials
Analysis, Nanjing University. Nanjing. Jiangsu. The
People’s Republic of China.

purpose of the present paper is to estimate t of the
host ions R** in the NH,R(SO, ), - 4H,0 crysials, for
R = Sm, Ce, Nd at room temperature, and for
R = Prin the temperature range 266-296 K, by the
use of the correct expression [8], employing experi-
mentally observed Gd’* impurity-ion EPR line-
widths. The power-law temperature dependence of the
values of t for Pr'* will be used to discern the spin-
lattice relaxation processes governing the host Pr'*
ions in the NH,Pr(SO, ), - 4H,0 latuce. To this end.
the X-band data of Misra and Sun [4] for Gd** EPR
linewidths in the NH,PrSO,), - 4H,0 crysial will be
used.

2. CRYSTAL STRUCTURE

NH,R(SO,), - 4H,0 crysials are monoclinic,
characterized by the space group CJ,, containing four
formula units per unit cell {1). The unit<ceil parameters
for crystals, where R = Nd, Ce. Sm and Pr. are listed
in Table }. In the absence of reported experimental
data for the positions of the four R'* jons in the unit
cell, required to estimate the spin-lattice relaxation
time (1) of the host ions. the R’* positions have been
presently deduced. using the information provided in
the literature {1. 3] co be (0.5, 0.1321, 0.0). (0.5. 0.3677,
0.5). (0.5. 0.6323. 0.5) and (0.5, 0.8678, 0.0), as shown
in Fig. 1: they are labeled as 1. 2. 3 and 4. respectively.
The R'* ions | and 2 form a pair. being related by
symmetry to the other pair. formed by the ions 3 and
4. through an inversion plane.
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Fig. |. Positions of the four R’* ions in the unit cell of
the NH,R(50,), - 4H, O hosts. They are marked as !,
2. 3 and 4, respectively. The positions of the nine R**
ions (one Ist, two 2nd. two 3rd. two 4th and two Sth
nearest neighbors) surrounding the impurity Gd’*
1on. substituting for the R’* ion 2. are also exhibited.
Similar considerations apply when the Gd'* ion
replaces any one of the R’* 1ons I. 3 or 4.

3. ESTIMATEOF ¢

3.1. Theoretical expression

t of the host paramagneuic ions in doped crystals
can be esimated from impunty 1on EPR linewidth
(AB). using the expression [8)

t = (JABE ug)(110hg" AVH), )

where py. 4. g.and g are respectinely Bohr's magneton.
Planck’s constant. the impurity-ion Lande's fuctor.
and the host-ton Lande’s factor Inequation (1) (Av)
15 the second moment for the impuriy ton. Mista and
Orhun (8] showed that (Av') for crystals contuining
wwo differemt species of magneuc 1ons. for the case
when the distances between the impunty ions are
sufficiently lurge. and when the number of host-ion
neighbors considered is limited 10 V. can be expressed

Tuble 1. Unit-cell parameters of NH RSO, S), - 4H,0
single crvstals (R = Nd, Ce, Sm und Pry 1)
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as (8)

Av') = {S(S" + Dk =[.w,= + (88 MM
N
x Y (1 = 3 rn
]

\]
+ 2,88 uim;(l -3 )r,;‘]. @

In equation (2) S°. J,. pa. 7. , and 3, are the effective
spin of the host-ion. the average impurity-host ion-
pair exchange constant, the permeability constant, the
distance between j and k' ions and the direction
cosines of r, with the external Zeeman field. respect-
ively. (The primed quantities refer (o the host ions
while the unprimed ones to the impunty ions.)

3.2. Numerical esuimates

In order 10 compute 7. using equations (1) and (2),
one first needs 10 know the values of the various
quantities appeanng therein. A computer programme
was used 1o generate the vanous NH,R(SO,), - 4H.0
(R = Nd. Ce. Sm. and Pr) lattices required to calcu-
late the distances r,, and the corresponding direction
cosines (5, ) of the external field. For the calculation
of the second moment. (Av ), using equation (2), it
was found sufficient to consider only up to the fifth-
nearest neighbors (N = 9). the contnibutions of the
farther-lying neighbors were found to be negligible.
Table 2 lists the calculaied disiances for these neigh-
bors of an impunty Gd'* 1on. while their positions are
shown in Fig 1. As for the values of $". g’ and J,. the
lollowing considerutions were made. The effecuive
spin of cuch of the Kramer's 1ons Ce'*. Nd'". and
Sm'*, as well as that of the non-Kramer'sion Pr'* . 1s
S = 1/2(7.10].(S° = 1;21or Pr'~ istrue for the case
of lower symmetry. being equnalent to the presence
of local distortions superimposed on higher symmetry
due 10 Jahn-Teller effect). Further. for Pr'-, g, =
2{$y1 8130 ). where | ) 1> one of the ime-conjugate
states for the ground s1ate of Pr'* Land g, = 0{7). No
expenmental g’ values have been reported for the host

