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Abstract

Experimental and Theoretical Studies on
Concentrated Columnar Vortices

Vladimir I. Kozel, Ph.D.
Concordia University, 1991

Experimental and theoretical studies on concentrated columnar vortices
are presented. A new model for concentrated vortices is proposed and
validated by comparing it with past and present observations. The new
approach produces a simple mathematical expression for the liquid free-
surface and the pressure thus enabling one to further explore the vortex
phenomena. Extensive experimental investigations with the aim to
characterize the flowfield in agitator tanks were performed. The main
dimensionless groups were established and relationships between the main
physical and geometrical parameters were attained. The acquired
relationships allowed the prediction of the functional dependence between
radius of a core, the vortex strength, with the Reynold's number, and other
geometric properties in a cylindrical container with a rotating bottom. The
new formula was also implemented in the modelling of the main parameters
in vortex chamber ilows and the prediction of fine sediment particles
concentration and demonstrated the validity and the simplicity of the novel
vortex model. The Los Alamos numerical algorithm SOLA-VOF (2-
dimensional scheme) was extended to fully 3-dimensional flow field with the
presence of an interface and a moving solid boundary in cylindrical
coordinates. The numerical results revealed a toroidal flow structure in the

radial-axial plane. The obtained simulations for the free-surface profile were

iii



confirmed with those observed. The experimental fact, with respect to th-
wavy behavior of the core under prevailing conditions, was shown to exist in
the approximate solution of the governing equations of motion. This tool
will enable one to obtain a solution manifold thus aid in the understanding

of early flow transformations towards turbulence.
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1. Introduction

A Hi ] 1ryen Previ W,

When the word vortex is mentioned the vivid pictures of Jupiter and
Pluto (from voyager II spacecraft), satellite pictures of a terrestrial hurricane,
the bath tub vortex, or the spiral shape of galaxies in the heavens come to
mind. Moreover, in fluid dynamics, vortex motion is considered to be one of
the most important basic mechanisms which controls the transport of mass,
momentum and energy. As a result, the study of vortices received
considerable attention throughout the years of technological evolution.
Several naturally occuring phenomena such as dust-devils, tornadoes,
waterspouts, hurricanes and the processes in many industrial equipment
(vortex separators, cyclone combustors and furnaces, vortex tubes, driers etc.)

are dominated by concentrated vortices.

The mystery and destructive power associated with the naturally
occurring vortices have always fascinated and terrified humans from the
dawn of civilization. The legends and fairy tales about naturally induced
vortices were the results of superstitious beliefs in unknown supernatural
forces at that time. The terror of mariners due to the tidal vortex Charybdis is
vivid in one of the books of the Odessey. At the same time, the vortex was
useful in its practical application; perhaps, the first written indication

regarding the use by humans of vortex phenomena comes from Homer who



described with clarity the virtues of swirling motion for cloth cleaning in the

river washing-cisterns. In his sixth book of the Odessey, he writes:

" In due course they (princess Nausican and her ladies) reached the noble
river with its never-failing pools, in which there was enough clear water
bubbling up and swirling by to clean the dirtiest clothes. " [ Homer, The
Odessey, book VI, § 10, 8th century BC,, translated by E. V. Rieu, Penguin Book
Ltd., 1946, p.104 ]

The resemblance of today's washing machine p ‘nciple of operation with the
processes taking place in a river's washing-cisterns during, or prior to the

Homeric era is indeed worth noting.

In the times of the famous Greek Philosophers, Socrates, Plato, Aristotle
and others whose writings had an enormous influence on contemporary
western civilization, the mythologic and anthropomorphic explanations of
natural laws were replaced with philosophical and mechanically based
arguments. The Platonian ideological materialism, however, did not contain
the contents of the vortex theory to explain the epicyclic motion of celestial
bodies and the atomic structure of matter. Perhaps, the strong beliefs in
divine (heavenly) creation and in immaterial spirits were still remarkably
overwhelming at that time. Although Aristotle, one of Plato's most
prominent disciples, is known for his spectacular work on the philosophy of
cosmology, a substantial portion of his book on meteorology, Meteorologica,

is devoted to atmospheric vortices.



Later, during the period of the Renaissance, Leonardo da Vinci described
dust-devils and the formation of eddies behind projectiles of various shapes
and sudden expansion with clarity. He is, probably, the first one who

described and sketched the velocity distribution in a vortex.

René Descartes whose remarkable contribution, his vortex theory of the
Universe, was probably the first to replaced the crystalline sphere of ancient
astronomy with a combination of fluid vortices. He based his reasoning on
the Copernican hypothesis that implicitly rejects the Aristotelian cosmology
and that the Universe (including stars, planets and the space which is filled
with some form of matter, the ether) is swirling around some fixed point
generating a vortex which was later recognized as a swirl of Galaxies (Rouse at

al (1957)).

The vortex theory to explain the planetary motion, however, has been
gradually discarded as this particular branch of science excelled to a more
logistic and systematic theory of mechanics devoted mainly by Sir Isaak
Newton, in his famous Principia. Only in the mid-nineteen century, when
scientists were concerned with a microscopic structure of matter and
hydrodynamic flow fields under the influence of vortex motion, did the
vortex theory gain considerable attention once again. In fact, Helmholtz in
1858 had introduced a new branch of analytical hydrodynamics which in his
publication of that year was interpreted as the theory of vortex motion.
Helmholtz's perfect fluid model of vortex motion (irrotational vortex model)
was later adapted by Kelvin to his theory of properties of atoms and
molecules. In the same time period, Rankine applies his hypothesis of

elasticity of gases and vapors to Molecular Vortices.
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Kelvin's analytical model of a vortex structure was the most thorough
and probably still is as far as the inviscid flow is concerned. The model
demonstrates a profound oscillatory behavior of the vortex core with respect
to three spatial components of a principal coordinate system (Kelvin's (1880)).
A contradicting argument then appeared as the modelling of a fluid vortex
was simulated with an atomic micro-structure - the latter instabilities of the
core appeared to be irrelevant to an atomic theory which lead to the
conclusion that the vortex motion can only appear in a class of fluid motion.
Although the theory was unsuccessful in terms of an atomic structure of
matter, his findings concerning vortical fluid dynamics are invaluable. The
main flow characteristics of Kelvin's equilibria are now used by Vatistas et al

(1991) to study flow transition from laminar to turbulent flow conditions.

The complexities associated with concentrated vortices have prevented
the development of a universal theoretical vortex model. For this reason,
several closed-form solutions concerning specialized cases of the general
problem were previously presented. The decay of an initially potential vortex
through the action of viscosity has been derived by Oseen (1911) and Hamel
(1916). The latter solution is known as the Oseen vortex (it is also called Lamb
vortex). A steady flow solution was obtained by Burgers (1948) by balancing
the outward momentum diffusion of the decaying ideal vortex using an
inward radial convection of the angular momentum, Lught (1983). The time
development of Burgers' vortex was derived by Rott (1958). Sullivan's (1959)
two-cell vortex model produced axial flow reversal near the axis of rotation
whereas Burgers' solution pertains to specific flow situation. The tangential

velocity and static pressure distributions agree with the observations and



have been used in the past to study wave phenomena developed in vortex
cores, (Prichard (1970), Leibovich (1984), and Vatistas (1990)), flow
characteristics in vortex chambers, (Escudier (1980)), and concentrations in

combined vortices (Vatistas (1989)).

New information concerning the influence of strong vortices on the
main flowfield has also been generated through research regarding industrial
applications. In some cases, concentrated columnar vortices are found to be
parasitic. Such examples include intakes of liquid pumps (Knauss (1966)),
draft tubes of water turbines (Falvey (1971)), draining of reservoirs (Binnie
(1948) and Abramson (1966)) and wing tips (Newman B. G. (1959)) are
parasitic. In others cases, such as the vortex separator (Ter Linden (1953)), the
vortex combustor (Tanasawa and Nakamura (1971)), the vortex tubes (Ranque
(1933) and Hilsch (1947)), the nuclear rocket (Kerrebrook (1958) and Ragsdale
(1988)), the concentrated vortex is intentionally generated to enhance the
effectiveness of the equipment. Relevant knowledge has also been
contributed by geophysicists since phenomena such as high Rossby number
geophysical vortices (dust-devils, tornadoes, waterspouts, fire whirls), see
Morton (1966), belong to the same vortex category. Several monographs have
been written on the general subject matter. Important among these are the
publications Greenspan (1968), Lewellen(1971), Lught (1983) and Gupta et al
(1984).



1.2 P 111 ntri

Vortex motion can be generated in a liquid, gas, plasma or in an
assembly of solid bodies. Their sizes vary from approximately a few
angstroms in quantized vortices of superfluid helium to thousands of km in
planetary vortices (for rough dimensions see Table 1.1). Vortices can be
categorized as unconfined which are enlarged bodies of fluid and confined
which are generated within a bounded domain. Both types can be further
classified as columnar or disklike. Vortices whose ratio of core diameter to
axis is very small are of the former type while those of considerably large ratio
are of the latter. Concentrated columnar vortices can be interpreted as another
sub-category and are characterized by local vorticity extrema, fig. 1.1. Their
vorticity is concentrated in a small tubular region near the center, decaying
rapidly outward in the radial direction. In the past, analysis of concentrated,
mechanically produced or high Rossby number naturally occuring vortices
relied mainly on the utilization of semi-empirical models, oae due to

Rankine and the other due to Burgers.

Rankine's model combines a solid body rotation of the fluid inside the
core surrounded by an irrotational vortex. In the rotational region the fluid is
assumed to possess a constant vorticity while outside the core it is zero.
Extensive descriptions of the fundamental properties of Kelvin's model can
be found in many texts (Lamb (1945), Bathcelor (1967), Robertson(1965)).
Although Rankine's combined vortex is close to the real fluid motion it

admits a sharp velocity transition at the core, which is not physically possible.



Table 1.1 Typical Dimensions and Magnitudes of Vortices.

Vortex motion and | Diameter (based| Velocity Rossby Disklike or
shapes on vortex core) No. Columnar
Quantized vortices 108 em _ _ columnar
(superfluid helium)
Bathtub vortex 1cm 0.1 m/sec 105 both
Vortex chambers 2 cm 30 m/sec 107 both”
Dust devils 3m 10 m/sec 3(104) columnar
Tornadoes 50 m 150 m/sec 3(10%) columnar
Hurricanes 500 km 50 m/sec 1 disklike
Ocean circulation 3000 km 1.5m/sec | 5(103) disklike

* Depends on the aspect ratio (diameter/length) and contraction ratio of the chamber (core
diameter /exit diameter), see Lught (1983)

The action of viscosity at the junction of the two velocity distributions is

expected to smooth out the velocity's sharp apex. As a result the values of the

azimuthal velocity component near the point of transition are lower than

those predicted by the simulation. In order to account for the latter

discrepancy modified versions of Rankine's model have also been used to

interpret the observations, see for example Reydon and Gauvin (1981). These

assume quasi-forced and quasi-free vortices inside and outside the core

respectively.
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Fig. 1.1 Vorticity of a typical concentrated vortex.

Burgers' model was the most popular of the two since it was more
realistic, and provided a swirl velocity distribution with continuous
derivatives. However, the integration of centrifugal acceleration to obtain the
pressure distribution resulted in exponential integrals which made any
further theoretical treatment practically impossible. Bennett (1988) presented
an alternate formula for the azimuthal velocity component which although
simpler than the previous formulations, refuted the basic requirement that
the maximum velocity must occur at a dimensionless radius equal to one.

Here, a new, simpler and non-contradictory vortex model is proposed. The



simplicity of the novel formula for the tangential velocity component allows
one to derive a closed form solution for the static pressure which fits well the
observed values. The vortex models of Rankine and Basina et al (1974) are
found to be the asymptotic conditions of the present azimuthal velocity
distributions. Based on the equations of motion the empirical model
produces radial and axial velocity components which are bounded over an
infinite domain. Furthermore, it now gives the opportunity to further

analyze phenomena which was practically impossible via the Burgers' model.

