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ABSTRACT

Fault ldentification and Fault Location in Series Compensated Transmission Lines

using Neural Networks

Tiberiu Grigorin

Changing requirements and increasing complexity of power systems demand new
techniques to improve the reliability and protection of power systems. Traditional
methods of transmission line protection based on distance relays are increasingly
becoming strained since the occurrence of a fault in a power system produces three
types of switching transients: at 60 Hz (the power frequency), at higher frequencies
cansed by resonance of the system'’s LC elements and very high frequency transients
due to lightening surges. These transients have a magnitude and a rate of decay that
depend on many factors such as fault location, fanlt type, and system parameters.
These transients make the relationships between the bus voltages and line currents
not easily definable, and many times the traditional protection schemes fail to operate

properly.

Additional difficulties are encountered for series compensated transmission lines.
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The increase of transmitted power is achieved by compensation of the line impedanee

by adding a series capacitance. The secondary effects of this series capacitance are

1. the creation of new switching transients due to the resonance between the
capacitive impedance of the series capacitor and the inductive impedance of

the line

2. an abrupt change in the linear impedance of the transmission line,

These secondary effects contribute to the distortion of the relationships hetween bus
voltages and line currents, and confuses the traditional protection schemes, 'This

topic is discussed in section 1.3.

Artificial Neural Networks {ANNs) might offer a novel solution to detect a fanlt,
in a power system since ANNs are able to extract the characteristic features from the
bus voltages and line currents. There have been previous attempts to use ANNs in
protective relaying schemes [7] or monitoring of power systems [10, 14]. Also some
attempts have been made to combine ANN with Artificial Intelligence and Expert,

Systems [12, 13].

This thesis proposes a novel approach to the protection of series compensated
transmission lines by using an ANN for the identification and location of a fanll.

Two different architectures for ANN (Counter Propagation Network (CPN), and

iv




Adaptive Resonant Theory (ART)) are considered and a comparison of their perfor-
mances is made. The bus voltages and line currents are pre-processed using different
normalization methods. ANNs are then employed to classify the feature-vector space

into distinct categories,
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Chapter 1

Protection of Power Systems



1.1 Introduction

A power system consists of a network of generators that send power to consumers
through transmission lines. Due to natural or other causes, i.e. lightening, or mal-
functions of some components, fault conditions can oceur anywhere in the power
system. Such fault conditions can result in severe damage to the system equipment
due to either overvoltage and/or overcurrent stress. Thus, all the components of
the power system need to be protected. The function of the protection system is to
isolate the faulted compounent from the remaining power system, quickly and in a

safe manner, and restore power transmission.

As the complexity of power systems has increased proportionally to the mumber
of consumers and power demand, faster and more eflicient methods for monitoring
faults are needed. Fault monitoring techniques are required to rapidly and accurately
identify the fanlt type and the fanlt location. An accurate fault identification ensures
a correct protection sequence to restore the system stability. Similarly, identification

of an exact fault location ensures the rapid isolation and restoration of the system.

In traditional protection methods, the fanlt monitoring task has been accom-
plished by estimating the fundamental frequency components from the corrupted
voltage and current signals following the fault occurrence. By this analyses, the

faulted phases may be determined. The following types of faults are relatively casy
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to identify: Single Line to Ground (SLG) and Three Line to Ground (3LG) faults.
However, there are usually difficulties in distingnishing between high impedance faults

such as Double Line to Ground (DLG) and Double Line (DL) faults.

In general, the protection schemes use as input data the phase voltage and current
at the location of the protection device. Also, there are instances where information
from other protection devices may bhe available using telecommunications. In this
case, more reliable decisions can be taken, by comparing the information. However,
the use of telecommunication channels to exchange information increases the cost
and speed of operation. Furthermore, consideration of the lack of telecommunication

should not compromise the protection scheme.,

Different protection schemes, which rely on the information at either one or both

ends of the transmission line are discussed in section 1.2.

1.2 Protection Schemes

Protection schemes based on the distance relay are among the most well-known
(1, 2, 3]. Conventional distance relays measure the voltage and current at a relay
location. Based on these measurements, the relays can identify the faulted phases.

An approximation for the fault location can be made by computing the impedance




of the line. However, despite a relatively robust and simple implementation there are

several drawbacks of this method:

e relay operation is based on the measurement of power frequencey voltage and

current components and therefore a relative long time delay is required,

e measurement of impedance is only meaningful in relation to steady-state sinn-
soidal conditions, and it becomes increasingly difficult to perform accurate and

discriminative measurement for faulted conditions,

e errors of measurement are encountered during high-resistance carth faults and

power swings,

e low apparent frequency of aperiodic components in the measurands, associated

with faults in long-line applications, introdiice an error in measurements.

These drawbacks resulted in new proposals for protection schemes. As the capabil-
ities of microprocessor-based instrumentation increased, new schemes were developed
for fast fault identification and location by the analyses of the transient components
set-up by faults. The schemes operate with correlation techniques to recognize tran-
sient components that depart from the relaying point and return to it later after a
direct reflection from the fault. The tocation of the fault is found by estimating the
time between the departure and arrival of these signals. In contrast with traditional

methods, indication of fault location is achieved faster [6, 4].




