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. Modular methods for obtaiﬁing an exact solution of a lirnear

%systém and for obtaining canonical forms of integral matrices
" are studied. When an integral matrix is singular the

generalized inverse of the matrix is obtained exactly and hence
- a general solution "to a singular system is given exactly.

i
Methods to obtain Hermite Normal Form and Smith Normal Form are

I

given. A heuristic modular method to obtain the Smith Normal

Form of an integral - matrix is proposed and its performance
)

-
commented.
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- linear . system  of

%

Introductiqn." : - f ’ : )

In the  study of controls and system theory, in operations

research as well as in the study and characterisation of

/

equations and canonical forms of integer matrices play an

finitely generated abelian Qroups exact .solutions of linear

A

important role. Many of the ©problems that:are of practical

significance involve' integral matrices of large order and
require either an Texact solution or the transformation of the
given matrix to a canonical form. In general the transformed

matrix accurately reflect the structure of the orjginal problem.

w!

Some instances where an exact solution is desirable.are as
Y . *

follows: In electrical engineering, an exact solutibn of a

equations are required in designing

biomedical

'

extremely narrow band filters are needed which acéordingly

non-recursive digital filters. in engineering

. L 4
require the component values to be ascertained as exactly as
possible. In the solution of structural engineering problems a

large number of parameters are usually involved. A solution of

the parameters with absolutely no error is required for the safe’

design of structures. It is highly desirable in such instaqcés

to attempt and obtain exact solutions of ;he systems.

A general advantage of 'a method.yielding an exact solutidn
i .

is that the error analysis is completelj eliminated. Moreover

aQ
n
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when the matrix is” extremely ill-conditioned exact methods are

most helpful. in practice one has to deal ‘with a 1large 'number

' . ! S
of wvariables. Hence one needs not onlz exact solutions but, an

. . N
efficient glgorithm for sgbtaining é}act solutions.

Two important canonical forms arise in most of the

applications.

Smith Normal Form (SNF). Several methods are known to obtain
such normal ‘forms. However, there 1is a great amount of

computational difficulty in such procedures.

.

Solving a system of 1linear equations, computing a

particular. solution of a diophantine system of equations and

transformigg a matrix to HNF or’ SNF are all related; for they

¢

reqdire the " determination of a set of lipearly independent

vectors from the given system of eguations. Because of this

underlying uniformity and their significance we discuss them

,’ . ’ . ° 1] s
more or less as equivalent problems in this thesis.
r ’

-
-

After explaining the well understood congruence method for

{

obtgénigb exact’ solutions we propose how the actual ptimes may
be chpsen to assure the uniqueness of an exact solut{on (see
cﬁapter 3). We briefly analyze the proposed coﬁgruence method
and coméare its efficiency ~ with other‘ methods on several

examples. This is done in chapter 4.

v

A -

+ We also investigate the computation of an exact solution

-

through the HNF of the given matrix. Moreever we also show HNF

. \ .
can-repeatedly be used to obtain SNF of a given matrix. Finally

we investigate the known methods .for obtaining” the SNF of a

. e | 1

Thege are known as Hermite Normal Form (HNF) and
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matrix and comment on their inadequacy (see chapter'5). .Seve#al

counter Iexémples dre given to show how some of the methods that

have been proposed in the past cannot work in general. We
éié%ose a heuristic congrueﬁté method in chapter 6 and

f!&ustnate with examples where this.method *succeeds and where it
& ‘ =y Ve

fails.” Although we- are not successful‘ in formulating a

’
> .

congruence method for obtaining SNF, the examples on which our

algorithm succeeds éuggest that there are pfimes (to be

carefully chosén) fér which tbs cohgruencelmethod wisll work.
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- CHAPTER TWO

X L

Review of Previous Research.

In this chapter we give a brief review of the various
methods proposed in the past to find the exact solution of a
linear éystem‘ of equations wiEH‘rational coefficients. There
are many numerical. problems :for which ‘exact solutions are
desirable.' An importanf advantage of a method that gives an
exact solution is that the error analysis inherent in a

numerical ' method is simplified most of thée time or completely

‘eliminated.. In particular, when the  matrices are

ill-conditioned, .an exact method gives the true answer whereas a
. A

, ' , L o . :
numer ical method gives only an approximate answer which may be .

ar frlom the true answer.

When the exact rational solution to a nonsingular system
B ) ! .
Ax=b of linear equations with integer coefficients is required,
o - ’ «
Moenck[M&C79] describes an iterative method based on solutions

of reduced systems modulo powers of a single prime p. There are.

three steps in such axmethodr The first step is to compute an
inverse (mod p) to A. That is, Wwe find an integer matrix C with
entries in [0,p-1] such that AC®¥I mod pv Ihe second step is to
compute an approximate ;olution .y to the exhct solutionx of

Ax=b. 'Thé final step 1is to obtain x from the ‘approximate

v

solution y. ‘ * ~

It is remarked in' |[M&C79) 'that this is p-adic method.

[




However the final step of recovering the exact rational solution

. ¥ from y is not discussed in ‘[M&C79]}. 3 ‘

Below we Jive a brief and clear descrip{ion ‘of ' the
iterative algorithm [M&C79] that computes a p-adic approximation

y of-the exact solution x of the linear system Ax=b.
A .

Algorithm 2.1.

4

Let P be a primé‘ such- that p does not divide the

determinant of the matrix A. This algorithm finds an

approximation y to the solution x of Ax=b in the sense that

Ay=b mod pk.holds for suitable k and p and x may B% recovered

¢

from y.

. 7 ! ,//},
stepl Set bh<--b. Find C whose entries are in”[0,p-1] so

thay AC = I mod p. '

step2 iet- -1
I Repeat ' '
. ' i<--i+13 ,
' ’ ]
X;<--Cbj mod p; - '
bj41<=-p 1 (P _ax;)
R until (bi+1=bi)-
I step3 {now we have constructed X0rX1sr..eX_1 for some k>1.)

i) ) 1
N k=1
Set y<(~~ %
: 3=0 ‘

(Note Ay = b,o'Pkb}{E bo mod‘pk and

hence vy 1is approximation to the exact

solution<)

e




T

\ Note that in step2, the entries of vector X, yjll be in

. and

integer entries).

bi-Axj = 0 mod p will hold

(and

Here we have made an-gffort to

[0,p-1]

hence bj4) will have

simplify the

computations. Note that in [M&C79] the step3 computation is

v. done iteratively.

&

The following examples‘illdstrate the working of the

algorithm.

Example 2.1

where

We sh

Ay

Let’
[ 6 7
11 6
o
- 5 6
L

etermine y

pX holds.

#
»
3
o
o
wn
i

n
™~

!

| Ax = b,
8 1
71, b= |13 '
12 A 16 -
) ]
and an integer k>l so that
) -
1 2 3 .
1 1 2 .
0 1 2
- -
‘l
1 -1
"'2 "l .
1 1
—
r-0 1 4
= |2 3 4 |.
4 1 1
-
bon

above

and p = 5.




Xg = 2 3 40 13
4 1 1 l6
1 6 7 8
' . _ ) o
; Sbl ; "b_O Axo) 13 11 6 7
2 16 5 6 12
i
Therefore = ' -7
o bl = -6
-6
' 0
Xl. = Cbl mod 5 = 4
0
-7 6 7 8
5b2 = (bl—Axl) = -6 - 111 6 7
-6 5 6 12
Therefore -7'
bz = "6 .
) _6 \‘

: \ .
Since b2=b1, we tgrmmate the\lterat}or?.

! /
!

:"l 7
‘ y =\ I PIxy = (x,+Px)
§=
e}/n 2 s
. , ‘ ¥
2 0 2
= 0 + 514 = 20
3 0 3

Now

-35

-30

=30



and Ay = b mod 25 holds.

The actual solution in this case is

and this must be constructed. from y by a p~adic method. We
- shall not address ourselves to this gquestion in this thesis.
See [K&R75] for the application of p-adic number system to éxgct

c0 _ s
computations.
The following example shows that we méy have k>n, (the

order of the matrix) for convergengg;jn the iterative algorithm.

Example 2. 2.

6 3 2 261
4.
Let A = 6 4 3 ' ——b-= 5 y p =5
20 15 12 301
4 2 3

]
L3
—
[ 8]
.

C = inverse of A mod 5

261 12
bo = 5 , Xo = I 1 .
301 , 3
8




r = — -
48, 0
b1 = -4 ' X, = 2 .
42 1
- -~ - -1
B8 1
; b, = -3 , Xy = 4 {. |
) 0 0
- - L. p (i
—-2 - —“411
b3 = -5 ’ Xy = 0 .
N -16 2
‘ K}
-6 1 0
b4 = —Zd ’ Xy = 1
;:‘ _"24 g L-3 i
- - _ -
5 < -3 0
b5 = -4 ’ Xg = .4
-15 A . 0
] -3
b6 = -4
-15 '

Since b6=b5, we terminate step2 .and we have k=6.

. Moenck [M&C79]) has developed the iterative algorithm to
obtain exact solutions of Ax=b where A and b, have general
polynomial entries. Moreover thg cost analysis is not given in

detail in [M&C79] and we believe that the cost analysis of this




£

approach needs a careful study. We are not addressing tp this
approach in this thesis and simply mention this as another

approach to finding exact solutions of linear systems.

Gaussian elimination is an accepted basic technigue for tﬁe
solution of a system of equat%ons régardless of ‘the type of
matrix A. When the entries of matrix A are rational numbers
then by suitable scaling we can transform the entries to

integers. When the matrix entries are polynomials with rationgl

coefficients then once again the entries can be reduced to
, .

polynomials with integer coefficients. An exact method using

Gaussian elimindation in its naive form will normalyy produce

rational numbers with large numerators and denominators during

the intermediate stages when the coefficients are originally
integers. If the algorithm 1is used over the domain of
polynomia&s, say éll linear, then the algorithm will produce
polynomials of degree nearly 1000 during the intermediate stage
for a matrix of order 11, whereas by Cramer's rule one expect no
polynomials‘of degree greater than 11. Hence multiple precision
operation would become inevitable when the raw form of Gaussian
elimination is applied and consequently it becomes a slow

process.

'Rosser. [Ros52] develops a method to control the growth of
intermediate results but which introduces many new
multiprecision .computations. The fraction free variation of

Gaussian elimination also cannot guarantee to limit the size of

intermediate results.

Bareiss ([Bar72] discusses a fraction free elimination

“10




method (one-step elimination) which eliminates one variable at a

time and also discusses an improved fraction free method

(two-step elimination). that eliminates two variables at a time

instead of one. v .
/ . .:‘L»

Lo




One-step elimination algorithm is

for k=0,1,...,n-1 do i,
for i=k+l,k+2,...,n do

for j=k+1,k+2,...,n+l do
alktl) (k) (k) (k) a (k) (k l)
315 = %%k %313 T %kj§ ik / ay 1,k-1

and the two-step elimination algorithm is

fOI k=0,2,4,...,n—2 do

for i=k+2,k+3,...,n do

for j=k+2,k+3,...,n+l do
(k+2) - (k) (k+1) (k) . (k+1)

aij {a i ’ + akj N

+

s al®  cktl)y (k1)

k+lyj 2 ,k"l
where : ‘
cKtl o gk+l
k+1,k+1’ |
K+l _ (k) _(k+1)_ _(k+1) K (k)
°1 " 7 (Pkal, k¥, k417 Pke1,k41%k) 7 Pkk 7
(k+1) _ __(k+1) :
) C2 . . = ai,k_'_l- . '

L]

/

*

If n is odd, the last row is transformed by ope-;tep algorithm

using k = n-1,

12 g

V.o
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’Hohgver multiprecision arithmetic is still not rulled out*in

-

this method, although the two-step fraction free alg¢rithm has
been reported to be 50% faster than one séep fraction free
" method. More detailed information and test results can be found

in Bareiss [Bar72]. ‘ /

= Congruence techniqués are notédwfor avoiding the problem of

intermediate expression swelling. Moreover in residue

23

arithmetic one works only with integers modulo f@a prime and
s .

cosequently the computations are exact, there are no rounding

errors and hence-geen ill-conditioned ,problems ca be handled

easily. The Dbasic idea of the approach is to (1) replace the
original system Q{quuationé by a system of congruences modulo

several primes p,

; (it is enough that t?e modulfii are coprimes

to each other) (2) solve each reduced system mod using Gauss:
Jordan diagonalization method and (3) combine the solutions by
the Chinese Remainder Theorem (CRT) to obtain fhk solution to

the“oiiginal system.

Several authors notably Borosh [B&F66], Newman [New67],

Howell [H&G69], Cabay [C&L77]; McClellan ggc177] and Frumkin
[Fru76] have discussed 'modular methods for pbtaining exact
solutions of linear equationq. Once a modulus [is chosen the

rest of the method is essentially similar o Gauss Jordan

elimination. Therefore the discussed methods difjfer 6n1y in the

choice of primes. A closer 1look of the pregvious 'research

)

reveals that multiple precision arithmetij would become

necessary only when the final solution is put toéather using the

Chinese Remainder Theorem.




