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ABSTRACT

Existence and Approximation of
Absolutely Continuous Measures Invariant
Under Higher Dimensional Transformations

You-shi Lou, Ph.D.
Concordia Unlversity, 1991

]n 1 n

Let 1" = (0, 1] and L” be the space of all integrable functions on 1.

n — In be a measurable, nonsingular transformation on In. It 1s well

Let 7: 1
known that f* 1is the density of an absolutely continuous measure invariant
under Tt if and only if f* 1is a fixed point of Pt. where P'r is the
Frobenius-Perron operator associated with T.

Using a Theorem of Rychlik's, we prove a sufficient condition for the
existence of an absolutely continuous invariant measure for n-dimensional C1+c
Jablonski transformations. We present existence theorems for countable
Jablonski transformations, random Jablonski transformations and higher
dimensional Markov transformations. The existence of finite approximations to
the invariant densities for Jablonski transformations and random Jablonski

transformations is established. We also present a compactness theorem which is

useful in approximating the invariant densities for Jablonski transformations.
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CHAPTER 1

Introduction and Preliminaries

1.1 Introduction
In 1973 Lasota and Yorke [7] proved a general sufficlent condition for

the existence of an absolutely continuous invariant measure for expanding,
plecewise C2 transformations on the interval. In spite of the suggestion at
the end of [7] that the "bounded variation" technique can be used to obtain
analogous results in higher dimensions, the generalizatlion of the main result
in [7) has taken much longer than expected. This was partly due to the
difficulty in finding the right definition of variation in higher dimensions.
For smooth maps on boundaryless domains, general results for the existence of
absolutely continuous invariant measure were known as early as 1969 [21]. For
piecewise C2 maps in Rn. the first major attempt to prove an existence result
came in 1979 [22]. The authors of [22] do not use a bounded variation argument
but the proof, based on a one-dimensional version [S], 1s flawed. The first
correct, but partial result, appeared 1in [11]. There, Keller considers
expanding, plecewise analytic transformation on the unit square partitioned by
smooth boundaries. A complicated definition of bounded variation is used and
the method can not be extended beyond dimension 2. For boundaries which are
not analytic, the sufficient condition that arises is rather complicated [23].

Working on rectangular partitions and with expanding, plecewise C2
transformations which are very restrictive (the 1ith component of the
transformation depends only on the ith variable), Jablonski [1] proved the
existence of an absolutely continuous invariant measure using the Tonnelli
definition of bounded variation. The technique in this special setting is

exactly analogous to that in [7].



In this thesis we study Jablonski transformations and more general Markov

transformations in higher dimensions.

In Chapter 1, we introduce Jablonski transformations and prove the
denseness of these transformations in Ll. Also we review the proof of the
existence of an absolutely continuous invariant measure for these
transformations and prove a new result for countable Jablonski
transformations. In Chapter 2, a result of Rychlik [18] is used to present a
new sufficient condition for the existence of an absolutely continuous

14e Jablonski transformations in Rn. In Chapter 3, some

invariant measure for C
new existence theorems are proved for  higher dimensional Markov
transformations. These results are needed in Chapter S. In Chapter 4, we study
small stochastic perturbations for n-dimensional Jablonski transformations and
discuss some finite approximations to the invariant densities and the
uniqueness. In Chapter 5, we discuss the compactness of invariant densitles
for families of Jablonski transformations. In Chapter 6, we approximate the
absolutely continuous invariant measure for non-expanding Jablonskl
transformations. In Chapter 7, we prove a new sufficient condition for the
existence of an absolutely continuous invariant measure for higher dimensional

random Jablonsxi transformations. In Chapter 8, we study finite approximations

to the invaritant densities for random Jablonski transformations.




1.2 Higher Dimensional Transformation and Frobenius-Perron Operator

DN and let B denote the Borel c-algebra on 1. The

Let I" = ([0, 1]
n-dimensional Lebesgue measure on 1" will be denoted by A, and we write
A(dx) = dhn = dx = dxl...dxn.

1

Let " = Ll(ln. 8, A) be the space of all Lebesgue integrable functions

on I". The transformation T: ) Gl I" is defined by

t(x) = (p,(x),..., ¢ (x)),

where x = (xl.....xn) and ¢1(x) is a function from I" into (0,11, 1 =1,...,n.

N 5 1" is measurable if for any

We say that a transformation 7T: I
measurable subset A of In, t-i(A) is a measurable subset of I". A measurable
transformation 1: I — I” is nonsingular if A(A) = O implies h(t_l(A)) = 0.
For T nonsingular, we define the Frobenius-Perron operator Pt: L1 —_ L1 by

the formula

I P_tfdx=J._1 £ dx,
A T (A)

where A S In is measurable. It follows that

n
_ 8
Ptf(x) = W J' -1 n f(Y) dy.
T [ n [0.x1]]
i=1
It is well known [2] that the operator P_r is linear and satisfies the

following conditions:

1) P,r is positive: f = O implies Ptf z 0;

2) Pt preserves Iintegrals: for any f € Ll, we have

J'nPtfdx::Infdx;
I 1

=P k (tk denotes the nth iterate of t);

3) P X -

T

4) Ptf = f If and only if the measure du = f dx is invarlant under =,

i.e., u(t-l(A)) = u(A) for any measurable subset A of m.



1.3 Jablonski Transformations and Functlons of Bounded Varjation in R"
For I® = (o, 11, let P = {Dl....,Dp} be a partition of I” such that
p <o (l.e., we have a finite partition) and
o D, =1 D,.nD_=¢ f k
v = I, n = or j + k.
J=1 J J k

A transformation ~t: In——+ In is called a Jablonskl transformation if it

n

is given by the formula

t(x) = "1}‘*1"""¢n3 (xn)). X € DJ. 1s jsp,

n
where DJ =1glla15’ bij)' ¢1J: [alj' bljl —— [0,1], and we write
[aij. bij) if biJ <1,
[a b,,) =
130 "1 =
[aij’ biJ] if b1J =1,

To define the variation of a function of n variables, we use the Tonelll

n
definition ({1}, (10]). Denote by i i the Cartesian product of the sets A,
i=1

and by P, the projection of R® onto R*! defined by

Pi(x1,....xn) = (xl’""xi-l'x1+1""'xn)'
n A
Let A=T1 (ai, bil and let g: A — R. Fixing i, we define a function V g of
i=1 i
the n-1 variables (xl”"'xi-l'xi+1""xn) by the formula
A r
Vg=Vg=sup{ZI]gl ,...,xk,...,x ) - glx ,...,xk 1,...,x )|:
1 i n 1 i n
1 1 k=1
= 0 1 I _
a1 = x1 < x1 <...< hi = bi' r € N}.

A
We now define the varlation V f as

A A
Vf=Vf= sup VI,
1si=n {




e R T i o

where

A
Vf = inf I Vg dhn_lz g = £ almost everywhere, V g measurable
i i i

PI(A)

A

and dxn_l = dxl. "dxi-—ldxhl' ..dxn. If Vf < ®w, then f is of bounded variation

A
on A and its total variation is V f.

The existence of an absolutely continuous invariant measure for a
Jablonski transformation t was proved in [1]:

Theorem 1.1 Consider a partition

P n

v D,=17, D

- J nDk=¢ for j = k,

J

n

n
of I into sete D, of the form D, = |1 Dij’ J=1,2,...,p, vhere

. St

) if b,, <1 and D,, = [a

D 1 13 15* Piy

1J= [aU. b1J ] if bij=1'

Let t: I™ — I” be the transformation given by the formula

t(xl....,xn) = ('plj(xl)""”pnj(xn))’ (xl,...,xn) € DJ.
where q)U: [aij' bi,j] —» [0,1] are C2 functions and

inf { inf |¢1J|} > 1.
i,J [aU, biJ]

Then for any f € I.1 the sequence

is convergent in norm to a function f* € Ll.

The 1limit function has the
following properties:
1) f 20 implies f* 2 0;

- - .
2) [1“ £* dx '[1“ £ dx;



3) P,tf' = f* and consequently the measure du® = f®*dx 1s invariant under
T3

4) The function f* is of bounded variation. Moreover, there exists a
constant C independent of the choice of initial f such that the varlation of
the limiting f* satisfies the inequality

vi* s C |f],.

The following 1lemmas, proved in [1), are used in the proof of

Theorem 1.1:

Lemma 1.1 If f: A — R is a function of the n-dimensional interval

n
A= 7 [ai, b1] into R and g is given by
i=1
b
J
= f dx.,
& Ia *)
J

then for 1 2 j, Vg sVf.
i 1

lemma 1.2 Let S be a set of functions f: 1™ — R such that
1) f =2 0;
2) VI sM;
3) Ifh s 1.

Let £ 1 be such that

I VE A, sVf+e (c>0)
P, (1" 1 1701y
and fl = f almost everywhere. Then, for 1=1,2,...,n

lim {sup a__.(P.(B. . ))} =0,

koo fes M1 1 Tk
where

n n
Bf,k = 1:1 {xeI: fi(x) z k}.




n

Lemma 1.3 If a set S of functions f: I — R satisfies the conditions of

Lemma 1.2, then S is weakly relatively compact in Ll.

n n
Let f:  [a,, bJ] — R and A be a subset of the interval T [a,, b,].
t=1 i=1
For this function and the set A, a function V of the n-1 variables
i,A
(xl""'xi-l’xi-ﬁl""'xn) is defined by
q
k k-1
VE =sup{ E|flx i, Xg,eenX )=F(X,.0% —,onx )
1,A v{ k=1 1 i n 1 i n
0 1 q k
a, Sx; <x < ... < xy Sb1 (xl,...,x1 oo s xn)eA}.
Lemma 1.4 Let A be a subset of the interval [a, b] and let a sequence of

functions ft: {a,b] —> R converge to a function f: [a,b] — R pointwise on
[a,b]\A. Then

stlimianfslimianfl,
1,A £ —wl,A L 5w 1

and there exists a function f: [a,b] — R such that T = £ almost everwhere on
{a,b]\NA and

VT =lim 1anf£.
1 ! > wt

Lemma 1.5 If a sequence of functions £y [0,1)™ — R converges to a function
£: [0,11® — R 1in the norm of Ll. then

V f =lim SUPer'
! 5o



1

1.4 Denseness of Jablonski Transformations in L

In this section, we will prove that Jablonski transformations are dense

in Ll

n

A transformation *: I — 1" is called plecewlse C2 transformation if

there is a partition P = {Dl. ...,Dp} of 1",
P

=10 DJn D, = ¢ for J=k,

v D
=1
where each D 3 has plecewise C2 boundaries and t is given by the formula

T(x) = (qle(x)...., nJ(x)), X € DJ. (1.1)

where x = (xl.. . .,xn) and q)m(x): 'ﬁJ — [0, 1] are c? functions. Note that Tt

need not be continuous on the boundary of D 3

The C2 Jablonskl transformations on 17 with their rectangle boundaries
and special coordinate functions are the simplest possible plecewlse C2
transformations. For a general plecewise C2 transformation t: " — 1" we are
interested in knowing vwhether there exists a sequence of C2 Jablonski
transformations {rt) such that /) converges to T in L1 as €& — o. With T as in

(1.1), we define its !..1 norm as follows:

n n |
oy = 2 feyly == [ | Loy lox
SCTR U RN Rt

- [ : w] ax

and tt(X) = (¢f(X)----.¢i(x)) converges to t(x) = (¢1(x)....,qpn(x)) in L1 as

£ - o if and only if for any 1 = i1 s n, go:(x) converges to wi(x) in L! as

L—>w ie, lim ||-r-t¢ﬂ1 =0 if and only if for any 1=1 =p,
e )

)
lin  Jo, - ¢;], = 0.
P LY

We now prove this for dimension 2. (For dimension n, n > 2, we can get




the same results.)

1. Case 1: Jablonski partition .

If T Is a plecewise l:?2 transformation with respect to the Jablonski
partition P = {Dl.....Dp}:

2 ) Y

1 =y [a

J=1J J-l lj'bl\j) X [aZJobZJ)-

Let & be an integer. For any D, = [a, .,b,,) x [a ) we divide it

J 1J’ 1) AN 2J
into tz equal subrectangles

Je . k-1 o _ k -
m= [3gy* p (bjymagyh 354+ ’ (b, 43y 5))
m-1
x lay 2 23" 323 237223
= pJé Je -
El kX Ez m k,m=1,2 ¢
For any f(xi.xz) € C (DJ). let
j ¢ 1 *
Q f(x x) -2 f(x,,x,)dx, =x (x,),
L x 172 1 Je 1
1 A(Ejt EJC El,k

] ] 1 i
szf(x x)—z

f(xl,x )dx2 X je (x ).

2 m=1 A(Eétm) 1-:%’ ] B2 m
Let
) 3 )
¢1J(x1.x2) = thqu“(xl.xz) = m§1 ¥ n (%) ngem(xz)
¢ 3 £
vzj(xi.xz) = thlvzj(xl.xz) = 2 v, K (X5) 2 ijek(xl),
where



a, +3(b, -2, )
'ﬁ‘u(x)=-—t— 22y (x,,%,)dx
1,m %1 P13 XX 9%y

P57 P21 cal )
BT P22y
k

a, (b, ~a,,.)
W'ﬂ (x,) = i T Pn o (X, %X, )dx
2,k %2 T o 2§ % ¥p 19X,

157213

k-1
ay =g (byymayy)

Now we define a Jablonskl transformation T, as follows: let the partition

be given by ?¢= { J:l}, J=12,...,p» km=1,2,...,¢ and let
(%%, = (@tlxe, %), oEix, %))
1'%1° %2 “’1 1'% ) $p1X4.X%

y, wit gJé

= (dt
= (wl’m(x 2,k(x2))’ (xi,xz) €E -

1

1
Theoren 1.2 'te(xl,xz) converges to t(xl,xz) inL".

Proof For any j=1,2...,p, it follows from Lemma 2 of [9] that
b
¢ 2J e
ojlxl) = Ia |¢1J(x1,xz) - gol(xl,xz)|dx2 —30as & — o,
2)
and
b
t 13 ¢
WJ(xz) = '[a |¢2J(x1,x2) - «pz(xl,xz)]dx1 ~—30as & — m,
13
Since P15 1s C© on —J' they are bounded on DJ. it implies wf is bounded on ﬁJ

and bj(x ), \I'j(xz) are bounded.

1
By the Lebesgue Convergence Theorem ([19], p. 88),

!
J

10




b, b
13,.2)

=I U |¢1J(x1.x2)-¢f(x1.x2)|dxz]dx1
215 %23
by ,

= I o) (x))ax

1)

1—)0 as &— o,

and

e
_” [9550xq.%,) - v:z(xl.xz)ldx1 dx,
%3

AP .
- I 500y %5070 05y 30y) e ey
8235 %1

(xz)dx2 — 0 as &— o.

Therefore,

e e
Ilwl—go1 II1 + llqu-qult1

|I'r—'tzll 1

1] L
JIZI¢1'¢1|dx1dx2 + II |¢2—(p2|dx1dx2
1 12

=J§1 Ui |¢1J-pf|dx1dx2 + I£ |¢2J—qp§|dx1dx2) — 0 as l — o
J J
Q.E.D.
2. Case 2: some DJ is not a rectangle.
First we prove Lemma 1.6 for completeness.
Lemma 1.6 Let (X, I-l) be a Banach space and let {fn} be a sequence in X.
If for any integer n, the sequence {fnl) converges to fn as { — o and

the sequence (fn} converges to f as n — ®, then we can take a sequence {f né }
n

1



such that it converges to f as n — o,

Proof

we can take f"‘n such that |f , - f ]

'fnt

f| =

If,

Let £ be an integer. We divide IZ

] k-1 k m-1 m
B = D x5 P
- el ¢ =
= Elk X EZm' k,m=1,2,...,8
F 1,..2
or any f(xl,xz) € L7 (I7), let
L
le f(x X, ) = E -__TT_- I f(xl,x )dx x e (x )
1 k=1 A(E
1k Elk lk
/
Zx f(x ' Xy )} = E ———T__ I f(xl.x )dx2 X 2 (x ).
m=1 A(E
Zm E Zm
2m
Let
¢
(xl.x ) = sz wl(xl.x )=2 wlm(x ) % ¢ (x ),
m= E
2m
¢ /]
¥ (x1,x2) = Q&xl pz(xl,xz) kz ¢2k(x2) xEZ (x ),
1k
where
7
¢
(x,) = {[ x,)dx,,
m-1
T
k
“’;.k("z’ = ‘Iz 9 (%1, %;)ax,.
k-1
T

L FURS UL I

For any € > O we can take an f_such that |f - ff <

<

3 Therefore

€, €
=+ ==¢
2

2

Q.E.D.

into tz equal subsquars

12

£ For this f_,
n




¢a

o i f

et T ey T s

= (el =
We take a partition .‘Pz = (Ekm}. k,m=1,2,...,¢ and

I A e
't(xl'xz) = (¢1 (xl.xz). 124 (xl.xz))

= "”: nt%1) “‘;k (). (x,x;) € Eltcm

As in Theorem 1.2, we have |t - 7], — 0 as { —> . But 7,(x,;.%,) is not a

C2 Jablonski transformation because we do not have w:m(xl). wék(xz) € CZ,

they may be discontinuous on the boundary of DJ. J=12,...,p. So we use a

smoothing operator. Let
1

2
C er 1. r < i,
a(x) =

0 . r =1,

where C is a constant such that I a(x)dx

RZ

Let ae(x) = e-za(g). We know that a(x) e C*, ae(x) e C” and for any f(x) € Ll,

a(x)dx =1 andr = (x2+x2)1/2.
1 72
r«<i

00
fe(X) = I ac(y)f(x-y)dy €C
is such that [f - fenl —> 0 as € — 0. Thus, for 're(xl.xz). we can find
00
'tk(xl.xz) € C such that I‘l’u - tt“l —> 0 as ¢ — 0. By virtue of

Lemma 1.6, we have:

Theorem 1.3 For any plecewlise C2 transformation <: IZ——>IZ, we can find a

sequence of c” Jablonskl transformations Ty 12—-)12 such that II'::e—-rll1 — 0 as

& —

13



1.5 Countable Jablonski Transformations

In this section, we will prove the existence of the fixed point of PT for

a countable Jablonski transformation t.

n

A transformation 7: 1 — In will be called a countable Jablonski

transformation if there exists a partition

[ ]
P = AD;,D,... } = DT,

172"
® n
v D,=1", D,nD =¢ for J=Kk
P 3%k
n n
of I into sets D, of the form D, = MD,, j=1,2,..., where
J 3o Y
DiJ = [au, le) if biJ < 1 and DIJ = [aij‘ b“] if b1J =1
and v is given by the formula
‘t(xl.....xn) = (¢1(x1)...., wn(xn)) = ((plj(xl)....,qpnj(xn)). (xl....,xn) € DJ,

where ¢1j : } — [0,1].

We say that a countable Jablonski transformation T is a Cz transformation

if forany 1 sisnand j=1,2,..., ‘pij € Cz. A C2 countable Jablonskl

transformation T has finite image with respect to the partition (D J} if in the
collection (T(DJ)} there are only finitely many different rectangles.

As in [20]), if 7 is a c? countable Jablonski transformation with finite
image, then it ils easy to show that 1.". =1, is a C2 countable Jablonski
transformation with finite image.

Theorem 1.4 Let T: " — 1" bea C2 countable Jablonski transformation with
finite Image. If

(1) 1nf{ inf '%J'} =s>1;
1,) [an. biJ]

14
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2 e I & S I R Ll el e 2 ame gt SRR v g PP
- s ~ N %
A A D S M T SR 7 4 T e e I T LTI VT RIS B a1 v

=3

(2) there exists a constant M such that for any fixed XeveoonXg_goXqpqeee

7%

1 1
V—— s M<ow.
0 |ojl

(Where ¢1 is not defined, we define it as the left 1limit). Then there exists

an absolutely continuous measure invariant under <.
- -]

Broof  Take N such that s' = i > 6. Set T = " and let {E))]_ be the

partition of 1" relative to T. T is a C2 countable Jablonski transformation

with finite image. Let

- _ _N_
I=tT = (wlj(xl)....,bnj(xn)). (x1....,xn) € EJ,

[cU. di_j)' T satisfiles all conditions of this theorem and

where E, =

oy

n=as

1
|°§.JI z —:I— > 6. We have

Pf = 3: f(wu(xl)..... wnj(xn)) "U(xl)"‘cn_j(xn) ij(x).

