R

g

Jai Singh
¢

A Major Report

“,. » . iﬁ .

Concordia University

Montrgal, Quebec, c§pada'

\ .
- m 1981

a

s B

@ Jai Singh, 1981

kY. A

C o

.
The Department
vy ’ .Of 3 . . s]
' Computer Science ‘ ‘J/~\:i) ¢
. I o y
oo ' l«l.m hd =
. .) vj;!') ’
Presented in partial fulfilment of the requirements
for the degree of Master of cegputer Scienﬁij‘g‘ N

I

[P SV

wil - W [

o

[

R AL L

P S R Y

B

e , _
. ' N
~ . ENTRYPRO
A FORM DESCRIPTION & DATABASE INTERFACE SYSTEM !
) -
- ¢ ‘
K .
' {]
- ¢ : :
)
' P S . .
< ; ‘
» B .
P v
. - -
>
M <
. . -) . /ﬁ -ﬁ
- N &
-~ v 1

oo v w v e — - ;

. ABSTRACT

A
s

ENTRYPRO: FORM DESCRIPTION AND DATABASE INTERFACE SYSTEM

Jai Singh

ENTRYPRO is a form descriftion and database interface system for on-line
data_entry type of applications, Using the instructioas provided in
ENTRYPRO language (DIL) a programmer/analyst can create a system of
intgr}inking mewus and form families., Optionally, the items in a form can
be edited and validated by Item Proces;ing Commands provided in ENTRYPRO.
Several levels of access control are implemented on user classes. There

may be upto 10 Biffgrent user classes.

ENTRYPRO interfaces the forms to an on-line database, Since ENTRYPRO does
not apply locks to the database for long durations, the data entries
accessed for modification are re—regd, coﬁpared and ypdated under a loek.
4his ensures that there are no "missing" updates to the database. If‘a
compare test fails after re-read then the operator is warned and a new

fetch on' the database is requested. R »

ENTRYPRO provides an interface to user created programs or subprograms. It

-~

can execute any valid operating system command. The control re§;rds to

ENTRYPRO after termination of these processes.)

]

. .

ACKNOWLEDGEMENTS

»

I wish 'to express my gratitude to my advisor, Dr. Desai for his constant

-

-

encouragement and guidahce. -

! *

My gratitude is due to Lesters Foods Limited, Laval where the idea for this

report originated, and who graciOusly,affaiged me the computing resources

N e TR AR 2Ll R, L

e LA

for implementing the package. This packége is currently used in the

cogpany for devqldpiﬁg of appliecation systems.

I would like to thank my colleagues, Shiv Verma, Angelina Liberatore and

s

Raymond Lai at Lesters for valuable suggestions during development and

y

testing of the programs. -
.5 .

[. [y

- My many thanks to Sharon Jamison for providing with the secretarial

. SN
suppoggﬁ‘and‘Joyce Gill for all the paper she mounted on line printer for
o ST " Nt * ‘ ;
epdless listings.
‘ >
" .
" "l ‘

[4)

Lo

. TABLE OF CONTENTS

'

*)
1 ENTRYPRO SYST<;M DESCRIPTION
‘1,.1 Introduction . 1
1.2 Description of Database Interface Language (DIL) 3 .
1.3 Building of Specification File (System) A .
2 COMPILATION AND TABLE GENERATION
2.1 Internal Organization -~ SYSPACQ 5 !
Z.i Parsing Technique .and Error Recovery J 7
2.3 Table Generation — S 8) I
2.4 Item Processing Commands 11
2.5 =Forward Item Reference Resolution ~ 7
2.6 Organization of Loader Module 18
2.7 ‘ Data Structures of Code Tables
} .
3 ENTRYPRQ EXECUTIVE PROGRAM ! -
3.1 Organization of Executive Program (SYSPEXEC) 28 ‘
3.5 Data Structure in SYSPEXEC Program - 29
3.3 Menu Disblay’/f";nctions - 32
3.4 Form Display Functioms 33
3.5 Form Executive Functions 34
~J3.6 Subform (dettil form) Executive ‘Functions ’ 40)
3.7 Initiating Batch Job. Ipterface 41
- 3.8 ‘Scre.en Display/Input Procedures 42 ' ’
3.9 - Database Manipulative Procedures . b4 '
3.10 Security and Access Control . ’ 45 i ‘o
3.11 Database Locking and Conaistenc; - 46
BIBLIOGRAPHY ‘
APPENDIX o N\

A: Syntax Definition of ENTRYPRO Language (DIL)
B: ENTRYPRO Error Messages)
c: Allovab(ie Limits and Default Values -

_ D: ENTRYPRO Command Codes

E: A Sample Specification File and Output
X: Program Lisfings (not included) -

e

f. ii1 -

-

‘2.

3.

4‘

© 5.

6.

7."

8.

.Organization of SYSPACQ (Compiler)

-

. LIST OF FIGURES

’

Organization of “ENTRYPRO"

.File Organizatipn of "ENTRYPRO"

Menu & Form,Hierarchies
' f

Oggahizétion of ‘Forward Referenceés Table

SYSPAC Database Schema Listing

-

\ :
Organization of SYSPEXEC

Item Definition and Data Tables

0

an

)

fpp———4

-

ot

.

EM DESCRIPTION -

ENTRYPRO SYST

?

1'1

o i o b b e e e (s

1.1 INTRODUCTION .
. .
S : -

EY

ENTRYPRO is a softwird package which lets a programmer/analyst specify

screen forms and describe their relationship to one or more datasets in the

. . . /. .
database. The data interchange is done interactively on a CRT, using the

format defined by the analysts., The ‘form selection is guided by having a
‘ ' 3 L2
main menu, and submenus. ‘ r . 7
p) A ~ \ .
The form description and its database interface is achieved by building a

specifications file by using DIL (Database Interface L*nguage)

instructions. The complete set of instructions is described using BNF in

ﬂ

<«
Appendix C. The forms in the system arﬁ related to one of the menus in the

system, i.e. users can access one or more forms by making an appropriate

[

selection from the menu when displayed by ENTRYPRO.
N

Database security is implemented by restricting access to the form. This

“is done by 'associ.ating a set of user class numbers to a form. By

restricting access to a submenuw we can restrict the entire ‘Eorms family .

associated with that submenu.) ~ a

«f .

* The present version of the system has been implemented on a HP3000 (III)-

minicomputer. The ENTRYPRO systén programs are written in COBOL [1] anci

Systems Programming Language [2]. The forms are interfaced to the

IMAGE database supported by HP3000 computer [3].

The system has been designed with a high degree of portability. Two of the -

v

modules are computer system dependent, i.e. database calls and I/0

. .5 . .
procedures for the interactive terminals (screen manager calls).

TN .

e

e e e v

o ey g g,

The internal organization of ENTRYPRO can be divided in two parts: the

first part is a simple bne pass LL(1) parser (SYSPACQ). It reduces the

specificatﬁgn instructions to a pre~determined and complete tables

/
containing necessary information. This stage generates listing and detects
X . (
errors which are flagged by the parser, The second part of ENTRYPRO is
. w I3
used for actual execution of the table’s generated by the parser. The

w

tables generated by the first part gre taken as' inputs by the executive
program (SYSPEXEC). The functions of the executive are as follows:

a) Displaying of MENUS and selection of forms,
b) Enforcing access restriction (geéurity).

c) Displaying of forms' and executing the form semantics. ° :::>
d) Accessing and'modifying database contents as related'to the forms being

accessed.

e) Ensuring database congistency and integrity during updates.

\ .\
%

The tables produgced by the\part 1 can be listed by using.a separate program

(SYSPLIS® which préduces the r listing of the ERYPRO tables. This

step is quite helpful in doing system testing during development and
' ‘1)

modification (at some l4ter time).

The system level diagraT of ENTRYPRO is given in Fig. 1 apd 2.

¢ o\

v
B ‘Zij‘

The complete grammar of DIL is given' in Appendix A. .
P ppens

S

l’.2 DESCRIPTION OF DATABASE INTERFACE 'LANGUAG’E‘SDIL)

Iy ¢ .

“«

The specification file containt a program written using DILL instructions.
L -

—

P ¢ a
AY
- v o v K
DIL instructions are format free hovever a new MENU or FORM must be started

.

on a new line in column 1, this featyre is used for error recovery.
‘ a

TN
L. ' 2
The system analyst may create as many different specification files as

needed. These files will be used for creating different systems. .r'l'he

first line of specification file indicates the 4-character system code,

“which identifies the system to ENTRYPRO and SYSPAC databagpe. Ajystem is

described by three difﬁereut' types of constructs; a) sg}stem' environme;xt',

b) menus and c¢) fofm o‘r form families.

e

. V4

i P " N N -
It is possible to create a system very quickly using only stub forms and’

other programs evoked ¥ia ENTRYPRO. * ~\ .
{ -

!

The form interaction with the terminal CRT is completely defined by

ENTRYPRO and cannot be redefined by user programer. This is a limitation
€

of ENTRYPRO. The ENTRYPRO interaction commands and messagep are\listed in

.
'

H

Appendix' D. .

~no

ity ! »
n ’ * ‘\
. ' ~ 4 . FIG. 1: ORGANIZATZON. OF ENTRYPRO
A .’ M ‘ v] - f
') . ' t &
RS) ‘
: , | ENTRYPRO
. ¥
N v <
‘\‘- .f ,]
) SYSPACQ . SYSPUTIL SYSPEXEC
y . (conpilf.r) (listing & (Executiwe)
A , .« |maintenance)
L3 \
i\ » ’ ! \.. L4 g
v » - u
‘ : SYSPLOAD
’ (loader) .
T

NG s |
.) * » -
e \ "\ SYSPAC DATA BASE.ORGANIZATIO‘L]

VASTER SET
2 . ' . (key's set)
4
4 . - ‘r ' ¢
: o ' . CODE DETAIL SET
F ’ L', ;' B R TAB!:ES} \
A py) .
~) X4 X6 "
-1 © Key. ‘ l]
C v (X?O) l I
. - ' «
Syastem Code Form/Menu Name) -
3 ’ -~ \
s “pata ___ - . . -
' - » A_‘—* P §
Buffer | item desc | item definition | CPARM (perameters) |
; {X250)° - (x38) «, (X54) , X158
o) : (R) o -
- o

-~

- FIG. 2: FILE ORGANIZATION OF "ENTRYPRO" SYSTEM

A

)

) |
/ ACTION \- MODE OF OPERATION
FORM/MENU
0 ® EDITOR PECIFICATIO Interactive
T
-
A e
’ .
g — : SYSPAC
¥ _ sy@ (TABLES)
(COMPILER) 9B
1 Batch or
, = <] TEXT & Background
: DB WORKFILE ERRORS
SCHEMAS (SYSPACQ) LISTING
1
N N \
5 sY SYSPAC]
SPEXEC . k
~ (EXECUTIVE) DATABASE %
’ L2 [\—’J Interactive
<> . On~line
SEGMENTET
PROGRAMS
| LIBRARY
L4 S~ — "
f_.‘ l‘ }
e N\ T <

eat

\ - 1.3 BUILDING THE SPECYFICATION FILE

' 3
\ J

" The specification file is a simple editor type file. A specification file
describes the inter-linking syetem of menus and forme (see Fig. 3). It can

be built using texieditor, provided #ith the syStem software. Thé\\\\\\

k)
specification file consists of DIL instructions given in Appendix A,

& o x

p .
. start building the specification file, This system forcgs the programmer

to consider only top down approach, Specification file without all the

details can be tested anytime during development phase

"The specification file can be easily modified by using the editor

N) @
~

subsystem, howevel it must be re-compiled after each modification.

. L wy

‘ . N
‘ 2

The forms should be designed using a form deacfiption sheet, This can help

"

. ‘the designer "gee" the form layout before developing the ENTRYPRO -

specification file, '

]

A system title is given to each file. The system title ghould not exceed 4

;ISEZEEEEFTE’charactera. The first menu in the file ghould be named

¢ "MAIN-MEND".

3

=2

e

A

F1G. 3: MENU & FORM HIEARCHIES

"MA.IN-nNU" hd

Fa
"] .i:w\?
' MENU 1 MENU 2
3
MENU '3 FORM 2 -
FORM 3 . FORH 4 v
LN
\
4
SUBFORM .4.]