Newman' [New67) uses 10 carefully chosen primes and shows by

test results that they are sufficient to solve the system

exactly when the coefficient matrix is a Hilbert matrix of order

n, 35n512.’ Cabay [C&L77) considers a carefully chosen . set of

100 primes, say PyrPyrec<sPypg and calculates

100 :
p. = 1 P., 17}
< 1 i=1 J
and q; “where q;P; ¥ 1 mod p; and stores them \in

-\

a large table. These and the inverses are used to solve any
system in a particular machine. The main conclusion of their
test results is that for matrices of high order (10 < order <
26) the congruencial method as implemehted by them outperforms
the two-step method 'of Bareiss [Bar72].! Fraenkel [F&D71]
discusses an fmplementation for the exact:so;ution of a systeﬁ
with 120 wvariables wig% integer .coefficients in the range
[-2180,2568] and reports that his choice of 10 primes (14 digits

9
long) successful}y solves the system in 19 minutes in CDC 1604
. l i .

computer. i

f

The principal disadvantage of the congruence méthod is that
it is limited to the system with integral elements and the whole
process can become very time consuming unless the sequence of
solutions modulo the various primes convérge quickly to the true
solugion. Although one set of primes may be,sufficient to solve
several different systems, for some of these systems fewer

number of primes would have been sufficient. In this sense it

.

is desirable [tq determine the exact number of primes and the

actual set of primes for a given system of linear equations.

14 '

i)

»J‘\
-
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-

Moreover which one of the two methods - direct ¢omputation using
mgltiprecisibn arithmetic or modular technique - is superior in
terms of speed and storage requirment has not been entiiely

determined.
¢ ]
o

-

hd L , L0 . N '
..The congruence techniques can immediately be carried over

to matrices with polynomigl coefficients, the general idea of

o

modular method is certainly épplicg‘le. MdClellan (Mcl77]

C

\ , ?
.} .discusses such a method.

i
!

]

Y

| In this thesis we are mainly concerned with matrices with

‘integer .entries and out main . contribution. to exact solutions
(fefer chapter 3 and 4) is the determination of the number\of
iprimes and \the actudl choice of primes depending on the ordey of
the matrix and the ﬂaxiﬁum entry of Ehe augmented matrix. We

give a brief complexity analysis and give test results.

-

o
-

C -

. 15
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. o CHAPTER THREE

Description of Congruence Method.
»

In this ‘chapter we' give the cbngruential method for
obtaining the exact solution of a system of liné;r equations
. with integral ‘coefffcfents. A new method 1is proposed for
choosing primes in a certain rénge. ‘This range is determined
from the order and the max imum ab;olute value of the entries in

the augmented matrix.

3.1 Basic Notation and Results.. .
‘Let A be an (nxn) nonsingular integral matrix and b an &
-~

{nxl) integral vector. Let ' -

(a;-), 1<i,j<n, ////

i
d

J /
{ determinant ofT the matrix A, - i

2293 = agjoint of A, " - , . 3

M

A

a = maximum absolute value of the elements in A,

Mb maximum absolute value of the elements in b.

P4

g
t

For any nonsingular matrix A we know - y

pa2dd - p2d3, o gy ‘ (3.1.1)

E]

'
where I' is an identity matrix of the same order as that of A.

Now the‘equation

Ax = b Lo ' (3.1.2)




. ‘ - . * a . 3
&, ! v 4 i [y
can be written as : : N . . A
dj ‘ )
-1 A2 .
= A = = = ‘n
i X b = b g . ‘
7 o
where , Yy = Aadj b. . ) . .‘

Therefore the ‘solution of (3.1.?) is ) ,
. S . R L X .

~

. . . ' <
x=é. \\ , N .

. , ) \
For ‘any prime p, and integer z let zy denote thé least positive
residue of 2z mod py. We write : .-
B ° , J
2y & z mod p. ‘ ) o (3.1.4)
¥ ’ ’ ¢ . ) - 3 3
o .. .
] For any vect?r Y=(¥1:¥9s.--s¥,) we also write .
¥p=(yy mod p,y, mod p,. ..,y mod p). We  need the - “)(
followihg basic lemma in the develobment*of'an exact solution to r
a system of linear - equations with integer coefficients.
* . ' I . ' “q
J s i ! ' - ! 4 h
Lemma 3.1 :
‘ Let M, be the maximum element in vector y where y=a293p
and d be the determinant of the matrix A, bDet P be @n
integer satisfying the conditions & X
’ < si) (d,P) = 1’ ’ - » . a i . 'r.
> "i o ’ ! N ’ o -
T id) P'> 2 max(|d| e M) . ‘{ - .

- ' 0

“Then any pair of solutions (dp ¢ YP).Pf the congfﬁences

[

N -
o

iii) d= dP mod P, . .o .
iv) Ay, = db mod P, , . _ (x '
L] . . T
. B 1 s
A . . ) ' s A . | -
v ' ' 17



K]

N ‘'satisfying the conditions

’ V) l8p| < %, .
L - vi MyP < %, . | ; :
' ‘impl;y . a% dp . and | y"= Yp- )
‘ EEEQE See Newman [Newb67].
¥ . \
i / If the modulus is cliosen as a product of primes (or

'mutuakly coprime integers) then subject to the conditions of

A}

lemma 3.1 and the Chinese Remainder Theorem, the solution of the

“¥ El

"equation (3.1.2) 'can be written down exactly. This we

illustrate below.

. Now we choose several m&?uli pl"!"ﬁs such that

L] R '
(Pi,pj)=l and P = pip,...pg. Define p; as

“»

P ' . ' . .
ﬁipi £ 1 mod Py 0 < Pj f P;, 1 <i<s.

s
-

Then the solution of the system

C

v

z

.ai mod pl' - lﬁiis

is given by

Define d and Yp, s 1<i< s as

- pl 1

Qs
1
jo
3
¢}
Q.
o)
(=)
o
o]
[oH

et

——




N ’ n \“—-" . .

”~Dy = db mod p.. ‘ E ~7
: \Ei\// ol )

. . . » )

Then we'write dP using (3.1.5) as
2
a SR g .
. p.~ 3;1 §i Pj pi pod P. , .

<

By applying

. components of

.

s
Yp = L
4 =

Having found

d

(5]
"

N \
The practical utility of an ideal program

the above

hence the primes.

inequality

This ineqqali

For example,

]

. We know

Therefore

the Chinese Remainder Theorem to corresponding

the vectors yp , We write
i ¢

' @ \

gl .
ol

1.
dP and Yp We can find d and y such that

a, mod P, - ‘ o
Yp mod P.

\

that implements

method rests primarily on choosing the modulus P and

This may be done by the use of Hadamard

3

n no, %
< (L al)”. (3.1.6) ™
i=1  §=1 J

ty can be written down in several equivalent forms.

laijl < M. N
‘n O .
9l <1 {nMZ}é = (n®My)
1= v ([
\

Lo



n
7 n
|a} < no(My) .
3 ‘ N
We know y = Aadj b
where a2¢J - (ey4) (say) . Let  ~ y=(y;):
- N ]
Thergfore yi,= §=l .cij bj.

. Since cij is the determinant - of

an - (n=-1)x{n-1)

A, we have

n. .
il & ;;l | c35 1] by |
‘ ) N n-1 ,
. ‘ ‘ n-1 ,° ,
J=1 /
Hence we have . K
- n-1 {
-1
My < min-l) MR M.

"Now combining (3.1.7) .apd (3.1.8) condit}on (ii)

bécomgs

n n-1

n-1
1 P; > 2 max{ n? MR , n(n—l)_?—(MA) _ Myl -

‘Another formulation of Hadamard boundﬂgéﬁ‘be stated

(3.1.7)

. .
i=l,es.,N.

submatrix of
\

-
+(3.1.8)

of lemma 2.1

(3.1.9)

as follows @

ifd <=

-t

o pa———-

'




s

n -2
2_ : ( Z ai')
- j=1 =1 ]
n 1
where 2 =min { ( I a?-)j],
) i)
- i=1
n 1
B =3 ()2

See [C&L77).

‘o zrom Hadamard bound (3.1.9) we can obtain'a bound for the

number of primes.

The algorithm that we describe later makes

holds for every prime cﬁosen. Then we have

i

s 2 n
P =1 p; > 2 max{ n Ma
i=1

Let the right hand

min { P, },

U =
V = max { P }.
Therefore N > W,
C y- |
n
1f W= 2n7M2 then
-1
v > 25nq Mi, .
- ) ¥y
} W
'Q

. n(n-1)

n-1

2

M

- IA

I'a

A

n-1

IA

A -

sure

that

side of the above inequaiity be W and

Let py,...,p, be primes such that (d,p;)=1.

(Q'pi)zl

(3.1.10)

;/'
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—
Fr s 3ot

‘s < (log,W - 1) / (log,n + 2109, (M,))

n <~

assumgng . 7s_>1' (3.1.11)
n-1
LY . 7—' n-l
If W = 2n(n-1) (MA) Mb then
i1 1
v > 25 0% (n-1) M2 ()5, (3.1.12)

L] -

assuming -1 57, . ' (3.1.13)

.
’

We need to choose s primes whose product P satisfies lemma
- —-\ .
3.1. The bound for s given by (3.1.11) or (3.1.13) has been

obtained from the Hadamard determinantal bound (3.1.7).

However in pract?ce we decided to choose s=f§} primes

greéter than or equal .to V. Altﬁough this choice of s violates
the condit&on ia.l.ll)’or (3.1.13), we remark the fo}lowing: Iq'
most of the practical problems we have found Hadamard
determinantal bound to be an overestimate of the actual value of

the determinant. By lemma 3.1 we only need

- -

s
P = 7 p: > 2max(|d]|.,M,),
i Y

=1

-wheré |d| and My are usually far less than the bound given in

Q

(3.1.7) and (3.1.8). The assumption s=f§] has the ‘effect

22 .




of lowering the true value of V. Recall that V is the ﬁgximum
of the P;'s to be chosen. Since we always choose primes larger
than this maximum, the error introduced in lowering the true V

does not seem to affect our choice.

When n is moderately 1large, say n < 20, our bound is
realistic; however the actual primes indeed depend on W. The '
version of Hadamard inequality given by Cabay [C&L77] is

preferable to get the actual primes. We write

1 . .
n n , - '
P20 (¢ af.)7 if b<a (3.1.14)
j=1  i=1 1
2
X 1
i n n 2 2 : —_
| and P > (T aj;) b/a if b > a (3.1.15)
; ' j=1 i=1 J
1
: : " 2 .2 .
, where a =min { ( aji) "},
= i=1 J
n 1
B o= (b)) 2

Therefore we have

SRR - B
' v'Z

,‘ > Pn ) e

This gives V which we call LBND.

If the order of the coefficiént matrix is 1large and

) ‘ 23 W -



very large primes. Since sucﬁ large primes are not readily
available and since we are forced to"do extended pregifion
calculation we try to find an upper bound (UBND) of the primes
sucb that all required‘primes lie betweep [LBND,UBND]. This can
be obtained from the well knowg Primg Number} Theorem [Knqu]
which states " for large X the number of primes < X is;

asymptotically equal to T%EX"'

We hdVe already found LBND. 'Our aim is to find UBND such

that
UBND _ _LBND .
Tog (UBND) Tog(LBNDY: ~ Si
. / 3
~ : UBND
that is Tog(UBNDT = c,
wher __LBND -
ere € ® Tog(LBRD) * Si
: UBND
which .implies UBND = e © . (3.1.16)

The equation (3.1.15) can be solved by Newton's root

finding method [J&R77].

, UBND
Let £ (UBKDy = UBND - e ©
: -  UBND ' .
then  £'(UBND) = 1 - % e €.

From Newton's root finding method we know

£ (UBND. )
= - e eme,
UBND .y = UBND, £7(UBND)

24 : ‘ i
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////756 with suitable . initial guess- and with suitable

t

€ one can get UBND when o .
abs (UBND ., ~ UBND ) < €. )

Of course initial guess should be at least LBND because we are
looking for an integer greater LBND. The followiné algorithm'
first finds a rough UBND and then tries to lower the UBND as

much as possible by successive trials.

Algorithm FINDUBND

stepl Input s, LBND ( LBND is the initial guess ).

LBND B
step2 r <-- m) .

step3 UBND <-- LBNDY c <{-- s+r,
Step4 Q <-- Q%EE.

step5 T <-- UBND - exp(Q).

step6 d <--1 -

(elh o

exp(Q).

a

step? L <-- UBND -

o =3

step8 If abs(UBND - L) < 1lE-6 thdn pr'int UBND and terminate.

step9. UBND <-- L, return:to step4.\\

Lowering UBND'hy Successive Trials -

Let’ V = smallest prime > LBND, and T denote the Hadamard bound.

" stepl) Find qll primes in [V,UBND] that is



Y

step2)

.step3)

step4)
.step?’)

step6)

step7) 4

e

V = Pl < p2 <'o'on'< ps < t—JBNDu

R<-- g p;iR'<-R.
i=1

Find the next priﬁ?f’gmqii;r ﬁﬁan pi-and call this
newprime. )

&

R' <-- (EL)(newprime). ‘,
Pg .