Fiber optics can also be used to identify the location of the fanlt [15]. The
profection system uses a composite fiber optic Overhead Protection Ground Wire
(OPGW). OPGW methods have both the lightning protection scheme and the in-
formation transmission fun-tion included within them. The principle used by this
technique is based on a reversal of the direction of the OPGW current at the fault
point. Fault sensors along the line extract information required for fault location.
If the phase angle between adjacent sensors differs by about 180 degrees, the fault
might oceur in the section between them. This method could only detect ground

faults, and errors might occur due to malfunction of the sensors.

In modern power systems, the use of series compensated transmission lines is
becoming common. Such lines permit the transmission of more power than uncom-
pensated lines. These lines pose difficult protection problems due to the presence
of the lumped capacitance in the transmission line and usually different protection

technigues are used. These are summarized in the next section.

1.3 Protection of series compensated transmis-

sion lines

Compensation is achieved by inserting a bank of capacitors in series with the trans-

mission line. Typically, the capacitors are placed either in the middle or at the ends



of the line. The capacitive reactance of the series capacitors compensates for the
inductive reactance of the line. This reduces the voltage drop caused by the lat-
ter. Therefore, long transmission lines become electrically shorter and the power

transmission can be raised closer to the thermal limits of the line conductor.

Consider the feeder circuit in Fig. 1.1 with its the corresponding voltage-phasor
diagram. The expression of the voltage drop V) along the feeder has the following

form,

Vi = I Reosd + T X sing (1.1)

where R - resistance of the feeder circuit
X1 - inductive reactance of the feeder circuit,

¢ - power-factor angle

Since the resistance R is small, the magnitnde of the second term in eq. 1.1 is
greater than the first term. The difference between the two increases as the power

factor becomes smaller and the ratio R/ X}, becomes smaller.

Inserting a capacitor C in series with the line (Fig. 1.1) alters equation L1 to
Vi = I Reos¢p + (X, — Xe:)sing (1.2)
where X¢ - capacitive reactance of the series capacitor
From eq. 1.2, the second term of the eq. 1.1 is deereased by Xi:. Therefore, the

voltage drop Vpp decreases and more power can be transmitted without changing the
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power factor ¢. Moreover, it is possible to overcompensate the line by choosing a

value of capacitive reactance X greater than the inductive reactance X,

The transferred power P is given by

- _ 3|V || Va|sing
' (XL - Xe)

(1.3)
IFig. 1.2 shows a plot of equation 1.3 with increasing capacitive reactance compensa-
tion Xy, < Xo, < Xezy. For X = 0, the available power Fyyqi cannot be transmitted

across the line because X, is too large. However, as the capacitive reactance is in-

creased more power can be transmitted.

Inserting a capacitor in series with the transmission line, however, has side ef-
fects. The transmission line is a uniformly distributed impedance, and the presence
of a lumped capacitor somewhere along it creates a distortion. The impedauce of
the line is no longer linear and therefore, difficulties in location of the fault using

measurements of the impedance can be expected.

Furthermore, the resonance phenomena introduced in the transmission system
by shunt-capacitors and shunt-reactors now has an additional component due to
the series capacitor. This resonance involves exchange of energy between the series
capacitance and the series inductance of the line and generators. This resonance
frequency will increase from zero as the level of compensation increases, being highest

when all the generation is on.




a) (23]

Figure 1.1: Voltage-phasor diagram for a circuit: a) with and b) without sceries

capacitor .

phi

Figure 1.2: Transmitting power as a function of ¢ . |



It is well known that switching a transformer/reactor onto a transmission network
causes an offset-saturation type of effect in adjacent magnetic devices. This may
produce a full spectrum of harmonies along with overvoltages and severe distortion
of the fundamental ac waveform. The difference with a series compensated ac line is
that the harmonic current injected by the magnetic devices can be much greater, and
it has a pulsating characteristic. This is due to the shunt-reactor resonance mode.

This hehavior is also ohserved following major ac faults [5].

Thus, the waveforms are more distorted in series compensated transmission lines,
and the protection schemes that rely on these waveforms are not as efficient as in the

uncompensated transmission lines.

1.3.1 Distance Relays Protection

A distance relay is a device that indicates the position of the fault [3, 2). The
impedance of the transmission line is normally proportional to its length. By mea-
suring the impedance, the distance to the fault position can be estimated. However, it
operates only for faults taking place between the relay location and the faulted point.
Also, it discriminates between faults to determine whether the fault lies within or

outside its operating zone.

In Fig. 1.3 the relay is located at position R. The line current Ig, and the bus

<



voltage Vg are the two inputs to the relay. Zs and Z, are the lumped equivalent

impedances of the source and line respectively. The voltage across the rlay is given

by
Ve = InZ, (143
where Iy is
4 ;
Iy= 77 (1.5)

Substitution of eq. 1.5 in eq. 1.4 gives

I

Vi= ————
"= Zs]7) + 1

v (1.6)

Equation 1.6 gives the relationship between the voltage across the relay and the

impedance Z;, of the line.