The novel approach is utilized to study the main characteristics of
concentrated, columnar, liquid vortices produced in a cylindrical, partially
filled container using rotating disks and bars as agitators placed at the bottom.
There are two reasons as to why such an arrangement was selected. First, such
systems are routinely used in laboratories and industries to mix different
fluids. Second, turniables have been used extensively to study the
fundamental aspects of vortices. Previous work by Vatistas (1989) has shown
that the azimuthal velocity component and pressure may also be applicable to
a variety of concentrated vortices (i.e. vortex chambers, wing tips vortices,
etc.). The difference due to geometry and flow conditions in numerous
situations are manifested in the ancillary flow taking place in the radial-
azimuthal plane. In the study of every concentrated vortex flow, the core size
is one of the unknowns which is either obtained experimentally and/or based
on an auxiliary principle. In vortex chambers, the core size was found by
Vatistas et al (1986) to be adequately described by an equation obtained using
the minimum pressure drop principle. The analysis given earlier by Vatistas
(1989) concerning the flow in a stirred cylindrical tank assumed a known core

radius. Since a theoretical determination of the core radius for a present



configuration is very difficult, dimensional analysis and extensive
experimentation was used to derive such a relationship. The results are used

to determine solid particle concentrations in an aqueous concentrated vortex.

A numerical algorithm, previously developed by the Los Alamos
research laboratory has been extended to solve the fully 3-dimensional time
dependent Navier-Stokes equations for liquids with an interface and a
moving boundary. A new method for the application of the boundary
conditions at the center-line is presented. The non-conservative form of the
governing equations has been found to enhance the numerical stability of the
method. The reason for such a behaviour is given. The algorithm has been
applied to examine the agitator problem. The numerical investigations
produced free-surface profiles that agree with the experimental observations.
The computed secondary toroidal vortex structures, taking place in the radial-
azimuthal plane and the vortex core wandering the transient spin-up process

correspond to the experimental visualizations.

In 1880, Lord Kelvin, in an attempt to explain the quantization of atomic
orbits using a vortex (presumably as a fluid mechanics analog), found that
several stationary solutions to the problem were consistent with the inviscid
equations of motion. In his study, Kelvin assumed that the main flow is
perturbed by harmonic disturbances which produce varicose undulations in
the vortex core manifold. Until recently, these stable fluid states were known
in theoretical fluid mechanics as Kelvin's vortex equilibria. In 1990, Vatistas
produced the stationary states under laboratory conditions. The present

numerical study clearly shows that different wave number core patterns

10



which were conjectured by Kelvin and produced by Vatistas (1990) are present

in the solutions of the Navier-Stokes equations.

11



2. Vortex Models

Concentrated vortices influence dramatically the performance of
numerous practical devices. Gas-core nuclear rockets, swirl combustion
chambers, vortex valves and cyclone separators are typical examples which,
from a fluid dynamics point of view, run under the category of confined
vortical devices. For design purposes, knowledge of the main parameter
behavior is essential. The complexity of the phenomena involved,
unfortunately, does not permit a complete analytical flow characterization.
The governing equations of motion are comprised from non-linear terms
which make an analytical solution not possible, excluding the fact that curvi-
linear or even recti-linear boundaries may impose even greater difficulties.
Since a general treatment of such a complex problem present enormous
mathematical difficulties, simplified models, able of describing the main

characteristics, have been used in the past.

Consideration is given here to the main effects of vortex flows that arc
characterized by a dominant centrifugal force-field taking place in the radial-
azimuthal plane. The static pressure evolves in such a way as to primarily
balance the centrifugal forces ignoring almost completely the other velocity
components. The main properties represented by the radial distributions of
the azimuthal velocity and the static pressure were found by Vatistas (1989) to
be common to most vortical flows of this type and not to depend on the

method of their production.

12



Rankine's combined vortex was commonly used in the past. One of the

major disadvantages of employing Rankine's model is the overestimation of
the tangential component of velocity in the vicinity of a vortex core. This
gave rise to a better model which was introduced by Burgers (1948). Burgers'
model provides an estimation of tangential velocity distribution which agrees
well with experimen:al results. However, there are a number of
disadvantages which accompany the model. Primarily, it is the radial pressure
distribution that requires the use either tables of integration or the application
of numerical methods. Furthermore, the radial velocity is not bounded over

the infinite domain.

A new empirical formula for the tangential velocity which agrees well
with the experimental results is presented here. From the equations of
motion, the other velocity components can be derived. The novel approach
provides a closed {form solution for the static pressure, while the velocities are

bounded over the infinite domain.

13



2.1 retical Analysi

Under the assumption of steady, laminar, incompressible and

axisymmeiric flow, the governing equations of the vortex flow are

represented by:

continuity
12 7))+ V.
Tor ¥ oz (2.1)
r - momentum
—oV. —av.)\ Vv: oP (2 v
S |[V.=L+V,L|--8=- VV.- Yo
"( T Ve a'z') T or Sn T P2 (2.2.a)
Z - momentum _ .
Sn (Vr av_z Vz a\iz) =- Q'I:):' Sn V2 Vz
or 0z 0z (2.2.b)
@ - momentum
-\-/—r 0 (. — = 8_9 237 VO
— e —— V V - ——
T or EVe)+V, 9z ) (2.2.0)
where,
v?2 _a_z 19 a_z
or2 Tof gz2
T=r/R,
Z=2z/R,
Vr _V:Ro
v
'\72 V., R,
v
""e - 2ntVg Ry
I.
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Under the assumption that Sp is considerably small and that the axial

dependance of the tangential velocity can be neglected the above equations

are simplified to:

continuity

r - momentum

Z - momentum

0 - momentum

l. i TV & =
T or (r Vr) 0z 0 (2.1)
2 _
Yo _ P
T or (22.2)
oP
FA
z (2.2.b)

Vid (;v,)- 4L 4GV
+4FV,) (F ve),

drir dr (22.0

The vorticity, known as a vector quantity and the parameter that

represents the transverse gradients of the velocity vector is introduced here.

The vorticity, Q may also be expressed as a function of angular velocity of a

fluid element, @. The three orthogonal components of the vorticity vector

are:

15



where,
2nR?

-

4

Q =

QZ

The reason of introducing the latter parameter is to quantify the degree of
vortex concentration. The geometric representation of the three velocity and

vorticity components are given in fig. 2.1:

(a) velocity (b) vorticity

Fig. 2.1 The vector properties in cylindrical coordinate system.
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Rankine's model

Rankine's combined vortex was one of the first steps to model
concentrated vortices. It combines two distinct modes of rotation; the solid
body rotation (or forced vortex) taking place inside the core and the potential
flow (or free vortex) existing outside. It is not clear from the literature as to
how it was established. The realization that a linear and a hyperbolic
variation of the tangential velocity are solutions to eq. (2.2.c) (with the
convective terms neglected), combined with past observations might have
been the origin of conception. Nevertheless, whatever the reason of its origin,

the azimuthal velocity profile for a Rankine's vortex is given by,

-\—/-9 -z for 0<r<1 (2.3.2)
Vo-1 for  1sFs
- or STrsoo (23b)

Inside the core, according to azimuthal momentum equation (eq. (2.2.0)), it is

required that

Accordingly, from continuity

V, = constant

In the region outside the core, the 6-momentum equation is satisfied
automatically, regardless of the radial velocity distribution. Hence, the latter
velocity component may be represented by any arbitrary function

v.r = fn (F)

provided Vr(F_: 1) = 0, From continuity,

17



e

.=~z L2, ()

(2.4)
The pressure is a function of T and z. The change of pressure is given
by
7,2 =L ar+ P oz
d oz (2.5)
since
M _oN_o
ot 0z (2.6)
where,

z and N=-

The pressure must therefore, be an exact differential. Then the determination

of static pressure distribution requires the integration of the above equation
— v2
Pt,2)=-nZ+ ——F-‘ld'f + Const.
2.7)

The static pressure distribution for gaseous vortex (n = 0) and the liquid free-

surface profile P (f) = 0 are given by the same equations:

AP =L
2

(2.8.a)

AP=1-L
272 for 1T <o

(2.8.b)
(For detailed derivation of eq's (2.8) refer to appendix A.)

18



Rankine's combined vortex is an empirical model. Yet, it is well suited
for preliminary analysis. Although there is great deal of overestimation of the
combined tangential velocity in the vicinity of a core radius, the pressure

distribution matches reasonably well the experimental results, see fig. 2.2.

Rankine's
a Jullen (1985)
e Vatistas (1989)
o Fixsent exp. work

0.8

0.6

0.4

0.2

Fig. 2.2. Comparison of the Rankine's pressure
distribution with the experiment.
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Burgers' model

Rankine's model is a rough approximation of the actual vortex
mechanism; its tangential velocity distribution is assumed to change from a
force vortex inside the core to an irrotational vortex outside with a
discontinuity of the vorticity at the point of transition. This led many to seek

a better model.

Burgers (1948) arrived to a vortex model which provides a tangential
velocity with continuous derivatives. He assumed a linear distribution of

radial velocity which, mathematically, possesses the form:

Vy=-AT (2.9)
where A is a constant. Substituting eq. (2.9) into 6-momentum equation (eq.

(2.2.0)) and integrating it twice, leads to:

by 1 ~2
VB -—-E‘.e'm +§2.

ar T (2.10)
where, B; and B; are integration constants and o =A/2. To obtain uniqueness
of the above solution, the boundary conditions must be applied; the

tangential velocity is equal to zero at the axis of rotation which leads to,

T (2.11)

and
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Bi=0
Hence,

Ve =g£&’.ve=%-(l -e (1;2)
I (2.12)
From the dimensional radial velocity distribution,

vr=-Al',

A =20v/R2 o is evaluated employing the maximum velocity condition at
the core radius. Since the slope at the maxima is zero, eq. (2.12) is to be
differentiated with respect to r then equated to zero. The latter allows one to

evaluate a from the resulting non-linear algebraic equation:

(1+a)e®-1=0 (2.13)

There are two roots in the interval [0, ), one when a = 0 and the other when
o = 1.256. For o = 0 the trivial distribution, Vg =0 is obtained, hence it is

excluded.

Correspondingly, the radial and axial velocity components are

o _ VRo __
Ve= =3 2ar (2.14)
V, _V,R. _

7~ v e 2.15)

One major drawback associated with Burgers' model is the
approximation of pressure distribution which retains a non-closed form of a

solution. The pressure distribution is given by

P(,2)=-nz+p (216)
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where,

Performing the integration yields,

p=-Lo(1-e- 2 + alEi (- o) Bi(- 202)

(217)
where
i(-u)=| &
Ei ( u)-f 5 du
Some values of B are tabulated in a table 2.1.
Table 2.1 Values of  as a function of r
r T T
B B B
0.0 0. 87059 0.9 0. 46073 4.0 0. 03125
0.1 0. 86281 1.0 0. 40713 5.0 0. 02000
0.2 0. 83983 1.2 0. 31545 6.0 0. 01389
0.3 0. 80344 1.4 0. 24477 7.0 0. 01020
0.4 0. 75614 1.6 0. 19215 8.0 0. 00781
0.5 0. 70062 1.8 0. 15341 9.0 0. 00617
0.6 0. 64100 2.0 0. 12475 10.0 0. 00500
0.7 0. 57936 2.5 0. 08000 50.0 0. 00020
0.8 0. 51860 3.0 0. 05555 100.0 0. 00005

The pressure distribution and the free surface profile can be then calculated

using,
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p_2-2h _ P-Py_, B
AP= sz PP a2 (2.18)

(for detailed derivation of eq. (2.18) refer to the appendix A).

Burgers' model is an attempt to arrive at a simple formulation which
provides a more realistic picture of the vortex phenomena when the
secondary effects are neglected. The model provides a single equation for the
tangential velocity which confirms the observed values. Although the
determination of the azimuthal distribution of the velocity does not involve
significant complications, the distribution of pressure requires the use of
either tables of integration or the application of a numerical method to

evaluate the integrals involved.
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22 A New M r Concer Vorti

Burgers' velocity distribution solved the problems encountered with
Rankine's model but has created a mathematical contradiction as well as a
difficulty associated with the evaluation of static pressure. The contradiction
emanates from the first boundary condition which requires sustaining the
condition,

}i_x.rlfve =1
whereas the radial velocity is not bounded in an infinite domain (in the r-
direction). The difficulty arises when the pressure distribution is to be
obtained or if the calculate the total liquid volume (see chapter 3) is required
Employing Burgers' model, one must integrate the pressure distribution

(involving the integrals of an exponential integrals) which is indeed a

formidable task.

Recently Bennet (1988) presented the following empirical tangential

velocity distribution:
Ve=—=2I
1+27
Although the above equation gives an explicit static pressure distribution, the
tangential velocity possesses a maximum for r equal to approximatelly 0.707.
This refutes the basic requirement which demands the maximum to occur at

r =1.0.

