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ABSTRACT

EVALUATION OF A CLASS OF HYDRAULIC DAMPERS FOR
ISOLAT:iON OF VIBRATION AND SHOCK

M. Manzurul Haque, Ph. D.
Concordia University, 1996

In this dissertation, a detailed and fundamental investigation on a class of passive
hydraulic dampers is carried out. Dual-phase and flexible chamber hydraulic
dampers with wide ranges of orifice design are selected for detailed modeling and
evaluation of performance in isolation of shock and vibration. Previous
investigations on dual-phase dampers have utilized simplified damping force
characterization. Models are, therefore, thoroughly redeveloped utilizing integral
formulation of damping force characterization. The simulation results are
compared with those of previous analytical and experimental studies. Results for
displacement dependent dual-phase dampers are further obtained for evaluation of
their performance. A systematic study of the flexible chambered hydraulic damper
models utilizing experimental values of nonlinear compliance as well as stiffness
and damping coefficient of the chamber material is also carried out. Various
configurations for the orifices considered are: (i) short orifice, (ii) long orifice, (iii)
long and short orifice, (iv) long orifice and short orifice with spring loaded valves.
Unlike previous investigations, the models consider "oscillation effect” of the fluid
within the long orifice. The model with orifice valves includes valve dynamics and
variable flows requiring an iterative process for the simulations. The damper
characteristics are evaluated both in time and frequency domain and presented in
terms of internal variables, such as chamber pressures, flow through various

orifices, damping force, transmitted force, etc. Detailed performance is evaluated



both in terms of transmissibility and shock isolation performance. An extensive
parametric study is carried out for all damper configurations to demonstrate their
performance potentials. The configurations utilizing long and short orifices with
and without valves are proposed in this investigation in order to overcome
conflicting requirements between vibration and shock isolation performance. The
simulation results for dual-phase dampers show that the use of traditional approach
leads to gross estimation of the damping force in comparison to the proposed
integral approach. Also, the results of the integral approach show better agreement
with the experimental trends. Parametric study and comparison of low-high and
high-low system demonstrate the high potential of low-high damper for isolation of
vibration in a wide frequency range. Superior shock isolation performance is,
however, provided by a high-low configuration. Through the simulation of
dampers with flexible chambers, it is shown that the effect of fluid oscillation in
long orifice is highly significant both on the damper characteristics and its
performance. In general, peak orifice flow is grossly overestimated when
oscillation effect is not considered. The results for the combination of long and
short orifice show certain improvement of both transmissibility and shock isolation
performance when compared to that of the damper with long orifice only. In
general, the dampers with flexible chambers are found to perform well for
isolation of low amplitude (less than 1mm) vibration only. The results for the
proposed concept of hydraulic damper having long arifice and short crifices with
valves demonstrate significant influence of both forward and bleeder valve orifices
on the dynamic characteristics and performance. A limited parametric study shows
that such dampers can be tuned to provide satisfactory performance even at
excitations as large as 3 mm. In this case, shock performance is also superior in

comparison to other configurations with flexible chambers.
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NOMENCLATURE

A, aA transition point of relative displacement of dual-phase damper, m
A, cross-sectional area of long orifice, m?

A, coincident component of dynamic stiffness, N/mm

A, cross-sectional area of orifice, m?

A, cross-sectional area of orifice 1, m2

A, cross-sectional area of orifice 2, m?

Ay cross-sectional area of orifice 2, m?

Arp projected area of the top chamber acting as a piston, m?

A, YA, relative velocity corresponding to x=A, and x=aA, m/s

B, quadrature componer¢ of dynamic stiffness, N/mm

C damping coefficient, N-s/m

C(x) damping coefficient as a function of relative velocity, N-S/m
C(x) damping coefficient as a function of relative displacement, N-S/m
c equivalent linear damping coefficient, N-s/m

6, trial damping coefficient, N-s/m

Cq damping coefficient, N-s/m

Co discharge coefficient

Cp; discharge coefficient for short orifice 1

Crs discharge coefficient for short orifice 2

Cob discharge coefficient for bleeder orifice

Cy compliance for flexible chamber m5/N

Cyv viscous damping coefficient for valve, N-s/m

Cvs bottom chamber compliance, m5/N

xXiv



top chamber compliance, m3/N

bleeder orifice diameter, m

long orifice diameter, m

orifice diameter, m

diameter for short orifice 1, m

diameter for short orifice 2, m

bleeder orifice diameter, m

damping force developed by the damper, N
force due to static load, N

force transmitted to the ground, N

force due to change in momentum, N
undamped natural frequency, cycle/s

fluid inertance, Kg/m4

fluid inertance for long orifice, Kg/m*
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fluid inertance for bleeder orifice, Kg/m*
stiffness of the rubber element of the damper, N/mm
spring constant of the relief valve 1, N/mm
spring constant of the relief valve 2, N/mm
spring constant of the bleeder orifice valve 2, N/mm
loss due to contraction

dynamic stiffness of the damper, N/'mm
entry loss coefficient

exit loss coefficient

stiffness of the linear spring, N/mm

bleeder orifice length, m




QoZ

long orifice length, m

orifice length, m
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length of the bleeder orifice, m

mass, kg

mass of the valve dish and the spring, Kg

number of harmonics

atmospheric pressure, Pa

bottom chamber pressure of hydraulic damper with flexible chamber, Pa
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preload spring force, N
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top chamber pressure of hydraulic damper with flexible chamber, Pa
orifice flow, m3/s
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flow through short orifice, m3/s

tlow through short orifice 1, m3/s

flow through short orifice 2, m3/s

flow through bleeder orifice for the LDHVF damper, m3/s
frequency ratio w/w,,

Reynolds number

Reynolds number due to flow through long orifice
Reynolds number due to flow through bleeder orifice

Reynolds number due to flow through short orifice 1
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number of cycles

entrapped air in the top chamber, cc

average fluid velocity within the orifice, m/s

total volume of entrapped air, cc

total volume of fluid transferr~d from one chamber to another, m3
signum function; -1 when x is negative and +1 when x is positive.
relative displacement, m
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excitation as a function of time, m
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shock response as a function of time, m
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pressure change, m’
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Q density of hydraulic fluid, m3/s

'd damping ratio
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A, correction factor for active component
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CHAPTER 1

INTRODUCTION

1.1  General
Damping of a system is a substantive phenomenon, indispensable for isolation of
shock, vibration or noise. There are numerous applications for damping devices in
mechanical systems. In vehicle design, dampers play a very important role and are
being used in suspensions, seat suspensions, cab mounts, engine mounts, under
carriage protection, bumpers, etc. Design of dampers for vehicle system presents a
challenge as the components are subjected to excitations and shocks of wide
frequency range and severity. Furthermore, the automobile suspensions pose
conflicting requirements for damping and stiftness properties to enhance the
vehicle ride comfort, handling or control. Low dynamic stiffness is the key
property necessary for ride comfort, buu it yields poor directional control and rattle
space performance. On the contrary, high damping exhibits better isolation
characteristics around resonance with a great reduction in relative displacement but
shows very poor performance for shock and noise isolation. Thus, a damper
developed for resonance control can not be effectively applied for road induced
shock isolation, and a damper devised for noise isolation is inadequate for isolation
of low frequency vibrations.

Currently, the most popular damping device is a hydraulic damper which can

be easily designed to meet the requirements for vibration isolation for various



applications.[1-10] For example, if the orifice of the damper is made small, it
develops high damping. Again, if the orifice is large, low damping is evolved,
resulting in good high frequency performance as well as shock isolation. Such
dampers can further be designed to produce nonlinear asymmetric characteristics
with good potential for isolation of shock and vibration in a wide frequency range.
Consequently, rubber dampers are being rapidly replaced by hydraulic dampers in
vehicle applications, since the rubber is practically invariant with excitation
amplitude and frequency over a wide range of frequency. The following section

describes the typical hydraulic dampers available for various applications.

1.2 Classification of Dampers
In general, classification of dampers are based on the requirement of external
source of energy. Such widely known classification includes: i) Passive dampers:
ii) Semi-active dampers; and iii) Active dampers. As discussed later under
literature review, the semi-active and active concepts are extensively studied
which are complex, expensive and have severe limitations for general applications.
On the other hand, passive dampers are simple, cost effective and highly reliable.
The present study focuses on the concept of passive damping through
hydraulic devices. In this respect, the hydraulic dampers are classified based on
their constructional differences, such as: (a) Flexible chambered damper (DHF);
and (b) Rigid chambered damper (DHR). Although these dampers have functional
differences, they both provide primary damping through dissipation of energy as
fluid passes from one chamber to the other. In the first case (DHF), the chambers
are flexible whereas in the second case (DHR), the chambers are rigid. DHF
dampers are suitable for isolation of low amplitude vibration whereas DHR

dampers are mostly suitable for high amplitude low frequency vibration isolation.



1.2.1  Flexible Chambered Damper (DHF)

A typical flexible chambered hydraulic (DHF) damper is shown in Figure 1.1a. It
primarily consists of flexible chambers separated by an orifice plate responsible
for damping generation. The flexible parts are made of rubber material. The
bottom chamber is much more compliant than the upper chamber or top chamber.
The function of the top chamber is of three fold; first, to support the structure
resting on it, second, to act as a spring and third, to provide chamber flexibility
which acts as a piston to pump the fluid from one chamber to the other. As such, it
eliminates (a) the necessity of moving parts, such as piston, piston rod, etc., (b)
occupies less space, as it is compact. The function of the bottom chamber is,
primarily, to act as a reservoir for the fluid coming from the top chamber through
the orifice. There can be a wide variation in the design of such dampers both in
terms of chamber flexibility and orifices. The orifice can be designed as short,

long, with and without spring loaded valves, as well as their combinations.

1.2.2 Rigid Chambered Damper (DHR)

The main components of a rigid chambered damper (DHR) as shown in Figure
1.1b include a cylinder and a piston. The piston, with some orifice perforated on it
moves up and down in a long narrow cylinder, sometimes surrounded by another
concentric cylinder. To avoid vacuum thereby cavitation, a third chamber or a
flexible chamber filled with inert Nitrogen gas, within or outside the cylinder is
often included. Additional coil spring is necessary to apply such dampers in a
suspension. But when it is built as a pneumatic suspension, the inert gas chamber
acts as a gas spring. It can carry larger load, and isolate higher amplitude of
vibration at low frequency. Such dampers have been extensively studied and
developed over the years [10-11]. For vehicle suspension application, these
dampers are designed with orifice valves to provide blow off and bleed control
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leading to nonlinear asymmetric characteristics. An alternative approach to obtain
multi-phase damping based on relative velocity or relative position has been
investigated in recent years which showed potential for improvement of both
resonance and high frequency performance.

Passive hydraulic dampers with flexible and rigid chambers have proliferated
into many forms in recent years due to their simplicity in construction, cost
effectiveness and reliability. Significant variations in these designs are possible
which may yield superior performance for specific applications. Their full
potential can be evaluated by accurate and thorough modeling and analysis. This
thesis presents an in-depth and detailed modeling and accurate analysis of a class
of hydraulic dampers to explore their performance potential. The hydraulic
dampers with flexible chambers are modeled with short orifice, without orifice,
and orifice with spring loaded valve as well as their combinations. Detailed
analytical models are developed to establish their dynamic characteristics and
performance. The study further examines the previously reported concepts of dual-
phase damper. In this case a more accurate model based on integral formulation of
damping force is developed and compared with those of conventional approaches.
The dynamic characteristics and performance of dual-phase damper are established
via equivalent linearization and computer simulation. The performance in each
case is determined for both sinusoidal excitation and shock.

The following section presents a detailed state-of-the-art survey of literature
on hydraulic dampers and a brief discussion on semi-active and active dampers for

completeness and to develop the scope of the present investigation.

1.3  State-of-the-art Survey
Extensive research has been carried out on passive, semi-active and active

suspension systems during the past few years in order to improve ride quality,
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suspension rattle space, handling, roll stability, and directional control
characteristics of vehicle systems [1-44]. It constitutes a variety of investigations
concerning the development of improved passive element, advanced active and
semi-active control systems.

Hydraulic dampers, applied, particularly to vehicle suspension and engine
mounting system, are now being required to achieve better noise, shock and
vibration isolation. Hydraulically damped, flexible chambered (DHF) engine
mountings are a fundamental improvement over the conventional engine
mountings [1-8]. Hydraulic mounts have high damping for large motion induced
by engine shake and low dynamic stiffness for low amplitude caused by noise
transmission [12-17]. These excellent properties cannot be achieved by
conventional rubber mount. Hydraulic mounts, so far developed, are less effective
in case of superimposed inputs and input in high frequency range [15]. They have
demerits also in shock isolation performance [14].

Idle car shake and shock at acceleration, have conflicting requirements. When
the mount is tuned to minimize idle car shake, it tends to enlarge the shock at
acceleration which is obviously a drawback. In hydraulic mount, high damping is
obtained by orifice effect, necessary for 5-15 Hz large amplitude vibration
resulting from engine shake. Hydraulic mounts with decoupler component are best
suitable for 100-200 Hz low amplitude vibration or booming noise as it produces
low dynamic stiffness [15]. But, because of strong nonlinearity of the cecoupler, it
is not suitable for superimposed inputs such as the engine shake and booming
noise acting simultaneousiy. Furthermore, its function is not effective for the
engine combustion sound which is a problem in the range 400 to 600 Hz. This is
due to increase of hydraulic stiffness resulting from liquid column resonance or
rubber surging. Each of ..e mount is suitable for a specific purpose only.
Furthermore, all of the above mentioned mounts have very poor performance in
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isolating shock at acceleration. Although bush type hydraulic mount shows better
performance in shock isolation [14], its performance in isolating idle car shake is
like an ordinary rubber mount.

Rigid chambered hydraulic dampers (DHR), on the other hand, are widely used
for shock and vibration isolation in automobile, motorcycles and aircraft landing
gear. It can accommodate large relative displacement, develop high damping for
vibration isolation and shows superior performances for shock isolation. These
dampers with multiphase characteristics have demonstrated good potentials for
improved performance over a wide frequency range. In the following subsection, a
state-of-the-art survey of various damping system studied are presented in view of

the present investigation.

1.3.1 Passive Hydraulic Damper

The DHF dampers represent relatively recent developments in the damping
technology. Although, the analysis and development of various types of passive
DHF dampers have been reported in the literature, each type of damper exhibits
different performance limitations and benifits.

DHF damper was first developed by Mark Bernuchon [1] having peripheral
circular channel and perforated disc connecting two chambers only. Utilizing a
very simplified model, under sinusoidal inputs, the study showed good
performance in comparison to all rubber mounts for low frequency only. Through
experimental study, an improvement in ride comfort was shown within the
frequency range 2-20 Hz. It further showed substantial improvement in the
acoustic levels in the order of 5 to 6 dB. Corcoran and Ticks [2] have studied
hydraulic mount with spiral nozzle and clearance space. They added new
technique of 'clearance space phenomenon’ to overcome engine bounce, idle shake

and noise inside the vehicle. By introducing clearance, dynamic stiffness was
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greatly improved for high frequency of amplitude 0.20 mm with a sacrifice in loss
angle. For a clearance of +0.32 mm, the performance was shown to be excellent
for high frequencies of up to 200 Hz, but the damping in this case is almost half of
the damping obtained without clearance. Test conducted with a 6 cylinder in-line
gasoline engine using this hydraulic mount showed 5 dB decrease in noise level at
3300 rpm. A three degree of freedom (DOF) linear model was used by Clark [3] to
describe dynamic performances (<400 Hz.) of hydraulic mount. He identified the
basic principles involved in optimizing the dynamic performance of the mount. It
was shown that the larger the ratio of the hydraulic mount spring stiffness, the
greater the improvement in the low frequency isolation levels. To minimize the
road input effects, it is, however, necessary that the mount should be tuned to
"wheel hop frequency"”. It is true that tuning of the mount will be different for
different input conditions, hence the particular vehicle influences the overall
performance of hydraulic mount.

Flower [4] analyzed three types of hydraulic power train mounts, namely:
hydraulic mount with simple orifice, hydraulic mount with inertia track and
hydraulic mount with inertia track and decoupler. He explained in detail their
performance starting from simple rubber mount using a te.unique known as 'bond
graph' model. His results show that inertia track helps to get high damping at low
frequency, while inertia track together with decoupler gives excellent performance
producing low dynamic stiffness at low amplitude and retaining large loss angle at
large amplitude and low frequency. Taylor [5] analyzed the same kind of hydraulic
mount as Flower but without any orifice. It combines the spring and damper in one
package. He showed without any mathematical solution that the mount allowed
tuning of damping and stiffness independently. In application to vehicle cab
suspension, Marjoram [6] investigated hydraulic mount technology in the

suspension of vehicle cabs with the addition of internal pressurization. He studied
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the effect of load variation on the dynamic characteristics of FAR (Fluid Air Ride)
mount. The advantage of pressurization is that it provides a constant installed
height independent of load. FAR mount provides a natural frequency of 2 Hz and
Fluidlastic mount provides the same as low as 4 Hz.

Ushijima and Dan [12] carried out nonlinear analysis of air Jamping mount as
well as hydraulic mount using Building Block Approach technique to analyze the
frequency response of a vehicle. Their model, like others, consists of a main tube
(long orifice) and a decoupler component. Using amplitude of excitation up to 1
mm, they showed, theoretically and experimentally, the characteristics and
performance of the dampers. Theoretical analysis of hydroelastic engine mount
carried out by Sugino & Abe [13] claims that the mount functions as a velocity
amplifying dynamic damper because mass of the fluid inside the orifice is
increased due to amplification of velocity and therefore damping effect is high,
although the mass is small. They also investigated the influence of various
parameter such as orifice length, cross-sectional area, elasticity, specific gravity,
etc. on the resonant frequency. Optimization of different parameters of hydraulic
mount was also carried out for application to engine mount. But the model
developed by them is a mechanical model where all the process are represented by
linear spring rate and different cross-sectional area. Therefore, a realistic damper
model needs to be analyzed.

Hong Su, et al [7] developed a variable damping mechanism simply by
limiting the pressure differential across the piston of a passive hydraulic damper
using pressure relief valve. They showed the performance of the passive damping
concept to be quite comparable to that of semi-active "on-off" vibration isolators.
A researcher on shock isolation by hydraulic mount, Kadomatsu [14] found
analytically that nonlinearity of the spring rate characteristics of the mount must

be lower and/or damping rate higher in order to reduce shock at acceleration. He
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developed a bush type hydraulic engine mount expecting to reduce the shock
level to 1/3 but the dynamic stiffness is almost same as all rubber mount at idle
speed. Ushijima, et al [15] reported some interesting development in hydraulic
mount. In order to reduce the nonlinearity of the decoupler, they replaced it with a
rubber membrane. It resulted in a low dynamic siiffness even at high frequency
and superimposed input. They also applied the phenomenon called 'liquid column
resonance against rubber surging' in the mount and achieved low dynamic
stiffness up to 800 Hz which is a significant achievement. The performance at
low frequency was, however, found to be very poor.

Very recently Singh, et. al [16] carried out a linear mathematical analysis of
hydro-mechanical mount having long orifice and decoupler using continuity and
momentum equation of fluid mechanics. Later, Kim and Singh [17] carried out a
nonlinear analysis of a hydraulic mount having long orifice only. They considered
long orifice flow and compliances of the chambers to be nonlinear. Although the
model studied is quite complex, they ignored the 'oscillation effect' the long
orifice encounters which may have significant effect on the dynamic performance
of the damnper. It might be one of the reasons for large discrepancy they obtained
between the theoretical and experimental results. It is, therefore, necessary to
investigate the long orifice hydraulic damper with the consideration of oscillation
effect. Furthermore, the behavior of the damper under the excitation of shock
input was not considered in this investigation.

A different concept for isolator damping considers multi-phase within a cycle
of vibration. A number of studies have been carried out on this concept where the
damper construction is same as that of conventional rigid chamber. In this casc,
however, damping characteristics is of dual-phase which may be based on relative
position, velocity or acceleration. Venkatesan and Krishnan [8,36] described a
dual-phase damping of displacement sensitive type in application to a simple

10



shock mount. They carried out harmonic analysis using equivalent damping ratio
technique. It was shown that by using dual-phase damping, it is possible to reduce
the absolute transmissibility over the whole frequency range. In fact dual phase
damper is a compromise between low damping and high damping. Therefore, it
has good performance near resonant frequency but poor performance in high
frequency zone compared to the decoupler fitted to a hydraulic mount. This study,
however, adopts a simplified approach for characterizing the damping force which
is displacement sensitive. This approach may lead to under- or overestimation of
the damping force to a great extent. Guntur and Sankar [37] carried out extensive
research on six different kinds of dual phase damping shock mounts, namely
displacement sensitive, velocity sensitive and acceleration sensitive, each with
low-high and high-low form. Results are useful in the development of optimization
theory in nonlinear damping. In a very recent study Sankar, et. al [38] analyzed the
dual-phase damper both theoretically and experimentally showing that a
displacement sensitive low-high damper has a very good potential for vibration
isolation. The results show a significant reduction in the resonant transmissibility
without any significant loss at high frequency when compared to a linear damper.
Following the early work of Snowdon [43] on dual-phase damping, all

investigations on the subject to date have defined damping force by F, = C(x)x.
This results from the fundamental definition Fy = j: C{x)dx when the coefficient C

is a constant. In the case of dual-phase damping, however, C is a function of time
response. Consequently, the traditional simplified approach used to date must have
lead to under- or overestimation of the damping force in the simulation. In order to
evaluate the performance of a dual-phase damper accurately, the integral approach

must be used to describe the damping force characteristics.
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1.3.2 Semi-active Hydraulic Damper

Semi-active vibration control is based on the ability to modify the magnitude of
forces transmitted through coupling devices. Low power actuators are used to
induce changes in damping properties by modifying hydraulic parameters within
the damper.

Graf and Shoureshi [39] analyzed semi-active hydraulic mount of two kinds;
one with external bleed and the other with internal bleed having ports for
pressurized fuel injection. The conclusion is that a significant improvement in
transmissibility is possible in low frequency zone compared to passive hydraulic
mount. But in high frequency zone it has higher transmissibility. Effect of
parameter variation on mount properties were also analyzed through sensitivity
analysis. West [40] utilized an external vacuum pump to control diaphragm
movement in the mount, where high level of vacuum produces high damping and
vice versa. Duclos [41] used five internal paths, four of which contain ER fluid
valve which could be used to control the fluid flow through thesc paths. ER
(Electro-Rheological) valve is a simple, low power consuming, low cost method
of controlling tunable damper. Ushijima, et al [15] also carried out semi-active
hydraulic mount analysis. They applied the principle that application of clectric
field strength changes the apparent viscosity of ER fluid. In their model of semi-
active hydraulic mount, damping force was controlled by applying high voltage in
rectangular wave. The results show that an excellent vibration isolation
performance is theoretically possible when controlled by rectangular wave of half

the period of sinusoidal excitation with a phase difference of 135 degrees.

1.3.3  Active Hydraulic Damper
In the case of active hydraulic systems both magnitude and direction of forces

applied through coupling devices are controlled. It requires high speed actuators
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and fast sensors with operating bandwidths matching those of disturbance
spectrum.

Mizuguchi, et al [42] developed an electric controlled engine mounting
system, an active hydraulic mount, which keeps the insulator characteristics soft
under normal conditions, and increases spring constant and damping force to limit
engine roll when a large load change occurs. Here the two chambers are separated
by a partition having fixed orifice and a valve controlled port operated by a rotary
solenoid. The solenoid is controlled by a solenoid unit. This mount has a
remarkably low level of shock isolation as well as reduced engine vibration at idle
speed and at cruising. Hagino, et al [9] developed an active vibration control
system capable of reducing vibration at acceleration by 16 dB when the control
force is 32 N. Actuator, controller and power amplifier are the main component of
the system to apply feed forward control method. From engine ignition pulse,
engine pulsating torque is predicted and based on which the controller generates or

changes the amplitude and the phase of the control signal to reduce the vibration.

14 Scope of Proposed Investigati’n
From the review of literature presented it is quite evident that significant studies
have been conducied and are being carried out on advanced active and semi-active
concepts for isolation of shock and vibration. As pointed out earlier, these concepts
are complex, expensive, require high maintenance and are not yet viable for
common applications. The present study, therefore, focuses on passive concepts
utilizing hydraulic damping. A class of dampers, namely the dual-phase concept,
and dampers with flexible chambers and wide ranges of orifice design are
considered.

The concept of displacement sensitive dual-phase damper which can be

realized via passive means has been investigated recently. Such dampers have
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shown the potential for improvement in some applications. However, all
investigation to date have utilized simplified approach to estimate the damping
force. An accurate model must include an integral formulation to represent the
damping force characteristics. This investigation, therefore, has scope to develop
an accurate model for dual-phase damping, the performance of which can be
compared with those of previous analytical and experimental results. The model
can further be analyzed for evaluation of its performance potential for isolation of
vibration and shock. Simulation of nonlinear dual-phase damper in frequency
domain can be carried out utilizing a local eauivalent linearization technique [45].
The technique has been successfully applied for nonlinear velocity dependent
variable dampers by Rakheja [46-48] and Ahmed [49] both for symmetric and
asymmetric cases. The technique, however, cannot be applied directly for the
displacement sensitive dual-phase damper. In this case a velocity dependent
equivalent damper characteristics has to be first established prior to application of
the techinique which is based on energy similarity. The study, therefore, further
presents a scope for examining the effectiveness of the local equivalent
linearization technique in application to displacement sensitive nonlinear damper.
For the case of hydraulic dampers with flexible chambers, several works
evaluating their performance in application to engine mounts have been reported.
Majority of the work considers long orifice for these dampers. Most studices,
furthermore, consider simplistic approach along with the assumption of linearity
which is far from the reality. Even the most comprehensive nonlinear modecl
available [17] neglected the effect of fluid oscillation in the long urifice. In reality
the fluid within the long orifice oscillates back and forth and the oscillation
increases with the increase in frequency. The performance of the hydraulic
dampers with flexible chambers are commonly evaluated for low amplitude

sinusoidal excitations in the range of 0.1 mm to 1.0 mm. The behavior of such
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dampers with long orifice are reported to be excellent for limited application. Their
performance in a wide range of vibration environment and under shock are seldom
reported.

The present investigation, therefore, presents a scope to carry out a detailed
nonlinear modeling of hydraulic dampers with flexible chamber, which will
consider all possible variables including fluid oscillation. Furthermore, models can
be developed with short orifice, long orifice and their combination with and
without spring loaded valve to explore their performance potentials and
performance limits. In all cases, the performance can be evaluated for both

isolation of vibration and shock to establish their application potentials.

1.5  Objectives of Dissertation Research
Based on the scop= of the study on a class of hydraulic dampers presented in the
previous section, distinct objectives are outlined for each type of damper

configuration considered.

1.5.1 Dual-phase Viscous Damper (DPVD)

. Develop nonlinear analytical models for displacement sensitive dual-phase

viscous dampers (DPVD) with low-high and high-low characteristics.

. Characterize damping force based on integral formulation as opposed to

simplified approach adopted in other studies.

. Formulate local equivalent damping coefficients based on energy balance.
Compare the results with direct integration to demonstrate their

effectiveness.
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. Establish damper properties and compare with those of other studies and

available experimental results.

. Carry out simulations for isolation of simple system to establish damper
performance. Examine the response to both vibration and shock of varying

severity.

. Carry out a parametric study to explore their influence and performance

potentials.

1.5.2 Hydraulic dampers with Flexible Chambers (DHF)

. Develop nonlinear analytical models of hydraulic dampers with flexible
chambers (DHF) utilizing experimental values for compliance of the
chambers as well as stiffness and damping coefficients for the rubber

elements.

. Formulate the models of DHF utilizing various orifice designs to explore
their performance and limitations. Various configurations to be considered
are:

- Short Orifice Hydraulic Damper with Flexible Chambers (SDHF)

- Long Orifice Hydraulic Damper with Flexible Chambers (LDHF)

- Long and Short Orifice Hydraulic Damper with Flexible Chamber (LSDHF)
- Long Orifice Hydraulic Damper with Spring Loaded Valve (LDHVF).

. Carry out both time and frequency domain analysis for each configuration

for in-depth understanding of their performance characteristics.
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. Establish performance of each configuration for isolation of both vibration

and shock inputs.

. Carry out a parametric and comparative study to explore their influence,

performance potentials, and limitations.

1.6 Thesis Organization

Chapter 2 of the thesis presents the concept of displacement sensitive dual-phase
dampers. It highlights the deficiencies of previous investigations on the concept. A
detailed model is developed with low-high and high-low characteristics for the
damper. For an "accurate" characterization of the damping force the displacement
sensitivity is first transformed into velocity sensitivity and then the integral
approach is applied for varying damping coefficient. Damping characteristics are
obtained by numerical integration as well as utilizing local equivalent linearization
technique. Results are compared with those of previous investigations.

The detailed model for the hydraulic damper with flexible chamber 1s
developed in chapter 3. Nonlinear models are developed for variations in orifice
configurations, namely: short orifice hydraulic damper with flexible chambers;
long orifice hydraulic damper with flexible chambers; long and short orifice
hydraulic dampers with flexible chambers; and long orifice hydraulic damper with
spring loaded valve. Modeling considerations for each of the above cases are
discussed in detail. The nonlinear equations of motion are solved to characterize
the damping properties in each case.

Chapter 4 primarily deals with the performance of dual-phase dampers
developed and presented in chapter 2. Here the damper characteristics are
evaluated and presented along with a parametric study. The performance of the

damper in isolation of vibration is presented in the form of transmissibility in
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frequency domain. The system model with this damper is further exposed to shock
inputs of various severity to determine their performance to shock response.

Similar to chapter 4, chapter 5 presents the performance of short orifice
hydraulic damper with flexible chambers. It presents both time and frequency
domain analysis along with a parametric study. The performance of the damper in
isolation of vibration is presented for a range of parameters. The response to shock
excitation is presented in time domain as well as in the domain of shock severity.

Chapter 6 presents the detailed performance analysis of long orifice hydraulic
damper with flexible chamber, utilizing the models developed in chapter 3. The
performance is evaluated following the same steps as that of short orifice system
performance presented in chapter 5. Here results are presented for long orifice as
well as a combination of long and short orifice.

The model developed for long orifice with spring loaded valve is analyzed in
chapter 7 to evaluate its performance. A detailed time domain analysis is carried
out for in-depth understanding of the damper behavior. The performance in this
case is again evaluated for isolation of vibration and shock following the same
steps as that of short orifice presented in chapter 5.

Chapter 8 of the thesis concludes the present investigation with highlights of
the findings in each case of the ramper considered. It further presents a list of

recommendations for future work.
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CHAPTER 2

DISPLACEMENT SENSITIVE DUAL-PHASE
VISCOUS DAMPER

2.1 INTRODUCTION
Non-linear dampers are used in isolators due to their potential in improving
vibration isolation performance over a wide range of frequency. Among the
different kinds of non-linear dampers, dual-phase dampers have received special
attention because of simplicity in their design and good vibration isolation
performance. A number of displacement, velocity and acceleration sensitive dual-
phase dampers have been investigated in order to achieve better shock and
vibration isolation performance [8,30,36-38,43]. In general, the dual-phase damper
characteristics can be grouped under two categories, namely

i) low-high, when damping coefficient increases with increase of

displacement, velocity or acceleration and

ii) high-low, when the damping characteristic is opposite of low-high.