The series capacitor introduces a discontinuity in the impedance of the line, there-
fore equation 1.6 changes and the values of Vi do not, vary linearly. When a line fault,
occurs near the capacitors, there is a voltage inversion, or at least. significant phasc
shift for relays connected to the lineend. The voltage inversion entails loss of diree-

tionality for some relays.

The presence of the series capacitor decreases the protection zone of the distance
relays. The relay | (Fig. 1.4 a) is applied at bus G to protect, the line Zpy, but
will not detect the faults either in the capacitor or on the line for a distance of X¢;.
However, the relay 3 will be able to detect the fault that oceurs in this line section

and incorrect relay operation will occur.
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Figure 1.3: Circuit to study relation between source and relay voltage .
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Figure 1.4: Distance relays on a series compensated line .
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Changing the location of the relay from point G to P after the capacitor does not
solve the problem (Fig. 1.4 b). The relay 1 operates for line Zp g, but also opervates

for a fault on line Zy, for a distance X (Fig. 1.4 b).

The bus voltage exceeds a maximum ievel set for the series capacitors during
the fanlt periods. The protection of the capacitor is accomplished by connecting
spark gaps in parallel with the terminals of the series capacitors. The gaps short, the
capacitors out when the voltage level exceeds a maximum value set slightly above
their insulation capabilities. This moves up the point P and line Zpx to G (Fig.
1.4 a), or the point G and line Z;,, moves down to P (Fig. 1.4 b). Although the
directional seusing is correct, the protection zone of relay shortens for line 7,5 (Fig.

1.4 a), or ZLL (Fig. 1.4 l)).

There is always the possibility that the spark gaps will not operate and not
short out the capacitor bank. Consequently, incorrect operations of the relays might
occur due to distortion of the voltage and current patterns. Therefore, more robust

techniques are needed .

1.3.2 Ultra-High Speed (UHS) Protection

In this method [6, 4] the location of the fault can be determined by measuring the

time between the departure and arrival of travelling waves at the relaying point
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[6, 4]. In Fig. 1.5, the over-voltage dueto the fault, Vi is detected first followed
by subsequent reflections Viy, and Viz. The time between the detection of V;; and
Viz is the time necessary for the waves to propagate to the fault location and back.

Therefore, the distance x to the fanlt from the relay location is given by
r=1upty (1.7)

where u, is the velocity of wave propagation along the line. However, the presence
of other reflections, 1.e. signals such as V3, could confuse the relay. Thus, it is very
important to develop an algorithm to distinguish the waves of the same type as V,

from other ones.

The values of currents and voltages at the relay location are stored continuously
for a cycle. Knowing the signal V4, the voltage at the fault location would he given
as a function of the fault resistance R;. The voltage at the relay location can be
determined as a function of time 1, which is necessary for waves to propagate to the
fault location. Therefore, the relation between the voltage in a no fault condition and
the voltages in a fault condition can be expressed by an implicit function depending
on timety and Ry,

The protection algorithm is described below:

e parameters of function defined in eq. 1.8 are determined from the prefault

conditions,
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o the voltage component V;; which would be reflected is caleulated,

o the time of arrival, 24, and incident voltage V;, of any subsequent disturbance

is obtained,

o two estimates gy, and Ry, of the actual fault resistance are obtained,

¢ the two estimates Ry, and Ry would agree only for the primary pulse, This

will discriminate between primary pulses and other disturbances,

For a compensated line, the scheme is the same as that shown in Fig. 1.5, but, aseries
capacitor is placed in the middle of the line. The protection algorithm is changed
to suit this new configuration. For the first half of the line (Fig. 1.6) hetween the
relaying point Fp and the capacitor P, the equations derived for the untransposed
line are used without modifications. For the second hall of the line, from just hefore
the series capacitor P53 to the remote end Py, the presence of the capacitor has to be

considered. The set of equations is changed accordingly.

The algorithm begins with the assumption that the faull occurred in the near
half of the line. If no relevant pick is received during the line transit time, it is
assumed that the fault may he on the remote half of the line. Then the modified set,

of equations is used to estimate the location of the fanlt.

Once again it is obvious that a normally cfficient protection scheme for an untrans-
posed transmission lines needs to be adapted for series compensated transmission

14



lines, Further research in this area is ongoing.
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Chapter 2

Artificial Neural Networks



2.1 Biological Motivation

2.1.1 Single-Neuron Physiology

A neuron [16] is the smallest unit for processing information in a brain. The biological
neuron’s structure and functions inspired the model of the artificial neuron. The
biological neuron has a tree of filamentary dendrites that connect the neuron to
other neurons placed in its vicinity. The membrane of the neuron separates the
intra-cellular plasma from the interstitial fluid external to the cell. The membrane
maintains a potential difference between the two and is permeable to certain ionic

species,

Sodium ions (Nat) are transported out of the cell, while potassium ions (K)
are received inside it. Negative chloride ions are too large to diffuse though the
membrane and stay outside the membrane. The result is an equilibrium potential
of about 70 to 100 mV. The potential difference across the cell membrane can be

reduced by excitatory inputs to the cell.

