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ABSTRACT

New Algorithms for Image Analysis, Compression, and 2-D Spectrum

Estimation in the Radon Space

Ramesh R. Galigekere, Ph.D.
Concordia University, 1997

New signal/image processing algorithms involving the Radon transform are
presented. Algorithms that address computed tomography (CT) are motivated by
the desire to process within the Radon space, instead of post-processing a recon-
structed image. Algorithms that use the Radon transform as a tool, exploit the
properties of the transform to simplify a 2-D processing task.

New image-invariants based on the moments of the projections are developed.
The notion of moment-patterns in the Radon space is introduced. A method of
rendering the moment-patterns invariant to geometric transformations is presented.
An alternative descriptor based on the moment-patterns, invariant to geometric
transformations as well as contrast, is proposed.

Selective reconstruction of objects from noisy projections is considered as an
application of the ‘instantaneous matched-filter’. It involves a combination of the
ideas of detection of an object of known shape and location, and an estimation of
the associated parameter.

A new approach to binary image compression is proposed, based on a represen-
tation of binary objects by a small number of projections. Additional compression is
obtained by coding the 1-D non-binary projections. The approach finds applications

(i) in CT, involving binary densities, and (ii) as a method of compressing binary

it



images. A new algorithm developed for reconstructing binary images from their
projections, turns out to be a variant of the algebraic reconstruction technique.
Two-dimensional spectral factorization in the Radon space is discussed, and
some new applications are indicated. The theory suggests a new approach to 2-D
spectrum estimation using the Radon transform, which is considered in the sequel.
Some of the issues associated with the Radon transform of a stationary random
field are brought out. A new representation for the Radon transform of a stationary
random field (valid upto second-order statistics), is used to study the second-order
properties of the transform. Limitations pertaining to the theory and its application
to random field data over a finite support, are discussed. A novel approach to
spectrum estimation based on the Radon transform of 2-D autocorrelation of the
stationary random field data is investigated. Estimation by autoregressive modeling

is considered, and an extension to the maximum entropy method is discussed.
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Chapter 1

Introduction

1.1 Introduction

The central theme of the work presented in this thesis is multi-dimensional signal
processing in the Radon space. It involves processing the Radon transform, or a set
of projections, of a multi-dimensional signal. While the transform arises naturally
in many fields of science and engineering, it is also gaining recognition as a tool in
multi-dimensional signal processing.

The Radon transform (RT) is a powerful tool that has revolutionized the field
of medical imaging involving the reconstruction of an image from its projections
[23, 54]. It is also the basis of a wide variety of similar applications such as radio
astronomy [11], geophysics [181, 28], electron microscopy [25, 26], non-destructive
testing (NDT) [88, 209, 142], underwater acoustic imaging [128], synthetic aperture
radar (SAR) [129], and electrical impedance tomography [93]. All the above appli-
cations involve the reconstruction of a multidimensional function from the measure-
ments available in the transform domain, the Radon space (RS). These applications
are collectively referred to as compute(rize-)d, or computer-assisted, tomography
(CT or CAT). For a detailed review of the major fields of applications in which the

RT arises in a natural fashion, and the various imaging modalities, see [23, 54, 201].



{(pg(t)} —— IRT |—— fkxy

Figure 1.1: Computed tomography

The current trends in medical imaging modalities are reviewed in [51, 202]. Fig. 1.1
depicts the mathematical problem of CT, where the inverse RT (IRT) corresponds
to finding the function f(z,y) from the set of its projections, {ps(¢)}. Practically, it
represents an algorithm that approximately reconstructs a 2-D function on a finite
set of points, from a finite number of discrete projections. Further details regarding
the RT, its properties, and inversion are considered in Chapter 2.

Many situations in CT require a processing of the projections in addition to
the processing that forms an integral part of the reconstruction algorithm. Typical
examples include the suppression of the effects of noise in the projection data !,
image enhancement [203], and the reconstruction from missing, truncated, or hollow
projections [98, 203]. Other image processing tasks such as the enhancement of low-
contrast objects [176], the enhancement of image features such as edges and lines
[57, 130, 161], and the reconstruction of the convex hull of an object [209], also
require additional processing in the projection domain.

In certain applications in CT, the ultimate goal is rather to extract certain
information about the cross-section (CS) [101, 24, 9, 193, 88, 164, 57]. A straight-
forward approach to information-extraction consists of applying 2-D image analysis
and segmentation techniques on a reconstruction obtained from the projections.

However, it is often possible to carry out a part of, or the entire processing in the

1The sources of noise in medical CT data are discussed in {110]. In general, CT-noise is signal
dependent [55], and uncorrelated noise in projection data results in correlated reconstruction-noise
[178]. Further, if the CBP algorithm is used for reconstruction, the |w|-filter involved, accentuates
noise. Hence, it is preferable to suppress the effect of noise in the projections, instead of post-
processing a reconstructed image [203].



RS itself, to extract the required information. One can thus avoid a post-processing
of the reconstructed image, which can be advantageous in many ways, depending
upon the context. For example, filtering is a pre-processing step in many image pro-
cessing tasks. A linear filtering operation on the image can be merged with the 1-D
filtering in the RS that is a part of the reconstruction algorithm [205, 164, 72, 231].
An associated advantage is that the processing-errors in the projections tend to get
distributed over the entire image, alleviating the visual effect to some degree. Of-
ten, the advantage can be in sheer unnecessity of a reconstruction. For example, the
information such as the mass, the centroid and the bounding rectangle of an object,
and the presence and location of straight lines in a binary CS, can be inferred easily
from the projections themselves. In certain image transmission applications, it may
be preferable to code the projections instead of reconstructing the picture followed
by coding and transmission {223, 62].

Over the recent years, the RT has been found useful in many applications
that do not initially involve a measurement in the transform domain. The basic
idea behind the use of the RT as a tool is to exploit some of its properties in
an effort to simplify a 2-D processing task that may be otherwise difficult. The
theoretical framework of the RT, together with its relationship with the Fourier
transform, has provided a new dimension to the utility of the RT as a tool in multi-
dimensional signal processing. The RT of a 2-D function, which is a set of 1-D
projections of the function, provides an alternative representation for the function
under consideration. The usefulness of such a representation stems from the fact
that many of the powerful signal processing techniques that are well understood in
1-D, can be extended to 2-D. The representation can often serve to provide a better
understanding of the 2-D problem under consideration. The projections have been
used as an aid to character recognition (see [150] and the references cited in [17]),
and corner detection [231]. The scope of the RT as a transform has since gradually

encompassed various fields of application in 2-D signal and image processing. Such



applications may be referred to as “Radon transform based multi-dimensional signal
processing”. Examples of projection based image analysis and pattern recognition
algorithms include [96, 190, 57, 21, 130, 63, 231, 47]. The use of the RT in data
compression has been considered in [147, 163, 16, 35, 223]. Jain and Ansari [76]
proposed the use of the RT in 2-D spectrum estimation, which culminated in the
work of [204, 206]. The approach of [204] has been applied (with some variation)
to polar-raster data [34]. A class of applications of a more recent origin is that of
(certain forms of) the discrete Radon transform (DRT) in the development of fast
2-D algorithms [40, 195, 208].

Most of the work involving the RT has been in the deterministic realm. Not
much has been reported on the RT of random fields, perhaps because, most of the
applications have involved the reconstruction of a deterministic function from (i)
its projections (often in the presence of measurement noise) as in X-ray CT (ii) its
projections, where the line integral itself is modeled as a random variable, as in
emission CT (ECT). Further, the line integral of a random field does not exist [76],
making a straight-forward analysis hard. However, the emergence of the RT as a
potential tool in m-D signal processing has necessitated a study of the RT associated
with a stationary random field (SRF). The RT of 2-D random fields, for example,
is encountered in the context of 2-D spectrum estimation.

The large number of physical situations in which the RT arises naturally, and
the properties of the RT that render it a potential tool in m-D signal processing,
supported by the advent of dedicated hardware and efficient algorithms, provide the
motivation for exploring new possibilities. Consequently, this thesis considers new
signal /image processing techniques involving the RT. It is convenient to distinguish
the applications based on the space in which the data is available: (1) the RS
(the projection domain), and (2) the m-D space (spatial domain). The former
corresponds to the familiar tomographic scenario, in which two types of applications

arise: (a) enhancement, and (b) extraction of information. The second category



corresponds to the use of the RT as a transform/tool in m-D signal/image processing.
When the data is available in the Radon space, the motivation is to process the
projections, for enhancement and information-extraction in the Radon space itself,
without having to post-process a reconstructed image. The basic motivation behind
the use of the RT as a tool is fo utilize its properties, such as that of reduction of
dimenstonality, to simplify a m-D processing task. The techniques that employ the
RT as a transform are often naturally applicable to a tomographic scenario. The
above applications together constitute ‘signal/image processing in the Radon space’,
depicted in fig. 1.2. Note that the projections {ps(¢)} in fig. 1.2 represent noiseless,
noisy, blurred, or other kind of modified versions of the projections, depending upon
the application.

Before presenting an outline of the thesis, a clarification of certain terminolo-
gles, is in order. A 2-D function considered in CT is referred variously to as ‘density’,
‘density function’, ‘reflectivity’, ‘object’, ‘function’, or ‘picture’ depending upon the
context under consideration. The term density stems from the fact that it is the 2-D
distribution of a ‘mass’, the double integral of the density function. The ‘density’
could be the coefficient of X-ray absorption in X-ray CT, or the ground reflectivity
in spotlight-mode SAR. The 2-D CS that is reconstructed is referred to simply as
the ‘reconstruction’ or the ‘reconstructed image’. An object may refer to one or a

certain group of density functions in a CS.
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1.2 Organization of the thesis

The thesis can be considered to consist of three parts, based on the applications:
image analysis, compression, and applications involving 2-D power spectrum. Each
of the chapters addresses a new application, the scope and significance of which, will
become clear from the context. Review of the literature pertinent to a particular
chapter/application is included in the corresponding chapter.

Chapter 2 presents a brief review of the RT, its properties, and image recon-
struction from projections.

Description of an object invariant to geometric transformations is very use-
ful in image analysis, object recognition and classification. An important class of
invariants is that based on moments. The existing methods that address projec-
tion data involve an extraction of the 2-D moments from those of the projections,
from which algebraic invariants are constructed. Chapter 3 introduces the notion
of moment-patterns (MPs) in the RS, and formulates new moment-based invariants
within the Radon space. A technique for rendering the MPs invariant to translation,
scaling and rotation, is proposed. Further, an extension of the technique to 3-D is
presented. A novel feature-set based on the moment-patterns, that is invariant to
geometric transformations as well as contrast, is also developed. The new techniques
are applicable to CT as well as spatial data.

Chapter 4 is devoted to an application of the notion of “instantaneous matched
filter” (IMF) developed at the Centre [160], and for selective reconstruction of ob-
jects from noisy projections. The IMF involves a combination of the ideas of detec-
tion of an object of known shape and location, and an estimation of the associated
parameter. In this sense, a signal of interest is separated from a noisy linear combina-
tion of known shapes in white noise. The IMF is analyzed from a discrete viewpoint,
and some new observations are presented. A generalized version that does not re-

quire an explicit orthogonalization, is developed. The projections of the object of



interest, separated by the generalized IMF', are used to reconstruct the correspond-
ing object. The method is applied as an alternative to simple subtraction-based
methods when the densities of the objects vary by a factor.

The scope of data compression hardly needs an emphasis. Inspite of the
tremendous advance in the field and the availability of commercial products, the
ever increasing need for efficient representation of data for transmission and stor-
age motivates further application-specific efforts. Chapter 5 represents such an ef-
fort, and addresses the compression of binary images in the RS. The application is
twofold: (i) in CT, where the object is binary, and (ii) as a method of coding binary
images. The basic idea involved is the fact that binary objects are often represented
by a small number of projections. Additional compression can be achieved by cod-
ing the individual 1-D projections. The approach is extended to compress pictures
with closed contours/boundaries. Finally, a new algorithm for reconstructing binary

images from their projections collected a general CT scenario, is proposed.

The rest of the work involves topics associated with 2-D power spectrum. 2-D
spectral factorization in the RS is considered. Some aspects of the RT associated
with the RT of an SRF are studied, and a new approach to 2-D spectrum estimation

in the RS is investigated.

The problem of spectral factorization in two-dimensions (2-D) is complicated
by the lack of a fundamental theorem of algebra in 2-D. The theoretical aspects of
2-D spectral factorization are considered in Chapter 6. The RT reduces the 2-D
problem to a set of independent 1-D problems, which are well understood. Apart
from a mathematical point of view of providing a solution to the 2-D spectral factor-
ization problem, the theory can be considered to be the heart of many applications
involving signal modeling in the RS. New applications for modeling and processing
CT data are indicated. An application involving LPC (linear predictive coefficients)-

based invariants is described. The theory suggests a new method of 2-D spectrum



estimation, which forms the topic of Chapter 7.

The problem of estimating the 2-D PSD from SRF data is encountered in many
fields of applications such as radar, sonar, geophysics, radio astronomy, and image
processing. High resolution spectrum estimation in 2-D, however, has remained a
difficult task. A brief survey presented in Chapter 7 is intended to highlight the
problems and issues involved in 2-D spectrum estimation, and emphasize the scope
of exploring different possibilities. A recent approach that is of particular interest,
involves the use of the RT to split the 2-D problem to a set of 1-D problems that are
easier to handle [204]. This method is based on the projections of the data modeled
as a sample of an SRF. Chapter 7 discusses some of the issues that arise in the
context of the RT, where the underlying 2-D signal is modeled as a sample of an
SRF. A new mathematical representation for the RT of an SRF, valid upto second-
order statistics, is developed. Although it leads to the same final results as those of
Jain and Ansari [76], the development helps in highlighting some of the aspects not
evident in [76, 204, 34], and their implications on the RT approach to 2-D spectrum
estimation. Furthermore, some of the effects of inherent windowing of the 2-D data,

"ignored in the literature so far, are discussed. The difficulties in characterizing
the line integral of an SRF, and the associated issues provide the motivation for
investigating alternative approaches. A novel approach to 2-D spectrum estimation
based on the RT of 2-D autocorrelation function (ACF) of an SRF, instead of that
of the random field itself, is investigated. Estimation by autoregressive modeling is

discussed, and an extension to the maximum entropy method is considered.
Simulation results are presented to illustrate the new techniques.

Chapter 8 concludes the thesis. It comprises of a summary of the work carried
out and the scope for future work in the realm of signal processing in the Radon

space.



Chapter 2

The Radon Transform

The purpose of this chapter is to provide a brief introduction to the Radon trans-
form and review some of its properties used in this thesis. In the following section,
the Radon transform is defined, and some basic properties are reviewed. The in-
verse Radon transform and some important algorithms for image reconstruction
from projections are briefly discussed. Sampling considerations, the discrete Radon
transform, and the computation of the Radon transform of digital data, with an in-
cremental algorithm, are discussed. General references on the topic are the books by

Deans [23], Gelfand et al. [39], Herman [54], Rosenfeld and Kak [183], and Jain [72].

2.1 The Radon transform

Let x denote points in the real n-dimensional space. The Radon transform (RT) of
an n-dimensional function f(x), is the integral of f(x) over the family of hyperplanes

of dimension n-1 defined by:

t=(:-x=('11:1 +C2$2+....+Cn$n (2.1)
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where ¢ denotes a unit vector that defines the orientation of the hyperplane. The
RT is given by:
R{FE)} = [ F)8( - ¢ - x)dx = p(, () (2:2)

where, § is the Dirac-delta function. The set of integrals evaluated over a set hyper-
planes with the same orientation constitute a projection of f(x) at that orientation.
Accordingly, the t-( space is referred to synonymously as the Radon space (RS) or
the projection space.

In two-dimensions (2-D), the RT of a function f(z,y) is the integral of f(z,y)

over a family of straight lines on the plane containing the function.
R{f(z,y)} = / / F(z,y)8(t — z cos  — ysin 8)dzdy = p(t, ) (2.3)

where,

t=2zcosf +ysinb (2.4)

is the parametric representation of the straight line.! The set integrals evaluated
over a set of parallel lines constitute a projection p(t,8). To emphasize the fact that
it is a 1-D function, it will be denoted as py(t). Fig. 2.1 illustrates the geometry.
The space over which the RT is defined, reflecting the periodicity of ps(2) in 6, is
illustrated in fig. 2.1(b), and fig. 2.1(c) is the corresponding sketch for functions
of finite support (one period is shown). Note that the set {pg(t), —b < t < b,
0 < 0 < 7} (where b denotes the spatial bound) constitute the RT.

It is important to note that the coordinates {(¢,0)} of the RS are not polar
coordinates of R2. This is evident by the pictorial description of the space over which
the RT is defined. This point is further clarified by noting that p(0,6,) = p(0,82)
<= 0, = 0,, in general.

It is easy to observe that not every function p(t,8) is a valid RT i.e., the RT of
some function f(z,y). A function p(t,8) is a valid RT provided it is the RT of some

1n geophysics, the slope-intercept form of a straight line is employed, and the RT is also referred
to as ‘slant stack’ or the ‘r — p’ transform.

11



(to,8) ©)

(a) Projectionof f(x,y) at an angle 6

Figure 2.1: The Radon transform

function f(z,y). It is easy to generate counter examples. One such is the set of
all projections p(t, 8) of a function f(z,y) in which, only one projection, say p(t, 0)
is modified in some way; eg., replaced by cp(t,0) where ¢ # 1. Mathematically, a
function will have to satisfy a set of consistency conditions to qualify to be a valid
RT. These conditions are obviously related to the range of the RT [109].

The RT is essentially a multidimensional transform. In this thesis, the discus-

sion will be restricted to 2-D functions, unless otherwise specified.

2.2 Properties of the Radon transform

Linearity:
The linearity of a transform is perhaps of foremost significance. The RT of a

linear combination of two functions ¢(z,y) and ¥(z,y) is the linear combination of

12



the respective RT's:
Pe(t) = a1¢s(t) + a2tb(t), 6 € [0,) (25)
where, ¢4(t) and 14(t) are the RTs of ¢(z,y) and (z, y) respectively.

Relation to the Fourier Transform

A very important and powerful result in the RT theory is its relation with the
Fourier transform (FT), known as the central slice theorem (CST) or the projection
slice theorem, stated below:
Central slice theorem: The (1-D) Fourier transform (FT) of the projection of a
function at an angle 8 is a slice of the 2-D FT of the function at the same angle.

i.e.,

F{ps(t)} = Ps(w) = F(wcosh,wsin ) (2.6)

A pictorial description of the CST is given in fig. 2.22. Every projection contributes
to a radial slice in the (2-D) Fourier space at the corresponding angle. Hence, it is
possible to fill the 2-D Fourier space (on a polar grid) by taking the 1-D FT of the
projections of f(z,y) at various angles. The CST is the basis of a class of algorithms
for image reconstruction from projections, called the direct Fourier method [122]. It

also plays a key role in the RT theory and applications.

Transform of Convolution
The RT of a convolution of two functions ¢(z,y) and ¥(z,y) is a convolution

of the respective RTs:

R{d(z,y) * *¥(z, y) } = {¢e(t) * ¥o(2)} (2.7)

where, ** and * denote 2-D and 1-D (with respect to t) convolution operations
respectively. Thus, the projection at an angle 6, of the convolution of two functions,

is the 1-D convolution of the respective projections of the two functions. This result

2Fig. 2.2 is schematic. The Fourier transform is sketched as a real and spatially bouned function,
although it is generally neither real nor spatially limited, for illustrative purposes only.
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Figure 2.2: The central slice theorem
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Mass Conservation T p(t,Q)dt = [ f(x)dx,V(
Linearity R{c1f + cag} = ciRf + 2Rg
Homogeneity p(at,al) = || p(¢, ¢)
Shift R{f(x+b)} =p(t+¢-b,()
Conuvolution R{f x+g} = {Rf * Rg}

Table 2.1: Some properties of the RT

is a direct consequence of the linearity of the RT and the CST. An implication of
the above properties is the fact that a 2-D filtering operation can be achieved in the
RS, by convolving each of the projections, with the corresponding projections of the
2-D filter (impulse response or the point-spread function [162, 72].

Some of the fundamental properties of the RT are listed in table 2.1. Its
property with respect to rotation is of special use in this thesis, and is discussed in
Chapter 3. Other properties and proofs are available in [23], and in [72], especially
for the 2-D case.

2.3 The inverse Radon transform, and image re-
construction from projections

It is the invertibility of the RT that has made it extremely useful in CT, involv-
ing image reconstruction from projections. The inverse Radon transform (IRT)
mathematically corresponds to solving the integral equation (2.2). A solution was
published by J. Radon in 1917 [158], expressing f(z,y) in terms of ps(t) > The
general formula in n-dimensions depends upon whether R™ is of even or odd dimen-
sion [23]. It is desirable to have a single inverse formula regardless of dimension.
The possibility of the existence of a unified formula can be appreciated by the fact

that the CST is valid regardless of dimension. For a discussion on a unification of

3The line integral of a function has come to be referred to as the ‘Radon transform’ due to the
inverse formula given by Radon.
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the Radon inverse formula, see Deans [23] and the references therein. Recently, it
has been observed that the results become zero when the dimension requirement is
violated, resulting in a unified formula for the inverse RT of arbitrary dimensions
[102].

Major image reconstruction algorithms fall into three broad categories: (1) the
convolution or filter backprojection technique, based directly on the Radon inverse
formula, (2) those based on the Fourier slice theorem, called direct Fourier inversion
(DFI), and (3) the algebraic reconstruction techniques, based on an algebraic for-
mulation of the forward and inverse problems. The first two of the reconstruction
techniques mentioned above, are briefly discussed. A glimpse of ART is contained
in Chapter 5.

In 2-D, the Radon inverse formula is given by:
flz,y) = /0 "po(x cos 6 + y sin 6)d6 (2.8)
where, py is given by:
Fo(t) =pe(t) ¥ 6(t), 0<O<nm (2.9)

where, ¢(t) = F~!(|w}]), and ‘*’ denotes convolution. The variable w has the dimen-
sions of spatial frequency, and is referred to as the radial frequency variable. The
operation in (2.8) is termed backprojection. The IRT is therefore the backprojection
of convolved projections, and hence the name convolution backprojection (CBP) for
reconstruction methods based on the above formula. Since convolution is equiva-
lent to filtering, the CBP method is also referred to as the filtered-backprojection
(FBP) method, especially when the filtering is performed in the frequency-domain.
The following succinct notation for the inverse formula summarizes the CBP/FBP
algorithm itself:

f(z,y) = BC{Rf(2,y)} = RHRS} (2.10)
where, B represents backprojection, and C denotes the operation of convolution (2.9)

in the Radon space. B is the adjoint of R, and is equivalent to a blurring by the
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1
w12 +un?
thus appreciate the role of the filtering function |w] = /w;%Z + w,? in the inverse

1

point-spread function T which is the Fourier inverse of One can
Y

formula, which can be conveniently implemented in its 1-D form in the projection
domain, thanks to the CST.

The function ¢(¢) is not well-behaved, and is a singular distribution, mak-
ing the problem ill-posed. One way to overcome this problem is to define a filter
function C(w) = |w|W(w), where, W(w) is the FT of a smoothening window, w(t).
Several windows suggested have been named after the inventors [54]. However, the
CBP algorithm has been the most popular one due to its accuracy. Further, the
computation of the image intensities in the CBP method is cumulative, unlike that
in the DFI techniques. The implications of this ‘image evolution’ process can be im-
portant in practice, as partial images could be produced with the collection of every
projection [27]. Angular spacing of the projections need not be uniform. Further,
point-by-point and ‘region-of-interest’ reconstruction are possible with the CBP.