FORM 1

Repeat,
Append

SUBFORM 1.1}

.
3 '//
/
~
-
L2
I
4
)
’
13
)
~
.‘mi
e
57 4§

3 1 v
2.1 INTERNAL ORGANIZATION - SYSPACQ '

The first part of ENTRYPRO system consists of a compiler translator. The

translator program is called SYSP&CQ. It takes the specificationn.file

created by user and reduces it to a set of tables. The tables are mostly
'

of fixed forwat, which makes their' interpretation and execution quite

aﬁfiie by another program called SYSPEXEC.

—

The SYSPACQ program is organized like a single pass compiler. It checks
for syntax compliance and semantic errors. The grrors when detected are

flagged on the output. The complete list of possible e rs are listed in
;a:ion) accompanies

Appendix B. The table generation (synonym to code gen

yith the parsing actions of SYSPACQ.

.

The program itself has been written in COBOL and is therefore quite

portable. To make it compatible with another system only the loader part

-

of the system need be revised. fi:jt:}}

In the rest of this section, the overall organization of SYSPACQ is
described briefly., Detailed description of some of the important modules

of the program is also included.

@

b

After the Sarsing is completed, the tables generated during parsing can be
loaded‘in the ENTéYPRO database called SYSPAC by using the "LOADER" module
of SYSPACQ program. The LOADER also functiops as a forward reference -
résolver for the. forward item references in Item Processing Commands. tAniL
appropriate error message is generated if any of the forward references are

not satisfied. (See section 2.5).

i\.\"‘_/

SYSPACQ program can be logically divided into 3 modules, these are:

Initialization routines, Parsing and Loadef routines. (See Fig. &)

Ry

Code generation is done at the time of parsing.

o

The Parset is .the largest and most complex of these moduies. The \followmg
sectlons give a btxef de_acrlptwn of the. important aspect of the

%
implementation of the major modules.

’ H '

In a COBO#/ﬁrogrmn it is possibl& (:q! ave most of the initial values set in

Data division. This feature has been uUgsed to initialize the variables. To

make the p/rogfﬁn_truly re-entrant, we shotld move all the intialization
“ .
v

segment to doNthe initialization, this makes the céde re-entrant. Howé

for implementation of th1% program on the compiiers which do not generate

an extra code segment to do the initializing, it will be necessary to do
all the initialization in the "initialization routine, to make the program

tode re-entrant (i.e. sharable among many users). -
} O
¢

The féllowing group of vdriables need to be initialized in SYSPACQ:
e L

' ¥
tny

1. Maximum length or limits of occufrences,

2. Punctugtmn and delimiting ch,aracters, N B \

13

.).3/ Temporary varwble counters, tabﬁe indexes (pointers) é table items,

4. Record descriptions and record reader items.
ot

(l- .
—_— ‘ ‘ 3'
Parsing techniques and loader organizations are discussed in the .following

-

sections of this chapter.- ‘ % : .
’ . he . - -

L3

(¥ETIdH0D) ODVASXS 40 NOIIVZINVOHO 4% °*5Id

5 .
,l/ \ . ’
‘ ~ SNOISSTY XS ¢ -
’ 3 NOISYIANOD| SANVHIHOO - SANVWROD J114 ADUNOS
. \ OTHEN ONISSIO0Ud IATIVEVIOIQ . INT¥d/QVEY
{ . .
L
: SAONTYIITY | - sTigvi Fadd ‘ SANILNOY SINILNOY o
$31AVL wTEVMEO4,,| | TITdNUOM ol SANVHROO VHEHOS €a SITAVL YISKTIVNV
1ndeq IAT0STY avay, WVIVQ FAOK,, WAL A0FHD RO¥VaS "TVOIXTT
Sy -
xA]
. MIAVOT X4EA0OTY . —| ydsuvd | NOTIV¥aNID | symaw
i TIEVL 300D . EZT'IVILINI

ﬁ youyd

© DOVdSAS

b A -

\ ou . A o

s

[}

2.2 PARSING TECHNIQUES USED AND ERROR RECOVERY

]
i w .

The parsing technique used in this program is sometimes calleg as LL(1), in :
other words the program hea to look ahead by one symbol only to determine

p@e correct action, Since'COBOL permits no recurgsion, the paréer uses . . gqgmp
3eﬁuentiz(j;ygorithm. The program represents the BNF gyntax given in

Apper;d ix‘ A, ‘)

v

As in the ée with every compiler, the most delicate issues aris€ from

error recovery and repair. This program attempts at no repair, however all

the errors are flagged below the line and column position where they
.) N
occur, The current position of pointer is printed along with error code. -

Append{; "B" contains the listing of error codes generated by SYSPACQ.

The error numbers and organised in a manner that indigkré/i;ecégvel at
which the error was detected. For example, errors detected by lexical
analyser (unknown character etc...) are of the lowest over. On the other

hand, errors detected during run time are of the highest level.

)
.

The error recovery mechanism is simple in itself. If an error is detected
- \

the program discards all the symbols until the next semicolon (;) a .

sentenge\delimiter is encountered and the program skips to the next

sentence expected in -the input string. . '

.

Thé second technique of error recovery is used when~parsing parameters of
« item commands. In this case all symbols until the closing bracket [)]
;r; discarded and the program skips to parsing instructions which would be
found after the closing bracket.

¢ ’

The database schema (DBSCHEMA) errors are\ flagged right under the item or

type which caused the mismatch with the information in DBSCHEMAé The .

program continues without any error recovery.

-

rl
2.3 TABLE GENERATION
The table generation in this program should be considered synonymous to
code generation of the compiler. The instructions which are used for
) -
assembling the contents of/fﬂéwtable will be found in lower case lettets
(see SYSPACQ listing). ’)
‘f . - } \‘a &‘
The tables themselves are constructed by using the following data
structures:
" key item table buffer —
{716 bytes | | <240 bytes] i
L
ﬁTenseipote that system code is concatinated with all the key items to i

uniquely identify the iey items in the SYSPAC database.

- . /

e

Not all the table buffer space is used. We can categorize all the tables
in 3 sets. The first set of the tables are used to describe the user

system environment. & tables are used for this purpose. For the details
of individual table organiaktio‘n, see gection on '"Data Structure of

v

Tables". The system title is contained in the first table (or record) and
t,he' given s&,ringx appears as the first line of the form on the scréen.
Example of ;1 system title:

LESTERS FOODS LTD: A/R SYSTEM
The second set of tables are used to describe ¥he menus in the system. For

each line in the menu (i.e. menu item) one table is created. Therefore if

i
'

. \
a menu has 5 choices then 5 table records will be created., The table of
a A)
this type contains all the information regarding a,partiCular’genu entry

description, the users who can evoke it and the action associated with its—

The following action can be associated with any menu entry line:

RUN (R) Run the Program indicated
—\ Ed
STREAM (S) Initiate the Job indicated '

FORM (F) Display the requested Form and execute for processimp—
: U T)
MENU (M) Display the requested Menu and accept choice

5

COMMAND (C) Execute the requested operating system command [4] ’

QUI1Z Q) Init.’ te QUIZ report writing package. [5]

> 7

~s

The last seé of tables is uged for fieacriptio.n of the form i‘tself. The
follovfing different types of table entries are generated by SYSPACQ: -
1—.‘ Form Header.Table Entry (1 entry)
2. User Option Description Table b(1 entry)
3. Jrock Description Table Entry (1 entry) \ v
N

4. 1tem Description Table Entry (one for each item)

e ' °

ey ‘ \

* ?escribed in the following section. .

0t -~ - I

//”) A ; 10

The form header table entry contains the global information about the form,
. ‘)
such as dataset or database subforms if any. The user option description
?
table indicates the capability of users with respect to that form, i.e. who _

can modify, who can inquire etc... The lock descriptor indicates the type

of locking strategy that can be used when handling this form. (Not

[

implemented - default locking strategy used). ni
_"‘,

The most exhaustive of all the tables is the item description table (IDT).

. T -t
There is one table entry for each tFem in éﬁh form. An IDT can be divided
PR S
into 4 logical parts: ' . AT N

1. Item Definition: gives item name (as in database) the display and
- / \,
rage (DB) type, location of the item in the database buffer amd on

.) w
the screen. , P \7:3%]

s

P

2. 1Item Flags: These flags indicate Item Declarative and Processing .

Commands (see section 2.4).

~

‘7{ .

3. 1Item Description:
L 3
A character string thdt will be displayed on the screen to tag a field,

eg.)

. RN

CUSTOMER # | ‘ -
(tag) " (field) |

\ . \
4. Item Processing Commands: This table contgﬁns the coded description of
the item processing (editoring, validating) commands (see section 2.7

for data structure details). The item proecessing commands are

R

o j i’”

o~

v . ¢ 11

. / y
2.4 ITEM PRO¢ESSING COMMANDS

. <@
{
' J
! ¢

TheseVcommands can be divided into two groups: Declarative and

Manipulative. Any or all items (in the form) may have one or wore of the

.

item processing commands egumerated below. The order in which ‘these
4

commands appear is important and should be maintained when developing the b

4

\"4
specifications file, although some or all may be omitted. The tombands are

c
organised by their frequency of expecked usage. .
DECLARATIVE COMMANDS EXPLANATION

1. LOCAL Decldre a local or working item in the form. This

item will not be searched in the dataset. The
forms designer will have to use bdne or more item
processing commands to set its value, if not an

4 v

input is used as a field.

2. LIST Declares a check list itemor the form. A

B

-
. subroutine call maybe specified for validation.

. Check list items are actepted before the form
N interaction begins and these cannot be modifiia/
\

once accepted. All entries must have same value in TR

- the corresponding field, . t

) \ . hat

.

3. DISPLAY : “The current field contents are displayed but éannoti

<
-

»
. be changed by the operator.,

- — ‘.,
b » . . oL
4. KEY. An automatic key value generation routine is used;
LS ¢ ° -
therefore operator may enter a blank key field.
©o : R) .
J "
. -
‘ -
S .
P) ’

.
1

2t

t

M

-

EXPL@QAIION

DECLARATIVE COMMANDS

5. INIT
.
’
" 3
. n‘,f"?/
1
N

6. EL

7. DUPLICATE —
AN

h]

Tﬁis'command indiéatey %he intial value of thqfitem
when the ford is displayed. The default is zero
for numeric type items and space for alphanumeric

type items. For date type of items, the current
4 L

system date can be displayed by the following

M

initialization values,

Ex: INIT ("$TODAY"), will initialize to s;sdéte;

L o ';? e

The form designer may specify upto & characters

value which will be inserted’ into the current field

when a deletion is requesif s however the dataset
o .

entry in not actually deleted, thereby a logical as »

h is achieved. A form

against aghzsical deleti

i ‘
may not contain more t an’one "deleted flag" flag 1 ¥

« ~

th}s is only one DEL cbmmand per form. The DEL

3
item must not be a local type of item for obvious

reasons, 4 '
) ' i ‘
. Example:=DEL ("OLD") .
‘\(53 .) .
A field with this command &s set ta its previous -
contents (duplicated) however operator can change
them anytime. This should be the last Item

Processing Command for the item.

N

5

DATA MANIPULATIVE

s COMMANDS -

8. FETCH

g

9. FIND

[}

13
. ‘ ’ ‘ o !
EXPLANATION ., S
This command| causes a data fetch from another .
dataset of m&btqr type (i.e. accessed via unique
key value). This is performed by the "DBGET"

procedure in IMAGE [3]. The key item name should

be specified along with the dataset name, database .

.

name is 'opfi.onal. See Appendix A for BNF form of
the syntax., An error Eé‘ssage is ‘dis?layed if the-
FETCH command does not succE’e;i for any reason.
EXAMPLE: 10,10 'CUSTOMER#" CUST#;
10,30 "CUSTNAME " NAME ; o
. :

FETCH (CUST#, MCUSTOMER}

Execut ¥6n of?FETCH command is as follows: . i

: Yo
Access MCUSTOMER dataset using CUST# as key value’

4

and move the data as %elow.
NAME := NAME .MCUSTOMER

¥

This command is similar to FETCH except that no
data is "moved". Thi; can be used for validation,
pun;ous. For examplg;%if a productf# is entered
then it can be validated against the product maste;
file to ensure that no-"invalid" products sppear in
the @atab'gse. The execution of the form will not
pfoce‘ed further until a valid value is entered.