_1 _ ’ _ —
where WIJ Qij ) Oy = |wij(x1)| and Ij = T(EJ).
Let f 2 0 be a function of bounded variation and In f(x) dx = 1. We
I

show that there exists a constant K > 0 independent of f such that

VP.f s 6u Vf + K.

Denote by € the set of functions of the form

L
8= % g,X,
3=t 37

where X, is the characteristic function of the set AJ = n

J i
(we do not assume that a” < BiJ' the interval [au, BiJ] can be degenerate)

n=s

. [a“. BiJ] cl

and gJ: " 5Ris a Ci-function on AJ. By the proof of Theorem 1 of [1], it

15



is enough to show that for any 1 =1,2,...,n and f € & f 20 and f1 € B,
"

f1=fa.e.,L VE A

= Vf, we have
n n-1 '

1

n

1
VP.f, dA__. s 6p Vi dr, +K
Llu")i T1 "n-1 IPI(In)l 1 n-l

In

Now we show that.

n I

I J
X P.rf1 s § z fl(wlj(xl)....,wnj(xn))oij(xl)...onj(xn)xIJ(x)
& [|f1(wlj(x1).....cij,...,wnj(xn))|oijtwij(cij))
+ lfi(wlj(xl)""'dij""’ nJ(xn))lo'“(wij(d”))]
n
T o, (x,) 2, (Xy0e0oehCiypeeerX ).
J=1 1J J IJ 1 1_’ n
J#i
Hence
foomt
V P.f, dA
n T1 n-1
Pi(I )i
I
s3I J v fi(wlj(xl),....wnj(xn))wlj(xl)...onj(xn) dAn_l
J 91“3’ i

.3 [ £ (W (R )yenenCoroee ol (X D) |, (B, (C )
3 IP (1.) | 1M1 1) ny "n 177171

11
n
TR R A nJ‘”n”|’15‘°13‘d13”] Ty g
Jei

16




I

J
s2¢% Vf(W(xLHHW(xnv(ane (x ) d\__
I; 1) 15" 71 nj 'n n-1

ny'n
1(IJ) i

2
+ < Iln fl(X) dx,

where we used

y Yy
|g(x) + gly)| = V g(t) + [ ew dtI
X X

and

3 = Tig |Q1J(ciJ 1J ij

As the proof of Theorem 1 in [20], the first term less than

)| > 0.

n

I
4u
6u VI, da + da__
[P i n-1 3 J;i(ln) n-1

(a™ 1 i

n

= 6u 5 £, dr . + —u
P i n-1 P

(™) 1 i
for some 81 > 0. The second term is equal to —%—. Therefore

n

1
VP, dA_
jP (Mg T oe

I
< 6u J v fi dA 4t K,
P, (1™ 1§

_ 4p 2
where K = max 3 + =

i i
Since 6pu < 1, interaction of the above inequality yields

is independent of f. Now we have VPTf s 6u Vf + K.

17



lim sup\lP?fs K

n— o 1 - 6u

[ ]
It implies that the sequence P f is weakly compact in Ll(ln) and the
T

m=1
m [
same holds for {Pt f} . From the Kakutani~Yoshida Theorem ((8], VIII 5.3},
m=

it follows that the sequence
m-1
{% £ P f}
k=0
converges strongly in L1 to, say, f* which is a fixed point of P-r‘ A standard
functional analysis argument proves that f* 1s of bounded variation.

Q.E.D.

18
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CHAPTER 2

The Existence of Invariant

Measures under C“e Jablonski Transformation
In [18] Rychlik proved a sufficlent condition for the existence of a
fixed point of Pt. Using his result, we present a sufficient rondition for the
existence of an absolutely continuous invariant measures under C1+e Jablonski
transformations in Rn. As a special case, when n = 1, the Lasota and Yorke's
sufficient condition can be weakened from plecewise C2 to pliecewlse Cl+8 for

anv 0 < € < 1.

.1 Rychlik's Sufficient Conditions

Let (X,Z,A) be a Lebesgue space with a c-algebra I and a probability
measure A. Let T: X — X be a measurable, nonsingular trans.ormation and let
- be the absolute value of the reciprocal of the Jacobian of <. Then the

Frobenius-Perron operator can be represented in the following way:

Ptf(x) = I gr(y) fly), x e X
yer = (x)
4
Let P be a partition of X which is a generator for T, i.e., VT (P) = ¢,
k=0

where £ is a partition into points. For any positive integer £ let sz be a

partition of X which is a generator for ‘l.'t. Let g = g = & and 8 = 8, For

T
every A € £, we define P(A) = (B € P: A(AnB) > O}.
Condition 2.1 (Distortion condition) There exists a positive number b such

that for any £ 2 1 and any B € ?l we have

sup g, = b inf g,.
B ¢ B ¢



Condition 2.2 (Localization condition) There exist € >0 and 0 < 7 < 1

such that for any ¢ 2 1 and B € 5& A(ttB) < & 1implies z sup g S 7.
B’ etP(‘t‘B) B’

Condition 2.3 (Boundedness condition) £ sup g < o.
Be? B

Under these 3 conditons, Rychlik [18] proved the existence of a fixed

point for Pr'

Theorem 2.1 Assume Condition 2.1, 2.2 and 2.3 are satisfied. Then the
t \” © 1 J 1
sequence PT 1 Is bounded in L, and the averages 1 z PT 1 converge in L
2=1 J=0
to some ¢ € L® such that th = ¢.

20




2.2 gl*c Jablonski Transformations

let X = 1”. For any x,y € In. we define

d(x,y) = ( £ (x -yi)z)"2
i=1 '
where x = (xl....,xn). y = (yl.....yn).

Lemma 2.1 If there exists a positive number M such that for any L=1,

g,(x)

’ » 3 d.
B e ?2 and any x, y € B, we have E;T?T < M, then Condition 1 is satisfie

n 51" bea nonsingular piecewise C1+e transformation,

Lemma 2.2 Let 7: 1
i.e., there exists a constant c such that for any X, y € DJ’ J=1,...,p
j3(x) - J(y)| = ¢ d(x,y)€, where J is the absolute value of the Jacobian of t.
If there exist constants a« > 1, C > O such that for £ =21, B € ?e and X,y € B,

we have d(tex, 'rey) z C aed(x.y), then there exists a constant M such that

8, (x)
—§£T§7— s M and Condition 1 is satisfied.
(1
Proof For any x, y € B € P, we have d(tx, ty) 2 C « d(x, y). Let J be the

Jacobl matrix of T and J = |det J|.

If Syrerr Sy and VyrereaVy, are the eigenvalues and the eigenvectors of
379, then, for 1 =1,...,n, we have
2 2 2 2 _ P | _ _ 2
|v |© = |Jvi| = (Jvi, Jvi) = (J Jvi, vi) = si(vi. vi) = Silvil
2 2
and sy z C a”. Therefore,
= (det J)2 = det JTJ = 5. 2 (2020
1 2 n
and J 2 c™a".
For x,yeBe?,, k=0, 1, ...., &1, we have

o k)

d(e®x, T y) sc?! d(t'x. T y) s ¢l o EKg

Then, using the fact that t is plecewise Cf‘e, we have

k k
J(_'_,ky) ) J(ty) - J{t'x)

J(th)

1 +

J(th)

21



|J(tky) - J(th)l

<1 +
(%)
g d(r*x, ?y)°
1+
o
- / €
sp1+-0¥n  @Ke gL, e,
cn""ﬁ an

and

gy (x) 18 3t 3. dtey) 3y

g, (y) J(ttnlx) J(rc—zx)...J(tx) J{x)

—/8
cvn

n+€ n
»

-1 -(
sn[1+ o

&-k)e ]
k=

C

a-e 1] = M,

Q.E.D.
Let <T: In —_— In be a Jablonski transformation, i.e.,

T(x) = (wlj(xl)... (xn)). x €D

“+9n 3

J’
where for any 1 s jsp , DJ is a rectangle, DJ n Dk = ¢ for j#k and

P
ubD, = I™. ?={D1,...,Dp}. For any ¢t = 1, let fPt={D

(2) D(l)
J=1 )

{ e pe

22
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AT L TR

Then every Df,” is a rectangle and ‘tz is a Jablonski transformation.

Fix (xl""’xi-l' x1+1"”’xn)’ and let Li(xl""’xi—l'xi+1"“’xn) be

(&) (e)’
the straight line. Let ry (xl""’xi-l'xiﬂ"'"xn) be the number of D

.j S
for which D{&n L (x X X X ) #¢. Forany 1 s i =n let
J 1771711141 ’
(2) (2) _ (1)
ry = sup ry (xl""’xi-l’xiﬂ"”'xn)’ ry=ry
Osx, =1, 1sksn, k#i

k

n

r“) = r(e) ru)... ru) = r(“ , I = r(”,
1 2 n i
i=1
—(&)_ (&), (&) _ (@ (L) (&) &) 2 & - _ =(1)
r, =r /r =r, ... Tr r ees T = ! r r.,=r R
i i 1 i-1 "i+1 n 3=1, J1 J i i
;(t) = max F:t). r = ;(1).
1si=n
i.e., ri“ is the maximal number of parts of ?l in the Xq direction. For

example, in Figure 2.1, for n = 2, we have r{t)= 4, r(é) = §,

LO_ L) @ s, @), @)

1 2 1 1 >
FOL 0,0 0w W20, g

23



Figure 2.1
Lemma 2.3 Let T: In —_— In be a Jablonski transformation and assume that
s = inf inf |¢’1J| >1, If FsP < -é—, then Condition 2 is satisfied.
1.3 15x151
Proof Take € > O such that el/n <d= min d, where d, is the minimal width

of DJ' and 0 < y <1 suchthat 0 < 2r s ®<y< 1. Since |qp'1J| z s, we have

1/n’ for any B € P,, m('rlB) < £ means at least one of the

1/n

g s s ™, Since d > €
sides of t’B has length smaller than ¢ < d. and the number of 9’(1:28) is at

most 2r. Hence,

the number of B(‘tzB) 2r

z sup g < -~ <7
sN P
B'eP(z’B) B
Q.E.D.
Lemma 2.4 Let P = {Dl""’Dp}’ p < » . If for any DJ’ sup g < w, then
D
J
Condition 3 ts satisfied.
Proof Let M = max sup g Then we have £ sup g s p M < o, which is
1sjsp DJ Be? B
. Condition 3.
Q.E.D.

By Lemma 2.2, 2.3 and 2.4, and Theorem 2.1 we have:

24




N __, I be a Jablonski transformation having the

Theorem 2.2 Let T: I

finite partition P = {Dl""'np}' and let s = inf inf h’ijl > 1. If for any

1,) Osx,s1

o]
i and }J, C1+e with 0 < ¢ € 1 and rs < -;-, then the sequence {Pf_ 1}

P, €
1 e=1
@ 1871 1 o
is bounded in L~ and the averges y] z P_t 1 converge in L™ to some ¢ € L~ such
J=0
that Ptp = 9.

Lemma 2.5 If ¢ is a fixed point of P t= P: for some positive integer t, then
T

1 t-1
'] T (o +P1: @+ ... + P'r ¢) is a fixed point of P_t.

For a Jablonskl transformation T aud any € =1, we have rie) = rf.

(2) ¢ =) _=t =(8)_ =t né

r sr,r sr, r ’sr, g <a

N It . Hence, we have:

Theorem 2.3 Let : I® — I” be a Jablonski transformation with a finite

partition P = {D1,...,D }. and assume s = inf inf |;p’iJ| > 1. If, for any i
P 1, Osx,s1
1+

and J, e C with 0 < € < 1 and rs © < 1, then there exists a function

2y
v € L® such that PV = ¥

nt

D ¢ 1. We can take an integer t = 1 such that (rs ;= < %

Proof Si- =~ Trs

Since tt satisfies all conditions of Theorem 2.2, there exists a function

P € L® such that P:qz =P t? =9 By Lemma 2.5, we know that

satisfies Pt ¥ =y

Q.E.D.
For n =1, we have r = 1. By virtue of Theorem 2.3, we have:

Theorem 2.4 Let T: I — I be a plecewise expanding and pilecewise C1+8

25



transformation with 0 < ¢ < 1. Then there exists a function ¢ € L® such that

th = .

Theorem 2.5 Let 1: I"— I™ te a Jablonski transformation with a finite

partition P = {Dl""'D }, and s = inf inf |¢1J| >1. If for any 1 and J,
P 1,) Osx,=1

vij € Cl+e, 0 < £ <1, and there exists a positive integer t = 1 such that

r—'(t)/snt < 1, then there exists a function y € L® such that th = Y.

Proof Since tt satisfies all the conditions of Theorem 2.3, there exists a

function ¢ € L® such that P:¢ =P (P = @ By lLemma 2.5, ¢y = 2 z Ps¢
satisfies th = Y.

Q.E.D

26




2.3 Generalized Jablonskl Iransformations

In this section, we will prove the existence of the fixed point of P-r for

a generalized Jablonski transformation T.

A transformation = " — 1" is called a generalized Jablonski
transformation . it 1is given by the formula
T(x) = (wlj(xl), ¢2J(x1.xz). cees nj(xl""'xn))’ X € DJ, 1s Jsp<o

The image of any hyperplane in 1" is a collection of segments of hyperplanes

n

in I and the inverse image of any hyperplane in I is a collection of

segments of hyperplanes in In, where Dj is the same as for a Jablonski
i

transformation and «pij(xl,...,xi): n [akj , bkj] — [0,1].
k=1

n_, 1" be a non-singular piecewise C1+e transformation.

Lemma 2.6 Let t: I
If there exists a constant « > 1 such that for any B € P and x, y € B we have
d(tx,Ty) = a d(x,y), (2.1)

then Condition 1 holds.

Proof This is the special case of Lemma 2.2 when C = 1.
Q.E.D.
Lemma 2.7 Let T: " — 1"bve a generalized Jablonskl transformation. If

(2.1) is satisfied with a > 1 and ZFa_n < 1, then Condition 2 holds.

Proof Let £ > 0 such that el/n < g—l , where d = min d, and d, is the

X 15yep 3

minimal width of D,, and 0 < y < 1 such that 0 < 2ra " < y < 1. Since for any

J'

X, ye€Be?®? dlrtx, ty) 2 ad(x, y), we have g = « ©. Since d > 2n—181/n'

for

any B € ?t . m('rtB) < € means that at least one of the maximal lengths of teB

in the x, direction is smaller than el/n < :_1 , and the number of ?(‘teB) is

1 2

at most 2r . Hence

27



the number of ?(tlB)

puiniy 4 .
z sup g S a Sn 7

B’ e?(t"B) B’ « «

Q.E.D,
By Lemmas 2.4 and 2.6 and 2.7, and Theorem 2.1 we obtain:

Theorem 2.6 Let : I® — 1" be a non-singular, plecewise Clﬂ:
generalized Jablonski transformation with a finite partition P = {Dl’ Ces ,Dp}.
If for any x, yeBe P d(tx,ty) =2 « d(x,y) for some constant o > 1 and
e t \* ©
2ra < 1, then the sequence {Pt 1} is bounded in L~ and the averages
=1

&1y 1 ©

z P; 1 converge in L™ to some ¢ € L~ such that P_t«z = .

J=0

28




2.4 Examples

-(t)
In Theorem 2.5 we need a condition rnt < 1 for some integer t z 1.

Now we show that, in general, s > 1 does not imply this condition.
Example 2.1 Consider the partition ? = {Dl’ DZ’ cee .Dg} shown in Figure 2.2

for the unit square in 2-dimension. Let T be a Jablonski transformation

defined as follows. For j 1,2,4 and 1 = 1,2, ¢1J is a linear function which

is onto [0, 1] with “’15' = 3.

a2
1
D7 D8 D9
2/3
D4 DS D6
1/3
Dy | Dy | P3
o 1/3 2/3 1 ’xl
Figure 2.2
For J = 3,5,6,7,8,9 and 1 = 1,2, P15 € c'*® with 1nf|¢ij| = 1.1. Therefore,
X
s=1.1, =121, F=3 t®=2r+152r. Fort>1, &> 7-
3-2e-1 = 1.5 2‘. This means that for any positive integer t 2 1

;(t) ) ;(t) ) ?(t)

ght gt 1.21

2 t
3 > 1.5 [TZI-] > 1.

Example 2.2 Let n = 2 and the partition ? = {D1’“"D9} be the same as in

1+e

Example 2.1. Assume that for every i and j, ¢1J € C , and that

s = inf iInf |¢iJ|>V3.
1, Xy

Then we have

29



-r_ < __3___2. = 1.
s (V3)
For example, let ¢(x) = %372+ 1.74%. Then
g’ (x) = 3x241.7a21.745V3

2
for x = 0 and ¢(x) maps [0, 1/3] onto [0,0.77245]. Let

qp(xi), if [a1J , biJ] = [0, 3].
- 1 _ 12
wiJ(Xl) - 1.2¢(x1 - 5), if [aij » le] - [5’ ’ '3'].
plx,-% ) + 0.2, if fag, . byl = (5, 1),
143

2

and we have «pu(xi) eC , s=1.74>V 3,

By Theorem 2.3, there exists a function ¢y € L® such that PTIII = .

30
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2.5 A New Sufficient Condition

In this section, we will present a sufficlent condition for the existence
of the fixed point of P‘r' In Rychlik’s sufficient condition, the Jacobian of
T, which is the quotient of volumes, was used. We want to change the volume to

the diameter.

Let v: I" —» In. P, P, & and P(A) be the same as in 2.1 and

Ptf(x) = '_1:1 gt(y) fly), x € )
YET X

For any x, y € In. let

n 2 172
d(x,y) = [2 (xi-yi) ] ,
i=1

where x = (x .,xn) and y = (yl....,y ).

1" n

For any B € P,, let

d(B) = sup d(x,y).
X, yeB

For any £ 2 1 and x,y € B € ?t let

d(rlx. 'tty)

hyx¥) = gty

h,(x) = sup h,(x,y).
/) yeb /)

Condition 2.4 There exists a positive number b such that for any ¢ =2 1 and

B € ?t we have

sup 5-1— s b inf h—1 .

B L B "¢
Condition 2.5 There exist ¢ > 0 and 0 < ¥ < 1 such that for any £ 2 1 and
B e ?t R d(‘l.'lB) < ¢ implies

P> sup g S 7.
B'e?(t"B) B

Condition 2.6 Z sup g < o.
Be? B
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Condition 2.7 There exists C > 0 such that for any £ 2 1 and B € fPe we have

d(B) = C a(B).

Theorem 2.7 Assume that Conditions 2.4, 2.5, 2.6 and 2.7 are satisfied. Then
L \® o 1 -1 3

the sequence {P_ 1 is bounded in L*, and the averages £ PY 1 converge
LA P I3 j0 T

in L1 to some ¢ € L”® such that Ptqp = Q.

1 -1 3 © .
Proof If the averages 7 z Pt 1 are bounded in L~ then they form a weakly
J=0
sequentially compact sequence and, hence, by the Kakutani-Yoshida Theorem

({8], VIII5.3), they converge to ¢ € L”, where Po=¢

[ J
Therefore, we only need check that {P: 1} is bounded in L%
e=1

_ ¢
Let @, = I sup g, It 1s obvious that P, 1, = «p for every &=z 1.

Be?e B

If we can prove that % is bounded then the theorem follows. We will prove by

induction that
%ppq 57 %+ Gy,

where C, = a, b" C"/e". (Condition 2.6 implles that a, < w.)

Since 8p4p = ge(gO'l.'C), we have for every B’ € ?2:

z sup &, = SUP g, z sup g. (2.2)
{BE?tﬂ: BcB’} B B B”E?(‘tlB') B

Let

P = {B' €?,: aidB) < c},

P = {B’ €, : alB) = s}.
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If B € P’, then the right-hand side of (2.2) is not greater than y sup g by
o

Condition 2.5.

n
Since for every Be P,, g, S sup 1 and
L =t B hl

d(‘tLB) = sup d(‘rCX. 'l-’ty)

x, yeB
= sup hz(x y) d(x,y) s sup h (x) d(B).
x, yeB B
Hence,
1 -1 d(B)
inf — = (sup h,) " = .
By p ¢ ace’s)

Therefore, if B’ € 7, then

sup g ssup[ ] = b" 1nf [—]
B’ ¢ B’ r—x[

sy 1N n n
s b? [—"‘_‘z_’_] s B o ™ s B c® e
d(t"B’) € €
by Conditions 2.4 and 2.7.