Snowdon [43] studied shock isolation characteristics of a velocity dependent low-
high dual-phase damper. The damping force Fq was defined by Fy = C (X) x,
where x is the relative velocity and C (x) is the velocity dependent damping

coefficient. The non-linear damping coefficient was evaluated at the peak relative

velocity (i.e. C (X) at X = X, ) and hence the resulting damping force used in



[43] represented the peak damping force (i.e. Fy =C (x)| x), for a given

X = ¥peak
velocity. Venkatesan and Krisnan [8] also analyzed a velocity sensitive dual-phase
damper in a landing gear of an aircraft. Like Snowdon, they also defined the
damping force Fy = C (X) x. This approach of defining damping force, referred to
here as "traditional” approach, is often used in literature. However, based on the

fundamental definition, damping coefficient is given by C = dF,/dx. Therefore,

the damping force at any given relative velocity (x) can only be estimated by the
integral expression Fy= _[;C (x) dx. Both the integral and traditional approaches

will lead to identical damping force when the damping coefficient is a constant.
But when dealing with variable damping coefficient such as dual-phase damper,
the "integral" approach is the "correct" approach. The "traditional approach" will
either lead to under- or over-estimation of the damping force depending on the
damping characteristics, i.e., high-low or low-high, respectively.

Beside velocity sensitive dampers, Venkatesan and Krishnan [36] also carried
out harmonic analysis of a shock mount employing displacement dependent dual-
phase damper using the damping force expression Fy = C (x) x. The non-linear
damping coefficient was evaluated at the peak relative displacement ( i.e., C(x) at
X = Xpeak ). Sankar, et. al [37] also investigated a detailed theoretical and
experimental analysis on displacement sensitive dual-phase damper based on

traditional approach of damping force characterization, Fy (x,X,t) = C(x) x. Again
an integral form to represent the damping force, i.e., Fy = IC(X) dx, would be the

correct approach to estimate the response more accurately. In addition to the two
different types of dual-phase dampers described earlier, Guntur and Sankar [38]
carried out investigation on the performance of an acceleration dependent dual-
phase damper with rounded pulse and oscillatory step input excitations. The study

concluded that /ow-high displacement sensitive damper has the best isolation
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performance and its characteristics is as good as those of high-low velocity
sensitive damper.

In fact a close examination as presented in section 2.2 will reveal that for each
high-low velocity sensitive damper there is an equivalent low-high displacement
sensitive damper where the performance for both should be the same. Therefore, it
is quite adequate just to consider displacement sensitive dual-phase dampers to
explore their performance potential. Such dampers are more attractive as they can
be realized via passive means.

For the purpose of this study, both low-high and high-low displacement
sensitive dampers are utilized as a vibration isolator for a single DOF system. The
dynamic response of the system, for sinusoidal base excitation, is obtained using
the integral formulation for the damping force. A local equivalent linearization
technique based on energy similarity over a cycle is utilized for efficient
simulation of the non-linear system in the convenient frequency domain.
Simulation results are first validated against those obtained from direct numerical
integration. Damping force-time history and frequency characteristics along with
system transmissibility are compared with previous studies employing traditional
non-integral approach for formulation of damping force. This simulation results
are also compared with available experimental results [30,37] to demonstrate the

effectiveness of the proposed simulation.

2.2 DAMPING FORCE CHARACTERIZATION OF DISPLACEMENT
SENSITIVE DUAL-PHASE DAMPERS

The damping characteristics of a low-high type displacement sensitive dual-phase
damper are represented in Figure 2.1. The damper's characteristic is defined by
four parameter A, aA, C and 3C where A and aA are the transition points of

relative displacements; o and 3 (>1) are the transition factors; and C is viscous
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damping coefficient. The parameters o and (3 determine the non-linearity index o

of the damper, where o = 2—1. When = 1.0, it implies that the non-linearity

factor is zero and the resulting characteristics is that of a linear damper. When ¢ is

very close to unity, ¢ tends to infinity, and will result in a sudden change in
damping coefficient.

When 3 > 1.0 and a > 1.0, the damper is effectively either a low-high or a
high-low displacement sensitive damper, where for low-high case, the damping
coefficient increases with the increase of relative displacement. In this case, the
dual-phase damper can be modeled as a piece-wise linear damper for the three

distinct regions of relative displacement X and is given as follows:

For ¥ > aA, damping coefficient Cy4=C (2.1a)
For A< | saA damping coefficient C4=fpC - oC (o AX)/A  (2.1b)
For |x < A, damping coefficient C4=C (2.1c)

The typical characteristics of the high-low displacement sensitive damper is shown
in Figure 2.2. Here the damping coefficient decreases with the increase in relative
displacement. Like low-high damper, the high-low damper can be expressed as a

piece-wise linear damper for the three regions of relative displacement as follows:

For |¥ > A, damping coefficient Cy=C (2.2a)
For A< |x saA damping coefficient Cy=C + oC (& A-X)/A  (2.2b)
For |x < A, damping coefficient Cy=C (2.2c)

Based on the fundamental definition of damping coefficient, the damping force for

the displacement sensitive damper is obtained from:
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Fg = [Cq (%) dk (2.3)
0

In equation (2.3), it is necessary to transform Cy (x) into C4(x) form in order to

carry out the integration. For sinusoidal functions, X and X can easily be

interrelated by x=l\/m2X2-)'(2 , where w is the frequency and X is the peak
)

relative displacement. From this expression it is evident that X is not only a
function of X and w, but also peak relative displacement X. Therefore, depending
on the peak displacement X, and the three regions of the damper (Figure 2.1), there
will be three distinctly different Cy(x) (i.e, velocity sensitive damper
characteristics). For peak displacement X > aA, this transformation would change,
a low-high displacement sensitive damper into a high-low velocity sensitive
damper and the high-low displacement sensitive damper, into a low-high velocity
sensitive damper. Therefore, displacement sensitive dual-phase damper can also be
viewed as an equivalent velocity sensitive dual-phase damper. That is why Guntur
and Sankar [38] observed that the performance characteristics of a low-high
displacement sensitive damper were similar to that of a high-low velocity sensitive

damper.

2.3 TRANSFORMATION OF DISPLACEMENT SENSITIVITY TO
VELOCITY SENSITIVITY ((C4(x) >C4(x))

With reference to Figure 2.3, the regions of the displacement sensitive dampers
that will be active, depend on the peak relative displacement X. Therefore, it is
necessary to find an equivalent Cy(x) for the three different cases depending on
the regions that are active during a cycle. The equivalent velocity sensitive damper
characteristic is established for the three cases depending on the value of peak
relative displacement, illustrated for low-high (Fig. 2.3) and high-low (Fig 2.4)

cases.
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2.3.1 Casel: Peak relative displacement X greater than cA:

When the peak relative displacement X is greater than oA, the damper passes
through all the three regions (a, b and c¢) as shown in Figure 2.3a. The
corresponding equivalent wvelocity sensitive damper characteristic is shown in
Figure 2.3b. The transition points for the velocity are YAy, and Ay. Ay is the
velocity corresponding to relative displacement at X = A, i.e., Ay = wvX2 — A?
where X is the peak relative displacement. Similarly, YA, is the velocity
corresponding to the relative displacement at X = oA and can be expressed by
YAy = 0VX?-a?A2, A point by point transformation of the displacerment
sensitive damper characteristic leads to a high-low type velocity sensitive
characteristics shown in Figure 2.3b. In this case, equivalent damping coefficients

are as follows:

Forregion(a): |x < A, [X| > Ay,
Cd = C (248)
For region (b): A <|Xs oA, Ay 2} =qA,

Cq4=BC - %(%}) (A~ VP =52) (2:40)

Forregion(c): |X >aA,  |X| <Ay
C,=fC (2.4c¢)
Similarly, a high-low displacement sensitive damper can be transformed into a
low-high velocity sensitive damper, shown in Figure 2.4b. The equivalent damping
coefficients for the low-high velocity sensitive damper is given by the following

equations.

Forregion (a): [X < A,  |X] > Ay,
Cd = BC (258)
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For region (b): A <|xs aA, Ay 2% 27A,

C,=C + %(5‘:‘11‘) (ceA - ;‘)-Jmaxz-xa) (2.5b)

For region (c): |X| >oA, X < YAy

Cd =C (Z‘SC)

2.3.2  Case II: Peak relative displacement X in the range A <|x/< cA:

When the peak relative displacement is greater than A bui less than oA, the
damper passes through regions (a) and (b) only as shown in Figure 2.3c. The
transformation into velocity sensitivity characteristic in this case leads to a form as
shown in Figure 2.3d. The equivalent velocity sensitive damping coefficient for

the two regions of the damper are given by the following:

For region (a): |X < A, X > Ay,
Cd =C (2.6a)
For region (b): INzaA,  |X <yAy.
Cy=pC - 9—(‘3—‘1) (@A - 02X %) (2.6b)
Ala-1 w
In the case of high-low damper (Figure 2.4c and 2.4d), the equivalent coefficients
are:
For region (a): |X < A, 1% > Ay,
Cq=fC (2.72)
For region (b): I=zaA, X <yAy,
C,=C + %('3—'1) (aA- L w?X2— ) (2.7b)
o~ W
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2.3.3  Case III: Peak relative displacement X less than A:
When the peak relative displacement is less than the transition point A, the low-
high damper operates only within the region (a) (Figure 2.3e,f). The corresponding

equivalent damping coefficient for this is simply given by the following;:

For region (a): |x| < A, x| <Ay,
Cd = C
(2.8

In the case of the high-low damper, Figure 2.4e, 2.4f,

For region (a): |X < A, x| <Ay,
Cd = ﬁC
(2.9)

24 DERIVATION OF DAMPING FORCE EXPRESSION
For the displacement sensitive dual-phase damper with symmetric characteristics,

the damping force for sinusoidal excitation can be obtained from the fundamental

relationship:

X (2.10)
Fy = [Cq (%) dX
0

where Cy(x) is the equivalent velocity sensitive damping coefficient
corresponding to the given displacement sensitive damping characteristics. An
expression for these damping coefficients were obtained as stated in Equations.
2.4, 2.6 or 2.8 depending on the peak relative displacement for the case of low-
high damper. Performing the above integration (Equation 2.10) for each case of

peak relative displacement leads to three equations for damping force
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corresponding to the three regions in case I. Similarly, two equations for case Il

and only one equation for case III. The final expression for these damping forces

for low-high damper are obtained as follows:

Case I: |X|> aA

when |x| < A

=29{waA\/X2—a2A2 - wAVXE-AZ & oX3(sinVXZ - AZ /X
n" X2 — A2 1 X) } sgn(x) + Cx

when A < |x| < oA
{(maA\/ X?-a 2sin™' v X% - a®A? 1 X)sgn(x)

+ (2A——'— +1x %) + wX? sin"—x——}
B-1 wX

when |X > aA
CaseIl: A = [X| 2 aA

when |x| < A

—g%{‘wa/Xz ~AZ + oX?sin”' VX2 - AZ /X}sgn(%) + Cx

when |x > A

—_— X2 sin™
Fy= 2A{(2A ; +[x) % + w =~

Caselll:  |X[<A
when |x|<A
Fd = CX
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In the above expressions (Equations 2.11 to 2.13), sgn(x) has a value of either +1
or -1 for positive and negative value of velocity to ensure the phase relationship
between the damping force and velocity.

Similar to above, the damping force expression for high-low displacement

sensitive damper are as follows:

CaseI: |X|> oA

when|x < A

Fq =g—g{wAVX2 -A% —oAVXZ -a?A? - wXZ(sinTTVXZ-AZ /X (2.14a)

-sin"'VX2-a?A2/X) } sgn(x) + BCx

when A <|X| < oA
Fy =-§—%{(wx2 sin' VX2 -a?A? I X - waAvVX? —a2A? )sgn(x) (2.14b)
i (2A-°—;f—-_1—1 #X %) - wX? sin‘1—(:7}
when |x| > A
F, = Cx (2.14c)

Casell: A 2 |X| 2 aA

when |x| < A

F, =§{wAw/X2 - A? - wX?sin"'VX2 - A2 /X}sgn(x) +BCX (2.15a)

when |x| ) A
_9C ] opaB-1 - X2 sin--X 2.15b
F"_ZA{(ZA = +|x| ) X - wX? sin wx} (2.15b)
CaseIIl:  |X|<A
when |x|<A

Fg =BCx (2.16)
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2.5 PERFORMANCE EVALUATION OF DISPLACEMENT SENSITIVE
DUAL-PHASE DAMPERS

2.5.1 Model formulation

Vibration isolation performance of a low-high displacement dependent dual-phase
damper in a single DOF system as shown in Figure 2.5 is carried out for base
excitation of Xy = Xy sin wt. The spring is a linear element with stiffness kg and the
damper is a displacement sensitive dual-phase damper. The equation of motion for
the nonlinear system is:

mX + Fy (x, x,t) + K,x = -m¥, (2.17)
where X= X; - X3, X = Xy - X5, X = X1 - X, and Fy(x,x,}) is the damping force
given by Equations. (2.11), (2.12) and (2.13) for low-high damper or Equations
(2.14), (2.15), (2.16) for high-low dampers, depending on the peak relative

displacement.

"
m ——]

P
tj C (x)

—\ NN —

Jha

Figure 2.5 A one DOF mechanical model
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2.5.2 Numerical Integration

The nonlinear system Equation (2.17) has been solved using the 4th order Runge-
Kutta method. Initial conditions are taken as x(0) = x(0)= 0 and the time step At =
0.01/w. Since the instantaneous damping force depends on peak relative
displacement which is yet to be determined, an iterative procedure is utilized. For a
selected frequency, a peak relative displacement is assumed for each cycle, and the
Equation (2.17) is solved for that cycle. The maximum value of relative
displacement obtained is compared with the assumed value and if the percentage
difference is less than some error tolerance (0.001% of previous value), integration
is stopped for that cycle. Otherwise, the integration is carried out for that cycle
again with the new value of the peak relative displacement and the integration
procedure is continued until convergence is achieved. This process is continued for
the next cycle with the new value of peak relative displacement. The numerical
integration procedure outlined to obtain the frequency response is a highly tedious
and time consuming task. Alternatively, the damping force characteristic can be
obtained using a local equivalent linearization technique described in the following

section.

2.5.3 Equivalent linearization of the dual-phase damper

The system Equation (2.17) is a non-linear differential equation due to the
damping force F4(x,x,1). For each excitation frequency, an equivalent damping
coefficient of the non-linear damper is determined using Jacobson's equivalent
damping concept [45]. The energy dissipated in one cycle by a non-linear dual-
phase damper due to the harmonic excitation at a selected frequency w, and
corresponding peak relative amplitude X, is equated to that of an equivalent linear

damper at that particular frequency:
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2nlw 2n/w

JRstxx v xdt = [ Ctdt (2.18)
Y 0

i

where C is the equivalent damping coefficient. The local equivalent damping
coefficients are obtained by performing the above integration by parts for each of
the three regions corresponding to the magnitude of the peak relative displacement.

Therefore, three expressions are obtained for equivalent linear coefficient:

2

= C for|X| < A (2.19a)

Ol
1

—2—;(-A\/X2 —~ A% + X2sin" VX2 - A2 / X)sinat, +9(2wt, +sin2ut,)
b ¢ n

+ Ea—_ﬁ(u—Zwt,-sin&nt‘H 20XC
To- 3nA
20XC

T

cos® wt,

{cos wt, - sinwt, sin~'(cos (.ut1)}

for A > [X| = oA
(2.19b)

20C L AVXZ —a?AZ +AVXE ~AZ + X2 (sin ' VXE - AZ [ X—sin VX ~a?AZ I X))

aXA

sinwt, + —-(2wt1+sm2wt1)+—{aA\/X2—a X2 sin”' VX2 ~ 2A‘*/X)}
B

(sinwt, - sinwt, )+———-(2mt2 2uwt, +sin2wt, - sin2wt,) +
noa-

%%:%‘ws wt, -cos® at,) + 20 )}!’(\C{cosm,—sinmt1 sin”'(coswt,)

-coswt, +sinwt, sin~' (coswt, )} +-@ng(n - 2uwt, - sin2ut,)

Ol
il

for|X| > aA

(2.19¢)
. 4 A . 1 oA
where wty =sin ’(;) wt, =sin ‘(7)

For the high-low damper, the equivalent damping coefficients are as follows:
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O]

= BC for |X| < A (2.202)

C = %(AJx"’ ~ A2 ~XZsin"'X2 - A2 /X)sinwt,+@(2wt, +sin2uwt,)
T b1 4

+ Cap-1 (n - 2wty - sin2wt,) - 20XC cos® wt,
T a- 3nA
20XC

{sin wt, sin™*(coswt,) - coswt1}

L ¢

for A 2 |X| 2 aA (2.20b)

208 { AVXZ ~AZ — aAVXZ —aA? + X2 (sin" VX? — a?AZ / X - sin™ YXZ - AZ / X))}

aXA

sinut, +—E9(2mt1 +sin2wt,)+—2—;%{mx2 sin"' VX2 —a?A% / X —aAV X2 —aaAz}
b4 b 4

(sinwt, —sinwt,)+9aﬁ —11(2wt2 - 2wt +sin2wt, ~ sin2wt,) +
T o-
_2_50;)%9(0053 wt, —cos® wt,) + 20XC {COSu)t2 - coswt, +sinwt, sin”' (cos wt,)

-sinwt, sin~' (coswt, )} +%(u - 2wt, —sin2wt,)

for|X| > aA (2.20c)

where wty and wt, are same as those defined earlier.

It should be noted that the equivalent damping coefficient corresponding to
each frequency depends on the peak relative displacement X and hence are valid
only for that frequency and amplitude of excitation. The damping constants,
therefore, must be obtained as an array of such local ci 1stants. In view of lack of
prior knowledge of the response amplitude, an iterative scheme is required. The
equivalent damping coefficient Cy, is initially selected in the range C < C <pC and
the corresponding peak relative displacement is found using the following

equation:

r2
Xl =X _ (2.21)
XI=1 1|ﬁ—r2)2+(2§,r2)2

35



where T is the frequency ratio, w/w, and g, is the damping ratio corresponding to
Ci. Depending on the value of |X|, from Equation (2.21), Ciew is calculated
from an appropriate Equation (2.19) or (2.20). If the difference (Ci— Ciiew) is
greater than a prespecified value (0.001%), Wegstein's [50] iterative method is
carried out until convergence. The whole procedure is carried out for each
frequency of interest to get an array of damping coefficients for all frequencies of

interest.

2.6 RESULTS AND DISCUSSIONS

The results and discussions presented in this section pertain to the evaluation of the
present formulation. Displacement dependent nonlinear dual-phase damper is
linearized using a local equivalent linearization method based on energy
dissipation balance. This method has been utilized to solve the nonlinear equation
for constant amplitude harmonic excitations. The response characteristics of the
equivalent linear system is compared with those obtained by direct numecrical
integration outlined in section 2.5.2. The formulation presented in this study for
damping force based on integral approach is different from those of all previous
investigations. Therefore, re_ults are further obtained to comparc damper
characteristics and performance with those of previous investigations using
traditional approach.

The 1 DOF system is selected with a sprung mass m=240 kg and lincar spring
k=9475 N/m so that the undamped natural frequency (f, =w,/2x) is 1 Hz. The
dual-phase damper parameters are chosen as g =0.25, 3 =2.6, A=10 mm and a =3
so that a moderately high nonlinearity results. Response curves in terms of
absolute (X,/X4) and relative [(X,/X;)—-1] displacement transmissibilities using
local equivalent linear model are presented in Figure 2.6 for different excitation

amplitudes (X4 =20 mm, 30 mm and 40 mm). The results obtained by direct
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integration of nonlinear system are superimposed on Figure 2.6 for validation of
the linearized system. It is found that maximum error occurs near resonance and is
less than 0.35%, which is very negligible. These results demonstrate that the
equivalent linearization method using energy dissipation balance can accurately
determine the response behavior of the system for a wide variety of excitations and
frequencies of interest. In order to compare the damping force characteristics
obtained by the integral formulation to those of traditional, damping force time
history was obtained. For this a harmonic excitation of X; = 0.04m at frequency
ratio (w/w,) of 0.80 is selected with three different gradually decreasing
nonlinearity indices, 0. At the frequency ratio of 0.80, the relative displaccment
will be close to the maximum and thus will force the damper to operate in all three
regions shown in Figure 2.1. The steady state damping forces for the low-high
damper, calculated from both the integral and traditional (non-integral)
formulations, are presented in Figure 2.7. The resuits clearly show that even for
low non-linearity (small (3), the traditional approach produces unrealistic number
of peaks. Furthermore, as the non-linearity is increased, the traditional approach
grossly underestimates the peak damping force. The differences in the peak values
were found to be 25%, 46% and 50% for increasing nonlinearity.

On the other hand, application of traditional approach to a high-low
displacement sensitive damper may grossly overestimate the damping force, as
shown in Figure 2.8. This fact is true even at very low nonlinearity. The damper
considered here has the same parameter as the low-high one, except the damping
ratio is interchanged to make it high-low type damper. A high-low displacement
sensitive damper is basically a low-high velocity sensitive damper, therefore, for
the given amplitude of excitation and given A and a, the damper always remains
within the lower damping coefficient region. The damping force, thus developed,

is iower which is the correct estimation. With the increase in nonlinearity, the
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overestiviation increases, with the appearances of sudden peaks as shown in Figure
2.8.

To dcmonstrate that the damping force calculated using the integral method
corrciates well with experimiental results [37], a dual-phase damper with
parameters: A=12.5 mm, a =1.82, € =0.13, and 3 =1.77 was selected to simulate
an experimental set-up. The experimental set-up presented in [37] is a single DOF
mass-spring-damper system with a mass of 74.9 kg and stiffness 13.66 N/mm The
damper was a displacement sensitive damper with parameter values as listed
above. The experimental damping force was found to be 482.2 N with the peak
relative displacement of 49.5 mm, when subjected to a 3 Hz harmonic excitation
with amplitude of 25.4 mm. The simulation results based on the integral
formulation of damping force gives a damiping force of 476.25 N with the peak
relative displacement of 44.6 mm, which are very close to the experimentally
found values. Application of traditional formulation of damping force, on the other
hand, results in a damping force of 322.25 N, a 33.2% lower than experimental
value.

Figure 2.9 shows comparisons of transmitted force-displacement curves
(Liss2jous plots) under sinusoidal excitation for both integral and traditional
methods for a low-high damper. The results again show underestimation of the
transmitted force when traditional approach is used, and the difference in the
estimated force increases with an increase in the nonlinearity. A comparison of
these Lissajcus plots with the experimentally obtained results in the reference [37],
it reveals that the plots obtained by the integral formulation are smooth, similar to
experimental results and, furthermore, that the maximum transmitted force occurs
at zero displacement, as in the case of :xperimental results. However, the
Lissajous plots for the traditional approach show kinks in the plots and also the

transmitted force at zero displacement is not a maximum as it should be. Similar
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resuits for a high-low type damper using integral and traditional formulation is
presented in Figure 2.10. The results show that the amount of energy dissipation
per cycle is grossly exaggerated for the same damper when traditional approach is
utilized. This overestimation of damping increases with the increase in
nonlinearity. These results clearly demonstrate that the traditional method is not
accurate for characterizing a displacement sensitive dual-phase damper and the
proposed integral method is the only correct method for analyzing the damper.

A further comparison of integral and traditional methods for different values
of transition factor f3 are presented in Figure 2.11, in terms of equivalent damping
ratio and absolute transmissibility for the whole range of frequencies of interest. It
can be seen that the traditional method significantly underestimates the damping
ratio of the dual-phase damper. The error in the estimation of equivalent damping
ratio using the traditional method increases with increase in frequency as well as
nonlinearity. At low frequencies, when relative velocity is small, the damper
operates in the linear range and as a result there is no difference in the two
methods. However, as the relative velocity increases with frequency, the damper
operates more and more in the nonlinear regions, and hence the error increases and
reaches a maximum value.

Since the traditional method underestimates the effective damping ratio, it
significantly overestimates the transmissibility around the resonance zone and
underestimates it around the high frequency zone as shown in the Figure 2.11.
Similar trend was also found for variation of transition factor .. The trend is
reverse for the case of high-low damper. Figure 2.12 shows the equivalent
damping ratio and corresponding transmissibility for high-low dampers with
different nonlinearity parameter 3. In all cases, traditional approach grossly
overestimate the damping ratio for all range of frequency and the difference

increases with the increase in nonlinearity. The effect is severe in transmissibility
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performance of the damper. By comparing Figure 2.11 with 2.12, it is found that
for the same parameters of the damper, the low-high danper produces much bet:er

transmissibility than the high-low damper.

27 SUMMARY

An analysis of displacement sensitive dual-phase damper is carried out both in
time and frequency domains using an integral formulation to characterize the
damping force. A local equivalent linearization method based on energy similarity
is shown to be an highly efficient tool for simulation of systems with such
nonlinear elements, in frequency domain.

The results of this study are compared with those obtained from traditional
formulation of damping force reported earlier in the iiterature and with some
available experimental results. It is shown that the damping force via integral
formulation correlates well with experimental values. It is further shown that for
"low-high" type displacement sensitive damper, the traditional approach may lead
to gross underestimation of peak damping force leading to significant
overestimation of peak response and for "high-low" damper, the traditional
approach may lead 0 gross overestimation of peak damping force. Based on the
findings, it is concluded that the integral formulation of the damping force is the
correct approach for simulation of displacement sensitive damper systems. The
model developed here is used in chapter 4 for detailed performance evaluation

under vibration and shock.
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CHAPTER 3

HYDRAULIC DAMPERS WITH FLEXIBLE
CHAMBERS

3.1 Introduction

Hydraulic dampers with flexible chambers have gained considerable popularity in
recent years for their vibration isolation potential in mount application [1-6, 12-
19]. These dampers are simple, reliable, comnact and have no moving parts like
dampers with rigid chamber. The simplest type of hydraulic damper with flexible
chambers consists of two chambers filled with hydraulic fluid, connected to each
other by a sharp short orifice. One of the chambers is much more flexible i.e.,
compliance of one chamber is very high compared to that of the other. First one
acts only as a reservoir to receive fluid coming from second one during forward
stroke.

Although a damper with flexible chambers has a very good potential for shock
and vibration isolation, a very little attention is being directed towards the diversity
of properties of the damper. A widely popular hydraulic damper utilizing long
orifice has been studied and developed by a number of investigators [12-18]. The
long orifice damper develops high damping to isolate idle engine vibration.
Although long orifice hydraulic dampers has been investigated extensively, none
of the study considered the realistic effect of fluid oscillation. Furthermore,
extensive parametric study of such damper with combination of orifices have not

been reported. For example, by changing the long orifice with simple short orifice



or a combination of long and short orifice or a series of orifices with spring loaded
valves can make the damper useful for diversified application.

This chapter deals with the complete mathematical formulation of short orifice
hydraulic damper (SDHF), long orifice hydraulic damper (LDHF), long and short
orifice hydraulic damper (LSDHF) and hydraulic damper with spring loaded valve
(LDHVF). Fundameiital equations of continuity and momentum derived from
Fluid Mechanics are used tc determine fluid flow characteristics. Fluid flow
through orifice Q,, top chamber pressure P, bottom chamber pressure Pg, piston
area Arp, orifice diameter D,, and orifice length L, are considered as the principal
variables for mathematical formulation. Experimentally obtained nonlinecar
compliances of the chambers in terms of pressure rise as a function of volume
increments are taken from the available literature [17]. Variation of spring stiffness
as well as damping coefficient as a function of exciting frequency is also
considered in the model. For the long orifice model, the fluid oscillation effect is
included in this study. The models developed in this section will be used for

detailed analysis and parametric study both in time and frequency domain.

3.2 Short Orifice Hydraulic Damper with Flexible Chambers (SDHF)

Although different types of orifices (long orifice, decoupler, inner orifice, etc. )
have been developed {1-40], the advantages of a simple orifice type hydraulic
damper can not be ignored. It is very simple in construction and produces very
satisfactory performances beyond resonant frequencies compared to other type of
dampers. A comprehensive analytical model and analysis of such damper with

flexible chambers has not been reported yet.
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3.21  Model Description
Figure 3.1 represents an orifice type hydraulic damper. In its simplest form, it has
two chambers, connected to each other by a short cylindrical orifice. The opening
of the orifice is a key factor in determining the discharge coefficient of the orifice.
Most part oi the top chamber consists of elastic material such as rubber, shaped
like conical frustum. The reasons for choosing compliant rubber material and
conical shape are
i) top chamber acts as a spring, hence, additional spring is not required.
ii) compliance of the chamber may develop stiffness in addition to its static
stiffness
iii) it also acts as a piston, so necessity of moving parts required for rigid wall
orifice damper is eliminated.
iv) it is very compact in design.
Due to the piston action of the top chamber, the bottom chamber has to be a
chamber of very high compliance. This will act as a reservoir, thus eliminates the
requirement of an extra reservoir. External excitation makes the top chamber
oscillate back and forth, causing the fluid flow through the orifice which produces
damping effect. Although compliance of the bottom chamber behaves nonlinearly
for a wide range of pressure distribution [17], it is assumed linear because chamber

pressure variation is very low.

3..2.2 Development of Nonlinear Mathematical Model

The damping action in a hydraulic damper is purely due to the fluid flowing
through the short cylindrical orifice, which is nothing but a sudden restriction of
very short length. Flow through short orifice is "turbulent flow " phenomenon, not
solvable from Navier-Stokes equation. However, partly theoretical and partly

empirical pressure-flow relationship is available using Bernoulli's equation [51].
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The flow Qq(t) through orifice is given by:

2[Py (1) -Pg(1)]
0

(3.1)

Qo = AoCD (DO!Re’LO )

Where A, is the short orifice area, P1(t) and Pg(® are the pressure state in the top
and bottom chambers, respectively. Discharge coefficient Cp , for the short orifice
is a function of diameter of the orifice D,, Reynolds number Ry, and length of the
orifice L,. It can have value ranging from 0.13 up to 0.816 depending primarily on
Reynolds number which is given by [52]:
_oVDy _ o@D,
u A,

Where D, is the hydraulic diameter of the orifice and is equal to D, for rounded

Re (3.2)

orifice, A, is its cross-sectional area and p is the absolute viscosity of the fluid.

Fluid flowing from top chamber to the orifice suffers a sudden contraction
leading to a loss of energy. The corresponding pressure difference is given by [52]:

Q)Y
PT (t)—PC (t)=KC9‘(—O_] (3'3)
28 Ap

where K, is the contraction loss which depends on inlet geometry of the orifice and
weakly depends on Reynolds number. The following table shows the contraction

factor for different geometry of the orifice [52].