Another class of reconstruction algorithms, based on the CST, is called Fourier
inversion or direct Fourier technique [122]. The reconstruction procedure consists of
three steps. The first step involves the computation of the FT of each of the projec-
tions, thus filling the 2-D Fourier space on a uniform polar grid. The values of the
2-D FT on the polar grid are then mapped onto a rectangular grid by interpolation.
Finally, the 2-D function is reconstructed by a 2-D inverse DF'T. An advantage of
DFTI is the speed it can afford.

Algebraic reconstruction techniques (ART), introduced by Gordon et al. [46],
involve formulation of the projection-process as a multiplication of the image vector
by a matrix of weights [45]. The IRT, or the process of reconstruction consists of
an inverse of the matrix operating on the vector consisting of values of the RT.
The method is generally iterative in nature, alternating between the projection and
image domains, involving the re-projection of an estimated image. Although this

method is computationally intensive and often involves huge matrices, there are
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many situations in CT, such as those involving limited angle data and/or noise,
in which it is superior to the conventional methods such as the CBP or Fourier
methods. ART methods alse allow the incorporation of prior knowledge and the use
of estimation theory in image reconstruction.

A vast literature exists on the basic image reconstruction algorithms and their
variants. A detailed description of computer implementation of image reconstruction
formulas given by Rowland [54] is a useful reference. The simulation involving
the projection and reconstruction of gray-level images, reported in this thesis, has

utilized the software package SNARK’93*

2.4 Sampling considerations

In the previous section, the RT and the IRT of continuous functions were discussed.
In general, an infinite number of continuous projections are required to represent
a continuous 2-D function exactly. In practice, however, it is possible to work
with a finite number of discrete projections. The number of projections required to
represent a function depends upon the nature of the function. For example, a single
projection is sufficient to represent a circularly symmetric function completely; N
projections of N uniformly spaced points are sufficient to represent a bandlimited
function of order N x N [122]. Thus, the number of projections, and the number of
samples per projection, that adequately represent the function under consideration,
is an important issue. This is the classical problem of sampling the RT, for which
results already exist. If the RT is adequately sampled, the continuous RT can (in
principle) be determined and the IRT found.

Traditionally, the sampling requirement on the RT has been considered as

two independent problems: of finding the number of projections, and the number

4J.A. Browne, G.T. Herman, and D. Odhner, A programming system for Image Reconstruction
from Projections, TR No. MIPG 198, Aug. 93, Medical Image Processing Group, University of
Pennsylvania, Philadelphia, PA
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of samples per projection. Each of these is solved by using the 1-D Shannon’s
sampling theorem, in conjunction with the CST. Several papers address the sampling
requirement on the RT, and the results of Rattey and Lindgren [174] are given below.
Let f(z,y) be a function with finite space-bandwidth product, i.e., f(z,y) = 0,
2?2 +y? > p? and F(w,w;) =0, w? + w2 > wy?, w, being the bandlimit. Then, the

minimum number of samples per projection is approximately,
N = (2/m)eomp (2.11)

The sampling requirement in the angular direction is obtained by assuming that
the projection for each # is known continuously in ¢ (by virtue of having imposed
a sampling rate for each projection), and then invoking the CST. The minimum

number of equispaced angles over [0, 7) at which the RT must be sampled is:
Mg = [pwn] +2 (2.12)

where, [-] indicates a rounding off to the nearest integer.

By treating the problem as one in 2-D sampling theory, hexagonal sampling
of the RT results in a requirement that is half of that corresponding to rectangular
sampling, which is about as efficient as a rectangular sampling of the 2-D function
itself [174].

The above specifications were based on the sampling theory. One can in gen-
eral specify the number of projections representing an image ensemble, in terms
of parameters representing the ensemble, in some optimal way. Such specifications
would also be useful in being able to adapt projection acquisition to the associated
parameters. For example, Ibikunle [61] has discussed an allocation of the num-
ber of projections for reconstructing an image ensemble represented by separable
2-D Gauss-Markov statistics, in terms of image smoothness and area, such that the
average reconstruction distortion is minimized over an ensemble. In general, the
sampling of the RT is based on available prior knowledge regarding the 2-D object

and experience.
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2.5 The discrete Radon transform

The discrete Radon transform (DRT) is defined in various ways in the literature.
The phrase is often used to refer to a discretization of the RT. The DRT of a con-
tinuous function f(z,y) therefore refers to the set of integrals along lines whose
parameters are discretized. When the data is available on a discrete support, the
DRT corresponds to the integrals of the discrete data along various straight lines on
the plane containing the data grid. This invariably involves an interpolation of the
available data values to a denser grid. Interpolation can be avoided by using the
‘pixel’ assumption to define the continuous image (which is often physically justi-
fied). When the DRT is computed using the pixel assumption or interpolation (as
described in the next section), then the above two descriptions of the DRT become
identical. In some situations, on the other hand, the DRT has been defined as the
sum of values of the discrete data along straight lines passing through the lattice
points. Thus, depending upon the application and computational convenience, the
DRT has been defined in various ways. Scheibner [191] was the first to coin the word
and give a systematic formulation of the DRT. The idea of DRT, however, began in
the context of its application to seismic signal processing, where the slope-intercept
form of the straight line is employed. In this thesis, the term DRT is understood to
refer either to a discretization of the RT, or the RT of discrete data as defined in
(2.13) or (2.14).

2.6 Computation of the Radon transform

In CT applications, the data is available in the form of a discrete set of projections of
a continuous function. When the RT is to be used as a tool, the available 2-D data
is generally discrete. Further, computer simulation involves digital data. Thus, it is
necessary to approximate the RT of discrete data. The usual approach involves the

‘pixel’ assumption that is fundamental in digital image processing. This consists
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Figure 2.3: The Radon transform of digital data

of assuming a unit pixel with a constant value equal to the value of the data at
that point, around each discrete point on the rectangular grid on which the data is
available. The projection pg,(t;), along a line parameterized by the discrete variables
0; and t;, is approximated by a weighted sum of pixels along the linear path, as
follows:
pe; () = ; ; wij(m,n)f(m,n) (2.13)
where, w;;(m,n) are the weights, given by the length of intersection of the line
with the corresponding pixels [54, 23]. The above approximation corresponds to the
Riemann-sum approximation to the line integral. See Fig. 2.3.
Another approach to computing the RT involves obtaining an analytical ex-
pression for the same, by interpolating the discrete 2-D data into a continuous
version and then applying the convolution theorem in the RS [140]. The RT can be

computed for any 6; and ; as a function of the values of f(m,n) on a discrete grid,
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as follows:

po. () =>.>_ hf,f)(tj — mcosf; — nsinb;) f(m,n) (2.14)

where, h{"(t) is the RT of the interpolating function, A(z,y). The RT computed
as above is referred to as ‘DRT in a continuous space’. The method is flexible as
the interpolation function can be chosen depending upon the type of data under
consideration. The pixel-assumption may be treated as a special case, but does not

possess a simple analytical expression.

An Incremental Algorithm

The linearity of the RT facilitates its computation in an incremental fashion,
as the data arrives by rows/columns. The analytical formulation given by (2.14)
is particularly amenable to such an incremental computation. The basic idea is to
consider the image itself to be incremented (updated) with the rows being added
one-by-one. To begin with, the DRT of the image, in which all the rows except the
first are zero, is computed. As the second row arrives, the new image consists of the
two rows. The DRT of the new image, is the sum of the DRT of the first image, and
that of the second image in which all the rows except the second are zeros. Thus,
the updated DRT is obtained by adding the ‘incremental’ DRT associated with the
second row to that which has been computed. The rest of the computation proceeds
in the same fashion, and by the time all the rows have arrived, the DRT of the
complete image would have got fully updated.

The computation above may be made much faster by restricting the range
of summation in (2.14) to within a small strip (+At?) along the given line. Such
a restriction also improves the accuracy of the line integral estimates. The above
algorithm can be used for the detection of straight lines in images, similar to the
Hough transform (HT), in an efficient way for data that comes in a row-row fashion.
In this sense, it would serve as an incremental HT.

The ever increasing demand for fast computing and efficient implementation of
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sophisticated algorithms in CT, and the growing number of applications of the RT,
have resulted in a number of fast algorithms and dedicated hardware for computing

the forward and inverse RT [57, 196].
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Chapter 3

Moment-based Invariants

New image-invariants based on the moments of the projections of an image are de-
veloped. The notion of moment-patterns (MPs) in the RS is introduced. Properties
of the MPs are studied. A method of rendering the MPs invariant to translation,
scaling, and rotation, is presented. An extension of the technique to 3-D is pre-
sented. A means of retrieving the parameters of the geometric transformations is
given. An alternative method of obtaining circular-shift and contrast invariant fea-
tures from each of the translation and scale invariant MPs, resulting in a descriptor
that is invariant to geometric transformations as well as changes in gray-scale, is
proposed. The new descriptor is relatively smaller in size. The invariant descrip-
tions are useful for analysis, recognition and classification of CT data, in the RS
itself. The proposed approach can also be used for spatial data analysis. Illustrative
simulation results are presented.

The moment-based invariants developed in this chapter are patterns in the
Radon space. This is unlike the previous approaches involving algebraic combina-

tions of 2-D moments.
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3.1 Introduction

Description of objects invariant to geometric transformations such as translation,
scaling, rotation, and contrast (intensity scaling) is useful in image analysis, and
object recognition and classification. Such an invariant description is usually in
terms of a set of numbers, referred to as invariants or features. The feature-set
computed from a given image may be compared with that of a reference object for
recognition and classification.

There are many approaches to obtaining invariant descriptions based on dif-
ferent types of feature-sets, such as cross-correlation, Fourier descriptors, moment-
based invariants, and autoregressive models. The choice of a certain approach and
the associated feature-set depends upon the particular application under consid-
eration. For example, Fourier descriptors and autoregressive models are used to
describe closed boundaries extracted by suitable pre-processing. Moment-based in-
variants, introduced by Hu [58], are applicable to a general class of images, and have
been a subject of extensive research in image processing [211, 111, 175, 1, 213, 177,
151, 43, 222, 52, 10, 123].

The classical Hu-invariants involving a combination of moments, are based on
algebraic theory of invariants. Modification of the Hu invariants to handle changes
in contrast was suggested by Maitra [111]. Orthogonal moments based on Zernike
polynomials were studied by Teague [211] from the point of view of constructing
invariants, as well as of reconstruction. Radial and angular moments [175] and
complex moments [1] have been proposed as alternative and simpler means of de-
riving invariants. Analysis with respect to image representation ability, sensitivity
to noise and discretization, and information redundancy have been considered by
(1, 212, 213, 151].

In many applications in CT, the ultimate objective 1s rather a recognition
and classification of an object, and nct its reconstruction. It is useful to develop

invariant descriptions of an object directly from its projections i.e., data in the RS,
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than from a reconstructed image. Further, it is desirable to construct the invariants
within the RS. Past efforts on the construction of invariants from the projections
include the use of moments [190, 57, 43, 222, 52], and the use of transforms [153].
Extraction of some basic details of the image from certain low-order moments of
the projections has been considered in [57, 190]. The construction of algebraic
invariants in the image space by solving for the (2-D) moments of the object from
those of the projection data had been proposed in optics [43, 222]'. A generalization
of the approach, with applications to CT, has been described by [52]. It involves
the inversion of a matrix, the size of which grows with the number of moments
(a considerable number would be required since segmentation is not possible), and
the numerical stability of the approach is yet to be investigated. Very recently,
the reconstruction of a function from its noisy projections via an estimation of the
orthogonal (Legendre) moments of the 2-D function has been considered [124, 125].
All of the above methods require a computation of the 2-D moments from those
of the projections, constituting an inverse problem. An invariant description of the
image in the RS, based on a successive application of the FT in the two variables,
has been proposed [153]. However, the method disregards phase information and
cannot handle geometric scaling?.

In this chapter, new image invariants based on a set of moment-patterns (MPs)
in the RS is investigated. The set of moments (of a certain order) of all the pro-
jections constitute a MP (of that order) in the RS®. It is shown that appropriately
scaled central moments of the projections are invariant to translation and scaling.
Rotation may be found out by “matched filtering with circular shift” (circular cor-

relation), or by the use of a formula for orientation. Once the rotation is known,

1A hybrid (optical-dsp system) implementation of the algorithm has been reported recently
{230].

2It is interesting to note that by replacing the application of the FT over the t-variable by the
1-D Mellin transform, invariance to scaling can be achieved [15].

3The use of even- and odd-‘parity’ moments have been considered for orienting the projections
to facilitate image reconstruction in electron microscopy [189].
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the MPs are suitably centered to produce invariant patterns of moments in the RS
itself. An alternative approach involving circular-shift-invariant descriptors of the
translation and scale invariant MPs is also proposed. The approach presented in this
chapter is particularly useful when the data is available in the RS, in applications
such as NDT, medical and radar imaging, to name a few. The major advantage
is that the invariant pattern is in the RS, allowing recognition and classification
without having to post-process the reconstructed image.

Properties of the RT relevant to this chapter are reviewed in the following
Section. The notion of MPs in the RS is introduced in Section 3. A method of
rendering them invariant to geometric transformations is described, and a means of
extracting the parameters of the geometric transformations is given. An extension
of the technique to 3-D is also described. A new image descriptor based on the
normalized MPs is presented in Section 4. Simulation results are presented in Section

5, and the chapter is concluded in Section 6.

3.2 Relevant properties of the Radon transform

Translation: A translation of the object results in angle-dependent translations along

the spatial variable of the projections:
R{f(z —tz,y —t;)} = pa[t — (tz cos @ + t,sin 0)]} = pe(t — ts) (3.1)

Scaling: A scaling of the object in the image space results in a scaling of the projec-
tions in the spatial variable, as well as in an intensity scaling. Using the superscript

s to denote the quantity after scaling, then:
z [
RU(G I E7'0(8) = Apo(5), V0 (32)

Rotation: Let ¢ € [0,27m) be the angle of rotation of the object, f(z,y). It is
noted here that psi.(¢) = ps(—t). Although the RT is completely defined over
6 € [0, ), Vt, due to the above property, it is periodic in § with a period of 2. Using
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tilde to denote periodicity, {ps(t), 8 € [0,27)} is one period of fy(t). Mathematically,
Po(2) = Poyain(t), Vk € I, so that ps(t) = pe(t)war(6), where, wy,(8) = 1,0 € [0, 27)
and 0 elsewhere. A rotation of the object by an angle of ¢ results in a linear shift of
Po+4(t) in the variable 6; i.e., R{fs(z,y)} = Po+s(¢), V0. Using the superscript r to
denote the transform of a rotated object, p((,r)(t) = Pgo+s(t)war is a circularly shifted
version of py(t) in 6 by ¢. Thus, a rotation of the object results in a circular shift

of the transform in the angle-variable.

3.3 Moment-patterns in the Radon space

A projection py(t) of an image f(z,y) at an angle 8, is 2 1-D function in the variable

t. The moment of order k associated with a projection pg(t) is given by:
mi(0) = [ thpa(2)dt (3.3)

The above moments are referred to simply as the moments, or as the ‘usual’ or
‘regular’ or ‘geometric’ moments. Note that mo(f) = moo (two subscripts denote a
2-D moment associated with the object) is the ‘mass’ of f(z,y), and is independent
of 8. Further, ¢, =] :—;5% is the centroid of the projection pg(t).

The set of moments associated with the set of all projections {py(2), V8} con-
stitutes a ‘moment-pattern’ (MP). In particular, the set {m(6), V8} is referred to
as an MP of order k, in the RS.

The MPs involving the usual moments are not invariant to translation, scaling
or a rotation of the object f(z,y). However, the MPs can be manipulated into

patterns in the RS, invariant to geometric transformations of the 2-D object, as

described in the following.
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3.3.1 Invariant moment-patterns

The usual approach to describe an object in terms of the moments of its projections
involves a computation of the 2-D moments from which the 2-D (algebraic) invariants
are constructed. In this section, MPs in the RS are rendered invariant to geometric
transformations of the 2-D objects, by suitable modifications. The resulting modified

MPs are referred to simply as the invariant MPs.

Translation-invariance

A translation of the object will produce translations in the projections, the moments
of which will turn out be the moments with respect to the associated translations.
The use of central moments eliminates the effects of translation. The patterns

{1«(8), V8} in the RS involving the central moments,
we(0) = [ (¢~ Bo)po(t)t (3.4)

where %y is the centroid of py(t), are therefore translation-invariant. Note that
#0(0) = poo = moeo is a constant (uo), and u(f) = 0, V4. In the subsequent

discussion, MPs refer to central MPs unless stated otherwise.

Scale-invariance

A scaling of an object will scale the values of the associated moments in the RS. It
is shown below that scale-invariance of the moments in the RS can be achieved by
an appropriate normalization of the moments. Consider the projection (at a specific
angle #) of an object f(z,y) scaled in terms of the parameter A. From (3.2), it can

be shown that:
mi(0) & [tpte(t)at
AZHE / o*po(a)da = A*my(8) (3.5)
Thus, my(8) = A®mq(6); mi(8) = A3m;(9) (3.6)
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Let I3 2 :4;2:; = i::ﬁg}: M. The central moment cf order k, associated with a

projections pg(t) is given by:

w0) = [lt-Bw(5)de
A / (A — £2)*po( @) M
= A¥Fy, () (3.7)

From the above, it can be shown that scale-invariance may be achieved by normal-

izing the central moments as follows:

L7

The proof of invariance of 7:(f) to scaling is given in Appendix-A2. The set
{ne(8), 8 € [0,7)} is an MP (of order k) that remains invariant under translation

and scaling.

Rotation-invariance

It is shown in Appendix A-1, that the central MPs of odd orders change sign under
a shift by m, whereas the even-ordered MPs remain invariant. Thus, a rotation of
the object induces a circular shift on even-ordered MPs, and a circular shift with
a change of sign, on odd-ordered MPs, considered over [0,7). Over the interval
[0,27), however, both are (simply) circularly shifted. Hence, the even- and odd-
ordered MPs have a period of 7 and 2m respectively. Since the rotation is over
[0,27), it is possible to find the circular shift suffered by an odd-ordered MP over
[0,27) and use it to ‘center’ the MPs by an appropriate circular shift. Indeed, all
the projections/MPs suffer the same circular shift.

In practice, one can only work with a discrete set of projections, and let N,
denote the number of projections. Thus, an MP of any order consists of NV, discrete

values. Let s(m) denote the (2N, — 1) éL—point sequence corresponding to the
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Figure 3.1: Finding the rotation by circular correlation.

reference third order MP and z(m) the corresponding pattern computed from the
projections of a rotated object. Let
L—1
y(n) = Y sa(m)z(m), 0<n<L-1 (3.9)
m=0
where, the suffix denotes (the extent of) circular shift. It is shown in Appendix A-3
that, if z(m) = s;(m), the point 7 represents a maximum value in y(n), and that it
is unique (except in the case of s(n) being periodic or a constant). Hence, the point
corresponding to the maximum value in y(n) will give the circular shift of z(m)
with respect to s(m). The above procedure, of circular cross-correlation followed

“matched-filtering with circular shifts”. Since a

by peak-detection, is referred to as
circular convolution of two sequences can be obtained by multiplying the respective
DFTs [143] the above procedure may be implemented using a 1-D FFT as shown in

the block diagram in fig. 3.1.

In the method described above, the number of projections N, determines the
accuracy /resolution of the estimate of rotation, and hence useful when a large num-
ber of projections are available. An alternative approach consists of subtracting an
estimate of the orientation from the reference orientation. This requires solving for
m1; from the second-order moments of 3 projections, as shown in Appendix A-4.

Rotation-invariance may be imparted to the MPs by ‘centering’ them by cir-
cular shifts equal to the angle of rotation obtained from the previous step. The

resulting ‘centered’ (denoted by the subscript c), scaled, central MPs,
e £ {ni.(6), 6 €[0,m)}, k=2,3,..M (3.10)
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represent the object f(z,y) invariant to scaling, translation and rotation. M is the
order of the highest moment considered. The values of £ > 2 are considered since
Ko is a constant and p; is zero. The set 4 is referred to as an invariant MP (IMP)
of order k.

The MPs described above are not invariant under a change of contrast (inten-
sity scaling). However, an intensity scaling of the 2-D object by a factor ¢ preserves
the shape of the MPs, but scales them by ¢*/2. A method of achieving invariance
to intensity scaling is described in the next section.

An object g(z,y), representing a geometrically transformed version of a refer-
ence object f(z,y), may be compared by computing the IMPs {y, &=2,3,...M},
and comparing them with the reference IMPs, {77}. A normalized mean-square

error (NMSE) between each of the 1-D patterns may be employed for the purpose:

! €2 (6;)

NMSE, = — , k=2,3,..M (3.11)
;'V=o1 7/:2 (93')
where,
ex(0;) = v(0;) — ve(95), 7=0,1,2,.N—-1, k=203,..M (3.12)
A weighted overall measure:
M
E=Zwk NMSEk (313)

k=2
where, the weights w; are chosen to represent the significance one wishes to attach
to a the moment of a certain order, can be used for discrimination. The choice of
weights, the number of projections, /V,, and the number M of the highest order MP
to be considered, depend upon the class/complexity of objects to be represented,
the presence of noise, etc. In simple cases, a cursory look at a few low order MPs

maybe sufficient for discrimination.
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3.3.2 Registration

The parameters of geometric transformation of an object in an image are useful fea-
tures in image analysis and object localization. The process of finding those param-
eters from a given image of the object is referred to as registration (or localization,
if only the position is of interest). The parameters of the geometric transformation
can be easily obtained from the moments computed in the RS. Rotation may be
estimated by the method described above, or by using the formula involving the
moments of 3 projections. Translation is given by the difference in the centroids of
the given and the reference images: (X,,Y.) — (X, Yz).. The ordered pair (X, Yz)
is the centroid of the object, the coordinates of which are given by the centroids of
the horizontal and vertical projections respectively: X. = fo, and Y, = /5. The

scale-factor is given by: A = /mg(0)/mo,. The suffix ‘v’ in the above denotes the

quantities associated with the reference object.

3.3.3 Extension to three dimensions
Consider the RT of a function f(x), x € R3:

R{f(x)} = [ f()8(t —x - €)dx £ p(t,€) (3.14)
where, § is a unit vector defining the orientation of the plane t = x - ¢ over which
integration is carried out. The collection {p(¢,€),Vt} for a given ¢ characterized
by ¢ and %, is a projection at that orientation. A projection may be viewed as a
parameterized 1-D function p¢(t), or ps4(t). The set of all projections at various
orientations ¢, 9 € [0, ) constitutes the RT.

As in the 2-D case, a translation of the object f(x) results in orientation-
dependent translations in the projections of f(x), which can be handled by using

central moments. The projection of an object scaled in terms of the parameter A

can be shown to be scaled as follows:

RU(;0} 2 pil) = Mpe(5) (3.15)
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The central moment of order & associated with the scaled projection p¢(¢) is related

to that associated with the reference object, by:

p(#, %) = X+* (4, 9) (3.16)

Hence, the central moments normalized as below, are invariant to scaling:

() = LB P) (3.17)
Ko’

The set {ne(¢, %), ¢,% € [0,7)}, is a 2-D MP invariant to scaling and translation
of the object. A rotation of f(x) in R3 results in a 2-D circular shift of the RT con-
sidered over ¢,y € [0,27), and a corresponding shift in the MPs. The shift can be
determined by a 2-D version of matched filtering with circular shifts. Experiments
with simple shapes have confirmed a single péak, and a formal proof of unique-
ness of the maximum of circular (auto) correlation would be useful. Alternatively,
an expression for the orientation based on the moments of the projections can be
formulated.

The above approach would be useful in 3-D tomographic applications. For
example, if f(x) is the characteristic function of a bounded region (shape), ps.4 ()
gives the cross-sectional area of the shape at an orientation defined by ¢ and %, at
distance ¢ from the origin. In radar scenario, the area-functions of a 3-D object may
be obtained from the object’s far-field backscattered ramp responses [22].

