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Abstract
Essays on the Arbitrage Pricing Theory and
Portfolio Performance Measurament

Simon Lalancette, Ph.D.
Concordia University, 1992

Esgsay one tests the mispricing of both an unconditional
and a conditional APT with (out) a residual market factor. The
time-series movements in the conditional covariances, V, are
accounted for by the time-series movements of the conditional
standard deviations of the mimicking portfolios. The first
factor seems to be sufficient to span the efficient set,
whether the model is estimated for a fixed or time-varying V
that is (un)adjusted for nonsynchronous trading using the

Shanken (1987) method.

Essay two applies the Jobson and Korkie (1981) Z score and
the positive period weighting (PPW) score of Grinblatt and
Titman (1989a) to various benchmarks of market and mimicking
portfolios to study the benchmark invariancy problem.
Portfolio performance inferences are affected significantly by
choices dealing with the number of factors, nonsynchronous
trading adjustment, and the sizes of the firms used for factor
extraction. The returns of the portfolio benchmarks exhibit
significant monthly seasonalities, which, in turn,
significantly influence mutual fund performance inferences.

iii



Essay three assesses the selection and timing abilities
of equity mutual funds using an APT model with specified
macrofactors and time-varying risk premia, Although a
significant proportion of the funds exhibit abnormal
selectivity performance based on the model’s intercept [Jensen
(1968) alpha], the direction of that performance is positively
related to the postulated sign of the time-varying risk
premia. The findings appear to be sensitive to the use of an
inexact, unrestricted APT model. Some funds exhibit
significantly superior abilities to forecast the movements of

the priced macrofactors.

Essay four uses a multivariate (M-)CAPM with a time-
varying ex ante market risk premium to assess the micro-
selectivity and macro-timing abilities of a sample of equity
mutual funds. Significant (and predominantly negative) Jensen
estimates are found. This finding is probably due to the
conditional E-V inefficiency of the chosen market proxies. In
contrast to Cumby and Glenn (1990), the significant market
timing coefficients are not attributable to small sample bias

when a bootstrapping procedure is used.
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CHAPTER ONE: INTRODUCTION

The structure of asset prices is one of the most
investigated topics in modern finance. A main paradigm of
this field of research is the Arbitrage Pricing Theory
(henceforth, APT) developed by Ross (1976). Based on
arbitrage principals, Ross demonstrates that the expected
returns of assets can be linearly, although approximately,
explained by one or several systematic forces that have priced
risks. The model rests on fairly simple assumptions; namely:
investors prefer more wealth to less; there exists a factor
structure composed of K factors that affect all assets when
there are more assets than factors; and investors have
homogeneous expectations. The model becomes exact in
conpetitive equilibrium when the market portfolio is perfectly
diversified. Connor (1984) shows that investors are then
insured against idiosyncratic risk and that only systematic
forces are priced. Empirically, the arbitrage and the

equilibrium APT are indistinguishable.

Many empiriczl investigations of the APT use a two-pass
procedura. In the first pass, the factor loadings are
extracted using a factor analytic approach. In the second
pass, the validity of the model is examined by estimating the
excess returns on the arbitrage portfolios or on the mimicking

portfolios. The second chapter of this thesis investigates



the mispricing of the APT model wusing a factor analytic
approach which is extended to account for several important
recent contributions. To reflect the mounting evidence that
the first two moments are time-varying, the investigation
rests on Dboth wunconditional and <conditional return
distributions. Use of the former leads to the usual APT tast,
which was initially developed by Roll and Ross (1980), where
the expected excess returns of the K arbitrage portfolios are

estimated in a cross-—-sectional framework.

Use of a conditional return distribution leads to a time-
series test of the APT. The methodology of Lehmann and Modest
(1985b), that uses mimicking portfolios, is extended to a test
of the APT based on time-varying moments by including a
standard deviation equation in the estimation process to
capture any time—-series variation in the second moment.
Specifically, the fluctuations across time in the conditional
variance-covariance matrix of returns, V, is explained by the
movements in the conditional variances of the mimicking
portfolios. This approach is interesting since the numerous
parameters of the variance-covariance matrix collapse into K
sacond moments of the joint conditional distribution of the
returns of the mimicking portfolios. Simultaneous estimation
of the mean and standard deviation equations is performed
using the iterative weighted least squares method. In order

to obtain insignificant mispricing in the model, a residual



market factor is included in both the unconditional and
conditional mean equations. The conditional volatility of the
residual market factor is included in the conditional standard
deviation equation. The variance-covariance matrix of returns
is adjusted to account for any nonsynchronous trading using

the Shanken (1987) procedurae.

APT concepts can be modified to consider asymetrical
information across different groups of invastors. This allows
for the study of the quality of the information possessed by
a portfolio manager, whose influence is negligible on
equilibrium asset pr;ces, but who may have access to
privileged information. However, a number of complications
arise when the APT is used for an empirical investigation of

portfolio performance.

Based on Grinblatt and Titman (1987), mimicking portfolios
are locally mean-variance efficient if the APT is an exact
model. Since their respective Sharpe ratios are maximum, the
minimum idiosyncratic risk mimicking portfolios of Lehmann and
Modest (1985a,b) are appropriate benchmarks for assessing the
performance of mutual funds. Several technical aspects are
involved in the construction of the mimicking portfolios, such
as the number of factors in the factor structure, the type of
firms (small versus large) required for the estimation of the

variance—covariance matrix, and the adjustment for



nonsynchronous trading. Since mutual fund performance
inferences may not be robust to the formation attributes of
the mimicking portfolios (Lehmann and Modest (1987) and
Grinblatt and Titman (1988)), the third chapter investigates
whether or not a benchmark invariancy problem exists when
mimicking portfolios are wused to evaluate mutual fund

performance in a Canadian context.

Tha Jobson and Korkie (1981l) Z score to tast for the
equality of various Sharpe ratios and the Positive Period
Weighting (PPW) measure of Grinblatt and Titman (1989a) are
used to assess mutual fund performance. The Jensen measure is
not used because its estimated value is directly dependent on
the choice of an underlying asset pricing model, and Lehmann
and Modest (1987) have identified an asset pricing invariancy
problem. The two measures used herein are only indirectly
dependent on the postulated asset pricing model, since they
only require that the underlying portfolio benchmark be mean-
variance efficient. Since mutual fund managers often manage
their portfolios actively, the return distributions of these
funds may be heteroskedastic. To deal with this problem, the
2 score is also computed using the relevant variance and
covariance terms using the estimator proposed by Newey and

West (1987).

The extensive literature on the month-of-the-year effect



suggests that the underlying portfolio benchmarks (both
mimicking and market portfolios) may exhibit anomalous time-
saeries variations. In the presence of such anomalous
bahavior, mutual fund performance inferences may be biased for
the months in which the benchmark returns exhibit monthly
effeaects. If different benchmarks have different monthly
effects, a bencbmark invariancy problem may result. To
investigate these issues, the seasonality of both portfolio
benchmarks and mutual fund performances using the Jobson and
Korkie Z score is examined for each month of the year. This
technique is well suited for this problem because it includes
a monthly time-varying second moment that may explain any
monthly movement in the first moment. To avoid biased
estimations due to small samples caused by the categorization
of returns by the month-of-the~year, a bootstrapping procedure

igs used to compute the Z scores.

In their seminal paper, Burmeister and McElroy (1988)
implement an approach in which the return generating process
and the APT equation are simultaneously estimated when
macrofactors are explicitly included in the model. In
addition to avoiding the errors—in-variables problem inherent
in the traditional two-step procedure, their methodology
allows for non-linear estimation with restriction on the risk
premia estimates across equations. This macrofactor approach

is further improved by Koutoulas and Kryzanowski (1991,



henceforth KK). They account for the time-variation of the
risk premia by the movements of the conditional standard

deviations of the underlying macrofactors.

The KK model is also appropriate for investigating mutual
fund performance wusing the Jensen measure. Admati,
Battacharya, Pfleiderer and Ross (1976, henceforth ABPR)
contend that most investigations of portfolio performance
using the Jensen measure have evaluated timing abilities based
on the movements of the portfolios. Such an approach seems
inadequate since the portfolios may include securities for
which selectivity information has been observed. In turn,
this would result in an inconsistency with the theoretical
dichotomy between micro-selectivity and macro-timing signals
postulated in the literature. APT estimations based on
macrofactors overcome this portfolio problem since macro-
timing abilities are evaluated based on the movements of the
macrofactors. Therefore, the fourth chapter investigates the
attribution of Canadian mutual fund performance between micro-

selectivity and macro-timing using the APT model of KK.

Tests of selectivity based on the Jensen measure, and
tests of factor timing based on the quadratic regression
approach of Lehmann and Modest (1987) can be performed when
the APT model is restricted to have a unique proportionality

parameter across the different risk premia. Depending on the




assumptions invoked for the stacked variance—covariance matrix
of residuals of the system of equations, different estimations
may be obtained when the model is estimated using either non-
linear and iterative non-linear ordinary least squares or non-
linear and iterative non-linear seemingly unrelated regression
tachniques. KK find a significant intercept when the
unrestricted version of the model is estimated. The impact of
this potential bias on the Jensen measure can be investigated
by comparing the estimated intercepts from the restricted and

unrestricted estimation approaches.

The investigation of mutual fund performance based on the
Jensen measure and on the timing test proposed by Lehmann and
Modest (1987) obviously depends on the selected asset pricing
model. Thus, chapter five replicates the analyses performed
in chapter 4 when the underlying benchmark model is the CAPM,
since this is the asset pricing model that has been the most
extensively studied. To be consistent with the empirical
literature on conditional asset pricing models, a conditional
vaersion of the CAPM that allows for the time—variation of the

ex ante market risk premium is implemented.

In chapter six, some concluding remarks and directions for

future research are offered.



CHAPTER TWO: SOME TESTS OF APT MISPRICING

BASED ON MIMICKING PORTFOLIOS

2.1. INTRODUCTION

The approximate APT of Ross (1976) is an interesting
alternative to the well-known CAPM for the pricing of assat
risk. However, due to its approximate nature, the model may
price some assets with error in an economy with a finite
number of assets. APT mispricing can be made insignificant by
the inclusion of a residual market factor (RMF). This factor
spans the portion of the efficient set not priced by the j
used factors, when j < K (where K is the number of factors in
the true factor structure). Burmeister and Wall (1986) are
the first to use a residual market factor. Wei (1988) and
McElroy and Burmeister (1988) provide theoretical and
econometrical justifications, respectively, for the relevance
of the RMF. Burmeister and McElroy (1988), Berry, Burmeister
and McElroy (1988), Brown and Otsuki (1989), amongst others,
include the RMF in their empirical investigations of APT
models with specified macroeconomic factors. Since these
published empirical investigations of the APT |use
unconditional return moments, their inferences constitute a
necessary (but not sufficient) condition for rejecting the

APT.



The objectives of this chapter are two-fold. The first
is to investigate the mispricing of the APT, and to assess the
contribution of the RMF to eliminating any mispricing. The
second objective is to test how mispricing changes from a one-
period framework in which the unconditional distributions of
stock returns are used to a multi-period framework in which
the conditional distributions of stock returns are used. Due
to the growing body of literature that finds that stock return
distributions are nonstationary, it is necessary to conduct

APT tests using conditional moments.

The remainder of this chapter is organized as follows.
In section 2.2, the exact APT model is discussed. 1In section
2.3, two ex post APT models are reviewed. In section 2.4, the
data and empirical procedures are described. 1In section 2.5,
the empirical findings are presented and analyzed. In section

2.6, some concluding remarks are offered.

2.2. THE ARBITRAGE PRICING THEORY

Assume that a cross-sectional set of asset returns are
explained by several economic forces. If their returns are
normalized, this yields:

R,=E(R) + B[F.-E(F)] + ¢, (2.1)
where R, is a N x 1 vactor of realized asset returns at time

t; E(R) is a N x 1 vector of expected returns; B={by,} is a N

9



x K matrix of factor loadings; b,; is the risk sensitivity of
security i to factor j; F, is a K x 1 vector of K economic
forces; and E(F) is the related vector of expected returns for
the K economic forces. The underlying APT model is:
E(R)= 1, + BI (2.2)

where [, is the risk-free rate; 1 is a N x 1 unit vector; and
I'is a K x 1 vector of expected risk premia. More precisely,
'y;=[{E,-R,] is the excess return on the jth arbitrage portfolio
that 1loais with one on the jth economic factor and is
orthogonal to the K-1 other economic forces. Equation (2.2)
can be motivated in eithex of two ways. First, if the
idiosyncratic risk can be diversified away in a portfolio
context, Ross (1976) uses an arbitrage argument to show that
for large N, equation (2.2) holds approximately. Second,
under the assumption of competitive equilibrium, Connor (1984)
demonstrates that the APT model (2.2) holds if the market
portfolio is perfectly diversified.® In this case, only the
risk associated with the economic forces is priced since
investors are insured against idiosyncratic risk by holding
perfectly diversified portfolios. The Ross APT and the Connor

APT are empirically indistinguishable.?

Within Connor’s framework, complete diversification of
idiosyncraf:ic risk is unlikely in a finite economy where every
asset must be held in precise positive proportions such that

equation (2.2) may not hold exactly. Wei (1988) specifies

10



conditions under which the equilibrium APT exists in a finite
economy. It only requires the addition of a RMF such that:
E(R)= 1", + B[ + B, (2.3)
where I, is the risk premium associated with the RMF; and B,
is a N x 1 vector of systematic risks of the RMF estimated
from:
£.=Bja,, + u, (2.4)
where €, is the residual component of equation (2.1); e, is
the idiosyncratic risk of the market; and u, is a residual
component with the usual properties. If the market portfolio
is perfectly diversified and the factor structure contains the
true number of factors, then e,=0 such that [, =0. If e, is
nonzero, then the APT equation should exhibit mispricing
without the inclusion of [,. In this case, e, represents a
linear combination of any missing factors in the true factor
structure. Thus, the exactness of the APT raests on a test of

equation (2.2) versus (2.3).

2.3. EX POST APT MODELS

The most widely estimated version of the APT is:
R-R=0 + B[ + u (2.5)
where exactness of the model depends on the significance of J.
Equatiocn (2.5) is estimated by Roll and Ross (1981), Dhrymes,
Friend, Gultekin and Gultekin (1984, 1985), Gultekin and

Gultekin (1987), Cho and Taylor (1987), amongst others.

11



Another version of the APT is based on a time-series
where portfolios that mimick the movements of the K economic
variables are constructed. A non-normalized wversion of
equation (2.1) is given by:

R.=BF, + e, (2.6)

If such mimicking portfolios can be formed, (2.6)

becomes:

R.=BR, + e, (2.7)
where R,, is the K x 1 vector of mimicking portfolio returns.
Equation (2.7) suggests that:

Ry =WR, (2.8)
where W is a K x N matrix of mimicking portfolio weights
(where W/ ={w,,...,w}). Based on Litzenberger and Ramaswamy
(1979), Lehmann and Modest (1985) contend that the K column
vectors of W' are based on the solution to the quadratic
program:

Min wy'D wy; J=1,2,...,K (2.9)
3t. w,"B,=0 for all k different from j

Wy’ By=1
where D is a N x N diagonal matrix of idiosyncratic risks
computed from the factor analysis procedure. Given suitable
rescaling, w,’1=1 (i.e., each mimicking portfolio has a unit
cost) . From Huberman, Kandel and Stambaugh (1987), the
application of the expectation operator to (2.8) yields:

E (R,) =WE (R) (2.10)

Replacing (2.2) into (2.10) gives:
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E(R.)=W[1l, +BI] (2.11)
or
E(R,)=W1l, + WBI (2.12)
If W is appropriately estimated and WB=1, then:?
E(R,)=W1l[, + I, or (2.13)
E(Ry) - 1I=I (2.14)
Equation (2.7) is a time-series version of the APT and a
multi-factor version of the one-factor model of Black, Jensen

and Scholes (1972), which is consistent with the APT theory.

Grinblatt and Titman (1987) contend that an exact APT
model is obtained under the mean-variance (E-V) efficiency of
a global portfolio of mimicking portfolios. This 1is
equivalent to the local E-V efficieacy of each of the
mimicking portfolios included in the factor structure.'®
Thus, a test of the exact APT based on the conditional
distribution of security returns displays an intertemporal
nature since the E-V efficiency of the global portfolio is
tested when the efficient set is time-varying since the first

two moments of the return distribution are time-varying.®

APM tests based on conditional moments include the
latent variable tests of Gibbons and Ferson (1985), amongst
others, which allow for time-varying premia and stationary
second moments. Fersdn, Kandel and Stambaugh (1987) extend

this approach to time-va-ying betas but a stationnary
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variance—covariance matrix, V. Bollerslev, Engle and
Wooldridge (1988) allow the first two moments of stock returns
to be time-varying in their tests of the CAPM. Because of the
number of conditional covariances when the number of assets
increases, their approach is not tractable for tests of the
APT. Connor and Korajczyk (1987) test the APT for a size
anomaly using an asymptotic principal component method which

allows for time-varying risk premia.

An intertemporal, empirical formulation of the APT is
proposed herein that captures time—variation in the first two
conditional moments. The conditional mean is yiven by
equation (2.7), which allc rs for time-variation in the risk
premia. Modeling the time-varying conditional variance-
covariance matrix V,.(R.|{%)=H,, where () represents the
information set upon which economic agents update their
rational expectations, depends on the conditional distribution
of the K mimicking portfolios.’ Applying the wvariance

operator to equation (2.8) for the jth mimicking portfolio

yields:
vt(Rj-tl()t)=ezjt=vt[(wj'R:) ], or (2.15)
€ y=w,’ Hw, (2.16)
since V. (R.|{Q)=H,. For the entire matrix of mimicking

portfolio weights, the conditional V are linear combinations

of the conditional variance of each of the K mimicking
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portfolios. This result is empirically consistent with
Schwert and Sequin (1990) who find that the time-series
movements of the elements of the V of size-sorted portfolios
are significantly dependent on the movements in the
conditional variance of the CRSP equally-weighted index. By
applying the variance operator to the mean equation (2.7), the
first two conditional moments can be modelled as:

R,=8 + BR,, + €, (2.17)

hi=a + (O + e, (2.18)
where h’ is a N x 1 vector of conditional variances; €% is
a K x 1 vector of conditional variances at time t of the
mimicking portfolios; ¢ is the N x K matrix of regression

coefficients; and e, is a N x 1 vector of residuals at time t.

Tests based on equation (2.5) are cross—sectional
estimations based on the unconditional distributions of asset
returns, while tests based on (2.17) and (2.18) are time-
series estimations based on the conditional distributions of
asset returns. The latter also test the intertemporal APT,
since they test the E-V efficiency of a global portfolio of

mimicking portfolios when the efficient set is time-—varying.®
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2.4. EMPIRICAL PROCEDURES

To ensure comparability with Roll and Ross (1980), data
are extracted from the CRSP tape for the period starting in
July 1962 and ending in December 1972 (i.e., 2617 daily
returns for 1278 securities). Firms with more than 75 missing
values are deleted. Although daily returns are subject to
biases inherent to nonsynchronous trading or the existence of
a bid-ask spread, they provide a time—series longer than the
(usually more robust) monthly data. This is convenient when
asymptotic convergency is required. The resulting sample of
1260 securities is ordered alphabetically, and themn combined

into 42 groups each containing 30 gecurities.

The empirical tests applied herein raquire the
observation of the matrix B. In most studies,’ B is estimated
using maximum likelihood factor znalysis (MLFA) to obtain the
most efficient estimates.’® A likelihood ratio test for the
number of factors can be used, although it is very sensitive
to any departures from normality and to sample size. Since
the sample size studied herein is large, the number of factors

identified by the test is probably overstated.

For daily returns, MLFA should be conducted on a Vv
adjusted for nonsynchronous trading using the procedure

suggested by Shanken (1987). The adjustment is given by
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Cov*™(R,, R,) =201 X% COV (R, Ryt ) + Cov (Ry:,Ry.), where
Cov“(Rulg) is the covariance between securities i and j when
adjusted for nonsynchronicity using three lags [as in Shanken

(1987) 1] .

The estimation of the arbitrage portfolio excess returns
is performed using either of the following cross-sectional
regressions for the 42 groups of 30 securities:

R-R=18 + Bl + u, or (2.19)

R-R=10 + B + B, + e (2.20)

where R is a N x 1 vector of average returns; J is the
deviation from the model; and all the other terms are defined
as earlier. To obtain unbiased estimates of the risk premia,

Roll and Ross (1980) suggest the following GLS estimator:!
= (B’ %) B IR (2.21)

where X is the N x N variance-covariance matrix of security
returns, and B'=(1:B). The number of arbitrage portfolios
that significantly affect security returns corresponds to the

number of significant risk premia in (2.19) [or (2.20)].

Since no theoretical foundation exists for the true
number of factors, a test of modal exactness is relevant.!?
Since a small number of cross-sections are studied, the
multivariate version of the cross-sectional regression
(henceforth CSR) test of Shanken (1985) is used herein. The
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CSR is not an asymptotic test in that the statistic follows
approximately a T’ distribution for which the equivalent F

test is available. Also, the CSR incorporates an adjustment

for the errors-in-variable problem inherent in B. The CSR

test is given by:*?

((r & &)/ +(' )1 x [(T-N-K) /N(T-K-1)] ~ F 4 rpm)

(2.22)
where T is the sample size; N is the number of assets studied;

e is the N x 1 vector of residuals of the return-generating
process; ® is the N x N variance-covariance matrix of
residuals;!* and Q is the K x K variance-covariance matrix

of the included factors.

The systematic risk of the RMF is easily obtained. For
each security i, consider the factor-generating model (1) in
algebric form for K factors:

Ry = E(R,) + ZN. b, [Fy-E(F,)] + @4 (2.23)
where b,; is an element of the matrix B. The residual
component is obtained from (2.23) to estimate:

©4t,x" Dilur,x + €y (2.24)
where b,, is the systematic risk of the RMF associatad with
security i and is an element of B,. The e, , can be obtained
from:

T = O + Zaby [Fy—E(Fy)] + @p (2.25)
where r; is the return on the market portfolio (as proxiaed by

the CRSP value-weighted index).
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The mimicking portfolios must be constructed so that
they maximize their correlations with the true macroeconomic
variables. This depends on the procedure chosen to estimate
the weights of the matrix of mimicking portfolios in (2.8).
The multivariate literature suggests to estimate the weight
matrix, W, as:

W=(B’D’B) !B'D™? (2.26)
Lehmann and Modest (1985) state that (2.26) generates poor
estimates since the jth mimicking portfolio is constrained to
load with one on the jth factor. When the factor loadings are
measured with error, the magnitudes of the portfolio weights
directly reflaect this error. Lehmann and Modest use an
estimator for which the mimicking portfolio loadings do not
have to equal one. They generate minimum idiosyncratic risk
(mir) weights that are theoretically biased but robust to
measurement errors. For the jth mimicking portfolio, the

vector of mir weights, w3“’, solves the following program:

Min w,'D w, j=1,2,...,K (2.27)
st. w,'B,=0 for all k different from i
w, 1=1

The solution to (2.27) is given by:

w,"*’ =a,’ (B,’D'B,) B’ ,0™* (2.28)

where B, is the matrix of factor loadings when all securities

19



load with one on the jth factor; and e, is a vector of zeros

except for a one at the jth  position. Since
wEr=(w,™, ., W™}, the mir portfolios are generated by:
R M =W""R, (2.29)

The conditional variances of the securities and
mimicking portfolios are also required to estimate (2.17) and
(2.18). Based on Schwert and Sequin (1990), the conditional
standard deviation of the jth mimicking portfolio can be
computed as the projection of the following autoregressive
process:?!®

O=0t, + Z' 0,0y ¢ + Ey (2.30)

This estimate of the conditional standard dewviation is
almost identical to that obtained from GARCH (1,1) when L=12.
Schwert and Segquin define the unbiased estimator of the
unconditional standard deviation at time t as

Oy=(n/2) *?| (Rme ~ Re) = (R — Ry) | .

To account for the conditional heteroskedasticity in the
rasiduals of (2.30), they estimate:

O=0t, + T 000, + €y (2.31)

(/2)**| €4 | =8, + B,(FIT), + u, (2.32)
where FIT, represents the fitted values at time t from
equation (2.31). Equation (2.32) models conditional
hetaroskadasticity as in Glejser (1969). Equations (2.31) and
(2.32) are estimated simultaneocusly using iterative weighted
least squares (ITWLS) with three iterations [based on the

suggestion of Davidian and Carrol (1987)]. Also, equations
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(2.33) and (2.34) can be estimated wusing IWLS, where
h,=(n/2)?| e, :

R.=0 + BR,, + e, (2.33)

h,=a + (6, + u, (2.34)

If E-V afficiency of the global portfolio of mimicking
portfolios is assumed, then the elements of O should not be
significantly different from 0. Following Lehmann and Modest

(1985), the null hypothesis, H,:0=0, is tested using:

[ 8 A B/ RIER)D x [(T-N-K)/N(T-K-1)] ~ Fporre
(2.35)

where AB is a N x 1 vector of the estimated intercepts of

equation (2.33); r; is a N x N variance-covariance matrix of

residual e.; P: is a K x 1 vector of the mean returns of the

mimicking portfolios; and f.‘, is their K x K variance-covariance

matrix.?!¢

To test the significance of the RMF in equations (2.33)
and (2.34), note that for each security:

R,=0 + BR, , + @, (2.36)
where B; is a N x J matrix of factor loadings; and R, ; is a J
x 1 wvector of mimicking portfolios. If K factors are
obsarved, then (2.36) becomes

Ri=0 + BRy ;s + BrRuxs + Euo (2.37)
where B, ; is a N x (K-J) matrix of loadings; and R, ,; is a

(K-J) x 1 vector of mimicking portfolio returns. Substracting
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(2.37) from (2.36) yields:

€, =By Rut,x-3 + Euit, s (2.38)

Define r,;, as the excess return on the market portfolio.
Application of (2.36) through (2.38) on the market portfolio
yields:

€r. By Rt k-3 + 2.2 (2.39)
where a, = X%, w, €&,. The RMF is ,,; (i.e., a linear
combination of the excess returns on the K-J missing mimicking
portfolios). The correlation between e,, ; and e, , will be

such that the systematic risk of RMF is given by:

@y, 7byy ;05 + Ny (2.40)

Independent of the number of J factors extracted,
replacing (2.40) into (2.33) yields:

R.=8 + BR, + Bee;, + n (2.41)

h=0 + $0, + ¢.6;,, + u, (2.42)
where e;. is the RMF; B, is the N x 1 vector of RMF systematic
risks; n, is a N x 1 vector of residuals; ©, is the
conditional standard deviations of the residual market
portfolio; and ¢, is a N x 1 vector of its related

sensitivities.

