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ABSTRACT

Frhancerment Techniques of Short Duration Nattowbamd Signads with apphoation to

ABR \ndiometn

tajeey \egarwa
Raj \p |

Lhe detection estimation of tarely oconrme, transient signals o brequently en
countered problem in many atecas. The problem can bhe broken down into two parts 1)
Detection and 2) IFstumation, T'his thesis addiesses the second ot the twao parts The
underiving theme in this thesis is the estimation of transient signals emboedded o noise,
eiven their presence and tumc-of-arroral In gencral we addiess the prablem of estinating,
short-duration signals in the presence of noise.

Mathematical deseription or representation of signals ultimately outhnes the meth
ods employed in processing them, In this work, we consider two forms of signal modeling
within the Structural Signal Processing framework. The relative advantages of the maod
ern parametric (ARMA, AR, and MA) and the dassical nonparametiic series expansion
model are exploited to generate null filters for processing such signals.

Within the parametric forms of null filtering, we consider the conventional Con
strained Notch Filter. The deviations in frequency tesponse of the CNEFs caused by the
pole-contraction factor (a < 1) are shown to reduce the allpass nature of the filter. 'to
quantify these errors, a new measure of fransparcney msedpmshinent is developed for the
Almost Symmetrical-ARMA based filters. An expression of the transparcney msadjust-
ment cocfficrent, in terms of the filter coeflicients, is derived, Further, it 1s shown that by
increasing the order of the C'NFs by strategic pole/zero pair placement, it is possible to

coriect for such distortions. Three closed-form methods for finding these pole/zero pair




T ation are detived  Thn- amproned pertormance e the allpa-- nature of the new hine
! !

can then be traded ta obtam Shorter tran-eent durations for processing chorr dataton

101l

I the realn o nonpatametne method we denve Stati=ncadiv Optonad Nall Barers
PSON T e aew v snoecstod Tn<tantaneons Nbechd Brdter as o hey bindde Block 1o
develop thi- approach e consider the masimmune ontput stenal to nose ratioand the deas
cqitare~ cnterta bno s approach, we eaplomt the abity of the NMatchied Tolter fo process
enals quichv, enabline the SONTES 1o prooess <hort dination sinals Several variants
ol the SONE are pre-ented  Detaled analvsis ander cortain constramts, indicatime 1l
cquivaleace of SONT - o alman Dilter are also presented Stmulation result< are nsed to
verfyv compare different SONE< and NS

lo further motinvate the problem of processine <hort duration signals ctransient <
we consider the application of Fxoked Responses o nonbeliavioral heanme los< diaenosis of
hutans  The Aaditory evoked Bramsten Responsest \BR<) are chated from the measured
cignals by averagime techmgues, Otten averaeinge does not adeguately teveal the deared
ABR. In the thesis. it s <hown how averaeed YBR waveforms can Le processed asing
a combimation of adaptive and recursive SONE S to mienmze the residoal noi-e Several

examples using real data are presented
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Chapter 1

Introduction




The detection festunation of rately-ocentring transient signal waveforms is a fiequently
encountered problem in many areas. Image processing for military and medical purposes.
biodogical signal detection. radar and sonar detection. monitoring and diagnosis of ma-
chinery are but a few examples. Usually the existence or appeatance of such waveforms is
associated with an undesitable phenomenon, such as a failure in machinery. Their tunc-of-
arrival (TOA) is nuknown and to prevent damage (as in a military threat) earliest possible
detection is of extreme importance. In literature there are many papers devoted to the
estimation of TOA of transients, see for example [6]. In certain instances, we are not only
interested in the deteetion, but also in the classification and estimation of these signals
[7]. For example, in Evoked Response (ER) audiometry we hnow the TOA or the onset
of the approximately known signal, it is required 1o first detect its presence and then to
estimate the waveform for further diagnosis. The transient signal processing problem caun,

therelote, he sepatated into two parts:
e Detection of the presence of the transient signal and estimation of its TOA
e Iistimation of the transient waveform, given its TOA.

A transient signal, in general, can be defined as a signal whose temporal duration
is shorter than the observation interval. It is for this reason, very often the term “short
or finite duration” and “transients” are used synonymously. Transients can be either
deterministic or random. In the latter case, they are nonstationary {8]. In this thesis, we
primarily deal with deterministic transient signals, although, our approaches are applicable
to random signal as well. Transient signals are often nonsymmetric, possess abrupt changes
and decay in amplitude with time — much like an exponential function. IExponential
functions model the behavior typical to many physical transient phenoienon quite well.
Additionally, such a model offers a representation of the transients as a sum of narrowband
{NB) components.

The underlying theme of this thesis is the estimation of transient signals in the
presence of noise given their presence and in some applications, their TOA. In general,
we aim to tackle the problem of estimating short-duration signals in the presence of noise

irrespective of whether they are of decaying type or not.




Certain parameters, such as the frequency charactetisties of the transient sieial, can
be estimated from the received signal. Once the ptesence of signalis ascertained, various
estimation methods of different degrees of sophistication can be used. These can bhe eithe
linear or nonlinear. To the linear category we can attribute the shott tinme Foutier Trans
form [9], the Gabor Transform [R] and the Wavelet Transform [10]. Phese fall into the
category most commonly hnown as linear time-frequency analasis. Toplicit in the FI°P
approaches is the assumption that the data is sufliciently well modeled as wsume of ha
monically related sinusoids. In addition toits inherently poor frequency resolution (cansed
by the implicit data windowing) a broadening of spectral line will appear when FIET is
applied to strongly damped sinusoids [11}. This results in the failire to resolve closely
spaced damped sinusoidal components. To the nonlinear category, we can assten time
frequency techniques such as smoot hed periodogram [12], Wigner-Ville: Pransform J13, 1]
and the ambiguity function [15]. These methods constitute nonparametric methods,

Processing of NB signals immersed in noise is a common problem in the signal pro
cessing literature to which the more modern parametric methods have been applied exten
sivelv. The problem of enhancement/suppression of such signals has been well addiessed
and falls in the category of adaptive line-enhancers (ALEs), the most popular of whidh
has been the tapped-delay line structure, first, propused by Widrow [16] and is now tenmed
the Finite-lmpulse Response ALE (FIR-ALE). Since this seminal paper, much work has
been done in the parametric model approach tosolve this problem [17, 18, 19,20, 21] and
many different structures have been proposed [22, 23, 24]. The a vantage of this scheme
is its simplicity, however, large orders are reqquited te achieve good performance,

In the last several years numerous researchers have investigated the NI signal
problem by applying the Autoregressive-Moving Average (ARMA) model based noteh
filters. In [25] Friedlander proposed a generalized ARMA model for such problems. Rao
and Kung [26] proposed a constrained ARMA filter specifically suited for the enhance-
ment /suppression of sinusoids which they have called Constrained Adaptive Note b Filter
(CANF). A modification of such a filter was suggested by Nehorai [27], whete the number
of coefficients have been reduced to n froimn 2n using mirtor symmetrie moving - average

polynomial.



Fhe problem of processing signal components with frequencies varying in time i
of preat nnportance in some applications. One possible method of dealing with sudh
signals is 10 use the above CANE< 720, 2700 This, however, vields satistactory resufts onl
when the frequency variation is slow o adequately deal with these types of signalks.
an almost <vmmetncal time varvimg, ARMA CASTV-ARMA) model has been developed
(25,20, 30, 31]. Many variations of the ASTV-ARMA are presented in [32] that yield
satislactory petformanee,

Note that large order ALES requite long comergence time, and thus precludes their
use for short-record length signals. As such, applications of conventional parametric meth-
ods 1o estimate transients and short-record length signals are very imited. We illustiate
this point by constdering an example. Let a finite-duration received signal consist of a
sinusoid in noises ne e (0) = s o) whete s(t) = teos(w,t+80 ) for t = [0.7]. We wish
to use a Clonstrained Notch Filter (CNF) [26] to suppress () (or equivalently to enhance
n(1)). To achieve this objective with a rezsonable degree of fidelity, it 15 necessary to
choose the filter coeflicients such that the filter passband response is as close to unity as
possible. [n so doing, the settling time or the filter transient duration becomes excessively
long. I 77, the duration of (1), is much shorter than the duration of the filter transient,
1 is clear that it is not possible to use the CNFs to separate s(t) and n(t).

In contrast, our research efforts are devoted to the processing of short record length
signals for which steady-state approaches are not applicable. Generally speaking, estima-
tion of short-duration signals is a difficult problem.

Mathematical description or representation of signals ultimately outline the methods
employed in processing them. In this research investigation, we consider two forms of
signal modeling within the Structural Signal Processing (SSP) framework [33]. The relative
advantages of the more modern parametric model (ARMA, AR, and MA) and the classical
nonparatetric series expansion model are exploited to generate null filters for processing
of short-duration signals.

The first part of the thesis deals with parametric forms of null filtering. The fre-
quency response of a conventional CNF [26, 27] becomes ideal as the pole-contraction factor
a approaches nnity, while the transient duration approaches infinity. For practically useful

values of a (a < 1), the phase and magnitude distortions, so caused, can reduce the allpass




nature of CNFs. By increasing the order of the CNEFs based on strategie pole/zero pan

placement, it is possible to correct for such distortions. Several closed from methods for
finding such strategic pole/zero pair locations are derived. This improved performance
the allpass nature of the filter can then be traded to obtain shorter transtent dutations for
the processing of short-duration signals.

The second part of the thesis deals with statistically optimal nonpatametiic methods
of null filtering using a newly suggested instantancous Matchied Filter (INIEF) as o key
building block. It is interesting to note that comventional s are exclusively used for the
detection purposes, mo-t notably in communication applications. In spite of this, in ous
approach, we propose a modification of the MF and use it as a fundiomental building block
for the implementations of null filters. We combine the maximum output signal to noise
ratio (SNR) criterion of the ME and the MSE criterion to generate the new approach that
we call Statistically Optimal Null Filter (SONIT). In the SONE approach we exploit the
ability of the MU to process signals quickiy and show that it can be used to process short
duration signals. A key assumption in this approach is that the signal under consideration
can be represented as a series based on a priort known composing functions. Due to the
optimality {(in the MSE sense) and time-varving nature of the SONE, it is anticipated that
it is equivalent to a Kalman filter. This equivalence is discussed in detail in this part of
the thesis. Hence, the SONFs can be interpreted as a new implementation of the Kahoan
Filter.

To further motivate the problem of enhancement/suppression of short duration sig-
nals (transients) embedded in noise, we consider a biomedical problem. 'The elinical appli-
cation of ERs for nonbehavioral diagnosis of the hearing capacity of individuals is consid-
ered. Because it is a non-invasive technique and does not require subject cooperation, it is
ideally suited for patients not easily testable by behavioral means, i.e. infants, comatose
and the mentally handicapped.

ABRs are a form of electroencephlographic (EEG) recordings, difference heing that
they are acquired in a controlled manner. As the name suggests, ABRs are obtained by
applying a known auditory stimulus to the ear and then measuring the transient response
of the brain using surface electrodes pasted to the scalp. The response is aset of peaks and

valleys in the 10 ms window at the onset of the stimulus application. Thus, if a subject does

(2]



not hear the andiony stimulu-, the response will not conform to the <tandard pattern and
the deduction 1= hearmg loss for that <tunulus intensity levels. Tn this manner, a dimaian
may acquite a et of wanefonns at different sthimualus intensity levels and determine the
level of hearime loss (heatmg, threshold). Phete are other by product teanlts from this ty pe
23]

ol testing, such as pussible tumor detection

[t is important to understand the drawhachs or problems associated with this type
of nonbehavioral testing. Sutface electiodes not only pick-up the desired evohed responses,
but also pich-up the background EEG. The power of this bachground EEG can be as high
as 200 times greater than the desired ABR. Given the short observation interval of the
ABRs. a major signal processing tash is to extiact ot enhance the ABR (desited signal)
i the presence of sttong bachgronnd FIFG (noise).

Audiology Titerature is tich in the techuigques wsed to extiact the elicited response
(31,35, 36, 37]. However. none have proven to be satiddac tory. Even with the existence
of plethora of signal processing, techmques, the most widely used technique is still the
averaging of the waveform acquired by repeated stimulation at the same intensity level. If
the number of responses in the averaging is reduced, asis done to reduce the length ol time
requited to collect a =et of ABRs, the noise is not sufficiently suppressed. A method to
minimize this residual noise component in the short-duration averaged ALR is 1required.
We apply the SONEF approach 1o process the averaged ABRs to further enhance ABR

signal in the presence of strong noisy envitonment,

Outline of the thesis

This thesis can be divided into three parts. In the first part, we consider the parametric
model of CNFEs and show how it can be modified to reduce the filter transient durations.
Second part contains a new nonparametric SONE based on the maximum output SNR and
the MSE eriteria and in the third part we consider a biological signal processing problem
using the SONFs. In all three parts the common theme is the processing of short-duration
signals, The following, is a chapter by chapter outline of this thesis.

Chapter 2 is used ‘o discuss the importance of signal modeling and hence the ap-

proaches dictated by this modeling. Two forms of signal modeling in the context of
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Structural Signal Procesaing (SSPY are prosented noomehy, the dlassical nonpataetiio e
ties expansion model and the more modern paametzic A\RM N AR and the M\ madels
The goal here is not to give an exhaustive survey but to provide a foudation tor the
remaining chapters, In this chapter wealso present gencralized parametne null hilters To
quantify the lev el of transparcney of these null filters, a new measure of the transparency
misad justment 1= presented.

In Chapter 3. we shiow that the tradeofl between the setthing e o the transient
duration of the CNIFsand the tansparency chatacteristics (defined by the value of the pole
contraction factor) may be handled by incorporating, into the design a phase nommnzing,
strategy. 1t 15 shown that by increasing the order of an n coeflicient wotch filrer (b
strategically adding pole/ ze10 pairs), it is possible to improve the ttansparenoy property
of the filter for a given tcansient dluration or reduce the transient duration for a enven
transpatency. hree met hods of finding these poles ze1o paits are developed. Close forim
expressions for the iccation of these roots are presented. Improvements in the transpaencoy
and the transient durations are shown via simulation tesults

In Chapter 1 we present the idea of combining the maximum outpat SN R and the
MSE criteria to develop the new nonpatametric null filter that we have termed Statist
cally Optimal Null Filter. Several variation of this filter are presented, ve. subaptimal,
locally optimal, globally optimal etc. Since the globally optitnal SONE cannot be casily
implemented, a discrete-time recursive SONF is developed. Analysis of the SONI show:.
that they may he considered, under certain conditions, as « Kalman Filter. Tt s shown
that the SONF leads to an extremely simple implementation of the Kalman Filter,

In order to use the SONFs, it is essential that the basis functions 1 the expansion of
the signal under consideration be known a prior.. In the damped sinusoid case, the damp
ing coeflicients are generally not known a priori. For this reason we have also developed
an adaptive SONF,

In Chapter 5 we present silnulation results evaluating the different SONIS developed
in Chapter 4. Comparisons of the parametric approaches of Chapter 3 and the SONES
are presented. Two examples of filtering time-varying signal with the SONEF approach are
provided to indicate its ability to process signals with time-varying parameters (ie. '\

signals). An application to separate highly correlated signals using o modified SONEF s



discus~ed Simulations show promiasing tesults The performance of the adaptive SONE i

alsoexahrated i similations.
T Chapter 6, we present an application of the nonbehaviora hearing loss assessment
astng A BR Mdhiometis, Tt is shown how the sveraged ABR waveloris can be processed

by using a cotnbimation of the adaptne and recnrsive SONEs to minimize the pesidual

noise Several example results using real data are presented.

Finallv. Chapter 7 contains some cone Inding temarks and diections for it ure work.




Chapter 2

Structural Signal Model:
Generalized Almost-Symmetrical

Structure



A human observer can be trained to be highly perceptive in extracting information from
praphical tepresentation of a signal. This method of signal processing is, however, apt
to be qualitative and does not readily lend itself to quantitative analysis. An example of
this is in the Anditory Evoked Brainstem Audiometry (ABR), where the tester is trained
to interpret different, aspeets of the ABR waveform from which various diagnosis can be
made. Different testers tend to interpret the waveform differently leading to a somewhat
subjective or qualitative evaluation. NMore will he said on the ABR application in a later
chapter. For quantitative or numerical analysis. under specific conditions that are of
physical importanee, it is critical that the signal be represented by some mathematical
model. An important aspect of the signal is in the information that it carries and not in
the average power or energy since most signals are assumed to represent some physical
quantity [38]. Not all signals are amenable to mathematical representation and conversely,
not all mathematical models are equally useful in disseminating information. It is possible
that many models may represent the signal efficiently, however, some models may prove
to be more useful than others in describing the information bearing aspect of the signal.

Another important reason for signal representation is the physical insight that it
provides. This is an essential step for the signal processing engincers, since it simplifies
the thought process and hence increases the generality with which the information can be
extracted. There are a number of simmple concepts such as orthogonality, signal dimension-
ality and time-bandwidth product that lead to useful indications of the signal capabilities.
Signal processing engineer can therefore use these ideas for the initial judgment which can
later form a foundation for exact analysis [39]. Here the emphasis is placed on the ability
of the signal processing engincer to predict what is feasible and what is not, since without
this a great deal of exact analysis would be a wasted on unprofitable approaches [39]. The
importance of problem specific signal representation cannot be overemphasized and it is
for this reason that we briefly explore signal representation possibilities.

In Section 2.1, we briefly describe the modeling of signals from a Structural Signal
Processing (SSP) point of view. Mathematical description or representation of a signal
ultimately outlines the methods employed in its processing. In the next two sections, we
briefly discuss two forms of signal modeling in the Structured Signal Representation (SSR).

The goal here is not to give an exhaustive survey but to briefly provide a foundation for
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the remaining chapters. Section 2.2 describes the classical nonparametric series expansion

model, while, the more modern parametiic repiesentations (ARMA, AR and MA) are
presented in Section 2.3. Section 2.1, as precursor to the next chapter, generalizes the

design of parametric null filters. Section 2.5 discusses a new measure of the allpass nature

of the null filters,the transparcney nusadjustment coefficient.

2.1 Structural Signal Processing

The solution to any problem involving the processing of signals invariably consists of three
key stages: 1) mathematical representation or model of the signal; 2) requirements on the
result of processing: and ) the selection of an appropriate algorithm. In this section, we
are concerned with the first of these tasks, the representation of the signal [38].

The underlying requirement for any signal model is its ability to adequately represent,
the specific conditions of a class of problems that are to be analyzed. That is, the model
must match the information content of the problem for which it is intended.

All signal models can be classified into two classes, the contour model and the
structural model [38]. To the contour model group, we can assign any mathematical
representation of the signal that can be expressed in the form of some function of a set
of arguments. Power Spectral Density (PSD) is one such representation. To the second
group, the structural model, we can assign models that combine two or more contour
models of the same signal according to some given rule or law. Thus, a structural model
can represent a functional relationship between different contour representations of the
same signal.

In mathematical modeling of a signal, it is possible to follow any of the above two
approaches. In this thesis, we will follow the linear path of the structural signal represen-
tation, the shaded path as outlined in Figure 2.1. It should be clarified that a structural
model does not necessarily convey any more information than the contour model, but,
it may shed a different light on the problem at hand, leading to new possibilities in con-
structing algoritiums for the processing of signals. The field of Structural Signal Processing
(SSP) forms an important sub-disciplirc in signal processing (SP). The notion of associ-

ating structural properties with signals may seem strange when compared to the physical
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Figure 2.1: Structural Signal Processing framework.

properties of materials or buildings [40]. Here we are considering the characteristics or
attributes that are not exactly defined or established for signals as they are for systems,
i.o., linear, nonlinear, time-invariant or time-varying and so on. However, one does have
some inclination as to what is meant by the term structure. The concept of SSP is based
on the idea that the signal or process under analysis is a realization of an ensemble of
several different transformations or conversions of the same signal. The characteristics of
individual transformations may vary, however, there exist some intrinsic properties that
belong to the ensemble of these transformations [33].

To illustrate this point, consider a signal s(f,a), where ¢ represents a vector of
parameters and ¢ is the independent variable (time). We can now perform specific trans-
formations of s(t,a) by the operators {Li} to obtain the set {sx(¢/,b)} = {Lxs(t,a)},
where b is the new parameter vector and ¢ is the new independent variable. If this set of
transformations is combined into an ensemble by an application of some specific rule or
operator G,

G [{su(t',0)}] = G[{Lis(t,a)}]) = f(m,2) (2.1)

where f(r,7) is an a priori given function of the independent variable r and y is a vector

of parameter, then this forms the basis of Structural Signal Representation (SSR). The




function f(7.7) does not depend on the signal s(f.a) or any of its transformations.
J(7.7) is chosen to he 0 then the operator ¢ is a Null Operator which charactetizes the
property of the ensemble {s(f.0)}. As an example consider the Nth order ditterence

equation,
N
ZukA"ks(t) =0 (2.2)
0

where A% is the kth order difference operator, the Ly operator in (2.1), and ay’s are
constant weights. Each term A=*s(1) represents a different transformation {realization)
of s(t). while the weighted sum of N such transformations represents the structural medel

in accordance with the definition of (2.1).

2.2 Non-Parametric Representation: Series Expansion

Classical form of signal representation is the series expansion of a signal. In contrast to
the parametric model of the next section, the major properties of this tvpe of modeling
are related to the properties of the composing function. It is for this rason that we choose
to classify them as nonparametric models.

The weighting coeflicients of the basis functions, the «;’s w (2.2) depend on the

signal and the chosen form of the compasing functions. Some important issues ate related

to this kind of signal representation. Of special interest is the one where the chosen set of

composing functions are orthogonal over an observation interval.

Let s(t) be a finite energy (square integrable) signal defined over an interval [0, 7.
It is well known that such a function can be expanded as a linear combination of some
basis functions, ¢ (t),k =0, 1,2,... N = I, where in general N may approach infinity,

N-1

s(t) = Y axdr(t) Y o<t<T (2.3)
k=0

The problem of selecting the appropriate basis function or the evaluation of the weighting
coefficients has not been solved in general. However, numerous results exist for specifie
basis functions, which are used as an aid for making an appropriate choice in any given
case.

One property that is desirable is the orthogonality of the basis functions. The

13



condition for orthogonality of basis functions can be stated as,

1 0
/ w(l)d, (t)eh, (1) = n (2.1)
JO

Jiy m=n

where # 1epresents complex conjugation, w(t) is a weighting function and g, are real. If
i = 1, then this set of basis functions is known as orthonormal.

As a result of this property, we can achieve what is known as the finality of cocf-
fierents which simply states that, if the expansion of (2.3) is increased by one additional
term, then the first N weighting coeflicients remain unchanged. Another property arising
from the orthogonality of the basis functions is related to the accuracy of the represen-
tation when less than the required number of basis functions are used. It states that
by using basis functions that are orthogonal, we can achieve best approximation in the
mean-square error sense. In general, to represent a signal exactly the number of basis
functions required will be infinite while the corresponding values of the coeflicients, ax,
become smaller and smaller as N increases. In practical situations, it is not possible to
use infinite number of terms, hence, the resulting truncated expansion is inherently an
approximation to the signal, s(¢),

N-1

i =Y aen(t) (2.5)

h=0
where ~ indicates an approximation. The number of terms in (2.5) is determined by

practical considerations. In the case where the minimum mean-square error

~~
[
=]
—

-5 T A 2 _
X = /0 [s(t) - §(t)]* dr = 0

the set {¢i(t)} is known as complete.

Since orthogonal basis functions minimize the mean-square error and are convenient
in terms of finality of coefficients, they are almost exclusively used in series expansions of
signals.