If R' < T then terminate and accept p,,...,Pg:
{

L3

Fo; i = s-1 down to 1l do - Pis1 == P, -

pi <-- newprime , return to step3.
. -\

N . N 3
\

Yy

|35
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'

. 26




|

3.2 Description of ProposeJ Method. s

In this section we describe the modular algorithm in

detail. The algorithm is,presented first and then we comment on

-

important steps of the algorithm and we give a simple aﬁalys;s.'

= 3
Algorithm MODULAR. .
stepl Input matrix A, vector b and order of the matrix.
step2 Find s (number of primes required to solve). -
step3 Find lowérbouhd(LBND) and upperbound (UBND) of primes.
step4 . Generate s primes pl,...,ps in the fénge {LBND, UBND) .,
4 3
step5’ :Find the product P = PiPg...Pg-
. stepé i= 0.
| -
Step7 1 = i+1c . -
step8 8.1 Reduce the augmented matrix modulo prime (pii.

8.2 Solve the system of equations by Gauss Jordan

method and find d and y such that
‘ Pi Pi
. -
' dp' = d mOd pi 7

\ 1

: A b

) : 2 :

. P ’ ) ' 'y -
step9 For Qi—Bf determine Qisuch that QiQi‘l mod P~

1

Ll

~ 1 27




steplO (accumulate the previous results with the ' current
T T result obtained  at step8B). . T
+ K3 . P ] ¢ ) )
d=d4+ — g
' ! . Py ! Py
N P ! - —
: y=Y& 505 v, - AN
) i i AN
A d . t ‘
. . y
' stepll 1f i < s then return to step?.
stepl2 Reduce d , y modulo P such that
-~ 1 . s "
| @] < 5 P | ” ‘ .
1 I
M < =% P, .
y 2 .
’ \ stepl3 Print the results d-and y.
~ / . -
*
‘ \‘»
e
N A "J\
’ L]
v
: ] 28
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, substantial amount of computation takes place at step 8.2

in MODULAR algorithm. We give below a detailed description of
step 8.2 with respect to one modulus P; -

AN

Let C=(c;j) denote the augmented matrix (A,b).

El
[

Step 8.2 of MODULAR Algorithm.

step 8.2.1 k <-- 1.

step 8.2.2 det <—- 1 (Initialize the value of the
) X _.

)

determinant mod pi).
step 8.2.3 Find r in.the range k < r.i n such that
(¢ yrP;) = 1. If such an r is not found then
- do the following: <
= a) Discaerd the prime P, b) Choose another prﬁm;
pt>ps-and set pj<°fpj+l' j;i,...;s—l;
psf--pt, P<-—§ipt, ¢) Return to step 8.2.1.
(Note that this step occurs only when the system
is singular modulo one of the chosen érimes. By

initially choosing large primes, the. probability

of such an event has been minimized)..

-

step 8.2.4  If r = k therf do step 8.2.6

else do step 8.2.5. ) R

step 8.2.5 Interchange rows r and k. Retain the matrix as

C. Replace det by -det.

step 6.2.6 Find g such that gc,, £ 1 mod p; - (The inverse

» .
is computed using Euclidean algorithm.)

29
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step 8.2.7 Replace det by ‘ckkdet and replace Cre by
goypr - k<t < (nHl).
(All computations must be performed modulo p;.

Retain the resulting matrix as C). -

/////// step 8.2.8 For 1 < s <n, s #k replace Cat by
e - k <t < (n+l).

st = Ssk Ckt’ ,
{Here also the computation must be performed <P
N\

modulo pi).
’

step 8.2.9 If k < n then k = k+l, return to step 8.2.3

else do the following:

step 8.2.10 d'. <-- det. . N
Pi

étep 8.2.11 y(l),<—— (dét)c. 1 mod P 1 <i<n.

pi 1'n+
r

After successful completion of the 'steps from 8.2.1 to \

R . . :
B.2.9 the augmented matrix C in step 8.2.11 becomes

1 0 OOCO'OQIOOQQor *‘
0 1 @Gieeeeeieee..0 * '4

0 0 le.eeeeceee..0 . ¥

. [ a8 s e aasssosase -
. ‘ 3

0 0 Oueevenennnsl #

)}

v
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N

P

A o

We comment on the computation .of stepl0 of MODULAR
‘ " , 1

- . ‘ a:d :
algorthm : :We can ' compute Qi“p; and $Q1Ypi modulo
P, before multiplying  each by ~§ . This will » simplify
i T e '

.

the calculations in stepl2.

Q '

f ) i bl
The algorithm can be improved further by computing the GCD

using a series of shifts rather than using the.conventional

4

method. The details on this improved GCD calculations can be

1 .
R =
found in Knuth {[Knu69]. . &
. ' W . -
- L]
at
i~ : . LS
. .
.Y
t
. Te .
~ s
K3 n‘ 4 o
A | E
» A} i
Ay -
N
I
m e -~ ° - ’
s o
Y .
¢ r
L
7 . - .
. ! o
; .
. - \
. )
*
N3
€
. . . .
A
- w . o
1 .
L, ¢ °
& . ) \ ,
- b
. ‘
i .
PR ',\f H .
o . vl ¥ '
1] ' = v
‘ ]
s * 5,
N )
- . '\
> A
o - N
N o
- r
L4 .
L]
s .
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% ‘ CHAPTER FOUR

Analysis of Different Methods.

, In this' chapter we analyze the iterative method, two-step
elimination method (see chapter 2 for a brief discussion) and
MODULAR method. The cost of an algorithm is measured by the .

number of single precision arithmetic operations required in the

algorithm to solve a system of equations.

4.1 Analysis of Iterative Method.

r

°

Let . Ax =b (4.1.1)

be ‘the equation with.A an nxn <\integer matrix and b an nxl
. - N ‘

N . VA . . ] . . . 3 ‘e }/
integer vector. Fo%pllmty we assume : s
. , 4 . ‘ ‘ o
g - d = det(A) ¥ 0.
F :
Let . 1 .
" 2 .2 :
cj = ( §=1 aij) I ]=1'-..,n, . (4"’.1-2)
1 -~
n PRL (4.1.3)
¢, = (I_ bl »
: i=1
p) ' :
My = max | b, | r. _ 1 <i _Sn _ '(4.11.5)
N " Let
32




¢, = min (c; ), L 0<i<n ., and

n ’ .
r =1 cy, i # k .. {4.1.8)
1 .

From Cramer's rule it is clear that in the solution vegtor
"each rational component has both its numerator and denominator’

less than or egual to r. Let

M = max (M

My o Mb).‘ (4.1.7)
. . n \
Then ~ ,r = I ' c., i#k
. i
. i=0
— | n
< (an)z. -~
" .
n_?2 S .
Therefore r < M n". l . (4nl.8)

Let p be a pfime such that p does not divide d and p < M.
Assume that M and hence p ate single pfecision'integers. The.
first step in the iterative éolution is to’' form Al such that
Al = A mod p. fhe cost of forming Al measured as the number
" of multiplications and divisions is O(nz). Now each entry of
A, lies in [0,p-1]. Next to compute C = 511 mod p that’
is CAl E‘Ivmod P using any well knan algor%thm, the cost of

this step can be accounted as O(n3).

In step?2 we can compute X ~in O(nz) single precision

multiplications. However the entries of,bi+1 may become large

and may require multiple precision arithmetic. When this

¢ ' 3 3 "u:'h



happens Fo compute Axi we need n2 mult;plications each involvidg
a single precision entry.in A (qt most of length log(M) ) and a
single precision integer in X (at most of length log(p) <
log (M) ). Assume that this product can., be done in
O({logMlog(logM)). Hence The total cost of step2 is .
O(knzlongog(log(M)) arithmetic ioperations. Similarly we can
sh&w that the maximum cost of step3 is
O(jnlogMlog{jlog(M)).

0 e . ;
Therefore_ghe total cost of thé aldorithm cannot exceed
2, | k-1 . ,

- O(k? logMloglogM) + O(j)i0 jnlongoggjlng)) (4.1.9)

’

“y

After simplifying we wfite the righthand side of‘(4.1.9) as
2 2 : ' 2
O(kn“logMloglogM) + O(k“nlogMloglogM) + O(kn“logklogM).

' N

Hence fixing the maximum absolute value of the entries of 1input

matrices, the total cost of the iterative algorithm‘capnot

-exceed

o) + 0(xn?) + 0(k%n) + 0 (nk’logk).

The exact value of k is not known to us; we believe that finding

k may still be an open problem. Note that in example 2.1 we.had

k=2 and in examblé 2.2 we had k=6 and in both cases we hade n=3. -

1t seems from these examples and others we have tried that it is
safe to assume that k must be greater than or equal to m. So we

conclude that the cost of finding an approxgmate solution by the

.iterative algoritﬁm 2.1 is at least O(n3logn).

i
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4.2 Analysis of MODULAR Method.

& .

Here we give a detailed description of the cost analysis of

Y

our MODULAR method. The cost of steps 8 to 13 in MODULAR
algorithm is independent of any specific primes as long as a

prime can fit in one computer word. We itemize the cost below:

step 8.1 1) To reduce the augmented matrix medulo a prime we

,— need n2 divisions. So the cost of doing this\ﬁtep

is 0(n?).

séep 8.2 1) Each GCD call i.e., to find (x,y) we need the

following operations :

Let 2z = max{(x,y)- NI = number of iteration
2log (z) = 2log (M) . Then total number of
divisions/multiplications is 3NI and total number of

additions/subtractions is 2NT.

n(n+l)
—

Therefore the total'cgst is at most O(pzlog(M)).

The total number of GCD calls 1is

~

2) In solving a system of linear equation using

Gauss Jordan elimination process we need

1

% + n - % multiplications/divisions
S

% - % additions/subtractions.

4 !

Therefore to solve a reduced system the cost is O(n3).

Since we need s=[g] primes to solve the system using

35



our MODULAR algorithm, the cost of MODULAR algorithm is

)

0(sn3) = 0(n?). ! .

We observe that in many problem instances for which n<20
and whose entries ‘are initially single précision integers,
algorithm MODULAR successfully finds s = {g} pr imes to

. ~~
obtain the exact solution.

~
However there are some\ exceptions e.g., when we transform a

Hilbert matrix of order 14 py_suitable scaling we have a matrix

with__single precision integer entries. According to our

hypothesis s = [- % ‘ = 7 primes are sufficient; the primes

found according to MODULAR algorithm are 20 digits 1long and

\bence our analysis should be modified to reflect multiprecision

arithmetic in_step 8.2 of the algorithm MODULAR. Analysing

PN -

similar to section 4.1 for multiprecision arithmetic operations,
R,

the cost in such instances 1is of O(n4log(Mp)) where Mp is

3

the maximum of primes.

For large values of n say n>20 our estimate s = {- %-]
can still be valid provided sufficiently lafge primes are made
available’ Recently Fraenkel [F&A71] reports 10 primes each 14
digits long that successfuly solve a system with 120 variables.’

In view of this it seems to us that the total number of

arithmetic operation in a congruence method is at most O(n4).

\\—ﬁinally -we comment how our MODULAR algorithm can be

successfully carried over to find a particular solution of a

system of linear diophantine equations. For example, if A is an

36
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- integral matrix of order mxn of rank m then the system of linear

equations Ax.= b can be solved as follows : Define B=aa"

and x=Aty. Theq, x fs the solution of Ax=b. Using MODULAR

algorithm described earlier we obtain the solution vector y and

then compute x = Aty.

, By=b

Clearly to cohpute B reguires O(mnz) arithmetic operations.
The cost of solving By=b using MODULAR algorithm is O(m4). Now
we need to figd X given by x=Aty. This has a cost O(nmz).
Hence a particular solution of a linear diophantine system of m
eguations in n variables can be obtained with a cost

O(m4+mn2+nm2).

, Since m<n and in many problem instances n is large compared
to m, the cost O(m4+mn2+nm2) is guite reasdnable to
obtain a particular solution of a system of m diophantine

eguations in n variables.

Alternatively when a square matrix is singular or we have a

rectangular (mxn) matrix of rank r <m then we can wuse a

generalized inverse to obtain a particular solution or a general '

solution of the resulting diophantine system.

Let A be an ' (mxn) matrix. Then A9 is said to be a

generalized inverse of A [H&W70] provided
" AA9A = A and A9a29 = a,

1t is shown in [Bur50] that the standard way to give the
general solution of Ax = b is to use a generalized inverse.

&
For a matrix A of rank r < m, the invariant factor theorem

- 37
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(Bur50] , [M&M70] provides an algorithm for constructing two

unimodular matrices X and Y such that XAY = s,

)

whgre S = sij
with s;; # 0 for i <r

sij =0 otherwise.
Morecover Siiisi+1,i+l for i =1,...,xr-1.

Let SY be the {mxn) matrix satisfying

-1 .

s9. = g7+

_ ' 1i #sllv ‘ for i <r
sij = 0 ‘ otherwise.

