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ABSTRACT

Existence and Properties of Absolutely Continuous

Invariant Measures for Higher Dimensional Chaotic Transformations

Kourosh Adl-Zarabi, Ph.D.
Concordia University, 1996

We will study the following three problems:

(1) Let Q2 be a bounded region in R™ and let Py = {Pi}:ll be a partition

(2)

of  into a finite number of subsets having piecewise C? boundaries.
The boundaries may contain cusps. Let 7 : @ — Q be piecewise
C? on P, where, 7; = Tlp, is a C? diffeomorphism onto its image
and expanding in the sense that there exists @ > 1 such that for any
i=1,2,---,m ||Dr] || < 7!, where D7, is the derivative matrix of
77! and || - || is the Euclidean matrix norm. The main result provides

13

a lower bound on o which guarantees the existence of an absolutely

continuous invariant measure for 7.

Let Q be a region in R™ and let Pq = {F;}, be a partition of Q
into a finite number of closed subsets having piecewise C? boundaries
of finite (n — 1)-dimensional measure. Let 7 : @ —  be piecewise
C? on Pq where, 7; = Tip, is a C? diffeomorphism onto its image
and expanding in the sense that there exists @ > 1 such that for

any i = 1,2,---,m ||D7!| < @”!, where D7! is the derivative

1

matrix of 7,7 and || - || is the Euclidean matrix norm. By means of

an example, we will show that the simple bound of one-dimensional

dynamics cannot be generalized to higher dimensions. In fact, we

il



will construct a piecewise expanding C? transformation on a fixed
partition with 10 elements but which have an arbitrarily large number

of ergodic, absolutely continuous invariant measures.

(3) Let © be an open bounded region in R™ and let Py = {P;}]}, bea
partition of £ into a finite number of closed subsets having piecewise
C? boundaries of finite (n — 1)-dimensional measure. Let 7: Q — {2

be an expanding }Markov transformation on Pg where, 7; = 7),, and
1 3

’r{'l € CM, M > 2. Then the 7-invariant density h € C* -2,

iv
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INTRODUCTION

Absolutely continuous invariant measures (acim) play an important role
in higher dimensional dynamical systems. Our focus in this thesis would be
to establish existence results and study the properties of acim for higher
dimensional piecewise C? and expanding maps 7. We will prove the existence
of an acim for Lasota-Yorke maps [L-Y] in higher dimensions under general
conditions. Our main tool is the Perron-Frobenius operator associated with
7. In this setting, we invoke the Ionescu Tulcea and Marinescu Theorem [I-
M] to derive a spectral decomposition for the Perron-Frobenius operator of
7 and, as a consequence obtain useful ergodic properties of 7 itself. We will
also study the problem of finding an upper bound for the number of ergodic
acim for such class of maps. The property of smoothness of the invariant
density of an acim in higher dimensions for the special class of Rényi maps

[Rén] will also be studied.

In Chapter 1, the preliminary definitions, notations and results from er-
godic theory, weakly differentiable functions and functions of bounded varia-

tion in higher dimensions relevant to this work are given.

In Chapter 2, we establish the existence of an acim in higher dimensions
for certain class of maps using “bounded variation techniques”.

This topic has an interesting history going back almost two decades.

In 1973, Lasota and Yorke [L-Y] used the “bounded variation techniques”
to prove a general sufficient condition for existence of an acim for expanding,
piecewise C? transformations on an interval. In spite of the suggestion at the
end of [L-Y], that the “ bounded variation techniques” of [L-Y] can be easily

used to obtain analogous results in higher dimensions, the generalization of the



main result of [L-Y] has taken much longer than expected. This was partly
due to the difficulty in finding the appropriate definition of variation in higher
dimensions. For smooth maps on domains without boundaries, general results
for the existence of acim were known as early as 1969 [K-Sz]. For piecewise
C? maps in R™, the first major attempt to prove the existence of acim came
in 1979 [K-S 2|. There the authors do not use a bounded variation argument
and the proof, based on a one-dimensional version [K-S 1], is flawed. In 1979,
Keller [Kel 1] used a complicated definition of bounded variation to prove
a partial result in dimension 2. The complicated definition given in [Kel 1]
cannot be used beyond two dimensions.

The simplest higher-dimensional generalization of the result of [L-Y] came
in 1983. Jabloniski [Jab] proved the existence of an acim for expanding,
piecewise C? transformations on [0, 1]". The author worked with rectangular
partitions ( which is a very restrictive condition) and Tonnelli definition of
variation. The technique used was analogous to that of [L-Y]. This result
has been generalized to larger classes of maps and various properties of the
density of the acim have been studied by Lou [Lou2].

In [Str] a necessary and sufficient condition for the existence of an acim
in higher dimensions is presented, but in most cases it cannot be applied.

With the publication of [Giu] a new tool became available. Using the defi-
nition of bounded variation of a function in R™ as the integral of its generalized
derivative given by Giusti [Giu] some partial results were obtained in [I-K]
and [Can]. In [Can] the author considers piecewise C? transformations on a
rectangular partition satisfying a strong expansive condition {which depends
on the dimension n of the space) and proves the existence of an acim. In

1989, Géra and Boyarsky [G-B 1] followed through the approach of [Canl]
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in a more general setting and proved the existence of an acim for piecewise
C? transformations in R™ for domains with piecewise C? boundaries. Their
basic assumption was that the angle subtended by the tangents at the point

of contact of the C'? segments of the boundaries is bounded away from 0.

For boundaries for which the angle mentioned above may become 0 (i.e.
the boundaries of partitions may contain “cusps”, see Definitions 2.6 and 2.7)
Keller [Kel 2] proved the existence of an acim in two dimensions giving a

rather complicated sufficient condition.

Using Giusti’s definition of bounded variation for a function in R™ [Giu]
we prove several results that were proved in [Kel 2] in n dimensions. With
the aid of these results, we prove our first theorem (Theorem 2.1) which

relates the variation of a function of bounded variation to the variation of

its image under Perron-Frobenius operator. The properties of the Perron-
Frobenius operator are described in [L-M]. We then estimate the “trace” of
f along a “cuspless” (n — 1)-dimensional hypersurface, and use this result to
prove our second theorem (Theorem 2.2) which yields a sufficient condition
for the existence of an acim for piecewise C? transformations in R™ defined
on domains with cuspless boundaries. We next consider domains which have
at least one cusp on the boundary. By putting certain mild conditions on the
boundaries, we prove several results which will provide sufficient condition for
the existence of an acim for piecewise C? transformations in R™ defined on
domains whose boundaries contain cusps. As a consequence, we prove the
main results of [Kel 2] and [Jab] in form of examples. Finally, at the end
of Chapter 2, using the Ionescu Tulcea and Marinescu Theorem, we obtain a
spectral decomposition of the Perron-Frobenius operator and corresponding

ergodic properties.



In Chapter 3, we investigate the problem of finding an upper bound on
the number of acim for higher dimensional transformations. Related to the
problem of the number of acim is the question of the support of invariant
densities: knowing that the support of the density has an interior is important

in this approach.

For one-dimensional transformations [Li-Y], 7 : I — I,I = [0,1], it is
well known that the number of discontinuities of 7/(z) provides an upper
bound for the number of independent acim. This result has been improved
in [Boyl], [Pia], [B~H] and [B-B]. The key to all these bounds lies in the
fact that invariant densities for piecewise C? expanding transformations are
of bounded variation. In one dimension, a density of bounded variation is
bounded and it can be proved that its support consists of a finite union
of closed intervals. A simple argument then shows that at least one point
of discontinuity cf 7/ must lie in the largest closed interval, thus this will
provide the upper bound on the number of acim. In higher dimensions, the
much more complicated geometrical setting and the complicated form of the
definition of bounded variation [Giu] do not permit an easy generalization
of the one-dimensional result. For example, in two dimensions, the variation
in one direction is integrated along the other direction. It is this integration

which allows a function of bounded variation in R™ to be unbounded and

its support to be devoid of interior. In general, dynamical systems can have
a large set of invariant measures. For example, higher dimensional point

transformation models for cellular autc mata [G-B 2|, have many acim.

In 1990, Géra, Boyarsky and Proppe [G-B-P], outlined the possibility of
constructing a piecewise expanding C? transformation on a fixed partition

with a finite number of elements but which have an arbitrarily large number



of ergodic acim. There, it is suggested to use certain triangles having a
particular geometry as the supports of ergodic ac’m. By means of a sketch
(without proof, however), it is suggested that it is possible to take care of the
trapezoidal regions between triangles satisfying all conditions . As it will be
seen, although the conjecture turns out to be correct, the construction cannot

be done in a simple manner.

We use the triangles suggested in [G-B-P] as supports of ergodic acim. For
the trapezoidal regions between the triangles, we use another set of triangles

which are not supports of acim, satisfying the following conditions:

(1) The triangles are mapped in an expanding manner similar to that of
the triangles which are supports of ergodic acim,

(2) the intersection of images of triangles which are supports of ergodic
acim and images of triangles which are not supports of ergodic acim
is empty.

This reduces the trapezoidal regions to rectangular regions. We then map
each such rectangular region to a “tube” in a C? and expanding manner in
such a way that the tube does not intersect the images of the triangles that
support the ergodic acim.

Finally, by making small perturbation to trese maps near the “vertical”

edges of these rectangular regions, we can obtain a map that is C? and ex-

panding on all of S; (respectively S_;) (see Figure 3.2).

In Chapter 4, we study the smoothness of invariant densities in higher
dimensions for a certain class of maps. The smoothness property of their
invariant densities (see Definition 4.1) for several classes of transformations

of an interval has been studied by many authors. Here, we mention a few



examples:

(i)

(iii)

(iv)

Rényi [Rén] in 1957 proved that piecewise transformations of the unit
interval onto itself, satisfying a distortion condition, admits an acim.
Halfant [Hal] in 1976 proved , for the maps considered in [Rén)], that
if the transformation is of class C™ then the invariant density is of

class CM -2,

Lasota and Yorke [L-Y] in 1973 proved the existence of acim for
C? expanding transformation of an interval, and Misiurewicz [Mis]
proved the existence of an acim for negative Schwarzian maps with-
out sinks and such that the set of critical points is separated from the
trajectory. Szewc [Sze| proved that, the densities of invariant mea-
sures for Misiurewicz maps and Lasota-Yorke maps of class CM on

certain intervals are of class CM—1,

For expanding maps on an interval the question of smoothness of in-
variant densities was answered by Sacksteder [Sac| (unfortunately the
paper contains a mistake) and Krzyzewski [Krz] who proved that, if
an expanding map is of class CM then the invariant density is of class
cM-1,

For C! expanding transformation of an interval satisfying the Schmitt’s
[Schm)] condition the existence of an acim and their smoothness of

invariant densities were studied in [G6r).

In higher dimensions, the existence of an acim for expanding Markov maps

(which contains the class of maps considered by Rényi [Rén]) was proved by

Mané [Man|. We prove that if a transformation 7 : R* — R™ is expanding

Markov and of class CM, then its invariant density is of class CM -2,

Applications of exgodic theory for higher dimensional transformations can

6



be found in [Schi], [Sch2] and [Yur].



CHAPTER 1

PRELIMINARIES

Weakly Differentiable Functions

and Functions of Bounded Variation

Given l an open bounded subset of R™ we denote the space of all con-
tinuously differentiable functions by C!(2), and by Ci(£2), the space of all
C'(2) functions with compact support in £2. We denote by L!(€2) the set of
all integrable functions in €.

We begin with a short excursion in the theory of distributions. Let €2 be
a nonempty domain (for our purpose an open bounded subset) in R™. The
space D() is the set of all ¢ in C§°(Q) endowed with a topology so that a
sequence {¢}52 , converges to ¢ in D(Q) if and only if there exists a compact

set K C 1 such that:

(1) supp ¢x C K forall k € N and

(2) limgn oo D*¢r = D¢ uniformly on K for each multi-index a.

A mapping < f,- >: D(2) — R is culled a distribution if the following two

conditions are satisfied:

1) <flap+p¢ >=a <fi¢ >+ < [,y >forallo,B8 €R, ¢,¢¥ €
D(SY);

(2) limg—oo < f, @k >= 0 for arbitrary sequence {¢x}i; C D(Q) such
that ¢x — 0 in D(N).

The set of all distributions is denoted by D’(€2). An example of a distribution,

relevant for our considerations is the following:
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Let f € £}(Q) and define < f,- > by
<flg>= fnfgdxn, g € CHAR™, |lglles<1,

where A is the Lebesgue measure. It should be noted that we took g € C} ()
instead of the ususal ¢ € D(2) since in our construction we only need first

derivatives.
In general the first distributional derivative of < f,- >€ D'(Q) is defined

by the relation
<Dif,¢>=—<f’Di¢>1 ¢ED(Q)’

where D; = 52—;. It is easy to see that < D;f, - > is a distribution. Similarly

we can define the o-th distributional derivative of < f,- > by

< D°f,¢ >= (=1l < f£,D%¢ >, ¢ € D),

a &lal
where D& = 5T 5T

A complete study of distributions is presented in [K-J-F] and [Zie).
Let f € L1(2). We denote by Df the gradient of f in the distributional

sense. If f is differentiable, then Df is equal to the usual gradient, where

gradf = (le: D2f)' "% -an)'

In the above example of distribution, it is easy to see that:

<SDifg>= - [ fdivedhe, 7€ CHRRY, |l glles 1

=1

9



We will denote, < Z:;l D;f,g > by the following more informative notation
needed in our consideration fn <Df,g>d,.
We proceed with the definition of n-dimensional function of bounded va-

riation.