Tuble 2. Dstances (in A) between Gd** and the neighbor
R'* . There are one Ist-, 1two 2nd-. two 3rd-,
twa 4the und mva Sth-nearest acighbors (nn)

R wA) MA)Y tA) B R Istam 2ndwun 3rdun  4than  Sthan
Nd 6.625 1% 928 8 749 97.06° Pr 5.02 627 64 8.17 8.80
Ce 6.676 19.005 8821 97.248° Sm 500 6.24 6.58 8.26 8.74
Sm 6.582 18 RK6 8.7 96.8%° Nd 5.0t 6.26 6.62 8.31 8.79
Pr 6644 18963 8798 97.18° Ce 503 6.28 668 8.36 8.82
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ions in the presently considered crystals. However. the
coordinations around a R*~ ionin NH,R(S0,), * 4H.0
lattice are the sume as that of a R** ion in the
Y(C,H.50,), - 9H.0 lawuce. so that the g’ values for
R'* ions in the two latuces are about the same [12). A
theoretical calculauion yields g; = 3.81. g7 = 0.20 for
Ce'* in Y(C,H SO, ) * 9H,0 {11]). Similarly, one has
for the Pr’~, Nd’* and Sm'* ions (g;, g.) =
(1.6, 0.0). (3.65. 1.98), and (0.73, 0.40), respectively
[12. 13]. In the numencal estimates made presently for
1. the direction of the externai field has been assumed
10 be along the pnincipal Z magnetic axis. i.ce. the
principal axis of the 87 tensor. of the Gd’* ion [2-4];
the Z axis for the Gd’* ion in NH,Pr(SO,), * 4H,0
has been determined by Misra and Sun (4] to be along
the 4-fold axis of a distorted-monocapped-square
antiprism. making approximately the angles (51°, 45°,
72°) relative to the (a. b. c) axes. However, the pnncipal
magnetic axes (Z°) for the host R’* ions are not
necessarily parallel to the respective principal Z axes
of the impunty Gd’* 10n. In this case. the averages of
8 and g, values, listed in Table 3, for the host ions
were chosen for g’ in equations (1) and (2) for estimat-
ing 1. This does not lead to any sigmficant error in the
calculated values of 1, because of some uncertainty in
other factors. The required g values of the Gd’* ion
have been reported previously [2-5], and are listed 1n
Table 3. As for the values of J,, they have not been
determined expenmentally for the Gd’*-Nd'*.
Gd'*-Pr'* . Gd'* -Sm'". and Gd’* -Ce'* pairs. The
present calculations of T have been made forJ, = 0.1,
1.0, 5.0. 10.0GHz values. which cover the possible
range of values.

The room-temperature 7 values for Sm'*, Ce’*.
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and Nd'* were estimated from equations (1) and (2).
using the reported experimental Gd'~ EPR linewidths
in the NH,R(SO,);* 4H,0. R = Sm, Ce. and Nd
hosts {2. 3. 5. As for the estimate of t for the Pr'* jon.
the Gd'* EPR linewidths, as reported by Misra and
Sun [4], in the 266~410K temperature range, in the
NH,Pr(SO,), - 4H.O host, were used. No estimates
were made for t for Pr’* in NH,Pr(SO,), * 4H,0 host
crystal at temperature above 410K. or below 266K,
because of the unavailability of A8 values. This is
because below 266 K the crystal underwent 8 phase
transion, while above 410K the crystal deteriorated
due 10 dehydration {4].

The t values esimated at room temperature for

Sm’*, Ce’*, Pr'* and Nd’*, are listed in Table 3,
slong with the previously reported values of ¢ by
Malhotra er al. (2] and Buckmaster e/ al. (3], estimated
using the incorrect expression. for comparison
purposes.
As for Pr'*, Fig. 2 exhibits the log-log plot of
1! vs. temperature in the 266-310K range for J, =
5GHz: the calculated t values being listed in Table 4
along with the required expenmental linewidths at
different temperatures.