Based on previous observations as well as the experimental pressure

(free-surface) distributions to be discussed in the next chapter and several

24



trials with a number of shape functions, we are proposing the following

general form of the tangential velocity:

Ve = ——m 1/n
(1+7*) (2.19)

where a and n are empirical constants. Since the above equation must possess

a maximum at T = 1, a must be equal to 2 or,

Vor —
(1+720) (2.20)

Analogous to Burgers' profile, eq. (2.20) satisfies the conditions:

(i) atF— oo, V=1

The radial velocity component can be obtained employing the 6-momentum

equation, eq. (2.2.c),

— 2(1 +n)f 2n-1
Vr =
1+F 2 (2.21)

Fromn continuity and eq. (2.21) the following equation for the axial velocity

components obtained:

V, _4n(1 +n) 2An-1)
z (1 +7 2P (2.22)

For n = 1 the tangential velocity distribution is the same as the empirical
equation attained by Basina et al (1974), fig. 2.3.a. Rankine's distribution is
approached as n goes to infinity. Both eq. (2.21) and eq. (2.22) have

singularities at the vortex center for n < 1; hence, distributions with n less
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Fig. 2.3.a & b.Velocity and vorticity distributions.
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Fig. 2.3.c & d. Velocity and vorticity distributions.
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than one should not be permitted. The general shape of the radial velocity
given by eq. (2.21), see fig. 2.3.b, is also qualitatively closer to the observations
of Ross (1964). For any other finite value of n, the values of all velocity
components are well behaved. In addition, these values are bounded over the

entire domain.

The best fit of eq. (2.20) to the actual tangential velocity component, for n

as an integer, is obtained if n = 2. Then the tangential velocity is given by,

Vg = R
J1+74 (2.23)

Comparisons of eq. (3.23) with several experiments are given in fig. 2.4.

1 r v v ’
.'j'; a Roschke  (1966)
:". i e Robertson (1965)
0.8 fribhoie .. o Prichard  (1970)
‘o o Faler & Lelblvich (1977)
o Vatistas (1986)
0.6 ----- Rankine's
— New model, eq. (2.23) n
VG : .
0.4 . .. .. % ...
0.2 B i il »

8 10 12

6
r/iR,

Fig. 2.4. Comparison of the tangential velocity distributions.
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One of the advantages of employing the new empirical formula is to
obtain a simple closed form solution for static pressure distribution. Thus, the
free surface profile and the static pressure distribution can be determined
using:

AP=2-2h - P-Dh _2 sretan 2
ZetZh  Pe-Pyp W i (2.24)

(for detailed derivation of eq. (2.24) refer to appendix A). Equation (2.24) agrees
well with experimental results taken from several sources, see fig. 2.5, and
with the results of the present investigations concerning the free-surface

profiles of a vortex in an agitator tank given in fig. 3.4.

A simple vortex model based on an empirical formula of the tangential
velocity component was presented. A closed form solution for the static
pressure which fits well the observed values was obtained. The model
produced radial and axial velocity components which are bounded over the
entire domain. Despite the fact that the new model is generally suited for
unconfined vortex, it may also be employed to a confined vortex as long as
the side-wall boundary effects are minimal. It will be feasible, for instance,
when the ratio of the core radius to a confinement characteristic length is

considerably less than one.
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Fig. 2.5. Comparison of the pressure distributions.

A summary of the main flow parameters obtained using various vortex

models are illustrated in a table. 2.2.

At first glance one might indeed be surprised to note the strong
dependance of the flow taking place in the radial-axial plane to the main flow
in the radial-azimuthal plane. It is, however, a well known fact that for
concentrated vortices, the flow development in the latter plane is almost
indifferent to that taking place in the former plane. One can find in the
technical literature a variety of flow situations where the tangential and static
pressure distributions exhibit a Rankine-like behavior despite the fact that the
secondary flows in the radial-axial plane are substantially different. The
experimental work of Escudier et al (1980 and 1982) has shown clearly that the
vortex core structure depends on two non-dimensional numbers; the

Reynolds and the swirl numbers. For a fixed Reynolds number, increasing
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swirl, the development of the axial velocity component in the core changes
from a jet-lil.e to a wake-like structure. This process is accompanied by an
undetected tangential velocity component shape modification. The
experiments of Escudier and his associates were performed on a vortex
chamber with an inlet slit covering the entire length of the chamber. If a
series of inlet jets were arranged near the bottom plate, around the periphery
of the chamber (Vatistas (1984)), then the axial velocity would develop in a
completely different manner. Nevertheless, in both cases the tangential
velocity component respects the non-dimensional form of Burgers' or the

new equation, eq. (2.23).

Table 2.2 Comparison of empirical formulas.

—_ _ g _ 2p . - 2
Ve - g_’_t_B_Q ve Vr = VrRo .\_iz_ = VZRE) P= _2£R_°. E_.._P_ll Qz = ano Qz
. v Z zv ) g P R
'fZ
0<sr<s1 1 0 const. 5 2
Rankine's 3
_ 1 19 ¢ (5 1--1
1€T<€ r fn=(f) T f(rfn(r» 2?2 0
Burgers' | L1(].e-o) - 20F 4o P 20 o7
T o ln2
r __ 683 2472 2 ian-152 2
work

31



3. The Experimental Analysis

The objectives of conducting the present experimental work is first to
predicate the validity of eq. (2.24) in correlating the shape of the interface.
Secondly, to establish appropriate relationships between the core radius and the
vortex strenght as a function of the geometrical and physical parameters
involved with the agitator problem. Dimensional analysis is applied to reduce
the experimental effort and to present the results in terms of the main

dimensionless groups.

In the previous chapter all the models assumed a known core which must
be rrovided as part of the boundary conditions. In vortex chambers, the core
size was found by Vatistas et al (1986) to be adequately described by an equation
obtained using the minimum pressure drop principle. For the rotating agitator
problem, there is no available methodology with firm theoretical foundations
that will enable one to determine the core radius. However, the behavior of the
core as a function of the remaining variables is very important since all the
main flow parameters depend directly on it. For this reason extensive

experimentation was used here to disclose the unique proprieties of the core.
Another important parameter to the present analysis is the circulation.

Given the angular velocity and geometry of the agitator, one is interested to

know the strength of the produced vortex. A theoretical determination of the
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latter quantities will require a complete theoretical flowfield characterization.

This also is obtained experimentally.

For vortices with tall thin cores, the axisymmetric and bending waves
described by Maxworthy et al (1985), and Maxworthy (1988) are known to force
the vortex center to precess about the geometric center of the containing vessel
in the direction of the rotating stirrer, and to undulate. For the cases where
vortices with relatively short, thick cores were produced, the flowfield was
nearly free from the above mentioned problems over a wide range of the
parameters involved. Increasing the angular velocity beyond a certain critical
value however, harmonic disturbances manifested by varicose undulations of
the free-surface will emerge. Prichard (1970) waves inside the core are only
present during the initial spin-up process. Such a perturbed state behavior of
the core filament is beyond the scope of this experimental work. Hence, the
previously presented analysis, and the results of the present investigations to
be described in this section, are only valid when the influence of the
perturbations on the main flow are either absent or negligibly small by

comparison to the main flow.
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1 Experimes A ?

The experimental trials are performed in a Plexiglass cylindrical container
with an inner diameter of 111/4 inches (285.8 mm), partially filled with a liquid.
The experimental facility is shown schematically in fig. 3.1. The experiments
were performed using liquids with various viscosities; tap water, hydraulic oil
(Shell Tellus Oil - No. 46) and a glyserol solution (66.7% of glyserol on the
volume basis). The viscosities of these three liquids were measured using the
Cannon-Fenske Routine Viscometer. The corresponding values of kinematic
viscosities were found to be 9.87(107) m/s2 for water; 3.4763(10-5) m/s? for the
glyserol solutior;; and 1.0718(10-4) m/s? for oil. The vortex is generated by a
system of an electric motor and a rotating (in the counter-clockwise direction)
disk or a bar near the bottom of the container. Four different agitator sizes were
used, 101, 151, 202 and 253 mm (numbers represent disk diameters or the length
of the bars). The variation of the rotational speed is achieved by an electronic
speed controller which permits the selection of speed up to 1200 r.p.m. The
container is filled with a liquid to a given original height (Ho,) which by the
influence of a rotating disk or a cylindrical bar forms an inverted-bell-like free
surface profile. The original heights are measured (using a ruler placed on the
side of the cylindrical container) from the bottom of the container to a chosen
level of the free surface, namely 100, 150, 200, 300 and 350 mm. The relative
position of a free surface profile is measured using a point gage which is
attached to a traversing mechanism on top of the container. This arrangement
allowed gage movements in the three principal directions. The relative
position of the needle is recorded using a high precision Vernier scale. The

presence of a flywheel improves the constancy of rotary motion.



AN

1 - cylindrical tank 5 - electric motor
2 - rotating disk (bar) 6 - measuring needle
3 - working substance 7 - transverse mechanism
4 - flywheel

Fig. 3.1. Schematics of the apparatus.
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The analysis given previously implied a known core radius. There must
be a functional relationship between the core radius and the rest of the
parameters involved. Since a theoretical determination is very difficult,
dimensional analysis along with that presented in the previous chapter and
experimental results will be used to derive such relationships. One expects the
core size Rp and the vortex strength, I', to depend on the size of the agitator,
R4, the angular velocity, o, the fluid density and viscosity, p, and, u,
respectively, the original height, Hp, and the radius of the containing vessel,

Rt, fig. 3.2. Mathematically,

RO = fln (u) P; w, Rdl Rh HO) (3'1)
T = fon (1, p, ®, Ry, Ry, Hy) (3.2)

Application of Buckingham n-theorem gives the following relations:

Ro/Rq = fin (Re = @R4 2/v, Ra/R; Ho/Ra); (3.3)
T /0R4? = fon (0R4 2/V,R4/Ry Ho/Ry) (3.4)

where, Re is a Reynold's number which is a non-dimensional representation
of a tangential velocity measured at the tip of the disk or the bar and other
dimensionless groups are the geometrical representations of characteristic

dimensions.

The next step is to establish a procedure to relate these non-dimensional

groups. Consider eq. (3.1) and eq. (3.3) which both relate the dimensionless
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radius and other parameters through an unknown function, fin, Qualitatively,

finis to

h,,

VA T /A
)

>

* ZRd —

# 2R;

Fig. 3.2. Characteristic dimensions.
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be determined keeping in mind that the total liquid volume, before and after

rotation, remains the same.

Employing the new formula for the free surface distribution, assuming
that the general shape given by eq. (2.24) represents well the real interface, one

can integrate to find the total liquid volume under the free surface,

Re
2n f 20 tan F2dr = 2R tan! RZ - In (R + 1)
n
0 (3.5)

where T=r/R, and R;=R/R,. Equating the volumes of liquid inside the

container before and after rotation gives,
n l_I—ﬁ’—'h‘ll_ff:Zﬁtz tan1 R?- In (ﬁ{' +1)
hoo - hh (3.6)

From eq. (2.24),

.ﬁ_-.ﬂh. = .2 tan’l ng
heo-hp, = (3.7
Solving the above equation for he - hy one obtains:

hi-h
hw3 - hh = A= Ith
2 tan" R? (3.8)

Substituting eq. (3.8) into eq. (3.7) gives

Ho-hy _ ;. InRe+1)
he - hy 2R tan! R? (3.9)
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The above equation can be rearranged to attain the implicit form:

In®+1) +(@d-1) 2R? tan"1R?= 0
n(R¢ + )+(5 ) 2Rt tan-1R¢ (3.10)

where,

8= h! ‘hh
Ho'hh

Eq. (3.10) is a non-linear algebraic equation which implies that an analytical
solution is not available. The application of a numerical method to obtain the
root for Rt is therefore required. This is achieved using the Newton-Raphson
method for a given value of 8. Alternatively, eq. (3.10) can be expressed in an
explicit form in terms of the dimensionless parameter, §, which implies that

the graphical solution is also available:

5= 2_R—,2 tan‘fﬁiZ
2R? tan'IR? - InRY + 1) (3.11)

However, contrary to the above equation, 6, in the present analysis, serves as an
independent variable. The graphical representation of eq. (3.11) is illustrated on
fig. 3.3. The purpose of employing eq. (3.11) is to ascertain the behavior of 8
versus R, which may guide to a proper numerical method as well as an
appropriate initial guess for the Newton-Raphson method. By definition
R, =R(/R,. Therefore, for a given value of R;, which is the inner radius of a

cylindrical container, the radius of a core is to be determined:
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25 y
eq. (3.11)
20 i
15
R/R
0 B—
1 1.2 1.4 1.6 1.8 2

Fig. 3.3. Relationship between two dimensionless groups.