For every B € ?t

+1
o = Iz sup g
£+1 ¢+
Bts?’£+1 B
= = z SUp gy,
' +y B
B efPe {Be?lﬂ,BcB }
bP
s T 7y supg+ I @, — c” m(B*)
B’ €?’ B’ B'eP” €
Sy at + Cl‘

Since 0 < ¥ < 1, this implies that {“t} is bounded.
t=1

Q.E.D.
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CHAPTER 3
Markov Transformations

A Markov transformation is a special kind of transformations which map
boundaries into boundaries. For these transformations some special methods can
be used to prove existence theorems.

In 1972 Kosyakin and Sandler [S] proved an existence theorem of lnvarlant
measures for Markov transformations on an interval. In 1981 Frledman and
Boyarsky [3] discussed piecewise linear Markov transformations on the interval
and proved that it had a piecewise constants function as an invarlant density.
In 1987 Mane [17] got a more general result.

In this chapter we will generalize some results to higher dimensional

Markov transformations and they will be compared with Mane's result.

3
—— e —————— —————— ————————

We generalize results of [3] to higher dimensions.

Let P = { 1)1, DZ""’Dp}’ P < », be a partition of ™

n
D,=1 and D, nD, = f = k.
D y O D =@ forJ

n Co

J

Definition 3.1 't(xl,... ,xn): I — 1™ 1s called a non-singular plecewise

C2 transformation with respect to the partition ? if for any j =1,2,...,p,

t(xl,....xn) = tJ(xl....,xn) on DJ,

ot

o

satisfies det A,# O.
X J

T, is a C2 function on ﬁj and the Jacobian matrix AJ=

Q)

J

n — 1" is called a Markov transformation

Definition 3.2 t(xl....,xn): 1

with respect to the partition P if for any j = 1,2,...,p the image of ﬁJ is an



union of -ﬁl'(s. i.e.,

D =D e D D »""D ‘
T(DJ) D‘jlu UDJL for some ) 3

And the image of the boundary of D, is the boundary of some Dl’{s.

J

Let S be the class of all functions which are piecewise constant on ?,

that is
p
feS if andonly if £ = T C,
=1 JD
J=1 J
for some constants Cl’ ...,Cp. Such an f will also be represented by the column
vector (Cl"' . ,Cp)T. where T denotes transpose.
Theorem 3.1 Let t(xl....,xn): I — 1™ be a non-singular plecewise C2

Markov transformation with respect to the partition ? of ) Assume, for any

J=12,...,p,

(1) T, is a homeomorphism from D, onto D v...uD and has T %, .. x )
J J N 3 J n
as its inverse;
_ at
(2) det AJ is constant on DJ’ where AJ e then,

(1) there exists a pxp matrix M‘r such that P_tf = M'rf for every f € S;
(2) M = Mt has 1 as the eigenvalue of maximum modulus;

(3) there exists a function f € S with |f| = 1 and P f = f, l.e., it is
invariant under P..

Proof (1) A simple computation [2] shows that the Frobenius-Perron operator

for T is given by

P
-1 -1
P f(xy,...0x ) = z flry (xg,.000%))) |det Ay | 2%, b y-
J=1 3
Suppose first that f = Xp for some 1 sk s p then
k
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P
Pf =P xp= I (tJ (xl,...,xn))ldet AJ | X

e 5=1 %% j(DJ)
Since 'r:-1 has range D,, x (t_I(x yeo.s%X_)) will be zero for J # k. Thus
J AN RN n
-1
P_x, =|det A | x .
T Dk Ak tk(Dk)
Now let f €S, 1i.e.,
f ; C (C C )T
= X = feee s .
k=1 k Dk 1 p
Since P-r is a linear operator we have
Pf=% P = C |det A1 (3.1)
- x = et x - .
T k=1 k't Dk k=1 k k 'tk(Dk)
It means Ptf € S,
- T _
Let us write P-:f = (dl' ...,dp) . When (xl... . ,xn) € DJ, Prf = dJ. Now the

kth term on the right hand side of (3.1) equals Ck|det A;1| if and only if

(xl,...,xn) € t, (D), te., if DJ c ‘tk(Dk).

k k7
Let
Ajk ={ 1 1if DJ c -rk(Dk)
O otherwise

and

M =By et At
Define

M_t = (Mjk)'
Then

P

<:lJ = ki:l Cy MJk

and

36




2 d,
ml: =] :|-pr¢.
T C a T
P P
(2) M

- is called the matrix induced by ¥. It is nonnegative and for each

J =1,2,...,p the non-zero entries in the jth column are equal to |det A"1

JI'

Let GJ be the volume of DJ, i.e.,
G, = dx,
7 1,
J
where dx = dxl.. .dx .
If the image of D, under T is D, v... VD, then
J J; 3,
G, +..+G, = J' dy
Jl Jl DJ u...uDJ
1 L
= J |det A, dx (y=t,(x))
D 3 3
J
= |det A] IDde = |det A G (3.2)

We recall that the eigenvalues of a matrix are invariant under similarity

transformations and under transpositlon. Let us define

p.
5=7 G,
=
p
5
5=%/_=1 s,
1% 76, " I %
J=i
-1
3 51
1 6-1
D = s, p!= 2
.'6 , '.6-1 .
) o P
B=D1ND= (b )
rs

Then
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We claim that B 1s column stochastic. Consider the column sum of the Jjth

column for B:

Eb.- ®olM 8= z 8 |aet A71] 5
ret Y opmp T r‘j"Do:t(D) r J J
rJJ
-1
laet a8 o 1
G D ct (D
3 pCT ¢ J)
-1
_ | det Ayl s 5
GJ DrCtJ(DJ) ar
-1
et AYY s @
= r
GJ Dc TJ(DJ)
et A7Y
= ——d (5, +..46,)
G 1 ¢
J
|det 471
=— 3~ jdet A| G, =1,
Sl g
J

where we have used (3.2) and |det A31| = |det AJI-I.

Thus B' is row stochastic. By Theorem 9.5.1 in [4] the matrix B! has one
as the eigenvalue of maximum modulus. So does M.

(3) By (2) the system of linear equations M II = T always has non-trivial
solutions. So there always exists some functions f € S such that Ptf = f,
i.e., it 1is invariant under Pt.

Since PTf = f, for any constant a we have Pt(af ) = af. This means that

one of them satisfies [f] = 1.

Q.E.D.
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e e ot A S

From Theorem 3.1, we have:

Theoren 3.2 1f t(xl.....xn): " —1"isa non-singular plecewise 1linear

Markov transformation with respect to the partition ? of In. then

(1) there exists a pxp matrix M such that Pf = Mf for every f € S;

(2) M= Mt has one as the elgenvalue of maximum modulus;

(3) there exists a function f € S with [f| = 1 and P f = f, l.e., it is
invariant under PT.

n

For Theorem 3.1 and Theorem 3.2 we need if ©: I™ — I to be plecewise

linear transformation, then for any 1 = j = p, det A, is a constant. But the

J

converse is not true, 1l.e., if det A, iIs a constant, Tt does not have to be

J
plecewise linear. For example, for n = 2, let
u = Xy
{ v=1ny
and
T(x,y) = (u,v) = (xy, 1ln y).

It is not linear, but

8(u,v) y X
—(_j.a X,y = o l = 1.
y

Hence det A, is a constant.

J
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3.2 Quasi-Expanding Markov Transformations

For the Markov transformation T, not necessarily piecewise linear, we set

~1
D =D, ntD
1112 11 12
Dy ya, . =Dy PTD
A A 25 | 1°°°7¢ 2°° 7
and if D # ¢, then we have
1,1
172
‘t[D ] =D, .
LW 4
If D # ¢, then
11'“1e+1
t[D ] =D :
Loodpeg)  Tlpeerdyy
)
T |D =D :
Lyedgg) ey
i.e., 1:‘ maps Di 1 onto D1 . Let us denote by fi 1 the function
17777841 +1 1777781

which gives this mapping. If it is a one to one function then its inverse

function S 1 glves the mapping of D onto D

11... 41 i i....1

&1 17777841
For any Lebesgue measurable subset A of I" we define the dlameter of A as

follows:

d(A) = sup d(x,y),
X, yeA

N

n
= - 2
vhere x = (xl,...,xn), y = (yl,...,yn) and d(x,y) = 151[)‘1 Yi) ] .

Theorem 3.3 A function p(x) is the fixed point of P_r. i.e., Ptp = p or for

any measurable subset A of "

J-A p(x)dx = IT—IA p(x)dx
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Aoy

- RPN OB e prigta st 1

if and only if for an arbitrary integrable function p(x)

I n p(x) p(x)dx = I n @) p(x)dx.
)§ 1

Proof Although the proof 1is straightforward,
completeness.

we

present it for

(1) If pis a fixed point of P, then for the simple function

m
plx) = T a x, (x)
=1 kA

ve have

I n p(x) p(x) dx
I

m
= IID kzl a, xAk(x) p(x) dx

m
= £ a 2, (x) p(x) dx
k=1 k‘[ln Ay

m m
Z a
=1 k

k Ak k=1 T Ak

k=1 ) Gl A k=1

n

I p(x) dx = Z a | p(x) dx

m m
p ak.[ Xy (x) p(x) dx = Z a, Iln xAk('l:(x)) p(x) dx

= I z a, 2, (t(x)) p(x) dx = '[In e(Tx) p(x) dx.

I k=1 k
Since the set of all simple functions 1is dense in

integrable function ¢(x),

I n e(x) p(x) dx = I n p(tx) p(x) dx.
I I

(2) If for any integrable function ¢(x) we have

I n p(x) p(x) dx = .[ n e (tx) p(x) dx.
I 1

Letting ¢(x) = xA(x) we have
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we have for any



o(x)dx = I n xA(x) p(x) dx

YA I

= |, ¢(X) plx) dx = IID eltx) p(x) dx

u I .
= 2, (Tx) p(x) dx =I X (x)p(x)dx
J In A ® 'r'lA
= p(x)dx.
A
So p(x) Is a fixed point of P_.
Q.E.D.
Definjtion 3.3 A Markov transformation T: I" —— 1™ with respect to the

partition P of I® is called a quasi~directionally expanding transformation if

there exist constants « >1 and 0< Cs1 such that for any x, y € DJ,

]

™, 1y €D ..tzx,'tyeD , we have

Jl' o Jz

d(tex, 'r:ty) zC cct d(x,y).

n

Theoren 3. 4 Let I" = [0,1)™ and t(xl,...,x ): I —— 1™ be a non-singular

= n
plecevise C“e Markov transformation with respect to the partition ? of . o1r
T is quasi-directionally expanding with constants « > 1 and 12 C > 0, then

there exists a function p(xl, .o ,xn) such that 0 s p(x) s K for some constant

K and for an arbitrary integrable function w(xl,... ,xn)

Iln p(x) p(x) dx = Iln eltx) p(x) dx

and p(x) is a fixed point of P_.

Proof For an arbitrary integrable function ¢(x), we have

) P I ¢
J p(Tx) dx = z D e (T x)dx
° NS SURUDIRE SR |
1° 72" T 172 41
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1 =1 1 9 1] 1
&+1 1 ) 1112. '154'1
P asil"“ ’ 1£+1(Y) 12
= b s j ely) ' I dy (y=t %)
1 =1 1,...1 D dy
241 1 [} 1£+1

P
=z ID () pyy) oy = [ 9(y) py(y) ay.,

o™ Tl
as (y)
11, .o 'it+1
where is the absolute value of the Jacoblan of Si i
8y 17 Yee
and
as (y)
i.,...,1
pl(y) = D> 1 2+1 = 0,
11""’12 ay
and the summation is carried out according to the same indices 11,. - ,12 for
which D ® ¢,
11...1£
Since te: D1 i — Di , for xl. x2 € Di i . ,
1777 7+l &+1 1°°°78+1
txi, texz € D1 , we have
1
¢ [ 2
d(rxl. T xz) z Cud(xl.xz).
Therefore
d(D ) = sup d(x,,x,)
11"'1£+1 "1"‘2‘D1 . 1'72
17770+l
scl ot sup d('tex1. texz)
xl.xzeD1 1
Y 23 |
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scl gt sup d(texl. tlxz)
ttxl, 'texzeD1
&+1
=cl gt d(p; ) = j n clat
+1
k k
Therefore, for any xl,x2 € D1 10 we have T xl, T x2 € D1 { and
1777 78+1 k+1" "7 i+l
k k -1 -(&k),, 2 ]
d(t X» T xz) sC a d(t X0 T xz)
sc? a""k)d[n ) D I e G N N WY
i
i+1
If Ej is not convex, since tJ is C1+e on DJ' it can be extended to EJ as a
C1+€ function, where EJ is the smallest convex set containing DJ. So there

exists a constant C such that for any XqsX, € D, we have

J
] rJ(xl) ] TJ(XZ)

= €
ax - Bx sC d(xi’ xz) .
We know
f1 N (x) = tz(x) = ¢{r(t...t{x))) (¢ times).
177" TE+1
Ify= tl(x) then
as (y) ,af (x) -1
bty Loeeerdpy
8y L ax
t 3T(T¢-1x) ar(tl-zx) at(x) )
= % B e
\
8t(x)

By the proof of Lemma 2.2, we know that

—_— Cnan. Therefore,
ox
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at(tk xz)
ax
k =
or(t xl)
ax
s
s
<
This means that for y, = rlx y
1 1’ 72
s (y,)
11,.. ailgy 1
dy
as (y.))
l1' 'llﬂ 2
8y
s

1

1

¢
=TX

k k
at(t xz) at(t xl)

ox ox

at(tk xl)

ox

k k
at(t xz) dt(t x1)

ax ax

8 t(thl)

ax

= k k €
C d(= Xy T xl)

n _n
a

+

C

c b

C

cn+ean

+ a-(e—k)e

r(ﬂ“ze%rni

. t(te'lxz) ] t(tt'2

(k =

&+1

xz)

o,1,...,81).

» YoV, € D,

a t(xa)

ax ax

ox

-1 e-2
8 t(< xl) 3 (T X,y

2~

k

i

ax ax

1 = | &
[1 . C I;- a-(l-k)c

Cn+can

t {nf
Cn+ean

=0

1 o

-18]
o
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for some y0 € Di’ we have
as (y)
1......,1
1 £+l A, )
dy i+l
A (D )
11.....1£+1
as (y)
i,,...,1
1’ i 23|
A (D1 )
a8y &+1
8 511,...,1£+1(V0’ o )
8y il.-0»1
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88 L (y)
R L3 |

8y
= < C"

8s (y,)
11,....1£+1 0

8y

and

pt(y) = p) 11”"' 1t+1

where Kl = min A(DJ).
1=sj=p

00
Hence-bﬁ} is a weakly compact subset of Ll, and for any ¢ € L1
=1

[ o otb0 ax = o gy ax.
I I

We can take po(x) = 1, and

IID v(tt+1x) dx = Iln p(x) p£+1(x) dx.

Since
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p 3 S1 1 (y) :
= I z I wlzyi Y 25 | dy (y=t x)
D

i,.=11...1
e1T e, 8y

: ]
= . z _, D, plty) pyly) dy = II“ p(ty) pyly) dy.
e+ e+l

Hence for any ¢ € l..1 we have

Iln plty) pe(y) dy = Iln ely) ptﬂ(y) dy.

Let p(y) = 2 (y), we get
nm(o,x,]
=1 3
I xl xn
p,(y)dy = I ..I P,. . (yldy.
1_1 n ] 0 0 £+1
n lo.xi]
i=1
So
a" xl xn
Py . (x) = I I p (y)dy
&1 Bx,...8% 0 o 1
an
= — p,(y) dy = P_ p,(x).
dx, . Ox ‘[- t T 7t
1 n T

1[ n

n [0,x,]

i=1 1

In general, pQ(x) = P: po(x). By the Mazur's Theorem ((8], p.416, V.2.6)

m-1
{% b P: po} is weakly compact. By the Kakutani-Yoshida's Theorem ([8] p.662,
k=0
p ™oy 1 1
VIII 5.3), - Pt Py converges to p(x) In L” for some p € L°. This p(x) is a
k=0

fixed point of PT. i.e., PT px) p(x). By Theorem 3.3, for any ¢ € L1

In p(x) p(x) dx .[n e(tx) p(x) dx.
I I

Since for any ! we have 0 = pz(x) s K, it follows that for any m

1 m-1 1 m-1 K
0s = z pk(x) = = P,r pb(x) s K
k=0 k=0
and we have 0 s p(x) s K. Q.E.D.
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3.3 Expanding Markov Transformations

n with respect to the

Definjtion 3.4 A Markov transformation <: R {
partition P of 1" is called a volume expanding transformation 1f there exists

a constant 8 > 1 such that for any j = 1,2,...,p

det A

3 28> 1.

Definition 3.5 A Markov transformation T: ™ — 1" with respect to the
partition P of 1" is called a directionally expanding transformation if there
exists a constant @ > 1 such that for any 1 s Jjsp and x, y € Dj’ we have
ditx,Ty) z a d(x,y),
n 2 172
where x = (xl' xz,....xn), y = (yl.yz.....yn) and d(x,y) = (iil(xi-yi) ] .
It is obvious that directionally expanding with constant a« > 1 implies
volume expanding with constant B = o > 1, but the converse is not true, i.e.,

volume expanding does not imply directionally expanding.

If T is volume expanding with a constant g > 1, then

of
i.....,1

1 (23] th
ax

and the inverse functlon S glives the mapping of Di onto Di

Lieoidyy 41 1" gy
and
85‘ .
1 [ < B-l-
ox

Theorem 3.5 Let I® = [0.1]n and t(xl,...,xn): M —5 1" bea non-singular
plecewise C“e Markov transformation with respect to the partition ? of . If
T is directionally expanc.ng with a constant ¢ > 1, then there exists a

function p(xl.....xn) such that 0 s p(x) = K for some constant K and for an
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arbitrary integrable function w(xl. . .xn)

J. n p(x) p(x) dx = I n plTx) p(x) dx
I I

and p(x) is a fixed point of PT.

Proof This is a speclial case of Theorem 3.4 for C = 1.
Q.E.D.
Theorem 3.6 Let I® = [0,11n and T: " — 1"be a non-singular plecewise
1+¢

Cc Markov transformation with respect to the partition ? of 1. If T is

volume expanding with a constant B > 1 and there exists a constant C > 0 such

that for any D we have
1.,...,1
1 [
a(p, L) 5C (D (NP
1" 7t ) R
then there exlsts a function p(xl,...,xn) such that 0 = p(xl,...,xn) = K for
some constant K and for an arbitrary integrable functlon ¢(x1....,xn)
I p(x) p(x) dx = I pltx) p(x) dx
" 1
and p(x) is a fixed point of PT.
Proof As in the proof of Theorem 3.4, for an arbitrary integrable function
¢(x), we have
¢
plTx) dx = ely) pe(y) dy,
" ®
where
8 511.....1“1(5’)
pt(y) = z z oi
11""'1t oy
and the summation is carried out according to the same indices 11,....ie for
which D L
11,....1£+1
Since S1 1 is a mapping of D1 onto D1 i and
1" T £+1 SO 25

50




AP | _
1 L+ < B C.
ox
we have
A[Dl y ] < gt 7‘[1)1 ] s gt
1°°°° e+ 2+1
We know
£, L ) = 2x) = tlelt ... T(x) )) (£ times).
1.0.0’ t+1
Ify= tl(x) then
88s (y) , 8 f (%), -1
 PERRRE T )  PERREES P ]
dy { ax )
ot (vt 1x) sr(zt %) ar(x) )71
L ax ax ax
For any X0 X, € D1 i we have ‘rkx1 . 'thz € D1 i and
1°°°° "8+l k+1' """ e+l
d('rkx1 .thz) s d[D1 i ]
P23 R 2 3 |
i/n
s C [A[D ; ]] s C B, (k)
k+1"" " T+

vhere Bl = Bi/n > 1.