Two of the most popular models for seric. expansions are the Fourier Series ex-
pansion for periodic signals based on a fixed set of complex sinusoids equally spaced in
frequency, and the Shannon-Whitaker [41, 42] expansion based on a fixed set of sinc func-

tions equally spaced in time.
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At times, we have available a set of finite cnergy functions, ¢, (O, ¢ - 0. 1,...0 1
that may not be orthogonal over the interval [0, I']. In this case, by using the Gram
Schmidt orthogonalization p: wedure [13]. it is possible to orthogonalize these functions.
The resulting number of orthogonal basis functions will be in general N < VM.

Another important series expansion of a random process is known as the kathunen
Loeve transform or expansion (KL expansion) [14]. In maintaining generality, we discuss

B A A
the expansion of a tandom process that includes deterministic signals. The truneated ver
sion of the KL expansion has been shown to vie.d the best approximation of all expansions
of the same dimension. As with other expansions it is computed by projecting the random
process on a set of orthogonal basis. What makes this expansion interesting, is that the
basis functions need not be known a priori and are computed from the following, integral
equation
T
K (t w)dp(u)de = ppdp (1) V 0<tsT (2.7)
JQ

where K,(t, u) is, in general, a time-varying covariance function of a process s(f). The
basis functions, ér(t), k=0, 1,..., are known as the KL eigenfunctions and g ave the K1,

eigenvalues. The resulting signal, s(f), can be written as

s(t) = i ayoy ()
k=0

where ay’s are uncorrelated coeflicients in the expansion. Two problems of practical consid
erations arise in employing this procedure to represent signals: 1) the covariance function
may not be a prior known and 2) the solution to the eigen equation (2.7) is mathemat
ically intractable in almost all but a few simple cases. In cases where the process s(i) 1s

periodic, the KL expansion is equivalent to the Fourier Series expansion.

2.3 Parametric Representation

The properties of the operators Ly and G determine whether SSR is linear, nonlinear,
time varying or time-invariant, while the independent variable classifies it to be discrete
or continuous [33]. Each method of SSR emphasizes different advantages or intrinsic

properties of the signal being considered [33]. The simplest SSR model is one where the



operators Ly and G are chosen to be linear. For example,

N
Y aglys(t) =0 (2.8)

h=0

where the weighted sum of the individual transforms Lgs(t) (as in (2.1)) represents the
operator ¢ and ay’s are constant. This kind of a structural representation of s(¢) is referred
to as the parametric model, and was first suggested by Baron de Prony in 1795 [15).

Current trends in processing of signals involve parametric approaches for both de-
terministic and random signals. More appropriately such approaches can be called model-
hased methods, since with these techniques a model has to be first assumed or inferrcd
and then the parameters of the model are evaluated based on the observed signal. Figure
2.2 adequately describes the parametric approach. In the first block, the parameters of
the chosen model are estimated. The second block uses these parameters and evaluates
the estimate of the desired signal. The parameters effectively represent the signal. This
is in stark contrast to the nonparametric approaches, where the parameters represent-
ing the signal are not directly evaluated. In this case, the signal of interest is estimated
directly. The relationship between the power spectral density (PSD) and the autocorre-
lation sequence (ACS) can be considered as the nonparametric description of the second
order statistics of a process. On the other hand, a parametric description may involve a
time-series model of type (2.8), in which case the PSD is completely characterized by the

parameters of the time-series, i.e, ag's in (2.8) [12, 46).

Observed Signal,

) | Parameter a Signal s(t,a)
Estimation "l Estimation >

Figure 2.2: Procedure in Parametric Methods.

In the framework of SSP several forms of parametric signal representations are possi-
ble. A special class of Linear Structural Model includes the popular Autoregressive (AR),
Moving-Average (MA) and the Autoregressive Moving-Average (ARMA) processes, where
the models are represented by rational functions and are driven by white noise processes.

With the advent of digital signal processing these models have found extensive use in
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recent years. In the literature, the term parametric model has now become synonymous
with these models exclusively. Hence, when discussing parametric models, we limit our
discussion to such models.

If the building block, Ly in (2.8) is chosen to be the backward difference operator,
Le., Lis(n) = s(n — k) = sx(n) with n as a discrete independent variable. then the model

class is narrowed to the familiar difference equation,

l\vh '\’(l
Z bpe(n - k) + Z agy(n - k) =0 (2.9)
k=0 k==0
or
Ny Na
y(n) = Z bie(n— k) + Z ary(n — k) (2.10)
A=0 A=1

where y(n) is the output sequence and x(n) is the driving input and a, = b, = 1. It is
evident that this difference equation can be considered as a particular structur . model
defined by (2.1) [33]. In the signal processing literature this model is called the AgMA
model. Rewriting (2.10: using z-transforms,

B(z)
Y(:)= —=X(2) (2.11)

A(2)
where A(z) =1+ Zﬁ;l apz"% and B(z) = 1+ Zﬁ;l b=k, we can specify the other two
models, namely, the MA and the AR. If A(z) = I, we obtain the MA model and with B(z)

= 1 we have the AR model.

2.4 General Null Filters

The enhancement/suppression of NB signals is usually carried out by the Constrained
Notch Filter, CNF. In this section, we briefly present the description of the design of the
generalized Nth order null filters within the SSP framework. The discussion of CNFs is
deferred to next chapter.

Two of the most important characteristics of null filters are the null singularities
and transparency. These will be defined for general null filters. It is shown that to
generate an ideal null filter that possesses cach of these two characteristics, two different
operators need to be combined in a cascade connection. In light of their function, these

two operators have been termed the null operator for creating the null singularity and
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its inverse the anti-null operator for maintaining transparency. ldeal null filters, w0
generated, are not practcally implementable as the transient duration as<ociated with
them is excessively long. It is shown how the anti-uull operator can be modified to mahe

these filters implementable,

2.4.1 Null Operator

Hocne Wronski, in 1815, presented the fundamental results deseribing the necessary and
sufficient conditions for a system of functions {g(4). g:(1).....gx (1)} to be linearly in-
dependent solutions of a homogeneous differential equation (as presented in [47]). This
condition has come to be known as the positiveness of the Nth order Wronskian of the
set of functions {g (1), g2(), ..., 9x(8)}. Later. Bortolott: [8] extended these results to a
generalized functional setting, He stated:

I {ai(D),g:01), .. .ogn(t)} be a systam of analytic functions having a common

domamn of convergence, and L be a one-to-onc mapping functional operation,

then the neccssary and sufficient condition for such a system of functions being
associated with a homogencous equation with respect to L is

g1(t) g2t} ... gn (1)

L Lg, (1) ... Lgn
W @i () g2, oan () = ol o0 oxt) #0 (2.12)

LYgi(t) L¥ga(t) ... LVgn()

This result provides a sound mathematical tool for linear structural processing,
where the base operator L can be modeled as an arbitrary building block. If the operator

/N is known as the Wronskian. In this

L is chosen to be a differential operator, then 1V}
thesis, we will refer to (2.12) as the Wronskian for any chosen operator L.
It is well known that for N linearly independent functions {g;(t), g2(t) ...gn(?)},

there exists a unique monic homogeneous equation of order N given by

: _ W (gi(0), a(0) . o (0.50) _ f
GO0 = N G gt vy (2.13)
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where ll',“\'“ is an augmented Wronshiaun 17, 19] of the set {g (Do () avD)

g Qo) . ux () s(t)

N Loty Lga(t) .. Lax() s
WY g1 (1) galt)eogn (D, 8(0) = ! . ( v W

LYai) LNga() .. LYga () LS

Such a homogeneous equation also defines a linear operator ¢y (s). Different building
block operators, L, will result in different operators Gr(s). For example, Wrouski [17]
used differential building blocks while Casarati [18] used the difference operator. The

operator G, (s) of (2.13) can be explicitly written as a linear homogencous equation
(L4 0L + b0 L 4+ by (LN ] s(1) =0 (2.15)

where

it MY (10 g2(0) - guma () g (1) - g (1)
W (g1()ga(t) . .gn (1))

N+1

and MI‘JV is the Minor of 1V, ™! with respect to the Laplace expansion of s(1) [H0]. Notice

b(t) = (-1) (2.16)

that we have used time-varying coefficients b,(1)’s to maintain generality, Il o signal s(1)
can be written as a linear combination of the complete set of functions {g (1), g2(t) ...un ()},
then (2.15) can be defined as an Nth order null operator and theset {gi (0, g2 (1) ...an (1))
constitutes an N-dimensional signal space, . Such a signal space is the null singularity

space of the null operator G,(s).

2.4.2 Anti-Null Operator

Consider two signals, s; € Q and s € © where QUQ = [ and QN = B Our requitement.
is to define an operator or generalized null filter @y, such that the following two objectives
are satisfied,

Qulsi] = 0

Qulss] = s

(2.17)

for the signal enhancement/suppression problem. Of course, signal separation is one ob-

vious application.
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Given a set of functions {g1(t) g2(0)...g~x (1)} that span the subspace 2, we can
achieve the fitst of these two regnitements using the § opetator as described above. How-
ever, any signal 5, that does not belong to the subspace @ will be distorted by the operator
Lo Grlst Fsy) = 8, # 5,0 Inorder to achieve our second objective, it is necessary to find
an operator (;’,T‘ that will reconstruct the signal s; without altering the null singularity of

(1.. By combining these two operators in a cascade connection, it is possible to construct

an operator Qg that meets both of the objectives in (2.17).

Definition 2.1 7The transparcney of any hnear opcrator Qy, (as defined above) "mplics
that any signal not bclonging to s null singularity subspace, 2, passes through this operator

undistorted. That s, 1f s € Q@ and QN Q =0, then Qufs) = s.

f

Definition 2.2 An anti-null operator G, is an inverse operator such that Q= (]L(]I

and Q; mamtains null singularity of G, while satisfying Definition 2.1.

Theorem 2.1 The necessary and sufficient conditions for a time-varying operator Qj, to
be transparcnt to any signal other than thuse spanned by its null singularity s that the null

and the anti-null operators are mutually symmetrical.

Proof: See [32].

The condition of perfect symmetry of the null and the anti-null operators is a very
convenient result, since it allows us to easily form an anti-null operator for the construction
of a null filter without any additional effort. If, in general, a time-varying null operator

with a null singularity subspace Q is defined as

N h
Go() = [l +) b (L () (2.18)
1=1 J
then it is possible to describe the anti-null operator as
.t 1 ' ‘
9 = 7 K 2-19
s non) Y (2.19)

For any signal z(f) of order N, the input-output relationship can be written in the gener-

alized ARMA canonical form,
1+ b (1) L]

v = [1 Sy
QL0 () (2.20)

z(t)
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Generality of such null filters lies in the fact that the symmetry condition is valid tor
any chosen building block operator L. We may, thetefore, choose L to be the diference
operator yielding a time-varyving discrete ARMA model. A detailed discussion of such
filters and their properties can be found in [32].

In a linear time-invariant system, the stability condition is deseribed by the location
of the system function poles. An LTI system is absolutely stable off its poles lie side
the unit disc. Extension of these results to the LTV case is unfortunately not vald. In
[32] some new results on the stability of discrete LTV ARMA model have been present ed.
Here, we will restrict ourselves to the case where the coeflicients b,(f)'s in (2.20) wie time

invariant, leading to an LT1 null filter, defined as

Q; = _____._I+E:\;lbi‘_ (2.21)

R S S X T
Clearly, such a perfectly symmetrical operator cannot be implemented i practice,
The identical roots of the MA and the AR polynomials force an infinite duration transtent
period [51}. To achieve implementability of this operator, it is necessaty to break the
symmetry between the homogeneous and the nonhomogencons parts ot the operator Q.

This can be achieved by modifyving the anti-null operator (711, such that the operator ¢y,

is almost symmetric,

o = LETL bl 1Y b

LIRS el TN el

=
I
to

where a € [0, 1) is called the symmetric factor.

2.5 'Transparency

The degree to which the operator Qf of (2.22) is transparent to signals not belonging to
its null singularity space is determined by the symmetric factor, «. In this section, we
present a quantitative description of the measure of transpaiency.

Consider z(t), a mixture of two signals s; € Q and sy € Q where QU Q = [ and
QN Q =0. According to the definition of transparency in the last section, the numerator
or the MA polynomial of QF must suppress s; while the complete operator QF must be

transparent to the signal sz. By transparent it is meant that s, will pass through this
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operator undisturbed [31]. The quality of this tiansparency depends on the value of a. As
a - 1, the respective coefficients of the MA and AR parts of @ approach equality and
the total operator approaches an ideal zero-phase allpass filter. Thus. the transparency
becomes almost ideal, i.e.. the output y'(t) of the operator in Figure 2.3 is close to s,(t).
In practical situations, however, values of a very close to unity cannot be used due to the
associated long transient durations. Typically, values of a from .8 to 99 are used. leading

to a4 non-ideal filter.

xr(f) y'(t) = &,(1)
> Qr() ' —

Figure 2.3: General null filter in a Line-Enhancement Configuration.

In what follows, we describe a new criterion for measuring the transparency im-
perfections and use this criterion to illustrate the improvements in the proposed filter
characteristics. To do so, consider a realization of the ARMA that is similar to the direct
form implementation, as in Figure 2.4, where we have introduced a second input U (?).
The operators g;{"‘(-) and (]‘L‘R(-) are respectively the M\ and the AR parts of Q7. We
call this artifi“ial' signal, the complementary signal, which is additively applied to the
input of the AR part to correct for transparency imperfections, i.e., to force the filter to
maintain ideal transparency. The RMS value of this signal, normalized w.r.t. the input

signal power, is taken as a measure of the transparency imperfection.

Theorem 2.2 The measure of transparency of the filter defined by the operator Qf of
(2.22) for a zero-meun wide-sense-stationary input signal can be written as
N
="K, (2.23)
=1

where the K, s are constants that depend on the linear operator L,’s and the filter coeffi-
cients {b,,a,,i = 1,2,..., N}.

'By arttfictal we mean that it 1s only a mathematical concept defined to describe the transparency
unpetfections, it does not specify a real (physical) signal.
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ylt)

(A
Figure 2.1 Diect torm implementation of the general null filte
Proof: let
G = p FbLot bty +h\L‘](q (2.21)

and

Q,”‘I(') = [l vayl val? vy ﬂ\/«\}(') (2.25)

represent the generalized M and AR operatorsin in Figure 2.0 with o (0} and y(1) as input
and output of the modified ARNMA maodel, tespectivels. The imput and ontpui relationshup

of each of the two blocks in Figure 2.1 can be written as

N
Uty =Y L) (2 26)
=0
] . .
y(t) = ‘i,—\“a~[—ll W) (2.27)
[Vt

where a, = b, = L and { ,(t) and U7, () are the input and outpat o the AR and MA parits,

respectively. From Figure 2.1, the input of the AR part, ¥, (1), can also be written as
C,() =080 + (0. (2.2K)

Substituting (2.26) and (2.27) in (2.28) and solving for U7 (1), we obtain

N
Uty =) b Lr(t) — a,L'y(t). (2.29)

1.0
Ideal transparency implies that the input will propagate to the output undisturbed, i.e.

y(t) = z(t), in which case (2.29) becomes

N N
Us(t)y =3 (b — a)L'r(t) =Y e L'e(t) (2.30)
1=0) 1=1



In equation (2.30), I/, (1) is simply the output of the linear system defined as

N . <
Sl His) = (’;8 (2.31)

If the coefficients are assumed to be real, roots of Q(s) are in the left half plane and x(#)

is Wide-Sense-Stationary (WSS) then U.(t) is also WSS. By using (2.31). the Laplace

1=1

transform of {7.(f) can be written as

Sir(s) = Sp(S)HT(YH (s
(+) (IF () () 2.3
= SfH(s)+ S5 (s).
where the superseripts "+ and =" respectively represent the causal and anticausal parts of

1 (s). Assuming that all the roots of Sit(s) are simple and real. Sff(s) may be expressed

as

o+ YK, y
SEs) = . (2.33)

8 — &

=1

The autocorrelation of {7.(t) can now be written as
N
RE(r) = Z K.e*7. (2.34)
=1
Since U.(t) is a real process Ry (1) = Ry(—7), the RMS value of U.(t) is
N
Ru(0)=)_K, B (2.35)
1=0

From (2.30) we note that the complementary signal is directly related to the filter coef-
ficients. Normalizing the RMS value of the complementary signal w.r.t. the input signal

yields the transparency coefficient

INAUHG)
- EUZ0]

where E[-]is the statistical expectation for the case of a random input mixture. As the

(2.36)

RMS value of U,(t) decreases, the filter becomes more and more transparent, that is, less
and less energy is required to maintain the transparency of the filter. Assuming z(t) is
a zero-mean wide-sense-stationary process such that E[L*z(t)L7z(t)] = 0 for ¢ # j and
E[L'z(t)L?z(t)] = ¢2for i = j,where i,j =0,1,2,..., N, the transparency misadjustment
coefficient can be written as a function of the filter coefficients in the form

N
r=> (b-a)’. (2.37)

1=1
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From (2.22) and (2.37), it is clear that as a = 1, then a, = b, and I' = 0, vielding o
perfectly transparent filter. In short, transparency misadjustment is defined as the measure
of imperfections in the allpass nature of the operator away from the singular points. At
this point, we point out that the proposed measure of transparency imperfection may be
extended to any filter of the almost symmetrical model type, including the time varying,

case.

>
N
t‘}
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Chapter 3

Time-Invariant
Almost-Symmetrical Notch Filter

and its Optimization
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The problem of enhancement/suppression of narrowband (NB) signals in the presence of
wideband interference has been well addressed in the past and the tool for this was the
Adaptive Line-Enhancer (ALE), originally proposed by Widrow [16]. The basic blocks of
the ALE are the tapped-delay line Finite-lmpnlse Response (FIR) filter and an adoptation
rule such as the LMS criterion to adjust the filter weights. 1t i~ a multifaceted problem
in that the estimate of the sinewave frequencies, the enhancement /suppression of the N3
signals immersed in broadband (BB) signal or the tracking of signals may be desived.

In the last several decades numerous researchers have investigated the above problem
by applying the autoregressive-moving average (ARMA) based noteh filters, e HR filters
in an effort to model the problem more exactly. Rao and Kung [26] proposed a constrained
ARMA filter specifically designed for the suppression/enhancement of sinusoids. Their
structure for an n-notch filter uses an ARMA (2r.2n) model in which cach pole/zero pair
is constrained to lie on the same radial line such that the ith pole must lie between the
oricin and the ith zero on the unit circle. The closeness of the pole to the unit circle
is defined using a pole-contraction factor e [26, 27]; as « approaches unity, the filter
transparency! characteristic approaches the ideal one. A modification of such a filter was
suggested by Nehorai [27] in which the number of {ilter coeflicients were veduced to n from
2n using mirror-symmetric moving-average polynomial. An almost symmetric ARMA has
also been considered in [52, 31] for the time-varying case. In literature these filters are
generally referred to as Constrained Notch Filters.

In all the above designs of notch filters one considers only the magnitude response,
That is, the design criterion used is unit amplitude at all frequencies other than the
notch point, where it reaches is zero value. No constraint on the phase response has been
incorporated into the design of such filters. Of course, to achieve the desired response,
one can simply use a value of & close to unity. This, however, leads to a solution of no
practical interest, since the transient duration becomes excessively long.

In this chapter we show that this tradeofl between the transient. duration and the
transparency characteristics (defined by the value of the pole-contraction factor) may be
handled by incorporating into the design a phase-minimizing strategy. By increasing the

order of an n-coefficient notch filter of {27] (by strategically adding pole/zero pairs), it is

"The quantitative measure of the transparency is introduced in the first section.
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possible to foree the phase response to rapidly approach zero away from the notch points.
‘This significantly imptoves the transparency property of the filter for a given transient
duration or reduces the transient duration for a given transparency.

The proposed method is based on addition of pole/zero pairs to the existing notch
filter. In the context. of the constrained noteh filters of [26, 27], higher order implies a filter
with multiple notches, In the present contert, howcver, incrcased order filter posscsses a
single noteh, The filter that we start with will be referred to as simply the notch filter
(NF) and the resulting filter due to additional pole/zero pairs will be referred to as the
modificd noteh filter (MNE).

The organization of this chapter is as follows. In the first section we describe the
conventional CNE in terms of the general N-order null filter described in the previous
chapter. We also give some definitions that will be used in subsequent sections. Section
two describes how the idea of increasing the CNF order by strategically placing additional
zoros can improve the performance of the CNF. In section three, we describe three methods
of finding these zero locations. Section four contains some simulation results, while section

five summarizes this chapter.

3.1 Constrained Notch Filters (CNFs)

An ideal noteh filter is an allpass filter with ideal singularities and its frequency response
can be written as
0 W =W, 1 =1,2,...,N
Hw) = (3.1)
1 w # w, i=12,....N
A 2Nth order CNF, on the other hand, can be constructed as a cascade of NV second order

sections
_ [0+ 827" +272)
MY, (04 a,27! + a22-2)

where 6, = —2cos(w,) is tuned to suppress a sinewave of frequency w,.

H{(z) (3.2)

We can derive the CNF as a particular case of the earlier description of general
Nth order null filters. Henceforth, we need only consider second order case as higher order

filters can always be constructed from lower order ones. The choice of independent variable
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determines whether the system of concern is analog or discrete. Here in accordance with
the nature of the filter to be constructed, we choose the independent time variable to be
discrete, i.o., { = k.

Consider a sinusoid s(k) = .lcos(whk + ¢). Since this is a second order signal,
it can be written in terms of two basis functions, namely the set {cos(wk), sin(wk)}.
If we now choose the base operators, L7 in (2.22) to be the delay operators, A whete
A~™z(k) = & (k= m), then the null operator Gy (), with (k) being the unknown input
signal, can be written as a homogeneous equation (g = A in conformity to standard
notation)

Ga(e) =140+ by (k) (3.3)

where in accordance with (2.16)

coswhk sinwk

cosw(k —2) sinw(k —2)
bl = = =2cosw (-")
coswhk sin wk

cosw(k - 1) sinw(k-1)

and

coswk sin wk
cosw(k = 1) sinw(k-1)
by = =1 (3.5)
cos wh sin wk

cosw(k = 1) sinw(k-1)

Without any additional effort, the anti-null operator can be simply written as

= 1 ()
T 14 abigT! + atbyg?

QJ’ () (3.6)

Combining the null and the anti-null operators in an input-output relationsiip (as was

done in (2.20)), we have

1+ blq_l + b2(1_2 I+ blq_' + bzq"z
k) = sx(k 3.7
1+ abig~T +albyg?" P+ ayg=! 4 ayg? (k) (3.7)

y(k) = Qalz(k)) =

which is exactly the second order CNF of [26, 27].
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3.1.1 Transparency of Constrained Notch Filters

One of the simplest and most. commonly used forms of measnre of deviation of the fre-

quency response F (w) from that of the ideal noteh filter is the mean-squared error given

by
= - HW) = l/ [l - 2| H(w) ] coso(w) + | H(w) [2] dw (3.8)
T Jo

where || - {|, refers to the norm in L. ¢f is easily scen to be minimized and reaches zero if
the phase response ¢(w) is zero and the magnitude is unity (except at the notch points)
at all frequencies,

Although the above # is a good indicator of the total error (transparency imperfec-
tions) in the line-enhancement configuration of I (w), it fails to describe the deviations of
the frequency response of the nonideal filter away from the singular points (notch poiuts of
H (w)). The dynamic range of the magnitude response of (1 — H) varies from around unity
near the singular points to values lower than 107° increasingly away from these points.
Thus, by averaging (L;-norm), the behavior of the filter away from the singular points is
masked. It is therefore necessary to find an alternative performance criterion that is able
to characterize the intrinsic properties of the filter at the notch frequency as well as at
any other frequency.