Table 3.1  Contraction factor for different geometry of orifice [52]

Type | Geometry Description Contraction factor, K¢
|
1 —r*___ well rounded entrance Ko =0.05
e
2 [—_*___ sharp-edged entrance K. =0.50
—l—_ .
3 -—*T__ inward projecting entrance Ko =0.80

5




When the pipe has a sudden contraction from a finite diameter D, to a finite
diameter D, , K, is given by the following equation [52] :
_1( B2
KC - 2( Df) (3.4)
Similarly, when fluid is entering out of the orifice to the bottom chamber, sudden

enlargement situation occurs. In this case the pressure difference is given by:

2
Ps (t)—Pg (1) =K, %[QX“’) (3.5)
0

where K,, is the exit loss coefficient, independent of Reynolds number. An abrupt
exit into a large reservoir has a loss coefficient of 1, which means all the kinetic
energy of the issuing fluid is lost into the turbulent mixing with the fluid in the

reservoir. If the reservoir has a finite diameter D, , the exit coefficient is given by:

p2 Y
K. =( _.—;) (3.6)

The total energy losses associated with equation (3.1) are due to the obstruction
caused by the orifice and can be expressed as a sum of losses due to flow
contraction at the entrance, to flow enlargement in the orifice and to exit from
orifice where the dynamic pressure is totally lost. Therefore, the pressure

difference can be expressed as:

2
PT(t)—PB(t)=(Kc+Ken+Kex)Q—V2i 3.7)

where V, is the average velocity in the orifice, equal to Q/A,. K, is the contraction
factor, K,, is the enlargement loss coefficient which strongly depends on Reynolds
number and K,, is the exit loss coefficient which i~ a function of diameter ratio.

The discharge coefficient Cp, for a sharp edged cylindrical orifice is a function of
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Reynolds number, orifice diameter and orifice length obtained by Shapiro, et al is

available in the literature {53].

1 DR
Cp = for -2 > 50 (3.8)
J.0+K ) +13.74,]L, /DR, L,
(3.9)
Cp= 1 for DoRe < 50
J(2.28 +K ) +64.0L, /DR, L,

The changes in top chamber as well as bottom chamber pressure build up depend
not only on the externally applied force or excitation but also on the compliances

of the material of the chambers.

Chamber compliance may be defined as the increase in volume of the chamber per

unit rise in pressure [54-55], i.e.,
Cy=— (3.10)

Since the chamber is highly compliant compared to that of fluid, fluid is assumed
incompressible and it's compliance will not be taken into consideration for
derivation of damping characteristics for flexible dampers. Two cases of chamber

compliance may be considered:

3.2.2.1 Casel: Linear Chamber Compliance

In this case continuity equation of flow from top chamber can be written as:

Acp X(1) - Q, (1) = C P (1) (3.11)
where Aqp is projected area of the top chamber acting as a piston, x(1) is the
relative velocity across the damper, Cyy is a constant for top chamber compliance,
and Py (1) is the rate of change of top chamber pressure.

Similarly, continuity equation for bostom chamber yields:
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Qg (1) = CygPs (1) (3.12)
where Cyj is the compliance of the bottom chamber, Py (1) is the rate of change of
pressure in the bottom chamber.

Solution of Equation (3.1), (3.11) and (3.12) gives the orifice flow, top
chamber pressure and bottom chamber pressure. Instantaneous damping force thus

obtained is given by:

Fo (1) = Ap[Pr (1) =Pg (V)] (3.13)

where P,z is the atmospheric pressure.

3.2.2.2  Case II: Chamber Compliance Nonlinear
In this case compliances are assumed to be a function of chamber pressure and

chamber volume increment.

At a particular instant 't', total volume of fluid transferred from one chamber to

other chamber is given by:

Vio() = [ Qg (Dt (3.14)

Therefore, volume incremsent of the top chamber is given by

AVT (t) = VTO(t)+VTST —ATpX(t) (3.15)
where Vqgr is the volume increment from atmospheric pressure to static piessure
change. A and x(t) are projected piston area and displacement, respectively.

The top chamber pressure as a function of volume increment obtained

experimentally [17], is given by:

Py (1) = —32.339AV (1) + 15.095AV7/® (1) + 3.904 x 107° AVZ® (1) + Py, (3.16)
for AV (1)>0 '

Here P(t) is measured in Pascal and AV(t) is measured in cubic millimeter.
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For AV4(t) < 0, the chamber is in a state of vacuum and it is assumed that an
amount of entrapoed air V, takes that volume increment obeying Is.1yle's Law [51].

Expressing total volume of entrapped air by:

Via () =V, +]aV; (1) (3.17)

The pressure at the top chamber may be written as:

Pr(t) =Py Vo / Vo (1) for AV (1) <0 (3.18)
The above pressure-volume relationship (Equation 3.16) for top chamber
compliance is named as property for Comp_A. Since the top chamber compliance
has the significant effect on the damping property of the damper, other two types
of chamber compliance are also considered, named as Comp_B and Comp_C.
Variation in chamber compliance can easily be made by increasing or decreasing
the thickness of the chamber. These are obtained by simulating the experimentally
found data [17]. Coinp B has the following pressure-volume increment
relationship.
Py (1) = —38.339AV, (1) +15.095AVI6 (1) + 1.904 x 107° AVZ5 (1) + P,7, (3.19)
for AV, (t)>0
Similarly, Comp_C may be defined as follows:
P; (1) = -12.339AV; (1) +12.095AVZ/5(1) + 14.904 x 108 AVZ5 (1) + Py, (3.20)
for AV;(1)>0
Figure 3.2 shows the presst ¢ volume increment relationship in graphical form.
Comp_B has the higher compliance than Comp_A and Comp_C has the lower

compliance compared to Comp_A.

Similar to Equation 3.15, the volume increment of the bottom chamber is given by

AV, (1) = =V (1) + Vg (3.21)
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The measured bottom chamber pressure as a function of volume increment is [17]:

Py(1) =1.663 x 102 AVZ% (1) - 8.9x 10" AVS (1) +
4.459 x 10" AVES (1) + Py;

(3.22)

where the pressure is in Pascal and volume increment is in cubic millimeter.

The type of compliance will be known as Comp_D. To see the effect of bottom
chamber compliance on the system's performance, another type of compliance,
similar to the experimentally found one, Comp_E, is introduced. Pressure -volume

increment relationship is given by the following equation.

Py(t) =3.663x10%AVZ25(1) - 8.9x 10" AVs (1) +
4.459 x 10" AVES (1) + Pyy

(3.23)

Characteristics of Comp_D and Comp_E are shown in Figure 3.3 where Comp_D
is more compliant than Comp_E. As the wall of the bottom chamber is highly
compliant, bottom chamber pressure will never be below atmospheric. Equation
(3.1), (3.16), (3.18) and (3.22) will give orifice flow, top chamber pressure and
bottom chamber pressure.

The instantaneous damping force developed by the damper is again given by:

Fo (1) = A7 [Py (1) =Py (1)] (3.24)
The damper dynamic stiffness Ky for a particular frequency w, is defined as the
ratio of rms (root mean square) dynamic force to the rms dynamic displacement at

a steady state condition, which can be expressed as:

rms(|k(w)y(t) + )y (1) - AgplPr(t) -Pgrl)

Kp(w,Y)= (3.25)
oY) ms(y)
Here the force transmitted by the damper is given by the following equation:
FT (tyw) = K((D)X(t) + C((D))'((t) + ATP[PST - PT (t)] (3.26)
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3.2.3 Characteristics of the Chamber Material

Figure 3.4 shows the dynamic stiffness and damping coefficient of the rubber
material used for making the chambers of the damper. The rubber has the property
of gradually increasing dynamic stiffness with frequency. The damping coefficient

of the damper falls sharply as the frequency is increased {22, 56].

3.24 Eiitic Equilibrium Equations

The hydraulic pressure developed within the damper under the application of static
equilibrium load depends on static mass, spring stiffness of rubber, chamber
compliance and equivalent piston area of the damper. Since linear and nonlinear
compliances are considered for investigation, two sets of equations will govern the

static equilibrium conditions of the damper.

3.24.1 Linear Compliance

If the chamber is considered linear, it means that pressure builds up is proportional
to the increment in volume of the top or bottom chamber. Thus the top and bottom
chamber pressures can be written as

Py (t) = AVg(1)/ Cyg +Par (3.28)
Where AV; and AVy are the volume increments of the top chamber and the bottom
chamber due to increase in pressure, from the conditions that P;=Pg=Pgr.Cyr
and Cg are the compliances of top and bottom chambers, respectively. Bottom
chamber is made much more compliant than the top chamber, therefore, the total
volume increment can be assumed to be equal to the volume increment of the

bottom chamber, i.e.,
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Vist + Vest = Vest (3.29)
Pr=PFs =Pg (3.30)

Assuming that the projected cross-sectional area of the top and bottom chamber

are equal, then the static load is given by:
Fst = KsrXgr + Arp (Par - Psr) (3.31)

which can also be expressed as:

Fst = Kgr Vst /Atp + Agp (Vgr /Cyr ) (3.32)
For any value of Fg, the equation (3.32) is solvable for Vigr which upon
substitution in to equation (3.27) gives Pgr. Equation (3.28) provides Vggr. Based
on the change in volume under static load and projected piston area, the static

deflection is obtained from:

Xt = = (Vrsr + Vasr)/Arp (3.33)

The following Figure 3.5a shows the variation of top chamber volume increment
and bottom chamber volume increment as a function of static load is displayed in
Figure ~.5b. The variation of static pressure and static deflection as a function of
static load. The numerical values for top and bottom chamber compliance for this
simulation are taken as 1.0x107"'m° /N and 1.0x107°m® /N respectively. The
result presented in Figure 3.5 using linear expressions for compliance show
identical trend for top and bottorn chamber with significant difference in
magnitude. Table 3.2 shows the numerical values of static parameters for a
constant static load of 125 kg for different piston diameters. These static

parameters are required for the simulation for a given piston diameter.
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Table 3.2  Variation of static pressure and volume increment for different piston

diameter.
D, (mm) V1e7 (CC) Vgt (CC) Por (KPa) Xg7 (MM)
70.0 2.80726 140.362 382.12 37.202
75.0 2.51767 125.883 353.16 29.064
80.0 2.26061 113.030 327.46 22.936
85.0 2.03461 101.730 304.86 18.286
3.242 Nonlinear Compliance

In order to determine the static values of the pressure, volume increments and
deflection for the damper having nonlinear compliances, the method described in
earlier section is adopted. The chamber pressures as a function of top and bottom
chamber volume increments found experimentally [17] are given by:

P; (1) = —32.34AV; (1) +47.73AV]/® (1) +0.1234 AVE® (1) +Py;

(3.34)

Py (1) =5.26 x 102 AVE% (1) -8.9x 108 AVS (1) +1.41x 10 AVE® (1) +Py;  (3.35)

where volume increment is measured in cubic centimeter and pressure in
killopascal. Applying the equation (3.33) and (3.35) to equation (3.31) one can
obtain:

For = Arp(5.26x 107 VEG ~8.9x 10 Vgsr +1.41x10Vagy) 5 5
+ Kgr(Vagr / A1p)

Equation (3.36) is solvable for Vggy for any value of Fgr. Once the magnitude of
the static volume increment of the bottom chamber is obtained, static pressure can

be derived from the following equation

P, (1) = 5.26 102 AVZS, (1)~ 8.9x 1078 AVEs; (1) +1.41x 108 AVES (0 +P,,  3:37)
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Since at static equilibrium Py =Pg =Pgy, Equation (3.37) is nothing but other form

of Equation (3.35). Similarly Equation (3.34) gives:

Psr = —32.84V g +47.73V]E +0.1234VES +P,;  for Vigy > 0 (3.38)

Static volume increment of the top chamber can be found from the equation by
applying iteration scheme. Once static volume increments for top chamber and
bottom chamber are calculated, static deflection can be obtained from Equation
(3.33).

Figure 3.6 presents the effect of load on the static parameter for nonlinear
compliance. For the chamber compliance relationships given by Equation (3.34)
and (3.35), the effect of static load on volume increment is shown in figure 3.6a.
As the figure shows, the trend for top and bottom chamber in this case is
significantly different unlike the linear case shown in Figure 3.5a. Figure 3.6b
presents the trend for static pressure and static deflection for a variation in the
static load. These results show that the static pressure in the damper is a highly
nonlinear function of static load, whereas the static deflection is a quite linear
function.

The following tables represent numerical values of different parameters of the
damper under static equilibrium condition with the variation in piston diameter for
an operating load of 125 kg. The three compliances considered are same as those
discussed in section 3.2.2.2. These static parameters are required to carry out the

simulation for a given piston diameter.
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Table 3.3  Variation of static parameter under static load

For Comp_A

D, (mm) V1gr (CC) Vpgr (cC) Pst (KPa) ~Xg7 (Mm)
70.0 0.75583 22.85139 111.452 6.13422
75.0 0.87770 25.84767 114.100 6.04939
80.0 1.01300 28.81964 117.227 5.93501
85.0 1.17597 31.59980 121.226 5.77597

For Comp_B

D, (mm) Vygr (cC) Vet (co) Psr (KPa) Xgr (Mm)
70.0 1.03706 22.85139 111,452 6.20729
75.0 1.18147 25.84767 114.100 6.11815
80.0 1.34127 28.81964 117.227 6.00032
85.0 1.53319 31.59980 121.226 5.83892

For Comp_C

Dy (mm) V7ot (cC) Vggr (c0) Pgr (KPa) Xg (mm)
70.0 0.46744 22.85139 111.452 6.05928
75.0 0.56188 25.84767 114.100 5.9779(C
80.0 0.66832 28.81964 117.227 5.86644
85.0 | 0.79832 31.59980 121.226 5.70942

3.2.5 Method of Solution

For the development of the mathematical model of the hydraulic damper, two
types of compliances are considered, linear and nonlinear. Consequently, method
of solution of nonlinear systern of equation is made different to minimize

computational time. The following two subsections describe the procedure in
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detail for application to a single DOF system shown in Figure 3.7. As shown in the
Figure, the mass to be isolated Mg is supported by a hydraulic damper only, where
the stiffness is primarily provided by the top chamber wall, and the damping is due
to orifice flow. The stiffness and damping property of the rubber material is
considered frequency varying. Defining the relative displacement x (), in terms of

response X, (t) and excitation x, (1) by:

X(1) = X5 (1) - x; (1) (3.39)

The governing equation of motion for the mass is:

m X(t) = -K{w)x(t) - Clw)x(t) — A;p [Py (1) =Pgr ] - m¥, (3.40)
where K(w) is the stiffness, C(w) is the damping coefficient of the rubber material

and x,(t)= X, sin wt, a sinusoidal excitation.

Orifice
hydraulic \

d
amper c K
i
| ]

Figure 3.7  Hydraulic damper in a single degree of freedom mass-spring-damper
system.
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3.2.5.1 Linear Compliance

The system of equations for damper flow shown in equations (3.1) and (3.11-3.12)
are linear except equation (3.1) which is highly nonlinear. The fluctuation of
pressure is sinusoidal because of the sinuscidal excitation. Therefore it is not
possible to linearize the equation, and hence numerical integration is adopted for
the solution. Equations (3.1) and (3.11-3.12) applied to the one DOF system can be

re-written in the following manner:

mXx(t) = —k(w)x(t) = C(w)X(t) - Agp (Pgy ~Pr (1)) —m¥, (3.41)
CyrPr (1) = AppX(D) - AOCDJ Z[PT“)Q- Po (1] (3.42)
2P (- F(0)] (3.43)

CygPa(t) = ACp \[2
0

Equations (3.42-3.43) are very stiff differential equations because Cyy value is of
the order of 1011 and P; value can go as high as 10+¢ . So a double precision
Runge-Kutta 4th order routine was selected [57] with very small step size. The
independent variables taken were absolute displacement, absolute velocity, top
chamber pressure, and bottom chamber pressure. For each frequency w, the
routine was run for sufficiently long time to ensure steady state condition in order

to establish the peak values for all variables.

3.2.5.2  Nonlinear Compliance

Equation (3.1), (3.14-3.23) constitute the nonlinear analysis of the hydraulic
damper. Here also Runge-Kutta 4th order method is applied to solve the system
equation (3.40). At t=0 second, static condition is maintained when Qg =0.0, V¢
=0.0, AVy = AV =0.0, Py = Py = Pgr . For an increment of excitation x,(t), AV

and AV can be evaluated from equation (3.15) and (3.21) respectively; which in
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turn gives Pr and Pg from equation (3.16) for Comp_A and (3.22) for Comp_D.
As pressures are kn~wn, equation (3.1) can be applied to get Qg which will give
V7o after integrating Equation 3.14. This procedure is repeated until steady-state
condition is achieved. The simulation results and a detailed parametric study using
these formulations for flexible hydraulic damper with short orifice is presented in

chapter 5.

3.3 Long Orifice Hydraulic Damper with Flexible Chambers

A hydraulic damper with a long orifice (LDHF) only is very common among
flexible chambered hydraulic dampers. The geomeiric configuration of the fong
orifice creates additional damping due to the inertia effect of the fluid within the
long orifice. This additional damping assists in reducing transmissibility 2t low
frequency, such as engine 1idling frequency, although high frequency
transmissibility is poor.

The analytical investigations for LDHF type dampers, reported by various
researchers [12-18] did not consider oscillation effect of the fluid contained in the
long orifice although it has significant effect on the characteristics of the damper.
A thorough investigation carried out by Kim and Singh [17] for the LDHF damper
shows complexity in the constriiciion in spite of the fact that a simply constructed
damper may produce the similar effect. Besides, the authors showed no dynamic
performances; only characteristics of the damper were mentioned. A performance
analysis is always desirable to conclude its superiority over the other.

The objective of this section is to develop a detailed model of long orifice
hydraulic damper with flexible chamber. The models are developed with ard
without the consideration of fluid osciliation effect to demonstrate its influence.
The models are later applied for detailed evaluation of damper characteristics and

their isolation performance on a simple system.
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3.3.1 Model Description

Figure 3.8a shows the simplest type of LDHF damper. There is much similarity in
construction of LDHF with SDHF. The only difference is that instcad of a short
orifice, a long orifice with dimensional parameters, length and diameter, connects
the chembers. These two parameters define the amount of damping and the
frequency at which peak damping occurs. The operational activity of such a
damper is very simple: At static equilibrium condition, the long orifice contains
certain amount of fluid, therefore, has mass inertia. . to the external excitation,
fluid is forced to flow back and forth from top chamber to bottom chamber via the
orifice. At low frequency, the long orifice acts like an ordinary orifice, but at
higher frequency, inertia effect of the fluid within the orifice provides additional

damping.

3.3.2 Nonlinear Mathematical Model
An accurate and complete theoretical analysis for the inertia track hydraulic
damper is not possible because of the turbulent and oscillatory nature of flow
within the inertia track. At present, theoretical analysis for laminar flow with small
oscillation is available in the literature. However, a lump-paramcter model for the
analysis of the damper seems to be adequate for dynamic analysis.

Figure 3.8b shows the damper in the form of lump-parameter model. The
governing equation for the inertia track of the damper is given by:

Pa (1)~ Py (1) = A, 1O, (1) + 12%“2“ Aa[1+o.0434%R9.] (3.44)
|

o

where Pg(t) and P.(t) are the instantaneous pressures of the bottom and top
chamber respectively. L, and D, are the length and diameter of the long orifice,

respectively. Q1) is the orifice flow, and u is the absolute viscosity of the field. Ry,
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is the Reynolds number and is given by Equation (3.2). |, represents the fluid
inertance for the amount of fluid within the inertia track and is given by oL, /A,
Since the parameter of the orifice is time invariant, therefore, the fluid inertance is
time invariant as well.

The coefficients A, and A, in the Equation (3.44) are the correction factors
necessary for an oscillatory flow and for active and reactive components of
hydraulic impedance, respectively. Those factors can be expressed through the non
dimensional frequency of oscillation, w, by the following analytical cxpressions

[20, 31]

w, (4w, - w,)
= n2 7% ~ V0 (3.45a)
ha (240, =1 (4w, - 2w, +1)
Ay = 200 (3.45b)

4w, - 2,/w, +1
where the non dimensional frequency of oscillation w, is obtained by:

© _ooD,2
"7 32y

Irrespective of orifice type, the continuity equation of flow from top chamber can

(3.45¢)

be expressed as:

ATP X(t)—Ql(t) =CVT (AVT,PT) pT (t) (346)

where Agp is the projected area of the top chamber acting as a piston, X (t) is the relative
velocity, Cyt is the compliance of the top chamber, and P; (1) is the rate of change

of chamber pressure. Similarly, the continuity equation for bottom chamber yields:

Q|(t) = Cva (AVB,PB) pa (t) (347)
where Cyg and Pg(t) are the compliance and rate of change of pressure for the

bottom chamber.
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A sample compliances of top and bottom chambers in pressure-volume increment
relationship may be found from Equation (3.16) and (3.22) referred to as Comp_A

and Comp_D.

The force transmitted to the ground by the damper can be given by the following

equation:
Fr (t,w) = K(w)x(1) + Clo)x(1) + Arp[Pgr —Pr(1)] (3.48)

where X (1) is the relative displacement of the mass. Equations (3.44) to (3.48) can
now be solved for all variables of interest.

The principal variables which are of interest in the case of LDHF are: (a)
pressure in the top chamber, (b) orifice flow, (c) transmitted force to the ground,
(d) damping force generated, (e) dynamic stiffness and (f) loss angle. Because of
the nonlinearity of the chamber compliances, flow restriction phenomenon in long
orifice, creation of negative pressure in the top chamber during upward stroke, etc.,
the response of the system in terms of those variables are quite nonlinear.
Therefore, under the application of pure sinusoidal excitation, the responses are
nonsinusoidal and asymmetric.

In time domain, one can analyze those non sinusoidal variables both at
transient state and at steady state. Responses under the application of shock input
can be observed only in time domain. Under sinusoidal input, it is also of great
importance to see responses in frequency domain. It is well established that in
steady state, any non sinusoidal variable, such as Kp(t) can be expressed as a series
of harmonics functions by employing Fourier series expansion, such as:

’(D(t) =KDO +K01 Sin((.l)t"‘(P1)+K02 Sin((l)t+(pz) +

KDS Sin(wt+(93)+ """ +KDn Sin(wt+(pn)+ ..... (3'49)
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where Kpg is the mean value, Kpy, Kpa Kpa, etc., are the amplitudes of each
harmonic and ¢,, @,, @3, etc., are the phase leads of each harmonics with respect

of excitation.

Now, Kpq is given by:

1 uT
Kng =— |Kp (t)d 3.50
DO uT(J; p (t)dt (3.50)

where m is the number of cycles with period T= 2n/w. The coincident or in-phasc
component A (w) and the quadrature component B (w) of dynamic stiffness Ky

are given by the following expressions:

a%lzsin nmt-KD(t)dt=—l;1-_FLIsin nwt-Ky, sin (not + ¢, )dt (3.51)
_ KpnCOS9 _ 2 ()
2
1 uv 1 uT -
G—fgcos nwt-KD(t)dt=ﬁ _(';cos nwt-Kg, sin (nwt + ¢, ) dt (3.52)
=-K—9’l§199=3 n(w)

where n is the number of harmonics, and U is the number of cycles with period T.
The dynamic stiffness and loss angle in frequency domain, thus, can be obtained

from Equations 3.51 and 3.52 such as:

Kpn(@,X) = 2/ A2 (w)+ B2 (w) (3.53)

@q(0,X)=tan[ B (0)/A ,(0)] (3.54)
Therefore, for a particular displacement X, dynamic stiffness and loss angle can be

calculated for each frequency of interest. It may be mentioned that the above
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equations are for up to N harmonics. It is found that the fundamental harmonics
(n=1) dominates the higher harmonics, therefore, in defining characteristics of the
damper, only the first harmonics is retained.

The same procedure can be adopted for other variables such as, orifice flow,
damping force and transmitted force to the ground. But for the top chamber
pressure, display of peak chamber pressure corresponding to each frequency is
more important than its amplitude spectra with regard to its fundamental harmonic.
Therefore, frequency response of the top chamber pressure is based on peak top

chamber pressure only.

3.3.3  Method of Solution

Following the procedure outlined in article 3.2.2.2, the variables at static load are
calculated using iteration scheme. Under the application of sinusoidal excitation,
nonlinear governing equations are solved using 4th order Runge-Kutta method. As
the differential equations are very stiff in nature, a very fine step size is applied to
the numerical integration. For each frequency of excitation, sufficient time is
allowed (30 cycles) to ensure that the steady state condition is reached. Then, three
cycles are considered to obtain the steady state time responses of all internal
variables. To furnish frequency response characteristics, these three cycles (u=3, in

Equation 3.51 and 3.52) are also utilized to obtain the fundamental harmonic.

34 Long and Short Orifice Hydraulic Damper with Flexible Chamber
(LSDHF)

The hydraulic damper with long orifice, discussed in section 3.3 has some severe

operating limitations. Some of the well known limitations for such dampers

include:

(a) performance is very poor for amplitude of excitation > 1 mm.
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{b) performance under shock input is very poor (as demonstrated in
chapter 6).
(c) poor high frequency (second resonance frequency and higher)
transmissibility even for low amplitude.
For high amplitude of excitation, relative displacement is even higher which makes
the piston to displace larger amount of fluid. There is only one long orifice and the
orifice has oscillation effect prohibiting flow at faster rate for high relative
displacement. Due to compliance of the top chamber, the chamber docs not
increase in volume fast enough so as to keep the pressure low. The pressure rises
rapidly in the top chamber which makes the damper to perform very poorly at high
amplitudes. For the same reason, the performance of the LDHF damper undcr
shock load is very poor. In the performance analysis of the LDHF damper, there
always exists two peaks in the transmissibility performance. The first peak occurs
due to the systems' natural frequency and the second peak occurs due to the mass
of the liquid present in the long orifice. For smaller long orifice diameter, the
damper performs very well to obtain reduced transmissibility but at the cost of
high transmissibility around second resonance frequency.

An addition of a short orifice as bleeder orifice with the long orifice can
improve the performance of the LDHF damper substantially. This new damper,
referred to here as long and short orifice hydraulic damper with flexible chamber
(LSDHF), can be used for higher amplitude of excitation. Inclusion of a bleeder
orifice is very simple in construction. Keeping all other parameter unchanged, the
mathematical model of the LSDHF damper is developed in this section for a
thorough investigation of damper characteristics and performance to be presented

later.
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3.4.1 Model Description

Figure 3.9a shows the schematic diagram of the LSDHF damper. It is similar to the
that of long orifice damper shown in Figure 3.8, where a bleeder orifice is added.
At the middle of the orifice plate where the long orifice is placed along the
circumference, the short orifice or the bleeder orifice is placed. At high frequencies
when fluid can not pass through the long orifice, the bleeder orifice will allow
considerable fluid to pass, thus improving the performance. At low frequencies
fluid will be forced to flow back and forth from top chamber to bottom chamber
through both long orifice and bleeder orifice. This effect is likely to increase the
low frequency transmissibility to some extent. However, by using appropriate
parameters this increase can be made insignificant compared to improved

performance at high frequencies.

3.4.2 Nonlinear Mathematical Model

The LSDHF damper is identical to LDHF except the inclusion of a bleeder orifice.
Therefore, the flow of the fluid will increase by an amount Q,(t), where Q,(t) is the
flow through bleeder orifice in m3/s. The mathematical model, the lumped
parameter model used in article 3.3.2 for LDHF can be adapted here with the

inclusion of the bleeder orifice and Q, as shown in Figure 3.9b.

The flow through the bleeder orifice is given by:

Y

Qb(t) = AbCD (Db’Reb’Lb )\/

where A, is the bleeder orifice area, D, is the diameter of the bleeder orifice, L, is
the length of the bleeder orifice. P+(t) and Pg(t) are the pressure state in the top and

bottom chambers, respectively. The discharge coefficient Cy for the bleeder orifice
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Figure 3.9 Schematic diagram; (a) Representation of a long and short orifice
hydraulic damper (LSDHF) with flexible chamber. (b} Lumped parametcr
model.
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is a function of the length and diameter of the orifice as well as the Reynolds

number. Reynolds number for the bleeder orifice is given by:

_ 0VDy, _ 0Q,Dy

Rep = . WA (3.56)
b
The expression for coefficient of discharge is similar to Equations (3.8-3.9) and are
given as:
Cp = 1 for % > 50 (3.57)
J1.04+K ) +13.74JL, /D.Re, Ly
Cp = for Dofen 50
J(2.28 +K)+64.0L, /DR, Ly

The governing equation for the long orifice inertia track of the damper presented

earlier as Equation (3.44) is rewritten with different subscripts to represent the

present damper:

Pg (1) =P (t) = A, I,Q,(t) + 12?;’}' Aa[1+ 0.0434%—Re,} (3.58)
n I

|
where |, is the fluid inertance of the amount of fluid within the inertia track, L, and
D, are the length and diameter of the long orifice respectively. R, is the Reynolds
number for the flow through the long orifice. A, and A, are the correction factors
for oscillatory flow and are given by Equation (3.45).

Similar to Equation (3.46) the volumetric continuity in this case yields:

ATp ).((t)"'Q|(t)-Qb(t)=CVT(AVT,PT) p-r(t) (359)
where Agp is the projected area of the top chamber acting as a piston, Q,(t) and
Q,(t) are the flow through long and bleeder orifices and Cyy is the compliance of

the top chamber. Similarly, the continuity equation for the bottom chamber yields:

Q,(1) +Q, (1) = Cyp (AVp,Pg) Py (1) (3.60)
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where Cy is the compliance of the bottom chamber.

The formulations presented earlier in section 3.2.2.2 for nonlinear chamber
compliance and top and bottom chamber pressure are also valid here. Except in

this case the total volume of fluid transferred is given by:

Vio (0 = [[Q (1) +Qy (0)]dt (3.61)

where Q(t) and Q,(t) are the flow through long and bleeder orifices, respectively.

The experimental pressure volume increment relationships presented in section
3.2.2.2 as Comp_A (Equation. 3.18) and Comp_D (Equation. 3.22) are used for
top and bottom chambers, of the present nonlinear model [17].

The force transmitted to the ground given by Equation (3.48) and rest of the
formulation for the long orifice damper (section 3.2.2) is also applicable to the

present model.

3.4.3 Method of Solution
The method of solution and the internal variables of interest in the casc of the
damper with long and short orifice is similar to that of only long orifice presented

in section 3.3.3.

3.5 Long Orifice Hydraulic Damper with Spring Loaded Valve (LDHVF)

The damper configuration with short and long orifices presented and modeled in
the previous section may perform well for sinusoidal excitation in wide frequency
range. However, hydraulic dampers with flexible chambers are known to perform
poorly under shock environment. If such damper suffers sudden impulse of load,

pressure in the top chamber rises suddenly. The damper, then, performs very poor
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as there is no device to subside the high pressure buildup. The hydraulic damper
may be redesigned to create such device as to reduce the sudden increase in
pressure. For this, a number of short orifices with spring loaded valves of different
spring constants can be fitted to the orifice plate. The spring may be designed such
that the valve will operate (open the orifice) when there will be a sudden pressure
rise exceeding a preset value. Otherwise the orifice will remain closed by the
spring. When the valve is open, a quantity of fluid will be allowed to pass through
the orifices, thus reducing the pressure in the top chamber of the damper. A
bleeder orifice which works only during reverse stroke of excitation may also be
fitted to the damper to send back excessive fluid to the top chamber. At low
amplitude of excitation, the pressure build up will not be up to the limit so as 10
open the valve. The damper in this case will work like an ordinary damper with
long orifice.

A flexible chambered hydraulic damper with spring loaded valve (LDHVF) is
proposed and modeled in this section. Such damper may exhibit superior
performances for both low amplitude as well as shock excitations. The detailed
model for the proposed (LDHVF) damper is developed in the following

subsections.