Therefore, if Yy = tt(xl). Y, = tc(xz), then

S {y,) 2-1 2-2
11"“’1l+1 1 a8 t(~ x2) 8 Tt xz) 8 'l:(xz)
8y ax ax ax
as (y,) -1 -2
11""'1t+1 2 8 t(t xl) 8 T(t xl)“_ FZ] ‘t(x1)
dy ax ax ax

S1



and since T, 1s C

J

function, where E

C1+e

a constant C such that for any Xy» X, € ﬁJ we have

and

Therefore,

8 T, lx

J

1+¢
0

J'

is the smallest convex set containing DJ' So there is

if D

J

ax

a t(th

ox

at(thl)

ax

)

51+

is not convex, T

can be extended to E, as a

= K kL€
C d(t X, T xz)

52

a tJ(xz) _ .
s C d(x,, x,)
1 2
dx
k k
at(t xz) _ at(t xl)
ox ox
= 1 +
a t(thl)
ox
k v
at(t xz) _ at(t xl)
ax ax
s 1+ 4
) t(th )
1
ax




)

e

FYTERITRE S T, WU R R L

as

(yl)

11”"'1t+1
8y = €
-1 . ccC
s ll + B1 (L k)c]
8 S1 g (yz) K=
l,l.'. £+1
oy
¢ cc®
-1ie
AR
1=1 R
© ECc
= " [1+
.1=1
Since
Ao ) -
i.,...,1 D dx
1 &1 11,...,1£+1
as (y)
_ 1,,...,1
= Ini 1 &+1 dy
1 ay
8 Sil....,iui"o)
= A(D )
oy £+1
for some yoeD1 . We now have
&+1
84S (y)
i.,...,1
1 i1 A, )
8y i+1
A(D )
11.....1£+1

S3

(y

T X)



8s (y)
i.,...,1
1 e A, ).
8y 2+1
3 511""'1t+1(y°)
A(D1 )
8y L+1
as (y)
11""'il+1
oy
= sc‘
88 (y.)
11""’it+1 0
oy
and
] Si N {y)
yeees .
pl(y) = z 1 &1 s b ¢ A[Di L ]
i,...1 ay i,...1, al|p ) G 2
1 ¢ 1 ¢ 1e+1
» »
s g P> A[n1 . ]s g = K,
1 i i 10" g+ 1
1 2
where Kl = nmin m(DJ).
1=jsp

0
So {pe} is a veakly compact subset of L1 and for any ¢ € L1 we have
=1

| n plrt) ax = II“ p(x) py(x) dx.

As in the proof of Theorem 3.4, we take po(x) = 1 and we have

py(x) = P p,_ (1) = P} po0).
1 o1 1
Therefore i~ Z P <P 1s weakly compact and it converges to some p(x) in L°.
m =0 0

This p(x) is a fixed point of Pt, i.e., Ptp(x) = p(x), 0 s p(x) sK and for

any ¢ € L1 we have I n plx) p(x) dx = I n oltx) p(x) dx. Q.E.D.

I 1
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3.4 Comparison with Mane’s Results

In [17] R. Mane gave the following more general definition of an

3 expanding transformation:

Definition 3.6 Let (X,d,u) be a probability space, where X is a separable
metric space and & is its Borel o¢-algebra. We say that a transformation
f: X — X 1s expanding if there exists a sequence of partitions (7’1)izo such

that

b) For everynz 0 and P € P f(P) is an union (mod O) of atoms of

n+1 '’
?n , and f|P is injective.
¢) There exist 0 < A <1 and K > 0 such that, denoting by ?n(x) the
atom of Pn which contains x, we have
dix, y) s kK A" d(£"(x), £"(y))
for everynz 0, xe€e X, y € ?n(x).
d) There exists m > 0 such that, for every pair of atoms P, Q € ?0, we

have p(f ™(P)nQ) = O.

e) There exist J: X — R+. 0<y<1and C> 0 such that, for every

n 2 0 and every Borel set A contained in an atom of ?0, we have
u(f(A) = IA J dy
and for every X, y contalined in the same atom of ?h we have

J(y)

-1| s cd(fx), flyN?.
J(x)

For this expanding transformation Mane proved
Theorem 3.7 Let X be a bounded metric space, A a probability measure on
the Borel oc-algebra of X and f: X — X an expanding transformation of (X,4,1),

where 4 1s the Borel c-albegra of X. Then there exists a unique probability

At A
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measure u on the Borel c-algebra of X which is f-invariant and absolutely

continuous with respect to A. This measure satisfies the following properties:

a) g% is Hélder continuous;

b) inf [g% (x) >0 and sup [g% (x) < » for every P € P;
xeP xeP

c) f is exact with respect to y;

d) 1im A(£ "(A)) = u(A) for every A € d.
n—ow

When X = I” and A is the Lebesgue measure on In. let f = T and J be the
absolute value of the Jacobian of T, Mane’'s expanding transformation is our
quasi-directional expanding Markov transformation but with the additional
condition d).

Theorem 3.4 establishes exlistence while Mane's Theorem 3.7 proves
uniqueness and properties a), b), ¢}, d).

The methods of the proof for Theorem 3.4 and Theorem 3.7 are different.

3 _ [k-l k

k=1’ Dk -3 3

T: 1 —5 I be defined by T = 2x - %(k-l). X € Dk (figure 3.1).

For example, let n =1, ?0 = (Dk} ), k=1,2,3 and

AT(X)

1

2/3

1/3

0of 1/32/3 1 X

Figure 3.1

T satisfies all the conditions of Theorem 3.1, 3.2, 3.4 (with « = 2 and
C=1), 3.5 (with &« = 2) and 3.6 (with 8 = 2 and C = 1), but it does not
satisfy the condition d) of Theorem 3.7. Since when we take P = D3, for any m,
we have t-m(P) = ¢ and A(t-m(P)nQ) = 0 for any Q € ?0. where A is the Lebesgue

measure on 1I.
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CHAPTER 4

Approximating the

Invariant Densities of Jablonski Transfdrmatlon

In 1960 Ulam [27, p.75] conjectured that it was possible to construct
finite dimensional operators which approximate Pt and whose fixed points
approximate the fixed point of P-c' Iin 1976 this conjecture was proved by Li
[9] for a class of one dimensional piecew_ise expanding transformations. In
1984 Gora [24) approximated the invariant density using small perturbations.

The aim of this chapter is to prove Ulam’s conjecture and to generalize

Gora's result to higher dimensional Jablonski transformations.

4.1 Approximation the Invariant Density by Piecewise Constant Functions

Let ©: I™ — 1™ be a Jablonskl transformation. For each & = 1,2,..., we
divide I" into " equal subsets Iy Ly oo, Iln with
r +1 r +1 r +1
—E T T —l_ 7 "T
for Tys Toreees I = 0, 1,..., &1 and
A(L) = 2 k=1,2,....0
o

Define P_, to be the fraction of Is which is mapped into I

st byt , i.e.,

t

- -1
Pst = A(Isn‘r (It))/A(Is).

Let At be the £ dimensional linear subspace of L1 which is the finite

2
element space generated by {xk} , where X denotes the characteristic
=1
cn

if and only iIf f = T a
k=1

function of Ik’ i.e. f e At for some constants

k *k



al.az. e ,atn.

Define a linear operator Pz = Pt(t): At — At b

&
Pt('l:):ck = ti Pkt Xy -
1 _ 1
Lemma 4.1 Let At = { z akxk a, 2z 0 and kflak = 1}. Then Pl maps Ae to a
subset of A:.
& &
Proof Let f E Pkt xt . ak = 0 and E ak = 1. Then
k=1 k=1
o o
Pf = Pt{ z a xk] = kE ak[Pt xk]
=1
I o [
=Ea[2P x]=2 (2 aP)x.
o1 lgoy kt U] 7o Lo Tk k)Tt .
Now, for all k = 1,2,...,&%,
o £ mr e (1))
z Pkt. = I =1,
t=1 t=1 m(Ik)
tn
Hence, for any t = 1.2,....(“, Z a P, 20and
~. k 'kt
k=1
L i i i
E[SaP]=Za[ZP]=£a=1.
te1 =1 K KUy R Loy k) ey K
Therefore P,f € Al
[/ (A
Q.E.D.

Definition 4.1 For f € L1 and for any positive integer & we define QC:

zn

1
L — Al by Qtf = kzl Ck xk. where
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1
Ck = ﬂl—)- I f(X) dx.
k Ik

Lemma 4.2 If f € L1 then the sequence Qlf converges in L1 to f as { — .
Proof Since f € Ll, for any € > O there exists a continuous function g

such that Ig-fl < %. Since g is continuous on In. g is uniformly continuous.

We may choose N large enough such that for & > N, we have |g(x)-g(y)| < % for
all x, y € I, k = 1,2,...,8" It follows that

J. | (Qg(x) - g(x)| dx =I Iﬂ'}_TJ. g(x’)dx’ - g(x)|dx
Ik Ik k Ik

1 2 , 1 s, ,
= JI |ﬂ—IP- Jll (g(x’) - g(x))dx’ |dx = '[I [ﬂl—k-y ‘[I |g(x’) - g(x)|dx }dx
k k k k

€
s A(Ik) 5.
Hence,
& "

€
log - &l = J' |Q,8-g|dx = E J' |Q,e-g| dx = z AL ) 3=
o k=1 Ik =1

£
K 3

On the other hand, for £ 2 0

ln
= 1 ’ ’
J‘Inoef dx IIn kil [x{l—k-)- Ilk f(x’)dx ] xk(X) dx

cn
=z £(x’) dx’ =_[ £(x) dx.
k=1 I, m

Therefore, |Q,| = 1 and

1o, f - £] = |Q,f - Q] + Iog - &} + |g - £|

Wl e
wie
wle
"
o

Q.E.D.
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Lemma 4.3 If f e AC then Ptf = le'tf'
Proof We only need to show Pe X = Qt Pt Xy for 1 s k s &". Since

n

8
(P‘tf)(X) =-5x—1.—.—.3;{; J.-l n f(x’)dx’,
x [n [0.x1]]
i=1
we have
n n
QP %, = : [ ! I [—-f———l 2, (x" o x| 2
k =1 XTT;T . 8x1...8xn (D k J
J T (n [0.x1]]
1=1

" " Al T )
1 ’ ' K J
z [ 2 (x )dx]x = I X
A(T,) Jt—1(1 k 3 A(L,) J

= E

J =
L ]
n -1 n
_ é A(Ikﬂ'l' (Ij)) . = é Pk Y ch .
= AL) by K J
Q.E.D.

Lemma 4.4 If f e At then the sequence sz converges to P_tf in L1 as ¢ —> o,
Proof By Lemma 4.3 Ptf = lerf and by Lemma 4.2 it converges to Ptf in L1 as
L — o

Q.E.D.
Lemma 4.5 For any integer ¢ there exists ft € Al such that Pefe = fe and
HQ'J = 1. l.e. P, has a fixed point of norm 1.
Proof By Lemma 4.1 Pe(A:) c Az is a compact convex set. So by the Brouwer
fixed point theorem there exists a point g € Ai for which Plge = g Let

fl - Cngt, we have ft € At’ Ptft = fz and 'fll = 1.

Q.E.D.
From [1] we have
Lemma 4.6 Let T be a Jablonski transformation
T(x) = (wij(xl),..., pnj(xn)) X € DJ,
with
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Then, for f € L1

VP EsK|f] +avr,

where KT is a constant depending on v and a = 25-1 < 1.

n n

I I
Lenma 4.7 If £ eL’, then VQf s V 1.

r+1

n
Proof Let I = —[ -T =1L| Jri for some r1=0,1,...,£—1,

n
k=1,2,...,8 and L) =1E1 A[Jr ].

Let
-1 1
Qtif()() = z ['A—(J_—T JJ f(x) dxilir (Xi).

ry= Ty ry i

Then

Q, £(x) =Q, Q ...0Q flx) = [ ] £(x).
1 2 n

i 1 ei
By Lemma 2.6 of [9] we have

n n n

I 1

I n n

VQf—V[Q]f=VQ[ Q]fsv[ Q]f.

i ¢ ng CJ i ti J=1I,TJ¢1 ZJ Jni ej
J#1

If we could show

n n

I I n
J v (1 e)r [,,dx}sj ve(n e) (@ 1)
1 J 1 b L= J

! Jei Je1 1 Jei

then we would have
In n

I n -
v Qtf = inf I Vh [ n dxj]. h = Qef a.e., V h measurable
1 In-l i J=1 i

J=1
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n

1
s inf { V th II dx ]. g=f ae., V th measurable }
J n—l i i
Jai
1“ n "
s Inf (ﬂQt] [II dxj}. g=f a.e., V g measurable
,In-l i1 Y=t j J=1 i
J#1 J#i
n " "
sinf J Vg[ﬂ dx]. g =f a.e., V g measurable } = V f.
o1 = J 1 {
J#1

In the foregoing argument we have used the fact that for any positive integer

n
I
tand f,g € Ll. f = g a.e. Implies Qtf = th a.e. and V g measurable implles
i
™
v ng measurable. Therefore,
i
" " G o
Vsz=maxVQlmeax Vi=V{
i i i
_ .0 1 r-1 ro_
We now prove (4.1). For any O = Xy Xy <. <%y T xy = 1,
r n n
k-1 k
Z n Qf[x,....x , .x]-“ Qf[x. X .x]
k=1 | j=1 CJ 1 i n =1 IJ 1 i n
J=i J=i
r n 1
_ 1 k-1 _ k
_};. n &2 = I (F(xpyeeaaXy Tannixp) St TR I X))
=1 =1 rJ=0 AU ) n
J#1 M nJ
PR I
J#i J*1
(n n
ndx] n oz (x )]
= Y =g o

Jei [T

62




r n -1 -
s £ [ z n—-—l—l |f(x1,....xl; 1,....xn)-f(x1....,xl;,....xn)l
k=1 ‘j=1 rJ=0 AU ) n
Jei 351 r 3 ng.lrj
J=i Rig!
[ 1de] [r| xr(xJ)] ];
J:i j:i
Now,
2| k-1 ) ( k | 1 a
z Q, f(x,,...,X ve o n Xy -nQ £y ee s Xipoee X [n x]
Ln-1 o1 5'11 ¢, 1 U T i n' [0,
Jet J#t J=i
-1
r{n &1 n _
SI z[n z [nA(J )J j . £ )
-1 k=1{y=t r =0 (s=1 Ty 1
J#i J#i 5=1, 41 T3
[ n n n
n dx] [ n x (x)] [n dx.]
= Ugn o J =1
Nid! J=i J=*i
r n -1
- k
= £ [n z In |f(x1....,xl; 1,...,xn)-f(xl,....xi,....xn)|
k=1 ‘J=1 rJ= J
e JEI "y
J=1

n 1 n

IJ dXJ] - n xJ (x J) n dxj]]
1 AU ) o1 BT =1

J=1 ng r, J#1 321

J=i

r n
= I J |f(x1,...,xl;'1,....xn)-f(xl....,xl: veenx d dxj]
1

n -
k= n-1 =1
1 J#1
k-1 k n
- Zlf(x Ce Xy .....xn)-f(xi.....xi,...,x)| n de]
oy k=1 5=
I J#1
Therefore,
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n

I'/ n n I .
J’Iﬂ-l ‘1, [ngquf] [ JEI de] y .[ - }' £ [ng dx J]'

J=i J#1 J*
Q.E.D.
Lemma 4.8 Let T be a Jablonski transformation
T(x) = (cp”(xi).. cey nJ(xﬂ)) X € DJ

and let f, € A, be the fixed point of Py(t) with Jf,} =1. If
s = Inf inf ef.t > 2,
1,3 Vla b, )
’ 13" 4
M .

then the sequence { v ft} is bounded.
i=1

Proof By Lemma 4. 3, ft= Plft = Ql, Ptft for all €. Hence by Lemma 4.6 and

Lemma 4.7,

1 I )
=VQPf,SVP f,sKIfl+aVf,

[
Ll

T
\Ilf s .
¢ 1-a
Q.E.D.
Lemma 4.9 For any f € LY, £ = 1,2,... and measurable subset A of I"

-[1“ %, Qf dx = Ln f Qp, dx.
tn
proof [ %0 @00 ax = [ | a0 [ 25y [ £y 00) ax
1 I k= k™71

cn
1
= £ f(y)dy x, (x) x, (x) dx
k=1 A(ij Ilk ,[In A k
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z“ AlANL ) T A(AnD)
_X-(-I—)-—I f(y)dy— 2 WJ f(x)dx

zn
1
-I ) [ = I 2, (y)dy (x)] dx
n “A) A k
I k=1 Kk Ik

- I L Fx) Qu, (x) dx.
1

Q.E.D.
Lews 4.10 1Iff, e L', ¢ = 1,2..., with £,20, |f,] = M for some constant

M and a subsequence ft converges weakly to f as J — o, then Qe fe
J JJ

converges weakly to f as j — o,

Proocf It is enough to show that for any measurable subset A of In we have
lim J. x, Q dx = I X, £ dx.
\ Joo In A t\j tJ In A

By Corollary IV.8.11 of [8, p.294],

J' £, (x) dx — 0 as A(E) — 0 unifornly in J.
J

Since |f£|s M, f, =0 and f, converges weakly to f as J — o
J J

Theorem 7.5.3 of [26, p.296] implies that (fl) are uniformly integrable,
J
i.e.,

I Ifl | dx — 0 as C — o uniformly in J.
{|f, |2} 73
J

Therefore, for any € > 0, there exists C > O such that for all CJ

2 |£, | dx < e.
I(Ift |2C} ¢
J

Hence,

Iln fo, Qx,-2,) dx = Ln |f¢J| |°zJ7‘A""A| ax

J J
= £ 1 10 2\=%,| ax + 1€, | 1Qp 2p7%,| o
Llfe |zc) &y A A I<|f¢ |<cp by ESATA
J J
s 2 |£, | dx + C |Q, x,~x, | dx
I(|f |zC} ¢ J(|f£ |<cr &y al
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s2 |f, | dx+C 1Q, x,~x,] ax.
J

The first term is less than € and the second term approaches 0 as j — w by

Lemma 4.2. 1i.e.,

_1,_1,: II“ ftJ (Qtij"‘A) dx = 0.

Thus, by Lemma 4.9,

1im II“ %, Q f, dx = lin J'In fej Q, %, dx

Joeo AR Jeo J
= _11-1:: Iln ftJ (QchA-xA) dx + ,lji: .[In ftj X, dx
<[
Q.E.D.

By [2, p.43] we have:

Lemma 4.11 The Frobenius-Perron operator is weakly continuous, 1i.e., if
{fz}“::__1 c L1 and ft —> f weakly as & — ®, then P-rfl — P.f weakly as
L — o,

Theorem 4.1 Let T be a non-singular Jablonskl transformation with respect

to the partition {D,,...,D } and s = inf inf ¢! > 2. Suppose P
1 P i T

has a unique fixed point. Then for any positive integer ¢{, Pt(t) has a fixed

point f . in At with |f' ll = 1 and the sequence {ft} converges vweakly to the

fixed point of PT as & — o.

-]
Proof It follows from Lemma 1.3 and Lemma 4.8 that the set {ft} is weakly
=1

relatively compact in Ll. Let {fc
J

} be any weakly convergent subsequence of

[}
{ft} and let f = 1im ft weakly. Then for any continuous function g
i=1 J—0 7]
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ISR -
TN TIEETAENT, AN e pe e

m&rw e o ]

s +

“1“ g (f - P_fldx

g (f - £, )dx g[f—Q Pf]dx
'[1“ L, '[1“ Y

+

.

J' g;[oc P, - Ptf]dx
RS IS
The first term approaches 0O since f ¢ converges weakly tof as J — w.

J

By Lemma 4.3, Qt P‘tfl = Pt ft = fz , the second term 1is identically O. By
J - J JJ J

Lemma 4.11, Prf ¢ converges weakly to Ptf as J — wo. The last term approaches

J
0 by Lemma 4.10.

We have, therefore, established that for any continuous function g

j g(x) (£(x) - P_f(x)) dx = 0.
In

This means Ptf(x) = f(x) almost everywhere. If f* is the unique fixed point

of Pt then £ = f* a.,e. and ft X, as J — ». We have, therefore, shown

J
that any weakly convergent subsequence of {f t} converges weakly to f. Hence

ft—E—)qul—ﬁm.

Q.E.D.
Corollary 4.1 If the fixed point of P1: is not unique in Theorem 4.1 then
-
any weak limit point of {ft} is a fixed point of Pt.
=1

Theorem 4.2 Let t be a nonsingular Jablonski transformation with

s = inf inf |¢iJ|}>1.
10.’ [aij’bljl

Suppose P'r has a unique fixed point. Let k be an integer such that sk > 2. Let

¢ = ‘l.’k and fl be a fixed point of P¢(¢). Let
1 k-1
g = £ P  f,
¢ k =0 TJ L
Then {gt} converges weakly to the fixed point of P'r'
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Proof Notice that P , = (Pt)‘,. By Lemma 4.11 and Theorem 4.1

gt'—)8=l'1£ I P fweaklyas ! — o,

Therefore,

1k k-1
P,‘8= EPJf= EPJf=8.
J=1 = J=0 =«

E g R

where f iIs the flxed point of P¢ = P K’ l.e.
T

Pkf-f.
T

Q.E.D.