R, =Ri/R;

Using the free-surface elevations measured via a point gage and the core
radius obtained solving eq. (3.10) one can plot the non-dimensional free-
surface shape as a function of the dimensionless radius. A large number of
such graphes representing the interface under different conditions were
produced. Here, a sample of several such profiles are shown in fig. 3.4. It is

evident that the correlation is satisfactory.
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0 1 2 3 4 5

(b) bar

——new formula, eq. (2.24)

O Re = 135,289.5
O Re = 162,347.4
© Re = 189,405.4
A Re = 216,463.2
A Re = 243,521.2

Rd = 0.0505 m

Ho/Rd = 6.931

wemnsm 16w fOrmula, eq. (2.24)

O Re = 135,289.5
0O Re = 162,347.4
O Re = 189,405.4
A Re = 216,463.2
A Re = 243,521.2

Rd = 0.0505 m

Ho/Rd = 6.931

Fig. 3.4.a & b. The free surface profile - experimental
points for a disk and bar as a rotating boundary.
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== new formula, eq. (2.24)

O Re = 159,641.7,

Ho/Rd = 6.7627, Rd = 0.0505 m

O Re = 135,289.6,

Ho/Rd = 7.4753, Rd = 0.0505 m

© Re = 108,231.2,

Ho/Rd = 3.3775, Rd = 0.0755 m

— new formula, eq. (2.24)

O Re = 135,289.6,

Ho/Rd = 3.8415, Rd = 0.0505 m

O Re= 108,231.7,

Ho/Rd = 7.4753, Rd = 0.0505 m

© Re=81,173.25,

Ho/Rd = 5.0794, Rd = 0.0755 m

(d) bar
Fig. 3.4.c & d. The free surface profile - experimental
points for a disk and bar as a rotating boundary.
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Similarly, the vortex strength, I'w can be related to the depression of the
free surface interface, hy - hy, employing the boundary condition at the infinite

radius for the new pressure distribution given in Appendix A,

et
2xR,/ P, -Php T (3.12)

Rearranging the terms of the above relationship and expressing the pressure as
a hydraulic height, one can obtain the following expression for the free surface

depression in a cylindrical container of finite diameter,

16nR3g (3.13)
since hy - Hpis to be measured experimentally, I'wis considered to be a

dependent variable,

P = 4Ro-/mg(h. - ) (3.14)

where g is the gravitational constant. However, the experimental apparatus has
a container of finite diameter which inevitably requires one to relaterelating
the vortex strength to the actual depression of a free surface. Employing eq.

(2.24) for the free surface profile yields,

ho - hh = Z(ht 'hh)
T arctan(ﬁ?) (3.15)

Substituting eq. (3.15) into eq. (3.14) one obtains,

F.= NRo. iﬂﬂ_‘_‘%
V arctan(Rt) (3.16.a)

or
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L =TRo [ 8gthe -hp)
VRe’\/ arctan(®?) (3.16.b)

The calculation of the free surface depression also permits the

determination of the corresponding Froude number, defined as

V‘Z
Fro=—2
° " Rog (3.17)

where, Vg is the azimuthal velocity component at the core radius. By

definition,

I =2aR,Vg or 27R,Vy,

which shows that,

3
4n’R5g (3.18)

From eq. (2.24) the Froude number can also be given by,

Fr. = Z(ht 'hh)
o~ =2
R.arctan(R?) (3.19)

The prime objective here is to establish through experiments the
relationships among the main non-dimensional parameters given by eqs. (3.3)

and (3.4).



3.3 The Core Size and the Vortex Strength

The validity of eq. (2.24) in representing the observed free surface has been
established in the previous section. Here the new model together with
experimental free-surface data are employed to obtain the characteristics of the

core and the vortex strenght.

The experimental trials are combined in sets of data corresponding to a
single disk or bar diameter for five different positions of undisturbed free
surface levels. For each particular original height, the free surface levels are
measured at the geometrical center and at the circumferential wall of the
container using a high-precision measuring needle; the measurements are
conveyed in pairs of readings of free surface levels, namely hy, h; for 15-20
values of agitator speed which is controlled by an electronic speed controller
and monitored by a digital read-out angular speed gauge. The choice of angular
speed entirely depends on general behavior of a vortex core. The aim is to
avoid regimes at which the flowfield is perturbed by undesirable wave activity.
In particular, if the speed is very low, column undulation and precession
occurs. Yet, if the speed is considerably high, large corrugation and sloshing
appear. Hence, for one particular value of the original height, the angular
velocity is bounded in a range at which the flowfield remains relatively

undisturbed.

To engage the previously introduced theoretical relations, a pair of
readings of the free surface profile is employed to calculate a dimensionless
quantity, § and a free surface depression which must be a function of Re, R4/R¢

and Hy/Rg4. Solution of eq. (3.10) permits the determination of the radius of the
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core for a fixed value of 8. It is then utilized to determine a functional
dependence among the dimensionless groups involved in eq. (3.3). A large
number of experiments have been performed using different liquids, agitator
sized and initial heights. The outcome of the experimental work is shown in
the fig. 3.5. It is clear from these results that the dimensionless core radius

depends simply on the geometry of the problem.

The functional dependance of Ro/Rq to R4/R¢ is illustrated graphically in
fig. 3.6. According to the figure, all the points fall approximately on a straight
line declining as the relative size of the agitator increases. It can also be seen
that it is not important what type or agitator is used. It is worth noting in
passing that Vatistas (1986) arrived at a similar conclusion (that the core
depends solely on geometrical parameter B) for the vortex produced in a vortex

chamber.

Similarily, the implementation of eq. (3.14) permited the determination of
the vortex strength as a function of the prevailing dimensionless groups. The
results are presented graphically in fig. 3.7. Each particular graph corresponds
either to a disk or a bar diameter, and the three working liquids on the figure
demonstrates a certain functional dependence between the vortex strength, Re
and the original height. The results indicate that for water th. vortex strength
remains almost constant as Re increases. For oil and glyserol solution, which
have higher values of viscosity, the results possesses an almost linear

dependence with positive slope among the strength and Reynold's number.
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Ro/Rd

1.00

B Ho/Rd=1.980

s ® Ho/Rd=2.970

4 Ho/Rd = 3.960

O Ho/Rd=5.941

0.75 ® Ho/Rd=6.930

oe of fca dt A o Sn B Tan
R B’ i i W ok i Ro/Rd (mean) = 0.6299
0.50
0.25
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2.0e+2 6.0e+2 1.0e+3 1.4e+3
Re
Dg = 101 mm (bar, working liquid: eil)

1.00

@ Ho/Rd=1.325

® Ho/Rd=1.987

A Ho/Rd=2.649

8 Ho/Rd=3.974

0.75 & Ho/Rd=4.636

Ro/Rd (mean) = 0.5567
o
EERLY ;T g U‘,IZC:R Un‘
0.50
0.25
0.00
0.0e+0

4.0e+2 8.0e+2 1.2e+3
Re

D4 = 151 mm (bar, working liquid: oil)

Fig. 3.5.a. A radius of a core is constant as Re varies.
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The dependence of the vortex strength on the original height of the
working liquid in the container is also evident from the experimental trials.
According to fig. 3.7, the strength decreases as the values of the original height
increases. This depicts the diminishing effects of viscous diffusion in larger

systems (higher values of Hy).
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4 W Activity i

During a detailed mapping of the steady free-surface profile as a function
of the disk diameter, Ry, the original water level, hy, and the rotational speed of
the disk, w, several problems were encountered. All these were attributed to the
dynamic nature of the core. For vortices with tall thin cores, the familiar
axisymmetric and bending waves described by Maxworthy et al (1985), and
Maxworthy (1988) forced the vortex center to precess about the geometric center

of the containing vessel in the direction of the rotating stirrer, and to undulate.

For the cases where vortices with relatively short, thick cores were
produced; the flowfield was nearly free from the above mentioned problems. In
the case of low disk velocities, the free-surface profile was smooth, see fig. 3.8.d.
Increasing w, harmonic disturbances manifested by the varicose undulations of
the free-surface are evident from fig. 3.8.e and f emerged. If one superimposes
Kelvin's (1880) harmonic perturbations of the core to the mean core radius, T,

the foilowing relation is obtained,

=i, +Klce i (meene- c)) (3.20)

where ¢ is a constant, m,n are the wave numbers in the z and 6 directions
respectively and o is the angular frequency. For t = 0 and z = 0 several
equilibrium states are shown in fig. 3.9. These are very similar to the ones
obtained experimentally by Vatistas (1990), and the core shapes obtained
numerically solving the fully 3-d problem, see fig. 4.8. If the mean core Ts in eq.
(3.20) is allowed to be represented by eq. (2.24) then fort=0,m=4n=2andc=
0.065,
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(a) wave propagations (b) precession of a vortex
in axial direction. core.

(c) wave propagations in (d) relatively undisturbed free
axial direction. surface profile.

Fig. 3.8. a - d. Oscillatory behavior of a vortex core.
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Fig. 3.8.e & f. Oscillatory behavior of a vortex core - varicose core behavior.
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= Mg +0.065 cos ( 26 + 42) (3.21)

The results of the observed and theoretical (eq. (3.21)) free-surface profiles
(frozen in time) are given in fig. 3.10. The similarity between the two is

remarkable but not unexpected.
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(b) Theoretically obtained free surface profile.

Fig. 3.10 Comparison of varicose core behavior.
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4. Application of the New Vortex Model

4.1 Vor "

One of the main concerns in the design of vortex chambers is the
pressure drop developed across the chamber. The task to develop
formulations with the aim to effectively predict a priori the value of the latter
parameter has been the subject of extensive research in the past (Lewellen
(1971), Shakespeare et al (1980), Troyankin et al (1969) and Vatistas et al
(1986)). Although Burgers' model approximates the tangential velocity better
than Rankine's vortex, if used in the analysis presented by Vatistas et al (1989)
to determine the pressure drop across the chamber, it will produce an

equation which will require evaluation of exponential integrals.

The new vortex model is also applied to vortex chamber flows. The aim
of the present exercise is to see whether the new tangential velocity
distribution produces any substantial differences in the determination of the
pressure drop using analogous to free-vortex assumptions employed by
Vatistas (1986). Also, the implementation of the novel vortex model permits
the elimination of additional complications which are the inevitable using

Burgers' vortex model.
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Consider the schematics of a typical vortex chamber, given on fig. 4.1.
The integral form of the energy equation with neglected potential and
viscous-dissipation energies is given by:
I(P+—12—pq2)21"d—5.=0
s 4.1)
where, q is a velocity vector, P is a static pressure, p is the density of a working

substance and S is the control-surface vector. Then, the energy balance across

the vortex chamber yields

]AM‘P+%—pq2)VZdA=[Am(P+‘12-pq2) g-n dA )

Under the following assumptions,

i. At the exit, the static pressurz is constant and equal to the ambient, P,.

ii. The axial velocity at the exit is uniform and extends up to the core.

iii. The radial velocity is neglected across the control volume.

iv. The fluid is incompressible.

v. At the inlet, there is no axial velocity and the other two velocity
components are uniform.

vi. The tangential velocity is given by eq. (2.23).

the pressure drop, Pin - Pout, is deduced from the energy equation, eq. (4.2):

Re
2 Re
r, 3 v?
Pm-POm:Pin-I’a:—2p > (é_) 4r dr+——z—s 2] rdr-%qizn
RS -R; n Ro-r"' R.-R ),
Ro (4.3)
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Performing the integration and rearranging the terms, the above equation is
represented in its dimensionless form expressing the dimensionless pressure

drop in terms of the geometrical parameter f,

B 1n{32L(xg + 1)/xéJ

AP = a- xg)z + 200 x‘_Z) @

where, x. =R /R, is a dimensionless representation of a core radius at the

exit of a vortex chamber,

2

B (2 (. -P)) +1) ‘Re/Rt

P cos 8/ s the dimensionless form of the pressure drop,

2
B= ( Ain/At )
R./Ryc0s 8/ is the swirl parameter which is the inverse of swirl number

often quoted in the technical literature, see Gupta et al (1984).

According to Vatistas et al (1986) the core size may be obtained using the
minimum principle which is mathematically expressed by,

0AP _

ox.