3.5.1 Model Description

A schematic diagram of the proposed hydraulic damper with spring loaded valves
(orifices) is shown in Figure 3.10a. The essential features of the damper is similar
to the long and short orifice hydraulic damper with modifications made on orifice
plate. In addition to the long orifice along the circumference of the orifice plate,
there are three short orifices with sharp-edged entrance and exit. Each orifice is
operated by a spring loaded valve of different spring constant. Two of those

(orifice 1 and 2) are designed to release excessive pressure in the top chamber.
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Both the orifices work only during forward stroke of excitation. Each orifice has
different operating pressure, set by the spring constant of the valve. Third orifice
(orifice 3) is called bleeder orifice which works only during reverse stroke to
replace excessive fluid back to the top chamber. It is also operated by a spring
loaded valve. The diameter of the crifices as well as the spring constants of the

valves may be varied to study tiie effects on the dynamic characteristics.

3.5.2 Nonlinear Mathematical Model

The modeling considerations of the LDHVF damper proposed in this section is
same as that of LSDHF presented in section 3.4.2. In this case however, three short
orifices are used with spring loaded valves, in addition to the long orifice. The
lumped parameter model used for this is shown in figure 3.10b. In this case the
flow through each orifice depending on the valve position has to be expressed. The
detailed model is developed in the following subsections which is used in chapter

5 for detailed analysis of its characteristics and performance.

3.5.2.1 Orifice Flow
The damper proposed here contains aitogether four orifices;
i) one long orifice of length L, and diameter D,
ii) one short orifice of diameter D,,, operated by the spring loaded valve
iii) one short orifice of diameter D, operated by the spring loaded valve
iv) one bleeder orifice of diameter D, operated by the spring loaded valve

only in the reverse stroke.

The flow through short orifice 1, Q,; is given by:

2[Py (1) - P (1)]
Q

Qg1 (1) = Ag1C1 (Do1.Reotilot) (3.62)
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where A, is the orifice area; Cp, is the discharged coefficient for the orifice.
which is a function of D, , L,y and R, representing the diameter, length and the

Reynolds number corresponding to ihe flow Q. (1), respectively.

Similarly the flow through the second orifice is given as:

[P (1) -Pg(D)]
0

2
Qo2 (1) = AgaCpa(DyaiReoz: Loz )\/V (3.63)

Equation (3.62) and (3.63) are active only during forward stroke and are subject to

the condition that the valves are partially open or fully open.

The flew through orifice 3 or the bleeder orifice is:

5P, (0-Ps (D] (3.64)

Y

Qob (t)= AobCDb (Dob ’Reob’Lob)

This flow is feasible only when the orifice 1 and 2 are in active and occurs during

reverse stroke of excitation only.

The coefficient of discharges for orifice flow presented earlier in Equations (3.8-
3.9) can be rewritten in terms of new variables for a range of Reynolds number.

The coefficient of discharge for orifice 1 is given as follows:

Cor = ! for 2efeot g (3.65)
V104K ) +13.74 L1 /DR o Lor

CD1 - fOI’ DO1R801 < 50
J(2.28+K ) +64.0L, /DyRey Lot

Similarly, the coefficient of discharge for orifice 2 is given as:
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1 D02Re02

O = for > 50 (3.66)
5 .
" J0.04K)+13.74J0, /D ;Rers Loz
C02 = 1 fOI' __D02R902 < 50
V(2.28+K¢) +64.0L,, /DosReqs Loz

The coefficient of discharge for bleeder orifice reverse flow is given as follows:

1 DobReob

Cpp = for > 50 (3.67)
J(1.04K o) +138.74L /D uRecs Lo

CDb= for 9.9959& < 50
J(2.28+K) +64.0L,, /DR, Lob

The governing equation for the long orifice inertia track of the damper presented
earlier as Equation (3.58) in section 3.4.2 which includes the oscillation effect is

also valid for the present model.

3.5.2.2 Continuity Equation

The volumetric continuity equations for the case of LDHVF damper depends on
whether the stroke is in compression or extension as different orifices are active in
each case. Furthermore, the number of orifices that are active depend on the

differential pressure AP.

(a)_Compression Stroke: Under compression, the flow through each of the

short orifice with valve depends on differential pressure AP across the orifice and
the present pressure Py, assigned for each valve. Therefore, for two short orifices
and a long orifice, there can be three cases for continuity equation for the top
chamber under compression:
for AP > P

Aqp X(1) = Q(1) = Qqy (1) = Q, (1) = Cy7 (AV,Pr) Py (1) (3.68)

fOl‘ AP > P591.1
Atp X(1)-Q, (1)~ Qg (1) = Cyy (AV7,P7) Pr (1) (3.69)
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for AP < Py,

A7p X(0-Q, (1) = Cyp (AV;,Pr) Py (1) (3.70)
where Aqp is the projected area of the top chamber acting as a piston, Cyy is the
compliance of the top chamber and Q, is the flow through the long orifice. AP is
the pressure difference between top and bottom chamber for orifice 1 and 2
respectively. Pg, ; and Py, , are the preset pressures required to open orifice 1 and

orifice 2, respectively.

Similarly, for the highly compliant bottom chamber the continuity equation yield:

for AP > Pgg
Q, (1) + Qg (1) + Qp (1) = Cyg(AVp,Pg) Pg (1) (3.71)

for AP > Pgq
Q,(1)+Q, (1) =Cyg (AV,,Pg) Py(t) (3.72)

for AP < Py,
Q|(t) = CVB(AVB’PB) PB (1) (373)

where C, is the compliance of the bottom chamber.

(b) Expansion Stroke: For the case of expansion stroke the flow depends on

whether the bleeder orifice valve is open or not. The two cases of continuity

equation for top chamber under expansion stroke are:

for AP > Py
ATP ).((t)—Q|(t)—Qob(t) = CVT(AVT,PT) p‘r (t) (374)

for AF < Pgyy
Agp X()-Q, (1) = Cyp (AV;,Pr) Py (1) (3.75)
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And for bottom chamber the continuity equations yield:

fOl" AP > Pset.b'
Ql(t)+Q°b (t)=CvB(AVB,PB) pg(t) (3.76)

for AP < Pgqp.
Q|(t) = CVB (AVB’PB) pB (t) (3.77)

where Pg, 4, is the preset pressure required to open the bleeder orifice.

Since the compliances of the top and bottom chambers are given experimentally in
terms of pressure-volume increment relationship, the following procedure is

adopted to find pressures.

3.5.2.3 Total Volume Flow
Since the fluid flows from top chamber to bottom chamber through three different
orifices, the total volume of fluid transferred from one chamber to the other for a

iven stroke and at a particular instant 't', is given by the following equations:
g p g y geq

(a) Compression Stroke: During compression stroke fluid enters to the bottom
chamber through three orifices depending on the pressure state of the damper.

Total volume of fluid is given as:

If AP > Py 5 , then,

Vro ()= [[Q(1+ Qe (1 + Qgy (1]l (3.78)

Or if AP > Pgg ¢, then,

Vio( = [[Q)(1) +Qq (t)]at 3.79)

86




Otherwise only long orifice is working, therefore,

Vro() = [[Q,(D)]at (3.80)

Depending on the validity of the above equations, the volume increment of the

bottom chamber can now be obtained from:

AVB (t)= Vio (t)+ VBST (3.81)
where Vpgr is the volume increment of the bottom chamber from atmospheric
pressure to static pressure change.

Similarly, the volume increment of the top chamber is given by:

AV7 (1) =-Vio (1) + Vigr — A7pX, (1) 3.82)
where Vg is the total volume given by Equations (3.78-3.80), V;gy is the volume
increment from atmospheric pressure to static pressure change, Arp is the effective

piston area, and x,(t) is the excitation.

(b) Expansion Stroke: During expansion stroke only the long orifice or the

long orifice with bleeder orifice is active depending on the pressure state of the
damper.

If AP > Pgy,, , then,

Vro (1) = [1[Q (1) + Qqy (0]t (3.83)

Otherwise only long orifice is working, therefore,

t
Vio(t) = [ [Q(D)]at (3.84)
Utilizing the appropriate volume of the top chamber from above, volume

increment of the top chamber can be obtained from:
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AV (1) = Vo (1) + Vg = AgpXx, (1) (3.85)
Similarly, volume increment of the bottom chamber under the expansion stroke is
given by:
AVg (1) = =V (1) + Vggr (3.86)
Now based on the volume increment for top and bottom chambers in a given
stroke, the pressure can be obtained from experimental compliance relationships
presented in section 3.2.2.2. The baseline compliances used for the top and bottom

chambers are given in Equations (3.18) and (3.22) respectively.

For AV{t) < 0, the chamber is in a state of vacuum and it is assumed that an
amount of entrapped air V, takes that volume increment obeying Boyle's Law.
Total volume of air is:

Via (1) =V, +]AV; (1) (3.87)

Therefore, pressure at the top chamber may be written as

Pr(t) =P, Vy / Via(t) for AV (1) <0 (3.88)
The force transmitted by the damper to the ground, given earlier by Equation

(3.48) is also valid for the present model.

3.5.2.4 Fluid Flow Through Valves

The spring loaded valves typically found in shock absorbers are, essentially,
puppet valves with a 900 seat angle. The flow leaves the orifice in the direction
perpendicular to the axis of the orifice. The model of the valve may be
approximated by the diagram in Figure 3.11a. Due to the presence of the leaf type
spring, the area of the valve through which fluid is discharging is not uniform.

However, it can be assumed uniform for the sake of simplicity of calculation
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without introducing any significant error in the determination of force due to

change in momentum of the fluid.

The various forces acting on the disk of the valve, shown in Figure 3.11b are:

F4 represents the viscous damping force, Fy =C,y (1)

Fs denotes spring force, Fy(t) =P, + Ky(t), and K is the spring constant

Py, is the spring preload, a constant value

F, is the force due to change in momentum of the fluid

F, denotes the force due to change in pressure, Fj (t) = [ P(t) -Pg(t) ] A,
Figure 3.11c represents the control volume of the valve used to determine the force
due to the change in momentum. Assuming that the fluid leave the valve with
velocity in the radial direction, the momentum equation in the y direction yields
[26]

o V(1) Qp(1) - @ v, () Qg (1) = F, (1) (3.89)
where v, denotes y component of the velocity of fluid. Since the fluid leaving the
valve is in radial direction, therefore,

Vy o) =0

andv, i,(t) = Q,(1) /A,

The force due to change in momentum is given by
. Q2 (1)

3.90
A (3.90)

F.=0 Vs,in(t) Ain=

Application of standard orifice flow equation, for example equation 3.62 into

equation 3.90 yields,

2
(= 222082 [or ) -py (0] (3.91)

Since

Asult) =y(t) Dy
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Figure 3.11  Spring loaded valve for an orifice showing: (a) flow pattern and
displacement of valve; (b) forces acting on the disk of the valve; (c)
control volume for momentum balance.

90



where D, - the diameter of the orifice and y(t) is the valve displacement.

Substitution of above into Equation (3.91) leads to:

1
A

F, ()= ——2C3 x2DZ[P; (1)-Pg (1)]y(1)? (3.92)

in
Itis likely that v,,(t) will have a component in the y direction. However, compared

to the magnitude of the velocity in the radial direction, it is neglected.

Applying Newton's Law of motion to the disk of the valve,

YFy (1) =m, y(1)
or

Fo()+ F, (- Fo (1) - Fy(t) = m,y (1) (3.93)
where m, is the mass of valve disk and the spring.
Substituting for all the external forces, Equation 3.93 can be rewritten as follows:

m, () +C, ¥ + Ky(t)-{—QC?, D[Py () -Pg (0]y(D)? (3.94)

In

=[Py (1)-Pg (V]A, -Pg,
Equation (3.94) describes the motion of the valve disk in vertical direction to open
the orifice after exceeding certain pressure limit.

Three equations of the form (3.94), one for each valve must be solved
simultaneously with the four equations for flow through long orifice as well as
three orifices with valves. The flow equations for valve orifices can be obtained in
three stages [35].

(i) valve is closed
(ii) valve is partially open

(i) valve is fully open
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(i) Valve is closed:

When the valves are closed there is no flow through the orifices, thus:

Qo1 (t) = 002 (t) = QOb (t) = 0

(3.95)
This stage for orifice 1 occurs when [Py (1) -Pg(1)] < K Ayu
o1

where K, is the spring constant of the relief valve
A, is the area of the first orifice

Y, is the preloaded displacement of the first valve spring
Orifice 2

K2Y2,|
A02

This stage for orifice 2 occurs when [Py (1) -P5(1)] <
where K, is the spring constant of the relief valve
A, is the area of the second orifice

Y, is the persuaded displacement of the second valve spring
Orifice 3. (bleeder orifice)

Ko Yb;
Aob

This stage for orifice 3 occurs when [Py (t) -P;(t)] <

where K, is the spring constant of the relief valve
A, is the area of the bleeder orifice
Yy, is the preloaded displacement of the bleeder valve spring
(ii) Valve is partially open
The valve is considered partially open until it has reached its maximum

displacement.

92



Orifice 1

K
1y1,l < [PT(t)-PB(t)] < K1(Y1,l +y1.m)
Ao1 Ao1

This stage for orifice 1 occurs when
where K, is the spring constant of the relief valve for first orifice

A, is the area of the first orifice

Y1.m represent the maximum displacement of the disk of the first valve.
The maximum displacement occurs when the valve flow area (in radial direction)
equals that of the orifice.

Ay = nDo1Y1,m

where D, is the diameter of the first orifice
Since A, = D2 /4,
Therefore, the maximum valve displacement can be expressed as:

Yim = Dot /4
The displacement of the partially open valve disk y,(t) for the orifice as a function

of time may be obtained from equation (3.94). The flow through orifice 1 may be

expressed as:

2[P; (t) -Pg{1)] (3.96)

01 (t) = J'|3Do1y1 (t)CD1 (Do1 !Reo1 !Lo1 )\/

Orifice 2

K,y Kolys, +Yom)
This stage for orifice 2 occurs when :yz" < [Pr()-Pg(t)] < -2 yi‘\' Yom
02 02

where K, is the spring constant of the relief valve for second orifice.

A, is the area of the second orifice

Yo, represent the maximum displacement of the disk of the second valve.
Similar to the orifice one, maximui.. displacement for the sccond valve can be

found by: Yom = Dgp/4
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The displacement of the partially open valve disk y,(t) for the orifice as a function
of time may be obtained from equation (3.94). The flow through orifice 2 may be

expressed as:

Qup (1) = 7DgpY5 (1Cps(Dgp Rezrlz) \/ 2Py “’Q‘ e (1] (3.97)

Orifice 3 (bleeder orifice)

KoYbi K
This stage for orifice 3 occurs when —22% < [Ps(D-P;(D)] s =2 (y;: +Yom)
ob ob

where 'y, ., represent the maximum displacement of the disk of the bleeder valve
and is given by: Ypm = Dgp /4

The displacement of the valve disk y,(t) for the orifice as a function of time may be
obtained from equation (3.94). The flow through bleeder orifice may be expressed

as.

Q () = noobybmcobmob.Reo.,,Lo.,>\/2[PB“’QPT“” 3.98)

(iii) Valve is fully open
When a given valve is fully open, the respective disk has reached its maximum

displacement. Therefore in this case the flow can be expressed in terms of

maximum disk position.

Orifice 1 and 2
This stage for orifice 1 occurs when [Py (t)-Pg(t)] > M'_A_fy'_m)
o
And the resulting flow rate at this stage is given by:
2[P; (1) —Pg (t
Qoi(t)= J'[Doiyi.m (t)CDj(Doi-ReoivLoj)\/ [ T( )Q B( ) (3-99)

where j=1 for orifice 1, and j=2 for orifice 2.
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Orifice 3 (bleeder orifice)

Ko (Yo, + Yom)
A

This stage for orifice 3 occurs when [P (t)-P(1)] >

The flow rate at this stage is given by

2[Pg (1) - Pr(1)]
e

(3.100)

Qob (t) = nDobyb.m (i)CDb (Dob ’Reob ’Lob )J

3.53 Method of Solution

The mathematical modeling of long orifice hydraulic damper with spring loaded
valve consists of a number of nonlinear differential equations and algcbraic
equations. Again the numerical integration is carried out to solve those equations.
4th order Runge Kutta method with very fine step size is proved to be sufficient to
find the solution. The vertical displacement y,(t), y,(t), and y,(t) of disk of orifice
1, 2 and 3 respectively, are taken as independent variable. The flow Q/(t), Q,(t),
Q,.(t), and Q,,(t) through long orifice, and short orifices 1, 2 and 3, respectively
are also considered as independent variable. The modeling results in the following
seven equations that are required to be solved simultaneously.

my, () +C,, ¥, (1) + K, y,(1) -—/\—1—20,_?,1 72D, [Pr (D -Ps D]y, (1%  (3.101)
1

0

= [PT(t) —Ps (t)]Am "'Psp

1
A02

=[Pr()-Pg ()]As2 —Py,

Mo¥i, (1) + C o yo (1) + Ky ¥, (1) -—2C3, 2®D%, [Pr () -Pa(D]y, ()2 (3.102)

(3.103)

MpYp (1) +Cyp (1) + Ky Yb(t)";\]_zcn‘zbb 1°D3y [Pr () = Py (D)]y, (1)?

ob
= [PT (t)- Fa (t)]Aob _Psp
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. r
Py (1) =P, (1) = &, Qi)+ 12‘;“2"' Aal1+ 0.0434%Re,] (3.104)
b4 |

Pa(t)-P;(t)= | Q t) + 0 Q. Q
B( ) T( ) ol 01( ) 2 rDo1!'1 (t)CD1CD1 °1| °1| (3.105)
IB( ) IT( )— 02 02( ) ' 2 D02 Q(t)C 2C ) 02| oZI (3-106)
Pa(t)-Pr(t)= 1 Q t)+ : Q.. |Q /
B( ) T( ) ob ob( ) 2 Dob‘. b(t)C bC . obI obl (3-10 )

The following flow chart describes the procedure for the numerical solution that

can be used to characterize the damper and evaluate its performance .

3.6 Summary

This chapter presents the modeling considerations for hydraulic dampers with
flexible chambers. Detailed mathematical models are developed for hydraulic
dampers with short orifice and long orifice. The model consider experimentally
obtained nonlinear compliances for the flexible chambers along with the effects of
orifice shape and fluid oscillation within the long orifice. The concept of hydraulic
damper with flexible chambers is further extended to include a combination of
short and long orifice due to its expected potential in improved performance over a
wide frequency range. A model is developed for long orifice with a set of short
orifices equipped with spring loaded valve. The detailed model further includes the
valve dynamics. The four models developed in this chapter will be thoroughly
investigated in time and frequency domain to establish their characteristics and

performance for isolation of vibration and shock.
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Table 3.4 Flow chart for numerical solution for LDHVF dampers
The equation numbers inside the box are taken from chapter 3.
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CHAPTER 4

CHARACTERISTICS & PERFORMANCE OF DUAL-
PHASE DAMPERS

4.1 Introduction

A detailed nonlinear model of dual-phase dampers was developed as presented in
chapter 2. This study only considers low-high and high-low displacement sensitive
dampers as they are effectively same as high-low and low-high velocity sensitive
dampers, respectively. Unlike previous investigations of such dampers, an integral
formulation was used for characterizing the damping force. A local equivalent
linearization technique was adopted to carry out computer simulation in the
convenient frequency domain. The primary objective of this chapter is to carry out
a detailed analysis of the model in ierms of damper characteristics and isolation
performance.

The dual-phase damper has the good potential in improving both shock and
vibration isolation performance. The damper may be applied for any range of
amplitude excitation, for any range of shock severity by only changing its four
governing parameters, namely, transition point of displacement, transition factor
for displacement, damping coefficient and transition factor for damping
coefficient. Both low-high damper and high-low damper are analyzed to evaluate
their characteristics under the application of sinusoidal input. The characteristics of

the damper are determined by finding the transmitted force to the ground, dynamic



stiffness and loss angle. A detailed parametric study is also carried out to examine
the influerice of transition point and damping coefficient parameters. The response
characteristics of the damper is determined by implementing the damper to a one
degree of freedom (1 DOF) system. The isolation performance of the dampers is

evaluated for both vibration and shock of various severity.

4.2 Characteristics of the Damper

The damper characteristics are primarily evaluated in terms of its force-
displacement characteristics as well as dynamic stiffness and loss angle. Dynamic
stiffness for the damper is defined by Equation 3.53. The loss angle, on the other
hand, is obtained by Equation 3.54. The dynamic stiffness and loss angle for
damping device are important characteristics often used in comparative studies.
Results are obtained for baseline as well as variation of the nonlincarity
parameters.

The baseline parameters for the damper are taken as: A= 10mm, a =3, ¢, =
0.25 and ¢, = 0.50 ( 3 = 2 ) for both low-high and high-low dampers. A high
ampiitude of excitation of 40 mm is considered to ensure that the damper covers
all the regions. Such amplitude is common for application of the damper to an off-
road vehicle as a shock absorber. The linear spring constant that supports the mass
is taken as 10 N/mm. A static mass of 75 kg is placed on the top of the damper and
is excited by the application of sinusoidal input at the base. The undamped natural
frequency of the system is 1.85 Hz. Therefore, the damping coefficient value of the
damper is C = 436 N-s/m which represents the low damping case. The high
damping coefficient value as defined in chapter 2 is given by 3C.

Figure 4.1a shows the Lissajous ( force-displacement) plot of the baseline low-
high dual-phase damper and Figure 4.1b shows the same for a high-low damper.

The plots are obtained for the frequency ratio (w/w,) of 0.80. The area within the
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loop determines the amount of energy dissipated per cycle of damper movement,
which in turn, defines the damping associated with the damper. It is observed that
for the same baseline parameters and an excitation amplitude of 40 mm, the low-
high damper produces much higher damping than the high-low damper. For a low-
high damper, damping coefficient is higher at lower velocity compared to a high-
low damper where damping coefficient is lower at low velocity. That is why the
low-high displacement sensitive damper produces more damping effect than that
of a high-low damper. The peak damping force is also observed to be higher for a
low-high damper for the high amplitude of excitation.

The dynamic stiffness and the loss angle properties as a function of frequency
are shown in Figure 4.2 for the baseline low-high dual-phase damper under
sinusoidal excitation of amplitude 40 mm. At low frequency, velocity is very low,
therefore, the contribution to the dynamic stiffness from damper is also very low.
As the results show, for frequency of up to 5 Hz, the dynamic stiffness is very low
and is approximately equal to the spring stiffness. With the increase in frequency,
velocity across the damper increases and hence the dynamic stiffness increases
rapidly and dominates the characteristics. For the low-high damper, it reaches a
value of 475 N/mm at a frequency of 100 Hz. The loss angle is also often used as a
measure of damping effect of the damper. The loss angle property for the low-high
damper shown in Figure 4.2b indicates a low value for loss angle at low frequency
of excitation. It rises rapidly around resonance frequency zone (1 to 5 Hz). The
loss angle property of the damper is almost insensitive to frequency beyond 20 Hz.

Similar to Figure 4.2, Figure 4.3 shows the dynamic stiffness and the loss
angle of a high-low dual-phase damper. The parameter of the high-low damper is
same as that of the low-high damper. These results confirm that for the same
parameters the high-low damper produces lower dynamic stiffness throughout the

frequency range. The maximum value of the dynamic stiffness is, in this case is
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found to be 375 N/mm (Figure 4.3a) at 100 Hz which is almost 25% lower than the
dynamic stiffness produced by a low-high damper. Comparison of loss angle
characteristics for low-high (Fig. 4.2b) and high-low (Fig. 4.3b) dampers shows
identical trend where the loss angle for high-low damper is consistently lower for

the entire frequency range.

4.2.1  Parametric study

The objective for the parametric study here is to examine the influence of dual-
phase parameters on the dynamic damping characteristics. The dual-phase
parameters that are of interest include: (a) transition factor {3 for damping ratio;
and (b) transition factor o for displacement. A parameter further considered is the
amplitude of excitation. One parameter is varied at a time while all other
parameters are held constant and equal to their nominal values stated earlier.

(a) Effect of Transition Factor  for Damping Ratio: The transition factor f3 is
the ratio between low and high damping of a dual-phase damper. By keeping €,
constant as 0.25, ¢, is varied as 0.35, 0.50 and 0.65 which results in a value of 3
equal to 1.4, 2.0 and 2.6, respectively. Lissajous plots of a low-high damper for
each of these (3 values are shown in Figure 4.4. The plots are obtaincd for a
frequency ratio of 0.8 Hz. The results show that as the factor 3 is increased, the
size of the loop of the Lissajous plot also increases. It is also observed that increase
in damping ratio also increase the nonlinearity of the loop geometry. At low
damping ratio (Figure 4.4a), the Lissajous plot shows that the system is almost
linear. The results further show that there is an increase in peak transmitted force
with the increase in damping factor 3.

The effect of damping parameter {3 on th~ damper characteristics is also
observed for a high-low damper. Figure 4.5 shows the Lissajous plots of high-low

damper for three values of damping parameter f3. The results show that for the
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particular geometry of damper considered here, variation of damping paramecter 3
does not change the energy dissipation capacity of the damper. It has negligible
effect on damping force development for the frequency and amplitude used. In this
case, the amplitude of excitation and transition point of displacement are not
varied, therefore, the excitation cycle passes only a small portion of the high
damping region. Consequently, the damping force development does not change
significantly. If the transition point of displacement is kept lower or the amplitude
of excitation is kept higher, one may see the changes in the energy dissipation.
With the increase in damping ratio, only the nonlinearity in the geometry of the
loop is observed (Figure 4.5¢).

Figure 4.6 shows the variation of dynamic stiffness and loss angle property of
the low-high dual-phase damper as a function of frequency for the three values of
[3. For the case of low-high damper, it is observed that an increase in damping ratio
(€,) increases the dynamic stiffness throughout the whole range of frequency
(Figure 4.6a). For damping ratio ¢, = 0.65, the dynamic stiffness goes up to 600
N/mm whereas static stiffness is only 10 N/mm. Increase in damping ratio also
increases the loss angle throughout the whole range of frequency until it reaches a
maximum value which is close to 90 degree. The rate of increase in loss angle
around resonance frequency is found to be maximum which is desirable to dampen
the resonance amplitude.

Similar to Figure 4.6, Figure 4.7 shows the variation of dynamic stiffness and
loss angle property of a high-low damper. As explained earlier, the excitation cycle
does not pass a considerable amount through the high damping ratio region,
therefore, the increase in damping ratio ¢, will not affect the dynamic stiffness and
loss angle of the damper like low-high damper. The high-low displacement

sensitive damper is a low-high velocity sensitive damper, therefore, for the samc
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increase in damping ratio, the increase in dynamic stiffness and loss angle does not
occur like low-high damper. The trend in both cases are, however, very similar.

(b) Effect of Transition Factor « for Displacement: The transition factor o for
displacement dictates the motion required for transition from one damping value to
the other. For the case of a low-high damper, iicrease in transition factor a for
displicement increases the relative displacement or time required to reach the
higher d mping ratio, thus reducing the effective damping. This can also be
viewed as the relative velocity being exposed to higher damping ratio for lesser
time, therefore, the dynamic stiffness and loss angle will decrease. Figure 4.8
shows the effect of variation of o on the characteristics of the damper. The
transition in damping ratio from g, starts at A =10 mm and the linear increment in
damping ratio is stopped at A =20 mm, 40 mm and 60mm. Therefore, the
increase in transition factor for displacement is varied as 2, 4 and 6. Other
parameters are taken as ¢; =0.25 and C, =0.50. As expected, it is found that an
increase in o0 decreases the dynamic stiffness of the damper throughout the whole
range of frequency (Figure 4.8a) except at low frequency where dynamic stiffness
is equai v spring stiffness. For the same reason, the loss angle decreases with the
increase in transition factor a (Figure 4.8b).

For the case of a high-low damper, increase in transition factor for
displacement increases the transition region [region (b) in Figure 2.2] of the
damper which turns it into a damper of higher damping ratio. So, the increase in ¢t
for high-low damper increases the dynamic stiffness and loss angle as shown in the
Figures 4.9a and 4.9b. This effect is quite contrary to that of low-high damper
where increase in o decreases the dynamic stiffness. Although the effect is
opposite, the trend in variation in both cases are very similar.

(c) Effect of Amplitude of Excitation: Amplitude of excitation may have

important effect on the characteristics of a dual-phase damper as it dictates the
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phases of the damper that is included in a motion. A decrease in excitation
amplitude will result in same effect as that of increasing the transition value c.
Figure 4.10 shows the effect of excitation amplitude for nominal low-high damper.
The amplitude is varied as 10 mm, 20 mm and 40 mm. It is seen that decrease in
dynamic stiffness for a change in amplitude from 10 mm to 20 mm is not
noticeable, but the change in amplitude to 40 mm decreases both the dynamic
stiffness and loss angle of the damper.

Simiilar to the effect of transition factor & on the high low damper, the effect of
excitation amplitude is opposite in the case of high-low damper. Increase in
excitation amplitude increases the dynamic stiffness and loss angle as show in
Figure 4.11. Like before, change in amplitude from 10 mm to 20 mm is not
noticeable but an increase to 40 mm increases the dynamic stiffness and loss angle

of the high-low damper.

4.3 Performance of the Damper

The model developed for dual-phase damper in this study based on integral
formulation of damping force characteristics provides significantly different
property and performance as demonstrated in chapter 2. The objective of this
section is to cairy out a detailed performance evaluation of both low-high and
high-low dual-phase dampers.

The performance evaluation is carried out by utilizing a one ODF mass-spring-
damper system as shown in Figure 2.5. The suspended mass weighs 75 kg and the
isolator consists of a dual-phase damper and a linear spring of stiffness 10 N/mm.
The value of spring constant is chosen such that the undamped natural frequency is
close to 2 Hz. The suspension system of a vehicle has natural frequency within the
range 1.5 to 2 Hz. A linear spring is chosen so that the nonlinearity within the

damper can be analyzed in depth. The base of the system is excited either
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sinusoidally or by the application of shock of different severity. The response due
to the application of external input is measured at the sprung mass. For sinusoidal
input, respunse characteristics are determined by the acceleration transmissibility
and relative displacement transmissibility in the frequency domain. The range for
the frequency of excitation is chosen from 1 to 10 as frequency ratio. The
frequency ratio is defined as the ratio of excitation frequency to the system's
natural frequency ( w/w, ). The frequency response is obtained utilizing the local
equivalent linearization technique formulated and shown to be highly effective in
chapter 2.

The rounded pulse type of shock input is chosen to evaluate its performance
under shock input. The rounded pulse input of different severity is commonly used
for performance evaluation of isolators [43). The response of the mass in terms of
acceleration ratio, velocity ratio, displacement ratio and relative displacement ratio
are obtained in time domain for a given shock severity. The response is also
obtained in terms of shock acceleration ratio (SAR), shock velocity ratio (SVR),
shock displacement ratio (SDR) and shock relative displacement ratio( RDR) as a
function of shock severity ranging from 0.05 to 5. Such performance indices are

also common for comparison of isolators [21, 38].