Registration is accomplished in a manner analogous to that in the 2-D case.

Remarks:

1. The definition and analysis of moments are based on integrals of continuous
functions. In practice, however, one usually works with digital data and the
formulation is replaced by summation for computational ease. Such a formula-

tion leaves the invariance to translation unaffected, while the invariance of the
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normalized moments to scaling does not hold good strictly. The effects of dis-
cretization, and the improvement possible by employing numerical integration

techniques for approximating the moments, are discussed in [212].

- Moment-based invariants have generally been applied in situations involving
no noise, or a level of noise low enough for the effects to be negligible. The
presence of noise affects the values of higher order moments more severely, as
evident from the associated kernel. Noise also affects the values of the mass
and centroid, which in turn affect the normalizations critical to invariance. An
analysis of the effects on the invariants is rather involved due to the nature
of the relationships involved. Useful properties of moments have resulted in a
growing interest in investigations into the effects of noise on moment-invariants

[1, 213, 151].

The effect of additive noise on the 1-D moments considered in this chapter
is expected to be similar to that in the 2-D case. The effect on the regu-
lar MPs is somewhat uniform. The effect of additive zero-mean white noise
independently on each of the projections, is equivalent to the addition of a
sequence of uncorrelated RVs of equal variance (depending upon the order)
to a regular MP. An analysis of the case involving additive noise on the 2-D
data is, however, complicated due to the difficulty in characterizing the RT of
a stationary random field (discussed in Chapter 7). In general, higher order
moments are vulnerable to the presence of noise as well as discrete approxima-
tions involved in processing, which limits the number of moments that can be
used, in conflict with the desire to use a large number of moments for better

representation [1, 213, 151].
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3.4 An alternative approach

In the previous sections, MPs in the Radon space were studied, and a method of
rendering them invariant to geometric transformations was discussed. The foregoing
approach relies on the accuracy of the estimated rotation. Further, the IMPs do not
remain invariant under a change in gray-scale. In this section, an alternative set of
descriptors based on the MPs are developed. The basic idea is to utilize the circular
autoregressive (CAR) modeling [83], that provide features invariant to circular shifts
and amplitude scaling of sequences. Specifically, if s(n) is an N,-point sequence, it
can be described by a CAR model:
m
s(n) =a+ Y ais(n —n;) + \/Ew(n), n € [1, L] (3.18)

i=1

where, {n;, 7 =1,2,..m} are integers such that the above model is autoregressive,
taking into account the periodicity of s(n). The sequence {w(n)} consists of in-
dependent, identically distributed normal RVs. The parameters {a;, i = 1,2,..m}
and ¢ = a/+/f are invariant under circular shifts and amplitude scaling of the input
sequence. Thus, when each of the MPs is modeled as CAR, the resulting set of
features:

{aip,ce: 1=1,2,..0m, £k=2,3,.M} (3.19)

are invariant descriptors of a given object. Note that invariance to intensity scaling
is also achieved. In general, the order of the CAR model depends upon the class of
objects to be represented. For the purposes of object recognition and classification,
it is usually possible to work with low model orders. This results in a parsimonious
representation, compared to the invariant MPs discussed in the previous section.
Thus, the new approach reduces the size of the feature space required to represent
the MPs.

Due to the approximations and digitization, invariance of the MPs and CAR
parameters will only be approximate. Consequently, the patterns computed from

various instances of scaling, translation and rotation will form close clusters in the
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feature space. Hence, suitable schemes based on the principles of statistical pattern

recognition and decision theory will have to be devised for object classification.

3.5 Simulation

Simulation has been performed with simple gray-level and binary objects for illus-
trating the proposed techniques. The rotated versions of the images were generated
using the nearest-neighbor interpolation*. Scaling of the 2-D object has been per-
formed by successive scaling in the two orthogonal directions. The ‘interp’ function
of MATLAB was used for the interpolation required. The projections of the images
were computed using SNARK ’93. Note that the images and the transformations
displayed are amplitude-scaled for clarity. Note that the X-axis associated with the
plots of the MPs, is the projection-angle 4.

The first example consists of a simple two-lobed gray-level object of size
255x255 shown in fig. 3.2(a). Reference MPs of the object were computed us-
ing 180 projections, as described in Section 3, and stored for comparison. A scaled,
rotated and translated version of the object is displayed in fig. 3.2(b). A scaling
factor of A = 2 was used, and the object was rotated by 45 degrees. figs. 3.2(c)
and (d) display the respective RTs. The reference MPs are shown in fig. 3.3(a) and
(b). The second and third order normalized central MPs of the modified image are
displayed in fig. 3.3(c) and (d), from which, the effect of rotation on the MPs is clear.
The rotation estimated by circular correlation was 44 degrees. The small difference
may be attributed to the effects of errors in generating the modified version. The
IMPs of order 2,3,4 and 5, computed from the projections of the modified image,
and overlapped on the corresponding reference MPs, are displayed in fig. 3.3 (e)-(h).

A shape created by a simple thresholding of the object of fig. 3.2, displayed in

fig. 3.4(a), is the second example. A modified image with A = 2 and a rotation of

4In general, better interpolation schemes can be used to minimize errors.
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Figure 3.2: (a) Reference object, (b) modified object, (c) RT of the reference object,
and (d) RT of the modified object.
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Figure 3.3: (a) Reference second order MP, (b) reference third order MP, (c)-(d):
second and third order normalized central MPs of the modified object, showing the

effect of object-rotation on the MPs. (e)-(h): Invariant MPs of order 2-5 superim-
posed on the respective reference MPs.
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Figure 3.4: (a) Reference object, (b) modified object, (c) RT of the reference object,
and (d) RT of the modified object.

120 degrees is shown in fig. 3.4(b). Figs. 3.4 (c)-(d) display the corresponding RTs.

The estimated rotation for this case was 119 degrees. Four of the IMPs are
displayed in fig. 3.5, overlapped on the references as before. Note that the third
order IMP of the reference image itself is noisy (less smooth) compared to that of
the geometrically transformed version. This is because of the effects of digitization
in small shapes in comparison with those in bigger versions. Note that, although
this object is similar in appearance to the first, its third order MP is quite different,
exhibiting the difference in the gray-level content of the objects.

Fig. 3.6 displays a ‘plane’ image of size 129x 129, the third example. The mod-
ified object was obtained by rotating it clockwise by 50 degrees, and translating the
result. The estimated rotation was accurate. The results are displayed in figs. 3.7.

Table 3.1 lists the errors (3.13) computed with uniform weights, with 10 MPs
considered. The values are scaled by 108. RO refers to the reference objects, and MO
to the modified objects. The presence of errors between the MPs of the reference
object and the corresponding modified objects is due to the effects of digitization,

and simple methods of generating the modified versions, and can be ignored. On the
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Figure 3.5: (a)-(d): Invariant MPs of order 2-5 superimposed on the respective
reference MPs.

other hand, one can appreciate the ability to discriminate in presence of such errors.
The relatively high magnitude of the errors associated with the objects 2 and 3 with
respect to the object 1 is due to the gray level of object 1 being normalized. The
apparent confusion due to the the difference in scale between the error values can be
appreciated by considering the binary objects (2 and 3) separately. It is remarked
that the errors considered over two patterns were sufficient for discrimination.

Table 3.5 lists the values of the CAR parameters (of order 3) of the third order
MPs of the reference and those of the corresponding translated, scaled, rotated and
amplitude-scaled versions. Since « is zero for central MPs over [0,27), so is the
invariant «/+/@ for all the cases. In general, CAR parameters were found to be
sensitive to the presence of noise. This can be seen from the parameters associated
with object 2. It was found that the optimum model order differs from one object
to another, and the reference model order will have to be pre-determined.

The MPs illustrated above are smooth, due to a large number of projections

being considered, reflecting redundancy. The number projections, and the number
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Figure 3.6: (a) Reference object, (b) modified object, (c) RT of the reference object,

and (d) RT of the modified object.
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Figure 3.7: (a)-(d):

reference MPs.
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Invariant MPs of order 2-5 superimposed on the respective
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MO. 1 MO. 2 MO. 3
RO 1 1.6711 2.2960e+17 | 3.2286e--20
RO 2 | 991.9828 3.0603 2.2909e+-05
RO 3 | 994.5697 611.8721 3.8666

Table 3.1: Errors (3.13), multiplied by 108.

of MPs may be chosen depending upon the complexity of the object and the par-
ticular application under consideration. For example, in some simple cases, a visual
examination of a few low-order MPs may be sufficient for discrimination. A small
number of CAR parameters of a few projections may be sufficient to discriminate
objects of another class. On the other hand, the method may not be beneficial over
the conventional methods for some classes.

A preliminary simulation has been carried out to study the effects of noise
on the MPs. Sequences of uniformly distributed RVs of variance .05 were added
to the projections of the ‘plane’ image. The resulting regular MPs are shown in
fig. 3.8(a)-(d), and corresponding invariant MPs are shown in fig. 3.8(e)-(h). The
effect on invariant MPs is more severe as the normalizing factors themselves get
affected by noise. However, it is interesting to observe that the effect on regular
MPs is relatively less severe and somewhat uniform over each pattern.

In the procedure discussed in this chapter, the presence of noise can be ac-
counted for, to some extent, by choosing proper error-weighting function in (3.13).
A further analysis of the effects of noise on the MPs would be useful for evolving
methods for combating the same. For example, it may be advantageous to construct

invariants based on the regular MPs.
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RO.1 | MO.1 RO.2| MO.2 | RO.3 | MO.3
a; | 2.1286 | 2.0955 | 0.5519 | 1.3474 | 1.3894 | 1.2752
a; | -1.2661 | -1.1933 | 0.2886 | 0.2377 | 0.0464 | 0.3679
az | 0.1370 | 0.0973 | 0.1549 | -0.5872 | -0.4378 | -0.6453

Table 3.2: CAR parameters of the normalized central-MPs of order 3.

160 15;0 200 0 so 160 150 200 0 si) 160 200 0 so u;o léo 200
(c) @ (&) (h)

Figure 3.8: (a)-(d): Regular MPs of order 2-5. Solid and the dotted patterns corre-
spond respectively, to the clean and noisy projection data. Figures (e)-(h) display
the corresponding invariant MPs.

43



3.6 Conclusion

The notion of MPs in the Radon space has been introduced. A method of rendering
the MPs invariant to geometric transformations has been presented. Invariance of
the MPs to translation was obtained by employing central moments, and that to
scaling by a simple normalization. Invariance to rotation was achieved algorithmi-
cally by circularly shifting the MPs suitably by an estimated rotation. Rotation
was estimated by circular correlation via the FFT. This approach is useful in the
presence of noise, when there are sufficient number of projections. A new formula
for rotation involving the second-order moments of three specific projections has
been derived. An extension of the invariant MPs to 3-D has been presented. Regis-
tration of an object from the information available in the MPs has been indicated.
An alternative approach to constructing invariants from the normalized MPs has
been proposed. The approach consists of circular-autoregressive modeling of each of
a set of normalized central MPs computed from the data. The resulting feature-set
is invariant to geometric transformations as well as changes in gray-scale. Further,
the new descriptor is generally much smaller in size in comparison with the set of
MPs. Simulation results have been presented to illustrate the proposed techniques.
In simple cases, a visual inspection of a few MPs can be sufficient for discrimination.
Effects of noise on the MPs was discussed.

The proposed method is applicable to CT as well as spatial data. Finally,
it is noted that the proposed moment-based invariants serve as a useful image-

understanding tool.
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Chapter 4

Selective Reconstruction from

Noisy Projections

This chapter is devoted to an application of the notion of “instantaneous matched
filter” (IMF) [160, 159], and involves selective reconstruction of objects from noisy
projections. The IMF consists of a combination of the ideas of detection of objects
of known shape and location, and an estimation of the associated parameters, based
on an inner-product processor. In this sense, a signal of interest is separated from a
linear combination of given shapes in white noise. The IMF approach is developed
from a discrete viewpoint. Optimal weights are derived for the two-signal case,
and some simplifications over the original method are arrived at. The development
results in certain new observations. Extension to the case involving colored noise is
indicated. A generalized version that does not require an explicit orthogonalization,
is presented. The generalized IMF is applied to separate the projections of the
object of interest, from which the object is reconstructed. The idea is applicable
when the object of interest is of poor contrast, while the densities of the objects
change and the projections are noisy, a scenario in which simple subtraction would
not be effective. An application, involving a tracking of variations in the density of

a selected object, is also presented. Alternatives to the IMF approach are indicated.
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4.1 Introduction

In a number of applications in CT, an object is of special interest relative to the rest
in the cross-section. Often, the object of interest is of poor contrast. The quality of
reconstruction of a low-contrast object gets affected by the streaks due to dominant
objects in the cross-section {38]. An enhanced visualization of the object is possible
by techniques similar to subtraction angiography, when the density functions and
their respective positions do not vary. For example, a visual enhancement of the
spinal cord is achieved by subtracting the approximate projections of the bone [176].
In NDT, the convex hull of a defect can be estimated from the projections obtained
by subtracting the projections of the object under inspection from those of the
reference object [209]. However, methods as simple as these may not be very effective
when the densities change, and/or in the presence of noise.

In this chapter, selective reconstruction of an object of interest is considered, as
an application of the IMF approach [160, 159]. The basic idea consists of separating '
the projections of the desired object from those of the composite cross-section, from
which the image is reconstructed 2. It is assumed that the composition (objects
and their locations) of the cross-section is pre-determined, and that some of the
densities change by factors that are not known. Such a situation may arise, for
example, in medical imaging while monitoring a patient administered with a contrast
material. It is crucial to ensure that the object does not move. The applicability of
the approach is hence very restrictive. In applications such as NDT, however, the
movement of the object is not an issue. In this context, the IMF is reviewed from
a discrete viewpoint. Optimal scaling functions are derived for the two-signal case,
and some simplifications are indicated. A generalized version is developed, and used

to extract the projections of the individual object of interest, from which the object

'In the context of the IMF, separation, selection, or extraction of a signal is in the sense of
estimating the associated parameter from an unknown linear combination of given shapes.

2The projections of a linear combination of 2-D functions is a linear combination of the projec-
tions of the individual functions.
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is reconstructed.
The IMF approach is described in the following section. Selective reconstruc-
tion of objects from noisy projection data is presented in Section 3. Section 4

concludes the chapter.

4.2 The discrete instantaneous matched filter and
its generalization

The discrete matched filter (MF) is reviewed and its instant-to-instant implementa-
tion, referred to as the discrete IMF, is described in the following. The development
is analogous to that in [160, 159] except that it is discrete (vectorial). Indeed,
orthogonalization on an instant-to-instant basis is feasible only in the discrete do-
main. While a sub-optimum approach was followed in [160, 159], optimum scaling
functions are derived and a normalization is shown to result in a simpler scheme.
Finally, a generalized approach that does not involve an explicit orthogonalization

is developed.

4.2.1 The discrete instantaneous matched filter
Consider a scaled signal @ in the presence of white noise:
x=aP+n=s+n (4.1)

where, ®=[4(1) .. #(N)], n=[r(1) ..n(N)], and x=[z(1)..z(N)]’, The solution
to the detection problem involves finding a vector h such that the output SNR of
the inner-product processor, E{<s,h>?}/E{< n,h >2} is maximized. The vector

is the solution of an eigen-equation, and is given by:

h=ad (4.2)
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Figure 4.1: Discrete instantaneous matched filter.

where « is any scalar. When the inner-product is realized through a linear filter, the
system is a matched filter (MF). However, in conformity with the current practice,
the processor will be referred to as a MF. The MF is used to detect the presence of
® in the presence of white noise.

Consider the situation when a is a realization of a random variable (RV) a
with E{a?} = a?, and uncorrelated with the noise sequence n(z). The output r(N)
can be used to estimate the value of @ in the minimum mean-square error sense.
Following [160], a post-MF scaling factor A is used for the purpose. However, it
is sufficient to minimize the error { = E{(Ar(N) — a)%}*. The scaling factor that
noise sequence, the detection process can be combined with an estimator based on

minimizes ¢ is A = Thus, given a? and 0,2, the variance of the white
the output of the MF to obtain an estimate § of the signal s. In the case of colored
noise, the input will have to be pre-processed by a whitening filter. If W is the
matrix representation of the whitening transform, the optimal filter is h = W®it. .
The operation by W can be absorbed into h, as WTW®.

The above idea can be applied on an ‘instantaneous’ basis to obtain a right
from the beginning [160]. At every instant 7, an MF with h; = ®; = [¢(1) ¢(2) . . #(7)],
x; = [z(1)..z(@)], n; = [n(1)..n()] is implemented, and 5(z) = a(7)¢(z) is
computed. The scaling function associated with the discrete IMF is given by
AlR) = -—“3—2 A block diagram of the discrete IMF is shown in Fig. 4.1.

a?||®:[[2+an
The presence of colored noise requires a suitable modification of the filter as

3Since ® is known, the problem is equivalent to that of parameter estimation. A formulation
as a waveform estimation problem results in the scaling factor being proportional to ®. Indeed,
both yield the same result.

“This is the corrected version of the erroneous expression in [171].
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mentioned above.

Consider the case of two signals in white noise:
XxX=aq;P1+aP2+n=s;+s,+n (4.3)

where a; and a; are samples of mutually uncorrelated RVs a; and a, respectively,
also uncorrelated with n(7). E{a;2} = a,2 and E{a;?} = a,2.

The IMF has been extended to the case of multiple signals by breaking it
into a set of single-signal IMF-branches (inner-product processors) [160]. Let &, ; =
[61(1) 61(2) . - $1(2)) and B2 :=[p2(1) #2(2) . . $2(?)]’. Following [160], the first pro-
cessor (branch) is chosen to be associated with @, ; itself, while the second consists
of a version of ®,; that is orthogonalized with respect ®,;, by the Gram-Schmidt
process. Mathematically, the signal can be represented on an ‘instantaneous’ basis
as follows:

x; = a'1 (1)W1, + a2 W2 + g (4.4)
where, ¥, ; = ®;;, and ¥,; L ¥,;. The parameter a’,(z) = a; + p21(2)a;, where
p21(%) represents the correlation between the vectors ®;; and ®,;. The set {U,;,7 €
[1, N — 1]} can be pre-computed and stored. In [160}, a sub-optimum approach was
taken to estimate s; from (4.3). However, such an approach is not effective, and
optimum scaling functions can be found in a manner similar to the single-signal case.
Cousider the ‘first branch’. Forming r,,1(2) = m1(2) — p21(¢)72(2), and minimizing the

error E{(A(¢)ro1 — a;1)?}, the scaling function A;(?) can be shown to be:
a12¢; (3)

(@12 + p§1a2?)c}(3) + p3102°3 () + ouer(3) + phron2ea(t) — 2;0%10;261(1')?2(2'))
4.5

A(f) =

where, ¢1(2) = [[V14]|%, c2(2) = ||¥2,||*>- Note that &;; and ®,; are required to be

linearly independent for all values of 2. This can be ensured by setting ¢;(1) = 1 and

$2(1) = 0. A block diagram depicting the scheme is given in Fig. 4.2, where A () =

A1(2)#1(2). The expression for A(2) is much simpler due to orthogonalization:
2

Ao(?) = =

- 4.6
a2 Uaal + o2 (4.6)
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Figure 4.2: IMF for two signals.

It is clear that s; can be estimated by using only the ‘second branch’. This scheme
also yielded a better estimate than that obtained by the first. One possible reason
is the subtraction by pz;r; which makes a; fluctuate when a; or po; is large. It is
interesting to note that ), is independent of the influence of a;, which is the result
of orthogonalization. Thus, a; can be estimated invariant to fluctuations in a;. The
scheme is depicted in Fig. 4.3, where A, (z) = Ay(2)¢2(z). Two filters can be employed
for separating the two signals, with the knowledge of a2 and a2.

In the case involving a single signal, the inner-product is cumulative. However,
in the two-signal case, it has to be computed every instant®.

Expressions (4.5) and (4.6) suggests the use of normalization for further sim-
plification. Specifically, if ¥;; and ¥, ; are replaced by W¥;,; and W,,:, where

Uini = Yeifll¥ill, c1(z) and c2(z) are unity for all the values of i. The scaling

functions simplify to:

012

M) = —= 4.7

) = T Tt @) (1)
and _
. (122

A = —_———— 4,

2(2) 22 + 0.2 A2 (4.8)

which is independent of 7; this eliminates the necessity of post-MF scaling. The
above expressions lead to a simplified implementation of the discrete IMF for two

signals.

SThe process of orthogonalization changes the reference vector every instant. This has not
been noted in [160]. Here, this is made clear by indicating the inner-products explicitly in the
block-diagrams.
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Figure 4.3: Simpler scheme.

Explicit orthogonalization at each instant becomes infeasible as the number of
signals/shapes involved increases. A modification involving cumulative computing
(via a recursive procedure) has been proposed in [159]. That would take one to
recursive least squares, and will not be considered here. The idea here is to work
within the framework of the IMF. In the following, a novel approach that does not
require an explicit orthogonalization is described. The approach is referred to as

generalized IMF (GIMF).

4.2.2 The generalized IMF

Consider the case of two signals in white noise as in (4.3). It is possible to find a
filter h; that maximizes the SNR:

< hy, ®, >*?
< hy, & >% + ||hy||*cn2
which can be used as an MF to suppress s, and the effect of noise, while emphasizing

(4.9)

SNR, =

s;. It can be shown that the filter is given by [126]:
h; = [0,®,T + 0,21]7' 0, (4.10)

Let r; be the output of the MF associated with ~;. The parameter @; may be
estimated by multiplying r; by a scaling factor A;, which can be found by minimizing

the error E{(A1r1 — a1)?}. It is shown in Appendix-B that ), is given by:
2
A= — a1’ <hy, & > - (4.11)
012< hl, @1 >2 + a22< hl, @2 >2 -+ ”hlll O'nz

Colored noise can be handled by pre-processing by a whitening transform, or by

replacing o2 by R, (noise covariance matrix) in (4.10) and ||h,|{*c,2 in (4.11) by

h;TR,h, respectively.
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The generalized IMF (GIMF) is an instant-to-instant implementation of the
above development. Employing the previously defined notations ®;;, ®,; and x;,
the scaling function associated with the filter hy =[h(1) ~£(2) . . A(7)]’, that minimizes
G = E{[ai — r1(2)A1(2))?}, is given by:

a;? < hy;, &, ; >

T2 2, .72 2 2, 2 (4.12)
a1?2< hy;,®1; >2 4 a22< hy;, P2 >+ ||hyif|"on

M) =

Fig. 4.4 shows the block diagram of the GIMF.

The above scheme can be extended to the case involving any (a finite) number
of signals (and hence the name generalized IMF). Let V be a real vector space of
dimension N. Let § = {®; &, .. Pn} be a basis for V. Consider the basis split into
two sets 8; and (5. Then, V can be written as the direct sum, V = S; @ S, where
S; = span[Bi], i = 1,2. The algorithm described above can be used to suppress a
signal belonging to one subspace and retrieve that belonging to the other, in presence
of noise. The argument is valid for any two proper subspaces of V associated with
a direct-sum decomposition. A case of particular interest is that of extracting a
shape from a noisy linear combination of multiple shapes. For this case, §; = {®;}

represents the object of interest, and 8, = {®;, 7 # [}. The filter h, to detect s;

from: ~
X = ZC}:QI: +n, c €R,VE (4.13)
k=1
is given by:
hy = [MFMFT + 0,211 ®, (4.14)

where, Mf is the matrix whose columns are the vectors {®;, ¢ # [}. This filter

<hy,®:>*+[|hf]2on
(4.12), with ®; and ®; replaced by those associated with the subspaces S; and S5,

maximizes the SNR: 5= <h,&>? =. The scaling function A; is determined by
k£l

assuming that the values of a;2 and @,2 are available.
The procedure for estimating s; consists of two steps - (i) of designing the filter
h;; and the scaling function A\(z), and (ii) of implementing the generalized MF on

an instant-to-instant basis as above.
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Figure 4.4: Generalized IMF.