Ot of the’t:'wq commands FIND or FETCH only one is

Opermihgted. Tﬁerefore,‘theae two commands are

mutually exclupive.

. . s -
@ e ”~ \
) . . wa M

DATA MANIPULATIVE

COMMANDS

10. CALL

&

an,

N

EXPLANATION ' -

14

This command initiates a subprogx:an call to a user

.specified subprogram. Function calls are not

L4

permitted in COBOL.

EXAMPLE: CALL (MOD: I, J, REMAINDER)
‘ .

Each CALL command has one invisible parameter.

is used for communicating within the ENTRYPRO

the subprogram, The parameter should be defi

I

nd

d

t

in

Py e
the linkage section (GOBOL) as the first parameter:

01 COMMUNICATION-AREA }
02 CONDITION-WORD PIC S9(4)GOMP,

© 02 MESSAGE ‘ PIC X(60).

I1f an error condition is detected during execution

of the called aubprogtagu, the sub‘p}ogram should set

the CONDITION-WORD to non-zero (zero value
-~

indicates the successful execution), and move

an

appropriate error meesage in MESSAGE field. The

R ‘7__ !

-)
ENTRPRO will dispui{ this message to the operator

80 he or she can correct the data errors.

AN

T

. »

IMPORTANT: The subroutines are dynamically loaded

during éxecution time and they must reside in the__

segmented library. Maximum number of Farameters in

»

CALL command may not exceed 15.

.

&

d y

.,A%-..“

DATA MANIPULATLVE

-

11. EVAL

12, SHOW

23

.

13. TOTAL

COMMANDS

v
(31

15

* EXPLANATION

This command evaluates the expression specified

-

with this command and the result is returned into
the item to which it belongs. It should contain a

valid COBOL type of expression except the square

backets [] should be used. The constants in the

,command should not exceed 59(6)V9(3) size.
EXAMPLE:

¢

OVER-TIME~PAY,EVAL(HOURS*[RATE+0.5]);

This command causeg the contents of the internal

buffer to be d&)layed on the screen at the time of

s
processing an item. This command is useful for the
items whose value may depend on tt;e entry of some ¢
preceeding items.

EXAMPLE : - " r
TOTAL, CALL(COMPU'.I'E < AMTS ,TOTAL) , SHOW;

| 3

In this example the value retutnn:ad by thé? COMPUTE
subprogram will be displayed on the scree;n in the |
current item field.

»
Maintains a running total using,the current item
value. Applicaﬁle only to de;:'ai.l (sub) f‘on!n. The
com.put,ed total is returned to the spec‘ified field,

A compare field may also be specified.

EYAMPLE: TOTAL (TOTAL-AMT, COMPARE~AMT); 7

-

/ n

o

NOTE: The first field of @ form is required to be the key item fidld.

The maximum size of key can be 32 characters.

The following Item Processing Commands may be specified with the

L3 -

. !
key item, other commands are ignored:

a) KEY v
4
b) CALL it
Fl a
/ - Z
c) FIND ;
\ d) SHOW .-
. .
‘ I
.) |
. i
In detail form (sub form) the first field must be the same as the
header (main) form key item becsuse these forms are linked via
this key value. This field may not be modified by the operator.
It can be removed from the screen display by setting Row, Col to
0,0 in the field item line in the form. Item Processing Commands
on the key field in a detail form are ignored,
r ,Q -~

17

2.5 FORWARD REFERENCE RESOLUTION

~

Only CALL item proces'sing command may have refer.ence to an item name in the
form wh%ch has not been encountered by the parsing program. For example:
10,10 CUST#, CALL(GETADDR: CUST#, NAME, ADDR)}
10,30 NAME , TYPE(X:32), DISPLAY;

11,10 APDR , TYPE(X:60), DISPLAY;

In the above example NAME and ADDR occu; after cémmand CALL. The parse;‘
cannot supply the item#'s until some later stage in parsing. One solution
to forward refewc_:e/is "back patching"_but this approach is unsuitable for
the implementation in ENTRYPRO parser because the table entry pertaining to
a ‘particular item is written to a sequen;:ial file as soon as it is - .
completed. . : - ’ (

The ENTRYPRO parser (SYSPACQ) generates for each item not yet parsed, a
temporary item reference# (reference#'s startil'ng at 300 are of this type)

and this is entered into a global table of unresolved item references.

Hopefully, when the forward referenced item name is encountered within the

-

(
form being parsed, the actual item reference# is entered into the table of

unresolved references. Duripg the load phase all the unresolved references
are replaced by the actual reference# as found in the global table of

N .
unresolved references. All unresolved 'referenées are displayed on the

screen along with an appropriate error message. - :

Fig. 5 gives the organization of Forward References Table.
. @

-

{

—

2.6 ORGANIZATION OF LOADER MODULE

This module reads the ,workjfile containing the tables as generated l;y the
’ I

parser. The load file is organised as a simple keyed sequential access

o

file and stored i;: the SYSPAC database, the organization of SYSPAC is given

in FIG, 6. Each menu or form is reduced to several tables as described in

-

DATA STRUCTURES OF CODE TABLES (Section 2.7)

/

Fach table may be represented by one or more records linked to’a single

key. During the execution this key is used for retrieval of the records
, . -

(tables). The tables are loaded into SYSPAC-DTL dataset.

- o -

%

This module provides.an additional function that sati@fies the forward
. , ‘
reference 1tems discussed in the previous section. If a table is flagged-

¢ ”
by the parser .28 having an unsatisfied forward reference. item, the module

i

evokes routines which search the global yable of foryard references and

\ -

substitutes the temporary references wfth the corresponding actual item

refererces found in the table.

This step is performed by this module because th&pataer is a single pass

—
type. ‘l‘lfe,/tables are written into the work-file ag they are generated.

-

The loader module reads the work fil sequentially and inputs the records
ﬂ\igi.vﬁé

into SYSPAC database after s

forward references, if any.

) +3 -

-

-~

FIG. 5: ORGANIZATION OF FORWARI; REFERENCES TABLE

’

1]
‘ ,,#"’ &\
. / TEMP. ACTUAL
5 ITEM NAME FORM NAME REF # REF #
TOP OF TABLE k
_END OF TABLE . :
'
.- v
Yy
. ,/
o
z
o I !
q \ \ @
s T v ’
1y M ‘
.) ,
.
e N

et 2 U SR

/"\; ’ ' -
i // - ,

7 <<’/ ’ FiG 6! SYSPAP DATABASE SCHEMA LISTING

- o e ——— S ot o M . . S v, S i S . WO B, S, B St

[(NOTE: THIS DATABQSE STYORES MENUS % FORMS FOR EHTRYPRO SYSTEN

v

scunrROLiauodKnax=14uo
_ BEGIN \L
DATA BASE SYSPAC:

PASSWORDS! 10 READER;
. 20" MRITER;

ITEMS: . MF-NAME, X20; " CKKEY= SYSNAME ¢4 BYTES) + FORMNAME
BUFFER, - X250; <<DpTA: BUFFER FOR ENTRYPRO TABLES

L

SETS: ' s
“HAME: SYSPAC-MASTER, AUTOMATIC; << DATASET FOR KEYS OHLY

ENTRY = MF-NAME €1); . S '
CAPACITY: 200; e

-HQME: sYSPAC-DTL, DETAIL(IO/’O); << ENTRYPRO TABLES DATASET

T .. .77 ENTRY: MF-NAME (SYSPAC-MASTER),

BUFFER;
. CAPRCITY: 1000;
~ END. (
((. B . e —e——
f
t] =
b .
IS " L
. Y4 |
o~

>
>
>>
>»

>
>

>>

>~

—

P — e e e e - v

20

2.7 DATA STRUCTURE OF CODE TABLES
4 @ 4 B

DATA STRUCTURES SYSTEM ENVIRONMENT DESCRIPTION TABLES
7 .

1. SYSTEM TITLE TABLE
X16 X(80)

I $TITLE I | system title | not used*

et

2. USER NAME AND USER CLASS NUMBER TABLE .

X16 X8 X2
- 3

-

| $USERS |]uszm:m nnL ' |

o

1st pair 2nd pair ' bmzximum of 10 pairs)
. « . !
3. DATABASE AND PASSWQRD TABLE
X16 X8 X8
o
|_spases |, |pMRgNAKE PASSWORD| . i
‘ lst pair 2nd*pair (maxisum of 10 pairs)
4, FILES AND LOCKWORD TABLE
X16 X8 X8
R \
|_$FILES | |FILENAME LOCKWORD| - I - ’
lat pair , 2nd pair (maximum of 10 pairs)

NOTE: All the records are organised as: 16 bytes key and 240 bytes of data
buffer., The tables are mot drawn to scale,

) .« *

Py

Sy

T —— 4

21

s
DATA STRUCTURE MENU DESCRIPTION TABLE
7 X16 X2 X2 ...
lmmunmuj ‘ulluzl... - S,
» ~
X1 7% X2 ; -
| ¢ | NaME © |14 | 7 .. .
(/
_ [
X78 X2 N
i)
. . |_pesc ' | ten | -
Ui t: = User class number.
T oon
*
‘NAME :: = A Program, Job, Form or Menu name. It may also contain a legal
Y 0/S command.
- \ X
c :: = The command byte is one byte code, which indicates the following
actions: _‘\v ° .
R = Run Program NAME . ’
S = Initiate Job NAME
[4
. F = Display form NAME "
M = Display Menu NAME »
-, .
C = Execute the O/S command contained in NAME
, TN \u/ .
DESC :’ Menu line description as displayed on the -screen.
\ ,&k /

len :: = Length of the string in bytes.

°

-

NOTE: Ome table entry for each menu line is generat_ed by the parser,

——r
e

DATA STRUCTURE FORM DESCRIPTION fABLE J

Each form is described by one header table, one options table, one lock

(descriptive table and one or more item descriptive tables (one table for

22

)
: each item). g
‘ a
Form Header Table)
“ "'
X16 #9(4)
} X2 Xl6 X16 X8 COMP X4
[FORMNAME' ‘FHLDATASET NAMEIDATABASE NAMEIPASSWORDI N l OPTN |
| X16 x16 &
| SUBFORML-NAME | SUBFORMI~NAME | ’ |
Maxmum of 5 subforms
where: N = The maximum number of-entries depending on the one unique key
\
& in the dataset.
F
OPTN = There are 4 flags indicating the possible operation on the
- dataset related to the form.
. y _ A (add entry), D (Delete)
\ ~ \ 4 N‘
M (Modify), I (Inquire) h
NOTE: Each form may have up to 5 subforms.
- ‘ FORM HEADER FORM
. /' . X 1 -
" . . []
. |SUBFOBM 1|---—----1SUBFORM 5 DETAIL FORMS
E r
é -~ .