The ontput pulse from the neuron propagates down the axon, which ends with
a tree of filamentary dendrites. These transmit the output of the neuron to other
neurons. The axons themselves are poor conductors and an amplification mechanism

transmits the nerve pulse along the axon. This process is a series of depolarizations

17




that occur at some nodes, called Nodes of Ranvier. These nodes act as repeater sites

for the signal.

2.1.2 The Synaptic Junction

Synaptic junction or synapse is the connection between two neurons. The commu-
nication between the neurons is accomplished by an exchange of substances, called
neurotransmitters. The presynaptic membrane allows nenrotransmiticrs to be re-
leased. At the other end, they diffuse across the junction and join to postsynaptic
membrane at certain receptor sites. There, if the influx is of positive species, it will
result in a depolarization of the resting potential, called excitatory effect. If the in-
flux is of negative species, a hyperpolarization cffects oceurs, called inhibitory effect.,
The effects are local, and they are summed at the axon hillock. An action potential

is generated if the sum is greater than a certain threshold.

2.2 The Artificial Neuron

The artificial neuron has been modeled using the knowledge available from a biological
neuron. However, the function of the artificial neuron might differ from the biological

neuron in a general case. This is further emphasised by the terminology nsed for
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artificial neurons as processing elements (PE), units, or nodes.

2.2.1 Mathematical Model of Artificial Neuron

The Fig. 2.1 shows a model of the artificial neuron [16]. The input vector X consists
of a set of clements Xy, X3,..., Xn. This is applied to the network though a weight

matrix, and the result is summed. The sum is given by the relation,

N
NET =3 xjw, (2.1)
i=1
A3
P NEP=XW OUT=RAED
. T
X W

Figure 2.1: The mathematical model for artificial neuron .
where M is the number of output neurons, and N is the number of input elements.
The total input NET applied though a function F(X) gives the value of the output
of the neuron. The function F is usually the sigmoid, or hyperbolic tangent function.
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Their expressions are shown below, respectively:
OUT = 1/(1 + ¢VET) (2.2)

OUT = tanh(NLET) (2.3)

<

The function F is called the activation function, and has the following propertios:

e it saturates the output, such that for large values of the weighted input NIST
above a certain threshold the increase in output is very small. Thus, the gain

is small for a large inpnt,

e for values of input around zero the slope is steep. This provides a large gain
for small variations in input around zero. This is usually the case when the

training of ANN starts,
e the steepness of the slope around zero can be controlled,

o the expression of the gradient for F with respect to NET, given hy eq. 2.2 and

2.3, can be expressed as a function of F itself.

2.2.2 Single-Layer Artificial Neural Networks

Although the neuron itself can perform some tasks, the power of ANNs consist in
complex interconnections between neurons. ANNs are hierarchy architeetures. Nen-
rons which receive data from the same groups of neurons and send it to a common
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Figure 2.2: Single layer neural network architecture .

group of neurons, form a layer. A single layer ANN is shown in Fig. 2.2, The first
layer is a fan-out layer with no processing functions and usually is not considered a

layer.

Assume a set of M input vectors, i.e. Xq,...,Xps is fed into the NN, then the
NET value described by equation 2.1 can be re-written as a matrix multiplication,
NET = XW (2.4)
where N is the number of elements of a pattern, and W is the weight matrix.

A single layer ANN can perform more difficult tasks than a single neuron. Con-
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sider the activation function as a threshold function,

Lifx>0
f(a) =
0,ifx< 0
then a single layer NN can perform pattern classification for patterns that are lincarly
separable. This condition is very restrictive because many classification problems do

not possess linearly separable classes. For such problems the solution is a multi-layer

ANN.

2.2.3 Multi-Layer Artificial Neural Networks

A multi-layer ANN is constructed by cascading single-layers of neurons (Fig, 2.3).
This will have improved performance only if the activation function of the nenrons
within a layer is non-linear. Thus, the input/output function of the overall network is
non-linear. A multi-layer ANN can classify patterns that are not lincarly separable,

because the convergence surfaces might have any shape, not only lincar.

Having a multi-layer ANN with a linear activation function is pointless, hecanse

the NET is a multiplication of matrices, and the following condition holds

NET = (XW)W, = X(W,W,)

Thus, instead of two layers, and two weight matrices Wi, W, one layer NN can he
constructed with weight matrix equal to the product of the two metrices Wy W,.
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Figure 2.3: Two layers nenral network architecture .

2.2.4 Training in Neural Networks

The process of training is simply an algorithm to adjust the weights. During the
training, the weights are set to certain values such that the presentation of an input

produces the desired cutput.

In supervised training the desired output is presented with the input. The weights
are adjusted such that the error between the desired and actual output decreases to

Z0r0.

