Table 3.3.1

Deviation of Scaled Mean Radial Velocity

at Re/Ro = 0.58 (near Exit Section)

% Re,i Rep Re,i
r/Roe = 13700 = 7840 = 1960
0.036 -6.42 134 -6.94
0.109 -6.64 8.70 -2.06
0.182 3.82 -6.91 3.09
0.255 15.6 -5.45 -10.1
0.327 12.1 5.55 -17.7
0.400 -3.10 15.0 -11.9
0.473 9.76 132 -23.0
0.545 4.62 5.22 -9.83
0.618 11.3 -12.2 0.89
0.691 -4.82 -5.09 9.91
0.764 -1.60 -9.54 11.1
0.836 5.68 -20.1 14.4
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CHAPTER 4
TURBULENCE INTENSITY

4.1 Introduction

The motion with irregular velocity fluctuations is considered as
turbulent [36]. Turbulent fluid motion is an irregular condition of flow in
which the various quantitics show a random variation with time and space
coordinates, so that statistically distinct average values can be discerned [37].
Turbulent flows, therefore, are studied both expeinnentally and theoretically
as a statistical phenomenon.

It is generally assumed that a turbulent flow consists of a mean flow

and a fluctuation about the mean value, that is

Vi(t) = Vi) - V.

V() = Ve(t) - Vo

V() = Vi(t) - V, - (4-1)
The mean velocity components of the flow, Vi, Vg and V,, may be taken
cither with respect to time at a fixed point (temporal mean) or with respect to
one of the coordinates at a given instant of time (spatial mean). In this study,
the mean velocity components are taken with respect to time at a fixed point.
The fluctuating velocity components, V;, Vé and V.z, are defined as the
difference between the total velocity components at any instant, Vr, Vo and
V., and the mean velocity components.

One of the important characteristics used to describe a turbulent flow is
the intensity. Since Dryden and Kuethe [38] in 1930, the violence or the

intensity of turbulence fluctuations has usually been defined as the ratio of

the root-mean-square velocity to the average velocity, that is



——

Turbulence Intensity = VV -~/ V
where

o2 .

V* = root-mean-square velocity

V = time average, spatial average or ensemble average velocity

When the fluctuating velocities and the mean velocities are obtained,
such as from measurements, the turbulence intensity of the flow can be

determined. In this thesis, a model of turbulence intensity and mathematical

approximation are presented based on the experimental results.

4.2 Tangential Component of Turbulence Intensity at Main

Section
4.2.1 Model

From the observations of the experimental results shown in Figures
4.2.1.1 to 4.2.1.3, the distribution of the tangential component of the
turbulence intensity along the radial direction of a vortex chamber from the
centre to the wall is found as follows. The tangential component of the
turbulence intensity tends to its maximum value at the centre of the vortex
chamber, drops rapidly from the maximum value to the minimum value,
then increases slowly along the radial direction after passing its minimum
value point. At some place near the wall of the vortex chamber, an apparent
change of the slope of the distribution curve takes place. It is clear that the
turbulence intensity is a function of the location.

Comparing the profiles of the tangential component of the turbulence
intensity with those of the tangential velocity obtained under the same
conditions, an important characteristic is observed: the minimum value of

the tangential component of the turbulence intensity always corresponds to
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the maximum value of the tangential velocity. In other words, they appear at
the same location inside the vortex chamber as shown in Figure 4.2.1 4.

Based on this important finding and the observed features of the
tangential component of the turbulence intensity, a model of the tangential
component of the turbulence intensity is proposed. The distribution of the
tangential component of the turbulence intensity may be divided into three
regions: the central core region, the outer region and the boundary layer
region along a radial direction as shown in Figure 4.2.1.5.

The central core region is defined from the centre of the vortex
chamber to the place corresponding to the tangential component of the
minimum turbulence intensity (the highest tangential velocity). The flow
pattern in this region is generally censidered as a forced vortex motion.

The outer region is defined to be between and bounded by the central
core region and the boundary layer region. The flow pattern in this region is
gencrally considered as a free vortex motion.

The boundary layer region begins approximately at normalized radius
r/R, = 0.9, and ends at the wall of the vortex chamber: r/R, = 1.0. In the
boundary layer region, viscous effects are significant.

Based on their particular characteristics, individual mathematical

approximation is adopted for each region.

4.2.2 Mathematical Approach in Central Core Region

In the central core region, the tangential component of the turbulence
intensity decreases from the maximum value to a minimum value along the
radial direction.

The contraction ratio affects both the magnitude of the tangential

component of the turbulence intensity and t!'e range of this region. With a
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smaller contraction ratio, its magnitude will be smaller and the range will be
narrow. The range based on the normalized radius always follows and is
always smaller than the numerical value of the contraction ratio. This
behaviour could be explained by the influence of the open exit hole where the
central core region faces. The open exit directly affect the flow field.

The inlet Reynolds number affects the magnitude of the tangential
comporent of the turbulence intensity, but does not affect the range.

It is found that a mathematical expression containing an exponential
function will be the best approximation to reflect these phenomena and
influence factors. That is, the distribution of the tangential component of the

turbulence intensity in the central core region can be formulated as:

Iie = B'eXP['D (—Ii)m] (4-2)

-—

In this equation, coefficients B and D are constants. All experimental data
points of the tangential component of the turbulence intensity under the
same condition should be represented by this equation. Thus, B and D can be
determined by substituting any two pairs of experimental data under the

same testing conditions into the following equations:

B = Ly-exp[D-(R)," (4-3)
b In(u/lo)
(R)*- (R)"* (4-4)

where I;1 and (R-)l are data from measurement point 1. Ij7 and (R)z are data
from measurement point 2.

If the experimental condition is changed, coefficients B and D will
change their numerical values correspondingly. But, B and D will have new
constant values for the whole central core region as long as the conditions

(Re/Ro , Re i, etc.) are maintained to be the same within the whole region. Tt is
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further found that B and D are functions of the contraction ratio and the inlet
Reynolds number. They can be formulated by exponential functions as

follows:

R Re
B = B, exp[Bz(RO ) (4-5)

- D, Re
D=D exP[Dz(R“)] 4-6)

B1, B2, D1 and D7 appear to be constants. They are not affected by the
change of contraction ratio, but, they are affected by the change of the inlet
Reynolds number. They are the functions of the inlet Reyriolds number.
Scattering all numerical values of B and D obtained from variety of
contraction ratios, but at each inlet Reynolds number yields curves of B
versus Re/Ro and D versus Re/Ro. A sample is shown in Figure 4.2.2.1. Using
curve fitting technique, the coefficients of equations (4-5) and (4-6), By, By, D;
and Dy, can be determined. The numerical values of By, By, D1 and D; for each
inlet Reynolds number and all contraction ratios are listed in Table 4.2.1.

A sample of the distribution curves of the tangential component of the
turbulence intensity for the central core region based on equation (4-2) is

shown in Figure 4.2.2.2,

4.2.3 Mathematical Approach in Quter Region

In the outer region, the tangential component of the turbulence
intensity increases continuously from the minimum value along the radial
direction.

It is found that the contraction ratio has very little influence on the
tangential component of the turbulence intensity. At any given location, the

measurement shows that the tangential component of the turbulence
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intensity under different contraction ratios is around a certain corresponding
value. Therefore, the effect of contraction ratios in the outer region is not
considered to be included as an independent factor or coefficient.

The inlet Reynolds number affects the values of the tangential
component of the turbulence intensity. A simpler mathematical expression of
the tangential component of the turbulence intensity for the outer region is

proposed as follows:

Lo = Ao'exp('co'ﬁ) (4-7)

Ao, and C, are functions of the inlet Reynolds number, but are
constants for a given inlet Reynolds number. A, and C,, can be determined
according to the following steps:

(1) To a given inlet Reynolds number, average experimental data of the
tangential component of the turbulence intensity obtained at a given radius
but with a variety of contraction ratios to result in a unique datum of the
tangential component of the turbulence intensity corresponding to that given
radius;

(2) Plot all obtained average data along the radial direction to form a
curve of mean value of the tangential component of the turbulence intensity
versus radius corresponding to a given inlet Reynolds number;

(3) Use curve fitting technique based on the exponential function to
determine A, and C,.

(4) Repeat above steps for each inlet Reynolds number.

The numerical values of A, and C, corresponding to each inlet
Reynolds numbers are listed in Table 4.2.1. A sample of the distribution curve
of the tangential component of the turbulence intensity for the outer region,

using equation (4-7), is shown in Figure 4.2.3.1.
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4.2.4 Mathematical Approach in Boundary Layer Region
No existing theory, presently, could be applied directly to the boundary

layer of confined vortex flows. However, the free-vortex model may be
assumed to be extended to the boundary layer including the wall of the vortex
chamber. The experimental findings show that the similar behaviour of the
tangential component of the turbulence intensity as presented in the outer
region can be observed in the boundary layer region. The tangential
component of the turbulence intensity increases continuously except with a
higher gradient.

The contraction ratio has very little influence to the tangential
component of the turbulence intensity. At any given location, the
measurement shows that the tangential component of the turbulence
intensity under different contraction ratios are around a certain value.

The inlet Reynolds number affects the values of the tangential
component of the turbulence intensity. Thus, a similar expression based on
the exponential function used for the outer region can be applied to describe
the distribution of the tangential component of the turbulence intensity in

the boundary layer region as follows:

I = Apexp(-Co'R) (4-8)

The method of determining Ap and Cp is the same as that used to
determine Ao and C, in the outer region, which is detailed in the previous
section. The numerical values of Ap and Cp, are listed in Table 4.2.1. A sample
of the distribution curve of the tangential component of the turbulence

intensity for the boundary layer region is shown in Figure 4.2.4.1.
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The tangential velocity at the wall of the vortex chamber is zero.
Therefore, the tangential component of the turbulence intensity is equal to
zero at the wall. Equation (4-8) is not suitable for the case at the wall. That is,
equation (4-8) can not be applied to the location where radius “r “is equal to
the inside radius of the vortex chamber “R,"”.

Combining all findings and the empirical equations for the central core
region, the outer region and the boundary layer region, three groups of curves
representing overall distributions of the tangential component of the
turbulence intensity of vortex chamber flows, corresponding to three different
inlet Reynolds numbers, are obtained as shown in Figures 4.2.4.2, 4.2.4.3 and

4.2.4.4 respectively.

4.3 Tangential Component of Turbulence Intensity near Exit

Section
4.3.1 General

Based on the experimental results shown in Figures 4.3.1.1 to 4.3.1.3,
the three-region model of the tangential component of the turbulence
intensity proposed for the main section of the vortex chamber is found still
suitable for the modelling of the tangential component of the turbulence
intensity near the exit section inside the vortex chamber.

However, the range of each divided region, that is, the location of
borders for each region, is different from the main section to necar the exit
section although they are under the same testing conditions as well as that
the maximum tangential velocities appear at almost the same location at both
sections. The border line beiivcen the central core region and the outer region
is set based on the minimum value location of the tangential component of

the turbulence intensity. At the main section, it is the location corresponding
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to the maximum tangential velociiy. However, near the exit section inside
the vortex chamber, it is not the location corresponding to the maximum
tangential velocity.

Near the exit section, the numerical value of the normalized radius
r/R, corresponding to the minimum value of the tangential component of
the turbulence intensity is always slightly larger than that of the contraction
ratio Re/Ro, However, at the main section it is always smaller than that of the
contraction ratio. This characteristic can be explained by that the actual range
of the closed space of the exit plate is from the radius of exit hole, Re, to the
radius of the wall of the vortex chamber, R,. What the central core region
faces, in fact, is the open space of the exit hole. Because of the strong influence
of the open space of the exit hole, the central core region of the tangential
component of the turbulence intensity near the exit section inside the vortex

chamber is bigger than that at the main section of the vortex chamber.

4.3.2 Analysis

The distribution curves of the tangential component of the turbulence
intensity near the exit section inside the vortex chamber for the central core
region are provided based on the experimental data and curve fitting
technique.

The distributions of the tangential component of the turbulence
intensity in the outer region and the boundary layer region near the exit
section are found to be similar to those at the main section. Therefore, the
form of the equation obtained for the purpose of estimating the tangential
component of the turbulence intensity in the outer region and that in the
boundary layer region at the main section cre still suitable for estimating the

tangential component of the turbulence intensity in the outer region and that
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in the boundary layer region near the exit section. Similar equations with

different constant coefficients can be used as shown in the following;
Lio/b = Ao/trexp(-Co/vR) (4-9)

It /b = Ap/exp(-Cp/wR) (4-10)

The numerical values of constants Aq /b, Co/b, Ap /b and Cp/p can be
determined following the same procedure as mentioned in the section 4.2.3.
Similarly, the contraction ratio has very little influence to the tangential
component of the turbulence intensity, and inlet Reynolds number has
apparent effect. As a consequence, Aq/b, Co/b, Ab/b and Ch/p will be constants
to all contraction ratios and vary with the inlet Reynolds number. The
numerical values of Ay/b, Co/b, Ab/b and Cp/p are obtained and listed in Table
4.2.1. Samples of the distribution curves for the outer region and the
boundary layer region are shown in Figure 4.3.2.1 and 4.3.2.2.

The overall distribution curves of the tangential component of the
turbulence intensity near the exit section inside the vortex chamber, based on
the empirical equations and the experimental data, are obtained and shown

in Figures 4.3.2.3, 4.3.2.4 and 4.3.2.5 for application.

4.4 Radial Component of Turbulence Intensity
4.4.1 Main Section

It is observed that at the main section the location of the radial
component of the minimum turbulence intensity does not concord to the
location of the maximum radial velocity.

It is found that the distribution of the radial component of the
turbulence intensity varies at different axial locations inside the vortex

chamber. The magnitude of the radial component of the turbulence intensity
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at the main section is higher than that of the tangential component of the
turbulence intensity. The minimum level of the radial component of the
turbulence intensity are about 10 times of that of the tangential component of
the turbulence intensity as shown in Figures 4.4.1.1 and 4.4.1.2. It may be due
to the relatively small mean value of the radial velocity. It is difficult to
model and to formulate the radial component of the turbulence intensity at
the main section of the vortex chamber, neither in the distribution nor in the

magnitude.

4.4.2 Near Exit Section

The distributions of the radial component of the turbulence intensity
near the exit section inside the vortex chamber are obtained experimentally as
shown in Figures 4.4.2.1 to 4.4.2.3.

It is found from the analysis of experimental results that, for any given
contraction ratio, the radial component of the turbulence intensity near the
exit section at different inlet Reynolds numbers can be approximated by a
unique curve as shown in Figures 4.4.2.4 to 4.4.2.9 respectively. It means that,
near the exit section inside the vortex chamber, the contraction ratio has
apparent influence on the radial component of the turbulence intensity, but,
the inlet Reynolds number has little effect.

It is also found from the analysis of experimental results that the radial
component of the turbulence intensity tends to its maximum value at the
centre of the vortex chamber. The minimum value of the radial component
of the turbulence intensity, at any given contraction ratio, always appears at
the place where the numerical value of the normalized radius is slightly
greater than that of the contraction ratio. This is also observed for the

tangential component of the turbulence intensity near the exit section. The
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location where the minimum value of the radial component ot the
turbulence intensity appears is always at the location where the maximum
radial velocity exists as shown in Figure 4.4.2.10. The ranges of the magnitude
of the radial component of the turbulence intensity from the maximum
value to the minimum value are simila: for all different contraction ratios.

Based on these observations, a model similar to that presented for the
tangential component of the turbulence intensity may be proposed for the
radial component of the turbulence intensity. This model could consist of
three regions: the central core region, the outer region and the boundary layer
region along a radial direction from the centre of the vortex chamber to its
wall.

The central core region is defined from the centre of the vortes
chamber to the place where the minimum value of the radial component of
the turbulence intensity (the maximum radial velocity) appears. In this
region, the value of the radial component of the turbulence intensity
decreases rapidly and continuously from the centre of the vortex chamber to
the border of the outer region.

The outer region is defined to be between and bounded by the central
core region and the boundary layer region. In this region, the value of the
radial component of the turbulence intensity increases slowly and
continuously along the radial direction from the minimum value location.

The boundary layer region begins approximately at the normalized
radius R = 0.9, and ends at the wall of the vortex chamber: R = 1.0. To the
boundary layer region near the exit section, which actually refers to the flow
existing at the circular corner of the vortex chamber, measurement of the

radial component of the turbulence intensity met some technical difficultics.
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The experiments are performed at the location near the exit plate.
Therefore, what the central core region faces, in fact, is the open space of the
exit hole. The flow near the exit section inside the vortex chamber exists only
in the outer region and the boundary layer region. The measurements show
that the boundary layer region which consists of circular corner between the
exit plate and the wall of the vortex chamber seems to be a dead zone for the
flow in the radial direction.

As a mathematical approach, the distribution of the radial component
»f the turbulence intensity can be approximated by exponential functions.
Since the distribution of the radial component of the turbulence intensity are
quite different for different contraction ratios, no unique expression or

empirical formula is available for this purpose.

4.5 Minimum Turbulence Intensity-

It is found from experimental studies that the location of the
minimum turbulence intensity (both tangential and radial components) is a
function of the contraction ratio. However. it is not a function of the inlet
Reynolds number as shown in Figures 4.5.1, 4.5.2, 4.4.24 to 4.4.29. In Figure
4.5.1, the minimum values of the tangential component of the turbulence
intensity corresponding to different inlet Reynolds numbers appear at the
same location, r/Ry = 0.25, which means the inlet Reynolds number does not
affect the location of the tangential component of the minimum turbulence
intensity. Similarly, the same conclusion can be drawn from Figures 4.5.2,
4.4.2.4 to 4.4.2.9. Since the swirl number P is a function of the contraction
ratio, it can be concluded that the location of the minimum turbulence

intensity depends on the swirl number.
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The forced-vortex flow in the central part of the vortex chamber can be
considered as a solid motion like a core bounded by a cylindrical surface. The
radius of that cylindrical surface is defined as the vortex core critical radius
where the maximum mean tangential velocity appears. The location of the
maximum mean tangential velocity at the main section is always
corresponding to that of the tangential component of the minimum
turbulence intensity. Since the inlet Reynolds number does not affect the
location of the tangential component of the turbulence intensity, it does not
affect the location of the maximum mean tangential velocity either. In other
words, the inlet Reynolds number does not affect the vortex core critical
radius. Therefore, the critical radius of the vortex core depends on the swirl
number.

Near the exit section, the location of the tangential component of the
minimum turbulence intensity does not correspond to that of the maximum
mean tangential velocity This is an important difference existing between
near the exit section and the main section. Furthermore, at the main section,
the numerical value of the location (radius) for the tangential component of
the minimum turbulence intensity is always less than that of the contraction
ratio. However, near the exit section, the numerical value of the location for
the tangential component of the minimum turbulence intensity is always
greater than that of the contraction ratio.

Near the exit section, the location of the radial component of the
minimum turbulence intensity does not correspond to that of the maximum
mean tangential velocity. Instead, it corresponds to the location of the
maximum mean radial velocity.

These characteristics are mainly due to the effects of the open hole at

the exit, the boundary layer flow along the exit plate surface and ectc.
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Based on the experimental results, correlations between the location of
the minimum turbulence intensity and the contraction ratios can be
approximated by linear functions. Plots of the correlations are shown in
Figure 4.5.3. The linear correlations are as follows:

For the tangential component of the minimum turbulence intensity at

the main section,

Re - 0.1954 + 1.180 Re)
R, R, (4-11)
For the tangential component of the minimum turbulence intc.sity

near the exit section,

Rimin_— (1064 + Re
R, R, (4-12)

For the radial component of the minimum turbulence intensity near

the exit section,

Rmn — 0.1311 + 0.8420 (3“—)
R, Ro o

At the main section, the magnitude of the tangential component of the
minimum turbulence intensity is not only a function of the contraction ratio
but also a function of the inlet Reynolds number. In general, the smaller the
contraction ratio, the lower the minimum magnitude; the higher the inlet
Reynolds number the lower the minimum magnitude. The correlation

between the magnitude and the location can be approximated as follows:

e = a + b (2€)
R, (4-14)

The numerical values of constants “a” and “b” are listed in Table 4.5.1.
Near the exit section, it is found that the smaller the contraction ratio,

the lower the magnitude of the tangential component of the minimum
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turbulence intensity. The effect of the inlet Reynolds number to the
minimum value of the magnitude is smaller near the exit section than that at
the main section. The correlation of the magnitude versus the location can be
expressed as follows:

Tyming = ¢ +d (Rminy

0 (4-15)
The numerical values of constants “c” and “d” are listed in Table 4.5.1.

The magnitude of the radial component of the minimum turbulence
intensity near the exit section is affected by the contraction ratio, not by the
inlet Reynolds number. It is found that, at around the contraction ratio of
0.40, the radial component of the minimum turbulence intensity reaches its
maximum magnitude. Two formulas are conducted to indicate the
minimum value of the radial component of the minimum turbulence

intensity for small contraction ratios and large contraction ratios respectively:

For Re/Ro < 0.5,
min = 0.08844 + 0.8086 (Rmin)
Ro (4-16)
For Re/Ro 2 0.5,
Tymin = 06702 - 0.7418 (Rmin) 1 0,5416 R )°
’ R() RO (4-] 7)
4.6 SUMMARY

It can be concluded that the turbulence intensity always tends to its
maximum value at the centre of the vortex chamber. The influence factors to
the turbulence intensity are summarized in Table 4.6.1. The influence factors
to the characteristics of the minimum turbulence intensity, location and

magnitude, are included in Table 4.6.2.
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For the tangential compc ient of the turbulence intensity, the overall
empirical distribution curves are presented in Figures 4.2.4.2 to 4.2.4.4 for the
main section and in Figures 4.3.2.3 to 4.3.2.5 for near the exit section.

The differences between the experimental data corresponding to
different locations and their average values within the main section are
shown in Figure 4.6.1. The satisfactory results of the quantity analysis are
shown in Table 4.6.3. The deviations between the prediction using the
empirical equations and the experimental data at the main section are listed
in Table 4.6.4. At small contraction ratios (Re/Ro < 0.5), over 80 % of points
are within a deviation of 10 %.

Near the exit section, the accuracy of prediction by the empirical
equations for the outer region and the boundary layer region is within 10 %.
The deviations between the prediction and the experimental data are shown
in Tables 4.6.5 and 4.6.6. 70 % of points are within 5 %.

The above analysis shows that the proposed empirical equations can
well predict the tangential component of the turbulence intensity inside the
vortex chamber. Therefore, they are within acceptable limits of confidence.

For the radial component of the turbulence intensity, the distribution
curves based on the average measurement values are presented in the section
4.4.2. Tables 4.6.7 and 4.6.8 show the deviations of the radial component of the
turbulence intensity near the exit section inside the vortex chamber under
small contraction ratios and large contraction ratios respectively. The
deviations here refer to the differences between each individual raw

measurement datum and the average value. They are satisfactory in general.
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Table 4.2.1 Numerical Values of B1, Ba, D1, D2, Ao, Co,
Ap, Cp, Ao/b, Co/b, Ab/b and Cp/b

Re,i 1960 7840 13700 Remarks
Bj 0.659 0.334 0.403
B, 1.92 4.88 4.89 Main
D1 7.75 9.01 10.5 Section
Do -0.942 -0.671 -0.828
Ao 0.0619 0.0362 0.0260
Co -0.970 -1.54 -1.60 Main
Ap 0.00124 0.000773 0.00394 Section
Cb -5.34 -5.79 -3.67
Ao/b 0.0386 0.0413 0.0324
Comp -1.46 -1.31 -1.38 Exit
Ab/b 0.00233 0.00148 0.00970 Section
Cosb -4.49 -4.99 -2.71
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Table 4.5.1 Numerical Valuesofa, b,cand d
Re,i 1960 7840 13700 | Remarks
Re/Ro a 0.0513 0.0349 0.0253
<05 b 0.131 0.0773 0.0495 Main
Re/Ro a 0.0193 Section
205 b 0.102
Re/Ro ¢ 0.0175 0.00985 0.0179
<05 d 0.131 0.156 0.105 Exit
Re/Ro o 0.0122 -0.0287 -0.0359 | Section
205 d 0.149 0175 0.189




Table 4.6.1 Influence Factors on Turbulence Intensity

Turbu. Intensity Influence Parameters Emvpiric.
Section Region Rei Re/Ro B Equation
Tangent.,§ Core Yes Yes Yes 4-2
Main Outer Yes No No 4-7
B. L. Yes No No 4-8
Tangent.,, § Core Yes Yes Yes
near Exit I Outer Yes No No 4-9
B.L. Yes No No 4-10
Radial, Core No Yes Yes
near Exit § Outer No Yes Yes

Tangent. = Tangential
B.L. = Boundary Layer
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Table 4.6.2

Turbulence Intensity

Influence Factors on Minimum

Min. Turbulence Influence Parameters Empiric.