Corollary 4.2 If the fixed point of Pt is not unique in Theorem 4.2 then any

k-1
weak limit point f of {f,}5  1is a fixed point of P, and g = 15 P fisa
¢ 8= ¢ k J=0 TJ
1 k-1
fixed point of P_. If f, — f weaklyas { — w theng, =~ £ P f, — g
T ti 81 k §=0 rj 81

weakly as 1 5 w,
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4.2 Uniqueness

We say f is an invariant density under T if f 1s a fixed point of PT. Let
F be the set f € L1 which is invariant under t. F 1s a subspace of 1.1.
Definition 4.2 We write "A cB a.e" if A, B¢ I” and x € B for almost all
% in A. We write "A = B a.e.” if both Ac B a.e. and B¢ A a.e. are satistied.
We say a set A is invariant (under t) if A is measurable subset of 1" and
T(A) = A a.e.

Lemma 4.12 — 4.19 can be found in [14]), we include the proofs for
completeness.
Lemma 4. 12 If A and B are invariant sets then

1) a(x(A)) = A(A);

2) T7(A) c Aa.e.;

3) t(AUB) = AUB a.e.
Proof The first one and second one are obvious. For the third one we have
T(AUB) = T(A)uTt(B) = AUB a.e.

) Q.E.D.
Lemma 4.13 Let A be a measurable set satisfying T(A) c A a.e., then, for
any inveriant function f, we have
{ s 0.

T (A)-A
Proof Since t(A) c Aa.e. SoAc T '(A) a.e. Then

-[ g L"(A)f ) '[Af

1 A)-A
= J.APtf - Lf = IAf - IAf = 0.

Q.E.D.
By Lemma 4.13 we have

Lemma 4. 14 If A is invarlant and f is an invariant function, then

69



L“(A)-A £=o

i.e., for any invariant measure p with du = fdm we have

uz ra) - A) =o0.

Lemma 4.15 If A is an invarlant set, then for any invariant function f,

fx A is invariant.

Proof For any measurable set S we have

J‘sf T Ismf - -L“(SnA)f i L"(S)n z“‘(A)f

£+ £
It-l(S)n(r-l(A)-A) It-l(S)M

= I - f= I -y fx,.
s Jls) A
It means that sz is invariant, where we use Lemma 4.14, from

we get | _ - f=0.
L Lisintz"a)-a)

Q.E.D.
For any function f: " — R we write

P(f) = {x € I | £(x) > 0},

Nif) = {x ¢ I7 | £(x) < 0}
and
2(f) = {x ¢ I" | £(x) = 0}.
Lemma 4.16 If f is invariant, then the sets P(f) and N(f) are invariant.

Broof Since

IP(f)f ) L"(P(f))f

= f + f + f
L"(P(f))nu(f) L"(p(f))np(f) L"(p(f))nz(f)

= I -1 £+ ,[ -1 £
T “(P(f))nN(f) T “(P(£))nP(f)
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< f = f.
It-I(P(f))nP(f) IP(f)

Where the equal sign holds only if

At L(P(£))AP(£)) = A(P(£))

and

At HRENANE)) = 0.
That is

T X P(£)) > P(£) a.e.
and

T HP(£))N(E) = ¢ a.e.
Hence T(P(f)) < P(f) a.e.

Let A = T(P(f)) then T(A) c A a.e. By Lemma 4.13,

f=0
Y P(£))-P(£)

and
f =0.
-1

T (A)-A
But

P(£) € v 1(A) ¢ T} (P(£)) a.e.
It follows that

f = f + f

la)-a  TPE)-tPE)) T L(A)-P(F)

-J' £ = 0.
P(f)-Tt(P(f))

Since £ >0 on P(f) - T(P(f)), hence m(P(f) - T(P(f))) = 0. Therefore
T(P(f)) = P(f) a.e. Same as above we have T{N(f)) = N(f) a.e.
Q.E.D.
By Lemma 4.15 and Lemma 4.16 we have

Lenma 4.17 If £ is invariant then fxp(f) and fo(f) are invariant.
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Definition 4.3 Let £ be a function defined on I™. We call the set, on

which the functlion f is nonzero, the support of f and denote it by spt f.
Lemma 4.18 Let f be invariant and S = spt f. Then S is Invariant.
Proof Since spt f = P(f)] v N(f). By Lemma 4.16 P(f) and N(f) are

invariant. By Lemma 4.12 (3) S is invariant.

Q.E.D.
Lemma 4.19 If f1 and fz are linearly independent functions in F with
|f1| = |f2| = 1, then there exist f] and f} such that
(1) f; z 0, fi z 0, |f;| = |f§| = 1 and f; € F, fE € F;

(2) spt f; and spt f5 are disjoint;

(3) for each i = 1, 2, spt f; is an union of disjoint regions contalined

in spt f, uspt I

1 2’
Proof If for 1 =1 or | = 2 we have m(P(fi)) > O and m(N(fi)) > 0 then we

may let

[

f1=1, xP(fi)/“fixP(fi)“'

N

£3 = -1, xN(fi)/“fixN(fi)n'

1f f1 20 a.e. or f1 s 0 a.e. for each 1, we assume fi 2 0 a.e. for each
i1, replacing f1 by - f1 if necessary. In this case, nelther fl = f2 a.e. nor
f, 2 f a.e 1is true, otherwise since |f | = i£,0, £, =f,ae So
m(P(fl-fz)) > 0 and m(N(f1 - fz)) > 0. We can take

2 =

(f, - £,) x _ j(£, - £,)x _ b
1 17 %2 Xp(s, fz)/ 17 '2°%p(s, - £,)
£8 = -(f, - f,) x _ £, - £,)x _ i
2 172 Mg, fz)/ I AR L

Since F is a subspace of L , by Lemma 4.15 f{ and f% are invariant, i.e.

1 2
] *
f1 € F, f2 € F.
Q.E.D.
Let =T " — 1" be a Jablonski transformation. Without loss of

generality we shall assume that there exlst
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0--a1.0<ai’1 < ... <3y o =1, 1=1,2,...,n,

i
for some positive integers Tyo Ty aeees Tp such that the partition ? is
n
D =1n D..
8yr-c28y 4= 5y
where D_ = [a , & ), s, =1,2,...,r,-1and D_ = [a _q» @ ] and
5, i.sl-l l.s1 i i ry J.,r1 1 1,:‘1
T is glven by the formula
T(x) = (¢ (%.)y...09 (x)), xeD .
l.si....,sn 1 n,S,...,8, N Sqv:-es 8y

: ﬁs —> [0,1] are c2 functions.

where ¢
i,s
i n 1

1»---'5

Definition 4.4 We say that the partition P has the communication property

under the transformation = 1" — 1™ if for any parts D; s and
10728y

D” of P there exist integers u and v such that D/ c (D" )
S.1:445 S 1445 S.y.4s5S

1 n 1 n 1 n

v
and D’ ct (D ).
SyreeeaSp Sqr-ee8y

Definition 4.5 A Jablonski transformation t: I — 1" is in class € if it
satisfies following conditions for the fixed partition ?:

(1) inf |qpi| > 0 and |(¢Y )*| > 1 for some integer w.

(2) < is plecewise Cz;

(3) the partition P has the communication property under .

We associate with each D$ S a symbol such as «, B, 7,... and code
ARRETLN
the orbit by a sequence <x> =.a B ¥ ... if x € D(a), T(x) € D(B), tz(x)e D(7),
..., where D(a) is some D s whose symbol is a.
10 *+Sp

Lemma 4.20 Let T: I"™ — I be a 0:22 Jablonski transformation and satisfy

condition (1) defining class 8. Then <x> = <y> implies x = y.

Proof We write
T(x) = (tl(xl). cee .tn(xn)).

Assume x » y but <x> = <y>, then x1 * y1 for some 1 = 1 s n. By condition (1)
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there exists an integer w such that

dtw

1
dx 1

zd>1.

Now <x> = <y> implies that tt‘"“’(x) and tc‘"‘j(y) belong to the same

Ds s for each £ and J, 0 = J s w~1, but (1) implies that if X, # y, then
1..1-. n

Lu+ Lw+] J
Iy J(xi) -1 Ty = ats |%-v,| — = as t — o,
where s = inf |ri| > 0. This is a contradiction.
Q.E.D.

Lemma 4.21 Let T be same as Lemma 4.20. If ¢ = o, 0, .. is a sequence with

the property that t(D(or.k)) > D(“kﬂ)' k =1,2,..., then there exists a unique

X € In such that <x> = ¢.

Proof let D(ak) n 1 (ak) and T(x) = (tl(xl),.... tn(xn)). We have

n
Tl(li(ak” > Ii(akﬂ)' By Lemma 2 of [13], there exists a unique x € I such

that <x> = o¢.

Q.E.D.
Lemma 4.22 Let T be same as Lemma 4.20 and § ¢ P be a collection regions

satisfying the communication property: for any Dl' DZ € £ there exist integers

u and v such that D1 C 'cu(Dz) and D2 c 'rv(Dl). Assume that € contains at

0
least two D? and V = v D. Then there exists an x € V such that {te(x)} is
Deg £=1

dense in V.

Proof Conslder the set of all possible finite sequences.a, «, ... &, where

D(aJ) €€ J=1,2,...,k and t(D(aJ)) >D (“Jﬂ)' 1s Jsk-1, k=1,2,....
This set is countable. Let 51.82.83,... be an enumeration, and form the
sequence

x> = S ’r1 52 Tz 53 ’r3
where the T, are finite sequences Jjoining the last symbol of 51 to the first

i

74

T e e ans e PMASGHS WA ol Vi ettt S



symbol of Si+1. This can be done because of the assumption of the
communication property. Thus, by Lemma 4.21, a point x exlists corresponding to

the coding <x>.

Now, given y € V and € > 0, we claim there exists ¢ such that

n 172
w 2
T (T (x,) - y,) < g,

To see this, note that for any m, the symbol S corresponding to y € D(a),
T(Y)ED(ﬁ).-...tm(y) € D(y) occurs in the coding of x. This implies that for
some & ttw+1(x) and ti(y) belong to the same D, § = 0,1,...,mw. Now

n 2\ 172 n 2\ 172
w 1 (&+1)w _ ¥
{12 (e () yi] ] =1 [151[ By - ‘Vi’] ]

n 2\1/2 -
s —%-[ z [ T§£+m)w(x1) - rTw(yi)] ] s 24; Mee
d ‘=1 d
for m sufficiently large, where M = sup Iti(xi)l. Thus the orbit of x is
n

x€l’, 1si=n

dense in V.
Q.E.D.
By Lemma 4.22 we have

Lemma 4.23 If T is the same as in Lemma 4.20 and satisfies condition (3)

defining class B then there exists a dense orbit in all of I
Theorem 4.3 If T € B, then there exists exactly one absolutely continuous

measure invariant under =t.

Proof Assume there exist two such measure with densities f1 and fz. By
Lemma 4.19, there are two invariant densities f; =0, fi = 0, Hf;ﬂ = nféu =1
such that S1 = gpt f; and S2 = gpt fE are dlsjoint and S1 is an union of
disjoint regions, 1 = 1,2. From [25]) we know that each S1 has interior.

Now let x € I" be a point which has a dense orbit in I, By Lemma 4.23

t o
such polnt exists. The denseness of the orbit {t (x)} implies there exist
i=1
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] ¢
points u = 7 1(x) and v = 1'2(u) such that u € Int 5, and v e Int Sz, where

int denotes interior. By the plecewise continulty of T there exlsts an open

¢

ball 01 centered at u and in S1 such that for u € Ol. verT 2(u) € int SZ.

by Lemma 4. 18, S1 and S2 are invariant sets, i.e. t(Si) = S1 a.e. 1 =1,2. It

is a contradiction. Hence there exists only one absolutely continuous

But

invariant measure under t.

Q-E.D.

Theorem 4.4 Let v: I™ — 1™ be a Jablonskl transformation with respect to

the partition P = {D n given by the formula

sl,....sn}s1=l.2.....r1.1=1.2,....

s S

T(x) = (wl s (x.),....9 s (xn)). X € Ds1
’ 1,'- ’ n 9 .. n

. sn 1 n,si....,

such that

(xl) € C2 and

n

(1) for any s,,...,s and i ”1,51,....5
! (x,)| 2s>1;
1,51!""sn 1

{(2) the partition P has the communication property under T.
Then P_ has a fixed point f with |f| = 1 and it is unique.
2roof T satisfles all the conditions of Theorem 4. 3.

Q.E.D.
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4.3 Examples

Example 4.1 If for any part Ds of P P s s is a C2 bl jective of
42+ +5p +Sqr--er Sy
closed interval D onto [0,1), the restriction t of T onD
s SyperS S,4...,8
i 1 n 1 n
is a Cz bl jective transformation of ﬁs s onto I" and
10" Sp

s = inf |¢] _ | > 1,

107 *Sp

then T € & and by Theorem 4.3 the absolutely continuous invariant measure

under T is unique.

If s > 2 then by Theorem 4.1 we have a sequence of plecewise constant
functions fl with ||f£|| = 1 which converges weakly tc the fixed point of P'c'

If T is plecewise linear and Markovian, then the fixed point of P-r is a
piccewlse constant function.

So it 1s casy to get an example of T which absolutely continuous
invariant measure is unique and it is a weak limit of piecewise constant

functions.

Example 4.2 We present an example where t(ﬁs ) # I" for some

1,....Sn

Ds B Let for n = 2 and
1 n

1 1

I = J = [0. ). 12 = JZ = [—. ‘z).

1 1

I,=J, = [3 =3, 1)

3 3 2'

[
L AN

), 14=J4

and D, , = I

kj k X JJ' k,J=1,2,3,4 (Figure 4.1).
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Dyg | Dag | P3q | Paa

3/4
Dy3 | Da3 | P33 | Dgs

1/2
Dy [ Pyp | P32 | Pg2

1/4
Dys | Pyy | D3y | Dgy

0 /4 172 3/& ’xl
Figure 4.1

2 1
fl(X) = 2,4(x"+x); fz(x) = fl(x - Z);
= -1, = - 3,.
fa(x) = fl(x i)' f4(x) = fl(x E)’
gi(y) = fi(y). 1 =1,2,3,4;

f(x) = 4x; gl(y) = 4y

and
(f, (x),g,(y)) (x,y)eD ., D ,.=D,
T(x,y) = k J kJ kJ 11
(f(x), gly)) (x,y) € D11.
Since
= ).1p 3 3 .
wfB,) =03 1x 0 F1 @ =0
= _ 12
t(Dll) = I°,

By [1], we know that Pt has a fixed point, and by Theorem 4.4, it is unique.

Also by Theorem 4.1, we have f, € 8, with |f¢| = 1 and {ft} converges weakly

to the fixed point of Pt as { — o.
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4.4 Sma)]l Stochastic Perturbatjons

For any positive integer ! we consider a family of probability densities
q‘(x,-). X € In. with respect to the measure A. The densities of qt are
bounded and measurable as functions of 2n variables. The family of transition
densities pt(xn) = ql(‘t(x)n). g = 1,2,..., with respect to A is call a
stochastic perturbation of the mapping T. It is called small if forany r >0

we have

inf I qt(x.y) dy — 1 as & — o,
xeln
Oo(x,r)

vhere O(x,r) = {y | d(x,y) < r}. Perturbations considered in the sequel are
small as they are local, i.e., for ¢ =1,2,..., there exists rt > 0 such that
qt(x.y) = 0 for d(x,y) > Ty and r, — 0as § — .

The Frobenlius-Perron operator Pt: Ll—-> L1 is

-1

) ) q flt'y)

(P.f) (y) =2 —K_—— o (y),
T k=1 |J (r0y)| kP

where Jk is the Jacobian of T on Dk and

P n
v D =1,D nDk=¢forJ=k.

k

T(x) = 7, (x), x € D,,
k k=1 J

k

We define operators QL and Pt' L=1,2,..., from I..1 to l.1 as follows:

(Qtf)(y) -I ql (x,y) f(x) dx, y € In;
®

(Ptf)(y) = I pt (x,y) f(x) dx, y € .
™
We have Pt = Q¢°P1:' Since

:
[(QeP)f1(y) = (G £))(y) = Iz“ ql(x.y) P_f(x)dx

-1

P ¢ f('l:k x)
= I q (%y) ————— 2. (p ) (X)dx
k=1 n -1 k''k
I |9, (7 %) |
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dx
-1
k' 'k 13, (7 x|

P )
=Z q (tk(z).y) f(z)dz (z=1<

k=1 Dk

klx. X = tkz)
= Iln ql(t(z).y) f(z)dz = Iln pt(z.y) f(y)dz
= (Ptf)(y).

The transition density pt. £ = 1,2,..., has at 1least one invariant

probabllity measure Hys i.e.
By (A) =J‘ U p‘(x.y)dy] duy(x)
In A

for any Borel subset A of In. The measure K, is of the form Hp = fek, where

1 =
ftel.. ftanndPtft—fl.
Let ©: I®™ — 1" be a C2 Jablonskil transformation with respect to a

finite partition # = {D ,....Dp) and s = inf inf ]qph] >2, 1l.e.,

1, 05x151

T(x) = (qplj(xl),...,pnj(xn)). X € D_;' J=12,...,p,

1

and for any 1 s 1 sn, 1 s Jsp, eczandinflqp’ij|>2-

n
Let Hl = {Dt.l....,Dt.m(l)} be a partition of I into rectangles such

that

max d(D

) J) —> 0as l — o
1sjsm(2) '

Let us define

-1
{(A(D, ,)] for x,y € D
qz(x.y) = q(ﬂl)(x.y) = { tJ tJ;
0 otherwise
3
p(nl) =p; Q(Hl) = Qt‘ P(ni) = Pt

for ¢ =1,2,....
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Lemma 4.24 For any positive integer ! and for any fe L1 we have
" "
vV @Qm)f) s V£
Lemma 4.25 For any f € L1 we have Q(ﬂl)f — f as { — » in the L1 norm.

Lemma 4.26 For any f € Ll. t=1,2,... and measurable subset A of "
Ln z, Q)£ dx = I:" £ Qmy, dx.

Lemma 4.27 If f, € Ll, t=1,2,..., with f, 20, Iftl s M for some constant

M and its a subsequence ft converges weakly to f as J — w, then Q(HZ )fe

J J

converges weakly to f as J — =.
The ©proofs of Lemma 4.24, Lemma 4.25, Lemma 26 and Lemma 27 are
analogous to the proofs of Lemma 4.7, Lemma 4.2, Lemma 4.9 and Lemma 4.10.

Theorem 4.5 Let ©: 1" — 1" be a nonsingular C2 Jablonski transformation

with respect to a finite partition P = {Dl""'Dp} and

s = inf inf o} |} > 2.
1,3 Utagyby ) 1

If, for any positive integer ¢, f, € L, f, 2 0, |f,[, =1 is a fixed point of

Pl' then the set {ft: L= 1,2,...} is weakly compact in L1 and its weak 1limit

points are fixed points of PT.

Proof Since P(ﬂl) = Pt = Q£°Pr = Q(nl)oPT, Lemma 4.6 and Lemma 4.24 imply

that
In In In
v ft =V P(Ht) fc =Yy Q(ﬂk) (Prft)
) " "
sV Ptfl s xtnfcn +aV ft = Kt +alV fl’
Hence
n
1 Kt
v ft ]
l-a
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and the set {fl.: = 1.2....} is weakly compact in Ll.

]
Let {fzk} be a subsequence of {fl} which converges weakly to a
k=1

function f in 1.1 as k — «. Then for any continuous function g

ILB g (f - P_fdx|
s g(f - f, )dx | + g(f, -Qm, ) P f, Jdx
s maete ] ate - am) rrp e

+ || s@m, ) pg, - POk,
™ lk N tk T
The first term approaches 0 as k — w since fek converges to f weakly,

Since (Q(n, ) P.f, = P(N, )f, = P, f, = f, the second term is identically
Lot h % A& k&

0. By Lemma 4.11 P.':flk converges to Ptf weakly as k — o. The last term

approches O by Lemma 4.27.