Now, let A% = ¥59X then

XaY = s = ss9s = xavsIxay = xan9ay o (4.2.1)
wh}ch shows that ' ' J
‘ a = aa9a,
Similarly it can also be shown that A = a%an9,

i
-

It is also shown in [H&W70] tﬁat, if A and b are integral

and’ the vector equation

i Ax = b

is consistent, then Ax = b has an integral solution if and only
if the vector a% is integral. Moreover 1in this case the

+

general integral solution of Ax = b is

x = a9 + (1 - a9a)y : (4.2.2)

- where y is any arbitrary integral vector of order m.
- ‘ o

¢
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The matrix S is known as the Smith Normal Form of A. So we
note that the Smith'Norma{ Form of a matrix is closely related
to solving a linear system of equations exactly. We discuss 1in
chapter 6— how to obtain the Smith Normal Form of an integer

matrix.

Below we give examples to shgy\ two different ways of
R aN

obtaining an exact solution of a singular system of equations.

Example 4.2.1.

i -9 -8 -5 | -1 —
Let A = ) 5 2 and b = 1 .
B - T S | 1

The valué of the determinant of matrix A is zero and the rank of
T

A is 2. Using a standard procedure (section 5.:3), we get

r— -»
0 Q 1 ~ 0 1 -3
X.= 0 1 2 . Y = 0 -1 4
1 2 -1 -1 1 -1
-t
and
) 1 0 o
S = XAY = o 3 0| . .
0 0 0



IWNOW
a9 = ys9% = 1
: . 3
A particular solution is
Now ' the general solution

Y=[-l,0,1]t, then another

[4,-5,11°F.

Example 4.2.2

We choose the prime'p

g _ ot ,
A = FUXE nd
(a7 a
We get
14 -0 0
B =| 125 124 0|, .F =
, | 126 125 1J

o e T ————— T

0" 1 2—
0 -1 -2 .
o 1 -1’ ’
" ‘
. .
2% = [-1 |. .
0
is given by (4.5.3).’ If we take

solution of ,the saA; system is

(using modular arithmetic). .

-

) .
127. We compute

29 as in [A&K77].

' F-l 0 0 1 0 0
112 1 0 |, X = 0 1 0
3 123 lJ 0 0 0

40




and

"] 44 45 o .
@9 = f125 124 0| - a9 =
0 0 0 [

See [A&K77) for a detailed calculation.
"

1] 3

2% = | -1 , (1 - 2%a)y = | -4
1} i 0

{

Therefore a particular solution is

1 3 4
X = -1 + | -4 = =5
1 0 1 !
t

2

41
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4.3 Analysis of Two Step Multiprecision Elimination Process. .

B

Bariess [Bar72] describes one-step.and two-step elimination

[}

method in the following way: ,\

One~-step method: ‘ » »

k _k k

k+1

- k k- ~
ai5 ={ aKk3i; - akjaik } / ay_ = ‘ (4.3.1)
Two-step method:‘ e . .
In the (k+2) iteration (4.3.1) can be wriiten as
5 (K+2) _ (k) (k) (k) (K) (k+1)
255 -7 Uagaiy - agg e )/ aka (4.3.2)
o (k1) (k1) ,
Substituting for aij and ak+l,j from (4.3.1)
into (4.3.2) and simplifying we gét -
4 S
(k+2) = { a (k) (k+1) + a(k) {k+1) o
215 214 k.3, 1
— - 8 )
(k) (k+1) (k+1)
D t2k41,5%2 J /31 k-1 ‘
where

(k+1) _ - (k+l)
¢ = fk+1,k+1

(k+1) = (k) (k+1) (k+1) © _ (k) (k)
ok { Bk+1,k%i,k+1” 2k+1,k+1%,k } /

(k+1) . I .

A\,

(k+1)
cy a1+k+1 R | - -

Jmre—
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Bariess [Bar72] estimatés the cost of multiprecision

2

two-step elimination method in terms of single precision
‘m itiplication units. Het%hows:that.the cost of applying the
tw;¥$tep elimination method to ﬁriangularize a matrix of order n
is equal to single,precisi;n mplﬁiplication wher; e

l+¢

'c(e))z andte (Gn/w) /(2+¢€) (3+e) (4+¢€)

e
[}

the number of digits in the single precision computer word

=23
it

n the number of digits in the largest component of the

original matrix

£ is such that M(e) is the cost (interms of single precision

N

multiplication) of the multiplying multiprecision integer of

length n.

When classical mul;iple precision. arithmetic is useq, € =1

so that - e
F

For multiplying two m precision integers for large m Schonhage

and Strassen [Knu69] gave an asymptotically superior a}gorithm'

.

which requires
O(mlogmloglogm)

v single precision operations. Hence the two-step elimipnation

method dsihg the fast multipreciésion multiplication method would
have a cost of at least O(mn4logm). Moreover when the size o{

[

the matrix is not that large and the entries are also only
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‘simple

-

mode;ateiy large, even the application of fast multiprecision

multiplication method in this two-=step method will slow down the '

process due, to considerable overhead.

o

seems that the congruential method is superior to

2

Thus it

two-step method as well as iterative method. Moreover the

congruential method computes the adjoint matrix as well as the

detfrminant whereas the iterative method does not compute ~the

determinant or the adjoint,

a

Although our analyé&s shows that the congruence method and

for the

the iterative method can have the same cost small n,

implementation of congruence method is more straightforward and

since almost all the arithmetic operations can be

per formed in single precision arithmetic. We have an

implementation of the congruence method that tested several
systems solutions.

forq exact i In the next section we give a

number of test results based on our congruence method.

s €

-
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4.4 Test Results.

KS

:» This section gives a brief summary selected f&om a number
of test problems. In particular we emphasize our results that
test Hilbert matrices and random matrices whose entries are
uniform integers. 'There are at least two reasons why we choose

K -
to test on Hilbert matrices. These are 1) The iqﬁégérwentg}es

in a Hilbert matrix after suitable scaling is large whereas even °’

when the order of the matrices are 14 or’15 the actual value of
the determinant 1is only.a single pr;cision integer. 1n other
words the intermediate results are extremely large compared to
actual determinant and hence Hadamard bound is very loose ?.e.,
large primes are invariably selected. However the final
determin;nt' value indicates that small single precessiod‘primes
would have‘been sdfficieﬁé and 2) If the system AxdM= b wheré a
is Hilbert matrix is solved numerically then the final soluti&n
is invarisbli\ inexact due to illconditioned nature of the matrix

D
A,

e

There are two important reasons why we tested our @ethod on
random matri;es. These are 1) Hadamard bound seems tg be élose.
As a conseguence when a matrix is large, say of order 30 ‘while
its entries are small, say each 3 digits, " a predetermined set
of primeés " may not solve the system exactly and 2) It s

expected that random matrices are more likely to reflect the

goodness of our method of choosing sufficient number of primes.

We compare our MODULAR algorithm with that of Newman
[New67]. We recall that Newman selected 10 primes and gave

N

results establﬁshing the ability of these primes to solve

45
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Hilbertl matrices of order upto 12. However Newman did not test.

his primes on random matrices.

two

fronts:

I‘\\
method to solve & system with

1)

Newman

The ability of.the chosen set of primes by our

to

chosen by

computing time (in seconds).

e

computing 1is

hdecided to use LSI1ll. For all résults below the primes chosen -

by Newman [New67) are

~

|

9999889, 9999901, .

A

We felt that an,6ideal computing enviromment i,e, dedicated

hard to achieve in mult{task batch system.

9959937, 9999943, 9999371, 9999973,

+

Hence our comparison is done on

the ability of the 10 primes

solve the same system and 2) The actual

¢

Socwe

&

L

9999929,

9999907, 9999931, g \
9999991 ;-
r s Y ) . ’
~
- . \ ,P»,
7 po ° R
Do N g
i
’ 3

. T



‘Test set 1. . Hilbert matrix

A Hilbert matrix of order n is defined by

1 L .
= ——— . L}
A i+3-1 " 1z l:J < ?'
|
By suitable scaling we transform the matrix Hn to have integer
entries. Since Hn is symmetric we simplify the representation

of Hn to its one dimensional representation, e,g,

1 -

H3.aﬁter scaling: is

60 30 20

30 20 15 ' //

20 15 12

which we write t§§3 V .
- —
§3 : 60 !
30 .
20 . . .
15
) 12

In our result below we do not show H, explicitay but it can be

‘obtained easily.




1.

Solution of Hgx =b; . b= 27353 -
’ L 15902

129549
104901

1156475

- = 1009002
. o 895570

. . o 1619672

L 25114365

-t

Value of det(Hg) = 1960,

3

«
a

Primes chosen' = { i2067103989l, 120671039911, 120671039999,

120671040053, 120671040079~}.
Solution = { 9, -4, 6, -3, 7, =3, 6, 5, 2 }.

quputing time 52.21 (MODULAR) 97.13 (Newman).

—
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2. Solution of H, ~% b

1o
o
>
-
o
n

Value of det (H

-

Primes chosen

! 45555751320469 }.

[
.

9951
66662
50064
528133
446887
388446
688242
10513609
9552995

166404042

e

Solution = { 3, -4,~6, 9, -7, -4, 6, -5, 3, 2 }.

' Computing time 70.06 (MODULAR)

127.22 (Newman) .

e
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3. Solution of H 48560

"
oy
o

"

14887
114060
90600
81373
153338
2502362
2419953
. E ) ‘ 44595098 y
| 43302709
42067754 °

., Value of det(H = 1481760.

11’

Primes chosen = { 54855582202943 , 54855582202991 ,
54855582202997 , 54855582203029 ,

* ©  54855582203047 , 54855582203131 }.

L] ‘a

Solution = {5, -9, 4, -7, 8, -6, 3, 2, -5, 4, 6 }.

Computing time 106.85 (MODULAR) . 162.27 (pewmap);

g g rr—y AR U




4.

‘Computing time

Soluﬁion of

Primes chosen

Solution = {

Hyox = b,

Valqe of dEt(lekt? 582120Q.

{ 154527338109037693,
© 154527338109037807,

1545273;8109037909,

SN
¥ '-\\ -

-10, "5] 5, 4l

144.83 (MODULAR)

-8,

51

/;
%ﬁ -432244

|

/ '
FLJ43872

4&304379

#-709704

' -556973
-6266692
-4172371 -
-52009476
T7-32673682
-18597175

-81%8652

L—5597520 J

154527338109037783,
154527338109037871,

154527338109037921 }.

6, 8’ "5’ —2' 7”}'

(204.82) (Newman).
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5. | Solutipn of HlBX'é b,

- , b

Value of det(H13) = 164656800.

4 .

Primes chosen = { 175893435098187127, 175893455098187179,

175893435098187181; 175893435098187217,

175893435098187227 }.

‘r3012190

1740633
1255182
1984963
28079255
24136174
403145747
360294850
326084458
298078961
6317888238
5861285142
27342217543

v

b~

—

L

175893435098187221, 175893435098187223,

’ SOlutiOD = { 5"‘ 7, "3’ 57 "87 _2' 3'. 6' ,8, -9" .8, "7' 3 }- B

Cogputing time 209.11 (MODULAR)

)

52

253.09 (Newman) .

/
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6. Solution of Hl4x_ =b , - b 1955691

1

1058921
: ‘ - | 1482711 ;
, 19702805

’35371844

268529666
237828275
214493943
196056125
4163985429 . _

L]

3876059150

18156744780
\ 17100497644

48530484434

Value of det(H = 336370320. — -

. 14)

Primes chosen = { 30372380655898606511, 30372380655898606517,

L

30372380655898606573, 30372380655898606667,

30372380655898606727, 30372380655898606747,

: 30372380655898606783 }.
- "‘“\ o

‘Solution = { 4, 3, 6, -8, -6, 4, -3, %5,.-3, 3, 6, 8, 9, -5}, 7

\ . Yo

buting time P57.15 (MODULAR) ©307.72 (Newman) .
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.Test set 2.

Ve

Random Matrices

We genereted random matrices with entries uniformly

distributed integers in a certain range.

1.

2.

Order
Maximum element

Determinant value

Primes chosen

"Computing time

Order -

Maximum element

Determinant value

/

Primes chosen

Computing time .

5.

297.

103847423380.

3 .
R X

{ 52361, 52363, 5369 }.

g8.01 (MODULAR) 29.55 (Newman) .

5,
487.
2486259045724,

{ 297371, 297377, ,297391 }.

—

8.83 (MODULAR) 30.43 (Newman) .
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3. Order
“Maximum element
Determinant value

Pr imes chosen

Computing time

4. Order

Max imum element

Determinant value

Pr imes chosen

Computing time

5 . . N a ..x:. f\‘_\:‘
e . B

P

493, .

460363300215,

{ 289657, 289669, 289717 }. )

8.13 (MODULAR} 28.96 (Newman) .
11.
45, X

60395é12216604i708964399996.

{ 274723, 274739, 274751,

274777, 274783, 274787 }. i

97.91 ¢MODULAR) 164.63 (Newman).
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Order
Maximum element
Determinant value

Primes chosen

Computing time

»
/

Order

Max imum element

.Determinant value

Primes *‘chosen

Computing time

11.

© 449.

242429548B6539754355662539507.

{ 469613, 469627, 469649,

469649, 469657, 469673 }.

98.53 (MODULAR) 165.08 (Newman).

30.
499.

545425579491887747334641757935621
384837166912162384394542316032470

85698860037739.