In what follows, we evaluate the transparency misadjustment cocfficient of the last
section for the particular case of CNFs. We can evaluate the expression for I', the frans-
parency misadjustment cocefficient, directly from (2.30) where the operator L is the delay

operator,
N

UAt) = Z(b, —a,)q  x(t). (3.9)

1=0
From (3.9) we note that the complementary signal is directly related to the filter coefficients
and the operator ¢~!. Normalizing the RMS value of U,(t) w.r.t. the input signal power
vields the transparency misadjustment coeflicient

E[U2()]

= Tz

(3.10)

where E'[-] is the statistical expectation for the case of a random input mixture. Assuming

x(t) is a zero-mean wide-sense-stationary process such that Efz(t — i)z(t — j)] = 0 for
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i # jand Elr(t — Dt = j)] =02 for 1 = 5, where ¢, j = 0, 1.2,.... N, the transparency

misadjustment coeflicient can be written as a function of the filter coeflicient in the form

N

F=Y (b - a) (3.11)

1=1
From (3.7) and (3.11). it is clear that as a = 1, we have o, = b, and ' = 0, yielding, a
perfectly transparent filter.
In addition to the above, we will also consider the following, characteristics of the

notch filter to evaluate its performance.

Definition 3.1 The notch bandwidth (NBW) is defined as Aw = w‘tm~u);“,-. where w_:‘”,
and wy, gy are the upper and lower half-power point frequencies (i.e, ~3d 3 frequencies),

respectively.

Definition 3.2 The stopband error ( espop) is defined as

“’:m 9 .
sTOP = [ 11— H(w) |“dw (3.12)
Wi
Definition 3.3 The passband error (¢p4ss) is defined as

(PASS _-_/0 U= 1 (w) [2(1¢u+/+ |1 = (w) [dw (3.13)

Widn

3.1.2 Transient

Often we wish to process a signal of finite duration. Thus, the issue of transient duration is
of critical importance; we further motivate the design of MNF's by taking into consideration
the processing of transient signals. Consider a standard CNF of [26], 1]z, «), with a given
pole-contraction factor & = «,. Since the pole-contraction factor a controls the location
of the poles, it also controls the transient duration of the filter [51]. In the next section,
we show that it is possible to design a higher-order MNEF [I7(z, ') with a pole-contraction
factor o' < a, and a transient duration 7' = 7, such that the resulting imperfections in
the characteristics becomes significantly lower. ‘These improvements can now be traded to
obtain a shorter transient duration by further decreasing the value of o (i.e. increasing the
pole/zero distance) to the point where the errors in the proposed MNE and the standard

CNF are approximately equal. As a result, a reduction in the transient duration 7/ can
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be observed such that it bhecomes significantly lower than 7,. Hence MNFs can also be
viewed as an improvement in the transient beliavior of constrained notch filters, Clearly,
such filters with shorter transient durations can be useful in processing signals of finite
durations.

It is clear that as a increases, T also increases [26, 27]. Thus, in comparing MNFs
against standard second-order notch filters, the value of a must be adjusted such that

both filters have the same transient dumations for fair comparisons to be made.

Definition 3.4 The transient duration 7 is defined as the time taken for the step response

of any noteh filter to reach within £0.01% of its steady-state response.

3.2 Modified Notch Filter

A necessary property of the noteh filter is to have the zeros lie on the unit circle. This is
achieved by the mirror symmetry of the numerator polynomial coefficients of the ARMA
model of (3.2). A further constraint of the notch filter is to maintain the allpass nature
at all frequencies other than the noteh points defined by the zeros on the unit circle. This
can be achieved by forcing the ith pole to lie on the same radial line as the ith zero and
close to but inside the unit circle. For values of @ — 1, the lIR filter of (3.2) is such a
structure and may be realized as a cascade of second order sections, where each section
is used to suppress a single sinusoid. Since by using first and second order filters one can
represent a noteh filter with any number of notches, in what follows, we need only consider
the first and second order filters for improving the phase and magnitude response of the
noteh filter.

The first order notch filter which can be used for the suppression of any DC signal

is represented by

142278
H(z) = ————— 3.14
()= T (3.1
where z; = —1 and py = «z;. The frequency response can be written as
- G 1w H )bz
H(ew) = Lt Rgosw —jnsine My (@)bn ) ) (3.15)

Tl prcosw — jpisinw M, (w)e??r (@)
Cousider the phasor diagram of Fig 3a for an arbitrary point B on the unit circle; we can

determine the phase, ¢(wg), and magnitude, M (wp), responses at w = wp as ¢ = ¢, — Py,
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J —
(a) (h)

Figure 3.1: Phasor diagram of magnitude of response at w = wp

and M = M., /M,,, respectively. From the geometry in Figure 3.1a, we find that ¢ - 0
and Al > 1. It is clear that the filter does nol have a unily gazn nor a zero phase ropotese .

The first order filter (single pole/zero pair) of (3.1:1) gives a positive phase and 2
magnitude greater than unity. Now let us extend the order of (3.14) by adding, a pole/ze1 6
pair such that desired response is achieved. For filters with real coeflicients, the poles andd
zeros must occur in com plex-conjugate pairs or be real. Hence, il a single pole/zero paii
is added to (3.11), then it must be constrained to be on the real line. I we now increase
the order of (3.14) by an additional compensation pole/zero pair as in the phasor diagram
of Fig 3.1b where the phase and amplitude response are ¢ — thpy < 0 M.« /M,," <,
respectively, then il is possible to oblain a filler that has a re sullant zevo phase and a uret
amplitude response, satisfying

M, My

=0 d L
o+ ¢ an My, M »

= 1. (3.16)

Note that the MNF retains the notch point of the original filter due to the zero on the wnit.
circle, while improving the allpass nature away from the notch point due to the presence
of compensation pole/zero pair. 1t is only required to strategically place the additional
pole/zero pair. It is casy to see that this idea can be extended to any second order noteh
filter.

A second order notch filter can be represented as a cascade of two first order filters
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O M,

(a) (b)

IFigure 3.2: Phasor diagram of magnitude of response at w = wp

in the form

1 4 6:7 4 22
14 afz"! 4 a2:-2

14y Ty 'Y [Tz [ 4ot (3.17)
1 +ayz"t ) {1+ ay=z! l+prz=t )\ 1 4pjz? '

where 4 is a complex number and * denotes complex-conjugation. Figure 3.2a shows its

1(z)

phasor diagram at an arbitrary point B. If each of the two pole/zero pair is as in (3.17),
then it is possible to use the earlier first order filter description of the phase and magnitude
compensation. Mathematically, each part of (3.17) can be considered to be a generalization
of (3.14), where instead of DC, each section is used to suppress a complex exponential.
Figure 3.2b shows a phasor diagram at w = wp for an arbitrary compensation pole/zero
pair location and their complex-conjugates. The compensation pole/zero pair, z{ and p§,
need be found such that the resultant phase and magnitude response follow as in the DC
case. If this suitable compensation pole/zero pair can be found for one of the two sections
of (3.17), then for the other section, its complex conjugate pair must be used to ensure
that the MNE has real coeflicients.

The filters generated from the two pole/zero patterns of Figure 3.1a and 3.1b are

cascaded to form the new MNF that is used to suppress the DC signal
14 227! 1426271
H'(2) = . 3.1
(2) (1+p12“1) (1+p?z_1 (3.18)

34




or in the frequency domain

M. (@) Vels) .
11, = R B '0(“') N 10 lu) 3' 0
(w) (‘\I,,l(w')‘ ) (-\l;"l(“"‘)‘ (3.19)

The desired resultant phase and magnitude response at an arbitrary point B in Figure 3.1
arc defined by (3.16). It is clear thatif we choose 27 and py such that ¢ = =, My = My
and My, = Mo then the above two equations are satisfied. If these same 2y and py were
to satisfy (3.16) for all points on the unit citele of Figure 3.1 other than w = 0, then this
leads to an ideal noteh filter. For a single compensation pole/zero pairin (3.18), it is only
possible to achieve a finite improvement in the frequency response and as the number of
compensation pole/zero pairs increase, the new lilter /1'(z) begins to approach the ideal
one.

We proceed by further constraining the poles of the compensation pole/zero pairs
to be the same as the original filter pole, ie. p{ = pyfor v = 1,2,..., ¥ - L. Such a
constraint serves two purposes; first, we obtain a stable MNI (all poles are located inside
the unit circle) and secondly, it is now required to only evaluate the location of the zeros
of the increased order filter which significantly teduces the design complexity.

In the case where the compensation poles are set to py by the above constraint, the

increased Nth order DC' MNF of (3.18) can be expressed as

(s )0 (s, |
z) = ———— 3.20
H'(z) (l+])1:"’)N (3.20)

It is now only necessary to evaluate the values of the NV -1 compensation zeros, 2,2, . .., 2.
such that the resulting filter response becomes close to the desired response.

The above argument is equally valid for a second order filter (a filter with a noteh
at w = w,), since it is composed of two first order sections. Thus in the same manner, the
second order MNF can be represented in the form

I+ zpz7 Y1+ 227D+ 2527 (1 + =527 - (T 2y 27 )0 ¢ z‘,\,:_,“.z“')

H!'(z) = —
(=) (T+prz )N 4 ppz )N

(3.21)
where N is an even number. This latter requirement is necessary due to the complex
conjugate pair necessity which ensures real filter coeficients. As N increases, a better

approximation to the ideal filter response can be achieved.



3.3 Evaluation of the compensation roots

The 2Nth order Modified Notch Filter, MNF. can be written as a cascade of the ONF and

4 compensation section
H'(z)y=H(z)l.{z) = — - (3.22)

where the prime indicates the MNEF, H(z) = B(z)/.1(z) is the second order CNF and
1, (z) = B(2)/A.(2) is the 2.V-2 order compensation section. In [53, 51], the poles of the
compensation section are constrained to be the same as the original poles of the CNI. That

is, if the complex conjugate pair (2, and z,7) are the poles of the CNF then (2}, and :;,')

ate the poles of 1 (2) (the roots of 1.(z)), where ) = 2, forr= 1.2,...V ~ L.
In this seetion, we describe methods of evaluating the location of the compensation
zeros needed for the design of MNFs. In describing these techniques, we will restrict the

problem to a second order filter (a noteh filter for the suppression of a single sinusoid).

3.3.1 Error-Correction Approach (ECA)

Consider a second order constrained notch filter given by (3.17). Note that by simply
cascading N such identical sections, the overall amplitude response of the resulting notch
filter will actually worsen as the number of sections in the cascade increases. In fact, since
the original constraint of [26, 27] on the pole location causes deviations in the frequency
response, increase in the distortion of the cascaded structure is only too obvious.

In view of the compensation strategy described earlier, we wish to increase the order
of the filter such that the addition of the zeros provides phase and magnitude compen-
sation. In this method, we first design a higher order line enhancer (LE) Hpg(w) from
which we derive the transfer function of the MNF as, H'(w) = 1 - Hpg(w). Frequency

response of an ideal-line enhancer is

. W =w, i=1L2,...,N
HIDEAL () = (3.23)
0 w # w t=1,2,...,N

—

and is shown in Figure 3.3.

If an LE can be designed such that the frequency response Hpg(w) is close to the
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Figure 3.3 Ideal line enhancer ol Nth ondet

ideal one, then the design of the MNEF is compietad.  Uhe transfer tunetion ol o hine
enhancer cotresponding to H (=) of (3.17) is

(- Dy Vet o
Hpp(z) =1 - H{z) = ~—- 20 1A 32
LE() (=) P af: Vg oods ! ( 1

Frequency 1esponses of a cascade of one, two and four such filters are shown in Figure 3.1,

(lLeo N = 1.2and 1), Figure 3.0 indicates an improvement in the LE behavior as the

number of sections in the cascade is increased. The MNE can now be formulated as
A .
H'(z) = 1= [y (2)] (4 25)

where 2.V is the resulting MNEF onder. As NV inecreases, the 1esponse gets closer and lase
to the ideal one. Itis important torealize that the cascade Of LEs in (3.21) presenve a unit
amplitude and zero phase at the notch frequency defined by 8. 'This condition can casily
be verified. We illustrate this method with an example by redesigning a second cader
notch filter to form a fourth order MNFE. To distinguish this MNF from that of the direct

pole/zero placement method (described next), we use the subscripts "ECA™ in Hj 4 (2).

Example 3.1 Line-enhancer associated with the second order notch filter is represent e

by (3.24). From this H . 4(2) is formed to be (by choosing N to be 2in (3.25))

Hgcalz) = 1-[Hpg(2)

1+20az7! + (202 +200% — 62)272 £ 20(? 40— V)z7b b (20 1)z b
Yz k2ot DE T o)
1+ 200271 4+ a?(2 + 64)272 4 200 + otz o
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Figure 3.4: Line-enhancer magnitude response.
The noteh point is defined by the value 8 = =2 cosw,, where w, is the normalized notch

frequency in the range [0,7]. Figure 3.5a shows the pole/zero pattern of H - 4(<), while
Figures 3.5b and 3.5¢ show the pole/zero patterns for the sixth and eighth order MNF,

respectively.

3.3.2 Symmetric Pole/Zero Constellation (SPZC)

As in the previous design, the compensation poles are constrained to be at the same
location as the original second order filter poles. We need only design a method to find
the location of the compensation zeros. Examining the zero locations corresponding to the
ECA method in Figure 3.5, it is clearly seen that as the order of the proposed Hp - 4(2)
increases, the zeros in the three pole/zero configurations are clustered very closely around
an inner-circle of radius (1 — «) with the centers located at the pole locations. It is evident,
that in each pole/zero cluster of Figure 3.5, one and only one zero belongs to both the inner-
circle and the unit circle. It is this zero that is necessary to maintain a notch at w = w,.
The remainder of the zeros may or may not be exactly on this inner-circle, however, they
arc very close to it. Furthermore, there appears to be some form of symmetry between

the zeros in each cluster. Ve use this symmetry to design a closed form MNF based on
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Figure 3.5: Pole/zcro plot of ECA based MNIs. (a) fourth osder (b) sixth order; (¢)
eighth order.

the pole/zero placement. NINFs can be designed by forcing the compensation zeros to be
equally spaced on the inner-circle relative to the noteh pomt zervo (i.e. 2x /N radians apart
on the inner-circle, starting at the notch creating zero), creating symmetry much like the

ECA method. Half of the zero locations of the MNF are given by:
z = (1 = q)etvettin/N) L getvo, i=0,1,....,N -1 (3.27)

where w, is the notch frequency and the other half of the zeros are chosen to be complex
conjugates of (3.27) to ensure a real coeflicient filter. Equation (3.27) also ensures that
for i = 0, 2z, creates a notch at w = w, as required. This zero corresponds to the original
second order part of the MNF and nced not be determined here. Figure 3.6 shows the
resulting pole/zero constellation for a sixth order MNI so designed.

The SPZC-based MNF can now be written as

(422~ +22zz7 YA+ 2271+ 25278 (L4 2n 27 )1+ 2327
(1 + azo2YN(1 +azzz= )N '

Hgpzc(z) =

(3.28)
The coefficients of the SPZC-based MNF can be obtained by expanding the numerator
and the denominator of (3.28). The factorized polynomials in the numerator of (3.28) can

be expanded using the following recursive relationship.
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Figure 3.6: Pole/zero constellation for a sixth order SPZC-NINFE.

It is always possible to write the factorized polynomial of degree 2V in the numerator

of (3.28) as a product of N polynomials of degree two as
P2) = (1 + 7o 8027 ) (19027 4+ 31278 (L anvo s T+ Bvo1278)  (3.29)

where v = (2 + =) and 3y =] zx |*for k = 0,1,...,N = 1. Equation (3.29) can now
be expanded to generate a polynomial of degree 2N. Let (1,2‘\’"2 be the coefficients in the
expansion of the first N — 1 second order sections in (3.29) where i=1,2,...,N — 1 and
a*N=2 = 1. Then the following recursive relationship can be used to derive the coefficients

of the polynomial resulting from an expansion of N such second order sections:

Vo= NN NN, i=1,2,.,2N =2 (3.30)
GN-1 = YN-102NZ3 + Bn-sain 2 (3.31)
3N = Bno1agnC: (3.32)

The coefficients can be used for the implementation of the SPZC-based MNF using ARMA
modeling. The performance of this filter appears to be significantly better then the error
compensation MNF, as will be shown in the simulation section. Because the compensation

section of the SPZC-based MNF has been obtained in a closed form by simply knowing the
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notch frequency and the pole-contraction factor, this method becomes the more attractive

one.

3.3.3 LMS-Optimal Roots of the MNF

The compensation poles have been constrained to be the same as the original CNIY poles,
the task at hand is essentially that of an FIR type filter design. For solving this problem,
we modify an existing optimization technique [55] that can be used to directly yield the
coeflicient of the MA part of the compensation section.

Optimization methods for evaluating the filter coeflicients involve three steps [56).
In the first step, an error function that depends on the difference between the desired
and actual is formulated. In the second step this error function is minimized to yield the
desired filter coefficients. In the third step an allpass phase equalizer is desipned to achieve
the desired phase. It is possible to incorporate the desired phase and amplitude response
in the above step two, thus eliminating step three as in [55]. We modify the technique of

[55] to suit our problem. Let us rewrite the MNF of (3.22) as

P(zYR(z)

=)= 0G) (3.333)
where
P(z) = l+piz™ +p2z
R(z) = 14727 4 4 ryy_pz 2N+
2N

Qz) = 1+qz""+ - qnz?

The numerator of the MNF has been split into two parts: the known MA part I’(z) of the

original notch filter (B(z) in (3.22)) and the unknown MA part K(z) of the compensation
section of the filter (B.(z) in (3.22)). Q(z) is of course known by the earlier constraint on
the pole locations and is equivalent to A(z)A.(2). It is only necessary to determine ().
It is important to realize that we need not design the complete MA part. but only the
compensation section. Importance of this procedure is realized in evaluating closed form

expressions for the compensation filter coefficients.
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The frequency response of (3.33) can be wiitten as

(1 pFerw) + 0 s @)L+ rTe(w) +rTsa(w))

' w) = - = 3.34)
“ L+ g es(w) + 97 s3(w) (
where
p o= ol
! = [I; ra I‘g\_g],
r
9 = [n @ - @N]
and
ci(w) = [cosw cos 2..']7
si{w) = [-sinw —«in '.ZW'}T
c2(w) = [cosw cos2w - o8 (2NV=-2))7
sp(w) = [-sinw —sin2w --- —-sin(‘2‘\'——2)w]'r
c3(w) = [cosw cos2w - cos2.Vw]T
szg(w) = [-sinw —sin2w :-- —sin2Vw]T.
By using the ideal frequency response of the notch filter, i.e.,
1 wFw
Hy(w) = Fuo (3.35)
0 w = W,

as the desired response (where subscript 'd’ denotes desired), the error function can now

be formulated as

P(w)R{w)
@ (w)

Since the desired frequency response Hy(w) is a real function for all w, the weighted error

e(w) = Hy(w) - (3.36)

function can be written as

Q) Ha(w) - P(w)R(w)
er(w) + jeu(w)

e(w)@(w)

(3.37)
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where
er(w) = Hg(w) -1+ Ild(w)ch‘;(u}) - 7""('3(5«,‘) - ])r('l(w')l'l‘('g(w') + p"sl(w‘),-".\,(w-)
aw) = Hyw)q es(w) = rTsyw) = pler@rlsa(w) = plsp(w) = plsi(rleyo)

the subscripts 'r* and i’ denote the real and imaginary parts, respectively. By using ¢, (w)

and e, (w), the weighted mean square error is defined as
A T2 2 IR
e = / [ (@) + i ()] dw (3.4%)
0

and the FIR filter coeflicients r,’s, 1 = 1,2,...2V =2 can be determined by nununizing,
Emee wort. roie., dE 5. /dr = 0. On performing this minimization, we obtain a system

of linear equations

E)—]—M = /‘r Q' (wirdw ~ /*r d' (w)dw = 0 {4.39)
Jar Jo Jo
where
Q) = [1+Terlw) +p el @)p+p s s (@]
[c:(w')("f(w) + -\‘:(»J)-{'»'(w*)] (3.10)
and
C) = [T erw) +p e ()ef (@)p + 975 (@5l ()] )

- Hy(w) {Cz(w) + I’Tf‘l(w)cz(w) ~ plsi(w)s2(w)
+cJ (@)g [e2(w) + PTerw)esw) = Pls1 (w)sa(w)]
+57 (w)g [sz(w) + pley(w)sy(w) + pT sy (w)('z(w)] } . (3.41)

Evaluating the integral leads to the following system of linear equation that can easily be

solved to yield the desired filter coefficients, r

Qr=d (3.42)
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where

RUETIY ! ]
2 (642 20 1
! 20 (92+2) 20 1 0
Q) -
0 120 (9°+42) 20 1
1 20 (6° + 2) 20
i 1 6 (67 +2) |
and
() = =0t q +0q+q;s
A2 = =l g+ g
d(t) = ¢+ @+ Qe for 1=3,1...2NV =2

Since Q) is a positive-definite matrix, a unique solution for the coefficient of MA part of
the compensation section of MNF can always be found. The fact that Q is a band matrix
can be exploited to efficiently evaluate r.

In order to obtain closed-form expression for @ and d above, it is necessary to in-
tegrate over the entire frequency range [0, 7). Since Hy(w) is unity everywhere except at
w = w,, we can set the desired filter response Hy(w) to unity over the entire spectrum.
For the purpose of integration this has no effect, since an integral over a single point has
no contribution to the overall integration on the interval [0, 7). The fixed MA part (known
part) of the MNF, P(z), forces a null at w = w, and since the MNF poles are fixed, this

procedure has no effect in the overall filter response.

To illustrate the design procedure we present the following example.

Example 3.2 A sixth order MNF is composed of a second order CNF and a fourth order

compensation section,

(3.43)

1402714272 14+ bz 4 b5z4
1+afz-'+a?z-2 /| \1+af2"! + -+ a2z

H'(z) = (
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where af, @ = 1,2, 3, { are known since the poles are constrained as described earlier and

b7, 1=1,2,3,4 are obtained from the following system of lincar equations
! ) B 5)

[ 92 42
20
1
0

20
0 +

20

I

1

2 28
g2 42

20

0
l
20

0% 2

1

J

=20 — 1L +q +8q2 -+ g3 W
g+ qn + 44
g3 F gty

gy + g5 ys

(3.44)

and the ¢,'s are the coeflicients of the AR part of the total MNI that can be obtained by

multiplying out the denominator of (3.13). Figure 3.7 shows the distribution of the poles

and zeros for an MNF with noteh frequency w, = 1 (le. € = - 2case, = - LOROG) and

Table 3.1 shows the resulting coeflicients,

2 7e108

¢ Optimal MNF

Figure 3.7: Pole/zero constellation of a sixth order Optimal-MNF

2 /eros8

i=0 i=1] =2 =3 | i=4 i=h | i=6
7| 1]-1.0806 1

r. | 1]-1.5055 ]| 1.5434 | -.7907 | 0.2593

o | 1] -2.5935 | 4.1620 | -3.9657 | 2.6637 | -1.0623 | 0.2621

Table 3.1: Coefficients of the two MA parts and the AR part of the sixth order MNF




3.4 Sirnulations

The proposed moethods are more complex in design than the standard second order CNFs,
The increase in complexity, however, is minimal, since simple closed-form solutions are
presented. "Che issne of complexity need not be of any great concern since the design of
MNFs is done off-line as it would be done for the standard CNI.

In this section, we evaluate the performance of the MNFs designed via the three
proposed techniques: the Error-Conection Approach (1ECA). the Symmetric Pole/Zero
Constellation (SPZC) and the LMS-Optimal (OPT) approach. We compare the MNFs,
so designed, against standard second order noteh filter of (3.17). In comparing the per-
formance of these filters we will use the notion of transparency and transient durations
v descibed eatlier. In addition to these measures we will also use the ideas of notch
bBandwidth (NBW), stopband and passband cirors. In the following, the LMS-Optimal,
SPZC and the ECA MNFEFs will be donoted as U0, (2. H, . (2) and H (), respectively,
while the standard CNI7 is denoted as 11 (2).