Thus, the one-period version of the empirical APT, with
the RMF to ensure exactness, will be tested using the cross-
sectional equations (2.19) versus (2.20), based on the test

for exactness given by (2.22). Similarly, the multi-period

22



version of the empirical APT, with the RMF to ensure
exactness, will be tested using the time-series equations
(2.33) and (2.34) versus (2.41) and (2.42), based on the test

for exactness given by (2.35).

2.5. EMPIRICAL FINDINGS

The results for the one-pariod APT estimated without the
RMF are reported in Tables 2.1 through 2.3. The MLR test
results for the required number of factors are given in Table
2.1. Only one out of the 42 groups rejects the null
hypothezis of six factors in the factor structure at the one

percent level.'

The average and the standard deviation of the
covariances of security returns, adjusted and unadjusted for
nonsynchronous trading, are reported in Panel A of Table 2.2.
As in Shanken (1987), the adjustment substantially increases
the covariance values.® Based on Panel B, most of the effect
of the adjustment is captured by the first factor. This
factor may be a "market" factor which is a linear combination

of the K factors.!®

For the adjusted V, the MLR test indicates that at least
18 factors are required. However, for the test to be

applicable, the degrees of freedom must be positive (i.e , m
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must be less than 1/2 (2p + 1 - 8p + 1), where m is the number
of factors and p is the number of variables on which factor
analysis has been performed). Thus, for p=18 and m=30, the
test is not reliable.?** The computed average eigenvalues of
the eighth and ninth factors are 1.02 and 0.92, respectively.
Based on this criterion, eight factors should be an upper
bound on the number of factors.?* Thus, six and eight factors

are extracted for the unadjusted and adjusted V, respectively.

The rasults for the approximate APT are presented in
Table 2.3. The first and third columns of panels A and B
report the walues for the %% and the t-test, respectively.
These are tests of the null hypothesis of a zero GLS estimated
I' for six and one factor structures, respectively.?? For the
six factor structure, H, is rejected for only 7.1% of the
groups. This is consistent with DFGG who reject H, for only
five groups for a five factor structure for the same time
period.?® Similar findings are reported for the adjusted V
in panel B. The simultaneous significance of the risk premia
for an eight factor structure cannot be rejected for only
13.5% of the groups. This suggests that less factors may
adequately explain the covariance structure of security
returns. As expectad, the percentage of groups for which the
risk premia are priced increasas as the numbaer of extracted
factors decreases.?* One factor is priced for the unadjusted

(panel A) and adjusted V (panel B) for 24.2% and 31.7% of the
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groups, respectively. This suggests that one factor could
explain the V structure for a significant number of the
securities studied herein. However, this test provides no

information about the empirical validity of the model.

Better results are obtained for the CSR test (2.22).
Based on panels A and B of Table 2.3, the null hypothesis that
the APT model is exact cannot be rejected for all groups.
Thus, six (eight) factors seem sufficient to ensure an exact
factor structure. In fact, a one factor APT is generally
sufficient for all the 42 groups since its pricing error seems
to be statistically insignificant.?® 1In turn, this implies
that the CSR test results given in Table 2.3 are robust to the
number of factors extracted. Based on this evidence, the RMF

should be an irrelevant addition to the APT model.

Equation (2.24) was estimated for one and six (eight)
factors for the unadjusted (adjusted) V. The aggregate
results when b, is estimated for a six factor structure and
an unadjusted V are reported in Table 2.4. For all cases, the
estimated intercept is not significantly different from 0.
This is congistent with the appropriateness of the
spacification of equation (2.24). In contrast, the estimated
betas are significant ror several securities in that the RMF
does capture some time-series variation. Consistent with the

prediction of Wei, the percentage of significant systematic
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risks for RMF generally increases for the one factor
structure. Similar results are obtained for a one and eight
factor structure for the adjusted V (see panel B). Although
the RMF accounts for some missing factors, it may not be
priced in the APT equation. In fact, based on the raesults
reported in Table 2.3, the risk premium on the RMF is not

expacted to be significant.

The t-values of the GLS estimates of the risk premium for
RMF are reported in Table 2.5. These results are generally
consistent with those reported in Table 2.3. The RMF risk
premium is basically not priced. The percentage of the groups
for which the simultaneous significance of the estimated risk
premia cannot be rejected is lower when the RMF systematic
risk is included in the APT (compare Tables 2.5 and 2.3).
Despite its significance in the time-series estimations (Table
2.4), the RMF systematic risk is not an important variable in
determining expected returns cross-sectionally. The CSR test
values are virtually unchanged. This is consistent with the

empirical validity of the APT model.

The results for the conditional standard deviation
astimations of equations (2.31) and (2.32) for the mimicking
portfolios are reported in Table 2.6. Due to their
similarity, only the results for the conditional standard

deviations of the first mimicking portfolio for a six and one
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factor structure are reported in panel A. These results are
fairly homogeneous. The number of significant coefficients in
equation (2.31) is consistent with the time-varying nature of
the standard deviations of the mimicking portfolios, and with
a time-varying V. Based on the Box-Pierce statistics for the
OLS and iterative WLS residuals of (2.31) [designated by
Q(OLS) and Q(ITWLS), respectively], 12 1lags in the mean
equation generate an acceptable parsimonious fit of the

standard deviacion process.?®

Application of the Box-Pierce statistic to the squared
residuals, Q2(OLS), of the mean equation (2.31) provides
aevidence about the level of conditional heteroskedasticity.?
The Q2(0LS) values are high for the squared residuals
estimated by an OLS procedure. Estimation of (2.31) and
(2.32) using iterative WLS eliminates almost all of the
conditional heteroskedasticity as shown by the Q2(ITWLS)
values. This is corroborated by the reduction in the
studentized range values for the residuals of (2.31) when
estimated by OLS versus ITWLS (denoted as ST(OLS) and
ST (ITWLS), respectively).?® This shows that the tails of the
distribution of residuals more closely resemble a normal
distribution whan conditional heteroskedasticity is accounted
for. Similar results are obtained for the adjusted V (see
panel B). These results suggest that the ITWLS provides good

estimates of the conditional standard deviations of the
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mimicking portfolios, which account for nearly all of the
substantial conditional heteroskedasticity observed in thae OLS

residuals.?®

The results of the time-series APT estimations using
ITWLS without and with the RMF are reported in Tables 2.7
through 2.9, respectively. The number of securities 1 which
the conditional standard deviation coerfficient of a specific
mimicking portfolio is significant is reported in Table 2.7.
Since the conditional standard deviations move in systematic
patterns proportional to some of the aggregate economic
forces, the theoretical justification for equation (2.18) is
empirically observed. The patterns are divided among the six
or eight factor conditional standard deviations, although the
number of significant regression coefficients is fairly low.
The conditional standard deviation of the RMF is ralevant only
for a small proportion of the securities. For a one-factor
structure, the factor’s conditional standard deviation is
significant for a large number of securities. Therefore, it
seems that all the systematic economic forces that explain the
patterns of security standard deviations can be aggregated
into a unique factor. Howevar, this factor’s conditional
standard deviation does not explain all the patterns, since
the conditional standard deviation of the RMF for this one-
factor structure is significant for 50% of the securities in

the sample. Overall, these results suggest that a one-factor
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structure and the conditional standard deviation of the RMF
explain well the time-series variability of the second moments
of asset returns. This justifies the need to investigate the

APT in a multi-period context.

Based on a comparison of average Q2 (OLS) and Q2 (ITWLS)
statistics given in Table 2.8, the conditional standard
deviations of the K mimicking portfolios are not the only
determinants of the movements in the second moments of
security returns. The differences in these average values
generally imply that modeling the systematic effects of the
time-variation of V by the time-series movements of K
conditional standard deviations reduces the level of the
conditional heteroskedasticity.’® The iterative WLS residuals
still exhibit fat tails as the reduction in the average
studentized range from the OLS residuals to the iterative WLS
residuals is very small.?® The results are robust to the

number of factors and the adjustment of V.

Similar results are obtained when the RMF and its
conditional standard deviation are included in the mean and
the standard deviation equations, respectively. Although the
rasults reported in Table 2.7 suggest that the conditional
standard deviation of the RMF picks up the systematic
variations (especially in the one factor case), the ITWLS

estimations exhibit conditional heteroskedasticity even when
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the RMF is included in the standard deviation equation. Thus,
influences other than those of the APT factors’ sacond moments
may explain the time—series variations in the conditional V.
Since the estimations are performed on individual securities,
their volatilities may be affected by intertemporal changes in

firm specific characteristics such as financial leveragae.

Based on the results of the F-values presented in Tablea
2.8, the validity of the multi-period I.FT is robust to the
number of factors and the adjustmeant of V for thin trading.
Similar results were reported earlier for the one-period APT.
Since a unique factor seems to be sufficient to ensure APT
exactness in a single and multi-period framework, the RMF is
irrelevant. Further, the F-values reported in Tablae 2.9 are
about of the same magnitude as those reported before, and are
consistent with the empirical validity of the APT model.
Thus, one factor appears to be sufficient to ensure exactness
of the APT model, and the RMF is not required to ensure such

exactness . ?

2.6. CONCLUDING REMARKS

The arbitrage pricing model was empirically investigated
herein. Mispricing may he obtained if less than the true K
exogenous and unobservable factors are extracted, unless a

residual market factor (RMF)} is included in the return-
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generating process. Wei (1988) theoretically demonstrates how

the addition of the RMF ensures an exact APT model.

The factor analysis, cross-secticnal approach of Roll
and Ross (1980) was used to estimate risk sensitivities for
various variance-covariance matrices (V) of security returns
(un) adjusted for nonsynchronous trading. A multi-period
(time—-series) approach using mimicking portfolios, whose
conditional first and second moments are time-varying, was
also used to test the APT. The time-series movements in the
conditional V are accounted for by the time-series movements
of the conditional standard deviations of the K mimicking
portfolios. This model was astimated using the ITWLS of
Davidian and Carrol (1987) (with and without the RMF), as well
as its related conditional standard deviation in both the mean

and standard deviation equations.

More than 5000 asset pricing estimations were performed.
Conclusions on APT mispricing were based on the Shanken (1985)
cross—sactional regression test and on the Lehmann and Modest
(1987) time-series test. The findings are generally
consistent across the 42 groups of 30 securities. The results
related to the first objective of this study indicate that the
first factor seems co be sufficient to span the efficient set,
whether the model is estimated for fixed or time-varying V

that are (un)adjusted for nonsynchronous trading, and that the
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RMF is irrelevant. With regard to the second objective, the
findings are robust to the type of return distributions used.
Howaever, a ona factor structure only explains 12.4 and 24.1

percent of the unadjusted and adjusted V, respectively.

Based on the OLS estimations, the conditioral standard
deviations of the K mimicking portfolios significantly explain
the time-variability of security volatilities. For a multi-
factor structure, the conditional standard deviations of the
factors (but not the RMF) affect the conditional V of
securities. This is consistent with the findings of Schwurt
and Seguin (1990). Furthermore, the conditional standard
deviation of the RMF for a one-factor structure captures a
significant proportion of the time-variation in V, because its
coefficient is significant for about one-half of the studied
sacurities. However, the residuals of the mean equation still
exhibit heteroskedasticity in the presence of the conditional
standard deviations of the K mimicking portfolios and the RMF.
Thus, determinants in addition to the second moments of the
APT factors (such as firm-specific characteristics) may

explain the volatilities of individual securities.
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CHAPTER THREE: BENCHMARK INVARIANCY, SEASONALITY AND

APM-FREE PORTFOLIO PERFORMANCE MEASURES

3.1 INTRODUCTION

Invastigations of mutual fund performance involve a joint
tast of thae adequacy of both the benchmark and the performance
measure. Lehmann and Modest (1987), Grinblatt and Titman
(1988), amongst others, find that inferences about mutual fund
parformance are not robust across different benchmarks and

performance measures.

While market indexes are generally used as portfolio
benchmarks, empirical tests suggest that they are not mean-
variance (E-V) efficient.?® For such comparisons, abnormal
performances may be identified for funds that use passive
(buy-and-hold) strategies. When the APT is exact, Grinblatt
and Titman (1987) demonstrate that a global portfolio of
mimicking portfolios is globally E-V efficient, and that each
mimicking portfolio is locally E-V efficient. Lehmann and
Modest (1985b) observe that minimum idiosyncratic risk
mimicking (MIRM) portfolios generate the best (empirical)
estimators of the economic forces that move all assets.3*
However, const ruction choices (such as the number of factors,
nonsynchronous trading adjustment, and so forth) may lead to

a benchmark invariancy problem.



While some portfolio performance measures require
specific information about the forecasts of managers,>® others
require the determination of the appropriate asset pricing
model (APM).** Further, some assumptions dealing with, for
instance, traded assets or preferences, that are required for
the existence of particular APM’s, may be incompatible with
the framework generally wused to aevaluate portfolio
performance. Thus, APM-free measures, such as the Sharpe
ratio and the Grinblatt and Titman (1989a) positive period
weighting (PPW) score, should be used to assess portfolio
performance. Their only requirement is that the portfolio
benchmark be E-V efficient. As portfolio performance
inferences may be sensitive to the choice of the underlying
APM, they may also be sensitive to the choice of the

underlying benchmark when APM-free measures are used.

Thus, this chapter has three major objectives. The first
is to use APM-free measures and MIRM portfolio benchmarks to
assess mutual fund performance. The second objective is to
assess the robustness of such inferences to the so-called
benchmark invariancy problem. The 12 benchmark portfolios
studied herein are designed to analyze the impact of various
technical aspects involved in their construction. The third
objective is to study the seasonal behavior of the portfolio
baenchmarks, and their impact on portfolio performance

inferences. If pertfolio returns are characterized by a
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martingale, the monthly time—variation in the first two
moments of returns can be captured by the bootstrapped Jobson

and Korkie (1981) Z scores.

This chapter complements the important work of Lehmann
and Modest (1987) who conduct stock picking tests using the
Jensen (1968) measure and the Treynor and Black (1972)
appraisal ratio, and market timing tests using a quadratic
regression based on the CAPM and the APT. In applying the
APT-based tests, they use different types of factor analysis,
different numbers of factors (5, 10 and 15), and different
numbers of securities for the construction of the mimicking
portfolios. 1In contrast, APM-free measures are used herein.
Furthermore, the robustness of performance inferences is
evaluated for seasonality in the portfolio benchmarks and
three important aspaects of mimicking portfolio construction;
namely, the use of the Shanken (1987) nonsynchronous-trading
adjustment for the covariance matrix, the number of factors

(one and six or eight) and firm size (small versus large).

The remainder of this chapter is organized as follows.
In section 3.2, the APM-free performanca measures are
reviewed. In section 3.3, the benchmark invariancy problem,
and the construction and E-V efficiency of the mimicking
portfolios are discussed. In section 3.4, the data and

methodology are described. In section 3.5, the empirical
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findings are presented and analyzed. In section 3.6, some

concluding remarks are offered.

3.2 APM-FREE PERFORMANCE MEASURES

In a multivariate framework, each benchmark portfolio is
associated with a particular economic force for a K factor
structure. For a managed portfolio to display an abnormal
performance, its risk premium must be superior to that raich
an uninformed investor would receive from holding the K
portfolio benchmarks. In this framework, the Jobson-Korkie 2

score for the Sharpe performance measure becomes:

———— .

Z=__SH . N(0,1) (3.1)
(e’ de) /2
where SH=a’SH,; e is a K x 1 unit vector; and SH, is a Kx 1
vector whose ith element is sh, = (C,,~Cyit,). <P is a K x K
variance-covariance matrix whose i,j element is:
®,,=(1/T) [(0%0.0; ~ G,,0,0, + G0y + 0.5 (UM,0%)
- Ugy/40,0, (0% + ©%,0%) - HyH,/40,0, (S°y
+ 0°,0%) + Wy/40,0; (0%, + 0,0,)
where |I, is the average excaess return on managed portfolio F;
H; and , are the average excess returns on portfolio
benchmarks i and j; O,y is the covariance between benchmark
portfolios i and j; and O, is the covariance between managed
portfolio F and benchmark portfolio i. Equation (1) tests the
null hypothesis:
B,: (Ly/Cp 1 /0y) =. . .= (Uy/Op—Hy/Ox) =0 (3.2)
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Given E-V efficiency of the multi-portfolio benchmark, *’
superior portfolio performance based on micro-selectivity is
easily identified.’® The Sharpe ratio for this portfolio will
necessarily be superior to those of the benchmark portfolios.
When the managed portfolios exhibit superior performance based
on macro-timing or macro-timing and micro-selectivity, the
Sharpe ratio comparisons may be misleading. As shown by
Dybvig and Ross (1985), the performance of such a managed
portfolio may appear to uninformed investors to be inside (or

outside) of their efficient sets.

In contrast, the PPW measure does not result in
misleading inferences for portfolios with market timing
abilities.¥ An investor’s optimization problem, when
investing x, dollars in portfolio j is:

Max Efu (1 + I%,, xRy + (1-Z%., x,)R,)] (3.3)
where (r,) R, is the (excess) return on benchmark portfolio j;
R, is the risk-free rate; and u( ) is the investor’s utility
function. The first-order condition for (3.3) is given by:

E[wxy] = 0 for all j (3.4)
where w=u’ (W) is the marginal utility of wealth (W) obtained
from holding all the benchmark j portfolios. If a2 managed
portfolio can exploit micro-selectivity and/or macro-timing,
Grinblatt and Titman (1989a) contend that the PPW value given
by 6 = E[wr,] is positive.!° This value measures the gain in

marginal wutility (w) from adding a small amount of the
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evaluated portfolio (F) to the portfolio of the uninformed
investor. This measure is similar to the Jensen measure when
the latter is constrained to be positive in the presence of

market timing.

To apply the PPW measure, the marginal utility must be
estimated. The expectations are replaced by summations to
obtain:

I W= . .=Z% W, 1, =0 (3.5)
and §=X7,_,w.r;, where ZX'_,w=1 for t=1,...,T (3.6)
Cumby and Glenn (1990) show that the marginal utility at time
t is equal to w,=u’ (W,)=W,(x,)®, where © is the relative risk
aversion (RRA) parameter of a power utility function. If the
beginning-of-period wealth is normalized to one, then W, (x,)
is equal to:“

1 + xR, + (1-Z%_..x)R, (3.7)
The PPW score, §, from equation (3.6) is zero when uninformed
investors hold the K benchmark portfolios, and is positive
when PM’s exhibit significant micro-selectivity and/or macro-

timing abilities.

3.3 ESTIMATION AND PROPERTIES OF MIMICKING PORTFOLIOS

The E-V efficiency requirement for tha benchmark
portfolios suggests that APT mimicking portfolios may be

appropriate for performance evaluation. Grinblatt and Titman
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(1987) demonstrate that a global portfolio of GLS-estimated,

mimicking portfolios is E-V efficient for an exact APT.*?

The APT return—-generating process can be stated as:

R, = BR,, + e, (3.8)
where R,, is a K x 1 vector of mimicking portfolio benchmarks,
B is N x K matrix of factor loadings, and e, is N x 1 vector
of residuals. When B is estimated using maximum likelihood
factor analysis (MLFA), the following GLS estimator can be
used:

R,, = (B'DB)~'B'D'R, (3.9)
where D is a N x N diagonal matrix of idiosyncratic risks.
Letting A be the K x N matrix of mimicking portfolio weights
such that A = (B’D™'B)'B’'D™?, equation (3.9) is equivalent to:

R = AR, (3.10)
where A’={a,,...,a,}, and a, is a N x 1 vector of portfolio
weights associated with the jth mimicking portfolio. Each

column vector of A’ is obtained as follows:

Min a,’Da, for j=1,..,K (3.11)
s.t. a,JB, =0 for all k different from j
a,’B, =1

If suitably rescaled in a separate step, the portfolio weights
sum to one.*® If a risk-free asset exists, Grinblatt and
Titman (1987) contend that rescaling can be effected by adding
or substracting the risk-free rate from the mimicking

portfolios in amounts that make the sum of the weights on all
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assets equal to one.

Lehmann and Modest (1985b) contend that the GLS estimate
of A results in poor mimicking portfolios. Large (small)
weights are placed on securities with large (small) factor
loadings, although large factor loadings may be Jjust an
indication of large measurement errors. Lehmann and Modest
propose the use of A™'={a,*", ...,a""}, where a," is a N x 1
vector of MIRM portfolio weights for the jth mimicking
portfolio. Lehmann and Modest contend that:

a,"* = DB, (B,’D'B,) e, (3.12)
where B, is the N x K matrix of factor loadings when all
securities load with one on the jth factor, and e; is a K x 1
vector of zeros except for a one at the jth position. Each
column vector of A’ obtains from:

Min aj*’Da,*" (3.13)
s.t. a,*'B, = 0 for all k different from j
a1 =1
Although a biased estimate of the jth mimicking portfolio
results, the column vector weights of A**’ always sum to one
so that no rescaling is required. As demonstrated by Lehmann
and Modest (1985b), the MIRM weights are more precise since
they are unaffected by measurement errors. As shown by
Grinblatt and Titman (1987) for GLS estimated mimicking
portfolios, an exact APT model is equivalent to the E-V

efficiency of the global portfolio of mimicking portfolios.
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A similar conclusion is obtained when the portfolios are
estimatad using the MIRM method. (A formal demonstration is

available from the author.)

3.4 DATA AND METHODOLOGY

The sample is drawn from the Financial Post mutual fund
data base. It contains 146 all equity funds which are not
only available monthly between June 30, 1981 and March 31,
1989 but also have no more than 5% of their wvalues missing.
The 93 monthly returns for each fund are calculated using the
net asset values per share and are adjusted for dividend
payments. The 1955 daily returns on the 424 stocks, which are
available on the TSE-Wastern tape and have no more than 5% of
"heir values missing for this period, are used to construct
the MIRM portfolios. To investigate the benchmark invariancy
problem, 12 types of MIRM benchmark portfolios are used (see
Table 3.1). The monthly returns on the TSE300 and the value-

weighted TSE index are also used hereir.

Sinca the factors are unknown, conventional practice is to
use MLFA to estimate the matrices of factor loadings (B) and
idiosyncratic risks.‘* Although factor analysis should be
performed on the entire sample of securities, using 93 monthly
returns for 424 stocks results in a non-positive number of

degrees of freedom. While the use of daily returns increases
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the degrees of freedom, it introduces a nonsynchronous trading
problem into the estimation. The variance-covariance matrix
of security returns can be adjusted using Shanken’s (1987)
adjustment, COV* (R, R,)=X’_Z°%., COV(R,,,R,,) + COV(R,,R,)),
where COV“‘(Ri,R,) is the covariance between securities i and

J when adjusted for nonsynchronocity using three lags.*®

While one factor appears to be sufficient to ensure the
exactness of the APT model whether or not it is adjusted for
nonsynchronous trading, the maximum likelihood ratio x? test
and the eigenvalue cut-off values indicate that six and eight
factors are required for V’s which are unadjusted and adjusted
for nonsynchronous trading, respectively.‘® Thus, both one and

multi-factor mimicking portfolio benchmarks are used herein.

The MIRM portfolios are .unstructed such that:

R,.= AR, (3.14)
where 1A™ /=1, A™'=(a,"* a,*,...,a*}, a,”* =D'B,(B,’'D'B,) e,,
and B and D are MLFA estimates for daily returns. The

mimicking portfolio returns are obtained by multiplying A™F by

a matrix of monthly security returns.*’

The economic factors that affect the returns of the
samples of firms and mutual funds may differ, since mutual
funds are more likely to invest in larger firms.‘ To

investigate this possibility, MIRM benchmark portfolios are
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also formed for the 147 (277) firms whose average price was
below (above) $5 at five specified dates within the sample

period.

To empirically estimate w,, a value of x,, j=1,...,K, must
be chosen that satisfies the first-order condition (3.5). For
each set of portfolio benchmarks, 100,000 solutions of the set
of x, for equation (3.7) are generated under the assumption
that €=6.'° The set of x, that best satisfies the first-order
condition is selected to calculate the time-series vector of

marginal utilities.

The return variance of an actively managed portfolio will
be nonstationnary due to its continous rebalancing. Although
the PPW score is unaffected by heteroskedasticity, its
variance must be ccrrected to yield valid inferences.®® To
account for this heteroskedasticity (and possible serial
correlation), the Jobson-Korkie Z score is calculated using
the following estimator of Newey and West (1987):

COV™(R,,R,) =T [COV (R,,R,) + I*,., w(j, m)COV(R,.,Ry.y)
+ ., w(i, m)COV(Ry.,Ry)] (3.15)

where wi(k,m)=1-[k/ (nu+l)] for k=i, j.**

Gultekin and Gultekin (1983), Kryzanowski and Zhang
(1992) , amongst others, find that the TSE indexes exhibit a

January seasonal, which suggests that the returns of the
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various portfolio benchmarks may have seasonal effects. This
may result in a benchmark invariancy problem. This is
examined by calculating Jobson-Korkie monthly Z scores for

both mimicking portfolio and TSE market index benchmarks.

Jobson and Korkie demonstrate that both the first and
second sample moments of SH, in equation (3.1) are asymptotic
estimators. To overcome the bias caused by the availability
of only seven mcnthly returns, bootstrapped estimates (Efron,
1982) of the moments of the empirical distributions of SH, are
obtained by resampling each sample of portfolio returns L

times."%?

3.5 EMPIRICAL FINDINGS

3.5.1 Benchmark Invariancy

The Sharpe ratios of the portfolio benchmarks based on the
small firms, which are reported in Table 3.2, are negative.®
Mimicking portfolio returns have substantially higher ratios
than those for the market indexes, regardless of whether or
not the V matrix of security returns is adjusted for
nonsynchronous trading, of the number of factors extracted and
of the sizes of the firms for which factors are extracted.
This result is consistent with the CAPM literature that

generally rejects the E-V efficiency of the market indexes,

44



and with the I-V efficiency of the MIRM portfolios discussed
in section three. The high Sharpe ratios for the MIRM
portfolio returns are consistent with the exactness of the APT
model. Thus, the application of the Z and PPW scores is
likely to result in an invariancy problem based on the
relative E-V efficiency of the benchmarks (namely, market

indexes versus mimicking portfolios).