Intensity Rei Re/Ry B Equation
Tangent.,| Location No Yes Yes 4-11
Main Magn. No Yes Yes 4-14
Tangent., | Location No Yes Yes 4-12
near Exit] Magn. No Yes Yes 4-15
Radial, | Location No Yes Yes 4-13

near Exit| Magn. No Yes Yes 4-16, 4-17

Magn. = Magnitude
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Table 4.63 Deviation of Tangential Component of

Turbulence Intensity at Different
Locations within Main Section

(Re/Ro =040, Re,i = 7840)

%o L /Liotal L/ Ltotal L/Ltotal L /Liotal
r/Ro = 88 % =69 % =50 % =32%
0.036 -4.12 -15.5 5.94 13.7
0.109 -3.07 -6.55 -2.87 125
0.182 0.04 -7.29 287 4.38
0.255 14.4 19.2 -15.9 -17.7
0.327 20.6 16.9 -17.8 -19.6
0.400 27.3 17.3 -18.0 -26.6
0473 27.6 18.8 -13.6 -32.8
0.545 274 14.2 -9.38 ~32.2
0.618 23.0 20.2 -10.2 -33.0
0.691 19.6 17.7 -8.01 -294
0.764 15.2 23.0 -10.2 -28.1
0.836 14.3 19.7 -813 -25.9
0.909 154 12.7 -443 -237
0.945 13.3 15.2 -4./9 -23.7
0.982 10.3 10.5 -4.64 -16.1
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Table 4.6.4

(Main Section)

Deviation of Tangential Component of
Turbulence Intensity at Re,i = 7840

% Re/Ro | Re/Ro | Re/Ro | Re/Ro | Re/Rq | Re/R,
r/Ro | =025} =030 | =040 | =050 | =0.58 | =(0.75
0.036 4.99 7.35 -3.29 -8.03 10.6 9.52
0109 | -1.97 6.40 -214 7.30 -12.9 2.20
0182 | -2.56 -0.85 -18.7 6.74 -1.35 17.6
0255 | -5.45 0.90 -2.42 12.7 -7.86 229
0327 | -8.61 -1.22 4.81 24.0 -17.0 28.2
0400 | -6.17 1.22 3.67 23.6 -24.2 29.1
0473 | -9.68 -7.28 -1.50 21.5 -34.1 34.0
0545 | -12.8 -10.4 0.31 20.8 10.1 34.4
0618 | -8.92 -8.13 -8.17 15.0 13.9 26.0
0.691 -4.60 -6.95 -7.31 111 13.8 10.3
0764 | -2.49 -2.67 -14.1 14.3 11.1 9.48
0836 | -3.43 -4.52 -9.74 10.1 4.82 0.31
0909 | -15.1 0.64 -2.90 747 -0.23 -6.54
0945 | -16.8 7.69 0.54 13.9 17.0 3.06
0982 | -38.4 20.0 8.84 6.35 15.1 10.6
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Table 4.6.5 Deviation of Tangential Component of
Turbulence Intensity for Outer Region
at Re,i = 1960 (near Exit Section)

% ] Re/Ro | Re/Ro | Re/Ro | Re/Ro | Re/Ro | Re/Ro
r/R, | =025 | =030 =040 | =0.50 | =058 | =075
0.327 0.00
0.400 -2.66 2.66
0.473 -1.07 1.07
0.545 -2.61 147 1.14
0.618 -3.73 -0.10 -3.85 7.67
0.691 -5.73 -3.09 -2.11 4.27 6.67
0.764 -6.43 -4.45 -0.96 5.50 6.36
0.836 -7.21 -2.67 0.13 -1.50 5.54 5.71
0.909 -5.93 -5.83 419 -6.25 6.66 714




Table 4.6.6 Deviation of Tangential Component of

Turbulence Intensity for Boundary

Layer Region at Re,i = 13700

(near Exit Section)

%o Re/Ro | Re/Ro | Re/Ro | Re/Rg | Re/Ry | Re/Ry
r/Ro | =025 =030 =040 | =050 | =058 | =075
0.909 -3.13 -2.28 -1.09 -1.96 -2.37 10.8
0.945 -1.35 -2.26 -0.51 -1.62 -0.99 6.75
0.982 -1.51 -0.59 202 -0.80 -1.49 6.43
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Table 4.6.7 Deviation of Radial Component of
Turbulence Intensity at Re/RKo = 0.25
(near Exit Section)

% Re,j Re,i Re,i
r/Ro = 13700 = 7840 = 1960
0.036 27.3 -19.6 -7.69
0.109 -5.31 -20.1 254
0.182 -1.95 -3.01 4.96
0.255 9.11 14.4 -23.5
0.327 -1.14 10.9 -9.78
0.400 -0.66 16.8 -16.1
0.473 1.19 19.3 -20.5
C 545 2.83 20.8 -23.6
0.618 5.56 18.1 -23.6
0.691 7.04 16.9 -23.9
0.764 20.0 5.32 -25.3
0.836 68.9 -24.4 -44.6
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Table 4.6.8 Deviation of Radial Component of
Turbulence Intensity at Re/Ro = 0.50

(near Exit Section)

% Re,i Re,i Re,i
r/Ro = 13700 = 7840 = 1900
0.036 19.7 -12.5 -7.18
0.109 7.43 -0.80 -6.63
0.182 2.49 2.56 -5.05
0.255 3.37 0.96 -4.33
0.327 10.0 1.85 -11.9
0.400 -5.95 -8.28 14.2
0.473 -4.20 -8.46 12.7
0.545 1.76 2.29 -4.05
0.618 9.34 1.51 -10.8
0.691 18.5 -3.97 -14.5
0.764 24.0 -11.5 -12.5
0.836 72.1 -32.5 -39.6
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CHAPTER 5
KINETIC ENERGY

5.1 General

The simplest statistical properties of a turbulent flow are the mean
squares and second-order mean products of the velocity fluctuation
components at a fixed point. The mean squares of fluctuating velocity
components in the radial, tangential and axial directions can be regarded as
twice the kinetic energy of the fluctuating motion in each direction. The half
of the sum of the mean squares of the three velocity fluctuation components
is generally regarded as the total turbulence kinetic energy due to the
fluctuating motion, which is independent of the coordinate axes as a scalar.

The equations of motion for turbulent flows are

radial direction

Ve 15 9V: o oV: Vil

P(Vrg + pVogt + Voot -

_ aﬁ — V_z'aVQ

=g TRV " 20 )

i [_(__2 <VV)+ 2 (Vo) + V2.V
P TtV rYe 8

(5-1)

tangential direction

AL

15.0Ve o 0Ve V.V,
" or +FV9 d9 +Vzazi rr
_ 1% w2y, Ye 29V
T rge +H(V*Vo - 2 1208

0 - ) o0, -
- P[a—r(v Vo) + 1?'56(\/96 + SZ(VGVZ) + %(Vrvﬂ)]

)
) -

(5-2)



axial direction

=V, 159V, =V,

Slrrasaly- +Vfa?’
=_g_p+ uv>v,- p[ ~(ViVy) + raa(vevzn_a_(v 5+ Lvv))

J (5-3)

The term on the left-hand side of equations represents the inertia force
(D’Alembert’s principle). The terms on the right-hand side of equations
represent the pressure gradient, the viscous stresses in terms of the mean
velocity gradient, and the Reynolds stresses or the apparent stresses due to the
exchange of momentum in the turbulent mixing process.

Based on these equations, analyses of the kinetic energy and the
Reynolds shear stresses are performed. The concerning derivation is detailed

in the Appendix A.

5.2 Equations of Kinetic Energy for Mean Motion
5.2.1 Equation for Radial Direction

For an axisymmetric flow with negligible axial gradient, the equation of

the kinetic energy in the radial direction due to the mean motion is derived

as follows:

=3 15 T Ve

VG-V

Ve Ve 19V Ve 9 v ) L Lv2. v

= p r + VVr[( arz + r ar ) rZ] Vr[ar(vr ) + r(vr V() )] (5-4)
or

(5-5)
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The terms on the right-hand side of equation (5-5) represent the
contribution of the pressure gradient, the contribution of the visccus part in

terms of the mean radial velocity gradient and the mean radial velocity, the

contribution of the Reynolds normal stresses v? and Véz, and the
contribution of the inertia part to the kinetic energy. However, there is no
apparent effect of the Reynolds shear stresses and the normal stress V3 on the
kinetic energy.

The fourth term is equivalent *o the normal acceleration of the
rotating particles, which is balanced with the centrifugal force required by a
circular motion. The first term is the pressure gradient along the radial
direction, which is equivalent to a centrifugal force acting in the opposite
direction. The first term and the fourth term are almost equal in the

magnitude, but are in the opposite directions. Therefore, equation (5-5) can be

simplified as follows:

or2 tr or

N =

_ N V2 5 -5 .3
V- f g+ 100 Ve 10w s Ly E v e
o (56

The major contribution to the kinetic energy is shown to be the
viscousness and the normal stresses. In the case of a non-viscous flow, the
viscous effects can be neglected. Thus, equation (5-6) can be further simplified
as follows:

V2= f Igr-(v;z) +LvE - v)ldr

(5-7)
It is shown that only the Reynolds normal stresses in the radial and

tangential directions contribute to the kinetic energy in the radial direction

due to the mean motion.
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5.2.2 Equation for Tangential Direction

For an axisymmetric flow with negligible axial gradient, the equation of
the kinetic energy in the tangential direction due to the mean motion is

derived as follows:

=VV, —
vVe( 2 T3 Ve[ (V Ve)+ 2V,\V o] -
or
1572 | (Yoo Vg +19V% Ve,
> f{ = (— 2 T rz)
- —__—e—— V,V + V V d
V,[ar( ) 9] l ' (5-9)

The terms on the right-hand side of equation {(5-9) represent the
contribution of the viscous part in terms of the mean tangential velocity

gradient and the mean tangential velocity, the contribution of the Reynolds

shear stress V;Vé, and the contribution of the inertia part to the kinetic
energy. There is no apparent effect of the Reynolds normal stresses and the
Reynolds shear stresses, except V',V;,, on the kinetic energy, and no apparent
effect of the pressure gradient on the kinetic energy either.

In the case of simple vortex flows, Vg=c/r and Vg = mr, the first term

will be zero. Equation (5-9) becomes

'_‘2

2 (5-10)

The major contributors to the kinetic energy in the tangential direction
due to the mean motion are the Reynolds radial-tangential shear stress and

the inertia force.
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5.2.3 Equation for Axial Direction

Similarly, for an axisymmetric flow with negligible axial gradient, the
equation of the kinetic energy in the axial direction due to the mean motion

is derived as follows:

— d 1= — 9V aV,. = .0, —
V2V, = vtz + L3V (V) + v v
ar2 a 2 r ar ar r (5_11)
or
. OV V. v — —
152 | WYz e 19V2) Vo9 yny L Vv dr
2 V, or2 T or’ Vv, dr I (5-12)

The terms on the right-hand side of equation (5-12) represent the

contribution of the viscous part, in terms of the mean axial velocity gradient,

and the contribution of the Reynolds shear stress ViVz to the kinetic energy.

There is no apparent effect of the Reynolds normal stresses and the Reynolds

shear stresses, except VV_, on the kinetic energy, and no apparent effect of
cither the pressure gradient or the inertia part on the kinetic energy. The
viscousness and the radial-axial shear stress make the major contribution to
the kinetic energy in the axial direction due to the mean motion.

For a non-viscous flow or in the case where the viscous effect is much
smaller than the effect due to the shear stress, equation (5-12) can be further

simplified, that is,

_ V.9 — —
V2= f ‘\’/:zr[g;(v,v,_) + vy ldr

(5-13)
It is shown that the Reynolds radial-axial shear stress is the major
contributor to the kinetic energy in the axial direction due to the mean

motion.
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5.3 Equations of Total Kinetic Energy
For an axisymmetric flow with negligible axial gradient, the equations
of total kinetic energy for turbulent flows are derived as follows:

radial direction

—2 1072
%V,z + ;—V,
P} _ ; _ 3
= - 1R+ LV Vv, + ViV V- 2V 2L 2y ).
por V, r2 r2
9 —
- LAV (v -IvivE]+ LR + Vil dr
V2 or (5-14)

tangential direction

17,24 Ly
279 7278 L
—— 2 N 2 N V 2 \/I 2
= | (2 VeV Vg + VeV~ Vg - 1o . ——9-) -
Vr 2 r?
sz + Ly, v2]-1 1ve? +v9 A1 dr
(5-15)
axial direction
1V 2oy | YV, V2V, + VY Y )-—1-v K Z(v¥)]dr
2 2 V, 2V, "or (5-16)

The terms on the left-hand side of above equations represent the mean
motion part and the fluctuating motion part of the total kinetic energy. Only
in the radial direction, there is an effect of the pressure gradient on the total
kinetic energy. The viscousness contributes to the total kinetic energy in all
directions. The total kinetic energy is destroied, generated or transported by
viscous stress fluctuations. The third-order products of turbulent fluctuations
represent the transportation of the total kinetic energy. The inertia effect on
the total kinetic energy by the mean and fluctuating velocities appears only in

the radial and tangential directions. The equation of the total kinetic energy
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in the radial direction contain all effects from the pressure gradient, the
viscous stress, the turbulent fluctuation and the inertia force. The equation of
the total kinetic energy in the axial direction has the simplest form among

them, only containing the effects from the viscous stress and the inertia force.

5.4 Equations of Kinetic Energy for Fluctuating Motion

For an axisymmetric flow with negligible axial gradient, the equations
of kinetic energy due to fluctuating motion are derived as:

radial direction

d 1u2y 21u?y . 2 v/iuy?2
— 2lya . 2. v ly:
gV TRV GV
02V, .av'
== (Ve Vi) + [2V—<v2>- lvvi)
V, or (5-17)
angential direction
d1vA,.2duv A, 2V
5;(§V02) + ;(Eve + Vot —2 —Vez)
.92V, V. Va0 T —
_V 0 1 0 orY 2 _
‘V_,(V"—é'rT’-—"L?V" . ) + _r{a (ViVe) +2(VVy)]
0
1y o 2V + v AVFS
v, (5-18)
axial direction
d,102 02V, OV, YV, 0 T o
—Av =2 v, 22 Ly 21y Y vivy + Lviy,
gV = Ve + 1V )+ IR (ViVa) + VIV
» v 2v2)
2V, or (5-19)

The terms on the right-hand side of above equations express the
influences from the viscous effects, the shear stresses and the fluctuating

velocities to the kinetic energy. In the radial direction, the effect of the shear

stress is not observed.
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From the above analysis, the contributions made by all components to
the turbulence kinetic energy are clear. However, using analytical methods or
numerical methods to solve these equations further to determine the
turbulence kinetic energy is still very difficult. Therefore, determination
through experiments is the major method to obtain the turbulence kinetic

energy quantitatively.

9.5 Turbulence Kinetic Energy

5.5.1 Tangential Component of Turbulence Kinetic Energy at Main Section

At the main section of the vortex chamber, it is observed from the
experimental results presented in Figures 5.5.1.1 to 5.5.1.7 that the magnitude
of the tangential component of the turbulence kinetic energy tends to its
maximum value at the centre of the vortex chamber. It decreases along the
radial direction from the centre towards the side wall of the vortex chamber.
It drops to its minimum value inside the outer region, then starts to increase
its value along the radial direction gradually. In the boundary layer region, o
higher rate of increasing the tangential component of the turbulence kinetic
energy is observed.

The contraction ratio affects the regime of the flow. In the cases with a
small contraction ratio (Re/Ro < 0.5), viscous effect is dominant. However, in
the cases with a large contraction ratio (Re/R, 2 0.5), viscous effect to the flow
is less important. These effects influence the behaviour of the tangential
component of the turbulence kinetic energy.

It is found that the influence from the inlet Reynolds number to the
tangential component of the turbulence kinetic energy can be eliminated by
scaling. The effects of the contraction ratio are considered in the scaling

formulas.

133




For the contraction ratios less than 0.50, a scaling formula

K
Kis = Rejrt
Y7 Kon (5-20)
where
3
Ke=1v
tTo "8 (5-21)
=1y 2
Kin =2 Vim (5-22)

is found to form a unique curve of the scaled tangential component of the
turbulence kinetic energy at the main section of the vortex chamber for
different inlet Reynolds numbers. The plots are illustrated in Figures 5.5.1.8 to
5.5.1.10.

For the contraction ratios between 0.50 and 0.75, another scaling

formula

Ke
Kin . (5-23)

Kis = R’
is found for the same purpose. The concerning plots are shown in Figures
5.5.1.11 t0 5.5.1.13.

For the cases with a contraction ratio less than 0.5, the contraction ratio
seems to have very little influence to the location of the minimum value of
the scaled tangential component of the turbulence kinetic energy at the main
section of the vortex chamber. The locations of the minimum values of the
scaled tangential component of the turbulence kinetic energy at the main
section under different contraction ratios less than 0.5 appear at around a
normalized radius of 0.6. Furthermore, the minimum values corresponding
to all contraction ratios less than 0.5 are almost the same and equal to about

100 based on equation (5-20). It means that, in the cases of viscous

domination, the location and the magnitude of the minimum value of the
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scaled tangential component of the turbulence kinetic energy is independent
of the contraction ratio, and independent of the swirl number which is a
function of the contraction ratio.

For contraction ratios less than 0.5, the smaller the value of the
contraction ratio, the higher the maximum value of the scaled tangential
component of the turbulence kinetic energy can be reached at the centre. At
the outer region and the boundary layer region, the levels of the scaled
tangential component of the turbulence kinetic energy are compatible. The
approximate magnitude ranges of the scaled tangential component of the
turbulence kinetic energy are between 100 to 1000 based on equation (5-20) as
shown in Figure 5.5.1.14.

For the cases where the contraction ratio is greater than 0.5, non
viscous domination, not only the inlet Reynolds number but also the
contraction ratio affect the location (radius) and the magnitude of the
minimum value of the scaled tangential component of the turbulence kinetic
energy at the main section of the vortex chamber. With the increase of the
contraction ratio, the minimum value of the scaled tangential component of
the turbulence kinetic energy appears at the place with larger numerical value
of the radius. The magnitude ranges of the scaled tangential component of
the turbulence kinetic energy are within 1.5 to 9.0 based on equation (5-23) as
shown in Figure 5.5.1.15.

It is found that the numerical value of the normalized radius where
the minimum value of the scaled tangential component of the turbulence

kinetic energy appears is always close, but slightly smaller than that of the

contraction ratio.
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5.5.2 Tangential Component of Turbulence Kinetic Energy near Exit Section

Near the exit section inside the vortex chamber, it is found from the
analysis of the experimental results that the magnitude of the tangential
component of the turbulence kinetic energy reaches its maximum value at
the central core region as showr in Figures 5.5.2.1 to 5.5.2.6. For the
contraction ratios less than 0.5, it tends to its maximum value at the centre of
the vortex chamber. However, for the contraction ratios greater than 0.5, it
reaches its maximum value within the central core region, at around a
normalized radius of 0.1. It reaches its minimum value at the border between
the outer region and the boundary layer region. In the boundary layer region,
the magnitude of the tangential component of the turbulence kinetic energy
starts to increase again along the radial direction.

Near the exit section inside the vortex chamber, for any contraction
ratio except 1.0, which refers to an open exit condition and in which there is

no physical exit surface, a scaling formula

K¢

K, = Re,3
is found to eliminate the influence of the inlet Reynolds number to form a
unique curve. The plots of the scaled tangential component of the turbulence
kinetic energy near the exit section inside the vortex chamber are illustrated
in Figures 5.5.2.7 t0 5.5.2.12.

It can be found from these curves that the magnitude ranges of the
scaled tangential component of the turbulence kinetic energy near the exit

section are approximately identical for all contraction ratios, and are from

about 0.15 to 6.0 based on equation (5-24).
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5.5.3 Radial Component of Turbulence Kinetic Energy at Main Section

It is found that the radial component of the turbulence kinetic energy
at the main section will tend to its maximum value at the centre of the vortex
chamber. Along the radial direction from the centre to the side wall of the
vortex chamber, it will decrease and drop to its minimum value in the outer
region, then start to increase its value as shown in Figures 5.5.3.1 and 5.5.3.2.

It is found that the radial component of the turbulence kinetic energy
at the main section is affected by many factors such as location, contraction
ratio and so on. It seems that the flow will have a higher level of the radial
component of the turbulence kinetic energy when it approaches the exit,
which corresponds to a higher percentage of the vortex chamber length.

It is found that the numerical value of the normalized radius referring
to the minimum value of the radial component of the turbulence kinetic
energy is approximately equal to that of the contraction ratio. In other words,
the radial component of the turbulence kinetic energy at the main section
will reach its minimum value at the place where the value of the normalized

radius equals to that of the contraction ratio of the vortex chamber.

5.5.4 Radial Component of Turbulence Kinetic Energy near Exit Section

The overall performances of the radial component of the turbulence
kinetic energy near the exit section inside the vortex chamber are¢ shown in
Figures 5.5.4.1 to 5.5.4.6.

It is found from the experimental results that the radial component of
the turbulence kinetic energy near the exit section inside the vortex chamber
is influenced by both the contraction ratio and the inlet Reynolds number.
The behaviour of the radial component of the turbulence kinetic energy near

the exit section is so sophisticated that there is no simple way which can be
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used to describe it. No simple formula can be found to collapse the curves of
the radial component of the turbulence kinetic energy (different inlet
Reynolds numbers with a given contraction ratio) into one, although it is
possible for the tangential component of the turbulence kinetic energy.

The difference between the radial component of the turbulence kinetic
energy under the small contraction ratio and that under the large contraction
ratio is obvious. For the contraction ratio less than 0.5, the radial component
of the turbulence kinetic energy tends to its maximum value at the centre of
the vortex chamber. Then, it decreases along the radial direction from the
centre towards the wall. Only in the cases of high inlet Reynolds number
(13700), will its magnitude increase again when approaching the boundary
layer region. In general, the magnitude level of the radial component of the
turbulence kinetic energy at small contraction ratio is lower than that at large
contraction ratio. However, the magnitude ranges for the small contraction
ratios are approximately identical.

For the contraction ratio greater than 0.5, the radial component of the
turbulence kinetic energy will not reach its maximum value at the centre of
the vortex chamber. The location of the maximum value of the radial
component of the turbulence kinetic energy will change if the contraction
ratio changes. The maximum value location (radius) will increase with the
increase of the contraction ratio.

In the cases where the contraction ratio is greater than 0.5, the
magnitude of the radial component of the turbulence kinetic energy will

reduce gradually as a response to the increasing contraction ratio.
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5.5.5.Total Turbulence Kinetic Energy

The total turbulence kinetic energy is the total contribution of
turbulence kinetic energy in all directions. That is, the contribution of
fluctuating velocities in the radial, tangential and axial directions. The total
turbulence kinetic energy (T.T.K.E.) is the half of the sum of the mean squares
of fluctuating velocities in all directions, that is,

ITKE=%w?+v§+vb 525

If the levels of fluctuating velocities in the radial, tangential and axial
directions are equal or compatible, the total turbulence kinetic energy can be

estimated by the fluctuating velocities in any two directions, such as

T.TK.E. =3(V2 + Vy%)

eV

(5-26)

It is a general approximation used by many investigators such as
Stieglmeier et al [39] and Liou et al [40].

Plots of the total turbulence kinetic energy at the main section of the
vortex chamber are illustrated in Figures 5.5.5.1 and 5.5.5.2. At the main
section, the turbulence kinetic energy due to the fluctuating tangential
velocity is investigated in detail. However, less information is provided about
the turbulence kinetic energy due to the fluctuating radial velocity. Therefore,
to the certain combinations of the contraction ratios and the inlet Reynolds
numbers, the total turbulence kinetic energy at the main section could not be
provided except through rough estimation which considers three times of the
tangential component of the turbulence kinetic energy to be the total
turbulence kinetic energy. This is based on the assumption that the levels of

fluctuating velocities in all directions are equal or compatible.
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Near the exit section inside the vortex chamber, not only the tangential
component of the turbulence kinetic energy but also the radial component of
the turbulence kinetic energy are investigated in detail. The total turbulence
kinetic energy is obtained based on the tangential component of the
turbulence kinetic energy and the radial component of the turbulence kinetic
energy, using equation (5-26). The results are illustrated in Figures 5.5.5.3 to
5.5.5.8.

It is clear that the total turbulence kinetic energy near the exit section
inside the vortex chamber is influenced by both the contraction ratio and the
inlet Reynolds number. Any influence factor which affects either the
tangential component or the radial component of the turbulence kinetic
energy will affect the total turbulence kinetic energy.

Near the exit section inside the vortex chamber, apparent difference
can be observed between the distributions of the total turbulence kinetic
energy at the small contraction ratios and the large contraction ratios. Among
cither the small contraction ratios or the large contraction ratios, similar
behaviour of the total turbulence k.netic energy can be observed. In general,
near the exit section, the magnitude level of the total turbulence kinetic
energy at small contraction ratio is lower than that at large contraction ratios.
This is due to the influence of the radial component of the turbulence kinetic
energy as well as the tangential component of the turbulence kinetic energy.
The same conclusion can be drawn as those from the analyses of the radial
component of the turbulence kinetic energy and the tangential component of
the turbulence kinetic energy near the exit section. To the flows with the
same inlet Reynolds number but with different contraction ratios less than
0.5, the magnitude ranges of total turbulence kinetic energy are approximately

the same. It means that, in the cases of viscous domination, the total
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turbulence kinetic energy depends on the inlet Reynolds number more than
on the contraction ratio.

For the large contraction ratio, the maximum value of the total
turbulence kinetic energy will not appear at the centre of the vortex chamber.
The maximum value location will move far away from the centre with the
increase of the contraction ratio. After the total turbulence kinctic energy
passes its maximum value point, it will decrease along the radial direction to
its minimum value.

At large contraction ratios, the magnitude level of the total turbulence
kinetic energy is usually higher than that at small contraction ratios.
However, for the large contraction ratios, as the contraction ratio increases
from 0.5 to 0.75, the magnitude of the total turbulence kinetic cnergy will

decrease as shown in Figure 5.5.5.6 to 5.5.5.8.

5.6 SUMMARY

The influence factors on the magnitude of the turbulence kinetic
energy are listed in Table 5.6.1. The locations corresponding to the maximum
and the minimum turbulence kinetic energy are summarized in Table 5.6.2.

The comparison of the tangential component of the turbulence kinetic
energy with a variety of the contraction ratios using empirical scaling
formulas are shown in Figures 5.5.1.14, 5.5.1.15 and 5.6.1. The analyses listed
in Tables 5.6.3 and 5.6.4 show that over 73 % of points are within the
deviation of 10 % when the formulas are applied.

The experimental results show that, near the exit section, the
magnitude level of the radial component of the turbulence kinetic energy at a

lower inlet Reynolds number is lower than that at a higher inlet Reynolds
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number. The behaviour at the small contraction ratios is different from that
at the large contraction ratio as shown in Figures 5.6.2 and 5.6.3.

The total turbulence kinetic energy possesses all the characteristics of
both the tangential component and the radial component of the turbulence
kinetic energy. It is not only affected by the contraction ratio but also the inlet
Reynolds number. Figures 5.6.4 and 5.6.5 show these characteristics. The
concerning deviations between the curve fittings and the experimental data
are listed in Tables 5.6.5 and 5.6.6. 95 % of the points are within 10 %. Among

them 80 % of the points are within 5 %.
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Figure 55.1.1 Experimental Tangential Component
of Turbulence Kinetic Energy at Main
Section (Re/Ro = 0.25)
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Figure 5.5.1.2 Experimental Tangential Component
of Turbulence Kinetic Energy at Main
Section (Re/Ro = 0.30)
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ABSTRACT

Experimental and Theoretical Studies on
Confined Vortex Flow Structures

Li Yan, Ph.D.
Concordia University, 1995

The structure of confined air vortex flow including turbulence effects
has been studied experimentally and theoretically.