Application of the above condition on eq. (4.4) yields,

0;

C(1-x2P
2x2(1 + x3)

2B -(1-x2)In -1-XJ=0

2 (4.5)

where a more detailed derivation of eq. (4.5) is provided in Appendix B.
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The above equation is a non-linear algebraic equation which for a given
value of B must be solved for x.. The solution of the equation is obtained
numerically using the Newton-Raphson method. The graphical solution of
eq. (4.5) is given in fig. 4.2. It can be seen that the present theory and that of
Vatistas (1989) give almost identical results. Eq. (4.5), also agrees well the
experimental results by Shakespeare et al (1980) for the region when
geometric parameter, B, is less than 10. Since 8 is inversely proportional to
the swirl number the relative strength of the vortex becomes less as B
increases. For large values of B there is a substantial deviation of present
results from the experimental results. The latter indicates that the present

analysis can successfully predict the cores of strong vortices.

Alternatively, combining eq. (4.5) and eq. (4.4), one can relate the
minimum pressure drop to the dimensionless core radius x and the

geometric parameter, B independently:

~ B
AP ="
é(B) ’ E(B) (4.6)

nx)_ ln‘%(xe‘ +1)/ Xéi

AP =
(1-x2)2 2(1-x2) 4.7)

where, n(xz), {(B) and E(B) are the parametric functions which reflect the
functional dependence between x. and B, eq. (4.5) and fig. 4.2. Both eq. (4.6)
and eq. (4.7) are represented graphically in figs. 4.3 and 4.4. Similar to fig. 4.2,

the obtained analytical results demonstrate an analogous functional
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dependence of the dependent and the independent variables with the
analytical results of Vatistas (1989). There are, however, a difference among
the results in the region of small B values. The difference can be attributed to
the fact that the tangential velocity profile of the Rankine-like model
employed by Vatistas (1989) deviates considerably from the actual profile in

the neighborhood of the vortex core.
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Fig. 4.2. The exit core as a function of geomelric parameter, .
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Fig. 4.4. Dimensionless pressure drop v.s. exit core.
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According to fig. 4.4, the dimensionless form of the pressure drop might
become less than one, indicating that the actual pressure drop is negative.
Since such an outcome is physically not possible a condition to restrict the

application of the theory must be given. This is,

1<

cos 6 ZAI’B
) (4.8)

R/R,

If Eq. (4.8) is expressed in a form where the swirl angle, 6, is the dependent

variable, the following condition restricting the value of 6 is obtained,

R /R R_/R
0 =cos-! (—ﬂ——/ ) = cos"! e
YAP B
—— +
I 49)
The results of eq. (4.9) are represented graphically in fig. 4.5
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Fig. 4.5. Swirl angle as a function of geometric parameter, B and the aspect

ratio, Rg/R.
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Another application which was selected to apply the new model deals
with fine particle concentrations in a liquid vortex. Experimental as well as
theoretical investigations were first performed by Julien (1985 and 1986).

Burgers' model was applied by Vatistas (1989) to analyze the same problem.

Consider a fine spherical sediment particle of a density, pp and diameter,
dp. Under the influence of the centrifugal force which is balanced by the
pressure force, the drag force and the inertia force, the particle swirls outwards
of the vortex center with a velocity, Vp. Since the present analysis is focused
on particles of small diameter, the velocity of the particle does not
substantially differ from the velocity of the rotating fluid which make the
Corriolis force negligible compared to other forces acting on the particle.
Thus, the radial velocity of the particles, V', can be determined by the balance
of the prevalent forces:

mpar = Fc - Fp - Fv (410)

where the three forces on the right hand side of the above equation are
centrifugal, pressure and the radial component of the viscous force
respectively, and mp is the mass of the particle, nppdp3/6, ar is the radial
acceleration of the particle. From eq. (2.2.a), the centrifugal and pressure forces

are

£, 3V¢
Fe=(PpdpT 4.11)
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3V§
= -8
Fp=gPdrT 4.12)

respectively, where V, is the tangential velocity of the particle. According to
Stoke's drag law, the radial component of viscous force acting on the particle

is

F, =3npvV, dp (4.13)

Combining these prevalent forces and dividing eq. (4.10) by the mass of the

particle, one can obtain an expression of the radial acceleration:

P (4.14)

The radial acceleration of the particle vanishes as the velocity of the particle
approaches the velocity of the fluid. Since the values of the two are very close,
the radial acceleration assumed to be negligible. Thus, from eq. (4.14), the

radial component of velocity of the particle is:

V. =1

2
pp l)d Ve
Ve 18v

(4.15)

If the new formula of tangential velocity given by eq. (2.24) is implemented

into eq. (4.15),

_1_ EE- )(d __L_.
721 + 4 (4.16)
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Under the equilibrium conditions, namely, when the centrifugal force on a
particle is balanced by the diffusion flux, the concentration of a particle is

governed by a linear differential equation,

ﬂ: '
efs=Vpdr 4.17.2)

where, C is a sediment concentration of a particle, € is a particle diffusion

coefficient. Substitution of eq. (4.16) into (4.17.a) yields,

ao E

Integrating eq. (4.17.b) from T to « gives the following expression,

I'
1t2 1+ r4 (4.17.b)

-1 1n(C/C.) =L - arctan(f?) (4.18)

where, C.. is the sediment concentraticn of a particle far from the center of

F

The graphical representation of eq. (4.18) given in fig. 4.6 demonstrates

rotation and

a= 1
144ve

Pp )d
plfo

the validity of the above analysis; eq. (4.18) confirms the experimental results
obtained by Julient (1985) and (1986). Although there is a difference in the
neighborhood of the center of the core, between eq. (4.18) and the results
obtained using Burgers' vortex model, (Vatistas (1989)), the difference is

rapidly converging to zero as r increases. While both methods predict reality
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equally well, eq. (4.18) is considerably simpler by comparison to the equation

derived by Vatistas (1989).

2.5 T T H
e Exp. Julien (1985)
2 @ o ~— =Vatistas (1989) i
Present work
3].5 ) 7 RN - -1
~ H
QS
3
~ I Lev@ e i, -
°
. .
0.5 A\ < -
°
0 H H
0 2 4 6 8 10
r/R,

Fig. 4.6. Concentration of a fine sediment particle.
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5. Numerical Simulation

One of the main objectives of conducting a numerical analysis is to
validate the hypothesis that the profound wave activity which was observed
experimentally is indeed prevailed by the governing equations of motion.
Moreover, a detailed mapping of the flowfield at the fixed time frame permits
the rigorous assessment of the secondary flow formation. In the future, the
developed scheme will enable one to construct the solution manifold of the

problem under consideration.

A number of flow situations have been successfully solved in the past by
the incorporation of appropriate assumptions to bring the governing
equations to a form amenable to mathematical treatment. The majority of the
problems however, require the solution of the complete set of Navier-Stokes
equations. Since such a rigorous theoretical flow characterization is not
possible, an approximate solution through the application of numerical

methods is at the present the only alternative.

In this section numerical solutions for the agitator problem are obtained.
The aim here is (a) to obtain the secondary flow structure, (b) to present the
evolution of the flow in time, and (c¢) to demonstrate that the experimentally
observed wave activity of the core is present in the solutions of the Navier-
Stokes equations. In order to simulate the 3-d problem with an interface and a

moving boundary, an existing algorithm the SOLA-VOF (2-d algorithm) was
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extended to fully 3-d. A novel approach for boundary condition
implementation at the geometrical center of the domain was developed.
Many investigators advocate that the numerical solution using the
conservative form of the equations might be more appropriate. However, for
the problem under consideration and in a variety of other situations,
numerical experiments have shown that this is not the case. Under certain
conditions if the same problem is solved using the two different
formulations, the one where the governing equations are in conservative
form will be unstable. The cumulative effects of the parasitic divergence term

will contaminate the results and provoke numerical instability.
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2.1 Governing Equations

Consider the agitator problem as it was introduced previously. The fluid
motion taking place inside the flow domain are governed by the fully 3-d,
transient, incompressible momentum equations in cylindrical coordinates

with constant viscosity. These are,
mass continuity

ox X3z oy X (5.1)

X-momentum

Dt X ox x2 x2 0z (5.2.a)
y-momentum
oP 2
2V = -=— +vVy
Dt 8y dy (5.2.b)
Z-momentum
Dw yuw_.19P fo2  20u
Dt T X X y ty e x2 (5.2.c)
where,
28,9 ,,9 .19
DCa Yok Yoy T oxaz
and
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3

ox2

[ 5

2
9,9 19
ox 9y? x19z

2
Vi=a—4t

K [t

(54

Here, x represents a radial, y - axial, z - tangential directions of a fixed
cylindrical coordinate system; u, v, w are the velocity components of
corresponding axis - x, y, z, respectively; gy is the y-component of the body

acceleration, v is the kinematic viscosity of working substance.

The exceedingly non-linear character of the above equations excludes the
possibility of employing linearized theory which is limited to the assumption
of small amplitude. This is the inevitable characteristic of Navier-Stokes
equations. In a view of discretization of governing equations, the aim is to
minimize the degree of non-linearity. The existing methods of discretization
recommend the representation of the equations in conservative (divergence)
form for further discretization which allows to insure the conservation of
both continuity and momentum in a finite difference domain. However, in
the practical sense, it is impossible to accomplish it simuitaneously, unless
mass continuity was previously satisfied. Since continuity, of course in the
numerical sense, is not fully satisfied due to truncated and round-off errors,
etc., this ieads to an argument that the conservative representation of
momentum equations is not always an appropriate form. As a result, it
contributes an additional error in momentum equations and occasionally

may lead to unstable results.

Consider the convective terms of eq. (5.2.2) which can be written in

conservative form as
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du au- 8uv+1auw du L10w  dv) w2
R dy X oz “ox Tx 3 ay X (5.3)

the terms in brackets are defined as momentum flux and equal to

a_“+l.‘l‘!+§‘i=-n
dx Xdz dy X (5.4)

from continuity equation. The present scheme employs an iterating
technique based on SOLA-VOF by extensive application of continuity
equation which must rather be written as

du law ov u_
X3z Tay Tx7P (5.5)

where, D (divergence) is a tolerance parameter which certainly is not equal to
zero. Hence, the conservative form of the convective term acquired an extra

parasite parameter D:

du au- duv _ jduw u) w2
XX oy 2(P-% )% (5.6)

Typical values of the divergence typically range from 10-3 to 106 depending
on the required accuracy and hardware capabilities. For short term
computations, the presence of non-zero divergence may not be as crucial as
for lengthy, time-consuming problems. As the number of computer
operations increases, the growth of mass deficiency reaches a point at which

the accumulated error is becoming significant and may even reach the order
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of magnitude of the convective or the viscous terms. Inevitably, this leads to

falsified results or, even worse, to numerical instability.

The finite difference method employed here, uses the forward-time,
centered-space difference scheme to discretize the governing equations. As it
was mentioned previously, special attention must be attributed to the non-
linear terms of the convective part of governing equations; namely, the

upstream-differencing must be employed to retain the stability requirements.
Thus, the governing equations in finite difference form are given by,

X-momentum

U l=Ul) u + At(j;(l’,_llik- k) - FUX - FUY - FUZ + FUC + v*VISCX|

(5.7.a)

y-momenium

n+l n
i,i,k=vi,j,k+At

Zl)—,(Pi,j_Lk- P; ;1) - FVX- FVY - FVZ + v*VISCY‘n
(5.7.b)
Z-momentum

Wi?;cll‘=wi’:irk+At";_Z'(Pi,i,k-1-Pl'i’k)-FWX - FWY - FWZ - FWC + v*VisCz|’
X

(5.7.0)
where i, j, k are spatial indexes, n is a time level, FUX, FUY, FUZ, FUC, FVX,
FVY, FVZ, FVC, FWX, FWY, FWZ, FWC, are the convective members and
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VISCX, VISCY, VISCZ are the viscous fluxes (for detailed description of the

above terms see Appendix C)

The grid configuration used is shown in fig. 5.1. The location of
dependent variables, U, V, W and P can be seen from a magnified cell given
in the sasue figure. The pressure is located at the center of the cell whereas
radial, axial and azimuthal velocities are located on the sides of the
computational ceil which signifies that the dependent variables are placed in
a staggered fashion. A staggered grid greatly simplifies an application of
boundary conditions; moreover, it assures the principle of continuity and
momentum equations associated primarily with the influxes and outfluxes of
mass and momentum. In particular, the net convection (the influxes and
outfluxes of momentum) through a computational cell is becoming more
predominant than other terms of the governing equations as Re increases.
This is a crucial aspect as far as numerical instability is concerned, especially,
when the finite-difference discretization is implemented. In order to facilitate
the application of boundary conditions, the computational grid field is
surrounded by a layer of fictiticus cells. For instance, if the flow field viewed
in a radial-axial plane, the tangential velocity is not laying right on a solid
boundary and it is therefore required that the value of the velocity on the
adjacent fictitious cell to be adjusted to the corresponding value of the

tangential velocity of the solid boundary.