Grinblatt and Titman (1988) contend that MIRM portfolios
for a ten-factor structure exhibit a firm-size bias in that
the Jensen measures for small (large) i1irm-sized portfolios
tend to be positive (negative). This does not appear to be the
case when the Sharpe ratio is used. The Sharpe ratios of the
large~ and alli-firm mimicking portfolios are almost always
larger than their small firm counterparts. If firm size
biases the mimicking portfolio benchmarks, the Sharpe ratios
of the small-firm mimicking portfolios would be expected to be
superior to the Sharpe ratios of the large—- and all-fimm

mimicking portfolios.

The Jobson-Korkie 2 scorxes for the 14 portfolio benchmarks
are reported in Table 3.3. With the exception of the market
indexes, the Z scores are negative. Mutual funds do not
appear to be able to economically exploit information based on
a comparison of their Sharpe ratios with those of the

mimicking benchmark portfolios. The use of the Newey-Wast
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adjustment for heteroskedasticity for the mutual fund returns,
and for the variances and covariances of returns for the
benchmarks does not change the results materially. Consistent
with the results presented in Table 3.2, the Z scores are the
lowest when mutual fund Sharpe ratios are compared to those of
the mimicking portfolios. The average Z scores and their
associated standard deviations increase when the Sharpe ratios
of the mutual funds are compared with those of the market
indexes. When the Newey-West estimator is used, similar

results are obtained.

Since significantly different Z scores appear to result
for different portfolio benchmarks, the equality of the mean
vectors of two samples is tested. Formally, the null
hypothesis, H,: 6 = (4,-H,) = 0, is tested using the y? test:

N (D-0) s3* (D-06) . x (3.16)
where Dy = [Dyy, ..., Dnl, 3 =1, ..., N; P is the number of
pairs of Z score vectors that are simultaneously being tested;
Dy = Z,4y - 2,y D is a Pxl vector of means of Z score
differences; S, is the corresponding covariance matrix; and N
is the number of mutual funds (146 in this study). The X?
non-centrality values for various mean vector comparisons of
Z scores are presentaed in Table 3.4. Each bivariate )’ value
is obtained for P=1 in (3.16) when the null hypothesis is that
the Z score means obtained for specific benchmarks are not

significantly different when the benchmarks only differ by a
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spaecific attribute. To illustrate, based on the %’ value of
761.23, the equality of the average Z scores obtained for
portfolio benchmarks MN1P147 (one factor mimicking portfolio
benchmark, a V unadjusted for nonsynchronous trading, and
small firms) and MN6P147 (six factor mimicking pozrtfolio
benchmark, a V unadjusted for nonsynchronous trading and small
firms) is rejected. Each multivariate x? value is obtained

for P>1 in (3.16).

Similar %? values basad on the Jobson-Korkie Z scores,
when V is adjusted for heteroskedasticity using the Newey and
West (1987) estimator, are reported in Table 3.5. As reported
earlier, the importance of the E-V efficiency of the benchmark
is illustrated in Panel F. The average Z scores obtained for
a mimicking portfolio benchmark are significantly diffarent

than those based on the market indexes.

Based on Panels A and B of Tables 3.4 and 3.5, the number
of factors in the factor structure and the V adjustment for
nonsynchronous trading lead to significantly different average
Z scores. The average Z scores are significantly different
depending on firm size, which suggests that different factors
affect "small" and "large" firms. Based on Panel F of Tables
3.4 and 3.5, the use of market indexes lead to significantly
different average 2 scores although the %? values have a

smaller magnitude.
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General performance statistics bi:sed on the PPW are
reported in Table 3.6. The average PPW values indicate that
the 1lowest mutual fund performances generally occur for
mimicking portfolio benchmarks, and that the number of funds
exhibiting positive abnormal performance is generally higher
when the TSE300 is used as a benchmark. This seems to be
consistent with the Sharpe ratio values reported in Table 3.2,
and with the E-V efficiency condition required by Grinblatt
and Titman (1989a) for the application of the PPW. The
numbers of significantly positive and negative abnormal
performances change only slightly when t-tests adjusted for
heteroskedasticity are used. A comparison of the numbers of
funds that display abnormal positive performances in Tables
3.3 and 3.6 suggests that little market timing is displayed by
these funds. This is supported by the similar magnitude of
the correlations between the Z scores (when V is computed
using the ordinary and the Newey-West estimators), and the PPW

scores, which are presented in Table 3.7.

PPW mean vector comparisons, which are based on the same
characteristics as those used in Tables 3.4 and 3.5, are
reported in Table 3.8. Based on the magnitude of the %’ non-
centrality parameters, the various benchmark attributes
generally have a significant impact on the PPW scores.
Specifically, the average PPW scores based on mimicking

portfolios are significantly different than those based on
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market indexes. Thus, the E-V efficiency condition for thu
portfolio benchmarks has a significant impact on the PPW
values. The multivariate y? test results indicate that H, is
rejected only for all of the portfolio benchmarks. As for the
Z scores, the PPW scorez are significantly different when the
number of factors, nonsynchronous trading, and firm size are

congsidered in the construction of the mimicking portfolios.

3.5.2 Seasonality

The bootstrapped and Newey-West Z scores for tests of the
null hypothesis (H,) that the Sharpe ratios of mimicking
portfolios (market indexes) for a specific month are not
significantly different than those of the remaining eleven
months are reported in Table 3.9.° Rejaction of H, suggests
that the underlying returns of the portfolio benchmarks have
an anomalous monthly nature, since the expected returns vary
significantly across months even when a monthly time-varying
risk component is accounted for. Based on Table 3.9, the
returns, for example, for benchmark MN1P147 have an anomalous
behavior for the months of February, August, September,
October and December (their 2 scores exceed 1.96).%
Furthermore, most benchmarks exhibit an anomalous behavior for
the months of Septerdber, October and December. These results
contradict a major implication of market efficiency, which

states that the Sharpe ratios for the benchmarks should not
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differ significantly for the months of the year. This should
not depend on whether or not the random walk or the martingale

is deemed to be the appropriate time—series model for asset

returns. No January effect is observed for any of the
portfolio benchmarks *¢ These results have important
implications for portfolio performance inferences.

Specifically, measures of portfolio performance may contain a
bias which is proportional to the monthly effacts for the

Sharpae ratio of the underlying portfolio banchmark.

The statistics on the Z scores based on the returns for
the 146 mutual funds are presented in Table 3.10. The mean
and standard deviation of the Z scores for a specific month
are designated by E(Z) and STD(Z). The hypothesis, H, :E(Z),=0
for i=January, ...,December, is tested using a t-test. The
hypothesis, H,:E(2),=...=E(Z),=0, is tested using a F-test.
For all months, the t-tests reject the hypothesis that the
average Z scores are equal to zero. Together with the large
F-values, this implies that the average monthly Z scores are
fairly homogenous across the sample for the mutual funds. The
magnitudes of the average 2z scores across the months indicate
that mutual funds display a monthly risk-return relationship

which is similar to that of the market indexes.

The monthly behavior of the bootstrapped Z scores for

portfolio performance are reported in Table 3.11. This allows
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for a determination of whether or not mutual fund performance
is significantly driven by the monthly effects in the
benchmark Sharpe ratios (reported earlier in Table 3.9).
Several average Z scores are lower than -1.96 or greater than
1.96 across the various portfolio benchmarks. This is
consistent with the presence of seasonality in mutual fund

performance.

An important conclusion can ba drawn after relating the
months for which the Sharpe ratios of the portfolio benchmarks
display anomalous monthly effects (Table 3.9) with the months
for which the null hypothesis of equality of the Sharpe ratios
between mutual funds and portfolio benchmarks is rejected
(Table 3.11). The inferences about mutual fund performances
reached earlier are biased due to the material influence of
the monthly effects of the Sharpe ratios of the chosen
mimicking portfolio benchmarks, particularly for the months of
September and December. In contrast, based on the average Z
scores reported in Table 3.11, no significant differances
exist in the Sharpe ratios for mutual funds and the market
indexes for all the months of the year. Based on a comparison
of Tables 3.9 and 3.10, the Sharpe ratios for the mutual funds
and the market indices exhibit a very similar seasonal

behavior both in terms of magnitude and trend.

A benchmark invariancy problem can exist because the
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underlying portfolio benchmarks have returns that display
significant monthly effects or because the returns have
different monthly effects. To test these possibilities, the
Xx* test is applied for each month of the year. The null
hypothesis is the equality of two mean Z scores, whare each
mean is calculated from a vector of bootstrapped Z scores whan
the underlying portfolio benchmark has unique attributes.
These results are presented in Tables 3.12 and 3.13. The
covariance terms required in the computation of the
bootstrapped 2 scores are based on the ordinary and Newey-West
V estimators, respectively. The results presented in Panel A
of Table 3.12 are inconsistent with expectations. If the
anomalous patterns of monthly returns on the portfolio
benchmark are the only explanation for the benchmark
invariancy problem, clusters would be expected to appear for
the months of the year where monthly effects are observed in
Table 3.11. For all the attributes of the mimicking
portfolios, the average %’ valuaes and the number of rejections
of H, are not only similar across the months of the year but
are similar to the numbers of rejections reported in Table
3.4. This is confirmed by the %’ values presented in Panel B.
In Table 3.11, the mutual fund performances based on the
mimicking portfolio returns exhibit seasonal effects only for
the months of September and December, while the performances
based on the market indexes exhibit no seasonal effects.

However, based on Panel L of Table 3.12, the hypothesis of
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mean equality is rejacted for months other than those for
which seasonality in mutual fund performance has been obsaerved
earlier. Therefore, anomalous monthly variations in mutual
fund performance based on portfolio benchmarks with
distinctive attributes appear not to be the unique

determinants of the benchmark invariancy problem.

3.6 CONCLUDING REMARKS

To study the benchmark invariancy problem, the Jobson-
Korkie (1981) Z score and the positive period weighting (PPW)
score of Grinblatt and Titman (1989a) were applied to 14
different portfolio benchmarks (including 12 minimum
idiosyncratic risk mimicking (MIRM) portfolios constructed to
raeflect various attributes). Although the benchmarks that
differ by the number of factors, nonsynchronous trading
adjustment, and firm size in their construction 1led to
different performance results for the same measure, the
rasults were fairly homogenous across the measures. The effect
of this benchmark invariancy problem caused by the
construction of the mimicking portfolios is similar for the

PPW score.

One important attribute was the mean-variance (E-V)
efficiency of the portfolio benchmarks. Mimicking portfolios

had Sharpe ratios that were subtantially higher than those
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based on market indexes. This led to significantly different
portfolio performance inferences based on mimicking portfolios
versus market indexes. The implication is that investigators
should be careful in analyzing mutual fund performance when

market indexes constitute the benchmark.

Several seasonal issues related to portfolio performance
inference were studied to avoid biased estimations when
returns are categorized by the month of occurrence.
Bootstrapped Jobson-Korkie 2 scores were estimated for this
purpose. The returns of the different portfolio benchmarks
exhibited significantly different monthly effects when a
monthly time-varying risk component was incorporated into the
Jobson and Korkie Z score. This implies that anomalies due to
monthly effects cannot be explained by the time-variation of
the underlying second moment of returns. Nevertheless, the
monthly effects of the benchmarks significantly influence
mutual fund performance inferences. The underlying portfolio
benchmarks display anomalous seasonal variations for the
months (particularly, December) for which the hypothesis of
equality between the Sharpe ratios of the mutual funds and the
portfolio benchmarks are (on average) rejected. Thus, mutual

fund performance measurements are biased.

Based on an analysis performed for each month of the year,

it appears that the benchmarks that exhibited monthly effects
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were not the only determinants of the benchmark invariancy
problem. This problem persisted even when the returns of the

portfolio benchmark exhibited no seasonality.
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CHAPTER 4: PERFORMANCE ATTRIBUTION USING AN APT

WITH PRESPECIFIED MACROFACTORS AND TIME-VARYING RISK PREMIA

4.1 INTRODUCTION

The central problem in the evaluation of mutual fund
performance is determining the quality and type of information
possessed by portfolio managers (PM’'s). The Jensen (1968)
measure is the most widely used of the performance techn ' .ques
available in the literature. It is used to assess whether
PM’s use economically valuable information to select (avoid)
stocks that promise returns higher (lower) than are
commensurate with their respective risk levels. As discussed
more fully in the next section of this chapter, the results of
the studies using the Jensen measure are contradictory.
Further, several authors have criticised the theoretical bias
inherent in the Jensen measure, especially when the PM’'s of
mutual funds attempt to time movements of macrofactors that

have priced risks.

An evaluation of mutual fund performance using the Jensen
measure must account for the inexactness of the underlying
asset pricing model (APM), the methodological problem raised
by Admati, Battacharya, Pfleiderer and Ross (ABPR) (1986), and
the measurement error associated w~ith the estimation of timing
portfolios. Thus, the primary purpose of this chapter is to

make micro-selectivity and macro-timing inferences using the




Jensen (1968) alpha and the Lehmann and Modest (1987)
quadratic regression approaches. An APT with observable
macroeconomic variables and factor risk premia which vary
proportionally with their factor volatilities is used as the
underlying APM. The macro-timing inferences are based on the
ability of PM's to time movements in priced macrofactors.
Unlike Lehmann and Modest (1987) who test timing abilities by
examining the covariance between the mutual fund risk premia
and the square of the underlying factor risk premia, the test
usad herein rests upon the covariance between the mutual fund
risk premia and the conditional volatilities of the underlying
factors. Our measure avoids the problems identified by ABPR
while still capturing any correlation between the time-
varying-deviations from the average sensitivities of the funds

and the excess returns of the mimicking portfolios.

The remainder of this chapter is organized as follows. In
saction 4.2, a brief review of the literature is presented.
In section 4.3, the APT model and the proposed tests of
micro-selectivity and macro-timing are detailed. In section
4.4, the sample of mutual funds and the data are described.
In section 4.5, the empirical findings are praesented and
analyzed. In section 4.6, some concluding remarks are

offered.
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4.2 BRIEF REVIEW OF THE LITERATURE

The empirical evidence on the selection and timing
abilities of mutual funds is somewhat contradictory. Jensen
(1968) and Kon (1983) find that more than half of the mutual
funds studied have negative and positive Jensen measuras,
respectively. Kon concludes that his evidence seems to reject
the strong form of the efficient market hypothesis (EMH) for
stock selection but not for market timing. Althocugh Chang and
Lewellen (1984) report that the Jensen measure is positive for
almost two thirds of the funds in their sample, they conclude
that mutual funds generally do not exhibit either micro-
selectivity or macro-timing abilities. Henriksson (1984)
reports that half of the mutual funds in his sample display a
positive Jensen measure, and no evidence exists for
significant positive market timing abilities. Although Lee
and Rahman (1990) find similar selectivity results, they
observe positive timing abilities for some funds. All of
these studies implicitly require that the benchmark market

index be mean-variance efficient.

Jensen measures based on the APT are estimated by Lehmann
and Modest (1987) and by Grinblatt and Titman (1988, 1989Db).
Lehmann and Modest find that the Jensen estimate is very
sensitive to the construction of the APT benchmarks and to the

postulated APM. For all the benchmarks, persistently large
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and negative Jensen measures are observed. Grinblatt and
Titman (1989b) explain similar results as being due to the
substraction of transaction costs, fees, and other expenses
from the returns of mutual funds. While Lehmann and Modest
(1987) report inconclusive evidence on timing, Grinblatt and

Titman find no evidence of timing abilities.

Several authors question the theoretical validity of the
Jensen measure under certain circumstances. When mutual fund
managers have market timing skills, Dybvig and Ross (1985)
show that the sign of the Jensen measure becomes an
unreliable indicator of micro-selectivity abilities. In the
presenca of market timing, Grinblatt and Titman (1989a)
demonstrate that the systematic risk estimator is biased (and,
thus, affects the measure of selectivity abilities). 1If the
CAPM is used as the benchmark APM, the Jensen measure is
estimated under the assumption that the market portfolio is
mean-variance efficient in order that passively managed
portfolios display insignificant Jensen measures.
Unfortunately, Banz (198l), Reinganum (1981), Shanken (1985),
amongst others, find that the CAPM cannot adequately explain
the returns on size-—-sorted portfolios. Improved raesults are
obtained when the APT is the postulated APM, and its factors
are approximated using the minimum idiosyncratic mimicking
portfolios of Lehmann and Modest (1985a,b).3” Grinblatt and

Titman (1988, 1989b) explain the persistently negative Jensen
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values observed by Lehmann and Modest (1987) as being caused

by the mean-variance inefficiency of the mimicking portfolios.

Most tests of portfolio performance implicitly assume that
a theoretical dichotomy exists between the signals for micro-
selectivity and macro-timing. ABPR criticize empirical
formulations where portfolios represent the separating funds,
because timing portfolios are likely to include securities for
which selectivity signals are observed. This would violate
the statistically imposed condition of independence between
the two types of signals when the appropriate APM is

estimated.

Econometrically, portfolios whose returns mimic the
realizations of the K factors are subjact to measurement
error. This is true even for the minimum idiosyncratic
mimicking poriiclios of Lehmann and Modest. Burmeister and
McElroy (1988) report that APT estimates are sensitive to this
problem, and may tead to invalid inferences based on biased

and inconsistent Jensen estimates.

4.3 PROPOSED TESTS OF MICRO-SELECTIVITY AND MACRO-TIMING

Asset pricing theory suggests that the excess returns on
securities are exactly explained by K separating funds, where

K 2 1. Consider a portfolio manager (PM) who has significant
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abilities in forecasting the performance of N firms by
observing N independent selectivity signals which are
unobserved by uninformed investors. The PM will realize an
excess return that exceeds that implied by a linear
combination of the excess returns on the K separating funds,
which is captured by the Jensen (. If the APT is the
postulated APM, the Jensen measure is the intercept, o, of
the time-series regression:

Re=0y, + B, +...+ Boxlxe + Epe (4.1)
where R, is the excess return on portfolio p at time t; B8, is
the risk sensitivity measure of portfolio p to mimicking
portfolio j; T, is the excess return on mimicking portfolio
j at time t, that has a unit cost, that loads with one on
factor j and that is orthogonal to the other factors; and g,
is a residual component with the usual properties.®® This
formulation has been used by Lehmann and Modest (1987) and

Grinblatt and Titman (1988).

Unlike the wusual one-step mnmutual fund performance
inferences based on the CAPM, inferences based upon the APT
usually involve a two-step procedure. The first step involves
the construction of K mimicking portfolios whose returns mimic
the realizations of the common factors based on an initial
sample of N assets. Since Huberman, Kandel and Stambaugh
(1987) demonstrate that both mimicking and arbitrage

portfolios have the same expected excess returns, expression
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(4.1) is consistent with an ex post version of the APT when
the risk premia are time-varying. This ex post APT is a
multivariate extension of Black, Jensen and Scholes (1972).
As shown by Lehmann and Modest (1985a) and Grinblatt and
Titman (1988), the several methods for mimicking portfolio
construction lead to different sets of proxies for the APT

risk premia proxies.

When a PM has macro-timing abilities, s/he is able to
forecast the future movements of the timing portfolios, and
will shift wealth among the K portfolios.®® ABPR contend that
the definitions of micro-selectivity and macro-timing are
inconsistent with the statistical implications of equation
(4.1). If N selectivity signals are observed and N assets are
used in the construction of the K mimicking portfolios, basic
algebra implies that only N-K independent selectivity signals
will exist. It follows from equation (4.1) that selectivity
can not be informative for all N individual assets. Thus,
selectivity would be any information that is uninformative
about the timing of the mimicking portfolios but informative

about asset returns.

This inconsistency can be avoided by wutilizing
conditional asset pricing based on macrofactors. In an
intertemporal framework [as in Cox, Ingersoll and Ross

(1985)], Roll and Ross (1980) demonstrate that each
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condi ioi. L risk premium of the APT model is equal to a
parameter R times the conditional volatility of each
underlying factor, where R is a constant of proportionality
that corresponds to tha. product of the aggregate relative risk
aversion parameter times the elasticity of consumption with
respact to changes in the underlying state variable. This
approach is supported empirically by French, Schwert and
Stambaugh (1987) and Lauterbach (1989). Formally:

Iy=0 + RO, + uy (4.2)
where o, is the volatility of factor j at time t; R is as was

defined earlier ; ¢ is an intercept;*

and u,, is a residual
component with the usual properties. If (4.2) holds for each
of the K risk premia, then replacing (4.2) into (4.1) gives:

R, = 0, + R{B,,0;¢ + ... + B On} + V. (4.3)

where v,.=I%_ B ,u,, + €.

Intertemporal multi-beta asset pricing models are
theoretically developed by Constantinides (1989), Cox,
Ingersoll and Ross (1985), amongst others. These models are
well-suited for performing micro-selectivity and macro-timing
tests, because the underlying utility function generally only
has to be twice differentiable, monotonic increasing, and
strictly concava. For the intertemporal APT to beccme a
taestable model compatible with equation (4.3), Constantinides
(1989) requires three maintainable hypotheses. First, the

observable subset of assets must have a factor structure.
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Second, the noise term of the observable assets must be
uncorrelated with the returns of the unobservable assets.
Third, the factors span the state variables that influence the

rates of return of the unobservable assets.

For the mcdel to be applicablea to the detection of
economically valuable (macro) timing signals, an extra
assumption is required. Specifically, the conditional
covariances of the monthly returns of the mutual funds with
the priced factor realizations must be time-varying only as a
result of managerial macro-timing attempts. Fortunately, the
conditional covariances of the underlying stocks in which most
Canadian funds invest have been constant over the sample
period studied herein.® This is consistent with the findings
of Ferson and Harvey (1987) who observe that the time-
variation in the factor risk premia (and not the risk
sensitivities) account for most of the time-variation in
portfolio expected returns using a multi-beta APM based on

macrofactors.

In the spirit of ABPR, equation (4.3) is more consistent
with the theoretical structure imposed on the private
information held by PM’'s, since the time-varying risk premia
are not proxied by the excess returns of the mimicking
portfolios that are a repackaging of the N securities for

which N selectivity signals may be observed. 1Instead, the
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realizations of the time-varying risk premia are accounted for
by the time-series movements of the volatility components of

the priced macrofactors.

The derivation of the APT model used herein builds on the
work of Burmeister and McElroy (1988), Kryzanowski and
Koutoulas (KK) (1991), amongst others, and begins with the
following APT return generating process:

R, = E(R,,) + B8, + ... + B0 + o, (4.4)
where E(R,) is the expected return of portfolio p at time t;
0, is an innovation in the observable macrofactor j at time
t; B,, is the measure of risk sensitivity between portfolio p
and macrofactor j at time t; and e, is a residual component
with the usual properties. Applying the expectation operator
to equation (4.3) and substituting the result into equation
(4.4) yields:

Ry = 0 + B0, + ... + B Oy

+ R{B,0; + ... + B, On)} + e (4.5)

The methodology of Burmeister and McElroy (1988) suggests
that equaticn (4.5) is a multivariate system of N equations
where N is the number of portfolios being investigated.
Estimation can be based on a stacked N x N diagonal or on the
full variance-covariance matrix of residuals.® In the latter
case, a nonlinear seemingly unrelated regression (SUR) method

allows for multiple nonpriced macrofactors to affect security
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returns. The system also allows for the imposition of
restrictions such as the equality of R in equation (4.5).%

Since the macrofactors are directly included in the return-
generating process, pervasive forces that have priced risk can
be directly related to the macroeconomic variablas. Although
measurement error exists in the macrofactor innovations, the
use of macrofactors avoids the measurement error in the factor
loadings resulting from the well-known two-pass procedure
required for the construction of mimicking portfolios. As
Burmeister and McElroy (1988) show, avoiding this source of
measurement error positively affects the robustness of the

resulting estimations.

KK (1991) estimate the following restricted multivariate
system, based on equation (4.5), for Canadian equities:
R,= o + B,,USINDEX, + 8,EX, + B ,CINDEX,

+8,,EXPORTS, +8,,LINDUS, +B,MONEY, +B,,RMF, + R{8,,CEX,

+ B,,CCINDEX,} + &, (4.6)
where R,, is the excess return for size-sorted portfolio i at
time t; o, is the intercept of the model (the estimated Jensen
measura); USINDEX, is the innovation of the U.S. Composite
Index of 12 1leading indicators at time t; EX, is the
innovation of the Canada/U.S. exchange rate at time t; CINDEX,
is the orthogonal component of the Canadian composite index of
ten leading indicators on the return on the TSE index, money,

USINDEX and industrial production at time t; EXPORTS, is the
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innovation of total exports at time t; LINDUS, is the
innovation of the lag of the industrial production index at
time t; MONEY, is the innovation of the money supply (Ml) at
time t;° and RMF, is the value of the residual market factor
at time t, which has been theoretically justified by Wei
(1989) °° and empirically estimated as the residual component
of the six macroeconomic variables previously regressed on the
TSE300 index; R is thae constant proportionality parameter as
in equation (4.3); CEX, is the value of the conditional
standard deviation ¢f EX at time t; and CCINDEX, is the

conditional standard deviation of CINDEX, at time t.¢

KK estimate the restricted and unrestricted versions of
the multivariate system based on equation (4.6) using both
nonlinear ordinary least squares (NOLS) and nonlinear
seaemingly unrelated regressions (NSUR). In the unrestricted
version, R is not constrained to be the same for the various
macrofactor volatilities. KK reject the hypothesis that the
return—-generating model and the APT pricing relationship are
not significantly different, and the hypothesis that the risk
premia are jointly invariant. Most importantly, KK find that
the restricted version of the APT is exact since the estimated
intercept is insignificant when size-—sorted portfolios are
investigated. This suggests that "passive" portfolio
management strategies, including those based on firm size,

should not lead to abnormal performance. Unlike the beta
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estimates, KK find that their estimates of the risk premium
proportionality pricing parameter, R, are affected by the
choicae of the estimation technique and the number of
portfolios used to estimate their model (for greater details,

see Table 4.1).

For a sample of N mutual funds, the N Jensen estimates can
be obtained by estimating the multivariate system of N
equations based on equation (4.6) by sequentially using the R
values estimated by KK, and those obtained using a fully
stacked residual matrix. For the latter R estimates, a
similar framework for evaluating mutual fund performance is
used in order to be consistent with KK.®® The advantage of
this two-step procedure of estimating the APT with only
security returns, macrofactors and the measure of fund
performance using the first-stage risk premia estimates taken
from KK is that the compensations required by uninformed
investors are not intermingled with the effects of the
managerial abilities of the mutual fund managers. This
approach is identical to that of Lehmann and Modest (1987),
amongst others. KK find that the intercept of the
unrestricted version of equation (4.2) is significant for
size~-sorted portfolios. To evaluate the implications of this
potential bias, comparisons are subsequently made batwaen the
Jansen estimates for the restricted and the wunrestricted

versions of equation (4.6).
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As noted earlier, spurious conclusions can be reached
about stock picking when PM’s use timing strategies. 1In the
presence of timing, Dybvig and Ross (1985) demonstrate that
the Jensen measure could be positive when PM’s are
unsuccessful stock pickers and vice versa.®® When the timing
component is ignored in the benchmark model, Grant (1977)
demonstrates that the Jensen measure tends to be
underestimated [also see Chang and Lewellen (1984), Henriksson
(1984) and Lee and Rahman (1990), amongst others]. The
inclusion of a timing measure in the benchmark APM leads to
another problem. Based on Kon (1983) and Henriksson (1984)
who find a negative correlation between measures of
selectivity and timing, Jagannathan and Korajczyk (1986) show
how to create a portfolio having artificial positive or
negative timing performance and an artificial countereffect on

its selectivity performance.