A measurement technique using Laser Doppler Velocimetry (LDV) was
developed to investigate the characteristics of confined air vortex flows: the
turbulence intensity, the turbulence kinetic energy, the Reynolds stresses, the
mean and fluctuating velocities, etc. Special types of testing devices were
designed and built to extend the one-component LDV to three-dimensional
measurements. The air vortex flow was produced in a cylindrical chamber
using various contraction ratios and inlet Reynolds numbers.

A physical model for the turbulence intensity in the tangential
direction for a confined air vortex flow is proposed based on experimental
observations. The model divides the turbulence intensity distribution along
the radius of the vortex chamber into three regicns based on individual
characteristic features. A mathematical approach is utilized to obtain
expressions for turbulence intensity and to predict the turbulence intensity
within the vortex chamber under different conditions.

Equations concerning the kinetic energies due to the mean motion, the
fluctuating motion and the two combined have been derived. Experimental
results reveal the behaviour of turbulence kinetic energy in the confined
vortex flow. The contribution of each parameter to the kinetic energy as weli

as the overall performances of the kinetic energy is analyzed.

I11



Furthermore, the distribution profiles for both the Revnolds shear
stresses and the Reynolds normal stresses in confined air vortex flows are
presented. The former is obtained by solving the energy differential equations
analytically, and the latter is obtained from the air vortex chamber flow
experiments.

Meanwhile, the mean velocities and fluctuating velocities are
investigated experimentally. A new profile for the tangential velocity
distribution is proposed. An integration is formulated to determine the
vortex core size. A computer program is developed for calculation of
numerical values of the vortex core size corresponding to different

configurations.
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CHAPTER 1
INTRODUCTION

1.1 Previous Work on Vortex Flows

Vortex flow is so common that its existence everywhere seems not to
be realized. Although the vortex flow could be explained as “a volume of
matter the particles of which rotate rapidly around an axis” [1], “any flow
possessing vorticity” [2], and so on, phenomena and applications of the vortex
flow are far beyond these explanations. Historical images of vortex flow and
fine arts of vortex flow are discovered in Asia tracing back to the ancient time,
such as the stone carving of vortex in the Summer Palace in Beijing.
Hurricanes, typhoons and tornados which create, never to be forgotten,
disasters are an important aspect of the vortex flows. Spirals on shells of
nautilus, dust devils and fire whirls are observed from nature, although not
everybody paies attention (0 them.

Focusing on the vortex flow phenomena in engineering, many
applications can be illustrated such as vortex separators, vortex combustors,
vortex pumps, vortex tubes and so on. With the development of science and
technology, physical and chemical properties of particles, dusts and fumes
have become more and more clear. Separating harmful particles from flows
becomes necessary and urgent in order to protect human beings, animals and
the environment from pollution. New types of separators using the vortex
principle are highly demanded from industries. Although studies of vortex
flows have been carried out by many investigators since last century, previous
experience and techniques are found to be far beyond the ability to handle this

new situation. Therefore, grasping the fundamental mechanisms and



behaviour of turbulent flow in vortex chambers is becoming an important

task for scientists and engineers.

To confined vortex flow which refers to the vortex flow contained
within solid toundaries, the Thomson-Rankine vortex model [3] which was
composed of free vortex and forced vortex was proposed a hundred years ago.
Later, Burgers [4] derived an exact solution of the Navier-Stokes equations for
three-dimensional vortex flow. Based on more than four hundred
publications, “A Review of Confined Vortex Flows” was presented by
Lewellen [5] in 1971, which gave an extensive and almost complete account of
knowledge to the confined vortex flow up to that date. Mathematical
approach from the integral equations of motion by Wormley [6] resulted in
“An Analytical Model for the Incompressible Flow in Short Vortex
Chamber”. Numerical solution of Wormley’s model, considering eddy
viscosity, was obtained by Kwok et al [7]. Experimental investigations on the
cold aerodynamic structure of gas flow in a vertical chamber were performed
by Baluev and Troyankin [8]. The effects of design parameters on the
aerodynamics of their experimen’al model were further studied by
themselves [9]. Meanwhile, important work on turbulent flow structure of
such flows were carried out by Ustimenko and Buchman [10]. In their
experimental investigation, a hot-wire probe was immersed into the flow.
Bank and Ganvin [11] indicated confined vortex flow characteristics based on
their measurements in such a flow. Theoretical and experimental studies of
confined vortex flows by Reydon and Gauvin [12] also showed some common
behaviour and characteristics. Engineering applications promoted researches
in the vortex flows. Energy separation in vortex tubes which were usually
used to create low temperature for refrigerationn was investigated [13]. Double

vortex combustion chamber was optimized [14] not only to be able to burn




low calorific value solid particles but also to be able to burn them efficiently.
Studies and applications of confined vortex flows in nuclear rockets [15],
particle separators [16] and so on [17] are so well known that they are not
repeated here.

Last decade, new findings on the velocity distribution on the exit plane
of 2 rotating chamber, pressure drop across the chamber as well as vortex core
size were reported by Shakespeare and Levy [18]. Theoretical and
experimental studies on vortex chamber flows by Vatistas et al [19] showed
that dimensionless quantities of vortex core size, static pressure drop across
the chamber and radial static pressure distribution were functions of the
chamber geometry only. The dimensionless radius of reverse flow was
dependent solely on the chamber geometrical parameters [20]. Further
research indicated that a non-dimensional pressure drop across the chamber
could be determined by a single dimensionless number [21], and that a
derived similarity relationship for the pressure drop had been found
applicable to both stationary and rotating vortex chambers [22]. It was found
that Oseen’s equation for an unconfined vortex was adequate to approximate
a confined vortex, and a similarity relationship for a radial profile of
tangential velocity was obtained [23]. Using a new empirical formula for the
tangential velocity, a simple vortex model was proposed [24].

As mentioned above, through the efforts of many researchers, theories
of laminar flow in a variety of cases, including confined vortex flows, are
quite developed. Analytical models of confined vortex flows as well as
analytical or numerical solutions of these have been completed and modified
since last century. However, when turbulent flow is involved, the existing
theories are still rather deficient for many cases. Osborne Reynolds introduced

the time-averaging concept and rewrote continuity and momentum



equations in terms of mean or time-averaged turbulent variables in 1895. But,
close form analytical solutions of these equations could not be obtained,
because in addition to dealing with four variables (pressure and velocities in
three-dimensiun) the four continuity and momentum equations contained
additional six unknown variables which are usually called Reynolds stresses.
Therefore, several semi-empirical theories used as alternatives to turbulent
flows have been developed and found to be useful in engineering practice.

The k-¢ turbulence model (also called two-equation model, turbulent
kinetic energy k and dissipation rate €) was proposed to attempt different
problems by specifying several constants in the equations and computing
turbulent flow using numerical methods [25]. However, investigation results
by Nejad et al [26] showed that the k-g turbulence model is inadequate for
representing the complex turbulent structure of confined swirling flows.
Therefore, experimental approach is still a most suitable method for studying
the turbulent flow structure.

It has been found that the major challenge for the experimental
approach is providing the method to be used in highly turbulent condition.
Eaton and Johnston [27] pointed out that highly turbulent flow with frequent
velocity reversals limited the reliability of the measurements made with hot-
wire anemometers. The accuracy of conventional measuring instruments,
such as hot-wire anemometers and pitot probes, was questionable in swirling
flows [26]. These measurements suffered from directional ambiguity and flow
disturbance. In addition, there was some doubt about the ability of these
instruments to cope adequately with high levels of turbulent fluctuations. No
one would argue that immersing a probe into the flow will distort the flow

field.




Since recently, as a result of technological development, the Laser
Doppler Anemometry (or called Laser Doppler Velocimetry) has become a
powerful tool for flow measurements. Escudier et al [28] utilized LDA for flow
measurement in 1980. Granger [29] performed experiments using LDV in a
vertical vortex chamber with water. However, this thesis seems to be the first
report of applying LDV technique directly to the measurements of air vortex

chamber flows.

1.2 The Study and New Findings

Regardless of how much importance is brought about the fundamental
research of mechanisms, behaviours and structures of turbulent flows in
vortex chambers, its importance can not be over-emphasized. All applications
that employ the vortex principle are based on fundamental research.
Everything from the force analysis to the design criteria is closely related to
the mean flow motion as well as the fluctuating flow motion. The drag force,
pressure, separation efficiency, etc. are always functions of flow characteristics
such as velocities, turbulence intensities and so on. Accurate and detailed
information about the flow characteristics is always required. However, only
the LDV technique, in principle, can provide the required top quality image
because it is a non intrusive extensive measurement, which will not interfere
with or disturb the flow fields as other conventional methods did.
Furthermore, the LDV has a very good response to the flow with a high level
of turbulent fluctuations where conventional methods are either inaccurate
or inapplicable [26], [27]. This is why this study is more advanced and the
obtained results are more accurate and reliable.

In this study, the structure of confined air vortex flow with a high level

of turbulence (up to turbulence intensity of 8) has been investigated



experimentally and thecretically because many unknowns exist in the
turbulent flow and most applications of confined vortex flows, from the
engineering point of view, fall in the category of turbulent flow.

A LDV measurement technique was developed to study the air flow
structure in vortex chambers. Flow measurements were taken in all
directions near the exit section and at the main section inside the vortex
chamber. Abundant data from experiments were analyzed, resulting in a solid
background for modelling.

As a fundamental step, the mean velocity and the fluctuating velocity
of air vortex flows are investigated. The study is extensively extended to the
flow field near the exit section (2.5 mm to the exit plane) inside the vortex
chamber, which is very difficult for conventional approaches. A new model,
including the formulation of mean tangential velocity profile and the
determination of vortex core radii, is proposed. Based on the study of the
mean and fluctuating velocities in the confined air vortex flows, the analyses
of the turbulence intensity, the kinetic energy and the Reynolds stresses are
completed.

A physical model of turbulence intensity for confined air vortex flows
is presented. The model indicates that the turbulence intensity distribution
along the radius of the vortex chamber can be divided into three regions: the
central core region, the outer region and the boundary layer region. A
mathematical approach which is based on experimental data and uses both
the least square method and the interpolating method is carried out to
determine the turbulence intensity quantitatively, which results in empirical
equations for each region and under different inlet Reynolds numbers and
contraction ratios. A complete indication of the tangential component of the

turbulence intensities inside the vortex chamber, from near the exit section to




the main section, as well as the radial component of the turbulence intensity
near the exit section inside the vortex chamber is provided in this study.

The kinetic energy of vortex flows is studied theoretically and
experimentally. Derived equations concerning the kinetic energies due to the
mean motion, the fluctuating motion and the two combined provide
important information about the regime of kinetic energies in the vortex
flows and the contributions of each component to the kinetic energy.
Experimental results show the behaviour of turbulence kinetic energy in the
air vortex flow and establish the background for a mathematic approach.
Empirical expressions for the turbulence kinetic energy are proposed. They
consider the effects of the flow rate and the contraction ratio.

Furthermore, the Reynolds equations applied to confined vortex flows
as well as the equations concerning the Reynolds stresses in confined vortex
flows are derived. By solving the differential equations derived from the
kinetic energy analysis, analytical results of the Reynolds shear stresses are
obtained. Using a computer program developed for this calculation,
numerical results of the Reynolds shear stresses are given. Meanwhile,
measurement results of the Reynolds normal stresses are analyzed to form
mathematic expressions.

Since most new results and conclusions are based on the experimental
investigation and analysis using dimensionless or normalized units, they
have broad meanings and applications. The information obtained through
this research promotes further better understanding of the structure of

confined air vortex flows.



CHAPTER 2
EXPERIMENTS

2.1 General

A technique using Laser Doppler Anemometry (Dantec) has been
developed to measure air confined vortex flows. The LDA had not been
applied to such flow fields before, and the LDA supplier did not have any
experience in such air flow measurement. Fortunately, through a lot of
efforts, these technical difficulties have been overcome. The goal of
investigating turbulent flow structure in confined vortex flows has been
achieved successfully.

The experiments were performed at different sections inside the vortex
chamber, from 32.4 % to 99.4 % of the vortex chamber length starting at the
inlet side end of the vortex chamber. Different inlet air flow rates, ranging
from 0.0047m3/s (10cfm) to 0.033m3/s (70cfm), corresponding to the inlet
Reynolds numbers from 1950 to 13700, were applied in the experiments. At
each set air flow rate, the contraction ratio Re/R, was varied from (.25 to 1.0.

During the experiments velocities of micron particles following the
flow are measured by the LDA. Hence, mean velocity, fluctuating velocity,
root-mean-square velocity, turbulence intensity, and other correlations are
obtained. The collected data are stored for further processing.

The experimental system and apparatus, measurement techniques and
developments, experimental variables and combinations will be described in
the following sections. The obtained results will be highlighted and discussed

later.




2.2 Experimental System and Apparatus
221 Systgm

The experimental system, consisting of two major parts: air vortex
generation and flow measurement, has been designed and built in the Fluid
Mechanics Laboratory at Concordia University. The system is schematically
illustrated in Figure 2.2.1.1.

Compressed air is supplied to the inlets of the vortex generator. A
control valve is mounted on the air supply line in order to set the desired
volumetric flow rate. A rotameter is used to measure the volumetric flow
rate. When the air flow passes through the vortex generator to the vortex
chamber, a swirl is imparted to the field. That is, the vortex flow is generated
inside the vortex chamber. The vortex chamber has a cylindrical shape with
constant circular cross-section area, and has an exit plate on which there is a
central exit hole. Finally, the air flow passes through the central exit hole to
the atmosphere.

A Laser Doppler Anemometer is used for the flow measurements.
When two laser beams are made to interfere by a front lens, a small
measurement region is created. When flow particles move through this
region, light signals are generated and are converted into electric signals. A
computer system, then, processes the electric signals and provides the results.

In order to determine the air flow structure at different space positions,
a traversing device is designed to move the vortex chamber. By the device

any required measurement location can be reached.

2.2.2 Vortex Chamber and Vortex Generator

The structure of the vortex chamber and the vortex generator is shown

in Figure 2.2.2.1. The vortex chamber which is made of plexiglas for the



purpose of laser beams penetrating as well as visualization is mounted on the
vortex generator. Its geometrical parameters can be adjusted easily by
replacing different plexiglas components. The vortex chamber used for the
current experiments has an inside diameter of 13.97 cm (5.5 in.) and a total
length of 43.18 cm (17 in., 1613/4¢ in. for the chamber plus thickness of seal
pads). On the top of the vortex chamber, there is an exit plate which has a
hole in the centre. The exit area of the vortex chamber depends on the size of
the hole. By replacing the exit plates with a different size of the hole, the exit
area of the vortex chamber can be adjusted. For the experiments reported
here, the diameter of the exit hole varies from 3.49 cm (1.375 in.) to 13.97 cm
(5.5 in.).

The vortex generator has four perpendicular air inlets where the
compressed air is induced. Inside the vortex generator, there is a vortex
generation block as shown in the top part of Figure 2.2.2.2. When the air flow
passes through the block, it is guided to enter the vortex chamber in the
tangential direction so that swirl is formed inside the vortex chamber. The
block used for the present experiments has 16 ports with the inlet diameter
Din of 1.27 cm (0.5 in.) and the inlet angle @ of 30° to the coordinate, which are

shown in the bottom part of Figure 2.2.2.2.

2.2.3 Laser Doppler Anemometry

The Laser Doppler Anemometer is an ideal instrument for flow
measurement in the complex flow fields, such as swirling flows with high
levels of turbulent fluctuations, since it is nonintrusive, calibration frec, and
can provide good spatial and temporal resolution.

The principle that the LDA works on is the Doppler shift. The major

components of the LDA are illustrated in Figure 2.2.1.1. By stimulated
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emission of radiation, the laser beam generator produces intense coherent
light with a very small bandwidth. When the light passes through the
beamsplitter and the bragg cell, two laser beams split from the same original
illumination source are formed by the beamsplitter, and a fixed optical
frequency shift between the two laser beams is introduced in the bragg cell
based on the principle of the Doppler effect. Then, the two beams pass
through the front lens, and are made to interfere. This produces “fringes” and
creates a small measurement region. When particles immersed in the fluid
move through this region, in other words, cross the fringe pattern, they
scatter light which is modulated at the Doppler frequency. A Doppler shift of
the frequency of the light is caused. The spacing between the fringes provides
the relation between the moving particle velocity and the Doppler frequency.
If a particle crosses two laser beams simultaneously, two Doppler shifts are
created. The combination of these two Doppler shifts produces a “beat
frequency” at the difference between the frequencies of the two original
signals. This “beat frequency” is the Doppler frequency. It is equal to the dot
product of the particle velocity with the difference between the scattered and
the incident wave vectors. In the LDA, the scattered light signals are picked
up by the PM optics (photomultiplier) where the light signals are converted
into electric signals.

A one-component Argon-ion Laser Doppler Anemometer (Dantec) is
used for all flow measurements. It has a wavelength of 514.4 nm (green) and
operates at 300 mW. Two parallel laser beams, each having a Gaussian beam
diameter of 0.82 mm, are separated by 60 mm. They are focused by a front lens
with a focal length of 310 mm. The interference of the two laser beams
produces 93 fringes with each fringe spacing of 2.67 um. The probe

measurement volume which is created by the interference is ellipsoidal in
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shape. The approximate dimensions of the probe measurement volume are
major axes of 2.57 mm and minor axes of 0.25 mm. Two bragg cells are used to
provide a net optical frequency shift of 40 MHz. The burst detector bandwidth
is set from 0.003 MHz to 0.500 MHz, corresponding to the velocity bandwidth
from 0.12 MHz to 36.0 MHz. It allows for the measurements to be made for
both reverse flow and forward flow. That is, corresponding to a maximum
range of particle velocity from - 16.0 m/s to 80.1 m/s. The data acquisition,
storage, processing and presentation are done by a Flow Velocity Analyzer
(Dantec 58N20 FVA Signal Processor) and a IBM-AT compatible computer
with the FLOware Version 3.0 (Dantec).

2.3 Measurement Technigues
2.3.1 Scatter System Setting

The LDA was set in a backward scatter system originally by the supplier
for the flow measurements. It was found that the backward scatter system
provided lower data rate and higher level of noise. The PM optics in the
backward scatter system picked up too much background noise. When
performing measurements in the boundary layer flow near the vortex
chamber wall, the noise caused by the reflected beam from the vortex
chamber wall (made of plexiglas) was so strong that the PM tube was trapped
in overload. Therefore, the forward scatter system was finally adopted to
perform the measurement. The forward scatter system could provide data
rate up to 100 kHz. The forward scatter system also provided higher ratio of
signal to noise.

To further improve the LDA performance, particularly in the aspect of
noise reduction, the influence of the view angle of the PM optics was studied.

Weighing both noise level and signal intensity yielded an optimum angle of
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159 between the central line of the PM optics and the LDA measurement
surface. Under such an arrangement, direct illumination from the
transmitting beams could be avoided. The noise due to the strong beam
reflection from the plexiglas wall was reduced significantly and the whole
range velocity measurement, from the boundary layer flow region to the

main flow region, could be performed.

2.3.2 Seeding and Seeding Method

As mentioned before, the particle velocity can be detected only if
particles immersed in the fluid move through the LDA measurement region.
For the liquid flow measurement, such as water, the amount of micro-
particles in the liquid is sufficient. The size of these micro-particles is big
enough to scatter laser beams. Therefore, the LDA works well in liquid flow
without adding any seed.

In the pure air flcw, because the density of the air is lower than that of
the liquid, not many micro-particles are contained in the fluid and the size of
these micro-particles is too small to scatter laser beams. The LDA does not
work if seeding is not added. Therefore, special seeding particles have to be
introduced to make the LDA work. Several kinds of seeds can be used to seed
the flow. Considering safety, cost, and easy handling, petroleum distillate
whose major composition is Aliphatic HydroCarbon, (CH3)N, has been
selected as the seeding for the experiments. By a fog machine, the petroleum
distillate is evaporated to form fog. Then, inducing the fog into the air flow,
the progress of the flow can be sensed by the LDA. Fog Fluid #8207 from
ROSCO Laboratories Inc. is also used in the experiments. Fog Fluid #8207 is
better for the prc.tection of the environment, but, it seems to produce lower

density of fog than the petroleum distillate. However, it is acceptable. In fact,
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what the LDA senses is the movement of the seeding particles. Therefore, it is
required to form a homogeneous air flow with seeding particles to make the
flow measurement sufficiently accurate.

Several procedures were tried to introduce the seeding particles to the
air flow and to mix them with air uniformly. A convergent-divergent nozzle
was designed such that the seeding particles could be sucked by vacuum. This
method did not work at high flow rate because of the higher pressure level of
the compressed air source. A centrifugal blower was used to force the seeding
particles into the air flow. However, condensation of the petroleum distillate
on the blower was a problem. Eventually, the seeding particles generated
directly by the fog machine were introduced at the centre of the vortex

generator, where the vortex flow created a small low pressure region.

2.3.3 Three Dimensional Measurement

An electric traversing system was supplied with the LDA. It moves the
front lens in one direction only as shown in Figure 2.2.1.1. In order to extend
the one-component LDA to the radial, tangential, and axial component
measurement, a mechanical traversing device with position indicators was
designed as shown in Figure 2.3.3.1. The vortex chamber and vortex generator
are mounted on the mechanical traversing device by a metal frame. The
frame makes it possible to set the vortex chamber and vortex generator in
either vertical orientation or horizontal orientation as shown in Figures
2.2.1.1 and 2.3.3.2 respectively. The frame is moved by a worm gearing system.
Thus, the vortex generator and the vortex chamber can be moved in X, Y, Z
direction and be set at any measurement position. The positioning accuracy of
the mechanical device is estimated to be 0.25 mm (0.01 in.) in all directions.

During the experiments, the electric traversing system is used only to set
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measurement region at a reference point such as the centre of the vortex
chamber. The setting of measurement points of the whole measurement
range is carried out by using the mechanical traversing device to move the
vortex chamber manually.

To measure the radial component, the vortex chamber is set in the
vertical orientation and at a required location of measurement section, which
is determined by a required distance in the axial direction of the vortex
chamber (Z direction) to a reference point. Two laser beams are focused on the
centre of the vortex chamber as shown in Figure 2.3.3.3. Then, moving the
vortex chamber along the X axis to each measurement point, the radia!
component profile is obtained. The dotted circles in Figure 2.3.3.3 refer to
moving the vortex chamber and measuring the radial component at other
arbitrary locations after setting.

To measure the tangential component, the vortex chamber is also set
in the vertical orientation and at a required location of the measurement
section, which is the same as for measuring the radial component. However,
two laser beams are focused on the central line of the vortex chamber in the Y
direction as shown in Figure 2.3.3.4. Then, moving the vortex chamber along
the Y axis to each measurement point (or adjusting the LDA focusing point
along the Y axis), the tangential component profile is obtained. The dotted
circles in Figure 2.3.3.4 refer to moving the vortex chamber and measuring
the tangential component at other arbitrary locations after setting.

To measure the axial component, the vortex chamber is rotated 90°
from the position of measuring the radial component or the tangential
component to the horizontal orientation as shown in Figure 2.3.3.2. The
horizontal central line of the vortex chamber is set to be on the measurement

surface formed by the two laser beams. The location of measurement section
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is set to be based on the required distance in the Z direction as shown in
Figure 2.3.3.5. Then, moving the vortex ctamber in the Y direction, the axial
component profile is obtained. The dotted rectangular in Figure 2.3.3.5 refer to
moving the vortex chamber and measuring the axial component at other
arbitrary location after setting.

By this arrangement, the measurement of the radial and axial
components can be performed for the same point, and the same applies for
the measurement of the tangential and axial components. However, it is
impossible to perform the measurement of the radial and tangential
components for the same point. Therefore, the three dimensional component
measurement is based on the assumptions that the tested vortex chamber has
a perfect cylindrical shape and that the air flow is symmetric to the axial
central line and homogeneous. The combination of the radial, tangential and

axial components results in space vectors.

2.3.4 Sampling and Aberration Correction

In the experiments sampling is controlled based on the combination of
realization and time, either that individual realizations are accumulated up
to 4000 for each component at each measurement point, or that the sampling
time reaches 30 seconds to insure that all low frequency phenomena are
included in the sample.

When the laser beam penetrates the plexiglas wall of the vortex
chamber, beam refraction takes place because the medium of plexiglas is
different from that of air. Optical aberrations on the probe volume will occur
if the refractions of two laser beams are not identical. In the measurements of
tangential component and axial component, two laser beams are always bent

in the same degree because, ideally, the wall structures which the Jaser beams
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pass through are symmetric. The observed optical aberration in the
measurements of the tangential component and the axial component is so
small (~ 0.25 mm) that it can be neglected. Compensations for the optical
aberration in the measurements of the tangential component and the axial
component were not considered in the reported experiments. However, in
the measurements of radial component, two laser beams will interfere at
points which are not on the central line of the vortex chamber. Optical
aberrations do occur because the two laser beams are bent in different angles
as the beams penctrate the plexiglas wall with different curvature as shown in
Figure 2.3.4.1. In that figure, as an example, the dotted circles refer to a new
location of the vortex chamber in which the measurement point is not on the
central line of the vortex chamber. Apparent optical aberration takes place in
the Y direction. The optical aberration is smaller in the X direction if
compared with that in the Y direction. Therefore, methods to eliminate errors
due to the curved optical interface should be adopted.

Using two cylindrical plano-convex lenses placed symmetrically on
opposite sides of the vortex chamber to reduce aberration effects is a method
proposed by Durrett et al [30]. The method used currently in the radial
component measurement is to trace the optical aberration and to set a series
of modified new location indication for each measurement point. A
correcting curve for the measurement location is made in the following way.
First, the spatial intervals between two measurement points in the X
direction are set to be even. Then, the vortex chamber is moved to each
measurement point in the X direction. Meanwhile, the location of the laser
beam interference point in the Y direction is traced by the mechanical
traversing device. The optical aberration in the Y direction can be detected by

resetting the laser beam interference point to be on the diameter line of the
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vortex chamber. The indicator on the mechanical traversing device shows the
moving distance in the Y direction, which corresponds to the deviation
caused by beam refractions. By dotting the modified locations of all
measurement points on a Cartesian coordinate, a smooth correcting curve is
obtained. Required corrections for optical aberrations at any other
measurement points can be determined from the plot or the equation by
curve fitting technique, which are presented in Figure 2.3.4.2. By this method,
the optical aberration effects can be reduced to a minimum level over the

whole measurement range, and induced errors are within an allowable range.