The location of each and every cell in the computational domain is denoted
by index, i, j, k. For this particular problem, 20 cells in radial, 20 cells in axial
and 18 cells in azimuthal direciions were chosen. The choice of a grid

configuration as well as spatial increments of three mutually perpendicular
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axis, Ax, Ay, Az depends on the geometry of a given problem, numerical
stability criteria and the computer hardware which includes real-time
operational speed or central processing unit (CPU) time as well as memory

storage capacity.
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Fig. 5.1. General mesh arrangement.

92




3.2 Truncated Error Analysis

Errors arising due to the truncated terms influences greatly the stability
criteria of every numerical algorithm. Attempts to solve partial differential
equations in the past were often not successful. The oscillatory diverging
nature of the error frequently contaminates the discretized equations causing
violations of numerous natural laws. For instance, negative diffusion is the
main contribution to the error which ultimately violates the second law of
thermodynamics. In order to minimize the error, appropriate restrictions

which ensures stability must be implemented.

At first, the analysis is to be focused on the general behavior of truncated
error as a result of dependent variable discretization using Taylor series
expansion where low-order terms must represent the discretized governing
differential equations, and all high-order terms are to be considered as a
truncated error. Such an approach gives a better chance to distinguish the
discretized equations which include the high-order terms, from those which
are actually to be solved by the means of finite-ditference technique. The latter
depicts that equations which exclude the truncated error are rather a hybrid of
the actual governing equations and in most cases, fail to portray the nature of

the governing equations.

The von Neuman-Fourier error analysis is frequently defined as a
rigorous one; it allows the assessment of the nature of error growth whether
it is oscillating, diverging or a combination of both; as a result, it assists in
obtaining the means to minimize its presence and, ultimately, establish the

stability criteria. The analysis is well suited for linear equations, but not
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applicable to the equations of a non-linear nature. Since discretized equations
are represented by a set of algebraic equations, the expression for the
truncation error must be, as well, accompanied by an algebraic expression.
Moreover, the method requires an explicit form of the errors in order to
assign the limiting values of its amplitude. Because most the non-linear
equations can not be expressed in an explicit form, the Von Neuman-Fourier

analysis can not be applied.

The following example may demonstrate the substance of the above
argument. Consider the non-linear parabolic (in time) partial differential

equation:

dd

2, o0 %
ot

+0g—vax2

(5.8)

which represents a 1-d transport equation in Cartesian coordinate system with
constant diffusion coefficient, v, and 9(x,t) is a velocity component. Defining

the error by a finite Fourier series one gets,

E= eibkpr eanAt = Gneiﬁk‘pr (5'9)

where, GI - amplification factor at time level, n(n =0, 1, 2, ... o)
i - complex operator

Bk - arbitrary constant

p. k - integers

Ax - spatial increment

Discretization of eq. (5.8) using forward difference for the time derivative and

central difference for space derivatives yields,
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n+l n n . n n n n n
o - Y ='2_12Lx‘9i (Bjp1 O5.1) + YALD; g 485 - 207)

Ax (5.10)

G + GPAL (B pAx isin(B, Ax) = 2!—421 (cos (ByAx) - 1)

Eq. (5.11) is an implicit, non-linear algebraic equation, and an analytical
solution is not available. Thus showing clearly the inadequacy of the Von
Neuman-Fourier truncation error analysis. One can, however, approximate
the error by linearizing the governing equations. This may be only valid
when the degree of perturbation is considerably smaller than the
predominant components of the flow. Such a linearized truncated error

analysis was performed by Hirt (1968).

The ultimate objective here, however, is not to predict the actual
distribution of the truncated error but to develop the means to minimize it or
even eliminate it. Until now consideration was given to the general behavior
of a truncation errc.. The next step is to consider the actual error terms which
are to be introduced when the finite-difference +~heme is implemented.
Using the previously introduced finite-difference formulation with an

addition of high-order terms, the eq. (5.8) will acquire the following form:

+3 % =vZZ oA

2 2
9 A998 98 _ 90
29

(5.12)

95



The second term in the above equation is the only addition to the
governing equations while all other high-order terms associated with finite-
difference approximation were neglected. For simplicity the second-order
time derivative is to be converted into a space derivative. Then, eq. (5.12)

becomes,

Qét?_ 090 (v Aty MAL_)—+ O(Ax>, AxAt,At%)
ox 2 ox? (5.13)

This clearly illustrates tha! ihe terms in brackets on right-hand side of eq.
(5.13) which are defined as an effective diffusion coefficient must not at any
time be negative otherwise it will tend to concentrate than diffuse a
disturbance. This leads to another condition or rather restriction which
indicates that a numerical solution free of instabilities is possible only for the
following limited values for the diffusion coefficient,

2 vA199
VZAZ-LG & v 2 ax

the second condition is not as significant as the first one, thus, it can be

ignored. Then, P* must be smaller than two; where P* is defined as a modified
Peclet number and it is equal to A"v B and x*= At®. For a number of practical

applications where the viscosity is small, the Pe* is definitely higher than 2

which implies that the above discretization is not appropriate.

The above mentioned problem can be solved using the Donnor-cell

method, or upstream-differencing scheme. The scheme was first introduced

96



by Courant, Isaacson, Rees (1952) and subsequently developed by Los Alamos
Laboratory team and others. The physical interpretation of the upwinding
technique constitutes that the information to compute the properties (that
includes non-linear derivative terms and transport properties, e.i. velocities)
must be provided from the upstream section of the flow. The formulation
eiiminates the negative diffusion coefficient. Depending on the flow
direction, the non-linear terms in the transport equations are discretized
using a modified form of backward or forward differences, instead of central
difference. For instance, if the direction of the flow is to the right, the

backward difference is to be applied accordingly.

Consider a convective term in eq. (5.8) which is discretized by the

following technique:
ﬁé)—ﬁ— = ﬁ' (13 -95_1) + O(AX)
ox (5.14)

where,

9.1 = 9 Ax (86 Ax J ‘;) +O(Ax )
ox (5.15)
Then, using Taylor series expansion,
ﬂg—ﬁ - ﬁi(gﬂ). ﬁA" ) +0(Ax)
* x (5.16)
or
ﬁ%}s B ax) IGIAX +O(Ax)
(5.17)
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where the second term on the right hand side is defined as the upstream
differencing and o is the upstream differencing coefficient. Inserting eq. (5.17)

in eq. (5.13) leads to:
2
0% a9 _ v.Atg? Ax _vAt98| 978 2 2
Sr+o5s=|v-Ao’ +a Ial ) 5+ OAx’, Axa, Ac) 518
To assure a positive diffusion coefficient, it is therefore required that
Ax A_L vAtaﬁ
v+ao 2 2 +
ol 23 (5.19)

Dividing inequality (5.19) by v, one obtains

Ax 5 Atg?, AL9Y
1+a|13|2v 22 v+ > I (5.20)

Since, v has a relatively small value, Pe” < 2 + oPe. But Pe is always greater
than or equal to Pe* provided that the Courant number is satisfied; hence, it is
essential to implement the upstream differencing in order to avoid

numerical instability.
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Fractional Volume F

Problems with the presence of a free boundary have always posed a
number of difficulties, in particular, when a finite-difference formulation
were implemented. In principle, the difficulty comprises of trapping a free
boundary which can arbitrarily be located anywhere within a computational
mesh. The earlier developed 2-d algorithm, SOLA-SURF partially
accommodated the above requirements. The principle of treating the free
boundaries in the latter algorithm was to define a single-valued function,
H(x,t) or H(y,t) which represents the distance of the free surface from a rigid
boundary. This is feasible only in the case when the slope (dy/dx) of a free
boundary at any free boundary cell of computational domain is either less or
greater than one. In other words, the measure of function, H, is virtually
limited to either a vertical or horizontal position but not both. This principal
restriction of SOLA-SURF does not permit any further developments of the

algorithm when the application of a 3-d case is required.

Based on their original SOLA-SURF the Los-Alamos Laboratory team
introduced another 2-d algorithm, SOLA-VOF which treats the free
boundaries in a different fashion. The principal difference is the introduction
of a fraction volume scheme which permits more flexibility in trapping the
free boundary. This scheme introduces an intrinsic function F(x, y, z, t), the
volume of fluid function (VOF), whose values are unity for cells filled with
fluid and zero for void cells. Although the virtual nature of F is characteristic
to a step function, the entire numerical scheme must still retain the
principles of continuium mechanics. F must acquire an intermediate values

of zero and unity; thus, cells with values of F between zero and unity contain
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the free boundary; correspondingly, the novel function is recognized as the

fractional volume function.

The continuium principles indicate that the total differential of F with
respect to time within a given control volume must be equal to zero:

DR .7 -
o (F) at+v(VF) 0 (5.21)

where V is the velocity vector. Hypothetically, the latter principle is identical
when the fractional volume function is to be defined for the case of solid
mechanics. One can consider a solid body of finite volume which, under
elastic deformation, still retains its original volume regardless of the final
shape of the body. Analogously, for incompressible fluids, the total change of

an assigned control volume with respect to time must be equal to zero.

Combining the continuity equation and eq. (5.21) will lead to

L V.(VE+FVV=0
or
oF -
—+V{FV)=0
o *V(FY) (5.22)

However, the above equation is valid only for the region filled with fluid

since continuity equation does not hold at free boundary interface.
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The behavior of F entirely depends on the velocity distribution in three
mutually perpendicular directions, namely, the incoming or outgoing fluxes
of the cell under consideration influences the value of F which
mathematically, is expressed by eq. (5.22). In cylindrical coordinates eq. (5.22)

has the form,

OF  OF OF  oF _
§T+U&-+V§;+Y"a-z-'—o (5‘23)

Application of the Eulerian principle of discretization for the time derivative
and standard finite-difference approximations for space derivatives will lead
to a misinterpretation of fractional-volume function. The most appropriate
way to obtain F is based on the calculations of the net flux throughout the cell,

see Nichols et al (1985).
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2.4 Boundary conditions

Uniqueness of the solution depends entirely on initial and boundary
conditions of a given problem. As a matter of fact, the numerical simulation
cannot be performed without setting physical boundaries of the problem. The
present work requires the application of various types of boundary
conditions. At the fluid-solid body interface free-slip, non-slip or moving wall
conditions may be implemented. If the condition is a rigid free-slip wall, then
the velocity normal to the wall must be equal to zero and the gradient of the
tangential (to the wall) velocity component is also zero, fig. 5.2. The physical
significance of the latter condition is to simulate no dissipation effect due to
the presence of a rigid wall and no penetration of flow in a direction normal

to the wall.

Solid (moving or stationary)
boundary
j L)
A UG, 2, k)
o=
! Computational cell [
> i Ll
%I
Fictitious cell UG, 1, k) = U(, 2’ k)

Fig. 5.2. Free-slip boundary conditions.
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Similar to the free-slip boundary condition, the non-slip condition
requires that the normal as well as the tangential to the wall velocity
components must be zero. In the mathematical sense, the tangential velocity
on the fictitious boundary cells which surrounds the computational grid field
is set to be equal to the negative tangential velocity right over the wall, fig. 5.3.

The non-slip condition is a rough approximation to the flow near the rigid

boundary.
Solid (stationary or moving)
boundary
. Computational cell
J UG, 2, k)
. et
-~
Us | - -
77 7 U
-
-
«
U(i, 1, k) = Ub - abs{U (i, 2, k)}
| Fictitious cell
Us - absolute velocity of moving boundary

Fig. 5.3. Non-slip boundary conditions.

A moving wall is another type of boundary condition which allows the
simulation of moving boundaries. If it is required, for instance, to implement
the presence of a rotating disk, then the tangential velocity of the fluid at the
solid-fluid interface must be equal to that of the disk. Using linear
interpolation, one can obtain the required algebraic relationship between the

tangential velocity of the fictitious cell and the velocity right above the disk
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(fig. 5.3). The conditions for the other velocity components are imposed

according to the non-slip formulation.