DATA STRUCTURE OPTION DESCRIPTION TABLE

i ¢
-
~

. . . J) L . <y !
. This table defines which uger can perform which operation, eg. Add entry by

.
o f

4
> sers 10, 11 ete... ‘

X16 X2 X2 X2 x2' -
List users allowed
FORM NAME OP|ADIU; U, to add entries
i - List of users allowed 4
DE|U; (U5 Ve to delete entries
bY
A List of users allowed
: MO(Uy |Uaf , ¥ to modify entries
‘ List of jusers allowed
IQ|Uy |Uy ‘K \t® inqure on this dataset,
") .
. i (/
LOCK OPTION TABLE
|
L Y 1
B 1 ’
The lock descriptor table is supposed to dictate the locking strategy that
should be applied during update:
L, ¥
X16 X2 X238 -
IFomm| QLnl LOGK DESC i
|
o ‘ i
LOCK DESC :: = READ - Excl'usive read only
UPDATE ~ Non-exclusive read b xclusive update
i i ‘ .
WRITE - exclfuaive read and lpdate (including 4dding new N
) entfié’s) ‘ . ‘
!
; w \
] o | :
| _
f ¢
/‘ ®
pros 4
’ v

v
L

DATA STRUCTURE ITEM DESCRIPTION TABLE: (,‘IDT)

[

Each item in the form is described by using the following table, The item

‘tables are stored -in the order of their occurence in the form from left to

N\ » -
right, up and down. a
. ! ! ,
X16 2 X16 2 94y 9(a) , 9(4) 9(4) 9(&) -
/ COMP (UMP - COMP COMP COMP!
‘ FORMNAH? EC | ITEM NAME]DATA| OFFSET | len | decimal} row' | col
» TYPE TYPE point)
I \
< . -
o X1 X1 X1 X1
Item Cemfnand ! local | display | key [other ‘
ra rekd un anat T 9
- -
. ~ X32) 9(2) 9(2) 9(2)
Display Description | DESC T Tow | col { length ’

CPARM buffer

where:

L

Itemname
Subscript

Datatype
Offset
[
len
decm

row
col

IPC

I L

’ X158 '

ITEM PROCESSING COMMAND

(1PC) PARAMETERS
6

Item namfe as given in DB schema..
If the .item is compound type, gives subscript.

([)

= Item type as given_by DB schema,

= Relative position of the item within the entry of
dataset. °

A~

= Display length

= _pecimal position ‘(if applicable)

N

= Cursor row position.
= Cursor column poaition. R

= For details see next page.

[}

N

NOTE: Item display description (DESC) may be extended upto 79 bytes.
/ The excess bytes are stored in the higher bytes of CPARM buffer.

e e s o et

i

IpN—

4

1 ‘J :
EM PROCESSING COMMANDS PARAMETER BUFFER (CPARM) %)

. . s ‘o T, .
The item processing commands list describes the various commands and

. ‘ i - [- Lé
sssociated parameters if any, (CPARM byte arrap will contain this table),

4

X18 X4 X6 X4 -’ Xb Xn Xn
| INIT | DEL [FETGH | FIND | TOTAL | CALL '] EVAL 1| ¢
~ ’ terminator ' -
symbol (1)

: . X, \ '
{ D

INIT :: = Defines the intialization value for the giv}n item. Depending

. N
4
on the data type of the item it may contain ASCII string or some

3

numeric quankity.

44’
DEL :: = At times, the deletion of entries may be symbolic, that is no

physical deletion by DBMS is requested but a flag is set to

-

indicate the deletion. Heénce DEL is the flag wvalue or ptti}\g.

;
”

FETCH ::# In case the item being described does not belong the primary or
main dataset of the form then we ust this comand to bring data

item from the auxiliary or secondary dastaset:

o

" FETCH is described as'below: o
g 9(2) .9(2) 9(2) .
’ | itenf [dset# | dbase¥ |

v

itemf ::= DEMS Internal date item#
dset# : := DBMS Internal dataset #

dbase# ::=Réfererce to the Database and Password tablgl

4. o \/_,\{/4

» v
AY
+
..
., .. TOTAL}:: =
” ‘ 3
h.
.
L4
¥ 1]
ki
. CALL :: =
13
’.‘
,
N h‘ »
. [
i ’
.
4
A ’
: [-
1]
§
&
i
1 N .
<
I
r
.
.
. [3
- *
‘{.

.

"

. . "

4
%

’%\\ "FJND':: = If the value of the item is Validated by feferencing another

dataset containing this item this command should be used. It

will help maintain database consistency.

FIND contains the following information.

9(2) 9(2) ° N
'l dset# | dbasef l , v ‘

A

For explanation of above non terminal .phrases see FETCH

command, ¥ ’

. [
,

Item will be used for accumulating totals and the total is

returned to the specified item. A compare field may also be
A -

specified. Initidl value of TOTAL is taken from item # one.

.

" TOTAL contains following parameters:

9(2) 9(2) : \
| _itenf | iten |~ . .

i T

- »
« .
13

I
A subroutine call may be required for processing or editing the
. - + s - &

item, ~Fhis command allows the user to specify the subroutine

comnand, ‘The format of this IPC is:
X16 9(2) 9(2)

| SUBPROGRAN gL T 4 "

»
'

]

SUBPROCRAH-;:= The subprograﬁ or subroutine which 'is-

dynamically evoked to do the processing.
o 13

] . . -

- “

Pi 3:= The itém# within the form which is passed as
. ‘ N +
¢ . parameter value. Parameters as string canstants
4 - . M i ~f
‘ may be also passed. i . -
b . . . 2 S
A

o

o

a®

A —

“ v
EVAL :: = The item maylbe piocesaed by means of an expression, which is
* 4

evaluated and the result assigned to the item,

\ .

eg. AMT = QTY*PRICE.

v

The items reference in the expression axe reduced to item¥,

relative to the form and constants if any are stored as below;

the constants may not be larger than 999999.999,
59(6)V999COMP ~ '

Kl S

] 6’"‘
. oy

* The following operators are permitted: '
) A) .
+ addition '
- subtraction ‘ N
! s g
\ * dmltiply |
o . .. ! 3 ’
-///"~—"ﬁ~“ / divide) .
o (1] parameters to alter the oﬁerator precedence.
- ’ ‘ ’J

4

During compilation phase, thHe syntax of the expressiom is not

checked, instead if there are any errors in the expression,
these will be discovered by the interpreter. (See Section 3.5).

-
- . B

) ’
- . -y
A
.\ »
}
kel 1]
»
L d
s
'
- -
- S .
L ~ l"
c b4 4
.
N
.
)
. v =

*

L)
? L]

- P

‘|

»

SN

et

. "
3
[
! -
.
.
y .
LY
.
.
L
S

! Kr
. l" '
‘) , . '
3. ENTRYPRO EXECUTIVE PROGRAM ' I
¢ B .
(‘

.
v
i N *
. . - :
- -
. »
»
> h ‘ ¢
- " .
-
. ‘
. S N
X
o) (.
*
. A 4 .
- 0 ! M 1 * -
T \ * ¢
\
A o .
. ’ i L
' o
? n . N
. . ; .
- . A .
. v
o s - .,
' . . o *
N M . . A - “ 4
u‘ B * * k3
s : N - '
. o,
.
’ ' . . . - -
N ’ . \ -
i > B ¢ N
. ¥ .
[| L ,
. - P L . “
. ’ . . “
. AFEEY . R . - . “ L
N . - s . » o ; -
PR - . el .
’ * . . i} P o N
« - BEZ . - :
M L] -
. . . " TR S 0
1 . PR . . .
. . $ -
: P . ! .
.) . , 5 .
‘ i A - .
' [. .
- .
LY

~ dctual data transfers to the databases,

28

&

3.1 ORGANIZATION OF EXCUTLIVE PROGRAM (SYSPEXEC)

This program interprets the code tables generated by the compiler program
(SYSPACQ). These tables are stored in the "SYSPAC" database managed by
IMAGE/3000. Accessing of SYSPAC database is transparent to the user and

the applications program.

.
2

The program organization of SYSPEXEC is given in Fig. 7 [6]. The INIT
module initialises the system temporary varisble tables. It also accepts
the r passwords and validates it.against the specified user pasawords in

thqﬁppésifications file.

Twe main modules, one for MENU HANDLING and one for FORM HANDLING tasks are
part of this program. A menu stack is maintained to enable return to the

appropriate menu after completion of the tasks.

! [4
The last module is used for displaying different types of ERROR messages.
. r'e
. It will salso terminate SYSPEXEC upon normal or abnormal (error aborts)

exits from the program,

A set screen routines are envoked to perform the various 1/0 activities
»)

.on the screeims ilarly database procedures (IMAGE) are called to do the

|

.

]

’,

o

OHX3dSAS 40 NMOILIVZINYINO :f °9Id

ANVRWOD'

s/o
ERfhE) ¢

gor
NVIILS

RY¥O0Ud
NOY

Wod
g1003X3

ONZR

Ol HONVEE

ONER ANI1T
INTHUND ANTW " ANER
AVIdSIQEY .10373S x¥1ds1a
—
1INI
STT143S0TD ONTR 9
103TdS NO 901

DIAX3ASAS

“
]

3.2 DATA sTRUCTU SYSPEXEC PROGRAM :

.

The main type of data structures used in this program are tables, stacks
and simple or compound type variables. Since Hewlet Packard COBOL does not
allow Real typeQOf variables, binary integers (COMP.) with the assumed
decimal point implement the ;eal type. ENTRYPRO can handle numbers up to 4
digits beyond the de;imal point.

The important data tables, data item groups ‘and buffers in the program are
described below: .

SYSPAC-REC: Bu??er to receive tables from SYSPAC dﬁtabase. This -
buffer is 240 characters. FORM-LINE group giVEs‘Ehe

3
data items for the current form’field\

2

IMAGE-FIELDS: Variables and status array used for .communicating with

- IMAGE/3000 database management system,

DATA-ITEM-LISTS: Item name lists used by SYSPAC database (also implemented

-

using IMAGE/3000).

4

USER-TABLE : Contains user passwords and corresponding user #'s as
(defined in the specifi#cation file.
- .) N ’ -

BASE-TABLE : Contains the names and passwords of the user defined

1

datsbases.

.

30

DATA STRUCTURES (Cont'd)

»

o/
9
1]

FORM~HDR: This group of data items define the global information of

w
the current form., . /

3

MENU~LINE-TABLE: A table to stoq)ifﬁg‘:;ttent menu description and its

\\ associated data.

ITEM-TABLE : It contains the item defiR{Zion and edit specifications

)

(see Fig. 8). .

RETURN-NAME-STACK: Stacks the names of previous menus (father menu)., A

-~ %maximum dept'h of 5 menus ie allowed.
PNAME-TABLE : Table of user called subroutine located in the segmenter
library.
. i
PCALL~AREA: . Datﬁ items usgd during subroutine loading from segmenter
library (SL). >
!f\~\
beM-LIST: Containe the data items list of the current form, used for
~
calls to IMAGE, »
DATE AREA: This data buffer is used by the current-form for receiving
and, sending data from IMAGE/3000,
nd, w%,_"“,g— R i

» P

h— A w

PR el

2 31

“ DATA STRUCTURES (Cont'd) ™

COM~AREA:

y.ESSAGES:

COMD-MESSAGES :

v

Miscellangoua:

Communication area used. for user defined subroutines

(in SL) and ENTRYPRO.

ENTRYPRO messages for interacting with the st‘r@en
operation, ’

I
EI‘FI‘TRYPRD screen directive commands as displayed to the

operatahcs

4

A}

These are many other temporary variables which are used

for screen control, editing and numeric conversion.

~

"4,

. "
_Y‘:';% s

Pt v, » v

S G

e A

are overlaid,

if there are more than one.

- 3
} .
t FIG. 8: ITEM DEFINITION AND DATA TABLES
a,“ Item Table Structure
}
Header
Form
Items
- (//
BASE-IT-PTR 2 -
‘) | Detail(sub) Detail forms
Q\\ [form
* IT-PTR \\\/, -

Ed

A

b. Data buffer and datg item list.

Header Buffer

Detail Buffer

5

DB BASE PTR

i

¢, Data ltem-List

DB-PTR weJ

Header Item List

Détail Item List

DL~BASE-PTR ~———

* DL-PTR cod

Wt

32

3.3 MENU DISPLA¥ FUNCTIONS

During execution of system INIT module the global information such as

system title, user passwords database and passwords are read into the

system tables, Immediately after this step the "MAIN-MENU" menu is loaded

from the SYSPAC database. The menu description lines are displayed and the

operator is asked to select one of the lines. If the security class of the

ugser is found in the USER# table for the selected line then the associated

¢

command with menu line is executed. With each line only one of the

"following commands may be associated:

hL A
N

MENU : menu name

FORM: form name

RUN: progname

STREAM: jobname

(=~ "

-

v

Branch to a son menu given and display it.

.

Display the indicated form and allow operator to

manipulate database,

Run the selected program. Control returns to ENTRYPRO
after termination,

{

v \

Initiate the selected job in batch mode and return to

the calling menu.

"COMMAND: description=Any HP3000 O/S‘command may be executed,

QUIZ: quizfile

Y

-

Invokes QUIZ report writer using the specified file

name.