L

{ 2631449, 2631457, 2631467,
2631469, 2631487, 2631493,
2631509, 2631511, 2631523,
2631527, 2631529, 2631533,

2631539, 2631553, 2631581 }.

2612.98 (MODULAR). ®¥**  (Newman) .

-
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run with uniform success with the ten chosen 'primes. We point
out that these ten primes have failed to solve the random system

shown in example 6 of Test set 2. It,iS‘clear therefore that a

fixed .set of primes although sufficient to solve systems of
equations arising within a specific environment, may fail to

guarantee the GonvVergence in some problems. .Hence it becomes

important to have a set of primes chosen specifically to solye a

N

given system of eguations.

. 57

Newman [New67] mentions that a number of test problems were

1
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CHAPTER FIVE

Normal Forms.

'

In this chapter we consi?er the exact solution of a linear
system of ‘equations. through different normal' forms of the
in%eger matrix of the system. Such normal forms are of interest
in integer linear programming problems as well as in
computational gfohp theory. We shall briefly examine some
computationai érocedures for obtaining sucdh normal forms and
suggest qu methods for obtaining a normal form of an integer
maﬁrig. We shall compére the‘computational cost of the modular

°

approach discussed in the last chapter with the cost of exact

~solutions through normal forms.

’

‘\S.l Review of Different Normal Forms.

L e e |

. In integer programming problems as-well as in computational
¢ .

+ group theory the‘coefficient matrix can be transformed into an

”

equivalent matrix by postmultiplying it with a unimodular matrix

(whose determinant value is, +1). Such postmultiplication by

a wunimodular matrix 1is eguivalent to performing a series of

‘column operétigns over the ring of integerg i.e., 1) addiﬂg an
inte?er multiple of one column to another, 2) mulﬁiplying a
column by -1 , 3) interchanging twélcolumns. If the coefficient
matrix is premultiplied by a Junimodular matrix then it is

equivalent to doing elementary-rfow operations.

A 0

Hermite [Her51] showed that every non siﬁgular square

58
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matrix can be transformed into a lower triangqular matrix using

'

elementary column operations over the ring of integers. More

precisely we have

Theoreml [Her51l]

i

Given an (nxn) integer matrix C of full rank, there
exists a (nxn) unimodular matrix K such that CK is a
lower triangular matrix with 'positive diagonal
- elements.s Fur%her,‘each off diagonal element of CK 1is
nonpositive and strictly 1less in absolute value %han

the diagonal element in its row.

Theé matrix CK is called Hermite Normal Form (HNF). For'a given
C, Hermite normal form is unique. 'If elementary row operations
are used Smith [Smi6l) showed that an integer matrix can _ be

diagonalized.

- -
’

Two quuare matrices A and B of order n over a ring R of
\

integers akf said to be equivalent if there -exist invertible

matrices X ;\é’} such that B = XAY. Smitp [Smi6l] showed that X

and Y can bé,properly chosen so that B is a diagonal matrix.

1 ’ -
B

Theorem2 [Smi6l]

&
\

Given an (nxn) integer matrix C with full tank, there
exist (nxn) unimodular matrices X and Y such that D =

- XCY is a diagonal matrix with “positive diagonal’

°

elements such ‘that dlldzl.,.ldn, where x|y means

) &

+

x divides vy .
]

59
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The matrrz S is called Smith Normal Form (SNF)~of A. Recently

- - s X
ntion has been given to computing SNF because of its

much atté
significance in integer programming ([Bra7l], (Hu70), [G&N72],
[K&B79] and in studying the structure of finite abelian groups,

which is again related to integer programming problems (Wol69],

‘ 7
' [H&S79]. The two normal forms are related to one anotﬁ;p/and

Kannan .|K&B79] has given computational procedures to ¢btain SNF

.
thrBugh Hermite Normal Form (HNF) .and Left Hermite "Normal Form
AN

(LHN?). We show in section 5.5 how we can’ get SNF through
.repeated application of HNF without making use of LHNF. We feel

.our approach®is more uniform and hence can be implemented

+

efficiently.:
< 1

When HNF is computed “according to Kannan's (K&B79)

algorithm, large intermediate result§ do not occur for several

»
cases of input matrix. Hence our interest has Dbeen mainly to

’

obtain HNF and hence an exact solution of a system without using

modular arithmetic. o /

/

‘However for several random matrices of /fmall order/such as
i

(5%5) (e.g., see the" mafrix in Conclusion Kannan's [K&B792]
method . of ' obtaining HNF causes overflow in intermediate

expfessions.“ This is so even when the enfries of ‘“the (5x5)

~

coefficient matrix are small (<567) Ji.e., the claim made by

-

- Kannan [K&B79)] that his préposeé method suppresses such overflow

doés not seem to be &rue. in this context it is ”important ‘to

. / ,
investigate a modular method for obtaining HNF «as well as SNF.

N -

-As these are related problems we discuss the feasibility of
f - 'Y:‘ * .
modular methods for normal forms at ‘the ,ehd of the section 5.5.

. .
P » . ¢

*

N
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5.2 Exact&olurtbi‘qns Of Linear System Through BNF,

a ¥

. i : ’ 4
We will discuss algorithms to compute HNF of an integer
matrix in s&ction 5.4." The standard classical algorithm that
(
applies successive column operatténs produces intermediate

Y
numbers that do not appear to be bounded by a polynomial in the

'

length of the input data. These algorit;th:s build up the HNF row
by row. Kannan . [K&B79] gave a method to obtain HNF of a
non-singular sguare matrix that successively puts the
submatrices consisting of first i rows and i‘ columns, l' < i< n,
'into  HNF. In other words at the f2th iteratiod the brincipal

(ix1) submaty1x is in HNF. It was also shown 1in [K?B79] {hat

this algorithm has intermediate numbers whose number of digits

," is bounded by a polynomial. We shall review this method later

- Ky

N '
] 3

in section 5.5.

14

Assuming that the HNF. of %atrix has been found using this

algorithm (see section 5.4) we can solve a-system Ax = b where A

is (nxn) nonsingular integral matrix and b is (nxl) integral

column. vector, exactly. Given
Ax = b . ' (5.2.1)
where A has full rank, we put at in HNF.

[

‘Let - ¢ C=A"U" | (5.2.2)
where C is a lower triangular and U is a unimodular matrix.
Therefore we have o . ~ ' . ™

ctx ¢ vtax = vt -~ .,
BN L‘ bl { . . . )



+

)}

\),.

i.e., ctx =bp', where  b' = ubb . (5.2.3)

£ . .

Since C- is an uypper  triangular matrix, we obtain x using

backward substitution. More formally we do the following.

€

Algorithm HEXACT

¢

Etepl Form HNF(n,AF); ‘ , .

this produces = "lowef triangular matrix C and

a unimodular matr%k u. ‘ .
step2 Form b' = Utb.
step3 Usingibackward‘substitution solve for x from (5.2.3).

v L

'
»

The [first step of the algorithm HEXACT +is done over
integers and -hence’ it is ekact.: The 2nd step computes b'
exactly. In order to obtain,thé solution vector x qyaj;)y we

will have to use rational arithmetic.

4’
a2

The HNF in Sstepl can -be obtained in 04n3+nzlogML

-

operations, where M is the maximum absolute ‘value that might

arise in the matrix during the execution-of the algorithm. In

“
'

sﬁfp2 of HEXACT we do n> multiplication and in step3 we do b(nz)

L%

rational arathmetic operations. Therefore 7 the exact solution

can be bbtained' in O(n3+nzlogM) oper-ations. Note that many

of the<;peration§ involve GCD calculations’ It i§ 'shown in

L]

Kannan [K&B79] that

62

I‘ ,}‘
3n 200> 12n3
: M <2 n Mq SR .
. 9 » | » -t ) ',.
whete Ml is the maximum absolute value in the original matrix
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A. Hence the cost of the<algorithm is O(nslogn).

LY

Thus it seems that)our modular method for exact solutions
is superfor to obtaining HNF énd, then solving the system
exactly. "Howevé; we remark. that, such copparisons based on worst
case bounds do not completely reflect the performance of the
algorithms in‘préctice. N ‘

!

The practicality of the method depends éo a large extent on
theasize of the intermediate numbers as well as-the value of
determinant. We tested the same set of systems using HEXACT.
Oﬁi results'given below r;veal that HEXACT 1is “superior to
‘MODULAR for all the examples tested (here aléo timings are given
in seconds) . In all examples tested the size of the

‘intermediate numbers become large when HEXACT 1is applied; in

fact much larger than the size of the intermediate nhbers

produced by MODULAR when large primes are vused. Hence we

implemented ,our program using ALGEB ' language (designed and

implemented by David Ford to support extended precision integer

) . .
arithmetic) iq LSIll.

~ o
-
o
/ o
f «© & As
2 .
- - t
) ' ’ R o
- IS v
. . "o
]
s * N
-~ A}
- g
/(/‘
o ‘
.
T ' t
. -
7
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. [ ]
.
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Solqtion of H

Solution of H

R b
Solution of Hgx

Computing time

Solution of‘Hlox

Computing time

11%

. Computing, time

Solution’of lex

Computing time

13%
Computing time

Solution of Hl4x

Computing time

b.-~

24.75
34.7

7.3

b.
63.31
b.
83.45

b.

107.28

(HEXACT)

(HEXACT)

-

(REXACT)

'
b
'

(HEXACT)

(HEXACT)

(HEXACT)

64
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52.21 (MODULAR).

70.06 (MODULAR) .

A
i)

106.85 (MODPLAR).

-

144.83‘(MO§6LAR).

>

( .
209.11 (MODULAR).

257.15 (MODULAR);;//////// J




8

Test results of random matrices are given below. ‘Ra(i) denotes

: 4 , ‘
system i of random matrix used in Test set 2;/

o

o / !
/

Solution of Ra(l).
Computing time 4.58 (HEXACT) / B.0l (MODULAR).

Solution of Ra(2). P

‘ot

Computing time 4.58 (HEXACT) |  8.83 (MODULAR).

Solut@on of Ra(3).

Computing time 4.41 (HEXACT) 8.13 (MODULAR).

Solution of Ra(4).

Computing time 51.75 (HEXACT) '97.91 (MODULAR) .
Solution of Ra(5). . - . .
Computing time 52,01 (HEXACT) 98.53 TMODULAR).
o
7 "
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5.3 Standard Procedure Of Computing Smith Normal Form (SNF).

Let A be a non-singular matrix which is to be transformed

into Smith Normal Form S. Let S = XAY, where X and Y are two

A )
~

- unimodular matrices. Let A denote the k-th column of A and

k(c)

Ak(r) denote k-th row of A. The following steps will illustrate

how Smith Normal Form can be obtained using elementary row and

column operations.

Algorithm STANDARD, )

{

stepl t <-- 0. ((n-t)x(n-t) matrix must be put in SNF)
step2 t {---t+l; if t=n terminate.
/ -
}

step3 Find ‘the smallest non-zero element in absolute value in

. the submatrix (n-t+I)x(n-t+l) of A. Let ajj be the
, T f

3 .
smallest value. Then interchange i-th row with t-th

row of A and X and j-th column with t-th column of A

is the smallest non-zero element in the
\

and Y (noy CI

matrix A).

step4 I1f j=t+l,...,n then do step5; otherwise

3pelagy o

for some ' j=k (say) does not divide I Let

¢t

ayy = qatt+ r where g and r are the gquotient and

the remainder ‘ after division of I by a,

0 <r < Bpp Rep{ace Ak(c) and Yk(c) by

Br(e) — 9Pe(cy @M Yg(c) - e (o) -
Return to step3.

66
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O

steps3 If a i fa;y »- i=t+l,...,n then do stepé; otherwise
K . .
for 'some i=k (say) a,, does not divide ay,. Let
@y = G8,, t r, where g and r are the guotient and
the remainder after division of Ay by CT )
' ‘,"“'
. ‘ 0 <r < a,,. Replage Ap (r) and Xy py by
. A .
Ak(r) - th(r) and Xk%r) - qxt(r)' s )
~ Repeat from step3. : “
! .
3
stepé6 -\ At ‘yhis stage Atelags 5 F=t4l,...on, apg|ajes
\\i=t+l,.--;n- Let atj = qjatt for j=t+1’._.’n
© and ait-= Piact for i=§j1,...,n' then . replace
» .
N 4 :
Bye) v Bi(r) Y5 (c) and Xi(r) @s _follows
A o ' . o
jey 7By T 9By J=t+1,)..-,n;
¢
Ai(r, <"" .Ai(r) - siAt(r) i.=t+_1,...,ﬂ,
Y, -- ¥ - q. = .
jee) <7 Yo T 930 j=t+l,...n,
Yy 7 Xy T Si¥e(n 1=t+l,....n. \

<y

.

;
B
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Now‘the matrix is of the form' .