Unsupervised training consists in presenting input patterns without any other
information about the ontput. The NN extracts the statistical properties of the

training set. Based on this, the patterns are classified into different groups.
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Also, the training process can be either on-line, or off-line. Off-line means that
the NN has been trained before it is used within a system. On-line means that the

training is done when the NN is part of a system without any previous knowledge.

2.3 Counter-Propagation Network

Counter-Propagation Network (CPN) was created by Robert Heeht-Nielsen {16, 20].
A CPN works as a "look-up” table, in parallel finding the closest example and reading
out its equivalent mapping. Normalized inputs and competition between neurons

selects the nearest neighbor.

2.3.1 Counter-Propagation Architecture

CPN is a combination of the competitive Kohonen structure network and Grossherg’s

outstar structure. In this section only a uni-flow version of CPN is discussed (Fig.

2.4).

The first layer of the CPN is an input layer, which pre-process the input veetors,
The second layer is a Kohonen layer which consists of instar neurons and the third

layer is the output layer build from outstar neurons.
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Fignre 2.4: CPN architecture .

Two vectors X and Y are applied. The vector Y is the desired output when the
input vector X is presented. Applying X as the input vector, after a competition in
the Kohouen layer only one neuron fires, while the other neurons are inhibited. The
winning neuron activates the connection with the outstar layer selecting in this way
a unique output vector. Thus, the uni-flow CPN associates a set of input vectors to

a set of output vectors, as a hetero-associative nearest-neighbor classifier.



Figure 2.5: The normalization layer, known as on-center, off-surround .
The inputs to the Kohonen layer must be normalized to insure the competition
among the processing elements (PE) within the layer. The input set of vectors X is
normalized using the relation,

&€r;
- ZN ,'.2
=17
where ;, i=1,...,N are components of vector X. Using this normalization all the input
vectors lie on the unit sphere. The input vector can either be normalized hefore is

fed into the NN using the pre-processing method described above, or the input layer

can do this.

Fig. 2.5 illustrates the normalization method used hy the first layer of CPN. Fach
input element from the input vector is connected to every neuron from the input layer
through to the fan-out layer. The connection is positive only for the corresponding
neuron in the input layer, the other connections are negative (Fig. 2.5). A quantity
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O, is defined for cach X,
O; = X,(Z X,')_] (2.6)

The vector (0y,...,0,)" has the property that 3,0, = 1.

The differential equation for the output of the layer has the form,
I, = —AI + (B~ 1)X, - LY I (2.7)
ki

where 0 < I; < B, and A,B > 0. At equilibrium, the output state is

BX ‘
=0 (2.8)

where ©; is delined by eq. 2.6. The output pattern is normalized, because

BX A
I; = = —+1)! B
Y=g =BG+ <

)

The competitive layer is built up using an instar PE. Before the competition
the output of one PE is the inner product between the input to the layer and its

connection. Let O be the output of this layer, then

s

O=W.-T=|W|-[]]cos(6) (29)

where 0 is the angle between W, and I. Since the weights and input vector are

normalized to a length 1, the output is given by equation 2.9 becomes

O = cos(0) (2.10)



The PE with the largest ontput wins the competition. From 2.10 the output is larger
as the angle 6 between W, and I'is smaller. Thus, the PE, which has the weights

closer to the input vector, is the winner. The weights are updated using the formul
w(t+ 1) = w(t)+ ol - w(t))

where w(t + 1) —states of the weights at next time instant

w(t) —current value of the weights
| —input
o ~learning constant, « < |

The output of the winner newron from the Kohonen layer is input to the next layer
(Grossberg layer). During the training process, the outstar PEs from Grossherg layer
have also as inputs the set of vectors Y. The weights are set to minimize the error
between the desired output Y and actual ontput. The PEs will respond with pattern
Y, every time the PE from the Kohonen layer associated to it wins the competition.
After training, the pattern Y is selected, when its correspondent fires, without heing
presented at the same time with the input vector X. We can say that the CPN learned

the associative map between the input and output veetors,

The two structures instar, and outstar complement cach other. The instar ree-
ognizes an input pattern and classifies it, and the outstar identifies or names the

selected class.
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2.3.2 Training of Counter-propagation Network

It is a good practice to nse two separate training sets, one for instar PEs, and another
one for outstar PEs. First the instar PEs are trained. One PE fires for each cluster
of vectors. The input vectors from the training set have to be chosen adequately to
represent that cluster. Once the weights of the competitive layer are satisfactorily

set, training of the ontstar layer can occur.

If all the veetors of one cluster are mapped to the same output vector then the
training assigns the weight vector, on the appropriate connections to the output layer,
to be equal to the desired output vector. In the case when the vectors are mapped
to different ontput vectors, the weights are set such that the average of those output

vectors is reproduced.

2.4 Adaptive Resonance Theory Network - ART?2

Oue of the shortcomings of the CPN is the need for a new training process with
changing system conditions [16]. This means that each time new categories of pat-
terns need to be added, or a new pattern added to a category, a new training set has
to be generated. This situation is called stability-plasticity dilemma and it is valid

for most NN architectures. ART tries to solve this dilemma, by using a feedback
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mechanism between competitive layer and the iuput layer of the network.