Definition 1.1. Given 2 an open bounded subset of R™ with piecewise C?
boundary of finite (n — 1)-dimensional measure for f € £1(Q) we define its

variation to be:

Vn(f)=sup{_/Q<Df,g>dAn 0 € CHRY |l g lleos 1}

and f is of bounded variation if Vo(f) < oo

We denote by BV () the space of all functions of bounded variation on 2.

With the norm
|- lsviay=Il - llc2y +Va(-),

BV is a Banach space.
If f € BV(Q) and Df is the gradient of f in the sense of distributions

(see[Mor]), then Df is a vector valued Radon measure and V() is the total
variation of f on 2. Thus we may extend the definition of Vp(f) to include
cases where P C §Q is not necessarily open.

Va(f) satisfies the following elementary properties:
(1) Va(fi + f2) < Va(fi) + Va(f2) Y, f2 € L1(Q),
(2) Va(af) = lalVa(f) Vfe L), a€R,

)

(3 Vﬂ:( )+Vna(f) SVn(f) va‘Cl(Q)’
where ,,Q2 C Q with Q; NQ, = 0.

10



Definition 1.2. For f € BV (Q) we define the trace of f as

tra(f(3)) = “(lg)nw—(;; /B f(2)dz

for B C 2,y € 0B N 6N and u(B) the n-dimensional measure of B. It has
been shown in [Giu, Lemma 2.4] that the above limit exists for almost every

y € 0 NI with respect to (n — 1)-dimensional Hausdorff measure.
The following remark is an immediate consequence of [Giu Theorem 2.11].

Remark 1.1. Let Q be a bounded open set in R™ with Lipschitz continuous
boundary 992 and let f € BV (). Then for g € C§(R™,R™):

/fdiv(g)d)\n+/ <Df,g>dAn=/ tra(f) < 9,7 > dhp_4
1] 1 o0

where 7 is the outward normal vector to 9f1.

Remark 1.2. Let g € C*,{g;}°, 9, € CL(0),9; — g (pointwise) such that
| 9 llo< 1 and || gj ||o< 1 for all j and f € L' then we have:

/<Df,g>d)\n= lim <Df,g; >din.
Q J—® Jo

Proof. Since fn < Df,- > d)\, is a measure, by bounded convergence theorem

the result follows. O
The next remark is [Giu Theorem 1.17].

Remark 1.3. Let f € BV(Q). Then, there exists a sequence {fx} in C®(f)
such that:

lim f fi = Fldn,
k—OOO Q

11



and

Jm Va(fi) = Va(f).

Let P C 0 be a closed domain with piecewise C2 boundary of finite (n —1)-
dimensional measure. Then, we have the following result from [Giu Proposi-

tion 2.6].

Remark 1.4. Let f € BV(P) and let {fx} C BV (P) be a sequence converg-
ing to f in L}(P) such that

Jim Vp(fi) = Vp(f)-

Then
klim trp(fi) = trp(f) in L}(OP).

From [Giu Theorem 2.11], we have the following remark:

Remark 1.5. Let 2 be a bounded open set in R™ with Lipschitz continuous
boundary 910, and let {fi}, f be functions in BV () satisfying:

lim / |7 = fldAn =0,
k— oo Q

and
Jm Va(fx) = Va(f).

Then, we have:

lim [ |tra(fi) - traf|lddn_y = 0.
k— oo o0

The following remark follows from [Giu Theorem 1.19]:

12



Remark 1.6. (Compactness) Let  be a bounded open set in R™ which is
sufficiently regular (e.g, the boundary of Q is Lipschitz continuous). Then

sets of functions uniformly bcunded in BV-norm are relatively compact in

L£HQ).
The following remark is [Giu Theorem 1.9].

Remark 1.7. (Semicontinuity) Let @ C R™ be an open set and {f} a se-

quence of functions in BV (€2) which converges in £}(Q) to a function f. Then

Vg(f) S klim inf Vg(fk).
Proof. Let g € C*(£2,R™) be such that ||g||w < 1. Then
- / fdiv(g)dAr, + tra(f) < g, > dhn—q

Q 10)
= - f lim frdiv(g)ddn
Q k— o0
+/ tro( lim fx) < 9,7 > dAn—y
llm ( / frdiv(g)dA,

+f tra(fx) < 9, >dAn-1)
an

< lim inf Vo (f%).
k— o0

Taking the supremum over all such g completes the proof. O

13



Basics from Ergodic Theory

In this section we give basic definitions from ergodic theory which we will
use in the sequel. For more detailed information see for example [L-M]. Let
X be a set (for our purpose X = ), where (? is an open bounded subset of
R™). Let B be a o-algebra of subsets of X, i.e., (i) X € B; (ii) if B € B
then X\B € B: (iii) if B, € B forn > 1 then |J,., Bn € B. We then call
the pair (X, B) a measurable space. A finite measure on (X, B) is a function
m : B — R* satisfying m(@) = 0 and m (>, Br) = > oo, m(B,) whenever
{Br}{° is a sequence of elements of B which are pairwise disjoint subsets of
X. A finite measure space is a triple (X, B,m) where (X, B) is a measurable
space and m is a finite measure on (X, B). We say (X, B,m) is a probability
space, or a normalised measure space, if m(X) = 1.

Let (X, B) be a measurable space and suppose y, m are two probability
measures on (X, B). We say p is absolutely continuous with respect to m
( we denote it by p < m) if u(B) = 0 whenever m(B) = 0. For our purpose
m = A the normalised Lebesgue measure.

The following remark is [Wal Theorem 0.10 (Radon-Nikodym)].

Remark 1.8. Let g, m be two probability measures on the measurable space
(X,B). Then p <« m iff there exists f € L},(-), with f > 0 and [ fdm =1,
such that u(B) = [ fdm VB € B. The function f is unique a.e.

For a transformation 7 :  — 2 we denote by J, the Jacobian matrix of 7

and by 7, the absolute value of determinant of J..

Definition 1.3. Let 7: Q — Q and {P,, P,,..., P} be a partition of €. Let

T; = 7|, be a diffeomorphism onto its image for i = 1,2,- - -,m. We define

14



the Perron-Frobenius operator
Po:C'— !

as follows:

P, f(z) = z f(;’ _1(‘")))), f € £YQ).

The Perron-Frobenius operator has the following properties:

(1) Prf > 0O for f > 0;

(2) [|P-fllza¢ay = | fllc2(ny for £ > 0.

It is well known [L-Mj that, h € L! is a density of a 7-invariant absolutely
continuous measure iff P.h = h.

We denote the projection on the eigenspace of P, corresponding to eigen-

value 1 by P, , and the operator adjoint to Py, by P, i.e., operator from

L2(Q) — L>°(N) such that:

[Bnatrn = [ 1(P 0,

for any f € £L1() and any g € L®(Q).

The transformation 7:X — X is measurable if 7~}(B) C B, i.e. B€ B=
7-1(B) € B, where 77! ={z € X : 7(z) € B}. The measurable transforma-
tion 7 : X — X preserves measure pu or g is 7-invarient if p(r='(B) = p(B)

for all B € B.

Definition 1.4. The measure preserving transformation 7 : (X,B,u) —
(X,B, 1) is ergodic if for any B € B, such that 77'B = B, u(B) =
p(X\B) =0.

15



Definition 1.5. We say 7 : (X, B, p) — (X, B, 1) is weakly mizing if for all
A,B € B,

k-1
1 .
z > I(r7*AN B) — p(A)p(B)| — 0, as n — +oo.

1=0
T i8 strongly mizing if for all A, B € B,

p(r ¥ AN B) — u(A)u(B), as n — +o.

Definiticn 1.6. Let (X, B, u) be a normalised measure space and . 7:X —
X be measure preserving such that 7(B) € B for each B € B. If

lim w(r*B) =1

k—o00

for each B € B, u(B) > 0, then 7 is called ezact.

The following remark is a direct consequence of [Man, Chapter III, Theo-

rem 1.3].

Remark 1.9. Let Q be a bounded subset of R®?, A a normalised Lebesgue
measure on the Borel o-algebra of 2 and 7 : @ — § an expanding (see
Definition 4.2) and piecewise onto map of (2, B,\), where B is the Borel o-
algebra of 2. Then, there exists a unique probability measure g on the Borel
o-algebra which is 7-invariant and absolutely continuous with respect to A.
Moreover, 7 is exact with respect to p.

It is well known [L-M] that exactness implies mixing which in turn implies

ergodicity.
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CHAPTER 2

ON THE EXISTENCE OF
ABSOLUTELY CONTINUOUS INVARIANT MEASURES
FOR CHAOTIC MAPS IN HIGHER DIMENSIONS

In 1989, Géra and Boyarsky [G-B 1], proved the existence of acim for
expanding piecewise C? transformations on R™ for domains with piecewise
C? boundaries. Their basic assumption was that the angle subtended by
the tangents at the point of contact of the C? segments of the boundaries is
bounded away from O.

For boundaries for which the angle mentione.i above may become 0 (i.e.,
the boundaries of partitions may contain “cusps”, see Definitions 2.6 and 2.7),
Keller [Kel 2] gave a complicated sufficient condition for the existence of an

acim in dimension two.

We use the definition of bounded variation for functions in R™ given in
[Giu] and prove several results that were proved in [Kel 2] in dimension n.
Using these results, we will prove our first theorem (Theorem 2.1), which re-

lates the variation of a function of bounded variation to the variation of its

Perron-Frobenius operator. The properties of the Perron-Frobenius operator
are described in [L-M]. We will then estimate the “trace” of f along a “cusp-
less” (n —1)-dimensional hypersurface. By aid of this result, we will prove our
second theorem (Thecorem 2.2), which in turn will give a sufficient condition
for proving the existence of an acim for piecewise C? transformations in R™
defined on domains with cuspless boundaries.

Next, we will consider domains which have at least one cusp on the bound-
ary. By setting certain mild conditions on the boundaries, we will prove sev-

eral theorems which will provide sufficient conditions for existence of an acim
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for piecewise C? transformations in R™, defined on domains whose bound-
aries contain cusps. As a consequence, we prove the main results of [Kel
2] and [Jab] in form of examples. Finally, at the end of Chapter 2, using
the Jonescu Tulcea and Marinescu Theorem, we obtain a spectral decomposi-

tion of the Perron-Frobenius operator and corresponding ergodic properties.

Main Results
Let A = (ai;) be an n X n matrix; we denote the Euclidean norm of A by

” A ”2= SUP(ZJ 1 13)1/2

Now using Definition 1.1 for n-dimensional function of bounded variation,

we generalize several results of [Kel 2] to dimension n.

Lemma 2.1,
Let Q, and §)3 be open bounded subsets of R™ and 7 : ; — Q5 a diffeo-

morphism of class C2. Then

(i)

f (f o 77 1) Tr-1div gdAp,
13

__/ [dw (Jr-1-g)oT) 2(93 o 'r) 9 6(;;:) or)]d)\n.
(ii)

/ <D((f°T-_1)JT")ag>dAn=/ <Dfa(Jr-1'g)°T>d}‘n
3

2,

s [ Trweng (X ”°o r)dAa,

13k
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where g € C1(Qy).
(iii)

/'trﬂz((foT—l)JT“)ld’\n—l < sup “ (J‘r“’)lz ”2/ Itrﬂ:(f){d)‘n—la
S YA r—18

for any hypersurface S C 8Q,.

Proof.
(i) We have:
gi10T
e 8r=): . PR A
oy1 Oy Oyn :
(Jr-1-g)oT = -‘9—%)—‘07 ﬂg—;:ho'r 1";(gy;:ko'r gioT
s oher e ) |
\gno'r)
o -1
(T0, (8570 o r)(g; 07)
8 _1..'
= | T (% o r)(gj07)
o)
\ S5 (252 o 7)(g 0 m) /
Therefore

[(3(7‘1)

ayj

?

div((Jy-1-g)oT) = Z Bi o7)(g; o'r)].

Differentiating the right hand side yields the following:
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(2.1)
aiv((rs-9)or) = 32 | (5L or) gy on+ (grem)gm (5L on)].

3,j=1

and thus we have:

/mf[div((J,._, .g)o7) - i(qjor)amt( o(rY) . )] dAn

i,j=1 %;

L2

On the other hand since 7 is a diffeomorphism w= have :

]1.]""