The applications considered in this chapter, as well as most of the practical
applications, involve one or two fluctuating parameters. In general, the procedure
can be used to extract all of the shapes by using a filter for each of them, in parallel.
Each filter will be associated with the respective direct-sum decomposition of V.
The values of the {a;2} associated with the fluctuations are assumed. For mere
detection, these are not required, as detection can be achieved independent of the
values of the associated linear combiners.

It is interesting to note that the IMF approach is a form of correlation canceling

[144].

4.3 Selective reconstruction from noisy projec-
tions

Consider a situation in CT in which the cross-section consists of two objects ¢(z,y)

and ¥(z,y), such that:
f(za y) = a1¢($7 y) + (12’(/)(13, y) (4'15)

See a pictorial illustration in Fig. 4.5.

The exact values of a; and a; are not precisely known, and are subject to
fluctuations. However, the values of a? and a2 are assumed to be available. Consider

a noisy measurement of the projections of f(z,y):
Pe, (z) = al¢9k(i) + aﬂbek(i) + nok(i)’ S [17 N]v b € [01 7r) (4'16)
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Figure 4.5: A projection of 2 objects.

The white-noise sequences {ng, } of variance o2, are Gaussian, zero-mean and uncor-

related with a; and a,, and in 6 ®. One can apply the 1-D algorithm developed in
the previous section, to each of the projections, to estimate the projections of one of
the objects from (4.16). The object may then be reconstructed from the estimated
projections. Thus, an object may be selectively reconstructed from the noisy pro-
jections of a composite image, i.e., a noisy a linear combination of the projections
of the individual objects.
Normalized mean square (reconstruction) error (NMSE), as defined below,
may be used as a quantitative measure of comparison:
NMsE < Zulf:d) = fG )P (4.17)
Ziif2(2,9)

It is to be noted that such quantitative measures are not necessarily true indica-

tors of visual quality. In the simulation, results of which are presented below, the
value of additive white noise variance was generally based on a visual effect on the

projections, as well as the value of a;. No SNR has been used, as it varies over the

®Noise in CT data is signal-dependent or multiplicative. However, at high SNRs, the noise in
the projections is modeled as additive and Gaussian with zero-mean [228], and this model has been
used by various researchers [203]. Noise can also be correlated, in which case, the processing is to
be modified as indicated.
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Figure 4.6: (a) Object-1, (b) object-2, (¢) superposition, and (d) selective recon-
struction of object-1.

projections. The values of a;2 were selected based on the assumed values of mean
and variance.

Simulation was performed on different types of objects and their superposi-
tion. The first set consists of a superposition of two smooth and spatially overlapping
functions of size 127x127. Overlapped objects are chosen for illustration, although
physical overlapping does not happen with CT data. The objects (multiplied by
factors a; = 3 and a; = 5), and their superposition are shown in Fig. 4.6. 180 pro-
Jections were considered in this example. 1-D GIMF's associated with the projections
of the object-1 were designed. The GIMFs were applied on the respective projec-
tions of the superposition with additive noise (of variance of a; /2). A reconstruction
of the object obtained by CBP with cosine window and Lagrange interpolation, is
shown in Fig. 4.6 (d). The NMSE for this case has been found to be 0.0118.

Fig. 4.7(a) shows a simulated test phantom of size 127x127. The object of
interest is indicated by the label ‘1’. 90 equally spaced projections of the object of
interest were considered. The GIMF's associated with these projections with respect
to the other projections were designed. The value of a; (associated with object-1)
was then reduced from its mean value of 2, to 1.5, while that corresponding to the
rest of the objects was increased to 3, from a mean value of 2. The projections of the
modified phantom were computed and independent noise (of zero mean and variance

equal to 50 times the mean value of a,) was added to each of the projections. The
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Figure 4.7: (a) Original image, (b) modified image, (c) reconstruction of object-
1, (d) selective reconstruction from noisy projections, and (e) reconstruction by
subtraction.

respective GIMF was applied to each of the noisy projections of the modified image
to retrieve those of the object of interest. A reconstruction using CBP is shown in
Fig. 4.7(d), along with the modified phantom, and a reconstruction of the object
from known, noise-free projections for reference.

The result of reconstruction from the projections resulting from a simple sub-
traction of the reference projections of the rest of the objects from the measured
projections, is shown in Fig. 4.7(e). Notice that the very objective of subtraction has
been futile. Further, object-1 appears to be of higher density, contrary to the actual
case. This example, in which the densities of all the objects change is extreme, but
highly illustrative and serves to demonstrate the limitations of simple subtraction
methods when the densities of the object change relatively.

The utility of selective reconstruction can be appreciated by the example shown
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in Fig. 4.8, in which the contrast of the object of interest is very low 7. a, was reduced
to 1 from a nominal value of 5, whereas that associated with the rest of the objects
was increased to 20 from a nominal value of 15, although the assumed variances of
a; and a; were 2 and 1 respectively. Additive noise variance for this case was 100.
The NMSE for this case was found to be 0.0042.

There are several factors that influence the quality of the reconstructed image.
Noise level is an obvious one, which deteriorates the reconstruction. A plot of NMSE
with respect to additive noise variance is given in Fig. 4.9(a). Another factor is the
number of projections. A plot of NMSE in terms of the number of projections is
given in Fig. 4.9(b). In general, the number of projections required to selectively
reconstruct an object depends upon the nature of the object of interest, and not
that of the others composing the scene. However, the degradation in the projections
produce more severe reconstruction-errors when the number of projections is small.
A third factor that affects the reconstruction quality is the type of the algorithm
used. For example, the result obtained by CBP with 90 projections is seen to be
very good (unlike in the former example consisting of finely tapered functions, where
the errors in reconstruction are visible). However, the errors in the projections start
manifesting on the reconstructed image, as the number of projections is reduced,
even if the object of interest can be represented by a smaller number of projections.
The explanation is that while the CBP is excellent when the number of projections
is large, it is not so when the number of projections is small, and/or in presence of
significant noise. Methods such as ART, though computationally expensive, would
be superior to the CBP under such circumstances.

The approach described above would be practical when the projection data
are short in length. Note, however, that it is the filter-design step that is really time

consuming, and this need not always be carried out on-line. The scheme can be made

“When only one of the objects is of low contrast, it can be displayed by simple thresholding,
which, however, is difficult when more than one object of poor contrast are involved. Although
this example considers a single object of poor contrast, it is not restrictive.
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Figure 4.8: (a) Modified image, and (b) selective reconstruction from noisy projec-
tions

more efficient by using a fixed past (window-size or memory). The estimate will
then fluctuate with those of noise, resulting in greater errors. A plot of the NMSE
(relative to the image reconstructed from projections extracted by the filter using
the complete past) as a function of window-size, is shown in Fig. 4.9(c). Additive
white noise of variance 100 was considered. It is clear that beyond a certain size,
the improvement achieved in terms of NMSE is not significant. However, it should
be noted that short windows affect finer details in the reconstructed image, which
may not be reflected in the NMSE. Further, longer window lengths are required as

the noise strength increases.

4.3.1 Discussion

The situation considered so far involved density changes between complete CT scans.
If the densities of the objects do not change during scanning, a single projection is
sufficient to determine the object densities. Further, in the absence of noise, a few
rays (equal to the number of objects whose densities fluctuate) would be sufficient
to solve the problem. However, it would be useful to consider many projections and
take an average, for robustness.

A natural question that follows is the effect of changes in the density during

scanning. Mathematically, such variations would render the RT inconsistent. If the
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Figure 4.9: Quantitative measure of reconstruction as a function of: (a) noise vari-
ance (sigma), (b) number of projections, and (c) size of the window.

density of the objects fluctuate randomly by a small margin, this is not likely to
affect the reconstruction in a significant way. Interestingly, it has been shown ex-
perimentally that boundaries of objects in CT reconstructions are not very sensitive
to variations in density during scanning [38]. Thus, effects of small variations in
density during scanning on selective reconstruction appear to negligible, especially
on objects of uniform density.

The problem of separation of signals of known shape and location turns out
to be that of parameter estimation. In this chapter, the idea was to apply the IMF
approach. However, any of the available methods for the estimation of parameters
of known signals in presence of noise can be employed for the purpose. In particular,
the problem could be cast into the recursive least squares (RLS) scheme & [44]. It
is interesting to note that the updating the P-matrix in [159] turns out to be the
same as that associated with RLS parameter estimation [44]. RLS is attractive with
fast and elegant updation scheme. However, the estimate resulting from the IMF
appears to be less sensitive to the fluctuations of the parameter value, in the initial
stages.

The approach discussed above can be applied in different ways, as for example,

to track density variations in selected objects. An example is presented in Fig. 4.10.

8To handle noise, the RLS with a ‘dead-zone’ (a scheme for turning off the updation) is
employed.
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Figure 4.10: (a) Variation of density in object-1, (b) variation of density in object-2,
and (c) estimated variation

Object-1 of the previous example was subject to a variation (in a;) as shown in (a).
Simultaneously, the density of the rest was assumed to vary (uniformly, in terms of
a;) sinusoidally as in (b). The result of estimating the variation in object-1, from
noisy projections of the cross-section, is shown in (c). Estimation was based on the
whole block of data as the variation was between the projections only.

The IMF approach would be more appropriate to track variations continuously,
i.e., ray-by-ray, possibly in a sequential ray-by-ray scanning. The approach can also
be used to study the effects, on the reconstructed image, of variations of density in

an object during scanning.

4.4 Conclusion

In this chapter, the IMF has been developed from a discrete viewpoint. Some new
observations have been made, and a generalized approach that does not require an
explicit orthogonalization, has been presented. The generalized algorithm has been
applied on noisy projections of the composite image for selective reconstruction.
[llustrative simulation results have been presented. Futility of methods involving a
simple subtraction when the densities of the objects change, has been illustrated.
Issues such as the role of the number of projections and the effect of noise-level

were discussed. The importance of the choice of an appropriate reconstruction
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algorithm was mentioned. Effect of mild variations of density of the object of interest
during scanning on the shape of the object appears to be negligible. An application
involving a tracking of the density-variations in a selected object has been presented.

Alternatives to the IMF approach have been indicated.
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Chapter 5

Binary Image Compression

Compression of binary images is considered. The basic idea involved is the fact that
binary objects are often represented by few projections. Additional compression
is obtained by coding the individual 1-D projections. The application is twofold:
(i) in certain situations in CT in which the object may be assumed to be binary,
as an alternative to compressing a reconstructed image, and (ii) as a method of
coding binary images, wherein the RT is used to convert the problem of coding
binary images to that of coding a set of 1-D non-binary sequences. The approach
is extended to accommodate pictures with closed contours. Illustrative simulation
examples are presented. Finally, a new algorithm for reconstructing binary images

from their projections is proposed.

5.1 Introduction

Data compression is concerned with the minimization of the number of bits for effi-
cient storage and transmission. Basic approaches to data compression have reached
a high degree of maturity [78, 70], and may be broadly categorized into those which
exploit redundancy in the data, such as predictive coding, and those which employ

a transform with a good energy-compaction property. The choice of a particular
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approach depends upon various factors such as the nature of data including its di-
mensionality, and application-specific information. Image data can be categorized
into still gray-level and color pictures, sequential pictures as in broadcast TV and
remote sensing, and binary (two-tone) images. Further, image data is often available
in different forms/domains from which the picture will have to be recovered, as in
CT [70, 227]. Inspite of the extensive work that has been carried out, the ever in-
creasing demand for data compression motivates further efforts, such as identifying
and exploiting certain application-specific information in conjunction with the basic
algorithms. This chapter represents such an effort, involving the compression of bi-
nary images in the RS. When the data is available in the RS, the idea is to compress
the projections themselves, instead of processing the reconstructed image. On the
other hand, the RT can be used as a tool to compress binary images represented by
a small number of projections.

Compression of binary images has been a topic of immense interest. Most of
the techniques exploit the abundance of the white pixels and the regularity of the
black pixels in the image. Prominent among them are run-length coding (RLC),
white block skipping, prediction differential quantization (PDQ), relative address
coding and predictive coding [72]. These techniques, with the exception of PDQ, do
not exploit the inter-dimensional correlation in the 2-D data. A somewhat different
approach consists of rectangular-coding [141, 127]. In predictive coding of binary
images (eg., (89, 219]), redundancy in the image is reflected in long runs of zeros
in the error signal, which are subject to RLC. Algorithms that utilize higher-level
information and pattern recognition techniques can yield very high compression
[72]. For a detailed description of the approaches, see [200, 6, 59, 70, 72, 135]
and the references cited therein. Current techniques are largely based on the ideas
developed in the references cited above, and their variants and application-specific

improvements. Transform methods have not been applied to binary images, since
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a direct application is not feasible!. In general, the existing techniques for binary
image compression differ significantly from those used for gray-level images.

In a number of applications in CT, the CS can be assumed to be binary [53].
In some situations, objects can be usefully treated as being binary even when they
are perceptibly non-homogeneous [131]. One approach to compressing such data
is to reconstruct the image and apply 2-D algorithms. Often, a better alternative
would be to compress the data in the RS itself and reconstruct the image whenever
necessary. The information that binary images are represented by few projections
[53, 131, 199], can be exploited for efficient compression 2. In applications involving
only transmission, such a scheme is time-efficient. On the other hand, the RT can
be used as a tool to compress binary images [165, 166]. The RT reduces the problem
of coding a 2-D binary image to that of coding its projections, a few of which are
generally sufficient to represent an object. An additional advantage of such a scheme
is that the projections of a binary image are non-binary sequences, which can be
compressed using regular 1-D algorithms, including the transform techniques. The
procedure for retrieval consists of decoding the projections, followed by a reconstruc-
tion of the binary image. The approach can also be extended to compressing closed
contours/boundaries of objects, by converting them to the respective characteristic
functions.

This chapter addresses binary image compression in the RS, with suitable ap-
plications depending upon the domain in which the data is available. In the following
section, reconstruction of binary images from projections is discussed briefly, with
a specific algorithm. In Section 3, the compression scheme is presented, followed
by the application of predictive and transform methods. In Section 4, simulation

results are presented. In Section 5, a new algorithm for binary image reconstruction

1Efforts towards extending the ideas of wavelet decomposition to binary images have begun
very recently [207].

2[n fact, convex objects can be represented by just two projections [131]. Non-convex objects
generally require more projections, and for a given degree of faithfulness of reconstruction, a greater
number of projections would be required to represent the shapes of greater intricacy.
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is considered. Section 6 concludes the chapter.

5.2 Reconstruction of binary images from pro-
jections

Reconstruction of binary images from few projections is an interesting topic on its
own, and has received considerable attention [17, 53, 90, 199, 131, 123]. Unlike their
gray-level counterparts based on closed-form solutions (such as the CBP) binary
image reconstruction algorithms are generally iterative in nature, and resemble the
ART. Prominent among the existing techniques are the ART-like algorithms of Her-
man {53], Gilbert (simultaneous iteration reconstruction technique) [42], Soumekh
[199], and the approach of Murch and Bates [131]. The approach of [131] is quite
different from the usual, and also shows that two projections are sufficient to recon-
struct a convex object.

This chapter is concerned with binary image compression in the RS and ad-
dresses both continuous CS of CT and digital binary images. A unified treatment
to include both the situations is possible with the following assumptions. In CT,
the CS is continuous, but practical reconstruction is possible only on a finite set
of (grid) points. Without loss of generality, the reconstruction support may be as-
sumed to be a square grid Sy of size NxN. Assuming square pixels of unit area, the
continuous support S is a square with a side of length N. This corresponds to a
flat-top sampled (pixel) model of the CS. Consequently, the projections of the CS
are modeled by (2.13). On the other hand, the projections of a digital binary image
f(m,n) of size NxN are estimated by (2.13), with the help of the pixel assumption.
Note that the projections of a binary picture are non-binary sequences. Let Y; de-
note the discrete support in the RS. Typically, it corresponds to a small number of
projections with uniformly spaced line-integrals. Thus, binary image reconstruction

from its projections consists of estimating f(z,y) at the NxN points, or its flat-top
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sampled version f(m,n). In the following, the method of Soumekh [199] is reviewed.
Consider the projections of f(m,n), —M < m,n < M, along the horizontal,

the vertical, and the two diagonal lines through the lattice points:

po(l) = > f(l,m), “M<I<M

pz() = %Zf(m,l—m), —2M <1 <2M

pz(l) = Zf?m,l), -M<I<M

pa=(l) = \r/n§Zf(m,l+m), -2M <1 <2M (5.1)

where, the summation is performed over S; (N = 2M + 1). The above is a special
case of (2.13). The problem of reconstructing f(m,n) from the set of four projec-
tions, is formulated as that of solving a set of linear equations. The algorithm is
based on the principles of least-squares. Specifically, the points along a ray in the
picture space are estimated from their ‘noisy versions™ in the least-square sense,
consistent with the given line integral. The resulting algorithm begins by assuming
an initial estimate for f(m,n). In each iteration, f(m,n) is estimated based on the
projections at one of the four angles, § = ;, which forms an initial estimate for that

based on the projection at a different angle, 6;;,, as follows:

(p9i+1 (l) — ﬁ9i+l (l))

NG 41 (l) ’

where, py,,, ({) is the projection of fgi(m,n) at 0 = 0;;,.1. ng(l) is the number of pixels

m,n € Sy (5.2)

f0;+1 (m, n) = fa. (m, n) +

along the line defined by 6 and [, given by*:

N, 6 z
2 (5.3)

'no(l) =

The final step in each iteration consists of applying the constraint 0 < f < 1. The

constrained values of f(m,n) form the basis for the subsequent iteration. The last

3Here, as well as in Section 5, ‘noisy versions’ refers to the previous estimate (based on a
different angle), and not to statistical noise.

“4For a circular support (with square pixels) circumscribing the NxN square, it is approximately
2V2N? —I2 along the horizontal and the vertical, and 2v/N2 — [2 along the diagonals.
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step In the reconstruction algorithm involves setting the values of f(m,n) to 1 if

f(m,n) > 0.5, or to zero otherwise.

Remark: Overall convergence of the above algorithm has only been observed by

simulation [199)].

5.3 Binary image compression

The first step in binary image compression consists of determining the type of re-
construction algorithm and the associated number of projections, pertaining to a
class of images under consideration. Then, the projections are acquired (in the case
of CT) or computed from a digital binary image. The 1-D projections, which are
non-binary sequences, are coded for efficient transmission or storage, using a suitable
algorithm. Any of the standard methods such as linear predictive coding (LPC) also
known as ADPCM (adaptive differential pulse code modulation (DPCM)), trans-
form methods (using the discrete cosine transform (DCT) or the wavelet transform),
or by vector quantization techniques. At the receiver, the projections are ciecoded
and the associated image is reconstructed using an appropriate algorithm.

The scheme for binary image compression in the RS is summarized below:

1. Acquire (or compute) an appropriate number of the projections of the binary

image.

2. Code each of the projections using a 1-D coding scheme. The coded version is

either transmitted or stored for use at a later stage.

3. At the receiver, the projections are retrieved from the coded version and the

image is reconstructed using an appropriate algorithm.
The idea of image compression in the RS is illustrated in fig. 5.1.
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Figure 5.1: Image compression in the Radon space.

With the assumptions of Section 2, the definition of compression ratio (CR)
associated with the above scheme is the same for both CT and digital binary images.
The CR, defined as the ratio of the number of bits in the original image to that
representing the coded image, is given by:

N2
Np—1

> B

8=0

CR = (5.4)

where, N, is the number of projections, and By is the number of bits required to
represent the coded projection at angle 6. The value of By depends upon the basic
compression algorithm used on the projections. It is clear that the value of CR
depends upon the number of projections required for a satisfactory reconstruction
of the image®.

An advantage with the RT approach is that the information about the non-zero
intervals of each of the projections can be utilized to achieve higher compression.
The basic idea is to detect and code the end-points of the interval over which the

projections are non-zero, and process only the non-zero portion. The saving achieved

5The representation of an NxN binary image by 4 projections as in (5.1) results in compression
by a factor of E%, where B is the bit-rate in the projection domain. If B = 8, the gain is %, which
assumes significance for N > 48. This can give the impression that CR increases proportionately
with the size of the image. However, the number of projections required to represent a picture
increases with the size and intricacy. A large picture can be partitioned into suitable sub-blocks
before coding.
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by discarding the zero-segments generally outweighs the additional number of bits

required to carry the end-point information.

Finally, it is remarked that a large image will have to be partitioned into blocks

which can be individually coded.

5.3.1 Application to closed contours

Many situations in image processing involve closed contours and boundaries of closed
objects. It is interesting to note that the foregoing approach can applied to compress
closed contours and boundaries of objects by pre-processing. The pre-processing step
consists of the closed contour/boundary C to a characteristic function, ¢(m,n) by
the following mapping:

e(m,n) = 1, (m,n) inside C (5.5)

0, otherwise

A picture with multiple object-boundaries, {Ci, C2, . . C,} can also be coded in
a similar way, by converting each of them to the respective characteristic function.
The contours are recovered by extracting the edges of the reconstructed image using

suitable edge-operators. Alternatively, the approach of Murch and Bates [131] can

be used to reconstruct the boundaries directly.

5.3.2 Predictive coding

The projections of a binary image can be compressed by standard LPC techniques.
Since the projections are non-negative, the mean of each of the projections will have

to be subtracted before processing:
de(l) = pe(l) — us (5.6)

This is required for reasons of stability [72]. Each of the data sequences dg(l) is

modeled as an autoregressive (AR) model of order Mj.
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My
where, do(l) = =D _ae(k)ds(l — k) (5.8)
k=1

is an estimate of dg({); {as(k), k= 1,2,..my} are the model (LP) parameters, and
es(!) = dg(l)—ds(l) is the error (difference) signal. The AR parameters are computed
from the data sequence dg(!) using the constrained minimization procedure due to
Burg. This guarantees the stability of the inverse prediction-error filter [112]. The
computed parameters are used to estimate dp(l) and hence the error signal, eg(l).
The sequences {eg({)} are quantized and coded for transmission or storage, along
with the parameters a4(k) and the mean pg. Due to an inherent low variance, each
of the segments {es({)} requires few bits to quantize, which is the principle behind
predictive data compression [112, 78]. Hence, the LPC scheme is popularly referred
to as DPCM. The quantizer is included within the DPCM loop, to prevent the error
from building up [78].

At the receiver, the data sequences dy(l) are retrieved by driving the inverse
prediction-error filter by {&({)}. The retrieved signal dy(!) differs from the original
by the quantization error [78]. The projection is obtained by adding the mean
to each of them. The binary image is then reconstructed using an appropriate
reconstruction algorithm.

Let N, be the number of projections required to represent the binary image
under consideration. Let B,, and Bj be the bits per sample assigned to the predictor

coefficients and the error segment respectively, associated with pg({). Then, the CR

given by:
N2
CRrLpc = - (5'9)
Z MgBae + NpBg
=0

The contribution of the quantizer step-size information and the mean are neglected.

Further simplifications possible with specific information.
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5.3.3 Transform coding

Standard transforms are not directly applicable to binary images®. However, it is
possible to use efficient transforms to compress the projections of a binary image.
This is possible because of the projections being non-binary sequences. General ad-
vantages of transform techniques include higher efficiency and robustness to trans-
mission degradations. The key property of the transforms used for compression is
that of energy-compaction. Most of the signal energy will be concentrated close to
the origin and compression is achieved by an efficient bit-allocation?.