2.4 Experimental Variables

Particle velocity measurements were made at different sections inside
the vortex chamber under three different inlet air flow rates: 0.0047 m3/s (10
cfm), 0.019 m3/s (40 cfm) and 0.033 m3/s (70 cfm) respectively, which are
corresponding to three inlet Reynolds numbers: 1960, 7840 and 13700 defined
as:

V..-D:

Rei==3—" 1)
where

Vin = mean inlet velocity

in = inlet diameter

v = kinematic viscousity
The contraction ratio which is defined as the ratio of the radius of the exit
hole, Re, to the radius of the vortex chamber, R, was varied from R./R,, =

0.25, 0.30, 0.40, 0.50, 0.58, 0.75 to 1.0 which corresponds to a fully open exit

state.
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The measurement surface is perpendicular to the Z-axis. The distances
between the measurement surface to the exit plate in the axial direction are
different. To the section near the exit inside the vortex chamber, the
measurement surface is set to have a distance of 2.5 mm (0.1 in.) to the exit
plate surface, corresponding to 0.6% of the vortex chamber length. To the
main section which is assumed within 30% to 90% of the vortex chamber
length, the measurement surface is set to have a distance of 298.5 mm (11.75
in.) to the inlet side end of the vortex chamber, corresponding to 69.1% of the
vortex chamber length. Besides, at the contraction ratio of 0.40, the
measurements of tangential components are performed at three other
locations: 381 mm (15 in.) to the bottom, corresponding to 88.2% of the vortex
chamber length; 215.9 mm (8.5 in.) to the bottom, corresponding to 50% of the
vortex chamber length; 139.7 mm (5.5 in.) to the bottom, corresponding to
32.4% of the vortex chamber length. It is designed to cover the assumed main
section from 30% to 90% of the vortex chamber length. The measurement of
the radial component is performed at an extra location: 2159 mm (8.5 in.) to
the bottom, corresponding to 50% of the vortex chamber length.

In each experiment, measurements are performed along a diameter
direction of the measurement surface, from one side wall of the vortex
chamber to the centre, then, from the centre to another side wall. That is, the
entire diameter of the vortex chamber. The purpose of this measurement
arrangement is to insure the accuracy of the experiments. A symmetric profile
should be obtained to verify whether the measurement points are on the
diameter of the vortex chamber and whether the origin of measurement
system coordinate is identical with the geometric centre of the vortex
chamber. In fact, for the purposes of analysis, calculation and presentation,

acquiring data along the radius is sufficient. The spatial interval between two
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measuring points is set to be 5 mm (0.2 in.) for most of points. Since the flow
will not slip on the wall, the beginning and ending measurement points are
set to have a distance of 2.5 mm (0.1 in.) to the wall, and a spatial interval of
25 mm (0.1 in.) is set for the next two measurement poinis as these
measurements are considered in the boundary layer region or near the
boundary layer region. For the presently tested vortex chamber with a
diameter of 140 mm (5.5 in.), there are 30 measurement points in each

diameter direction.

2.5 Experimental Accuracy
2.5.1 Experimental Errors

Although there is no outside calibration required for the LDA
measurement, there are many factors contributing to the experimental errors.

Sampling is one of the major factors, which will directly influence the
accuracy of the measurements. A detailed discussion of the accuracy of the
measurements will be in the next section.

Seeding is also a major influence factor. The LDA measurement is
based on the detection of the motion of the seeding particles. Ideally, the
seeding particles will exist in and follow the air flow homogencously.
However, it seems to be impossible to avoid the minor variation of the fog
concentration. When the air flow containing seeding particles enters the
vortex chamber, the centrifugal force due to swirling flow inside the vortex
chamber has a tendency to separate the seeding particles and to destroy the
homogeneous flow, but, the concentration (or density) of seeding particles in
the flow is still satisfactory to the requirement of the LDA. The measurement
shows that the experimental errors due to possible non-homogencous

seeding is so small that it could be neglected.
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The accuracy of the measurement location could be one of the sources
of errors. The mechanical traversing device has an estimated positioning
accuracy of 0.25 mm (0.01 in.). Although the location of measurement points
were set at certain fixed numerical values, it is impossible, in fact, to
repeatedly set the measurement point at exactly the same location. In other
words, minor spatial location deviation can not be eliminated in repeated
moving and setting measurement points.

When the laser beam penetrates the plexiglas wall of the vortex
chamber, beam refraction must occur as the beam passes through different
mediums: air-plexiglas-air. The beam refraction will affect the accuracy of
setting measurement location. Furthermore, the uniform thickness of the
wall could not be perfect; The cylindrical shape of the vortex chamber could
not be perfect; The centralization of the LDA and the vortex chamber could
not be perfect, etc. These small influence factors eventually may result in
some experimental errors. During the experiments, definitely, a lot of effort

had been made to eliminate or reduce these errors to the minimum level.

9.2 Measurement Accura

The acruracy of measurements is directly related with the sampling:
the number of realizations to be taken to obtain a good mean value and
standard deviation; the time interval of the sampling to be set to insure that
all low frequency phenomena are included. Of course, the more the
realizations, the better the accuracy. The longer the time interval of the
sampling, the better the accuracy. However, taking unlimited realizations is
unrealistic, which is limited by the computer memories. Unlimited sampling
time will meet the same problem as unlimited realizations meet. Based on

the work of Donohue et al [31] and Yanta and Smith [32] certain accuracy can
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be obtained by taking a reasonable number of realizations which can be
determined as follows.

The confidence limits for estimating the population mean p has the
following correlation

+ Zc'c

sX*
W (2-2)

where

K = population mean

X = sample mean

o = population standard deviation

N = number of data points

Z. = coefficient determined by the Gaussian function

It has been derived that the number of required realizations is equal to
Zc/(error)zl which is independent of the flow conditions [29]. For a 95 %
confidence level, a minimum of about 800 realizations is needed. In general,
more than 1000 realizations for each measurement point will give a good
accuracy. For instance, in the work of Gouldin et al, “Velocity Field
Characteristics of a Swirling Flow Combustor”. [33], 1000 realizations for
isothermal flow and 500 realizations for combusting flow were adopted. 2000
samples were acquired in Singler's work [34]. In the “Experimental Study of
Compressible Turbulent Mixing Layers” [35] 2000 samples were taken at cach
measurement location.

In this study, 4000 realizations were taken for each measurement point,
which corresponded to an approximate 97 % confidence level. It insured that
the sample deviation did not differ by more than 3 % from the true

population standard deviation.
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Figure 2.2.2.1  Vortex Chamber and Vortex Generator
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Figure 2.222  Vortex Generation Block
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Figure 2.3.3.1 Mechanical Traversj
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Figure 2.3.33 Radial Component Measurement
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Figure 2.3.3.4  Tangential Component Measurement
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Figure 2.3.3.5 Axial Component Measurement
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Figure 2.3.4.1  Optical Aberration
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CHAPTER 3
MEAN FLOW

.1 General

Many investigators have contributed to the modelling of the mean
velocity in vortex flows, such as the Thomson-Rankine vortex model which
idealized the mean tangential velocity of confined vortex flows as a
combination of free-vortex motion and forced-vortex motion [3]. By
presenting a new empirical formula for the mean tangential velocity, other
velocity components were obtained from the equations of motion by Vatistas
et al [24]. However, these models are based on the flow behaviour presented at
the main section of the vortex chamber only.

In this work, extensive investigations of mean velocity inside the
vortex chamber, from the main section to near the exit section, were
performed experimentally, using the extensive nonintrusive LDA technique.
A new model, including the formulation of velocity profiles and the

determination of the vortex core radius, is proposed.

3.2 Mean Tangential Velocities

The recent study of the tangential velocity in confined air vortex flows
is much wider and more accurate than those of previous investigations.
Experimental results of mean tangential velocity at both the main section and
near the exit section are obtained and presented in Figures 3.2.1 to 3.2.6.

The obtained results indicate that some mean tangential velocity
models such as that proposed by Vatistas et al [24] could be extended into a

wider range of applications.



One of the most important findings is that the inlet Reynolds number
has no influence on the location of the maximum mean tangential velocity.
It means that the location of the maximum mean tangential velocity depends
on the swirl number. Since the defined swirl number B is a function of the
contraction ratio Re/Ry, the contractior ratio, instead of the swirl number, is
used as an independent parameter in many analyses.

It is found that the numerical value of the normalized radius R
referring to the maximum mean tangential velocity is always less than that of
the contraction ratio Re/R, under which testing is done. This correlation is
found not to be affected by the inlet Reynolds number.

The mean tangential velocities at the main section and near the exit
section inside the vortex chamber have similar or almost exact velocity
distributions under the same contraction ratio and the same inlet Reynolds
number. The mean tangential velocity is zero at the centre of the vortex
chamber. It increases its magnitude along the radial direction. In the cases of
small contraction ratios, the mean tangential velocity increases very rapidly.
Then, it reaches its maximum value and starts to reduce its value gradually
along the radial direction until the wall of the vortex chamber. All velocity
reduction curves with different contraction ratios will collapse to form a
unique trace. Under the same experimental conditions, the difference
between the mean tangential velocities at different locations within the main
section is small, which is shown in Figure 3.2.7. The deviation is listed in
Table 3.2.1. 89 % of points are within 10 % of the deviation. It indicates that
one tangential velocity profile can be applied for the whole main section.

It is found that the mean tangential velocity can be normalized by the
inlet tangential velocity to form identical distributions through the whole

vortex chamber. The normalized mean tangential velocity Vi/Vyn at a lower
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inlet tangential velocity is slightly higher than that at a higher inlet tangential
velocity. Maps of average normalized tangential velocity are proposed as
shown in Figures 3.2.8 and 3.2.9 for the main section and near the exit section
inside the vortex chamber respectively. Sample deviations between
individual tangential velocity to the average tangential velocity based on
different inlet Reynolds numbers at the same section are listed in Tables 3.2.2
and 3.2.3 for the main section and near exit section respectively. 89 % points
are within 10 % deviation.

For either the absolute value or the normalized value, the magnitude
of the maximum mean tangential velocity near the exit section inside the
vortex chamber is always slightly higher than that at the main section of the
vortex chamber.

Since the forced-vortex flow in the centre of the vortex chamber can be
considered as a core, which is defined as the space bounded by a cylindrical
surface having the same radius with the point of the maximum mean
tangential velocity [19], a distribution of dimensionless mean tangential
velocity Vi, versus scaled radius T can be formed as shown in Figure 3.2.10

with following dimensionless factors:

Vt,s = :V_L_R_g
Vin Ro (3-1)
r=r/R. (3-2)
where

R¢ = radius of vortex core
The experimental results further prove that this correlation can be extended

for different sections, contraction ratios and inlet Reynolds numbers.
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Based on the previous investigation carried out by Vatistas et al [23], a
new approach for the determination of core size and the formulation of

tangential velocity profile is developed.

A normalized tangential velocity profile is proposed as follows:

\_lt‘ Vt

tin

1 1-exp(-aﬁq)
R™ 1-exp(-a) (3-3)

where
R=21-
Ry (3-4)

Differentiating the normalized tangential velocity yields

dVy__ n 1- exp(-aR?) ! 2aR-exp(-aR?)
dR R~ 1-exp(-a) R" 1-exp(-a) (3-5)

At the location where the radius equals to the core size, the tangential

velocity reaches its maximum. Therefore,

W)
where
=Re

¢ R, (3-7)

Substituting equations (3-5), (3-7) into (3-6) yields

(n + 2Xp)exp(-Xp) -n=0 (3-8)
where

Xn = a§2 (3_9)
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When “n” is determined according to the experimental data, “X,” can
be obtained from equation (3-8). Further, if the core radius is known, the
constant “a” can be determined, and the normalized tangential velocity can be

expressed as follows:

V.o 1 1-explXa(R/0)]

R" 1-exp(-Xn/0) (3-10)
Let
R
A=e
Ro (3-11)
= R¢
: ¢ (3-12)
and
s
' Re (3-13)

The tangential velocity can be expressed as follows:

v, Vi 1- expl-Xa@/8)]
A" 1 - expl-Xn/ (AZ2)] (3-14)

Considering the vortex chamber to be a control volume, applying the

principle of momentum conservation yields

f (—;-pV02+ Po) Vor dA +f (%pv,2 +pi) Vi dA =0

A (3-15)
where
V02 = sz + sz + V202 (3-16)
Since
Vie=0 (3-17)

Equation (3-15) can be rewritten as:
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f (%pvtoz) \—/.(,-n_' dA + f ( %pVZ(,z + Po ) Vn-n—' dA +
Ao

Ao

+ (lipv,hpi)\'ii-n* dA =0

Al

Since

V2c = constant

%szoz + po = constant

lpViz + pi = constant

2
(detailed in [20]) and

fi/’o-n* dA=f Vi dA=Q
Ao Ay

Equation (3-19) can be simplified as:

f QpVie) Vo dA+ (LpVad +po) Q- (Jpv?2 + p Q=0
Ao =

Since

VorndA = R.2V,  2n%-dF

Combining equations (3-14) and (3-24) yields

2

1

f dpVid) Von dA=
Ao

1 - expl-Xy(72/83)] |
1 - exp[-Xn/ (kzéz)]f

2
Vtin
2
N

P

)
g

2
} RV, 2nF-dF
(4]

- thian )

g(r, ) dr
AP(1- ) [
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(3-19)

(3-20)

(3-21)

(3-22)

(3-23)

(3-24)

(3-25)




where

Q= Vzo'ﬂ:(Re2 - Rcz) (3-26)

1 - exp[-Xn(72/83)] }2

g(f’, a) = Fl -2n_{
1 - exp[-Xn/ (M%)

(3-27)
Substituting equation (3-25) into (3-23) yields
Vi ’ 5
—"—i—ZQ—f 8(F, &) dF + (1pVad +po) Q- (3pVi +p) Q=0
A1 -8% )y (3-28)
Equation (3-28) can be rewritten as:
- 2 1 2
2(p, Fz’n) +1= (Vtm) ; 2 f g(f, £) dF + (Vzo)
p-Vi Vitara-e) ) Vi (3-29)
Since
Viin - cos ¢
V, (3-30)
(see Figure 2.2.2.2, V; = Vj,) and
VZ() - Q
Vi n(R-RAHV,
- AJ/A
2
M(1-8) (3-31)
where
r=Q
V, (3-32)
A, = 1R, (3-33)

Equation (3-29) can be simplified as:
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Ap = szg(f,z;)dn b_
&4 (1-8)

where

or

Ap - dimensionless pressure difference [22]

AP = {2(})1- Po) | 4| AT
p-Vi2 (cos (p)2

B- swirl number

(A Ao)?

X“n(cos 9)>

B=
For AP being a minimum,

d(Ap) _ 48

€ (1-8 1-§

~3
(1-8)

2(1-&3&] g &) dF+(1-€Z)2-fgf g(F, &) dF + 2BE = 0
3 5

Using Leibniz’s Theorem yields

1 - og(r, - d
if g o di= | B gr gr-g y
d&J, . % dg
Substituting equation (3-39) into (3-38) yields

2(1-&6&1 g(@)dﬂ(l-aﬁzf aig%@dF-

§
_(1-8 gl =¢, t-,>3-§+ 285 = 0

40

= 2[ g(F, &) dF + —2 2'}1%[ g(r, &) dgi+—B5

(3-34)

(3-35)

(3-36)

(3-37)

(3-38)

(3-39)

(3-40)




Differentiating equation (3-27) yields

dg(r, &) _ 4}4 #"Xng 1 - - exp[- “CZ/E"Z)]}' - Pexp[-Xn(F2/E] +

3 (1 - expl-Xn/ 0 %))
~2
+ )\"zexp[_xn/(ng 1 exp[ Xn(r /&;)]
1- exp[-Xn/ (V8] (3-41)

and substituting =& into equation (3-27) yields

o = wz a"z"{ 1- expt-Xe) }2

1-exp[-Xa/ (V&)

(3-42)
Substituting equations (3-27), (3-41), (3-42) into (3-40) yields
2
20-8% | 2"{1 eXpLXn /52”} dF +
1 - exp[-Xn/( 7»2‘@
] ~1-2 -3 =2/
+(1- &2)2 4r “Xn§ {1 -exp['Xn(rZ, &Z)]}{ - fzexp[-Xn(FZ/E,z)] +
. (1~ exp[-Xn/ (WEN])
=2
+ A Zexp[ X/ (WA LI &"?]
1-exp[-Xn/ Kzé
n 2 2
. -gz)z.g]'“{ 1 - exn(-Xp) 24(1::/1\ i
\1-exp[-Xa/ MY 24(cos ¢) (3-43)

The vortex core radius R¢ can be determined through & which is
obtained from the above equation (3-43). A computer program has been
developed to solve this equation using numerical methods. The listings of
the computer program as well as the typical input data and the output results
are shown in the Appendix D. Empirical constant “n” of 0.8 and
corresponding “Xn” of 1.6188 are used in the computation, which provides
better match of the computation results to the experimental data. Table 3.2.4

shows the computational results of the vortex core radii corresponding to
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each contraction ratio. Since the vortex core radius is always located at the
point of the maximum mean tangential velocity, the inlet Reynolds number
has no influence to the vortex core radi.

The proposed new normalized tangential velocity profile, equation (3-

10), can be rewritten with determined “n” and “X,"” as follows:

G o1 1-expl-16188R/0)’)
RO8 1-exp(-1.6188/§2)

(3-44)

Plots using this new profile are shown in Fijure 3.2.11. It is seen that at small
contraction ratios the predicted curves are well coincided with the
experimental datum points. Relatively bigger deviations are observed for
large contraction ratios. It is because the condition of the strong vortex does
not exist under the large contraction ratio. By changing the numerical values
of “n” and “Xyp”, it is possible to provide a normalized tangential velocity

profile suitable for the large contraction ratio.

3.3 Mean Radial Velocities

Distributions of mean radial velocity at different locations within the
main section obtained from the experiments are shown in Figures 3.3.1 and
332

It is found that the magnitude of the mean radial velocity at the main
section of the vortex chamber is very small if it is compared to the magnitude
of the mean tangential velocity under the same testing condition. The
maximum difference of the measured value of the mean radial velocity is
less than 8 % of that of the mean tangential velocity. A comparison of the
mean radial velocity with the mean tangential velocity at the same condition

is shown in Figure 3.3.3. Therefore, at the main section of the vortex chamber,
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the mean radial velocity can be considered as an unimportant item to be

neglected, which is a reasonable assumption made by many investigators.

Near the exit section inside the vortex chamber, the effect of the mean
radial velocity on the vortex flow is significant. The behaviour of the mean
radial velocity there is illustrated in Figures 3.3.4 to 3.3.9. In the plots of mean
radial velocity versus radius, the positive value of the mean radial velocity
means that its direction is ider.tical to that of the radial axis from the centre of
the vortex chamber to the wall of the vortex chamber. The negative value of
the mean radial velocity means that its direction is opposite to that of the
radial axis. That is, the flow in the radial direction will be from the side wall
of the vortex chamber towards the centre.

It is found from the experimental observation that the maximum
mean radial velocity near the exit section, for any given contraction ratio,
always appears at the place where the numerical value of the normalized
radius is slightly greater than that of the contraction ratio. Then, from that
maximum value point to the wall, the magnitude of the mean radial velocity
decreases gradually withh the increase of the numerical value of the
normalized radius. Within that region, the radial velocity vector has the
direction towards the centre of the vortex chamber, therefore, it is presented
with a negative value. It indicates that there is some secondary flow in this
region.

For each given contraction ratio, the trends of the mean radial velocity
distributions near the exit section, corresponding to different inlet Reynolds

numbers, are similar. Therefore, the mean radial velocity can be scaled as

<l

Vis= Re,io'zs' -
in (3-45)

<

where

43




V¢,s = scaled mean radial velocity
Corresponding scaled distribution curves are shown in Figures 3.3.10 to 3 3.15.
It has been seen that the mean radial velocity distributions under different
contraction ratios are quite different. Simple analytical expressions which
could be applied for all mean radial velocity distributions are extremely
difficult to be conducted. Using numerical methods, the mean radial
velocities at any location near the exit section with various conditions can be
estimated. A map of the scaled mean radial velocity is formed as shown in
Figure 3.3.16 for application. Table 3.3.1 shows a sample deviation between
the experimental data and numerical approximation.

The fluctuating velocities were measured in the experiments. Based on
those, analyses of the turbulence intensity, the kinetic energy and the

Reynolds stresses can be carried out.
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Table 3.2.1 Deviation of Mean Tangential Velocity at
Different Locations within Main Section
(Re/Ro = 0.40, Re,i =7840)

Yo L/ Liotal L/Ltotal L /Liotal L/Ltotal
r/Rq =88 % =69 % =50% =32 %
0.036 8.52 8.15 -6.94 -9.73
0.109 -1.60 -2.65 1.06 3.19
0.182 -2.71 -4.67 1.20 6.18
0.255 2.36 -5.15 -0.66 3.45
0.327 3.38 -2.65 -1.18 0.45
0.400 2.76 1.07 -1.99 -1.84
0.473 3.64 -1.94 -0.76 -0.95
0.545 0.78 -3.54 1.71 1.05
0.618 -3.57 -4.58 2.90 5.26
0.691 -6.35 -5.73 3.20 8.89
0.764 -7.12 -4.66 0.91 10.9
0.836 -9.11 -5.53 2.04 12.6
0.909 -10.7 -2.67 0.93 12.4
0.945 -10.5 -6.98 2.54 14.9
0.982 -11.8 -8.88 3.83 16.8
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Table 3.2.2 Deviation of Tangential Velocity at
Re,i = 13700 to Average Tangential
Velocity (Main Section)

0/0 Re/Ro RQ/RO RQ/RO RQ/RO RQ/RO RQ/R() RC/R“

r/Ro | =025]| =030} =040} =050 | =058 =0.75 | = 1.00

0036 | 122 | -106 | -153 | -162 | -494 | -27.1 | -40.2

0109 | -6.28 | -347 | -5.66 | -131 | 278 | -419 | -11.9

0182 | -575 | -3.70 | -494 | -806 | -19.2 | -299 | -8.60

0.255 1 -5.07 | -3.01 | -6.37 | -496 | -102 | -21.7 | -9.94

0327 | -3.96 | -241 | -1.72 | -7.61 | -641 | -15.1 | -9.72

0400 | -596 | -428 | -588 | -861 | -695 | -17.0 | -12.6

0473 | -592 | -415 | -816 | -829 | -6.83 | -139 | -11.3

0545 | -380 | -5.68 | -6.78 | -994 | -6.82 | -13.8 | -10.4

0.618 | -450 | -6.13 | -3.44 | -9.83 | -9.12 | -14.0 | -0.36

0691 | -850 | -11.6 | -478 | -11.1 | -851 | -14.6 | -5.24

0764 | -878 | -124 | -722 | -11.1 | -126 | -13.6 | -5.91

0836 | -6.64 | -119 | 9.07 | -123 | -143 | -134 | -9.16

0909 § -850 | -122 | -11.6 | -10.0 | -146 | -11.4 | -9.41

0945 | -891 | -124 | 987 | -11.8 | -12.6 | -122 | -8.00

0982 | -715 | -930 | -124 | -135 | -768 | -14.0 | -3.03
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Table 3.2.3  Deviation of Tangential Velocity at
Re,i = 13700 to Average Tangential
Velocity (near Exit Section)

Yo Re/Ro | Re/Ro | Re/Ro | Re/Ro | Re/Ro | Re/Ro

r/Ry =025 | =030 | =040 | =050 | =058 | =0.75

0.036 -3.86 8.87 5.10 -24.9 10.4 -18.2

0.109 -5.20 -5.19 -3.05 22.1 18.7 -25.1

0.182 -1.73 -7.12 -7.72 4.30 15.8 -19.4

0.255 -0.50 -1.15 -10.7 -2.89 6.50 -16.9

0.327 -2.10 -4.88 -5.58 -6.78 -2.23 -8.59

0.400 2.35 1.59 2.66 -7.26 -6.58 -4.91

0.473 3.90 3.39 1.49 -3.24 -5.86 -4.73

0.545 3.09 3.08 -0.01 -4.41 -0.03 -5.81

0.618 5.04 3.49 0.40 -5.04 1.36 -4.66

0.691 3.50 2.81 0.88 -1.73 0.69 -4.09

(.764 3.43 4.13 1.91 0.00 1.17 -0.77

.836 3.35 4.77 3.96 -0.99 -1.97 0.27

0.909 1.48 3.54 3.56 -1.39 -5.01 -4.49

(0.945 0.67 3.36 2.07 -2.85 0.30 -4.80

(0.982 3.83 3.60 1.92 -0.78 -0.96 -2.41
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Table 3.2.4 Computational Results of
Vortex Core Reaii

Re/Ro

0.25

0.30

(.40

(0.58

0.75

Rc/Ro

0.114

0.155

l

0.241

(0.403

(.555
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Figure 5.5.4.2 Experimental Radial Component of
Turbulence Kinetic Energy near
Exit Section (Re/Ro = 0.30)
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Figure 5.5.4.3 Experimental Radial Component of
Turbulence Kinetic Energy near
Exit Section (Re/Ro = 0.40)
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Table 5.6.1 Influence Factors on Magnitude of

Turbulence Kinetic Energy

Tur. Kinetic Energy Influence Parameters Empiric.
Section Re,i Re/Rp B Equation
T.,Main (Re/Ro<0.5)] Scaled Yes Yes 5-20
T..Main (Re/Ro20.5) | Scaled Yes Yes 5-23
Tangent., near Exit | Scaled Yes Yes 5-24
Radial, near Exit Yes Yes Yes
Total, near Exit Yes Yes Yes 5-26

Tur. = Turbulence
T. = Tangential
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Table 5.6.2