8g; _0O(gjoror™!) 6(gio7) -1 0(r 1)
= =) o7t —=~X,
0y; Oy; Z oz; Oy;

i

where z; = (77!); ard thus we get:

Therefore, using this in the above equation we obtain:

/ | f[div(( s g)om) = 3 (60 o a(;;) )] dAn

1,j=1

For a fixed j, by change of variables we get:

095 = 995 4

23
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Therefore by summing over all j’s we obtain:

99; - -1 :
/n, fzj:(ayj o 7)d\, = /m(for )Tr-1div gdAn,

for g € C*(€2), which completes the proof of part (i).
(i)

For g € C}(€;) we have

/ (for 1) Tr-1div gdd, = —/ <D((f 0T N Tr-1),9 > dAn,
2

Q;
/ fdiv((Jp-1-g)o T)dA, = —/ < Df,(Jz-1-9)oT > dA,.
(OB 2,

Thus by part (i) we get part (ii) for g € C2(22).

Now for g € C'(§2) we obtain the result using Remark 1.2 by approxima-
tion for f € BV ().

(ii)

Given € > 0 there exists g € C!(f;) such that || g ||< 1, g(z) = 0
Vz € (69:\S) and

J

By Remark 1.1 we get:

J

<

dAn_..]_ S +e€.

tra, ((fo'r’l)J.,-l)

/ tro, ((foT—l)J'r") < g, >di
892

tra, ((f o 7)) Tr-1)|dAn-1

+ €.

/ (f o 7™ 1)Tr-1div gdXy, +/ < D((f O'r'l)J.,-z),g >d\,
Q2

12
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By parts (i) and (ii), we get:

J

tra, ((f o T'I)JT-:) dApn-1

+ €.

< ‘/ fdiv((Jr-1 - g) o 7)dA, +/ <Df,(Jr-1-g)oT >dA,
Q, 2,

Thus, applying Remark 1.1 once again, we have:

/ trg, ((fo'r’l)J.r_:)ld/\n_l < / tra, (f) < (Jr-1:g)oT, @ > dAp1|+e,

S o,

and thus:

/ tra, ((for"l)J.,-:)‘dAn_l < sup || Jr-1-9 ||2/ [tra, (F)ldAn-1. O
s llgll<1 T-18

Lemma 2.2.
Let Q,Q, be open bounded subsets of R™ with piecewise C* boundary, and

Qy = Q\ﬁl and ' := 9\ = 00\0N. Then for every f € BV(Q) we

prove the following equality for the variation of f in §2:

Va(f) = Va, () + Vaa () + /P tra, () — tray ()| dAnos.

Proof.
Case 1: [<]

We have:

Vg(f)=sup{/n<Df,g>dAn: gEC’l(Q) ,||g||°°_<_1}.
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Letting 7 to be the field of unit normal vectors to 89 pointing to the exterior

of 2, by Remark 1.1 we get:

Va(f) = sup{— /Q fdiv gd), + /an tro(f) < g,7 > d/\n_l},

where the supremum is taken over all g € CY (), || 9|lcc< 1. We note
that 7,7; are defined almost everywhere with respect to (n — 1)-dimensional

Hausdorff measure and are piecewise continuous.

Now let 7i; for i = 1,2 to be the field of unit normal vectors to I" pointing

to the exterior of §2;. Then we get:

Va(f) = sup{— fdiv gdA, — | fdiv gd),
Q] 92

+/ tre, (f) < 9,71 > dAns +/ tre,(f) < 9,72 > dAn
80, 802

_ftrﬂj(f) <g)ﬁ1 >dl\n—1 —‘/trnz(f) <gaﬁ2 >dAn,—1
T r

. geCY(), ugnmg}.

Now we note that 7; = —it; along I', and thus:

Vn(f)=sup{/ <Df,g>dAn+/ < Df, g >d\,
Ql Qz

+/F(tm,(f) - t10,(f)) < 9,71 > dAn_1: g€CHA), || g llw< 1}.
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‘)

Taking supremum over each term we obtain:

Valf) < p{/n <Df,g>dh: 9€CUQ), [ gllos 1}

+sup{/ <Df,g>d\,: g€ CHQ), || 9 |l< 1}
Q3

o

Note that || g ||< 1 and #; is a normal unit vector thus ||< g,7; >||< 1.

trn,(f)—trgz(f)l < g,y >dlp_1: g€ CHN), [ 9 l|lo< 1}.

Therefore applying Definition 1.1 to the first two terms on the right-side we
get:

Va(f) < Vau () + Vau () + / tra, (f) — tra, () |dAner.

r

Case 2: [>]
Let Us(T) := {z € Q| dist(z,T) < §}. There exists go = (go,,goz, -1 9o, ) €
C!(Us(T)) such that:

J

Using Definition 1.2 on the right-side we get:

J

tr, (f) — tra,(f)

dAn_1 < e+/(trg,(f) - trgz(f)) < Go, > dAn_1.
r

tra, (f) — tra,(f)|dAn-1

<€+ ‘/I:(tmmvs(r‘)(f) - tman,(r)(f)) < go, M > dAp_q.

Since Us(T') is open if intersected with Q; we get 8(2;NUs(T")) =T fori =1, 2.
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Thus, it follows that:

J

trﬂ:(f)"trﬂz(f)

Dy < e+ / trasnus(m)(F) < gorits > dhn_y
8(01 ﬂUg(F))

+/ trn,nm(r)(f) < go,Tiz > dAp_;.
8(R3NUs(T))

—

Since g, has compact support in Us(I') and 7 = i) = —iy

J

fdiv gdA, +/ fdiv gd),
ﬂznvg(r)

tro, (f) - trﬂg(f)ld)‘n-—l < e+/
N:NUs(T)

+/ < Df,g, > d)\,
ﬂ]ﬂUg(r‘)

+/ < Df,go > d,,
QzﬂUg(r)

e

Now we choose g; = (9,83, 9in) € C3(Q \ Us(T)) for i = 1,2 with
| g [leo< 1 so that:

tra,(f) —-trgz(f)'d)\n_l < 3e+/ - < Df,go > dA,.
Us(T

(2.3) Va,(f) Sf+/ _ < Df,gi>dx,.
Qa\Ua(r)

Then from Equations 2.2 and 2.3 we get:

dAn—l

Vs (f) + Vaa () + fr tr, (f) = tra, (f)

<Df,g,->d,\n+/ < Df,go > dA,.
Us(T)

2
< 5e+ /
e;n

‘\66(1‘)
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Thus:

tra, (f) — tra,(f)

Vg,(f)+Vn,(f)+/ Doy < 56+/ <Df.g>d,
r o

where g := 1y, r) - 9o +1 a+1

g2.

2,\T5(T) 2,\T4(T)

Thus, using Definition 1.1, we have the following:

tra, (f) - trgz(f)‘d)\n_l < 5¢+ Vg(f)

Vo, (f) + Ve () + /r

Since € is arbitrary we get:

tra, (f) — tra, (f)|dAn-1 < Va(f).

Vo, () + Vo () + /F

This completes the proof. O
The following corollary is a direct consequence of Lemma 2.2.

Corollary 2.2.1.
Let Q; C Q be an open bounded subset of R™ with piecewise C' boundary.
Then for every f € BV ()

Va(f - 1a,) = Va, (f) + /8 e D

Definition 2.1. Let 7: Q@ — Q and {P,, P,, ..., P} be any finite partition

of . Let 7; = 7 Pt We say T is a-expanding if

” J-r"._:l ”2< a—17
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fori=1,2,...,mand a > 1.

Definition 2.2. Let Q be an open bounded subset of R® with piecewise C2
boundary. A partition Pq = {P,,Ps,...,Pn}, m < oo of Q is said to be

smooth if each P;, 1 =1,2,---,m has a piecewise C? boundary.

Theorem 2.1.
Let 2 be an open bounded subset of R® with piecewise C? boundary and

a smooth partition Po. If 7 : Q@ — Q is an a-expanding and piecewise C?

transformation, then:

Va(Prt) € & Vol K| £ lleg o + 3o trp, (1) ldAacs,
" i=1 8P\T(6%)

where K > 0 is a constant independent of f and P; € Pq, 1 =1,2,-:m.

Proof.

We start with V;p, [(f o Ti“l)JTf:] for fixed 7. First we note that, for

g € C}(7P;) we have:
/ tr.p, [(f o T,-—I)J.,.ﬂ] < g,m>dA-1 =0.
éth, '
Thus, using the previous result in Remark 1.1, we get the following:
Vrp, [(f o 'r,-’l)JT.-:] = sup{—/ (for 1), - div gd)\n},
] TP' 1

where the supremum is taken over all g with || g ||0< 1, g € C}(7P;,R").
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We have:
. A(rt 0
/p (for?)T,-1div gdA, = Z/P f(%zy]i 07) (ba:_k(gj 07))dAn.
T j,k L}

Using Equation 2.1 in the right-side we get:

/ (f o 771, -1div gdAn
TPh; *

=1

- /P f [div((Jﬁ_: .g)or) =S (g0 T)azk (a(gyj)k o 7')] .

3.k

Let ¢ =a~'g. Then | J,-1 - ¢ ||oc< 1, and we get:

fdiv((J -1 -g)or)dry =a™t | fdiv((J,-1- )0 T)dAn.
P, ' P :

Thus, we have:

Vi p, [(f o Ti—l)‘j'r,_]] = sup{/‘ f[z(gj 0 T)ﬁik (a(';z;)k 0 T)

~ o1 - div((J,-1 - 4) 0 T)]d)\n},

where the supremum is taken over all g such that || g [|< 1, g€ Cl(7F;).

8z, Oy,

Now let K > 0 be the bound for Zj’k(gj 0T)52 (8(1"—])" o 'r). Then we

obtain:

R0  Vn|(Tor) 0] <t Ve + K- [ Iflann
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On the other hand we have:

Va(Prf) < EVQ [(f o Ti_l)j-r‘." . lrp‘.].
i=1

From Corollary 2.2.1 we have:

Z VQ [(f ° Ti—l)Jr'.—] ) 17'Ps]
=1

-$nlierrrc] [, oo 052

Using Equation 2.4 and Lemma 2.2 in the above equation we get:
Va(Prf)

i[ V() + K- / IFldAn +a'1/8

dAn 1}

ltrp.(f)ldAn_l]

P\r7'(8Q)

o™ Valf) + KN ey + Yo [ e ()dAns
» 8P\771(89)

i=1

Example 2.1. Under the conditions of Theorem 2.1, if 7(P;) = Q for every
¢, then

Za'lf ltrp, (f)|dAn-1 = 0.
i=1

P\ (89)
Thus:
Va(Prf) <o - Va(f)+ K | flley - O

Definition 2.3. We say K is a regular cone in R™ if K is a cone whose base
is a (n — 1)-dimensional disk B and such that the central ray L joining the
vertex to the center of the disk B is perpendicular to the disk.
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Definition 2.4. We define the angle 0 subtended at the vertex of a regular
cone K to be the angle between L and any line joining the vertex to a point

on the boundary of B, and we denote this angle by 8(K).

Let P be a closed bounded subset of R™ with piecewise C? boundary. We
denote by )C(P),? the set of 21l regular cones with vertex at p which are locally

contained in the closure of P in the vertex angle sense. Let 6P* C 0P, and

S be the set of singular points of dP*. Put
6(6P*, P)|, = sup{O(K) : Ke IC(P,-)IP},
where p € S. If 6(9P*, P), > I we set 6(0P*, P), = & Define

w(0P*, P) = min 6(3P", P),

and for w(6P*, P) > 0 let

1
|sin(w(8P*, P))|’

p(6P*,P) =

Now we will construct a C* field of segments L,, p € dP*, every L, being
a central ray of a regular cone contained in P, with angle subtended at vertex
p greater than or equal to w(8P*, P).

We start at points p € S, where the minimal angle w(8P*, P) is attained,
defining L, to be central rays of the regular cones K € K(P)|, such that

8(K) = 6(8P*,P), . Then we extend this field of segments to be the C'

field we want, making L, short enough to avoid overlapping. Let §(p) be the
length of L,, p € 0P*. By compactness of 8P* we have:

A(dP*,P) = inf &(p)> 0.
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Definition 2.5. Let P be a closed bounded subset of R® with piecewise C?
boundary, we say P* C 9P is (w, P)-regular if w(dP*, P) > 0.

Lemma 2.3.

Let P C Q be a closed domain with piecewise C? boundary of finite (n—1)-
dimensional measure which is (w, P)-regular and let f € BV (P). Then:

[ lere(ldrncs < oOP, P) - [Vi(f) + A@P. P) - Iy (o)

Proof. For f € C'(P), we have, trp(f) = f. Thus, for f € C! the result
follows from the proof of [G-B 1, Lemma 3]. For a function f € BV (P),
there exists a sequence {fx} of C! functions which converges to f € BV(P)
in £!(P) such that:

Jim Vp(fi) = Ve(f).

Then by Remark 1.4 we get:

/ o p(f)|dAnr = / Jim [trp( i) dAn s
opP 8p B—©

k— o0

= lim [trp(fi)|dAn-1
ap

< lim p(8P, P)- [Vp(fx) + A(6P, P) - 1 felley ]

= p(OP,P) - [Ve(f) + A@P.P)-|Ifllcy_, |-

We now present an alternate proof of the main result of [G-B 1, Lemma

4.
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Theorem 2.2 (Gdra-Boyarsky).