3.3. Discussion of t values

Asseen from Table 3, the r values for Sm'* , Ce’*,
Pr'* and Nd'* . computed using the correct expression,
equauon (1), for vanous values of J,, are quite
different. by up to an order of 3, from those calculated
using the incorrect expression. The large differences
anse because of the inclusion of dipolar interacuons.
along with exchange interactions. between two dif-
ferent kinds of 1ons (host and impunty) in (Av').

Tuble 3. Culculuted rovm-temperature spin-lattice relaxation nmes () for Sm'* . Ce'* . N#'~ and Pr'* 1ons
NH,R(SO,); - 4H.0 lutties. The values of $’ . g'. J,. and the impuriss-ion (Gd** ) linew tdth (AB), used in the
present calculanions, are also hsted. t values are expressed in seconds, winle the hgures inside the round hrackers

following t are J, values in GH:

R Sm Nd Pr Ce

s 112 12 12 112

4 1.9922 1.9830 1.9949 1.9930

' 057 2.82 0.80 2.0

AB (Gs) “ 64 53 5

T (0.1 Y <10 376 x 10" 138 x 10" 8.54 x 10"
v (1.0y S04 x 10 " 345 x 10" 398 x 10 % 6.70 x 10 *
T (5.0) 22 <0 591 x 10 ™ 184 x 10 " 695 x 10 "
t (10.01 526 « 10 " 1.56 x 10" 455 < 10" 1.76 x 10 *
t 20 x 10" 210 x 10 © - 100 x 10 "

*Calculated presently
*Reported in [2) and (3).
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Fig. 2. A log-lop plot of the inverse of spin-lattice
relation time (') versus the emperature (7), in the
266-410K range. for the host paramagnetic ion Pr'*
in the NH,Pr(S0O,), * 4H.0 crystal for J, = 5.0 GHz.
(The values of the slopes do not change for different
values of J,, as seen from equauons (1) and (2).)

gven by equation (2). It is also seen from Table 3, for
Pr'* and Sm’* ions. that their ¢ values fluctuate by
three orders of magmtude, while this fluctuation is
only by one order of magnitude for Nd** and C¢’*
ions, for J, values ranging from 0.1 1o 10GHz
However, as seen from equations (1) and (2), the T
power-law dependence of t=', which enabies one to
discern the spin-lattice relaxation process in effect, is
independent of a particular J, value. For Pc’* host
ions in NH,Pr(S0,). - 4H,0. a 7" dependence of t is
found in the temperature range 266-296 K. while a T
dependence in the temperature interval 296-410K.

4. SPIN-LATTICE RELAXATION MECHANISM
FOR Pr'* IN NH,Pr(SO,). - 4H.0

A least-squares fitung of t to temperature indi-
cates that the ¢ values of Pr'* 1n NH,Pr(SO,), - 4H,0.

Vol. 76, No. 7

as calculated presently for J, = 5.0 GHz, can be fitted
wellto r = BT 7 with B = 3.79 x 10%. K’ in the
temperature range 266-296 K. and 1o t = C7 " with
C = 1.61 x 10 "s. K'inthe temperature range 296~
410K, It 1s now possible. from these T' and T*
temperature dependences of t°', to deduce as to
which mechanisms are responsible for SLR in the two
temperature regions. Surveys of the various SLR
mechanisms have been provided by Abragam and
Bieaney (7}, and by Shrivastava (14].

As for the 7" dependence of ¢! for a non-Kramers
jon, such as Pr'*, it is caused by the following pro-
cesses: (i) at fow temperature, by Raman processes,
specifically Raman spin-one phonon interaction in
second order, Raman spin-two-phonon interaction,
and Raman process effected by short wave-length
phonons. (ii) At Jow temperatures, by a process
involving three phonons. descnbed by Le Naour {15],
in which first the small wave-vector approximation is
used to obtain a transition from an upper level E, to
another upper level E, by the emission of two
phonons, and integration is made over all the phonons
from 0 10 A, (= E, — E,, where E, is the ground
state). This is followed by the calculation of a Raman
process using phonons from A, to Debye cutoff, thus
making full use of the Debye spectrum. (iii} At inser-
mediate temperatures, by the “sum™ process [16, 17],
in which a spin transition is achieved by means of
emission or absorption of two phonons; the range of
temperature being centered at about 0.14 A, [17],
depending very sensitively on the structure of levels in
the host crystal (16. 17]. From the temperature ranges
over which the processes (i). (i) and (iii) are applicable,
it appears that the presentiy-observed T behaviour of
t~'in the range 266296 K may be explained to be due
predominantly to the sum process. since this tempera-