. X
T
. X
7\
N "% .
* - 1
1‘ . % )
) . " X X X X X X X X X X X
& ¥
. X {~~=-=-—~ n-t--—---- >
. F
. X :
‘ . ' X I:)_t
. .
$ i e
. X *
step7 If att‘aij' i,j=t+l,...,n then return to step2.
. ) Yo
step8 1f 3., does not divide aij for some 1i,j then let
233 = Qagy + o, 0<r<ai, and in;erchaqge i-th

row and j-th column as follows:

g

Ai(r) = Aj(r) * Ag(r) - :

i) = Bje) T Pe(eyr

-

Xitr)y = ¥i(r) * g (py o

Yite) = Yi(e) ~ Ye(ey-

Return to step3.

LY




Complexity of STANDARD Algorithm.

.Let us analyze the standard algorithm by assuming-.M as the
largest absolute value in the matrix during intermediate
i .
computations. It is not known whether the number of digits in M

is exponential or bounded by a pdlyném@al.
.

{

Let ¢ denote the operation of comggrrson of two integer
numbers, e denote the operation of checking divisibility, s
denote the operation of subtraction of a multiple of one number

.P’ B
from another number and f denote the operation of interchanging

" the position of two numbers. Clearly these are- the bdsic

operations involved in algorithm STANDARD.

2
Then for a matrix of size i we need i ¢ + 2if operations

in step3, i(e+s+f) operations in both step4 and step5, 2i(i-1l)s
operations in steps6, (i—1)2e + 2i(s+f) operations in step?7 and
step8 combined during one iteration of the loop. After at most

logM iterations of step3 through step8, where t=n-i+l will

¢t

divide akj’ k,j=i+l,...,n or a will be reduged to 1. Hence

tt

to reduce a matrix in SNF we need

n-1 2
logM{ L {(1i“c+2if)+2i (e+s+f)
i=1 .

+ 2i(i-1)s + (i-1)% + 2i(s+f)}.

?

For large n we retain only the 1leading terms of the above
expression and obtain . R

3c 2 3e 3s
logM{n 3 ¢+ 3n“f + n 3 + 2n 3)

3

69



(ST

B po ren e =

as an estimate on the number of operations.

is a

multiplication/division iiét is only accounted.

- -

Note that s includes a multiplication and a subtraction, e

3

division. Henc - the tcost is O (n~ logM) where

¥

«

o
remarked earlier M c become very large even for small

n. In algorithm STANDARD we rqﬁe tedly do step3 to step8 until

the next ,diagonal element is

every otherielement in the submatrix

reduced to 1 or it divides

i.e., for submatrix of size

i in the worst case i2 divisions might be nec égary. Hu [Hu70]

first proposed a different procedure whic

integer

first diagonalizes an

matrix and then checks divisibility among the

diagonal elements. The fog@al description of the modified

12

algorithm is given below.

Hu's Algorithm For Computing Smith Normal Form.

¢

following algorithm reduces every .entry modulo thé

value of the determinant d during the computations. We shall

~
P

remark later that such a reduction may not give the Smith Norwai

Form

g

in all cases.

Because of reduction mod d, the maximum entry in the matrix

at any time during the computation is d4-1. Hence at most log2d

‘iterations need to be done in the following algorithm.

[
’

Algorithm Hu. o

stepl

Find the smallest element in absolute value within lst

row and 1lst column. If alj is the smallest element

then interchange j-th column with 1st column.



.

if aj) is the smallest element then interchange j-th
. . ‘ - ' row with lst row. (now aj, is the smallest non-zero

.element in the matrix A}.

o ‘

-step2 Same as stepd of standard procedure.

._/ B
step3 Same as step5 of ‘'standard procedure.

'Y
stepd Same as step6 of standard procédﬁre. ’ ) T
step5 Repeat steps 1 through 4 on the submatrix of order -one
less i.e., - v
r— ! - LA

822..............82n

fe s es s s e s 000 e s e i ,-.

LR Y B R IR R I U A

i anzo‘o'uoaco.--oo'oann
- ‘-‘J
and this process continues until the matrix becomes
diagonal. d v
stepb At this stage the matrix is diagonal’. Let

dl,dz,..'.,dn be the diagonal elements.

If dljdi, i=2,...,n then check d,|d;, i=3,...)n

and so on until dn-lldn; then terminate the algorithm.

If for some j and k., j<k, dj does not dividg dkféhen

replace j-th row by

S — I -

’ - “»
. Ajtry T By(ey ¥

Ak(r);




N -
-

Repeat ﬁiagonalizatioﬁ process (similar to steps 1 to 5 ) for °

the submatrix consisting ‘of the last n-j+1 row and ‘n—j+l'

'

coluMns. Then repeat from stepé6.

I

Complexity Of Hu's Algorithm.

operations assuming the size of the matrix is n.

o

A

stepl needs Q(ﬁ;l)c.+ nf operations.
. e ¢
stépz negﬁs', (p-l}e’f ns + nf , operations. - (5.3.1)
step3 needg (ﬁ—l)e + ns + nf . operations. ]
. ;tep4 needs 2n({n-1)s , o operations. " ot
S ) ! N .
. Hence the number of operations needed to diagonalizg }the first
time is ) -

'

- - Al

3

T = ﬁ(n—l)c + %n(n-l)f + %n(n+l)(2n+l)i"+ n{n-1je

3

- 3
-

StebG of algorithm Hu can be .applied by considering 2x2ﬂmatrix

@
v

¢ [

!
di' 0 o .
14
0 4. -
.3 .
where di'does not divide di’ i<j. ¢ - »

H ’
Hence the number of operations of one iteration of stepl to

step4 within one iteration "to be done'in step6 .is (with n=2
. . 2 . . * //'-‘J .

o
- | a 2w

in 5.3.1)

v

.

¥ -

R = '2c+2f+d'+2}s+2f+d+2s+2£+4s. .- [



°

This  is ' in addition to a -

Hence' for one iteration of step6 the total numberyof~operations

J

is s

n{ R + Qéﬂlll»}. , e "

.

However the total number. of iterations is at most lqud.
T,

Therefore the-total number of operations is at most .

o m .,

- ’

.

T + nlogzdv{ R + Ei%:ll'}'

« -
. -
-
‘e
-,
.
'
—— N (] e
o
j \\ L]
. - v
°
a 9
a o o o
a
‘ '
2 o E
Lt . - ~
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y . ¢
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. <o v
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~ - o ¢
)
L] - i -
At s N * .
. . B .
» r / '
[ . “a . .
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- . ¥
- . -
&
-
- - '
v
<
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>
— - - - AN ‘ 1 L J L
.- W [
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- o
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N
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- " e . ]
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- ° 73 P
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divisions that finds, i,j such that d, does "not divide dj‘

o
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a
v
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1nteger, matsix A be computed modulo d where d 1§ the absolute
>yalue of the,deteruinaQt'of‘gpe matrix A. However this 1is not’
always valid as the follqwing two examples illu§zgﬁté. <
') 1) . " - . . .
Exéﬁble 5.4.1.( (This example works with modulo 4, d=64)
. v . . ’ . , . ) . ! '
)2 4 6 | T
»
: 4
kg 4 12 20 .
A SIS 1 & 20 a2 L -4
L ‘<. \ " p) ‘ ’ . ! J '- .’. A
. Having donekall the cﬂmputationé‘hodulo d we get ‘the SNF as
_ S ? ’ ) ‘
v 2 0 70 P
; 4 0 » .
< 0 ; . ” . F ' g
. 0's 0 ‘8] "' ” T '
. ! ' -
4'\‘ " ! ‘ te > ‘/r"
and the 'actugl Smith Normal Form, is also -
) . .ol ro
¥ -y K . ’
) 2.0 0 . AR .
. ) . Ll
0 4 0l . fi>\)’ . "
7 0“0 1 8" R . (
..\\' ) @ \ "(’__v‘ * - } '.
' » , @ - ' " ? * ". " !

b2

s

Fl

. ' " ! C ' ' o
5:4  HNF Algorithm. L ) X : o,
. f ‘ .

. ’ . ‘ B \ » - . o . ! '
In transforming an integer matrix to SNE using any of the
algorithms describedy~ear1jer, the umber| of digits in the

¢& ‘ ) M ’ ' .
maximum intermediate values _produc?§~ does | not appear, , ﬁo be

& . M ) \o ‘e

bounded by a polynomial in the “input‘date ThlS was flrst
pointed out by Frumkln [Fru77]. In o der to eliminate

interm%g}ate «swelllng of. numbers, Wolsey { 0169], Hu [Hu70] and

Frumkln [Fru77] have suggested that the Sh th NBrmal Form of an

\

I

]




» .

’
¢

Example 5.4.2, ' ’

but the actual Smith Normal Form of the ex(ﬁgle is
L LA 3 v

.

e . . .\m o

.
. \ ’
' 1

Kannaﬁ [K&B79] gives an alg?;ithﬁvto compute the. Smith.aNormay
. . \ r i -

Form ' (8NF) ~using' Hermite Normal Form (HNF) and Left Hermite

Normal Fowm (LHNF). It is shown fin Kannan [K@§79]- that all

intérmediate’numbers'prodpced‘by his’algoritﬁﬁ remain'bqunaed by
. - ‘ : . .
a  polynomial, in the length of inpyt data. The algorithm given ¥

below is adopted from Kannan [K&B79] and it gomputes the Hermite

Normal Form, of successive (jixi). submatrices as° oppoégh to |
“ 3 o !
K} N

i
&

build}ng the Hermite Normal Form row 'P§ row. As before-we"’

denéte A

k (1) and Ak(c) the_ thhﬁ row  and’ %:thcacolumn of A -
respectively. ) , v , ¢ o ’ o -
’ S ’ ".
+ o . ) =
Q - » °
p . .
. . . '
C) L - o
' ‘ - 75+ . .

N ) . ‘ 3
(This example does not work with modulo 4, d=127)
‘ : . . J
. . rd
3 4 5 *
12 13 19 |. '
17 3 9 '
I . o}
'{ Having done all the calculation modulo d we get the SNF as *
s ° ¥ . . . I ™ ;
- 1 0 0 ’ . ‘
A - N
. 7 0 1150 ° ~ v
M 0 L0 ‘ . PO



" ) ] - R
. \'.‘“ g ! q ,
Algorithm HNF. ’ : ‘ .
) stepl i<--0.
\\—-/ " . . N (\‘,\\/
. step2 i<--i+l ; if i=n terminate: '
# oo . -~ )
/ step3 For j=1,...,1 do the following:
, . . ‘
| S . 3.1) r &<+~ (aj"j ' aj,¢i+l)' Find p and q ‘such that ’
o ., - " ¥ e
° = A PN .
. . / T o Py Y ¥y .
B F. -—
3.2) Form D as p* aj,1+l/r
Q<o 4
1 . X
a../r
' . -q A JJ/’ J
; 3 . o
- ] : ‘ -
. ‘ ] 3.3) Form E with j-th and (i+l)-th column of A i.e., »
T } . .
| ‘
: R By tiae) -
] 3.4) F <-- ED. ‘ "
P . .
. ¢ 3.5) Replace j—th/col'.y/n of A by first column of F and >
‘& t , . .
@ repiace (i+l)-th column of A by second -column ‘o'f F
’ T ¥
. l1.e.,n Aj(@f) (== Fl(ﬂc) ’ Ai+l(c) {== F2(<_:) .
. . - . 4 ‘ ) N ‘ \ ‘ . ‘ J::
, "3.6) If 3>1 then Call Reduceoffdiagonal(j,A). .
t oy, . v : v ~ .
¢ L . ', ) ' . . .
' © $tep4 Call Reduceoffdiagonal (i+l,A).: ; <
R O L | R K
\ stepb Repeat from  step?2. .. . ' - .
: ¢ Y e K ‘. 4 v! . ' P ot
) R ¢ . . (P ™. ¢ . . .
% - "r . . ) J‘
X + 'r :"\
¢ ' / Y ¥ . - e . !
© - @ g H " ﬁ’“ . Y <
wt "‘ - : T , , ' 3 .
- ., ' , ‘
. [ . - : Vv




Algorithm Reduceoffdiagd%al(k,A).

stepl 1f akk<0 then Ak(c)<—

T Py

étépz For i;l,...,k—l do the followinb:

> ’ \

o | f?ctor <——4;kz/ak;}’ )
k(C)(’

Az(c) (= Az(c)_ factor A

I

¢ T
v

The algorithm HNF can be modified to work on any (mxn)

matrix with full fow rank m. It will then produce the normal

- @

. form (H,0) where H is (mxm) lower triangular matrix and the 0 is

mx(n-ﬁ) zero matrix. If we use the modified algorithm on any

(mxm) integer. matrix A" with full column rank and perform row

instead of column operations izij/A will be transformed into a
(

Left Hermite Normal Form (LHN‘

with positive diagonal elements. Both the algorithms HNF and

.LHNF can be .combined repeatedly to produce the Smith Normal Form

of an integer matrix. In such an algorithm “the bottom right
(n—i)x(n-—i)l square matrix is transformed into HNF frequently.

For details see in Kannan [K&B7.9]).

i

g) where H is upper triangular



write the Hermite Normal Form of A as

5.5 Algorithm For Computing Smith Normal Form.

We propose a_ method for computing the SNF of an integer

matrix which is based on repeated computation of UNF of
principal submatrices of the original matrix. - We need the’

following basic result for the development of the algorithm.