The optimum transform coder is defined as one that minimizes the mean-
square distortion of the reproduced data for a given number of total bits. This
turns out to be the Karhunen-Loeve transform (KLT) [70]. However, the KLT is
computationally expensive, and it is replaced in practice by other fast unitary trans-
forms, the most popular among them being the DCT [2, 3, 173]. The performance
of the DCT is superior to other fast transforms and is very close to that of the KLT
[3, 72]. The DCT pair associated with a sequence {s(n), 0 < n < N — 1} is given
by [72]:

N-1
C(k) = w(k)Y s(n)cos %v-(zn + 1)k, 0<k<N-1 (5.10)
n=0
N-1 -
s(n) = > _w(k)C(k)cos —(2n + 1)k, 0<n<N-1 (511)
k=0 2N
. k=0
where, w(k) = VN (5.12)
2 1<kE<N-1

6For example, the inverse DCT of a truncated set of DCT coefficients of a binary sequence will
not be binary. However, very recently, a binary wavelet decomposition has been proposed [207].

"The variances of the transform coefficients are generally unequal, and therefore each coefficient
requires a different number of quantizing bits. For most transforms and non-negative signals, the dc
coeflicient is non-negative, and the remaining are zero-mean [72]. The bit-allocation criterion is that
of minimum (mean-square) reconstruction distortion. Obviously, it depends upon the statistics of
the signal under consideration; the theory that deals with such issues is the rate-distortion theory
[78]. Similar to the problem of finding the optimal predictor order in LP, bit-allocation is often a
matter of art, guided by experience.
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The N-point forward and inverse DCTs can be computed via a 2N-point FFT.
It is well known that the DCT possesses an excellent energy-compaction property.
Compression is achieved by an efficient bit-allocation for the DCT coefficients in a
manner that does not seriously degrade the signal under consideration.

The algorithm for binary image compression consists of computing the DCT of
each of the projections followed by an appropriate bit-allocation for the DCT coeffi-
cients. At the receiver, the decoded coefficients are used to retrieve the projections,

which are used to reconstruct the image. The CR afforded by the scheme is:

Nz
CRDCT = W—l_—_ (5.13)

> Bper,

8=0
where, Bpcr, is the number of bits representing the DCT coefficient associated
with the projection at angle . Good compression is achieved by sophisticated bit

allotments, based on a knowledge of the class of images under consideration.

Remarks:

1. In CT, it is often advantageous to code the projections than the reconstructed
image. In applications involving on-line transmission, a reconstruction fol-
lowed by compression is time consuming. An additional advantage is that
coding of the reconstruction-errors is avoided, and errors in the decoded pro-
Jjections tend to get distributed over the entire reconstructed image, with a
hopefully alleviated visual effect. It should be noted that the concern is the

quality of the reconstructed image and not that of the decoded projections.

[t should be pointed out that only lossless compression schemes are in vogue
in medicine, due to legal issues [227] (although lossy compression methods
have been proposed - see the references cited in [227]). However, the approach
presented should be useful as long as the coding errors do not manifest signif-

icantly in the reconstructed image.
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2. Coding and decoding of the projections can be performed in parallel.

3. The RT approach to coding 2-D binary images can also accommodate gray-

level images, with suitable changes in the reconstruction algorithms.

4. Major disadvantages associated with the use of the RT for 2-D binary image
compression are: (i) the errors due to projection and reconstruction from pro-
jections, and (ii) unsuitability to continuous on-line reconstruction. However,

the approach is very useful in applications involving transmission only.

5.4 Simulation

Simulation has been performed with computer generated binary phantoms and a
text of size 129 %129, shown in fig. 5.2 (a) and (c). Four projections as defined in
(5.1) were considered. Reconstructions, after 500 iterations, of the two pictures from
four projections, are shown in figs. 5.2 (b) and (d).

The projections were LP-coded with a simple uniform quantizer. The quantizer
step-size was computed according to A = 85 /28, where B is the number of bits per
sample, and o2 is the variance of the error-segment associated with a particular
projection. The values of My and By for each of the projections were chosen so
that the CR was 9 in the first case. The second picture being more complicated
with abrupt edges in the projection, required a higher bit rate, and the resulting
CR was 6.5. The results are shown in figs. 5.3 (a) and (b). In both the examples,
the information regarding the end points was utilized only to clean-up the zero-
segments. Approaches to improving the CR include the use of adaptive quantizers
[78] and the use of a 1-D version of an edge-preserving differential coding scheme
proposed by [184]. The results with the DCT are displayed in (c) and (d) of fig. 5.3.
The DCT of each of the projections was computed using MATLAB. Only non-zero
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Figure 5.2: (a) A binary phantom, (b) reconstruction of (a) from 4 projections, (c)
a binary picture, and (d) reconstruction of (c) from 4 projections.

segments of the projections were processed, and the information regarding the end-
points of the interval over which the projections are non-zero, was accounted for in
the computation of the CR. The DCT coefficients were partitioned into successively
larger blocks, and quantized adaptively by allocating bit-rates that are lower for
the blocks away from the origin. A uniform quantizer was used for the purpose.
The step-size for each of the blocks was computed as a function of the estimated
standard deviation o over that block. Alternatively, one can consider an average over
the ensemble of blocks [18]. The resulting CR was 14.5. In general, it is reasonable to
expect the performance of the DCT to be better than that of LPC, as the projections,
though one-dimensional, have properties similar to those of images. Note that the
picture with text is quite complicated to be represented by 4 projections, and the
result at CR=14.5 is very interesting and encouraging.

As discussed in the previous section, the proposed approach can be applied to
compress pictures with closed contours, by converting them to respective character-
istic functions. An example is shown in fig. 5.4.

Note that no attempt has been made to assess the quality of the coded (or
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Figure 5.3: Images reconstructed from coded projections: (a) LP coded; CR=9 (b)
LP coded; CR=6.5 (c) DCT coded; CR=14.5 (d) DCT coded; CR=14.5.

reconstructed) image by means of quantitative measures such as the mean square
error or SNR (which can be defined in various ways) since such measures are not
necessarily true indicators of visual quality. An assessment of the quality is left to

the viewer.

5.5 A new algorithm for the reconstruction of
binary images

The algorithm for the reconstruction of binary images from 4 projections, discussed
in Section 2, gives good reconstructions. However, the algorithm is applicable to a
specific case of four projections associated with the lattice points. As a consequence,
the two pairs of projections consist of rays spaced at different intervals (unity for
vertical and horizontal, and /2 for the diagonals). CT scanning generally involves
constant ray-spacing in all directions. Finally, the above algorithm does not address

situations involving rays of finite width (strips).
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Figure 5.4: (a) Contours; (b) LP coded; CR=9 (c) DCT coded; CR=14.5.

In this section, a generalization of the algorithm of [199] to handle the sit-
uations mentioned above, is attempted. The generalization follows naturally from
the generality of the operations of projection and backprojection based on the pixel
assumption. Let €5,({) = ps, (!) — ps,(!) be the estimation error-sequences associated

with the projections. (5.2) can be written as

f9i+1 (ma n) = j:ei (msn) + €0is1 (m, n) (514)
. 69.‘+1(l) _ |
where, € (M, m) = mA(l) = B{es,, (1)} (5.15)

The index [ in (5.14) and (5.15) corresponds to the ray at angle 6 = 6;4,, passing
through the pixel centered at (m,n). L, () is the length of the ray, and A(!),
its intersection with the pixel centered at (m,n). It is crucial to recognize that
€s;,,(m, n) is equivalent to (discrete, or weighted) backprojection of the error e, (1).
When projections over a general geometry are considered, the weighting of the error

will have to be suitably modified. The modification is based on the following result:

Theorem: Let f be an unknown I-element vector, whose inner product py with a

weighting vector w is known. Let g be a noisy observation of f. The elements of f
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Figure 5.5: Algorithm for the reconstruction of binary images.

that minimize ||g — f 2 subject to po =< f,w > are given by:
P g Y

- Po— < g,w >

R e v L 3 (5.16)

The above formula is the very heart of the family of ART [46, 56, 45, 183]2,
and the origin of the methodology of the solution is attributed to Kacmarz [81] [183]
(a very lucid explanation with a passing mention of the analogy to backprojection is
available in [183]). A proof is offered in Appendix-C, where it is also shown that the
theorem of [199] is a special case of the above theorem. Relevance to backprojection
is obtained by associating f; and g; to the pixel values, {w;} to the projection-
weights, and pg to the available value of the line integral, respectively, along the ray
under consideration. The modified estimation algorithm is obtained by replacing
A by the weight associated with the pixel, and Ly, by the squared-norm of the
vector of weights, along the ray under consideration, in (5.15). Alternatively, the
error sequence to be backprojected can be normalized.

Thus, the procedure for reconstruction consists of projecting the estimate at

an angle at which a projection is available, backprojecting the error and superposing

8ART algorithms generally involve all of the N2 pixels, which are concatenated into a vector, so
that f, g and w are N2-element vectors. The approach developed here is based on an optimization
over every ray (I denotes the number of pixels along a ray). From an implementation point of view,
some of the methods involve an updation of all of the pixel-values based on every line integral.
Methods that incorporate weighted assignments (updation/backprojection) along the particular
ray under consideration, boil down to the approach presented, when the weights used are identical.
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it on the previous estimate to form the next estimate, and repeating the above to
utilize all the available projections. This is the basis of the generalization, depicted
in the block-diagram in fig. 5.5. Note that the block B represents backprojection of
the error in the projection under consideration, and summing it to the (previous)
image estimate. The final step in each iteration consists of applying the constraint
0 < f < 1 (denoted by C) which form the basis of the subsequent iteration. Py,
is the operation of projection at angle §;. FE is an error-measure in terms of the
projections.

Preliminary simulation results of an implementation of the algorithm are shown
in fig. 5.6. The test image is shown in (a). Four projections of the image were com-
puted using (2.13). The result of reconstruction by the proposed algorithm after 50
iterations is shown in (b). Some of the errors in the reconstruction can be accounted
for by refining the projection and backprojection algorithms used, or by using the
routines from SNARK. The performance of the algorithm is yet to be studied in
detail.

Remarks:

1. The approach developed here has the general form of ART, and may be re-
ferred to as binary ART (BART, [53]). Members of the family of ART differ
from each other by the type of, and the sta.ges.in which, the constraints and
tolerances are imposed, and the approximations involved. In particular, any
ART can be converted to a BART by incorporating suitable constraints [53].
The algorithm presented above differs from the BART of [53] in terms of con-

straints, tolerances, updation, and approximations.

2. Further work in the present framework includes incorporating some of the
tolerance procedures of [53], studying the effects of the presence of noise in
the projection data, and evolving a stopping procedure. It is also relevant to

study the performance with true projection data, in view of the remarks of
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Figure 5.6: (a) A binary phantom, (b) reconstruction of the phantom from 4 pro-
jections using the proposed algorithm.

Gilbert [41] on the limitations of ART when the model for the line integral
deviates significantly from the true situation. In this context, it would be
useful to study algorithms based on a minimization of cost functions that take
into account the effect of noise, similar to those considered by Kashyap and

Mittal [86].

5.6 Conclusion

Compression of binary images in the RS has been addressed. Representation of
binary images by few projections is the basis for the approach. Additional com-
pression has been achieved by coding the non-binary projections by predictive and
transform methods. A further advantage, arising out of the necessity to process
only the non-zero segments of the projections, has been mentioned. Illustrative sim-
ulation examples using LPC and the DCT techniques employing uniform quantizer
have been presented. Improved CRs are possible by utilizing adaptive quantizers.
In the case of the DCT, efficient bit allotments based on the characteristics of the
image under consideration will give better results. The approach can be used to
compress binary as well as gray-level pictures. While the scheme is very useful for
on-line transmission, its inability to reconstruct on-line is a limitation.

A new algorithm has been proposed to overcome the limitations of [199] with
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respect to its applicability to a general CT scenario. The algorithm is the result of
the observation of the involvement of backprojection in the previous algorithm, and
a least squares theorem. The algorithm belongs to the general class of ART, with

differences in the type of, and the stages in which, the constraints and tolerances

are imposed.
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Chapter 6

Two-dimensional Spectral

Factorization

In this chapter, 2-D spectral factorization in the RS is considered. The RT reduces
the 2-D factorization problem to a set of 1-D problems, as a consequence of the
central slice theorem involving a 2-D ACF. In this context, the RT of 2-D autocor-
relation function, and some of its properties are presented. Spectral factorization
in the RS is discussed. An extension to the discrete case through an adequate sam-
pling of the RT, and correlation-match are discussed. Apart from the theoretical
development and interpretations, further applications for modeling and processing

tomographic data are indicated.

6.1 Introduction

Spectral factorization (SF) refers to the determination of a stable, causal and linear
shift-invariant (LSI) system of finite order such that the magnitude square of its
frequency response matches a given spectral density function (SDF). The stochastic
version of the problem corresponds to finding a white-noise driven system that real-

izes the given SDF. SF techniques are found useful in the design and implementation
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of recursive filters, filter stabilization, stochastic realization, spectral-matching and
signal classification [187, 82, 32, 33, 71, 172, 100, 72, 144].

In the 1-D case, it is always possible to find stable and causal spectral factors
associated with a given rational SDF. This is due to the fundamental theorem of
algebra which states that a polynomial of finite degree can always be factored into
a product linear factors. In practice, spectra are irrational, and the two major
approaches to finding rational approximations that match the SDF, are the Wiener-
Doob and linear prediction methods [72].

In 2-D, however, SF is generally not possible due to the lack of a fundamental
theorem of algebra. This drawback is regarded as a fundamental curse [60]. Re-
searchers have therefore resorted to finding a difference equation representation for
the 2-D LSI system that approximately realizes a given SDF. Ekstrom and Woods
[32] developed an extension of the Wiener-Doob technique to 2-D [32], based on the
fact that the cepstrum and the inverse cepstrum share the same region of support!.
The approximations involved in computing the cepstrum affect the stability of the
resulting system. The method of linear prediction for SF has also been extended to
2-D [117, 71, 172]. Marzetta [117] studied an extension of 1-D LP theory to 2-D, and
devised a 2-D analog of Levinson algorithm that yields recursive factors of infinite
order on solving an infinite set of equations. Jain [71], and Ranganath and Jain [172]
studied causal and semicausal modeling resulting in an algorithm similar to that of
Levinson, and developed a procedure to obtain rational approximation [172]. When
a finite set of lags of the ACF are given, the method guarantees neither stability nor
a correlation match. However, it is a practical pfocedure in which model stability
and improved autocorrelation match follow after some finite model order. Lawton
[95] observed the limitations of the quarter-plane (QP) models, and showed [94]
that any continuous 2-D spectrum can be uniformly approximated by the squared

modulus of a recursively stable finite trigonometric polynomial on a non-symmetric

'The basic approach had been indicated by Whittle [226] in 1954 [172].
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half-plane (NSHP). Efforts towards obtaining 2-D spectral factors through 1-D tech-
niques include [99, 100, 132]. Le Roux [99] and Le Roux and Dubus [100] consider
a factorization based on the one-projection theorem [122], in the context of 2-D
filter stabilization. A 2-D factorization is obtained by carrying out a single 1-D
factorization on a sequence obtained by concatenating the rows of the zero-padded
2-D autocorrelation sequence?. However, the associated assumptions are restrictive.
Further, the stability of the 1-D spectral factors cannot guarantee that of the 2-D
filter obtained by re-ordering. Murray [132] proposed an NSHP SF by considering
the 2-D PSD as a parameterized family of 1-D PSDs, resulting in factors that are
of infinite order along one direction.

Several techniques, most of which are variants of the approaches outlined
above, have emerged over the recent years, the details of which are not consid-
ered here. In general, methods of 2-D SF involve obtaining causal finite-support
filters that approximately realize a given SDF. The issues involved are the accuracy
of approximation, the size and the shape of the filter support, and stability. The
cause of the difficulties lie in the lack of polynomial factorization theorem and the
notion of causality, in 2-D.

In this chapter, 2-D SF in the Radon space is discussed. The RT of a 2-D
ACF, and some of its properties are reviewed. The RT reduces the 2-D problem
to a set of 1-D problems, which are easy to handle 3. Stability is not an issue,
and correlation match is guaranteed, though in the RS. In theory (when all the
projections of the 2-D ACF are available), exact 2-D SF is possible. In practice, the
ACF lags in the RS are required to represent an adequately sampled version of the

RT of the 2-D ACF. It should be pointed out that the applications contemplated

2Such a sequence is 2 ‘Radon projection’ in the sense that its values can be recovered from a
slice of the associated 2-D (continuous) FT, at an angle specified by the length of the zero-padding
[122]. This result is for the class of bandlimited signals of finite order. The frequency response of
the resulting 2-D filter suffer from additional distortions [120, 121].

SAlthough the RT of a 2-D ACF arises in intermediate steps in the derivation of the relations
involving power spectra {76, 206], a formal framework of 2-D spectral factorization based on the
RT of a 2-D ACF is being presented for the first time.
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here are towards processing the data within the RS. For example, SF in the Radon
space does not represent a substitute to the current methods of designing 2-D spatial
filter masks. Possible applications of factorization in the RS are indicated with an
example involving the LPCs. The theory suggests a new method of 2-D spectrum
estimation, which forms the topic of the next chapter.

The RT of a 2-D ACF is considered in the following section. In Section 3, it is
shown that the 2-D SF problem can be cast as a set of 1-D problems. Applications

of the theory are discussed in Section 4, and Section 5 concludes the chapter.

6.2 The Radon transform of 2-D autocorrela-
tion function
Consider a 2-D ACF r(71,72). Let ry(7) represent its projection:
ro(T) = / / (71, 72)8(T — 11 cos 0 — 73 sin 8)dry d (6.1)

The 2-D ACF on the plane is uniquely determined by the totality of its projections
on such a set of 1-D subspaces that cover the 2-D space. From the CST, the FT of a
projection of the 2-D ACF at an angle 6, Ry(w), is a slice of the 2-D FT of r(m, 72).
But the FT of the ACF r(71,72) is the 2-D SDF S(w;,w.). Hence, the FT of the
projection r¢(7T), of the ACF r(1,72), is a slice of the 2-D SDF S(wy,w,) at angle
0. ie.,

Re(w) = S(w cos §,wsin ) 2 Sp(w) (6.2)

This important result is pictorially depicted in fig. 6.1. Since ro(7) = F~'{Ss(w)},
one may conclude that every projection of a 2-D ACF is also an ACF (in 1-D). Some

of the important properties of r¢(7) are reviewed below.

1. Every projection of a 2-D ACF is a symmetric, positive (semi-)definite (psd)

function. This follows from the CST, as a consequence of the (semi-)positiveness of
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Figure 6.1: CST applied to 2-D autocorrelation function.

the 2-D SDF. If r(z,y) is real, so is rp(7). Further, [re(7)] < r4(0), 7> 0.

2. If r(z,y) has no periodic components, and :Li_r{loo |r(z,y)| =0, then

rliglo [re(T)] = 1-1-15{.10 | /r(’r cos@ —usinf,7sinf + ucosf)du| =0
(6.3)
3. A circularly symmetric ACF of the form:
r(m,m2) = f(|7]) (6.4)

where, || = /712 + 12?, and f(7) is an ACF, is fully determined by a single projec-
tion. The 2-D function can be obtained by Able-inversion [23].

An n-D symmetric correlation function (normalized ACF) has a lower bound
of —%. This result is due to Bertil Matern [220]. Consequently, every projection

pe(7) of a 2-D correlation function p(m, ;) is lower-bounded by —1.

Thus, the RT of 2-D ACF constitutes a set of 1-D ACFs. This is the basis of
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2-D SF discussed in the following section.

6.3 2-D spectral factorization in the Radon space

Spectral factorization, described in frequency-domain, involves finding a function
H(w;,ws) such that

S(wr,w2) = o?|H{wy,ws)|? (6.5)
where o2 is a constant. In the space-domain, the problem may be described in terms
of a real, symmetric function r(m,72), whose FT is positive. In other words, the

problem is to determine a function A(z,y) such that:
7‘(7‘1, 1"2) = h(Tl, 7’2) * *h(—‘rl, —T2) (6.6)

where, ** denotes 2-D convolution. Since a realization requires H(w;,w;) to be
factored (approximated by a minimum phase rational function), a mere existence
of such a function does not help, due to the lack of a factorization theorem in 2-D
4. The 2-D problem, however, maybe reduced to a set of 1-D problems, in the RS,
as a consequence of the CST involving 2-D ACFs. Specifically, it can be described
in terms of the 1-D slices of the 2-D SDF, {Ss(w),0 < 6 < w}. Alternatively,
the problem may be described in terms of the projections (RT) of the 2-D ACF,
{rs(7),0 < 8 < 7}. To see this, consider the RT of r(71,73) in (6.6). The RT of a
convolution of 2-D functions is the (I-D) convolution of the individual RTs (i.e., of

the respective projections):
’I'g(‘l') = hg(T) * hg(—‘l‘), 0<b<m (67)

where, hg(7), is the projection of h(i, 72). The projections of A(—7, —73) are given
by {he(—7)}. The problem now consists of determining a set of 1-D functions
{hs(%),0 < 6 < 7} subject to (6.7).

“Current approaches obviate the necessity for a factorization of the SDF by using difference
equation representation that approximate a given SDF. In this thesis, the emphasis is on the RT
and its role in allowing true factorizations of the slices of the 2-D SDF.
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In view of the foregoing observation, the problem of 2-D SF can be restated

as follows:

¢ Given a 2-D SDF S(wi,ws) or the corresponding ACF r(m;,7), find a set of
1-D functions Hy(w),0 < 8 < 7 such that:

So(w) = o] Ho(w)}? (6.8)
where, Hyp(w) is the filter associated with the slice Sp(w) = F{ry(r)}-

Since Hp(w) and Sg(w) are the central slices of H(w;,w;) and S(w;,w;) respectively,
Hy(0) = H(0,0), and S3(0) = S(0,0). Hence, the gain o? associated with each of
the slices is equal to that of the equivalent 2-D filter, i.e., o2.

Thus, the SF problem on the 2-D Cartesian space has been reduced to a
set of 1-D problems in the Radon space. The RT splits the 2-D problem into a
set of decoupled 1-D problems, which can be handled easily by 1-D techniques,
ensuring minimum-phase spectral factors. Hence, the necessity of factorizing a 2-D
polynomial does not arise. The procedure results in a set of 1-D filters, Hy(w),
0 < 8 < m. The specific relation between the impulse response functions of the
resulting set of 1-D filters, and the point spread function of the equivalent 2-D filter
is given by the IRT of {h4(¢)}. This follows by comparing (6.7) with (6.6), assuming

the uniqueness of the projection domain representation. i.e.,
h(z,y) = R™{he(t),0 < 0 < 7} (6.9)

The stochastic version of SF in the RS is described in terms of the slices Sg(w) of
the 2-D SDF Sy(w;,w;) of a stationary random field (SRF), f(z,y), or equivalently,
in terms of the projections of the 2-D ACF, r;(r,2). Each of the projections of
the ACF can be represented by a linear system driven by a process of known SDF.
For example, the SDF of a (non-causal) Markovian process described by [220],

2 2
(502 + 307 — A (,9) = (2, (6.10)
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is given by:

So
(w12 4 w22 + a2)2
where, Sp is the spectral height of the white noise field €(z,y). Note that this

(6.11)

St(wr,we) =

function cannot be factorized. However, a slice of the SDF at angle 6, given by

Sp(w) = M—i‘eﬁ’ can be factored as:

So
Se(w) = — - 6.12
)= Gor agw+ P (612
The associated model is also (1-D) Markovian [220]:
52
(o5 = Jpolt) = e(t) (6.13)

It should be pointed out, however, that a projection of a 2-D ACF is not the same
as the 1-D ACF of the corresponding projection of the associated SRF. The above
characterization is interesting in view of the difficulties encountered with the line
integral of an SRF 5.