It is clear that as the pole-contraction factor a increases, the transient duration also
increases [53]. Similarly, for a fixed a as the order of the filter increases, the transient
duration also increases. Thus, in comparing these filters, the value of « is adjusted such
that all filters have the same transient duration for the above performance measures to be
compared on an equal basis.

Figure 3.8a show the transparency misadjustment coefficient I' as a function of the
transient duration r for a conventional second order notch filter, H(z) and fourth order
MNFs designed via the three proposed approaches, i.e. Hge,(2), Hgpoo(2) and Hyp(2).

!

Clearly, H(z) exhibits the worst transparency and the H/, (z) the best transparency;

while the Hy,..(z) and H;

eca(2) are somewhere in between the two. The transparency

coefficient for H[ , (z) approaches that of H(z) for lower quality filters (lower values of «

or equivalently those with shorter transient durations), thus, showing no improvements

over H(z). Even as we increase the order of H. ,(z) to six in Figure 3.8b, there is no

improvement for lower quality filters. The transparency, however, for the H(,. (z) shows

a significant improvement over H(z). From .he given curves in Figures 3.8a and b, it

is apparent that the transparency curves of the H,,(z) are approximately 3 and 6 dB
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better than the SPZC-MNFs for the fourth and sixth order filters, respectively,  The
transparency performance of the SPZC-MNFs is very close to the optimal MNs. As the
quality of the filter is increased, the improvements for all MNEs over the conventional
second order filter are seen to also increase. Figure 3.9 compares the stopband erior
curves for fourth order MNF's against the conventional CNEF. Adl thiee of the NINEFs provide
virtually identical performance which are approximately 2 dB better than that of the CNF,
For lower quality filters the H]_ (z) is seen to approach the performance of CNI In Figure
3.9b no significant improvement is observable by increasing the order of the MNEFs to siy.
Figure 3.10a compares the stopband error curves for the fourth order MNIEs against the
conventional CNI. All three of the MNFs provide virtually identical petformance which
is approximately 2 dB better than that of the CNF. In Figure 3.10b by increasing the
MNFE order to six. an improvement of about 1 dB is observed. The improvement in the
passband and the stopband appear to be insignificant at fust glance. But, duoe to the
averaging effect of the L;-norm definition of these ertor, the very significant improvement
away from the notch points are masked.

Figure 3.11a shows the normalized notch bandwidth for the CNF and the thiee
proposed fourth order MNFs. All three of the MNFs have approximately the same noteh
bandwidth that is significantly lower chap that of the CNF. As the quality of the filter
is increased this improvement is reduced. This is expected as the pole contraction factor
approaches unity, the errors in the C'NF become negligible and the relative improvement
becomes smaller. Figure 3.11b shows the results of increasing the order of the MNE to
six. For low quality filter the notch bandwidth is seen to further decrease.

The following example illustrates the performance of the MNI's under the condition
that the transient duration is taken as a fized parameter, i.c., a vertical slice of Figures

3.8,3.10, 3.9 and 3.11.

Example 3.3 In this example, we design sixth order MNFs with a transient duration of
approximately 56 samples. We adjust a for H(z) such that it has the same quality as the
MNFs (quality referring to the transient durations). Table 3.2 shows the zero locations
of the four filters (where w, is the normalized notch frequency in the range [0, 7)), which

are also shown as a pole/zero plot in Figure 3.12. In Figure 3.12, the zeros are indeed
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Figure 3.8: Transparency misadjustment error vs. transient duration. o = CNF; x =
ECA-MNF; * = SPZC-MNF; - = OPT-MNF.
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Figure 3.9: Stopband mse vs. transient duration o = CNF; x = ECA-MNI; * = SP7C-
MNF; - = OPT-MNF.
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Figure 3.10: Passband mse vs. transient duration. o = CNF; x = ECA-MNF; * =
SPZC-MNF: - = OPT-MNF.
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Figure 3.11: Notch bandwidth vs.
SPZC-MNF, - = OPT-MNF.

120 160 180

(b)

transient duration. o = CNI; x = ECA-MNF; *

140

200

51



clustered aronnd a direle of tadins (1T—a) centered at the poles as discussed previously. The
vatious meastires of performance are listed in Table 3.3 where the transient 7 is measured

i mumnber of samples and the noteh bandwidth (NBW) shows the % reduction relative to

that of II(?).

H(z) i () 1. (z) Heca
_I v, ‘.ijw,. PE I C:E]J,,

0. 7100, (o F0 1019] 0.7186¢ T FU T189) [ () 7 [28; £J (>, +0 3115)

- [ 0.6825 Bt IS 7 7 g E)00F0 TI0) ) TG, ZUToo+0 2903

Table 3.2: Zero locations of the three filters considered

T

II(:) I[épt(:) Il.ipzc(:) I[f_l‘crx(~)

0 0.8730 0.5010 0.7950 | 0.7920
T {samples) 56 56 56 56

Stopband error (dB) -3.2720 | -T19073 | -T 1442 | -6.6107
Passband error (dB) || -9.1009 | -11.3713 | -11.7033 | -11.8827

I"dB -11.2253 | -36.1316 | -30.4725 | -18.3038
NBW 118650 | 16.51% | 48.81%,

Table 3.3. Petformance of sixth order MNF vs. NF for fixed transient duration

From Table 3.3 it is seen that the performance of the three MNFs is virtuaily iden-
vical. Clearly, all three MNFs are superior to the CNI in all respects. The Hyp (=) has
the best transparency misadjustment coefficient and the notch bandwidth of the H!_,(z)
is only marginally better that the other two MNFs.

Although the MSE is a good indicator of the passband and stopband errors, it fails
to adequately describe the frequency response of the notch filters away from the notch
point. The dynamic range of the magnitude respoase 1 — H (w) varies from around unity
near the notch point to very small values increasingly away from this point. Figure 3.13
shows this error (| 1 — H(w) |) as a function of frequency. It is evident that increasingly
away from the notch point, the errors in the magnitude response are greatly minimized,

leading to am improved allpass performance.
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Figure 3.12: Pole/zero locations of sixth order MNEFs and o ONF

Example 3.4 In this example, we show that as a consequence of the improvements in
the NINFs_ it is possible to achieve teduced transient durations. We reduce the value of
a for each of the MNFs such that the error in the frequency tesponse is equivalent to
that of the conventional second order CNF. Here, for the purpose of ilustration, we use
the notch bandwidth (NBW) as the error criterion. The notch bandwidth i often an
important criterion in the design of NFs - for example, in the separation of closely spaced
sinusoids. In adaptive NFs (CANFs) [26], the accuracy of the estimated coeflicients is
directly dependent on the NBW, i.e., the narrower the the NRW, the more accurate
are the estimates of filter coefficients. Of course, this choice of errcr criterion should
be application dependent —- it may be desirable to consider the passband errors or the
transparency misadjustment in a line-enhancement application.

The results are listed in Table 3.1, where the normalized NBWs are equal for all
cases. The H! ,(z) and H!

opt spzc
!
and H],

(z) show approximately 45% reduction in transient duration
(z) shows a 56% improvement. The greater improvement, in the ISCA-MNI-

is at the cost of degradation in the performance of the stopband and the all important

ov
3



10 b
20
=30

-4

-1

60

CNE

0 ___  ECA-MNI

[ SPZC-MNF 1
0| — OPI-MNI |
-00 1 " —L. L 1 1

9 0S8 1 15 2 2.5 3 35

Figure 3 13 Frror ia the magnitude response as a function of frequency.

transparency misadjustment coefficient, I'. For the other two MNFs the reduction in the
transient duration does not force the other measures to be significantly reduced. In fact.

the transparency misadjustment coefficient still shows large improvements.

I HG) T Hipl3) | Hipo(2) [ HE ()
o 0.9000 | 0.7170 | 0.6965 | 0.6225
! T (samples) 71 40 37 31

Stopband error (dB) || -6.4334 | -5.1528 | -5.0284 | -2.2272
Passband error (dB) || -10.0449 | -9.8408 | -9.8063 | -9.7673
I'dB -13.2078 | -28.1473 | -21.1084 | -4.4168

Table 3.4 Performance of sixth order MNFs vs. NF for fixed notch bandwidths.




Example 3.5 This example is similar to the last example

NBW as an error criterion we use the passband errors. Uhe results are listed in Pable 3.5,

The results show a similar trend as that of the last example.

Here, instead ol nsing, the

HE [ 1L G GV T ()

a 09000 | 0.7270 [ 0.7010 | 06490 |
7 (samples) 71 11 A0 31
Stopband error (dB) 6453 | 3635 | SA662 | 2000
Passband error (dB) || -10.0019 | -9.9935 | -9.9367 | -10.0358
rdB CI32078 | 28,9426 | 216726 | -6.0501
NBW 1 ose% | 2% | T

Table 3.5: Pertormance of sixth order MNEFs vl NI tor fixed passband etrons

3.5 Conclusion

In practical situations the values of the pole-contraction factor ain the range ol 8 ta 49,
cause phase and magnitude response distortions in the NE. It has been shown, that these
deviations in the frequency response can be combated or teduced it the order of the CNI
is increased by strategic placement of additional pole/zero paits. For a given transient
duration, this significantly improves the transparency property of the new filter (MN1).
Due to the transparency/transient duration tradeoff, this improvement in transparency
can be traded for a reduced transient duration. Simulation resnlts have been used to
show that significant improvement in the transient duration that can be achieved with
this tradeoff.

Three methods of cvaluating the compensation filter roots have been presented,
namely the Error-Correction Approach (ECA), Symmetric Pole/Zero Compensation (SP7.C)
and the LMS-Optimal. The first two of these present closed-form suboptimal methods of
evaluating the compensation roots. The third method is optimal in the LMS sense, for
which simple analytic solution has been presented. Due to the optimality, this method
also serves as a lower bound for the errors corresponding to the suboptimal methods. Sim-

ulation results indicate that the LMS-Optimal MNF is negligibly better than the SPZC




methods, while both are significantly better than the ECAL The LMS-Optimal method al-
lows for direct evaluation of the filter coeflicients that simplifies and formalizes the design
of MNEs used for the analysis of short record signals. For this reason it is the preferable

ohe
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Chapter 4

Statistically Optimal Null Filters
(SONF)



In this chiapter, we propose an afternative nonparaetric statistically optimal method of
null filtering. One of the important aspects of this new method les inits ability to process
signals of shott record lengths.

Synthesis of optimum Linear filters involves choosing the systen in such a way as
to satisfy certain rules that make it optimal. In this design process three aspects must
be addressed: the mput speetfication, systcm constraints and the eriterion of optimality.
Input specification implies that some « prrori knowledge of the input signal is available.
Svstem constraints define the type of resulting svstem For example, if the input consists
of time-varying signal in noise, then we may want to design a linear time-vaiyving (LTV)
svstem Criterion of optimality reflects a meaningful measure of the goodness as related to
the problem at hand. For example, we may choose Minimum Mean-Square Error (VMMSE)
ot the maximum ontput Signal to Noise Ratio (SNR) [37]. In this chapter, we exploit both
of these measures,

There exist two major problems in signal proesssing: signal separation {enhance-
ment/snppression) and signal detection. For signal sepa -ation, it is customary to use the
AMINISE eriterion 1o deseribe the performance of processing. In stationarv environments,
s po~stble to desten a linear te ivaiant (L1H <y <tem that is optimal o the NINISE
sense. Such afilter is known as the Weiner filter {58} and its design is based on the knowl-
edge of the signal and the noise power spectral densities. As for the detection problem,
filtering is based on the knowledge of the signal shape (this knowledge may or may not
be complete) and the optimality criterion is the maximum output SNR (SN R,). Such a
filter is known as the Matched Filter (MF) [58, 59, 60].

We propose to combine the MF (designed for detection) and the least-squares (LS)
optimization approach to solve the problem of enhancement/suppression of short-duration
signal embedded in noise. It is interesting to note that MFs are used exclusively for
detection purposes, most notably in communications applications, sce for example [61, 62).
In spite of this fact, in our approach, we propose to use them as a fundamental building
block for the filtering of short-duration signals.

Note that designing a filter to estimate a signal, s(t), car. be considered to be equiv-
alent to designing a null filter. That is, if an optimum linear filter H(w) can be designed

to estimate s(¢) in the presence of interference, then the null filter is simply defined as

(41
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U= I{w) and vice versa. I this sense, designing o null filter o1 a line enhanest is e
lent.

Section L1 presents the statement of problem. Some definitions aned jdeas that will
be usedd in the subsequent sections are also described. In Section 12, we evploit the idea
of MI's and intioduce the Instantancous Matehed Filters (INHESY. T Sed tion L3, we use
the IMIY as a basic building block and present the new approach of SONEFS. Several hinds
of the SONF are presented. Globally optimal SONI is investigated in Soction 1+ The
globally aptimal SONF cannot be casily implemented, as such, implementation sues ae
considered in Section 1.5 and a disctete-time SONIE is developed. A recursive SONE 18
also introduced, wherein reduced a prior information is tequited. Section L6 contans
some analysis verifying the fact that under some constraint the SONES may be considerod
as a new implementation of the Kalman Filter. In Section 1.7 we develop an adaptive

estimation method of the damping coeflicients ol damped sinusoids using, the SONT-.

4.1 Preliminaries

In this section we present the statement of the problem in the contest of Processing tran
sient signals. Definition of transients, as constdered in this thesis, s given. We snmmimatize
the results of Optimum Linear Filter as presented in [11]. The wdea of teprosentation ol
signal with an orthogonal basis set is reviewed. In so dotng, in the fiamework of on line o
timation, we consider the idea of the classical Giram-Sc hmnidt ort hogonalization procedure

for arbitrary or dynamically changing time intervals.

4.1.1 Problem Statement

A continuous-time signal £'(t) is measured on an observation interval of 70, seconds. Mot
of the time, the measured signal z’(¢) consists of only noise. Occasionally, it contains an
additive mixture of signal s(¢) and noise n(t). The signal s(t), when present, has a short
duration as compared to the observation interval. It is often of the de aying type, thatis,
its amplitude decays as time increases. Moreover, s(t) may consist. of an additive mixtue
of several such signals. Signals of this form are often called transients. Very olten the

terms "short or finite duration” and ”transients” are used synonymously.



In general, the problem of estimating transient signal waveforms can be formulated

i bwo pitts:

e Detection of the presence of the transient and the estimmation of the time-of-arrival,

TOA, (see Chapter 1 for the definition of TOA).
e istimation of the waveform given the TOA.

In our worh we are concerned with the second of the two parts, that is, given the piesence
of the transient and its TOA, to estimate the signal waveform. Of course, some a prior
knowledge of Lhe transient waveform is also available. This does not reduce the generality
of the problem as techniques exist for transient detection [$,63. 61, 65] and TOA estimation
[6].

To formulate the problem at hand. consider a received or measured signal
£(t) = sty 4+ n(t) L€ (0. T, (1.1)

where s(t) tepresents the transient (message or the desired signal) that may be a sample
of a random process, n(t) is additive white gaussian noise of zero-mean that is statistically
independent of s(t), and [0. 74 is the observation interval. It is in knowing that the signal
s(1) is nonvanishing in the observation interval - vanishing only for a subset of the interval
(0, T,p], 1e,, not existing from 0 to TOA - and given the TOA, that we may truncate that
portion of the received waveform prior to the existence of s(¢). Using a new observation

interval T corresponding to the time from TOA of s(t) to Thp, we can rewrite (4.1) as
r(t) = s(t)+n(t) tefo, T (4.2)

where t =0 now corresponds to the TOA of s(t). The signal s(t) may vanish before T, is
reached. For this time duration, we consider s(t) to be of zero value.
We treat the general case where s(t) is a random signal that can be represented as

N

s() =D _undi(t) tel0,T] (4.3)

1=1
where v'sare the unknown random variables and &, (t)'s are the known set of basis func-

tions.
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Figure -1.1: Suppression of Transient Signal

The problemn at hand can be defined as the estitmation of the signal s(0) under the
MSE optimality criterion and thus to implement null filteting, by subtrading s () (the

estimate of s(t)) from the input mixture as in Figue 1.1,

4.1.2  Optimum Linear Filter

The problem of optimally estimating a message signal in the presenee of interlering noie
was considered by Van Trees in [11]. Here, we briefly summarize these vesults tor o later
comparison.

System of intetest is shown in Figure 1.2, The received or observed signal « onsists
of an additive mixture of the desired signal and noise as in ( £.2). The signal s(1) s,
in general, a sample of a random process with covariance function K, (¢, ) and n(l) is
the zero-mean white gaussian noise with covariance K, (t,u) = N, 6(f - ). The noise is

statistically independent of s(t). Since s(t) is not necessarily stationary, it is anticipated

s(t) z(t)

Linear $0)
System '

Figure 4.2: Linear estimator of signal s(¢).

that the optimal solution may require a time-varying filter, h(t,12)  output at tinwe ¢ given

input at time u. For a realizable h(t, u), the output due to the input z(w) is written as a
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convolution integral,
r
S = / it ) (u)du. (4.-1)

The objective is to find (¢, 1) such that $(¢) represents s(f) with a minimum mean-square
ertor over the observation interval {0,717,
A solution to h(f, ) is possible using, standard variational techniques; however, Van

Trees [ uses a less formal but lengthy appioach to yield the following optimal solution

=~ _
ho(t, u) = L ———— O, (1) (1) (-1.3)
=1 Fu +:Vo

in teris of i's (eigenvalues) and o (1) (eigenfunctions) of IV (t u). The subscript "o’ in
hit.u) of (1.5} denotes optimal. In general, the numoer of eigenvalues is large and (1 3)
tepresents a practical solu tion for cases where the number of significant eigenvalues is small.
Figure L3 shows a K-term implementation. The mean-square error in the estimation of
s{t) is expressedd as

v
N, e i )

=5 3 — e t €0,7]. (1.6)

I Hy
__..?—. /U (+) dr s Pt
(Dl(f)
T ’ 2
b . o —_—
s(1) /o ) dr pat No/2
(f)g(f)
T 1173
/0 (-) dr . e+ No/2
@k (t) Pk (t)

Figure 4.3: k-term Linear Optimum Filter
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4.1.3  Interval of Orthogonality

[n many applications such as speech and image coding, orthogonal basis functions, like
those in the Fourier Transform and the Discrete Foutier Transform (DE'T), ate used to
reduce the correlation in the data. Recently, the use of wavelets has been sugpgested for
this purpose [66].

Often Fourier Series is used as a close approximation for nonperiodic processes. Fog
such processes the Fourier coeflicients are generally cortelated [67]). Correlation, however,
can be reduced by increasing the observation interval I'. If the covariance function is not
very smooth, the decay in correlation can be slow. For example, the correlation in the
Fourier coeflicients of a signal with an exponential covatiance function N(t,u) - ¢ el
decays at arate of 1/7% as T increases, which is slow compared to the exponential decay of
K (t, u) [68]. Furthermore, increasing I indefinitely may render the caleulations unstable
creating overflow problems. Of course, for short data or transient problems this approach
is clearly not feasible.

None of the above techniques reduce the correlation in the coeflicient of the ex pansion
as do the eigenfunctions. A signal s(t) with a well defined covariance fundtion Kt u)

over an interval [0, T] can be represented as a series expansion

N
s(t) = D valt) (1.7)

=1
where {&,(t),7 = 1,2,..., N} is a set of orthonormal functions. This set is the solution of
integral eigen equation

/.T (¢, u)ot(t)d” = fdn(t). (1.8)
JO

The significance of the above, known as the Karhunen-Loeve (KL) expansion, is that it
provides an exact (in the mean-square error sense) whitened discretization of a contintous
time process which yields a much simpler task of analyzing the process [14]). More often
than not, such an expansion is only a theoretical concept since practical solutions to the
integral eigen equation (4.8) are generally not possible.

Given an observation interval [0, T], the KL expansion holds only over this interval.
Over a new observation interval [0, 77], where T' # T', a new set of basis func tions needs to

be found. In another words, the set of basis functions over the observation interval [0, 7)
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is different from that over the observation interval [0, 7.

In an on-line estimation problem, as cach new portion of the signal is received.
the old set of orthogonal basis functions is not valid and a new one must be calculated.
Alternatively, voe may try to find a basis set that is oithogonal over an arbitiary interval
[0, ] whete t < T, clearly an impossible task. One method of overcoming this difficulty is
ta arthogonalize the functions ¢,(f)"s for each new time interval [0,¢] as t increases. We
propose Lo use a sliding Gram-Schinidt (GS) orthogonalization procedure to achieve this
This procedure is difterent from the general GS orthogonalization procedure in that we
do not orthogonalize over a fixed interval I, but rather at each instant of time over an
interval that is dvnanically increasing. Hence. the sliding aspect in this proceduie.

Lhe following illnstrates the sliding GS proceduate. Given,

\
SUED SIS t =01, (1.9)
1=1
where the set {o (), ¢ = 120 ...V} may or may not be orthogonal over the interval

[0,7) Wecan tormulate the tollowing set of orthogonal lunctions over an arbitrary interval

t = [0.7).

ity = o)
oty = o) + pa{the ()
va(t) = os(t) + paalt)ia(t) + par () () {1.10)
N-l
va () = oxlt) + Y paa(t)un(t)
1=1
where
b (r)dr _ (60,8, i =23, N
o, (t) = — = - for 4.11
’ [Lordr 18, (01 io=ne.an o1 Y

For any given t € [0,77], the inner product (¥,(t), ¥,(t)), = 0 for + # j. The signal s(¢)

can now be written in terms of set of functions, {¢,(t),i=1,2,...N}, that are orthogonal
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over any interval 0 tot € [0, 7]

s(t) = [vy—vepn(t) = - —expviO] e
+[vs = vapaa(t) =+ - evpaaD] e E b ev e TR
= A O)wv(@) + e 4 v Den ) (rn

By using the sliding GS orthogonalization procedure. 1t can beoseen that we have trans
formed the constant coellicient signal exp msion into one where the werghitimg coethioents

are time-varying,

4.2 Instantaneous Matched Filter

In this ~ection. we define the idea of Instantancous Matched Fabter 1t <hown how the
idea of ME can be extended to generate an output wavelorm that, msome wavs iepre ent
the message signal. In the subsequent sections, it sl be shown how the el ontpat
of the IMF is further processed toextract the desited signal - The INIE forms a kes baldiog,
block in the proposed approach.

Cousider the received signal o () of (1.2) where the message signal s(6) 15 completely
represented by a single term (N = 1 in (L3)) e st) vo(t) Foraspeattic tune instant
t = t; in the interval [0, 7], the obsersation interval becomes £7 0 As time progresses, the
interval of abservation is continually increasing to the final value of 1 1w matched filter
(MF) is used to detect the signal at any given time, t;, then at the output we obtamn .
signal that provides the maximum output signal to noise ratio, SN, for the time interval
[0,¢/]. Because the time interval or the frame of observation s contimually increasiug, al
each considered time instant, the MF provides a new output sioaal and a new SNR,
Hence, we have termed it the "Instantaneous Matched Filter (LIF)". Each new SN,
reaches a maximum value for the considered time interval. Figure 41 depiets the IMFE
Note that "Instantancous” refers to the current time interval and not to the speed of

processing via MFs. The output of an IMI at time t with r(t) as the input is v(t)
t
v(t) :/ r(r)o(r)ydr = ve(t) Foul(t)
0
= so{t) +n(t) (11
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where n] (1) tepresents the output noise, s, (1) = ve(t) is output signal that represents the

message signal and (1) is defined as the Ly-norm of o(t) over the observation interval 1.

c(t)y = /“ o T)dr = | (1) [|12 (4.13)

r(1) >® R ‘/0' () dr v(l)

Figure L4: Instantaneous Matehed Filtes

Note that the ontput v(t) of the INME provides the most reliable (optimal) detection
ol s(t) at cach time ¢ in the presence of sero-mean white gaussian neise [58, 39]. The only
diiference is that in the coaventional ME. the upper limit of integration is a fixed moment
T cotresponding to the time (after observing the complete signal) at which the detection
is made. In our case the same linnt is an independent variable - the instantaneous time.
The T\ F provides at each instant of time the marimum SN R, at the output, independent

of amplitude of the signal s(t).

max SNR,(t) VvV veR tel0.7T]

4.3 Statistically-Optimal Null Filtering

In this section we describe our approach to optimal null filtering based on a combination
of the maximum output SNR and the MSE criterion. An important consequence of such
a formulation is that it enables us to process signals of short-duration. We first describe

a stmple coherent case and later generaiize it to include the noncoherent case.