®

33

3.4 YORM DISPLAY FUNCTIONS

System title and fgrm title are displayed on the first snd secdud row of
P <

the screen, therefore the actual form description should be started from

the third line onwards.

Form diap}ay functions consists of ,outputting the field description at the
;pecified cursor position (row, column). ‘The field descriptions :re

\
displayed at the time of reading of the tables from SYSPAC database. All
the tablesibe’longing to a form are chained together for easy retrieval.
The item definition and edit information is moved into a table éstablished

for this purpose (see Section 3.2). The data item names are assembled in a

-
-

list which is used during the next phase for interacting with the .
database. £ >
The data buffers used for receiving data from the screen .and updating the
database are initialized as desired by the optional INIT command: Th;
default initial value for ASCII type fields is spaces and zero for the
numeric type fields., Items not referenced in a form are initialized to

.y

binary zeros b; ‘IM;‘aGE DBMS when creating an entry,

Ve
The command prompts and error or action confirmation messages are displayed

at the bottom of the screen, ‘ +

34

’ ..

3.6 FORM EXECUTIVE FUNCTIONS

Ll .
The first field on the screen is assumed to be the key item field. A link

in database must exist for this item. The operator is asked to enter the

first field and ENTRYPRO initiates a database call to retrieve the |

3

corresponding entry in the database, 1If an entry is found then it is

<

displayed; otherwise it is assumed that the operator wants to add a new

entry with the given key valgf and the operator is prompted to enter values

into other fields of the screen,) .

. v

In the instance where an existing }Ngry has been located, the gperator may

either modify or delete it. This can be accomplished by either selecting a

{
particular field # or the entire form by selecting "M" option. A

"get-field" routine is used for reading (input) the required ASCII

<

characters and converted to the proper type. Item processing and editing
commands described below are executed duriﬁg data entry/modification ﬁhase,
field 59 field. If a field is sRipped (not entered or modified) then no

processing takes place.

% a
-

To update the database, operator may select "U" option or simply press CR ‘

at the end of the screen, when handling/a detail form. st

e

B -

w

Key item may not contain any processing commands except CALL. The item
N .
processing commands execution sequence is desgribed in some detail below:

FETCH: This command is used for accessing display information from another

»

dataset which may belong to another dgtabase. An appropriate IMAGE

call is made with the specified key information and is then

displayed. A

>3

e g

FIND:

“CALL:

‘in database. The procedure.called must set C-CODE

to 0 if there are no errors, otherwise set it to a non-zero-interger

L]

This command may be used for validating an item against a database {

master set entry. Performed through)an iﬂkGE call.

N

A call to any user defined procedure is generated. The procedure
]

myst be located in the segmenter library (SL.PUB), ENTRYPRO ;

assembles the parameters and makes a branch to the procedure., An
- 4 «
implicit parameter is assumed which must be defined in the
~

procedures parameter list. It should be defined as below (COBOL).

01 COM-AREA.

05 C-CODE PIC S9(4) COMP.
05 C~MSG PIC X(60).

At the time of call C-CODE is set to 1 if there is an existjng entry

i

and move the error message to C-M8G. This message will be displayed

to the operator. If the current item is DISPLAY type then ENTRYPRO

will move the cursor (to accept data) to the first non DISPLAY field

prior of the present field, if this field happens to be the first

field (ﬁey) then screen is cleared and the operator is asked to

»

select another key value,

3 B @

A ftbquure‘pill mdy be specified at the key item level, It is

assumed that this call is being used for validating the key value

and not editing it. ‘ '

—

o

’ Al

The maximum mumber of user defined parameters may not exceed 15,

not including the COM-AREA parameter, i e

. 4
The internal processing of CALL command involves the suceasful

\

execution of the following ateps: -

1

1. Decode the.call parameter list and set PN to the number of

‘ a . L 4 .
parameters. - .

°

¢

2. Search PNAME-TABLE. If proc. name is found then ;2& PLABEL(i)z -

to procedure name

Else move O to PLABRL(1i) and PIN(i)},

3, Load the parameters into P-STACK by calling "LQ@D'PARH[routine,
2 ’k ' .
4. Call "LOAD'PROC" routine. This routine will load the procedure
(PLABEL) from SL.PUB. This step is skipped if procedure is

already loaded (PLABEL = 0).

.

S. Branch to the procedure and do the piocessing'as Féquired.

Pfogram‘contrbl returns to ENTRYPRD at end of the called

procedure processing.
-

. ‘ _ -

6. This step is executed only-once at the end of the form.)

.4

Call "UNLOAD'PROC" using PIN(i). \ Q-
’ [] ’ " .
Repeat this step for all the procedures. i : ’
Nl
' ’ {
- v i ‘3
) - ‘ >
¥
~

‘o

37

o
.
&) s, .
:

EVAL: This command is used when apécifying an arithmetic expression in .
, . N ;
>

N ~ - ‘itemup;océssing. Theé ex‘preasion\'afecified is a COBOL type of the
, . expression except (and) are substituted by [and] .
o 1 v) —
‘ respectively. .
’ ’ ‘# N ' ‘ n
: s *

The expressfon is not parsed dwg the compide phase because onty

® ~
quite gimple type of expressions are expected. Command EVAL is)
v 7
- , " performed by fifst bringing the expression into postfix form. This
.t ‘ 9
| +) . ., ® ' , .
- is done by considering operator precedence and stacking/unstacking
v‘p * - 14 »
< tokems accaordingly (ee-& procedure POSTFIX od next page) [7].
Y 7 N . : ')) ‘ ‘ »
» R ’ ';‘?) w3 ' « .
Once the expression has ¥een converted to postfix from the
» 12 -
“ evaluation is done-by the ‘following algorithm: , A '
: ’ " ’ ‘ .
; B} . <) * B N \z\’\
¥ * 3
. © ‘ ~ . e -
\f’? . «*X: = NEXT' .TOKEN L A) \,Jj
’ !;; - . . "‘ f LN 6 '
; WHILE X ¢ E DO ~ . .
) ' - If X = operand then . . v -
[P [}
: . ~
S . ¥ pus 0 :
v . o
; T \/ ELSE (* an operator *) -)
?_.‘ ° ’ - . N .
; = POP (T1); POP (T2); . e
j) N o b ‘ ' ‘ - '
t N) Y %: = Tl operator T2; - oA
L - - * - \ e
broo- / , PUSH (T) ‘ : ' ” ~
i ‘. R . s)
{ &) - * % l A i »
- M & A L4 -
A . ' * ! “)
- i N \‘, o — R £l
[N (* 4 R > - ,
; 4 s . ,] Py /‘ . ,_,’/
3 e , i . |
!
. / . .
. »
L SR U S
< - o . . N
1] - . ‘ - —-—

-1

iV

Procedupe POSTFIX: Converting Infix to Postfix {7] .

(**‘convert““ the infix expression E-to postfix, Assume the last charac‘t:er of
E is a "!", which will also be the last charécter of the ;;ostfix.
’ Procedure NEXT-TOKEN returns either the next operator, operand or .
delimiter (!). Character "NULL" with ISP ("INULL'&) = -] is used at the

B ¢
bottom of the stack. ISP and ICP are\functicns which>return an

— - »
\ \/ operator's In-Stack or In-Coming Priority. *)
N ’ .
. d
Stack (1);= "hIULL"; top:® 1; (* initialize stack *)
%

x:= NEXTTOKEN (E);
while x. # "I" do (* do until end of expression *) .
If x is an operand
then print (x)

Else (* x is operator *)

. If x=")"
A -
then [while stack’(top) # "(" do - . .
~ "]
print stack(top); top:= top-l- ..
:*‘, -
- END

top:= top-1] (* delete "(" *)
Else (* compare In-Stack Priority with In-Coming Priority %)
[while ISP Zstack(topﬁ) IcP (x) do) o

L]

print (sback(top)); top:= top-l

END
‘\ Call ADD (x, stack, top)] (* insert x in stack *)
xi= ;WEXT—TOKEN (E) -
VS '

o . (7

’ while top > 1 do ﬂ(* Empty the stack *) B \
* [print (stack (top)); top:= top-1]} l

END; |
1 . .

o ——— e

v ke pp b .

39

-

DEL: "Dlip option is applicable only to the master set forms. The

e

indicated item is set to a literal specified with DEL command.

When the dFIete ('D') command code is selected the present entry is
. .

flagged. 'Duriné subsequent accesses the delete flag item if found

non empty the entry becomes inaccessible via ENTRYPRO emwt&\’c»féh

the entry exists in the database.

Executive Program Modes of Operation

\

-
The ENTRYPRO Executive program operates in ‘either input or command mode.

._/in input mode data in the input fields is received. The operator may

switch ENTRYPRO to pwmmand code by entering "//". 1In command mo‘dé',
ENTRYPRO coman:i‘ codes are’ accepted. Appendix D gives detail of command
codes. The Executive may be switched to input mode by entering "M" command
code. ENTRYPRO Executive switches between modes when certain events occur;

e.g. enci of form.

[A

at

-

- — v ke e =

40
1

3.6 SUBFORM (DETAIL) EXECUTIVE FUNCTIONS

A main form (Header Form) may have one or more sub-forms associé}:ed'with
it, A subform (detail form) can have only a one line form. This line is
repeated at:d appended to the previous‘for_m.\' When the screen is full, tie
top most detail line is deleted and other detail lines are rollled' up.

f -
The operator may select any one of thedetail forms after "updéte" of the
header form. However if there 'is only one detail form then it will be
diSplayeél automatically. At the end of subform execution, the program

¢

returns to the header formx o

o
A list option ("L") is provided with the subforms. It can be used to list @

all the detail lines in the detail dataset. The detail lines are displayed
’ '
until screen is fulll, At thiswpoint 'the list option may be terminated by

»

entering "//" or continued by pressing return key.

Subforms are useful in commercial functions such as invoice description.
In a typical invoiée there is one header description (eg. -customer#, name)
bu-t': it may contain one or more product items shown on the invoice, A
subform is used for manipulating detail lines of the invoice.

Dt;.tail lines may be searched by enterjing the actual line number. The line
numbers are automatically displayed by ENTRYPRO. The line number displayed
is the actual entry (record) number found in gh'e dataset.

. e

a
- f

PO N

e

41

- [
3.7 INITIATING BATCH JOB INTERFACE

If a menu line specifies a STREAM command, then there must be a front end

. form with the same name as the job file name. This form will be displayed

-

and the operator will be prompted to supply the necessary information.
This information will be put into & "mailbox" (if one exisis) or appended
to the job fife. The maximum length of information buffer allowed is 80
characters." After the above action the specified job file is STREAMED
(initiated as a batch job) and the current menu is re-displayed. The
"mailbox'" should be cleared by the receiving program before next 'mail" is
put into it, .

5

Eicample: See the sample specification file attached as Appendix E.

s
.

~'A_nuu.,,,,,.} — .' t [
(\\ CURSOR(r,c):

B,
3.8 SCREEN DISPLAY/INPUT PROCEDURES

This subsystem consists of number of procedures which perform a um task

such as display a given ASCII string. Briefly, these procedures are
displayed below (see program listing for more details); these proceduresﬂ
are written in the System's Progvtamming Language of HP3000, (2]

[X

CLEARSCREEN: Clears the entire screen

CLEARFORM(r): Clears the screen below row(r).

Positions cursor at a given position on the screen, position
" {r,c), where r is thg\and ¢ is the column.

vt .

PRINTEXT (r,c, ‘btiffer, 1,"dx): It displays the given (ASCII) buffer of
length 1 startin.g at cursor positien (r,c)
L in the ditl!play’enhancement given By dx
character (e.g., half brig.ht, blinking, see
attached table). bt
)
)
READNUM (r,c, number, 1, k, j, err): Reads a numeric string starting from
cursor position (r,c) of length 1 with

jk decimal positions._ Error code is

. 7 NI\ actual number of chagacters enteyed by

~ ' the operator.

4

returned in err and j-contains the .

an o g E b A e vy e e

43

.
»
DISPLAY (buffer, len): Displays the buffer of a given length at the current

cursor pogition, no linefeed at the end of DISPLAY.