While these problems are associated with timing
evaluations using portfolios that represent separating funds,
they may not exist in a theoretical framework where PM’s
attempt to time the movements of macroeconomic variables that
have priced risks by directly including these macrofactors in
the APM model. The timing test proposed by Lehmann and Modest
(1987) involves a quad—-atic regression vhere the own-squared
terms of the mimicking portfolios that have priced risks are

included in the model as extra variables in equation (4.1).7°
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Given two priced factors, the model is:’™*
R,= o + Bp11ﬂn + Bp2r2pt + Bp3(r1t)2 + Bpl(rl’t)z

+ B (Ml + €, (4.7)

If the excess returns on the mimicking portfolios are
replaced by the time-varying volatilities of the macrofactors
given by equation (4.3), then equation (4.7) becomes:

Rye= 0, + R{B,0,. + B,,0,,,} + R¥{(B,;(0,)° + B,,(0;)?

+ Bps (Gltozt)} + ept (4~8)

Applying the expectation operator to equation (4.8), and
substituting into equation (4.4) using the Canadian macro-
factors of KK, gives:

R,= @, + B, USINDEX, + B_,EX, + B,,CINDEX, + B, EXPORTS,
+ B, LINDUS, + B MONEY, + B,RMK, + R {B_,CEX,
+ B,;CCINDEX,} + R? {B,(CEX,)? + B, (CCINDEX,)?

+ B0 (CEX, x CCINDEX,)} + e, (4.9)

If PM’'s display factor timing abilities, the null
hypothesis, H,:B.,=8,=8_,,=0, will be rejected. If the B8,
and/or B, are positive, then the PM of mutual fund p has
exhibited significant abilities for forecasting the movements
of EX, (the innovation of the Canada/U.S. exchange rate at
time t) and/or CINDEX, (the orthogonal component of the
Canadian composite index of ten leading indicators at time t) .

The significance (and not the sign) of B8,,, is an unambiguous
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indicator of timing quality. 1In the framework of Lehmann and
Modest (1387), cov(R,, CEX, x CCINDEX,) is affected by
parameters other than the covariance between the fluctuations
of the fund’'s betas and CEX, or CCINDEX,. Thus, unlike most
studies that investigate the abilities of PM’'s to forecast the
realizations of the equity markets when the CAPM is the
postulated APM, equation (4.9) is designed to test whether
PM’s have significant abilities to forecast the realizations

of the macroeconomic variables that have priced risks.

4.4 DATA

The sample of mutual funds is drawn from the Financial
Post mutual fund database. It contains the 146 all equity
funds which have no more than 5 percent of their values
missing over the period from June 30. 1981 through March 31,
1989. The 93 monthly returns for each fund are calculated
using the monthly change in the net asset value per share and
are adjusted for dividend payments.’? The macroeconomic
variables are extracted from the CANSIM database, and their
innovations are estimated using the state—space procedure
available in SAS/ETS. Statigstical tests performed on the
innovations reveal that ’hey are generally white noise and

normally distributed.

Since the sample has more funds than return observations,
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the stacked residual variance-covariance matrix of the full
multivariate system is singular. Therefore, all estimations
are performed on two groups of 73 funds. While the statistics
reported subsequently combine the results for sach of the two
groups of mutual funds, the inferences are robust for each of

the two groups.

4.5 EMPIRICAL FINDINGS

The mean macrofactor beta estimates (sensitivities) and
their associated mean t-values, and the mean R? values for the
rastricted and unrestricted forms of aquation (4.6) are
reported in Panels A and B of Table 4.2, respectively. The
bata estimates presented are based on a specific set of APT
saparate fund time-varying risk premia, where each time-
varying risk premium is represented by the conditional
standard deviation of the underlying priced macrofactor
waeighted by the constant proportionality parameter previously
estimated by KK. Iterative NCLS (ITNOLS) and NSUR estimations
waere also performed where the residual covariance matrix was
successively updated and new parameter estimates were obtained

for each iteration.™

As was found by KK, the B estimataes are robust to various
estimated values of R for the restricted and unrestricted

cases and the nature of the residual variance-covariance
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matrix. Based on thae R? values, the postulated APT model
explains mutual fund excess returns well. As in KK, the U.S.
composite index of 12 leading indicators (USINDEX), the
exchange rate (EX) and the residual market factor (RMF) have
significant factor sensitivities. The only exception is for

EX for NSUR with R;=-5.8533 and R,=3.1889.

The Jensen estimates for the restricted APT are reported
in Panel A of Table 4.3. The first two statistics presented
relate to the mean and standard deviation across the 146
mutual funds of the sample for a specified value of R. The
mean corresponds to the average monthly excess return realized
after transaction costs. The standard deviation provides a
measure of dispersion relative to the mean excess return
across the sample of mutual funds. The statistically
significant %’ values clearly show that the Jensen values are
not only different among the mutual funds but tkat they are
significantly different from 0.’ Because some mutual funds
actively manage their portfolios, the underlying return
distributions may be heteroscedastic. Although NOLS and NSUR
are robust to nonnormality, Burmeister and McElroy (1988)
advocate the use of iterative procedures when the residuals
are normally distributed. NOLS and ITNOLS lead to identical
results which is consistent with Lehmann and Modest (1987) who
report similar inferences based on results adjusted and

unadjusted for heteroskaedasticity.
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Although the estimates of the factor sansitivities and
their related t-values are insensitive to the R estimate
{(Table 4.2), the Jensen estimates on the stock picking
abilities of mutual funds depend upon the sign of R. For
similar R estimates, the mean Jensen and absolute t-valuaes,
and the number of funds with significantly positive or
negative micro-selectivity abilities are robust to the
inclusion of nonpriced factors in the APT system. These
results are consistent with Lehmann and Modest in that the
Jensen estimates are significantly influenced by the set of
mimicking portfolios chosen as the benchmarks. The finding
that NOLS and NSUR generate similar estimates is not
surprising since mutual funds supposaedly provide
diversification services. A significant proportion of the
funds have Jensen estimates which are significantly different
from O. Furthermore, for all positive R, a significant
proportion of the funds exhibit positive stock saelection
abilities. In short, whenever R is positive (as would be
expected), mutual funds display, on average, a positive
monthly excess return after transaction costs. These findings
do not appear to support the conjecture of Grinblatt and
Titman (1989b) that negative Jensen estimates are due to the
presence of significant transaction costs. Of course,
differences between their results and those reported herein
may also be caused by the choice of different asset pricing

models (portfolios versus macrofactors) and/or different data
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sets (American varsus Canadian).

These conclusions are supported by the correlztion
coefficients of the Jensen estimates for the various
raestricted APT equations given in Panel A of Table 4.4. The
correlations between thae various pairs of Jensen estimates for
the three estimation techniques are close to or equal to one
for spaecific R or for R with similar signs, and are much less

correlated (0.33 to 0.56) for R with different signs.

The Jensen astimates for the unrestricted KK APT are
reported in Panel B of Table 4.3. This model is used in order
to assess the effect on mutual fund performance inference of
using an inexact APT model. For their sets of size-sorted
portfolios, KK observe significant negative intercepts for
their unrestricted APT. This is consistent with the results
reported in Panel B of Table 4.3. The magnitude of this
downward bias is so large for all R and estimation techniques
that the statistics for the Jensen estimates and their
absolute t-values are nearly identical for all cases. Not
only are all mean Jensen estimates largely negative but few
(many) funds have an abnormal performance significantly
greater (lower) than 0. This finding is confirmed by the
strong correlations reported in Panel B of Table 4.4. The
bias leads to> estimated Jensen wvalues that are highly

correlated (0.96 or greater). Comparisons of the Jensen
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estimates between Panels A and B of Table 4.3 clearly
demonstrate the importance of using an exact APM benchmark, as

was conjectured by Grinblatt and Titman (1988, 1989b).

The influence of the bias due to the inexactness of the
unrestricted model is highlighted in Panel C of Table 4.4,
which reports the correlations between the Jensen estimates of
the restricted and unrestricted models for the same estimation
technique and R. The correlations range from -0.36 to 0.91,
which suggests that the sensitivity of the estimated
intercepts across mutual funds to model exactness varies by

estimation technique.

If the Jensen estimates in Table 4.3 are strongly
influenced by a structural event, no relationship should exist
between past and future performance. To test for this
possibility, the multivariate systems of equations are
sequentially estimated for the first and second half of the
total time period. The statistics on the Jensen estimates are
reported in Table 4.5. The N x N stacked residual variance-
covariance matrix for each subperiod is singular since the
multivariate system contains substartially more equations than
observations. As in Brown and Otsuki (1989), the flexibility
of the nonlinear multivariate SUR developed by Burmeister and
McElroy (1988) is wused to overcome this problem.

Specifically, the N x N residual variance-covariance matrix
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required for the subperiod estimations is taken to be the full

residual matrix estimated for the entire period.

From Panels A and B of Table 4.5, the mean Jaensen
estimates have similar magnitudes and signs for both
subperiods for all estimation procedures and R for the
restricted APT. The stability of these statistics is
consistent with the positive and significant correlation
coefficients between the Jensen estimates for each subperiod
presented in Panel C of Table 4.5. The bias induced by the
inexact unrestricted APT is persistent across the subperiods
although the Jensen estimates now have different mean values.
While the number of funds whose Jensen measure is greater or
lower than 0 and the average absolute t-values for both
subperiods are similar, they are typically smaller than those
for the whole period. This implies that the standard
deviations of the Jensen estimates are higher for the
subperiods than for the total period.” Since these subperiod
Jensen estimates are stable, it is unlikely that unique

structural events had a significant effect on these results.’®

The findings for the macrofactor timing tests for the
restricted APT {[equation (4.10)] are presented in Table 4.6.
As observed previously, both NOLS and ITNOLS genaerate exactly
the same estimates of B, B,, and 8,, [i.e., the regression

coefficients of (CEX.) , (CCINDEX.,) , and (CEX, x CCINDEX,),
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respectively]. As was shown earlier in Table 4.3, the results
are sensitive to tha value of R and not to the inclusion of
nonpriced macrofactors in the estimated multivariate system.
Furthermore, for similar values of R, NOLS and NSUR yield
similar results, which is consistent with the large amount of

diversification provided by mutual funds.

The low average absolute t-values of the factor timing
coefficiants tend to indicate that the average mutual fund
does not seem to exhibit the ability to exploit private timing
signals for all postulated values of R and estimation
techniques. However, some funds display significant timing
abiiities since the x? statistic rejects H,: B g=B,,=8,,,=0.
Depending on the estimated value of R, a nonnegligible
proportion of the funds seem capable of correctly forecasting
the movements of EX, (the innovation at time t of the
Canada/U.S. exchange rate, whose factor timing measure is 8,,)
and CINDEX, (the orthogonal component at time t of the
Canadian composite index of ten leading indicators on the
return on the TSE index, money, USINDEX and industrial
production, whose factor timing measure is B,). This is also
consistent with the number of funds for which Bpm is
significant.” Interestingly, the timing literature based on
the important contributions of Henriksson (1984), Cumby and
Glenn (1990), and Lehmann and Modest (1987), amongst others,

which use CAPM and/or mimicking APT portfolios, report timing
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coefficient estimates that are predominantly and persistently
negative. For all R, a large proportion of the funds
generally exhibit positive values of P, and B,,. For most
values of R, portfclio managers appear to have better
abilities in forecasting the realizations of CEX, than those
of CINDEX,. This is consistent with the finding that the

former risk is priced for the sample of mutual funds.

The inclusion of a test for timing abilities in the
restricted APT model does not seem to materially affect the
sign of the & estimates. A comparison of the Jensen estimates
in Tables 4.3 and 4.6 suggests that the sign of & (and the
numbers of funds whose Jensen estimates are greater and lower
than 0) are driven by the sign of R, and not by the inclusion
or exclusion of the factor timing tests. This implies that
the observed factor timing abilities are not "artificial".
This does not support the conjecture of Connor and Korajcyzk
(1986) that positive (negative) "artificial" timing
performance leads to negative (positive) "artificial" stock
selection performance. In contrast, the average absolute t-
values systematically decrease for the various R when timing
variables are included in the estimated model because a
portion of the performance is now captured by the timing

variables.

Use of the inexact, unrestricted APT model generates

79



similar findings for macrofactor timing. Although many
portfolio managers attempt such timings, only a low proportion
of the funds exhibit significant positive abilities to
anticipate the movements of the priced macrofactor
volatilities. As for the restricted APT model, the
significance of the macrofactor timing estimates is sensitive
to the postulated sign of R. This suggests that APT exactness
is much lass of a concern in the investigation of timing than

the postulated sign of R.

A comparison of the Jensen estimates in Tavles 4.3 and 4.7
indicates that the inclusion of timing variables does not
materially affect the bias in the Jensen measure caused by
model inexactness. The average Jensen estimates are lowerad
slightly for the model with the timing measures. This does
not support the conjecture of Grant (1977) that the Jensen
measure is biased downward when timing is ignored. It may
reflect merely the fact that the estimated coefficients of the

omitted variables, B, and 8,, are generally positive.

4.6 CONCLUDING REMARKS

In this chapter, the ability of Canadian portfolio
managers to use observed micro-selectivity and macro-timing
signals was assessed using the APT model with macrofactors of

Koutoulas and Kryzanowski (1991). The time-varying risk
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premia of this model were accounted for by the parameter R
(the constant proportionality parameter) weighted by the
vectors of tha conditional volatilities of the underlying
macrofactors that have priced risk. This allowed the Jensen
parameter to reflect the potential presence of N independent
selectivity signals, since timing portfolios that are
constructed merely as a repackaging of N assets were excluded
from the modsal. Koutoulas and Kryzanowski find that this
model is exact for "passive" strategies such as size-—sorted
portfolios. This APT model is used in a multivariate system
where the N equations are estimated simultaneously using the
nonlinear ordinary least squares (NOLS) and nonlinear
seamingly unrelated regression (NSUR) methods [as in the
spirit of Burmeister and McElroy (1988)]. Not only does the
model explain mutual fund excess returns very well but both
estimation methods generate similar estimates of micro-
selectivity and macro-timing. This is consistent with mutual
funds providing diversification services. Based on the
intertemporal stability of these results, little evidence is
found to support the hypothesis that the findings were due to

a major structural event (or shock).

The findings indicate that the intercept of the model
(Jensen’s alpha) is somewhat sensitive to the postulated set
of time-varying risk premia for the APT separatirg funds

(i.e., postulated value of the constant proportionality
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parameter). Although a significant proportion of the funds
exparienced abnormal selectivity performance, the direction of
that performance is sensitive to the sign of the constant

proportionality parameater.

For the unrestricted version of the model, Koutoulas and
Kryzanowski observe significant negative intercepts for size-
sorted portfolios. Similarly, for the mutual funds studied
herein, the Jensen estimates are systematically smaller, and
a large number of funds have negative (but generally
insignificant) estimated intercepts. This demonstrates the
importance of using an exact asset pricing model as a

benchmark in portfolio performance evaluation.

Unlike most studies reported in the literature, this study
finds that the estimated factor timing coefficients are
positive. Although these estimates are sensitive to the
postulated value of parameter R, some funds appear to have
significantly superior abilities to forecast the movements of
the two pricad macrofactors. These macrofactors are the
innovation at time t of the Canada/U.S. exchange rate and the
orthogonal component at time t of the Canadian composite index
of ten leading indicators on the return on the TSE index,
money, USINDEX and industrial production. In summary, some
funds earn superior returns from both stock selection and

macrofactor timing when the postulated model is the restricted
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APT of Koutoulas and Kryzanowski.
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CHAPTER FIVE: PERFORMANCE ATTRIBUTION USING

THE CAPM WITH A TIME-VARYING RISK PREMIUM

5.1 INTRODUCTION

The assessment of portfolio performance is based on a
theoretical structure that divides the information structure
available to portfolio managers (PM’s) into two components:
micro-selectivity and macro-timing. The former relates to the
abilities of PM’s to identify firms whose returns are expected
to be higher (or lower) than suggested by their level of
priced risk. The latter refers to the abilities of PM’s to
forecast the movements of tha stock market and/or the
pervasive macroforces that have priced risks. The Jensen
(1968) measure is often used to assess micro-selectivity, and
the approach of Treynor and Mazuy (1966), which has been
improved by Lehmann and Modest (1987), amongst others, is
often used to assess macro-timing. The empirical evidence on
the presence of micro-selectivity and macro-timing abilities

are mixed and almost nonexistent, respectively.

The purpose of this chapter is to study the micro-
selectivity and macro-timing abilities of Canadian mutual
funds using the Jensen measure and the market timing test
proposed by Lehmann and Modest (i987), and a conditional
capital asset pricing model (CAPM) with a time-varying market

risk premium similar to that of Koutoulas and Kryzanowski



(1991)."® The empirical design is based on the multi-factor
formulation of Burmeister and McElroy (1988). Burmeister and
McElroy demonstrate how the APT return generating process and
asset pricing model (APM) can be simultaneously estimated when
macro—economic variables are directly included in the model.
They advocate the estimation of a multivariate system of N
equations that rests on a stacked N x N diagonal or full
covariance matrix of residuals. Koutoulas and Kryzanowski
raeformulate this model into an APT with time-varying ex ante
risk premia, which vary proportionally with the volatilities
of the priced factors. Their approach is adapted readily

herein to the case when the CAPM is assumed to hold.

This multivariate version of the CAPM (M-CAPM) has at
least four attractive features for assessing portfolio
performance. First, the conditional M-CAPM includes a time-
varying ex ante market risk premium, which varies
proportionally with the conditional second moment of the
market return. Second, Admati, Battacharya, Pleiderer and
Ross (1986) contend that portfolio performance attribution
requires that the micro-selectivity measure be statistically
independent of the return on the timing portfolio. This may
not be possible if the timing portfolio is the market
portfolio because the latter will probably include securities
for which micro-selectivity signals are observed. The M-CAPM

satisfies the independence assumptiocn better, since the
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movements of the time-varying risk premium of the market
(i.e., the excess return of the timing portfolio) are related
to the time-varying conditional second moment of the market
portfolio (which depends on the innovations of the returns on
the market portfolio). Third, heteroskedasticity of portfolio
returns caused by timing is unlikely to affaect the estimates
of the M-CAPM since Burmeister and McElroy (1988) state that
the estimators of their multivariate system are robust to non-
normality of the residuals. Fourth, the M-CAPM can be
estimated with cross—-equation restrictions. This allows for
the implementation of micro-selectivity and macro—-timing tests
that are more stringant than those usually reported in the

literature.

The remainder of the chapter is organized as follows. In

section 5.2, the M-CAPM and the tests of micro-selectivity and

macro-timing are presented. In section 5.3, the data are
described. In sgection 5.4, the empirical findings are
presented and analyzed. In section 5.5, some concluding

remarks are offered.

5.2 M-CAPM AND MEASURES OF PORTFOLIO PERFORMANCE

The traditional market model is given by:

Re =@+ B, Ry + o (5.1)

where R, and R,. are the returns on portfolio p and the market
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m at time t respectively; P, is the systematic risk measure

for portfolio p;”

and e,, is the residual component observed
at time t (its distribution possessas the usual properties).
Equation (5.1) can be expressed in a mean-deviation form with
a time-varying expected return as:

R = E(R). + B, 0, + @, (5.2)
where 0,, is the innovation in the return of the selectaed
market index at time t. This innovation is obtained using the

Akaike (i1976) state—space procedure [as in Brown and Otsuki

(1989) , Kryzanowski and Zhang (1992), amongst others].

Given the existence of a risk-free rate, the conditional
CAPM is given by:

E(R)e = Ree + By At (5.3)
where A,, is the ex ante, time-varying risk premium of the
market portfolio at time t. Equation (5.3) implies that the
predictable component of asset returns is explained at each
point in time t by the ex ante conditional market risk premium
weighted by a constant factor loading measure. Hansen and
Richard (1987) Jjustify the importance of information
conditioning for CAPM taests. Equaticn (5.3) is consistent
with the empirically-supported formulations of Lauterbach
(1989), Koutoulas and Kryzanowski (1991), amongst others.
Equation (5.3) is suitable for examining managerial market-
timing abilities within the context of a conditional asset

pricing model. For this purpose, the time—variation in the
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conditional covariances of the returns of the studied
portfolios with the returns of the selected market index must
be attributed entirely to market timing attempts. Otherwise,
the uninformed investor can not observe the difference batween
supaerior managerial performance and time-variation in the risk

component of the market model.®

The contributions of, for example, French, Schwert and
Stambaugh (1987) provide empirical support for a positive
relation between the expected premium on the stock market and
the conditional standard deviation of the return on the stock
market .®! Lauterbach (1989) and Koutoulas and Kryzanowski
(1991) use this formulation within the context of a multi-beta
APM. The specific functional form used herein is:

At =R * Oy (5.4)
where R is a constant of proportionality; and o, is the
conditional staudard deviation of the market at time ¢t.
Subsgstituting (5.4) into (5.3), and the resulting equation into
(5.2) yields:

Ry — Rye = By Oae + By (R - Oue} + @ (5.5)
Adding the Jensen measure, o, to (5.5) yields:

Rpt_Ri‘tzap." ﬁp alt+Bp {R - O-t} +ept (5-6)

Jagannathan and Korajcyzk (1986) show that PM’s may
display artificial market timing abilities and negatively

correlated micro-selectivity abilities, when the payoffs from
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their strategies are nonlinear. To account for this
possibility, Lee and Rahman (1990), Grinblatt and Titman
(1988), amongst othaers, argue that the measures of selectivity
and timing should be estimated simultaneously. The timing
test proposed by Lehman and Modest (1987) is easily introduced
into equation (5.6) to yield:*

Ry = Rpe =04, + B, 8 + P, {R - 0.} + 6 (R - 0.} + @,

(5.7)

In (5.6) and (5.7), o, measures the deviations of the managed
portfolio from the conditional SML, and whether the portfolio
plots inside or outside the conditional efficient set under
the assumption that PM’s and uninformed investors are mean-

variance maximizers.®®

Equations (5.6) and (5.7) provide the basis of the
multivariate system of N CAPM equations (the "M-CAPM") being
investigated herein. The estimation uses a ostacked N x N
diagonal or full covariance matrix of residuals. The former
corresponds to a nonlinear ordinary least squares (NOLS)
method; the latter corresponds to a nonlinear seemingly
unrelated regression (NSUK) method that allows for missing
(non-)priced factors to affect security returns. Iterative
NOLS (ITNOLS) and iterative NSUR (ITNSUR) estimation methods
are also wused, whera the residual covariance matrix is
successively updated at each iteration. Since the system can

include restrictions across equations, multivariate tests of
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micro-selectivity and macro-timing can be performed. The
former tests whether the Jensen measures across aquations are
simultaneously equal to zero; the latter tests whether the

©,’s in (5.7) are simultaneously equal to zero.

5.3 D~

The sample of mutual funds is drawn from the Financial
Post mutual fund data base. It contains the 146 Canadian
equity funds which have no more than five percent of their
values missing over the period from 30 June 1981 through 31
March 1989. The 93 monthly returns for each fund are
calculated using the monthly changes in the net asset valuas
per share and are adjusted for dividend payments.’® The
monthly returns of both the value-weighted (VW) and equally-
weighted (EW) indexes are extracted from the TSE-Western Tape.
Their return innovations are estimated using the state-space
procedure available in SAS/ETS.® The time-varying conditional
standard deviations for each market index are estimated in a

similar fashion as in Koutoulas and Kryzanowski (1991).°%¢

The various sets of time-varying ex ante market risk
premia, (R * o©,)}, that correspond to the different R obtained
by Koutoulas and Kryzanowski (1991) are used to estimate the
M~-CAPM’ s reprxesented by equations (5.6) and (' 7). The sign

of R must be the same as the expected risk premium of the
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market (i.e., positive if the CAPM is assumed to hold). This
is consistent with the finding of French, Schwert and

Stambaugh (1987).

5.4 EMPIRICAL FINDINGS

The mean beta estimates, their respective t-values, and
the mean R? values for M—-CAPM (5.6) are reported in Table 5.1.
Unlike Koutoulas and Kryzanowski (1991) and chapter four for
a multi-factor version of (5.6), both the mean beta estimates
and their respective mean t-values are not robust to the
postulated time-varying risk premium. As expected given the
holdings of the funds,®” the risk premia for the value-weignted
index better explain the excess returns of the mutual funds

than those fcr the equally-weighted index.

The mean and standard deviation ("std.') of the Jensen
estimates for M-CAPM (5.6) for various estimation methods
(E.M.’8) and R’s are reported in Table 5.2. The mean values
refer to the average monthly excess returns after transaction
costs for the 146 equity funds. All of the Jensen estimates
are negative. The average absolute t-values suggest that the
Jensen estimates are also significant at the 0.05 level (with
the exception of the estimations for R of 4.3617). Most (no)
funds have an abnormal performance which is significantly

lower (greater) than zero. Based on the Y’ test statistics,
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the Jensen values are not only different from zero but are

also different across mutual funds.

These findings are consistent with those in the literature
that £ind a downward bias in the Jensen measure when portfolio
performance is measured using benchmark portfolios which are
not mean-variance efficient.®® Thus, the reported Jensen
estimates are unlikely to be representative of the "true"
performance of the mutual funds studied herein. Thus, the
initial estimations of the M-CAPM (i.e., the multivariate CAPM
system with a time-varying ex ante market risk premium) do not
seem robust to the conditional mean—variance inefficiency of
the chosen proxies for the market portfolio. This 1is
supported by the high correlation coefficients of 0.91 or
greater for the Jensen estimates, which are reported in Panels
A and B of Table 5.3, for the value-weighted and equally-

weighted market indexes, respectively.