4.3.1 Application of Sinusoidal Input

The mass-spring-damper system is base excited using a sinusoidal signal ot
amplitude of 40 mm for a range of frequency ratio of 1 to 10. The transmissibility
curves for the low-high dual-phase damper is shown in Figure 4.12. As the system
is nonlinear, the response due to the sinusoidal input is not purely sinusoidal but
periodic. Therefore, the response of the system is defined as the root mean square

(rms) acceleration transmissibility and rms relative displacement transmissibility.
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The rms acceleration transmissibility is defined as the ratio of the rms acceleration
of the sprung mass to the rms acceleration of the input.

Figure 4.12a shows the rms acceleration transmissibility characteristics of a
low high damper (solid line) with parameters A=10mm, o = 3,¢; =0.25 and ¢, =
0.35 (or 3= 1.4). Transmissibility performance is found excellent around resonance
frequency as well as around high frequency zone. Relative displacement
transmissibility just passes unity at around resonance frequency and remains at
unity throughout the high frequency zone, which is illustrated in Figure 4.12b.

Figure 4.13 shows the performance characteristics of a high-low damper (solid
line) with identical parameters as those used for the iow-high damper. It is
observed earlier that for similar parameters, the high-low damper produces lower
dynamic stiffness, therefore it will produce higher transmissibility around
resonance zone and lower transmissibility around high frequency zone. Compared
to Figuré 4.12, the high-low damper has an acceleration transmissibility greater
than 2 but high frequency transmissibility is better than that of low-high damper.
So for a better high frequency transmissibility requirement, a high-low damper is
desirable. For a high-low damper. relative displacement transmissibility at

resonance is also higher as shown in Figure 4.13b.

4.3.1.1 Parametric study

Parametric study is also carried out to investigate the influences of damper
parameters pertaining to better response characteristics of the dual-phase damper.
The parameters chosen as variables for the parametric study are (a) transition point
in damping ratio 3, and (b) transition point in displacement a. The effect of
amplitude of excitation on the dynamic performance of the damper is also studied.

One parameter is varied at a time while all others are kept equal to their nominali

values.
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(a) Effect of Transition Point in Damping Ratio. 3 : Figure 4.12 presented

earlier further shows the effect of transition point in damping ratio on the
acceleration transmissibility and relative displacement transmissibility of a low-
high damper. The higher damping ratio is varied as 0.35, 0.50 and 0.65, therefore,
the values of transition point in damping ratio, (3 are 1.4, 2.0 and 2.6 respectively.
The other parameters are {; = 0.25, A = 10 mm and ¢ =3. The amplitude of
excitation is taken as 40 mm. It is observed that the increase in (3 decreases the
transmissibility at resonance even lower (around 1.5) with a sacrifice in
transmissibility at high frequency. It may be noticed that the increase in 3 value
from 2.0 to 2.6 does not affect the transmissibility at resonance to that extent as it
does at high frequency transmissibility. Therefore, there exists an optimal (3 value
that can improve resonance performance without significant loss at high
frequency.

Increase in {3 value is, however, very contributory for the performance as
relative displacement transmissibility. As shown in Figure 4.12b, the relative
transmissibility at resonance reduces for larger 3 which is desirable for the
efficient and compact design of the system. At higher  value (2.6) the
transmissibility goes much below than unity at resonance frequency which is
highly satisfactory.

The effect of {3 value for the case of high-low damper is shown in Figure 4.13.
It may be recalled that Figure 2.12 shows increase in equivalent damping ratio
only at low frequency, with very little changes around resonance and high
frequencies for an increase in (3 value. That observation is reflected into Figure
4.13a and 4.13b. It is found that the increase in {3 value does not change the
resonance transmissibility for both acceleration and relative dispracement. The
changes observed can be considered negligible. Such behavior for the high-low

dual-phase damper can not be predicted using the traditional approach for damping
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force [36]. Since the effect of 3 in that case is more significant for both resonance
and high frequency damping ratio as shown in Figure 2.12.

(b) Effect of Transitic . Point in Displacement, ¢ : The response of the dual-
phase damper is observed for both low-high and high-low types with the variation
r,f transition point in displacement, a. Variation of a influences the effective
damping ratio of both the systems which, in turn, affects the systems'
transmissibility. In the parameiiic study of damper characteristic presented in
section 4.2.1 it is found that for low-high damper, an increase in @ value decreases
the effective damping ratio throughout the frequency range. This, in turn, will lead
to higher transmissibility at resonance frequency and lower high frequency
transmissibility. Figure 4.14 shows the effect of o on acceleration transmissibility
and relative displacement transmissibility for a low-high damper. The « is varied
as 2, 4 and 6 which makes the damper reach the higher damping ratio ¢, at
displacements of 20 mm, 40 mm and 60 mm, respectively. It is seen that the
increase in a value increases the resonance transmissibility and decreases the high
frequency transmissibility. It is found that increase in o value from 4 to 6 makes a
significant decrease in high frequency transmissibility with a minor increase in
resonance transmissibility both in acceleration and relative displacement.
Therefore, once again, there exists an optimal value for &t in the case of low-high
damper which will provide a better compromise between resonance and high
frequency response.

Effect of transition factor @ on to the high-low damper is shown in section
4.2.1 to be contrary to that of a low-high damper. Figure 4.15 further shows that
increase in a slightly improves the resonance transmissibility, for a worst
performance at high frequency. The results presented in Figure 4.15 further

indicate that although relative displacement transmissibility is not significantly
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affected by a, an increase in a will primarily lead to poor high frequency
performance.

(a) Effect of Amplitude of Excitration: The influence of excitation amplitude on
the performance of dual-phase dampers is finally examined. The models with
baseline parameters are considered under three different amplitude of excitations.
't he amplitudes used are 10 mm, 20 mm and 40 mm. Results in terms of
acceleration transmissibility and relative displacement transmissibility are plotied
in Figure 4.16 for a low-high damper and in Figure 4.17 for a high-low damper.

For the case of a low-high damper, lower amplitude of excitation means the
damper is active only for lower range of damping ratio. Therefore, transmissibility
will be higher at resonance and lower at high frequency. It is seen from the Figure
4.16 that the increase in amplitude of excitation improves the transmissibility at
resonance with the expense of higher transmissibility at high frequency. Relative
transmissibility (Figure 4.16b) also decreases with the increase in amplitude of
excitation. The effect is typical to that of damping ratio variation in a lincar
system.

In general, the opposite effect occurs for the case of high-low dual-phasc
damper with identical parameters. With the increase in amplitude, transmissibility
at resonance deteriorates severely but the transmissibility at high frequency
improves . In this case, however, the effect is not linear. It is interesting to note
that a high-low damper for the given parameter and excitation of 40 mm amplitude
(Figure 4.17, chained line) produces similar performances to that of a low-high
damper with the excitation of 10 mm amplitude ( Figure 4.16, solid line). The
reverse also holds true. This parametric study clearly indicates that a dual-phasc
damper, specifically displacement sensitive, must be designed for isolation of a

given vibration environment in order to achieve its potential performance.
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A comparative result is finally presented to demonstrate the potential of dual-
phase dampers. Figure 4.18 shows a good set of performance for low-high damper.
These results are superimposed by the response of linear viscous dampers (¢= 0.25
and 0.50) corresponding to the low or high value of damping. It is observed from
the figure that, for high linear damping provides good isolation in the low
frequency range but performs poorly in the high frequency range. However, lower
damping provides good isolation at high frequencies, but performance is very poor
in the low frequency region. But for any value of a, the dual-phase damper with
these two damping value (0.25 and 0.50) show better transmissibility response
both in resonance and high frequency. Its performance at resonance is much better
than that of linear damper with low damping but slightly higher than that of linear
damper with high damping. Opposite effect is true for high frequency response. It
is, thus, appropriate to say tiiat the dual-phase damper has a compromising

performance in the low frequency as well as high frequency range.

4.4 Description of Shock Input

Isolators designed for attenuation of vibration may often be subjected to shock
inputs in practice. Unless an isolator is designed only for vibration, its performance
should be evaluated based on its potential in isolating both vibration and shock.
This section of the chapter is devoted towards the performance of displacement
sensitive dual-phase dampers in isolation of shock excitation. In all cases, rounded
pulse displacement of various severity is used as input. The following subsections
describes these inputs and the performances for both low-high and high-low
dampers. The performances are evaluated in terms of sprung mass displacement,
velocity and acceleration responses as well as relative displacement both as a

function of time and shock severity.
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4.4.1 Characteristics of Shock Input
Two types of shock displacements may be considered to evaluate the dual-phase
damper performances. These inputs commonly used [21,38,43,59] for evaluation
of shock isolation performance of isolators, include:

(a) rounded pulse displacement input

(b) rounded step displacement input

(a) Rounded pulse displacement: A rounded pulse displacement may defined by

the following mathematical forn.

(4.1
v, () -_-% Y, (v, t)? €2 )

where Y is the maximum magnitude of displacement, e = 2.71828.. and v, is the
shock severity parameter. The shock severity parameter is defines as the ratio of

hali -period of the natural vibration of the system to the duration of the pulse; thus

T x (4.2)

21, WoTp

where the duration T, is defined as the length of an equivalent rectangular pulse
that has the same area as that of the rounded pulse, but which is higher by 17.6%
than Y and w, is the natural frequency of the system.

Figure 4.15a shows the rounded pulse displacement fer various skock severity
parameter for a frequency of 7.5 Hz. This frequency corresponds tc the natural
frequency of the system considered as discussed in section 4.5.2. The shock
severity parameter v for a rounded pulse input may be defined as the length of an
equivalent rectangular pulse that has the same area as that of the rounded pulse,
but which has a peak 17.6% higher than Y. The higher the value of v the higher
the shock severity. As shown in Equation (4.2), the shock severity parameter v is a

relative parameter, relative to the resonance frequency of the system. The same
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value of the parameter will lead to more severe shock input for a system with a

higher natural frequency.

(b) Rounded step displacement: A rounded step displacement input may be

defined by the following pairs of equations.

ys(t) =0, t <0 (4.3)

ye() =Y, [1- e¥'(1+uvw,t)] , t=0 (4.4)
Here, the shock severity parameter is defined in the same manner but the duration
of the pulse 1, of the rounded step displacement is defined as the time required for
the displacement to reach 82% of its final value. The severity factor v in terms of
1, and W, is:
T - (4.5)

v = =
21, WoTs

The rounded step displacement is shown in Figure 4.19b for different shock
severity parameter for the natural frequency of 7.5 Hz.

In addition to the above mentioned shock displacement, a third type of shock
input is also available in the literature known as oscillatory displacement step [43].
The use of such input is not common for evaluation of isolators. The rounded pulse
displacement is the mostly appropriate shock input for common isolators, as for
example, it represents a bump or a pot hole on a damaged road. Performance of the
dual-phase dampers, in this investigation is only considered under the application

of the rounded pulse displacement.
44.2  Shock Performance Index

The performance of the dual-phase damper under the shock load is evaluated both

in time domain and shock severity parameter domain. Again, there are commonly
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used performance indices [21, 38] that can be used effectively for evaluation of

performance and comparative study.

(i) Shock Acceleration Ratio (SAR) defined as the ratio of the maximum

acceleration of the response to the maximum acceleration of the input:

. (4.6)
sAR = 1 Wlnar
WS (t)lmax

where maximum acceleration for the rounded pulse displacement input is defined

as.

Vs (D] _ = 3.69453 vPw? Y, (4.7)

where v, is the shock severity factor, w, is the system natural frequency and Y is

the maximum displacement of pulse defined in Equation (4.1).

(i) Shock Velocity Ratio (SVR) defined as the ratio of the maximum velocity of

the response to the maximum velocity of the input.

) (4.8)
|%g (1)]

SVR = Q_mﬁ
|y5(t)lmax

where maximum velocity for the rounded pulse displacement input is defined as

lys(t)] ., = 0.85188 v, Y, (4.9)

where the various variables are same as those in Equation (4.7)

(iii) Shock Displacement Ratio (SDR) defined as the ratio of the maximum

displacement of the response to the maximum displacement of the input.
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(4.10)
%, (1)

DR = max
° lys (t)lmax

(iv) Shock Kelative Displacement Ratio (RDR) defined as the ratio of the

maximum relative displacement of the response to the maximum displacement of

the input.

(4.11)
RDR - [xs (1) -y (1)]
lys (1]

max

max

4.5 Shock Response of Dual-phase Damper

The dual-phase damper is excited at the base by the rounded pulse displacement
type of shock input and the response is measured at the sprung mass of the system.
The system chosen has the undamped natural frequency of 7.5 Hz and maximum
input displacement of the shock is taken as 40 mm. The reason for choosing higher
natural frequency is that the response of the dual-phase damper will be compared
with the response of the dampers with flexible chambers. The natural frequency of
the flexible chambered damper is 7.5 Hz. The natural frequencies are maintained
equal in order to keep the shock severity parameter same. The shock isolation
characteristics of the damper is evaluated in two ways (a) in time domain for some
selected shock severity parameter and (b) in shock severity domain.

(a) Response in time domain: Figure 4.20 shows the shock response of a low-
high damper in terms of acccieration ratio and velocity ratio. The damper chosen
has the following parameters A = 10 mm, a = 4, £ = 0.25 and {3 = 2. The shock
severity parameter considered are 0.1, 0.2, 0.5 and 1.0 which covers a wide range
of shock severity for effective demonstration of performance in time domain. As

the results show, the peak acceleration ratio diminishes within two cycles for all
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severity except for the lowest severity when v = 0.1. The maximum acceleration
decreases with the increase in shock severity parameter.

The velocity response takes time equivalent twice as long (Figure 4.20b) to
diminish to 20% of its maximum value and the velocity increase with the increase
in shock severity and then gradually decreases. However, at higher shock severity,
velocity dies out within one cycle. Peak displacement ratio tends to increase with
increase in severity parameter as shown in Figure 4.20c. The diminishing period,
however, reduces as the shock severity is increased. Relative displacement ratio
(Figure 4.20d) increases with tie increase in shock severity, but irrespective of the
severity parameter, relative displacement reduces to zero within the period of two
cycles.

Figure 4.21 shows the shock response for a high-low dual-phase damper under
the application of same shock input. The parameters for the damper is also kept as
that of low-high damper in order to compare their performances. It is seen from the
Figure 4.21a that although the peak acceleration and the trend remain the same for
both low-high and high-low dampers, the acceleration disappears relatively faster
in the case of high-low damper. In comparison to low-high damper, there is no
significant difference in the trend of velocity, displacement and relative
displacement responses when high-low damper ( Figure 4.21b,c,d) is used. These
responses are, however, marginally better in comparison to a low-high damper. It
might be possible that the high-low damper has better potential for isolation of

shock for a optimal set of parameters. This will be explored further in the

following subsection.

(b) Response versus shock severity: Here the peak response ratios are obtained

for variation of shock severity parameters in the range of 0.05 to 5. Figure 4.22
shows the response characteristics of the low-high damper in terms of shock

acceleration ratio shock velocity ratio, shock displacement ratio and shock relative
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displacement ratio. The parameters are A = 10 mm, a = 2, { = 0.25 and f3 is varied
as 1.4, 2 and 2.6 to examine the effect of higher damping ratio on its performance.
It is found that the acceleration ratio diminishes quickly with the increase in shock
severity and reaches very low at high shock severity. The increase in damping ratio
is found to have influence only at higher shock severity ( > 0.40) where an
increase in [3 deteriorates the acceleration ratio. At lower shock severity, the
relative displacement is low, therefore, the darnper remains within the low
damping region. That is why the SAR is identical until v = 0.4 after which relative
displacement goes to higher damping ratio and it affects the damper performance.
Higher damping ratio deteriorates the acceleration at higher shock severity as
observed in Figure 4.22a.

The shock velocity ratio (SVR), for the same set of parameters, is shown in
Figure 4.22b. SVR increases with the increase in shock severity up to certain shock
severity (v = 0.3) after which SVR tends to reduce rapidly with the increase in
shock severity. The effect of variation of damping ratio does not change the SVR
significantly as seen in Figure 4.22b. The shock displacement ratio for the low-
high damper shown in Figure 4.22c¢ indicates that the response remains unity until
v = 0.3, it then starts to increase with increase in v and after crossing v = 0.8, it
falls rapidly with increase in severity parameter. Increase in damping parar <ter [3
decreases the SDR at higher v value. At lower v, the shock displacement response
is insensitive to the higher damping parameter of a low-high damper.

The relative displacement ratio (RDR) response of the low-high damper shown
in Figure 4.22d indicates a rapid increase in the response with increase in shock
severity. The RDR response goes up to 0.8 which is higher compared to the
sequential damper proposed by the Rakheja and Sankar [21]. However, when other
response characteristics are compared, the dual-phase damper performs better

throughout the whole range of shock severity.
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Shock isolation characteristics of the high-low damper are shown in Figure
4.23. The trend in this case is very similar to that of low-high damper response. It,
however, performs bettei than a low-high dual-phase damper and is sensitive to the
change in damping parameter [3 throughout the range of severity. Figure 4.23a
shows that SAR of the damper is much lower throughout the whole range of shock
severity. The SAR decreases with the increase in {3 at lower shock severity because
high damping produces better performance at lower shock severity. But it
increases the SAR at higher shock severity. Figure 4.23b shows the shock velocity
ratio (SVR) with the variation of shock severity. Compared to low-high damper, it
exhibits much lower shock velocity ratio and SVR reduces even further with the
incrcase in higher damping parameter [3. The effect of 3 is similar on SVR as that
of SAR.

The shock displacement ratio (SDR) is also much lower for the case of high-
low damper compared to a low-high damper for all ranges of shock severity
(Figure 4.23c). Higher damping parameter (3 decreases the SDR with a minor
increase at very high shock severity. Relative displacement ratio (RDR) remains
similar to that of a low-high damper (Figure 4.23d). But unlike the low-high

damper, RDR decreases significantly with the increase 3.

4.6 Summary

A detail investigation regarding the characteristics and performance of the dual-
phase damper is carried out here. Two types of displacement sensitive dampers,
i.e., low-high and high-low are considered. Characteristics of the damper is
determined in terms of dynamic stiffness and loss angle. It is observed that,
generally, the low-high damper exhibits higher dynamic stiffness and loss angle
compared to a high-low damper. Response characteristics of the damper is

evaluated under the application of both sinusoidal and shock excitation. Detailed
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parametric study for both low-high and high-low dampers indicate that a low-high
damper has better potential for improved performance over a wide range of
frequency. The study further indicates that a dual-phase damper, specifically
displacement sensitive must be designed for isolation of a given vibration
amplitude in order to achieve its best performance.

The shock response analysis under rounded pulse input indicates suitability of
such damper in isolation of shock. For both low-high and high-low dampers, the
shock acceleration response increases and relative displacement ratio decreases as
shock severity is incrcased. For shock velocity and displacement ratios, the
response first increases and then decreases as shock severity is increased. The
effect of dual-phase damper parameter (3 (ratio of high to low damping ratio) has
more significant effect on the performance of high-low damper leading to a

superior performance under shock excitation.
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CHAPTER 5

CHARACTERISTICS AND PERFORMANCE OF
SHORT ORIFICE HYDRAULIC DAMPER

5.1 Introduction

A detailed nonlinear model for hydraulic damper with flexible chamber and short
orifice of different openings is developed as presented in chapter 3. This part of the
study considers the damper characteristics and its performance in isolation of
vibration and shock. The method of simulation outlined in section 3.2.5 is adopted
to establish the characteristics and performance. The results are obtained in both
time and frequency domain to demonstrate the damper characteristics in terms of
internal variables like orifice flow, top chamber pressure, damping force and
transmitted force. Dynamic stiffness and loss angle of the damper are also
presented in frequency domain. Acceleration transmissibility and relative
displacement transmissibility of the single DOF system utilizing the damper are
observed to evaluate its performance. A detailed parametric study is carried out to
examine the influence of various damper parameters on the dynamic stiffness and
transmissibility response. The effect of different orifice openings has also been
investigated. The nominal parameters selected for the simulation are: orifice
diameter 6 mm; orifice length 5 mm; suspended mass 125 kg. These are based on
a realistic system where the mass represents an engine supported on mounts with

system natural frequency 7.5 Hz. The natural frequency in this case is, however,



highly sensitive to damper parameters due to the creation of additional stiffness
from the compliance of the top chamber. The following subsection presents the
characteristics of the damper along with a detailcd parametric study. Results are
further presented for transmissibility performance response under both sinusoidal

excitation and shock.

5.2 Characteristics of the Damper

A hydraulic damper with short orifice of diameter 4.5 mm is chosen to carry out
the investigation of its characteristics. Projected piston diameter is taken as 70 mm.
A mass of 125 Kg is supported by the damper with a base excitation of 1 mm
sinusoidal of frequency 10 Hz. The mass is considered equivalent to the mass of
the engine where the damper will act as a mounting device on the chassis. From
table 3.3, the static pressure for the above configuration is obtained as 111.45 KPa
when Comp_A type top chamber material is implemented. The characteristics of
the damper is compared with the experimentally obtained characteristics [17] for
long orifice hydraulic damper. The reasons tor selecting long orifice damper for
validation are (1) to the xnowledge of the author, no literature is yet available for
characteristics of the short orifice damper, and (2) the long orifice damper has
similar trends in characteristics of short orifice damper. The peak values of internal
parameters, the trend in time domain as well as in frequency domain do not exhibit

wide variation due to the functional and construction similarities of the dampers.

5.2.1  Time Domain Analysis

The system as.ociated with the flexible chambered hydraulic Jamper is highly
nonlinear due to compliance, chamber material properties, etc. Therefore, the
behavior of the systems' internal variable are also nonlinear. Hence, it is desirable

to analyze its characteristics in time domain. In each simulation, sufficient time is
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allowed to ensure that steady state has been reached. The response variable data
are stored for three cycles after passing 30th cycle of input excitation.

Using a frequency sweep in the range of 1 to 100 Hz, it is first established that
the given system has a natural frequency close to 10 Hz. The steady state time
history is, therefore, obtained at 6, 10 and 20 Hz to examine the orfice flow rate
from one chamber to the other. The results presented in Figure 5.1 include a dotted
curve which represents the excitation frequency. The positive part of the flow
shows flow from bottom chamber to top chamber (reverse flow) and the negative
part shows the opposite or forward flow. Figure 5.1a shows that the forward flow
occurs after 33.33 ms of the onset of the forward stroke which is equivalent to
71.93 degree phase lag. However, this time delay decreases with increase in
excitaticn frequency (14.0 ms or 50.4 degree at 10 Hz and 3 ms or 21.6 degree at
20 Hz). The asymmetric orifice flow rate characteristics, shows nonsinusoidal
behavior, although the application of excitation is purely sinusoidal. For each
cycle, duration of maximum flow is higher in reverse flow than in forward flow
and this fact increases with increase in frequency.

The reason for this behavior may be explained from Figure 5.2 which
represents the time history of top chamber pressure distribution for the three given
frequencies. The distribution is purely asymmetric in nature where minimum
pressure goes as low as 37.81 KPa which is below atmospheric. This sub-
atmospheric pressure distribution for the damper agrees quite well with the
experimentally obtained one for a long orifice hydraulic damper [17]. The period
for higher pressure difference between chambers which governs orifice flow is
longer during reverse {low but magnitude of peak flow is h gher during forward
flow. This way the total volume in one cycle is balanced. The peak value of the
pressure is around 216 KPa which varies with the variation of orifice diameter,

chamber compliance and amplitude of excitation as discussed later.
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Figure 5.2 further shows that increase in frequency increases the magnitude of
the pressure and the creation of sub-atmospheric pressure. Although the bottom
chamber has a very high compliant element, pressure build up in top chamber
increases with frequency. Smaller diametered orifice cannot pass the bulk of fluid
as quickly as the forward stroke, which leads to rapid rise in pressure. Due to the
same reason, more vacuum is created in high frequency excitation during reverse
stroke. It is interesting to indicate that time response above atmospheric pressure is
completely different from time response below atmospheric pressure. Compliance
of the chambers works only when there is a pressure buildup above atmospheric
pressure. When the pressure is below atmospheric, 'negative compliance'
phenomenon occurs as discussed earlier in section 3.2.2.2 for nonlincar
compliances. It is simulated by considering that entrapped air bubbles get released
at low pressure and pressure-volume relationship for air holds good during that
time [17].

Figure 5.3 shows the time history for variation of bottom chamber pressure.
Clearly, due to high compliance nature of the bottom chamber, variation of
pressure is very low compared to that of the top chamber. Here the variation is
about the static pressure of 111 KPa, where peak to peak difference is only 6.16
KPa at 10 Hz. The results further show a decreasing tendency for the peak to peak
difference as frequency is increased. This results from increase in orifice flow
leading to lower volume increment from the condition Py = P,;. Consequently, it
leads to lower buildup of pressure in the bottom chamber. Such behavior in short
orifice is contrary to the known behavior of the long orifice system.

For the same simulation, Figure 5.4 shows the time history for damping force
at three different frequencies. These results reflect the top chamber pressure
distribution obtained earlier in Figure 5.2. The pattern of distribution can be

considered identical with a phase shift of 180 degree. This is due to the fact that
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top chamber pressure distribution is the only contributory factor for damping force.
At low frequency, (Figure 5.4a) damping force development during forward stroke
and reverse stroke are almost same and exhibits a phase shift of 64.8 degree with
excitation frequency. With increase in frequency, damping force also increases
with higher magnitude during forward stroke than reverse stroke. At 20 Hz, peak
damping force at the end of forward stroke is 404.69 N whereas at the end of
reverse stroke damping force is 281.5 N. In reverse stroke, development of
pressure difference is limited due to formation of sub-atmospheric pressure.
Therefore, increase in damping force with frequency during reverse stroke is much
lower than the increase in forward stroke. Like orifice flow, phase difference also
decreases with increase in frequency, 46.8 degree at 10 Hz anc 25.2 degree at 20
Hz.

Simulated results for force transmitted to the ground by the damper is shown
in Figure 5.5. It shows the nonlinear distribution of transmitted force as a function
of time for the three different frequencies. Like damping force, transmitted force
also increases with frequency. Peak transmitted force at 6 Hz is 400 N whereas, at
10 Hz, it is 551 N und at 20 Hz, it is 684 N. Figure 5.6 shows the excitation
displacement verses transmitted force plot. The encircled area, thus formed, shows
the amount of damping (energy dissipation) developed by the system. It also
exhibits the extent of nonlinearity present in the system. The results show that the
hydraulic damper develops higher damping at 10 Hz compared to 6 Hz. With the
increase in frequency, damping effect tends to diminish (width of the Lissajous
plot tends to be narrower). The Figure also displays that, with increase in

frequency, the hydraulic damper shows more nonlinearity.

144



400

(8) 6 Hz
200}

I\ T\ N\ /
200l \/ \,/ \/
-400}

7 74 72 73 7.4 7.5
400 (b) 10 Hz
200

(N /N SN/

4
o
)
e o0
2
g 200
[1°]
[m]
-400}
42 425 43 4.35 24 4.45 3.5
400 | (c) 20 Hz
"N /N [N
. /
200} \/ \/ \/
400}
2.1 2.15 22 2.25
Time, sec

Figure 5.4 Damping force of the hydraulic damper in time domain at different
frequencies. (X, =1mm,; piston diameter 70mm).

145



800

{a) 6 Hz
400 /‘\ /\ /\
.400 |
-8007 7.1 72 73 7.4 75
800 (b) 10 Hz

8

ANNVANYANNY
NV

Transmitted force, N
o

-400
8095 .25 a3 4.35 4.4 445 4.5
800

(c) 20 Hz

A MVANA
«IAVARVERY

809

25
Time, sec

Figure 5.5 Transmitted force characteristics of the hydraulic damper at different
frequencies. (X, =1mm,; piston diameter 70mm).

146



(8) 6 Hz
T ﬁ
(o] y
400 |-
800 0001 o 0.001
800
{b) 10 Hz

400 -

Transmitted force, N
o

[l 1
-0.001 0 0.001

{c) 20 Hz

400 |-

AN

)]

[l 1
-0,001 0 0.001
displacement, m

Figure 5.6 Lissajous plots of the hydraulic damper at different frequencies. (X,
=1lmm; piston diameter 70mm).

147



5.2.1.1  Paramctric Study

For the parametric study in time domain, the two most important parameters that
significantly change the characteristics of the damper will be varied to analyze
their effect. These parameters include: (i) orifice diameter and (ii) piston diameter
(top chamber diameter). One parameter is varied at a time while the other is held
constant and equal to its nominal value presented in section 5.1.

(a) Orifice diameter: Figure 5.7 shows the effect of orifice diameter on the
orifice flow rate, top chamber pressure and transmitted force. These results are
obtained for orifice diameter 4.5 mm, 6 mm and 7.5 mm. Excitation amplitude is 1
mm at a frequency of 10 Hz. With the increase in orifice diameter, the flow rate
increases and consequently, the chamber pressure decreases. This decrease in
pressure, in turn, results in the decrease in transmitted force. Flow rate increases
because of the reduction in the flow restriction due to greater orifice area. Except
around the zero flow rate zone, phase angle at each point varies significantly for
different diameters. One possible explanation might be that the smaller diameter
creates additional stiffness due to top chamber compliance developing significant
phase difference. The greater the orifice diameter, the lesser the effect of
compliance will be, one can see the phase difference is also decreasing.
Asymmetricity also tends to decrease with the increase in diameter (Figure 5.7a)
because the difference in pressure during both forward and reverse flow tends to
become equal.

Increase in diameter means decrease in flow restriction which, in turn, reduces
the building up of pressure. Therefore, larger diameter reduces the pressure in the
top chamber. With the increase in diameter, phase shift and waviness in the curve
are also observed in Figure 5.7b. Similar trend is also visible in the transmitted

force curve (Figure 5.7c) with minimum phase shift.
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(b) Piston diameter:  The piston dia of the top chamber is varied as 70 mm
(area 3850 mm2 ), 80 mm (area 5025 mm2 ), and 90 mm (area 6362 mm2 ) and
effects of these variation on damper characteristics are investigated for orifice
flow, top chamber pressure and transmitted force. Figure 5.8a shows the effect of
increase in top chamber diameter on orifice flow. Larger diameter means larger
thrust area for working fluid displacement, therefore, more flow to and from the
chambers. For a 23.4% increase in piston area there is a 20.1% increase in peak
flow rate. A 65.3% increase in piston area results in 39.7% increase in the peak
flow rate. Therefore, increase in piston area is not proportional to the increase in
orifice flow. It is also observed that when piston area is increased, it takes longer
time to complete reverse flow and shorter time to complete forward flow.

For the fixed orifice size, increase in orifice flow creates more pressure build
up, i.e., increase in piston area increases the top chamber pressure as shown in
Figure 5.8b. For an increase in piston area to 23.4% creates a 21.4% rise in peak
chamber pressure which results in 88.7% increase in damping force. Again 65.3%
increase in piston area produces increase in peak pressure by 48% where the
damping force increases by 226%. On the other hand, piston area has little effect
on sub-atmospheric pressure developed during reverse stroke, i.e., there is very
minor increase in vacuum.

Increase in piston area affects the nonlinear nature of the force transmitted to
the ground as shown in Figure 5.8¢c. For the damper with piston diameter of 70
mm, transmitted force curve shows a trend almost similar to the sinusoidal
excitation. But as the piston diameter is increased the force become nonlinear and
asymmetric. Figure 5.8d presents the transmitted force-displacement
characteristics for the three piston areas where the nonlinearity of the damper is
quite apparent. The peak magnitude of the transmitted force also increases

prominently with the increase in piston area. The following table furnishes the
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summary of the increase in different parameter with the increasc in piston

diameier

Tahle 5.1  Percentage increase in some parameters with the increase in r iston
area based on piston diameter of 70 mm.

piston area peak orifice | peak pressure | peck damping | peak transmitted
flow force force
23.4 20.1 21.4 88.7 48.2
65.3 39.7 48.1 221.0 124.0

Influence of these and other parameters will be further examined in the

following section as peak response in frequency domain.