Let Q be an open bounded subset of R™ with piecewise C? boundary. Let
Pqo ={P,,P,, - Pp} be a smooth partition of Q such that P; is (w, F;)-
regular for i = 1,2,---,m. If 7 : Q — Q is an a- expanding and piecewise C2

transformation, then:
Va(P-f) S @™ - (14p) - Va(f)+ M- 1| £ llcy_cay

where M > 0, and p < oo are constants independent of f.

Proof.
By Theorem 2.1 we have:

m
ValPo) S o7 V(DK | £l o+ o0 [ erp (£l
" i=1 OP:\7*(80)

<al-Va(f)+ K| f ey (o) +Za—1 /ap |trp,(f)|dAn—1.

=1

By Lemma 2.3, for every ¢, we get:

[ 1R (1)idncs < 0P, POVRS) + AP P I £ ey o)

Let p= max p(8P;, P;) and A = max A(OP;, P;). Then

Va(P-f) S o™ - Va(f) + K- || flley (o) +e™" - p- [Va(f) + A || f |2y ()]
=a” - (1+p) Va(f)+(K +a - A) || f lles_(o)
=a™" - (1+4p) Va(f) + M- || £ llcy (o)
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where M= (K +o 1-A). O

Definition 2.6. We say P; has a cusp at a point p € P; N int(Q) if

6(0P;, P)|, = 0.

Definition 2.7. A hypersurface C is a cusp with respect to P; if

o(aP,‘,P,')lp =0 VpeC.

Definition 2.8. We say a hypersurface C is a stmple cusp of order 1 if
(1) C is in the interior of Q,
2) 2n(C) = 0 An_1(C) = 0; As(C) > O,
3) 6(6F;, P;),,=0forallpeC,

5) f CNAP; # § for j # i, then w(0P;, Pj) > 0, and
6) there exists an open neighborhood N of C such that N C int(?) and
AOP,N N is (w, N\(N N P;)) -regular.

(
(
(4) C is a cusp only with respect to a unique P; € Pq,
(
(

Remark 2.1. Let P be an element of a partition of 2. If C is a simple
cusp with respect to P, then clearly dP is not (w, P)- regular in the sense
of Definition 2.4, along the hypersurface C. On the other hand, we may
take C C 0P* C 0P such that P* is (w, Q\P)-regular. In particular if we
take N C Q an open neighborhood of dP* then OP* = 8P N N would be

(w, N\(N N P))-regular.

Remark 2.2. Under the situation of Remark 2.1 when calculating p and A,
we calculate them with respect to N\(N N P) as it regards to the simple cusp

C.
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Figure 2.1. Illustrates a very simple situation in dimension 2, in connection
with Remark 2.1. In this figure C is a simple cusp with respect to P,. If we
take 0Py = 8P, N N, then 0P} is (w, N\(N N P,))-regular.

.
oooooo

Figure 2.1

Lemma 2.4.
Let €2 be an copen bounded subset of R™ with piecewise C? boundary and
a smooth partition Pq. If a hypersurface C is a simple cusp of order 1 with

respect to a P; € Pq, then:

[t (Dldrns
OP;NN
< p(8P;,NN,N\(NNPF)) {VN(f) +A(BP;NN, N\(NnPi))”f”L’h(N)},

where N is an open neighborhood of C such that N C int(Q?) and 0P; N N is
(w, N\(NN P,)) -regular.
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Proof. By Definition 1.2, we have:

f trp, (/)| dAns = / ftenep(HldAnos
8P,NN 86P,NN

LP,‘QN

Thus, by the triangle inequality, we get:

[ niddans < [
8P,NN OP;NN

+/ ltrn\(vap)(F)ldAn-1.
8P,NN

tenv\(vnp) (f) = teny(vnp) (F) + tr(an.)(f)ldAn—l.

trn\(vap)(F) = trvnp) (F)|dAn-a

Applying Lemma 2.3 to the second term on the right hand side of the above

equation, we get:

(2.5)
/ trp(F)ldAnos
8P;NN

<),
8P,NN

+ p(6P,- NN,N\(NnN Pt)) X

trv\(vnp)(f) — tanp,»(f)IdAnq

{VN\(an‘)(f) + A(8P; N N,N\(N N F)) /N |f|d)\,.}.

\(Nﬂpi)

By Lemma 2.2, we have:

(2.6)
Vn(f) = Va\np)(f) + Vunr(f)

"'f |ten\(wnp,) () = tranp.(f)|ddn-1.
8(NNnP)\8N
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Therefore
Vn(F) = V\vnp) () + Vnar(f)

“
8P,0ON

Since Vnnp,(f) = 0, we have:

try\(vap)(f) — trvap, (f)|dAn-1.

VN(f) 2 Vu\(vnp) () + /a trv\(nnp)(f) — tanP;(f)‘dAn—l-

Since p(8P;NN, N\(N N P,)) > 1, using the above equation in Equation 2.5,

we get:

[ ten(f)ldrns
8P;,NN

< p(BP:NN, N\(NnP,-)){VN( f)+A(8PNN, N\(NNP,)) /N | fldAN}.

\(NNP,)

/ 627, () dAn—1
8P,NN

< p(aP,-nN,N\(NnP,-)){VN(f)+A(6P,-nN, N\(Nﬂpz)) L If'd}\n}.

/ ltrp.(F) | dAnor
8P,NN

= p(8P,NN,N\(NNF,)) {VN(f)+A(aP,-nN, N\(NNP))|Iflly ¢ N)}. O
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Lemma 2.5.

Let Q) be an open bounded subset of R™ with piecewise C* boundary and
a smooth partition Pn. If a hypersurface C is a simple cusp of order 1 with
respect to a P, € Pq, and taere is no other cusp along the boundary of P;,
then:

[ 1tedfidracs
OP;
< p(0P.1 NN\ 1 P){ V(1) + A(BRN N, N\ 1 P)) I3, 0}

+ p(aP,-\(aPi N N), Pi) [Vp,(f) + A(BP,-\(aPi N N), Pi) ”f”ﬁh(p,)] ’
where N is an open neighborhood of C such that N C 2 and 0P; N N is
(w, N\(N N P,)) -regular.

Proof.
We have:

/ x5, (F)|dAncr = f trp, (£)]dAn—s + / b (f)ldAn-1.
8 P; 8P;\(8P,NN)

8P,NN

Applying Lemma 2.3 to tie first term on the right hand side we obtain:

/ bz, (£)|dAn1
8P:\(8P;NN)

< p(0P;\(8P: N N), P,-){Vp.(f) + A(BP\(@P: N N), P)||flics "(P..)}.

Thus applying Lemma 2.4 to the second term on the right hand side completes
the proof. 0O
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Theorem 2.3.

Let Q be an open bounded subset of R™ with piecewise C? boundary and
a smooth partition Py. Suppose 7 : Q) — () is an a-expanding and piecewise
C? transformation. Then, if Q contains exactly one cusp (hypersurface) C
which is a simple cusp of order 1 with respect to P;, there exist M > 0 and

p < oo such that

Va(P-f) S @™ (1+20)Va() + M || f lley_qay -

Proof. Let N be an open neighborhood of C such that N C Q and P,N N
is (w, N\(N N P,)) -regular.

By Theorem 2.1 we have:

Va(Prf) < a™'Va(f) + K||flley_ (o)

+ Y o f [te, (£)|dhnes
8P,

i=1,5#1
+a! / b5, (£)[dAnoy + o f e p.(F)|dns.
8P\(8PNN) 8P,AN
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Using Lemma 2.3 and Lemma 2.5, we get:
Va(Prf) < a7 Va(f) + Kllfllcy_(a)

m

ot 30 (0P P (Vi) + 80P Pl )]
=l
+ a"lp(aP,-\(aP,- N N), P,)
X [Vp,.(f) + A(OP\(0P:NN), Pi)”f”ﬁiﬂ(P.)]
+ a~1p(8P, N N,N\(N N F;))
x {VN(f) + A(BP,NN,N\(Nn Pz‘))“fllqn(zv)}-
Let
p= max{p(apj, P)(i #1), p(6P\(OPNN),P;), p(8P.NN, N\(N ”Pi))}’

and

A= max{A(BPj,Pj)(j #1), A(BP\(OP,NN), P;), A(8P,NN, N\(an,-))}.

Then:
Va(Prf) < a7 Va(f) + Kllflley_ ()
+a 1 p[Va(f) + Allflley_ (o)
+ a7 p[Va(f) + Aliflles_ (o)
Thus:

Va(Prf) < a7 (1 +20)Va(f) + (K + 227 pA)|flicy_(n)-
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Letting M = K + 2a~!pA completes the proof. O

Definition 2.9. Simple cusps of order 1 Cy,Cs, :--, C}, are said to be separable
if there exist neighborhoods N;, N2, -+, N of C1,Ch, - - -, C respectively such
that:

(1) NjcfQ,for 1<j<k

(2) N;NN;=0,if j+#1

(3) if C; is cusp with respect to P; then dP; N N; is (w, N;\(N; N B))

-regular.

Lemma 2.6.
Let Q be an open bounded subset of R™ with piecewise C? boundary and a
smooth partition Pq. If hypersurfaces {C,,C5,-+,Cy} are pairwise separable

cusps each of order 1 with respect to some P; € Py, then:

Z./ap |trp, (f)ldAn-1 < 2p[Va(f) +A”f”£i,.(ﬂ)]'
i=1 :

Proof. For the cusps {C1,C2, -+,Ck} let N1, N3, ---, Ni be the neighborhoods
of Cj, for 1 £ j < k as in Definition 2.9.

Let, I; = {7 : C; is a simple cusp with respect to P,-} for 1 <1 < m. Then

/ jtrp, ()l dAn—1 = / (62, (F)[dAnr
o8P,

9P\ U, 1, (9P.NN;)

+ f 625, () dAms.
UJ GI‘(a‘P‘nNJ)
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Thus, summing over all i’s, gives:

2/;19.- ltrp, (f)ldAn—1 = ;/ |trp,(f)|dAn-1

8P\ Uje]i(ap‘an)

+Z / (tr ()|t

,E, (8 P,NN;)

We denote the region for which C; is a simple cusp of order 1 with respect to

by P;;) then the above equation will be equivalent to the following:

Z / e (F)dAn 1—2 / 65 £, () A1

8P\ U, 1, (8P:NN,)

k

+ f tr7, (F)|dAm—1.
-Z 8P.(,)nN,

j=1
By Lemma 2.4, we have:

] ltr p,(£)ldAn—1 < P(8Pic5) N Nj, N\(N; N Pyj)) X
3P,(,)ﬂNJ

{Vina () + 8(0Pe3 0 Ny NN 0 Py Sy v

and by Lemma 2.3, we have:

/ Jtrp, (F)ldAnr
8P\ Uje1, (8RiNN,)

< p(@P:\ | (8PNN;), P) [VP.(f)+A(6Pi\ U (8PNN;), P)lifllcy_(py)
jel; j€l;
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Thus, we obtain:

i/ ltrp, (f)|dAn—1 < i p(0P;\ U (8P, N N;), P)x
i=1 VOP; .

Let

i=1 JEI;

[V + A @R U 0B N, P les o0

Jel;

+ ) P(OPy5) N N;, N\(N;j N Pyj)) %

k
j=1

{Va (1) + 80Py 0 85, NG 0 Py v -

p= max{p(aP,-\ U (6P;NN;),P):1<i<m,

and

A= max{

Then:

=1

jel,

p(8Pyj) N N;, Nj\(N; N Pyj)) :1< 5 < K},

A(OP\ | J (6PN N;),P):1 <i<m,

Jel;

A (8Pyjy N Nj, N;\(N; NP;))):1<35 < K}

Z/aP trp, (f)ldAn-1 < 2P[Vn(f)+A”f”51,(ﬂ)]' 0O
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Theorem 2.4.

Let §) be an open bounded subset of R™ with piecewise C? boundary and a
smooth partition Po. Suppose 7 : 2 — §2 is an a-expanding and piecewise C?
transformation. Then, if  contains exactly k cusps (hypersurfaces) {C;, C,, -

-,Ci } each of them simple of order 1 which are pairwise separable, there exist

M > 0 and p < oo such that:
Va(Prf) <a™ - (1+2p) - Va(f) + M - |Ifllcy_a)-

Proof. Using Lemma 2.6 in Theorem 2.1 and putting M = K +2a~! - p- A
completes the proof. [

Definition 2.10. We say a hypersurface C is a cusp of order 1 if

(1) C is in the interior of (1,

(2) A(C) =05 12-1(C) = 0; An2(C) > 0,

(8) C is a cusp with respect to every P;,, 1 € I C {1,2,...,m} where
17l > 1,

(4) 6(0F;,F;);, =0for allpe C,

(5) f CNOP; # B for j # 1, then w(8P;, P;) >0, and

(6) there exists an open neighborhood N of C which can be divided by hy-
persurfaces into open neighborhoods NV;,¢ € I such that N = Uie 1 Ni,
where N;’s are pairwise disjoint and P; N N; is (w, N;\(N;N F;))- reg-

ular.