The results for the entire period may be caused by an
intertemporal instability in the capital markets. To test for
this possibility, the M-CAPM (5.6) was sequentially estimated
for the first and second half of the total time period. The
Jensen estimates, which are reported in Table 5.4, have
similar magnitudes and signs for both subperiods.® The
stability of these results is collaborated by the sign and

magnitude of the correlation coefficients for the
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corresponding subperiod Jensen estimates, which are presented
in Panel C of Table 5.4. Since the bias induced by the
inexactness of the market proxy portfolio seems to persist
across time, the negativity of the Jensen estimates does not
seem to be attributable to one or more unique structural

events.

Based on the ¥’ values, the across—equation restriction,
H,:0,=0, is rejected. Not only do a significant proportion of
the funds attempt to time market movements but most exhibit a
significantly negative timing measure. This is consistent
with the findings of Henriksson (1987), Lehmann and Modest
(1987), Cumby and Glenr (1990), amongst others. The findings
for the market timing test based on (5.7) are presented in
Panel A of Table 5.5. All of the mean aksolute t-values of
the estimated timing coefficient (Gp) are significant. These
results are robust for the various R, estimation methods and
market indexes wused to calculate the conditional standard

deviations.

Based on the findings of Cumby and Glenn (1990), these
significantly negative timing measures may be explained
partially by the small sample properties of the regression
coaefficient estimates. Since they obtained better results by
using a bootstrapping procedure, the M-CAPM (5.7) was

bootstrapped using the algorithm detailed in the Appendix.*
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Since the bootstrapped t-values yield similar results, the
initial estimates from M-CAPM (5.7) appear to be robust for

small samples.

The Jensen estimates for the market timing M-CAPM model,
given by the multivariate system of equations (5.7), are
reported in Panel B of Table 5.5. The inclusion of a term to
capture the effects of market timing does not seem to
materially affect the a estimates. A comparison of the Jensen
estimates reported in Tables 5.2 and 5.5 indicates that the
sign of 0, and the number of funds whose 0 are significantly
greater and smaller than zero are not affected materially by
the inclusion of the market timing measure. No support is
found for the conjectures of Grant (1977) that the Jensen
measure is biased downward when market timing is ignored and
of Connor and Korajcyzk (1986) that positive (negative)
"artificial" timing performance leads to negative (positive)

"artificial" stock selection performance.

5.5 CONCLUDING REMARKS

The ability of Canadian managers of all equity mutual
funds to make superior micro-selectivity and macro-timing
decisions was assessed using a multivariate CAPM with a time-
varying ex ante market risk premium. The premia were

calculated using the proportionality parameter estimates of
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Koutoulas and Kryzanowski (1991) weighted by the conditional
volatility of the underlying market index. This model was
estimated using a multivariate system where the N equations
are estimated simultaneously using the (iterative) nonlinear
ordinary least squares and (iterative) nonlinear seemingly
unrelated regressions in the spirit of Burmeister and McElroy

(1988) .

Significant (and predominantly negative) Jensen estimates
are obtained for the various R, estimation methods, market
indexes and time periods. These findings are probably due to
the conditional mean—-variance inefficiency of the market proxy
portfolios used herein. They are consistent with those of
Grinblatt and Titman (1988). The incorporation of a market
timing component does nnt materially affect the estimated
Jensen values. Consistent with the literature, the market
timing coefficients are significantly negative. This cannot
be attributed to a small sample problem since similar t-values

resulted from a bootstrapping procedure.
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CHAPTER SIX: MAJOR FINDINGS, IMPLICATIONS AND

DIRECTIONS FOR FUTURE RESEARCH

This dissertation studied two main issues. The first is
the mispricin~ of the APT model using tests that rest on both
unconditional and conditional distributions. The second is
the benchmark invariancy and seasonality problems involved in
the evaluation of mutual fund performance using APM-free
measures, and the performance of mutual £funds using both a

conditional APT based on macrofactors and a conditional CAPM.

There are three major findings of this dissertation.
First, only one factor seems sufficient to ensure exactness of
the APT model, whether the corresponding functional form is
based on conditional or unconditional return distributions
when the covariance matrix of security returns is (un)adjusted
for nonsynchronous trading. Based on the estimated second
moment equations, the conditional standard deviations of the
K mimicking portfolios explain the time-variability of
security volatilities. This is consistent with the findings
of Schwert and Seguin (1990) when their framework is extended

to a multi-beta APM,

Second, the performance of the mutual funds is sensitive
to the choice of a portfolio benchmark when APM—-free measures,
such as the Jobson and Korkie (1981) Z score and the positive

period weighting score of Grinblatt and Titman (1989a), are



used. Different portfolio benchmarks lead to diffaerent
performance results for the same measure, although the
results are homogeneous across the measures. The portfolio
benchmarks are characterized by different underlying
attribut.es; namely, the number of extracted factors, the
adjustment for nonsynchronous trading of the covariance matrix
of security returns, and the sizes of the firms (small and/or
large) used in the factor analyses. The returns for the
different portfolio benchmarks exhibit different seasonal
patterns. In turn, this significantly influences mutual fund

performance evaluation.

Third, mutual funds exhibit micro-selectivity and macro-
timing abitilites when a conditional APT based on macrofactors
is used as the benchmark model. These findings are generally
robust to the assumption that is imposed on the covariance
matrix of the residual component. However, significant and
predominantly negative micro-selectivity and macro-timing
abitilities are observed when the performance evaluation rests
upon a conditional CAPM. While these micro-selectivity
findings are probably driven by the conditional mean-variance
inefficiency of the market proxies used, the market timing

findings cannot be explained by a small sample problem.

Several other issues can be investigated based on the

research undertaken herein. First, the wvaricus tests of
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mutual fund performance presentecd herein can be replicated
using American data. Second, tests of both the unconditional
and conditional APT and mutual fund performanca assessment
based on the Jensen measure can be applied when the common
forces that have a priced risk are approximated by Mei’s
(1991) semi-autoregressive mimicking portfolios. A semi-
autoraegressive factor structure avoids the arbitrariness
associated with the selection of the macrofactors as well as
the pitfalls of maximum likelihood factor analysis noted by
Kryzanowski and To (1983), Brown (1989), amongst others.
Finally, the iterative non-linear seemingly wunrelated
ragression formulation of the APT used herein should be

extended to account for time-varying betas.
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FOOTNOTES
Also, see Kandel and Huberman (1987), amongst others.

See Roll and Ross (1981), Chen (1983), Brown and
Weinstein (1983), Dhrymes, Friend, Gultekin and Gultekin
(1984, 1985), Lehmann and Modest (1985, 1987), amongst
others, for empirical work on the APT.

W=(B'D!B)'B’D™ is a solution to the quadratic program
given by (2.9).

The ith subset of feasible portfolio returns will have
the same covariance with the returns of the kth mimicking
portfolio as the return on the ith mimicking portfolio
has for all k different from i.

This is unchanged when the RMF is included in the factor
structure.

Merton (1972) discusses the relationship betwean an
intertemporal asset pricing model and the time-
variability of the efficient set within the CAPM
framework.

See Engle, Ng and Rothschild (1990) for a formal
justification of this approach.

Other methodologies are available. One of the most
promising is proposed by McElroy, Burmeister and Wall
(1985), and extended by Burmeister and McElroy (1988).
Their approach is based on the estimation of the factor
model (2.1) when the APT is nestsd in the intercept and
the factors are associated with fundamental economic
variables. Theoretically, E(ee’)=b in equation (2.1),
whaere ¢ is a diagonal matrix if stock returns are exactly
explained by the K factors. Extending this result to
Wei’s proposition allows the V of the residuals of (2.2)
to be nondiagonal. The inclusion of the RMF in (2.2)
restores the diagonality of V.

For example, see Roll and Ross (1880).
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10.

11.

12.

13.

14.

15.

l6.

See Lehmann and Modest (1985) for a complete discussion
of the use of this procedure within the APT context.

"= (B*/X'B')! B''XI'R, where I'" = (I, I[), if (2.20) is
estimated.

To test the significance of the estimated risk premia and
the number of factors, t-tests are not used. Orthogonal
rotations of the factor loadings cause the t-values to be
under—-estimated when k > 1. Dhrymes, Friend, Gultekin
and Gultekin (1984) uge the following X’ test:
1/T(I"VvT).x’ where I' is the vector of estimated risk
premia, and V is the corresponding covariance matrix.
This test not only reduces the marginal impact of a
particular factor as the number of factors increases but
does not provide any indication about the exactness of
the model. Nevertheless, it is used herein to provide
general insights about the number of significant risk
premia.

Assumeé that the APT model is investigated when K-1
factors are estimated knowing that the true factor
structure contains K factors. The null and alternative
hypothesis to be tested are:

H,: (E(R)-R;)=B, [},
H,: (E(R)-Rg)=B, [},
where H, could imply: E(R)-R=B, ;[\, + B,

The factor model is R.,=E(R) + B[F.~E(F)] + u, (with or
without a RMF). This implies: Z=BB’'+ O.

Davidian and Carrol (1987) contend that a specification
using the standard deviation is more robust.

The t-tests of the coefficients of the mean equation
(2.32) do not reveal information about the number of
factors in the APT model. The number of factors
corresponds to the number of arbitrage portfolios that
have signifigant axpected excess returns. The y? test,
given by R’Z! R, with k degrees of freedom, provides
information on the number of significant risk premia.
Lika the multivariate %* test for cross-sectional tests

(ses footnote 12), the %* test is a weak test for
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17.

18.

19.

20.

21.

22.

23.

determining the true number of factors since it does not
test the exactness of the model.

As noted earlier, Roll and Ross (198l1l) find evidence for
a maximum of five factors, Kryzanowski and To (1983) f£ind
at most two factors, and Dhrymes, Friend, Gultekin and
Gultekin (1985) find five and seven factors when 30
saecurities are included in a group. Trzincka (1986)
finds that at least one factor aexists in the factor
structure.

In Tables 2.2 through 2.9, only aggregated results across
the 42 groups are presented due to space limitations.
The unaggregated results are available upon request.

Chen, Roll and Ross (1986) find that the value-weighted
New York Stock Exchange Index explains a large portion
of stock return variability. However, in comparison with
the economic variables, it has no influence on expected
returns.

The possibility that the MLR test could provide
misleading inferences has been recognized by Shanken
(1987) .

Hair, Anderson and Tathman (1987) state that the
rationale for this criterion is that any extracted factor
that has an eigenvalue equal or greater than one accounts
for the variability of at least one variable. This
criterion is most reliable when the number of variables
is between 20 and 50.

A simple t-test can be used for a one factoxr structure
since a univariate inference is not affected by factor
rotation.

Similar findings are obtained by Cho and Taylor (1987)
and Gultekin and Gultekin (1987) using a more recent
sample.
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24.

25.

26.

As mentionned in footnote 8, when the number of factors
included in the factor structure increases, the marginal
impact of each risk premium of the entire factor
structure decreases. Therefore, even if a factor
structure of six factors is rejected, one or two risk
premia could be priced. This is likely since the MLR
test tends to overstate the number of factors.

Chen (1983) reports that, although the APT results are
invariant to rotation, the number of priced factors is
not.. If the factor structure contains K factors, then
the number of priced factors may be lower than K. Brown
(1989) suggests that an APT model that depends on only
one priced factor may indicate that the factor solution
of the MLE has been rotated by the Helmert matrix at the
stage of the principal factor sclution. Brown points out
that such a rotation understates the significance of the
risk premia on factors beyond the first one. This
depends directly on the structure of the Helmert matrix
since the first column sums to one while the others sum
to 0. Thus, the first factcer loading is proportional to
an equally-weighted average of the original factor
loadings, while the remcining ones are proportional to 0.
Brown contends that the inverse of the rotation would
allow for the retrievel of the K factor loadings, and
generate more powerful tests. The inverse rotation on
the factor loadings matrices was applied herein.
However, it neither changed the results reportad nor the
individual significance of each of the K risk premia.

The common practice in the time-series and forecasting
literature is to apply a portmanteau test to assess the
levael of serial autocorrelation in the residuals of a
model. Thae most widely used portmanteau tests are based
on the Box-Pierce and the Lijung—-Box statistics. The
first is defined as T x X&_,r’, and is distributed as %%
. wWhere r, is the autocorrelation coefficient of order
k, and L is the number of lags in equation (2.31). The
sacond is defined as T(T+2) x XX, r%}/T-K and is also
distributed as Y%.. Davies and Newbold (1977)
demonstrate that the Box-Pierce statistic may not exactly
follow a X* distribution when the sample size is small.
Such is not the case herein.
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27.

28.

29.

30.

31.

22.

33.

The eristeice of conditional heteroskedasticity in a
time-series implies that the variance of the residuals is
endogenously not stationnary. Therefore, the squared
residuals are autocorrelated proportionnally to this non-
stationnarity. This intuition is rigorously captured by
applying a portmanteau test. See Bollerslev (1986,
1987), Engle, Ng and Rotschild (1990), amongst othaers,
for the use of this test on the squared rasiduals.

Based on Schwert and Seguin (1990), the studentized range
is a non-parametric measure of heteroskedasticity. Thus,
it is not affected by non-normality of the distribution
of residuals.

Similar results are obtainad for the RMF conditional
standard deviation estimations.

These effects are also fully integrated into the mean
equation under the iterative WLS. All the mimicking
portfolio conditional standard deviation coefficients of
(2.34) and (2.42) that are significant in Table 2.9
bacome insignificant after three WLS iterations as
anticipated by Davidian and Carrol (1987).

These results are consistent with Schwert and Seguin
(1990) . Based on tha monthly returns for five size-
sorted portfolios, they find that the portfolio variances
exhibit time-series patterns that are significantly
explained by the movements of the conditional standard
deviations of the CRSP equally-waighted index. They
obtain values around 15 on average for the ST(ITWLS) of
their five portfolios. This is of the same order as the
average ST (ITWLS) obtained herein. Nevertheless, Schwert
and Seguin contend that their functional form accounts
for most of the conditional heteroskedasticity.

The t~values for excess return coefficients of each of
the mimicking portfolios are significant for the majority
of securities of the sample for all of the extracted
factor numbers. This is consistent with the hypothesis
that the first factor is probably a linear combination of
K factors. Due to space limitations, these results are
not presented herein.

For example, see Banz (1981), Shanken (1985), Grinblatt
and Titman (1988), amongst others.
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34.

35.

36.

37.

38.

39.

40.

41.

Due to their E-V efficiency, MIRM portfolios based on a
one~factor structure are sufficient to ensure model
exactness.

These include measures proposed by Merton and Henriksson
(1981), Cumby and Modest (1987) and Korkie (1990).

While the measures of Jensen (1968, 1972), Cumby and
Glenn (1990), Bhattacharya and Pfleiderer (1983), Lee and
Rahman (1990), amongst others, use the CAPM, the measure
of Lehmann and Modest (1987) uses the APT.

The concept of 1local portfolio E-V efficiency of
Crinblatt and Titman (1987) applies to this situation.

The portfolios of the sample of Canadian equity funds
subsequently studied are composed of traded equities.
Thus, their portfolio managers can be assumed to be mean-
variance maximizers given normally distributed equity
returns.

Nevertheless, Grinblatt and Titman (1988) and Cumby and
Glenn (1990) find that the Jensen and the PPW measures
give nearly identical results.

The PPW is derived under the assumption that investors

have power utility functions. Since this utility
function does not exhibit satiation, its marginal
utilities are positive. In contrast, the satiation

associated with quadratic utility functions leads to
negative marginal utilities and to negative Jensen
values.

Glosten and Jagannathan (1988) propose an alternate
method to estimate equation (3.6). They show that E[wr,]
is equivalent to E[we(xr;)], when the wvalue of this
contingent claim is equal to the conditional mean of r,.
This contingent claim is approximated by a polynomial
projection such that:

@ (x;)=E (R, |R;)=X",,,8,1;, (F.1)

where R; is the return on the portfolio benchmark. A
necessary condition for the fund to have an abnormal
performance is that all the coefficients (except for 8,)
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42.

43.

44.

45.

46.

47.

not be equal to zero. The PPW measure given by aquation
(3.4) embodies both the necessary and sufficient
conditions to measure abnormal p-~-formance, and is easily
applied using equations (3.5) an (3.6).

For both one- and multi-period frameworks, one factor is
sufficient to ensure exactness of the APT model. This
factor is probably a linear combination of sevaral
factors.

If the constraint 1lA’=1 is directly inclded in the
minimization (3.11), A = (B’'D'B)B’'D?! will not be a
solution. Huberman, Kandel and Stambaugh (1987)
demonstrate that the mimicking portfolios must have a
unit cost if they are to exist.

Lehmann and Modest (1985b) show that this technique
yields the most efficient estimates.

As predicted by Korkie (1989), the Shanken (1987)
adjustment for nonsynchronous trading generates a non-
positive definite V which cannot be factor analyzed.
Following Korkie (1989), each adjustment matrix is
weighted by a scalar correction factor,f, which is lower
than 1. V=V +fK where V' is the adjusted variance-
covariance matrix, K is the matrix that contains the
lagged covariances, and £ is the adjustment factor. The
f values for adjustment matrices based on 147, 277 and
all stocks are 0.78, 0.59 and 0.54, respectively.

As noted by Johnson and Wichern (1982), amongst others,
the y? test for the number of factors is affected by thae
sample sizae.

The mimicking portfolios can be constructad in either of
two ways. First, the portfolio weights constructed from
daily data can be multiplied by the daily security
returns for the N assets, and then the resulting daily
portfolio returns can be aggregated to obtain the monthly
portfelio returns. Second, the portfolio weights
constructed from the daily data can be multiplied by the
monthly returns (or equivalently the aggraegated daily
returng) on the iandividual securities. Unfortunately,
the first method is unrealistic since Blume and Stambaugh
(1983) find that the returns on a portfolio which is
rebalanced daily are significantly biased by the average

105



48.

49.

50.

51.

52.

53.

54.

of the bid-ask bias in individual sacurity returns. Roll
(1983) argues that portfolio returns calculated using
daily rebalancing do not represent a realistic investor
strategy given transaction costs. As a result, both the
mutual fund portfolios and the mimicking portfolios used
herein represent '"buy-and-hold" strategies with monthly
rebalancing.

For empirical support for the effect of the small firm
anomaly, see Shanken (1985), Lehmann and Modest (1987),
amongst others.

This assumption was invoked by Cumby and Glenn (1990).
They also find that the results are insensitive to the
choice of O.

For homoscedastic residuals, the variance of & is given
by ¢’,Iw?,. For heteroscedastic residuals, the variance
of 8 is given by I w?.e?, where €, are the residual
components of the time-series regression of the K
mimicking portfolio excess returns on the mutual fund
excess returns.

The required degrees of convergence and independence are
as specified by Newey and West (1987).

A description of the actual procedure used herein is
available upon request.

A mimicking portfolio risk premium is the compensation an
investor requires for bearing the risk on the economic
variable on which the portfolio 1loads. Positive
(negative) risk premium occur when investors want to be
rewarded for (hedged against) the systematic risk of that
portfolio. The premium provides insurance (hedging). As
the absolute value of the Sharpe ratio increases, the
mimicking portfolio provides mora compensation for the
variance risk. For an interpretation of the risk premia
values, see Chen, Roll and Ross (1986).

More formally, H,: (u,/0,~u,/C,)=...= (u,/0,-u,/G,), where u,
is the average excess return on a portfolio for month q
and o, is the associated standard deviation.
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59.

60.

61.

62.

63.

64.

65.

This test is conservative since statistical theory
suggests that the second moment of SH, is larger for
small samples. In turn, this causes a decrease in the 2
score.

A possible reascn for not observing the January seasonal
observed by Kryzanowski and Zhang (1992), amongst others,
may be the shorter time period used herein.

This expectation is based on vunreported results.
Specifically, in a Canadian context, the Sharpe ratios of
the minimum idiosyncratic risk mimicking portfolios are
much larger than those of the market indexes.

For a formal justification of the Jensen measure within
the APT framework, see Connor and Korajzyck (1986).

These correspond to the mimicking (or market) portfolios
if the APT (or the CAPM) holds.

Without 1loss of generality, ¢ is assumed to be
statistically insignificant in equation (4.2).

For a sample of 277 Canadian firms (those whose average
price axceeded $5), the Ljung-Box statistics based on the
autocorrelation coefficients applied to the conditional
covariances could not reject stationarity for 96% of the
cases. The conditional covariances were calculated as in
Schwert and Seguin (1990).

The properties of the innovations are .hose discussed
more fully in the APT literature.

The asset pricing literature usually assumes that this
matrix is diagonal.

For empirical applications of a gimilar multivariate
system without time—varying risk premia, see Brown and
Otsuki (1989) and Kryzanowski and Zhang (1991), amongst
others.

All innovations are estimated wusing the state-—space
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67.

68.

69.

70.

71.

72.

73.

procedure of Akaike (1974).

RMF ensuraes the aexactness of the model since it is a
linear combination of the factors of the true factor
structure which have been omitted from the model.

From Schwert (1989), the conditional standard deviation
is estimated using:

(11/2) |F3c|=2123-1@3°3t + I'?,0,([1/2) IFye-s| + @y

where F,, is the innovation of the macroeconomic variable
j; and D, is a dummy variable with a value of 1 at time
t.

Although the majority of the investigations of portfolio
performance based on the Jensen measure assume that the
idiosyncratic components are contemporaneously
independent across mutual funds, the NSUR technique
accounts for the influence of the nonpriced factors that
would affect the time—varying expected returns of mutual
funds.

Although the proof of Dybvig and Ross (1985) depends upon
the efficient set concept (and, thus, is not related to
the implications of the APT model used herein), Lehmann
and Modest (1987) obtain similar conclusions without any
raference to the efficient set concept.

Cross-product terms are not included in their empirical
tests in order to maintain an adequate number of degrees
of freedom.

For a theoretical justification of why B, (i=3,4) tests
the abilities of PM’'s to forecast the realizations of
factor i, whose time-varying risk premium is I,,, see
Lehmann and Modest (1987).

Average mutual fund returns based on different
frequencies are available upon request.

Since the iterative NSUR estimations did not converge
(even after 80 iterations), they are not reported herein.
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75.

76.

77.

78.

79.

80.

8l.

Both x? tests are based on the procedure SYSNLIN which is
available in SAS/ETS. They are based on the constrained
model estimation using the full residual matrix of the
unconstrained model.

The significance of the macrofactor betas and the
magnitude of the R? values are also lowar for the
subperiods than for the entire period. Due to space
constraints, these findings are not reported herein.

In contrast, Cumby and Glenn (1990) observe that their
large, negative Jansen estimates were influenced
substantially by mediocre mutual fund performance during
the nonth of the world market crash (namely, October
1987).

As noted earlier, the magnitude (and not the sign) of Bpo
is informative of timing ability because the sign 1is
affected by parameters other than the covariance between
fluctuations of the fund’s betas and the movements of the
conditional standard deviations of the priced
macrofactors.

For a multi-factor formulation of this type of model and
test of mutual fund performance, see Chapter four.

Since the conditional systematic risk measure is assumed
to be stationary over time, no distinction is made
between the conditional and the unconditional beta
herein.

The conditional covariances of the underlying stocks in
which most Canadian funds invest have been constant over
the sample time period studied herein. For a sample of
277 Canadian firms (those whose average price exceeded
$5), the Ljung-Box statistics based on the
autocorrelation coefficients applied to a spacific time-—
series vector of covariances could not reject the
stationarity assumption for 96% of the cases. The
covariances observed at each time t were calculated as in
Schwert and Seguin (1990).

Their framework implies a constant price of risk.
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87.

88.

89.

For a formal justification of this timing test, see
Lehmann and Modest (1987).

The portfolios of the sample of Canadian equity <£funds
subsequently studied consist of traded equities. Thus,
their portfolio managers can be assumed to be mean-
variance maximizers given assets with normally
distributed returns.

Since the sample has more funds than raeturn observations,
the stacked residual <covariance matrix of the
multivariate system is singular. All the estimations are
performed on two groups of 73 funds. The statistics
reported herein combine the results for these two groups
of mutual funds.

Statistical tests performed on the innovations reveal
that they are generally white noise and normally
distributed. A description of these tests is provided in
Koutoulas and Kryzanowski (1991).

The conditional standard deviations for each market index
are estimated as the fitted values for:

(IV2) |8,| = 2123- 1®ijt + X .04 (11/2) [ 8ae-sl + @y

where 8,. is the innovation of the market index m; and D,
is a dummy variable with a value of one at time t.

This occurs even though the equally weighted index better
accounts for the size anomaly which exists i1y the CAPM.
For example, see Banz (1981).

As reported in, for example, Banz (1981), Shanken (1985)
and Grinblatt and Titman (1988).

The N X N stacked residual covariance matrix for each
subperiod is singular since the multivariate system
contains more equations than observations. However, as
in Brown and Otsuki (1989), the flexibility of the
nonlinear multivariate SUR applied by Burmeister and
McElroy (1988) is wused to overcome this problenm.
Basically, the subsample residual covariance matrices are
taken to be the full residual covariance matrix estimated
for the entire period.
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Since non-bootstrapped iterative and non-iterative
techniques provided similar results, the bootstrapping
procedure was only applied to the non-iterative
procedures. The application of a thousand replications
of a multivariate system of 73 aquations when each
replication is based on an iterativa procedure did not
seem to justify the costs of doing so.
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TABLE 2.1

The results for the Maximum Likelihood Ratio (MLR) test for
the number of factors required to replicate the unadjusted
variance-covariance matrix are reported below. Each cell
contains the number of groups out of 42 for which the p-value
of the MLR test is greater than one (or five) percent. The
null hypothesis is that the K factors represent an exact
factor structure of the variance-covariance matrix of
sacurity returns.

p_value k=1 x= =3 k= =5 k=6
p > .01 1 11 28 36 40 41
p > .05 o} 6 17 31 38 41
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TABLE 2.2

The average (un)adjusted covariances of security returns for
the 42 groups and their standard deviations (std.) are
reported below. The average percentage explanation for each
factor for a six-factor structure for the (un)adjusted
covariance matrices are reported below. The covariances have
been adjusted for nonsynchronous trading using the Shanken
adjustment. Each reported covariance has been multiplied by
1000.