5.".2  Frequency Domain Analysis

The short orifice hydraulic damper characteristic: is next evaluated in frequency
domain. The irameters evaluated include: dynamic stiffness: loss angle; chamiber
pressun. * orifice flow and peak damping force. The damper characteristics in terms
of rms (root mean square) dynamic stiffness and loss angle as a function of
frequency is presented in Figure 5.9. The curve is obtained for amplitude ot
excitation 1 mm in the frequency range of 1 to 100 Hz. Damper parameters are:
orifice diameter 4.5 mm, length 5 mm. Static pressure is obtained at 111.05 KPa.
As shown in the Figure, the dynamic stiffness ¢ i the damper is constant and is
equal to the rubber stiffness for low frequencies less than 5 Hz. In the range of 5 to
50 Hz, the dynamic stiffness increases rapidly with increase in frequency, and is
relatively insensitive to frequencies greater than 50 Hz. For the selected
parameters, the dynamic stiffness at high frequency goes almocst 2.5 times greater

than that of low frequencies.
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The chief objective in using such damper is to attain enough damping for
isolation of resonance. Figure 5.9b shows the damping developed by the damper in
terms of loss angle in a wide frequency range. In fact, high damping is desirable
within the natural frequency of excitation and low damping is required for high
frequency. At 8 Hz loss angle is maximum, 24.83 degree and it decreases rapidly
with increase in frequency. Thus a short orifice hydraulic damper is very suitable
for high frequency, low amplitude vibration isolation.

Distribution of peak top chamber pressure as a function of frequency shown in
Figure 5.10a, exhibits that there is negligible pressure buildup (116 KPa) for
frequencies of up to 3 Hz. The pressure then increases rapidly through the
resonance frequency (7.1 Hz) and approaches a maximum value of about 226 KPa
after 20 Hz. It is interesting to note that the trend of dynamic stiffness curve is very
similar to the top chamber pressure curve. The reason is that the top chamber
pressure is the major contributing factor for dynamic stirfness development.

It was shown earlier (Figure 5.3) that the bottom chamber pressure decreases
nonlinearly with frequency; Figure 5.10b confirms this effect for frequency 1 to
100 Hz. Up to 5 Hz, chamber pressure remains constant from which it begins to
decrease, gradually, with increasing frequency.

Figure 5.11 shows the variation of peak orifice flow and damping force as a
function of frequency. Unlike to top chamber pressure development, orifice flow
starts rising gradually with increase in frequency up to 20 Hz (Figure 5.11a),
showing no further increment in orifice flow. Devei. ; nent of peak damping force
shows mostly similar trend like peak top chamber pressure, as they are directly
related. Although Figure 5.9b shows that the damping (loss angle) development by
such damper diminishes with increase in frequency, here, damping force is high
due to the fact that damping force is function of velocity and which, in turn, is a

function of frequency.
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5.2.2.1 Parametric Study

A parametric study is next carried out in the frequency domain. Several damper
parameters considered include: oritice diameter; piston diameter; top and bottom
chamber compliance as well as shape of orifice opening and amplitude of
excitation. Again one parameter is varied at a time while the others are kept equal
to their nominal values.

(a) Orifice diameter: Fig. 5.12 shows the variation of rms dynamic stiffness
and loss angle with the variation of orifice diameter. The amplitude of excitation is
1 mm and the static pressure in the chambers is 111.05 KPa. As the orifice
diameter is increased, the frequency where the stiffness starts to increase from the
static stiffness shifts to the right, as the pressure build up takes place at a higher
trequency. At high frequency (100 Hz), however, the dynamic stiffness for ail
orifice size approaches the same value regardless of the size of the orifice, since
the pressure in top chamber also approaches the same value. For larger orifice
diameter, as the pressure develops at higher frequency, occurrence of maximum
loss angle also shifts towards higher frequency. Figure 5.12b shows that for
diameter of 6 mm, maximum loss angle occurs at 14 Hz and for 7.5 mm at 24 Hz.
The maximum damring as loss angle in each case is identical. For a frequency of
100 Hz, however, the value of loss angle is higher for larger orifice size as the
curves shifts to the right.

The effect of orifice diameter on the top and bottom chamber pressure is
shown in Figure 5.13. These results reconfirm the observations made in Figure
5.12. The trend for top chamber pressure is identical to that of dynamic stiffness.
The orifice diameter has similar effect on the bottom chamber pressure as shown
in Figure 13b. The drop in bottom chamber pressre is observed at higher

frequency as the orifice size is increased.
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The increase in orifice flow rate with frequency for the three orifice sizes is
demorstrated in Figure 5.16a. At low frequency, up to 6 Hz, change in diameter
causes very little increase in flow rate. Around 20 Hz, flow rate due to 7.5 mm
orifice is double of that produced by 4.5 mm. At 50 Hz this increase almost triples
and becomes steady. The final result presented in terms of peak damping force in
Figure 5.14b again shows identical trend as that of top chamber pressure due to
change in orifice size.

(b) Piston_diameter: Since the effect of damper parameter is similar on
dynamic stiffness, top chamber pressure and peak damping force, the effect of
piston diameter only obtained for dynamic stiffness and loss angle. It was observed
in Figure 5.8 that, at 10 Hz, increase in piston diameter increases the top chamber
pressure. This trend holds for the whole frequency range of interest, 1 Hz to 100
Hz. Figure 5.15a shows the effect of piston diumeter on dynamic stiffness and
5.15b shows its effect on loss angle for piston diameter 70 mm, 80 mm and 90
mm. It shows that at 90 mm piston diameter, dynamic stiffness almost doubles in
comparison to the dynamic stiffness at 70 mm dia. By increasing piston diameter
only by 30%, dynamic stiffness can be increased by more than 100%. But, as
shown in Figure 5.15b, variation of piston diameter virtually has no effect on loss
angle beyond 15 Hz, where all three curves coincide each other. Piston diameter
has very important effect on magnitude and frequency of occurrence of peak loss
angle. Peak loss angle is an important parameter as it can be utilized to isolate
resonance response. Figure 5.15b shows that for 70 mm piston diameter, peak
damping occurs at 8 Hz which shifts «w 6 Hz with higher magnitude for larger
piston diameter (90 mim). Therefore, if the maximum damping is required at lower

frequency, piston diameter can be increased.
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Similar to previous parameter, the effect of top chamber compliance is next
examined for three different compliance, where results are only obtained for

dynamic stiffness and loss angle.

(c) Top chamber compliance: Figure 5.16a shows the influence of top chamber

compliance on the dynamic stiffness. Three different nonlinear compliances,
Cornp_A, Comp_B and Comp_C as defined in section 3.2.2.2 and shown in Figure
3.2 are used. Comp B is more compliant that Comp_A and Comp C is less
compliant that Comp_A. As the results show, the compliance of top chamber has
small effect on the dynamic stiffness up to 10 Hz. However, the dynamic stiffness
at high frequency is strongly influenced by compliance, where, an increase in the
value of compliance (more compliant) results in lower dynamic stiffness. The
effect of top chamber compliance on the loss angle as shown in Figure 5.16b is
prominent only around the peak. An increase in compliance leads to a lower peak
for loss angle characteristics.

(d) Bottom chamber compliance: Figure 5.17 presents the results for variation
in bottom chamber compliance. Two nonlinear compliances referred to as
Comp_D and Comp_E presented in section 3.2.2.2 and Figure 3.3 are used, while
Comp_A is retained for the top chamber. In this case Comp E is lower than
Comp_D. Due to the very high ccmpliance of the bottom chamber wall, its effect
on top chamber pressure is very small. The results (Figure 5.16b) also, show that a
decrease in bottom chamber compliance produces a negligible increase in dynamic
stiffness, and a small increase in the peak loss angle value. Here the shifts in
curves are primarily for the change in static characteristics as the compliance is
changed.

The model developed in this investigation includes the effect of orifice

geometry as discussed in section 3.2.2.
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(e) Opening of orifice: Three different geometry of orifice entrances and exits
are considered in this investigation, namely, i) sharp-edged, ii) well-rounded edge
and iii) projected edge. These geometry and their parameters were presented in
Table 3.1. Figure 5.18 shows the changes of coefficient of discharge due to the
change of orifice opening. It shows that orifice with projected edge has the
minimum coefficient of discharge for any Reynolds number. The orifice with
rounded edge has the maximum coefficient of discharge (minimum resistant).
Figure 5.19 presents the dynamic stiffness characteristics and loss angle of the
hydraulic damper for the different orifice opening. As the results show, the
dynamic stiffness is not highly influenced by the shape of the orifice. However,
well rounded orifice opening has the minimum resistance coefficient (k=0.05),
leading to minimum dynamic stiffness, whereas projected edge (k=0.80) develops
maximum dynamic stiffness. In the case of loss angle, changes in orifice opening
only change the frequency for occurrence of the peak value.

(f) Amplitude of excitation: To examine the influence of excitation amplitude,
the dynamic stiffness characteristic is obtained for excitation amplitudes of 1, 0.75
and 0.5 mm as shown in Figure 5.20a. As the results show, lower excitation leads
to higher dynamic stiffness for higher frequencies (>20 Hz), whereas within the
range of 4-20 Hz, dynamic stiffness decreases with decrease in amplitude.
Previous investigation such as Reference [1] shows the opposite effect i.e., higher
dynamic stiffness at lower amplitude oi excitation for all range of frequency which
is not feasible from practical point of view. Smaller amplitude of excitation leads
to low pressure development with increase in frequency, and consequently lower
damping force is developed. Lower amplitude means low orifice flow rate and less
pressure buildup. Although pressure decreases throughout the whole range of
frequency with decrease in amplitude, the reason for dynamic stiffness increase at

higher frequency results from its definition. For a particular frequency, peak

162



800
(@) (b)

Z oo
i
E J

200 i N o T N

1 5 10 20 50 100 1 5 10 20 50 100
Frequency, Hz Fregquency, Hz
Figure 5.19  Effect of orifice opening on (a) dynamic stiffness and (b) loss angle.
X;=Imm at 10 Hz; orifice dia 4.5mm; piston diameter 70mm, '
800 squared edge; "~~~ , sharped egi&e; , extended edge.
(a) (b)

E "'-_._- """" § 8 g "»‘
2 600 / 2 20 "
g 3
- / g
g §
E 400 - g 10

oo i ol i . " hundhd N N N L2 i s Akl

1 5 10 20 5 100 5 10 20 50 100

Frequency, Hz Frequency, Hz
Figure 5.20  Effect of amplitude of excitation on (a) dynamic stiffness and (b) loss

ang'le. Orifice dia 4.5mm; piston diameter 70mm. Amplitude , Imm;

-—--—--,0.75mm; , 0.50mm.

163



transmitted force divided by peak amplitude gives the dynamic stiffness. The
simulation results obtained here show that at high frequencies the decrease in
pressure for a decrease in amplitude is not proportional which leads to higher
dynamic stiffness. Lower amplitude of excitation simply shifts the loss angle curve
to the right as shown in Figure 5.20b. The peak value of loss angle is not affected

by the amplitude of excitation considered.

5.3 Performance Analysis of Hydraulic Damper

To the best knowledge of the author, performance analysis of short orifice flexible
chamber damper is not available in the literature. The objective in this section is to
carry out a detailed performance evaluation of the damper both under vibration and
shock excitations. For this, the nonlinear dainper mounted on a simple system as
shown in Figure 3.7 is used, where the hydraulic isolator with the flexible chamber
provides both stiffness and damping. Results are obtained as acceleration and
relative displacement transmissibility in the frequency domain. A parametric study
is carried out for variation of important damper parameters which include: orifice
diameter; piston diameter and top chamber compliance. The performance under
shock input is obtained both in time domain and as a function of shock severity.
The nominal parameters for the system include: sprung mass 125 kg; orifice

diameter 6 mm; length 10 mm; diameter of the piston 70 mm and Comp_A and

Comp_D compliances.

5.3.1 Performances Under Sinusoidal Excitation
Rms acceleration transmissibility for the single DOF system with nominal damper
parameters for three different amplitude of excitation is shown in Figure 5.21(a).

Corresponding rms relative displacement transmissibility is shown in Figure
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5.21(b). It is seen that around resonance frequency the acceleration transmissibility
is rather high in all cases, where higher amplitude of excitation leads to poor
performance for a range of frequency beyond resonance. For all amplitudes
considered, high frequency transmissibility shows inert to the amplitude, where
such dampers provide superior performance. At low frequency, relative
transmissibility is independent of excitation amplitude and at resonance frequency
zune lower amplitudes shows lower transmissibility. Relative transmissibility
finally reaches to unity at high frequency. Suck damper can be tuncd to give
superior performance for high frequency low amplitude vibration isolation such as
isolation of noise. The tunability of such damper can be better understood from a
parametric study that examines the influences of important parameters on the

transmissibilitv performance

5.3.1.1  Parametric Study
For the parametric study in this section, the damper parameters that are considered
include: (a) diameter of the orifice, (b) diameter of the piston; and (c) the top
chamber compliance. One parameter is varied at a time while all other held cqual
to their nominal values. Responses are obtained for 1 mm amplitude of excitation.
(a) Orifice diameter: Effect of orifice diamecter on the rms acceleration
transmissibility as well as on rms relative displacement transmissibility as a
function of frequency is shown in Figure 5.22. Four different diameters in the
range of 5to 10 mm are chosen to examine their influence when the compliance of
the chamber is fixed. As the results show, the orifice diameter, in addition to the
compliance property, has significant influence on resonance as well as high
frequencies. In general larger orifice diameter produces superior high frequency
performance. The resonance performance in this case is interesting as the peak

response first decreases and then increases as the diameter is reduced from 10to 5
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mm. The reason behind this outcome may be explained in the following manner.
As the diameter is decreased, the damping effect increases up to certain limit. For a
given compliance, when the diameter is less than a certain value (between 5 and 6
mm), enough fluid can not flow through the orifice, and a greater portion of the
fluid remains in the top chamber. The compliance of the chamber in turn receives
the fluid leading to higher dynamic stiffness. The resonance therefore, occurs at a
frequency much higher than system's natural frequency (7.9 Hz). As the diamcter
is made very large, (10 mm) the damping is again low, but in this case the
compliance of the chamber does not receive additional fluid to increase the
dynumic stiffness. Here the dynamic natural frequency is equal to the system's
natural frequency. That means top chamber is not making the system stiffer, and is
acting as a piston only. Similar observation can be made for relative displacement
transmissibility too as shown in Figure 5.22b.

(b) Liston_Diameter: The diameter of the upper element of the top chamber
which acts as a piston is varied to analyze its effect on dynamic performance. To
minimize the effect of compliance, orifice diameter is chosen as 7.5 mm. The rms
acceleration transmissibility response is shown in Figure 5.23. It shows that the
larger the piston area, the higher the damping and the better is the resonance
transmissibility. The improvement in resonance response is, however, obtained at a
significant expense of high frequency response.

(c) Top_Chamber Compliance: The influence of top chamber compliance on
the acceleration transmissibility is shown in Figure 5.24. The compliances used are
same as those presented in section 3.2.2.2 and referred to as Comp_A, Comp_B
and Comp_C. As shown in Figure 3.2, Comp_B is more compliant than Comp_A
and Comp_C is less compliant than Comp_A. This parameter has some influence

on both resonance and high frequency response. Larger top chamber compliance
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effectively reduces the damping effect throughout the frequency range leading to

higher response at resonance and lower response at high frequencies.

5.3.2  Performances Under Shock Displacement

The performance of the short orifice hydraulic damper (SDHF) under the
application of shock displacement is investigated in time domain and in shock
severity domain for different shock severity. The characteristics of the shock input
is discussed and presented in detail in section 4.5.1. The shock excitation
characteristics for different shock severity is presented in Figure 4.18. The range
for the shock severity is varied from 0.05 to 5, which is a satisfactory range to
cover all levels of shock the hydraulic damper may encounter for different
applications. As discussed in section 4.5.1, the shock severity number is a relative
term, depending both in duration of shock and natural frequency of the system.
The lower the natural frequency, the lower the shock severity number, although the
intensity of the shock remains the same. Similar to dual-phasc damper, SDHF is
also subjected to a rounded pulse shock displacement, shown in Figurc 4.18a. The
shock input is applied to the base of the one DOF system with an amplitude of 20
mm. The performance of the damper is shown in time domain in terms of
acceleration ratio, velocity ratio, displacement ratio and relative displacement
ratio. In shock severity domain the responses are taken as shock acceleration ratio,
shock velocity ratio, shock displacement ratio and shock relative displacement

ratio. These performance indices are also defined in section 4.5.1.

5.3.2.1 Time Domain Analysis
Figure 5.25 shows the acceleration ratio and velocity ratio of the one ODF system
encountered by the shock displacement with severity of magnitude 0.1, 0.5 and

1.0. The shock severity below 0.5 is considered static region because the period of
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the natural frequency is higher than the duration of the pulse. The damper
parameters are: orifice diameter 6 mm, piston diameter 75 mm.

The acceleration ratio for shock severity v = 0.1 seems to be unsatisfactory as
the ratio decreases within a cycle but it continues to oscillate for a long time (more
than one second). The acceleration for other shock severity tends to decrease
rapidly but still it makes more than three oscillations before it diminishes. The
peak acceleration ratio decreases with the increase in shock severity and duration
of acceleration tends to decrease with shock severity. This observaticn is similar to
those observed for dual-phase damper. The velocity ratio of the sprung mass
shown in Figure 5.25b exhibits highest peak for the highest shock severity (v =
1). Again the trend is same as that of a dual-phase damper. The displacement ratio
and relative displacement ratio in time domain are shown in Figure 5.25¢ and
5.25d. It is obvious from Figure 5.25c that the displacement ratio at v =0.1 and 0.5
are static one, where the effect is not significant. At v = 1.0, it takes three
oscillations before the response diminishes, which is not a good response
compared to other types of dampers. The peak relative displacement ratic increases
with the increase in shock severity as seen in Figure 5.25d. The duration of relative
displacement in terms of number of oscillation also increases for increased
severity. The shock response of this damper in general shows similar trend as that

of a dual-phase damper, but is inferior in all categories.

5.3.2.2. Performance Analysis in Shock Severity Domain

Figure 5.26 exhibits the shock acceleration ratio (SAR), shock velocity ratio
(SVR), shock displacement ratio (SDR) and relative displacement ratio (RDR) of
the short orifice hydraulic damper as a function of shock severity. The results
presented here are obtained for three different sizes of short orifice diameter. At

very low shock severity, acceleration increases with the increase in orifice
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diameter but for mid range of shock severity considered, large orifice diameter
leads to significantly better SAR performance. The SAR performance of the short
orifice damper is comparable to that of a dual-phase damper where high-low type
dual-phase provides the best performance.

The shock velocity ratio (SVR) of the damper as shown in Figure 5.26b,
increases with the increase in orifice diameter for up to a value of severity where
duration of pulse equal to the natural period of the system (static region). For
higher severity, SVR decrzases considerably as the orifice diameter is increased.

The static region is clearly visible in shock displacement response (SDR) and
shock relative displacement response (RDR) as presented in Figure 5.26¢. The
SDR is unity for severity of up to 0.4 and increases to a maximum at v = 2. Here
also larger orifice diameter makes the damper perform better. Similar performance
is observed (Figure 5.26d) for RDR response except RDR is close to zero for low
shock severity.

The results in shock severity domain clearly demonstrate that, for isolation of
shock, hydraulic damper with short orifice requires larger orifice diameter.
However, a compromise will be required as larger diameter leads to poor isolation
of vibration at resonance. Again comparison of results with dual-phasc response in
severity domain shows significantly better performance of dual-phase damper

under shock excitation.

5.4 Summary

The nonlinear model of damper developed in chapter 3 is used with nonlincar
chamber compliance and effect of orifice geometry. The damper characteristics is
evaluated in time domain at selected frequencies and for various orifice and piston
diameter. In general, increase in orifice diameter increases the orifice flow rate

leading to reduced transmitted force. Whereas incrcase in piston diameter
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increases orifice flow rate and the peak transmitted force. The characteristics
obtained in frequency domain shows identical trend for dynamic stiffness, top
chamber pressure and peak damping force. The loss angle characteristics in this
case is bell shaped with low value for low and high frequency. Such damper can,
therefore, be tuned to provide the maximum damping only near resonance. Among
all parameters varied, the effect of bottom chamber compliance and orifice
geometry had the least effect, and top chamber compliance and orifice diameter
had the most effect on the dynamic characteristics.

In general, the isolation performance of damper is found to be good for low
amplitude high frequency vibration. The orifice diameter along with top chamber
compliance plays the most important role in performance. Smaller orifice may lead
to higher damping and better resonance response until the compliance takes over,
where dynamic stiffness will increase leading to low damping and poor resonance
response.

The trend for shock isolation performance is found to be similar to that of
dual-phase dampers. Increase in shock severity leads to decrease in peak
acceleration response while the displacement and relative displacement responses
increase. Increase in orifice diameter improves shock responses in all categories
except for shock velocity ratio when severity is low. The overall performance of
short orifice damper in isolation of shock is considerably poor when compared to

that of a high-low dual-phase damper.
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CHAPTER 6

CHARACTERISTICS AND PERFORMANCE OF
LONG ORIFICE HYDRAULIC DAMPER

6.1 Introduction

A detailed nonlinear dynamic model of long orifice hydraulic damper with flexible
chamber was developed and presented in chapter 3. The model includes nonlincar
compliance and oscillation effect of the fluid within the long orifice. The model for
the long orifice damper was also extended to include a short orifice as bleeder
orifice. The objective of this section of the study is to carry out a detailed analysis
of the model by investigating the damping characteristics and performance of the
damper in isolation of vibration and shock.

The damping characteristics are evaluated by systematic simulation of the
model in time and frequency domain. A deteailed parametric study is carricd out to
examine the influences of oscillation effect, compliance and all internal variables
of the long orifice damper as well as amplitude of excitation on the time responsc
and dynamic characteristics. The performance of the damper is further evaluated
by utilizing it in a single DOF model subjected to sinusoidal as well as shock
excitation. Effects of important parameters on these performances arc also
examined.

This section finally presents the results of the extended model that includes a

short bleeder orifice with the long orifice system. Again, the dynamic damper



characteristics and performance of the damper is evaluated for a range of short
orifice parameters.

In all cases the damper characteristics are evaluated by applying sinusoidal
excitation at the top while keeping the base of the damper fixed. For performance
analysis, a mass of magnitude 125 kg is placed on the damper, while the base is
excited. The density of the hydraulic fluid is considered 980 kg/m3. The absolute
viscosity of the fluid is taken as 0.004 kg-sec/m. To avoid vacuum of the chamber
during extension stroke of the damper, 0.5 cc air is considered entrapped within
the damper which governs pressure volume relationship at ucgative pressure siage.
The procedure used in this was further explained in chapter 3. The nominal
parameters for the long orifice damper include: orifice dia 6 mm; orifice length 5
mm; piston dia 75 mm; top chamber compliance Comp_A and bottom chamber
compliance Comp_D. In all cases amplitude of excitation used is 1 mm unless

mentioned otherwise.

6.2 Characteristics of the Long Orifice Hydraulic Damper

The damper characteristics is evaluated by examining the effect of parameter on
the internal variables such as orifice flow rate, top chamber pressure as well as
damping and transmitted forces. The time responses are again obtained for a few
different frequencies. The effect of important parameters such as orifice diameter,
length and piston diameter on the time response are also examined. The
characteristics are finally obtained in terms of dynamic properties such as dynamic
stiffness and loss angle along with the chamber pressure and orifice flow rate as a
function of frequency. For each parametric study, one parameter is varied at a time

while the others are maintained at their nominal values.
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6.2.1 Time Domain Analysis
Since the model developed in this study includes the effect of fluid oscillation
within the orifice, one of the first results obtained is to examine its influence.
Figure 6.1 presents the steady state time variaticn of orifice flow rate at three
different frequencies ( 7, 10 and 20 Hz). The solid line is obtained from the
analysis with the consideration of oscillation effect. The dotted lines are for
without oscillation effect. It is clearly visible that ignorance of oscillation effect
during analytical estimation greatly overestimates the orifice flow. This
overestimation is more than 100% at higher frequency (20 Hz). Peak orifice flow
rate, with the consideration of oscillation effect, decreases with increase in
frequency whereas the flow rate increases with frequency when oscillation effect is
not considered. The orifice flow rate calculation without the eiffect of osciliation is
based on the established flow equation for a steady flow through pipe. But in
practice, the flow is highly osciliatory specially at higher frequencies. For a given
frequency, the amount of fluid flowing during forward cycle get hindered during
reverse flow due to inertia effect of the fluid along the boundary layer. Therefore,
at steady state, effective flow rate reduces and the effect is more prominent and
highly significant at higher frequencies. A comparison of !ong orifice flow rate
with that of short orifice (SDHF) presented in Figure 5.1 indicates a similarity
except that during reverse flow (bottom chamber to top chamber half cycle), flow
rate sharply reaches to maximum flow and retains as maximum flow. This
phenomenon is prominently visible at higher frequency and with consideration of
oscillation effect. The pressure difference during reverse flow, which is
responsible for orifice flow, remains constant for longer time.

Figure 6.2 shows the variation of top chamber pressure of the damper with
time at different frequencies. Result is obtained with the consideration of

oscillatc.y flow. Like SDHF, variation of top chamber pressure is highly nonlinear
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and increases with frequency. Sub-atmospheric pressure occurs during reverse
stroke at all frequencies. At 10 Hz, minimum pressure goes as low as 37.4 KPa at
the top chamber and minimum pressure at the bottom chamber is 112 KPa.
Therefore minimum pressure ratio between top and bottom chamber might be in
the range of 0.30 to 0.35. By observing the discharge coefficient curves for
cavitation considered [31], this ratio indicate that slight cavitation might occur at
high Reynolds number. This means that for a very shorter period of cycle the fluid
may contain liquid vapor mixture which disappears as soon as pressure ratio rises
above 0.35. At very low frequency and at low amplitude of excitation negative
pressure does not exist. The trend of pressure variation and magnitude of minimum
and maximum pressure correlate quite well with the results obtained
experimentally for nearly similar type of LDHF by Kim and Singh [17].

The damping force characteristic of the nominal LDHF damper in time
domain is shown in Figure 6.3. The propensity of the curve is the opposite phase
of top chamber pressure distribution with time, because top chamber pressure is
the only contributing factor for damping force. The asymmetricity of the damping
force i.e., difference in variation during forward stroke and variation during
reverse stroke exists and damping force during forward stroke increases with
frequency as shown by figure 6.3(a), (b) and (c) but the increment with frecuency
during reverse stroke does not exist.

The transmitted force-tire history of the nominal LDHF damper is shown in
Figure 6.4 for three different frequencies. These curves show the variation in the
trend of the transmitted force. At 7 Hz, variation of transmitted force is
nonsinusoidal and symmetric. But with the increase in frequency (10 Hz and 20
Hz), asymmetricity as well and nonsinusoidal nature increases. The transmitted
force versus excitation di- .lacement (Lissajous plots), at those frequencies are

plotted in Figure 6.5. Second column in the figure shows the same but without
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considering oscillation effect. The area contained within the plots shows the
amount of energy dissipated (measure of damping) per cycle. It shows that the
energy dissipated per cycle decreases with increase in frequency and at high
frequency it tends to diminish rapidly (Figure 6.5c). Again it is interesting to note
that overlooking the oscillation effect causes underestimation of energy
dissipation. At each frequency, the area is larger for the plot with consideration of
oscillation effect than that of the area without oscillation effect. That is why the
experimental energy dissipation was found higher than the analytical one obtained
by Kim and Singh [17] neglecting oscillation effect. At high frequency (20 Hz),

energy dissipation is almost 50% more in the model considering oscillation effect.

6.2.1.1  Parametric Study

The major parameters which may affect the characteristics of the LDHF dampers
substantially, include: (a) orifice diameter; (b) orifice length; and (c) piston
diameter. There are other factors such as compliance of the chambers, geometry of
the cross-section of the orifice, orifice openings, etc., which were considered for
SDHF dampers and the effect was found to be minor. This section presents steady
state time history of orifice flow rate, top chamber pressure and transmitted force
for a frequency of 10 Hz.

(a) QOrifice diameter: Figure 6.6 shows the results for the dampers with the
variation of orifice diameter. Diameters considered are 4.5 mm, 6 mm and 7.5 mm
while length is held constant and equal to 50 mm. As expected, the orifice flow
increases with the increase in diameter (Figure 6.6a), where 33% increase in
diameter produces 100% more orifice flow. It is interesting to note that changes in
orifice diameter also changes the phase difference with excitation frequency.

Larger diameter leads to greater shift in phase.
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Increase in orifice diameter leads to reduction in top chamber pressure build
up as shown in Figure 6.6b. At 4.5 mm orifice diameter, peak pressure is noted as
247.2 KPa whereas at 6 mm diameter, peak pressure is 201.5 KPa. Unlike in the
case of SDHF damper, orifice diameter does not contribute in changing sub-
atmospheric pressure to that considerable extent as shown in Figure 6.6b.

As the top chamber pressure is decreased with the increase in diameter,
transmitted force is also decreased. But the trend in decrement is different from
what is obtained for SDHF damper. Difference is prominent during forward stroke
only. The reason for this asymmetric observation might be that the creation in
vacuum in reverse stroke is more in the case of LDHF damper.

(b) Orifice length. The orifice length is varied as 50 mm, 100 mm and 150
mm, keeping diameter constant, at 6 mm. The results shown in Figure 6.7a
indicate that at 10 Hz peak orifice flow rate virtually does not change with changes
in orifice length but the phase difference occurs to a small degree. Flatness of the
peak orifice flow also decreases with increase in diameter.

Increase in orifice length however leads to increase in the peak top chamber
pressure as shown in Figure 6.7b. By increasing orifice length three times, pressure
increases only by 13% at this frequency. Transmitted force to the ground (Figure
6.7c) exhibits similar trend to that of top chamber pressure. The increase in the
transmitted force during forward stroke is 18% for a three times increase in orifice
length.

(c) Piston diameter: Piston diameter affects the characteristics of the chamber
significantly. Figure 6.8 depicts the variation of orifice flow, top chamber pressure
and transmitted force to the ground for three different values of piston diameter.
Piston diameter is considered as 70 mm (area 3850 mm? ), 80 mm (area 5025
mm?2) and 90 mm (area 6362 mm?). Figure 6.8a shows that increase in piston area

increases the orifice flow where the increase in forward stroke is significantly
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greater than the reverse stroke. For a increase in piston area by 65.3%. flow rate
during forward direction increases by 32%.

Increase in piston area increases peak value of the top chamber pressure
(Figure 6.8b) but the minimum pressure (sub-atmospheric) created during reverse
stroke is insensitive to piston diameter. For an increase in piston area by 23.4%,
top chamber peak pressure increases by 19.2%. This increase in pressure affects
the force transmitted to the ground which increases in a nonlinear fashion as the
piston diameter is increased. Figure 6.8c shows the variation of transmitted force
with the variation of piston dia in time domain and 6.8d shows the same in the
form of Lissajous plot. Figure 6.8d shows the extent of nonlinearity of the damper.
It also shows that increase in piston diameter increases energy dissipation per cycle

which means more damping is developed with increase in diameter.