Lemma 2.7.
Let §) be an open bounded subset of R™ with piecewise C?> boundary and

a smooth partition Py. Suppose §2 contains a single cusp of order 1 along the
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hypersurface C with respect to P; fori € I C {1,2,---,m}. then:

S [ la(fdha-s

161 BP‘n '

< 3" p(BPNN;, Ni\(N:NP)) [VN (5)+A (PN, NA(NNE)Ifll2y_w, )} .
icl

Proof. Straightforward consequence of Lemma 2.4. O

Lemma 2.8.
Let ) be an open bounded subset of R™ with piecewise C? boundary and
a smooth partition Po. Suppose Q contains exactly one cusp (hypersurface)

C which is of order 1 with respect to P; fori € I C {1,2,---,m}. Then there
exist p and A such that:

> |, e (ldracs < 20[V0(5) + Bl ey o)

Proof.
We have:

Z/ trp,(f)|dAn-1 = Z/ |trp, (f)|dAn—1

i=1,¢l

+Y / NETe -

+Y / T ().

i€l
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Applying Lemma 2.3 to the first two sums on the right-side and Lemma 2.7

to the third sum, we obtain the following:

2 / e (Dlddns < 3> p(OP PY(V(f)+AGP P fllcs (r)

1=1,i¢1

+Y " p(OP\(OP: N Ny), P;) [VP.-(f) + A(OP;\(0P: N Ny), Pi) ||f||c§“(p.)-
i€l )

> p(8PNN;, N\(N:iNP;)) [VN‘.(f)+A(6PiﬂNi,N,-\(N,-nP,-))-||f|[C;“(N‘) :
iel ]

We observe that the overlap of the regions in calculating the variation is only
caused by the last term (since the regions in the first two terms are disjoint).

Now, let

p= max{p(@Pi,Pi) :i¢ I, p(OP\(OP,NN;),P): i€,
p(aP,- N N,;,N,'\(Ni N P,)) 1€ I}

and

A= max{A(aP,-,P,-) 1@ 1, A(aPi\(aPi ﬂNi),Pi) 1 1€1,
A(BP,‘ N N,;,N,'\(Ni n Pi)) 1 1€ I}.

This together with N;’s being disjoint completes the proof. [

Theorem 2.5.
Let ) be an open bounded subset of R™ with piecewise C?2 boundary and

a smooth partition Py. Suppose T : 2 — () is an a-expanding and piecewise
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C? transformation. Then, if Q contains exactly one cusp (hypersurface) C,
which is of order 1 with respect to P; € Pq for some 1, there exist M > 0 and

p < oo such that:

Va(P-f) < a7} (1 +20)Va(f) + Mifllcy (o).

Proof. Applying Lemma 2.8 to Theorem 2.1 and putting M = K + 2o~ pA
completes the proof. [

Definition 2.11. Cusps C1,Cs,: - ,Ck of order 1 are said to be pairwise
separable if there exists open neighborhoods N (1), N(2)- -, N(k) of

C:,C,, -, Cj respectively such that for every j we have:

(1) N(G) C 9,
(2) N(G) N N() = 0, for i # j,
(3) N(5) = Usier) Ni(3), Ni(5)'s are pairwise disjoint and 8P; N N;(j) is

(w, N;:(7))\(V;(7) N P;))-regular,

where I(j) = {i : C; is a cusp with resp=ct to F;}.
Let J(P:) = {j : Cj is a cusp with respect to P,-}.

Lemma 2.9.
Let Q be an open bounded subset of R™ with piecewise C? boundary and a

smooth partition Pq. if Q contains k cusps {C,,Cs, - -,Cx} of order 1 which
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are pairwise separable, then:

Z Y f |trp, (F)ldAn_y

i=1iel(5) Y OPN:(3)

k
<> > p(BRNNG), Ni(\(W:(5) N P))x

3=1i€1(j)

{VN(,)(f)+A(aP N Ni(5), Nild)\(N(G) O P flley_(w m}-

Proof. Straightforward consequence of Lemma (2.4). O

Lemma 2.10.

Let © be an open bounded subset of R™ with piecewise C? boundary and
a smooth partition Pq. Suppose ) contains k cusps {C;,Cy,*+,Ci} of order

1 which are pairwise separable, then:

;/;p, |trp, (f)|dAn-1 < 20 [Va(f) +4A- ”fHCin(ﬂ)]'

Proof. Let I(j) = Uses P I = U§=1 Z(j) and N = U?zl./\/(j). Then,

we can write:

S [ tenhe =3 [ en(Hlddes
i=1 i

¢z

+z / [tr,(F)ldAn-1

iez YOP\(OP:iNN)

NSl [ trn(Dldhen,

J=14€l(j) 8 PinN.(3)
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Applying Lemma 2.3 to the first two terms on the right-side and Lemma 2.9

to the third one we obtain the following:

ZJIBP itrP‘ (f)IdAn—l < Z p(apia Pt) [VP;(f) + A(aPn Pz)”f”[.in(}’,)]
i=1 s i¢Z

+ 3 o(0RA@PNN), R Ve (1) + AOPANORN N, P 23 r)

i€l

k
+ Z Z p(8P; N N;(5), N:(H)\(V:(5) N F;))

i=liel(j)
{VN,(J-) (f) + A(8P: N Ni(5), Ni()\(N:(5) N P)) | lcan(zv.-(j))}-

We observe that the overlap of the regions in calculating the variation is only
caused by the last term (since the regions in the first two terms are disjoint).
This together with N;(j)’s being disjoint completes the proof if we let p and

A be the maximum of all p’s and A’s in the above equation respectively. 0O

Theorem 2.6.
Let ©? be an open bounded subset of R™ with piecewise C? boundary and a

smooth partition Pqo. Suppose 7 :  — S0 is an a-expanding and piecewise C?
transformation. Then, if Q contains exactly k cusps (hypersurfaces) {C1, C, -
-,Ck} each of them of order 1 which are pairwise separable, there exist M > 0

and p < oo such that

Va(Prf) < a7 (14 2p)Va(f) + Mllflley_(a)-

Proof. Applying Lemma 2.10 to Theorem 2.1 and putting M = K + 2a~1pA
completes the proof. O
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Definition 2.12. We say a hypersurface C is a simple cusp of order K if:

(1) C is in the interior of Q,
(2) An(C) = 0; An—1(C) = 0; An-2(C) > 0,
(3) C is a cusp only with respect to the regions P; € Pq ,
fori € Ic C {1,2,---,m} where |Ic| = K, and
(4)
6( U OPF;, U F;), =0 forallpeC,and

i€l iclc
(5) If CNOP; # 0 for j ¢ Ic, then w(8P;, P;) > 0, and
(6) there exist an open neighborhood N of C such that N = |J

zEIc
where for every ¢ € I¢, N; is an open neighborhood of C such that

AP, N N; is (w, Ni\(Ni N Pi))-regular.

Lemma 2.11.

Let Q be an open bounded subset of R* with piecewise C? boundary and
a smooth partition Pq. Suppose that C is a simple cusp of order K in .
Then:

Z/ Itrp, (f)|dAn-1

"EIC P|nN|

< )" p(8RNN;, Ni\(N,-nP,-)){VN,.(f)+A(aP,-nN,-, Ni\(Ni“Pz'))“fllc;"(N.)}~
i€lc
Proof. Straightforward consequence of Lemma 2.4. [

Lemma 2.12.
Let 2 be an open bounded subset of R™ with piecewise C? boundary and

a smooth partition Pq. Suppouse that C is a simple cusp of order K in ).
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Then:

S [ lern(ldhncs < 1+ K)o V() + A Iy, ol
=1 '

Proof. We have:

E/ ltrp; (f)|dAn—1 = Z/ [trp, (F)ldAn-1

i¢dle

+ 3 / [trp,(F)ldAn1

1'€Ic P. (8PgﬂN|

+ Z/ ’tTP f)ld)‘n 1

1610 P‘ﬂN

Applying Lemma 2.3 to the first two terms on the right-side and Lemma 2.11
to the third one we obtain the following:

Z/BP ltrp, (f)ldAn—1 < ) p(OF;, Pi) [Ve,(f) + AOP:, P)IIfllcy_(py]
- i igl.

+ 3" p(8P\OP: N N, P) {Vp‘( 7)+A(8P\OP: NNy, P)fllcy_ P,)}
1€lc

+ Z p(aPiﬂNi, N,'\(Niﬂpi)) {VN, (£)+A (3PiﬂNi, Ni\(NiﬂPi)) ”fnﬁi,, (N.-)}'
i€lc

We first observe that it is only the last term where the regions over which we
calculate the variation overlap. Furthermore, there can only be a maximum
number of k overlaps. Therefore, letting p and A be the maximum of all p’s

and A’s in the above equation respectively, completes the proof. [
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Theorem 2.7.

Let Q be an open bounded subset of R™ with piecewise C? boundary and
a smooth partition Py. Suppose 7 : 2 — Q is an a-expanding and piecewise
C? transformation. Then, if ) contains exactly one cusp (hypersurface) C

which is a simple of order K, there exist M > 0 and p < oo such that:
Va(Prf) < a™t- (14 (1+K):p) - Va(f) + M- Iflley_(n)-

Proof. Applying Lemma 2.12 in Theorem 2.1 and putting M = K+2a7!-p-A
completes the proof. [

Consider a collection G C Pq, |G| = R, and a hypersurface C such that C
is a cusp with respect to every element of G. Assume G can be decomposed

to (at least two) subcollections G;’s, 1 € I¢(G) where
Ic(G)={i:Gi cCG A ﬂ(] <iAP; EGi)},

and

6= |J G, [) G:i=0.

i€lc(G) i€lc(G)

Furthermore, there exist an integer K such that

K = max |G,-|.
i€lc(G)

Definition 2.13. Let Q2 be any open bounded subset of R™. We say that
a subcollection of the regions G; C G C Py is inseparable with respect to a

hypersurface C if,

6( U oF;, U Pi)lp =0 forall pe C,and
P;eG; P, €G;
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Definition 2.14. We say a hypersurface C is a cusp of order K if:

(1) C is in the interior of ,

(2) An(C) =0; An1(C) =0; Ap—2(C) > 0,

(3) C is a cusp with respect to R regions where R > K,
(4)

K = max |Gy,
tEIc(G)

where each G; is an inseparable subcollection, and
(5) there exists a neighborhood N of C contained in € such that:

(a) N = U N; over all ¢ € Ic(G), where N; is an open neighborhood
of C with respect to G; for all 7 € Ic(G), and

(b) N;NN; =0 if ¢ # 7, and

(c) if P; has a cusp with respect to C and if P; € G;, then there
exists an open neighborhood N;(j) C N; of C such that 8P; N N;(j)
is (w, N;(7)\(N;(5) N P;))-regular.

Lemma 2.13.
Let Q2 be an open bounded subset of R™ with piecewise C? boundary and

a smooth partition Pq. If hypersurface C is a cusp of order K with respect

to a collection G C Pq, then:

Z Z -/P rwN(')ltrp'(f)ld)‘n_1 s
f) ilJ

ielo(G) Fi€G: 2

3 X s8R N NiG), NGIN(N:(G) N Py))

i€lc(G) P,€G,
[vN.m + AP N NG), NiGNN:) N P)If ey vy |-
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Proof. Straightforward consequence of Lemma 2.4. O

Lemma 2.14.

Let Q be an open bounded subset of R™ with piecewise C? boundary and
a smooth partition Pq. If hypersurface C is a cusp of order K with respect

to a collection G C Pq, and ) contains no other cusps, then:

Z/P_ |tre,(lddn-1 < 1+ K) - p- Va(£) + A - [Ifllc,y (o).

Proof. We have:

> [ trn(ldra-s < [ e (fldrans
‘= Jop oP,

P-¢U ielc(6) O

+ > / ltrp, (f)|dAn-1.

P'EUJEIc(G)

We note that:

3 f a3 [ f1dAns

8P, \(8P,NN,
PIEU,ezc(G) Gj i€lc(G) P;€G, »\(8F, (4))

LD DD DN NN v

icIc(G) P,€G, Y 0PN Ni(3)
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Thus, we have:

5_; /a e (Pldras <

Y. PP, P)[Ve(f)+ ABP, P)lflley_(ro]
PéU, e10(0) G

+ Y. > p(8P\(8P; N Ni(5)), P)x

icIc(G) P,€G;

{V (1) + 8 0PA@P VNG, Py o

+ 3 Y p(0P; N Ni(5), Ni(5)\(WVi(F) N P;)) x

i€lc(G) P,€G,

{VN‘(j)(f) + A(@Pj N N;i(5), Ni()\(V:(5) N PJ))”fncin(N;(J))}

We first observe that it is only the last term where the regions over which we
calculate the variation overlap. Furthermore, there can only be a maximum
number of k overlaps. Therefore, letting p and A be the maximum of all p’s

and A’s in the above equation respectively, completes the proof. O

Theorem 2.8.
Let Q0 be an open bounded subset of R™ with piecewise C? boundary and

a smooth partition Py. Suppose 7 : @ — Q an a-expanding and piecewise C?
transformation. Then, if Q) contains exactly one cusp (hypersurface) C which

is of order K, there exist M > 0 and p < co such that:

Va(Prf) <o - (1+ 1+ K) - p)- Va(f) + M |fllc,, 2)
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Proof. Applying Lemma 2.14 in Theorem 2.1 and putting M = K + 2a71pA
completes the proof. O

Definition 2.15. If Q contains s cusps of possiblely different order (some of
which may be simple), we say Cy,Co,- - +,Cs are pairwise separable if there

exists neighborhoods N, N2,... N* such that for every z we have:

(1) N* CintQ,

(2) NYNN* =0, for y # z,

(3) if hypersurface C* is a simple cusp of order K then, N* satisfies Def-
inition 2.12 with respect to C;, and

(4) if hypersurface C? is a cusp of order K then, N? satisfies Definition
2.14 with respect to C,.