&<

rd

INPUTEXT (M, Gﬁuffer, 1, j, maxlen): Similar of READNUM but it reads a
string of ASCII characters of maximum length given in maxlen, j
wil’l contain the actual number of characters entered‘into buffer.
Note that buffer is set to spaces before any data is transferred
to it.

SE’I’FIEL,D (r, ¢, c2, dx): It is used for setting the field enhan/cement. The
fi®1d enhancement will start at position (r,c) and end at position

>

. (e2). The type of enhancement is indicated by dx.

LINEDELETE (r,m): It deleted m rows starting at row r.

P .

LY

e]

44

.

-

3.9 DATABASE MANIPULATIVE PROCEDURES
The ENTRYPRO uses following IMAGE/3000 database procedures [3]:
. »
Ve
DBOPEN (base, pasaword, mode, status): It opens the database in a .
specified mode, Status array always contains the information on
- rd the call; set b?r DBMS .,
’ - {
*
DBFIND (base, dataset, 1, status, keyname, value):' This call locates) »
4 -
the pointer to a given chain in a detail dataset.' The key value
4
{ is given in value parameter,
- DBGET (base, dataset, mode, status, list, buffer, walue): It reads an
entry from the specified dataset. Folluowing DBGET mode are used .
in this program: .
. Mode = 7 A calculated (random) read on master set.
>
Mode * 5 Read chain forward.
N ”r
o / Mode = 6 . Read c¢hain backwards.
| Mode = 2 Read serially,
){ K Mode = | Re-read the current eatry. . '
Pl “ .
DBPUT (base, dataset, 1, status, list, buffer): It adds an entry to .

the dataset, using the given liat and buffer,

-~

DBUPDATE (base, dataset, 1, status, list, buffer): It updates an entry \

) using the items given by list. The items are in the buffer.

. v
\ /

dataset,

L

DBLOCK (base, lock description, mode, status): It applie

1, status): Releases ALL the locks held on a

/

DBUNLOCK (base, dummy,
.database,
DBEXPLAIN (stQtus): Explaine™the status ‘infomation of the last database
call,

-

DBERROR (status, buffer, len): Same as above but a short message is put

a

into buffer. =
DBCLOSE (base, dummy, 1, status): This call is used to close a databast.
N ‘ *
\~<\\

Py

45

S .

¥

3.10 SECURITY AND ACCESS CONTROL

Security and access control to the system and the databases are implemented

with several levels of passwords:

A
PASSWORD/SECURITY CODE IMPLEMENTED BY
a) Group Account password HP3000 System Executive
b) System Code (SYSNAME) 3 ENTRYPR) Executive
¢) User class password ' ENTRYPRO Executive
(i) Database passwords | ' IMAGE DBMS) \

MENU ACCESS

The users are given access to only those menus lines for which their user

class password has been validated. Menu lines for other user class

(exclusive) are not displayed.

FORM ACCESS OPTIONS ‘ v \
Each user class may be_allowed one or more of the following operatirlms on
the datasetat; t)y '
a) Add an entrvy
b) Delete an entry

¢) Modify an entry

User class 99 permits unlimited access to the datasets.

P AT o A AT KR i

. ' 47

3.11 DATABASE LOCKING AND CONSISTENCY
-p

j N B 14 o

In a network type of database, the locking is done by the” application

programs. This can cause delays and starvation to other programs [8]. In
ENTRYPRO a locking scheme has been implemented to circumvent this

situation, The locking strategy is as follows:

a
v

Whenever an existing entry is accessed, its actual contents ig saved in a

buffer, SubSeq;xently if an update of this entry is requested, ENTRYPRQO

will lock and re-read~ the current entry and compare the new buffer values ‘ m
with the saved buffer. 1If these two buf\fers have the same contents then
data entry is updated. However, if the buffer match fails, no update.is

attempted and the operator (user) is requested \to access the entry once

again and the entire sequence of operation is repeated.

While inserting a new entry ENTRYPRO ensures that an entry with the

specified key doesn't exist, this is applicable to master datasets only.

Actual locking of the database is done at dataset level. ENTRYPRO attempts Y

to lock the dataset 10 times.. If lock cannot be obtained, then a méssage -
‘ L4

is displayed. The entry re-read, compare and update functioms are

performed under locked dataset condition to ensure database consistency.

The lock is released after these functions are performed. d

2

When deleting a header type entry all the detail lines (in decall set) are

TS
deleted before the header entry is deleted (Example: Invoice header and
detail Jines associated with the header). This further ensures data
consistency.
. Ay
-

@

’ - BIBLIOGRAPHY
_V
COBOL/3000 compiler, Reference Manual
Hewlett Packard, Santa Clara, Calif., 1929
Systems Programming Language, Reference Hanﬁal

ibid

}
IMACE Data Base Management System, Reference Manual

ibid . - . |

-

/

Multiprogramming Executive Operating System (MPE III) .
ibid \

“_
The Complete QUIZ Users' Guide

Quaser Systems Ltd,y Ottawa, 1980

Structured Design, by jE. Yourdon -

Yourdén Incy, N.Y., 1980

Data Structures, by E. Horowitz & S, Sahni.

Computer Science Press Inc., Potomac, Maryland, 1976
/
- An Introduction to Database Systems, by C.J. Date -

-

Addison~Wesley Publishing Co., 1976

o

o yn e e % iy A——— - P

ki o, e

APPENDIX "A" . ¢
A Form Description & Darabase Interface
Language (DIL) .
BNF syntax (keywords are underlined)
NOTE: i {} means 0 or more times, while [| means 0 or 1 time onfy.

. ® - * * e : . ' i
ii Any text enclosed within a pair of (!) is treated as ‘a comment.

formsfilte :i= SYSNAME: sysname ; string

-

USERS: username, number

BASES: basename, password ;

,FILES: filename, lockword ;

o

. menupart ‘

formpart

END . - ’

-y

NOTE: filename, basename (database name), username are defined qé;

indentifiers,
sysname 1:= letter ‘{leéterldigic} maxipum of 4

identifier ;:= char {char} maximum of 16 -

+

-

menupart 1= MENU menuname “ :
[userno (:) userno] string [MENU menuname |FORM
, X3 g1 UA it

formname l command]

.

*

R anaiand

»

- A2

)

formpart ::= FORM: formname , dataset (number) [’,bu‘enan;el;

- / .

—

»

»

menuname g
formname i
dataget ::=
s num 1=
letter (o=

itemname ;:=

g
*

lockdegc ::=

< -

-,

[DETAIL-FORM: formnmme , formname ;)
[LOCK-DESC: lockdesc ;] ‘ -
(OPTIONS: ADD(number[,number]) .
MoD(number| ,number])
DEL(number[;number]) -
. INQ(number[,number]) ;]"
line#, col# string itemname [,type) ;'.tem'éomande :

»
! ‘ 2 ¢

DETAIL: formname, dataset

L

line#, col# string " itemn ame {,typel ,item command ;

[}

letter {le téer\vt}

letter {letter digit} ‘ e\
"letter {letter(dﬂlgxt}' |
digit {digit} -
AlB [le| I#JI‘“

-
a vah.d databnse L&gm ndentxf!.er, it may be subacrlpted or

Y Ld

an identifier name if it is a local (non database) item.

oj1|2{......9 - - ‘
this should describe ’the locking ‘strategy which will be

used when executing this form. If not spefified then the

default locking strategy is used.

.
: ’ @

D]

- ¥

L

« ' command . ::= RUN ptbgr‘mnnam‘e‘ . .

Remn

L v ST REAM fuename .
"any other legal command of "MPE“ operating system

. : “ugn R
. @ .

t

-

item command ::& LOCAL{

. 3\4
’Lxsrl) N
) l INIT(string ‘;sign num(.ptm])l ! ,
- & ‘) . ' ’ ®
’ DEL (atring‘nu_m)i
N ‘ s . ¢ ? N
. ’ . .
9 - . FETCH(item, dntaaﬂab}asﬁe)l
TYPE (type dest)| . . (e
* . FIND (dataget, dat{base)|
- _ TOTAL Citem, item)|
. ‘ CALL (id:parameter ,parameter I h
EVAL (expressioﬂ%’l
~ tror SHOW |, ’ g N
' ul - o v ! . M
L DUPLICATE ° ' .
P . '
G ‘ R
. r . ’
‘string ::= pne or more characters (ASCII) enclosed within single
['4
- . 2 a3

f
quotstion marks (').

0

[. 4

paramater ~ ::= it.u'conutmtlltring

<

L 4

[}

€ . f o _ » -

~ 'rl
ms If a header form' ne- is teferenced in a detail fom it s'hou}d ‘be'

+ Item co-mdl peructed on first fleu (key field) are KEY, INIT,
DISFLAY and CALL. . " éﬁ.” I
Ll ‘ ~) . T . I
° T, ’ N\ . ;
l €
- . = , .
, ~ * BN . {

’ L) ,
) co . . i
» - < - 7

A Ry 7 SRS s R seTe—

1nd1uted by $ itemname , so Ehnt there iu not: u:pnﬁue conflict.

-

-

AW

.~TYPE: This is the type declarative command.
v display types.
' default is X type and-th

type desc ::=

r
L

I

I
1

i

T

M
1

:nf :m]

¢

o= Xon

Where n and m are unsigned integers.

Dage(Types are:

The first unsigned integer gives the total fiild length (in
dxgxta) and /e second mteger (if specified) indicates the
decimal pomt positiod.

D = date in DMY format
M = date in MDY format
Y = date in YMD format

The dates can Be 6 or. 8 bytes in length i.e, w1th or w1thout
embedded "/". -
k

Numeric Types are!
J = number in)bogitive unless specified
K=a positiVe number (always)
E=a negatlve number (always)
§ = the number ig negative by default but operatot may specify +

@arac ter Type

X = atrxng of ASCII characters of a 1ength given hy n%

An expression

expression

o e

o ogf m

.

in ar:y legal COBOL expreuion of arithmetic type of
commandé but .use [,] insted® of (,).

N

——

o
"

4

NG

It4indicates the edit and
Default is game as in database (for local items
tem length is set to zero).

L

4 3 .
expressjion | item. operator item |(expression)
+ . i .

A4

.

o v @

: 0 ’
: LEXICAL - R ¥ : f
ERROR# ERROR MESSAGE . {
e T -
B o _0 . Illegal character in(the statement. .
1 ¢ Syfname tdo long; it should not exieed 4 letters. ‘
2 Identifier too long or incorrectly formulated (identifier should
& .
" ~be 16 _<hars). - -
3 Integer patt of the number éxceeds 14 digits; truncation occurs,
4 ‘ Real part of the ;ﬂ&ber exceeds 4 digits; truncation occurs, ‘ -
— 5 String constant exceeds 80 charact.ets." ‘
t [} 2
o ! ! A . -
\
v ¢ . -
: n) ‘
- . ;
~ .
s

-~ wam e e v e

APPENDIX "B'" .