‘
/

Let A be a nonsingular square matrix. For some i, 0<i<n we can
o . SR

- ) -

Di X

. ' \
where ) ' ‘ QK\
: ) ; *

Di is (ixi) diagonal matrix, \

En-i is (n-i)x(n-i) HNF of A,
X is ix(n-i) zero matrix and , ~<§

Y is (n-i)xi zero matrix.

- Note that if the HNF of A has no principal diagoﬁq}

submatrix then we can take i=0 in the above representation and

our definition yields A_=E_=HNF(A). It .is .not difficult

to show that

v
o .

]

b . ’- / \dﬁ
&
S N

HNF (A-f)

. T o - \H\NF( E Y
' / , ( n-i%
/ — . -
Q\ .
78 . / o
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Ve

.For, in applying algorithm HNF, to A} we do steps 4 to 6 repeadly

1

algorithm HNF to (Eh-‘

(seé SNF algorithm below). i
4

+  Steps 3.1%&0 3.5 of algorithm HNF do not change the matrix
, N ) ,
Di‘as well as X. When step3.6 is called, propagation of nonzero

elements in‘lower part of Di and in X could happen if

b , .
ékzﬁekk > 0 i.e., if I > 0. But 2z < k-1 and so akz.always

7

remajin’s 'zero. Hence thefe will be no propagatian of non zero

values i.e., the step d
' L]

Botey 7 By T F;kz/ékgw Be (o)

-

will not change Azfc)f

»

lﬁt in orFere to obtain the HNF of Ag.

t

If after we compute HNF [(E__.) "] the result hgs a

n-i
nontrivial princ;pal diagonal submatrix then the HNF of the
original matrix haé a diagonal submat:ix of order at lea;t‘ i+l.
This iﬁpbies that one can obtain a diagonal matrix of full rank
by repeatedly- doing HﬁF “on fhe lower right non—dfagoﬁai
subma&rix of the original matrix. We make use of this result in
our ‘algorithm below. .

Algorié%m SNF. ‘ o ..

4 R

stepl Do HNFF on A and call the resulting lower triangular

matrix By (assuming Ao has. no diaéonal submatrix) .
i <=- 0. { (ixi) diagonal submatrix }

w

79

"Hence it is suffijcient to apply the



step? If i=n terminate. Let

By .. " —
r_k[)- 0

1 . . . . ..&
A, = ' - »

step3 Set B <-- En .

Y

ste§4 Do HNF(Bt) and call the result C.
. , .

L ]
step5  "If clllcjl r 3=2,...,n-1 then write
4 - _
R
1 ~
=1 . N
Dis1 ° N
~ .
0 €13 S
e - coen

' » . Y
and En_i_l-is the: principal (n-i-l)x(n-i-l) submatrix'

of C. Now set i <=- iil, return to step2.

stepb Now ¢4, does not divide le for some j, 2 < j £ n-i

set B <-- C and return to stepd. _
« - ?

Analysis Of SNF Algorithm.

Let W& be the amount of work required to obtain an
(i+1)x(i+l) principal diagonal from an' (ixi) principal ‘diagonal

i.e., 1in the\\gbove'algorithm we do steps 2,3,4 and 5 Wi times

. to obtain - an (i+l)x(i+l) principal diagonal from an' (ixi)
principal diagonal.

3

In the worst case we can have all the diagonal elements.of

.




k3

1

Di equal to 1. Now the maximum absolute value of any entry

in En—i is 4, where d is the q?solute value of the determinant
of the matrix A, Hence at most logd iterations of step4 and

step6 are to be done before we obtain Di+1 from D, . Since

stepd4d cost dominates step6 cost, we have

v

w, = logd (cost of'doinq HNF in stepd).

Therefore'the total cost is

n-2 n-2 ;///
£ W; = Ilogd(cost of HNF of (n-i)x(n*i))
i=0 i=0

We‘%temiZe the cost in step4 of doing HNF. Here we do HNF of an

.(n—i)x(n—i) matrix. Bach call gf HNF requires; the following

. . N
operations:

-

1)  (n-i) (n-i-1)/2 GCD calls.

2) (n-i)(n:i—l)/z 2x2 matrix multiplications.
3) in—i)(n—i-L)/Z Reduceoffdiagoﬁal calls.

Each matrix multiplication requires 8 muItiplicationé; each GCD
call requires a maximum of logd division/multiplications
opeiations and each call to Reduceoffdiagonal requiresh' n
multiplicat&ons and 1 division. Hence the cost of doing HNF of
an,(p;i)x(n-ix matrix is at most

3

3(n-1) (n-i-1) [Logd+8+n+1]. ' oo

Therefore the total cost of doing SNF algorithm is at most

-2 . . ' Q. .
n 1 . . ' 4
L f(n-1)(n—1~l)[logd#§+n+l]1ogd = 0(n-logd).

i=0

A
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CHAPTER SIX

9

»

\éméijNoFmal Form Using Modular Arithmetic.
In this chapter we give a method to obtain the SNF of an
integral ma?rix using modular arithmetié. "Hu [Hu70) first
roposed obtainiﬁg. SNF‘ of an integral matrix using modulo 4
(absolute value-of the determinant) arithmetic. Unfortuﬁately
such a method does not work in all cases. Borosh [B&Fé66], Cébay
[C&L77) 4and the modified congruence method sugqgsted by us in
this thesis avoid ove;f}ow in the intermediate computations 1in
finding an exact solution of an integral system of linear®
equations, Havas [H&S79] has commented that it does not seem
possible to compute./SNF using an anglogou? congruence meghod.‘
He has given a me;hod}to compﬁte SNE‘ for several prime power

medulii. However his ‘method demands the calculétion of the

determinant of the given matrix. A brief outline of his method

follows.
i
f .
l -
6.1 Study Of Different SNF Algorithms. . 1
o : N ‘
. 3 TN
. é}gorlgpm HAV, - FHavasJ \{:23

stepl. Calculate the determinant of the matrix 4.’

~ o .

N

stepé. Factorize @ = I pe(p)g
®|d

j ‘ «

,step3. For ‘eaqﬁ prime 'p in the fgctorization of d, £ind the

YR




p-primary invariants by computing the Smith Normaf Form

modulo pe(p) +1.

" stepd. Construct the SNF using the Chinese Remainder Theorem.

" r

We have the following comments on this algorithm: 1)
Computing \a~ determinanth directly 1is egquivalent to solving a
system direct and ‘hence all computational difficulties
inherent in the ex‘act solution of a system of linear equations
'Y *is inherent in computing a determinant. 2)-When the valuye of
determinant is 'large"one ﬁas to factorize, which is a nontrivial
procedure and then for each prime power in such a factorization
' a complete reduction of original matrix has‘ to be done. 3) This

method does not seem to work 'in all cases. See example 6.2.2.

[N

Rayward-Smith [Ray79] has given a method that ‘avoifis \the

s

factorization 'of the determinant and hence avoids the repeated

reduction of the o7f§inal matrix modulo prime powers. Instead

he has suggested finding the prime factors in the factorization

~

z of the diagonal elements i.e., his proposal is to use Hu's
method to,obtain a diagonal matrix and then get the prime power
factors of eacﬁ diatjonal- element. From these factors the SNF

.* . can be built up. More formally his algorithm is as follows:

83 N



.o - - F L M o2 o N

\ . . t
3 .
Algotithm RS. [Rayward-Smith] o ‘ . L .
S {
stepl Produce ‘a diagonal matrix for a given matrix A -

Let the diagonal .matrix be (xl,;..,xn).

l X . ’

step? The invariant factors can be calculated 'directly from

the diagonal entries (xl,...,xn) as follows: -

) Let" p1<p2...<pm be ali prime factors of elements:
of -diagonal matrix, so P is the largest prime dividing ‘ .
) any  of XyrXgreeosX o Since - 4 = XyXge ooy

“it follows that Pys.-+,p, are distinct prime factors
Y o .
| , .

r J=1,...,m, let bjk be the largest poweﬂ .

of 4.

For eac pj

to which pj can be raised such that the result will

-
)

‘be a factor of X k=1,...,n. This éssqdiates wit7<~

- . each Py a vector

N * ‘ b. ",
. .o Jn
. ' ‘ - A

. m by ,
Hence Xy = n (pj) J ¢« k=1,...,n. i
. k=1 . . .
< ' *
If the entries in bj are ordered in. ascending numerical order -

. . a new vector




' (e ] T \\\\“‘;<\~\~‘_:::j
il '
. . S5
cy = . |
.. o
. : Jn
| .

is formed, where c31 < Ciz ATEERS cjn'
factor is given by ) o R

The . i-th’ invariant

!

Toom o c.i
: d; = (p.)- 71,
=1
Example 6.1.1.

L

Assume the first step has béen done and we have the

.following diagonal matrix.

\ o -
5 0 0. p ,
» 0 12 0
0 0 10
. _

-

Suppose m=3 and .p1'2' pz=3 and p3=5, so three vectors

are produced

‘ Clo KN B!
5. _ _ ¢ °
. by=|2 |, by=|1/|, by=lo |. _
‘ 1 0 1
. This yields ‘ 3
T A =
0 0 0 -
“ \cl = 1 14 C2 = 0 '] C3 = l . . ),
v _2 '1 1'
- L. «;L) . . -
85 ‘



‘ _'50,0.0 1 . “ -
o Hemce ) = 273750 = 1,14, = 273%}x 10, @, = 2%3%s g0, . -
- ! — : N
- , The method does - not ,alW&Ys ‘produce a corréct form (see
. A

. example 5.4.2) when diagonalizatio? is done through stepl to
AN .

<

step5 according. to Hu's algpiithm.' If modulo d is not used then
overflow probllm 'must be tickled. Hence our cofclusion is that

none of these methods will perform satisfqéfbrily in general.

-~ -

Example 6.2.2. . . !
‘ 109 .48l ' '
. e

L . A = 423. 1866 R . .
. R -y
“ 536 2363 . ’
‘ where determinant of matrix
: But the correct SNF of A is | 1 0 0
‘1o 3 of-. - T
- ‘ - o o "6 )
. B . ) h ' ’ . -
Using algorithm HAV., Smfth.Normal Form of A with fespé&t“té ‘ .
a ] , ‘
. (mod 22) 'and (mod 33) are - ) \i\*,".

~ . . R b o .

[~ . . s T
1 0 o ‘ (1 6 o
. : !
6 1 0| and 0 3, 01 . -

0 0 2 ‘ 0 0 3
ioos] o [ee

Applying the Chinese Remainder Theorem on: the

above two diagonal matrix we get

f N . . ' ns-‘ N
~ which is not the correct Smith Normal Form of a,

e

8]’ . . 'i . Cew
. g

e
.
¢

.
a
-~

L

ate




N

-

6.2 ’'Smith Normal

N

Form: Heuristic approach:

\

:%“_.
=

2
‘K

~

‘Ogr Eppgﬁpch consists of two stages. In the first stage we ;

»

obtain several diagonal forms’'of the given mat;ix modulo several

¢

5 itably‘bb9sen primes. We can construct a diagonal form of the
“ L‘U N [

oridginal matrix usi

any two diagonal el

respectively,
A4
diagonal matrix in

SNF. ' ;

0 .

‘Let A be an nxn ng%singularamatrix and p be a2 prime. The

_.following algorithm

ng the Chinese Remainder

iagorial matrix is denoted by (dy,...,d ) then we can replace

ements di' dj’ i¥j by thejr

By- such successive replacements we ohtain a

which *d.|d, i.e., we have _a. mdatrix -ih 7 %0

’

® ks

i

.is a

»

slight

diagonalization procedure given in chapter 3.

A
Algorithm H

o
a

o

GCD

modification

Theorem. o If  this

o ’

€

gnd LCM

ARy

¥

3

of . “the

4 . J ‘
’ Q -~ )
steplv aij f-- aij mod p , 1 <'1,j < n. . -
e ‘ : , 1
4
. y 4 / -
step2 k <-- 1 ; Temp <--11
’ ' N S 4 Lo o
. step3 Find. r, k S,f § n,‘such tﬁét (?rk,p) = l.‘v//.ﬂ y
o e » o ‘ ﬂ - . . ‘ '?’
step4 If r=k then repeé;\;;3h'step6 Jothexrwise from steps;. v
. “ ¢ . 1‘ ' - . . . "‘ e } .
. . o : PR N )
step5 Integgﬁange rows r and k and-replace Temp ‘<-= (-thp). .
& . g " ,. : N
. o , D s , ' .‘ ) ' o> L & . Y .
.+ step6 Find the mverse_'akk of Ak such that akkakk= }-m?d p-

v




/ B N
’ stegﬁ - Temp <-- a,, mod Py

! - ° b
- ke <77 @Ak MOd PN dk <t < nil,

S | |
' ' \‘ -
K , ‘ , J V4 . o
ﬁ\ o ﬁtep&;'_ For 1 < s <n, s #k reglace ag, by
f ( v . '» . L ) i
" \\. . . T e \ast == aSt - aSkakt mOd\\p, Kk _<- t S“+1.