4.3.1 Coherent Null Filtering

Consider asignal where its waveform shape is a priori known. Let s(t) in (4.2) be described
as (1) = vé(t) where $(t) is known and the amplitude v is an unknown random variable.

Now, if we use the IMF of previous section then at time ¢t; € [0,T], the outpnt v(t)
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(see (1.1.1)) provides the best measure for signal st - £;) to be detected 110 torme ol
SNV R,. The notation s(t = t;) denotes the signal () up to time ¢y < I lutuitively,
one can understand that the maximum SN R, at t = #; provides an increased meastire (in
terms of power) of the signal while redicing that of the noise. 1f this s done tor pvery
instant of time in [0, 7], then v(f) provides a better measuie or indication of the S(1) then
does w(t). In light of the extensive literature on the detection of signal via NEF this s
quite obvious. Figure 1.3a shows the components of the output of the [\ (LD, where
the input desired signal was set to a sinusoidal waveform s() = Aeos(wt) and the noise
was unit-variance AWGN. Notice the envelope of () 1eflects the desited signal. Figure
1.5b shows the input and the INIF output SNRs. s time progiesses, S VI, provides
a significantly better detection critetion for s(f) than does SN, We can exploit the

enhanced criterion for the estimation of s(f).

. —
Sody T

// i
VY
’
/ o O

~‘A"~’_'_\“_‘.:.:~(._,.>
(a) t
A -
SNR b -7
——  SNR,
—’-_ T TS T e e ‘
(b) t

Figure 4.5: (a) v(t) and its individual components. (b) the input and output SNRs of
IMF as a function of time.
Examining (4.14), we can see that if we now scale v(t) by ¢(t)/c¢(t), then Lhe resnlt

represents the desired signal s(t) plus some noise,

$(t) = [Ve(t) + nl(1)] %:)) = V() +n,(t)

= s(t)+n,(t) {(416)
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In fact, vhe adea of maximization of the SN2, remains intact. This does not represent or
inply optimal estimation of s(f). It does, however, give an intuitive feel for the optimal
solution.

To determine the optimal null filter, we scale the output of IMF, v(t), by an unknown
function A(t) and subtract the result from the input to form the output y(t) as in Figure
1.6,

y(r) = ety =yt = () = (1) = alt) (117)
where the scaled ontput of the IMI7, y/(1). represents the estimate of s(t)  Replacing (1.2)

and (L1 1) in (L17), y(8) can be written as

y(ty = s(ty -+ n(t)y = {ve(t) + n (O] A1) (1.1%)

y(t) = n(t)

Figure 1.6: Statistically Optimal Null Filter  Coherent Case

[t now remains to find a suitable function, A(t) such that y(¢) represents the input
noise n{t) in the MMSE sense. This is equivalent to estimating s(t) with MMSE.

For ideal null filtering, y,4e0(t) = n(t), thus the error in filtering becomes

(’\(t) = y:deal(’) - y(t)
= [ve(t) + o ()] A(t) — ve(t) (4.19)

Minimizing the mean-square error, £[e§(t)], with respect to the scaling function A(t),

yi(‘l(ls .
_ V()
T Vic(t) + N,

where we have used the subscripts "opt’ to denote the optimal scaling function, E[V?] =

Aopt (t) (4.20)

V2 and IV, is the power of the noise at the input. The optimal post-IMF scaling function,
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Aope(t) can be written in terms of the input SNR as.

Aupe (1) = - UL (1.21)
& () + 1/SNH

where SNR = 12/\,. Substituting A, () back in (£.19) gives a biased estimate (asymp
totically unbiased),
Elev,, (O] = £V e \opelt) = o(0)] £ 0 (122)

and the following MMSE

E [. Mﬂ(:)] = Ny = Nyl 1) (1) (1)
Thus, A, (1) provides statistically optimal but biased null filtering,  We tefer to this as
the Statistically Optimal Null-Filter (SONF).

Suboptimal Coherent Null Filtering

In order to implement the SONF, the knowledge of the mput SNR s required "To cricum
vent this problem, the following suboptimal approach may be considered. 1t is assumed

that the input noise is weak (i.e., N, —» 0) then
4 {)
Agn — ,\’ {) = ”"(— '2
el — V1) = T (1.21)

where the prime has been used to indicate the suboptimal approach. Notice that (1) is
exactly the post-IMF scaling function that we obtained by inspection of (4.14) to get an
intuitive feel for the approach. By using A'(f), a suboptimal post IME scaling function,

we get unbiased null-filtering with the following MMSE

Eled(t)] = N, =1(t). (1.25)

In the SONF approach, we have taken an optimal result of the proposed IMF (in the
maximum SN R, sense) and then applied a least-square minimization procedure to find
an optimal scaling waveform, A(t), in the hope of achieving an optimal null filer. One
may understand it as minimizing the error in the SN2, estimation of s(t). Comparing

the MMSE of the optimal and the suboptimal approaches, we obtain the ratio

n'(t) N, 1
(A =1 f— =1t -
7( ) 7]0})!“) + V2P(l) SNIt (,'(t)

. (4.26)
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The additional information of the signal and noise power in X, (). provides an even
lower MIMSE. Tlos, of course, is at the expense of the knowledge of more input sign..l
mformation and a biased estimate. From the ratio 5 (1) it is clear that asymptotically hoth
of the approaches vield equal NINISE. As 7 = ~c. the second tenm in (1.26) approaches
et I so doing, the post ENIF scaling Tunction A () approaches M(t). The net effect
s that the mfluence of X (1) s mamdy folt durig the start of the fillering.

Itis well known that the MEs minimize the noise in a very short time interval, From
(V23) and (125) this s confirmed as e(t) rapidly increases to a large value foreing a small

MSE very qumckly.

4.3.2 Noncoherent Null Filter

Up to now we have desenbed a colerent approach of signal suppression where the signal
shape s a priorcknown and the main hinlding block is the INIF. Here, we consider a more
general scenatio, a noncoherent case where the signal shape is unhnown.
Consider the case where the signal s(f) can be written as a linear combination of
a set of orthogonal basis functions {0 (¢4, = 1.2, N} as in (L3). We assume th
the composing basis functions are @ prior: known while the coeflicients ¢,'s are unhnown
random variables, In situations where the basis function are unknown, they can alwavs be
evaluated or estimated given the second order statistics  the KL expansion for example.
In this sense, the problem still temains general. For the moment, we will also assume that
the basis functions temain orthogonal for any time interval ¢, i.e.,
rt
S(Mo(r)dr=0 ¥V (e[0.T) & i#). (1.27)
Jo
This is clearly not possible; however, for the purpose of illustration we will assume it to
be so. Later we will show how to deal with this.
Since the filter detived for the coherent case is an LTV filter, the principle of super-
position is valid. This filter can, therefore, be implemented as a set of N parallel branches
one to estimate each term in the expansion of s(t) - as shown in Figure 4.7. The post-
IMIF scaling functions A, () can be chosen to be either optimal or suboptimal as described
by (1.20) or (4.2:), respectively. Notice that. if we do not assume the orthogonality of

the basis functions for any time interval t € [0, 7], then the output of the IMFs at each



Figure L7 Noncoherent Statistically Optimal Null Filter

time instant does not provide @ maximum SN B 1 we examine the ith branch of Frone
L7 independently, {to estimate ith term of »(£)) then the intetterence from the other \
nonorthogonal terms is not of zeto-mean gaussian type  Phis interference 1s seen as coloped
noise, hence, the earlier discussion of the INEF in tenms of M is not valul  That s, the

output of the INEF in the ith branch can be written as

b t t
() = 2,/ OodT)oT)dr / n(r)o(Fdr (1UN)
oo 0

It is clear that if we do not nse the above orthogonahty condition then
ot

t
v(t) # [ rpf(r)rlr 4- /“ n(ryo(r)dr. {129)

)

hence, y/(t) cannot be the estimate of s,(¢t), the ith component of s(t)

Interestingly, Van Trees's [11] solution of optimal estimation of s() (sunmmatized
earlier in the preliminary section) is based on the eigenvalues and the cigenvedtors of the
kernel or covariance function of s(¢). In this approach, a fixed interval of integration is
used (observe the complete signal then estimate), whereas in -he proposed approach it s
varying.

For the case where the post-IME scaling functions wre optimal, A, (f)  A,L,.(f) as




i (1200, we can write the estitnation errot as

N 2,4 4
S e (¢ ) e, (¢
'\,,,:(,) - [—zl( ) : )() - ‘\u——z‘ : l( ) ; (130)
oLty 4.8, vie(t) + NV,
Asymptotically, the suppression of s(1) is unbiased with a MMSE given by,
A
e 0] 220 adnA ()
-1
L
=N st (1) = 1pe(t) (1.31)

which s alsn 7ero asymptotically. The approach of Van Trees [11] vields biased estimation

with \INISE

N
TR P 0<t<T (1.32)

[n contrast to our approach, the NINSE i this case, however, does not approach zero for

Iy o,

Suboptimai Noncoherent Null Filtering

If the suboptimal A(f) is used in Figure 17 ie.. At) = N(t), we achieve an unbiased

estimate with a MMSE that s initially poorer than ,,,(f). but still remains consistent:

N 2
. “ 2 _ - . _“(D( (t) o By
i £ e 0] = fim ¥, 32T = 0 (.33

It should be noted that i using A, pe(¢) in Figure 4.7, the Noncoherent-SONF (NC-
SONE) is only locally optimal. That is, each component of the signal s(t) is estimated
independently with the assumption that no other terms exist. This does not provide the
global optimality of the filter in Figure 4.7. In the next section, we verify this hypothesis

by constructing a globally optimal SONF.

4.3.3 Orthogonalization

In the noncoherent SONF approach, it was assumed that a linear expansion of the signal
s(t) using orthogonal basis functions is available. This assumption was made even

more strict in that it was required for the basis set {¢,(t),i=1,2.. .V} to be orthogonal

~]
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for any arbittary time interval £ < I, (seo (270, s assumption canuot be satisfiod
in practice. One method of overcoming this ditlicutty 1 to orthogonalize the tundtions
()’ for each new instant of time intetval, £, as fis increasing. Wo PLopose (o use
a shdimg Gram-Schmidt (GS) orthogonalization procedure described in the preliminary
section. By applying the sliding GS procedure, the expansion of the signal s(H. m terms
of the set {o,(t),i = 1,2...N}, is transtormed into another tepresentation with a new
basis set {e(t) 0= 1.2.. N} that are orthogonal over any mterval f [0 ] Wath this
otthogonalization, the constant coellicient expansion of ~(£) in (14) is transtormed into

an expansion whete the coeflicients are now time-varying as i (1.13).

4.4 Globally Optimal SONF

[n using the SONI, a linear expansion of the signal to be suppressod /enhanded is requined
The basis functions in the expansion need to be orthogonal for any time mterval ¢ [0, 1]
Since this is cleatly not possible, as a possible solution in the last section, we have pro
posed a shding GS orthogonalization of the basis functions at each observation interval o-
the observation interval increases. Fhis approach is effective, however, the computation
mvohved are greatly increased. To deal with the incteased number of computation .. we
try to find in this section. post-IMF scaling functions, A, (#)'s wherein the orthoponaliza
tion procedure is unnecessary. We remove the assumption of orthogonality of the ba .,
functions. This will cause errorsin the expected IMEF output, however, these errors can he
minimized by the optimization of A(#)'s. Moreover, in so domg, we will obtain o globally
optimal solution of A, ({)s. That is, all the ), (t} are caleulated simuoltaneously

To find the Ay () that are globally optimal, we teconsider the problem m vee tor

notation. Referring to Figute 1.7, we define the following:

) (M(OA () - Aan (D)
v(t) = [m(Oe(t) - vw(®)’
) [ b1 (8)b2(e) - b ()]

V = [vlvz-qu]T

(4.34)

I

where A(t), v(t), ¢(t) and V are the post-IMF scaling functions, output of the IMF, the

!
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et of hnown basis functions and the amplitude of the each term of the desited signal,

tespectively, By using (131), the input signal can be written as
() =V o) + n ()
and the outpot signal as
y(t) = V0o + ng) = A(0e)
The crror in suppressing s(t) becomes
() = n(ty = n() = Ve = AT () (1)
and the NISE s a function of A(f) can be wiitten as.

Flam] =

= NN = N p) - pT O +V To()eT (Y

where
QuU)=FE [l/(()l’r(t)]

and

Minimizing (1.38) w.r.t. \(1), i.e.,

I (t)

dA(t) ‘.\(r)=\3p:(')

= 0= QN - p(t),
vields the globally optimal solution for A(t),
Aope(0) = [VD(1) + No) ™" [Vo(2)]

where we have used the supersciipt ’g’ to denote globally optimal and

D@ = [ "o (r)eT (r)dr

and

V= E[VVT].
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Consider the case for N = 2, i.e., a two-term representation of s(¢),
s(t) = [1»11‘_,][.:”(()0_,(()]" - \'m"(f). (1. 15)

Equation (-1.42) can be evaluated to yield

N pelt) = e S VIO = a(O0s(1) + 0 Notn (1) 1 o]
wopt (ab — %) [Jl(f),}_:(l)~ 30, )] Fady ()N, + byl N, D0, ()N, ‘\_

(1.16)

and

N ”( ) = (lb—-—( )[ (n(f — 30 U)()]() A “’I() [)‘\'“‘:,:(”]
ﬁl,’ i.‘

(ab — ) [34 (1) 321 ) = 3E0] Fad (N, Fha(0VN, F 2ed (0N | N2

(147)
where
0= ei(r)dr
L = fyes(ndr
() =y er(mos(r)dr .
a = F{]
b = Evs]
¢ = Elne)

In the numerator of expressions for ,\{‘up,(t) and ’\Zl,upl(')‘ some form of correlation 1emoval
can be seen from the 3),(t) terms. We have some torm of indiect orthogonalization 1
the basis functions are orthogoual with the definition of (1.27), then A, () and A} apelt)

reduce to

N = (ab — ) (Io(en () +a N, (1) | eNop2 (1)) (149)
TRt T ab — ¢2) () () + et (N, + bN (1) | N '
9 (ab - Cg) (»31(’)“2( ) fbl\u'/)z( ) } ‘Nu’r’l( ))
Az opt(t) = : R (41.50)
oP (@b — c2) 31 () 3,(t) + aBd (b)), + bN,ﬂg( ) + ’V‘*
which are clearly not the same as A, () of (4.20). Notice the difference between the

post-IMFE scaling function of the locally and globally optimal filters, thus verifying the

hypothesis of the difference in globally and locally optimal SONEs.

4.5 Discrete-Time NC-SONF

To implement the exact expressions of the globally optimal post IMIF s aling function,

/\9

nopt(t) Of (4.42), requires the knowledge ¢f the noise and individual signal component

=]
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power . as seen for the case of N = 200 equations (1.16) and (1.47). This is generally not

possible in practice. To avoid the calenlation of A7 (t)'s, we will now derive a discrete-

tme recusive implementation ol the SONEs that is globally optimal.

Non-Coherent Case

Lntil now we have considered the SONEF in continvous-time, Here we detive a tecursive

form o the NC-SONE for the case of unhnown signal shape. To do so, we switeh from
contintous tme to discrete-time formulation.  The changeover is straigsht forward, we
simply replace the tntegration in the INIE by a summation and use the discrete independent
time vanable © Figuie 18 outhnes the diserete vorsion of the NC-SCGNL . Equation (1L.31)

canbeowritten using discrete independent variable noas,

An) = [,\I{n),\_,(n)-‘-,\\'(n)]l
An) = epn)ean) s crN(n !
1 :1( Jiraf v )Ir (151)
o) = opmyoa(n) - oy )]
Vo= e - z'\}l
The input mixture, 2(n), can now be written as,
rin) =1 1',’)(11)+ nin). (1.52)
The output of the IMF is,
N
vin) = Zr(m)o(m)
n-1
= }:.r(m)c)(m)-}— r{n)o(n)
= vin-1)+z(n)e(n) (1.53)
and the output y'(n) (estimate of s(n)) can be written as,
y'(n) = A (e(n) = vT (E)A(n). (1.54)

We evaluate the post-IMFE scaling function A(n), in the LMS sense as for the discrete-time




g ' on{n 20 E A\ (n)

Figure 1.%: Discrete version of the Non Colierent SONJ®
case Referring to Figure 1.8 we formulate the etror fundtion
c(nd = oyt = () s(n) o stn)
= Mimpegn) Vo0
and the MSE can be wiitten as,
) = ElAm)] = Eletnelon)
= AQEA) = ATt - ()N )+ Vs (i)
where
Q) = F [u"(n)u(n)]
pn) = & [u(n)o! (mV]

By using the following facts [69],

éM(fn) PmRuAm] = 200An)
J o,
dA(n) [/’I(”)’\(")] =0
dA(n) [’\T(")P(")] = 2p(n)
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we can mintize (156) w1t Aa) a-,

(’II(I')
idA{1) Yo N e

\1 »

= 200N () = 2p(n) = 0. (1.39)

Ths vields a system of linear equations that can be sobved for /\j“(n) WA
QL) A ’,“(n) = p{n). {( 1.60)

Phe matnes Qn) and p(n) s evaluated to be

Q) D)V +N Din) {1.61)
plry = Dim)Vo(n) (162
wlhiete
D)~ }:«"(111)‘.'1('11\
Y S R <.‘v(n)-,"l(n) { Log)

Rewnting (1L.60) i terms of Q) and ptn) amd with the assumption that D) 1s positive

defmite, we can solve for A e,
Al ’.;.f(u) =y =N I“L\;,(”) (161

We have thus derived globally optimal post-INE <caling func tions, \ ). Notie that,

the original restiiction of the orthogonality o the basis function for any time ¢t € (0. 77

not used in this development. In performing a global optimization of the post-INF scaling

functions, ie. ,\",Pt(u). an amplicit orthogonalization has veen done. This phenomenon

was described in the previous section e the continuous-time case for N = 2, which is

equally vahd for the discrete-time case. We have, thus, eliminated the need for this strict
]

orthogonalization tequitement It now remains to show that we can implement Aope(n)

tecursively to eliminate the need for the knowledge of V and A, in (1.61).

14.5.2  Recursive Iinplementation

| et
P(n) = R(n)~'v (1.65)
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with
Riny - VIgndy v\
Now. by using (L63) and (To6Y, (101 can be wiitten as
ARV I MY
and P(n) can be evaluated vecnsively Substitating (1080 08 v, we obtan

Rin) Vi e N Vel o

Rip 1y 1'-,»“1\.:]“1\

Using (165 and {165, we powgite £2indan terms of it - past value -

1 !

Py Pon -0 R 1\,,\1

\ recursive update formula for the eam matoe o can be donnd wath the
matin mversion lemma 64
r ) 1 1) . N |
Vi Bt | [ S B R L A SRS O R
. L

where Land " are postive definite matnces Tettimg

\ Pin 1l
1 o)

( l

D o

i {(L70V, P(u) can be calculated to be

/(u - I)U(n)ul(/x)l(n ]
Lt ol (mdP(n 1on)

['he complete tecursive algorithm tor mnplementing the SONE can bhe witten o
g ]

vin) = v(n- 1)t r{n)o{n)

N e VNI U
1(71) = P(ll 1) ] - l(”) i ])(; n)
Aln) = P(n)o(n)

y(n) = z(n)- vl {r)A(n).
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Fhe oo ity £ s mitiadls chosen to b pesttove definte A rale ot theae b one
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1.6 Adaptive SONF

Fransient sienals are often modeled as a combanation of damped anw ol Tha toeeno
ate the basis functions forymplementing the SONT hnowhodoe of the e coethon it
1~ a~sumed 1o be g prior huown However thie < eoqerally not the cae asn the reoad b
of evoked [mh‘n?l.iL :TU' (‘)|~}m tive i this ~odtion 1~ to present a method o adaptooely
estimating the damping coofficients of damped <iosond - uane the oo develope d SON

tor simphiany o simele damped anu-ond case s con sdered L

sy Ve Ceosicon e B o R

be the damped <imoond of interest, where . gt e coste o nY aned ooy 0 e g

are the hass tunctions. and 1 and ) are unhnown coethorent= i the eepan o It
assunred that the sinusord frequency o 1~ @ proocc hnown and 4 #0 § are the nnknewn
amplitude initial phase and damping coefhaent  Fhe recened o teasnred  jonal

carrupted by zero-mean AWG N,
Finy = st ovouin 1y i

Simee the basis functions are not completely known, we aim to use the SONF i an ad -t
form to extract the damped sinusoid from the recerved signal The basts funetion - o)

can be formulated from the on-line estimate of the damping coeflicent s,

r,:)l(n) =Moo (17%y

(‘H(r.)r

(4;2(71) = ‘srnfw,n) (17

where ,/9(71) is the current estimate of the damping ceefficient. Complete adaptive SONI
structure is described by the block diagram of Figure 19. To estimate the damping
coeflicient, we can use the stochastic gradient method. With this method, 1he npdate

equation for the damping coefficient can he written as,
fj(n+ l):,’3(71)+7\Il(n)((n) {4 80

80



shore the Bt ndicate e it gant e = the rate of comereence (step-size),

o the wradient and et e eroon i the carrent estimate of sin)
St roe s the despred gunat o pted By nose referrnng to Figure 19, we can

st the follow i g cupres o for the (i error
1 L
soo NETER Ny (].\l)

Lhe nesatinve aradiont of einy w rt 3

1

Sote thar haotho N o g o aredependent oo

can bie tound o o ow D)l the pevative aradient of e as,

IERIE iy
U . ER
i1 !
AN o l)\]thi ! _dring ;
- - oo NV —— (1.8
] 1 o)1
whieh can he 6‘\.1;‘“1“‘!] tor b v \l.;nflf"\'
- Sl reti e
g Y - neoone = 2 —Biny+ D (153
- L Y0 )

where v (ngs as defined carlier, cee (8530 and

'

Ving - oon - llw-\."x’uz)
Booo < B 1)+l (1.81)
Ciin) = in=1v = nr(nyo(n)

Fhe complete adaptive SONF 1o estimate the damping coefficient can be written as,
y(n) = AT (nyw(n) (4.85)

e(n)=ur(n) —y(n) (4.86)

Win) = i (‘j'(n) [m/,(n) -2 1;,((1;)) B,(n) 4+ C,(n) (4.87)

J(n+ 1) = 3(n) + 1¥(n)e(n). (4.88)
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4.7 Analysis: Kalman Equivalence of the SONF

In the previons sections. we presented o new method of suppression enhancement of o
tow band (NB) signals  The new method aed s vaants were b ed on the b hanbdyae
block of the INIF. Since the new filter~ are tnne varving andd are optinazed vuder the A 1S
criterion, iU s antictpated that they mav he closely related to the well hown Ialiman
Filcer, first presented in [71]. In this sec tions we wall first hreflv onthne the b alman
Filter and then show the relationship of the SONEF to the Kalman Ialter We will ana
Ivtically show this relationship for the cohetent SONI (first ordert case Foy the hughe
order or the NC-SONF, the mathematics involved hecome mttactable as <ach we wall

only formulate the mathematical setting and show via simulationats Kalman equivalence

4.7.1 Kalman Filter

Kalman filter theory provides an alternative way of formulating the Jeast squares hiltenng
problem. It provides the solution to a class of recursive minimum mean-square estimation
problems [71]. Two main features of the Kalman filter are its 1) vector modeling of randowm
processes under consideration {state-space approach) and 2) the recursive procesang of

observed or measured noisy data {72, 73]. We now briefly summarize the Kalman Filter.
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til

Eolihe the Wemer Dailters the Kalenes flter does ot estimate the process s

recthv B tead Ot estimates the ctate wectar 208 from the obsoryed cwnal it 1 he

tollowine weamcthy states the almen problen

Clrvene the observed talue s of {7 e the antervalt ot the taskois to Jind ancestimate

it of roty uf the fm‘nl

.

st _/ Yt oysyrid- {1.91)

(where \us an nor poatrir whose cdoments are continuously differentiable i both arqu-

mentsbeith the property that the mean-squared crror s nunimzed:

minimuni., (1.92)

Py = B0 et — 20!