. Y
Error Megsages Generated by ENTRYPRO

e g

.a

O e s ey L

y
.)
j SYNTACTIC,
’ ERROR# ERROR MESSAGE .
s 100 missing punétuation mark: comma (,) ‘
101 missing quote mark (")
- 102 missing punctuation mark: colon (:)
- 163 missing opening braglet N -
104 . migsing closing bracket or mismatching \rbrackets
105 ;‘ missing punctuation mark: 'period ()
1 4 .
. 106 missing punctuation mark: semi-colon G
107 missing punctuation mark: hyp%xen -)
108 NOT USED ¢ .. ‘
] L T, Yo
119 missing keyword; SYSNAME
‘ 120 missing keyword: M.E.NU
121 missing keyword: FORM
- ‘122 / missing keyword: LOCK «
123 missing keyword: YPTION
; 3 124 missing keyword: DETAIL *
k T ‘ 125 missing key‘;ord: REPEAT
126 wmissing keyword: USERS -
’ 127 ' missing ‘keywoi';l: BASES ¢ :
: 128 missing keyword: PILES ' : T
o . 129 missing keyword: DETAIL = . N
3 130 NOT USED -
VA
x . \
\ e :)
» | D ,,
| Y
< A _a

¥

\\T\\\QQ ‘ ‘ o . , .

r

o

6 A
SYNTACTIC
ERROR# EﬁﬁbR MESSAGE
200 - Expected: MENU, Fonu(?/nun, STREAM or COMMAND .
201 Expected: ADD, DEL, MOD or INQ
202 Expected an item descriptor, eg. LIST, DISPLAY Etc._..
A
. !
203 Expected an Integer number (unsigned) /
204 Expected ad Inden‘tifier name
205 Incomplete specification file or missing END. /
/)) ?) ’ -
' K
'. i
3 ¢ ’
!
7
s «
PN ¢ ‘ (
- i /
\‘ - /
- N . R .
. t
™)
- % ‘ "
. 'y - B g
) \ ? g
\]
o> -
. —
° B ” Y \
- . |

e

-

SEMANTIC

ERROR#

ERROR MESSAGE

/ 300

301
302
303

Y 304
305

306
307
.- 308
309
310

311

312

)
\

USERS EXCEED 24; (username, userno) pairs should not be

greater than 24,

. The (Base, Password) pairs should not exceed 10. \\\

\

The (File, lockword) pairs should not exceed 10. '

Userno not defined in USER:clause.
t

Userno's exceed maximum number of users.

Duplicate FORM or MENU name. \‘\)
\

Menu of Form name reference not found or referenced twice
(Look at the menuform tahle dj;play on the. screen for
debugging pgrpose). h &

Corresponding Password or Basename not found.

¢ *

Too many detail form names, should beé less than or equal to
}

m' ‘ - v

-

v

Error in Detail-Form name descriptor.

Error in TYPE decldration (see item type declarative details
A local variable must have type declarative preceeding
"LQEAL" keyword/or a local varigble may not be subscripfed
Subscript value exceeds éhat of tbe data item.‘ ¢
Detail form name not.-declared ip "DEEQILFORM}“ clause of the
fo;p: : ‘ 4

. :
Only numeric type of dats may have decimal positioning. .

o

P

N e A T A NS Vs

SEMANTIC
ERROR#

315

316

317

318

319

320

321

322

323

324

—t

: < -
B5
- P

ERROR MESSAGE

OPTIONS: Clause should have one or more of following
terminated‘by semi~colbn, .

ADD(num ,num)

{MOD(num ,num)] .

{DEL (nu ,nim)] i “

[I1NQ(oum ,num)];

use 99 for a&} users eg. ADD(99)

Maximum userno's exceed 24 in "options:" .

clause (ADD(etc...))

The combined length of‘::::iase buffer and local items
connot exceed 600dyords (=1200 bxFes)

Error in Command Parameter declaration.

Expected an item-name or a string %

&

A COBOL Type of algebraic expression expected.

4

A bad or forward item name referenced in the expressionm.
"

Too many or.too long parameters try to reduce the number of
command: on this item.

A delete (DEL) item should be of the follovins type

4

a) The set should be "MASTER" type.

b) Image type of the item should be "X" type.
¢) Item cannot be declared local.

Max items in a form including (its detail forms) cannot

¢xoéed:80.

‘(~ »

-

s - i s r———

APPENDIX "C" ~pu

*) ALLOWABLE LIMITS AND DEFAULT VALUES

§ AN
1. The identifiers|itemnames should be less than or equal to 16 characters

-

eg. CUSTOMER#, CUSTOMER-NO. /(\\

-

2. The database items should be spelt as in the database schema.

2

3. Use of subscript is allowed in case the database item is compound

However, the local items cannot be subscripted.

)

4. There may be upto 10 user classes only.

type.

)
v

5. A menu may not contain more than 20 lines.

6 A form may not contain more than égi;;elds, including a subform (one at

a time).

y o ' ~ ‘ L3

7. The string constants should not be more than 78 characters. However,

¢

in case of specifying MPE command use only 77 bytes, last byte is CR.
\
i .)

8. The database and user names should not be more than 8 characters. The

password and lockwords should not be more than 8 chaiacters either.

9. The largest numbers handled by ENTRYPRO are: .Integer 9(14)

- - Real 9(14)?9(4)m

C2

10. Each keyggggdsuch as USERS, BASES, FILES, MENUS, FORM and QETAIL should

be started on a new line.

J

®

«

11. Userno's in USERS: clause should be given in ascending order.

3

a strip.

12. MENU/FORM reference relationship.

PO NOT use 99 as userno, this number i3 used by the system to terminate

. MAIN~MENU
[~ | -]
FORM 1 FORM 2 MENU 2 MENU 3
S l .
[l
FORM 3 MENU &4
, |)
[1
) . . FORM 4 FORM 5
: } '
§

RULES: a) Each menu/form must be referenced by at least one menu,

14

b) A form cammot reference a menu.

<«

c) Except for MAIN-MENU, all the Forms/Menus must be referenced

otherwise they become inaccessible.
¢ -

d) Maximum depth of menu levels may not exceed 5.

e) Example:

MENU/FORM REF TABLE

MENU/FORM
NAME

MAIN-MENU

CUSTOMER

| SAMPLE

FORM-2

TYPE
ME
ME
FO
8T

REFERENCED
BY
$HEAD
MAIN-MENU
CUSTOMER
SAMPLE

FOUND

YES
YES
YES
NO

L

ME=MENU
FO=FORM
ST=STREAM FILE

P ot

o t———

F/

13. In any one specificatior file, the total number of forms and menus must

be less than 100. »

14, SYSPAC MESSAGE CONVENTION: \
the system prompt for input of data/command etc...
?? (message) An errox; mesgage. ‘
(message) A directive for the operator.
** (message) A warning or caution for the operator.

(message) The input string is unacceptable or invalid,

15. A form may have no more than 5 detail forms. ,
" | |
16. The item command parameters total string (characters) length may not

.exceed 114 characters including keywords, commas snd paf”ﬁgthesi’s:
LN Ve

-
-

eg. GET (name,name,name),CALL(P1,P2...). -

17. Length of DATASETNAMEs 16 chars °

Lengths of DATABASENAMEs 8 chars

T .

Length of PASSWORDs 8 chars e .
} Length of LOCKWORDs 8 chars ') J)
e /
"
¢ -

B = GNP

g

18.

19,

20,

. 21.

22,

pe T m e e oulawte s uigeme g Hr s Yef el aan R Ferenraan 8

All local items must be accompanied by type description otherwise the

item length is set tov0. » *

i
Subscripted items of a compound item in a form must appear

contiguously,

-

There may not be more than 5 check LIST items in a form., A check LIST

item if declared local will not be used for entry validation.
There may not be more than 5 TOTAL items in a detail form,

There may be upto 80 items in a form., A detail form may contain upto

15 “tems.

W

APPENDIX '"D"

ENTRYPRO Command Codes

) nad

.

ENTRYPRQ executive program (SYSPEXEC) can be in one of the two modes: data
input or accept command mode. During data input mode the user is prompted
to input data into the fields of the. form. ENTRYPRO high lights the field
in which input’ is required. Edit and error messages are displéyéd at the

bottom of the screen.

At the end of the form, ENTRYPRO will automatically switch to command mode
however the user may request this switch at anytime during data - input by
entering "//". While in command mode, a command prompt message is
displayed and the‘user is required to select one of the command mnemonic

code, These codes are explained below:

\"‘/ >

o

-

U: Update database with the current form contents (Pressing (CR) will do

"the same thing). . .

¥ L]

D: Delete the current entry (on the form). In header forms the detail‘

lines associated with the header entry are also deleted.
' - '

M: User wishes to modify the contents of the form, ENTRYPRO is switched

to input mode.
. -

nn: (number) In header form it indicates the field# which the user wishes

to modify. 1In detail form it indicates the detail line# which is to be

A]

searched and displayed (if found).

. .

L)

[

“<F

i

L: List the detail lines on the screen.

\

D2

GO: Initiates a report generation program which is interfaced via the

N
system defined mailbox (MCONTROL).

[1: This command has th following eemantic significance according

level in ENTRYPRO: |

Field Item : Return to ¢ommand mode,

"~

Detail Form: Go to header form.

Header Form: Go to calling menu. ~

Menu Level : Co to previous menu level, If no more levels, then

¢

. ¢& : Move control to previous input\field on the screen,

7

1?7: Display the current field defimition.

to the .

I

«

*,

-
'
'
M
, .
~
¢
I
.
L}
\
)
N
.
.« .
, a
‘
o
JR—
3 - -~
f
N

AT

e e RN E M s e e W T A X R

.

oot
-

.

.
v Bl
J/
.
'
~
L}
N 3
-
&
.
-
K T
1 - N
.
f . g
' ~
i)
i
.
- .
B

N

P e "

. -
-
v
.
s
.
.
,
-
{
. e
3
v J
R .
.

: APPENDIX "E“

a .

Suple_Speciticati(-m File and Qutput '~

O3 “
'
—3R
'
i
- -
t
4
’
. e 2
¢ “
! :
I
o
!
.
o %
' 1
—

7
¢
’
.
N
L]
©
6 .
w
* b
LS
.
>
v
,
) -
R \
.o -~ ~
<
- -
B
. < »
% \
-
'
> 4
A \ +
. ~'
.
- “ - ~ . s
¥
-
.
. - . .
o
?\\ »
N s . o v
2 -
N R R ,
- .
. . +
.
® -
, . °
4 b

Py

s

H

. K o | T ﬁé@.g.-J..

* | ’

» . f . . \ .
HEWLETT—-PACKARD 3220147205 EDIT/3000 MOH, AUG 17, 1981, 4:38 PH -

-

e : : ’ . : L
%Joa SAMPLE , MGR .LESTERS/HP3000,CJA1 /21980 . * ! ‘ .
N !mmr‘ —— . ' N M

[COMMENT THIS. JOB-FILE COMPILES A SAMPLE SRECIFICATIOH FILECSYS2)
I COMMENT THE.LISTING PRQDUCED ARE ATTACHED .AS APPENDIX “E*.
1COMMENT % : ST Ty N

IFILE SPECF ILEwSAMPLE . . L, \
IFILE .SALES=SALES . PROD , , L .

{RUN BQ.PUB;:PARM=2 \ ; :) i
YES - o 2 N ‘
1EQJ. - T I e 4

a 4 . " A
\I - §/ >

\ e
- i - -
“ - o v
2 T + -
! v : o &
- | \ o . a -
) ~
K4 3 M
N b
< N 3
'w -
[ry W , \ . ‘ ¢ -
s hd '. i
» .
® i *a i
o ‘e -,
* > R .
- ” [-

e S

> -
b ! o
»
3 ’ N . »
- v e , ()
w
Y5 i
T ‘ \ * ° » o ; N
-] L4 . . [
L .
- PR .
- [4 - 3 1 - " ' -
.) °)
w , >
> s’
T, A - |
. X . e "
-, ’ i . ¥
1 . —
. , P .] . o
R . -
o o
¥ 4 N
8 A M - ’,\. . .
¢ . . . v @
- . y . L
. -
. v /\ :
" ' ‘ /\‘, - r ’ ' ~ L] ‘ - .
\ ' . R’

:_ - & Y . : ‘ - .\~
‘ B -2

1JOB SAMPLE ,MGR.LESTERS,GJARY ¢ n
PRIORITY = DS: IHPRI = 8; TIME = UNLIMITED SECOHDS .\ ’
JOB NUMBER = #J43('
! MON, AUG 17, 1981, 4159 PH
HP2000 / MPE III B.01.F2 - L

) :COMMENT °_ Y
1 COMMENT "YHIS JOB-FILE COMPILES A SAMPLE SPECIFICATION FILE(SYS2)

1 COMMENT THE LISTING PRODUCED ARE ATTACHED AS APPENDIX “E".
) 1COMMENT : J “ .
TRILE SPECFILE=SAMPLE 2\
tFILE SALES=SALES.PROD
| 1RUN BQ.PUB; PARM=2

"ams SYSPACQ: COMPILER PROGRAN ENTRYPRD <2) waw
AN : . .
>> SYSPACQ: END. OF €BMPILE-PHASE ‘

>> MENU AND FORM LINKAGE TABLE << ' . :
Menu/Form | Type Referred.by # of refs ;
) MAIN-MENU . - .~ 4 $HERD. 01 .
CUSTOMgR ' MB— MAIN~MENU 0t
MCONTROL~FORM - FO MAIN-MENU o1
PRODUCT ME CUSTOMER 01
INYOICE-ENTRY ¢ FO CUSTOMER o1
JF 1 LENAN 8T CUSTOMER o1_
4 T v

NO:-ERRORS IN SPECFILE: WARNINGS= 0004
ELAPSED TIME 00:00:10

>> EXISTING VERSION DELETED, ENTRIES=046 ‘
>> SYSPAC DATABASE LOADING COHPLETE ' ~
J .
El:g- OF PROGRaANM .
J ..
CPU SEC..= 13. ELAPSED MIN, = 1., #MOH, AUG 17, 1981, 41599 PN

. s B)
“ i - o .
i A v .