We have established that for any continuous function g,

j g(x) (f(x) - P_£(x)) dx = 0.
In

This means Ptf(x) = f(x) a.e., l.e. f(x) is a fixed point of PT.

Q.E.D.
Theorem 4.6 Suppose l",t has a unique fixed point f*(x). Then fl(X) converges
to f*(x) weakly in Ll
Proof Let f(x) be a weak limit point of {ft}' By Theorem 4.5, f(x) is a
fixed point of Pt. But Pr has only one fixed point f*(x). So f(x) = f*(x) a.e.
We have, therefore, shown that any weakly convergent subsequence of {fe)
converges weakly to f*. Hence ft X v a5l — o,

Q.E.D.

In fact Theorem 4.1 and Corollary 4.1 are the special cases of

Theorem 4.6 and Theorem 4.5.
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CHAPTER S

Compactness of Invariant Densitles for

Families of Piecewise Expanding Jablonski Transformations

In 1988 Gora and Boyarsky [15] proved a compactness result for the
invariant densities for families of expanding, plecewise monotone
transformations on an interval.

In this chapter we will prove an analogous result for invariant densities
for families of plecewise expanding higher dimensional Jablonski

transformations.

5.1 Compactness

Let ©: I®™ — I be a Jablonski transformation. As in Chapter 4, we
assume that for any {1 = 1,2,...,n, there exists a partition J1 of I:
0= ai.0 < ai'1 < ... < ai.ri =1
for some integers FiserenTp such that the partition P of " is {Ds s } and
1'""'"n
n
D =1qn D,
S1°+° % 1=1 5

where Dsl = [ai.si-l’ al.si]’ s1 = 1.2.....r1, i1=1,2,...,nand T ls given

by the formula

(xl)..... 8 (xn)). X € Ds "'sn’

T(x) = (¢
1,s 900" n 1

1.....Sn wn.s

where for any 1sis=n, 5, = 1,....r1. ¢1.51.....sn(x1): [ai'sl_l,ai’si]-—elo,ll.

) be a Cl-function and the limits

Let ¢
i,s 1

(x,) on (a ,a
1....,sn i 1,s1 1'",s

+ -
P [a _ ] and ] [a ] exist.
i.sl.....sn 1.81 1 i.sl,...,sn 1.s1



A Jablonski transformation t: I — 1" is called plecewlise expanding if

(1) inf inf
i,s

}=s>1.

is a function of bounded

wI

1,8,,...,8
4eees8 s '“n
1 n (ai.sl-l’ai.s )

|

1

(2) for any Sqree18 and i,
n ’
¢1,51...,s
n

variation on [?i.s -1 34,5 ].

b i
Theorem S.1 Let (ta)aed be a family of plecewise expanding Jablonski
transformations with respect to the partitions (?a)aed and satisfying the
following conditions:

(1) There exlsts a constant s > 1 such that

p! zs

a.i.sl.....sn
whenever the derivative exists for any « € 4 and §{ = 1,2,..,n, s; = 1.2....rr

(2) There exists a constant W > 0 such that for anya € 4, 1 =1,2,...,n,

and flixed Xeveooo Xy g0 Xy qoeeeaXp

1 1

V |———————]| s W.

[
0 wa.i(xi)

(3) There exists a constant & > 0 such that for any a € 4 there exists

a finite partition Ka = {Da.sl....,sn}si=1.2....,ri.1=1.2,....n,

where

n

D

a, s s_ [aa i,s
» 1""’ n 1=1 1] 1]

I
4 1 a.i,s1

such that T 1is a Jablonski transformation on K. and for any D '
3 o a,sl,....sn

T, oD Da.s s is an injectlon, 1a(Da.s s ) is a rectangle and

g0 " Sp 1 5p
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!..(Dm's s )= min (a ) > é.

-a
100 8q 1sisn m,l,s1 oz.i..s1 1

(4) For any ¢ & 1 there exists 3, > 0 such that if

-1
o _ -J
K¢ J!o Tu (Ka)o
then
min min L(D) 2 §, > 0.
« L) ¢
Del(a

Then, for any density f of bounded variation, there exists a constant V such

that any aed and any k = 1,2,...

VPkfsV.
T

«
This implies that any Ty * € 4, admits an invariant density fa with Wfa <V

and by the Lemma 1.3 the set (fa)aed is weakly precompact in Ll

Lemma 5.1 If the family (Ta)aed satisfies the conditions of Theorem 5.1,

then for any ¢ = 1,2,..., the family ('té} satisfies analogous conditions.

aed
Moreover, for the new partitions
-1

= -J
JXO Ta (Ka) ’

K(“
o

we have

1

l ’

< (%)t_1 W.
("a.i)

max \'
o

Proof It is obvious that conditions (1) and (2) will be satisfied for
different constants. The condition (3) is satisfied by assumption (4). The
proof of the inequality is the same as the proof of Lemma 1 in [15].

Q.E.D.

Lepma 5.2 Let T be a transformation satisfying the assumptions of
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Theorem 5.1. Let

N =max V I-lrl.
Dk D | ®

Then for any density f of bounded variation

1 3 2+7s
VP_f S — [— + n] VE + ——— Ifll,.
4 g" 1 (s ss" 1

n
Proof For anyDeKk, D=1 [al'bil we define
i=1

(Tl ™ = By )by L (x0))

and AD = 1(D). Let f be a density of bounded variation. We will estimate the

variation of Ptf.

For any 1 s { sn and fixed XysooonXy_goXy g0eeeaXp, let

E
E O=t, o<t 4 << t‘"’i = 1.
E Then, we have:
Ty
b |P f(x ceaXe oty WX aheex ) B FLLE, L L)
% =1 i-171, 971 n T i, 51
Ty
4 =% |2 £(..¢, (t),...) |¢ ¢! L cte..)
31 |pek D,1 "} 19,1 9p, 1 ¢ ty)+%p n AD 3
-z f(..,9 e P! P b )
Dek p,1(ty-1) |D1 D,1¢t5-1) %0 n AD J-1
Ty
1
s ——= T/ Z|f(. o0 (L) ) en ()|-£0 .0y (£, ). )|ey (t, )]
N ) Del(l D, J D,1'"J D,y D, " §-1
r
1 21"2”|f( ¢ (t)... 00 ()]
+ c e e
s"1 ju1 Dex Dy~ D,"J
1 1
+ zlll zllll (“.¢ (t )¢l l
"1 je1  Dek D" b, *3-1
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where I’ 1s taken over 1sjsr, and DeK such that (...tJ...). ("‘tj—l"') € A

I’’ is taken over 1 s § s r, and DeK such that (...tJ...)eAD. ("tj—1"')¢AD;

Z'’’ ig takenover 1 s J s ry

Since T is a Jablonski transformation with partition K, the first sum can be

and DeK such that (...tJ...)tAD. (...tJ...)eAD.

estimated by

.
1
1
£ oz [f(...¢ (t)...) = £C..¢ (t, )...)]¢' (t,)
! je1 Dex D" J D, J-1 D,
r
15 g 10 .., (t )||¢' (t) - ¢ ()]
+ ‘e
"1 yo1 pek D, It Dy J-1)
sLvged (Vf+—l-Il I£] dx,) m
sf 1 "1y 5 J0 1

We have used the inequalities:

|£C... .05 (¢

. J_1)...)|s inf |f| + V f

ila,,b,]
aISxisb1 1'%

b
sb—f—jl |£]ax, + V£
1,[a;,b;]

and

’1

J: |¢6 (t)) - ¢61(tJ_1)| =V |¢51| s 7.

Let J(D) be the smallest j such that (...,t jeD and j’ (D) be the

g

biggest J such that (...,t ., ...)eD. The remaining two sums can be estimated by

J
1
—— I (|f(....0p (¢
1

)
s" Dek |

)

J(D))'--)l + I f(o-|¢Di(t

1 2 !
s ‘_n(ZVf*TI |£|ax, ).
s i 0
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We have used the fact that if (...,x,...) (...,y,...) € D, then

[fC.ox )]+ fG. .y, )|s2V f + 2+ inf |f].

ilai.bil aISxisb1

Consequently, we have

1
3 n n 2
VPfS[—+ _]vr+[——_—+——]f |£]ax
1 v s s ! 1 3" 1 ss™ Jo 1

1
.1 3 sn+2
S [Gom e« ()] reten).

and
VPtf = 1nf{I Vh dxi...dxi_ldx1+1...dxn, h= Ptf a.e., Vh measurable}
i In-l i i
s 1nf{[ - ¥Prg dxl"'dxi-ldxi+1"‘dxn' f=ga.e., ¥g measurable}

1

1 3 ~
s — [[; + n] 1nf{j Vg dxl...dxi_ldx1+1...dxn. f=ga.e,b Vg
s Gt i

measurable} + sg;Z I |f|dx]
n

1 3 2 + 78
= ;E:T [(E + n)¥ f+ IS “f"1]'

By Vf = max V f, we have

1 1
1 3 2+7s
VP f = 1 [[; + n) VIi+y— ufnl]

_ 1 [3+] 2+1s
= S+ 9] VI + = Ufl_.

o1 s 55" 1

Q. E. D
Lemma 5.3 If the conclusion of Lemma 5.2 is true for the family {Tﬁ}pzl'

where ¢ is a fixed positive integer, then it is true for the family (rp)pz1
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itself.
Proof Let T € {tp}pzl' It is enouch to prove that if

m
VszsV

T 1

for any m and for any f of bounded variation, then

n
VPrfsvz

for any m and some Vz. let m=kl + J, 0 s Js £-1, We have

m J .k
VPtf-VPtPtf

T
s 4 [3 + n] v [Pi“ Pkt f] + 2208 ne
T

sn-l s asn
J J-1
1 3 1 3 2+ns
‘;TGT—T)’[E""] V1*;'IFTGT-TT[§*"] 0 ey
4.4 2t0S e,

s
It is easy to see that we can find an appropriate Vz.
Proof of Theorem S.1 Let us fix a positive integer ¢ such that
1 3 1
T [—z ‘= “] <1
s s s

The famlily {Ti}a cd satisfles the conditions of Theorem 5.1 with

ES—IZ. ist—}qw. and'é'zal
s s
{(Lemma 5.1). By Lemma 5.2, we have that for any a € 4 and any density of
bounded variatlion:

Vszerf#D.

T
«

where

~t+1
1 [1*‘—1—1 u]<1andn=2’5(i° W)
o1 Ul s 1 %

rs=
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This implies that there exists a constant \l1 such that:

k
VP, fsYV
tl 1

for any k = 1,2,..., and any « € 4, and hence the conclusion of Theorem S.1

for the famlly {1.':} Applying Lemma 5.3 completes the proof.

aed’

Q.E.D.

For any { = 1,2,...,n, lei:Qi-(a1 00 By qrcece air)' Let $P={J1x
1 _ ’ 1 1

The plecewise expanding

J. X ...X Jn)'-{Ds }

1.....sn 51-1.....r1.1=1.2....,n.

Jablonsk! transformation T is called a Markov transformation with respect to

2

the partition ? if for any 1 =1,...,n, ¢1(x1) transforms the set Q, of

endpoints of intervals of J1 into itself, l.e. ¢1(Qi) c Qi'

As in [15], for any 1 = 1,..,n and fixed X,,...,%; ;. Xy 45---0%, Ve have

a Markov transformation ¢§k)(xi) (with respect to Jik) k=1,2,...) associated
with ¢1(x1). For different x,,....X; 4%y q0-cc0¥ps there are only a finite
(

number of different pik)(xi). So we have a Markov transformation
(k) = (oK) (k)
T (xi.....xn) (wl (xl).....gon (xn))

with respect to ?(k)=(J{k)x...x J!(lk)). ‘t(k) converges to T uniformly on the

n
set In AR VIRV Q{k) as k — w, where
1=1kz0
(k) (k)
Q, = {x,|x, is an endpoint of some interval of J, }
]
For any i = 1,2 n and fixed x X x X (k)'-——> ¢ In I..1 as
plap o 0oy 1."" 1_1' 1+11"'l nl ¢1 wi
k —-’ [ -

As in [15], we have:

Iheorem 9.2 Let T be a plecewise expanding Jablonski transformation and
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(k)

{t(k)) a family of Markov transformations associated with t. Then any v ',

k=1
k=1,2,..., admits a invariant density

compact in Ll.

is weakly

K and the set {fk}

kz1

Lemma 5.4 Let T,: QLU LU ¥ T, — T unifornly as k —s ®, P_f, = f,
K

1

with [f, ], = 1and f, — f veakly as k — © in L, then P f = f.

Preoof It is enough to show that for any g € Ci(ln)
-[1“ g (£ - P_f)dx = 0.
We have

|I g(f-P £)dx| s |J' glf-£, Jdx| + |I g(f, - P, f, )dx|
» " "

+ II g(Pf, - P.f,)dx| + |j g(P.f, - P fldx]|,
n n
1 I
where Pk = Pr . The first summand tends to 0 since fk — f weakly as k — w,
k
Because Pkfk = fk’ the second summand is equal to O. The fourth summand 1is

equal to II n(got)(fk-f)dxl and goes to O since f, —» f weakly as k — (if
I
g is continuous then get is bounded). Because g € Cl(In). there 1s a constant
n
Mg such that for any x = (xl,. ..,xn), y = (yl....,yn) € 1" we have

[g(x) - gly)|s Mg d(x,y),

n 172
where d(x,y) = ( p> - yl)zl . Hence the third summand is equal to

(x
1=1 1
|I1n (8ot = goT)f dx| = s:PIS"tk(x) - get(x)| I n|t‘k|cix

I

s Mg sup d(tk(x). t(x)) — 0 as k — o,
X

Therefore

I glf - P_tf)dx = 0,
In
Q.E.D.
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Now we will show that any weak 1limit point of the family of
t(k)-invarlant densitles (fk) ig an invariant density for .
Theoren 5.3 Let T be a plecewise expanding Jablonskil transformation and

(t(k)) a family of Markov transformations associated with tv. Then any weak

ka1
linit point of the family of t®)-nvariant densities {f,} with ifl =1isan

invariant density for t.

Proof By Theorem 5.2, any t*), k = 1,2,..., admits an invariant density f_

and the set (fk)kzl is weakly precompact in Ll. By Lemma 5.4, any weak limit

point of (fk) is an invariant density for <.
Q.E.D.

As in [15]), for any k = 1,2,.. and 1 = 1,2,...,n, we can take qpik)(xi) to
(k)

be a plecewise linear Markov transformation, l.e. t is a plecewise linear

(Jablonski) Markov transformation with respect to fP(k). By Theorem 3.2 there

exists a plecewise constant function fk with respect to ?(k) which 1is an

(k)

invariant density under Tt and Uf Il = 1. By Theorem 5.3, any weak limit

k
of {fk) is an invariant density under T.
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2.2 Examples

Example 5.1 Let n=2 and 011 = {0,0.5) x [0,0.5), D12 = [0,0.5) x [0.5,1],
D21 = [0,5,1]) x [0,0.5), D22 = [0.5,1) x [0.5,1] (Figure 5.1).

X2

~

12 22

0.5

11 21

0 0.5 1 1

Figure 5.1

For 0 = x, = 0.5, define (Figure 5.2)

¢1(x1)

-~

0.88 0.92

AN
/

O.OBJ 0.02

A 4

(1] 0.3 0.50.7 1 2
Figure 5.2

2
vl,ll(xl) =X ¢ 1.1x, + 0.08, 0 s x

1 1 <0.5;

2

¢1’21(x1) =Xy - 3.3x, +2.32, 0.5 s x

1 s 1.

1

93




3
3
;
‘

For 0.5 s X, S 1, define (Figure 5.3)
pl(xl)
1
0.92 0.88
0.5 /
0.02 0.08
o! 0.2 0.5 0.81 x1
Figure 5.3
01 ia(x.) = x> =2.3 %, +0.92, 05 x
1,121 1 ' 1 T
¢ (x,) = x2 +0.1x
1,221 1 ' 1

For 0 s x s 0.5, define (Figure 5.4)

¢2(x2)

-0.22, 0.5 s x

0.92

0.5

/

0.02

95,11 0%;)

0.3 0.5 0.8 1 x
Figure 5.4
=x% +1.3x, +0.02, 05 x

2

2

< 0.5;

151.

< 0.5;

2
¢2' 12(xz) X5 + 0.3 Xy = 0.38, 0.5 = X, S 1.
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For 0.5 = x1

pztxz)

2

s 1, define (Figure §5.5)

\

0.5
0.08
ol 0.2 0.507 1 ;*2
Figure 5.5
95 21(%,) = X2 - 2.1 %, + 0.8, 0 5 x, < 0.5;
93 22(%p) = xé - 31 %, 4218 0.55x, 51,
Since we have
9111003V = 0.5, 119 ,(x)s21
91 21(0.7) = 0.5, -2.3 5 9] 5, (x,) 5 -1.3;
¢1'12(0.2) = 0.5, -2.3s ¢i'12(x1) s -1.3;
¢1.22(0.8) =0.5 1l1=s ¢1'12(x1) s 2.1;
¢2.11(o.3) =0.5 1.3=s ¢é.11(x2) s 2.3;
¢2’12(0.8) =0.5 1.3s ¢é.1z(x2) s 2.3;
02'21(0.2) = 0.5 =-2.1=s pé.21(x2) s -1.1;
02’22(0.7) = 0.5 =-2.1s ’é,zz‘“z’ s -1.1.
So we can take t(l)(xl. le = (w:l)(xl). v;l)(xz)) as follows:
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For 0 s X, 3 0.5, define (Figure 5.6)
9{”(::1)
1
. o.s
0 0.3 0.5 0.71 x1
Figure 5.6
5
3%, © s x <0.3,
(1)(;( ) u 2.5 x1 - 0.25, 0.3sx1<0.5.
1 -2.5 x, +2.25, 0.5 sx <0.7,
5 S
'5)(1"'5, 0.75)(151.
For 0.5 = X, S 1, define (Figure 5.7)
(1)
21 =)
1
0.5
o] 0.2 0.5 0.8 1 ’xl
Figure 5.7
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—2.5x1+1. Osx1<0.2.
5 S
- X, + =, 0.2 s x, <0.5,
0:1)()(1) - 55 1 53 1
5)(1-3, O.SSXI<O.8.
2.5 x1 -1.5, 08s x1 <1,
For 0 s X, S 0.S, define (Figure 5.8)
(1)
v, (xz)
L o
1
0.5
0 0.3 0.5 0.8 1 x2
Figure 5.8
S
§x2. Osx2<0.3,
(1) 2.5 %, - 0.25, 0.3 = x, < 0.5,
12 (xz)- s 2 . 2
-3-)(2“-6', 0.55)(2(0.8.
2.5 xz - 1.5, 0.8 = xz s 1,
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For 0.5 s x, s 1, define (Figure 5.9)

1

(1)
9> (xz)
1
0.5
0 0.2 0.5 071 ”2
Figure 5.9
-2.5 xz + 1, 0s x2 < 0.2,
S S
2.5 xz + 2.25,0.5 = x2 <0.7,
S S
5)(2*-5, 0.733(251.

1(1) is a plecewise linear Markov transformation with respect a partition

?(1) (Figure 5.10). By Theorem 3.2, there exists a plecewise constant function

p(1) (1)

which is an invariant density under <

f, with respect to and [f,| = 1.

2
a
. 0.2 0.8
0.8 0.7
0.5
0.3
Oaz

o 0.3 0.5 0.7 1 X

1

Figure 5.10

98




Continuing in this way, for any k we can take T(k) as a piecewise linear

?(k)

Markov transformation with respect to and we have a plecewise constant

function fk with respect to ?(k). which 1s an invariant density under -r(k) and

i W, = 1. Any veak limit of (fk) is an invariant density under T.

Example 5.2: let n=2and let 0<b <05 Define D 1 * (0,b) x (0,b),

1
DIZ = [0,b) x [b,1], 021 = [b,1] x [0,b), D 2™ [b,1) x [b,1] (figure 5.11)

2
and
X2
1
D2 D22
b
Dyy Dy
0 b | x1
Figure 5.11
2
1 - b -«
® (x,) = x, +
o110 T T T
2
1-bD b - a
) (x,) = X, ¢+ —
e, 2,11 72 b_“z b-a,
2
1-b b -«
(] (x,) = x, +
@1,12710 T T T
X, -b
2
® (x,) = ’
«2,127°2° " T _ o
xi-b
) (x,) = ,
@1,201° © T
2
1-b> b -«
) (x,) = x, +
L b N




(X)- ’
1-Db

Pa,1,22

¢.2 zz(x ) = ’

and

2
ta(xl. 2) = (’a,l.lj(xl)' '&.2.1J(x2))' (xi.xz) € DIJ for « € 4 = (0,b7).