The discussion so far, has been in the continuous domain. In practice, only
discrete processing is possible. The foregoing theory extends to the discrete case, as
long as the discrete ACF lags in the RS represent an adequately sampled version of
the 2-D ACF. The associated 2-D SDF will be on a polar raster [122].

2-D SF in the RS consists of the following steps:

o Specify the discrete projections r4(!) of the 2-D ACF, r(m, 2) at equispaced

angles 6,0 <6 < .

e Carry out 1-D SF on each of the projections, r3({) i.e., obtain the 1-D minimum

phase spectral factors corresponding to each r4({).

The first step involves a computation of the discrete projections ry({) of 2-D ACF.
If one starts from a continuous ACF, this is done by adequately sampling the RT of
the ACF. If the 2-D ACF is discrete, then the line integral will have to be suitably
approximated. Note that an explicit computation of the ACF may not be required.

5Some of these issues are discussed in Chapter 7.
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6.3.1 Correlation match

Correlation match means that the output ACF/PSD of the system derived by SF
matches the given ACF/PSD, implying that the system is consistent with the given
PSD/ACEF. In practice, a finite set of autocorrelation lags is available, and the output
ACF of the system is required to match the given ACF over a certain window, and
remain positive-definite (pd) beyond the window®. In 1-D, correlation match can
always be ensured. However, this property does not extend to 2-D because, a pd
sequence on a rectangular window need not have a pd extension with a match on the
window [71]. Thus, factorization on a rectangular support need not yield systems
that are consistent with the given ACF.

2-D SF discussed in this chapter possesses correlation matching property in
the Radon space, by virtue of being a set of 1-D problems. An exact match with the
given 2-D ACF, although theoretically guaranteed, depends upon how well {rs(7)}
represent the function r(71,72). For example, an isotropic SRF is represented ad-
equately by a single projection, and perfect correlation match can be achieved for
this case. A general sampling strategy for good correlation match, based on [174],
is given below.

Let (71, 72) have a finite space-bandwidth product, i.e., 7(1y, ) =~ 0, 72 +7% >
pet and S(wi,we) =~ 0, w? + w? > wy? p. is the correlation ‘time’, and wp,, the
bandlimit. Then, the minimum number of samples that should be considered over
each projection, is approximately, N,, = (2/7)wmp.. The minimum number of

projections My, equispaced in angle over [0,7), is My = [pewm] + 2.
Remarks:

1. In SF, the SDF/ACF is assumed to be specified/available. For example, in

filtering applications, it is specified, and in many image processing applications

5This notion also arises in the context of autocorrelation extension in maximum entropy (ME)
spectrum estimation problem.
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such as restoration and coding, an analytical model for the ACF is used [72, 71].

. In general, 2-D SF in the RS discussed above, is to be distinguished from SF
of the individual projections of 2-D data. The two are equivalent only when
the operations of autocorrelation and Radon transformation commute. Ap-
plications in which they are equivalent include object recognition and coding
involving a modeling of a given class of images. The distinction between the
two is best illustrated by the difference between the problem of reconstructing
an object from its noisy projections, and that of its reconstruction from the
projections of a noisy version. The former is the most commonly encountered
and easy to solve wherein each of the projections is simply treated as a 1-D
signal in white noise [203], whereas the latter is inherently two-dimensional in

nature (eg., involving the 2-D structure of the noise field).

. The problem of estimating the PSD from observed random field data via para-
metric models, i.e., spectrum estimation, also involves 2-D SF. This forms the

topic of the next chapter.

6.3.2 Applications

SF is the basis of signal modeling, and arises in a variety of applications such as filter-

ing, restoration, compression, and spectrum estimation. An mentioned in Remark-2

above, SF in the RS is implicit in many of the existing algorithms for processing

data in the RS. Further possible applications of 2-D SF in the RS, not considered

so far in the literature, are discussed briefly in the following. Application to 2-D

spectrum estimation is deferred to the next chapter.

In principle, 2-D spectral factorization in the RS allows 2-D IIR filtering’, as

illustrated in fig. 6.2. The filter Hp, (w) is obtained by factorizing the respective

"The general notion of 2-D filtering via the RT has been proposed in [57, 162, 72].
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Figure 6.2: IIR filtering in the Radon space.

PSD Sj (w). Whenever possible, the reconstruction filter ‘ca.n be absorbed into
the filtering operation so that the reconstruction is obtained by backprojection. A
perfectly circularly symmetric filter is implemented by choosing all the filters to be
identical. With 1-D IIR filters, stability is not an issue, and it is lower in complexity
for a given performance. Initialization for improving the performance of an IIR filter
for short data segments is considered in [19]. Transient effects can also be countered
by forward-backward processing. The complexity of the scheme, and the errors
introduced by projection and reconstruction, limit the use of the above scheme as an
alternative to filtering 2-D data in the spatial domain. Specific practical situations
where the stochastic models and inverse filtering based on the the RT of 2-D ACF
can be applied for restoration and compression are to be explored. For example, if
a class of (CT) images is known to possess a certain correlation structure and hence

a model, the model can be used for processing that class of images.

Consider the matching of 2-D spectra slice-by-slice, by the LP approach. The

LP approach has been applied successfully to signal classification problems such as
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speech/EEG recognition/classification [157]. Let ar = [a,, . . .a,,]T, be the LPC-
vector associated with a reference PSD/signal, and s(n) be any sequence whose
corresponding LPC-vector is a = [a; . . .a,]T. If R is the autocorrelation matrix of

s(n), the quantity:
a,TRa, l
aTRa [

is 2 measure (named after Itakura [64]), of the distance between the sequences [157].

d(a,a,) = log = log (6.14)

The rationale behind the above measure is that d — 0 as the spectrum approaches
the reference spectrum.

The LPCs in the RS, i.e., the set of all LPCs associated with the spectral
slices, {ax(0:): k=1,..,p; 6; = (x/N)i,i = 0,..., N — 1}, are, to a limited extent,
features describing a 2-D object. The set {ax(6;) : 8; = (7/N)z,i = 0,..., N — 1},
is an LPC-pattern of order k. Invariance of the LPCs to gray-scale, shift, rotation
and scaling are the issues to be addressed. Invariance to gray-scale and shift follow
from that of the normalized ACF. A rotation of the 2-D spectrum/object results in
a circular shift of the LPC-patterns. In the absence of rotation, the LPC distance
measures {d(6;) = log[l.(8;)/1(0:)]} can be used as a measure of match. It should
be pointed out, however, that {d(6;)} cannot be used as an invariant-pattern. One
approach to handling rotation consists of estimating it using an LPC-pattern of a
certain order, using circular correlation as described in Chapter 3. The estimate
of rotation can be utilized in appropriately shifting the patterns, facilitating the
computation of the LPC distances as above. Alternatively, a CAR model can be
used to describe each of the LPC patterns invariant to circular shifts, resulting in
an invariant pattern in 2 variables. Finally, it is noted that the peak value of the
circular cross-correlation itself can be taken as a measure of the match between two
sets of LPC patterns.

Handling scaling, however, is not straightforward, since it is not clear as to
how that would affect the LPCs.

Simulation was performed on the ‘plane’ image considered in Chapter 3, with
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Figure 6.3: LPC distances of: (a) amplitude-scaled and shifted object, (b) shifted,
rotated and amplitude-scaled object.

gray-scale changes, shift, and rotation. Fig. 6.3(a) shows the sequence of LPC dis-
tances computed as described above, using the projections of an amplitude scaled
and shifted object. The model order used was p = 5, for all the projections. The
distances with respect to the LPCs of an amplitude-scaled and shifted object, ro-
tated by 50°, is shown in fig. V6.3(b). The rotation estimated via circular correlation
involving the second LPC pattern was 49°. Errors due to discretization and the in-
terpolation used in digitally rotating the object, have contributed to the mismatch.
However, LPC patterns are not as smooth as the low-order MPs, and are quite sen-
sitive to even small changes. Hence, suitable (overall) statistical distance measures

would be required for classification.

Remark: In general, the role of orientation has to be taken into account in appli-

cations. In some applications such as NDT, rotation may not be an issue.

6.4 Conclusion

In this chapter, 2-D spectral factorization in the RS has been considered. The 2-
D problem reduces to a set of decoupled problems in the RS, as a consequence of
the CST applied to 2-D ACFs. The resulting 1-D spectral factorizations could be

carried out independently on each of the projections. By virtue of being a set of

93



1-D problems, stability is not an issue, and the correlation matching property of the
spectral factors can be assured, in the RS. Mathematically, SF in the RS provides a
solution to the problem of 2-D SF. The theory, presented in the continuous domain,
extends to the discrete case when the discrete RT is obtained from sampling the
ACF adequately. Possible applications of SF in the RS have been discussed briefly.
The advantages of the proposed IIR filtering scheme with respect to current methods
are to be studied with relevance to specific applications. LPC-patterns in the RS
have been introduced. The LPCs are invariant to the gray-scale and translation
the object. Two approaches to handling rotation have been indicated. The issue of
scaling, and the performance with respect to MPs, need to be studied further.
Unfortunately, spectral factorization of the projection of 2-D a autocorrelation
function is not equivalent to a factorization of the autocorrelation of the projections
of the associated SRF. In other words, the process generated from a projection of the
2-D ACF of an SRF is different from the corresponding projection of the SRF. The
problem of estimating the PSD from observed SRF data, i.e, spectrum estimation,
based on parametric models, also involves 2-D spectral factorization. The theory
presented in this chapter suggests a new method of 2-D spectrum estimation, and

forms the topic of the next chapter.
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Chapter 7

Two-Dimensional Spectrum
Estimation using the Radon
Transform: Some Issues and a

New Approach

A review of the existing methods of 2-D spectrum estimation emphasizes the scope
for further research on this difficult topic, despite recent advances. Among the
recent approaches to 2-D spectrum estimation, the one based on the RT [204] is
attractive, due to a reduction in dimensionality it offers. However, there are many
issues that arise in applications involving the RT of an SRF, that have not received
due attention in the literature so far. In this chapter, a new representation for the
RT of an SRF, valid upto second order statistics, is used for analyzing the properties
of the transform. Limitations pertaining to the theory and its extension to finite-
extent data, are discussed, in the context of the previous approach to 2-D spectrum
estimation using the RT. The difficulties in characterizing the RT of an SRF, and
their implications on 2-D spectrum estimation provide a motivation for investigating

new approaches. A novel approach to 2-D spectrum estimation based on the RT
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of 2-D autocorrelation of an SRF, is investigated. Estimation by autoregressive
modeling of the projections of 2-D autocorrelation is considered, and an extension
to maximum entropy method is proposed. Relevant issues are discussed, and other

possible approaches are indicated.

7.1 Introduction

Spectrum estimation refers to the problem of estimating the power density spectrum,
popularly known as power spectrum density (PSD), of a random process from a
finite-extent observation of a sample of the process. It is a topic of importance in
many fields of science and engineering and has a rich history [182, 86]. Extensive
research that has been carried out highlights the fact that there is more to be done,
especially in the multi-dimensional case [119, 29, 71, 116].

Classical methods of spectrum estimation (SE) based on the FT, namely the
periodogram and the Blackman-Tukey method, suffer from spectral leakage (smear-
ing) and limited resolution. The implicit assumption that the data/autocorrelation
is zero beyond the points of observation results in spectral smearing. The price
paid for using a smoothening window is that of frequency resolution. The minimum
variance method of Capon [14], fundamentally different from the conventional ap-
proach, was the first attempt towards improved resolution. Modern me.thods try
to overcome the limitations of the conventional approach by using finite paramet-
ric models for the spectra [86]. The most popular of the parametric models is the
autoregressive (AR) model. Its popularity stems from its success in speech process-
ing based on the model for speech production [157, 112, 192], and in geophysics.
The all-pole structure of the AR model makes it suitable for representing processes

with peaky spectra ! 2. The high-resolution capability of the AR model arises from

1t is for this reason that the AR model is often used to estimate the PSD of sinusoids in white
noise, although the Pisarenko harmonic decomposition is the appropriate approach [86].

2In the physical world, it is rather the presence of a frequency component that is appreciated
and more easily detected [192].
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the implicit extrapolation of the autocorrelation. The linearity of the problem of
solving for the predictor coefficients, and the availability of the efficient Levinson-
Durbin algorithm that also guarantees stable recursion, is an attractive feature. In
contrast, the solution for autoregressive moving-avergae (ARMA) model coeflicients
is non-linear. Further, an ARMA model can be approximated by an AR model
of sufficient order [86]. An additional reason for the attention afforded to the AR
model is the equivalence of AR SE and the maximum entropy method (MEM) of
Burg [12] [221, 31, 146]. The rationale of the ME principle is elegantly discussed by
Jaynes [79]. The concept of maximizing the information theoretic quantity of en-
tropy, defined by H = [logS(w)dw, subject to correlation-matching constraints, is
much broader than those of assuming the correlation lags to be zero beyond a certain
point or to obey a certain model. In effect, the ME principle selects the flattest of
all possible spectra consistent with the given values of the autocorrelation. On the
other hand, it provides an ME extrapolation of the given correlation lags, resulting
in high-resolution 3. In general, estimation of spectra from a finite observation is
not possible without additional information or constraints that restrict the class of
spectra [139, 48].

The success of high-resolution parametric methods in 1-D led the researchers
to consider an extension of the ideas to 2-D involving random field measurements
[119, 71, 138, 116]. Initial work in 2-D high-resolution spectrum estimation involved
a separable approach ¢, of employing 1-D techniques sequentially along each of the
dimensions [68, 80, 37, 75]. However, the assumption of separability is not justified
[204, 71, 66], and it ignores the 2-D nature of the data [138]. Estimation by 2-D

extrapolation of the data [75, 36, 218] provides limited improvement in resolution

3The idea of maximum flatness can be confusing, as the terms ‘flatness’ and ‘high-resolution’
are mutually conflicting; these aspects are clarified in [113, 133]. In fact, different measures of
‘flatness’ result in different formulation of the entropy and hence in different classes of spectrum

estimators [133, 134].
“When the DFT is used along one of the dimensions, the approach is also referred to as hybrid

spectrum estimation.
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at high SNRs [116]. These observations led to 2-D spectrum estimation algorithms
based on 2-D LP models {73, 66, 71, 13, 138]. Cadzow and Ogino [13] proposed the
use of quarter-plane (QP) ARMA models. 2-D LP models with causal (NSHP), semi-
causal and non-causal regions of support have been studied by Jain [71], and Jain
and Ranganath [73]. An extension to m-D was considered by Nikias and Raghuveer
[138]. Semi-causal and non-causal models do not guarantee a non-negative PSD.
The 2-D QP AR models have received the most attention in the literature, due
to the availability of a 2-D Levinson-like algorithm [116]. While causal models do
guarantee positive estimates, they do not guarantee stable AR models.

Further advances in 2-D high-resolution spectrum estimation include the use of
non-causal AR models [194, 50], the development of an efficient Burg-type algorithm
for the solution of 2-D causal AR parameters directly from the data [118, 92|, and
estimation based on 2-D ARMA model [232]. The method of [194, 50] are based on
the assumption of non-causal AR or Gaussian-Markov model for the data, resulting
in a non-linear minimization problem that requires numerical techniques for the
solution. A recent trend consists of an application of the so called minimum free
energy method of parameter estimation for spectrum estimation [155, 198, 154].
Very recently, hybrid [20] and AR {87] methods of 2-D spectrum estimation, based
on the minimum free energy criterion, have emerged °.

There has been considerable effort on 2-D MESE. The form of 2-D MESE had
been discovered by Barnard and Burg [7], [229]. Woods [229] showed the existence
of the 2-D MESE under the assumption that the available autocorrelation (AC)
lags form a part of some positive-definite (pd) function. Dickinson [29] pointed
out the difficulty in checking whether a given set of AC lags in 2-D is extendable.
Specifically, a real-valued function positive-definite on a rectangular grid need not
be extendable [186]. When the ME solution exists, it is shown to have a parametric

model of the form given in {229, 7, 74]. However, the lack of a factorization theorem

SThese two methods appeared after the new approach of this chapter had been proposed.
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for 2-D polynomials renders the solution non-linear [229, 7]. Lev-Ari [97] has given a
characterization of m-D ME covariance and showed that only approximate solutions
“are possible. Thus, in contrast with the situation in 1-D, 2-D MESE does not have
a closed-form solution. Consequently, approaches to 2-D MESE have been largely
computational, and attempt to approximate the ME PSD without having to solve for
the coefficients of the parametric model [224, 225, 104, 107, 115, 105, 194]. These
methods require either iterative algorithms that have trouble converging, or non-
linear optimizations that guarantee convergence at the cost of heavy computation
[116].

In general, in spectrum estimation techniques involving 2-D parametric mod-
els, the choice of the predictor mask, direction of prediction, and non-uniqueness of
the resulting estimates, are major issues. Unlike 1-D parametric methods, the 2-D
counterpart has remained a difficult task. Further, the equivalence of AR and ME
methods does not hold good in 2-D. The difficulties encountered may be attributed
to the lack of a fundamental theorem of algebra, as well as the lack of the notion of
causality in two dimensions [71, 106, 30].

An RT approach to 2-D spectrum estimation was proposed by Srinivasa et
al. [204], to circumvent the difficulties associated with direct 2-D high-resolution
methods. The RT was used to reduce the 2-D spectrum estimation problem to a set
of 1-D problems, each of which can be solved by a 1-D high-resolution technique.
An equivalence of the AR and the ME methods of spectrum estimation in the RS
has been discussed in [206]. However, [204] involves the line integral of an SRF,
which does not exist in the mean square sense [76]. Further, the approach involves
a pre-filtering of the data by a frequency response of |w|'/? or equivalently, a post-
multiplication of the estimated slices of the 2-D PSD by |w|. This would emphasize
noise, and suppress very low frequencies. Such a filtering would also distort the
shape of the spectrum. The RT approach has been applied to estimate the PSD

from data available on a discrete polar raster [34]. However, their method is also
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based on the RT of an SRF. Further, they assume that a projection of the 2-D ACF
and the ACF of the projection of an SRF are the same, contrary to the observations
in [76, 72, 204].

In this chapter, some of the issues associated with the representation of the
RT of an SRF are highlighted, and a novel approach to 2-D spectrum estimation is
investigated. A new representation for the RT of an SRF, based on a 2-D version of
the representation of a stationary process as a cosinusoidal function of appropriate
random variables (RVs) [145], is developed. This representation is sufficient for all
applications involving autocorrelations/power spectra. An expression for the auto-
correlation of a projection of an SRF is derived using the above representation, in
terms of the projection of the 2-D ACF, resulting in the projection-slice theorem for
SRFs. The results agree with the conclusions of Jain and Ansari [76]. However, they
worked with the modified transform and then deduced the nature of the transform.
Here, an expression for the transform itself is used and the necessity for the modi-
fying transform is pointed out, and its effect is discussed. A preliminary analysis of
the RT of an SRF evaluated over a finite support is carried out. A new approach
to 2-D spectrum estimation, based on the RT of a 2-D ACF is investigated, and an
extension of the approach to 2-D MEM is considered. Although the RT of 2-D ACF
has been considered in an intermediate step involving the derivation of the relations
involving the power spectra 76, 206], its explicit use is being considered for the first
time.

In the following section, a new representation for the RT of an SRF is de-
veloped, based on which the projection slice theorem for SRF's is derived. Issues
involving the RT of an SRF, and the associated method of spectrum estimation are
discussed. In Section 3, a new approach to 2-D spectrum estimation based on the
RT of a 2-D ACF is presented, and an extension to 2-D MEM is considered. In

Section 4, simulation results are presented. Section 5 concludes the chapter.

100



7.2 The Radon transform of an SRF

Consider a real, zero-mean SRF f(z,y) with 2 PSD S(w;,w;). In a manner anal-
ogous to the 1-D case [145] an SRF with PSD S(w;,w;) may be represented by a

cosinusoidal function of RVs, §2; and Q,:
f(z,y) = acos(hiz + N2y + D) (7.1)

where, the joint probability density function pq,q,(w:1,w2) of the RVs Q; and
is chosen to be the normalized PSD 2a2S5(w;,ws), and a? = 2 [ [ S(w;, w;)dw,dw,.
The RV @ is uniformly distributed in [, 7r]. Clearly, E{f(z,y)} =0, and E{f(z,y)
f(z + 72,y + 1)} equals r¢(7:, 7). Given a function S(wi,w2), an SRF (ensemble)
with S(wy,w;) as its PSD can be constructed by (7.1). The RT of f(z,y) is another
random field (a function of ¢ and #) which can be expressed in terms of the RVs §,
and 2, and the uniform phase ®, as follows:

p(6,1) = ﬁ cos(t + )6(6 — ) (7.2)
where, o=tan"1(Q,/Q,), and [Q] = \/Q—f+_Q§ E{p(0,t)} =0, and the ACF of the
RT is:

B(p(a (s, + 1) = 7 {52 st &
where, Sp(w) = F{rs(7)} is a slice of the 2-D PSD at angle 6°. See Appendix-D for
details. Thus, the RT of an SRF may be expressed in terms of a singular generalized
function of the RVs that describe the SRF. From (7.3), the RT can be viewed as
a parameterized family of projections {ps(t), § € [0,7)}, uncorrelated in the angle

variable and stationary in the spatial variable 7.

With the above interpretation, the ACF of a projection at an angle @ is:

E{po(t)po(t + 1)} 2rpy(r) = F-1 {22 (7.4)

|l

§ Assuming that if".,("ld exists in the limit. The line integral is seen to be an unbounded RV, in

general.
7Jain and Ansari [76] first showed that the modified transform is whitening, and then concluded

that the RT is also whitening in the angle-variable.
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and the PSD of the projection is Sp,(w) = Fi{rp,(7)}. Indeed, rp, (7) may be defined
as:

0+A
Jim [ E{pa(t)po(t + 7)}der (7.5)

a

Tpe () =

It is clear from the above is that the autocorrelation of the projection of an SRF is
not the same as the projection of the autocorrelation of the SRF. Note that &)

fwi

does not exist in general, in the ordinary sense. However, if:
Po(t) = F~ {|w|"/?} * po(t) (7.6)
then, E{pg(t)pe(t + 7)} = F1{Se(w)} = ro(r) (7.7)

The above equation leads to the interpretation that the PSD of a filtered (modified)

projection is a slice of the 2-D PSD at the projection-angle.
So(w) = Spo(w) = |w]Spe(w) (7.8)

where, Sz,(w) denotes the PSD of the filtered projection at angle §. The above
result agrees with the Jain-Ansari result [76]. Note that (7.8) involves an implicit
cancellation of |w|, which is problematic at the origin.

A difficulty arises in the physical interpretation of the results. From (7.8),
it is clear that estimating Sp(w) from the projections is equivalent to recovering it
from Sp, (w) = S—‘l’u(;‘f—'l However, it a faithful recovery is impossible due to the nature
of the function |w|. Consider an example. Fig. 7.1(a) shows the 2-D PSD of the
data corresponding an SRF with a Gaussian-shaped PSD as considered in [34]. The
algorithm given in [197] was used to generate the data of size 5x5. Fig. 7.1(b)
displays the PSD of the projection at angles spaced at 1 degree each over [0, 7/ 2).
The projections were computed by Gaussian interpolation (with a large value of o
to obtain a smooth spectrum) as in [34], for the purpose of illustrating the role of

|w| only®. In fig. 7.1(c), the PSD of the projections multiplied by |w]| is displayed.

81t is otherwise not possible to generate such a smooth spectrum. This particular example
should not be taken to judge the performance of the RT approach. The use of interpolation with
large values of o does not allow the results to be representative. A larger region of support will
make the difference between the slices more apparent. Further, a change in the shape of the support
changes the shape of the spectrum [169], as explained later in this section.
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«©)

Figure 7.1: (a) 2-D PSD, (b) PSD of the projections, and (c) modified PSD.