{
i

Vorcover, r(t) 1s to be an on-line estimate.

Kalman Solution

Fhe now well-known Kalman solution to optimal filtering is shown in Figure 4.10. The

optimal estimate 7(¢t) is generated by

a linear dynamical system of the form
F(t)r(t) + N(t)(t) (1.93)

s(t) - HT(t)2(¢). (4.94)

[v4]
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Phe it <tate oo v b cb 9 w0 seto vector Thas optimal e s o teedtors aod
svetem Ttas obtained by takinge the messaae process madel (1S9 pomit e the mput
wit)rand feeame torward the etror i the estimate of ot waith a v A oee e
PLO Thus, specitvine the Walman Filter s counadent to compatine the feedtonwand v

. |
Loty Deninme the ssmmetie matns fovoctr ooy et the optunal

* ] ‘
h PHR T )" | o e —

L

Frovre 00 Ialman bl

cattt vabinan caro bas been shown vo e T

Wity - ook Yo I

where ity = ['LI'(f')l'[(/}: i~ the ob-erved noe covatanee tnattoe e andv retammne
unhnown i~ the mattiy o0 the convantance mattreom the e tiate ot oot can be founed

as the <olution to the nonlinear matnn ditferential equation of the Ricatte type
Pty = FiyPuy + P F g = e oy Yoy Puy o ainQuna (1 90)

where Q) = I‘:[H‘U)ll'l(f)] Logether (P93 (190, 0895 and £196) campu e the
halman Iilter. urthermore. the performance of the Ralman estunator 01985 00 given

by 1(1).

4.7.2 Kalman Filter Equivalence of SONF

In order for this part to be complete on its own, we have chosen to tepeat some of the
equations presented earlier. For the first order case. the notation used here s copastent
with that used for the description of the coherent SONEs throughout this chapter For the
noncoherent case slight modifications are required. Care must be exercred not to confune

with the notation used in Section 4.7 1.

a8
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s e i

rity ot ity e
>\ - / o dr e ()
el ®
IRIRE]

ity

Fredre £ 11 Sienal estimation conntetpart of the coherent SOND

In the tollowine, we show how (197) and (1 9%) comprise the equivalence of the
Kalman Filter  We will first derive a differential equation of which g(t) is a solution
(lihe (1 93) generates the state estimates in the Kalman Filter) and then show how the
petformance of the SONF can be deseribed by the solution of a nonlinear differential
equation (ke (1 96) does tor the Kalman filter).

Ditferentiating (1,97}, we obtain
. t

) = A) / 2(F)olr)dr + A)o(t) ). (4.99)
Jo

To form a first order differential equation of the type (-1.93), we proceed as follows. Mul-
tiplving (1.99) by A(¢) gives,
t

MOt = A(z);\(t)/ z(r)o(r)dr + A (t)é(t)z (1) (4.100)

0

o
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We can rewrite the above i the torm of o lalnan Bilter,

gy altyyts - Ryttt R YTE

where Ay = #t Table 41 compates or relates the notation o (110N} o the
Kalman Filter of (£.93) and (£.95) Observe that (1 10%) 15 plentical to the Ialiman State
Estimator of (1.93) with the appropriate notational changes, the difference beane that an
our case, we have a scalar equation rather than a matnx one

It now remains to show that n(t) is the soiution of a nonlinear vapianee differential

equation of the type in (4.96). To do so. we differentiate (1 9%)
(t) = Noo() A} + N,olt)A(t) (1 109)

Rf)



INaliran b ores SONY

TN State Noctor et State vector

? qit Outpt ' //Atllv - Output \I‘_’:ll-ll K

' it Ob~crved el ’ AN A (WHN'I-H;] \lligl«ll i

: [ ' fll:fi h

VTR It ‘ o

Ty L _
P Lot '

S A i

Koo o T Yoy Tk et N

Lable 11 Notatroead ditferenos e the Iadmar and the coherent SONE

Sl titatine P T0S o N o el

nit AT N A N AT I AR Y i\ 3 Lo
Byooane the tact oo et N vt 3 D0 can be wntten a-
RN
rity ,’_‘m[u/di - - D
\

Compartng, 08 THD o wath (b9 with the appropraate notattonal dference~ o Tabie 11
we e that they are wdenticad Fanation <8 TH s o Ricatt Sy pe ol nonbiear datlerential
equation, the <olition of which describes the petformance of the estimator - Figure 1,12

Jhows the lalman Filter hhe structure of the SONE represented by (1 108) and (4 1T




NI it ”_—/‘“ L
. . —_—l
- A\

ath |-

/A i 1

Jatty -
) .
\
(b)
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Generalization to an Nth order case

We now consider the Kalman equivalence of the general Nth order SONE ie , NC-SONFE
Figure 113 shows the signal estimation counterpart of the NC SONF procedure For the
putpose of this cection, we will make slight notational changes 1n the formulation of the
NCSONE Here, =(t) represents the estimated <ignal o{t) and ,(6) can be consdered the

elements of the estimated state vector yit)

t it nit
——>®-———>/ () dr e :
JU
f‘.‘);(() !

rt)

¢
/ { ) T
JO

o)

Figure 1,13 Signal estimation counterpart of the NC-SONF.

With reference to Figure 1,13, we reformulate the NC-SONE in a matris format as

follows. Let,

oty = [oyor - on]t (4.112)
9 = () ) - ga ()’ (4.113)
v(t) = [uw)- o] (4-114)
At) = dag[hy---AN] (4.115)
¢ =1 o7 (4.116)

where all vectors are n x 1 and diag(-) refers to a diagonal matrix of dimension r x n with

entries described by the argument of diag(-). Using the above definitions, we can write
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the output of owr filter o matns tormat as
oy VoL SRR
o ¢ LN

where we have used the hat 1o denote estiared gquantities The actaal desined el
ol P :
St et s assnmed to be generated by biear dveanncal v tem o the tope

I/(.'l ‘\\.’)l/lx‘l \! ||'”

b (T 4

where 1) s an nox nosystenn matnis that 1= nuhnown but assumed to exist
lo ~hoew the lalman equivalence of (1 EIT and (1S we proceed as swoath the foed

order case Differentiating (1.117V we obtam
gty Aty 2N st () (e
Multiplving (L1210 by A (1) gives,
MOy = ANy F N el e(t) (1122
and multiplying (1.117) by A(t) aives,
AOyt) AN (1121
By subtracting (4.123) from (1 122) and solving for y(t) yields,
Bt = AT OMOB) F M) (1 121)

The last equation is the matrix counterpart of (£102) Input output relationship of the

estimator in Figure 4.13 can be written as

g(t) = ©B)ye) + U(t)yr(t) {1125)
HOBER G0 (1.126)
where
d(t) = ATT()A(L) (4 127)
L) = A(t)d(). (4 125)
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Fopuation (1 125) and (1 126) fonn the state space equivalence of the NC-SONF that can

venetate the estimates of the signal <(4) rom the observed noisy signal, r(t) = s{t) 4+ n{t)

Asoiumng that Dt} can he putan the torm,

Bty - M) = hnet (4.129)
and letting
Lty = ht). (4.130)
then (1 125) can be wintten as
G = A F ) e = CTy)] (4.131)

Refernng to the notational differences in Table 1200t is evident that (1.131) looks like
a Kalman Filter described by (1.93), where K (¢} represents the Kalman Gain and A(t)
represents the system or signal dy niemies, e, y(t) = A()y(t).

Defining the error in the estimation of the states y(t) as
yit) = y(t) - u(t) (4.132)

allows us to write the differential equation governing the error
a(t) = (A@) - K(OCT) §(t) - K(t)n(t) (4.133)

where n(t) is the noise in the observed signal z(t). Let n(t) = E[§(t)§7 (t)], then the
matrix differential equation governing the covariance of the estimation error can now be

written as [71]

(1) = A()n(t) + () AT () = n(t)CTN1Cr(t) (4.134)

and

K(t) =n()CTN;! (4.135)

In the above discussion, we have assumed that ¢(t) can be put in the form of (4.129)
and that the Kalman gain is described by (4.130). Thus, the above analysis is only valid if
this can be proven. Unfortunately, the mathematical complexities involved in the matrix
manipulation form a great obstacle to prove this analytically, as was done for the first

order case. We, therefore, resort to simulations to verify (4.131), (4.134) and (4.135) using
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Table 12 Naotational dithrences e the el aned NOOSON|

We nee snadation results ta verty the Boadirar eguavalionee of o ccond order SO\
That 15, we implement (14D, o3 D3 h and o id5 using Wt wenerated trom (1 120
(1.133) and (1120 10, Y4 = $ity - [\(f\(" \ :(H\(H ¢ .\lf)t."(f)('l | b tnessap e
sighal 15 Chosen to be z(t) = sgt) = Voszzf e 8 where the notmahzed freguency
fo = 0.2 Hz and 8, 15 a random mmtiel phase that s umtonnly distnbuted on 0, 2]
The amplitude 1, and nowe power N are chosen to satisfy SNVE 3 dB Sinalation s
performed in continuous-time ustng Gear mtegraton technigue 74 Frrare 311 how the
actual and the estimated signal z(¢) Clearly. using the wesumed Kalman equivalence of the
NC-SONF, we are able to estunate sit) adequately  This indicates that the ascumption
of (£.129) to be correct  Although this result s only an example i the abence ol
analytical results, it does provide some vahdity to the claim of the Kalman qmvatence of
our approach.

By virtue of the above analytical and ninmencal results, we can ~omewhat pu-tify the
claim that the SONF filter is equivalent to the Kalman Filter, or i other words thautat o
in fact, another implementation of the Kalman Solution  With regard to this statement,
one important point needs to be addressed. 1t is well known that the Kalman kilter s an

unbiased estimator [75]. The SONF approach with optimal post IMEF scaling functions,
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on the other hand. 15 only asymptotically unbiased as can be seen by substituting (4.21)

into (4.22) for the coherent case,

o c(t) ]
A = BV | ———=—=] ¢(t) # 0. 4.136
Elerg ) = BIV] [ 1) 410 # (4.136)
and
tli_pL Elex,, (t)] = 0. (4.137)
Examining (4.136), we can see that since c(t) rapidly increases to a large value (it is the

energy of the composing function for time interval t) relative to 1/5NR, the SONF can
be said to be an approximately unbiased estimator. Furthermore, for the weak noise case,
SONTF can be considered an unbiased estimator. If, therefore, the first few output samples
of the estimator are discarnied, then, for all practical purpose, the SONF can be considered
to be an unbiased estimator. Using the analysis in this chapter, in conjunciion with the
above constraiat, we can consider the SONF approach to be a new form of implementing

the Kalman Filter.

3 ’ 2 T
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Figure 4.14: Signal estimation via the Kalman equivalent form of the NC-SONF. — Actual
Signal s(t); —— Estimated signal 5(t).

Observe that the variance equation (4.96) in the Kalman Filter does not depend on
the input or received data. Therefore, P(n) may be precomputed before any input data is

received and used to compute the gains in the optimum filter. This, of course, is equally
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true for the SONF which depends on the post-INE scaling functions that are computed
independently of the received data.

In order to solve for the gains in the Kalman Filter, it is necessary to solve a nonlinear
matrix differential equation of the Ricatti type (see (1.96}). With the SONF procedure, on
the other hand, we do not have such an equation to deal with. The SONF method provides
a simple algebraic equation in lieu of the nonlinear differential equation of the IKalman
Filter. Consequently, our new approach offers a significantly simpler implementation of

the Kalman Filter.

4.8 Conclusion

In this chapter, we have considered processing transient or short-duration signals using o
nonparametric approach. The main difficulties in using conventional parametric filtering
arise due to the short-duration nature of the such signals. In the literature considerable
effort has been devoted to the detection of transients. We have, on the other hand, con-
sidered the probiem of filtering these signals in the context of enhancement/suppression.

It is well known that MFs increase the output SNR (SNR,) in a very short time,
however, they are exclusively used for the detection purpose. Knowing this, we have
combined a special Instantanesus MF (IMF) (maximum SNR, at each instant of time)
with the LS optimization criteria to develop a statistically optimal approach to process
short-duration signals. This approach has been termed Statistically-Optimal Null Filter
(SONF).

At first the SONF has been developed for the simrle case of one term series expansion
(coherent case) of the signal under consideration and then later generalized to include an
N term expansion (noncoherent case). Such a filter is only locally optimal (each term is
optimized individually with no consideration to the other N — 1 terms). Furthermore, this
approach requires that the basis functions in the series expansion be orthogonal for any
time interval. This is clearly impossible. Thus, to address this problem, we have derived a
globally optimal SONF in which the assumption of orthogonality of the bzsis functions is
removed; as there exists an implicit orthogonalization. The correlation between terms is

internally minimized. To implement this globally optimal SONF, SNR of each individual
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signal component is required. This information is generally not a prior: known, as such
this approach is only of theoretical value. We address this issue by developing a recursive
SONF in which minimal a priori knbwledge is required. Often, when filtering exponentially
damped sinusoids, the knowledge of the damping factor is not a priori known. This has
also been considered in this chapter by using the SONF in an adaptive configuration.
We have derived a time-varying nonparametric methoa of processing signals that is
optimal under the MMSE criterion. With such an optimality criterion, it was anticipated
that our approach may be equivalent to the well known Kalman Filter. We have shown
this to be in fact true under a weak constraint. The Kalman Filter is an unbiased estimator
while the SONF provides only asymptotically unbiased filtering. This, however, has been
shown to be a minor hindrance, as the SONF for all practical purpose can be considered
to be an unbiased estimator. If the first few output samples of the SONF are discarded,
then the SONF can be said to equivalent to the Kalman Filter and all the properties of

the Kalman Filter are applicable to the SONF.
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4.9 Appendix

The gradient of e(n) w.r.t. 3 is (sce (1.82))

T O
¥ (n) :)a/\aén)u(n) + A7 (n)l(—,;;ﬂ. (4.13%)
The derivatives on the right hand side of (4.138) are defined as
I\ (n) Gy (n)
ERSKL) i and 240 — o (1.139)
a3 3Ma(n) i3 i (n) )
ERY o

We now evaluate each of these two derivatives and substitute back in (1.13R8) to find W (n).

Since each component in A(n) is defined as

d(n)
A = ————, L1140
" o T L
we first evaluate the derivatives of A,(n) w.r.t. 3,
N (n) _ 5l o) I - 4 ) 2l
; (4.141)
ap | é(n)
Let ¢,(n) = e‘@“(p((n). The derivative of ¢,(n) w.r.t. gis
""’;(3 %) neg(n) = ny(n). (1.142)
Similarly, \
01 & . .
I 853 = ;2m¢?(m). (4.143)
Substituting (4.142) and (4.143) back in (4.141) yields,
OAi(n) _ _ ndi(n)  24(n) 3, me(m) (4.144)
8 ol ¢i(n) II? Em 67 (m)
The derivative of v,(n) w.r.t. §is
Ov,(n L 3¢.(m) .
__a_g_) = ;x (4.145)
= Y ma(m),(m). (4.146)
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Letting,

n n-1

A(n) = Z(,’)?(m) = Z X (m) + ¢ (n)

= Af(n-1)+¢*(n)

n-1

B.(n) = Z me2(m) Z mo?(m) + nd)?(n)

m m

il

= B(n- 1)+ né*(n)

n-1

Ci(n) = i mr(m)p(m) = Z mz(m)o,(m) + nx(n)e,(n)

m m

= C(n - 1)+ nz(n)o,(n)

we can write each of the vector components of (4.139) as

dA\,  no(n) | B, (n)
33 - W

Substituting (4.150), (4.151) in (4.138), ¥(n) can be written as,

T
' !‘ng Bi{n d1(n)
¢a2(n Ba(n) ¢2(n)
Ai n (n’ - 2A2(n)) 1/2(77.) I_ Az(“)
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Chapter 5

Statistically Optimal Null Filters:
Simulation Results and

Applications
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In the previous chapter, we described a new non-parametric approach for suppression/enhancement
of signals of known/unknown waveform shapes. Several variants of the basic SONF ap-
proach were presented. In this section, we compare the effectiveness and performance of
these new methods via simulations and show that they can indeed be used for the suppres-
sion/enhancement of short record signals. We compare their error performance through
Monte Carlo simulations. All simulations are done in discrete-time.

I Section 5.1, we present the results of processing stationary signals by the SONFs,
while in following section we give two examples of processing a time-varying signal. The
latter is meant to oaly indicate the feasibility of using the SONFs for these type of signals
and is not an exhaustive evaluation. In these two sections, we also compare our new ap-
proach to the conventional parametric CNFs of [26]. Section 5.3 considers the application
of SONFs to separate highly correlated signals with overlapping Fourier Spectra. For pro-
cessing damped sinusoids with unknown damping coeflicients, simulations results of the

adaptive SONF are presented in Section 5.4.

5.1 Stationary Signal

Example 5.1 This example is used to show the viability of the basic coherent (Figure 4.6)
and the noncoherent (Figure 4.7) SONFs. We test its functionality, that it can indeed be
used for the narrowband (NB) signal suppression/enhance-ment problem. Since the SNR
is generally assumed to be unknown, we use the suboptimal post-IMF scaling function,
A(n).

Let the input consist of an additive mixture of a sinusoid, s(n) = cns{won + 6,)
and a zero-mean white gaussian noise, n(n). The input SNR is —3 dB. The sinusoidal
frequency w, and the initial phase 6, are assumed to be known. For the noncoherent case,
the initial phase information is not used. Here, we point out that the NC-SONF uses the
same amount of a priori information as the parametric methods of Chapter 3.

The composing or the basis functions for the coherent implementation of the SONF

can be written as ¢°(n) = cos(w,n +6,), where the superscript 'c’ indicates coherent. The
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sig...l s(n) can also be written as
s(n) = Acos(won +8,) = vycos(,n) + vasin{wan)
= oy ol (n) (5.1

where ¢7°(n) and ¢§(n) are orthogonal functions (note that this orthogonality s true
only over the intervals kT, where & is any integer and 75, is the period of S that senve
as the basis functions for the NC-SONF. The coeflicients vy and v are unhnown stice
A and 8, are unknown. Qur earlier assumption of orthogonality over all 15 not troe,
we nevertheless, observe promising results. Figure 5.1 show the results of suppressing,
the sinusoid by the two approaches. [t is clear that both forins of the SONI provide

effective suppression of the sinusoid. Figure 5.2 show the MSE in suppressing s(n). MISE

5 — 04— e

-5
0 200 400

s (a)

(=)

-5
0 200 400
5. © 04 ()

0 200 400 0 01 02 03 04
(o) n (samplos) (f) t(NormHz)

Figure 5.1: Results of Filtering via SONF and NC-SONF.(a) Input mixture £(n); (b) PSD
of z(n); (c) Output of SONF, (n); (c) PSD of output in (c); (») Output of NC' SONF,
7(n); (f) PSD of output in (e).

was calculated based on an ensemble average of 500 trials. The initial phase of the imput
sinusoid was chosen to be uniformly distributed over [0,2r]. The NC-SONF gives errors

that are 3 dB poorer than the coherent SONF. This, of course, is in good correspondence
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tacoherent and noncoherent detection based on «lassic al MFS used in communications.

T - v ~
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Figure 5 2. MSE in suppressing a sinusoid by the SONF and the NC SO\F.

Example 5.2 In this example we compare the performance of the optimal and the sub-
op’ 0st-IMI scaling function in the SONF of Figure 4.6. [ he objective is to show
the effect of using additional information of the SNR. The input £(n) is the same as in the
fast example. Figure 5.3 shows the MSE in suppressing s(n) for the first 150 samples. It
is clear that the knowledge of the additional information of the SNR gives a lower MSE at
the start of the filtering as predicted by (4.26). This improvement is only valid at the very
start of the algorithm - about 50-100 samples. As time progresses, the two approaches
yield equivalent performance. Asymptotically, the two methods are equivalent.

It should be noted that the optimal approach allows for a stable implementation
of the filter as there can be no division by zero in the post-IMF scaling function. The
use of SNR avoids a possible division by zero. However, it should also be noted that the
additional information of the SNR is generally not available. This is particularly so in the

noncoherent implementations where individual component SNRs would be required.
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Figure 5.3: MSE in suppressing s(n) by using the optimal and suboptimal post 1IN
scaling function in the coherent SONI-.