Panel A: Average covariances and their standard deviations

Covariances Percentage
Improvement
Unadjusted Adjusted
Average 0.043 0.101 140.75
sta. 0.009 0.022 46.52

Panel B: Average percentage explanation for each factor

Covariance matrix

Factor Unadjusted Adzusted Change
(%) (%) (%)
1 12.50 24.10 92.80
2 4.076 4.945 21.31
3 3.823 4.261 11.45
4 3.698 3.945 6.69
5 3.597 4.204 16.87
6 3.523 3.578 1.56
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TABLE 2.3

Summary statistics are presented below for tests of the
significance of the risk premia and the exactness of the
following cross-sectional APT equation (2.19): E(R)-R.~=Bl.
The null hypothesis, H,:I'=0, is tested using a x? and t-test
for a six-(eight) and cne—-factor structure, respectively. The
null hypo*hesis, H :E(R)-R=B[, is tested using the CRST test
(2.22). The summary statistics include the average, standard
deviation (std.) and the percentage of rejections of the null
hypothasis for the 42 groups of 30 securities. The covariance
matrices have been adjusted for nonsynchronous trading using
the Shanken adjustment.

Panel A: S8ix and one factor structures based on the unadjusted
covariance matrices

8ix factors One factor
x2 test CSRT t-tast CSRT
Average 6.216 0.004 1.432 0.092
std. 3.420 0.Q006 1.061 0.254
% of 7.1 0 24.3 0

Rejections

Panel B: Eight and one factor structures based on the adjusted
covariance matrices

Eight factors One factor
x? test CSRT t~test CSRT
Average 11.593 0.009 1.676 0.073
stad. 10.307 0.028 1.141 0.182
% of 13.5 0 31.7 0

Rajections
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TABLE 2.4

Summary statistics are presented below for the t-values for
tests of the intercept and of the betas for the residual
market factor (RMF) for equation (2.24) for each of the 1260
sacurities. The summary statistics include the average,
standard deviation (std.) and the percentage of rejections of
the null hypothesis for each type of test. The covariance
matrices have baen adjusted for nonsynchronous trading using
the Shanken adjustment.

Panel A: 8ix and one factor structuras based on the unadjustad
covariance matrices

8ix factors one_facto
Intercept Beta Intercept Bata
Average -0.000 0.458 -0.000 0.838
std. 0.000 1.556 0.000 1.232
% of 0 18.2 0 34.7
Rejections

Panel B: Eight and one factor structures based on the adjusted
covariance matrices

Eight factors One factor
Intercept Beta Intercept Beta
Average -0.000 1.464 -0.000 1.110
std. 0.001 2.132 0.000 2.279
% of (o] 31.6 0 37.3
Rejections
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TABLE 2.5

Summary statistics are presented below for tests of the
significance of the risk premia and the exactness of the
following cross—sactional APT equation which includes the

residual market factor (RMF): E(R)-R=BI[+R,[,. The null
hypothesis, BH,:['=0, is tested using a X* and t—test for a six
(eight) and one factor structure, respactively. The null
hypothesis, H,:[,, is tested using a t-test. The null

hypothesis, H,:E(R)-R.=B[+B,I,, is tested using the CRST test
(2.22). The summary statistics include the average, standard
deviation (std.) and the percentage of rejections of the null
hypothesis for the 42 groups of 30 securities. The covariance
matrices have been adjusted for nonsynchronous trading using
the Shanken adjustment.

anel A: S8ix and one factor structurses based on the unadjusted
covariance matrices

8ix Factors One Factor
t-taat x3 tast CSRT t-tast x3 teast CSRT
(RMF) (RMF)
Average C.475 8.788 0.004 0.213 4.039 0.137
sta. 1.002 9.403 0.133 0.961 5.181 0.249
¥ of 7.1 4.7 0 4.9 19.5 0
Reajections
ne :t Eight and ona factor structures based on the adjustad

covariance matrices

Ejight Pactors One FPactor
t-teast x2 test CSRT t-tast x2 tast CSRT
(RMF') (RMF)
Average 0.157 11.321 0.004 0.105 5.057 0.031
std. 0.903 10.520 0.008 0.957 8.584 0.046
%X of 5.3 7.9 ) 2.4 21.9 ]

Rejections
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TABLE 2.6

General statistics from the iterative weighted-least-squares
(ITWLS) estimations of the conditional standard deviations of
the first mimicking portfolio for various factor structuraes
are reported below. The conditional standard deviation is
modelled as follows:

O =0, + Zu:.a].as.@jc-i + €4 (2.31)
(R/2)*?| €4 | =B, + B, (FIT), + u, (2.32)

"Coef." refers to the estimated coefficients in (2.31) that
are significant at the 0.05 level. "Q( )" is the Box-Pierce
statistic which is defined as TxX _,r%. It is distributed
as X%., where L is the number of lags im (2.31). "Q2( )" is
the Box-Pierce statistic for the squared residuals of (2.31).
ST( ) is the studendized range statistic for the residuals of
(2.31). Both Box-Pierce statistics are based on a 24 lag
structure.

Panel A: S8ix and one factor structures based on the unadjusted covariance
matrices

Six Pactor Structure

Cosf. Autocorrelation Hetaroscedasticity
Q(OL8) Q(ITWLS) Q2(OLS) Q2(ITWLS) ST{OL8) ST{ITWLS)
Average 6.047 26.909 12.055 274.735 19.683 13.143 8.866
std. 2.104 17.375 5.471 211.939 18.012 14.779 1.444

OCne Factor Structure

Coef. Autocorrelation Hetaroscadasticity
Q(OLS) Q(ITWLS) Q2(OLsS) Q2 (ITWLS) ST(0L8) SBST{ITWLS)
Average 7.40S 30.297 20.9S59 497 .643 26.507 11.395 8.206
std. 1.236 8.083 5.773 182.414 8.180 1.416 1.041

Panel B: Eight and one factor structures based on the adjusted covariance
matrices

Eight Factor Structure

Coaf. Autocorrelation Hataroscedasticity
Q(OLS) Q(ITFLS) 02(OLS) Q2(ITWLS) ST(0L8) ST(ITWLS)
Average 5.861 24.699 23.539 181.961 18.452 10.610 9.027
8td. 2.070 11.463 £3.798 143,723 9.332 3.210 2.789

One Factor Structure

Coef. Autecorrelation Heteroscedasticity
Q(OLS) Q(ITWLS) g2(OLS) Q2(ITWLS) BT(OLS) ST(ITWLS)
Average 6.780 31.263 21.954 505.536 28.009 11.463 8.159
stad. 1.179 9.541 7.076 206.529 8.632 1.453 1.068
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TABLE 2.7

The number of securities with significant conditional standard
deviation coefficients at the 0.05 level for each mimicking
portfolio for the multi-period APT for factor structures of
"six", "eight" and "one" are reported below. The covariance
matrices ("v") are "adjusted" and "unadjusted” tfor
nonsynchronous trading using the Shanken adjustment. The
conditional standard deviation equations are:

hy=0 + §O, + u, (2.34)
he=a + ¢O, + 0,0, + u. (2.42)
"No 6," and "©O,." refer to the estimations of equations (2.34)
and (2.42), respectively. While the former does not include

the conditional standard deviation, ©;,, on the residual market
factor (SFM), the latter docaes.

Pactors 6 8 2 1

v Onadjustad Adjusted OUnadijusted Adjustad
Goef. 8 B9, e8! no 8, 8, Do 8, 8, Do 9,
] 1187 1162 963 916 961 1257 953 906
9, 115 109 119 106 942 1097 1105 1024
8, 1438 142 173 149
9, 284 224 125 109
9, 114 108 129 104
8, 137 136 114 101
8, 249 244 167 152
o, 125 109
e, 122 100
9, 47 - 4s - 641 - 638 -
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TABLE 2.8

General statistics from the iterative weighted-least-squares
(ITWLS) estimations are reported below for the following
multi-period APT without a residual market factor (RMFT):

R:=0 + BR,, + u, (2.33)
h=0. + ¢0, + e, (2.34)

The c:ullzhggothesli':, H‘,:2 3=0, is testad naing the F-test (F-
exa . . -y w " 4 1

freedx)m,( and) is used otggges: fthn'o 2‘; h:sog g:ggg:: gg
(2.33). "Q2 ( )" is the Box-Pierce statistic based on the 24
lag strxucture for the squared residuals of (2.33). "ST ()" is
the studentized range statistic for the residuals (2.33). The
averages, standard deviations (std.) and the % of rejections
of H, are based on the 42 groups of 30 securitias.

Panel A: Six and one factor structures based on the unadjusted covariance
matrices

Six Factor Structure

F-aexact x:-Test Hetaroscedasticit

Average 0.045 6338.78 170.685 139.325 12.809 12.173

std. 0.081 1092.57 69.912 37.622 2.509 0.609
X of 0 100
Rejections

One Factor Structure

FP-exact x2-Test Heteroscedasticit
§2i§§§i ﬁz]:!gggi E!]§;Ei E!!:EE;E‘

Average 0.263 4992.57 187.509 150.433 13.095 12.833

std. 0.171 862.55 39.858 26.603 0.577 0.595
X of | 0 100
Rejections

Panel B: Eight and one factor structures based on the adjustaed covariance
natrices

Eight Factor Sstructure

P-axact x3=-Test Keteroscodasticitz

Average 0.111 5772.54 204.319 157.125 13.684 12.022
std. 0.153 1138.29 506.428 38.181 5.647 0.608
% of 0 100

Rejections

One Factor Structure
F-exact x2-Tast Eetaearoscadasticit

PIWLS }
Average 0.243 4814.68 183.892 152.190 13.648 13.468
std. 0.556 994.45 43.276 28.907 1.082 1.186
X of 97.5 100
Rejections
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TABLE 2.9

General statistics from the iterative waighted-least-squaras
(ITWLS) estimations are reported below for the following
multi-period APT with a residual market factor (RMF):

R.=3 + BR,, + B@,, + u, (2.41)
he=a + ¢B, + ¢.8;. + e, (2.42)

The null hypothesis, H,: =0, is tested using the F—test (¥-
exact) (2.35). The "y test"” of R/’Z'R has K+l de £
freedom, and )i.s used tox assess the g'nnbag'of factors i%re(gs.ag)

(including the RMF). "Q2 ( )" is the Box-Pierce statistic
based on the 24 lag structure for the squared residuals of
(2.33). "ST ( )" is the studentized range statistic for the
residual).s (2.33). The averages, standard deviations (std.)
and thoe $ of rejections of H, are based on the 42 groups of 30
securities.

Pane : 8ix and one factor structures based on the una " :uaxted covariancs
matrices

8ix Facter Structure

P-axact x3-Test Hataroscedasticit
~OZTOLET GZITTWESL B {OLET ETIITRIAT

Average 0.043 6371.12 160.612 131.376 12.765 12.165
sta. 0.084 1026.04 38.183 28.492 2.918 0.570
% of 0 100

Rejections

One Factor Structure

P-exact x3-Test Hetaroscedasticit
Q2 (TTWLS] ST {OLS

Average 0.141 4864.25 135.400 146.959 13.093 12.766
std. 0.101 829.76 36.999 26.124 0.576 0.608
% of 0 100

Rejections

ne : Eight and one factor structures based on the adjusted covariance
matrices

Eight Factor Structure

F-exact y?-Test Hetaroscedasticity
Q2 (OLS] Q2 {ITWLS) ST(OLS) ST (ITWL3S)
Average 0.091 6916.46 154.862 121.229 13.172 11.978
sta. 0.129 5906. 44 37.927 39.242 4.149 0.604
x of 0 100
Rejections
One Factor Structure
F-exact y2-Test Haetaroscedasticity
Q2 (OLSY Q2 [ITWLS}) ST(OLS) BT(ITWLS)
Average 0.124 4906.73 187.151 144.392 13.087 12.810
stad. 0.088 775.82 40.571 34.549 0.551 0.583
X of o] 100
Rejections




TABLE 3.1

The portfolio benchmark abbreviations are described in this
t:.-'.b!.e. Portfolio benchmarks are minimum idiosyncratic risk
mimicking portfolios (MIRMP) or market indexes (INDEX). The
m.:mber of factors in the factor structure is one, six or
eight. The variance~covariance matrix of returns (V) can be
unadjusted or adjusted for nonsynchronous trading. The MIRMP
are formed using the 147 firms whose average price was below
$5 (Small), the 277 firms whose average price was above $5
(Large), or using all firms (All).

Factor

Identifier Type Returns Structure v Sampla
MN1P 147 MIRMP Monthly 1 Factor Unadjusted Small
MNLP277 MIRMP Monthly 1 Factor Unadjusted Large
MN1P424 MIRMP Monthly 1 Factor Unadjusted all
MS1P147 MIRMP Monthly 1 Facctor Adjusted Small
MS1p277 MIRMP Monthly 1 Factor Adjusted Large
MS1P424 MIRMP Monthly 1 Factor Adjusted All
UN6P 147 MIRMP Monthly 6 Factors Unadjusted Small
MN62277 MIRMP Monthly 6 Factors Unadjusted Large
MNEP 424 MIRMP Monchly 6 Factors Unadijusted All
MS8P147 MIRMP Monthly 8 Factors Adjusted Small
MS8pP277 MIRMP Monthly 8 Factors Adjusted Large
MS8P424 MIRMP Monthly 8 Factors Aajusted aLrl
TSE300 INDEX Monthly

VWI INDEX Monthly
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TABLE 3.2

The Sharpe ratios (S,) given by u,/0,, where i, is the average
excess return of portfolio i and 0, is the associated standard
deviation, for the minimum idiosyncratic risk mimicking (MIRM)
portfolios for various factor structures and the market
indexes are reported belcw. The subscript of the Sharpe ratio
refers to the MIRM for factor i. For a description of each
benchmark portfolio, see Table 3.1.

Benchmark S, S, S, S, S, S¢ S, S,

MN1P147 -0.015

MN1P277 0.077

MN1P424 0.064

MS1P147 -0.014

MS1P277 0.075

MS1P424 0.064

MNEP147 -0.021 -0.019 -0.017 -0.016 -0.002 -0.013

MN6P277 0.079 0.079 0.076 0.081 0.€075 0.079

MN6P424 0.069 0.068 0.071 0.069 0.063 0.9069

MS8P147 -9.021 -0.026 -0.017 -0.005 -0.006 -0.024 -0.027 -0.018
Ms8p277 0.099 0.091 0.093 0.087 0.091 0.088 0.092 0.085
Ms8pP424 0.073 0.076 0.077 0.075 0.075 0.077 0.075 0.063

TSE300 0.005
VWI 0.005
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TABLE 3.3

The Mean and Standard deviation (Std.) for the Jobson-Korkie
Z—~scores for the mutual funds for each benchmark, and the
numbers of funds with significantly positive performances (G)
and significantly negative performances (L), are raeported in
this table. The Z-scores are basad on estimated variance-
covariances using ordinary and Newey-West estimators, and on
the 14 different portfolio benchmarks described in Table 3.1.
The Z scores are given by equation (3.1). The Newey and West
estimator is given by equation (3.15). It adjusts the
variance-covariance matrix (V) of security returns for
autocorrelation and heteroskedasticity.

Z-Score

Ordinary V estimates Newey-Wast V estimateas
Benchmark Mean std. G L Mean std. G L
MN1P147 -0.109 0.845 0 6 -1.112 1.172 7 10
MN1P277 -1.228 1.236 0 38 -1.462 1.853 3 56
MN1P424 -0.297 1.211 0 25 -1.181 1.824 8 45
MS1P147 -0.106 0.846 0 7 0.004 1.174 6 10
MS1P277 -1.229 1.236 0 38 -1.463 1.853 8 Se
MS1P424 -0.999 1.211 0 25 -1.184 1.824 8 45
MN6P147 -0.127 0.852 0 6 -0.022 1.183 6 10
MN6P277 -1.299 1.236 0 1 -1.576 1.914 6 5o
MN6P424 -1.069 1.211 0 25 -1.267 1.863 7 48
MS8P147 -0.141 0.845 0 6 -0.044 1.192 6 i
MS8P277 ~-1.343 1.098 0 35 -1.716 1.933 2 58
MS8P424 -1.18C 1.211 0 30 -1.440 1.902 7 55
TSE300 0.105 1.242 9 8 0.243 1.769 8 16
VWI 0.086 1.210 5 9 0.282 1.762 18 15
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TABLE 3.4

The %? values for various tests of the equality of multiple
mean vectors of Z-scores for various types of portfolio
banchmarks are raported below. The )* test is given by
equation (3.16). In Panel F, the Z—-scores are averaged across
the 12 portfolio benchmarks for each mutual fund to have a
vactor of Z-scores which is comparable to those obtained for
the market indexe: An "*" indicates significance at the 0.05
level. "Pozst. n" refers to portfolio n.

Panel A: MIRM portfolios which are based on different factor structures
(one—- versus multi-factor structuras)

Porz. 1 MN1P147 MN1P277 MN1P424 MS1P147 MS1P277 MS1P424
Porz. 2 MN6P147 MN6P277 MN6P 424 MS8P147 MS8P277 MS8P424
x? 761.23* 544.30~* 859.66* 5952.12%* 50.05* 1552.51*

-

MULTIVARIATE %°: 71.1.51~*

Panel B: MIRM portfolios based on different variance-covariance
matrices (unadjusted versus adjusted for nonsynchronous trading)

Por=. 1 MN1R147 MNIP2TT MNIP4Z4 MNGP 147 MNGPI™7 MN6P424
?orz. 2 “"1?14/ MSI2277 MS1P424 MS3Pld” MS3rIT” MsS3pP424
e 1349.5 12.89x 534.256% 320.30”" T.l47 1922.32~x

MULTIVARIATE xf: 2480.47*

Panel C: MIRM portfolios which are based on the samples of small versus
large firms

Porc. I MN17147 MN6PL47 MS1P147 MS3Pl4”
fort. I WNL?277 MN6R277 WSI?27 MS8P27.
pa 10. §45.57~ £14.7 1037.61+

54
MULTIVARIATE x:: 2864 .06*

Panel D: MIRM portfolios which are based on the samples of small versus
all firms

Por=. 1 MN1P147 MN6P147 MS12147 MS8P147
Porc. 2 MN1P424 MN6P424 MS1P424 MS8P424
13 419.56% 464,74~ 425,37* 535.22%

MULTIVARIATE %2: 2640.46%*

Panel E: MIRM portfolios which are based on the samples of large varsus
all firms

Port. 1 MN1P277 MN6P277 MS1P277 MS8P277
Port. 2 MN1P424 MN6P424 MS1P424 MS8P424
x¢ 3476.19* 445 .36% 473.46* 535.22*

MULTIVARIATE y2: 2640.46*
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Panel F: Market indexes and MIRM portfolio benchmarks versus markat
indexas ’

Porz. 1 MIRM MIRM TSE300
Port. 2 TSE300 VWI VWI
YAl 772.39* 976.35* 4.58*
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TABLE 3.5

The %? values for various tests of the equality of multiple
mean vectors of Z-scores when the wvariances and covariances
are estimated using the Newey-West astimator for varipus types
of portfolio benchmarks are reported below. The %‘ test is
given by equation (3.16). In Panel F, the Z scores are
averaged across the 12 %?rtfolxo benchmarks for each mutual
fund £o have a vector of Z—-scores which is comparable to those
obtained for the market indexes. An "*" indicates significance
at the 0.05 level. "Port. n" refers to portfolio n.

Panel A: MIRM portfolios which are based on different factor structures
(one~ versus multi-factor structuras)

Porc. 1 MN1P147 MN1P277 MN1P424 MS1P147 MSip277 MS1P424
Port. 2 MN&P147 MN6P277 MN6P424 MS8P147 MS8P277 MS8P424
ya 148.41~ 52.1C=* 46.77% 213.24~* 12.74~ 253.45%*

MULTIVARIATE %?: 744.14~

Panel B: MIRM portfolios basaed on different variance-—covariance
matrices (unadjustad versus adjusted for nonsynchronous trading)

2ort. 1 MN1P147 MN1P277 MN1P424 MN6P147 MN62277 MN6P424
Port. 2 MS12147 MS1P277 MS1P424 M58P147 MS8PZ77 MS8P424
ya 247.3%6~ 0.06 10.53~ 174.30% 4.384-~ 388.82«*

MULTIVARIATE x°: 781.48«

Panel C: MIRM portfolios which are based on the samples of small versus
large firms

Port. 1 MN1P 147 MN6P147 MS1P147 MS8P147
Port. 2 MN1P277 MN6P277 MS1P277 MS8P277
' 227.74~ 229.31~ 229.94%* 263.94x*

MULTIVARIATE x‘: 364.93*

Panel D: MIRM portfolios which are based on the samplaes of small versus
all firms

Port. 1 MN1P147 MN6P147 MS1P147 MS8P147
Port. 2 MN1P424 MN6P 424 MS1P424 MS8P424
x? 176.43* 177.48* 178.97* 205.03*

MULTIVARIATE y%: 433.02*

Panel E: MIRM portfolios which are based on the samplas of large versus
all firms

Port. 1 MN1P277 MN6P277 MS1P277 MS8P277
Port. 2 MN1P424 MN6P424 MS1P424 MS8P424
X 88.66% 98.43* 87.33* 39.42*

MULTIVARIATE x°: 258.99*
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Panel F: Market indexas and MIRM portfolio benchmarks versus market

J.naexes

Port. 1 MIRM MIRM TSE300

Port. 2 TSE300 UWI Wl
%2 364.28* 367.29+* 23.57+
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TABLE 3.6

The Mean and Standard deviation (Std.) of the PPW scores for
the mutual funds for each benchmark, and the numbers of funds
with significantly positive and negative performances are
reportaed below. The PPW scores are based on the assumption of
homoscedasticity (and heteroskedasticity), and on the 14
different portfolio benchmarks described in Table 3.1. The
numbers of funds that have significantly positive performances
basad on a t-test of the null hypothasis that the average PPW
is not significantly different from 0 when the standard
deviation of the PPW score is calculated under the assumptions
of homoscedasticity and heteroskedasticity are denoted by
"GHO" and "GHE", respectively. Similarly, the corresponding
numbers of funds that have significantly negative performances
are denoted by "LHO" and "LHE", respectively.

Benchmark Mean Std. GHO GHE LHO LHE
MN1P 147 0.00044 0.00440 1 1 ) 6
MN1P277 -0.00288 0.00465 0 0 29 33
MN1P424 ~-0.0024s 0.00463 0 0 24 25
MN6P 147 0.0004s6 0.00440 1 1 7 7
MN6RP277 -0.00309 0.004456 0 0 39 41
MN6P 424 -0.00268 0.00465 0 0 26 28
MS1Pl47 0.00044 0.00440 1 1 6 6
MS1P277 -0.00289 0.00465 o] 0 30 33
MS1P424 -0.00246 0.00463 0] 0 24 25
MS8P147 0.00082 0.00436 2 3 6 6
MS8P277 -0.00345 0.00468 0 0 43 45
MS8P424 -0.00291 0.00467 0 0 29 31
TSE300 -0.00016 0.00446 11 12 9 10
VWI -0.00161 0.C0456 0 1 17 17
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TABLE 3.7

The correlation coefficients for various pairs of Z- and PPW
scores are reported below. The Z scores estimated using the
variance—covariance matrix of returns adjusted for
heteroskedasticity using the Newey and West (1987) method are
denoted by Z°. The various portfolio benchmarks are described
in Table 3.1.

Benctmark 2 AND Z° PPW AND 2 PPW AND 2°
MN1P147 0.918 n.942 0.853
MN1P277 0.889 0.819 0.682
MN1P424 0.742 0.904 0.661
MN6P147 0.918 0.934 0.846
MN6P277 0.889 0.827 0.684
MN6P424 0.876 0.794 0.657
MS1P147 0.918 0.942 0.853
MS1P277 0.889 0.818 0.683
MS1P424 0.742 0.905 0.661
M$8P147 0.919 0.905 0.830
MS8P277 0.85% 0.867 0.6382
MS8P424 0.869 0.819 0.672
TSE30Q 0.922 0.878 0.733
VWl 0.913 0.901 0.733
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TABLE 3.8

The %’ values for various tests of the equality of multiple
mean vectors of PPW-scores for various types of portfolio
banchmarks are reported below. The %* test is given by
equation (3.16). In Panel F, the PPW scores are averaged
across the 12 portfolio benchmarks for each mutual fund to
obtain a vector of PPW-scores which is comparable to those
obtained for the market indexes. An "*" indicates significance
at the 0.05 level. "Port. n" refers to portfolio n.

Panel A: MIRM portfolios which are based on different factor structuras
(one— versus multi-factor structures)

Port. 1 MN1P147 MN1P277 MN1P424 MS1iP147 MS1P277 MS1P424
Port. 2 MN6P147 MN6P277 MN6P424 MS8P147 MS8P277 MS8P424
ya 1921.21~ 5531.50* 5099.56* 1797.72* 4281.96* 4606.08*

MULTIVARIATE %%: 6031.71~

Panel B: MIRM portfolios based on different wvariance~covariance
matricas (unadjusted versus adjusted for nonsynchronous trading)

Per=. 1 MN1P147 MN1RP277 MN12424 MN6P147 MN6P277 MNEP4z4
Por=. 2 MSiPl47 Ms1227 MS1P424 MS8P147 MS8P277 MS8P424
Y& 102.85~ 3440.29* 3405.78~ 1745.42x 3171.28x% 3956.72~

MULTIVARIATE ¥°: 4950.56«

Panel C: MIRM portfolios which are based on the samples of small versus
large firms

Port. 1 MN1P147 MN6P147 MS1P147 MS3P147
Port. Z MN1P277 MN6P277 MS1P277 M38P277
Yo 3714.75* 3767.01+* 3715.12* 3781.323x

MULTIVARIATE yx°: 4950.24~*

Panel D: MIRM portfolios which are based on the samples of small versus
all firms

Port. 1 MN1R147 MN6P 147 MS1P147 MS8P147
Porc. 2 MM 2424 MNEP 424 MS1P424 MS8P424
x? 3¢ 2,36% 3540.30~* 3492.51~* 3404.10%

MULTIVARIATE yx%: 6024.44*

Panel E: MIRM portfolios which are based on the samples of large versus
all firms

Port. 1 MN1P277 MN6P277 MS1P277 MS8P277
Port. 2 MN1P424 MN6P424 M51P424 MS8P424
X 4610.93~ 4572.09* 4616.94* 3990.99~

MULTIVARIATE %%: 4769.62*
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Panel F: Market indexas and MIRM portfolio benchmarxrks versus market
indexaes ‘

Port. 1 MIRM MIRM TSE300
Port. 2 TSE300 VWI VWI
x? 20.98+« 4194.62* 368,71«
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TABLE 3.9

'\.‘ugtl%oﬁstnpp.d z-iscoros fox;t q.adclin -f:'th of thzn .y:::" for each
benchmark are re . The Z- on the
:.:stoang second lines for Peoacl_t portfolio benchmark are based
on a variance—-covariance matrix umnadjusted and adjusted forx
%ot:ros]k.gg?stigzty, rgspgctxvelys. The adsjeustmnt 3 l‘lo:teg gx.:d
is "use or thi . The olio

Hettunii2s hre Hesceibed gugee £

! ] in Table z-valugs" h:.gher"and
lower than 1.96 and -1.96 are ed by "+" and "=*",
respectively.