Observe the distortion in the shape of the PSD.

The difficulty discussed above may be attributed to the fact that the deriva-
tion of the CST for SRFs was based on representing the RT in terms of generalized
functions of RVs. Such representations would be useful as long as the final results
(statistics) are in terms of well-behaved functions. However, Sp(w) and S,,(w) are
related by (7.8), and spectrum estimation from the projections involves a deconvo-
lution of rs(7) from r,,(7). The nature of the function f‘l{ﬁ} does not permit
a faithful deconvolution. Jain and Ansari [76] derived the result by first using the
modified RT {5s(t)}, and worked backwards to conclude that the RT of an SRF is
whitening in the angle-variable. However, the modified RT was obtained by first
computing the projections and then filtering them, which is not justified due to
the non-existence of pg(t) (of an SRF). Further, a working-back requires the linear
transform to be invertible.

An apparent recourse is to work with the RT of f; i.e., the SRF filtered by
2|1/4

w2 + wo , which has the representation:

f(z,y) = acos(Qz + Doy + D) (7.9)

where, pg, o, (w1,w?) is given by 2a=2|w;? +w12|1/25’(w1,w2). The quantity a? is the

normalizing factor, which exists when S(wi,w;) is bandlimited. The line integral:

7(0,t) = acos(2t + ®)56(8 — 6g) (7.10)
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exists, and is well defined. The projections are uncorrelated in 4, and the PSD of a
projection gives a slice of the 2-D PSD of f(z,y) at the projection angle. However,
this is simply a 2-D version of the deconvolution problem discussed previously, and
involves an implicit attempt to cancel the factor |w]|.

The difficulty discussed above does not manifest when the method is applied
to resolving sinusoids in noise, since multiplying the the power spectrum by |w| does
not affect the resolution (unless one of the sinusoids is relatively weak and close
to the origin). The shape of the PSD is not of concern in such an application.
However, this is not a justification for assuming that the processes of projection and
autocorrelation commute. It is significant to note in this context, that [34] did not

use (7.8).

7.2.1 Inherent windowing

The discussions of the previous subsection addressed the theoretical case of the SRF
over the entire plane. However, in practice, the data is always available over a finite
domain. This amounts to an inherent windowing of the data. Being a non-linear
operation, windowing the 2-D data is not equivalent to windowing its projections.
As an example, consider the constant function f(z,y) = 1. The projection, of the

function windowed by a uniform circular window (disc):

1, 2+ y?’ <R
w(z,y) =
0, otherwise
is given by:
2V R? — ¢2, te[—R, R
po(t) =

01 t ¢ [—R7 R]
This is different from the RT of f(z,y) (which does not exist) windowed by a uniform
I-D window w(t) = 1, || < R and zero elsewhere. An equivalence is only with

respect to the support information, i.e., f(z,y) =0, VZZ + 32 > R = py(t) = 0,
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[t| > 0. In general, a window can be any 2-D function within a disc of radius R.
The values of the projections for [t| < R depends upon the shape of the window.

Consider the line integral of an SRF, evaluated over a convex domain D:
pa(t) = 2f(tcos€—usin0,tsin0+ucos0)du (7.11)
UL

where u; and u, are determined by the points of intersection of the line (Lg,) with
the boundary of D. The length of intersection ly; = |u; — u,| depends upon the
shape of D and the values of # and ¢. A rotated coordinate system has been chosen
for the ease of interpretation. Note that py(t) is an RV, whose mean E{py(t)} is
lsuny, where, 7y is the mean of the SRF. If ; is zero, then the RVs constituting a
projection would be zero-mean. However, the variance of the RVs will be different.

Consider the autocorrelation of a projection:
E{ps(t1)pe(t2)} = E{/l f(t1cos@ —usinb,t;sin @ + ucos f)du
6,23
/; f(tzcos@ —vsinf,tasinf + v cos)dv} (7.12)
9,!2

In general, {5, # ls:,- The above quantity is a function of #; and t,, and not
merely their difference. Thus, a projection of an SRF over D consists of RVs whose
statistical properties depend upon the length of integration, and hence the position
(in terms of the variable ¢). Further,

E{pa(ty)po(ta)} =

le,tl

/l r¢[(t1—t2) cos §—(u—v) sin 0, (¢,—¢;) sin 6+ (u—v) cos 6]dudv

ort2 (7.13)
Although (7.13) appears to be a function of (¢; — ¢;), a close observation reveals
that the limits of integration are functions of ¢; and ¢,, which are in turn dependent
on the shape of D. In general, the projections of a random field, evaluated over a
finite domain, are not homogeneous, even if the random field is. This is in contrast
with the 1-D case in which the data may be considered as a sample of a stationary
process. Further, r,,(T) is not equal to rg(7), and there is no closed-form ezpression

such as (7.4) between the two. The ACF of the RT in both the variables, although
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turns out to be a more complicated expression, reveals the presence of correlation

between the projections®.

It is clear from the above discussions, that the shape of the domain on which
the data is available affects the shape of the spectrum estimate. This has also been

verified through simulation.

7.2.2 Discussion

Some of the issues involving the RT associated with an SRF, and their implications
on 2-D SE have been considered. The RT theory for SRFs involves the use of gener-
alized functions. The ACF of a projection was seen to be related to the projection
of the 2-D ACF in terms of the function F~1{|w|}; a slice of the 2-D PSD is related
to the PSD of the corresponding projection through a multiplication by |w| function
vide (7.8). This was seen to lead to a difficulty in interpreting the result, and ques-
tions regarding its generality remain. A preliminary analysis of the RT evaluated
over a finite support revealed some fundamental aspects such as non-stationarity of
the projections, the lack of a simple relation between the ACF of the RT and the
RT of the 2-D ACF, and the presence of correlation between the projections.

The foregoing observations highlight the difficulties in characterizing the RT
of an SRF especially over a limited support, motivating the search for alternative
approaches/interpretation. In the following section, a new approach to 2-D spectrum
estimation based on the Radon transform of 2-D autocorrelation function of an SRF,
instead of that of the random field itself, is presented. A motivation for the approach
is the fact that it is the projection of the 2-D ACF that provides a slice of the 2-D
PSD at the angle considered. An actual investigation of the RT of ACF and an

extension to MEM are novel features of the work.

This can be appreciated by observing a merger of the spectral peaks as the size of the data is
reduced, in the case of sinusoids in white noise. A simple example showing the correlation between
the integrals of lines passing through the origin is given in [210].

106



7.3 Spectrum estimation based on the Radon
transform of 2-D autocorrelation

Consider an SRF with ACF r(7y,72). Let r5(7) be a projection of r(m1,72). From
the CST applied to the RT of a 2-D ACF,

rg(‘r)éS’(w cos §,wsin ) (7.14)

where, S(w cos#,wsin G)éSg(w), a slice of the 2-D PSD S(w;,w-) at angle 6. As
discussed in the previous chapter, a projection of a 2-D ACF is also an ACF. An
example of 2-D ACF of cosinusoids in white noise, relevant to the context of spectrum

estimation is given below.

e Example: Consider a 2-D signal consisting of p cosinusoids in additive zero-

mean white noise w(z,y) with a flat PSD of height N,.

flz,y) = i Aicos(urz + vky + Yr) + w(z, y) (7.15)
k=1

where, ¥ are independent RVs, uncorrelated with w(z,y), and uniformly

distributed over (—m, 7). The ACF of f(z,y) is given by:

P A2
ri(Te, Ty) = Z -?kcos(uk'rx + veTy) + N6 (12, 1) (7.16)
k=1

The RT of rj(7;,7,) is obtained by inserting the RT of a cosinusoid [2] and
that of a 2-D Dirac delta:

ro(7) = ZP:2[AZ cos(wrT)d(8 — Pi) + No6(7) (7.17)
k=1 wkl

where, wp = £4/u + v}, and ¢ = tan~'(vi/ur). Thus, a projection of the
ACF of 2-D cosinousoids in white noise also corresponds to the ACF of a signal
consisting of cosinusoids in white noise. Taking FT on both the sides of (7),

the PSD Sp(w) results:

So(w) = i 2(‘}}1:' [6(w + wi) + 8(w — wi)]8(0 — ) + Na (7.18)
k=1
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Thus, Sp(w), which is a slice of the 2-D PSD Sy(w;,ws), is a 1-D PSD cor-
responding to pure sinusoids in additive zero-mean white noise. The height
of the flat PSD due to the noise component is the same as that of the 2-D
white noise field. The factor §(8 — ¢) in the expression (7.18) accounts for the
presence or absence of a peak in a particular slice, depending upon the angle

made by the sinusoids in the 2-D frequency plane.

The approach to 2-D spectrum estimation considered here is based on the CST
applied to 2-D ACFs. As a consequence of the CST, the problem of 2-D spectrum
estimation can be reduced to a set of independent 1-D problems. It was seen that
the projections of a 2-D ACF are 1-D ACFs. The basic idea consists of applying 1-D
spectrum estimation method based on correlation lags, to each of the projections, to
form the respective slice of the 2-D PSD. By considering a set of projections spaced
uniformly over [0, ), the 2-D PSD can be built-up in terms of its 1-D slices. The
resulting PSD will be on a polar grid. It is pointed out that it is possible to consider
the projection at any angle.

In applications such as radio/radar astronomy where the projections of the 2-
D ACF are available, the method is straightforward. In applications involving finite
extent samples of 2-D SRFs, however, the 2-D autocorrelation has to be estimated
from the available data. One then obtains the estimates of the slices of the 2-D
PSD, from the projections computed from the estimated 2-D autocorrelation.

Let f(m,n) be the data available over 0 < m,n < N — 1. The 2-D autocorre-

lation is estimated from the available data as follows:
N—-1-kN—-1-l

M O Y f(mun)fm+kn+l), kI1>0
r(k,l) = el o] (7.19)

M 2 O fmn)f(m+kn+l), k>0, [<0

m=0 n=0

The values of r(k,!) over the rest of the support |[k| < N —1,]l| < N —1 is obtained
by r(k,l) = r(—k,=!l), £ < 0,VI. The biased estimate given above is the most
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widely used, as unbiased estimates do not in general yield pd lags [116]. An efficient
algorithm for computing the 2-D autocorrelation is given in [179].

The discrete projections ry,(7;) of the 2-D discrete autocorrelation r(k,[) are
computed as described in Chapter 2. In particular, the procedure involving Gaussian
interpolation has been used in the examples presented in this chapter, due to a better
performance they yielded with respect to that based on the pixel assumption, in the
context of spectrum estimation. Due to symmetry, the projections may in general
be sampled at 7; = 0,..,J where J = v/2(N — 1). In spectrum estimation via AR
modeling, however, the projections need be computed over {0 < 7; < p}, where p
is the order of the AR model, which can often be much smaller than J. Since the
2-D ACF can be estimated only over a finite support, the line integrals will not be
accurate, from a 2-D perspective. This is the major difference between methods
based on the RT, and the direct 2-D methods. One approach to alleviate the above
problem is to consider the RT in which each of the projections consists of integrals
over lines of same length L;. This results in considering the more reliable central
portion of the 2-D correlation, but amounts to an inefficient use of the available
information. Further, the integration can be carried over a narrow strip of width
A to improve accuracy. An alternative approach is to use spectrum estimation
methods that tend to accommodate inaccurate estimates of the correlation lags, as
described at a later stage.

The AC lags ry,(7;) computed from the above step are used to obtain estimates
of Sg;(w). The 2-D spectral space is filled by computing the PSDs of the various
projections. Due to symmetry, the projections over § € [0, 7) need be considered.

The algorithm for spectrum estimation from observed 2-D data is summarized below:

1. Estimate the 2-D autocorrelation r(k,!) from the available samples of the 2-D

SRF.

109



2. Compute the projections {rs(7;)} of the 2-D ACF r(k,!), for 6; = i, i =

0,1,..N —1, where N is the number of projections.

3. Compute the 1-D spectrum estimates Sp,(w), using the autocorrelation se-

quences {rq,(75)}, 6: = §%, i=0,1,..N — 1.

In general, any procedure for computing the 1-D PSD from AC lags can be
used. In fact, the approach has the flexibility of allowing one to tailor the 2-D
PSD by using different models and techniques to compute difference slices. In this
thesis, the application of AR modeling of the AC lags is considered, for spectrum
estimation. Several reasons for the choice of AR modeling were described in Section
1'°. In the following, 2-D spectrum estimation using AR models for the projections
of the 2-D autocorrelation is presented. Further, a procedure for an ME extension
of the projections of the 2-D autocorrelation is described.

For the sake of notational simplicity in the subsequent development, the suffix

¢ will be dropped off from 6;.

7.3.1 Estimation by AR modeling and extension to MEM

Given a set of AC lags {r(j), j = 0,1, ..p}, the problem of AR spectrum estimation
reduces to that of determining the AR parameters {ax, k = 1,..p} (ao = 1), by
solving the Yule-Walker equations [112]

Ra= -r (7.20)

where, R is the symmetric Toeplitz autocorrelation matrix formed from the lags
{r(4), 7 =0,1,..p—1}, a is the vector of AR (prediction) coefficients [a; a, . . ap]T

b]

101t is interesting and important to note that correlation matching property of the all-pole models
does not readily extend to pole-zero models [114]. Further, it is not always possible to find a pole-
zero model of order (p,q) that matches the given pd correlation lags {rx, 0 < L} for p < L,
irrespective of the value of g.
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r is the AC vector, [r(1) r(2) . .r(p)]%, and p is the order of the AR model!'. The gain
of the filter G is given by G® = r(0) + %_,arr(k). The solution is accomplished
by the well known and efficient Levinson-Durbin algorithm [112]. The spectrum
estimate is proportional to the inverse of the squared magnitude of the frequency
response of the prediction-error filter (PEF):
G2

- 1+ 3% ar exp=ik|*
where, G is the gain of the filter, given by G? = r(0) + ¥%_,arr(k).

The above procedure is used to estimate the 2-D PSD, by AR modeling of

S(w) (7.21)

the projections r4,(7;). Specifically, a slice of the 2-D PSD at angle 8; obtained

by computing the AR parameters via the Levinson-Durbin algorithm based on
{re.(4), 7=0,1,...p:}, is given by:

il (7.22)

14+ 3% ag, expikw |2

where, p; is the order of the AR model associated with the projection at angle

Sei(w) =

f;. Note that it is possible to use different model-orders p; for different slices. An
appropriate criterion for model-order selection may be used for that purpose.
When the true values of the projections of the 2-D ACF are available (as in
some situations in radio/radar astronomy) the proposed method of AR modeling of
re:(7;) yields slices of the 2-D ME PSD. The method is then straight-forward. In
spectrum estimation involving 2-D data over a finite support, the estimated ACF
will also be over a finite extent, the line integrals will not be accurate. However,
when the estimated AC lags in the RS are positive definite, an ME spectrum exists

and is unique. The AR approach is equivalent to MESE, and it provides an ME

11The choice of an appropriate model-order is essential for obtaining good spectrum estimates.
A very low order will not provide good resolution, whereas too large a model-order gives rise
to spurious peaks. Many criteria have been proposed for the selection of the model-order, such
as, the final prediction error (FPE) [4], the Akaike information criterion (AIC) [5], the minimum
description length (MDL) criterion of Rissanen [180], and the criterion autoregressive transfer
(CAT) due to Parzen [148]. However, none of the criteria work well in a general situation, especially
for short data [116], and model-order selection has remained an art, based on experience. For more
details, see [116] or [85]
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extrapolation of the autocorrelation consistent with the lags available in the RS.
This establishes the equivalence of the AR and ME methods in the RS. This is by
virtue of having reduced the 2-D problem to a set of 1-D problems by the use of the
RT.

As noted above, the line integrals computed from 2-D AC lags over a finite sup-
port will not be accurate - a consequence of inherent windowing. Similar problems
do arise in the approach of [204, 34]. However, the errors in autocorrelation values
appear to be of greater concern than those in the projection data. The standard
MEM based on inaccurate AC lags will therefore not be fully consistent with the ME
principle in 2-D. Although the above method provides an ME extrapolation of the
autocorrelation consistent with the lags available in the RS (inaccurate from a 2-D
viewpoint), the question is whether it gives a 2-D extrapolation consistent with 2-D
AC lags. This is somewhat tricky, because, a projection of a reconstruction of the
set of 1-D autocorrelations extended in the RS, will not be equal to the originally
available lags. In fact, an eztension of the 1-D AC lags assumes that the values of
the 2-D ACF are zero beyond the 2-D support in the direction perpendicular to that
in which extension is carried out. Hence, the MESE using AR modeling in the RS is
only an approximate MESE. On the other hand, the projections of the ACF avail-
able on a support can be used to reconstruct the function on that support, whereas
the extensions alone can be used to reconstruct the hollow 2-D extension. Their su-
perposition constitutes the extended 2-D ACF in the plane. The method, therefore
does provide a pd eztension of a 2-D pd function in the Radon space, provided the
inherent window preserves the pd nature of the AC lags. A practical procedure is to
attenmpt to preserve the pd nature of the AC lags by computing the projections of
a biased estimate of the 2-D autocorrelation, via Gaussian interpolation. Its signif-
icance arises from the fact that such a result does not hold good on a rectangular
raster in 2-D.

One approach to alleviating the effects of inaccurate AC estimates to some
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extent, involves modeling the inaccurate correlation lags as windowed and noisy
version of the true lags, as in [136]'2. This results in a modified MEM, as described
below.

Consider the following modification of the MESE problem formulation:

e Maximize: H = L [T InS(w)dw

2

Subject to: e pw(k)| I, S(w)e ik dw — r(k)|? < o2
where, {r(k)} are the available correlation lags. o is a correcting factor for noise,
and w(k) is a measure of the degree of confidence on lag k. The sequence {w(k)}
should be positive and symmetric.

The modified formulation of MESE is applied independently to each of the
projections r4(7;). Specifically, the problem is to find the slices Sy(w) that maximize
the entropy subject to the respective modified correlation-matching constraints as-
sociated with ry(7;). Let wp(j) be the weight one wishes to attach to rg(7;). The
value of oy should be a measure of noise that is used to model the inaccurate auto-
correlation estimates at angle §. The solution to the above formulation amounts to

working with the ‘corrected’ or ‘derived’ autocorrelation:

re(7) =1e(y) + & 5(7) | = —p, ... .
0(.7) 9(.7) + O\Ebzg(m)/wa(m), J Py P (7 23)

The sequence by(7) is given by:

p—J

ba(7) = 3 _ve(k +j)ve(k), J=0,...,p (7.24)
k=0

The v coefficients are solved from:

e 1
gve(y)reu — k)= ke E=0,.p (7.25)

12At this juncture, it is relevant to quote Dickinson [29]: “There are some other possibilities that
seem to be worth some research effort. ... We could also consider relaxing the requirement that
the fitted model match the estimated AC lags exactly. Newman [136] has reported a time series
version of such an estimator ... . It might also be possible to avoid the non-existence problem
if the estimate were required to be positive definite on some non-rectangular region.” This also
explains the phrase ‘extension to MEM’.
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where, 6 is the Kronecker delta function. The first step consists of evaluating the
7v-coefficients with gp = 0. (This is equivalent to standard MEM). The y-coefficients
are used to compute the sequence by(j), which will then give the corrected AC
lags, 75(j). The AC lags r4(j) may be (justifiably) assumed to be symmetric in j.
Then, the equations (7.25) reduce to the Yule-Walker equations with the corrected
AC lags, where ag, = 74, /70,, G3 = 1/7. The coefficients can be solved by the
Levinson-Durbin algorithm, and the PSD is computed using (7.22). Thus, the PSD
is estimated from the corrected AC lags.

The set {75(7)} for each 8 constitutes a form of an ME fit to inaccurate auto-
correlation data, and an AR modeling of the same is equivalent to ME extrapolation.
This amounts to extending the 2-D correlation over the entire plane. Consequently,
the method is a practical procedure for 2-D MESE using the RT. If the given esti-
mates {ry(n)} are nnd, an ME spectrum exists for each § and is unique.

The value of o0y should be a measure of the variance of the noise that is used
to model the given AC lags. If the given AC sequence is nnd, an ME spectrum
exists and is unique, and only equality in the modified autocorrelation constraint
need be employed [136]. When a choice of 0y cannot be made a priori, an iterative
scheme with increasing values of o can be set up. Such a scheme converges when
the AC lags are nnd. If the estimates are not nnd, the existence of the spectrum can
still be assured by choosing a sufficiently large value of oy [136], although a precise
criterion is not known in general. However, the overall spectrum estimation method
will then turn out to be complex. This emphasizes the need to develop a suitable
criterion for the choices of the value of g4, and the weighting sequences {wy(7)}. In
general, these criteria will be dictated by the type of the autocorrelation and the
shape and the size of the support on which it is available.

Thus, the method discussed above tends to accommodate the 2-D correlation
lags in a direction perpendicular to that in which extension is carried out, that is

otherwise unaccounted for by the standard MEM. On the practical side, a proper
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choice of 0 and ws(j) would serve to improve the estimates. This is in spirit with
the ME principle, of assuming the least possible about the 2-D correlation lags while
performing an extension.

It is remarked at this juncture, that a correlation-match requires a sufficient

number of projections to be considered.

A note on Pisarenko harmonic decomposition:

Pisarenko harmonic decomposition (PHD) is a special approach to analyze pure
sinusoids in white noise [156, 86]. The approach is based on the fact that pure
sinusoids in white noise can be represented as a symmetric ARMA process of order
equal to the number of sinusoids. The solution to the problem of estimating the
parameters of the process reduces to that of solving an eigenvalue problem. The
frequencies of the sinusoids is obtained by solving for the roots of the polynomial
associated with the ARMA parameter vector [86].

An extension of the PHD to 2-D is an interesting problem, which is, however,
not straight-forward due to the lack of a fundamental theorem of algebra. Lang
and McLellan [103] attempted a generalization of the method to m-D, by avoid-
ing polynomial factorization, but reported that the method suffers from potential
uniqueness problems.

In principle, the PHD can be extended to 2-D, based on an eigen-decomposition
of the matrices Rj formed by the projections r¢(7%). The significance of this obser-
vation arises from the impossibility of a direct extension of the method to 2-D on
R2. In practice, however, the 2-D ACF is estimated from a finite-extent sample of an
SRF, and the line integral estimated from it will not be accurate. It has been found
from experiments that the PHD is very sensitive to such errors, and to a deviation

of the data from the assumed model of pure sinusoids in white noise.
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Figure 7.2: Display grid.
7.4 Simulation results

Data consisting of sinusoids in white noise is a standard test signal in spectrum
estimation. In this section, results of simulation studies on the examples of the
data consisting of sinusoids in additive white Gaussian noise, considered in [204, 87)
are presented. The estimated PSD is on a polar raster, which is displayed on a
rectangular geometry with the angle and (normalized) radial frequency as the two
axes, as shown in fig. 7.2. Peak locations on this grid are defined by the angle-
radial frequency pair (8,w). True peaks are indicated by the mark ‘x’. Since the
examples considered here consist of with frequencies in the angular range 0 < 4 < 89,
the display is limited to that range. The 2-D autocorrelation of the data maybe
computed using (7.19), or obtained by utilizing the built-in program of MATLAB.
Projections of the 2-D discrete autocorrelation lags were computed from (2.14) using
Gaussian interpolation (with o = 0.5), for §; = -’—'Igi, :=0,1,...N-1, where N = 90.

Consider the following data, corresponding to the first example in [204]:

f(m,n) = cos(0.4688mm) cos(.5313wn) + cos(0.59387m) cos(.65637n) + w(m,n),
1<m,n<3l; o2=.25(SNR=0)

The true spectral peaks associated with the above data are the at the points (47.8, 0.88)
and (48.6,0.71). The 2-D autocorrelation of the above data, and its 90 equally spaced
projections were computed. For every §;, the correlation lags rg/(7;), 5 =0,1,..p

were used to compute the AR (prediction) coefficients {as,(k), 7; = 0,1,..p} by
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Figure 7.3: Spectrum estimate for the data of example-1.

using the Levinson algorithm. A model order of p = 8 was used in this case. The
resulting AR PSD is shown in fig. 7.3. Note that the locations of the peaks are close

to the actual locations.