Example 5.3 In this example, we study the effects of nsing the slidhing GS orthogonalization
in SONF of Figure 1.7 for the case of N = 2. We use the suboptimal post INIF <caling,
function and ali results are based on 500 tun Monte Carlo simulations The mput consist-

of an additive mixture of noise and the signal s(n),
s(n) = Ajcos(win + 0y) + Azcos(wan + 0,

where the normalized frequencies are wy = 0.5 and wy = 0.6 Hz and the initial phases, #,
and 6, are uniformly distributed over [0,27]. Figure 5.1 shows the MSE for estimating,
s(n) with/without using sliding GS-orthogonalization in the NC' SONEF. At the start of
filtering, the performance of the NC-SONF with sliding GS-orthogonalization is better
than without it. As time progresses, the performance of the SONI without the orthogoe
nalization approaches that of the one with it. These results indicate that given signals of
suticiently long duration, we do not need to use the orthogonalization procedure. However,

for short-duration signals it is desirable.
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Fignte 5.8 Compansons of the MSE in suppressing s(n) with/without the GS orthogo-

nalization

Example 5.4 In this example, we compare the differences in the recursive SONF and
NC SONE with sliding GS-orthogonalization. The input is the same as in Example 5.3
except the initial phase 6, is not known. Figure 5.5 shows the results of the filtering.
Both apptoaches are able to adequately suppress s(n). Figure 3.6 shows the MSE in
supptessing/enhancing s(n). Fhe results are from an ensemble average of 500 trials. Both
methods show equivalent performance. Given that the computation requirements for the
tecursive method are significantly lower than the sliding GS orthogonalization. it is the

preferred one for implementation.
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Example 5.5 In this example we compare the tecursive SONE against the patametrie
methads of the last chapter, The NISE cutves of the two approaches are shown e Fignre

v T Clearlv, after the nttial transient period, the reonrsive SONL proves to be significantly
better than the ONFOIC s also signtheantly Botter than the tth order EAIS Optimnal
Modified Notch Friter (NMNEFY of Chapter thiee, o hothe of the paramettic filters we hawe

ased the debna-ine coeflicient oo 009, NMoreover, the tec nrsive SONT i< consistent
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Fignre 5.7 MSE in suppressing ~(n) by nsing the recnrsive SONEF, ONEoand the LAIS
Optinal NINL



Example 5.6 Al esamples chos far considered demonstoate the abalite ot the new s
developed SONE to ~uppress entanee NB s immersed e WVGN Tron, the vanons
MIST curves s clear that thoe error corops toa oy saliie very ey nedicatone e abahiny
to proces= ~tanals with o <ot transtent daration Paarapie 30 s hows that the SONT
= ~1eniticanthy better than the comventional parametne CNE with ccdebnsane cocthoen
a0 recall that o low debinsame cocthaent = tequired to reduce e transrent diration)

Iy thos example we shon that the SONE coanondeea teon cd topioce = trai went o
~hort daration signals We adco compane the pertormanes of SONT - avan <t the conven
tional O\

I he snput con~sts o o metare of wodamped mocrd i ore mean MWV G
(e NUIE TN 1 . \ N

where st Vooocosie no- # The dampine coethoent o awd the sno-owdal Brequenaoy
~ ate a prore huovon, while the nutial phase # and the amplitade Vare anknown e

SNR - -l['pln\im 1tehy W tor the <|.m|[sml anord tn nse ca=e we dehime the SN I

as,
P
S\ /Y N\ S %
\ —
1 1
whete V- Vs the tume requied for the amphtude of the damped i ond o decay o

105 of its manimum value and V= the power of the nose We u~e ihe tecue SONT
and the conventional CNEF. The knowledge of the damping factor o mcorporated e the
caliutation of the CNE coeflicient, Figure A8 <hows the resulic of estinating ~{od via
the tecursive SONE. The MSLE in the estimation via the recusive SONE and the ONFE
ate shown in Figure 3.9, The MSE in the proposed approach diop= 1o a0 mall salue very
quickly and continues toimprove, while for the CNE approacdit reaches o ataration andd
no further immprovements ate obtainable  Thelevel of the steady state error i the UNE e
function of the debiasing coeflicient as wasshown an chapter 30 A< o smcrea ed the AMSE,
reduces, however, at a cost of longer transient duration. | his mdicates the supenonty of

the SONT to process shott-duration signals.
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Figure 5.9: MSE in estimating a damped sinusoid by the conventional CNF and the
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5.2 Time-Varying Signals

Genenally for the detection of signals. MEFs are useful cely in the stationary environment.,
However. since our approach is used for the estimation (not detection) of signals instant by
instant, it should he possible to extend this approach for the processing of non stationary
signals. This. of course, must be true as this approach has been shown to be equivalent to
the Kalman Filter. We present the following two simulation results to validate the use of
SONF for the processing of time-varving signals. These example serve 1o only indicate
the possibilities of using the 1ecursive SONF for the processing of (FM) non stationary

signals. As earlier, all simulations are v discrete-time.

Example 5.7 The signal s(#) in (1.2) 15 now chosen to be a frequency modulated type. It
can be written as s(n) = Acos(g(n) +6.) where 2(n) =« n #3520 w(m). The modulating
frequency w(n) is generated by passing zeto-mean white noise sequence throngh an FIR
lowpass filter with a cutofl frequency w.,, = Jdrad/s. n(n) is zero-mean white noise
uncorrelated with the one used to generate w(n). The SNR is =3 dB and the instant aneons
phase (1) is a priori known. We estimate the A signal using the recursive SONE where
the basis functions are set to be cosg(n) and sinp(n). Figure 5.10 shows the tesults
of estimating s(n) via the recursive SONF and the Almost-Symmetrical Time Varying,
ARMA (ASTV-ARMA) of [32] for the debiasing cocfficient a = 0.9. Figure 5.11 shows
the MSE in the estimate of s(n) by the two methods. For compatison purpose, we have
included ASTV-ARMA results for o = 0.99and a = 0.995. The performance of the ASTV-
ARMA mocdel starts to approach that of the SONF as a is increased, however, the transient,
duration starts to become excessively long. This curtails the usage of the ASTV-ARMA
for transient or short-duration signals. Clearly, the SONI approach provides superion

results for short-duration signals.
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Figure 5.10: Results of extracting a FM signal in the presence of noise via the SONF
and the ASTV-ARMA with o = .9. (a) Input mixture z(n); (b) PSD of z(n); (c) s(n);
(d) PSD of s(n) in (c); (e) Output of SONF, §(n); (f) PSD of 5(n) in (e); (g) Output of
ASTV-ARMA, §(n); (h) PSD of 5(n) in (g).
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Figure 5.11: MSE in estimating an FM signal in the presence of noise

Example 5.8 In this example, we show the separation of two finite duration FAT sipnals

with overlapping Fourier Spectra. The two FM signals are generated in o manner similar

to that in Example 5.7. Figure 5.12 shows the results of separating via recmsive SONIEF

and the ASTV-ARMA with a debiasing coeflicient a = 0.9, Figure 5.13 shows the MSE
in estimating s;(t), one of the two FM signals in the input mixture, for the two methods.

Clearly, our proposed approach provides improved results.
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tligure 5.13: MSE in separating two 1M signals.

5.3 Application: Separation of Signals in AWGN [1]

Here we consider the application of separating closely spaced NI signals immersed in
white gaussian noise using the newly developed SONF. We will show the petformance of
the SONF for separating closely spaced damped sinusoids (transient signals) in noise, We
consider the case of two damped sinusoids in noise.

Let theinput x(t) be composed of a mixture of two NB signal componentsin AWGN,

() = si(f)+ s2(0) + n(1)

vdi(t) + vadylt) + (), €0, 7] (5.4)

where the composing functions ¢(t) and ¢,(t) are a priori known and n(t) is zero-mean
white gaussian noise. The composing functions are not orthogonal for all ¢ ¢ {0, 7], i,
(4.27) does not hold. By using the sliding GGS orthogonalization procedure, the mput

mixture can be written in terms of new orthogonal functions, ¥, (t) and ,(1),
z(t) = Ap(t)yi(t) + Ax(thpa(t) + nlt)
= o) +z() +nlt), te[0,T), (5
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We have converted the case of constant coeflicients vy and vy in (5.1) to a general case
where the coeflicients are time varying, Since the SONE approacn is LTV, we apphy it to
separate o (1) and r, (1) from which sy (¢) and s,(t) car be determined.

Giiven that the basis functions o (1) aud ¢,(t) are a priori known, then the new
orthogonal basis functions ) (t) and (1) are also known. By slightly modifying the SONF
approach, it is possible to separate the two components, sy (1) and s,(f) directly. Since we
are assuming that there is no a priori knowledge about the SNR of each component, we
use the suboptimal post-IMFE scaling function.

The output of the IMF partis scaled by 1/[]v(0)[|f to estimate the amplitudes AL (1),

At) = (= palDey) + gy () = A (8 + 0l (D

Ap(t) = wvpdnl, (1) = A )+ 0l (1) (h.6)

-

If we multiply Ay(1) by é(t) we obtain,

5(1) = A1) = $2(1) + no2(t). (5.

hA |
-1
—

I we now add pyy (1) A1) to A, (1) and multiply the result by ¢((t) we obtain,

. <

si(t) = [/’21(’)/‘2(() +Ahi)) () = si(t) +na (). (5.8)

Notice that we did not use N (t) = u’v,(l)/“w,(t)llf directly. Figure 5.1 shows the resulting

A [ () ar

X(t) V1(€)

[ (O

¥a(t)

t
/0 () dr

Figure 5.1.: Separation of closely spaced signals.

maodified SONF circuit to separate the two signals embedded in noise. The output noise
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in each of the two components can be written as,

n(t) = [_\L")__‘_(_f‘)_lt topalh) h ”(-”3 L"‘(,,? \'] () (H.9)
e (O e (00
and
noft) = [“\j'_(”_k_.‘(_f‘)_‘{] (). (0.1
lee(O1];
The MSE in estimating cach of the two camponents, ey (f) and raoa () s piven as
Bl (] = N [~~-~l--. bpdn - (511
ey e (017
and ‘
Eniyn] =\ et (H.12)

e

Asymptotically the noise power in cach of the two estimated signals approaches o,

Example 5.9 We now present simulation 1esults [1] describing, the effectiveness of TINTI
the approach of Figure 5.11 to extract a short duration NB signal component in the
presence of heavy noise and an interference strongly correlated with the signal. I'he input

mixture is described as

r(n) =s(n)+rin) v na(n) {h.13)
where s(n) = dos(n) is a message signal, r(n) = A, é, (1) is the intetforence aml

n(n) is zero-mean AWGN. The composing functions ¢, (n) = ¢ cos(fon) and o, (n)

(,d, n

cos(frn) are a priori known with 3, = —0.016, 3, = —0.012, and normalized fre
quencies of f; = 0.035 and f, = 0.01 Hz. ¢, (n) and ¢ (n) are highly correlated with
a correlation coeflicient pg.(n) (see Figure 5.15) that approaches unity at time interval
n — 0 and decreases to a value of 0.5 towards the end of the considered time interval.
The amplitudes A, A, and the noise power are chosen such that the SNR and SIR are
cach —10 dB. Figure 5.16 describes the results of estimating s(n). This approach provides
rather large magnitudes of the first few samples in the estimated signal s(n) due 1o the
division by ||¢*2(n)]|?, which is a rather small number at the onset of filtering. We have,
therefore, not used the first four samples in the results of Figure 5.16. It is evident, from
Figure 5.16c, that after an initial transient period of approximately 25 samples, a very

good estimate of s(n) is achieved.
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The MSE curves of the modified SONT approach of Figure 5.1.4 and that of the CNF
of [26] are shown i Fignie 517, The knowledge of the decav factor 4, and frequency f;
has been incorporated in the calcnlation of the conventional CNF coeflicients. Clearly,

after the initial transient peniod, the GS orthogonalized SONEF approach provides a much

lower MSE.
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5.4 Adaptive SONF's

In this section, we present the simulation results of applying the adaptive SONF for the
enhancement/suppression of damped sinusoids with unknown damping coeflicients. \We

present two examples to show the effectiveness of the Adaptive SONFs.

Example 5.10 This example shows the simple case of a single damped sinusoid in zero-

mean AWGN. The damped sinusoid s(n) is defined as,
s(n)y = Ae™cos(won +0,) (h.11)

whete A 0, and .3 are the unhnown amplitade, initial phase and damping coeflicient,
tespectively, “The sinusoidal frequency @, is a preors known. In this example we set the
damping, coeflicient to 3 = --0.0513 (or = 0.95), initial phase is uniformly distributed
on the interval [0, 27) and the amplitude is chosen such that the SVR = 10dB. The SNR
is delined asin (5.3). Step-size parameter in the adaptation is set to 3 = 0.01.

Figure 5,18 shows the results of extracting s(n) from the noisy data. The hat denotes
the estimate of s(n). Note that s(n) 1epresents a very short-duration signal. Its useful
(significant) portion is only the first 10-50 samples. In the adaptive estimation of 3.
during this time interval, a reliable estimate of .3 does not exist.  As such, we do not
expect the output of the filter to represent s (n) with any fidelity (i.c., we are using SONF
with incorrect basis functions). To combat this, in the estimate of s(n) in Figure 5.18,
we have applied the idea of a posteriori filtering [76]. With this method, the idea is to
simply refilter the complete data once the filter parameters have been estimated. In our
case, once the damping coefficient 3 has been estimated with sufficient accuracy, we can
generate the necessary basis functions (¢1(n) & ¢2(n)) to implement SONF. Details of a
posteriori filtering can be found in [76].

From Figure 5.18, it is evident that with this approach we can estimate s(n). For
a comparison, Figure 5.18 also contains an estimate of s(n) (denoted '3(n)’) where the
basis function in the SONF approach were assumed to be undamped (e, B =0 —>
di(n) = cos(won) & ¢a(n) = sin(w,n)). In practice, to simplify the problem, damped
sinusoids are often modeled as undamped sinusoids. Clearly, the adaptive SONF with

a posteriori filtering provides a method of adequately processi.ig damped sinusoids with
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unhnown damping coeflicients Figure 5,09 <hows the learning curves for 3 for o stiele

trial and ensemble average (200 tiials).
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sxample 5.11 o this example, the input minture is descnbed as
rlo) = s{n}y + i)+ oin) {H.15)

where s(n) is the desired o1 the message <ignal as in the previous example, nn) is ze1o-
mean AWGN and 1 (0) = 40" sy n 6, ) i~ we intetlerence signal. The patameters
I, 0.0202 (o 095} w = 02387 1z (nonmalized), and ¢, anilormly distiibuted
over (0. 2x]0are chosen such that e s Tnghlv correlated with s(n). Fhe amplitndes
and 4, and noise vatiance e chosen such that the SNE = 10 dB and STE = -3 dB {as
defined m (5.3)). The step-size s the adaptive procedute is chosen to be 5 = 0.0009.

For the same teasons as deseribed in the previous example. we use the jdea of
a posterworr filtenmg. Figure 5.20 shows the tesults of extracting ~(n) from the input
misture. For compatison. we also extract s(n) with the assumiption that the desired
signal is undamped, ies 3 2 00 This estimate is denoted with ™ = 7L Fven in the presence
of a strongly correlated intetference we are able to use the Adaptive SONE 1o estimate .3,
and hence to extract s(n) from w{n). Cleatty from Figuie 5.20, without the knowledge of
Joowe cannot estimate s(n) with any degree of acenracy. Figure 5.21 show the single tiial

and ensemble averapge MSEs.
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5.5 Conclusion

In this chapter, we have shown, via simulations, the effectiveness of the proposed approach
of the SONF to process signals of short-duration. In comparison to the popular parametric
ARMA model of CNF and the time-varying CNF (TV-CNF), it has been shown to be
superior. In view of the fact that this approach is equivalent to the Kalman Filter (hence
optimmal in the mean-square sense), this is not an unexpected result.

Furthermore, since the SONF approach is time-varying, we have included simulation
1esults to show how it can be nsed to process time-varying signals. We have also presented
simulation results showing the use of the adaptive SONF, in situations where the basis
functions representing the message signal are not completely known a priori. For damped
sinneoids with unknown damping coeflicients, the adaptive SONF is used to first estimate
the damping coeflicients and then the SONF is reapplied with this knowledge. Although
not shown in this thesis, the adaptive SONF can always be constructed for any unknown

parameters of the basis set representing the message signal.
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Chapter 6

Auditory Evoked Brainstem
Response (ABR)
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Nonbehavioral hearing assessment has gained widespread acceptance in Audiometry. By
nonbehavioral, we mean that a patient need not respond to whether a particular auditory
stimulus was heard by him or not, thus, avoiding any patient bias or subjectivity. Evoked
potentials or evoked responses (1Rs) have gained an increasing acceptance as a nonbehav-
ioral tool Lo measure acoustical sensitivity of the auditory path in the difficult to measure
patients - infants, comatose, and handicapped [77]. From these responses, it is possible to
determine various aspects of a patient’s hearing capacity.

Auditory Evoked Brainstem Responses (ABRs) are obtained by applying an acous-
tical stimulus and then measuring the electrical activity of the brainstem by surface elec-
trodes placed on the scalp. Measurement of this type impose one drawback, the measured
tesponse is embedded in the background EEG activity. Of course, we may use implanted
microelectrodes in the brainstem to localize the interference by the background EEG activ-
ity, however, one can understand its lack of clinical feasibility for simple hearing loss test.
Thus, a major engineering task is to reveal the ABR in the presence of the background
EEG.

This chapter will explore the idea of ERs as a tool in auditory clinical environment.
The first section will define "What are Evoked Responses?” The second section will de-
scribe the nse of these evoked potentials in Audiometry. In particular, it will explore the
waveform morphology of the auditory ERs, the ntethod of acquisition and the parameters
of interest from the response. Section 6.3 contains a brief summary of the current methods
of evaluating the ABR waveforms. Section 6.4 states the problem at hand while Section
6.5 describes the procedure for processing the averaged ABRs. In Section 6 6, some illus-
trative results are presented indicating the ability of the proposed method to minimize the
residual noise in the averaged ABRs. Finally, the last section contains some concluding

remarks.

6.1 What are Evoked Responses?

Over the years many different tools for the analysis of the brain have emerged. One
would think that its inner workings are well understood by now. Computer generated

images of the brain anatomy fill number of medical journals, showing the results of NMR
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and CT scans. None of these impressive techniques offer any idea of how the brain is
functioning, its ability to think, or how the information is transported back and forth.
From a psychiatric point of view, a usetul tool would be a way to deciphet human cognition
or from neurological view how the brain controls various bodily functions [3].

There exists one primitive test, that does shed some light on how information is
shuttled about the brain. By primitive we mean that since it was first introduced in 19505
by a physiologist named George Dawson, it hasn't changed much. Consider stimulating,
a patient’s senses - a small electrical shock, a flash of light or a tone in the car which
results in electrical responses being generated that eventually go to the brain. We are able
to measure these responses at the brain by electrodes pasted to the sealp [3]. These types
of responses are known as ISRs. They are basically electroencenhalograms (I1Gs). But,
unlike the ordinary EEGs (which show continuous electrical activity of the brain), these
respcnses are elicited in a controlled manner. That is. ERs mark the brain's transient
response to a particular stimulus, such as sound. In terms of audiological assessment,
another way of looking at this would be to say: How does the hrain react to hearing, o
sound? As the sound (the stimulus) travels from the ear, through the brainstem and to
the higher brain, a series of pulses are generated along the way. causing sealp potential to
vary with time. From this one can determine the reaction of a particular area along the
auditory pathway [3].

If the scalp electrical recording is unusual response appears later than expected,
has a different shape than normal and so on - then a physician may conclude something,
is wrong. In this manner neurologists are using ERs to diagnose brain tumors, multiple
sclerosis and hearing loss to name a few. Psychiatrists have hopes of using ERs one
day to have insights into human cognition. Some researchers believe that someday, evoked
potentials will help human-factor engineers design better cockpits, unbeatable lie detectons
and even allow them to design equipment operated by a mere thought [13].

From the above discussion, it seems that the hopes of using ERs are great, bat the
obstacles in the development of this tool are also great. The problem with ERs is that
they contain too much information. The electrodes not only pick up the response to the
stimulus but also pickup the ongoing EEG - random firing of billions of nerve cells, Even

the tiniest action of the body or the mind will result in some sort of electrical activity in
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the brain. For example, clectrodes detect activity from a blink of an eve, swallowing or
even the 60 Hz noise from the nearby lightbulbs [3].

To extract the small ER (sometinmes as low as nanovolts) in the midst of large hack-
ground noise requires considerable amount of computing power. Even though the idea of
ER was developed about forty years ago, it only found its way into medical laboratories as
computers became inexpensive. Its full capacity can only be realized when more powerful
software and processing algorithins are developed to separate various components of the
FEG [3].

Most neurologists today measure ERs with the same processing tool used forty
years ago. Dr. Dawson first applied the technique of signal averaging. Ile reasoned
that by stimnlating a patient’s arm, he wonld be able to view the ER on an oscilloscope
linked to the scalp electrodes, if he could find a way to enhance the 5 to 10 microvolt
time-locked ER in the 50-100 microvolt EEG. He exposed his oscilloscope tracings to a
photographic film. By stimulating the patient many times and supetimposing the tracings
on the film, the time-locked evoked response hegan to stand out amidst the random EEC.
One major assumption in his reasoning was time invariance of the evoked response. That
is, cach stimulus will elicit a similar response in synchrony with the time of application of
the stimulus. Today, instead of using a photographic plate a computer based averaging

technique is used.

6.2 ERs in Audiometry

6.2.1 ABR Waveform Morphology

Dr. Dawson’s reasoning in establishing the measuring technique of the ER was the re-
peatability of the response. That is, for every stimulus applied, the measured response
will be similar. Irrespective of the patient’s age, hearing sensitivity, or his waveform mor-
phology, a repeated suprathreshold stimulus will produce a similar response [2, 77]. By
suprathreshold, we mean stimulus level above the hearing threshold (i.e. lowest intensity
level of the stimulus at which the brainstem response can be detected). Thus, repeated
stimulus will produce a similar response.

Figure 6.1 depicts a typical suprathreshold waveform in time domain. The waveform
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Figure 6.1: A typical ABR obtained at suprathieshold stitnulus level. Adapted trom [2]

of this figure is marked with an impulse at the start of the response. The impulse i~ only
a representation of the stimulus to indicate the start of the tesponse. Thus, a traction
of a second after the person hears a click (instead of tones, ¢lichs are used as w stimulus
for the ABRs), the ABR waveform is observed for the first 10 milliseconds. The tesponse
consists of a series of peaks and valleys. Figure 6.2 relates the seven components of the
ABR to the different, areas of the auditory tract as the electiical representation ol the
sound travels from the inner ear to the higher brain. The first component of the wavelorm
is generated near the inner ear; components 2 through 5 arise somewhere in the brainstem
and the location of generation of components 6 and 7 is ~till ambiguous. By the time the
10 milliseconds have elapsed the response has probably teached the cerebral cortex, the
higher brain. In this region, the response is processed as cognition and is not uscful as
far as auditory evaluation is concerned. The locations of generation of these component
responses in Figure 6.2 are only approximate as no one knows the exact, point of generation.
In all likelihood, there is more than one soutce for cach component [3]. Figures 6.1 and
6.2 show a typical ABR waveform that is generated in normal healthy individuals. There
exists a small variation in response from person to person, however, the general waveform
shape is preserved. There have been attempts to categorize all possible waveforis into u
finite set that can be used for template processing [78].

We have looked at the ABR in time domain up to now. We will now consider
this response in frequency domain, as it will prove to be useful in the analysis or in the

recovery of the signal from the noise. The spectral energy of the human ElLG appears to

126



£voked potental, 0.1 microvolt usits W

Figure 6.2: Location of generation of signal. Adapted from [3]

decrease with frequency up to about 2000 1z and flattens above 2000 Hz. From the present
studies available, spectral energy of ABR is limited to 1500 Hz [4, 79]. There are three
main components: a low frequency component at around 100 Hz, (in the literature there
appears to be some controversy about the existence of this component), a midfrequency
component around 500 Hz, and a high frequency component around 900 Hz. Figure 6.3
shows a typical spectra of an ABR. Studies suggest that the midfrequency component is
associated with component 5 of Figure 6.2, and the high frequency component is associated
with the carly components, 1 through 4. These two frequency components are probably

the most importa~t for hearing threshold and other audiometric diagnosis [4].

6.2.2 Measurement Techniques

ABR waveforms, unfortunately comprise about 1 percent [79] of the ongoing EEG activity
and thus must be extracted by some signal processing means. The technique that was used

forty vears ago is still in practice today - the idea of signal averaging to eliminate noise.
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Figure 6.3: Spectra of ABR. Adapted from [ 1]

Consider a digitized stgnal
LR) = SR Foa b)) (1)

(k refers to diserete time and the subseript jefers to jil run in the averaging provess)
where s(k) is the evohed response and n(k) is the background noise. Now, il the noise is
assumed to be white (there is no correlation in individual samples) and is uncorrelated
with s(k), then we can enhance the signal s(k) by applying signal averaging techinigue,
Each response x, will have a noise component n, that is uncorrelated from response 1o
response (results of whiteness of the noise). By using, this tandom nature, it is possible to
sum a large number of responses 1o reduce the effect of noise (80 i the equation
1oL (S
ih) = Jim < Y e, (k) = (k) + Ti>- n, (k) (6.2)
; {

M—oou
! M~ o

if M approaches a large number then the effect of the noise can be minimized, revealing a
clean ABR component. Iu (6.2), M is the number of runs, s(k) is the ABR, i, (k) is the
noise cotnponent in the jth run and &(k) is the estimated ABR. I the ABR component of
the signal £ is not similar from run to run, then it is obvious that some of it will also be
canceled. For a further discussion of the minimization of noise in ERs, see [80, X1].
There are many different ways to record these responses, one such systenn is shawn
in Figure 6.4. Standard EEG disk electrodes are attached to the vertex, the mastoid and,
the forehead which is used as a ground reference, The preamplifier can have a variable

gain which is usually around 100 within the cutoff frequencies of about 100 and 3000 Hz.
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The output of this preamplifier is connected to an amplifier of a gain around 1000, which is
also adjustable. Finally a microcomputer hased data acquisition system is used to average
and store the waveforms. The applied auditory stimulus is a very small pulse with its
intensity adjusted by a decade counter, The teason for using a pulse instead of a tone is
thata pulse covers the full frequency spectrum. Thus, it is capable of exciting the neuions
in the auditory tract at all frequencies, not just a single tone. Through an carphone, the
chek or the pulse stimulus is monaurally delivered to a patient relaxed in a supine (on
their back) position in a sound-attenuated chamber. A typical ABR testing procedure for
hearing thresholds will involve a collection of a set of responses - one for each stimulus

tevel for cach ear [7T9, 82).