The information is sent back and forth between the two layers. When the proper
patterns develop, a stable oscillation ocenrs. This is the NN equivalent of resonance.
Since the time required for changes in the PE weights is longer than the time that
it takes the network to achieve resonance, learning oceurs only during the resonant

state,.

The training of ART is unsupervised. It detects though the orientation system if

there is a match with the previous stored patterns, and if not it creates new categories,

2.4.1 ART2 Architecture

Two main types of ART networks are available, ART'L, and ART2. The first one has
as input binary patterns, while the latter one can have analog patterns as well. The
architecture of ART2 is more complex than that of ARTI, but the basic principles

are the same.

Both have an attentional subsystem and an orienting subsystem. ‘Fhe attentional
subsystem consists of two layers of processing clements, Fy and [y, and a gain con-
trol system. The orienting subsystem is responsible for sensing mismatches between

bottom-up and top-down patterns of the /y layer.
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The I layer is split into six sublayers containing both feedforward and feedback

connections. The activity on each sublayer is governed by the equation,
ety = —Awxg + (1 — By )JF = (C + Day)Jg (2.11)

where A, B, C and D are constauts, JF and J7 represent net excitatory and inhibitory

factors. If B and C are set to zero then the asymptotic solution is given by,

J*

=" 2.1:
A¥ DI (2.12)

Iy

There are different values for A, D, J*, aud J; for each of the six sublayers which

provide the following equations:

w, = I; + au; (2.13)
wy

= — 2.14

e+ 1] (14

v = fle:) + b(a) (2.15)

v,
Uy = ——— (216
P E )
pi =wi+ Y g(yi)z, (2.17)
J
Pi
i = —— 2.18
<3 7 (2.18)

where [ is a sigmoid function or

0 ,if0<x<9
f) =

x ,if x>0

with @ positive constant and less than one.
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In the processing layer Fy, bottom-up inputs are calculated using the relation:

T, = Z_Pi:i.l (2.19)

After the competition there is only one node winner. The output function ol F% has
\ 2

the following form,

dT,=mar(Ty) for any k
g(y) =
0 otherwise

The equations for Long Term Memory (LTM) have the same form for both
bottom-up and top-down weights. Thus the bottom-up weights between node i on

layer Fy and node j on layer Fy are calculated as

20 = 9(ui)(pi — =) (2.20)

and top-down weights from node j on layer Fy to node i on layer I as

Ziy = 9(y,)(p — =) (2.21)

The equation for the orienting subsystem is based on the solution of 2.12

tli + (:pi . (3 13
pym it P (2.22)
C N+ sl
where e is assumed equal to zero. The condition for the reset is
P .
— >1 (2.23)
17

In equation 2.22 the outputs of two sublayers of Fy participate. The activity of nodes
of p' layer are changing as top-down weights change, but those of i layer remain
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Figure 2.6: ART Architecture .
constant. This prevents a reset while a new pattern is learned. The norm of 7 is

given by the expression

(1 + 2||ep]| cos(iZ, ) + ||cpl|*)! 72
L+ lepl

7l = (2.24)

IT @@, and 7 are parallel then ||[7]] = 1, and there is no reset. This is the case when
a new pattern needs to be encoded, or no output is received from Fy. A sufficient
mismatch between the bottom-up input vector and top-down template will cause a

reset.,
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Chapter 3

Protection of Series Compensated
Transmission Lines Using Neural

Networks
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3.1 Introduction

The use of NNs for protection of transmission lines has been proposed by other
anthors (7, 10, 12, 13, 14]. The capability of a specificly designed architecture of
NN to perform pattern recognition in domains such as speech recognition, image

processing, ete. snggested the possibility of using them for fault identification.

Khaparde et al [7] investigated a protective scheme using ADAptive LINEar
(ADALINE). In their experiments, they replaced the distance relay in the simplest
form with a NN of ADALINE type. The NN could locate the operating point cor-
rectly in the decision space. The time requirements to get a decision was comparable
with that of conventional relays, without implementation of parallel processing tech-
niques. The limitation of the model proposed in this paper refers to the fact that
ADALINE network is trained to take only one decisions based on the values of the
bus voltages and line currents. The decision is to detect if the operating point is in

the tripping zone or not,

Sobajic and Pao [14] and Aggoune et al [10] used the NNs for power system
contingeney screening. These authors proposed solutions to assist the operator to
take measures to prevent a deteriorate service quality. They analyze the system load

flow and were not concerned about fault identification and fault location problems.

In this chapter, a novel protective scheme based on a NN using the information
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available from only one end of the transmission line is presented to protect a series
compensated line. The NN is placed at the sending-end bus, and its inputs consist
of the three bus voltages and line currents. Based on these measurements the NN is
required to identify the fault type and fault location. Time domain simulations are
performed with two different models for the transmission line and two different NN

architectures.