The second example consists of the data considered in [87], with n = 31.

f(m,n) = cos(0.lmm + .37n) + cos(0.157m + .257n) + w(m,n),
1<m,n<3l; o¢2=.5(SNR=0)

This example is the same as those considered in [13, 194], at an SNR of 10dB. The
true locations of the spectral peaks associated with the above data are (59, 0.29) and
(71.5,0.32). The AR spectrum estimate with p = 6 is shown in fig. 7.4. Note again,
the closeness of the peaks in the estimated spectrum with their true locations.

In the third and fourth examples, very short data records of closely spaced
sinusoids in white noise are considered. The third example consists of a 9x9 version

of the data of example-2 of [204], at an SNR of 3 dB.

f(m,n) = cos(0.1464mm + .22497n) + cos(0.28897m + .07787n) + w(m,n),

117



o ] 1 1 L x L I 1 1

0 005 01 015 02 02 03 035 04 045
keq.

Figure 7.4: Spectrum estimate for the data of example-2.
1<m,n<9 o2=.5(SNR=3dB)

The true locations of the spectral peaks associated with the above data are
(18.8,0.299) and (57,0.268). The last example consists of sinusoids of same frequen-
cies as in example-2 above, for 9x9 data.

The result of AR spectrum estimation on the data in the third example, with
p = 5 is shown in fig. 7.5. The result of the modified MEM on the data of the fourth
example with p = 8 and ¢ = .003 is displayed in fig. 7.6. The weighting functions
used were the respective projections of the (discrete) characteristic function of the 2-
D autocorrelation support. The modified MEM helped locate the peaks only slightly
better than the AR method.

In case of very short data records, the method does not seem to perform well,
especially in comparison with the recent results presented in [87]. The results shown
for the short-data case were not, in all the cases, easily arrived at, with respect to
the choice of the values of p and gy. Sometimes, although they were well resolved,

the locations of the peaks were not good. In general, for short data, the approach
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Figure 7.6: Spectrum estimate for the data of example-4.
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exhibited a bias in the location of the peaks (frequency-estimates). This can be seen
in the results displayed. Some anomalies with respect to the location and the shape
of the peaks have also been observed, on some occasions. However, data records
of the size under consideration are generally difficult to handle. Further, in 2-D,
the resolution also depends upon the orientation of one component with respect to
the other. Some of the anomalies and issues involved in resolving 2-D sinusoids
in white noise and the behavior of specific estimators are discussed in {233]. An
easier approach to studying the effect of rotation on QP AR models by the use of a
polar-coordinate coefficient mask has been considered by [188].

In general, the method of corrective MEM tends to allow larger model orders,
as the parameter gy has a smoothening effect. This can be used to alleviate the
undesired effects of high model-orders, to some extent. In some cases, its effect was
to merge split-peaks. In the above simulations, a single value of oy had been used
for all the slices. Sometimes, an increase in the value of oy had the effect of drawing
one of the peaks closer to its true location, while having an opposite or no effect on
the other. This can be avoided by using different values of oy for different slices.

Experiments with certain criteria for the selection of the model-order resulted
in good results in a few instances. However, the results are not representative. In
general, appropriate criteria for (i) the selection of oy for each of the slices (ii) the
selection of model-order, and (iii) the choice of the windowing sequence, associated
with the modified MEM are some of the issues to be addressed. With a proper
choice of oy that can tolerate high model order, one can perhaps dispense with the

requirement for a good model-order selection criterion.

Remarks:

1. The use of interpolation for the computation of the projections introduces
smoothing. Its effect can be minimized by reducing the value of the variance

of the Gaussian interpolating function. The value used in this chapter was 0.5,
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which yielded projections close to those obtained from SNARK, for a 31x31

(unity) picture.

2. The computational complexity of the new approach, i.e., AR modeling of the
2-D autocorrelation, is comparable to that of [204]. The corrective MEM,

however, is more expensive.

3. The spectrum estimates obtained by the proposed approach are smoother

(have less spurious peaks) than those obtained in [204].

7.5 Conclusion

The RT of SRFs has been discussed, and the CST (for SRFs) has been obtained,
based on a new representation for the line integral, valid upto second-order statistics.
The CST for SRFs states that the projections of an SRF are uncorrelated in angle
and stationary in the spatial variable. Further, it expresses the ACF of a projection
of an SRF, in terms of the corresponding projection of the 2-D ACF, in a closed-form.
Difficulties due to the nature of the function involved in the closed-form relation have
been pointed out. Further, it has been shown that, when the integration over a finite
support is considered, as is the case in practice, no closed-form relation exists, and
that the projections are not stationary.

The difficulties in characterizing the RT of SRFs have motivated an investi-
gation into a new approach to 2-D spectrum estimation, based rather on RT of a
2-D ACF. A justification for the approach is the CST involving a 2-D ACF. Conse-
quently, an algorithm based on the projections of the 2-D autocorrelation computed
from the data has been proposed. Estimation of the PSD by AR modeling of the
projections of the 2-D autocorrelation has been considered. The use of a biased esti-

mate of the 2-D autocorrelation, and the computation of its projections via Gaussian
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interpolation has arisen out of the desire to preserve positive-definiteness of the au-
tocorrelation lags. When the projections are positive definite, an ME extension of
each of them exists and is unique. However, the line-integral evaluated from an
estimate of the 2-D ACF are only approximate, as a consequence of inherent win-
dowing. An interesting ‘extension’ of the method to 2-D MEM, using the concept
of ‘derived’ autocorrelation has been proposed, in an effort to alleviate the effects
the errors in the AC lags and inherent windowing. Simulation results presented are
encouraging. However, further efforts are needed to handle short data records. The
proposed extension to MEM imparts a flexibility to the approach. Further work
includes finding a criterion for selecting the window for the corrected MEM, and
making the algorithm robust. The proposed approach may be extended to higher

dimensions.
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Chapter 8

Conclusion

This thesis has considered new algorithms/schemes for image analysis, compression,
and 2-D spectrum estimation in the Radon space.

In Chapter 3, the notion of moment-patterns in the Radon space has been
introduced. Two new approaches to constructing invariant features based on the
moment-patterns have been presented. In contrast to algebraic invariants based on
the 2-D moments, the new feature-sets are patterns, within the Radon space. The
first approach has been to render the moment-patterns invariant to translation, scal-
ing and rotation. Invariance to translation is achieved by the use of central moments,
and that to geometric scaling is achieved by a normalization in the Radon space. In-
variant moment-patterns are obtained by circularly shifting the normalized, central
moment-patterns by an estimated rotation. A method of estimating the rotation
via circular correlation of the second-order moment-pattern has been proposed. A
formula for rotation based on an expression for the orientation in terms of the second
order moments of three projections has also been given. An extension of the tech-
nique of extracting the invariant moment-patterns, to 3-D case, has been presented,
and its application to radar target shape classification has been mentioned. The

fact that the normalized and centered central moment-patterns are not invariant to
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changes in gray-scale, motivated an alternative approach. The alternative set of in-
variants consists of circular-autoregressive parameters of a set of normalized central
moment-patterns, and is invariant to geometric transformations as well as contrast.
This descriptor has the additional feature of being parsimonious. Simulation results
have been presented to illustrate the new techniques. The effect of noise on the
moment-patterns, and one possible avenue for combating the same, have been indi-
cated. The proposed feature-sets can be used for representing tomographic as well
as spatial data. The invariant descriptors based on the moment-patterns constitute
a useful contribution towards image-understanding. Further work on invariants in

the Radon space consists of the following.

e An investigation of the conditions under which, and recognizing the practical
situations in which, the approaches based on the moment-patterns have an

edge over those based on 2-D moments obtained from the projections.

o Application of the proposed techniques to specific practical scenarios including

spotlight-mode SAR and 3-D CT.
¢ An investigation into other possible invariants in the Radon space.

Chapter 4 has been devoted to an application of the instantaneous matched-
filter [160], and considered selective reconstruction of an object of interest from
noisy projections of multiple objects. The estimation or selection of a signal by
the instantaneous matched-filter approach [160] is in the sense of detecting a shape
and estimating the associated parameter from an unknown linear combination of
given shapes, using an inner-product processor. A development of the instantaneous
matched-filter from a discrete viewpoint, new observations and improvements over
the original approach, and a generalization that does not require an explicit orthog-
onalization, have been presented. The generalized version has been applied on noisy
projections of a composite image for selective reconstruction. The restricted applica-

bility of the approach has been mentioned. A limitation of simple subtraction-based
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approaches when the density of an object varies has been discussed. Alternatives
to the instantaneous matched-filter approach have been indicated. Scope of further

work in this direction is outlined below.

o Imaging cross-sections with objects of changing densities and of low-contrast is
a challenging problem with a vast scope for the application of digital processing
techniques [77]. While subtraction-based methods serve the purpose in many
situations in radiology [77], they may not be effective when the contrast of
objects in a certain neighborhood are similar, and/or vary quickly, often in a
correlated manner. Optimum reconstruction in the situations outlined above,

constitutes an interesting topic for further research.

Compression of binary images in the Radon space, investigated in Chapter
3, is a new direction in data compression. The basic idea involves exploiting the
a prior: information of a cross-section in CT being binary, and that of the repre-
sentation of a binary image by few projections. The non-binary projections can be
compressed using any of the available 1-D techniques. Two basic methods of data
compression, namely predictive and transform techniques, have been applied. In
particular, transform techniques have been shown to be applicable, and the DCT
has been seen to be effective. An extension of the approach to compress pictures
with closed contours has been dicussed. With the proposed schemé, it is possible
to take advantage of the projections being non-zero over short intervals. Illustrative
examples have been presented. The proposed scheme is useful for on-line transmis-
sion of CT data involving binary cross-sections, although it cannot handle on-line
reconstruction. The proposed scheme can handle binary as well as gray-level images.

An attempt to generalize the approach of [199] for binary image reconstruc-
tion has resulted in a variant of the well known family of algebraic reconstruction
techniques. The interesting projection-backprojection implicit in the algorithm of
[199] combined with its good performance, has been the motivation for the new de-

velopment. The development offers new possibilities in binary image reconstruction

125



methodologies. Other problems to be addressed in this area are listed below.

e Application of other compression techniques such as the wavelet transform,

vector quantization, and lossless compression schemes (eg., [137]).

¢ A performance-comparison with the current techniques for binary image com-
pression, with the objective of classifying the type of images that benefit from

the proposed method.

e A study of the algorithm for binary image reconstruction with different ap-
proximations of the operations of projection and backprojection, and different

constraints, and their performance in the presence of noise.

Two-dimensional spectral factorization in the Radon space has been discussed
in Chapter 6. The 2-D preblem reduces to a set of 1-D problems, of factorizing
the 1-D slices of the 2-D spectral density function, as a consequence of the central-
slice theorem involving a 2-D autocorrelation function. Hence, the virtues of 1-D
spectral factorization are preserved, although within the Radon space. The devel-
opment has been in the continuous domain, and an extension to the discrete case
is through an adequate sampling the 2-D autocorrelation. Apart from investigating
a solution to the 2-D spectral factorization problem via the Radon transform, the
purpose has been to provide a formal framework that highlights the basis of many
of the existing algorithms involving a mathematical modeling of the projections,
with the desire to motivate further applications from a new perspective. Indeed,
further possible applications, such as 2-D IIR filtering and restoration have been
indicated, and an example of LPC-based invariants in the Radon space has been
presented. The theory motivated a new approach to 2-D spectrum estimation using
the Radon transform, which has been considered in Chapter 7. It has been clarified
that spectral factorization of the projections of 2-D autocorrelation is not equivalent

to a factorization of the autocorrelation of the projections of a stationary random
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field (SRF). An interesting topic for further investigation, not mentioned in Chapter

6, is indicated below.

e Two-dimensional spectral factorization based on the discrete Radon transform,
with applications to 2-D filter analysis and design, and analysis of discrete

random fields.

In Chapter 7, the Radon transform of an SRF has been reviewed in the context
of 2-D spectrum estimation, and a new approach based on the Radon transform
of 2-D autocorrelation has been investigated. In the context, a new mathematical
representation for the Radon transform of an SRF, valid upto second-order statistics,
has been developed. The new representation has been used to derive the so called
central-slice theorem for SRFs. Although the final result has turned out to be the
same as that of Jain and Ansari [76], the new representation is interesting in its
own right, and has served to bring out some issues that are not evident in [76]. In
the sequel, some of the difficulties associated with the Radon transform of SRFs,
which have been ignored in the literature so far, have been highlighted. The role
of the function relating a projection of 2-D autocorrelation and the autocorrelation
of the respective projection of the associated SRF, has been discussed. Being non-
invertible, it gives rise to a difficulty in interpreting the results. Consequently, an
extension of the results associated with an infinite-extent SRF, to handle the sample
of a random field over a finite-extent, is not straight-forward. Further, it has been
shown that, in the finite-extent case, a projection of a 2-D autocorrelation of an SRF
and the autocorrelation of the corresponding projection of the SRF do not possess
a closed-form relation. Finally, it has been shown that the projections consisting of
integrals of an SRF considered over a finite-extent support are not even stationary,
in general.

Owing to the difficulties in characterizing the Radon transform of an SRF, a
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new approach based on the Radon transform of 2-D autocorrelation has been in-
vestigated. The use of the Radon transform of the 2-D autocorrelation estimated
from the data, has been considered for the first time. When the projections of the
2-D autocorrelation are positive-definite, a maximum entropy extension of each of
them exists and is unique. The result is a closed-form solution to the 2-D maximum
entropy spectrum estimation problem. The use of a biased estimate of the autocorre-
lation, and the computation of its projections through Gaussian interpolation have
been suggested to preserve positive-definiteness. However, the line integral com-
puted from the autocorrelation available over a finite support are not true values of
the line integral of the 2-D autocorrelation. As an alleviative procedure, constituting
an interesting extension to 2-D MEM, using the concept of ‘derived’ autocorrelation
has been presented. This approach provides a flexibility of accommodating errors in
the autocorrelation and the effects of windowing, to some extent. However, it is an
approximate MEM from a 2-D viewpoint. Possible modifications of the approach for
improved performance, and the scope of of 1-D techniques other than those consid-
ered, have been indicated. This includes finding a criterion for selecting the window
for the corrected MEM, and devising robust algorithms especially for short data
records. It is appropriate to remark at this juncture, that 2-D maximum entropy
spectrum estimation continues to be an interesting field of research. Scope for future
work involving the Radon transform associated with random fields is outlined in the

following.

¢ Application of other techniques such as the minimum-norm method of Ku-
maresan and Tufts [216], on the Radon transform of autocorrelation. The
proposed extension of the method of [216] to 2-D [91] has left many issues
unresolved. Although this approach is regarded a frequency-estimator [116],

the associated spectrum estimate is interpreted as AR estimate [217]. One
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could also explore the applications of different approaches based on eigen-
decomposition of the autocorrelation matrix, such as multiple signal classifi-
cation [144]. Finally, it would be particularly interesting to try the procedure
involving AR and ARMA modeling of the windowed correlation data [67].

e Investigation of methods based on the Radon transform of the data, while
taking into account the effects of integrating over line segments of different
lengths. An alternative approach is to use a common length of integration.
It would also be interesting to extend the ideas of local integration of SRFs
indicated in [220], for a definition and analysis of the Radon transform of SRFs.
Finally, one could study the family of line integrals scaled by the inverse of

the length of integration.

e Spectrum estimation is only one among the contexts in which the Radon trans-
form of an SRF arises. The ever increasing utility of the Radon transform as
a tool in m-D signal processing emphasizes the scope for further investigation

into the characterization of the transform of random fields.

In summary, this thesis has considered applications of signal processing tech-
niques in the Radon space. New algorithms for image analysis, compression and
spectrum estimation have been presented. The techniques of signal processing in
the Radon space have gathered momentum over the recent past. The vast number of
physical situations in which the data is available in the Radon space, and the poten-
tial of the Radon transform as a tool in multi-dimensional signal processing, enrich
the scope of this relatively new direction. The advent of dedicated hardware for the
computation of the forward and the inverse Radon transform, and the availability of
optical means of computing the Radon transform, provide a strong motivation for
further efforts involving signal processing in the Radon space. General directions
for future work in this area include: (i) a further analysis of, and approximations to

the Radon transform of random fields, (ii) an identification of new areas in which
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the Radon transform-based techniques can be applied, and (iii) further efforts in

the development of dedicated hardware for fast computation of the forward and the

inverse Radon transform.
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Appendix A

Properties of the

moment-patterns

Appendix-A1l

The behaviour of the moments under a shift in the variable by 7 is examined in

this appendix. Consider:
(0 +7) = [(t —Torn) posn(t)dt
Noting that pgyr(t) = pe(—t), and g1, = —1y,

p(0+m) = [(t+E) po(~t)d(~1)
= [(t+ @) po(t)ar
= (=1km(8) (A1)

As a consequence, the following property results:

ue(9), k-even
—p(8), k-odd

PRCEROR { (A2)
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Thus, even-ordered MPs are periodic in 8 with a period of 7. Due to the change of
sign, the odd ordered MPs remain periodic with a period of 2r. The above property

also shows that actual computation of the moments need to be only over ¢ € [0, 7).

Appendix-A2

Consider the projection p®s(¢) = Aps(1), of a scaled object, where X is the

scaling factor. The normalized central moment of order k, of p*s(t) is given by:

s . ”ak(g)
7°x(0) = POCRE (A.3)
From (3.7), the function p{(8) is given by A2**1,(8), where, the quantities without

the superscript (s) denote those associated with the unscaled object. Substituting

this in the above equation,
s _ /"’k(g)
7’ (0) = [/\z'uo(g)](ki-z)/z
£ (6)
Vo 6)] 2
pi(6)
[1o(8)](k+2)/2

which is invariant to the scaling factor, A.

Appendix-A3

Let s(7), 0 < j < L—1, denote the reference third order MP in the RS, where

L is the number of projections. This pattern may be viewed as an L-point vector:
v =[s(0)s(1)...s(L—-1)] (A.4)

where, ’ denotes transpose. Let S = {v;, 0 < j < L — 1} be the set of all possible
circularly shifted versions of the reference vector (the elements of the vectors also

undergo the same circular shift or rotation). The subscript 7 denotes the number
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of points (extent) of the circular shift. For example, vy = v, v, = [s(L — 2) s(L —
1) s(0) s(1) ..s(L — 3)]". From (3.9), y(n) = viv;, ¥n. Thus, y(r) is a projection

(not the line integral) of the vector v, onto the vector v;, and

o < v = [ulf? (A.5)

n

Since the vectors v; in the set S are distinct (unless the vector v corresponds to
the trivial case of all the elements being identical, or to that where the elements
are periodic with a period smaller than L), there exists only one maximum in the
set y = {vjv;, n =0,1,2,...L — 1}. Note that the lengths of all the vectors in S
are the same. Barring such trivialities, the point corresponding to the peak in y,

representing y(n) in (3.9), is unique.

Appendix-A4

The orientation of an object, defined as the angle made by its bounding rect-

angle/ellipse, is related to its 2-D moments as follows [58, 211]:
2
¥ = tan™! —Fu (A.6)
H20 — Ho2
The 2-D moments in (A.6) above can be found in terms of the moments of just three

projections. Clearly, u20 = p2(0), poz = p2(n/2). The expression for y; in terms

of the usual moments as:
MioMo1. ( A 7)
Moo

It is straightforward to see that mjo = m;(0) and me; = m;(7w/2), which can be

K11 =mMy —

computed from two perpendicular projections. An expansion of my(m/4) yields the

relation required to compute m; [43]:
mu = ma(m/4) — 0.5(m2(0) + m2(n/2)) (A.8)

resulting in the following expression for the orientation:

1 2{ma(r/4) = 0.5(ma(0) + ma(n/2)) = [ra(O)ra(r/2/mal} (o
PROESAET) |
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The ambiguity due to the inverse tangent relation can be resolved by making use
of the signs of the numerator and the denominator of the argument [211]. The sign
of 43(0) can be employed to determine the axis. The rotation of an object is the
difference between the reference and the computed orientations. The sign of u3(0)
can be employed to determine the axis. The above procedure is applicable only to
non-negative distributions, as is the case with images [211].

The expression (A.9) is new, and is yet to be implemented.
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Appendix B
Expression for the scaling factor

Let 7 =< hy,x >. From (4.3),
r=a; <hy,® >+a, <h;,®, >+ < h;,n> (B.1)
The problem is to find A; such that { = E{[A\;r — a;]?} is minimized.
¢ = E{\M*? + a2 — 2a, )17} (B.2)

Expanding and taking expected values noting that a; and a, are uncorrelated mu-

tually as well as with noise, the expression for ¢ simplifies to:

¢ = A%[a1? < hy, @) >% 40,2 < hy, B, >2 +[|hy||202] + a1? — 2\a12 < hy, &, >
(B.3)

Setting &( to 0,

2/\1 [a.;z < hl, @1 >2 +a;2 < hl., (Dz >2 +”h1”20,,21] - 2&;2 < hl,q)l >=0

The expression for A; is given by:

A = a;z < h1,®1 >
T oa< h;, ®; >2 + az2< hy, ®; >2 + ||hy 20,2
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Appendix C

Proof of the least-squares

theorem

Given a noisy observation g of a vector f, and the inner product po of f with respect
to a weighting vector w, the problem is to find f such that J = [lg— f||? is minimized,
subject to < w, f >= Po-

The above problem of constrained minimization can be reduced to one of

unconstrained minimization by formulating a new cost function:
B = llg = fII* + Mpo — w” f) (C.1)
where A is a Lagrange multiplier. Setting %"IL = 0, where 6 is the zero-vector,
f=g+ %w (C.2)
Multiplying both sides of the above equation by w7 and using the constraint,

— anT
e (C3)

Substituting for A in the expression for f above,

- Po— < w,g >
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Replacing the weighting vector w by u = [1 1..1]7, and observing that uTu = N

k]

the theorem of Soumekh results:

So — Zgi
i

where sq is the given value of the sum of the unknown sequence.
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Appendix D

Radon transform of an SRF

Consider the representation (7.1) of an SRF:
f(z,y) = acos(z + Qay + &) (D.1)
Using the RT of a cosinusoid [72], the RT of f(z,y) is:

p(6,t) = i cos[(ﬂl cos § + Q2 sin )t + PJ5(6 — ;) (D.2)

where, fo=tan™"(Q:/9;), and Q = £1/Q? + Q2. (D.2) can be written as:

= cos(Qut + 8)8(8 — bg) (D.3)

p(ﬂ,t) = IQI

Using the property f(8)8(6 — o) = f(6a)6(6 — 6g), and noting that £ cosfq +

2, sin O reduces to ,

p(6,t) = cos(Qt + ®)5(0 — 6q) (D.4)

W]
Now, E{p(8,t)} = 0, and the ACF E{p(e,t)p(B,t + )} is given by:

@ E{i cos(27)8(c — 00 )8(B — 6a)}

_ //(S(wl,wz) cos(/n? + walr )8(cx — 0.,)5(8 — 8.)dwr dw,

w12 4+ wy?)
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where, 6, is tan™!(w2/w;). Substituting w; = w cos b, w, = wsin 0, 8., reduces to 8,

and the expression for the ACF reduces to:

- 23R ona] s ®
71 {5 50— p) (D-6)

where, Sp(w) = F{re(7)} is a slice of the 2-D PSD at angle §. Note that the above

derivation brings out the unbounded nature of the line integral of an SRF.
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