Influence Factors on Locations of

Maximum and Minimum Turbulence
Kinetic Energy

Tur. Kinetic Energy Influence Parameters Location
Section Point Re i Re/Ro B
T., Main Lmax No No No Centre
Re/Rp<.5 Lmin No No No r/Ry=0.6
T., Main Lmax No Yes Yes Core R.
Re/Rp2.5 Lmin No Yes Yes Outer R.
T., Exit Limax No No No Centre
Re/Rp<.5 Lmin No Yes Yes near B.L.
T., Exit Lmax No No No r/Re=0.1
Re/Rp2.5 Linin No Yes Yes near B.L.
Rad., Exit] Lmax No No No Centre
Re/Ro<.5 Lim Yes No No near B.L.
Rad., Exit] Lmax No Yes Yes Core R.
Re/Rp2.5 Lmin Yes Yes Yes near B.L.
Tot., Exit Lmax No No No Centre
Re/Ro<.5 Lmin Yes Yes Yes near B.L.
Tot., Exit Lmax No Yes Yes Core R.
Re/Ra2.5 Lmin Yes Yes Yes near B.L.
R. = Region
B.L. = Boundary Layer
Rad. = Radial
Tot. = Total
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Table 5.6.3 Deviation of Scaled Tangential

Component of Turbulence Kinetic
Energy at Re/Ro =0.30
(Main Section)

Yo Re,i Re,i Re,i
r/Ro = 13700 = 7840 = 1960
0.036 67.0 -249 -42.0
0.109 54.5 -26.9 -27.6
0.182 ~5.77 3.18 2.60
0.255 -2.29 -1.21 3.50
0.327 2.69 -8.35 5.66
0.400 4.51 -4.90 0.39
0.473 9.34 -3.91 -5.43
0.545 9.64 4.72 -14.4
0.618 16.0 -2.59 -13.4
0.691 0.36 6.50 -6.87
0.764 -0.84 5.70 -4.87
0.836 1.11 5.20 -6.31
0.909 23.4 -14.0 -9.43
0.945 13.8 -5.85 -7.95
0.982 7.32 -24.6 17.2
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Table 5.6.4 Deviation of Scaled Tangential
Component of Turbulence Kinetic
Energy at Re/Ro = 0.30

(near Exit Section)

% Re,i Re,i Re,i
r/R, =13700 = 7840 = 1960
0.036 13.9 -15.8 1.94
0.109 7.09 -1.36 -5.73
0.182 18.8 -5.57 -13.2
0.255 8.71 -9.83 1.11
0.327 5.33 -12.3 6.98
0.400 18.0 -18.3 0.26
0.473 16.1 -17.1 1.02
0.545 7.11 -16.6 9.45
0.618 3.81 -12.4 8.63
0.691 -0.39 -9.54 9.93
0.764 5.52 -9.64 4.12
0.836 6.23 -9.74 3.51
0.909 5.03 3.79 -8.82
0.945 2.70 491 -7.62
0.982 -11.8 (.14 5.70
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Table 5.6.5 Deviation of Curve Fitting of Total
Turbulence Kinetic Energy at Re/Ro < 0.5
(near Exit Section, Re,i = 1960)

% Re/Ro Re/Ro Re/ Ry
/R, =0.25 =0.30 = 0.40
0.036 -0.08 0.06 -0.13
0.109 0.56 -0.27 1.05
0.182 -1.54 -0.03 -2.04
0.255 1.41 3.19 -0.72
0.327 0.91 -7.60 7.45
0.400 2.61 7.51 -7.13
0.473 -8.45 0.57 -1.94
0.545 4.93 247 11.3
0.618 3.14 2.51 -0.62
0.691 -2.95 -4.49 11.4
0.764 0.02 3.58 9.51
0.836 0.36 -0.93 -2.01
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Table 5.6.6 Deviation of Curve Fitting of Total

Turbulence Kinetic Energy at Re/Ro 2 0.5
(near Exit Section, Re,i = 1960)

Yo Re/Ro Re/Ro Re/Ro
r/Ro =(0.50 = (0.58 =0.75
0.036 0.12 0.35 0.04
0.109 -0.61 -0.90 -0.14
0.182 1.64 1.75 0.40
0.255 -2.10 -1.61 -0.56
0.327 0.65 -0.84 -0.36
0.400 0.17 4.01 2.62
0.473 6.65 0.71 -3.35
0.545 -10.9 -9.34 0.99
0.618 3.63 5.34 3.09
0.691 7.66 5.83 -4.64
0.764 -4.80 -6.12 3.55
0.836 0.93 1.47 -0.77
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CHAPTER 6
REYNOLDS STRESSES

6.1 General

As presented in the previous Chapter, equations (5-1) to (5-3) are
usually referred to as the Reynolds equations in cylindrical coordinates.
Additional stresses, namely Reynolds stresses pV;Vi, appear in the Reynolds
equations if these equations for the mean motion are compared with the
Navier-Stokes equations. The term pV}V,-', which can be explained as
momentum transfer per unit time through an unit area, is always equivalent
to an equal and opposite force exerted on the area by the surroundings.
Therefore, the Reynolds stresses represent the exchange of momentum in the
turbulent mixing process. In the turbulent transfer, Reynolds stresses
characterize the important nonlinear mechanism. As a result of Reynolds
stresses, production or diffusion of turbulent energy takes place from the
energy of the mean motion.

The Reynolds stresses are apparent stresses, different from the viscous
stresses and the pressure. Only the viscous stresses and the pressure can be
considered as the instantaneous stresses. The viscous stresses are the results
of the mean motion, represented in terms of the mean velocity gradients and
the mean velocities. For overall consideration, the Reynolds stresses must be
added to the stresses caused by the mean flow.

Reynolds stresses have normal as well as tangential components. The

2
normal components are obtained when subscript i is equal to j, such as pVr,

“ 2 2
PVe and PVz. The normal component may be interpreted as a normal stress
because the flux of momentum causes a reaction such as pressure in the

direction normal to the surface. In addition, the magnitude of momentum is




equivalent to a stress with a negative sign. The tangential components are

obtained when the subscript i is not equal to j, such as erVe, PVeV; and

pV2V r The tangential component may be interpreted as a shear stress because
the flux of momentum causes a reaction in the direction along the surface.

In general, it is very difficult to obtain a numerical value for the
Reynolds stresses by directly solving the Reynolds differential equations
analytically. To obtain the Reynolds stresses, experimental determination
using an advanced apparatus such as a Laser Doppler Anemometer is a
possible approach. In this work, some analytical results for Reynolds shear
stresses, fortunately, are obtained by solving differential equations derived in
the previous Chapter. Detailed steps are included in Appendix B. The
numerical values of the Reynolds normal stresses are obtained from the
experiments. In this work, the density P is considered as a constant. Therefore,

it is not included in the analysis of the Reynolds stresses.

6.2 Analytical Approach for Reynolds Shear Stress
6.2.1 Radial-Tangential Component of Reynolds Shear Stress

The radial-tangential component of the Reynolds shear stress ViVe can

be found in the equation of the tangential component of the kinetic energy

for the mean motion as follows:

VeV )+vr(V°>

= Wo(C V,° +19Ve "’9) ve[—xv Vg) +2V,V,]
or2 I or r2 (5-8)

Rewriting equation (5-8) to approach scaled units yields

v 02 0 17 Vin®
G5 Res ) ovr»a(/Ro'v”( )+



+ (= rR 02")( in [RO(VG ]( m

in qu R“
a a(Ve/Vm) in

(v Vil /Ro) (r/Ry) ](R(,*)

R a(VO/Vm) . _12_ Yoy Viny _

+ (5 W )( (m)(R(,)
- Joy 7 2V Vin oy Y Voy Vin”

GOVl TR DR ) 2ReyXr DR o
Let
R=r/R,
7. - Vip 025
Ve ==R;;
: Vin '
v _V,
\Y% =:9—
! Vin
VRVr= VFVB
Vln (6-2)

Substituting equation (6-2) into (6-1) and rearranging the equation yicld

1v.2) . Y1~
R, 025 R[—( v = —]
— V1 19V Vn )
= \Y T Vil=—(VyV _—.V V
(va ) T(aﬁz ¥R 2 ) T[ ( RVT) + R( R T)] o5
r-3)
Let
_vinDo
Reo = v (6-4)

Substituting equation (6-4) into (6-3) and rearranging the equation yield

3 Trom L 20T
—(VRVT) 4+ &(VrVT +
ﬁ(RT) R(RT)

1 £V (avT +E) __2 (asz .

. V1§, 19Vr Vp
Rei%%° 0R R Reo 3R? R 9R R2 (6-5)
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It is found that from the experimental results the velocities VR and V1

are functions of normalized radius R, and can be expressed by polynomials.

That is,
Vg = fa(R)
n —
= z anR"
0 n=0,1,2,...) (6-6)
Vr=f(R)
=) buR"
0 =012 ...) (6-7)

For any given flow and vortex chamber structure conditions, Re,; and
Re¢,0 are known constants. Therefore, the third part of equation (6-5) is a

function of normalized radius R under the given condition. That is,

aVr _Vr,

—Vr(=+ =D - —+1—=-DH=FR)
RQ,, oR R Re,o IR R oR R (6-8)
Substituting equation (6-8) into (6-5) yields
A (VrVD) + 2(VRV7Y) + FR) = 0
dR R (6-9)

This is a linear differential equation. The solution of the equation of

the scaled radial-tarigential component of the Reynolds shear stress VRVT can

be obtained using the following boundary layer condition: at the centre of the

vortex chamber, VRV T is zero. Thus,

vﬁv%:-i—f R2F(R) dR
— _
R (R #0) (6-10)
Combining equations (6-6), (6-7) with (6-8) yields
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n n

— _ n .
R 0 zq % aan.Z (n+1)ban 1 _ R__?___.Z (rl_‘l)(n+1)ban.-
e, 0 eo 0

FR) =
(6-11)

Substituting equation (6-11) into (6-10) yields the scaled radial-

tangential component of the Reynolds shear stress VRV T as

. n —_ _— —
Vevr=-—2L —| ¥ aR"Y (n+1)b,R™' dR +
R,_,,io'z‘-Rd‘Z 0 " 0 "

+—2 i (n-1)(n+1)b,R" dR

Re,o‘Ez 0
(6-12)
Since
n
R" +1)b,R™"TdR =R R™.__ntl
z an Z (n 20: [Z anR (n+2)+m 1byR
(6-13)
and
n _ . n -
Y (n-1)(n+1)byR" dR = R%Y., (n-1)b,R™"
0 0
(6-14)

Substituting equations (6-13), (6-14) into (6-12) yields

ZIZ RPN+l ]bnﬁ"+-_2_i(n-1)b,;ri""

viw'T=
(n+2)+m e0 0

025

m=0,1,2,...,n=0,1,2,....) (6-15)
There were no mathematical difficulties to obtain the radial-tangential
component of the Reynolds shear stress because the radial and tangential

mean velocity profiles were obtained from the experiments.
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6.2.2 Radial-Axial Component of Reynolds Shear Stress

Similarly, the radial-axial component of the Reynolds shear stress ViV,
can be determined from the equation of the axial component of the kinetic

energy for the mean motion as follows:

- 9 1T N, 10V, =0, g0 . luw
Vré—(iv )= V(—a;z—+r =)= Vel (ViVa) + £ ViVl 511)

Equation (5-11) can be rearranged to approach scaled units as follows:

—, O 25) (V./Vin) V,

- 03 R
a ( len)
- ] ) in
v /R(,)(R(, o(r /R(,) R(, d(r/Ro) ]( )
- a V V Vln [V VZ in
a(r/Ro) )( R, )- r/RO\ —1 2)( Ro ) (6-16)
Let
R_ = r/Ro
Vi = JrR, 0%
Vin
V= Yo
Vin
ViVz =Yz
Vin (6-17)

Substituting equation (6-17) into (6-16) and rearranging the equation

yield

a(vRvZ)+ (VrVy) + [—1 ‘\TaVZ 2 a_(ﬁa\@
R R R, %% ~9R RgoROR aR

e,l

1=0

(6-18)

195




It is found that from the experimental results the velocities VR and V2
are functions of normalized radius R, and can be expressed by polynomials.

That is,

VR = fo(R)

n=0,1,2,....) (6-6)

n=0,1,2,..) (6-19)

For any given flow and vortex chamber structure conditions, R;, and
Re,o are known constants. Therefore, the third part of equation (6-18) is a
function of normalized radius R under the given condition. That is,

1 VaVz 9 a—avz

)= G(R)
R 0% TR Reo-ROR  9R

(6-20)
Substituting equation (6-20) into (6-18) yields
L (Vavz) + LVav2) + GR) = 61

This is a linear differential equation. The solution of the equatnon of
the scaled radial-axial component of the Reynolds shear stress VRV/ can be

obtained using the following boundary layer condition: at the centre of the

vortex chamber, VRVz is zero. Thus,

VRVz= --l-f R-G(R) dR 3
R (R #0) (6-22)

Combining equations (6-6), (6-19)with (6-20) yields
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GR) = —L—3" aR™ > nd,R"" -
Re,i ' 0 0

and R™2

Re ¢ (6-23)

Substituting equation (6-23) into (6-22) yields the scaled radial-axial

component of the Reynolds shear stress VRVzas

VRVz=-—1_——| > a,R™ Z nd,R" dR +
R .

Re,o'R
(6-24)
Since
n =n n —n _ _ n m —n
R". daR"dR =R —I_1d,R
%an %:n n 20: % (n+1)+m] n
(6-25)
and
n - . n .
Y n2d,R"! dR =R, nd,R""
0 0
(6-26)

Substituting equations (6-25), (6-26) into (6-24) yields

n m
' ' _ l .
VRVZ—-R m%[%, amR™

.25
el

n

— _2__ nd rnl
n+1)+m] R,_,,0 %‘ n

m=0,1,2,...,n=0,1,2,....) (627)

There are no mathematical difficulties to obtain the radial-axial

component of the Reynolds shear stress.
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6.3 Computation of Reynolds Shear Stress
6.5.1 General

A FORTRAN computer program was developed to perform the
computation of Reynolds shear stress, which is based on the derived
analytical solutions of the differential equations detailed in the previous
section “Analytical Approach for Reynolds Shear Stress”.

The inlet velocity of the air flow, Vj,, the diameter of the air flow inlet,
Din, the diameter of the vortex chamber, Do, and the kinematic viscosity of
the air, v, are input parameters; The coefficients of polynomials, a, and by,
which are determined from the velocity profiles are input parameters;
Number of coefficient points and number of computation points which are
determined by the computer program users are input parameters.

The output of the computational results includes the Reynolds shear
stress in both the dimensionless form and the absolute value form. The
computational results concerning the contributions from each item, such as
the viscous effects, the kinetic energy and the inertia part, to the Reynolds
shear stress can be presented upon request.

The detailed computer program listings and samples of typical output

of computer calculation are attached as Appendix C.

6.3.2 Analysis of Computational Results

A plot of the computational results of the radial-tangential component
of the Reynolds shear stress at the main section of the vortex chamber is
shown in Figure 6.3.2.1. The computational results of the radial-tangential
component of the Reynolds shear stress near the exit section inside the vortex

chamber are plotted as shown in Figures 6.3.2.2 to 6.3.2.7.
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It is observed that both the inlet Reynolds number and the contraction
ratio, further referring to the swirl number, affect the Reynolds shear stress.
The flow with the higher inlet Reynolds number will have higher Reynolds
shear stress.

Among small contraction ratios (Re/Ro < 0.5), the flow at relatively
smaller contraction ratio will have larger value of the radial-tangential
component of the Reynolds shear stress. Among large contraction ratios
(Re/Ro 2 0.5), similarly, the flow at relatively smaller contraction ratio will
still have larger value of the radial-tangential component of the Reynolds
shear stress.

It is found that with the change of the contraction ratio, the acting
direction of Reynolds shear stress will change, which is reflected by the
changing of the numerical value from positive to negative. At small
contraction ratios such as 0.25 and 0.30, the radial-tangential component of
the Reynolds shear stresses shows a positive value. At large contraction ratios
such as 0.58 and 0.75, it shows a negative value. At the contraction ratios of
0.40 and 0.50, it appears in the transition stage.

In general, the location of the maximum value of the radial-tangential
component of the Reynolds shear stress will change corresponding to the
contraction ratio. The smaller the value of the contraction ratio, the closer the
location of the maximum value of the radial-tangential component of the
Reynolds shear stress to the centre of the vortex chamber. Obviously, at the

centre of the vortex chamber, the Reynolds shear stress is zero.
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6.4 Experimental Approach for Reynolds Normal Stress
6.4.1 Tangential Component of Reynolds Normal Stress

The tangential component of the Reynolds normal stress is equivalent

to the momentum transfer per unit area in the tangential direction through
the plane normal to the tangential direction.

The distributions of the tangential component of the Reynolds normal
stress at the main section of the vortex chamber are presented in Figures
6.4.1.1 to 6.4.1.7 based on the measurement results.

To eliminate the influence of the inlet condition such as the air flow
rate, scaling formulas for the main section are found as follows:

For Re/Rg < 0.5,

2
~ \Y%
Too = Re,i—%
Vin (6-28)

For 0.5 £ Re/Rp £0.75

2
= V
Tgg = Re,iO'G‘:%

Vin (6’2"))

The distributions of the scaled tangential component of the Reynolds normal
stress at the main section based on the above equations are shown in Figures
6.4.1.8 to 6.4.1.13.

Near the exit section inside the vortex chamber, the distributions of the
scaled tangential component of the Reynolds normal stress obtained from the
experiments are presented in Figures 6.4.1.14 to 6.4.1.19.

Similarly, a scaling formula which can be applied for near the exit

section and cover all contraction ratios is found as follows:

=l

= 03
Tgp = Re, =2

<|
5
N

(6-30)
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The plots based on this equation are illustrated in Figures 6.4.1.20 to 6.4.1.25.

It is found that the inlet Reynolds number (or the inlet air flow rate)
does not affect the locations of the maximum and the minimum values of
the scaled tangential component of the Reynolds normal stress. For the small
contraction ratios, the maximum value will appear at the centre of the vortex
chamber. For the large contraction ratios, the maximum value will appear
within the central core region. Only at the main section with a large
contraction ratio, referring to a large swirl number, will the contraction ratio

affect the maximum value location.

6.4.2 Radial Component of Reynolds Normal Stress

The radial component of the Reynolds normal stress is equivalent to
the momentum transfer per unit area in the radial direction through the
plane normal to the radial direction.

At the main section of the vortex chamber, as shown in Figure 6.4.2.1
and 6.4.2.2, the radial component of the Reynolds shear stress appears a
higher level of the magnitude at a smaller contraction ratio and at a location
closer to the exit.

Near the exit section inside the vortex chamber, the inlet Reynolds
number does not affect the location of the maximum value of the radial
component of the Reynolds shear stress as shown in Figures 6.4.2.3 to 6.4.2.8..
At a contraction ratio less than 0.5, the contraction ratio does not affect the
maximum value location either. The maximum value appears at the centre
of the vortex chamber for the contraction ratio less than 0.5 or within the

central core region for the contraction ratio greater than 0.5.
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6.5 Contribution of Viscosity

.5.1 Contribution of Vi ity in Tangential Direction

The tangential component of the kinetic energy due to the fluctuating

motion can be described by the following equation:

91y 2 4 21y’ 2 s 2.3y

5 &Ve)+ #zz’z;35 )
.92V, av Ve, 0

" 0 0 [¢)

"ﬁv"—arz T ea ) + r'a ’VrVe)'*' Vve)]
0

-é@§M)4Wd

(5-18)
In certain cases, the third order items in the above equation are so
small when compared to other items that they could be neglected. The

equation (5-18) can be simplified and rearranged as

WV, 1,3V
V(Ve o Ve o —)
_v_(v6+v2%v5 zév >vw4VV)+<vvm

22 (6-31)
The left-hand side of the equation represents the contributions of the viscous
effects. The right-hand side of the equation contains the terms of the
tangential component of the turbulence kinetic energy and the Reynolds
shear stress to the radial-tangential component. The equation can be

rearranged to approach a normalized form as follows:

[(Vg\az(ve/vm)( )+ ] (Vg\ (ve/vm) m)]
Vin 9(/R,)? Ro r/Ro__\im dr/Ry) R,
ly,? 19,2
_Vip 02 0 2 °%p o3 2"
A 5’ 025 3/ 1V, e 3(12@,.0-3-12(.“
1;—2 1y,
r 0.2 in 2 0. n
+%ﬁa,5( MJWE&V &.mgjﬂ;w-

e, 0
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yield

Ly 17,2
oy (fv—iRe e
il et V_IV;’x ) 2 Y_V;’)(VR'"ZN o
Let
V= Vg/Vin
VR = Vi/Vin

Vi = VSI/V}nz
VRVE = VV3/V,,°

V k]
Kt,b = = Re,low
V

N = by

(6-33)

Substituting equations (6-33) into (6-32) and rearranging the equation

2
2 (V IVt _1_ aVT
T t= )
Rc,o aﬁz R
1 -_ aKt,s 1 v Kt’s + 2 Ktls _

= VrR——+ R—
2Re,10'55 IR Re,iO.SS R Re,lo'B'Re,o ﬁz
— 0 T —
- Vil==(VRrV1) + Z(VRV7)]
oR R

(6-34)

It is found that from the experimental results the scaled tangential

component of the turbulence kinetic energy Kt is a function of normalized

radius R, and can be expressed by a polynomial. That is,

Kis = fo(R)

n=0,1,2,...) (6-35)



Substituting equations (6-6), (6-7), (6-9), (6-11), and (6-35) into (6-34) and

rearranging the equation yield

n
Z n.i (n+2)cnﬁn-l Z C““h -2
0

2Re ,” 55

0 RL 1 3 Rc 0 0
a = —n.D
+ Z baR™{ 1 Z aR™Y, (n+1)b R - 223" (n-1)(n+1)b, R
e,i 02 0 0 €0 0
(6-36)
where
@t = viscous effects in the tangential direction
0%V V-
@ = R2 Vi % a_T)
e,0 JR R (6-37)

The contribution of the viscosity in the tangential direction can be
determined as the radial and tangential mean velocity profiles and the
tangential component of the turbulence kinetic energy profile are available

from the experiments.

6.5.2 Contribution of Viscosity in Axial Direction

The axial component of the kinetic energy due to the fluctuating

motion can be described by the following equation:

0 1,2y _ v .azv' 1v90Vz V.

2lvh=x VAR z-_vvz V.V,

oV =g Ve Vg )t )+ Lvivo)l

+ Ly 2 vE)

2V, or (5-19)

If the third order items in the above equation are much smaller than
other items and can be neglected. The equation (5-19) can be simplified and

rearranged as
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92V, av d 1 0 —— —
— 4 H VA -V (Vivy + L Vv
or2 f “ or or or r (6-38)

The left-hand side of the equation represents the contributions of the viscous
effects. The right-hand side of the equation contains the terms of the axial
component of the turbulence kinetic energy and the Reynolds shear stress to
the radial-axial component. The equation can be rearranged to approach a

normalized form as follows:

vz\a%vz/v.n) 1 vz\awz/vm) in
[(v,n A(r/Ro)? ( o) +r/Ro( d(r/Ro) ( )]
— lv'zz 1y, 2
= (YeR, 0 Vi 02 2 "
Vin 0258(/ )1y, 2" R,
2
V, o 0 ViV, Va2 1 V.V, V.2
- ____‘_L Vm ( rvz n I_l’ Y4 n
(Vm)( )[a(r TR _inz)( R0)+r TR inz)( R )] 639)
Let
VZ—V‘Z/Vm
V3 = VE/V,,2
V7
KZs=2
ST152
2V‘" (6-40)

Substituting equations (6-40) into (6-39) and rearranging the equation

yield

. 9%V- OV
2 (Vym—2 7%

+ Ly
Reo oR2 f{_ oR
— 0K,s — (0
=L _Vp—=2-Vy ’VRVZ)'*'—-(VRVZ)]
2R, % dR BR (6-41)
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It is found that from the experimental results the scaled axial
component of the turbulence kinetic energy K: is a function of normalized

radius R, and can be expressed by a polynomial. That is,

Kzs= fe (—Ii)
n —
= 2 e R"
0

Substituting equations (6-6), (6-19), (6-21), (6-23) and (6-42) into (6-41)

n=0,1,2,...) (6-12)

yields
NPT S
Re,oz % apR 2 ne,R +
+ 2 dn R“ L 2 apR™ 2 nd,R"" - Z n2d,R™)
Reo %G (6-43)
where

@, = viscous effects in the axial direction

. 9%V av
®,= 2 (V;—24+ Ly, 2
Reo aR? R aR

(6-44)

The contribution of the viscosity in the axial direction can be
determined as the radial and axial mean velocity profiles and the axial
component of the turbulence kinetic energy profile are available from the

experiments.
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CHAPTER 7
CONCLUSIONS

The confined air vortex flow structure has been studied extensively
through experimental and analytical approaches.

The technique applying Laser Doppler Velocimetry to investigate
confined air vortex flow was developed for the first time. The development
not only made the LDV air vortex flow measurement possible, but also
extended the investigation from the main section to very close to the exit
section inside the vortex chamber, which was impossible by any conventional
method. The LDV measurements indicated that the mean tangential velocity
near the exit section was higher than that at the main section. Within the
main section, it was found that the mean tangential velocity profiles at
different locations were practically identical. The LDV measurements also
indicated that, at the main section, the mean radial velocity was much
smaller than the mean tangential velocity. The radial velocity profiles necar
the exit section had completely different shapes under different conditions.
However, the radial velocity could be scaled to eliminate the effect of the inlet
Reynolds number. Based on the flow measurements, the new findings on the
turbulence intensity, the kinetic energy and the Reynolds stresses were
obtained.

A three-region model was proposed for the tangential component of
the turbulence intensity in a confined air vortex flow. The model classified
the behaviour of the tangential component of the turbulence intensity along
the radius of the vortex chamber. It was found that the strongest turbulence

intensity in the tangential direction appeared at the centre of the vortex




chamber. The lowest one was at the border where the central core region
ended and the outer region began. In the central core region, the magnitude
of the tangential component of the turbulence intensity depended on both the
inlet Reynolds number and the contraction ratio. However, in the outer and
the boundary layer regions, its magnitude depended on the inlet Reynolds
number only. Furthermore, the proposed three-region model was also
suitable to describe the characteristics of the radial component of the
turbulence intensity.