3.2 Systems Modeled

3.2.1 The Transmission Line Model

The 214 km long transmission line is a 735 kV medium-length line (Fig. 3.1). The
active power transmitted is 1000 MW and the reactive power is 500 MVAR. The line
is modelled with four IT sections (Fig. 3.2) and it is series compensated, T'he series

capacitor (170 uF) is placed in the middle of the transmission line.

The capacitor is protected by a surge arrestor (MOV) of the metal oxide type. The
air gap is usually triggered by a special cirenit (not shown) to protect and bypass the
MOV and capacitor if the absorbed cnergy exceeds a specified value [I7]. A simple
two-step non-linear characteristic is used for the arrestor model. The arrestor knee

level is 1.5x17.676 kV.
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Figure 3.1: Model of the transmission system.

The expression of the voltage at the sending end, function of the voltage and

current at the receiving end for a Il sections (Fig. 3.2), is given by,

1
Vs= (Vi x EY + IR)Z +Vr

1
Vs=(1+5Y2) Vi + 2 In (3.1)
‘-—-v-—‘A B

And the expression of the current at the sending end is

1 1 1
Is = [(1 + EYZ)VR + ZI[{];Y + EY X (VR + 1
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| .
Is =Y + ZYIZ)VH + (l + %YZ) IR (3.‘..’.)
— T

Equations 3.1 and 3.2 can be written in a more compact form as follows,

Vs L+lzy 7z \'
= (3.3)

Is Y +12Y? 14127 || I,

I 1 L%
o — z - o "
* lcll lLZ‘ T

Y/2 Y72 \'A
O —- l - N

Figure 3.2: T-section equivalent model of transmission line,

The simulations of the power systemr are done using EMTNDC software pack-

age [19]. The actual parametric values used for our simulations are listed in the

Appendix A. The programs used to run the EMTDC simulation are listed in Ap-

peundix B, ¢ and D.
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3.2.2 Neural Network Architectures

Counter Propagation Architecture

A general deseription of the function of CPN is provided in Chapter 2. Here only
particnlar aspects on actual implementation are discussed. CPN is simulated using

NeuralWare Profesional 11 software package [20].

A uni-flow version of CPN is used. The input layer consists of 6 neurons, one for
ecach RMS values of voltage and current of the three phase line. These values are

measured at the sending-end, and pre-processed using the following algorithm:

o continuous values of the voltages/currents of each phase (Fig. 3.3 a) are trans-
formed into RMS values (Fig. 3.3 b). The advantage of this transformation
is that time varying sinusoidal functions are converted to an almost constant
value and the training process is simplified. However, the disad vantage is that

a delay of one cycle is introduced to do this transformation,

o the RMS values (Fig. 3.3 b) are scaled in per unit i.e. the voltages/currents
are divided by the nominal values respectively. A scaling on different bases is
necessary because the nominal valies of voltages are different from those for
the currents. Therefore, using this procedure a variation in either voltages or

currents will have a similar impact in the input vector,



e the pu values of the voltages/currents (Fig. 3.3 b) are normalized using eq. 2.5,
and the result is plotted in Fig. 3.3 ¢. This normalization is done by the C'PN
in the input layer, as explained in section 2.3.1. Doing this before the signals
are fed into the NN makes the computation casier.

Phase A Voltage - Sending End (Sinusoidal)

-1 - ! . A
1 1 A 1 i i 1
0.35 0.4 0.45 0.5 0.56 0.6 0.65 0.7 0.76
time{sec
Phase A Voltage - éen&ing End (RMS)
- g |

1 - e 1

i L 1 1 L
00.35 0.4 045 0.5 0.55 0.6 0.65 0.7 0.76
Phase A Voltage "S9&Sf3d End (Normalized)

o ; 1 i
0.35 0.4 0485 0.5 n.55 0.6 0.65 0.7 Q.76
time(sec)

Figure 3.3: Normalization process for phase voltages,

The number of neurons in the hidden layer depends on the number and conplex-
ity of the patterns that have to he classified.  When the NN is used only for fanlt
identification, the hidden layer has 12 newrons for 11 output. categories. When the
location of the fault has to be determined aiso, the number of nearons is inereased
to 85 for 40 output categories. There are no given rules for these seleetions, and the
number of neurons in the hidden layer was obtained only after practical experimen-
tation. The number of neurons in hidden layer is chosen slightly above the mimber

of categories, because if it is less than the number of categories, the NN will not be
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able to classify all categories into distinet classes. While if the number of neurons
in the hidden layer is much greater than the number of categories, the convergence

process is slower due to the increase in the nmmber of connections.

The number of PE in the hidden layer also depends on the size of the training
sel. A training set with too many samples of data makes the training process com-
putationally expensive, and a slower convergence, if any, occurs. Typically, for a
training set of 1000 samples, 200,000 iterations were necessary for the NN to con-
verge.  However, choosing an optimal data set for training the NN is not a trivial

task.

Phase A Current - Sending End (Sinusoidal)

0.35 0.4 0.45 0.5 0.56 0.6 0.65 0.7 0.75
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Figure 3.4: Normalization process for phase currents.