It is easy to see that (ta)ael satisfies assumptions (1), (2), (3) of
Theorem 5.1. However, it does not satisfy assumption (4). Since

min L(D) = &
(2)
DeKa

and therefore tends to 0 as a goes to 0. This example, therefore, shows that
our proof of Theorem 5.1 does not work without assumption (4).
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CHAPTER 6

Constructive Approximations to Densities

Invariant under Non-Expanding Jablonski Transformations

In 1988 Gora, Boyarsky and Proppe [16] contructed some approximations to
densities invariant under non-exponding maps on an interval. In this chapter
we will obtain similar results for higher dimensional Jablonski

transformations.

Let T and T be two transformations from I" into ™. wve say that T is

topologically conjugate to T If there exists a homeomorphism h from 1" onto I

such that het = Teh i.e. T = h YeTeh or Tsh > = h leT.
Lemma 6.1 If v : I 1" 315 topologically conjugate to T with a

homeomorphism h from In onto In and f is an invariant density under T, then

g = f(h(x)) g%—' is an invariant density under T, where gg is the Jacoblan
of h.
8h| .
Proof gx)dx = f(h(x))|—'x
1A v 1A x|
= f(y)dy (y = h(x))
h(z 1A)
i -1 -1
-=.J f(yldy (hot * = T “oh)
T 1 (na)
=f f(y) ady (f is invariant density for T)
“hA

=[ fmoo) Pax )
N .

=J; g(x) dx.

Q.E.D.




h—_—_

A Jablonskl transformation T : ) G 1" is called non-expanding if for

(xi) is monotonic, but the

any s, = 1.....r1. 1=1,...,n.
n

91,51,....s

condition ¢} . | 22 > 1 is not satisfled.

g o0 s
1 n
Lemma 6.2 Let t: I" — I” be a non-expanding Jablonskil transformation

topologically conjugate to T which is a plecewise exranding Jablonski
transformation and admits a unique absolutely continuous invariant measure u
with density f. Then there exists a sequence of Markov Jablonski

(k)

transformation '('l.’k) such that T ~—> T uniformly as k — ®, and such that

the set of densities {g, )} corresponding to (t(k)) is weakly compact in Ll.
k

Broof Let (T(k)} be a family of Markov transformations assoclated with T.

(k)

Define T by

-1 -1 _.(k)

't(k)Oh = h “oT

i.e., foranyi =1,..., n

vik)ohzl = hzlo.r{k)'
where
@) = ) v oK ),
h(x) = (h:(xl)..--. hn(xn))
and
1) (x) = (T{k)(xl),...,l‘,(lk)(xn)).

As in [16], for any 1 = 1,...,n. pik)——) 9 uniformly as k — . So ‘l.’(k)——-) T

uniformly as kK — o,

[4
Let fk be the density corresponding to 1 ‘k).
weakly compact in I.l. By Lemma 6.1,

By Theorem 5.2, {fk) is
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&h
sk(x) = fk (h(x))l—-ax
and

oh
g (x) dx = | f (h(x))|z| dx = £ (y) dy.
Jy a0 o= [ ootz o= [ i

Since (fk} i1s weakly compact in Ll. given € > 0, there exists 8§, > 0 such

1
that a(h({A)) < 61 implies

I fk(y)dy <t
h(A)

for all k. But h is a homeomorphism. Thus, given :1 > 0, there exists & > 0,
such that A(A) < & implies A(h(A)) < 8,. Hence, we have

g (x) dx <e
J, &

for all k if A(A) < &. Thus, (gk} is weakly compact in Ll.
Q.E.D.
Theorem 6.1 g — g" weakly, where g* is the invarlant density of =.

Broof Since T(k) — 7T uniformly and

ledy =I g (x| ax
In

=[5m0 122 ax
In

- I,,(In,'fk(y”dy (y=h(x))

- I |£, () |dy
In

= |fk|1 =1,
Hence Lemma 5.4 ylelds the desired result.

Q.E.D.
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CHAPTER 7
Higher Dimensional Random Maps

A random map 1s a discrete time dynamical system in which one of a number
of transformations is selected randomly and applied. The main result of this
chapter provides a sufficient condition for the existence of an absolutely
continuous invariant measure for random maps on R". Such random maps have

application to the fractals that arise from iterated function systems.

L1 Introduction

Let Ty Ty be transformations on the unit cube in R® and define the
]
random map T by choosing T, with probability Py» Py >0, ¥ Py = 1. A measure
i=1
¢ -1
p is called invariant under v if u(A) = E pi”(ti A) for each measurable set A.
i=1
The one-dimensional case was studied in [28,29] for plecewise monotonic
trunsformations. A sufficient conditi i .
runsformations. sufficient con on is given, namely - sy<1
=1 17 %0]

for some constant 7, which guarantees that the random map vt has an invariant

measure which is absolutely continuous with respect to Lebesgue measure on
[0,1].

In this chapter we extend the foregoing result to higher dimensions. This
is not an obvious extension because the bounded variation techniques wused in
one dimension do not go over easily to higher dimensions [31].

The importance of studying higher dimensional random maps is inspired by
fractals which are fixed points of iterated function systems [30], which can

be viewed as random maps, where the individual transformations are

contractions.



7.2 Randon Maps op 1"
Let tk(x),‘ k=1,...,8 be a Cz Jablonski transformation on the

rectangular partition ?k = {Dm""'”qu}' k=1,...,0, and q 1s a positive

integer which depends onk, i.e.,
tk(x) = ('rk. 1(x). ces .rk.n(x)).

and for any 1 = 1,2,...,nand k=1,2,...,¢
tk,i(") = “’k,i(xi)

(x ), xe€bD

= %13 k3’

The maln result of this chapter is

Theorem 7.1 Let t(x) = {t (x))k_.1 be a random map with probabilities

e
b P, = 1, vhere each T is a Jablonski (not necessarily
k=1

expanding) transformation of 1" into 1. Assume Ty (x) = O ij(xi) 15 C?

pl""’pl' ;:ak > 0,
and

monotonic for x € D If, fori= 1,2,...,n,

k3’

for some constant ¥, then for all f € LI(In).

M-l ]
1) lim z P f=f*te L (1"), where P Zkar ;
T t=0 kst K

€« = £,
2) P‘tf £,

In

3) vf* s C|f|, for some constant C > O which is independent of f.

Proof Our goal is to show that there are constants 0 <a <{1 and K> 0

n n
1 I
such that V P.':(f) S a Vf + K |f|]; for some positive integer N. This will
M- =1,
suffice, as in [1], to show that P = lim ; T P exists and is a non-zero
Mo t=0 °

projection onto the eigenspace 51 of eligenvectors of Pt with eigenvalue 1.

10S

,
{
H
H
;
i
!
i
i
{
i
|



Take N such that 7" < 1 , and consider the random map -rN defined by

3
N
Jablonski transformations: {tJ oT °. . .°‘l.'J (x) }with probability 1 Py -
N N1 1 s=1 Js
The maps defining ‘tN may be iIndexed by {1.2,....£}N. Set
N
rJNo. ..otJI (x) = tw(x). where w = (Ji" ..,JN) and P, =s21sz. Let the

partition of T, be {Duj} and
tw(x) = (wwl(xl).....wwn(xn))
= (¢" lj(xl)nﬂ" W nJ(xn))b X € DWJ'

We then have that, for any i,
e
P, Py Py

L ——=1 )

we(t,2,...,08 a1 er, ..., Nt k=1 “’fu(“’m"‘i””“’&i(xi”

)
P P Pg
=[ Iw'"(x )| Z [ Wl (wk (x,))] ) VZ |w! (: )|
R | k=1 ki al i W wi i

$... 57N<—;-.

Thus, to simplify notation we may assume that % <-:1; and show that

n n
I 1
VPt(f) sa Vf +K |:t‘|1 for a € (0,1) and K > O.

Let ? be the partition of 1™ into maximal rectangles on which all the

e
maps {‘tk} are one to one and C2 Without loss of generality, we assume that
k=1

there exist

0= a < a <

1’0 jwl e <a1.r =1’ i= 102’~°-nnn

1
for some positive integers Ty T «o T such that
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PePaye)
Sl,.--.sn Si = 1,2,....!‘1. 1 - 1.2....,]’1,

n
where D = 1T D, D =[a _q» 8 ), s, =1,2,...,r-1 ard
St e Sy fuy 5 8y 1.91 1 1,31 i i
Dr1 = hi.ri-l’ai.ril' and for any k = 1,2,...,¢, T is given by the formula
tk(x) = (vk,l.si.....s (xl).....wk MBga...)8 (xn)). x €D

n M8 n LRI
where pk'i'sl""'sn: Dsl——> [0,1) are C2 functions.
We define
-1
7 = (¢ )
k.i.sl....,sn k.l,sl,....snl
[« = lW' ln
k.i,sl....,sn k,i.,sl,...,sn
n -
I =T (D ).
k,sl....,sn 1=1k i, sl""‘sn s1
Then we have
e
P_tf= z kaka
k=1
"3
p ( ] f[‘l! (% )0errs ¥ (x )]
z k J=1 sz k,l.sl,...,sn 1 k,n,sl....,sn n
J=1
[n
Mo (x )]x
RN TUTIRERL Ik.si,...,sn(")‘
Denote by 6 the set of functions of the form
M
g= % g7,
=1 3y .
where x, is the characteristic function of the set A, = ﬂ {x,,, B i
AJ J i) ij

{(wve do not assume that & 13 < B1 L the interval [m1 ¥ B1 J] can be degenerate)
and gJ: M- Risa Ci-function on AJ. By the proof of Theorem 1 in [1], it

is enough to show that for any{ = 1,2,...,n and fe & 2 O and fi €&,
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n

1
f.=f a.e., Vf dA =V £, we have
i 1 -1 N

P(I)

n n

1 I
J VPfidA -1 a[ Vfidh ot Rl
P(I) P(I)

where O <a < 1 and K > 0.

Now we show that.

® ) ry Ls

-
1’"""*"n
VPf s P [ ] v f[i' (x)...
L [ k J-l N i klsi. sn kns
[n
moe (x )]x (x)
=1 k"j'sl"”’sn J Ik.si,...,sn

'Sy i

*L R [ Z ][lfiwk 1,8,,...,8 108 g Yens L
k=1 n

o (e (a ))
k'i'sl”"'sn k,i.sl.....sn :l,si
* If k 1, »Sqre .sn(xl)""'ai 'Sy 1 e Wk.n.sl....,sn(xn))|

o (p (a ))]
k.i.sl.... k.1, sl.. sn i, s1 -1

[n

T o (x )]x (Xyp.0..r8 yeee s X ).

J=1 kJ,s reee 8y J Ik.sl.....s 1 1‘51 n

J=1 n

Hence,
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Using equation (7) in [28], the first sum is less than

P, (1 ‘ )xI

1

r
n 3 177Kk, 84,..008)
27, [n ):'1] I v f:["k.l.sl.....s (%)), ..
P (I n

J=1s

J
J=i i k,sl,....sn)

n

Xyvooor¥ (x )][Tl L (x )]d}\_

i k.n.sl.....sn n =1 k'J’SI""'sn J n-1
Jei

r

J
n
vxy[ 7 )[
1,j=lsz=1 P. (1

g 1%, s

1

[ £, (¥ (S0 FRRI ¥ SR
i 'k, 1,8,,...,8 17" i
)JO 1 n

1.....Sn

L 109
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¥ o (e )[ (x )]da _
k ns 1°*° J-l k,J.Sl,...,sn J n-1

r P, (D . IxI

n J 1
2,1 ][ v et d
i =1 sz.l P (D 1 111 n n

=27, Vi oda  + K],

{ i n-1
n
Pi(I )

for some constants 0 < 11< %and Ki > 0.

Using equation (5) in [28]), the second sum is less than
¢

k=1 J

1" *%n

ya reess W (x ))I
1.51 k.n,sl....,sn n

Ytes, s 1)t s o ons s ("n’”]

+|f
i n

n
[ Me s (xJ)]d?tn_1

J=1 Ko doBpeecn 8y
Jei

r

n J
= {"k[ 8P %i,s.,..., ][ ]I
k=1 =°1'°°*%p 1 j:i s '1 Piuk. Sqr-+18 )
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Z k " kisl. s 8 J=1 s,21 Pi‘lks )li k.l.sl,...sn

(xl)n



P, (1
(1 k,sl.....sn)xl
v f (0 (x )o---0x -"-o" (x ))
1 i ,1.81,....8n 1 i k.n.sl.....sn n
1
+2) [\P (%, ), .. c0Xp0a00, W (x ))dx]
I i k.l.s1....,sn 1 i k,n,si....,sn n 1
o
n
o (x )]d?« -
g1 k,J,sl,....sn J n-1
J=1
r
; )
s p[ sup c ] n )
k k,1,8,,..,8
- Sqepv:0r S 1Pt Pt =1 s =1/ JP,. (D
k=1 1 n Je1 J i sl.....sn) )
)
Pl(Dsl'. ., s“)xI 1
[ \{ fi(xl""'xn)+ 2[ fi(xl,...,xn)dxi]cmn_1
0
In 1
=7 v :t'1 dmn-l + 27 [I fi dxi]d;\n-l
b
n n 0
Pi(l ) Pi(l )
®
= \1If1 d?«n_l+21 |f|1.
n
Pi(l )
Therefore, we have
° ™
I o will’,.:f1 dA,_, s ¥+ 27)) . ‘1’ fodaa ¢ (K4 27) £l
P. (1) P, (1)
i 1
™
sa] . \ilfidkn_l-fl(lf'l,
Pi(l )
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where 0 < a = max (1+211)<1andl(-nax(l(i+27)>0. This @« and K are
i 1

independent of f. The assertions of the theorem follow immediately, as in [1].
Q.E.D.

Iheoren 7.2 Let T(x) be the random map as in Theorem 7.1 and let

s, = inf inf lof ;((x,)], k =1,...,L
K k, 131%1
1,3 lay 4y by 4yl
If
Lo
Z—'Es;m 1 (7.1)
Sk

k=1

for some constant ¥, then all the conclusicns of Theorem 7.1 hold.
Notice that we do not need every Ty to be expanding to satisfy the
inequality (7.1). When i =1, i.e., P, = 1, Theorem 7.2 is the same as the

main result of [11].
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13 Example
Let n = 2 and & = 5. Let

1 1 1 2 1
tl(xl. "2) = (-5 X 3 xz). tz(xi. xz) - (5 X *+3 3 xz).

1 1 2 1 2 1 2
B ) = 3 3Rt T XR)IEH ry 3K

and ts(xl. xz) = (¢1J(x1). "23("2”' X € DJ € P, vhere P is a Jablonski

partition for Tg- YWe have g, = =g =

y = 8y = 85 4 The inequality (7.1) becomes

W=

4
3[Epk]+—-:—ps<1 (7.2)
k=1 5
5

Since X Py = 1, the left hand side of (7.2) 1is [ 3 - —%— ]q + -;- < 1, where
k=1 5 5
4 1-q
qs= Zpk. Thus Sg > 39 is sufficient to guarantee the existence of an
i=1

absolutely continuous invariant measure for the random map Tyreer Ty
Let Py ®"P, =Py =P, = 0.05 and q = 0.2. We have Sg > 2 and we can take

5583.

Example 7.1 Let P = {DI’DZ""'D9} (figure 7.1).

4.x2
1
D, | Dg | Dg
2/3
D, | D5 | g
1/3
D, | D, | D,
o 1/3 2/3 % .
Figure 7.1

For i =1,2 and }J =1,2,...,9 we take
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pu(x) =

3x, 0 sx< 1/3;
3x-1, 1/3 s x < 2/3;

-2, 2/3 sxs1

l.e., Tg maps D, ,J=1,2,...,9, onto I2 and Sg = 3.

Example 7.2 Let

D,

D6 = [3/8,1/2), D7 = [1/2,374), D8 = [3/4,1] (figure 7.2).

X
a2

= [1/16,1/8), D3 = [1/8,3/16),

8
P= {DJk 3, ka1’

374

172

/8

1/4

1/8

y

0

Let

£,(x) = 8, (x) = 4x,

174 172 374 1 ’:n:1

i‘z(x) = gz(x) = -4x + 1/2, 1/16 s x <

fa(x) = ga(x) = 4x -

Figure 7.2
0sx<
172, 1/8 5 x <

f‘(x) = 84(x) = -4x + 1, 3716 s x <

fs(x) = gs(x) = 3x -

3/4, 174 s x <

f6(x) = gs(x) = =3x +3/2, 3/8sx<

f.,(x) = g.,(x) = 3x -

3/2, 1/72 s x <

fs(x) - ss(x) = =3x + 3, 3/4 s x <

ts(xl. xz)'- (fj(xl)' sk(xz)). (xl.xz) € DJk (figure 7.3)
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DJk

1/16;
1/8;
3/16;
1/74;
3/8;
1/72;
3/4;

1.

= D xD

7k

I)4 = [3/16,1/4),

- and

Dg

l.'J1 = [0,1/16),

= [1/4,3/8),



and 85 = 3. The support nf the invariant density 1is contained on
[0,1/4]) x [1,1/4]).

af (x)=g(x)

374
172 /
174 v

0] 1/4 72 3/4 1% x

Figure 7.3

N+2
Example 7.3 For any integer N > 2, we take P, 6= {Djk} =D, xD.

- 1 _ 11 _i-2 1-1 - _ (N-1  2N-1
Dl-[op ‘i‘ﬁ)p DZ-IZN. 'N-). D’.-[N'T). 1-3,4,.--.N. DN'.'I-[N’ ZN)
2N-1
and DN+2 = [-Z'F" 1]. Define
fl(x) = gl(x) = 3%, 0s x < 1/2N;
fz(x) = gz(x) = 4x - 2/N, 172N s x < 1/N;
fi(X) = SI(X) = 3x - (21-3)/N, (1-2)/N s x < (i-1)/N, 3 = 1 sN;

fN+1(X) = 8N+l (x) = 4x - (3N-2)/N, (N-1)/N s x < {2N-1)/2N;

fmz(x) = 8N+2(X) = 3x - 2, (2N-1)/2N = x s 1.

Now let
ts(xl. xz) = (f_j(xl)‘ gk(xz)). (xl. xz) € DJk'
Since for any 1 =1, 2, ..., N+2
x=-1/N s fi(x) = gl(x) s X+ 1IN,
when N — o, fi(x) = gi(x) — x. Figure 7.4 shows 15(x1.x2) for N = 9,

Notice that {r,,T,,T,,T,} comprise an iterated function system (30]. it
is easy to show that the attractor for this system is a two dimensional Cantor
set of Lebesque measure 0. If we choose ts(xI.xz) = (wl(xl). tpz(xz)) such that
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for i = 1,2, ® is a plecewise monotonic map and ts(xl.xz) is close to the
identify transformation I(xl.xz) = (xi.xz) but has slopes sufficlently large
to satisfy (7.2), we obtain a perturbation of the initial iterated function
system which has an absolutely continuous invariant measure whose support is
close to the attractor of the 1initial system. Figure 7.5 shows the two
dimensional Cantor set that is the attractor for (11.12.13.14) and Flgure 7.6
shows the support of the absolutely continuous invariant measure for the
random map (11.1 .13.14,15;.OS..OS..OS.éOS..B} where Te with N = 100, is the
plecewise expanding transformation on 1™ defined above.

Figure 7.4
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Figure 7.6
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CHAPTER 8

Approximating the Invariant

Densities of Random Jablonski Transformations

In Chapter 4, using piecewlse constant functions, we approximated the
invariant densities of Jablonski transformations. In this chapter we will use
the same method to approximate the invariant densities of random Jablonski

transformations.

8.1 Approximation by Plecewise Constant Function

Let T(x) ={tk(x)}§___1 be a random map with probabilities Pys- s Ppr

]
P >0, Zpk = 1, where each Ty is a Jablonski transformation of I into I
k=1
on the rectangular partition ?k = {Dkl' ""Dkq }, k=1,2,...,¢ and q is a
positive integer which depends on k, i.e.,
'tk(x) = [tk'I(x),.... tk’n(x)],
and forany 1 =1,2,...,.nand k = 1,2,...,¢
T, 1K) =¥ 1 (%) = gy 14(xy), x €Dy
For any integer m, let I" be divided into m" equal subsets % ST
m

with

r r.+1 r r,+i r r_+1
1 1 2 2 n n
IJ-[F’ m)x[;._—]x.“x[i‘_. m]

1 n
for some r1.r ,...,rn =0,1,...,m-1 and A[Ik] = —m—n, k=12,...,m.