We denote by C~ the set of all cusps in the above definition for which
its respective neighborhood satisfies Definition 2.12 and by C* the set of all

cusps in the above definition for which its respective neighborhood satisfies

Definition 2.14. Let

and

T {PEU UG}

C.€C* j€Elc,

Lemma 2.15.
Let Q be an open bounded subset of R™ with piecewise C? boundary and

a smooth partition Pq. Suppose Q contains s separable cusps and where K
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is the order of the highest order cusp among them, then:

C,€C* i€lc, (G) P;€G;

< Y, Y p(8P.NN;NF\(N7NP))x
C,eC— i€lcg,

{VN:(f) + A(OP; N Nf, NP\(N? ”Pi))”fllcin(N:)}

+ 3 XX (R NNEG), NEG\WNEG) N Fy))

C.ec+ i€lc,(G) Py €G;

[VN.‘U) + A(0P; N NE(G), NE(O\ (NZ () N P;) ”f”L}‘n(N,‘(J')] -

Proof. Straightforward consequence of Lemma 2.4. [J

Lemma 2.16.
Let Q2 be an open bounded subset of R™ with piecewise C? boundary and

a smooth partition Po. Suppose ) contains s separable cusps and where K

is the order of the highest order cusp among them, then:

Z/P |t1'P.-(f)|d/\n_1 <(1+K)-p- [VQ(f)'i"A . ”fli[,‘\%(n)]_
=1 i

Proof. Let Cy,Cy,- --,C, be the s separable cusps and N!, N2,... N* be the
respective neighborhoods as in Definition 2.15. For every C; € C~ we can

use the method of Lemma 2.12 and for every cusp C; € C* we can use the
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method of Lemma 2.14. Since the cusp of highest order is of order K, thus

the overlap of regions caused in calculating the variation along the boundaries
of P;’s contained in any of N*’s will be less than or equal to K (NV,’s being
disjoint). This completes the proof. O

Theorem 2.9.
Let Q be an open bounded subset of R® with piecewise C? boundary and
a smooth partition Po. Suppose 7 : §2 — () is an a-expanding and piecewise

C? transformation. Then, if Q contains exactly s separable cusps and K is

the order of the highest order cusp among them.
Va(Pof) <@t - (14 (14 K) - p) - Va(f) + M- fllcy_ (o
where M > 0.

Proof. Applying Lemma 2.16 to Theorem 2.1 and putting M = K+2a~!-p-A
completes the proof. O

For Theorems 2.2-2.9 let B be the coeflicient of Vq(f) in the statement of

theorem. We then obtain the following result corresponding to those theo-

rems.

Lemma 2.17.

1P fllBviny < B-IIfllavia) + (M +1=8)-[Ifllcy_(n)-

Proof.

WPrfllBvia) = Va(Prf) +1IPrflley_(a)
= Va(Prf)+ Iflley_ (o)
<B-Va(f)+(M+1)-|Iflles (o)
=B Ifllsvie) = B-Iflley ) + (M +1) - Iflley () O
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Theorem 2.10. Let 7 : Q@ — Q,Q C R", be a piecewise C?, expanding
transformation. If a (in the Theorems 2.2-2.9) is large enough so that 8 < 1,

then 7 admits an acim.

Proof. It follows from Lemma 2.17, that the set {||P:(1)llsv(a)},s, is uni-
formly bounded. Hence, the set {P;(1)},, . is weakly compact in L5 ()

(actually it is strongly compact), and it follows from Kakutani-Yosida Theo-
rem [D-S]that P, has a nontrivial fixed point f* which is density of an acim.

O

An immediate consequence of Theorem 2.10 is

Corollary 2.10.1. Let7:Q — Q,Q C R", be a piecewise C? and expanding

such that some iterate 7% satisfies 8 < 1. Then T admits an acim. |

As examples we now look at two theorems which were proved in [Kel2]

and [Jab).

Example (Keller’s Theorem).
Let ©Q be an open bounded subset of R? with piecewise C? boundary,
7 : 2 — Q an a-expanding and piecewise C? transformation satisfying C(w)

condition (for definition see [Kel2)) be given. Then:
Va(Prf) <B-Va(f)+C- |l fllcia)

where 8 and C are constants independent of f,0< 8<1,C > 0.

Proof. This situation allows multiple cusps having different orders. We thus

obtain the result by a simple application of Theorem 2.9. O
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Example (Jablonski’s Theorem).

Let Q = U2, P; be an n-dimensional rectangle in R™ such that P;N P, =
@ for i # k, where each P; is also an n-dimensional rectangle in R", and
T(z1,....,xn) = (®1:(21), ..., Prns(zs)) for (z1,...,z,) € P; where each ®;;(z;)
is a C?-function and a-expanding with « > 1. Then for any f € L' the

-1 ; . . .
sequence £ 3" Pif is convergent in norm to a function f, € L1.

Proof. This is a situation where the boundaries contain no cusps. An appli-

cation of Theorem 2.2 and then Theorem 2.10 gives the result. [

Spectral Decomposition of P;

Theorem 2.11 (Ionescu-Tulcea and Marinescu). Let P, : £L1(Q) —
L () and let it satisfy the following properties:
(1) Py 2 0, fo Pr(f)ddn = [ fdAn, for f € L1(R, which implies that

|1 Prllcaqa) = 1.
(2) there exist constants 0 < 8 < 1, M > 0 such that

I P-(Hlsviny £ BllfllBviay + MlIfllciay,

for f € BV ().
(3) the image of any bounded subset of BV (Q) under P: is relatively
compact in L1(Q).
Then, P, is quasi-compact operator on (BV (), ||-||pv(n). Thus, Pr has only
finitely many eigenvalues {a;, @, ...,ar} of modulus 1. The corresponding

eigenspaces E; are finite-dimensional subspaces of BV (). Furthermore, P,
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has the following representation:

k
P, =) o;Pr, +T,

i=1

where P,, : BV () — BV(RQ) are linear projections with finite dimensional
range onto the E;’s, and T : BV (Q?) = BV (Q) is a continuous linear operator.
For1 < 4,j < &, we have: [, ¢ithjdr, = 6;;, where ¢; € BV(Q) and ¢ €
L*2(9).

In this section, we will use the Theorem 2.11 [I-M] to obtain a spectral

decomposition of P;.
Definition 2.16. Given fi, f € £}(Q) (respectively Le< (Q)) ,fork=1,2,...,
wesay fi, — fin o (L1(Q), BV())-topology (respectively o {L>(Q), BV(Q))—

topology) if and only if for any ¢ € BV (), we have:

/sszqs—»/nqu.

Remark 2.3. Consider the space (BV(R), || - ||sv(n)) as included in
(£1(2), || llc1(q))- First we show that the assumptions of the Ionescu Tulcea
and Marinescu Theorem are satisfied:
(1) By Remark 1.7, if {fx} € BV(Q) (i.e., ||fellBv(n) £ B < ) for
n=12,--- and fi — fin L}(Q), then f € BV (ie., ||fllBv(a) <

B < o0).
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(2) The operator norm of the Perron-Frobenius operator P; is 1.
(3) If a (in the Theorems 2.2-2.9) is large enough then, there exist con-
stants 0 < B8 < 1, M > 0 such that

|1P-fllBvia) < 8- Ifllsvi)+ (M +1-=8)-lIflley_(a)

for f € BV(Q). (See Lemma 2.17.)
(4) The image of any bounded subset of BV (2) under the Perron- Frobe-

nius operator is relatively compact in £!(2), by Remark 1.6.

The Ionescu Tulcea and Marinescu Theorem implies the following result:

Theorem 2.12. Let §2 be an open bounded subset of R™ with piecewise
C? boundary. Suppose T : Q — § is an a-expanding and piecewise C*

transformation with 3 < 1. Then:

(1) P, (as an operator from BV (Q) into BV (Q)) has a finite number of

eigenvalues of modulus 1 : a3, ag,- -+, a. They are roots of unity and

k
Pr=) oP, +T,

i=1

where P, : BV(Q) — BV(Q) are linear projections with finite di-
mensional range, and T : BV (1) — BV(Q) is a continuous linear

operator;
(2) PP=PF;,, PP;j=0(i#j), PT=TP, =0, 1<4,j<k;
3) NT™ £ 757> m= 1,2, - for some 7,6 > 0.

Remark 2.4. (See [Ryc]) Operators P, ¢ =1,2,-- -,k and T have unique
extensions onto £'(2). Moreover P, (£(2)) C BV (), ||Pr.]|c1(a) £ 1 and
sup |IT™| < co. For any f € £1(Q), T™f — 0 in £L*(R), as m — oo.
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The following theorem and corollaries are consequences of the representa-

tion of the Perron-Frobenius operator obtained in Theorem 2.11.

Theorem 2.13. (See [Ryc]). Assume that 1 is the only eigenvalue of P with
modulus 1 ( we can consider P", where 7 is the smallest common multiplier
of orders of oy, a2, - -,a;). Let U, = {por, for ¢ € L*=(). Then there exist
nonnegative functions ¢,, ¢z, --¢¢ € BV(Q) and 91,%2,- -, ¥¢ € L>(Q) such
that:

(1) For any f € L£L1(Q),

£
Pnf = ; ( jn fzp,-d/\n) i,

(2) Préi= s, Uthi=1;, t=1,2,--,¢&.
(3) For1<1,j<§&, we have:
Jq ¢:idAn = 645,
inf{¢;, #;} = 0 = inf{¢;,¥;}, as ¢ # j, and
Jo $1dAn = 1.
(4) There exist measurable sets My, Ma, -+, M¢ C Q such that ¢; = xam,
ae, fori=1,2,---,§£ and Q = Uf=1 M; a.e.
(5) Ny U™ (L)) = Nz U™ (£2(R)) = Span{ey, 9z, -+ - vl
(6) For any f € L*(Q), U™f — Pr!f in o(L}(Q), BV(Q))-topology; for
any f € L®(RQ), U™f — P}, f ino(L>®(Q), L}(Q))- topology;

§
PLf= ;( / f@d%) b
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Corollary 2.12.1. (See [Ryc]). For any 1< i < ¢, 7, is an exact trans-

formation.

Corollary 2.12.2. (See [Ryc]). If we assume that T is mixing (or even
weakly mixing, which is equivalent in this situation), and p is its unique

acim, then 7 has the property of exponential decay of correlations:

Let f € BV(Q), g € L>(R) and u(f) = [, fdp, u(g) = [, gdp. Then

/ (Fa(e) — w(F)le))dps < B (A (D)liglemay, i=1,2---

where 0 < B < 1 is the constant of Remark 2.3 condition (3).

Corollary 2.12.3. (See [Ryc|). If we assume that 7 is mixing, then defining
partition {P;}, is weakly Bernoulli for 7, which implies that the natural
extension of the dynamical system (7, ) is isomorphic to a Bernoulli shift (p

is a the 7- invariant absolutely continuous measure).

Corollary 2.12.4. (See [H-K]). Assume that (7,p) is weakly mixing (it is
equivalent to being mixing or exact in our situation) . Let f € BV (Q) and

= [, fdu = 0. Define
1—1 _
St)=) _ for,
i=1

which is a stochastic process on (S, ). Then the series

2 2 - o k
= [ du+2kZ=1/nf(f *)d,
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converges absolutely, [, S(t)*dp = to? + O(1) and, if 6® # 0, the following
holds:

(1)

-1 =1 K —.’B2
sup|u((o®t) 7 S(t) <) — (2,,)1—[ exp(——)dz| = O(™),

neER

for some v > 0.