6.2.2 Frequency Domain Analysis

The nominal damper characteristics in terms dynamic stiffness and loss angle (a
measure of damping) in frequency range of 1to 100 Hz is presented in Figure 6.9.
As shown in Figure 6.9a, dynamic stiffness at low frequency is low and equal (0
rubber stiffness. Starting at 4 Hz, dynamic stiffness starts to rise rapidly with
frequency and reaches maximum at around 20 Hz. The dynamic stiffness is found
to be insensitive to any further increase in frequency. In comparison to short
orifice damper, the dynamic stiffness produced by long orifice is larger and the
increase is very rapid within a short range of frequency.

The resulting loss angle characteristics for the long orifice damper is similar to
that of short orifice. For long orifice as shown in Figure 6.9b, the loss angle pcak is
comparatively sharper and larger. It is desirable that the damper produces enough
damping around resonance to minimize transmissibility and produce low damping

at high frequency. For the paraeters used, maximum loss angle occurs at 6 Hz
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which is close to system's natural frequency. Such characteristics makes it ideal for
application as isolators.

Figure 6.9c and 6.9d show the variation of peak top chamber and bottom
chamber pressures as a function of frequency. Similar to dynamic stiffness, top
chamber pressure increases rapidly as frequency is increased. There is a slight
decline in presswe, however, for frequencies greater than 20 Hz. The maximum
peak top chamber pressure produces by the nominal model is 250 KPa, around 20
Hz. Figure 6.10b shows the variation of peak bottom chamber pressure which
remains constant at 119 KPa for low frequencies and starts to fall rapidly as the
frequency is decreased.

Figure 6.9e presents the orifice flow characteristics of the damper in frequency
domain. As the frequency is increased, orifice flow increases rapidly and reaches a
maximum around resonance frequency producing high damping. Unlike SDHF,
where flow rate continues to grow with frequency (Figure 5.11), the flow rate for
LDHF again decreases for frequencies greater than 10 Hz. Oscillation ecffect

greatly contributes for such characteristics of long orifice damper.

6.2.2.1 Parametric Study
Similar to time domain analysis of damper characteristics, a parametric study is
next carried out in frequency domain. Results of dynamic characteristics arc
obtained for variation in internal parameters such as: orifice diameter; orifice
length; and piston diameter. The effect of excitation amplitude on the dynamic
characteristics is also presented.

(a) QOrifice diameter: Figure 6.10 shows the variation in dynamic stiffness and
loss angle with the variation of orifice diameter. Orifice diameters used are 4 mm,
6 mm and 8 mm with a constant length of 50 mm. As the results show, an increase

in the orifice diameter leads to a shift of the curves towards higher frequency. For
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example, at 4 mm dia, dynamic stiffness starts rising at 2 Hz and reaches
maximum at 10 Hz and peak loss angle (Figure 6.10b) occurs at 3.5 Hz. At
diameter of 8 mm, dynamic stiffness starts rising at 5 Hz and reaches maximum at
around 20 Hz and peak loss angle occurs at 9 Hz. Orifice diameter, however, has
no effect on the peak stiffness or loss angle. The orifice diameter, therefore,
appears to be a good parameter for tuning the damper characteristics according to
requirement.

The above simulation is next repeated for the model without oscillation effect,
results of which is presented in Figure 6.11. Clearly, it may lead to mislecading
results, which show that increase in orifice diameter not only changes the
frequency at which peak damping occurs but also shows increase in the amount of
damping (loss angle) with increase in orifice diameter.

(b) Orifice length: Another important parameter of a long orifice hydraulic
damper is the length of long orifice. It is a key parameter to obtain higher damping
from the same damper. Figure 6.12 shows the variation of the characteristics in
terms of dynamic stiffness and loss angle for three different values of orifice
length. Here the orifice diameter is maintained at 6 mm while the length is varied
as 50 mm, 100 mm, and 150 mm. The results show a completely different trend for
the influence of orifice length from that of the influence of orifice diameter. For
dynamic stiffness (Figure 6.12a), the major effect of orificc length is in the rate of
increase of the stiffness. Larger orifice leads to faster increase in dynamic stiff :css
and a small increase in the maximurn value reached. The peak value for the loss
angle is significantly affected by t! - length of the orifice as shown in Figure 6.12b.
Unlike the effect of orifice size where same peak loss angle is provided at different
frequency, here the peak value of loss angle increases around the systems' natural
frequency as the orifice length is increased. The effect on the frequency where

peak loss angle occur is very small. (A reduction of 1 Hz for 3 times increase in
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orifice length). Similar to orifice diameter, orifice length is a highly useful
parameter for tuning of the damper for a given application. It may be
recommended that a damper designed for a given system be evaluated for variation
of orifice diameter to length ratio to arrive at a tuned configuration.

(c) Piston diameter: Piston diameter plays an important role in the
development of pressure on dynamic stiffness as well as on the loss angle. Figure
6.13 shows the dynamic stiffness and loss angle characteristics of the damper for
the variation of piston diameter. The diameter is varied as 70 mm, 80 mm and 90
mm. It is seen that dynamic stiffness (Figure 6.13a) trend remains the same where
both static and maximum dynamic stiffness increase nonlinearly as piston diameter
is increased. It is interesting to note that higher piston area affects the dynamic
stiffness even at very low frequency. For the given parameters of the damper,
increase in piston area increases the loss angle at lower frequency with
advancement of frequency at which peak loss angle occurs (Figure 6.13b). At high
frequency, beyond 9 Hz, loss angle is practically insensitive to piston diameter.
Again, the peak value of loss angle increases nonlinearly as the piston diameter is
increased from 70 mm to 90 mm.

Since amplitude of excitation may have strong influence on the characteristics
of such nonlinear damper, the dynamic characteristics are next determined for 3
different amplitude of excitation.

(d) Effect of excitation amplitude: Figure 6.14 shows the effect of amplitude of
excitation on dynamic stiffness and loss angle of the damper. The amplitudc of
excitation is varied as 1 mm, 0.75 mm and 0.50 mm. It is seen that (Figurc 6.14a)
with decrease in amplitude, dynamic stiffness starts to rise at a higher frequency
and provides a higher maximum value. At lower amplitude of excitation, loss
angle also increases, as shown in Figure 6.14b. The peak value for loss angle and

the corresponding frequency also increase almost linearly as the amplitude of
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excitation is reduced. It is, therefore, expected that such dampers although may
provide excellent vibration isolation performance, it must be at low amplitudes.

The performance will be poor under high amplitude and under shock.

6.3 Performance Analysis of the Damper with Long Orifice

The results and analysis so far discussed, constitutes the dynamic characteristics of
the damper. This article is devoted to the performance analysis of the LDHF
damper. Literature survey shows that very little attention is paid to the
performance analysis. Most of the articles are devoted to the dynamic
characteristics only [1-10]. To find its dynamic performance, the nonlinear damper
is mounted to a single degree of freedom (DOF) system which includes a mass and
the damper. As shown in Figure 3.7, the flexible chambered damper also acts as a
spring to support the mass. The base of the damper is excited by sinusoidal input
and shock input. The response is measured by the absolute motion (absolute
transmissibility) and relative motion (relative transmissibility) of the mass for the
case of sinusoidal input. For the shock displacement, responses are measured as
acceleration ratio, velocity ratio, displacement ratio and relative displacement ratio
in time domain. Shock responses are also evaluated in the shock scverity domain
in terms of common performance indices as used in the previous cases.

The nominal parameters used include: a mass of 125 Kg; orifice diameter 9
mm,; orifice length 200 mm; piston diameter 70 mm; Comp_A for the top chamber
and Comp_B for the bottom chamber. The results in case of parametric variation
are obtained for variation in important damper parameters namely: orifice length,

orifice diameter and piston diameter.
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6.3.1 Performance under Sinusoidal Excitation

Figure 6.15 shows the performance curves in terms of acceleration and relative
displacement transmissibility for the one DOF system. These results are obtained
for three different amplitude of excitations ( 1 mm, 0.75 mm and 0.5 mm). Figure
6.15a shows the rms acceleration transmissibility of the sprung mass for the three
amplitudes. As the results show, for all cases of amplitude of excitation, two peaks
in the transmissibility curves are observed. The first peak is due to system's natural
frequency and second peak is due to inertia of the mass of fluid coentzined within
the long orifice (mass 12.5 gm). Excellent acceleration transmissibility which is
around 2 is observed for the first peak although transmissibility corresponding to
second peak may be significantly higher for higher amplitude of excitation. The
second peak, which is highly sensitive to the amplitude of excitation, is found to be
below 2 for an excitation of 0.5 mm. At higher frequency, amplitude of excitation
does not affect the transmissibility to any significant extent where response
declines very sharply.

Relative displacement transmissibility is equally important as it dictates the
space required to accommodate relative motion. The results for the relative
displacement transmissibility presented in Figure 6.15b, show identical trend as
that of acceleration as the excitation amplitude is varied. Here the first peak
corresponding to the system resonance is highly satisfactory but as shown it leads
to a significantly higher second peak. The performance can be considered superior
for low amplitude of excitation.

The result when compared to that of short orifice damper presented in Figure
5.21 clearly indicates that a much superior resonance performance can be obtained
utilizing a long orifice system with a wide deviation of high frequency

performance.
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6.3.1.1 Parametric Study

Similar to section 6.2.1.1, a parametric study is next carried out to examine the
influence of important damper parameters on the dynamic performance. These
parameters include: orifice length, orifice diameter and piston diameter. Amplitude
of excitation is taken as 0.75 mm which is quite reasonable for the application of
flexible chambered damper. As found in the previous section, such dampers are
not practical for isolation of high amplitude vibration.

(a) Orifice length: Effect of orifice length on rms acceleration transmissibility
and rms relative displacement transmissibility as a function of frequency is shown
in Figure 6.16. The orifice lengths used are: 100 mm; 150 mm and 200 mm.
Orifice diameter and piston diameter are kept at their nominal value as 9 mm and
70 mrn, respectively. The results presented show that for the orifice diameter used,
the 100 mm length for orifice produces the most satisfactory result. The results
further show that in the region of first peak the response improves with orifice
length and the vice versa is true for the region of second peak.

Figure 6.16b shows corresponding relative displacement transmissibility for
the variation of orifice length. The trend in the response for changes in orifice
length is identical to that of acceleration transmissibility. This trend may be
explained from the loss angle characteristics of the damper shown in Figure 6.12.
Due to sharp peak in loss angle the resonance is isolated very well in all cases.
However, due to the sharp peak the loss angle around 12 Hz (fluid resonance) is
significantly lower than the peak. As shown in Figure 6.12, the loss angle at 12 Hz
is further reduced for longer length of orifice.

(b)_Orifice diameter: Figure 6.17 shows the performance of the nominal
damper for different values of orifice diameter. Retaining the orifice length at
intermediate value (150 mm), orifice diameter is varied as 7 mm, 8 mm, 9 mm and

10 mm. It is interesting to observe that if the orifice diameter is increased,
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transmissibility around first resonance area is increased with a great reduction in
the transmissibility around second resonance frequency. As for example, at 7 mm
orifice dia, transmissibility at second resonance is 6 whereas at 10 mm dia it goes
down to 1.47. At orifice diameter of 9 mm, both the transmissibility peaks are at
the same level (dotted line), which is an optimal performance. Similar trend is
again observed for relative displacement transmissibility shown in Figure 6.17b. In
this case, 10 mm orifice produces the optimal performance.

Similar to previous section, this opposite trend can be explained from the loss
angle characteristics presented in Figure 6.12. As shown, the peak loss angle shifts
to higher frequency as orifice diameter is increased. For a diameter of 10 mm, the
peak loss angle will be around 12 Hz which in turn will provide significantly lower
damping at the first resonance frequency. This parameter should be used to tune
the damper such that the peak loss angle occur at a frequency between the two
resonance.

(c) Piston diameter: The final parameter examined is the influence of piston
diameter on the frequency response of the system. For this, the nominal system
parameters with an orifice diameter of 9 mm. and iength of 100 mm is used as it
was proven to perform best under the given excitation. As it was shown in Figure
6.13, an increase in piston diameter leads to higher dynamic stiffness and loss
angle. The increase in loss angle is, however, only for frequencies less than 10 Hz.
This trend for change in piston diameter is now reflected on the acceleration and
relative displacement transmissibility shown in Figure 6.18. These results show
that piston diameter has infiuence on the response throughout the frequency range.
As the piston diameter is increased, the increase in dynamic stiffness effectively
moves the response curves to the right. And in doing so, the effective loss angle

at the resonance is reduced leadingto higher peak resonance. Near the first
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resonance, however, (frequency < 10 Hz, Figure 6.13) the damping increases with

increase in piston diameter leading to better response.

6.3.2  Performances Under Shock Displacement

The performance of the LDHF damper under the application of shock
displacement is analyzed in time domain for different shock severity as well as
peak response in shock severity dornain. The shock displacement input and the
performance indices are same as those used for dual-phase and short orifice
dampers. The details for the inputs and performance indices are presented in
section 4.4.1 and 4.4.2, respectively. The nominal parameters for the damper
include: orifice diameter, 8 mm; orifice length, 100 mm; piston diameter, 75 mm.
The performance is evaluated for shock severity in the range of 0.05 to 1.0. The
shock displacement applied in all cases is a rounded pulse input of amplitude 20

mm.

6.3.2.1 Time Domain Analysis

The acceleration ratio, velocity ratio, displacement ratio and relative displacement
ratio for the sprung mass of the single DOF system under rounded pulse
displacement are shown in Figure 6.19. The results are obtained for four different
shock severity v= 0.1, 0.2, 0.5 and 1.0. As the results inaicate, shock severity
below 0.5 is basically the static region which leads to non-oscillating motion. A
comparison of response for shock severity of 0.5 and 1.0 indicate that the peak
response in all cases increases with severity except for acceleration which show a
decrease. A comparison of these results with those of short orifice in Figure 5.25
indicates that the peak response for long orifice is as bad as that of short orifice.

Furthermore, it takes longer and more cycle to subside.
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6.3.2.2  Shock Severity Domain Analysis

Figure 6.20 shows the shock acceleration ratio (SAR) and shock velocity ratio
(SVR) for the long orifice hydraulic damper subjected to shock severity in the
range of 0.05 to 5. These results are obtained for orifice diameter 6 mm, 7 mm and
8 mm. The response in shock severity domain is found very similar to those of
short orifices presented in Figure 5.26 with higher magnitudes for long orifice.
These results (Figure 6.20) further show similar influence of orifice diameter
where the response increases at low severity and decreases at high severity as the
orifice diameter is increased. In the case of long orifice the influence is, however,
significantly less than that of short orifice.

The response in terms of shock displacement and shock relative displacement
also presented in Figure 6.20 again indicates very similar response as that of short
orifice damper both in magnitude and trend. Again short orifice damper (Figure
5.26) showed potential for improvement via large orifice diameter which is not
present in the case of long orifice.

The shock severity domain analysis was also carried out for variation in orifice
length and piston diameter. These results not presented here reconfirm above
findings which indicate a lack of potential for long oritice dampers in isolation of

shock.

6.4 Characteristics of the LSDHF Damper

Due to conflicting performance of long orifice damper in isolation of low
amplitude vibration and shock, the model is extended to include a combination of
long and short orifice referred to as LSDHF damper. The models and its equations
are presented in chapter 3. To the best knowledge of the author, characteristics or
performance of such LSDHF is not available in the literature. Some characteristics

of similar concept known as hydraulic damper with decoupler is available in the
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literature [4,16]. A decoupler is a short orifice with a valve floating into the
openings of the orifice with some predetermined displacement. The key difference
between long and short orifice damper, and decoupler damper is that the decoupler
orifice only works at lower amplitude of excitation. The objective of this section is
to establish the dynamic characteristics of the LSDHF damper which can be
readily compared with the other systems studied in this investigation. The damper
characteristics for LSDHF are evaluated in terms of orifice flow through both long
and short orifices, dynamic stiffness and loss angle. The parameters for long
orifice are: length of long orifice 150 mm, diameter 7 mm, piston diameter 75 mm.
The orifice diameter of the short orifice is varied as 0.0 mm (without short orifice),
3 mm, 4 mm and 5 mm to see its effect on the characteristics. The amplitude of
excitation is taken as 1 mm, 2.5 mm and 5 mm. The rationale in selecting larger
amplitude is that the short orifice is added in attempts to use such damper for
larger amplitude of excitation.

Figure 6.21 shows the orifice flow through long orifice (Figure 6.21a) and
short orifice (Figure 6.21b) under the excitation of 1 mm amplitude. The solid line
in Figure 6.21a represents flow through long orifice in absence of short orifice.
When the short orifice of diameter 3 mm is introduced, orifice flow reduces which
at high frequency merges with the solid line. The decrease in long orifice flow
continues as short orifice diameter increases. On the other hand, short orifice flow
increases with the increase in orifice diameter throughout the whole range of
frequency. But for each orifice diameter, the short orifice flow rcaches a maximum
value and maintains it throughout the high frequency range. At high frequency, the
orifice flow for 4 mm orifice is almost twice the orifice flow for 3 mm crifice. At 5
mm short orifice diameter, the short orifice flow exceeds long orifice flow
although the long orifice diameter (7 mm) is greater than the short Jrifice dia. This

results from the oscillation effect of the fluid in the long orifice.
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The results of the same simulation repeated for 5 mm excitation is shown in
Figure 6.22. The same trend of orifice flow like Figure 6.21 is observed. But the
maximum long orifice flow occurs at lower frequency for high amplitude of
excitation. Flow rate through both the orifices is much higher than the flow for low
amplitude excitation. Like long orifice flow, short orifice flow also reaches its
maximum limit at a lower frequency and retains that maximum value for higher
frequencies.

Figure 6.23a shows the characteristics of the LSDHF damper in terms of
dynamic stiffness and loss angle for an excitation of 1 mm. Out of four curves in
each figure, the solid line represents the characteristics for long orifice without the
short orifice. Other curves represent the characteristics when bleeder orifice of
diameter of 3 mm, 4 mm and 5 mm are included. Figure 6.23b and Figure 6.23¢
represent the same characteristics but at higher amplitude of excitation, 2.5 mm
and 5 mm respectively. It is observed from the figures that addition of bleeder
orifice actually shifts the shaip rise in dynamic stiffness to a higher frequency.
Inclusion of short orifice ¢Iso shifts the frequency at which peak damping occurs
as shown in Figure 6.23d. For example, peak damping occurs at 6 Hz without the
orifice which shifts to 8 Hz when a short orifice of 3 mm is added. For orifice dia
of 4 mm, peak damping occurs at 9.5 Hz and for 5 mm orifice dia the frequency is
at 12 Hz. The magnitude of peak damping reduces with increasing orifice
diameter. This also leads to higher damping value at high frequency, which may
effect the high frequency performance.

As shown in Figure 6.23b and 6.23c, increase in amplitude of excitation
causes the rise in aynamic stiffness to occur at a lower frequency and the peak
value of dynamic stiffness decreases as the excitation is increased. The amplitude
of excitation also has effect on loss angle developed by the damper. The higher the

amplitude, the lower the frequency at which peak loss angle occurs. And the
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addition of short orifice and an increase in its diameter leads to a shifts towards
higher frequency. Amplitude of excitation also has significant influence on the
peak value of loss angle which reduces significantly as the amplitude is increased.

Figure 6.24 shows the comparison of LDHF damper and LSDHF dampers in
terms of transmitted force versus excitation displacement for the three amplitude
of excitation. The two columns shows the Lissajous' plot at two different
frequencies; one at 7 Hz, close to first resonance, the other at 12 Hz, near second
resonance. The solid line represents plot for LDHF damper. The broken lines are
for LSDHF with gradual increase in orifice diameter; 3 mm, 4 mm and 5 mm. As
the area within the boundary of Lissajous plot represents the amount of cnergy
dissipated ':y the damper, it is observed that at 7 Hz and 1 mm amplitude,
inclusion of short orifice reduces the damping. At 12 Hz, amount of damping
remains the same where the asymmetricity is reduced. It is, however, obvious from
other figures that the inclusion of bleeder orifices increase the damping and the
amount of damping increase with the increase of bleeder orifice diameter. Thus it
appears that by adding a bleeder orifice, the long orifice damper energy dissipation
can be increased in order to use such damper for isolation of high amplitude
vibration.

The potential of such damper in isolation of high amplitude vibration as well

as shock is next examined.

6.5 Performance Analysis of the Damper

The LSDHF damper applied to a one DOF system is simulated to observe its
performances in terms of acceleration transmissibility and relative displacement
transmissibility when subjected to sinusoidal excitation. The results arc obtained
for variation of bleeder orifice diameter as well as amplitude of excitation. The

mass of the system is assumed 125 Kg with static stiffness of the chamber material
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as 270 N/mm. The performance is finally evaluated for shock response in shock
severity domain following the same steps as those presented for long orifice in

section 6.3.2.

6.5.1 Performance Under Sinusoidal Excitation

Figure 6.25a shows the acceleration transmissibility of the one DOF system with a
LSHDF damper. Long orifice length is taken as 150 mm with orifice dia 7 mm.
Amplitude of excitation is 0.75 mm. The solid curve represents the transmissibility
of the system without the short orifice. It is observed that sy stem's response at first
resonance is excellent but detrimental at second resonance which goes as high as
6.2. However, inclusion of short bleeder orifice can improve the performance
dramatically with the minor loss at first resonance. At 3 mm orifice dia,
transmissibility at second resonance greatly reduces to below 3 with minor
increase at first response. At 4 mm orifice dia both peak transmissibility remains
below 2. At 5 mm orifice dia second peaks vanishes but results in first peak
transmissibility to reach above 2.

Inclusion of bleeder orifice increases the relative displacement transmissibility
(Figure 6.25b) around first resonance but does not exceed a transmissibility of 2.
Around frequency of second peak, relative transmissibility decreases with the
increase in orifice diameter. These results clearly show that such dampers can be
tuned to provide excellent isolation performance through the frequency range.

Figure 6.26 shows the same performance of the system but at excitation of 2.5
mm to demonstrate the better response of LSDHF damper at high excitation. It is
found that, without the orifice, first peak is absent and the second peak goes up to
12 which reduces to 3.5 with the addition of a short orifice of diameter of 5 mm.
Reduction in relative displacement transmissibility is also observed in a similar

fashion.
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It is thus concluded that the LDHF damper with the inclusion of bleeder
orifice improves the system's performance and it can accommodate higher

amplitude of excitation without affecting the overall performances.

6.5.2 Performances Under Shock Displacement

The flexible chambered damper currently investigated includes a short orifice in
addition to the long orifice. This will certainly help to subside the rapid pressure
buildup in the chamber, and lead to improved shock response. Similar to long
orifice damper, the LSDHF damper is also excited with a rounded pulse
displacement of amplitude 20 mm and the response is measured at the sprung
mass. The shock acceleration response (SAR), shock velocity response (SVR),
shock displacement response (SDR) and relative displacement response (RDR) are
evaluated for a range of shock severity.

Figure 6.27 shows the SAR, SVR, SDR and RDR characteristics of the
LSDHF damper having long orifice of 100 mm length and short orifice diameter 4
mm. The long orifice diameter is varied as 6 mm, 7 mm and 8 mm. Compared to
Figure 6.20 which is for LDHF damper, the SAR characteristics is much improved
for all range of shock severity except for very low shock severity. It is already
established that very low severity input acts like a static load, therefore, the
inclusion of a short orifice does improve shock responses. The increase in long
orifice diameter improves the SAR even more for all range of shock severity.

The SVR characteristics of the LSDHF damper as shown in Figure 6.27b.
Unlike SAR, the SVR characteristics is mostly similar to that of a LDHF danper.
At low shock severity SVR is slightly higher and at high severity SVR is slightly
better than that of a long orifice damper. The increase in long orifice diameter »f
the damper marginally improves SVR performance for the shock inputs higher

than 0.50.
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Shock displacement response and shock relative displacement responses of the
damper are shown in Figure 6.27c and 6.27d. The responses are mostly similar to
that of a long orifice damper except the peak responses are lower. Again increase
in long orifice diameter ameliorates the shock response.. The diameter of short
orifice may have influence on the shock performance which is examined next.

Effect of short orifice diameter: Figure 6.28 shows the shock performances of
LSDHF daraper in terms of SAR and SVR with the variation of short orifice
diameter. The damper parameters are: long orifice length 100 mm, diameter 8 mm.
The short orifice diameicr is varied as 3 mm, 4.5 mm and 6 mm. It is observed that
the increase in short orifice diameter significantly improves the SAR
characteristics of the damper in the dynamic range. The larger the orifice diameter,
the better the shock responses. SVR characteristics in dynamic range also
improves with the increase in short orifice diameter. In both cases, again, SAR and
SVR increase for very low shock severity.

It is evident that addition of a short orifice with a long orifice and an increase
in the diameter of the short orifice leads to better dynamic response in terms of
second peak and shock response. The design of such damper should, however, also

consider the increase in first peak which results from the larger diameter of the

short orifice.

6.6 Conclusion

This chapter presented a detailed analysis of long orifice hydraulic damper with
flexible chambers. The nonlinear model that includes fluid oscillation effect is
used to study its dynamic characteristics and response under vibration and shock.
The results clearly showed that negligence of oscillation effect grossly
overestimates the orifice flow. Furthermore, osciiiation effect 1eads to a reduction

in flow rate with higher frequencies which can not be predicted otherwise. In
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comparison to short orifice, long orifice produces a rapid and large increase in
dynamic stiffness with increasing frequency. Long orifice alsc produces larger and
sharper loss angle peak. The parametric study shows both orifice diameter and
length have significant influence on the dynamic characteristics mainly in terms of
peak loss angle and frequency of its occurrence. A ratio of diameter to length of
orifice will make a good parameter for tuning of such damper.

The performance of long orifice damper exhibits two distinct peaks: one for
system resonance, and one for fluid resonance. The results show that such damper
can be tuned to provide superior isolation performance near resonance compared
to a short orifice damper. However, the second peak tends to deteriorate rapidly for
larger amplitude of excitation. The overall shock response for long orifice damper
is also found inferior to that of short orifice damper.

In attempts to improve, the extended model of long orifice damper which
include a short orifice is also analyzed in this chapter. The results show that such
addition and tuned parameter can produce satisfactory performance at relatively
higher amplitude of excitation. Further, the shock performance in the dynamic
range can be improved significantly by introducing large diameter short orifice.
Short orifice of large diameter in this case is found to improve both shock response
and transmissibility of second peak. A compromise is, however, required as it

leads to an increase in the first resonance peak.
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CHAPTER 7

PERFORMANCE OF LONG ORIFICE DAMPER
WITH SPRING LOADED VALVE

7.1 Introduction

The performance of hydraulic dampers with flexible chaiabers and short orifice
was presented in chapter 5. Chapter 6 described the performance for long orifice
with and without bleeder orifice. As it was found, these dampers although perform
well for low amplitudes, have severe limitation in application for high amplitude
or in shock. Comparatively, long orifice provides better performance in a low
frequency range, hence a fixed bleeder orifice was added in attempts to improve
performance as discussed in chapter 6. As found, a constant bleeder orifice tends
to reduce damping at system's resonance as it is active all the time This could be
overcome by introducing spring loaded valve for the orifices.

A proposed model for this concept of hydraulic damper with flexible chamber,
long orifice and orifices with spring loaded valve (LDHVF) was developed as
presented in chapter 3. The LDHVF damper includes a long orifice, two forward
short orifices and a reverse bleeder orifice. All orifices are equipped with spring
loaded valves possessing variable spring constant. The objective of this chapter is
to carry out and present a detailed analysis of this damper both in terms of
dynamic characteristics and performance under vibration and shock. Similar steps

as those of chapters 4, 5 and 6 are followed.



The following section presents a thorough investigation of damper
characteristics in time domain to study the influence of spring loaded valve on the
internal variables of the damper. This section further presents the dynamic
characteristics in frequency domain. In all cases an amplitude of excitation equal
to 5 mm is used, which is considered large for such dampers. The evaluation of
characteristics is followed by a performance analysis under large amplitude

vibration and shock.

7.2 Characteristics of the Damper

The characteristics of the LDHVF damper are evaluated in terms of orifice flow
through all four orifices, top chamber pressure and transmitted force. The motion
of the disk of the valve with time is also observed. The opening and the closing of
the valve governs the orifice flow through orifice 1, 2 and 3. Results are presented
in time domain, at steady state. In frequency domain, characteristics of the damper
is observed in terms of dynamic stiffness and loss angle. Parametric study is also
carried out to study the effects of short orifice diameter. The spring constants for
valves 1, 2 and 3 which determine the preset pressure limit for valves, are also
varied to see their effect on the performance. The nominal parameters used are
same as those presented for long orifice in chapter 6. Here the long orifice
parameters include length of 150 mm and diameter of 8 mm which are kept

constant.

7.2.1  Time Domain Analysis

As the LDHVF has a number of orifices and some of which work at a preset
pressure, it is necessary to study the characteristics of the damper in time domain.
The time domain results are recorded after steady state has been reached. The

orifice flow through long orifice, short orifices, bleeder orifice and transmitted
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force as well as top chamber pressure are studied in detail. The motion of the

spring loaded valves are also observed.

7.2.1.1  Orifice flow

Figure 7.1 shows the steady state long orifice flow and bleeder orifice flow (acts
only during reverse stroke) in time domain for an excitation amplitude of 5 mm at
10 Hz. Results are plotted for three different diameters for both of short orifices,
taken as 4 mm, 6 mm and 8 mm to observe its effect on long orifice flow and
bleeder orifice flow. Bleeder orifice dia is taken as 6 mm. where the preset
pressure for valve 1 is taken as 50 KPa and for valve 2, it is 100 KPa. It is scen
from the Figure 7.1a that inclusion of other orifices creates a major change in long
orifice flow. Orifice flow during reverse stroke (bleeder orifice open) becomes flat
after reaching certain flow rate level. This is due to the fact that part of the fluid
easily passes through bleeder orifice as there is no fluid intertance. Bleeder orifice
dia is constant, therefore, no changes in the long orifice flow is observed during
reverse stroke.

(a) Effect of short orifice diameter : During forward stroke, long orifice is
active and two short orifices at different operating pressure are active as well. As
expected, increase in short orifice area decreases the long orifice flow as seen by
the Figure 7.1a. For the same simulation, Figure 7.2a represents the flow for
orifice 1 which opens and closes at 50 KPa and Figure 7.2b for orificc 2 which
operates at 100 KPa. These results show the trend for short orifice flow for the
three different diameters used. As the duration of 50 KPa pressure state in the
damper is more than the duration of 100 KPa, orifice 1 remains opens longer than
orifice 2. Consequently, for the same diameter total flow through orifice 1 is more
than orifice 2. It is also observed that the higher the orifice diameter, the shorter

the duration, specially for the high pressure orifice (orifice 2).
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(b) Effect of bleeder orifice diameter: Keeping all other parameters constant,

the bleeder orifice diameter is next varied as 6 mm, 8 mm and 10 mm. These
results not presented to avoid duplication exhibit similar trend as that shown in
Figure 7.1 for 6 mm. These results only indicate that as bleeder orifice diameter is
increased the bleeder orifice flow increases where the duration of flow is reduced.
At the same time the duration of reverse flow through long orifice is reduced for
the same peak rate of flow. It has negligible influence on short orifice flow as well

as forward flow of long orifice.