Mathematical expressions were found and proposed to predict the
tangential component of the turbulence intensity for all three regions under a
variety of conditions, not only qualitatively but also quantitatively. The
verification showed that the deviation between the predicted turbulence
intensity and the experimental results was satisfactory.

It was found that the locations of the minimum turbulence intensity of
the tangential and radial components depended on the swirl number only.
The minimum value and its location had approximate linear correlations
with the contraction ratio. Empirical equations were proposed to determine
the location and the magnitude quantitatively.

A theoretical work resulted in the equations for the total kinetic energy
and the kinetic energies due to the mean motion and the fluctuating motion.
The factors contributing to the kinetic energies were analyzed. The scaling
formulas were found to eliminate the complexity of the inlet flow conditions.
Based on the experimental data, the magnitude and the location of the
maximum and the minimum values of the turbulence kinetic energy in the
confined air vortex flow were determined. In the confined air vortex flow
with viscous domination, the turbulence kinetic energy would tend to its

maximum value at the centre of the vortex chamber. The characteristics of
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the turbulence kinetic energy and the related influence factors were
summarized.

Differential equations concerning the Reynolds shear stresses of the
radial-tangential component and radial-axial component were derived in this
study. These equations were solved directly as that the velocity profiles could
be expressed analytically. Numerical results were obtained using a developed
computer program according to the analytical solutions. The contributions of
viscosity in the tangential and the axial directions were demonstrated. The
Reynolds normal stresses in the tangential and radial directions were
obtained from the air vortex flow experiments. Using the proposed scaling
formulas, the number of influence factors on the Reynolds normal stress was
reduced.

A new approximation to the tangential velocity distribution was
proposed, which well matched the experimental results. Based on the energy
conservation and the new velocity profile, an integration equation was
derived to determine the critical radius of the vortex core. A computer
program was developed to predict the vortex core radii corresponding to
different vortex chamber configurations.

This study contemplates, in depth, the fundamental research of the
confined air vortex flows with aim to reveal the flow structure and to better
understand the flow regime. The developed models and formulated
empirical equations are very useful not only for the fundamental work in the
confined vortex flows but also for the industrial applications such as the
energy savings in the vortex separators and the performance improving in
the combustion chambers. Most of the results presented in this thesis are
directly from the LDV measurements without any assumption, which will

definitely give more confidence to applicators. The conclusions drawn in this
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thesis and the information provided in this thesis can be applied for matters
using or related to the vortex mechanism. Certainly, further investigation on

the flow behaviour and characteristics in the axial direction would be most

meaningful.
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APPENDIX A

Derivation of Equations for Turbulent Flows
in Cylindrical Coordinates

A.1 Equation of Continuity

To an incompressible flow at steady state, the equation of continuity is

as follows:
E)V,+]raV9 +8Vz +%=O
or a6 0z (Al-l)

Averaging each term in the above equation yields the equation of

continuity used for turbulent flows as follows:

av,+1rave LV, A
or 00 0z (A1-2)




A.2 Equation of Motion in Radiai Direction

DV, Ve - ]ra(rcrr) 00 . 9(roy) 1
A T e L TR
_ aOrr ‘1 aO',e aczr 1
=Fer S5t rge T T rOr Oe) (A2-1)
where
D_9 ,v9,1y 9, y9
Dt ot * or * rV°89 Ve ‘0z (A2-2)

To steady state incompressible flow without body force Fr, equation

(A2-1) becomes

oV,

oV, VvV, v, 2
Vet +1lv + Vot Yoo
p( 035 5 1)
d
= g(crr) + ?'56(019) + 8_2(ng + 1?(0"' Gge) (A2-3)
To steady state incompressible flow, the Continuity Equation is as
follows:
;_q.zavr 1aV9 avz+&=o
or I g8 9z T (A2-4)
and
oV, 8V9 vV, v?
\Y V Vi—+ —V \Y +p~L=0

Substituting equation (A2-5) into (A2-3) yields

OV, 1,9V, 3V, Vg Ve 1,0V AV, V2

PV * “Vf’—aa‘ #Vag PV Vg Ve e )
= p[f—(v ) + 1—-—<v Vo) + —a—(v Vo) + LV - v
r
d 10
= —(Ory) +1 —(Op) + "'_(Gzn) + (crr Cgg)

r'90 (A2-6)
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Rearranging equation (A2-6) yields

J
50y - pV7) + - "aE(Gie pViVe) + —<cz, pViVa) +

+ L0~ 0gg) - H(V 2 - Ve =0

(A2-7)
Averaging each term of equation (A2-7) yields
d o2 d - 0 -
5-(0n =PV ) + L:5(G - pViVe) + 2(Gar- pVIV) +
+ ll?(arr" 899) - g(vr - 62) =0 (A2-8)
Since
Vi(t) = Vilt) -V,
V(t) = Vg(t) - Vg
V() = V(t) -V, (A2-9)
Applying to equation (A2-8) yields
d— =2 T3 10
= (G- pV7 - pVY) + LG - pV Vg - pViV ) +
ar r 9o
d - =5 - - — 5 — o 3
+ 5020~ PViV2 - pV:V2) + 1{Orr - o) - PV2+ V2 -Ve2-Vg) =0
(A2-10)
2oV + L2V V) + —(VV)+p(V -Ve?)
I pVr rJe o)+ p z
d — 2 d — - -
= 5GPV + LG - pViVe) + 3 (czr-pvrva + L(Gy- Gop) -
BV
(A2-11)
—V, — oV, ave aV av P2 g2
2 1 - -
Vs PPV "o D oz TPV gz TrlVr Vel
d- 2 10 d - L= =
= ‘a“r‘(o'rr’ pVe) + T ae(o'rﬁ PVrVe) + (Gzr' erVz) + ?(Grr' Oge) -
Py2.y.2
B - ve) (A2-12)

253



GOV 15 0Ve  ooVr VA . oAV, (Ve AV, v,

p(Vy 3 + Vg % +V; % '—r“) PVr(a 30 T3 r)
—aV, oV oV, Vo2, == .
=p(Vist lveae' i SR A

2
- (V¢ -Vg) (A2-13)
Since
Vq=0 (A2-14)
Applying to equation (A2-13) yields
oV, 150V, oV, Vg2
p(Vy 3F ;Ve-a—e— V. 3 T
J — 9 -- 9 — - -
5-Or) + T:35(G0) + 5020 + H(Orr- o) -
d, 2 0, . 0, T 2 2
[P VE) + LoV Ve + VIV + F(VE - V)
=51+ 82 (A2-15)
d — J — 0 — .
S1 = —(or) + 1"_"(0r6) + (0.0 + 1‘(0'”' Ge0)
or r 9o 9z r (A2-16)
0, 2 9, Ty 0, T T 2
52 = - [=(pV) + Lo(pViVe) + —(pVV,) + H(V/ - Vo
or T 96 0z r (A2-17)
Since
- . _ .oV -
Orr=-Pp+2UE -2UV-q =-p+2u ar' - ZuV q
Cog = - P + 2UE -—Z—ué—“z-‘ zu(l v"ﬁu_v_r) Zp;.q-
86 =- P 6o~ 5HV-q=-p r 35 T )3
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where

oV, aVz
* )
r (A2-18)

o'zr “’er- (

Substituting into equation (A2-16) yields

_ 9= Ve 25 19, Ve Ty 19V,
Sl_ar p+2u8r 3,'l q) rae[“(ar rooT 86)]+
2. WV, WV, 1. .V,
i UGt ar )] +;{[-P+2u—a—-—uV ql -
19 Z_z g
-[- P+ 2= ae )-3HV-ql)

ap 0 V 1 aZVe 1 a\—/e 1 827,
o T M ame M ee Mo

0V, IV, 19V: 19Ve ¥,
+ P+ P+ 2)( e,
a a a r ar rz 89 rz (Az_lg)
_9p . 9V, 10Vg 02V, 1V,
= M T ame Y ara T ar
OV, 19Ve 10V, 3V, ,19Vr 29Ve LV,
-2¥r
+ I a2 r2 o8 r2 aez ¥ 0z2 Ty or r2 08 r2)
_ QE 0 E)V 1 8V9 1 8V9 0 aVz 0 Vr V,
=-5 tHiS ar) 5 (r ae)+r2 ot 53, ) Tt )+ =+

W, 1, azvr L1V LV, 33Ve

s or2 12 32 922 T dr 12 r2 06 )
p 9,7 NV, 18V, OV, 19V, V, oV
=- L 4 p—(V. Y 2778
or +p8r( qj”‘“a 2 12 pe? * dz2 Tr ar) r2 r2 08 !
(A2-20)
Since
Vq=0 (A2-14)
Applying to equation (A2-20) yields
8}3 257 _\7 2 av-e
§1=--— ViV,-t-&—
5 TRV V 12 r2 08 ) (A2-21)
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2 02 10 102 92
\% _—+?-a—+——

or? r2 ge2  0z2

(A2-22)

Substituting equations (A2-21) and (A2-17) into (A2-15) yields

7 _aVr —2
+—V9‘a—é—+vzaz - T

d '_'2 0, 0,
+L2Vive) + 2V + LV V)
or substituting equation (A2-18) into (A2-11) and rearranging equation (A2-11)

yields

d, 52,,19, T d, Ty, P2 T2
“‘(pvr ) + F'a_(erVG) + é‘;(pvrvz) + F(Vr - Vi)

+ (Vv V’r-lz-l.é_)_v_e

=P, )-
or r2 r2 g6
PV + LSV + SV + LV vy
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A.3 Equation of Motion in Tangential Direction

DVy , ViVe) _, 4 1,8(r0,e) 904 a(rcez) 1
A TER I ar a0 o 1TAC

a 18099 aoez 2

RS A A (A3-1)

=F9+

To steady state incompressible flow without body force Fo, equation

(A3-1) becomes

dVy dVe dVe V.V,
P(Vr—;‘ —Vea—e vV, 32 + —r-)
— 1 2
= 5;(019) + ;'55(0'99) + -a;(ce) +%(0y) (A32)
From the Continuity Equation (A2-4), there is
av +1vy Vo 4 vdVz, VeV -
99 9z (A3-3)
Substituting equation (A3-3) into (A3-2) yields
aVQ aVQ 8V9 VrVe
PV + Vo + Ve + o)+
av oVg oV, VeV
Vo ae + Vo az ")
T 19y2,9 PISVAY,
= P[ar(VrVe) * T3 5(Ve?) *3 (VeV )+ £(V,Ve)]
0
=5(%) + ae(%9) + —(Ge) +2
(A3-4)

Rearranging equation (A3-4) yields

d d d

5010~ PViVe) + 1?56(“99 -pVed) + = (Goz - pVeVa) + 2(6,9- pViVe) =0
(A3-5)

Averaging each term of equation (A3-5) yields

d 3 — 3 N
5(G0- PViVo) + 1=(Gon - pVe?) + =—(Goz - pVeV2) + HGrg - pVVe) = 0
(A3-6)

9
n
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Since

V(1) = V) - V,
Vé(t) = Vi(t) - Vg
Va(t) = V(1) -V,

(A2-
Applying to equation (A3-6) yields
d
a—( ©-PViVe-pViVg) + rae(Gee pVe* 'PV9 Y+
B — ; — —
+ 5400z~ PVoV2-pVV.) + 2GS0 - pViVy - pV V) = 0
(A3-7)
0
—(PV Vo) + ——(Pve ) + a—(PVeVz) + (PV Vo)
0
=a—r(o,e-pvrve)+1;a—< oo - PV92)+—061 PVeVi) +2(G - pViVy)
(A3-8)
—dVg — 9V, 2p— Vg Ve oV,  2ps
er 3t + pVQ—a;"F TVQW + pV a pV(»)TZ‘ + ———V V()
J — —
=50 -pVVy) + (066 PV 2)+ —(Gez PVQV 2+ (O'm PV Vn)
or T ae
(A3-9)
—8\79 aVQ s 879 vrve = aV 1 aV() aV (Ir
e A e e AL e T P
Ve 15 0Ve —dVg V oo -
= p(Vr—a—;e— + —I;VQ aee +V, aze + V,;/g) +pVeV-q

0 — o 0 — 20— T T,
==~ PViVe) + L= (G0 - PV ) + ==(Guz-pVaV) + 200 - pVIVy)

or
(A3-10)
Since
V-q=0 (A2-14)

Applying to equation (A3-10) yields
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— Ve Ve aVe .\ v,ve)

PV + Pogg + Vg,

= ——<6,e> ;a—emee) + —«sez) +2(0y) -

VIV + B2 V) + 2 (pVaV) + 2V V)
= 53+ S4 (A3-11)
where
s3=25 )+Li(6 ) + —(Cg,) + 2(Cx)
Tor T rge Y gz T e (A3-12)
d
S4=- [PV Vo) + L2 V) + = (0ViV2) + ZpV Vo)
(A3-13)
Since
1 aV BVB
067—0'23 P-'Yez IJ‘YZB p(r 89 3 -—)
z (A3-14)
Substituting equations (A2-18) and (A3-14) into (A3-12) yields
_9,.Ve V, 137r 1 1V .V, 2,5.4
S3= ol -t g N rggl P 2= + ) -SHV gl +
0 18VZ av_e aVQ VG ]aV
+§E[P(;‘a—9i¥)l _(a Tt T %
_ ]_.a_ﬁ 0V 1 dVy Ve 1 azvr
“Trge TR T R praea+
39Vy  29Ve 1 azvz 02V
+ p2—Lt 4 e +
op 02V, 02Vy 02V V.
1 P 1.1 8 z 1 X
$3=- 135+ Flaen* + 2 9z Tree )t
82\79 1 82_\_/—9 aZVQ 1 aVQ VG 2 aV,
+ or? r2 862 ¥ dz2 T o r2 r2 89)
_ _l_QE IJ V 82V9 L1 62V9 8279 1 879 _VB 2 aV
(A3-16)
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Since

<l

q=0 (A2-14)
Applying to equation (A3-16) yields

_1% , w2, Ve, 29Vr
S3 = 30 p(V Ve 2 +r2 30

)
(A3-17)

Substituting equations (A3-17) and (A3-13) into (A3-11) yields

- PE-(ViV) + <v92>+ ~(VoV,) + 2(V/Vy)

(A3-18)
or Substituting equations (A2-18), (A3-14) into (A3-8) and rearranging
equation (A3-8) yields

J J— — -
~<pv Vo) + LS (pVeh) + —(pV V) + 2(pV Vi)

T g0 0z r
_.19% .. Ve l.a_vz _
= ra+u(VV 2 rzae)
-p[—-(v Vo) +1 v92>+—— (VoVy) + 2V V)]

F30' (A3-19)
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A.4 Equation of Motion in Axial Direction

DV, _ 1,9(r6,) = 90y,  0(roy)
P(D) Fz""rl 3 +89+ aZ]
d0;r 1 ICg, , 902, 1
o T T X0 (A4-1)

=F, +

To steady state incompressible flow without body force F,, equation

(A4-1) becomes

Vv, oV, aV,
P(Vr—r" 3 +V, *87) = —( 20 + 7 ae(o'ez) + —(Gzz) + ~(O'zx)
(A4-2)
From the Continuity Equation (A2-4), there is
o - av ave avz V,V,, _
pV.V-q=p( zar V Z3% zaz +—r )=0 (A4-3)
Substituting equation (A4-3) into (A4-2) yields
aVv V., av dVy ALIRA
- —2 V 'z, VeVr
W e v v o PV Ty )
0 0
= p[ (Vi) l;a—(vev 2+ 5~V 2) + L, v
19
( 20 + r ) —(0g,) + —‘(Gzz) + "(ozr) (Ad-4)

Rearranging equation (A4-4) yields

0 0
—(Cg,- pVoVy) + g(ozz- pV,A + -},—(czr- pV,V,) =0

]
"‘_( o]r - erVZ) + =

ar

Averaging each term of equation (A4-5) yields

0
‘a“(o'/r PV Vaz) +“‘—(Gez PVBVz) +_(ozz PV ) (Gzr pVy VAR 2=0
{A4-6)

Since
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Vt) = V(b) - V,
V(t) = Ve(t) - Vg
V;_(t) = V(t) - vz (A2-9)

Applying to equation (A4-6) yields

0 — —w— -~ d
502 PViV2-pVIV2) + 1-o(Boz - pVoV2-pVV)) +

3 - ., = _ —
+ —(Gz2- PV 2 -pViD) + L(Gp- pV V,-pV VL) =0
oz r (A4-7)

2oV +1 L2(pVeV) + 2oV, + LV, V)

0 o .
= 5;(0”- PV,Vy) + ;-55«:92- PVeV2) + 3027~ V. ) + Lo pVIV))

(A4-8)
—aV, a\7 — oV, 1—0Vy v, P
V=2 1y 2ve gy
PV or “or St PHVege 20V, oz ViV
0 L
= ‘a_r(ozr’ pvrvz) (692 PVeVz) + (Gu PV ) ]r(Uzr" pV.V,)
(A4-)
av 15.Vz , Ve 5 Ve, 10Ve Y, V
—V z Z r
o °ae+vaz)+pv(ar re T Tr)
— oV, av oV,
= p(Vr 89 +V, —-) +pV, V q
J, —TT. 9 — -
=a_r(ozr' PVrV 2) + lé‘é’(cez PVaVz) + _‘(Gzz PV ) + (Gzr [)V V/)
(A4-10)
Since
V.qg=0 (A2-14)

Applying to equation (A4-10) yields
W, 1V, —av,
or T %% TV a

p(V )
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d — d
=5-(02) + 135 (00 + ~(ou) + 10,9 -
o0, T d d
- 7 17 Z
[a—r{P\ V) + o ae(PVeV ) + aZ(PV )+ vV,
=S5 + S6 (Ad-11)
0 0 1,=
S5 = —(0,9 + L-—(Gg,) + _(Gu) + (029
or I 96 (Ad-12)
_ 3, T 1 d 'y o o2 1 N7
S6 = [g(erVz) + ;'55(PV9V2) + 8—2(le )+ +(PViV,)] (A4-13)
Since
— — - 2 - - _ — avl 2 = hy
Gzz=‘p+2“822'_|~1 q —'P+2P ‘”HV'q
3 dz 3 (Ad-14)

Substituting equations (A2-18), (A3-14) and (A4-14) into (A4-12) yields

a av Vo 181V, WV
8 aV WV, oV,
oA S T ALRALS

oz or
aﬁ 92V, azvz 10NV, 19V _ 9V,
= 2
oz ¥ droz ¥ or? * lJrz 002 T HY 200z~ H dz2
13Vr, 19V,
foz ~Tor (A4-15)

SO e OV, 49V

0z dzdr T0zd8 ;2 T 0z
ez 12 NV, 0V,
arz rz 692 622 r ar

R azvz 1V, &V, 9V,
= o TV R S e S T o

)
dz (A4-16)

Since

263




V-q'=0 (A2-14)

Applying to equation (A-59) yields

dz ' (A4-17)

Substituting equations (A4-17) and (A4-13) into (A4-11) yields

SOV, 159V, oV,
p(Vy=—=+ % +V, )
op 0 d, 2 7
='a_p+“V v, - p[ (VIV) + L(VoVD) + (V) + LViv )
(A4-18)

or Substituting equations (A2-18), (A3-14), (A4-14) into (A4-8) and rearranging

equation (A4-8) yields
0, = e ——
SPVIV) + 15(0VeVo) + 5-(pV2) + LpV V)

815 2 d ' 1 0 "y d 2 1 'x7'
THPIST\VrVz + an Vz S Vz AV rvz
ar(V Va2 + 1 ae(V" ) + az( ) + £(ViV)] (AL-19)
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A.5 Equations of Kinetic Energy for Mean Motion
A.5.1 Equation for Radial Direction

Multiplying mean radial velocity, Ve, on the equation of motion in the
radial direction, equation (A2-23), yields the equation of kinetic energy for the

mean motion in the radial direction as follows:

9152 .15 915, v 9,172 v Ve
Vra—r(EVr )+ ;Vegé(i r)+ Vzi;('z‘vr ) - Vr“f.e_

2 Ve vy, Ve 2.9V

=5 ar+v «V°V, 21298
ViV + Lo(Vive) + —(Vivy) + v - Vi)

(AS-1)
Combining above equation with the equation of continuity yiclds the
expression of the rate of change of kinetic energy in the radial direction for

the mean motion as follows:

91527+ L9152.7 4+ 21V 2.¥
ar( V-V + rae(Z t V) +_a-z(2Vr V,)
v ap bogey 2 v 2 aVQ
L E LWV, - Y229
P al‘+v ( r2 r2 ae)
6‘ ot a T vV o)
-\r[ (V) + Lo (ViVe) + (Vi) + 1 Ly H- Yl (Ve - Vo)

(A5-2)
To an axisymmetric flow with negligible axial gradient, the equation of

kinetic energy, equation (A5-1), can be simplified as follows:

P,y " 1aV')-—t} v,[-a—v> LvE - v

=0 q T2
Ve BV - Vi)
V. %
p or
(A5-3)
Dividing V:on equation (A5-3) and integrating that equation yield the
expression of kinetic energy for the mean mouon of vortex flows in the radial

direction as follows:
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12 | L19P, @V 19V,
2 "j{ par "V

AV s LI vy Ve
V) + LV -V + Y ar s

A.5.2 Equation for Tangential Direction
Multiplying mean tangential velocity, Ve, on the equation of motion
in the tangential direction, equation (A3-18), yields the equation of kinetic

energy for the mean motion in the tangential direction as follows:

= d 1o 19 9,192 .9 9 152 . 2V, 1o

VeVl + 1o AV, RAE-XEAS 2L o9
_VedP Vg, 29Vr,

= ae+vV(VV " r2 ae)

- Ve[—(V Vo) + L= (Ve) + 2 (VaV) + 2ViVy)

(A5-5)
Combining above equation with the equation of continuity yields the

expression of the rate of change of kinetic energy in the tangential direction

for the mean motion as follows:

d 1y 1.9 17 17
lves V) + L (ly —(LV
5 o Vi) + ety 6 Ve)+ ( o> V)
__Ve9P , v.v2v.. Ve _Z.Qy_f )
= or 30 +VV9(V Ve 2 + r2 30 )

= d T d
-Vol=(ViVe) + Lo (Vo) + —WGVZ) +2V,Vo]- BV VY
T (A5-6)

To an axisymmetric flow with neglible axial gradient, the equation of
kinetic energy, equation (A5-5), can be simplified as foliows:

V.21V, 2 4 7Y

IV 13V9V RO [P S
-\'Ve(a’ r3; =) - Ve[gr—(VrVe)+?VrV9]

-

(A5-7)
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Dividing Vr on equation (A5-7) and integrating that equation yvield the

expression of kinetic energy for the mean motion of vortex tlows in the

tangential direction as follows:

N [

— 2 Vo U
V62= Ve(a Ve 41 aVQ y_g)_
or2 Tr or 2

Ve aa(vve)+2v Ve]-——}dr

r

(AS5-8)

A.5.3 Equation for Axial Direction

Multiplying mean axial velocity, Vz, on the equation of motion in the

axial direction, equation (A4-18), yields the equation of kinetic energy for the

mean motion in the axial direction as follows:

+ VW,V z[ VV>+;89<VGV) ;-‘(v';>+'rv;v;|

(A5-9)
Combining above equation with the equation of continuity yiclds the

expression of the rate of change of kinetic energy in the axial direction for the

mean motion as follows:

192 9,.1 9152 9T,, 9,152 v
ar(ivz Vr)'*'?'a_g(zvz 9)*“82(5\/2' V,)

—— a__ . . L a - - ') -2 . -
t%._zw zvzvz-vz[g(vrvm,éa(v A+ 3V, D+, -
V172
-V

(A5-10)
To an axisymmetric flow with negligible axial gradient, the equation of

kinetic energy, equation (A5-9), can be simplified as follows:

o 0,1T2 .o o2V, 1 oV, — .0 1 -
- = Z\———— - - V V "VrV,
Vﬁ(ZVZ) WV o2 T ar) [a —(ViVo) + 1 )

(A5-11)
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Dividing V:on equation (A5-11) and integrating that equation yield the
expression of kinetic energy for the mean motion of vortex flows in the axial

direction as follows:

1y 22 V av 1_.9.?_5 Vv, iv
2V2 f{ ( + o ar) V[a( Vo) + 1 VVz]}dr

(A5-12)



A.6 Equations of Total Kinetic Energy

A.6.1 Equation for Radial Direction
To a steady state incompressible flow without body forces, the equation

of motion in the radial direction is as follows:

oV, 1 oV oV, V
% Ly 2Yr Ve
PVeg + pVogg + Vot - 38
_.9p 2 V.. 29Vy
=T THY VRGeS

(A6-1)
Multiplying radial velocity, Vy, on the equation of motion in the radial
direction, equation (A6-1), yields the equation of total kinetic energy in the

radial direction for a steady state incompressible flow without body forces as

follows:
J 1 1 1 a V(
—(=V; V ~V; V, Vr vV, A
Vi o Vs )+ "ae 2 )+ oz (2 )-
= —y—!-—aﬁ + erV V- AL
p or J9 (A6-2)

Applying the statistical principle of turbulent flow to above equation
yields the equation of total kinetic energy in radial direction for turbulent

flows as follows:

\2 %(%Vf) * -lr-"eé%gw) B Vzgz-(%\? )]+
HT V) + W2 v ) 4 7,2 v
=__V_§)_ +v(V, v? V. + VV V, -E-ii—z—-
p or 2y
-r%V,a(_;" -2y aa\;" l[vri(v?) + -}vr (VE) + V). (v )]
+ LV + Vv +VV9)

(A6-3)
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Combining equation (A6-2) with the equation of continuity yields the
expression of the rate of change of total kinetic energy in the radial direction

for the turbulent flows as follows:

0 152 — d
9 19 1y2 1y
[ (V Vr)+rae 2Vr 9)+a—z(2 z)]+
2 = 0
+[~<—v,2-vr>+1r-%%v ve)+55<5v V2l
T2 2

VP vy e VYRV YL Ve

p or r2 r7-

oV, AV . .