L -
t DO YOU UISH TO LOQD SYSPAC DATABASE (YES)> 7?7 | ' \
r

-wr
[9
-
~
-
o
A d

ENTRYPRU VERSIUON 2.0 tC7 107157

ot oS + -

SYSHAME: 8YS52; » - o
‘A SAMPLE ENTRYFPRO SYSTEM: SvYS82° @

USERS

BASES :

@
MENU)

20,30
30

HMENU:

20,30

MENU;

10,290

FORM:

" 13, 8 ° © LINE#, TYPE(K:2); , e %
\3,’23 - - GL-ND, TYPE(X:3>, DUPLICATE; iﬁﬁ%

: OPER, 10 ! or»eamzmz CLASS PR3SWORD’ !
SUPER, 20 | SUPERVISNR CLASS PA3SWORD '
SYSHMGR,30; SYSTEM MANAGER CLASS FRISWORD)

-

XTEST, WRITER ! DATABASE AND ACCESS PASSUORD 1
SALES, READER; | :

¢

MAIN-MENU;

‘MAINTENANCE 0OF CUSTOMER’ HMENU CUSTOMER;
‘RUN THE PROGRAM: PROGX999° RUN BPRDG‘XQQ';:
‘MAILBOX DATASET MAINT FORM’ FORM "MCONTROL-FORM;

CUSTOMER; - e

‘CUSTOMER PRODUCTS MENU -’ MENU PRODUCT

“INVOICE ENTRY/MAINT PROGRAM® FORM INVOICE-ENTRY;

‘MPE COMMAND LISTF @.GJAIL’ COMMAND "LISTF @.GJRI";
‘SAWPLE REPORT INITIATION' STREAN JFILENAM; ¢
‘QUIZ REPORT UWRITER: SAFMPLE’ QUIZ ‘FILE QUIZUSE=F1‘;

PRODUCT 3 \
‘RUN PROGX399: SAMPLE PROGRAM® RUN PROGX399;

‘COMMAND : STREARM JUBFILE.Q,GJ%I’ COMMAND "STREAM JOBFILE’;

INYOICE-ENTRY, IMVOICE-HDR(1>, XTEST;
DETAILFURM: DTL-FORMI, DTL-FORMZ;

OPTION: ADDC'$0,20> DEL(10,205 MOD(99)>; ! 99=ACCESS BY ALL L
5,10 ‘INYOICES$ * INVO T GE#; o * 2
6,10 ‘CUSTOMER® ° 7,10 CUSTOMER#, OUP;

6,30 "CUST NAME’. 7,30 NAME, TYPEC®:32,L0CAL,DISPLAY;
9,10 “INV STATUS' 10,10 INVDICE-STATUS, TYPECJ:4), INITC10);)
9,30 ‘NO.BOXES * 10,30 NO-BOXES, .TYPECK:5:12); -

9,40 “ROTAL AMT 10,40 ORDER~-AMT, TYPEC(.J: 3, DISPLAY;
1T RUNNING TOTAL RDM DTL-FURH! ‘!

9,68 ‘GL TOTAL’ > 10,60 GL-AMT,TYPECJ:40:2),DISPLAY;
g 1 RUNNING 7TlﬁTl'lfiL FROM DTL-FORM1 |

7 ‘
“ !]
DETAIL: DTL-FORM1, INYOICE-DTL; .
TITLE: 12,2 ‘LINE# PRODUCT# QAUANTITY ORDER—F\MT’(
0, 0 INVOICE#, DISPLAY; ! SET BY ENTRYPRO { '

13, 0

" LINE#,TYPECK:2Y; . N .
13, 6 e

. PRODUCT#; £ . PR
13,23 . ORDER-QTYC 1), TYPE(0:8); .
13,38 ‘ ANOUNT, TYPEC J18:2), TATAL $ORDER-AMT);
A ' o
DETAIL: DTL-FORM2, GL-DTL; M
TITLE: 12,10 * LINE# . GL-NO - GL~AMT’
0, 0 INVOICE#, DISPLAY; ! SET BYENTRYPRO !

oL

L Y Y

¥

r

3,38 ¢ AMOUNT, TYPEC J:8: 25, TOTAL(tL.L-ﬁHT >3

f

FORM MCONTROL~FORM, MCONTROL, XTEET)
OPTION: ADDC206,30) DEL(99); .
» 10,10 ‘PROGKEY ‘ PROGKEY ;

© 12,10 ‘PROGCESS FLAG' PROCESS~FLG;
. 14,10 ‘CONTRQL BUF’

»

CONTROL-BUF:;
16,10 ‘DATA BYR’ 17,10 DATALBUF, TYPEL X:69);

FORM: JFILENAM, MCONTROL, XTEST; .
OPTION: ADDC10,20); ~ ,
10,20 ‘DATE ¢(D/M/Y)’ . DATE-IN, TYPE(D:8), L@CAL,
‘ . INITC “STODAY *);

P T SR s e

12,20 | ‘FIRST FOL 10¥° F-FOLIO, TYPE(X:4), LOCAL)
) 12,45 ‘LAST FOLIOW ! L-FOLIO, TYPECX:4), LOCAL;
< 14,20 ‘REMARKS g REMARKS, TYPECX :32),L.0CAL}
END . . N ~—
~~
‘ ¥ ’
/ - -
J P
/(, %
’ ’
& ~ N
rd ' > , K\
\ \ - d
- BN { ‘
. ’\ -]
- i’ . ¢ >
- a :(" l ‘0 a
[] . ' L \~‘
- " .) — "
K - | , -
’ ’ . » ' - . fa)
< 4 B]
o ! 1 - (,.‘,,.». -

' PAGE T FEWCETT-PACKARD 222158, 2. 00U TNACEZ3000 T DBSCREM — - f . 5
F‘H‘ {< BCHEMA OF ‘XTEST® DATABASE; USED BY SYSTEM: 3¥sS2 >>
(€ e e e e 3)
4 ' Co
”BEG IN A
DATA BASE XTEST: ,
/ " PASSWORDS: 10 READER; r -
20 WRITER;
/ << >>
<< THE DATA ' TYPES IN ImMmGE 3CHEMA ARE AS FOLLOWS: >>
<< Xt n ASCII CHARACTERS >>
: © << d1 A 16 BIT INTEGER NUMBER <2 BYTES >>
<< J21 A 32 BIT INTEGER NUMBER <4 BYTES) >>
<< Zn: n Z0NED DECIMAL DIGITS <1 PER BYTE) >> .
/ R Pni n PACKED DECIMAL DIQITS (2 PER BYTE)> »> Lo
<< >> e
i ITENMS: <<NAME> > <<DaTa TYPED>D p&‘
‘ AMOUNT, 212; -
. ' CONTROL~BUF, X20; - >
‘ ' CUSTOMERS#, X12;
S DATA-BUF, X80 ;-
) “GL—ANT, B v2; :
“ . o GL ~NO, J2; .
' ' VOICE# , Xg; .
,) INVOICE-STATUS, J1;
, - LINE# , X2;
ND—-BOXES, P4;
' ORDER-AMT, J2;
SRR ORDER-QTY, 4423 < a coMroud TTEM) *
PROCESS—~FLG, - K2 # i
PRODUCT#, X4 5 g
/ . PRUOGKEY, X8; ,
. SETS: “ <<DMAS&1’/>\§\ << SET TYPE & SECURITY » 4

NAME: INV-MASTER, AUTOMATIC(] 0. 20); <<MASTER)>
. ENTRY: INVOICE# ¢3); ’ ..
(cnpﬁczw 10)

“NAME : INVOICE-HDR, DETAILC10/203; % :

- . ENTRY: INVOICE# C¢INV-MASTERD, ‘
CUSTOMER#, :

Lo INVOICE-STATUS, .

o y . NO-BOXES,)

- 1 ORDER-AMT, .7

: GL—AMT;

p cnpncxw- 10; o ,

. NAME: INVOICE-PT., DETAILK 10/20); P
o ENTRY : LINE®, - . .
\ INVOICER ¢ INV-MASTERY LINE% 3y, :
PRODUCT#, - , N
. - ORDER-QTY, . o .
- AMOUNT ’,)
' CAPACITY: 20, (

<4
J
4

Pl

o2 e

RN BT A o A TR o

Bl e DI

K

NAME: GL-DTL,
ENTRY : LINE#,

eV

GL-NOI .
ANOLINT ;
CAPARCITY: 20;

NAME : HMCONTROL,

ENTRY : PROGKEY(O),
PROCESS-FLG, -
CONTROL-BUF,
DATA-BUF;

CAPACITY: 10;

DETAILC 10720 %;

INVOICE# < INV-MASTERS,

MANUALC 1042053 <<MASTER>>

END.
DATA BET TYPE FLD PT ENTR HMED CAPASITY BLK BLK DISC
NAME . CNT €T LGTH REC _ FAZ UGTH SPRCE
NY-MASTER Ao 3 4 24, A0 10 241 4
NYJICE —HDR D 6 1 16 20 10 10 201 4
NYOICE-DTL D 5 121 25 20 20 . 502 8
L-DTL .D 4 1 13 17 28 14 239 6
MCONTROL M 4° 0 S55° 60 10 6 _BL 9
R TOTAL PISC SECTORS INCLUDING ROOT: 42

NUMBER OF ERRUR MESSAGES: 0
BTEM NAME COUNT: 15
RO0T LENGTH: S6¢

4 »
Ho;\\ FILE XTEST CREATED. -

N

!

DATA SET:COUNT: 5
BUFFER LENGTH:

502

TRAILER LENGTH: 256

g

L —

18/80/10

_I.ll_uoeu:z pe3i3aag asjug
ATdWVS ¥ILTEM THOdTH ZIND
NOIIVILINI 1404Td F1dWVS
IVL9'® JL1SIT QNVWWOD 3IdW
RVYD0¥d ° INIVW/AYING" 3DI0ANI
nNaH s1onabEd waWOLSND

-+ HEHOLSAD A0 IDONVNIINIVK

.-vc.q »

-
&

S0

70
€0
Z0
10

IBAS:HALSAS ONAXMINI TTdRVS V
.

L
cadfa3ug

——

™

b
/

o .
#YIROLSAD,, NNIK 40 100XV NETWOS :AVIASIA FIdHVS V

R T e Sl aad

»

Q1314 AINO AVIdSIQ— |

~

—

]

AOﬂMﬂ

-

N
|

1S b]
01 -
60 N
80 ! <
P Lo
%90
so | M
%0
. €0
0
10
IRV-43MI0 XITINVOD .
TVIOL 19 IRV TVIOL SIX0d ON
)
AHVN
. < _
HVEO0Ed INIVW/XHINT FDOIOANI
2 ZSXSYRIALSAS O¥JAMINT A7dWVS ¥V

18/80/10

sTY3 uo awadde saBessal arIOWINIU] oadhagjuly)

]

IEERRERE

Sm.m.mmm,
I

SNIVLS ANI

_ _
< #YANOLSND

|# s510aM1

-

oxd&ajuy

e VS .
NOIIOVHIINI
QBAIVING

W e wm—s W G— . —— ———

-(8ANIT -
- TIV1ad)
sWy044ns

3 il

‘

:wMHZMMNUMODZHz :MMW 30 1NOXAVT, NEHIDS :AVI4SIA TTdNVS V