>

)

‘% .
step9d apy <-- Temp.

| " steploO If k = n then terminate potherwXse repeat from step3f:
. N e

A
v

¢ ) If we .choo§e‘ t primes bl""'pt then we can have .t sets
of diagonal matrices. Let B be an nxt mattrix such that‘thg j-th

column of B is’ the diagonal matrix obtained by the- above

algorithm with prime pj. Below we show how to'get one djagonal

~matrix using the Chinese Remainder Theorem. ’ -
J .- Y
stepl P <-- PiPg+« «Py - o
step2 Find the inverse R; of r, with respect to Py where

| P
r'=5'1=1’-¢.'t.

step3 For i=1l,...,n do the fallowing:
’ t
Diag.<-- £ r,Q.B,. mod P.

[4

4 Next step is to compute the SNF from the diagonal matrix

which we have obtained. We use the following lemma.
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Lemma 6.2.1. .o ) ' )

* N .
The . matrix diag{.t.,m,...,n,...J is’

equivalent to
w L4

diag{...,(m,n),...,Im,n), ...} .i.e., any two non éero .
. elements ' of a  diagonal matrix may be replqced by théir
1)

greatest common divisor and least common multiple.

Proof .

(See [Smi66])-

Jde@ily we expect to get the SNF by applying Lemma 6.2.1 on

the diagonal matrix. But it does not work in general.

Example 6.2.1.

Let us consider an 4x4 Hilbert matrix with suitable

scaling
-12 6 4 3—-
- 30 20 15 12
20 15 12 10 . ' t® -
105 84 70 60
» — - -

We get the correct SNF using algorithm H with primes 37 and

47. After diagonalization of the above matrix ,(using the’)
heuristic "approach with respect to pfimé 37 thé‘diagonal form is
{12,5,25,2] and with respect to prime 47 the d1agonal form is
[12,5,16,26].‘ Now reconstructing the new diagonal mag?ux of the
above two using the CRT we have [12,5,580,261]. Nowleplying

J
lemma 6.2.1 on each.of the resultant diagonal elements ohe can

89
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~

a4

-
-

» N ‘

get. [1,1,1,3] which in fa?t is the correct- SNF of the 4x4

Hilbert mptrix. - ° \ ‘ . ,
- . \ N ~

However algorithm H fails to obtain the correct SNF with

primes 47 and 79. After diagonalization of the above matrix

using \xbe heuristic approach- with respect to prime 47 the
diagonal form is [ki,5,16,26] and with respect to prime 79 the

diagonal form is [}2,5,53,12]. Now reconstructing the new

diagcnal matrix of the above two diagonal forms using the CRT we

get [12,5,1238,1671). Now applying lemma 6.2.1 on gdich of the

.

resultant diagonal elements one gets [i,1,2,1858] which is not a

correct SNF of the 4x4 Hilbert matrix. -
. Y .
) ¢

We applied algorithm H and then lemma 6.2.1 on several
) -

random matrices. In several cases we were able to obtain the
correct SNF; however for several other examples we were unable
to obtain the correct SNF. Moreover our observgﬁ}on reveals
that for a selected set of primes the SNF can be obtained using
modular arithmetic (As it is seen in example 6.2.1). We give

several examples below and for each example we give a set of

primes for which algorithm H gives the correct™ SNF.

20
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. We -give below the Hilbert matrix (of order 3 to 12) and the

correspondin? prime(s) for which correct SNF are obtained.

> 4 ' .
R e
matrix prime(s) SNF ( {
By N7 : C L2
H, 11 (1,1,1,3)
Hg T13,17 1,1,1,1,12]
. He 17,19,23 é§,1,1,1,1,20]
H, 17,19,23 (1,1,1,1,1,1,300]
Hg 17,19, 23 - (1,1,1,1,1,1,1,;525)
Hg 23,29,31 [1,1,1,1,1,1,1,.1,1960]
Hyo. 59,61,67 . - 1,1,1,1,1,1,1,1,1, 49392]
. Hp ' 37,41,47,53 ,1,r,1,1,1,1,1,1,1,1481760] )
Hy, 89,97,101,103 ‘{1,1,1,1,1,1,1,1,1,1,1,5821200]
.
\
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Here.” we give several random matrices and the corresponding

ptimes Tor which we can obtain correct SNF. We debote RMijj) as '

the i-th order and j-th kind random matrix and those can be seen

. > . b ,
in Appendix 2% ‘ .
“\ - -

e s

RMi (3) primes , SNF
O S

| -

RM3 (1) ) 5,7,11 [2,4,8) -

RM4 (1) ST . 11,3,6,8]

RM5 (1) 7,1 (1,1,1,1,23)

RM6 (1) S 11,13 (1,1,1,1,3,15]

’M7 (1) 17,19,23 (1,1,2,4,8,16,32]

RM8 (1), 0 7,11,13 (1,1,1,1,1,5,5,10]

. |
"
/ ‘ ’ .
)
/
/’ *
! ~ i

13
P
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o Here we give' some other random jmatrices and the .
corresponding primes for which we are not rgetting correct SNF
whereas the correct SNF should be the same as before. ‘
. ‘ " .
- ’ ' N ! A
RMi (3j) . primes SNF -~ / r
* ‘ 11 ‘1‘;‘
A . - .
.RM4 (2) 5,7,11,13 ) (1,1,1,324)] N
RMS(Z) '7’].1~ " [111'171'65]
RM6'(2) 11,13 . (1,1,1,1,14,84} )
‘RM7(2) 17,19,23 ‘ (1,1,1,2,1,1,1526) et
RMB(2) . 7,11,13 - [,1,1,1,1,1,1,107] L
a _ .
4 . ."l,;
Thus we conclude that finding a proper set of priﬁéﬁfto‘
B “,“L“‘}""& - 4
obtain the SNF of-a matrix using modulartmethod is still.éﬁ,qbeﬁ
. ' . e
problem. C ST T
Yeal o UV
/// , . N :};—'s;h:‘ U L ,,:* ;:.. P
4 ‘i’n“:';p“?£¥"\~.d\.;\‘ ,
< * .t '.:’lv rk:':.‘l N
o ’ 1
+ i
" o : !
R g
- ' ! ’ L ('3 ro
- v- s ’ £
G
1 )
. < o
’ / o
%) ' \ |
\
} 93
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Cohclusion® : o s . ¢
Lodl .
During the _1as£ ten to twenty years’{there has been a
growing interest in computational aspects of iplgorithms to
. . 1
v {
transform .a matrix to a canonical form. A cloéhlx,Lelated
\ ,

problem of interest is that of finding an exaét particular

solution of a system of linear diophantine equations in
integers. Many of the known algorithms for finding both gener

and particular solutions of a system of 1linear diophantine

‘equations have been based on Hermite Normal Form. However in

a +

computing by Hermite's method the absolute value of the

intermediate results can reach (2)2m where m is the number of

«"Jlequations.

In oidif to avéid swell' in the intermediate expression
Gauss elimination algorithm may 'be done over a finite field
(arithmetic being modulo a prime) . IA chapters three and four
we have shown how as few primes as ére necessary may be chosen
to obtain an exact solution of a system. The main conclusion is
t;;t.just sufficient primes can be chosen depending upon the

followingE size of the matrix, the norm of the matrix as well as

the wordsize of the particular machine on which the problem is

,to be solved.

Since the problem of finding an exact solution of linear
system is related to obtaining Hermite Normal Form, we adapted a

t /,
method duve to Kannan [K&B77] to obtain the HNF of a matrix and

then solve the given system exactly by back - substitution. It
seems from the examples tested by us ' that the problem of

overflow is still inherent and not completely eliminated. To

94
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s
quote one example, the aiégrithm [K&B99] - produces

intermediate numbers wheh applied to the matrix LY

- F-ai 543 245 239 65 | . -
23 56 567 54 32
123 234 .345 456 567

43 54 65 457 89 : o

Q

432 321 213 87 98
- ‘ N

Hence én.attempt was mgde to obtain the canonical forms (in
particular Smith Normaiw\Form) using modular arithmetic. We
remark that the'method®suggested by Hu [Hu70)], Frumkin [Fru77)
and Havas [H&S79] fail on several practical énoblems. Our

results are not conclusive ei;p’r. We have given examples where

" such congruence methods will indeed find Smith Normal Form

correctly. However more extensive and indepth study into
congruernce methods for obtadining Hermite and Smith Normal Forms

are necessary. Through extensive testing and search we have

‘been able to find the set of primes to be wused in congruence

method related to fi}ding the SNF of some special matrices.

']
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Test of Primality ) ‘ ' \

ot N
’ !

We compute the prjme numbers using probabilistic algorithm‘
of Rabin [Rab76]}. To test whether a;number x is a prime, choose
m random numbers 1 <.b;, <...& b < x. For any,x and e>0
if log(%) < m then x would be a prime number with probability

greater“than (l-e).

Algorithm FINDPRIME. J[Rabin]
/:

stepl i <-- 0.

step2 i <-- i+l ; if i = m+l terminate.

step3 1£ bt # 1 mod x° then FLAdﬁ=true. .

b X=1 .
stepd If { == = m is integral,
2 K
1 < (b™-1,x) < x)} then FLAG2=true. /
‘ (
stepb ~If FLAGl or FLAG2Z are true then (x is a éomposite

number) terminate otherwise repeat from step2.

- In this algorithm the probability of error that x be prime
is smaller than l/Zm. So if one uses m > 25 there is a small
chance for an error in the decision that x is a prime. In our

test we chose m=100. '

96
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The maimdifficulty is in step3 ‘i.e., to find b¥ when
3 s, L - . T .
o x is large;/”pr if b and x fit in one computer word then step3.. r.°
. L Iy ., ' L

]
can be done very fast using binary exponentiation.

Now in order to do step4-we do the~followiné:

¢ We use the following method to find  GCD (b™-1,x):
4 i .

a) If mod(b™,x) = 1 then GCD(b_,x) = n.

b} Tf mod(bm,x) = 0 then mod(bm~1,x) = x-1. i
Now GCD(b™-1,x) = GCD(x-1yx) = L.

.,

¢) 1If a) and b) do not happen
y ' Compute y = mod(bm,x).

Now GCD(b™,x) = GED(y-1,x).

97
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. Random' Matrices

r.
X {

#M3[11:’

HEEN

E
6

4

6
22

24

10

28

21

10

28
21

30

30 |

56

18

" 39

12
16
39

36

12
16
39
36
43

78

4
33
95
206
-
4 5
19 23 { . 7
33 38
73/ 87
76 114_j o
—_
4 5 6
19 23 ¢ 22 |
33 38 29
73 87 83
76 94 _ 95
90 121 :130

»
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RM8[1]:

’
-

. RM3[2]:

53

RM4[2]:

\

(e,

1 3
3 10
2 '9
8 28
5 21
9 30
5+ 19
1 3
3. 10
2 9
8 28
5 21
9 - 30
5 19
5 21
146
566
716
613
2817
4694
10544

.3 4 5
bo12 19 23
. \

17 :’ 37 42
42 © 88 108
39 94 129
50 133 209
4§ 148 245
3 4 5
12 19 23
16 33 38
39 73" 87
36 76 192
43 90 115
36 91 118
36 78 102
644 642
2496 2490
3156 3152
2785 3216
12810 14859
21371 24933
47984 55860

22
34
110
164
376

584

22
29
83
83
‘144
188°

145

v 4422

20547
34725

77586

24
39
140
165
416

1031

24
31
98

91 .

184

354

266

26
25
83
69

151

400

454

ey

I
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D

2861
4701

‘10775

11339
\L—' ’

935

4816
13280
13344

21539

“RM7[2]:

[ 2333
8603
11760
33610-
32727

54659

62519

625

3531

SN - S oy
. CoL. T .
. * /
f
2985 © 3698 © 5036 ' 9446 '
_13673 16955 23114 43307 ) -
22473 - 27913 38103 71289 | -
51502 63938  87234° 163315 |
54217 67364 91964 172087 y o
ot - a ‘
- A ‘ , - .
4185 4658 6786 ° 13176 - 12237 '
15830 17675 25704 49797 *46321 \
21633 ° 24253 35218 68104 . 63440
59542 66518 96819 187450 174587
59857 66944 97449 188522 175784
96412 107413 156877 304269 283435
.
. - "
! ru
\ . ”” - ‘ —_
11299 , 15154 24380 . 43289 48906 , 66122
41526 55243 88219, 156966 175862 237597
56665 15023 119087 211967 236192 318143
162704 217840 349234 619776 698596 941502
158017 210332 335844 597195 669430 903326
265174 357069 576151 1021398 1158574 1564681
304751 414610 673274 1832996

¥

100

1189213, 1361518

4

o

-

e

I NCamoon o
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-»

o

S

-

'RMB(2]%

1060
3481
4101
12370

11369

19609 .

23280

19938

4935
17106
19989

60636

55461

96102

114747

98515

6558 .

22595
26163
B0068
72774
127i23
153136

131270

19691
33398
38947
119345

108750

- 190607

229708

194413 .

1886}
64855
74717
1229722
208429
365789
441545

378340

101 -

21792
74331

84555

$262617

236499

418775

510330

438090

v

28618
97886
112147

347134

314172

555271

672926

574800

N s B it oLl

—

18289,
, 62381
70944
220378
198702
- 352026
428078 o

367463

—
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