Let P’s( denote the fraction of Is which is mappe& into I t by T i.e.,

t



KBS T2 T

¢
K
and Pyy =] By Py
k=1

Let A. be the n"-dimensional linear subspace of l.1 which 1s the finite

n
n
space generated by {z J}J-l' where x 3 denotes the characteristic function of

n
m

l.e., f € Am if and only if f = z aJ xj for some constants al,az.....a
J=1

Define a linear operator Pm('t) = Pm: s, - 5 by

n'
m

IJ’

n
m

¢
- k
Pm(T) X = l:'m X = Z Pr's xg '}: Py Pm Xps
s=1 k=1
where
n

k k
Pm X ‘Z Prs X

s=1
Theorem 8.1 Let t(x) = (TR(X)}lt('ﬂ be a random map from 1™ into I” with

[/
probablilities Pyree-sPp Py >0, Zpk = 1, where each T is a C2 Jablonski
k=1

transformation. Suppose tk.i(x’ = P4 J(xl) is monotonic for x € Dk 3 and for

1=1,2,...,n
e Py .
Z sup sy <3
k=1 J 1% 15("1”
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e
for some constant y and P_r -Z Py Pt has a unique fixed point. Then for any
k=1 k
positive integer m, P has a fixed point f in A with |f } = 1 and f

converges weakly to the fixed point of P,t as m — o,

Before proving Theorem 8.1, we need a number of lemmas.

n n
) m
1 1
Lemma 8.1 LetAm={Zarxr: a anndIar= 1}. Then P maps 4 to a
r=1 r=1
subset of A;.
.
Proof Let £ = 2 a. x € A1 then
r=1 T
n" "t n® nt
me = Pm [ Z ar xr] = Z ar [ ] Z [ Z Prs xs) Z [ Z arprs]xs
r=1 r=1 r=1 s=1 s=1 r=1
But for anyr=1,2,..., mn

el (Enot) D (175) <D 1 L ) 1

s=1 s=1 k=1 k= s=1 k=1

Hence,

(o) = (£ o e

s=] r=1 r=1 s=1

1
Therefore, me € Am.

Q.E.D.

1

Since Pm (A;] C Am is a compact convex set, the Brouwer fixed point

theorem implies that there exlists a function g, € A:n such that ngm =g, Let
n
f =mg. Then f €4 and If,] = 1 for all m.

Lemma 8.2 For f € Am we have me = QmPTf , where the operator Qm is defined
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in Definition 4.1.
Proof: By Lemma 4.3 for k = 1,...,¢ andfeAm

k
P'n f Qm Prkf .

Hence,
L [ A

k
"mf'sz"m f'XPkaPtkf
k=1 k=1

¢

= Qn[ Z pk P‘l.' f] = Qmptf'
k=1 K

Q.E.D.
By Lemma 4.2 and 8.2 we have:
Lemma 8.3 For f € Am’ the sequence me converges to P'rf in L1 as m — .
By Theorem 7.1 we have
Lemma 8.4 If t is same as in Theorem 8.1 then for f € 1.1
n ™

I
VPfsaVf+KI[f

for some constants 0 < &« <1 and K > O.

. In
Lemma 8.5 The sequence { v fm} is bounded.
Proof By Lemma 8.2 fm = mem = QmPT fm for all m. Hence, by Lemma 8.4 and
4.7
1 n
me-VQmPthSVPtfm
& "

saVf +K If l = Vi +K

n n
I 1 K

Since V fm < @, we have V fm E T

Q.E.D.
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Proof of Theorem 8.1 By Lemma 8.5 and Lemma * 3, we know that the set

(-
{fn} is weakly relatively compact in LI, Let {fn } be any weakly convergent
J

n=1
[
subsequence of {fm} and f = 1lim f n weakly. Then for any bounded and
m=1 Jowo g

peasurable function g,

I ol
Ilng [f - fmJ]dx

I ng[QmJPtfmJ - Prf] ax|.
1

+

The first term approaches 0O since fm converges weakly to f as J - «. By

J

Lemma 8.2, Qm Prfm =P f£f =£f . The second term is identically 0. Now we

m
(It B Tt B
consider the last term. fm converges weakly to f as J — o, by Lemma 4.11,
J
for any k = 1,2,...,¢, P_f_ converges weakly to P_ f as J — o. Therefore
T § T

[
_j z pk J converges weakly to P_tf = Z katkf as J — o, The last

k=1 k=1

term approaches O by Lemma 4.10.

We have established that for any bounded and measurable function g

j gx) |f(x) - Ptf(x)]dx = 0.

Ih

This means that Ptf (x) = £f(x) almost everywhere. Therefore, any weakly
convergent subsequence of {fm} converges weakly to a fixed point of P-r‘ By

assumption, Pt has a unique fixed point. Hence, f n f weakly as m — o,

Q.E.D.
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Corellary 8.1 If the fixed point of Pt is not unique in Theorem 8.1, then

]
any weak limit point of {fn} is a fixed point of Pt.
m=1
Theorem 8.2 Let T be the same as in Theorem 8.1 and assume that PT has a

unique fixed »~int and

R
Z sup sy <1,
k=1 3 1%, 15"‘1”

Let t be an integer such that 7t < l .Let ¢ = tt and f be a fixed point of

Pn(¢). Let

wrilv,

Then g converges weakly to the fixed point of P_ as m — .
m T

Broof Since P 3 is continuous for all j, by Theorem 8.1

1 t-1
g, — 8= : z PtJf
J=0
weakly as m — . Therefore,
t t-1
1 1 =
Pe=g LPf=f LP f=¢
J=1 J=0
where f 1s the fixed point of P¢ = P ¢’ il.e. P t f=f
T T

Q.E.D.

Corollary 8.2 If the fixed point of Pt is not unique in Theorem 8.2, then any

. t-1
Z P
J=0

weak limit point f of {fm} is a fixed point of P¢ = P t and g =
n=1 T

Lad

is a fixed point of Pt. If fm — f weakly as 1 — o, then
i
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t-1
1
gnl 'EZ PTJ fmi_’ g
J=0
weakly as 1 — w,

We know that in Theorem 8.1 if n = 1 (one-dimension), then {fm}mﬂ is

compact in Ll. Therefor we have
Theorem 8.3 Let t(x) be the same as in Theorem 8.1 with n = 1. Then for any
positive integer m, P has a fixed point £ in A with [f ] = 1 and f

converges to the fixed point of Pr in l.1 as m — o,

Corollary 8.3 If the fixed point of Pt is not unique in Theorem 8.3, then
-]

any limit point of {fm} is a fixed point of P-r'
n=1

Thorem 8.4 Let 1T(x) be the same as in Theorem 8.2 with n = 1. Then g,
converges to the fixed point of PT in L1 as m — «,

Corollary 8.4 If the fixed point of P - is not unique in Theorem 8.4, then

t-1
-]

any limit point f of {fm} is a fixed point of 15‘¢ = P N and g = % z P Jf
m=1 T =0 T

is a fixed point of Pt. 1f fm - f In L1 as { — o, then
i

mx_i as 1 — w.
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8.2 Unlgueness

Iheorem 8.5 Let T(x) = tk(x) (prob. pk). k =1,2,...,8 be the same as
in Theorem 8.2. If for some k

tk(x) = (’k.IJ(xl)"""k.nJ(xn))’ X € k3’

satisfies the conditions lnflpl'( ij(xl)l >1 and the fixed point of P_ is
' k
¢
unique, then the fixed point of P_ = Z p_ P_ 1s unique.
T k=1 k T

Broof Without loss of generality we let k = 1. The proof is similar to

that in {32]. Since P'r and Pt are constrictive Markov operators, for any
1

t‘eL1

7
P_t f= 151 ai(f) gi(x) + Q f(x);

4

P f£f= % b (f) h,(x) + R f(x)
'l:1 1=11 i

for some ¢, ¢ 8. h;, a,, b, QandR.

e
1 = -
= l-",l,1 and l"‘2 =7 > T Py Pt , We have Pt = pll’1 + (1 pl)Pz.

Letting P -
1 k=2 k

1

Let n, n, be the numbers of independent fixed points of P_ and P_
1

respectively. From Theorems 5 and 6 of [32], we obtainn s I s tl =n, =1
Hence Pt has a unique fixed point.
Q.E.D.
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8.3 Example

In this section we present an example and give an algorithm for computing
the fractal measure.

Let n = 2 (s0 we are working on the unit square), ¢ = 5 (i.e., 5
transformations) with Py "P,"P3 =P = 0. 0125, Pg = 0.95. To simplify
notation, let x = Xer ¥ = X, We define:

tl(x. y) = (0.5x, 0.5y),
tz(x. y) = (0.5x + 0.5, 0.5y),
13(x. y) = (0.5x, 0.5y + 0.5),

14(x. y) = (0.5x + 0.5, 0.5y + 0.5),

and
= = |3-1 a] [b-1 b
Tglx, y) = (£, £,00),  (x, y) €D, , [8 . 8]x[ 1, 8],
where a, b=1,2,...,8 and fl(x) = 5X, fz(x) = 5x - 5/8, f3(x) = 5x - 10/8,

f4(x) = Sx - 14/8, fs(x) = Sx - 18/8, f (x) = 5x - 22/8, f.(x) = 5x - 27/8 and
fs(x) = S5x - 4. The one-dimensional function f = (f1,....,f2) is shown in
Figure 8.1. Notice that the four transformations {11.12.13,1'4) constitute a
hyperbolic 1iterated function system, while g is a plecewise expanding
transformation on [0,1).

We have Al = 7«2 = 7«3
5

P
) —X _ = 2.0.05 + 0.95/5 = 0.29 < 1/3.

k=1 Xk

By Theorem 1 of {1] and Theorem 4.4, P_ has a unique fixed point. By
S

= A, =0.5, A, =35 and

4 S

5

Theorem 7.1, P-r = Zpk P,t has a fixed point f* and by Theorem 8.5 it |is
k=t K

unique. By Theorem 8.1, there exists a sequence of plecewise constant

functions and its weak limit is f*.
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Figure 8.1

We now present an algorithm for approximating f*.

integer t 2 3. For Ty T T3 and Ty

(1) P}J =1 for 1 = (r-1)2" + s,

1
PiJ = 0 otherwise;

(2) PfJ =1 for 1 = (r-1)2t + s,
PZ = 0 otherwise;
1] '

(3) PP, =1 for 1 = (r-1)2% + s,

1J
P3 = 0 otherwise;
1) '

4
(4) P1J

4
PiJ

=] for 1 = (r-l)zt + s,

= 0 otherwise;

where [x] is the largest integer les

through all integers from 1 to Zt.

‘L_o 1/8 2/8 3/8 4/8 5/8 6/8 /8 1 X

N

14

Let m=2" for some

we have

r-1],t ., s+l
o [ [

+ zt-l’

)
+

[

s than or equal to x, and r and s run
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Consider rs, whose assoclated matrix P5 have values either 0 or 0.04.

1
All the non-zero values are determined as follJows: let r and s run through all
integers from 1 to zt'3 and let p and q run through all integers from 1 to 5.
Then
(1) 1= (r-12% + 5, 3 = (5(r-1)+p-1)2% + 5(s-1) + q;
1= (r-02t + 243 4 5, J = (5(r-1)+p-1)2° + 5¢s-1) + q;
1= (r-1)2% + 2.2%73 4+ g, 3 = (5(r-1)+p-1)2% + 5(5-1) + q;
1= (1427320 4 g, 3 = (5(r-1)+p-1)2% + 5(s-1) + q;
1= (r-142V 32 4 283 4 5, g = (S(r-1)ep-112% 4 S(s-1) + g
1= (14252 « 2283 4 5, 5 = (Sr-1)4p-112" + S(s-1) + g
1= (r-1+2:28 32t 4 5, 3 = (5(r-D)+p-1)2% + 5(s-1) + g
1= (r-142:24732% + 243 4 5, 3 = (S(r-1)4p-1)2 + S(s-1) + g
1= (r-142:2¥3)2% ¢ 2028345, 5 = (5(r-1)ep-1)2% + 5(s-1) + g
(2) 1 = (r-1)2% + 3.2873 4 5, 3 = (5(r-1)+p-1)2% + 273 4 5(s-1) + g
1= (r-14243)2% + 3. zt 345, 3= (5tr-Dep-12t + 283 4 5(s-1) + g
1= (r-142:2"2)2% 43:2% 35, 5 = (50r-1)ep-122 4 2V3 4 5(s-1) 4 g
(3) 1 = (r-1)2% + 223 4 ¢, 3 = (S(r=1)+p-1)2% + 2:2873 4 5(s-1) + q
1 = (r-142473)2%44.2 34 3 = (S5(r-1)+p-1)2% + 2.273 4 5(5-1) + gq;
1= (r-142:2872)2%4028 34s, 5 = (S(r-1)ep-1)2% ¢ 2273 4 5(s-1) + g
(4) 1 = (r-1)2% + 5:273 4 5, 3 = (5(r-1)+p-1)2% + 323 4 5(s-1) + g
1= (r-14287002% 45243, g = (S(r-1)4p-122% + 32473 4 5(s-1) 4 g
1= (r-142028 2552 3s, 5 = (5(r-1)ep-102% + 32873 4 5(s-1) 4 g
1= (r-1)2% + 62473 4 g, § = (5(r-1)+p-1)2% + 3.24"3 4 5(s-1) + g;
1= (14287328 4 6.2 3us, 5 = (5r-nep-102Y 4 3283 4 5(s-1) 4 g
1= (r-142:2Y3)2%62 35, 5 = (S(r-1)4p-102% + 32873 4 5(s-1) 4 g
1= (r-1)2% + 7.2%3 4 5, 3= (5(r-1)+p-1)2% + 3.2473 4 5(5-1) + g
1= (r-1428 2927283 4 5, 5 = (S(r-Dep-102Y + 3:2Y73 4 5(s-1) 4 g
1= (r-142:2Y327.2 345, 5 a (5(r-1)4p-1)28 + 32873 4 5(s-1) 4 g
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(5)

(6)
(7)
(8)

(9)

1

i

(10) 1 =

(1) 1

(12) 1§

(13)

(14)

1

1

[

t- 3)2t + s,

t-3

(r-1+43-2

t-3,,t

(r-143¢2" 7)2" + 2

t- 3

(r-1+3. 2 )2 + 22

)2t43.2 7345
t-3

(r-1+3:2%73

(r-1+3. 2 )2 +4.2

t- 3

(r-1+3. 2 )2 +5.2

t-3) t

2bt46.2t"34g

(r-1+43-2

(r-1+3:243)2t7.24 73

)2t+s,

)2t+2t 3

t 3)2t+2 2

t-3)2t3.2

(r-1+4.2%73

(r-1+4.273

(r-1+4.2 t- 3

(r=1+4.2 t- 3

t- 3

(r-1+4-2 )2 +4:2

t- 3

(r-1+4-2 )2 +5+2

(r-1+4- 2t 3)2t+6 2t 3

t- 3

(r-1+4-2 )2 +7+2

(r-145:2""3)2t + 5,

(r-145.24"3)2% 4 273,
(r-1+5-2%73)2%42.2t 345
(r-1+6-2'"3)2% + s,
(r-1+6-2873)2 + 27345
(r-1+6-28"3)2%42.24 345
(r=1+7- 2t 3)2t + 8,
(r=1+7- 2t 3)2t + 2t 3
(r-1+7.2"3)2%2.24 345
(r-145.2"3)2%3.2 t'3+
(r-1+6.24"3)2%3.2% 345
(r-147:2%"3)2%3.2 345

+ 5,

(5(r-1)+2%

(5(r-1)+2*

(5(r-1)+2%"
(5(r-1)+273
(s(r-1)+2*
(5(r-1)+2%"
(5(r-1)+2
(S5(r-1)+2+2
(5(r-1)+22
3 = (5(r-1)+2:2
J =
J=(5(r-1)+2-2t-

(5(r-1)+2-2

. J=(5(r-1)+2:23
t-3

J=(5(r-1)+22
J=¢;(r-1)+z-zt
J = (5(r-1)+3-2
Jg
J-
J-
J-
J-
Js
Js
Js
JI
J:
Jz

(5(r-1)+32
(5(r-1)+3-2
(5(r-1)+3+2
(5(r-1)+3-2
(5(r-1)+3.2%
(5(r-1)+3.2
(5(r-1)+3-2

(5(r-1)+3+2

(5(r-1)+3-2
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(5(r-1)+2t34p-1)2%

Sip-1)2%+2
“34p-1)2%4202473
“34p-1)2%43-2
3ip-1)2%4302
t-3,p-1)2%3.2
t-3
t-3
t-3

t-3

sp-1)2%4202873
+p-1)2%43.2
+p-1)2t+3'2

“34p-1)2%43.253
t-

t-3

t-3

t-3

(5(r-1)+3:2%73

(5(r-1)+3-2%73
t-3

-3+p-1)2t + S5(s-1) + :

-3+p-1)2t + 5(s-1) + q;

+ 5(s~-1) + q;

tiot s (s-1)4q;

+5(s=-1)+q;

t=3,5(s-1)+q;

t=3,5(s-1)+q;

t-3+5(s—1)+q;

+p-1)2t+5(s-1)+q;
+p-1)2t+5(s-1)+q;

+p-1)2t+5(s-1)+q;

t t-3

+p-1)2"+2" “+5(s-1)+q;

+5(s-1)+q;

t—3+5(s-1)+q;

t-3+5(s-1)+q;

+5(s-1)+q;

3+p-1)2t+5(s-1)+q;

+p-1)2%45(s-1)+q;

t'3+p-1)2t+5(s-1)+q;
t-3

+p-1)2%45(s-1)+q;

3+p-1)2 +5(s-1)+q;

- +p-1)2 t5(s-1)+q;
t-3

+p-1)2t+5(s-1)+q;
+p-1)2t+5(s-1)+q;

+p-1)2t+5(s-1)+q;

+p-1)2%+2%73

+p-1)2%42%73

sp-1)2%42%73

+5(s-1)+q;
+5(s-1)+q;

+S(s-1)+q;



(15) 1

(16) &

1

i

(r-1+45:2"3)2%44.24 345
(r-1+6-2"3)2%44.2 34
(r-147+24"3)2%4.24 34
(r-1+45.2"3)2%5.24 345
(r-145:2t"3)2%46.2t 34
(r-145.28"3)2t47.2t 34
(r-146-24"3)2%5.2t 34
(r-146:21"3)2%6.24 34
(r-1+6-2"3)2%7.2t 345
(r-1+7.2""3)2%5.2 '3+
(r-147:24"3)26.28 345
(r-1+7:2"3)2 +7-zt'3+s.

-3

J=(5(r-1)+32

J-(S(r-1)+3-2t‘3
. J=(5(r-1)+3.2"
J=(5(r-1)+3.2%"3

J=(5(r-1)+3:2434p-1)2

J=(5(r-1)+3.2*"3

J=(5(r-1)+3.2t73

J-(s(r-1)+3-z"3

J=(5(r-1 )e3.283

3=(5(r-1)+3.2%73

Ju=(5(r-1)+3.2%73

3=(5(r-1)+3.2573

+p-1)2*
+p-1)2%
“3,p-1)2t
wp-1)2%

+p-1 )Zt
+p-1)2t
wp-1)2%
+p-1 )Zt
+p-1 )Zt
+p-1 )Zt

+p-1)2t

t-

+*2+2

+2-2t_3
+2.2t-3
+3°2t-3
t +3.2t-3

-r3-2t
+3-2t

432

+3_2t-3
+3.2t-3

+3.2t-3

+3.2t-3

3*5 (s-1)+q;

+5(s-1)+q:
+S(s-1.+q;
+5(s-1)+q.

+5(s-1)+q.

-3+5(s-1 )+q.
-3
+5(s-1)+q.

t-3,5(s-1)+q.

+5(s-1)+q.
+5(s-1)+q.
+5(s-1)+q.

+5(5-1)+q.

Notice that for each 1 there are 25 J values. The above relationships

yvield a 4tx4t matrix, whose left elgenvector (associated with the elgenvalue

1) is an approximation to the fractal measure.

computing the eigenvector is left for future work.
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