- IVt AV 1[ (Vi V) + (v2 >+—<V’- Val+

I AT vrve>-;(vrvr VIV Vv (A6-4)

To an axisymmetric flow with negligible axial gradient, the equation of

total kinetic energy, equation (A6-3), can be simplified as follows:

0 157 2 0 1—f
ﬁ(ivr)"‘ar(z r)
~.1% + Y(VVP V. + VV v-l V)-
0 _.“
-V (VE) - LvivE T+ LVe + Vi)
\ r (A6-5)
or
1724 1y}
2 " 2T
| -1%P TV, 4 VYRV ?-v2 2y
l p ar +V_r( r l'+ r r2 l‘)
- 1vi2(v2) . lviv2] 4 LTt + V)
= 0 0 +Ve }dr
Vr[2 ‘or r’ r (A6-6)
where
V2=.a_2.+1_.£
or2 T

r

A.6.2 Equation_for Tangential Direction
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To a steady state incompressible flow without body forces, the equation

of motion in the tangential direction is as follows:

dVg 1 aV aVQ VV
__V S rve
P( ra 0 30 V aZ T )
Z.1% vy, .V, 2.9V
=" T3 + UV Vg u(rz = 89)

(A6-7)

Multiplying tangential velocity, Ve, on the equation of motion in the
tangential direction, equation (A6-7), yields the equation of total kinetic
energy in the tangential direction for a steady state incompressible flow

without body forces as follows:

9 1y.2 4 1y. 9,1 9 1y 2, ViV
Vi a—'( ~Vg) + Veae(‘z‘ve ) + Vzé—('z‘ve )+ T
Yo P | yygv? V- Yy & AL
9= Vet Vo=
pr 0 "o0 (AG-8)

Applying the statistical principle of turbulent flow to above equation
yields the equation of total kinetic energy in tangentia! direction for turbulent

flows as follows:

1y, 1y, % 1y
VoLV + Veae(zV o)+ Vol

--X@i’._ V2 Ve + Vyviv,- Yo Ve
= or aG+V(V9 9+V(—) 2\/ 2 r2

aV 2 aVr 1 a2 1 g 2 '_‘2 2 _
2V r_2\/9 55 5 1Vi(Ve) + VoolVi) + Voo (V)]

(ViVe2 + Vo + ViV2)

+ =

"t =

(A6-9)
Combining equation (A6-8) with the equation of continuity yields the
expression of the rate of change of total kinetic energy in the tangential

direction for the turbulent flows as follows:
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_ .,
= V a +V(V9V Ve +V9V2V ____Y_e_+
pr ge 2 r2
aV 2 'avr 1 a 2, a 2
2y 2 1 %y2yy s LS ;
735 rzv" )" [ (\"e\ troglVeVe) +5-(Vy V)l

_3_ Voy.2
2r(vrv9 + rVe + VrVe) (A()-l())

To an axisymmetric flow with negligible axial gradient, the equation of

total kinetic energy, equation (A6-9), can be simplified as follows:

J 15 2 Jd ]—'
2dy “dv
ar(2 o)+ ar(Z 62)
w3 2 "l ! Vez V;,z
———(VQV V9+V9\7 Ve-———-—--——)-
r2 r2
[2v 1v ve]-l(ve +v93
(A6-11)
or -
= "2
;-V()z'*' ;—Ve -
— V 2
- (V(vov Vo + Vov2v, - Yo Yo,
V, r2 2
.0
Vl—l a—(ve)+—v ve] LV, +V92)ldr
(A6-12)

A.6.3 Equation for Axial Direction

For a steady state incompressible flow without body forces, the equation

of motion in the axial direction is as follows:

aV,
" or

Ve, vV %, ey

29 z dz dz (A6-13)

(V2 +1ve



Multiplying axial velocity, Vz, on the equation of motion in the avial
direction, equation (A6-13), yields the equation of total kinetic energy in the
axial direction for a steady state incompressible flow without body forces as

follows:

vy v, dy =Yy vy,
02 022 p oz (Ab-14)

J )
Vi

1y 3y,
5 )+

--:|'—'

9
VogtyY

Applying the statistical principle of turbulent flow to above equation
yields the equation of total kinetic energy in axial direction for turbulent

flows as follows:

— d 12 .10 a a
(V3 + 17241

[Var(2 )+ Va(V) 8(2 A+
p— a 1- f 1 -l j— a ] 2

V@V + W2V + ¥, 56V

= -V—Z—ap+v(\_/ZV V,+ V,V2V))- »[V—— 2y & 1v(,7(v )+v (v N
p oz a0

(/\(1 15)

Combining equation (A6-14) with the equation of continuity yields the

expression of the rate of change of total kinetic energy in the axial direction
for the turbulent flows as follows:

— d 1

. . + —{=

082 82(2

1.91y2 —
LAV Vo) + 24V V)

= V2P TRV, VLT V) - LW.V,24 Vv 72+ VivE)
p oz 2r (A6-16)

VAVl +

To an axisymmetric flow with negligible axial gradient, the equation of

total kinetic energy, equation (A6-15), can be simplified as follows:

— T 2
V) + V,+ V2 V) - —Lv, o (v2
r2 or 2 V, 2t VoV Vo) 2V, Ve (Ve) (A6-17)

or
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= f (Vv V, + V,V? V) - L v;éa—(vi')] dr
Vi 2V, or (A6-18)

N

V,




A.7 Equations of Kinetic Energy for Fluctuating Motion
A.7.1 Equation for Radial Direction

To an axisymmetric flow with negligible axial! gradient, the rate ot
change of kinetic energy for the fluctuating motion in the radial direction can

be expressed as follows:

(A7-1)
Substituting equation (A5-4) into above equation and rearranging that
equation yield the equation of kinetic energy for the fluctuating motion in the

radial direction as follows:

d 1u2y 21v2y. 2 viy?
—dyvH.2dy 4.2 vy
vy -2dvy) V,r2(2 5)
D2V . o
=-§/_(v%-:—;£ 1?v V [zv (V) 1vv
r

(A7-2)

A.7.2 Equation for Tangential Direction
To an axisymmetric flow with negligible axial gradient, the rate of

change of kinetic energy for the fluctuating motion in the tangential direction

can be expressed as follows:

7 2
-—(1v92) J Y (VV2 Vg + V¥ v(,l@--vﬁm)-

r

-._[zv 22 PV Ve 102 s V,)- -'(]Vo )
r2 (A7-3)

Substituting equation (A5-8) into above equation and rearranging that
equation yield the equation of kinetic energy for the fluctuating motion in the

tangential direction as follows:
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LoV, Vg, V0 2vv.
=Yy Vg*—‘g+l—Vg‘*£) 6[ (Vrv) '/VTVG)]'
Vr r2 r ar r

]

V.2 (A7-4)

A.7.3 Equarion for Axial Direction

To an axisymmetric flow with negligible axial gradient, the rate of
change of kinetic energy for the fluctuating motion in the axial direction can

be expressed as follows:

d 11,2 10 5,2y 9 4T 2

(VA= XV, V'V, + VYV V) -Lv, (V)—(— )

a2 *'Ty, “ a2y, ‘o Jr (A7-5)

Substituting equation (A5-12) into above equation and rearranging that
equation yield the equation of kinetic energy for the fluctuating motion in the

axial direction as follows:

9192 _ vV, 1,0V, ¥V, 0 Ton 1,00
T\S == ™y =E—(VV,) + (V,V
a3 (2Vz) V(Vz ¥ + Ve 3 ) + r[ar(V ) + 2 (ViV3)]
r L 'a<V)
or (A7-6)
or

2 02V, OV, V.0 —
1y2- | vy 9z, 1 Ve Ly
Ve= | Vg e 3+ V[a—< V) + Lyl +

1 -, 9 y2
+ = ~/r—(VZ)} dr

2V, or (A7-7)
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APPENDIX B

Derivation of Reynolds Shear Stresses

B.1 Reynolds Shear Stress to Radial-Tangential Component

The Reynolds shear stress referring to the radial-tangential component,

V1V, can be found in the equation of the tangential component of the kinetic

energy for the mean motion as follows

or 2 o _f
— oV oV -
=Wl + L9Y8 Vo) G (vivy) + 2vv,)
or2 T or 12 r (B1-1)

Rewriting equation (B1-1) to approach scaled units yields

\_/r, 0.25 Vm \ J r1/V9 in
(Re, 2 Ozsar/&)lz\_)]( )+

in

in_yRo( Vo) Vin’
al Rel“f’)( ozs[r(v‘; ) IR

in

VO a 3(Ve. Vm) in)
(V v m){a( TR otr/Ry) ](RO2
o\a(VG/Vm)IVm _ R_ __\_/_e_ NMinyy _
R R R (meRn -
a V.V, Roy ViV V2
- __6 Vin \_r [¢] in 0 6 in
Vm)( )[ /R T > ) Ro) 2(-5 )(Vm2 G R. ) ®12)
Let
R=r/R,
VR=_YrRe,025
Vr=Ye




VRVT= e
Vm (B1-3)

Substituting equation (B1-3) into (B1-2) yields

l n n V in
OZS)FZ )(R >+V( 025)(T)( )

a oV 8V
=VVT m)[ T) ) + L TV,n) VTIV ]

oR R R2 RaRR2 R R

ViRV in) + 2<vRvT>< o)
oR Ro R, (B1-4)

Rearranging equation (B1-4) yields

Vieh_ 1 .19 152y, VT
(E;‘)‘EP—ZS‘VR[‘::(EVT )+ ——-—]
V.2 — azv 41 aVT VT V.3= 0 = 257 7
= (Yan WV —) - (22 )V 1[—=(VrVT) + &(VRV
(R(,z) T(aR TR (R0 T[aR RVT) R( rRV 1) 1)

Multiplying Ro/ Vin’ on the both sides of equation (B1-5) yields

37 2
1 v, ral_l__'}2 YT
eiozﬁvmaﬁ\z )+ R-]
— V. VT Vo = 0,7 —
= (VT + L YT TS (VR V) + 2(VRV)]
VinRo oR RJR R oR R (B1-6)
Let
\_/inDo
Reo == (B1-7)
and
— oVt
LAV =V,
oR 2 dR

(B1-8)
Substituting equations (B1-7), (B1-8) into (B1-6) and rearranging the

equation yield
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5 —— —
S (VRVT) + 2(VgV
aR(RT) E(RT)+

— oVr V. V-
VR (T + Y1y 2 (O T
Re’, o dR R Re,n oR~

QL
<

T

+

Hl=0

<]

A=
~

J (B1-9)

It is found that from the experimental results the velocities Vi and Vr

are functions of normalized radius R, and can be expressed by polynomials,

that is,
VR = a(ﬁ)
n
=Y aR"
0 n=0,1,2,.... ) (B1-10)
Vr=fp(R)
n —
=Y bR"
0 n=0,1,2, ... ) (B1-11)
oVt ..
_—= f R
R b(R)
n —
= 2 nb,R™!
0 n=0,1,2, ... ) (B1-12)
9%V -
— =1y (R)
oR
n —
=Y (n-1)nb,R"?
0 (n=0,1,2,......) (B1-13)

For any given flow and vortex chamber structure conditions, R, ; and
Re,0 are known constants. Therefore, the third part of equation (B1-9) is a

function of normalized radius R under the given condition, that is,
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AV 7 L. 7.
1 ve@Vr, Ury. 2 9VT 19VT Vg
Rc,|0.25 aR R Re,o aﬁz R aR _Iiz (B1'14)

Substituting equation (B1-14) into (B1-9) yields

_d__ ' ' ; . R =
dfi(VRVT) + E(VRV +FR)=0 (B?-15)

This is a linear differential equation. The solution of the equation,

scaled Reynolds shear stress VRVT, can be obtained as follows:

Let

ﬁ=exp([%dR)=§2

(B1-16)
Equation (B1-15) can be rewritten as
d_(9-VRV7) = - 0-F(R)
dR (B1-17)
9-VRVT = - f 9-F(R) dR + C

(B1-18)
or
R:VRVt=- f R2F[R)dR +C

(B1-19)

At the centre of the vortex chamber, the Reynolds shear stress VRVT is

zero, that is,

At r=0
R =0

VRVT=0 (B1-20)
Substituting equation (B1-20) into (B1-19) yields
C=0 (B1-21)

Equation (B1-19) becomes
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(B1-22)
or
Vi;V'T=-—1—j RYF(R) dR
-2 —
R (R 20 (B1-23)
Since
— oVr V
Vv —.:—+-:_l“)
R TR

= VR{[by + 2bR + -+ + (n-1)b.1R™? + nb,R™'] +

+ [%Q +bi+ b2§+ ...... + bn_lﬁn-Z + bn"l‘in-ll}

= Vr %0 +2by + 3byR + o + by R™2 + (n+1)bR™ ]

(B1-24)

= D04 3h) 4 s+ (N-2)nbe R™3 + (n-1)(n+1)b,R™2
R?
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n
2 1)(n+1)b,R™2
0

(B1-25)
Substituting equations (B1-24) and (B1-25) into (B1-14) yields
n
=y »n-1 Hn-2
F(R) = . 0 — Z anR" Z (n+1)byR Rfo-z (n-1)(n+1)b,R"
© 0 (B1-26)

Substituting equation (B1-26) into (B1-23) yields the scaled Reynolds

shear stress VRV T as

n n

P — —ne] =

VRV1=- ———————0'125 Y anR™Y (n+1)b,R™" dR +
RE,] ’R 0 0

+—2 Y (n-1)(n+1)b,R" dR
0

Reo-R2
(B1-27)
or
VpVr=-—L —L+—2_1,
0.25p2 »2
R@,i R Re,n' (B1-28)
where
R o
L= Y aR™Y (n+1)b,R™! dR
0 0
J (B1-29)
[ o
L=] 3 (n-1)(n+1)bR" dR
0
(B1-30)

am— — —— n —
= (ag+ aiR + - + ap  R™' +a,RMY, (n+1)b,R™*
0
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n . n _
=ag), M+1)bR™ ! 4 R (n+1)b R 4 e +
0 0

— n — — n ———
+anaR" Y, (1B R™! + 2, R™Y (n+ )b, R™!
0 0

=ag [boﬁ + 2b11—i2 + BbZﬁ3 e + nbn_lﬁn + (nﬂ)bnﬁnﬂ] +
+ aj [‘b()ﬁ2 + 2b1ﬁ3 + 3b2§4 o+ eeenes + nbn.]ﬁn+l + (I‘H—l)bnﬁ,Hz] 4 oreens +

+ an.1 [boR™ + 2b1R™! + 3b,R™2 4 oo + nb R 4+ (04 1)b,RY) +

+an [bR™ +2bR™2 4 30R™ + e 4 0 R + (n+)bR™M™ '] (37.31)

n

n — — —
Ii= | Y anR™Y (n+1)b,R™! dR
0

2 4
+ a; (lboR + 2b1R4 3bzﬁ5 n +-Dp Rn+2 + Qilb Rnﬂ) ...... +
n+
+ ap.1 ( 1 bORnH 2 ban+2 oo + Db, ﬁz 4+l b I€2n+l)
n+2 2
+an( l bORn+2 2 B R™ 4 P I R2M1 -“—tl—bnRz“*z)
2n+1 2n+2
=2, X = 0
=R (aoz r“’1bnR"+a12 n+ly RN 4L +
0 n+ 0

+a n+1b—1_2-2"1+a “'Hbl_il‘Zn
n-1 Z 2n+1 "2 2n+2 ) (B1-32)

Letm=0,1,2,...,n=0,1,2, ......
Equation (B1-32) can be simplified as
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n m
_ne »m 1 »n
L=RD> [} anR"—ntl_]p R
5T (n42)4m " (B1-33)

I=| D (n-1)(n+1)b,R" dR
0]

=-bR + bR+ oo + (N-2)by 1 R™ + (n-1)bR™

n —
=RY (n-1)b,R™!
0 (B1-34)

Substituting equations (B1-33), (B1-34) into (B1-28) yields

- n m n
VgVr=- —1 R"—Dntl_|p R"+ _2 -1)b,R™!
RVT ‘NO.ZS % [% amR (n+2)+m] nlt + Re,o % (n-1)by,

(B1-35)



o

B.2 Reynolds Shear Stress to Radial-Axial Component

The Reynolds shear stress referring to the radial-axial component,

ViV, can be found in the equation of the axial component of the Kinetic

energy for the mean motion as follows:

— 0 1= 92V 0 T
Vi1V, =Wz, 1 z[ (v V) +lviv)
or 2 or2 T (B2-1)
Since
0 192 o aVZ
2Ayvy-v
ar(ZVZ ) “ or (B2-2)
and
l a aVZ az\/z ‘l aVZ
_.—(r =
r al‘ ar a,-z r al‘ (B2-3)

Substituting equations (B2-2), (B2-3) into (B2-1) and simplifying that

equation yield

3,0V, 3 T 1o
* - _——VI'VZ -Vrv

_aV, 4
Vr or “Vr

Rewriting equation (B2-4) to approach scaled units yields

V,— 0.25 in (—z/vm) Y___
(vm Rei ‘)( m, SR R
( 1 )(___\ a [r a(Vz/Vm)]V,n)
r/Ry, Rq a( /R)R, o '/Ro)
o V.V, Vinly 1 ,vvl
a(r/Rn) )( Ro ) I'/R(, )( Rn ) (B2-5)

Let
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yield

Vin® (B2-6)
Substituting equation (B2-6) into (B2-5) yields

V2 1 BVZ vm2
VR R R
7 2 N7 2
- L LR vy Lvivp e
R VR, oR aR) Ro ) Ve Ro R 1~ 7 Ro)
(B2-7)
Multiplying Ro/ Vin’ on the both sides of equation (B2-7) yields
= V. 3 —dVz., 3 —
LV =2 = ()t =R - =(VrV2) - (VrV2)
Re % 0R  V R;ROR 9R° 0R R
(B2-8)
Since
VDo,
Reso = v (B2-9)

Substituting equation (B2-9) into (B2-8) and rearranging equation (B2-8)

9 — — . -
—(VRrVz) + __l(VRVZ) +] 1 VR—=- 2 _ —(
0.25 .

Q,]

It is found that from the experimental results the velocities Vk and Vz

are functions of normalized radius R, and can be expressed by polynomials,

that is,

0 n=0,1,2, ....) (B2-11)
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n=0,1,2,....) (B2-12)
a—_.£= Y nd,R™!
0 0 n=0,1,2,...) (B2-13)
0 —oVyz
— R'__-
RCIR)
-—a—(i nd,R"™)
RS
n —
=Y n2d,R"!
0 n=0,1,2,....) (B2-14)

To any given flow and vortex chamber structure conditions, R, and
Re,0 are known constants. Therefore, the third part of equation (B2-10) is a
function of normalized radius R under the given condition, that is,

1 -V—Ra\_/_z- 2 _ a_(I_{a\iZ)=
Re%?® R ReeROR 9R

G(R)
(B2-15)
Substituting equation (B2-15) into (B2-10) yields

d (VrVz) + L(VRVz) + GR) =0
dR R (B2-16)

This is a linear differential equation. The solution of the equation,

scaled Reynolds shear stress VRVz, can be obtained as follows:

Let
n:exp(jédﬁ) =R
R (B2-17)

Equation (B2-16) can be rewritten as

287




d (q:-VrVz) = -n-G(R)
dR (B2-18)

NVrVz = f 1G(R) dR + C
(B2-19)

R-VRVz = - f R-G(R)dR + C
(B2-20)

At the centre of the vortex chamber, the Reynolds shear stress VRVz is
zero, that is,
At r=0
R =0

VRVzZ =0 (B2-21)
Substituting equation (B2-21) into (B2-20) yields
C=0 (B2-22)

Equation (B2-20) becomes

R-ViVy =- f R.G{R) dR

(B2-23)

or
ViVz =- é—f R-G(R) dR 3

R R #0) (B2-24)
Combining equations (B2-15), (B2-11), (B2-13) and (B2-14) yields

> 1 < pn < pn-l 2 < pn-2

GR) =—1—-3 aR Y nd,R™ - ﬁ——'Z n2d,R

e 0 0 €0 0 (B2-25)

Substituting equation (B2-25) into (B2-24) yields the scaled Reynolds

shear stress VRVZ as
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r
VRVz =- - 02; J ZanR“Enan dR +

n
2| St o
+ — ndd,R"" dR
Re,o‘R 0 !

or

where

I3= i anﬁ"-i ndpR" dR
0 0

(.

I1i= | ) n2d,R™! dR
0

Since

i anﬁn-i nd,R"
0 0

o n —— —— n ——
+apR" Y. ndpR" + a,R"Y. nd,R"
0 0

= ag[diR + 2d,R% + 3d3R> + -oov. + (n-1)d, R™! + nd,R"] +

+ a1 [d1R2 + 2d,R> + 3d3RY + e + (n-1)dpqR™ + nd,R™ '] +
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(B2-27
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d _21'\ l]

+ anp-] [d]ﬁn + 2d2‘1—i’n+] + 3d3_f{—n+2 F o (n 1)dn 1ﬁ2n 2 +

+ an [AR™ + 2d,R™2 + 3daR™ + s + (0-1)dn1R™™" + ndnR*" (B2-30)

Substituting equation (B2-30) into (B2-28) yields

I3= i anﬁ"~nz nd,R" dR
0 0

n 2n-1
+ag ((LdR™2 ¢ ~2qR™? 4 e + Blg RPM 4 D g RP™)
n+3 2n +
-—_ n
=R 302 D4R+ alz ———ann+1 ...... +
n
p2n-1 =an
a1y, 2-d +any, =P —d.R*"
o 2n+1 (B2-31)

Letm=0,1,2, ... ,n=0,1,2, ...

Equation (B2-31) can be simplified as follows:

=R Y [} anR"—L——]diR"
0 0

(n+1)+m (32-32)
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R 2 2 - oy " —
=d1R+-22—d2§2+3§d3i'{—3+ ...... +Snll dn n]+%:ann
n-
n ——
= E nd,R™!
° (B2-33)

Substituting equations (B2-32), (B2-33) into (B2-27) yields

n m W ey
VRVyz=-—1 D anR™—Dn 14,R" + -2 nd,R"!
Rmo.zs% 20‘ ™ (m+l)+m " Reo % "
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B.3 Contribution of Viscosity in Tangential Direction

The equation of tangential component of the kinetic energy for the

fluctuating motion is

Javey+ 2(1v2>+ 2—(1v2)

92V
vy ___ 1\1
v( or2 o

_l[%v,—(ve) +Llvvl)

ave) ve,a
or ‘or

I'

(ViVe) + 2(VVg)] -

(A7-4)
If the third order terms in the above equation can be neglected, the

equation (A7-4) can be simplified and rearranged as

.92V, EAV
V(Ve al'2 _Ve a
— 91 —
Vv + VALY, 2>+2"<1ve) Ve[—(VV) 2(VVy)]
or 2 r
(B3-1)
Rewriting equation (B3-1) yields
[(Ve \az(ve/v"‘ Vin 2+ 1 VG \a(Ve/Vm m) ]
Vin ar/R, )2 Ro r/R, Vm a(r /Ro) Ro
_l_v'2 1y 2
a 4] in
rRc I02 /2 R 10.. 2 +
(v,n ‘)( 5 17, e ’xR————e’io_B_Ro)
r 0.25 n 2 2 R 0. 2 :
(VmRU ‘>< 02,) /RO«]_ Re, 3)(Re,,°'3‘R0)+
l lV 2
+ 2V 2 9 Re, 03
(r/Ro)? ~2- i ‘”R2
0 VN Vil 2 VVg V
(_ )( Vinl °)( ) + (= )]
(/R) 7.2 Ro  I/Rg V. 2 Rq (B3-2)

Let
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VT = V'e/v_in
VR = Vi/Vin
VE = Vg /Vin’

ViV# = ViVE/V;.2
1y:2
2 0

17,2

2 " (B3-3)

— 0.3
Kt,s = Re,i

Substituting equations (B1-3) and (B3-3) into (B3-2) yields

Vin 3 02V T 1 ' 9VT
V() (Vi— + 2 V1r—
Ro' T2 "R TOR
= 1 (VinB)\—]RaK_t_,s + 1 (Vin3)V.RK_t:5 4V (Yln )251'2 )
2Re, "% Ro OR R, %% Ro R R,"*Ro" R?
- il—in3 —\7 _a__ V V 2 V V
(Ro) T[aﬁ( R T)+—ﬁ( RVT)]

(B3-4)
Multiplying Ro/ Vin’ on the both sides of equation (B3-4) yields

— 9 — —
- Vil=(VrV 1) + 2(VRrV7)]
oR R (B3-5)
Substituting equation (B1-7) into (B3-5) yields

R— + — =
2Re,i0'55 aR Re,iO.SS R RL‘,IOB'RL',() R’?.
— 35 —
- Vile=(VRVT1) + 2(VRV71)]
oR R

(B3-6)
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It is found that from the experimental results the scaled tangential
turbulence kinetic energy Kt is a function of normalized radius R, and can be

expressed by a polynomial, that is,

Kt,s = c(ﬁ)
n —
= z cnR"
0 n=0,1,2 ...) (B3-7)
aKt S sy
— = f.(R)
R
n
= nc,R" !
0 n=0,1,2, ...) (B3-8)
Since
2 Y 2¢,R" !
R 0 (n=0,1,2, ... ) (B3-9)
and
dK, K 0
42222 (n+2)eR™!
oOR R % n=0,1,2, .....) (B3-10)

Substituting equations (B1-10), (B1-11), (B1-15), (B1-26), (B3-7), (B3-10)
into (B3-6) yields

— .