<A fE MA AP Y Ju JL AU SE oc NO CE
wreLe? .l ~3.6® 1.7 L3 c.3 0.0 0.2 3.4+ =5.3¢ -2.4* 0.4 2.7+
o4 ~4,0¢ 1.6 1.3 ‘el 0.0 0.3 2.8+ -6.8¢ -3.2¢ 0.4 3.7+
np27? 3.3 3.: 2.5+ 0.2 -3.3 ~-1.5 -0.2 1.6 ~4.4* -2.5¢ 1.8 5.5+
P 3.2 2.0+ 3.3 ~..3 ~-1.4 -0.2 1.7 =5.5¢ -3.1l* 1.6 6.4
el . =~2.4 2.5+ 3.3 -2.5 -1.3 =-0.2 1.8 ~5.0¢ -2.5¢ 1.7 5.7%
S ~3.4 2.0+ 3.7 ~3.3 ~1.2 -0.2 1.8 -6.1* -3.,2¢ 1.5 6.3+
MR1P147 tee ~3.6¢ 1.7 1.3 .3 0.0 0.3 1.4+ =5.9¢ -2.4* 0.4 e
P | -4. 3" 1.6 2.3+ P 0.0 0.3 2.8+ -6.3¢ -3.3* 0.4 3.6+
NB12277 c.3 3.2 2.6+ 0.2 ~-3.3 ~1.5 «0.2 1.6 -4,5* -2.5+ 1.8 5.5+
3 2.3 2.3+ 2.3 -.. ~i.4 -0.2 1.7 -5.5¢ -3.1+ 1.6 6.14
M81pe24 3.3 -3.4 2.5+ 2.5 ~-2.8 ~1.3 =-0.2 1.8 =-5.0¢ =2.5¢ 1.7 5.7+
.3 ~3.4 2.3+ Jd.8 -2.3 ~1.2 -0.2 1.8 ~6.l* -3.2¢ 1.5 6.9+
“ep147 e -3.5¢ 1.7 1.7 cee ~0.1 0.2 1.5+ -6.0® ~2.4" 0.5 2.7+
P ) ~3.3¢ 1.8 L.a L. ~0.1 0.2 2.9+ 5.7 =3.2* 0.5 1.6+
wep277 T.3 2.2 2.4+ 3.2 ~3.3 ~1.5 -0.2 1.7 -4,7* -2.4" 1.8 5.6+
L.8 3.2 2.3+ 3.3 -_.d “1.4 -0.2 1.7 -5.7* ~-3.0* 1.6 6.24
MHEP4A24 e ~3.3 2.4+ S.: ~-2.7 1.3 =-0.2 1.8 ~5.3* -2.5* 1.7 S.3¢
PP ~3.3 2.3+ 3.7 ~-s.3 ~1.2 =0.2 1.9 -6.47 ~3. 1l 1.5 7.2+
HoaP147 <o ~3.3¢ 1.8 ..3 L4 0.2 0.2 1.4+ -6.0* -2.4* 0.3 .74
<. d ~3.5% 1.5 1.3 L.8 0.9 0.2 2.9+ -6.9* -3.2* Q.3 3.6+
NBRP277 P } 3. 1.3 3.4 -l.2 -1.4 =0.7 1.4 -6.2* -2.8¢ 2.4+ 4.44
2..4 3.3 .7 3.3 -7 ~1.4 -0.8 1.3 =7.9* -4.J0¢ 2.5+ 4.3+
HEAP424 3.3 -~3.2 2.5+ 3.6 -2.3 ~1.3 ~0.2 1.8 -5.5¢ -2.5* 1.6 5.7+
.4 ~3.2 2.:¢ 3.8 -3.7 -1.2 -3.2 1.8 -6.3* -3.1® 1.4 T.14
TIR100 =3.d ~3.2 1.3 -J.a -2.4 ~l.4 -C.4 2.3+ -4,3* -1.8 2.0+ 1.9+
-3.6 ~3.2 1.7 -2.2 ... d ~1.3 -0.4 2.6+ -4.4° -2.0¢ 2.1+ d.4+
a2 ~C.3 2.56% 3. -2.2 ~1.6 -0.7 2.4+ -4 .0 2.0 1.4 3.3+
~3.3 2.2+ P -.ed -1.5 -0.6 2.6+ -4, -2.3* 1.6 4.0+

132




TABLE 3.10

The average (ave.) bootstrapped Z-score and the associated
standard_deviation (std.) for each month of the !ear across
the sample of mutual fund returns are reported below. Z and
2" refer to the Z—-scores based on a variance-—covariance matrix
unadjusted and adjusted for heteroskedasticity, res ectivo.l{.
The adjustment of Newey and West (1987) is used for this
purposé@. The t-values ‘ara for the test of H :E(Z),=0 for
i=January, ...,December, and the F-values are for the tast of
H :E%Z),,,F. ..=E(2),,=0. £-values higher and lower thap 1.96 and
1.96 are deno ad by "+" and "*",” respectively. "'" denote3s
significance at the 0.05 level.

JA FE MA AP MY

d
&
z

SE oc NO s 4

ave. (2) Q.5
std. (Z) 1.2
t-valuse S5.ie

F=value 2615.6*

-1.2 -i.5 1.8 -3¢ -1 1.1 3.2+

-0
LY
-
L)
-
orna

3

-
S

—_No

s
-
o
o
o

: . . t.a 1.2 1.
~10.9w -10.3%  24.6% =27.4%  -42.3e 10.5¢  21.gw

ave. (2*") Q.6 -1.
std. (27} 1.§

t-value 4.9¢

-1. 2.1+ -).6* ~2.3®

- O
PR
oo

O
PRI
Wit
-
woa

-
—~o
& oo
-
@t
—
>
-
o
©
O

. 1. . .
-10. ~10.3* 23,2+ ~30.6¢ -33.5¢ 10.

f=value 2447 .23
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TABLE 3.1l
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SE
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JA

Wi1r147

=2.0*
=2.47

-0.4
-0.5

Wp277

Wnpraze

-1.0
-1.1

=2.7¢
~2.8*

-0

Lrie?

-0

ME1P277

-2.0%
-2.4%

~0.6

-1l.1

=-2.1l*
~2.5*

~0.4
3

MS1P42¢

MNERP14AT

1.
-2.56"

-2.

=-0.§
-1.3

277

2.4
A

=2

=0.6
-1.0

-g.
-Q

-2.1¢
~1.6

-3.5
Q

mepe4

o w
..

MESP147

KE8P277

~2.2¢%
-2.a*

~i.1e
-1.6

=0.3
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MS8P424

TSX300

-0.1
=-0.1
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TABLE 3.12

The average Yx’-values of the mean Z-score  wvectors for
comparisons between various pairs of portfolio benchmark
roupings based on a specific portfolio construction attribute
or eac month of the year are reported below. For greater
details on the portfol:.o benchmarks and their groupings, see
Tables 3.1 and 3.4, rasgect:wely "k ‘denotes statistical
significance at the '0.05 level

Panel A: Comparisons between minimum idiocsyncratic risk mimicking (MIRM) portfolios t.hlt dl.!!lt naoorduq to one
attribute used for portfolio benchmark comstructicn. The inteqger in sach cell P o the of pairs
(out of & total of ¢ pairs) for which the null hyothesis of the equality of the mean t-nua:o- ia rejected.

ONR-TAC. ONADJUS. SMALL TIR. DALL FIR. LARGE TIR.

MOLZI-FAC. ADJUSTED LARGE FIR. ALL FIRMS ALZL FIRKS

3A 9367.65° 8035.38* 1523.97¢ 1209.59 2664.45¢
6 s 4 ‘ 4

FE 6081.087 2238.59°¢ 1944.51° 5659.73¢ 4942,07
6 s 4 4 1

MA 3259.23¢ 2681.57% 6249607 6341.33¢ 2036.35¢
6 6 4 4 1

AP 2779.05* 3062.97¢ 4888.05° 1379.48* 5572.78*
6 6 4 4 4

MY 3214.86¢ 3893.33 11510.63¢ 10921.78° 8983, 54
3 H 4 4 1

U 757.64°¢ 1065,71¢ 144.33 66.08° 160,91°
6 6 4 4 1

SL 702.40° 1426.05¢ 211.39¢ 501.57+ 226.49¢
5 5 4 4 4

AU 7026.50° 3525.78° 19864 .48 15738.55° 18772.0%*
5 5 3 4 1

SE 471.39¢ 721.54" 2494.16° 2332.39¢ 1849.96°
s H 3 1 3

oc 1693.85¢* 2395.07* 20931.38° 2441194 23A71,2%0
5 6 4 4 4

NO 2314.56¢ 5551.39° 16431.34° 15913.63° 7405.29¢
6 5 4 4 &

oE 614.89* 418.69* 3650.35¢ 3468.04¢ 868.49°
6 5 a 4 N

Panel B: Comparisons betwssn pairs of markat index benchmarks and betwean the MIFM and value-weightad aarkat

__MONTHLY TSRI0D
TSE300 NI A1 29

<A 18547.33" 22952.71* 203.31°
FE 16550.79* 14215.78* 4717..0°
MA 2037.46° 273.37* 4895.54¢
AP 10279.87¢ 8184.21* 6447.35"
MY 585.24" 266.92¢ 2591..4¢
U 714.39" 832.46* 351.36°
2 8210.84° 1924.50° 9523.14*
AU 1210.99* 165.62 5932.17¢
SE 870.18" 2065.24° 8.46°
oc 11J41.64" 17125.69* 7033.28"
NO 4781.46° 2516.31* 14005.00*
DE 1060.61* 1117.97¢ 591.78*
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TABLE 3.13

The average )‘-values of the mean Z-score vectors (when the z-
score eaestimations are based on variances and covariances
adjusted using the Newey-West estimator given by equation
(3715)) for comparisons ‘between various rgalrs of” portfelio
benchmark groupings based on a specific portfolio construction
attribute for each month of the g ar are reported below. For
greater details on the port olioc Dbenc rks and their
groupings, see Tables 3.1 and 3.4, respectively. "*" denotes
3tatistical 31gn1f1cance at the 0.05 level.

Panel A: Camparisons betwesn ainimum idiosyncratic risk mimicking (MIRN) port:ou.c. that d.u!tr according to oae

attribute used for po:t!ouo basclmark cocnatructicn. The inategar in each cell o the af paira
(out of a total of 6 pairs) for which the null hypothesis of the equality of the mean Z--co:-. is rejectad.

ONE-TAC. OUNADJUS . SMALL FIR. SMALL FIR. LARGE FIR.

MOLTI-FAC. ADJUSTID LARGE FIR. ALL FIRMS ALL TFIRMS

A 1849.40° 1422.16° 398.32¢ 311.91° 456.76*
é [ 4 4 4

FE 1342.67 789.60° 187.83+ 655,97 1290.68*
6 6 3 4 4

MA 302.74¢ 722.11* 1008.13* 1047.76 322.20*
6 (3 4 4 4

AP 580.08* 693,32* 467.10¢ 365,13+ 1365.36*
8 4 4 4 4

MY 625.16° 976.97¢ 1788.49* 1478.36° 1654.43°
6 6 4 4 4

Pril 185.57¢ 280.39¢ S.41* 0.46 595.87
6 8 3 9 3

JL 300.71+ 2587.13¢ 36.30* 60.78° 27.49°
§ 3 k) 4 4

AU 1212.72¢ 923.23" 2019.27* 1269.22¢ 1672,92¢
6 4 4 4 4

SE 301.04- 430.74* 306,19 474,35+ 1054.64"
5 6 4 4 i

2C 1330.38* 774.54° 68683.89* 6928.41° 3964.75*
6 H 4 4 4

NO 310,09~ 506.37* 1758.66* 1262.24~ $50.45°
6 5 q 4 4

0E 224,58 131.43¢ 1237.29+ 1386.58¢ 75.16*
H S 4 4 q

h ks and b the MIRM and value=waightsd aarkat

Panel 3: Comparisons betweea pairs of market indax b
8 using aggregate daily and monthly returns.

MONTMLY TSE300
TSEJ00 wt w1
By 1082.83° 1158.97¢ 3.57
FE 4324.37° 3744.81* 235.29°
MA 1098.59* 1.26 1434.37¢
AP 1833.06* 337.01* 2118.39*
MY 344,94 37.84° 5006.25¢
Ju 124.23¢ 195.16¢ 100.31*
Ju 149.92¢ 19.85¢ 272.32°
AU 2%.12¢ 23.57¢ 939.08°*
SE 3118.24¢ $60.64* 715.08*
o« 14779.09¢ 9321.50* 15615.34°
NO 152.70¢ 642.86" 1279.46° .
211 135.17° 189.68¢ 43.57°
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TABLE 4.1

The estimates of the risk premium proportionalit gricing
parameter, R, found by Kryzanowski and Koutoulas H.S 1) for
various estimation techniques and numbers of size-sorted
portfolios are presented in this table. The associated t-
values are given in the parentheses._  The R estimates for the
restricted "model are_ given by ,___an those for the
unrestricted model b{ and Repgex- NOLS and NSUR refer to
nonlinear ordinary least squares and nonlinear seemingly
unrelated raegressions, respectively.

Estimation Size-Sorted . . .
Technique Portfollos R Rex Renvpex
NOLS 10 1.5079 -1.4571 3.3224
(3.82) (-3.11) (4.94)
NSUR 10 -0.9417 -3.1433 2.2220
(-1.71) (-2.88) (2.24)
NOLS 20 0.8590 -1.2756 3.3725
(3.09) (-3.52) (6.41)
NSUR 20 1.8280 -3.7841 3.2779
(3.48) (-3.15) (3.15)
NOLS 50 1.2584 -1.6185 3.6263
(5.09) (-5.41) (7.20)
NSUR 50 4.3617 -5.8533 3.1889
(5.96) (-4.14) (4.52)
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TABLE 4.2

ctor bot. utuatu tor ] d unrestricted wvursions of u. .
Iht :n. l‘: uts::rgasr‘ct.d a8 nnd utmhton :.qu.qu th t‘pogn.:u.onp-(:.ﬂ
m assoc ad Bess :—-nu. an . constan
S.ropn rln? parsaaters, R, are those u:.!.u .d lu -y Kou:on.l... for greater
:t The mean R'-values are also rmn ITNOLS and N refer to
o u 1tu:nt.1n acnlinear lnd non.u.nn: sesmingly
unrelated regress vely.
3, 2y L) A, s 2y 2, =
PANEL A: Reastrigted APT equation (4.6)
A=1.35079 1.763 -0.878 0.285 =0.041 Q 009 =-0.157 0.8139 0.741
noLs (3.38) (=3.21) (0 37) (=1.08) (0.10) (~0.39%) (16.22)
A=t 2079 1.763 -9 8768 0 283 -0,041 2.009 -9.157 0.319 0.781
ITNOLS (3.18) (-3.21) (0 37) (-1.26) (0 10) (=0.33) (16.12)
f=-9 2417 1.779 -0.774 9 089 -9,937 0 096 -9,987 0.784 0.747
NSUR (3.63) (=3.32) (0 23) (=9.39) (0.59) (=1.19) {16.20)
R=0 4590 1.740 -%,825 0.261 -9 038 0.019 =9.118 0.813 Q0.747
NOLS (3.48) (-3.89) (0.79) (=9.32) (0.13) (=).58) (16.70)
R=9 8590 1.740 ~0.825 9.281 -0 2368 Q.019 -0.119 0.818 0.747
ITNOLS (5.43) (=3.69) (0.79) (=9.32) (0.13) (-0.68) (16.70)
A=1, 3280 1.780 ~Q.802 9.281 =0 . d4h 0.009 -9.172 0.820 6.738
NSUR (3 25) (-3.28) (1.97) (=1.12) (0.09) (=9.32} (15 87)
Al 2584 1.735 -9 738 9 282 =9.039 ¢.9012 =0.143 0.318 8.743
HOLS (3.39) (=3.%0) €0.32) (~-1.30) (0.11) (=0 79} (16.29)
A=l 2284 1.755 -9 118 9 282 =9.4039 0.012 =9, 143 0 318 0.742
{INOLS (3 39) (=3.40) (0. 343 (-1.20) (0. (-1 79) (16.13)
q=e 2417 1.858 ~Q0.234 9 168 =7 35 0.328 -9.225 3 312 0 723
N“'YR (5.39) (=3.40) (0.32) (=1.00) (0.11) (=2 79) 16.3%5)
PANPY, A: Unrestrictad APT equation (4.6)
R e=-1.4571 1.8035 ~0.8657 Q9 003 =Q.J41 PO SY =3.0723 0.778 0,743
R-.-l Jazs (5.81) (-3 23 (0.04) (~1.26) (3.56) (=0 «0) (15.57)
NOLS
R =-1.4571 1.805 -3 657 g o0s8 -3 24l 9.1 -0 1 9776 0.743
a.-: 3224 (5 81) (-3 28y (0.356) (-1.06) (0 £6) (-0 40) (18 57
tuoLs
R,»-3,1623 1.888 -0 321 0 049 =9 353 0..24 =0.129 3772 0,730
A.=2.2220 (3 s (=2.28) (0.12) (-1.26) (0.57) (¢ 1 535) (14.51)
NSUR
a:--x.zns 1.792 =9.702 9.009 -9 239 Q..10 -9.088 9778 0,745
Ra=3.23725 (3 s51) (=3.:42) (0.03) (-1.31) (0 5&) (=92.28) (15.86)
LS
R ==1.2736 1.793 =-0.702 a 009 -3.039 0.210 -0,068 9,778 0.74%
P..-J 3728 (3 s1) (=3.42) (0 03) (=1.91) (0.54) (=0.28) (15.36)
1noLs
ﬁ,--] 7841 1.901 -Q 251 0.042 -0.055 0 123 -0.242 0.773 0.727
=3 2779 (5.53) (=2.00) (0.13) (~1.41} (0.358) (=0.71) (14.31)
NSUR
n,--l..sus 1.3815 ~9.619 0 003 =0.042 0.114 =9.978 0.773 0.742
=3 8283 (5.60) (=3.16) (0.38) (=1.29) (0 57) (=0.42) (15.20)
NOLS
R »-~1,8183 1.815 ~-0.619 90.003 -0 Q042 0.214 -0.078 0.773 0.742
R.-J 8282 (5.60) («3.18 (0.38) (-1.99) (0.357) (=0.42) (15.30)
I1TNOLS
ﬁ,--S.BSJJ 1.923 =0.12» 0.074 -9.080 0.118 =0.174 0.776 0.721
Rg-! 1889 (3.351) (-1.18) (0 28) (=1.51) (0.31) (=0.84) (14.00)
NSUR
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TABLE 4.3

The maan Jenser estimates (d) and their standard deviations (std.} for the 146 equity mutual funds for
various R valuas and estimation techniques for the restricted and unrestricted versions of equation
(¢.6) are reported in panels A and B, respective.y. x’-tests of whether the Jensen estimates are
sinultanecusly equal to zero across portfolios (test 1) and whethar the Jensen estimates are squivalent
across portfolios (test 2) are reported below. The aumbers of mutual funds with positiwve &, and the
aumbers of mutual funds with statistically significant positive and negative & are also reported below.
NOLS, ITNLOS and NSUR refer to nonlinear ordinary least squares, iterative nonlinear ordinary least
squares and nonlinear seemingly unrelated regressions, respectively. "a" {indicates statisticsl
significance at ths 0.05 level.

PANEL A: Restricted APT equation ,&.6)

atimation
Method NOLS ITOLS NSUR NOLS ITNOLS NSUR HOLS ITNOLS NSUR
R 1.5079 1.5079 -0 9417 0 8590 Q3500 1.8280 1 2584 1 1584 A J817
Jensen Estimates (&)
Mean 0.0071 0.0071 ~0.0061 Q 0053 0 0053 0.0074 0 0066 0 0066 0.3038
Std. 0.0080 0,0080 0 0073 0.00686 0 0066 0 0088 0.0076 0 00768 0 2182
Absolute t-Values
Mean 2.049 2 049 1.987 2.147 2.147 2.043 2.121 2.121 1.317
std. 1.283 1.262 1.382 1.406 1 4«08 1.203 1337 137 2717
xz'fnt.s
xf (test 1) 300140° 10308122* 38222
x (test 2) 18818 54292% 20710%

Rumber of Funds

@
v
o

128 128 20 124 124 126 128 128 120
& > 0 and statistically significant at the 0.05 level wo-%ailed test)

1 71 4 77 7 72 76 76 J8
< 0 and statistically significant at the 0 35 level (two-tailed %est)

3 k) 62 3 3 3 3 3

R

[ 5]

PANEL B: Unrestricted APT equation (4.6)

Tstimation
Method NOLS ITOLS NSUR NOLS INOLS NSUR NOLS ITHOLS NSUR

ﬂ: ~1.4571 ~1.4571 ~3.1433 “1 2756 -1.2756 -3 7841 -1,6185 -1 5185 -5 35N
R.: 3.3224 3 224 2 2220 1 3728 3 2728 3 27719 3 6263 1 6283 J 1889
Jensen Estimates (&)
Mean -0 0086 -9.0086 -9 0093 -0 0081 -0 0081 -9 0088 -0.9%089 -0 0089 -9 0071
sStd. 0.0104 0.0104 0 0116 0 0101 0 0101 0 0122 0 01io0 0.3110 02123
Absolute t-Values
Mean 1.932 1.932 1 955 1 866 1.866 1.671 1.938 1.938 1.371
std. 1,216 1.216 1.173 1 186 1..86 1.077 1.213 1.213 6.339
x"'-l‘ut.:
© (test 1) 117090 12363% 12128¢
2 (test 2) 4426 4368% 4933*
Number of Punds
a>9
68 68 68 63 63 53 72 2 34
& > 0 and statistically signiffcanc at the 0.05 level (two-tailed tast)
2 2 3 2 z 3 2 2 3
& < 0 and statistically significant at the 0.05 level (two-tailed test)
24 24 22 24 24 24 24 24 1
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TABLE 4.4

The correlation matrices of the Jensan estimatas for various estimation techniques (E.T,) and constant
proportionality pricing parameters (R) for the restricted, unrestricted and reatricted-versus-—
unrestricted APT equations are reported in panels A, B and C, respectively. NOLS, ITNLOS and NSUR
refar to nonlinear ordinary least squares, iterative nonlinear crdinary least squares and nonlinear
seamingly unrelated regressions, respectively.

Panel A: Restricted APT equation (4.6)

L/ NOLS ITNOLS NSUR NOLS ITNOLS NSUR NOLS ITNOLS NSUR
Ry 1.3079 1.3079 -0.9417 0.8590 0.8590 1.8280 1.2584 1.25684 4.3817

NOLS '.5079 i.00

IT™HOLS 1.5079 1.00 1.00

NSUR ~0.3417 0.33 06.33 1 00

NOLS 0.8590 0.98 0.35 097 1.00

ITHOLS 0.8590 0 98 0.33 0.97 1.00 1.00

NSUR 1 8280 0.99 0.39 0.36 0.97 0.87 1.00

NOLS 1.2384 0.99 0.99 0.33 0.99 0.99 0.99 1.00

ITNOLS 1.2584 0.39 0.99 0.33 0.99 0.99 0.99 1.00 1.00

NSUR 4 3617 0.92 0.92 0.56 0.868 0.86 0.94 0.50 0.90 1.90

PANIYL §: Unrestrictad APT equation (4.6)

ET NOLS ~ ITNOLS  NSUR  NOLS  ITNOLS  NSUR . NOLS  ITNOLS  NSUR
&, “L 4371 -1.4871 -3.1433 -1.2756 -1.2756 -3 7841 -1.6185 -1 G185 -5.8533
= %,/ 33224 33224 22220 3.3725 3.3725 3.2779  3.6263 3 6263 3,189

NOLS -1 &571 3 322¢ 1.00

ITNOLS ~-1.4$71 3 3226 1.00 1.00

NSUR -1 133 2 2220 0 98 0%  i.00

HOLS -1 2756 3.3725 0 98 799 0.97  1.00

ITNOLS -1.27%6 3.3725 0.99 0.9 0.37  1.00 1.90

NSUR  -3.7801 3.2779 0.98 038 098  0.37  0.87 1.00

NOLS -1 6185 3.5263 0.39 0.9  0.98 0.9  0.93 0 38 1.90

ITNOLS -1 6185 3.5263 0.99 0.98 0.98 0.9  0.89  0.98 1.00 1.00

NSUR -5 3533 3 1880 0.36 0.9  0.99 0.9 0 36 0.99 0.37 0.97  1.20

Panal C: Restricted—versus-unrestricted APT equation (4.6)

NOLS TTNOLS NSUR NOLS ITNOLS NSUR NOLS ITNOLS NSUR
0.53 0.55 0.91 -0.36 -0 28 0.57 0.53 0.53 .31
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TABLE 4.6

The means and standard daviations (std.) of the estimates of the macrofactor timing coefficients and
of their absclute (abs.) t-values, the %! values for a tast of whether the factor timing coefficiants
are simultanecusly equal to zero across portfolios, and the number of significant macrofactor timing
coefficients for the 14€ mutual funds for variocus R values and astimation techniques for the restricted
version of equation (4.9) are reported in panel A. By, f and P, refar to the ability to tima
movemants in jinnovations of the Canada/U.3. exchange rate, the orthogonal component of the Canadian
compasite index of ten leading indicators and the cross-prodiuct of these two variables, respectively.
The asan Jensen estimates (G), their standard deviations (std.), the number of mutual funds with
positive G, and the ausbers of mutual funds with statistically significant positive and negative @ for
the 146 equity funds for various R wvalues and estimation techniques for the restricted varsion of
equation (4.9) are reported in panel B. 8ignificance is measured at tha 0.05 lavel, and is indicated
by an “a"” for the )’ teat.