(2) Without changing its distribution, one can define the process (S(t)):>0
on a richer probability space together with the standard Brownian

motion (B(t))i>0 such that
|o~1S8(t) - B(t)| = O™, p-ae,

for some 0 < € < %
(3) The process (S(t)):>0 satisfies the iterated log law and other properties

of Brownian motion.
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CHAPTER 3

ON THE NUMBER OF
ABSOLUTELY CONTINUOUS INVARIANT MEASURES

For one-dimensional transformations [Li-Y), 7 : I — I,I = [0,1], it is
well known that the number of discontinuities of 7'(x) provides an upper
bound for the number of independent acim. This result has been improved
in [Boy1], [Pia], [B-H] and [B-B]. The key to all these bounds lies in the
fact that invariant densities for piecewise C? expanding transformations are
of bounded variation. In one dimension, a density of bounded variation is
bounded and it can be proved that its support consists of a finite union of
closed intervals. A simple argument then shows that at least one point of
discontinuity of 7/ must lie in the largest closed interval, which will provide
an upper bound on the number of acim. In higher dimensions, the much
more complicated geometrical setting and the complex form of the definition
of bounded variation [Giu] do not permit an easy generalization of the one-
dimensional result. For example, in two dimensions, the variation in one
direction is integrated along the other direction. It is this integration which
allows a function of bounded variation in R™ to be unbounded and its support
to be devoid of interior.

In general, dynamical systems can have a large set of invariant measures.
For example, higher dimensional point transformation models for cellular au-
tomata [G-B 2], can have many acim.

In 1990, Géra, Boyarsky and Proppe |(G-B-P), outlined the possibility of
constructing a piecewise expanding C? transformation on a fixed partition
with a finite number of elements which have an arbitrarily large number of

ergodic acim. There the use of certain triangles having a particular geom-
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etry as the supports of ergodic acim is suggested. By means of a sketch,
it is outlined (without proof, however) that it is possible to take care of the
trapezoidal regions between triangles satisfying all conditions. Although the
conjecture turns out to be correct, we will see that the construction cannot
be done in a simple manner.

We use the triangles suggested in [G-B-P)] as supports of ergodic acim. For
the trapezoidal regions between the triangles, we use another set of triangles

which are not supports of acim, satisfying the following conditions:

(1) The triangles are mapped in an expanding manner similar to that of
the triangles which are supports of ergodic acim, and
(2) the intersection of images of triangles which are supports of ergodic
acim and images of triangles which are not supports of ergodic acim
is empty.
This reduces the trapezoidal regions to rectangular regions. We will then, by
the aid of Lemma 3.1, map each such rectangular region to a “tube” in a C?
and expanding manner in such a way that the tube does not intersect the
images of the triangles that support the ergodic acim.

Finally, by making small perturbation to these maps near the “vertical”
edges of these rectangular regions, we can obtain a map that is C? and ex-
panding on all of S; (respectively S_;) (see Figure 3.2).

Main Results

In this chapter, we will construct a piecewise expanding C? transformation

on a fixed partition with 10 elements which has an arbitrarily large number

of ergodic acim.

Lemma 3.1. For L > 0 large enough, there exists an expanding C? diffeo-

morphism of a rectangle R with sides L and 1 into a tube 7 (similar to the
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one shown in Figure 3.1).

(0,1) (L,0)

(1,0) (L+1,-1)

Figure 3.1

Proof. Consider the straight line joining the point (zg,0) to the point (L +
Zo,0). Let P be the curve such that length of P is equal to oL where a > 1,

(3.1) P(zo)=0, P(L+zo)=-1, P(zo)=1, P(L+z0)=1.
Now we parametrize P by arc length s = az:

z — (u(az),v(az)),

where

(3.2) v(az) = P(u(az))
and

(3.3) u'?(s) +v"(s) = 1.
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If we shift the curve P along the u-axis by 1 unit i.e (u(am),v(am)) —_— (1 +

u(az),'v(aa:)) we can construct the tube 7 by moving P along its upward

normal vector a distance of /2.

Now we would like to construct the mapping of the rectangle R to the tube
T.

Let 7 be the upward normal vector to the curve P, i.e,
(3.4) i = (n1,nz) = (=v',u').

To derive an expression for 7 in terms of P, first differentiate (3.2) with

respect to arc length s, which implies that
(3.5) v' = P'd'.
Using (3.5) in (3.3), we get:

!
(3.6) We e =D

iz pe VT PE

Now using (3.6) in (3.4), we get:

— P 1
V1i+ P2 1+ P72

).

(37) = (’I‘L],‘ng) = (

Now note that the width of the tube in the direction of @ is v/2, thus as
y changes from 0 to 1 the length of the tube in the direction of the normal

vector 7 changes by the factor of v/2y.

Therefore the two-dimensional transformation 7 from the rectangle to the

tube is given by:

7(z,y) = (1 + u(az) + V2yn,,v(az) + V2yny).
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Thus, the Jacobian matrix of 7 is given by:

(3.8) 7 - (au +V2ygE Vo,
' T av' + V2 y@l V2n, )’
Calculating 322 and 2 in terms of P aud its derivatives, using (3.7), we
obtain:
on,  —aP” Ony _ —aP'P"
Oz (1+P2)i Oz (14 P2)3

(3.9)

For the curve P which is the set of points (u(s),v(s)) the unit tangent
vector 7 is given by: T = («/,v') = ('(s), P'(v)u!(s)).
Recall that the curvature x (which we define to be non-negative) is given

by:
k2 = |dT| where ‘iT = (u", P -u" 4+ P").

Thus, we have:

(3.10) K% = ng— 2= u" + (P v +u - P")2,
Using (3.6), we get:
—pP'.p"
3.11 = ———
(371) (14 P2)3

Thus:
K,z —_ ull2 + Pl2ull2 + ulzpnz + 2u’u"P'P"

— ull2(1 + Pl2) + 'IL'2P”2 + 2quHPIPII

PIZPH2 1 1 P’P’.’
—_— (1 Plz __________Pnz 2
B0 RN T2 LT Ty L P
PII2
- (1 + PI2)2’
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and we thus obtain:

Ll
14 P2’

(3.12) K=

We express %ﬁz’- and %’;1 in terms of k in the case P’ > 0 (respectively

P" < 0):

0
ji::’:n.nz ia_ng.=n.n1.
Oz

(3.13) “

Using (3.13) in (3.8), the Jacobian matrix of 7 becomes:

J = au’$x/§ynn2 V2n,
T ov' £2ykn; V2ng )

Using (3.4) in the above equation wc get:

I = ou' F 2y —/20'
T \av FV2' V2 )

Using (3.5) in the above equation, we get:

7 = av' F V2yku' —v2u' P
™~ \au'P' F V2yxu' - P' V2u' '

Factoring out u', we get:

I o= aFV2yk  FV2P
T aP' Fv2ysP' V2 )’
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Thus, we have:

_( B —V2P
J‘f‘—u(ﬁpl ‘/'2' )1

where B = a F v2yx for P" > 0 (respectively P” < 0). Therefore, the

eigenvalues of the Jacobian matrix will be:

_ 1

= 2\/—1—+—'P—,2((ﬂ +v2) £1/(8 - v2)? - 4V26P7).

Now we note that if (8 — v/2)? < 4v/28P'2, then the eigenvalues are complex

and

Ar] = [Ae] = V(B+V2)2 + 4/26P2 - (6 - V3,

1
21+ P2

and if (8 — v/2)? > 4/28P'?, then the eigenvalues are real and

| Amin| = B+V?2)- \/(ﬁ—\@)2 ~ 4V24P"2).

L
2V1+ P2

For 1.001 < 8 < 1.45 and 0 < P’ < 1.05 both eigenvalues are strictly
greater than 1 in absolute value, i.e. the mapping of the rectangle to the tube

1s expanding.

Let R™! (respectively 77 !) denote the reflection of R (respectively T)
about the z-axis. Let 7V = reflection of 7 about the vertical line z = %-{- To
and T7% = (T?)" 1 =(T1) ..

Note that the construction of 7-! from R~! is isometric to the construction
of 7 from R.
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Now we will give an example of a function P which satisfies the criteria

mentioned in Lemma 3.1.

Example 3.1. Let

P(t) = -£sm 1)+ Scos T(t~ 1)

1
L 2

where L is to be determined later, and 1 <t < L + 1. Then:

P'(8) = cos 2M(t — 1) —

7 sin —(t—l)

L

We note that P(1) =0 P(L+1)=-1and P'(1) = P'(L+1) =1 (ie
Equation 3.1 is satisfied).
Also note that,

2
P"(t) = —z—ﬂ‘ sin ZTW(t ~1) - -2-%cos f(t— 1).

We have the following estimates for :

!
P <1+,

2r e AL + 72
< |P" <t —
kSIPIOIS T+ 35 L2

The amount of expansion applied to the line to produce the curve P is

given by:
1 L+1
= f/ V14 P2(t)dt.
1
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It is easy to see that for L > 100, 8 € (1.1,1.33) and |P’'| < 1.039; therefore,
if we choose L > 100 then both eigenvalues will be larger than 1 in absolute

value.

By Apgr we denote the triangle with vertices at the points p, ¢q and 7, and

by COpgrs we dencte the rectangle with vertices at the points p, g, and s.
We are now ready to prove the main result of this chapter, which is the
construction of artitrarily large number of ergodic acim for a piecewise ex-
panding C? transformation in R? on a fixed partitition. Proppe’s [G-B-P]
idea of using triangles as ergodic sets of acim is very essential in this con-
struction.
Theorem 3.1. For any number k there exists a two dimensional piecewise
C? expanding transformation with 10 elements which has at least k ergodic
acim.
Proof. We prove the theorem by the means of a construction. Consider the
following 10 elements partition of : where £(k) = 2k+1+2kL and L is to be
determined later, where z is large enough so that for every (z,y) € T defined
in Lemma 3.1 we have y < z.
Let P* =1(1,1)(£(k),1)((£(k), z)(1, z) and P! be its reflection about the
z-axis. Each P7 is subdivided into 4 rectangles P/for 1< i< 4 andj = -1,1
as shown in figure 3.2. The exact manner of subdivision is irrelevant. Let

define 7 as follows:

q
vi<i<4,je{-1,1} 7(P)=JF.

1=1

Thus, it remains to define 7 on S; and S_; (see figure 3.2 for definition of

S, and S_;). Now we define the sets E; for 1 < i< 2k+1on S5 US,

73



("#(k), 2)

(1,2)
P} .F} T
1 =X
(1,1) A =
S
(0,0
K .
Pt—l P,"1
Ps—l P;x

Figure 3.2

(£(k),1)

which are the sets that will produce supports for the k 4 1 ergodic acim. Let

E; = Aa%lb;

t7 17

where, a; = (i—1)L+i—1, a} = (ai,j) and b} = (a;+1, ) for

j€{=1,0,1} and 1 < i < 2k +1, e also define ¢ == (a; +2,0) 1< < 2k,

see Figure 3.4.

We define the triangles which are the supports of ergodic acim as follows:

see Figure 3.3.

T/ = E;NS; 1<i<2%+1,j€{1,-1},

Let R; =0a; Yalblb; 1. We define the triangles which are not supports of

ergodic acim as follows:

79 = (RiNS,\E; 2<i<2k+1,j€e{-1,1},

see Figure 3.5.

For 1< i< 2k let E; = AbT16c0, see Figure 3.4. Let

) (3

.__( (k)
U= \G(~iL + L - )
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Then for a point p € R; N S; we define:
7(p) = v; + M, - p.

Then
(T} ) Eok ;42 and T(T ) Fok—iyo

1

and
T(bo)—agk iz T(a )_bzk —i42 T(b')_bgk it2 7(a J')_Cgk—i+27

see Figures 3.3 and 3.4.
Note thau in this construction 7 is continuous across the boundaries be-

tween the triangles, since 7 is an affine map on R; N S; =T, ;7 U Tf :

Remark 3.1. In what will follow 7? and Rz correspond to 7 and R in

Lemma 3.1.
’1.:51 ;rsi Ts+1 Tt+1
Z 4 S /e Ri /v
N S N\ R} N
7-1-1 'i'—l Ti:-Jl T:i-ll

Figure 3.3

Let R? = Oba ?+1a1+1b‘;' and define 7(R!) = T3, ;1o (see Lemma 3.1 and
figure 3.5).
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S
S

TN

\

Ezk-i+2 Eakmisz
Figure 3.4

7(R}) = Th-ina

7(Th1) = Eak-ia

N\
7(T}) = Eakeige

‘;('Rf ) = Tk—ia

Figure 3.5

Note that 7 is C? and expanding on each subregion of S; (respectively

S_1) and C° on all of Sy (respectively S_) for the following reasons:

(1) Ta,ns, » Ti,py 800 Tig,, ns, aT€ C? on their closed domains (R;N S;, R}
and R;+1NS; respectively) and coincide on (RiﬂSj)ﬂ'R'Z and (Ri+1 ﬂSj)ﬂ’Ri-'-
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(2) Tgin s; is an affine map with expansion constant equal to v/2 and 7| |
i R

is expanding by Lemma 3.1 for L > 100.

Finally, we can perturb 7 slightly in 'RZ near its “vertical” edges so that the
resulting map is C? and expanding on all of S;, j = —1,1. Using Theorem
2.5 of [Hir], for each € > O there are (relatively) open sets Ni(€) of the form
(0,€) x [0, k] and (L —¢, L) x [0, k] in each rectangle RI = [0, L] x [0, 2] (in local
coordinates), and perturbations of 7 on these open sets, so that the perturbed

map 7 is C? on all of Sj, j = —1,1, and agrees with 7 outside of these open

sets. It is clear that ¥ is expanding on these open sets for suitably small €.
Let
Ei=FE;UE ;40 forl1<i:<k+1.