2 (v~a Vr _1_'V-aVT

T—+=Vr—=)
Reo a—ﬁz R oR
anR™ Y (n+2)c R™! + R+
ZRmoq;Z n Z R o R% n
— n . —
+ Z b,,R“-[R ¥ 2 apR™ Y, (n+1)byR™! - -2 (n-1)(n+1)b,R"%)
0 e 0 0 €0 0

(B3-11)
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B.4 Contribution of Viscosity in Axial Direction

The equation of (e axial component of the kinetic energy for the

fluctuating motion is

3152 OV, 1,0V, ¥,

AV, )= XV —2+ 1y 272y, Var T yiy, Lviv,
VA= e S v,‘ar‘v‘ )+ Lvivy)
+ Lv. 2 v

V, or (A7-6)

If the third order terms in the above equation can be neglected, the

equation (A7-6) can be simplified and rearranged as

.02V, AV,

N P e
Ny I \yVvVz ‘Vz—vrv7 +(ViV,
WV 24 L) = VoAV ) -T2V ) + Lviv)) .
Rewriting equation (B4-1) yields
[(Vz \aZ(VZ/Vln)( ]n) (VZ \a(Vlen) (Vn)zl
Vin 9(r/Ry)* Ro r/Ro Vin O(r/Ro) R,
. ; WP Iy,
= ( r 025) 12 )(2 ) -
in 025 a(r/R(,) lv 27 R,
v, AP 72 VaVay Vi’
= in + —2)( )
( =)V s TR R + e .
Let
VZ=sz/Vm
V% = V%./sz
1v;?
O
2" (B4-3)

Substituting equations (B2-6) and (B4-3) into (B4-2) yields
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V . 92 Vz BVZ

in) (v 1
R())( aiiz R )
1 Vin'yy, K“ - MW, L (Vv + VeV
ZR 025 Ro” "9R Ro R R (B4-4)

Multiplying Ro/ Vin’ on the both sides of equation (B4-4) yields

(=Y )V &2Vz aVz
\_/-m'R( aR E aR

9Ky — — —
-1 G s G, (Vavy) + L(VRva
R—= ZIT=\VR = RYZ

2R, %% " 3R ‘@R 2 R (B4.5)

Substituting equation (B1-7) into (B4-5) yields

~___(Vza V2 +1lvy aVz)
Re,0 aR R oR
— 0K = 9 ——
=g R= - Vab=(VRVZ) + Va2l
2Re,i R (B4-6)

It is found that from the experimental results the scaled axial
turbulence kinetic energy K: is a function of normalized radius R, and can be

expressed by a polynomial, that is,

K;,s= fe(R)
n —
= z €n \n
0 n=0,1,2,.... ) (B4-7)
0Kes
— = fo (R)
R e
= z ne,R™!
0 n=0,1,2, ... ) (B4-8)

Substituting equations (B1-10), (B2-12), (B2-16), (B2-25) and (B4-8) into
(B4-6) yields
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V .92 Vz aVz
2,0 aR R aR

2 a,R" 2 ne,R™! +
2 a,R™ Z nd,R™! -

Il’-'

”l“

2R 02'3

+ Z an"
0

297

Z n2d,R™)

L [C}

(B4-9)




APPENDIX C
Computer Program Listings
Reynolds Shear Stress

PROGRAM SHSTR

DIMENSION A(20),B(20) ,R(40),TXA(40),TXB(40),TY(40),
#TERMX (40) , TERMY (40) , VRV (40) ,VRVT (40)
REAL EK, EL, EN,ENM
CHARACTER*20 FNAMEL, FNAME2
O e e e e e e e e sk ok e e e e sk sk ok sk ok ek e sk ok ke e ok ok ok e ok ok ok ok ke ok ok o ok e ek ke o ook ok ok ok ok ok ok ok e ok ok
INPUT
VIN

INLET VELOCITY
INLET DIAMETER
VORTEX CHAMBER DIAMETER
VISCOSITY
NUMBER OF COEFFICIENT A
IR = NUMBER OF COEFFICIENT B
IR = NUMBER OF CALCULATION POINT (RADIAL DIRECTION)
IRM = MAXIMUM POINT (RADIAL DIRECTION)
A(N) = COEFFICIENT A
B(N) = COEFFICIENT B
hhkdkkdhkkhkdkhkhkkhhkhhkhrhbrrhkhkrdhkrhkkhkrhkhkkkhkhhkrhkhkrkhkrhrhkhkhrhkhkhkhkhkhrrk
OPEN (UNIT=5, FILE="'CON')
WRITE(5,5)
5 FORMAT (4X, 'INPUT FILE NAME? ')
READ(5,10) FNAME1
10 FORMAT (A10)
OPEN (UNIT=1, FILE=FNAME1)
WRITE(5,15)

15 FORMAT (4X, 'OUTPUT FILE NAME? B
READ(5,10) FNAME2
OPEN (UNIT=2, FILE=FNAME?2)

WRITE (2,25) FNAMEL, FNAME2

25 FORMAT (/, 10X, 2A20)
WRITE(2, 30)

30 FORMi T (/,10X, 'PROGRAM SHEAR-STRESS JAN 1995')
READ(1,*) VIN,DIN,DO, VK, IA, IB, IR, IRM
WRITE(2,35) VIN,DIN,DO, VK, IA, IR, IR, IRM

35 FORMAT(/, 11X, 'VIN DIN DO,
' VK', IA IB IR IRM',6/,4F14.6,414)
READ(1,*) A(1),A(2),A(3),A(4),A(5)

WRITE(2,40) A(1),A(2),A(3),A(4),A(5)

40 FORMAT(/,10X, 'A(1) A(2) A(3) ",
#' A(4) A(S5)',/,Fl4.11,4F14.6)
READ(1,*) A(6),A(7),A(8),A(9),A(10)

WRITE(2,45) A(6),A(7),A(8),A(9),A(10)

aaonNnaonnNNaNNn
([ I T

s %



45

50

55
#'

#FORMAT (/,10X, 'A(6) A(7) A(8) ',

A(9) A(10)',/,5F14.6)
READ(1,*) B(1),B(2),B(3),B(4),B(5)
WRITE (2,50) B(1),B(2),B(3) B(LBG)
FORMAT (/, 10X, 'B(1) ( B(3)"'
#! B(4) ', /,F14.11,4F14.6)
READ(1,*) B(6),B(7),B(8), B(9) B(10)
WRITE(2,55) (6),B(7) B(8) B(9),B(10)
FORMAT(/, 10X, 'B(6) B(7) B(8)'

B(9) B(10)',/, 5F14. 6,/)

C***********************************************************

C

CALCULATION

Chhhkdekhkhhkdhkhhkhkhkhdkhhkhhhhhkhkhdhkhkhkhkhdhhhhkhhhkhdhkrrkhrhkhhhhkhkkrkrkhkhhr

100

105

110

115

140

145

REI=VIN*DIN/VK
REO=VIN*DO/VK
WRITE(5,*) 'REI,REO',REI,REO
DO 160 K=1,IR
EK=K
EL=IRM
R (K) =EK/EL
DO 110 M=1,1A
DO 100 N=1,1B
EN=N
ENM=N+M
C=EN/ENM
TXB (N) =C*B (N) *R (K) ** (N+M)
WRITE(S5,*) 'TXB(N)',TXB(N)
CONTINUE
TXBT=0.0
DO 105 N=1,IB
TXBT=TXBT+TXB (N)
CONTINUE
WRITE(5,*) 'TXRT',K TXBT
TXA (M) =A (M) *TXBT
WRITE(5,*) 'TXA(M)',TXA(M)
CONTINUE
TXAT=0.0
DO 115 M=1,IA
TXAT=TXAT+TXA (M)
CONTINUE
WRITE(5,*) 'TXAT',TXAT
TERMX (K) =TXAT/R (K) **2 .0
WRITE (5,*) 'TERMX(K) ', TERMX (K)
DO 140 N=1,1IB
TY (N) = (N- ) *B(N) *R(K) ** (N-2)
CONTINUE
T™YT=0.0
DO 145 N=1,1IB
TYT=TYT+TY (N)
CONTINUE
TERMY (K) =TYT
WRITE(5,*) 'TERMY(K) ', TERMY (K)
VRV (K) =TERMX (K) / (-REI**0,25) +2 . 0*TERMY (K) /REO
VRVT (K) =VRV (K) *VIN**2 0
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160 CONTINUE
ke e e e ek de sk e ke ke e e e I e o e ek e ok e o ok e ok ok ok ok ok ok e ok o ok ok e ok ok ok e o ok ok e ok o ok e ok ok ok ok ok
OUTPUT
NO = NUMBER OF POINT
R = NORMALIZED RADIUS
VRV = NORMALIZED SHEAR STRESS
VRVT = ABSOLUTE SHEAR STRESS
e e e de e e de ok e e ok e sk e ke e ke e ke ok ok ke vk ok e ok ok ok ok ok o ok ok e ok o ok ke ok ok ok ok ok ok ok ok e ok ok ok ok ok ok o ok e ok
WRITE(2,165)
165 FORMAT(/, 12X, 'NO R VRV',
#' VRVT', /)
DO 170 K=1,IR
170 WRITE(2,175) K,R(K),VRV(K),VRVT(K)
175 FORMAT (10X,I4,F14.5,2F14.6)
END

QN

oXelele
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D6BM

Computer Calculation Output

Reynolds Shear Stress

D6BMO

PROGRAM SHEAR-STRESS JAN 1995

VIN
9.324900
A(1)
-0.009590
A(6)
-432067.3
B(1)
0.020515
B(6)
-1377.510
NO
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

ejolojofolojolojofoofoloNe e

DIN
0.012700

A(2)
-154.1218

A(7)
785660.8

B(2)
61.97313

B(7)
1815.317

R

.05000
.10000
.15000
.20000
.25000
.30000
.35000
.40000
.45000
.50000
.55000
.60000
.65000
.70000
.75000

OO0 O0OO0OO0OO0DDODOOO0OO0OTCOO

DO
0.139600

A(3)
3208.159

A(8)
-855698.0

B(3)
-352.9656

B(8)
-405.4144

VRV

.383322
.453378
.336917
.237682
.168837
.120022
.087935
.066841
.055501
.042440
.036689
.014701
.101658
.113772
.008170
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OWoOKWWEUJ

VK

0.000015

A(4)
-29112.20

A(9)
512438.1

B(4)

L7131

B(9)

.8911

VRVT

.331295
.422882
.296156
.667332
.680976
.436395
.646281
.812085
.826011
.690297
.190232
.278345
.839526
.892880
.710447

IA IR IR IRM
10 10 15 20

A(5)
145230.2

A(10)
-129688.4

B(5)
-169.2022

B(10)
278.6851



DA75 DA750
PROGRAM SHEAR-STRESS JAN 1995

VIN DIN DO VK IA IB IR IRM
16.282000 0.012700 0.139600 0.000015 10 10 15 20
A(1) A(2) A(3) A(4) A(5)

0.008598  7.347185 20.41215 -498.8565 2743.946

A(6) A(7) A(8) A(9) A(10)
-6479.670  6775.429 -2588.702 0.000000  0.000000
B(1) B(2) B(3) B(4) B(5)
0.002328 0.684583  13.64789 -152.8794  1021.251
B(6) B(7) B(8) B(9) B(10)

-3502.006 6615.504 -7038.126  3957.152 -914.4376

NO R VRV VRVT
1 0.05000 -0.001050 -0.278328
2 0.10000 -0.004303 -1.140725
3 0.15000 -0.009663 -2.561574
4 0.20000 -0.017824 ~-4.725163
5 0.25000 -0.029723 -7.879675
6 0.30000 -0.045665 -12.105861
7 0.35000 -0.064342 -17.057159
8 0.40000 -0.082454 ~-21.858765
9 0.45000 -0.095637 -25.353758

10 0.50000 -0.100212 -26.566521

11 0.55000 -0.093732 -24.848598

12 0.60000 -0.077022 -20.418709

13 0.65000 -0.054302 -14.395552

14 0.70000 -0.032303 -8.563738

15 0.75000 -0.012580 -3.334874
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DB75 DB750
PROGRAM SHEAR-STRESS JAN 1995

VIN DIN DO VK IA IB IR IRM
9.324500 0.012700 0.139600 0.000015 10 10 5 20
A(1) A(2) A(3) A(4) A(5)

0.008598  7.347185  20.41215 -498.8565 2743.946

A(6) A(7) A(8) A(9) A(10)
-6479.670 6775.429 -2588.702 0.000000 0.000000
B(1) B(2) B(3) B(4) B(5)
0.001631  1.734159 -11.25556 102.8776 -333.4543
B(6) B(7) B(8) B(9) B(10)

417.6187 175.5054 -1065.285 1060.719 -347.7346

NO R VRV VRVT
1 0.05000 -0.001411 -0.122723
2 0.10000 -0.005059 -0.439935
3 0.15000 -0.011272 -0.980100
4 0.20000 -0.020320 -1.766914
5 0.25000 -0.032418 -2.818858
6 0.30000 -0.047714 -4.148933
7 0.35000 -0.065601 -5.704284
8 0.40000 -0.083977 -7.302140
9 0.45000 -0.099035 -8.611431

10 0.50000 -0.105833 -9.202572

11 0.55000 -0.100340 -8.724899

12 0.60000 -0.082744 -7.194859

13 0.65000 -0.058890 -5.120697

14 0.70000 -0.039347 -3.421337

15 0.75000 -0.028085 -2.442474
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DC75 DC750
PROGRAM SHEAR-STRESS JAN 1995

VIN DIN DO VK IA IB IR IRM
2.328800 0.012700 0.139600 0.000015 10 10 15 20

A(1) A(2) A(3) A(4) A(5)
0.008598 7.347185 20.41215 -498.8565 2743.946

A(6) A(7). A(8) A(9) A(10)
-6479.670  6775.429 -2588.702 0.000000 0.000000

B(1) B(2) B(3) B(4) B(5)
0.001700  1.352799 3.982587 107.0343 -820.9883

B(6) B(7) B(8) B(9) B(10)
2493.149 -3844.990 3057.430 -1113.220 117.0318

NO R VRV VRVT
1 0.05000 -0.002640 -0.014319
2 0.10000 -0.012650 -0.068605
3 0.15009 -0.0295% -0.160455
4 0.20000 -0.050415 -0.273416
5 0.25000 -0.073403 -0.398085
6 0.30000 -0.098484 -0.534111
7 0.35000 -0.125717 -0.681805
8 0.40000 -0.153648 -0.833279
9 0.45000 -0.177520 -0.962743

10 0.50000 -0.188984 -1.024919

11 0.55000 -0.179526 -0.973624

12 0.60000 -0.147703 -0.801041

13 0.65000 -0.104202 -0.565118

14 0.70000 -0.071224 -0.386268

15 0.75000 -0.066532 -0.360824



APPENDIX D
Computer Program Listings
Vortex Core Radius

PROGRAM CORE10

REAL KA1l,KA2,KASI,KASM,KAS1,KAS2,1AM
DIMENSION KASI (10),LAM(10),RE(10),RC(10)
CHARACTER*20 FNAME1, FNAME2

Ce e de e de do e e e e ke de de ek ke e de e ek ke de e e de de e ke e ke ok e e ke ok ke gk e e ek e ok e e e e o ek ke ok ok

NN N

INPUT

RE = EXIT RADIUS

KAS1, KAS2 = INITIAL RC/RE
CO = COEFFICIENT

NEL = NUMBER OF ELEMENT
RO = CHAMBER RADIUS

AIN = INLET SECTION AREA
FE = INLET ANGLE

XN = COEFFICIENT

de e e %k e e ke de ke %k vk e vk Kk ke ke v ek ok ok ke e v sk ke ke ke e ke ke sk ke ke e ek ke ok e e K ok ke ok ke e e ok b ok e A ke ke

OPEN (UNIT=5,FILE='CON')
WRITE (5, 5)

5 FORMAT (4X, 'INPUT FILE NAME? )
READ(5,10) FNAME1

10 FORMAT (A10)

OPEN (UNIT=1, FILE=FNAME1)
WRITE (5, 15)

15 FORMAT (4X, 'OUTPUT FILE1 NAME? ')
READ(5,10) FNAME2
OPEN (UNIT=2, FILE=FNAME2)

WRITE(2,25) FNAME1l, FNAME2
25 FORMAT (/, 10X, 2A20)
WRITE{2, 30)

30 FORMAT(/,10X, 'PROGRAM CORE-SIZE JUNE 1995')
READ(1,*) RE(1),RE(2) ,RE(3),RE(4),RE(5),RE(6)
WRITE(2,35) RE(1),RE(2),RE(3),RE(4),RE(5),RE(6)

35 FORMAT(/,2X,'RE(25) RE(30) RE(40) RE(50) RE(58)'"',
#' RE(75)',/,6F8.4)

READ(1,*) KAS1,KAS2,CO,NEL
WRITE (2, 40) KAS1,KAS2,CO,NEL

40 FORMAT(/,4X, 'KAS1 KAS2 Co NEL',/,3F8.4,18)
READ(1, *) RO,AIN,FE,XN
WRITE(2,45) RO,AIN, FE,XN

45 FORMAT(/,6X, 'RO AIN FE XN',/,4F8.4)




C***********************************************************

C CALCULATION
o e e ek ek e de ok ok ok ok ok ek e ok ke ke ok ook ek deok ko sk ek ok ek ok ok ek ek
FE=FE*3.14159265/180.0
AO=3.14159265*R0O**2.0
DO 80 I=1,6
LAM(I)=RE(I) /RO
C=LAM(I) **(4.0-2.0*CO) *COS (FE) **2.0
BAT= (AIN/AO) **2.0/C
KA1=KAS1
KA2=KAS2
cC WRITE(5,*) 'XN,FE,LAM(I),AO,C,BAT',
#XN, FE, LAM(I) ,AO,C,BAT
CALL FKAS (BAT,KAl,LAM(I),CO,NEL, XN, FK1)
WRITE(5,*) 'FK1',6FK1
CALL FKAS (BAT, KA2,LAM(I),CO,NEL, XN, FK2)
WRITE(S,*) 'FK2',6FK2
IF (FK1.GT.1E-5.AND.FK2.GT.1E-5) THEN
WRITE (5,*) 'FK1,FK2',FKl, FK2
STOP
END IF
IF(FK1.LT.1E-5.AND.FK2.LT.1E-5) THEN
WRITE (5,*) 'FKl1,FK2',FK1,6 FK2

STOP
END IF
60 KASM=KA1 - (KA1-KA2) *FK1/ (FK1-FK2)
cC WRITE(5,*) 'KAl,KA2,FK1,FK2',KAl,KA2,FKl, FR2

CALL FKAS (BAT, KASM, LAM(I) , CO,NEL, XN, FKM)
WRITE (5, *) 'KASM,FKM',KASM, FKM
IF (ABS (FKM) .LT.1E-5) THEN
KAST (I)=KASM
GOTO 80
END IF
IF((FK1.LT.1E-5.AND.FKM.GT.1lE
# (FK1.GT.1E-5.AND.FKM.LT.1E-5)
KA2=KASM

-5) .OR.
) THEN

END IF
C WRITE (5,*) 'KASI(I)',KAST(I)
80 RC(I)=KASI(I)*LAM(I)

CONTINUE
C***********************************************************
c OUTPUT
C KASI = FINAL RC/RE
C RC = CORE RADIUS
C***********************************************************

WRITE(2,100) KASI(1),KASI(2),KASI(3),KASI(4),KASI(5),

#KASI (6)
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100 FORMAT(/,2X,'KASI25 KASI30 KASI40 KASIS0 KASISS',
#' KASI75! /6F8 4)
WRITE (5,*) 'KASI (1- 6)',KASI(1) ,KAST (2) ,KAST (3),
#KASI(4),KASI(5) (6)
WRITE (2,120) RC(:L) C(2),RC(3) ,RC(4) ,RC(5) ,RC(6)
120 FORMAT(/,4X, 'RC25 RC30 RC40 RC50 RC58!',
#! RC75',/,6F8.4)
WRITE(5,*) 'RC(1-6)"',
#RC(1) ,RC(2) ,RC(3) ,RC(4) ,RC(5),RC(6)
END

SUBROUTINE FKAS (BAT,KAS, LAN, CO, NEL, XN, FK)
INTEGRATION EQUATION

REAL KAS,LAN

TTl=1.0-KAS**2.0

TT3=EXP (-XN/LAN**2,0/KAS**2.0)

TT4=1.0-TI3

TM3=KAS** (1.0-2.0*C0) * ((1.0-EXP(-XN) ) /TT4) **2.0
TM4=2 . 0*BAT*KAS

CALL T1(NEL,KAS, LAN,CO, XN, S1)

CALL, T2 (NEL,KAS, LAN,CO, XN, S2)
FK=2.0*TT1*KAS*S1+TT1**2 0* (S2-TM3) +TM4

WRITE(5,*) 'TT1,TI3,TT4,T™M3,T™M4', TT1,TT3,TT4,TM3, TM4
WRITE (5,*) 'BAT,KAS,LAN,CO,NEL, XN, FK'
#,BAT, KAS, LAN, CO, NEL, XN, FK

RETURN

END

SUBROUTINE T1 (NEL, KAS, I.AN, CO, XN, S1)
INTEGRATION OF TERM 1
REAL KK,KAS,LAN
H=(1.0-KAS) /NEL
RRE=KAS
CALL TM1(RRE,KAS, LAN,CO,XN,FA1l)
RRE=1.0
CALL TM1(RRE,lKAS, LANCOXNFBl)
SO1l=(FA1+FB1) /2.0
SN1=0.0
DO 180 K=1,NEL
KK=K
RRE=KAS+ (KK-0.5) *H
CALL T1 (RRE,KAS,ILAN, CO,XN,A1l)
RRE=KAS+KK*H
CALL ™1 (RRE, KAS,IAN, CO,XN,A12)
SN1=SN1+2*A11+A12
180 CONTINUE
S1=(SO1+SN1)*H/3.0
WRITE(5,*) 'NEL,KAS,LAN,CO,XN,S1!
#,NEL:, KAS, LAN, CO, XN, S1
RETURN

END
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SUBROUTINE T2 (NEL, KAS, LAN, CO, XN, S2)
INTEGRATION OF TERM 2
REAL KK, KAS, LAN
H=(1.0-KAS) /NEL
RRE=KAS
CALL TM2 (RRE,KAS, LAN, CO, XN, FA2)
RRE=1.0
CALL TM2 (RRE,KAS, LAN, CO, XN, FB2)
SO2= (FA2+FB2) /2.0
SN2=0.0
DO 200 K=1,NEL
KK=K
RRE=KAS+ (KK-0.5) *H
CALL TM2 (RRE, KAS, LAN, CO,XN,A21)
RRE=KAS+KK*H
CALL TM2 (RRE, KAS,LAN, CO,XN,A22)
SN2=SN2+2*A21+A22
200 CONTINUE
S2=(S02+SN2) *H/3.0
WRITE(5,*) 'NEL,KAS,LAN,CO,XN,S2'
#,NEL, KAS, LAN, CO, XN, S2
RETURN

END

SUBROUTINE TM1 (RRE,KAS, LAN, CO,XN,A1)
TERM 1

REAL, KAS,LAN

TT2=EXP (-XN*RRE**2.,0/KAS**2,0)
TT3=EXP (-XN/LAN**2,0/KAS**2.0)
TT4=1.0-TT3

TT5=(1.0-TT2) /TT4
Al=RRE**(1,0-2.0*CO) *TT5**2.0
RETURN

END

SUBROUTINE TM2 (RRE,KAS, LAN, CO, XN, A2)
TERM 2
REAI, KAS,LAN
TT2=EXP (-XN*RRE**2 ,0/KAS**2 . 0)
TT3=EXP (-XN/LAN**2 ,0/KAS**2.0)
TT4=1.0-TT3
TT5=(1.0-TT2) /TT4

=-RRE**2, 0*TT2+TT3/LAN**2 , O*TT5
B=2.0*XN*A/KAS**3 .0/TT4
A2=2.0*RRE** (1,0-2.0*C0) *TT5*B
RETURN
END




Computer Calculation Output
Vortex Core Radii

C10 Ci1
PROGRAM CORE-SIZE JUNE 1995

RE(25) RE(30) RE(40) RE(50) RE(58) RE(75)
1.7463 2.0955 2.7940 3.4925 4.0513 §5.2388

KAS1 KAS2 6.0) NEL
.0500 1.0000 .8000 100
RO AIN FE XN

6.9850 20.2683 30.0000 1.6188

KASI25 KASI30 KASI40 KASIS0 KASI58 KASI7S
.4565 .5154 .6015 .6597 .6940 . 7395

RC25 RC30 RC40 RC50 RC58 RC75
.1141 .1546 .2406 .3299 .4025 .5546
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Tangential Component at Main Section

Re/Ro = 0.25

APPENDIX E

Raw Experimental Data

U RMS (m/s)

Re,i = 1960
PT. U Mean (m/s)
1 5.232 1.534
2 11.965 0.778
3 10.257 0.783
4 7.803 0.649
5 6.437 0.615
6 5.611 0.570
7 4.849 0.541
8 4.218 0.500
9 3.896 0.496
10 3.681 0.487
11 3.504 0.487
12 3.318 0.508
13 3.155 0.550
14 3.013 0.553
15 2.794 0.655

:

COO0OO0O0OO0OO0OOOOCOOO0O0O0

.180
.065
.076
.083
.095
.102
.112
.119
.127
.132
.139
.153
.174
.184
.234



Radial Component at Main Section

Re/Ro = 0.30

Re,i = 7840
PT. U Mean (m/s) U RMS (m/s) Turb
1 2.399 2.679 1.117
2 1.201 1.454 1.211
3 0.834 1.143 1.371
4 0.519 0.847 1.632
5 0.298 0.850 2.855
6 0.159 0.887 5.563
7 0.025 0.932 37.580
8 -0.112 0.998 8.917
9 -0.256 1.057 4.123
10 -0.393 1.105 2.813
11 -0.539 1.027 1.904
12 -0.681 1.051 1.544
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Tangential Component near Exit Section

Re/Ro = 0.40

Re,i = 7840

PT. U Mean (m/s) U RMS (m/s) Turb
1 5.766 3.186 0.553
2 12.685 2.855 0.225
3 18.497 2.719 0.147
4 22.326 2.974 0.133
5 19.977 2.470 0.124
6 16.925 1.937 0.114
7 14.268 1.529 0.107
8 12.103 1.175 0.097
9 10.410 1.134 0.109
10 9.151 1.075 0.117
11 8.173 1.041 0.127
12 7.300 1.004 0.138
13 6.490 1.025 0.158
14 6.249 1.104 0.177
15 6.139 1.265 0.206
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Radial Component near Exit Section

Re/Ro = 0.50
Re, i = 13700

PT. UMean (m/s) U RMS (m/s) Turb
1 1.091 7.707 6.773
2 2.690 11. 287 4.196
3 4,508 12.647 2.805
4 3.929 8.025 2.043
5 3,587 5.937 1.655
6 -4.,428 4.693 1.060
7 -5.,181 3.259 0.629
8 ~7.267 3.156 0.434
9 -5.885 3.003 0.510

10 -4.,807 2.908 0.605

11 -3.572 3.100 0.868

12 -2.761 5.652 2.047

313