7.2.1.2 Top Chamber Pressure and Transmitted Force

For the same simulation presented in Figure 7.1 and 7.2, this section presents the
steady state time history of top chamber pressure and transmitted force. Figure 7.3
shows these results for three values of orifice diameter when bleeder orifice
diameter is 6 mm. The solid line represents short orifice flow for orifice diameter
of 4 mm. The pressure rise would have been higher, had there been no orifices
except the long orifice.

(a) Effect of short orifice diameter : The result (Figure 7.3a) clearly
demonstrates that for orifice diameter of 6 mm (dashed line) and 8 mm (dotted
line), the opening of the valve causes rapid decrease of the top chamber pressure.
For larger diameter, the pressure falls during forward stroke and remains just
above 200 KPa pricr to start of reverse stroke, during which the top chamber
pressure falls near to zero. Since the pressure ratio falls below 0.35, there is
cavitation during this part of the cycle for high amplitudes. The simulation,
accordingly utilizes reduced value of discharge coefficient {31]in the cavitation
period. The decrease in pressure with increase in orifice area is also reflected in the
negative part of the transmitted force (Figure 7.3b). Transmitted force decreases to

almost 50% for the change in orifice diameter from 4 mm to 6 mm. At 8 mm
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Figure 7.3  Top chamber pressure and transmitted force (in time domain) of the
LDVHF damper. Valve short orifice diameter , 4mm ;-----~ , 6mm;
, 8mm; (X,= 5mm, L =150mm, D =8mm, D_,=6mm).
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Figure 7.4 Top chamber pressure and transmitted force (in time domain) of the
LDVHF damper. Valve short orifice diameter
, 8mm; (X,= 5mm, L =150mm, D _=8mm, D, =8mm).
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orifice diameter, transmitted force is even lower with the occurrence of another
peak. For each change in orifice diameter, bleeder orifice diameter is kept
constant, therefore, the positive part of the transmitted force remains unchanged.
(b) Effect of bleeder orifice diameter: The simulation result presented in
Figure 7.3 for bleeder orifice of 6 mm is repeated for bleeder orifice of 8 mm and
10 mm as shown in Figure 7.4 and 7.5 respectively. These results show t!iut the
bleeder orifice diameter has minor effect on the peak pressure for short orifice
diameter of 4 mm. But with the increase in bleeder orifice and short orifice
diameter, top chamber pressure reduces. It is also observed that increase in bleeder
diameter increases the high pressure state per cycle and decreases the low pressure
state (vacuum) gradually. This change in top chamber pressure affects the force
transmitted by the damper. At 4 mm valve orifice diameter, no appreciable change
is noticed. But for valve orifice diameter 6 mm or higher, transmitted force

decreases.

7.2.1.3  Motion of the Valve

The results obtained in terms of the valve motion for the three values of orifice
diameter are shown in Figure 7.6. It shows the displacement of the valve for orifice
1 (low pressure, Figure 7.6a) and for ¢ -ice 2 (high pressure, Figure 7.6b)
obtained with the variation of orifice diameter as 4 mm, 6 mm and 8 mm. The
corresponding maximum valve displacement for orifices would be 1 mm, 1.5 mm
and 2 mm respectively. As the results show, the valves for all diameters of orifice
first open partially prior to opening to its maximum limit. But when the pressure
drops they close instantaneously. For valve 1, with the increase in diameter,
duration of 'full open' state of the valve decreases to some extent. Larger orifice
reduces the pressure of the damper, so the valve closes early. The high pressure

valve (orifice 2) stays 'full open' for even shorter period as seen in Figure 7.6b.
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Here the duraiion of open state also reduces sharply for increase in orifice

diameter.

7.2.2 Frequency Domain Analysis

The characteristics of the LDHVF damper, so far discussed, is represented in time
domain only. In this article, the behavior of the damper is presented in frequency
domain for a range of 1 to 100 Hz. Only the dynamic stiffness and loss anglc are
chosen as the properties of the damper to analyze frequency domain
characteristics. The damper characteristics are determined for different valve
orifice and bleeder orifice diameters for a 5 mm excitation applied across the
damper. The stiffness of the spring of the valve is also varied to see its effect.

Figure 7.7 shows the dynamic stiffness and loss angle of the LDHVF damper
as a function of frequency for three different valve orifice diameters. The orifice
diameters chosen are 4 mm, 6 mm and 8 mm while bleeder orifice diameter is held
at 6 mm. It is found from Figure 7.7a that for all orifice diameters, dynamic
stiffness is constant for up to 5 Hz (rubber stiffness) and starts to rise with the
increase in frequency. Increase in the valve orifice diameter to 6 mm decreases the
dynamic stiffness throughout the dynamic frequency range. The reverse effect is
somewhat similar to the effect of variation of piston diameter for long orifice
damper as shown in Figure 6.13. For 8 mm valve orifice diameter, the dynamic
stiffness decreases even further.

The corresponding loss angle property of the damper is shown in Figure 7.7b.
Peak loss angle is observed at 7 Hz for 4 mm orifice. Increase in valve orifice
diameter decreases the peak value of loss angle with its occurrence at higher
frequency. But at high frequency, beyond 10 Hz, loss angle increases slightly with

increase in orifice diameter. In the casz of a long orifice damper, increase in piston
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diameter increases the peak value of loss angle with its occurrence at lower
frequency.

The results of above simulation are repeated for blceder orifice diameter of 8
mm and 10 mm are presented in Figures 7 3 and 7.9. As the results indicate,
bleeder orifice diameter has significant influence on the dynamic characteristics
for frequencies beyond 10 Hz. The variation in chamoer pressure observed in time
domain (Figure 7.3-7.5) was insignificant as the curves were plotted for 10 Hz
only. Increase in bleeder orifice diameter increases the dynamic stiffness and loss
angle of the damper, whereas increase in short orifice diameter reduces the
dynamic characteristicc of the damper. The larger bleeder orifice diameter
increases the top chamber pressure creating higher dynamic stiffness. For a 4 mm
orifice, increase in bleeder orifice from 6 mm to 8 mus leads to a increase in
maximum dynamic stiffness from 700 N/mm to over 800 N/mm. Similarly a 10
mm bleeder orifice produces stiffness of over 900 N/mm. The trend ii change in
dynamic stiffness for increase in short orifice size remains same for all sizes of
bleeder orifice.

Peak loss angle and corresponding (requency as shown in this figure increases
as bleeder orifice dic.meter is increased. For larger bleeder orifice size, the effect of
orifice diameter on the peak reduces to some extent. This also leads to significant

increase in the loss angle for higher frequencies.

7.3 Performance Analysis of the Damper

The performance analysis of the LDHVF damper is carried out by implementing
the damper to a one DOF system. Similar to the previous studies, the sprung mass
is chosen ¢< 125 Kg. The base of the system is excited sinus~idally for the range of
frequency of 1 to 100 Hz with an amplitude of excitation 2.5 mm. This excitation,

instead of 5 mm, is used due to the fact that such hydraulic damper can not provide
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satisfactory response for such high amplitude even with the valve orifices
proposed. For a simple hydraulic damper, however, 2.5 mm is considered large
amplitude. The response of the system is measured at the unsprung mass. The
damper parameters chosen are: long orifice length 150 mm, long orifice diameter 8
mm, piston diameter 75 mm, bleeder orifice diameter is varied from 5 mm to 7
mm. Orifice valve diameter is varied as 4 mm, 6 mm and 8 mm. Response
characteristics are determined in terms of acceleration transmissibility and relative

displacement transmissibility.

7.3.1 Performances Under Sinusoidal Excitation
Figure 7.10 shows the transmissibility performances of the LDVHF damper for
three different valve orifice diameters, 4 mm, 6 mm and 8 mm. It was also found
in chapter 6 that long orifice hydraulic dampers with or without short orifice or
decoupler normally exhibits two peaks. One frequency occurs around 7 Hz and the
other around 12-15 Hz, depending on the parameter of the damper. For the results
obtained here, it is observed in the Figure 7.10 that for valve orifice diameter 4
mm, peak acceleration transmissibility due to first resonance disappears duc to the
presence of spring loaded valves. The damper shows the transmissibility for
second resonance only slightly above 3. Still, maximum relative displacement dczs
not exceed 4 as shown is Figure 7.10b. For valve orifice diameter 6 mm, only one
resonance frequency is visible which is around 9.5 Hz, peak transmissibility at that
frequency is below 3. High frequency transmissibility beyond 10 Hz is better
compared to the damper of valve orifice diameter 4 mm. But the damper does not
perform satisfactorily for a valve orifice diameter of 8 mm, where transmissibility
goes very high at the natural frequency.

For a LDHVF damper with a bleeder orifice of 8 mm, transmissibility cusves

are shown in Figure 7.11. For all valve orifice diameters, both the acceleration and
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relative displacement transmissibilities response are much better than that of the
damper with the bleeder orifice of 5 mm. At valve orifice diameter of 4 mm, first
resonance transmissibility is well below 2 and the second resonance
transmissibility is also reduced without any increase in high frequency
transmissibility. For valve orifice diameter of 6 mm, transmissibility for the whole
range of frequency is much improved, at resonance it is just above 2 and the high
frequency transmissibility is also satisfactory. The corresponding relative
displacement transmissibility (Figure 7.11b) also show minimum peak response.
Acceleration transmissibility for the damper with bleeder orifice diameter of 7 mm
is shown in Figure 7.12a. The corresponding relative displacement transmissibility
is shown in Figure 7.12b. As these results show, this combination of parameters
with 6 mm valve orifice can produce superior response. Any further increase in
bleeder orifice diameter will lead to larger peak at 7 Hz. These results clearly
demonstrate that a combination damper such as long orifice with spring loaded
orifices can be tuned effectively to provide highly satisfactory isolation
performance for amplitudes as large as 3 mm.

Figure 7.13 shows a comparative performance characteristics for all the four
hydraulic dampers, so far investigated, in terms of acceleration transmissibility and
relative displacement transmissibility for an amplitude of excitation of 1 mm.
Results are taken for the damper parameters which are not optimal but produce
reasonably good performance. The parameters are: for SDHF, orifice diameter 8
mm; LDHF, long orifice dia 9 mm and length 200 mm; LSDHF, long orifice dia 7
mm, length 150 mm and short orifice dia 3 mm; LDHVF, long orifice dia 7 mm,
length 150 mm, short orifice dia 4 mm and bleeder orifice dia 7 mm. It is found
from the Figure 7.13a that SDHF is very satisfactory for high frequency vibration
isolation but at resonance, performance is very poor. Overall performance of

LSDHF is better compared to LDHF damper, both are excellent compared to
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SDHF around resonance frequency. The LDHVF damper for the amplitude of
excitation of 1 mm is able to eliminate the second resonance without affecting the
first resonance transmissibility. However, there is a minor increase in high
frequency transmissibility compared to LDHF or LSDHF damper. Relative
displacement transmissibility also minimum around resonance frequency
compared to that of other dampers as shown in Figure 7.13b. The LDHVF damper
is, thus, superior compared to all other DHF damper and is applicable for all range
of frequency.

Similar conclusion may be drawn for the dampers when subjected to the
excitation amplitude of 2.5 mm as shown in Figure 7.14. At this amplitude, the
LDHF damper is mostly undesirable. Again the performance of the LDHVF

damper is satisfactory although there is a rise in relative displacement at high

frequency.

7.3.2  Performances Under Shock Displacement

The long orifice hydraulic damper with spring loaded valve is implemented to a
single DOF system and the base of the system is excited by the shock
displacement. A rounded pulse displacement of amplitude 20 to 50 mm is
considered adequate to demonstrate the LDHVF damper performances. The
characteristics of the shock displacement and performance indices are discussed in
cnapter 4. The shock severity parameter is also considered here in the range 0.05 to
5, which covers a satisfactory range of shock severity. The mass and the spring
stiffness are kept same as other models to compare the shock response of the
damper with other types of dampers. A time domain analysis is also carried out to
see the duration as well magnitude of the shock response in terms of acceleration

ratio, velocity ratio, disp!acement ratio and relative displacement ratio.
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7.3.2.1 'Time Domain Analysis

The shock response time history in terms of acceleration rati, velocity ratio,
displacement ratio and relative displacement ratio for four different shock severity
in the range of 0.1 to 1 are presented in Figure 7.15. These results are obtained for
a shock displacement of amplitude 20 mm. Damper parameters for this simulation
include: long orifice length 150 mm, long orifice diameter 8 mm, short valve
orifice diameter 6 mm, preset pressures for valve 1 is 50 KPa and for valve 2 is
150 KPa. Piston diameter is considered as 75 mm.

It is very interesting to observe (Figure 7.15) that the acceleration ratio
obtained by the damper is very satisfactory compared to other three types of
hydraulic dampers with flexible chambers presented in chapter 5 and 6. Its
performance is almost similar to the performance of the dual-phase shock absorber
(Figure 4.20-4.21). The trend indicates that the peak shock acceleration decreascs
with the increase in shock severity, and for all shock severity (Figure 7.15a),
acceleration ratio dies out right after one cycle of osciliation. The other three ty pes
of flexible dampers were found to take equivalent to three to four cycle of
oscillation to die out completely. The peak acceleration in this case is also lower
compared to that of the other flexible dampers.

The velocity ratio characteristics of the sprung mass for the above simulation
is shown in Figure 7.15b. The LDHVF damper again shows better performance in
terms of velocity ratio characteristics in comparison to other damper studied. At
high shock severity (v=1), the velocity ratio, in this case, diminishes within two
oscillations wuereas other dampers take at least four oscillations to vanish. The
peak velocity ratio corresponding to each shock severity is also lower in
comparison to other dampers.

The displacement ratio and the relative displacement ratio characteristics of

the LDHVF damper are shown inFigure 7.15¢ and 7.15d for four values shock

244



(@)

§ .
§ 0 kot 7 -ﬁ_" _.' s T = ~r

) 02 0.4 08 08 1
2
(o)
2 02 0.4 o8 m 1
2

displacement ratio

2

-
[ed

£ @
- ! A
& 0
f \
E os- 1 -
1 ! RN
é. 0 '~1'-- \:—’ Aot
.-g vy, \ ! -’
g ' v
5 -08} .
i 02 oY) o8 m 1
time, sec
Figure7.15  Shock responses in time domain. Shock severity, ——, 0.1;----- -, 0.2
. . 05 ----- , 1.0; (a) acceleration ratio, (b) velocity ratio, (c)

displacement ratio and (d) relative displacement ratio.

245



severity parameter. Similar to previous performance, these performance also show
improvement over other dampers considered. Even at high shock severity (v = 1),
the damper absorbs both displacement and relative displacement within two
oscillations. The performance of LDHVF in terms of relative displacement ratio
shows a significant improvement over other hydraulic dampers utilizing only short
or long orifice.

The proposed damper with one long orifice and three short orifices with spring
loaded valve constitutes a very large number of parameters. Parameters suspected
to have significant influence on the performance is investigated in this study. A
systematic optimization of all parameters for minimization of response will surely
lead the damper to a even superior isolator for application to both vibration and

shock of relatively large amplitudes.

73.2.2 Performance Analysis in Shock Severity Domain

The LDHVF damper is excited at the base with rounded pulse displacement of
shock severity 0.05to 5.0. The response of the sprung mass is obtained in terms of
shock acceleration ratio (SAR), shock velocity ratio (SVR), shock displacement
ratio (SDR) and shock relative displacement ratio (RDR). The damper parameters
are; long orifice length 150 mm, diameter 8 mm. short orifice diameter for return 6
mm. Amplitude of excitation is 20 mm. The valve orifice diameter is varied as 4
mm, 5 mm and 6 mm to investigate the effect of valve orifice diameter on
responses. The resulting responses are presented in Figure 7.16.

It is observed from the Figure 7.16a that SAR response of the LDHVF damper
decreases with the increase in shock severity in a similar fashion as those obtained
earlier. Any significant effect of valve orifice diameter occurs «.:er shock severity
reaches 0.5 beyond which increase in valve orifice diameter reduces the SAR. This

decrease in SAR is more prominent within the severity of 0.6 to 1.5. The SAR
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performance throughout the whole range of shock severity is much better (lower)
than the performance produced by the other flexible dampers.

Figure 7.16b shows the SVR characteristics of the LDHVF damper with the
variation of shock severity. Again shock severity below 0.5 has no noticeable
effect on the SVR where duration of rounded pulse is greater than natural period of
the system. The SVR after shock severity 0.5 is prominen. and at v =1, itis
maximum. The SVR decreases rapidly with the increase in shock severity.
Compared to other flexible dampers, SVR is low throughout the shock severity
range. It is also found that the increase in valve orifice diameter marainally
decreases SVR response.

Figures 7.16c and 7.16d show the shock displacement response (SDR) and
shock relative displacement response (RDR) for the LDHVF damper. For shock
severity below 0.5 is the static region where SDR is close to unity and RDR is
close to zero. For shock severity beyond 0.5, where period for natural frequency is
higher than the duration of pulse, SDR as well as RDR increase and reach
maximum around L=2 and then decrease with increase in v. Increase in valve
orifice diameter decreases SDR and RDR at higher shock severity.

To visualize the superior performance of the damper even for shock isolation,
the shock response for all hydraulic dampers are combined and presented in terms
of SAR and SVR as shown in the Figure 7.17. Without finding the optimal
parameters of the dampers as it is beyond the scope of the thesis, the responsc
characterist*cs of the dampers presented are best obtained from their parametric
studies. It is observed clearly that except for very low severity below 0.2 which is
the static region, the LDHVF damper shows minimum acceleration and velocity
response for the whole range of shock severity. At v=0.9, LDHVF reduces the

SAR t0 40% compared to LDHF dampers.
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It is, thus, concluded that the proposed LDHVF dampers are most suitable for

isolating low or high amplitude of vibration as well as shock of different severity.

7.4  Summary

From the results obtained for short and long orifice dampers, it was concluded that
long orifice produced better perforrnance tor iso'ation of vibiation, but both system
with flexible chambers only work well under very low amplitude of excitation.
Furthermore, such ‘'ampers perform very pcorly under shock excitation. A long
orifice damper was, therefore, proposed with spring loaded valve (LDHVF), in
attempts to improve both vibration and shock isclation performance at higher
arrplitudes of excitations.

A deiailed time history of the LDHVF dampe. studied here show that beth
valve orifice and bleeder orifice influences the flow rate and transmitted force
characteristics. The valve orifice reduces the top chamber pressure for part of the
cycle and bleeder orifice reduces the reverse flow period. For the influence on
dvnamic characteristics, increase in valve orifice size is found fo reducc both
dynamic stiffness and peak loss angle where increase in bleeder orifice has the
opposite effect. From the isolation performance in frequency domain, it is found
that the LDHVF damper can be tuned to provide satisfactory performance even at
excitations as large as 3 mm throughout the frequency range. Such dampers
without orifice valves were found to perform poorly for excitation over 1 mm.
Response of a system with LDHVF shows supericr performance compared to all
flexible chambered damper considered in this investigation. LDHVF with optimal
parameters has ihe potential to supersede all other similar dampers for isolation of

vibration and shock of reiatively large amplitudes.
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CHAPTER 8

CONCLUSIONS AND RECOMMENDATIONS FOR
FUTURE WORK

8.1 General

A detailed and fundamental study on a class of passive hydraulic dampers is
carried out. Based on a thorough review of hydraulic dampers, two groups,
namely: dual-phase and flexible chamber hydraulic dampers are selected for their
potential in application as isolators. Among the dual-phase dampers, it is found
that for each low-high and high-low velocity sensitive dual-phase damper, there
exists an equivalent high-low and low-high displacement sensitive system. Due to
the potential for realization via passive means, displacement sensitive dual-phase
system is selected for this study. Although such system has been investigated
previously, it is found that the damping force characteristics used, do not satisfy
the fundamental definition of it. Models are, therefore, thoroughly redeveloped
utilizing integral formulation of damping force characterization. The results are
compared with those of previous analytical and experimental studies. The
"correct" model is then utilized for tho:c-.:h investigation of its damping
characteristics and performance under vibration and shock. In general, it is found
that a low-high displacement sensitive damper has high potential for isolation of

vibration, where a high-low type is superior for isolation of shock.



The hydraulic damper with flexible chambers has, although, gained popularity
in mount application, only long orifice type has received more attention and has
been found suitable for only low amplitude vibrations. A complete model of the
system that includes nonlinear compliance of the chambers and fluid oscillation
effect, has not been investigated. The study, therefore, focuses on a systematic
development of the damper model with: nonlinear compliance for chambers; short
orifice that includes turbulent flow and effect of geometry; long orifice that include
fluid oscillation effect; and orifices with spring loaded valves and valve motion.
The study in general shows that nonlinearity of the compliance makes the damper
model, a realistic one. The effect of fluid oscillation is found to be highly
significant both on the damper characteristics and its performance. In general, peak
orifice flow is g.ossly overestimated when oscillation is not considered. The effect
is even more significant at higher frequency. Although performance of long orifice
damper is found to be better, both short and long orifice dampers are not suitable
for large amplitude excitation (more than 1 mm) and shock.

An extended model that includes a long orifice as well as a short onc is,
therefore, investigated. It is found that a constant short orifice of appropriate
diameter, that is active at all time, can improve the vibration transmissibility
performance to a great extent. However, it can not satisfy the conflicting
requirement between isolation of vibration and shock. This study, therefore,
proposes an innovative concept of long orifice with a set of spring loaded valves
designated for forward and reverse (bleed) flows. Such damper is shown to be
perform adequately for both large amplitudes and shock. Further study is,
however, needed to optimize such damper that posses very large number of

possible variables.
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This chapter presents the highlights of the study for each damping concept
considered, the various conclusions drawn for each concept and a list of

recommendations for future study.

8.2 Highlights of the Study

As discussed above, the thesis is devoted to the analytical investigation of
hydraulic dampers with an objective to improve vibration and shock
simultaneously. Five different kinds of hydraulic dampers have been taker into
consideration for accurate modeling and evaluation of characteristics and
performance. This section presents the highlights of the present investigations.
Only the aspects that highlight contributions made through this study are discussed

under the headings of the damper type.

Disol Sensitive Dual-phase D
It is identified that high-low velocity sensitive and low-high displacement

sensitive, as well as low-high velocity sensitive and high-low displacement

sensitive dampers are essentially the same.

Comprehensive models of displacement sensitive dampers are developed through
integral formulation of damper force characteristics based on the fundamental
definition. It is shown that such formulation can not be carried out in a straight
forward manner. In this case, a point by point transformation of displacement
sensitivity to velocity sensitivity must be carried out prior to formulation of

damping force.
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A well established local equivalent linearization technique is applied to the
displacement sensitive dual-phase damper for the first time to demonstrate its

effectiveness in obtaining frequency response.

Through simulation, it is shown that the present "correct” model leads to
significantly different characteristics for the damper as well as its performance in
vibration isolation when compared to previous investigations. Experimental results

also support simulation.

A thorough study of the dual-phase damper is carried out using the correct model
to investigate their performance potentials both under vibration and shock. The

results of extensive parametric study are also presented.

Short Orifice Hydraulic D ith Flexible Chamt
Comprehensive investigation of short orifice damper with flexible chamber is not
commonly available in literature. To the best knowledge of the author, their

performance both under vibration and shock has not yet reported.

In this study, a comprehensive model of short orifice hydraulic damper with
flexible chamber is developed. It includes experimentally measured chamber
compliance, and effect of orifice geometry. The discharge coefficient for orifices is
taken as a function of orifice geometry, length to diameter ratio and Reynolds

number based on the work of Shapiro, et al [53].

The damper characteristics are evaluated and presented in terms of internal
variables both in time and frequency domain for an in-depth understanding.

Detailed performance is evaluated both in terms of transmissibility response and
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shock response. An extensive parametric study is also carried cut to demonstrate

its performance potentials.

It is shown that such dampers have the potential to perform well but only under
low amplitude vibration. The performance is highly limited for response under

high amplitude excitation and shock.

L one Orifice Hydraulic I .th Flexible Chaml

Althcugh long orifice hydraulic damper has been investigated in the past, the most
comprehensive study, to date, neglects the effect of fluid oscillation within the

orifice.

For a complete and systematic investigation of dampers with flexible chamber, a
comprehensive model with long orifice is also developed. The model includes
nonlinear chamber compliance, orifice geometry along with oscillatory flow

through the long orifice.

Through an extensive evaluation of damper characteristics in both time and
frequency domain, it is shown that oscillation effect has significant influence on
the flow rate and dynamic characteristics. A parametric study is carried out to
show that long orifice damper can produce a highly desirable loss angle
characteristics with higher peak compared to short orifice only around resonance,

with low loss angle at high frequencies.

A detailed performance analysis is presented for both vibration and shock utilizing
the developed modei. This damper although exhibits two peaks, is shown to

perform even better than short orifice for low amplitude vibration in a wide
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frequency range. The shock isolation performance in this case is, however, worse
than that ot the short orifice damper. Furthermore, this damper is shown to exhibit

very large second peak when subjected to large amplitude of excitation.

I | Short Orifice Hydraulic T ith Flexible Chamt

Due to conflicting performance requirement between vibration response and
shock, a short orifice is added to the long orifice damper. This new concept is

modeled utilizing all the details used in the previous models.

Systematic evaluation of damping characteristics and performance are carried out
along with an extensive parametric study. It is found that the addition of short
orifice reduces the peak damping to a certain extent, but leads to a better
performance than long orifice alone for shock response. The shock response of this

damper is very similar to that of a simple short orifice system.

This study provides a useful insight on the internal variables of the damper when a
combination of long and short orifice is used. It is found that a short orifice that is
in operation at all time can only yield marginal improvement over long crifice
alone. Furthermore, potential of such damper in application to high amplitude of

excitation remains poor.

I Orifice Hydraulic T :th Soring Loaded Val
Based on the useful insight and experience of all previous simulations, an
innovative and new concept is proposed. Here a set of short orifices with spring
loaded valves are added to a damper with long orifice. The vaives that operate in

forward stroke (compression) are equipped with different preset pressure limit.
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The thorough model for flow including valve motion is developed and studied for
influence of short orifice parameters on the internal variables and dynamic
characteristics. An iterative process is adopted for the simulation that considers
variable flows during opening of the valves. This model includes a very large
number of variables. Beside all the parameters associated with long orifice system
with flexible chamber, this model may further include combination of the orifice

size, length, valve preset pressure and valve stiffness.

For a limited parametric study, it is shown that both forward orifice and bleeder
orifice have influence on the dynamic characteristics and performance. It is shown
that such damper can be tuned to provide satisfactory performance even at
excitations as large as 3 mm ( all previously studied similar dampers perform
poorly even at 1 mm) over the entire frequency range. A comparative study also
shows superiority of such damper in isolation of shock. Further study is

recommended for its potentials in many applications.

8.3 Conclusions of the Investigation

Specific observations and conclusions drawn from the dissertation research are

summarized for each type of demper, as follows:

Dual-phase Damper
« The integral formulation approach of damping force characterization is the
correct method to determine the damping force of a variable damper such as

dual-phase. The traditional approach may lead to over or underestimation of the

damping force, depending on low-high or high-low system.
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« Equivalent linearization method using energy similarity is proved to be a
powerful tool in analyzing displacement sensitive nonlinear damper in the
convenient frequency domain. It is found that the numerical integration and
equivalent linearization provides the same results within an error of less than 1

percent.

« A low-high displacement sensitive dual-phase damper has the characteristics
similar to a high-low velocity sensitive dual-phase dampers. Similarly, a high-
low displacement sensitive damper has the similar property to that of an

equivalent low-high velocity sensitive damper.

« A low-high dual-phase damper provides higher dynamics stiffness and loss

angle characteristics compared to a high-low dual-phase dampcr.

« The ratio (3) between low and high damping of dual-phase system has morc

influence on the transmissibility response of a low-high system.

« A low-high damper has superior potential for performance over a wide
frequency range which, however, must be designed for a given vibration

excitation environment to realize its best potentials.

« In shock isolation, the ratio (3 has more influence on the high-low damper. It

can be tuned for superior shock performance over a low-high damper.

Short Orifice Hydraulic T 10 Flexible Chaml

« The damper possesses highly nonlinear characteristics.
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« Short orifice diameter and piston diameter has very strong influence on the
dynamic characteristics of the damper. Increase in orifice diameter reduces
dynamic stiffness and increases the frequency corresponding to peak loss
angle. Increase in piston diameter increases the dynamic stiffness and loss

angle peak.

« The geometry of the opening of the short orifice does not affect the dynamic
characteristics of the damper significantly. Variation of chamber compliance

has similar effect as that of piston diameter.

« Short orifice damper can be designed to provide better high frequency

performance in comparison to a long orifice (Figure 5.22 and 6.21).

« Performance of short orifice is better than long orifice under shock excitation,
which is, however, not satisfactory (compared to the dual-phase). This

performance is highly influenced by orifice diameter).

« Application is limited to very low amplitude excitation

I ifice Hydraulic T or with Flexible Chamber
» Negligence of fluid oscillation effect grossly overestimates the orifice flow rate
specially at high frequency. With increasing frequency, the flow rate first

increases and then decreases, a trend that can not be predicted without

oscillation effect.

» Long orifice leads to higher and sharp loss angle peak compared to short orifice

which makes it suitable for isolation near resonance.
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+ Due to the appearance of a second peak, it's performance for higher frequency

vibration is inferior compared to a short orifice damper.

Most sensitive parameters are orifice diameter and length, where increase in
length increases peak loss angle and increase in diameter increases frequency
corresponding to peak loss angle. A ratio of length to diameter will, therefore,

make a good parameter for tuning.
The damper can be tuned for good performance near resonance and reasonable
performance over the entire frequency range, only for low amplitude of

excitations. The second peak is highly sensitive to the amplitude.

Overall shock response is poor compared to short orifice damper.

I LSt ifice Hydraulic D ith Flexible Chaml

Total orifice flow increase compared to a long orifice hydraulic damper
because of the presence of one short orifice. Addition of short orifice reduces
the peak loss angle but increases the corresponding frequency closer to sccond

peak.

The damper performs better at higher amplitude of excitation without

deteriorating other performances.

It significantly improves the performance of the damper at second resonance

without harming the first resonance trarismissibility by any significant amount.
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Therefore, it is advantageous to use a long orifice hydraulic damper with the

inclusion of a short orifice.

« Compared to a long orifice, a short and lcng orifice damper performs better

under shock excitation.

+ Similar to other dampers with flexible chamber, the performance under high

amplitude of excitation is limited.

| fice Hydraulic b Soring Loaded Val

« A long orifice hydraulic damper withh spring loaded valve has the pesi
characteristics compared to all other hydraulic dampers. It can be effectively
tuned to isolate vibration in a wide range of frequency and to isolate shock

displacement.

 Increase in short orifice area decreases the dynamic stiffness throughout the

whole range of frequency.

« The most sensitive parameters of the damper are long orifice diameter, bleeder

orifice diameter, short orifice diameter and spring constants of the valve spring.

« The damper may isolate sinusoidal vibration for higher range of amplitude

without harming transmissibility performances.

« Provides best shock isolation performance among all the flexible chambered

dampers considered.
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