Hethod NOLS ITNOLS NSUR NOLS ITNOLS HSUR NOLS ITNOLS NSUR
R 1.5079 1.5079 20.9617 0.8590 0.8590 1.8280 1.2584 1.2586  4.3817

Panel A: Racrofactor timing coefficient eatimates and tests of their significance
Abcolute t-Values of Bpg

Mean 1.491 1.691 0.781 1.237 1.237 1.825 1.586 1.586 2.470
Std. 0.895 0.895 0.565 0.843 0.843 0.922 0.856 0.856 1.232
fpo
Mean 0.920 0.920 1.302 1.222 1.222 0.850 0.948 0.948 0.753
std. 0.575 0.575 0.686 0.726 0.724 0.553 0.585 0.585 0.511
éPlo
Mesn 0.996 0.996 1.273 1.029 1.029 0.974 1.015 1,015 0.868
Std, 0.606 0.506 0.679 0.621 0.621 0.585 0.613 0.613 0.609
”
B x°-test "o:spl= po= pm=0
' 31750% 843112 38009*
Number of Funds
bpg and Bpg > 0
fpg 142 142 108 79 7 142 122 139 144
8pg 119 119 134 131 131 117 122 122 103
ipg and Bpg > 0 and statistically significant
Bpg s5 55 5 15 15 61 w6 46 97
Bpg 7 7 28 22 22 6 8 8 2
bpy and Bpy < 0 and statistically sigmficant
fpg 0 0 0 S 5 0 g a 1
fpg 0 0 0 0 0 0 0 0 0
Bpjp # 0 and statisticatly significant
dp1o 1 1 2 1" " 9 12 13 13
Panel 8: Jersen estimmtes (&) and tests of their aignificance
Jensen Estimates
Mean 0.0032 0.0032 -0.0060 0.0013 0.0013 0.0042 0.00264 0.0024 0.0102
std. 0.0099 0.0099 0.0108 0.0092 0.0092 0.0101 0.0098 0.0098 0.0123
Absolute t-Values
Mean 1.37% 1.374 1.384 1.066 1.066 1,468 1.264 1.264 1.871
Std. 0.931 0.931 0.946 0.760 Q.760 1.008 0.862 0.862 1.3646
Nusber of Funds
&>0 .
115 115 3 101 101 119 111 111 124
& > 0 and statistically significant (two-tailed test)
33 33 2 1 1 3 26 26 55
d < 0 and statistically significant (two-tailed test)
S- ) 35 7 7 3 5 5 2
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TASLE 4.7

The means and standard deviations (std.) of the eatimates of the macxofactor timing coefficients and
of their absoluts {(abs.) t-values, the )’ values for a test of whather the factor timing coefficients
are simultanecusly equal to zero across portfolics, and the aumber of significant macrofactor timing
coafficients for the 146 mutual funds for various R values and aestimation techniques for the
unrestricted version of equation (4.9) are reported in panel A. f,, B,, and f,, refar to the ability
to time movements in innovations of the Canada/U.3. exchange rate, the orthogonal cosponent of the
Canadian coaposits index of ten leading indicators and the cross-product of these two variables,
Tespectively. The mean Jensen estimates (d), their standard deviations (std.), the number of mutual
funds with positive @, and the numbars of mutual funds with statistically signilicant positive and
aegative ¢ for the l4€¢ equity funds £or various R values and estimation techniques for the unrestricted
varsion of equation (4.9) are reported in panel B. Significance is measured at the 0.0S level, and is
indicated by an “a" for the x’ test.

Estimation
Method NOLS ITNOLS NSUR NOLS ITNOLS NSUR NOLS ITNOLS NSUR
Ry -1.4571 =1.4571 -3,1433 -1.2796  -1.2756  -3.7841  -1.6185  -1.6185 -5.8933
Ra 3.3224 3.322¢ 2.2220 3.3725 3.3725 3.2779 3.6263 3.6263  3.1889

Panel A: Macrofactor timing coefficient estimmtes and tests of their sigmficance

Absolute t-vslue of épg

Hean 0.778 0.778 1.058 0.784 0.786 1.068 0.781 0.781 1.263

std. 0.599 0.599 0.826 0.593 0.593 0.858 0.509 0.609 0.984
Bpo

Mean 1.119 1.118 1.356 1.096 1.096 1.369 1.119 1.119 1.488

std. 0.827 0.627 0.704 0.422 0.622 0.5663 0.625 0.625 0.693
fp1o

Hean 1.406 1.406 1.607 1.375 1.37% 1.770 1.433 1.633 1.945

Std. 0.748 0.748 0.862 0.737 0.737 0.829 0.760 0.750 0.861

x'-test of Hy: Bpy = Bpg = Bpyg = 0
r 502732 21753 17132%

Nusber of Funds

bpg 91 N 57 97 97 ot 85 85 32
8pg 133 133 139 13 131 139 132 132 139
#pg and 8pg > O and statisticatly significant

Bpg 5 5 10 5 5 2 3 3 2
Bpg 13 13 30 12 12 28 12 12 34
fpg and Bpg < 0 and statisticatly significant

bpg 3 3 15 3 3 20 3 3 9
Bpg 1 1 0 1 1 1 1 1 1
8pyo # 0 and statistically significant

Bp1g 33 33 54 32 32 60 36 36 66

Panel 8: Jensen estimates (&) and tests of their significance

Jersen Estimates

M -0.0098 -0.0098 -0.0160 -0.0090 -0.0090 -0.0189 -0.0106 -0.0106 -0.0242

S:;n 0.0110 0.0110 0.0125 0.0110 0.0110 0.0132 0.0112 g8.0112 0.0147
Absclute t-values

M 1.933 1.933 2.843 1.796 1.797 3.019 2.029 2.029 3.108

s::l? 1.223 1.223 1.315 1.11§ 1.115 1.702 1.265 1.265 1.875

Mumber of Furds

&>0
18 18 18 20 20 8 15 15 [

@ > 0 and statistically significant (two-tailed test)
2 2 2 2 2 2 2 2 0

& < 0 and statistically significant (two-tailed test)
66 66 93 63 63 104 n n 106
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TABLE 5.1

The mean beta estimates for M-CAPM (5.6) for the value-weighted (VW) and
the equally-weighted (EW) TSE-Western indexes for the 146 equity mutual
funds for various estimates of the proporticnality parameter, R, and
estimation mathod (E.M.) are reported below. The associated mean t-values
are reported in the paraentheses. The values of R are from Koutoulas and
Kryzanowski (1991). NOLS, ITNOLS, NSUR and INTSUR raefer to nonlinear
ordinary least squares, iterative nonlinear ordinary least squaraes,
nonlinear seemingly unrelated regression, and iterative nonlinear
seemingly unrelated regression, respectively.

- Beta Estimates R:.values

R E.M. VW EW vw EW

0.8590 NSUR 0.647 0.606 0.534 0.387
(9.986) (7.183)

ITNSUR 0.647 0.606 0.534 0.387
(9.986) (7.183)

1.0579 NOLS 0.452 0.429 0.369% 0.261
(6.887) (5.267)

ITNOLS 0.452 0.429 0.369 0.251
(6.887) (5.267)

1.2584 NOLS 0.522 0.495 0.428 0.306
(7.857) (5.933)

ITNOLS 0.522 0.495 0.428 0,306
(7.857) (5.933)

1.8280 NSUR 0.374 0.365 0.304 0.210
(5.975) (5.241)

ITNSUR 0.374 0.265 0 304 0.210
(5.975) (5.241)

4.3617 NSUR 0.104 0.082 0.083 0.041
(2.588) (1.720)

ITNSUR 0.104 0.083 0.083 0.041
(2.588) (1.720)
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TABLE 5.2

The mean Jansen estimataes (d’'s), the msan of their respective abaclute t-values, and their standard
daviations (std.) for the 146 equity mutual funds for various estimates of the proportionality
paramaters (R’s) and estimation mathods (E.M.’s) for the N-CAPNM (5.6) for the value-weighted (VM) and
equally-weighted (EW) TSE-Western indexes are reported below. Tests of whether the Jensen estimates
are simultanecusly equal to zero across portfolics (test 1) and vhether the Jensen estimates are
equivalent across portfolios (test 2) are also reported balow. The number of mutual funds with
positive 0's, and the numbar of mutual funds with statistically significant positive and negative a’'s
are also reported below. NOL3, ITNOLS, NSUR and ITNSUR refer to nonlinear ordinary lsast squares,
iterative nonlinear orxdinary least squares, nonlinear seamingly unrelated regression, and iterative
;“onnn.ut ar lo-.i.ns‘ 3 .qvl.‘yl unrelated regression, respectively. Significance (as reported by an "a") is measu-
a ] -

E.M, NOLS ITINOLS NOLS ITNOLS NOLS ITHOLS NSUR ITNSUR NSUR TTNSUR
R 0.8580 0.8330 1.2584 1 258s 1.3079 1.5079 1.8280 1.8280 4.3817 & 2817

Jensan Eatusates for the VW Indax
Mean -0.0211 -0.0211 ~0.0262 -9.0243 =0.0247 -0 0247 «0,9263 -0 0227 =0 0134 -9 014

Std. 0.0074 0.39074 Q.0081 0.%081 0.0082 0,0082 4 0083 0.0088 0.0074 0 2074
Jensen Estimates for the EW Index
Mean -0.0177 -0.Q177 «0.0208 -+0.0209 -0 021« -0 0214 -0.0228 -0 Q210 -0 7089 -9 0089
Std. 0.0078 0.0078 0.0086 0.0086 0.0088 a.0088 0.0089 0.0091 0.0080 0 0080
Absoluts t—values for the Jansen Estimates for the W Index
Mean 4,862 4 882 4,497 4 497 o 137 4,137 3278 3.278 1.5358 1.5568
sStd. 1.529 1.529 1.184 1.194 1.058 1,058 0.393 0 993 0.352 0.5%2
Absoluts t—valuas for the Jenzen Estimates for the EW Index
Mean 3.427 3.427 3.395 3,393 3.181 3.181 2 348 2.348 0 383 1.965
std. 1.222 1.222 1.083 1.0585 g 378 0.978 0.888 J 388 0 s82 0 582
~%ests using the VW Index
X rtest 1 g7 wr
© ittt 2) 7084 s
C-tests usiag the EW Index
Xf‘u“ v $3ut 1704
X ieat D) 6104 .28
Number of Funds
a >
w 2 2 2 2 2 2 2 2 b b
W 2 2 2 2 2 2 2 2 i) 19
a » 0 and statistically sigmficanc®
™ 0 0 Q 9 b o] 3 b] b} b]
EW 0 Q [+ 3 J e} Q 1} [} ]
& < 0 and scatistically significant®
b 162 162 143 Wl 14l 6l 140 140 17 3
W 132 132 124 35 133 133 135 122 3 3
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The correlation matrices for the Jensen estimates (0's) for various estimation methods (E.X.’s) and
proporticnality parsmeter estimates (R) for the M—CAPM (5.7) based on the value-weighted and

weightad TSE-Western market indexes are reported in Panels A and B, respactively.
and ITNSUR refer to nonlinear ordinary least squares,
nonlinear seemingly unrelated regression,

TABLE 5.3

respactively.

Panel A: M-CAIM (S.7) based on the value—weighted TSE-Western indax

NOLS
0.85%80

ITHOLS
Q.8590
NOLS

1 2384
ITNOLS
1.2584
NOLS

1.3079
{THOLS
1.507¢9
NSUR

1.8280
ITNSUR
1 3280
HSUR

3617

JINSUR
« 2617

Panel B:

NOLS
3 3390

ITNOLS
7 3390
NOLS

1.23584
ITNOLS
1.2584
NOLS

1 5079
TNOLS
1.5079
NSUR

1 8280
[TNSUR
L3280
NSUR

o 1817

ITNSUR
& 3817

1.0

1.00 1.90

0.39 0.39 130

0.99 0.39 1.0 1.00

0.99 0 38 0.39 0.99 1.20

.99 Q.99 0.99 Q0 99 1.30 1.00

0.98 0.98 739 9.99 g 39 0.99 1.90

0 98 Q2 38 0 39 0.39 0 39 Q.93 1.90 1.00
0 33 9.92 0.35 335 J 386 9.96 9 97 0.97
[ - 3] 0.93 ¢ 35 3 35 ¢ 36 o 96 0.97 0 97

W-CAPM (5.7) based on the equally-weighted TSE-Hestern indax

1.00

190 1 00

¢ 93 2.39 120

0.39 0 99 L.30 100

0.99 Qo 99 9 39 9 39 .o

999 Q9 99 Q39 9239 120 L 00

0.98 0 98 Q.99 2.39 J 38 0.39 1.0

Q98 0.98 0.39 J 33 J 39 0 99 1.00 1.00
0.91 0.91 0 g4 0.9 3 3 0 34 0 96 0.56
091 0.9 0.9« Q 94 S 9% 0.95 0.9e 0.36
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TABLE 5.4

The mean Jensen estimates (G’s), the mean absolute t-values, their respective standard deviations
(std.), the number of mutual funds with positive 4, and the numbars of mutual funds with statistically
significant positive and negative & for the 146 equity mutual funds for wvarious estimates of the
proportiocnality parameter (R) for M—CARPM (5.6) for the value-weighted (VW) and equally-weighted (EW)
TYE-Western indexes for the first and second subperiods are reported in panels A and 8, respectively.
The correlations for the Q@’'s for a given R across the two subperiods are given in panel C. The
residual covariance matrix for each suvbperiod was taken to be the full residual covariance matrix

;:tmt;d for the entire pariod using NSUR. Significance (as represented by an “a") is measured at the

Jensen Fszimates Absolute %-<alues Numpeg o€ T4
JUNEL. W index Mean Std Mean sStd SigniZizaned
@ >0 ¢ > 1 <)

Panel A: First subperiod

1.8280 i -0.0179 0.0074 1.3 a 837 o Q 13
1.3280 EW =0.0135 0.0078 1.429 0.687 2 . A
4,3817 Kial -J 01359 Q0.90072 1 3a2 0,496 a Q 13
4.3617 W -0.0121 ¢.02078 g 3N ¢ 519 3 9 ?
Panel B: Second subperiod

1.8280 biad -0.0327 0.0114 1.288 0.779 2 0 1le
1.8280 o =0.0348 0.0123 3.224 0.338 1 0 1346
4,817 W -9.0058 0.0098 0.35683 Q 439 26 2 3
4.3817 EW =-0.0027 0.0108 Q0 449 Q.44 33 b) J

Panel C: Correlations between the Jensen estimates for the two subperiods

K
ndex 13280 & 3517
W 3,639 Q w4l
EW 0.527 0.507
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TABLE 5.5

The means and standard deviations (std.’s) of the absolute and absolute bootstrapped t-valuas of the
coefficient 6, (which measures the ability to time the movements of the innovations in the raturns of
the market index), ¢ test valuas of whether the timing coefficients are simultanecusly to zero
Across portfolios, and the number of significant markst timing coerfficients for the 146 mutual funds
for wvarious R values and estimation methods (E.M.’s) for the M-CAPM (5.7) for the value-waighted (VW)
and equally-weighted (EN) TSE-Western indaxes are repcrted in panel A. The mean Jensen estimates (Q),
the mean absolute t-values, their standard deviations (std.’s), the numbar of mutual funds with
positive @, and the nuwbers of mutual funds with statistically significant positive and negative a for
the 146 equity funds for various R values and estimaticn mathods for the M-CAPM (5.7) for the value—

weighted (V¥W) and equally-waighted (EW) TSE-Westerp ind are reportad in panel B. Significance (as
represantad by an "a”) is msasured at the 5% level.

E.M, woLs ITNOLS NOLS ITNOLS NoLS ITNCLS NSUR ITHSUR HSUR ITHSUR

1 0.48590 0.83590 1.2584 1.2584 1.5079 1.3079 1.8280 1.8280 4.3817 6,3617
Pugel A: The absolute t-values for the market timing coefficients md tasts of their significance

Abgolute t-values of the estimated coafficiemt., 0,, for the W Indax
Mean 7,583 7.565 3.345 8.345 3.204 8 204 9. 1l4b g. 144 7758 7759
Sed. 3.033 3.0 3 338 3.338 3 189 3 188 3.296 3 23§ 1.388 l.388
Absoluts tvalues of the bootatrapped estimated coefficient, O,, for the W Index
Mean 7.878 8.981 8,345 9,26 7.980
Std. 3.342 J.594 3.223 3.258 2.054
Absolute t-valuss of the estimated coefficimmt, OP, for the B Index
Mean 5.216 5.218 §8.382 6.382 8.313 6.913 7.403 7.403 7.9825 7.828
Std. 1.52) 1.52 1.310 1.810 1.942 1.942 2.038 2.0358 1.999 1.398
Absolute t-values of the bootatrapped estimated coefficient, , ftor the EWN Indax
Mean 3,468 §.435 7 1 7.78 7.788
Std. L.678 2.028 2.9278 2 198 2.201
x°-tast
w 10020% 39484
B 16260* 126244
funber of funds
8 >0
v 0 9 9 3 a 9 0 ] 9 9
™ a Q Q b J Q 0 3 0 b
6, > 0 and statiscically significant?
V& Q Q J e} o} Q '] Q S
EW 0 [} ] 3 9 o) 0 3 ] b}
9, < 0 and stattscically significant’
Vi 163 145 146 46 146 146 146 146 146 W6
EW 148 165 145 145 166 146 148 .48 146 145
Panel B: Jeosen estimates (&) and tests of their significance
Jensen Estimatas for the VW Index
Mean ~0,0107 =Q.0107 ~3.0159 =9.3139 ~3.0157 -9 C157 -0.3227 -0.3227 -0.0367 +0.03687
std. 0.C064 Q 0084 Q9.0072 0.0072 0.0087 0.00487 0.0082 0 0082 3.0108 3.2108
Jensen Estimates for the EW Index
Mean -Q0.0049  -0,0049 -3.0091 -0.0081 -0.9119 -0.0119 -0.3148 ~0.0146 -0.0288 -0.0288
Std. Q.0088 0.3088 0.0074 0.007¢4 0.0079 ¢.0079 0.0082 ¢0.0082 0.0105 9.0105
Absolutas t-values for the Jemsen Estimates for the VW Index
Mean 3 172 3.172 4.305 « 303 1.568 3 569 5.232 5.232 $5.132 § 132
sed. 1.808 L.508 1.888 1.388 2.088 2.088 1.991 1.391 1,483 1.483
Absolute t~values for the Jsnsen Estimatss for the EW Indsx
Mean 1,140 1.140 i.322 .92 2.238 2.238 2.623 2.523 J.320 3.320
std. Q.397 0.4897 1.051 1.031 1.392 1.092 1..87 1.187 1.257 1.287
Nunber of Funds

& >0
w & 4 2 2 2 2 2 2 2 2
W 23 28 ] 8 . [ 3 3 2 2
4 > 0 and statistically significant?
W 1 1 3 0 b [ a [ 9 ]
EW z 2 1 1 ¢4} Q Q g Q 0
& < 0 and statistically sagnificant® .
W 13 113 134 136 107 107 140 140 142 142
EW n n - 63 83 a2 az 98 96 138 138
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APPENDIX I
Proof that the global portfolio of mimicking portfolios is
mean-variance efficient when the mimicking portfolios are
estimated using the minimum idiosyncratic method.
A regrouping of the miminum idiosyncratic risk mimicking
(MIRM) portfolios into a global, mean-variance (E-V) efficient
portfolio is necessary if the MIRM portfolios are to be E-V
efficient benchmarks for portfolio performance inference using
the Z and PPW scores. To demonstrate this, let the return at
time t, RY%, on the global portfolio, which is a linear
combination of portfolios of risky and risk—-free assets, be:
R, = R"Q + R (1 - 1Q) (I.1)
where Q is a N x 1 vector of global portfoclioc weights for the
N risky assets. To derive the E-V efficient portfolio, find
the Q that solves:
Min Q’'VQ (1.2)

s.t. RI=R’Q +R.(1 - 1Q)

where V is the N x N variance-covariance matrix of security
returns. From Grinblatt and Titman (1987), matrix Q can be
defined as:

Q=A’X (I.3)
where X is a K x 1 vector of weights of the mimicking
portfolios in the global portfolio, and A is a K x N matrix of
mimicking portfolio weights. Substituting (I.3) into (I.2),
and constraining the security excess returns to be priced by

the exact APT, yields:
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L(AX,0) = X'A'VAX - 20[(R° - R,) - (B[ + a)] (I.4)
where © is the lagrangian multiplier; I' is 1 x K vector of APT
arbitrage portfolios; and e is a N x 1 vector of APT
residuals. According to Grinblatt and Titman, when the APT
pricing equation holds, tha first-order condition for the E-V
efficiency of the global portfolio is:

A’X = D'B(B’'D?'B)™! B’A’X (I.5)

It is easy to show that A = (B’D™'B)"'B’D™ is a solution to
(I.5). If the MIRM portfolios are to be consistent with E-V
efficiency of the global portfolio, A™* must be a solution to
the first-order condition (I.5). This can be shown as
follows. Let B, be the matrix where all the stock returns
load with one on the first factor, and the remaining columns
contain factor loadings obtained from ML factor analysis. Let
A,=(B,’D'B,)'B{D' be the corresponding K x N matrix of
portfolio weights, where the first column vector of A,
contains weights that are minimum idiosyncratic. Stated
differently, Aj={2,",a,,...,a,}, where a,®* is the N x 1 vector
of MIRM portfolio weights, and a,,...,a, are the N x 1 vectors
of GLS estimated weights of the mimicking portfolios. Since
A, is consistent with (I.5), the return on the corresponding
global portfolio of mimicking portfolios is given by:

R%=R,’ Q,=R,’ A\ X' (I.6)

This procedure can be used to estimate each of the K MIRM
portfolios. This sequential procedure generates K global
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portfolios. Since A,=(B,’D7B,)'B\D™' is a solution to (I.5),
all the K global portfolios are E-V efficient. Thus, any
linear combination of the K global portfolios will also be a
E-V efficient portfolio, RY,, given by:

R%,.=k,R%, + k,R%, +...+ kRY, (X.7)
where we assume that k,=k, for all i and j. Using the value
of R"jt from (I.6) in (I.7) vields:

R%.=k;R,A X + k,RALX +... + kKR/ALX (1.8)
Because the resulting global portfolio is a scalar and k,=k,,
the different vectors of portfolio weights contained in each
matrix A, in (I.8) can be permutated across the j without
altering the value of RY,. This is possible provided that
each column vector initially in the matrix Aj occupies the
same column position in the matrix, A’;, that contains the
permuted column vectors. Thus, all the vectors of MIRM
weights can be regrouped into the same matrix of portfolio
weights, A"’ , where the weight vector of the jth column is
associated with the returns of the jth MIRM portfolio. The
permutations in the portfolio weight vectors imply that (I.8)

becomes:

R, =K,R,A"’'X + KR AX +... + KR/A' X (I.9)

It then follows that R, ig E-V efficient since it remains
unaltered by the permutation in the mimicking portfolio weight

vectors, and that the K global portfolios (including the one
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based on A™*) are E-V efficient. Furthermore, a global
portfolio formed from the K MIRM portfolios is also E-V

efficient.
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APPENDIX II
The bootstrap algorithm used to obtain unbiased estimates of

the first and second moments of SH; for the multivariate
Jobson-Korkie Z score given by equation (3.1).

Define the J-K Z score obtained from a bootstrapping

procedure, Z°*, as:

Z™*=_SH - N(0,1) (I1.1)
(al@le) 1/2

where &"* is the V (variance-covariance matrix of returns)
based on the k samples of bootstrapped sh, (b) (where sh. (b)
is the gqth element of the k x 1 vector SH, given that SR=e’ SH,,
see equation (3.1)), and g=1,...,K and b=1,...,L. Let r, be
the monthly excess return of portfolio q at time t. For each
month, assume that two portfolios, i and q, have bivariate,
normally distributed monthly returns of P,=[r,,...,r,;] and
P=[ry,...,fy), where T is the number of available returns

(herein T=7).

The specific bootstrap algorithm used herein is as
follows:
1) Estimate the empirical return distributions of portfolios
i and q by putting a mass probability of 1/T on each return x,
and r,.

2) Using a random number generator, draw L bootstrap samples

P,"(1),P" (1), P, (2),P'(2),..., P,"(L),P " (L) where
P, (b)=[r,", ..., T.'] and P (b)=[r,", ..., E,'], and @ach r,' and
rqt' ,for t=1,...T, are drawn randomly with replacement fronm

161



the observed values of [ry,,...,ry] and ([rg,,...,Xqal,
respeactively.

3) For each pairing of bootstrap samples i and q, calculate
the statistic sh.'(b)=(cu,-0c,u,).

4) Repeat steps 2 and 3 a large number of (L) times.

5) Steps 1 through 4 are performed k times in order to
calculate the statistics sh,’(b)=(o,u,~o,u,),

3h2' (b) = (0’2111"'0',_112) 7 e ooy Shk' (b) = (O'kui—ciuk) .

Since portfolio i is compared to K portfolio benchmarks,
the bootstrapping procedure generates K samples of size L
(where L is the number of bootstrapping replications) of the
statistic sh '(b), where g=1,...,K and b=1,...,L. From these
K samples, the K x K matrix, ¢, has an i,3j element defined

d)b.i, = (1/L-1) zx.hlzx.j’l (sh,,-E (sh,)) (sh,,~E(sh,))
For most situations, Efron and Tibshirani (1986) contend

that L should be in the range of 50 to 200. A value of 200 is

used herein.
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APPENDIX IIXI

The bootstrap algorithm used to obtain an estimate of the
standard deviation of the market timing coefficient, 9,, for
M-CAPM (5.7) is detailed below.

Step 1: Estimate M-CAPM (5.7) for a postuAlateAd value of R and
estimation method in order to obtain o, 8, and §,. The
residuals of (5.7) follow an empirical distribution such that
a mass probability of 1/T (where T corresponds to the
number of observations) is attributed to e,.

Step 2: A bootstrapped sample of R, (B) (where p=1,2,...,146;
t=1,2,...,81; and B corresponds to the number of bootstrapped
replications) is obtained by computing:

A

* A N A *
Rpt - R‘i‘t = ap + Bpsut + Bp{R ° o-t} + ep {R * clt} + ept

where e," are randomly, drawn with replacement from the
sample {e,,...,e,)} and @, B, and bp are obtained from step 1.

Step 3: For each bootstrapped sample of R,'(B), M-CAPM (5.7)
is estimated as:

Rpt. - Rl‘t = ap. + Bp.snt + Bp'{R ° o-t:} + ep.{n - o-t} + upt

Step 4: The bootstrapped standard deviation of the parameter
@, (which is denoted as s'e,), is computed using the sample of
estimated ©," that coptains B observations. The bootstrapped
t-value is given by 6,/s’g,.

Based on Efron and Tibishrani (1986), steps 2 and 3 are
repeated 1000 times (B=1000). Steps 1 through 4 are repeated
for each combination of R value and estimation method.
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FOOTNOTES TO APPENDIX I

1. Without loss of generality, assume that X’1=1. Since
A*“1=1, then Q’l=1 and the global portfolio is composed
exclusively of risky assets.
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