Then, we have, 7(&;) = & = 771(&;), for 1 <7 < k+1, so each & is an
invariant set of positive Lebesgue measure. Since on each &;, T is piecewise
expanding and onto, by Remark 1.9 each £; supports exactly one ergodic

acim. Since there are k + 1 distinct &;, the proof is complete. [
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CHAPTER 4

SMOOTHNESS OF INVARIANT DENSITY FOR EXPANDING
MARKOV TRANSFORMATIONS IN HIGHER DIMENSIONS

Rényi [Rén], proved that piecewise transformation of unit interval onto
itself, satisfying the distortion condition admits an acim. Halfant [Hal],
proved that for the maps considered in [Rén], if the transformation is of class
CM then the invariant density is of class CM¥ 2,

In higher dimensions, the existence of acim for expanding Markov (which
is a class of maps that is a superset of maps considered by Rényi [Rén]) maps
was proved by Mané [Man]. In this chapter, we prove that, if a transformation

7 : R™ — R™ is expanding Markov and of class CM then its invariant density

is of class CM~2,

Main Results
We denote by A the Lebesgue measure. Fora n X n X - X n (k-times)

array M) we define its norm

|| M || = %x|(m)i1"'ik I

where

N ={i1iz- i :1<i;<n for 1 <5<k}

For a real valued function f : R® — R we denote by D f its derivative, and
by D(M)f the M-th derivative of f. If f(z) = f(z1, %2, -y Zn) then (Df),
is a linear map : R® — R and (Df).(¥) = 3.1, vi 2L

i=1 Yigz,;"
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Definition 4.1. For an invariant measure u, absolutely continuous with re-

spect to A, the invariant density h is uniquely given by

y=/hd)\

We denote by J, the Jacobian matrix of 7 and by .7, the absolute value of

the determinant of J,.

We also denote by P, the partition of Q under 7~™ and we set
In_——-{i:Piepn}.

Definition 4.2. Let (2, A, v) be a probability space, where ? is a separable
metric space and A its Borel o—algebra. We say that a map 7 : Q — Q is

expanding Markov if there exists a sequence of partition (P;);>o such that:

(&) Upep, =9
(b) For every n > 0 and P € Pypy1,7(P) is a union (mod 0) of atoms of

Pn, and 7, is injective.

(c) There exists 0 < 7 < 1 and K > 0 such that,

d(z,y) < Kn"d((7™(z), 7" (y))

for every n > 0,2,y € P; where ¢t € 7,,.
(d) There exists k > 0 such that, for every pair of atoms P,Q € Py, we

have u(r~*(P)NQ) # 0.
(e) There exist J : Q — R*,0 < ( <1 and C > 0 such that, for every

n > 0 and every Borel set A contained in an atom of Py, we have

v(r(A)) = /A Tdp,
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and for every z,y contained in the same atom P; of P,, we have

IJT; (y

Tz 1| < Cd(Ti(m),Ti(y))c.

Condition (c) of Definition 4.2 implies that:
d(r;"(2),77"(y)) < Kn"d(z,y), where 77"(z), 7 "(y) € P € Py

for every n > 0. This in turn implies that, for N large enough we have:

4.1 ' l
(1) d(z,y)
Set

V= (¢1:¢2a e '1¢n)-

Equation 4.1 is true for any z,y € P; € Py. Thus for a fixed z, if y approaches
z in the direction of any of the n coordinate axis, (4.1) will hold true. We

then have:

|224=)

<1 wh 1<5,k<
B2, | ere 7y n.

Therefore, there exists an N such that for all z € Ty we have:
(4.2) ID7¥(z)|]| <1 forall z€ P,
Definition 4.3. We define the measures A\, by:

An(4) = A(T7(4)).
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Theorem 4.1 (Mané). If 7 is expanding Markov then it admits an invari-

ant probability measure j, absolutely continuous with respect to Lebesgue

measure and

11m M(A4) =p(A) VAeB,

where B is the Borel o-algebra of Q.

Definition 4.4. Perron-Frobenius operator P, : £! — L! is defined as fol-

lows:

Z f( —11:))’ fGE1 and #(P) = m.

Definition 4.5. We define the iterated densities S, (z) for almost allz € Q2 :

(4.3) Sn(z) = Pri(z)= Y J,-n(

€T,

We note that,

/ (PP1)dA = / 1d) = / dho.
A T=n(A) A

Thus, we get:

dAn,
(4.4) Sn= 2.

Lemma 4.1. There exists, constant B(®) > 0 such that Si(z) < B for

almost every z € Q and n > 1.

Proof. See [Man].
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Theorem 4.2. Let 7 :  — § be an expanding Markov map and 7! €

CM, M > 2. Then the sequence

{sup DM~ 5, ()|}
zEN

is uniformly bounded.

Proof. We prove the theorem by induction. First we note that:

Sk+n(z)= Y Sx(r7V(2))J,-~(x)

11
iEIN

We take IV so that Equation 4.2 is satisfied. Let M = 2. By differentiation

we obtain:

DSkin(z)= ) {DSk(r; ¥ (2))D7; " (2)T,-n (2)+Sk (7 ¥ (2))DT, -5 (2)}.

i€y

For N large enough we have:
= sup ||D7; ¥ ()]l < ]
TSP B®

Set
® =sup 3 IDT,-x ()|l < oo,

z€N 1€INn
and
B,, = sup [[Ds,(z)]|.
e

Then using Lemma 4.1 and Equation 4.3 we have:

Bxyn < BgyB® + B3,
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This implies that the sequence
Bg,Bk+N,Brian, -

is uniformly bounded by some number By and hence entire sequence {B.}
is bounded by B(Y) = max{By, By, -+, Bnv_1}.

Now we assume the theorem is true for M and prove it for M + 1 (i.e we
assume that 7,71 € CM+! and prove that {sup,cq DM)S,(z)} is uniformly
bounded).

We note that:

DM Skin(e) = Y DMSk(r ¥ (2)) (D7 ¥ (2) " T, (=)
1i€EIN '

M-1 rj) Ur)

+ (D(-7 Sk (T N(:z: )Z H D("-(t))q— )( (t))(D(c(i))JT_N(m))d(‘)>

j=0

where each c, is an integer, a(t),b(t),c(t) and d(t) are integers less than
M. 1t is clear that differentiating Sy4+x will not produce any term different
from the above form. Now note that by induction we have for j = 0,1,2,- -
., M~1 constants BY) which are bounds for the sequences {sup,¢cq D) Sn(z)}

respectively.

We also have:

a - b
sup | (D () 42 < o0

and

d
sup | (D7, (2)) “7] < o0
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For each r

Yr)
a - b c
sup e, JT (11 @7 () ) D <‘”JT,-,~<w>)’“"||) < o0
z i=1 '

Thus for each 7 there exists a constant ﬂ_S-M) such that:

r(J) Yr)
a b C
-supZ(‘*H(H (DN 7N (2)) H ) (Dl 7, ~(x))‘i“)n>

i=1

Setting
BM) = sup | DM S, |(=),
€N
we get:
Bg(ﬂi)N < B(M) +MBO) 4 Z B(J)ﬁ(M)
J=0
Thus

M M M
B( )B(K+)N’B(K+)2N’ ’

is uniformly bounded by some number B(M). Thercfore, the entire sequence
{B{} is bounded by B(M) = max{B{™), B(M) . .-B{M) }. This completes
the proof. [

Lemma 4.2. Let f:R™ — R and {Si} be a sequence of functions such that
Sk :R™ — R and Sy — f. If DSy, =3 g (uniformly) then Df = g.

Proof. Keep every coordinate fixed except the i-th coordinate. Let f(z;, x5, -

“&q) = F(z;) and Sk(zy,22, - ', Zn) = Tik(z;). Then we have: Ti(z;) —
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F(mz) Now put g= (glagl’,' : '7gn) and Df = (f{aféa MY f:;) As Dsk =g
we get: Tx(z;) = gi- By [Kos, Theorem 8.3.4] we have: F'(z;) = g;. Since
fl = F'(z;), have f! = g;. 1 being arbitrary, the proof is complete. [

Theorem 4.3. Let 7:Q —  be expanding Markovand 77! € CM, M > 2.
Then the invariant density h(z) € CM~2,

Proof. Using Theorem 4.2, we conclude that the sequence {D(s}:) } is uniformly
bounded and equicontinucus for 0 < K < M - 2. By the Ascoli-Arzela

Theorem, there must exist a subsequence {D(¥)S,,. 1 with a continuous limit.
Put
lim DX)S, (z) = fx(z)
k— o0

In particular we have:

lim Sp,(z) = f(z).

k—o0

(Therefore, by Lemma 4.2 fk(z) = f(¥)(z) for K =0,1,2,--+, M — 2). Thus

integrating the above equation we obtain:

lim [ Sp,d\= / fdx.

k— o0

By Equation 4.4 we note that {S,,A = Ap,} is a subsequence of {),}, and

thus from Theorem 4.1 we have:
ua)= [ sar
A

Thus f must be equal to the invariant density h. Hence, h is M — 2 times

differentiable and we have f(7) = R for1<j<M-2 0O
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Corollary 4.3.1. Let7: Q — §Q be expanding Markovand ;"' € CM, M >
2. Then for0 < j < M -2, {DU)S,.} converges uniformly to h{9), asn — oo.

Proof. Fix j € {0,1,:--M — 2}, and assume the contrary. Then, it is possible
to find an € > 0 and a subsequence {D{?S,,,} of DU)S,, such that

(4.5) sup [D)S,,, () - K9 (z)]| > € V.
€N

The sequence {D(j)Snk} is 1tself unifcrmly bounded and equicontinuous, and

posseses a uniformly convergent subsequence with limit f(?). By Theorem 4.3

we find that f(9) = h(9), which is incompatible with Equation 4.5. [
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CONCLUSION

In the present thesis, we established existence results and studied the prop-
erties of acim for higher dimensional piecewise C? and expanding maps 7.
We proved the existence of an acim for Lasota-Yorke maps in higher dimen-
sions under general conditions. We obtained a spectral decomposition for the
Perr;a-Frobenius operator of 7 which yiclded certain ergodic properties of 7
itself. We also studied the problem of finding an upper bound for the num-
ber of ergodic acim for such class of maps. The property of smoothness of
the invariant density of an acim in higher dimensions for the special class of

Rényi maps was also studied.

We now briefly discuss some improvements of the results obtained in this
thesis. The main results of Chapter 2, could be improved in several directions.
We assumed that the partition of §2 wus smooth. It seems possible to weaken
this condition to a “Lipschitz continuous partition”. To do that it might be
necessary to assume some “regularity” along the boundary of elements of the
partition, in the vicinity of any cusps. We also assumed that the underlying
transformation was C?. It is now known [G-S] that C' is nct sullicient for
the existence of an acim, even in one-dimension. If one assumes that the
transformation is C1*° with an additional condition on the derivative of the
transformation (such as summable oscillations [G6r]) existence of an acim
has been established in one-dimension. In higher dimensions analogous have
been obtained [Loul] only for a very restrictive class of Jabloriski transfor-
mations not using “bounded variation techniques”. It would be of interest
to obtain such results using “bounded variation techniques” for more general

class of maps.

It is ‘mportant to know which properties the invariant density, if one ex-

ists, inherits from its underlying transformation. Even though we proved the
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existence of ar aciin for Lasota-Yorke maps in higher dimensions, we were
able to establisu the smoothness property of the invariant density only for
the restricted class of Rényi maps. Our results could be improved in two
directions. One problem to consider is to establish the smoothness property
of invariant densities for the Lasota-Yorke maps in higher dimensiois. An-
other problem would be to increase the degree of smoothness from CM-2 to
CM-1, In one-dimension, such degree of smoothness of invariant densitics for
the Lasota-Yorke maps was proved by [Sze].

In conclusion, we would like to mention some applications of our results.
Even though we have the existence of an acim, obtaining an explicit form
of the invariant density is often difficult. In [Li] and [G-B 3] results for
approximation of invariant densities were obtained in one-dimension. ‘The
result of [G-B 3] has been generalized to higher dimensions [B-L 1] 7or
Jablonski transformations. Now, that the existence of an acim has been
established for more general class of maps, the approximation problem could
be considered for future research.

The dynamics of many physical systems are often governed by a randomly
changing environment and can thus be described by a random map whose
evolution is represented by choosing a transformation from a given set of
transformations and applying it with a given probability. For random maps
composed of Lasota- Yorke maps, existence of an acim was established in [Pel]
and for random maps composed of Jablonski transformations, existence of an
acim was shown in [B-L 2]. The properties associated with the invariant
densities of maps considered in [B-L 2] were studied in [K-M]. It seems
possible to establish the existence of an acim in our setting for random maps
which are expanding on average. Once this is established, one may attempt to

generalize the results of [K-M] to random maps composed of general Lasota-
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Yorke maps in higher dimensions. It also seems possible to establish certain
smoothness properties of invariant densities of random maps composed of

Rényi maps in higher dimensions.
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