Grass Grass Kronhite
P15 P511 3342
Preamp amplifier filter
Digital Output Nicolet
D— Med-80
system
: /\\ ! HP 350D Grass
) O 0 ! decade S88
' e — counter Stimulaor
. v/ ! Telephonies
E ! TDH-49 earphone
\ Sound
Attenuated
Chamber

Figure 6..1: ABR acquisition setup.

The measurements are obtained in an ipsilateral configuration (stimulus is applied
to the ear that is being tested) , however, contralateral (stimulus is applied to the ear

opposite to the one being tested) measurements are taken in certain cases. In a general
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procedure, the examiner begins by obtaining a response with . high (suprathreshold)
stimulus level and then in a predetermined step sive decreases the stimulus level to obtain
aset of respanses for cach ear. He also obtains a response with no stinmuhus that sers es as
a control. Each ear is tested independently.

In the determination of the hearing " threshold™ or the lowest intensity level at which
a response is detected, it is necessary to collect averaged responses at varionus mtensity
levels and then determine whether an ABR is present or oniy bachground FEG exists.
Thus, for this purpose, the only parameter of interest is the amplitude of the A\BR That
is, it is only required to distinguish the presence or absence of the ABR. rather than its
shape. At intensities much higher than an individual's threshold, ABRs are casily detedtd
upon visual inspection, however, as the intensity approaches an individual's threshold, the
response is marred by the background EEG activity and it becomes a difficull tash for
the clinician to evaluate these waveforms. Figure 6.5 shows a set of ABR wavelorms for
the left ear of one subject. Lvalnation of this set vielded a threshold of 50 dB. Notice
that the waveforms at much higher stimulus levels than the threshold are cloan and easily
detected, however, at levels below and close to the threshold, it is dificult to determine

the presence or absence of the ABR [1,10,11].
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Figure 6.5: An averaged set of ABR for one ear {5].
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6.3 Present Methods of Evaluating the Acquired ABRs

Whether an ABR is judged as being present or absent depeunds on the testet’s experience
in evaluating the waveforms. These judgments of the wavetonms can become subjective
since the tester may have some prior knowledge of the patient history o1 he may simply
judge the wavelorms differently on different days. When the ABRs are particularly noisy,
the tester's bias becomes increasingly important and may lead to ervoncons evahuations
Another problem that exists in this kind of visnal evaluation is intertester reliability,
Different testers may adopt different ctiterion for accepting a waveform as containing,
an ABR. Thus, evaluation of the ABRs for hearing threshold is not a wholly objective
procedure [83].

To eliminate the subjectivity in the evaluation process, vatious ideas have been
proposed in the literature, The goal has been to develop a mathematical tool to detect
the presence of the ABR. Weber and Fletcher [77) have proposed an algotitun hased on
correlation between pairs of waves obtained with and without acoustic stimulus. Wong,
and Bickford [81] compared the power in the ABR waveforms with and without acoustic
stimulus.  Salamon [85] applied a nonparametric analysis of the variance test. Al the
above algorithms were found to have the same statistical validity as the visual detection
method, however no extensive studies have been done to dismiss or accept the usefulness of
these methods. By visual detection, we mean that a clinician scores the presence/absence
of the ABR by looking at the averaged waveform. Recently, Arnold [82] compared visual
detection against (1) correlation [85], (2) variance ratio [S:4], and (3) pre and poststimulus
differences [86]. The results indicate that the visual detection was the most sensitive, but

it was not more statistically sensitive than the correlation method.

6.4 Problem Statement

In practice it usually requires about 2000 sweeps (individual responses) for each stimulus
intensity level to acquire an averaged ABR. A typical ABR recording session Fasts from 15
60 minutes. Due to the length of time required to acquire these waveforms, patient starts

becoming restless which results in severely degraded response. Addinonally, in practice,
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the background EEG ot noise is neither white nor stationary [79], thus allowing for some
noise to healso enhanced. I the mimber of tesponses in the averaging is reduced. as is done
to teduee the length of tiime requited to colleet a set of ABRs. the noise 1s not sufficiently
suppressed. Application of conventional technignes to reduce this residual noise is lmited
dhie to the short duration nature [79] of the ABR wavelorms.

A method 1o reduce the residual noise component in the short-duration averaged
ABR s requited, In the nest section, we propose a method that can be used to process the
averaged ABRs 1o turther teduce the noise. The proposed method is a two step approach
that combimes the Constrained Adaptive Notch Filters (CANFS) [26] and Statistically

Optimal Null Filters (SONES) of Chapter 1.

6.5 Method

In literature thete is ambiguity about the existence of the lower component {100 Hz com-
ponent). Thus, the two important frequency components centered around 500 and 900 Hz
ate of primary interest in audiology [1]. Moreover, in literature, these components have
been modeled as damped sinusoids [70, 87] due to the transient like nature of the ABRs,

e
SRy = si(k) Faa(k) (6.3)

Ayeeos(fik +0y) + Ay R eos(fok + 0,) (6.1)

where A0 3%, 00 and fi's are respectively the amplitudes, damping factors, random
initial phases and the fiequencies of the different NB component of the ABR. Equation

(6.-1) can be written in terms of the basis set {o,(£),1= 1,2, 3, 1} as

4
S =)ot (6.5)

1=1
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where s are random vanables o

) om0
ot o M i
o) leosgfot)
gt ."\1”(/_»/)

are the hasis functions 1 he hasis functions o (A and cogh torm Patt Stnee they nodet
one component of the ABR Sinnlarhv ogtA) and o) form another pai

[t is amsumned that the paranreters {£y0 3y fa 53 and hence the baas i Gron - are
a preoreavailable. We can therefore nse the signal estimation «onnterpart of the SONE (a4
shown in Figie 111 1o estimate each term of (6.3) Simee this = 0 hnear Uive varvine
filter. we canuse the idea of supetposition to estimate all the fonr component= ol (5]
Fhis is desaribed by the signal estimation counterpart of the NC SONE L <hown i [NTETNTE
B3 with N = 1. Note that with this sttategy, we tmay also consider the 100 Hzvanponenl
of the ABRII the need or justific ation atises.

Anamportant eriterion innsing SONEFS is that the basis tunections st be ot hosonal
for exery time instant ¢ < [0.1]. Lhis can be achieved nsing o sliding Gram Scluoudi
orthogonalization procedure as described in Chapter 1 Additionally, ~inee there s oo o
prore knowledge of the SNR ol each component of (6.5), we must use the suboptimal
A, e A () = (,‘:,(I)/[I(:),(I)||f, = 120300 This, of conrse will provide subsoptinal
estimation. Alternatively, since the measured ABRs are ina digital form, we can avord the
computationally expensive sliding GS orthogonalization procedure and - the reour pne
SONFE as outlined in Chapter 4 to obtain a globally optinal ¢ stumate Cliven that we do

not know the SNR, we use the identity matrix as £2(0).

Parameter Estimation

Thus far, we have tacitly assumed that the frequencies fi's andd the damping factar- 4,
ate a priory available. Althongh we have some idea about the frequenaes, this s generally

not the case for the damping factors, J3.'s. T hese pavameters st bhe first o-timated, with



which the basis functions can be generated. It is only then, that we can use the SONFs
of Chapter 4. We now describe how these parameters can be determined.

In determining the nearing “threshold™ or the lowest stimulus intensity level at
which an ABR can be discernible, it is necessary to collect a set of averaged responses at
various intensity levels. At levels much higher than an individual’s threshold, ABRs are
casily detected. ‘The averaging technique yields a well defined waveform. We use these
suprathreshold waveforns, to estimate the aforementioned parameters - center frequencies
and the respective damping factors. Due to the assumed replicability of the ABR, we can
use these estimated parameters for all ABRs obtained at lower intensity levels for the same
patient or subject,

The parameters can be estimated in two parts. First the frequencies S and f, are
estimated using the CANFs as described in [76, 88]. The estimates of the frequencies
fi and f, (hat denotes estimate) are then used to find the damping factors 3; and ,3,.
The damping factor for each NB component of the ABR is estimated separately. Figure
6.6 describes the basic idea in estimating 3;. Notice that to estimate each 3., a second
order signal enhancement counterpart of the NC-SONF is required - dashed box in Figure
6.6 as a basic building block in the adaptive configuration. A similar section in cas-
cade/parallel can be used to estimate ;. Steepest-descent algorithm is used to minimize
the output error in the estimate of the ith component of the ABR with respect to 3,. At
each instant of time the current estimate of /3, is used to generate new basis functions,
J)(I)’s. Section 4.7 describes in detail the adaptive algorithm for estimating the damping

factors, G,’s.

6.6 Results

in this section, we will illustrate the effectiveness of the proposed approach by presenting
some example results of filtering averaged ABRs to reduce the residual noise. We use the
term averaged ABR to mean enhanced or preprocessed ABR by the averaging technique
described earlier. Sets of ABR with various stimulus intensity levels were collected using
an acquisition system described in Figure 6.4 for hearing threshold assessment [5]. Each

set consisted of several ABRs at different intensity levels and for each stimulus intensity
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Figure 6.6: Adaptive estimation of the damping factor 3, using the NC-SONI as a hasic
block.

level two averaged ABRs of 10.2:1 ms duration were obtained. The sampling rate was set
to 25 kllz and 1024 such responses were averaged to form each avoraged ABR. Estimates
of fi, fay B1 and J; were obtained for the two averaged ABRs clicited at the highoest
stimulus intensity levels in cach set (where the ABRs were clearly evident). Before the
parameters were estimated, each of the two averaged ABRs were filtered with a fourth
order bandpass Butterworth filter with cutoff frequencies of 300 and 1500 Hz to remove the
stimulus artifact. Before estimating the frequency and the damping factor, both averaged
ABRs were normalized to unity. The average of the two estimates for cach parameter
was then used to generate the required basis functions for the estimation of the ABR
waveforms via the recursive NC-SONF. Figure 6.7 outlines the general procedure in the

filtering of the ABRs.
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Figure 6.7: Configuration to filter the averaged ABRs in threshold testing.



Example 6.1 Figurc 6.8 shows the result of one ABR in a typical set [S9]. Phe stimulus
intensity level for this ABR was 10 dB lower than the ones used for parameter estimation,
Clearly the proposed algorithm applied to the averaged ABR vields o wavelorm whete the

ABR is well defined and allows for more reliable detection.

1
10ms

Figure 6.8: Results of Proposed Methods: filtered ABR: - ABR as acquired.

Example 6.2 Figure 6.9 shows a set of ABRs! (i.e. as acquired).  The numbers in
parenthesis on the right indicates the stimulus intensity in dB and the solicd and dashed
lines indicate two different averaged waveforms acquired for the same intensity level. The
last pair in the set is the silent control, i.e. response obtained without applying a stimulis,

Examining the original (averaged) waveforms of Figure 6.9, it was ascortained by an
audiologist that they showed no response. It was concluded that this is severely hearing,
impaired subject, however, it may still be possible for the high levels of the physical activity
(motor activity) to influence the outcome. Table 6.1 shows the results of the correlation

method. The second column represents the cross-correlation of the two ABRs obtained at,

the same stimulus intensity level while the third column represents the cross-cortelation of

the silent control. Column four shows the measure used to decide the presence fabsence of

the ABRs. It is based on the four combinations of the ¢ ross correlation between the two
acquired ABRs at the same intensity level and the two silent control waveforms., With the
measure 4/4 represents a clear presence and 0/4 represents the absence of the ABR. From

these results, it is difficult to determine a threshold level. The criterion for the detection

'The waveforms have been collected at the Royal Victona Hospital under the direction of 1y H ]
llecki [5]. The author had the opportumity to spend several months collec ting new data and transfornmg
some existing data for this project.
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of ABR by the correlation method [83] s not met consistently enough to be able to make
a threshold dedision. Figure 6.10 contains the ABRs enhanced via the SONF procedure of
Fignre 6.7, Evaluating these waveforms, it can be roughly seen that there exists a response
for stimalus intensity as low as 55 dB, however, it is likely that a trained clinician may
accept the waveforms as containing a response for even lower intensity levels. In this latter
set, various components of each ABR appear to be defined more clearly than the simply
averaged waveforms of Figure 6.9. Thus, other parameters in ABR andiometry (such as

latency) can be much more readily measured.

H‘_Hv;n'ing Sensation Level ] Stimulus €C°C [ Silent Control CC [ Response ”

91 12 -.23 1/4
S5 15 -.23 1/4
7 X -.23 1/4
65 A3 -.23 2/4
55 13 -.23 0/4
15 36 -.23 1/4
I 35 Al -.23 3/4

Table 6.1: Correlation Method Analysis of ABRs of Figure 6.9.
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Figure 6.9: ABRs collected from a left car of a patient [5],

110



Figure 6.10-

The set in Figure 6.9 filtereq via the recursjve SONF.
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Example 6.3 Similar to the last example, Figure 611 contain the recording of another
set of ABRs at various stimulus intensities and Figure 6.12 contains ABRs processed by
the proposed strategy. In this situation, based on the visual inspection of the wavelotms of
Figure 6.11 by an audiologist. profound hearing loss of this eat is concludud. Correlation
method vielded a thieshold of 85 dB (see Table 6.2), incousistent with that of the visual
inspection. Examination of the waveformsin Figure 6,12, vielded a thieshold at the fow et
intensity level {75 dB) The individual peaks in Figure 6.12 are much mote deatly defined.
Should the test have continued for lower intensities, it is possible (even likely) that the

hearing threshold is much lower.

“Jlo:u'ing Sensation Level LStimuln.\ ('('_{.Tﬁ'_ilvnl ('unln;l"("ﬁ("wl Response “

91 ' Tl 37 1/
91 85 o 11
91 32 s 3/1
S5 A7 R 2/
85 N 11
5 I N 0/1

Table 6.2: Correlation Method Analysis of ABRs of Figure 6.11.
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Figure 6.11: ABRs collected from a left ear of a patient [5).
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Figure 6.12: The set in Figure 6.11 filtered via the 1ecursive SONF,
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6.7 Conclusion

A the number of trials in the averaging process to enhance the ABRs is reduced, the
noise level can become significantly high  In an attempt to minimize this residual noise,
wehave proposed a two-step algotithm that uses a sum of damped sinusoids model of the
ABR T the fitst step, the sinusoid frequencies and the damping factors are estimated,
while m the second step these parameters are used to enhance the averaged ABRs by the
recursive SONI inan a postcrior filteting [76] scheme,

Using this approach, results of filtering two sets of ABRs from two independent ecars
have been presented. Both the visual inspection and the correlation method failed for
one case, and for the second case they showed incomsistencies, Results of filtering these
wavelorms with omr approach provide cleatly defined ABRs whete none were visually
appatentin the original unfiltered waveforms. Upon visual inspection of filtered ABRs in
Examples 5.2 and 5.3, it is likely that a elinician would «hange the original conclusion of
severe deafness, Furthermore, the averaged ABRs filtered by our approach can be used in
the correlation method 1o vield automatic detection.

The results presented in this Chapter indicate that we may use the SONF based
method to minimize the residual noise in the averaged ABRs leading to the possibility
of & mome reliable detection procedure, perhaps even a completely objective procedure,
Moreover, with the ability to minimize this residual noise, it may be possible to reduce
the number of trials requited in the averaging process for each ABR. Given these favorable
tesults, a statistical study of the presented method is essential hefore it can be accepted

or tejected,
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Chapter 7

Conclusion
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The problem of processing transient signals, whether for suppression, enhancement or
classification, generally presents a difficult task. The difliculties arise due to the limited
duration of the data and are further compounded by low SNR. low SIR, limited « prion
information and so forth. In this thesis, we have addiessed the problem of processing such
signals in the presence of noise given their existence and in some applications, their TOA.
For sueh signals steady-state approaches elearly are not applicable, Thus, in general, we
have addiessed the problem of estimating short duration signals in the prosence of noise,
irespective of whether they are of decaying type or not.

The methods employed in the processing of signals are ultimately determined by their
mathematical deseription or tepresentation. In this thesis, we have considered two forms of
signal modeling within the Structural Signal Processing (SSP) fiamework to generate null
filters for processing short duration signals. The first is the parametric model that leads to
the Almost-Symmettic ARNMA (AS-ARMA) form of null filtering. In the second, the more
classic seties expansion model is used to generate the new nonparametric Statistically-
Optimal Null Iy (SONFS).

I the first part of the thesis, we have concentrated on the parametric form of null
filtering. For practically useful CNFs (in terms of filter transient duration), the distortions
in the frequency response reduce the allpass nature of the filter. In this thesis. it has been
Chown that such distortions can be corrected by increasing the order of the CNFEs based on
strategic pole/zero pair placement. Three closed-form methods of finding such strategic
pole/zero pair locations have been derived. These filters have been termed Modified Notch
Filters (MNFs). Extensive simulation results show the improvements in the MNFs over
CNIs. The improved allpass performance of the MNFs is then traded to obtain shorter
filter transient durations for the processing of short duration signals.

The degree to which AS-ARMA null filters are transparent to signals not belonging
to their null space is determined by the symmetry factor, a. To quantify the measure of
transparency of these filters, a new criterion is developed. An expression in terms of filter
coeflicients is derived.

I the second part of the thesis, we exploited the series expansion representation of
the comsidered signal. The knowledge of the set of basis functions in this expansion has

been used to develop the new nonparametric SONFs.
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It is well known that MES increase the output SNR e a very short tune, thus,
we have used a special Instantancous ME(INE) as a0 basic hnlding block i our ap
proach. By combining the maxunum output SNR oand the TS cntena, the SONE has
been developed. Several different forms of the SONEs are presented and the relarne il
vantages/disadvantages of each are discussed in the thesis. Detailed analvsis teveals the
SONF to be equivalent to the well known Kalman Filter. A< sucho it ofters aonew and
unique way of implementing the Kalman Filter. One of the hev advantages of the SO\
is realized in the simplicity of its implenientation. Phis simplicity contrasts wath the more
imolved Kalman Filter. yet the end result is the same.

T'o further motivate the problem of enhancement, suppression of short dutation
transient-like signals, we have considered the problent ol \uditory evoahed Rransten Re
sponse (ABR) andiometry, It has been shown that by using o combination of adaptinve
and tecursive SONFs, it is possible to nunimize the residual noise in the averaged VBR-
Real data examples have been used to illustrate the eftectiveness of such an appreach and

to watrant furthet statistical evalu . jon of the methad.

Main contributions

C'ontributions of this thesis are contered around the theme of <hort duration signals T he

following briefly highlights the main contributions of the thesis.

e 1n order todescribe the intrinsic properties of parametiic Almost Symmetical ARNA
based Null Filters, we have developed a new performance critetion, the transpureney
impcrfection cocfliciont, U e deseribes the guality of the passband in terms of the

filter coeflicient.

e It isshown that by increasing the order of the CNEFs by strategically placing pole/zera

pairs, the frequency response can be improved.,

e [mprovements in the frequency response of the null filters can be used 1o reduce the
duration of the filter transients and enable them to be used for the apaly-is of hon

duration signals.
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‘Three closed form methods of evaluating the additional pole/zero pairs locations

have been developed. One is optimal while the other two are suboptimal.

A new nonparametric SONT in continuous-time is presented for the processing of
short duration or transient signals. It is also shown that such an approach is only

locally aptimal.
Globally optimal SONF is presented

To deal with the implementation issues of the SONFs, a discrete-time recursive

version of the SONF is developed.

For the case where the basis functions used in representing the series expansion of the
signal under consideration are not completely a priori known, an adaptive version

of the SONIE is presented.

Since the SONF is LTV and optimal under the MSE criterion, it is believed that it
is closely related to the Kalman Filter. This is shown to be true analytically for the

first order case. For higher order SCNFs, simulations are used to justify this claim.

Extensive simulation results show drastic improvement in the performance of the

SONE over the parametric null filtering methods for the short data signals.

Stnulations are used to show that SONF can be adequately used for the processing

of signals with time-varying parameters.

Application of the SONF in the separation of highly correlated signals of given

structure is presented.

SONI based apy:oach is applied to filter the averaged ABR waveforms using a sum of
exponentially damped sinusoids model. Several examples of filtering these waveforms
indicate the usefulness of this approach in the application of nonbehavioral hearing

loss assessment of humans.
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Future Research Topics

Interesting topics for future rescarch include:

Application of MNF as an adaptive noteh filter to estimate the unhnown NI e om
ponent frequencies may he explored. We expect the resulting frequency estinates to
be of lower bias and variance as compared to the CANIS of [26] due to the improved

frequency response of the MNFEFs,

The removal of the constraint on the pole locations of the compensation section
of the MNF and determination of optimal locations using nonlinear optimization

techniques. This may further improve the frequeney tespotise of the NINI.,

FFor processing of time-varying signals of unhnow n waveform shape the ASTV ARNA
have been recently developed [32]. Many different stricctures of the ASTV ARMA
have been proposed. Since the SONF approach is equivalent to the Kadmau Filter
(thus, valid for time-varying signals) and given the simulation results i Chapter 5,0t
will prove interesting to modify the different structnres of ASTV ARMA presentedd
in [32] using the SONT as a heyv building block. Simulation results indicated 1hat
the SONF is supetior to the ASTV-ARMA null filter for short duration sipnals, we

expect the SONFE based methods to be superior for time-varying signals as well,

The limits of integration in the IMF are from 0 to f. As t -y 00, the norm (1)

f(; % (7)dr will grow to a very farge value. Hence, new ways muast. be devised 1o
limit this growth. One possibility is to use a sliding time window. ‘That in, e
limits fromt = ¢, to t = try where the interval {7 — 1, =T is constant at each time
instant. Alternatively, one may employ a forgetting factor as is done in the RLS
algorithm. This procedure is essential if the SONE is to be used for a signal aver

long observation intervals.

We have applied the CANFs and the different SONFs in removing the residual nojse
in the averaged ABRs. Results presented wre only examples showing the viability of
this approach. A rigorous statistical study must be done to adequately evaluate Lhe

usefulness of this approach.
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o Application of the approach of Chapter 6 to single trial ABRs or to waveforms

obtained with reduced number of trials in the averaging procedure.

e [uthis thesis, we have modeled the ABRs as damped sinusoids as is done in literature.
Although this provides us with simple basis functions for the SONF approach, it
would prove interesting to try different basis functions. As an initial suggestion, sinc
or some other mother wavelet family of basis functions may be tried. Comparisons
of results based on different basis functions in the SONF approach may reveal or

enhane e different properties of the ABR.

e It may be useful 1o estimate the ABRs using the traditional ALE using the LS
solution rather than the LAS algorithm. Recent improvements/suggestions such as
the choice of model order, the proper choice of delay for decorrelation (A), and data

rensing, may be incorporated. The results can be compared to the SONF approach.
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