Tahle 4. The calculated spin-lattce relaxation times (t) of the Pr'" 1on and the observed Gd'* EPR hinewidths
(AB) in the NH,PriSO,); - 6H.0 host at various temperatures (T) for J, = 5 GH:z. The errar for AB s +3Gs

T(K) AB(Gs) T {s) T(K) AB (G tis)

266 116 3403 x 1079 kXX 39 1.35 x 10°9
269 106 3.68 x 10°" k7 V) 38 1.32 x 10°"
M 9% 333 x 107" 354 37 .28 x 10°"
m 95 330 x 10" 362 36 1.25 x 10°%
278 85 295 x 10" 369 M .18 x 10-"
28 67 233 x 10" 374 k¥ LI x 10-"
2 58 191 x 10" 183 i3 115 x 10-%
196 53 1.83 x 10" 392 M 1.18 x 10-"
kT1X] 51 177 x 10" 400 lo 1.25 x 10°"
39 a4 153 < 10" 410 a7 1.8 x 10°"

x

26 42 1.46
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ture range is more appropnalely “intermediate™, rather
than “low™.

As for the T2 behavior of ' in the range 296-
410 K. it can be explained to be due 1o any one of the
various Raman processes. descnbed above. as well as
due 10 the sum process. all of which predict T?
dependence of -’ at high temperatures. However, the
sum process has negligible contribution compared to
that of the usual Raman process, particularly because
in the sum process only the lowest-energy phonons are
required, whose number diminishes considerably at
high temperatures; in addition. the value of the
integral required in the expression for t~' for the sum
process becomes quite smail at elevated temperatures
[16. 17). To expiain further, at elevated temperatures,
the number of phonons for which w, — w, = w,
required for the usual Raman process, is extemely
large compared to that for which w, + ; = @
required for the sum process. (Here hw is the dif-
feronce in the two levels of the spin system and w,, @,
are the frequencies of the phonons involved in the
Raman, or sum, processes.) This is because the energy
density of phonons depends on temperature as
x)(e* — 1), where x = hw/k, T. which tends to zero
as T approaches zero. or infinity, from an intermediate
value {7}). Thus, the rfumber of phonons required for
the sum process, which come from the lowest part of
the phonon spectrum because o = w, + w,, i
negligible at high temperatures, while the number of
phonons required for the Raman process is large,
because they can belong to any part of the phonon
spectrum, including those belonging to the highest
phonon density, as long as w = w, — w,. Thus, the
Raman process is the predominant mechanism for
SLR of host Pr'* jons in NH,Pr(SO, ), - 4H,0 in the
296-410K temperature range. -

Finally, as seen from Fig. 2, the =~ values for Pr’*
in NH,Pr(SO,), - 4H,O exhibit a sudden transition
from T to T? behavior at 296K as the temperature is
increased. If only onc of the above-mentioned
processes. which is capable of exhibiting both 7”7 and
T! dependence of t-' as one goes from low to high
temperature. were operative over the entire tempera-
ture range 266-410K. a gradual. and not sudden.
transition from the T* to 7 behavior for =} would be
observed. The sudden transition of the T dependence
of ¢! is, most likely, due 10 the simultaneous presence
of a number of competing SLR mechanisms which are
in force at the transiton tempenature 296K, depending
on the Pr’* energy levels in a complex manner. Such
8 sudden transition, from 7 to 7™ behaviour of 1~',
is in conflormity with the vanous experimental data
exhibited in (7} and [14).
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5. CONCLUDING REMARKS

The main results of the present numerical com-
putations of t are as follows:

(i) The correct expression, equations (1) and (2),
yields much shorter t values for the host R'* ions in
the NH,R(SO,), - 4H,O crystals, where R = Ce,
Nd and Sm, than those estimated using the incorrect
expression.

(ii) The power-law dependence on temperature of
' values of the Pr'* ion, which is independent of J,,
suggests the dominance of the sum relaxation process
in NH,Pr(SO,), - 4H.O crystal in the temperature
range 266-296 K (T dependence of £='), and that of
the Raman process in the 296-410K range (T? depen-
dence of t°'). For NH,R(S0,),; - 4H,0 (R = Sm, Ce
and Nd) Malhotra ez al. (2] and Buckmaster et al. {3)
predicted an Orbach process. However, this con-
clusion was only guessed by comparison with other
systems and not arnved at by a study of temperature
varistion of ¢, as only room-temperature values of ¢
were estimated.
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