The application of periodic boundary conditions is essential for problems
where there is a repetitive nature of either the flow field or the structure of
the computational grid. Since the problem is governed by the equations of
motion in a cylindrical coordinate system which can also be viewed as the
equations which have been transformed from a Cartesian space. Such a
transformation permits one to view the flow field in a rectangular grid
structure instead of a cylindrical one. This is identical to the principle of
conformal mapping. Thus, due to the presence of a fictitious layer, the end
cells in the azimuthal direction when 6 =2 1 overlap with the flow domain
cells which are one cycle behind (when 6 = 0). This condition is implemented

using the following relationships:

Vi,j,1="Vi,j,kmax - 1
&

U j,j, kmax =V i,j,2

where v is a general physical property.

Similarly, the fictitious cells at the geometrical center for 8 = 0 overlap
with the vertical layer containing flow domain cells when © = n. This

condition is numerically applied using the following relations:

V1,j,k=702,jkm2

where,
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IS_M_Z_.”( for KMAX - 2<KMA2£_2+1

KM?2 =
k- KM%’S——Z for KMAX - 2>KMAX—Z+1

providing that kmax is an even number, fig. 5.4.

Special attention must be attributed to free surface boundary conditions
which are considerably sensitive to any type of physical abnormalities that
may be involved when developing a numerical algorithm; this may include
the inevitable effects of truncated errors, size of a grid field, etc. Applying the

free surface boundary conditions the following two requirements,

Normal stress
-P+2u Uy =
on (5.24)
Tangential stress
oU, aU
——m_0
om an (5.25)

must be satisfied, where U is the velocity vector, n and m are spatial
components in directions normal and tangent to the surface interface

respectively. In cylindrical coordinates, the normal stress cnnditions are

-P+2ug" 0
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Fig. 5.4. Azimuthal boundary conditions.
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-P+2u(1 aw+§t =0
ov
P+2pé—-—0

Addition of the three normal stress components give,

po2M(Au 1w v ) 2
T3

ox X oz ay 3 (5.26)

which clearly shows that normal stress conditions are satisfied automatically

when pressure iteration technique is performed.

Contrary to the normal stress relatiors, tangential stress conditions must
be applied explicitly. The following relations are obtained using the

cylindrical transformation:

19u aw W g
X dz ax X (5.27.a)
Ju ov
—t+t—=0
dy Ox (5.27.b)
19v .a_‘l =0
Xz " dy (5.27.¢)

These may be incorporated directly into the numerical algorithm; however, it
will involve a number of undesirable complications. In particular, additional
partial differential equations have to be solved implicitly. This can be avoided

by employing the following hybrid relations obtained from eq. (5.27)
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N _o g AW _g

o0z ogx (5.28.a)
du ov
M-0 & Z=0
dy ox (5.28.b)
ov ow
o0 & Z-=o0
oz dy (5.28.0)

The expressions possess the same principle of numerical implementation

with the free-slip solid wall boundary conditions.
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" jonal procedur

Assigning initial values of velocities and pressure, the numerical
algorithm employs a time-marching technique to advance the flow field
toward the successive time level. A preliminary computation of velocities is
performed using discretized momentum equations followed by a pressure
iterating technique to assure that continuity equation is satisfied. This double
stage step is accomplished at a fixed time frame which is followed by a
consecutive time-march to the next time step. The process is repeated on the
basis of the previously obtained values of dependent variables until a

desirable time level is reached.

Although the discretized equations enable one time-step, the newly
computed values of velocities will not, in general, satisfy the continuity
requirements. In order to satisfy continuity equation for each and every
computational cell (excluding those which contain a free surface), the
pressure in each cell must be adjusted appropriately. Physically speaking, the
velocities computed according to eg. (5.20) invoke the inconsistency of a net
outflux or influx at a single cell. The degree of inconsistency is measured by
introducing the residual value of D (divergence) which theoretically must be
minimized to zero by means of changing the pressure within cells; for
instance, if there is an excessive accumulation of mass within the cell, the
value of pressure must be lowered appropriately, or if there is a depletion of
mass, the pressure must be increased correspondingly. Qualitatively, the
change of velocity within the cell on the four faces of a cell is related to
pressure increment and other independent variables employing the

equations of motion,
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Ui.j.k_') Ui'j‘k.’.él_ég
Ax

At AP

Ui, k2 V0 ke
Ax

Vi.j'k—) Vi,j.k +A-IM-
Ay

At AP
Ay

Viji-txk =2 Vijork-

Wi k= W, +ALAR
x Az

W..j.k-l"’Wi.j.k-x'M
X Az

The above relations are substituted into the discretized continuity
equation to obtain the following expression for the residual value of

divergence D:

D=V.V=-2atAp—1_4+_1 4 1 )
((Ax)2 (ayf  (xa2)?

There are two unknowns in the above equation which can be evaluated by

breaking it down into two independent equations:

D=V.V
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D

A

P=-
At 4 1 4 1
((AX)' (ay)  (x AZ)') (5.29)

Thus, pressure within a cell is changed according to:

P 5P + AP

For cells containing the free surface, an interpolation technique is
required to update the cell pressure. For simplicity, consider the 2-d case of
free surface profile shown in fig. 5.5. If the free surface profile deflects locally
less than 45°, then the cell right below the free surface cell is the adjacent full
cell. Nichols et al (1971) suggest the following expression of pressure

interpolation/extrapolation
AP = 7\(P, - Prs) +(1 - M)P;- P,

where P, is the pressure right above the free surface, Py, is the pressure due to
surface tension, Ps is the current value of pressure within a surface cell, Py is
the pressure of the adjacent full cell and n is the interpolation factor which
mathematically can be expressed by either,
AY n=Ax _xAz
n= 3 orn= q orn= 9

depending on the angle of deflection.
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\

Free surface

Fig. 5.5. Pressure interpolation on a free surface interface.

In order to accelerate the iteration procedure or even prevent numerical
instability, it is advisory to multiply the pressure increment, AP, by a
relaxation factor, . Qualitatively, this factor depends on the number of
computational cells present in a boundary domain. An optimum value of ©
is 1.8 for a grid field of over 500 cells and 1.2 to 1.5 for smaller grid field; in no
case, should the value of w exceed 2.0 otherwise an unstable iteration will

result.

In summary, the entire computational procedure consists of three major
steps. The first step is the evaluation of velocities for a new time step based on
previously calculated dependent variables, velocities and pressure. The

computation proceeds using time-dependent finite difference Navier-Stokes
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equation. The adjustment of velocities using pressure correction procedure is
required since newly calculated values of velocities will not satisfy the
continuity requirements. During the second step, i.e. the process of the
iteration, each cell is considered successively and a pressure change drives its
instantaneous divergence to zero. Finally, when convergence is achieved for
every cell in the entire flow domain, the velocity and pressure advance a
successive time step and are used as starting values for the next cycle. The

entire procedure is repeated until a desired time level is reached.
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5.6 Numerical Results

One of the prime objectives using a numerical technique is first to
validate the computer code. This was achieved here by comparing the
numerically obtained free surface profile with the experimental results. The
results shown in fig. 5.6 have been obtained for flow conditions at which the
rotating core remains relatively undisturbed. According to the figure, there is
a satisfactory match between the numerical and the experimental free surface
profiles. It is clear from the numerical results, presented in the same figure,
that small surface waves are present on the interface. These waves, generated
in the vortex center convect upwards moving along the free surface. This
phenomenon bears the universal characteristics of the diffusion mechanism.

During experiments these small amplitude travelling waves have also been

observed.

Consider fluid particles in an axial-radial plane set in motion by a
rotating disk. Due to the centrifugal force some of the particles will be repelled
outwards along the radial direction until they sense the circumferential wall.
The solid boundary wrill then redirect their motion upwards and then the free
surface will force them to flow towards the center. Continuity will then
compel the particles to close the loop thus generating a recirculating cycle.
The problem, however, is 3-dimensional which implies that the fluid not
only possess a recirculating behavior in the radial-axial plane but it also
undergoes a rotational motion in the radial-azimuthal plane. In the general
sense, the particle motion excels in a spiral-like fashion around the surface of
the secondary flow toroid. Depending on the type of vortex mode (whether it

is a combination of free and forced or just forced vortex) the spiral-like
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trajectory of the particle around the surface of the toroid may take various
paths. The trajectory path may shrink or expand in the azimuthal direction
due to the Coriolis effect which is indeed present in the governing equations.
Alternatively, the spiral-like path may be viewed as a helix in a Cartesian
coordinate system which does not necessarily possess the typical equally
spaced coils. In other words, viewing the toroid from the top, the angle
between the tangent at any arbitrary point along the path and the line drawn
from the center of rotation to the same arbitrary point is not constant as

opposed to a normal helix.

AP Numerical results
0.4 o Vatistas (1989) |
A Julien (1985)
0.2 .
0 | f
0 1 2 3 4
r/R

Fig. 5.6. Comparison of numerically obtained free surface profile
with some experimental results.

The degree of influence of the Coriolis force depends strictly on the

tangential velocity component of the moving particle and on the magnitude
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of the viscous-dissipation forces which normally occurs in the vicinity of
moving or stationary boundaries. The Coriolis effect becomes more
predominant in the regions where vorticity is virtually equal to zero. On the
other hand this is not significant in the region of the boundary layer where
viscous-dissipation forces dominate. Hence, as a fluid particle is repelled
towards the circumferential wall of the cylindrical container, it does not
experience the same Coriolis effect to the particle that is impelled towards the
line of rotation following the contour on the free surface. This line of

argument might explain the irregularities of spiral-like type path.

The obtained numerical results of secondary flow motion are combined
in the sets of velocity-vector plots corresponding to three different diameters,
0.08 (3.15), 0.12 (4.72) and 0.20 m (7.87 in), two viscosity values 5.0 (10-4), 5.0
(10-5) m2/sec and various angular speeds. The results are combined (Fig. 5.7)
where the history of evolution of the secondary flow field under various

prevailing conditions is demonstrated.

Consider, for iistance, the case when Q = 100 rad/sec, ry = 0.06 m, h, =
0.07m (fig. 5.7.a). The fluid in a cylindrical container is initially at rest which
numerically implies that the three velocity components are set to zero at
every computational cell. The pressure is zero at every cell above the free
surface interface and hydrostatic inside the liquid, and the volume-fraction
function is set to unity in the region filled with fluid and zero elsewhere. The
selected spatial increments are Ax = 0.005 m, Ay = 0.005 m, Az = n/9 rad, and At
= 0.00075 sec satisfied the required stability criteria. At time equals to 0+ the
disk starts to rotate at a given angular speed. The flow patterns expressed as

velocity-vector plots were obtained at various time levels.
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According to figure 5.7.a, the free surface interface exhibits a noticeable
wavy behavior as the core wanders until it reaches a stationary mode of
motion. As the liquid starts to repel towards the circumferential wall, the
region in the vicinity of the free surface interface is not entirely influenced by
the momentum generated by a rotating disk which makes the interface
susceptible to oscillations. For instance, the first row of the vector plots in the
same figure, namely, t = 0.1 sec, t = 0.2 sec, t = 0.3 sec shows the completion of
a cycle of the wave propagating in radial-azimuthal direction which changes
its modes of oscillation as it progresses to a consecutive cycle, t = 0.4 sec, t = 0.5
sec, etc. As time evolves, the free surface interface approaches the profile of
the free surface predicted theoretically and experimentally with minor

oscillations propagating upwards along the interface.

The wave propagation on the free surface interface constantly
accompanies the computational flow domain which is also evident from
other velocity-vector plots on the same figure. Under certain conditions there
is a continuous small precession of the vortex core even at the steady-state
condition which can be clearly seen from fig. 5.7.(c - e). A similar
phenomenon of the core behavior was also observed experimentally. As the
angular velocity Jf the rotating disk increases, the presence of precession is
becoming less evident which once again reveals the fact that viscous-
dissipation forces attenuate the oscillation. One does not observe a significant
qualitative difference among the secondary flow patterns of two different
values of viscosity. However, the transient period is quite diverse among
these two sets of different viscosities. Considering the set of lower viscosity,
the viscous-dissipation forces are not as strong as the other case which gives

rise to a substantially profound oscillation especially in a neighborhood of the



free surface interface. In fact, the rate of viscous-diffusion which propagates
upwards due to the rotation of a disk as time progresses, is different for the
two cases. As a result of the low diffusivity, the numerical code is becoming

prone to convective, as well as numerical instabilities.

The velocity-vector plots in the azimuthal-radial plane are quite
spectacular {fig. 5.8). The resuits show intense wave activity taking place in
the vortex core similar to that obtained experimentally by Vatistas (1990). The
core develops distinct n-polygon shapes apex of which remain unperturbed at
the center of rotation as the disk is continuously spinned by the external
source. The results were obtained under a single set of prevailing conditions
excluding the angular speed of a disk which was set to eight different values

according to the figure.

Similar to the velocity-vector plots obtained in the radial-axial planes,
the velocity-vector plots in the azimuthal-radial plane were generated by the
same numerical settings. As the real time progressed, the free surface
interface descended along the line of rotation, reaching the surface of a
rotating disk and eventually forming the n-polygon shapes. According to the
figure, the evolution of core shapes show similar functional dependence of
the angular speed and the equilibrium states with the observations to that
obtained experimentally between the angular speed and the equilibrium
states which signifies the strong validity of the code. this proves that the
waves in the core are indeed present in the solution of the Navier-Stokes

equations.
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6. Conclusions

The main objectives of conducting the present work were: (i) to develop
a simple model capable of describing the primary parameters in concentrated
columnar vortices, (ii) to use the new approach along with experimentation
in the study of liquid agitation, (iii) to employ the model in other applications
where the vortex is the dominant mechanism, and (iv) to develop a
numerical solution technique with the aim to (a) characterize the secondary-
like flow, (b) to prove that the observed harmonic disturbances in vortex

cores are also present in the solution of Navier-Stokes equations.

The experimental and theoretical studies were successful in numbers of
areas. The new empirical formula for a vortex greatly simplifies the
derivation of pressure distribution and free surface profile. Dimensionless
groups in liquid agitation were established and appropriate relationships
between the main physical and geometrical parameters were attained. The
application of the new realistic formula for the azimuthal velocity
component simplifies substantially the main parameter characterization of

vortex chamber flows and particle concentrations in liquid vortices.

The Los Alamos numerical algorithm SOLA-VOF (2-dimensional
scheme) was extended to 3-dimensional flow field with the presence of a free
surface, in cylindrical coordinates, and the obtained numerical results

confirmed the experimental observations. The latter made possible the
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depiction of the flow structure in the axial-radial plane. The presence of
waves in the vortex core under prevailing conditions, found experimentally,
were shown to exist in the solution on the equations of motion. Further
studies using the code will enable one to construct the solution manifold of
the problem under consideration which is vital in the understanding of the

early stages of flow evolution towards turbulence.
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Appendices

Appendix A

Pressure and free surface profile derivations, (chapter 2)

P(f, Z)= dr - Nz + constant

-nllm<,L

Rankine's model

For the forced-vortex region,

= T2 -

P{r, z)=1'2—-‘r]z+ C
A‘F=0, P =0 which leads to C1 ="z,

Therefore,

P(2)=T-nz-2)

For the free-vortex region,

P(f.z)=--L-nz+C,
2F

AtT =1 both pressures, eq. (A.3) and eq. (A.4) must be equal, or
-1-mz+ G =Llon(zn-z

or
C=14+ NZh
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Then eq. (A.4) becomes,
P(r. z)=[1 - —};]-n(z +Z)
2r-

For a gaseous Rankine's vortex, n =0, eq. (A.3) and eq. (A.5) become

respectively,
—_ =E
P(r, 2) 3
and
Pz =[ --1—]
R =

From eq. (A.7),

B(f —oo, 3)=1
Dividing both eq. (A.6) and eq. (A.7) by eq. (A.8), one obtains:

ap=P-Pn .2

P.-P, 2
and L
respectively.

(A.5)

(A.6)

(A7)

(A.8)

(A9)

(A.10)

To obtain the profile of free liquid surface we set P (7, Z)=0. Then, eq.

(A3) and eq. (A.4) can be expressed as

and

respectively. From eq. (A.12)

and
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(A.12)

(A.13)

(A.14)



(A.15)
for the forced and free vortices respectively.
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Burgers' model

Using Burgers' vortex, eq. (A.1) yields,

; P(f, Z) = B - nZ + constant
where B is given in the main text. In the case of a gaseous vortex,

P(f, Z) = B + constant

; The limiting case gives P{f—0)= lf_rf; B+ const. = 0
: Then const. = - l}f} B
i Also,
i P - Ph - 1 . B
Py, - Py lim B
T—0
But

lim B = alim [Ei(- of2) - Ei (- 2072)]

=0 r -0

By definition, Abramowitch et al (1970)

Ei(-w)=7+ Infu)- 3 E e
ae1 nn!
where 7y is Euler's constant (y = 0.5772157)

| Then,

'” nt?" (2" -1) = a In(2)

lim B =« ln(2)i (-131):

r—=0

Therefore,
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For the liquid free surface

and

then

Therefore,

P-P, _ B

P.-P, oln()

Z= E + constant
n

_ __aln@

%@i—0% = T
constant = zy, - aIn (2)
E_Eh=_[3__ aln (2)

n n

-A-;_ Z-Zn __

+ constant

T Z.-7, ]'aln(2)
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New model
Using velocity for the new vortex, eq. (A..) yields,

P(r.2)= %—arctan (¥2) - nz + constant

AtT=0,P =0 ,which leads to C1 =N,
Then the pressure equation becomes,

P(f,2)= %arctan (F)-n(z-z) (A.18)

For a gaseousvortex, N = 0, eq. (A.18) becomes,

P (7)= L arctan () (A.19)

Division of eq. (A.19) by P (Fo0) yields,

1 =2
E= P-Py _ 2arctan(r )
P. - Py 2nR2 2P_-Py
=
However,
l_im /F: i
(ZRRg)Z P - Py e
Then | g p (A.20)
Then,
= 5 »
AP - arctan (r ) (A21)

143




To obtain the profile of free liquid surface we set P (f, Z)=0. Then, eq.

(A.18) gives,

z-ih=i-lﬁarctan(f2)

From eq. (A.22)

and
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Appendix B

Derivation of Equations (4.4) and (4.5)

The energy balance across the vortex chamber

f (P+%pq2)V2dA=f

Ay

(P+%—pq2} -7 dA
Let
__Q
* n[R2-RY)
then,

Re

= 1

P -P = éj pnq2 V, rdr - 5 pqZ
Ro

substituting eq. (B.2) into eq. (B.3) yields

Ry
-_P 21
P‘“-P""“<R§-R§)L (V2- V2rdr 10d,

Also, from eq. (2.23)

2
b
® \2n Rg +rd

Substituting eq. (B.5) into eq. (B.4) results

2 Re
r_ 3 V2
P. -P_=P. -P P ( ) P dr+—toz f rdr-2q

4 2 2
Ré-rt R2Z-R?
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r
dr=1in/ Y1+ 1
Rg- 4 12| xd
then,
2 V2
P (~)1 Y. 0. PY2 P
AP =P -P <1 1+ +—2-=

in (Rz-RZ) nf( x4 2 24

Rearranging the terms

2

2

28D 4 9= 1 (Ei)-—l——l ‘1-(1+ L V
paf,  2(R2-R%\2m/q2 }2 X q2

Also,

2R2 v2

r
-2 R2 R2 cos20
q q

21tR2

with an addition of the eq. (B.10), eq. (B.9) retains the form:

24P , RZ cos20 {<(1+ 1 Q?
PR, z(R2 R?) nz(Rz Rf @
or
24P , 1 t) cos?g ‘ “ (89
oo, 2 20 12N g
and
_ ln{l (x +1)/ x4]
AP =
(1- xg)2 2(1-x2)
where,
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AP = (M +1) Re/Rt)2
P Gin cos 0
2
B = __IA.[\_/AQ
R, /Rcos 6
Introducing

AP
ox, 0:

which yields,

I sy o w S Y 16x5) |, 2Bx
(1-);22)2\1 ‘/ﬂl le 1-x2 (1-lxg){;(1:°1 (l_xcz)Z}

x¢

2 [ [T a]. 28 . (1-x) |_
(1-xg)2\l“‘\/2(“xéj+1-xg 2 +xd) "

or

and, finally,
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Appendix C

Discretized Equations.

X - momentum

U
v T“FUX =1 Ui ik {Uivrix- Ui *+ Ui (Ui k- Ui,k Uieg,5u)
X 2Ax

U Vier ik * Vijk+ Vie,j-1x+ Vi gk
VW~FUY=2AI ( i+l ) 41+ ) 1) ){(Ui,j+1,k‘Ui,j-1,k)+
y
+alv.I(ZUi,j,k'Ui,jH,k’Ui,j-],k)}
ou Witk * Wikt Wisgik-1+Wijk-1
%\%?EA:UZ:qu — = 4M L = (Ui jke1-Uija) +

+ GI‘N .I(ZUi,j,k'Ui,i,k*‘l 'Ui,j,k-l)}
V_v.__—-FUC_-—-U, ) k‘(Ui+1,i,k +Ui-],j,k+2Ui,j,k)- a|Ui,i,lJ(Ui+1,i,k-Ui'l;i:k)}

VISCX—A (Ux+1]k+Ux 1,i, k-ZJI]k)+ (UH] pk” Ui. 1)“)+

+"‘1_2(Ui j+ 1kt Ui ja1,6-2U5 i) + —

Ay , , (XAZ) (Ux)k+1+Ux],kl 2U11k)

Pk 1y +W, Wi - W )
x2 x2Az7 ij k i+41,5,k™ Y, 5,k-1" YVi+1,jk-1

Ul h=Ul + At‘Al—(Pi_,,-Lk-Pi,i,k)- FUX - FUY - FUZ + FUC + v*VISCX’n
X

where
Vos(Vier ik + Vijk + Vien,j-1,k+ Vi j-1,x) / 4
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W o=Wiigix+Wijk(+ Wit jx-1+Wi;k.1)/4

y - momentum

oV Ux)k+Ux +1k+U 1, k+U 1L,j+1k
UX"WX° ’ ’ 4‘ P (Vierix- Vieyju) +
+ahj1(zvi,j,k‘Vi+1,j,k'vi-l,j,k)}
Vv

Vé?‘.FVY:Z{y—VlLk{(VLHIk V: . j- 1k)+alv|]k'(zvl),k v1)+lk Vl,] lk)'

u--aa%~FUZ— w1+1)k+wx)k+‘2,1+1]kl wx,l,k 1
2xAz

)((Vi,j,kn‘vi,i,k-l)"'

ik Viik+1 - Vijk-1))

VISCX--;(V:H Pk Vi k- "-"'nyk)+ (Vie ik~ Vi) +
Ax 2xAx

+Zi,—2(vi,i+l,k+vi,j-1,k'zvi,i.k)+(_'1—xAz)2(Vi,j,k+l +Viik-1-2Vi )~

Viik=Vijk+ At Al—(Pi,j.l,k-Pi,j,k) - FVX - FVY - FVZ + v*VISCY|
y

where
U =(Uijx+Uij+ 1,k + Ui,k + Uic1,j41x) / 4

W =(Wist,jk+ Wik + Wit jk-1+W,jk-1)/4
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Z - momentum

Uik Uik 1+ Uitk Uilg k41
4

W 1

U—~FVX = ) W. =W +
ax 2Ax {( i+1,jk 11,),k)

+ ‘1Il11(2Wi,j,k'Wi+1,j,k'Wi-1,j,k)}

oW Viik+1+ Vijk+ Vijorxe1+Vij1,x
Vo Y T R R W W)
y

+ alv1(zwi,j,k'wi,j+1,k'wi,j-1,k)}

aW :
Mx]"’j;;‘“FVY=2xAZ Wik {(wi,j,kﬂ 'Wi,j,k-l) +

alwi,j,k”zwi,j,k'wi,j,k-rl'wi,j,k-l)

Uik tUijk +1+ Uikt Uictjk 41
LXM~FVX=%‘ i) L)k + 41 )] 1-1,), K + [(Wi+1,i,k-wi-1'i'k)+

+afU(Wis g k- Wiig,ii)

VISCZ = —13(wi+ Lik Wi 2Wi 5+ =1 (Wis 150 Wi i)+
Ax 2xAx

+'A—:I_2(wi,j+1,k+Wi,j-1,k'2Wi,j,k)+(;‘Azl—)'2‘(wi,j,k+1+wi,j,k-1 - 2W; )

Wi i x +Ui-1,j,k +1% Uik +1-Uiog ik - Uik
x2 x2Az

n+l _ yarn 1 "
WiTke= Wi o# A (B 3 -Py ) - FWX - FWY - FWZ - FWC + vAVISCZ

where
»
U =(Ui,jk+Uijx +1+Ui-1,jk+ Ui-1,jk +1) / 4
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»
Vi =(Vijk +1+ Vijk+ Vij-1k +1 +V5-1,%) /4
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