In the output layer the number of PEs equals the number of desired categories,

henee 11 PEs are needed for the classification of the fault type. The 11 output
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categories are listed in Table 3.1.

Table 3.1: Channel No. vs fault type in neural networks figure representation .

Channel No. Fault Type
L No fault
2 AG
3 LG BG
| CG
5 AB
6 DL BC
7 CA
8 ABG
9 DLG BCG
10 CAG
11 3LG | ABCG

Table 3.2: Channel No. vs fault location in nenral networks figure representation .

Channel No. Location
12 receiving end of the line
13 receiving side of the series capacitor
14 sending side of the series capacitor
15 sending end of the line

Four additional PEs are added to the output layer when the fanlt location is also
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to be considered. In the latter case, the first 11 PEs indicate the fault type and the

4 new added PEs show the location. Possible fault locations are shown in Table 3.2.

ART2 Network

Architecture of ART2 Network was deseribed in Chapter 2. The simulations for
ART?2 are done using Baoboa software package. The configuration used here has 6
inpul PEs i.e. one for each three phase voltage and current. The output layer has a
maximum of 40 PEs. Since ART is a self organizatory type of network, the number

of output PE sets the npper limit for the number of patterns that can be classified.

Many different pre-processing approaches are used for ART2 to investigate the
performance of the NN. A common feature for all pre-processing approches is the
normalization of the input data. This normalization is required, as in the case of

CPN, to equalize changes in anyone particular channel.

The use of the pre-processing method described in section 3.2.2 did not provide
better results with ART2 than the CPN. For ART2, better results are obtained
by a pre-processing method using Fast Fourier Transformation (FFT). Au array is
created by appending the normalized continuous values of voltages and currents at
every sampling time to the array. The sampling time is 1.0416875 ms, giving a

sampling rate of 16 samples a cycle. The array keeps tha data for the last cycle,
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hence it has dimensions of 16 by 6 (phase voltages and currents). At every time step,
a FFT is calculated for each of the phase voltages and currents signals, and the power
spectrum is determined. The magnitude values of the power spectrum arve then fed

into the NN.

Both pre-processing methods, the one described in section 3.2.2 and the other
one using FFT are used in the training of the ART2. The training processes and the

discussion of the results are done in the section 3.5.2.

3.3 Fault Identification using CPN

A CPN is placed at the sending end of the transmission line. The particular archi-
tecture of the NN for fault identification is presented in section 3.2.2. There are 6
input PEs, 12 PEs in the hidden layer and 11 PEs in the output layer. The input,
data consists of the RMS values of phase voltages and currents from the sending end,
NN identifies 10 types of fanlt applied at the receiving end and indicates no fault., if

there is no fault detected on the line.

The transmission line is modeled using Il - sections (see seetion 3.2.1 for more
details on transmission line model). A series capacitor is placed in the middle of the

line. Parametric values for different components are presented in Appendix 1.

14



Two different features are chosen to characterize a fault type:

o the maximum of the normalized values of the voltages and currents,

o the average of the normalized values of the voltages and currents for three cycles.

3.3.1 Training using the maximum values of the input

Before using the ANN to classify faults and faults location, it is necessary to train
the ANN. For this a training set is necessary. Before selecting a training set, it is
important to consider the characteristics of different patterns and evaluate if these
characteristics can uniquely define every particular fault. To select a characteristic
feature for a fault, all the vectors consisting of the voltages/currents values at each
time step for a cycle need to be looked at. This creates a cluster of vectors that
characterize a pattern, i.e. 100 vectors for our time step. Therefore, for 11 patterns,
the training set grows to 1,100 entries. The more entries in the training set, the more
PEs that are required in the hidden layer. A large number of PEs in the hidden layer

makes the convergence of the NN slower.

To reduce the training set and the computation time, only the maximum values
over 3 cycles within the fault period of the voltages/currents was used. Thus, there
was only one vector that characterized a fault. The size of the training set was thus
reduced from 1,100 to 11 (Table 3.3). The convergence is therefore faster (only 4500
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iterations compared to 200,000 for a training set of 1,100 entries) and the error during
the training decreases rapidly to zero. It remains to be seen if this massive reduction

in the training set gives acceptable results during the recall process.

In Fig. 3.5, a single phase fault (AG), double phase fault (AB) and double phase
to ground fault (ABG) are applied at 0.45 see. and cleared at 0.55 see. There
is a delay of one cycle in the detection of the fanlt dne to the computation of RMS
values. Furthermore, the end of the fault is detected with a delay due to the presence

of harmonics.

For no fault, line to ground, and three phase to ground fault cases there is a stable
response, but for double line, and double line to ground fault cases, there are a lot
of oscillations, i.e. for cases affecting the same phases as AB, ABG, ete. faults (Figs.
3.5, 3.6). These oscillations are cansed hy the way the characteristic features for a
fault type were chosen. The entries in the training set for double line and double line
to ground faults (Table 3.3) are very close, and the NN cannot distinguish hetween

the two faults in all cases.

Therefore, it can be concluded that using the characteristic feature of maximum
values over 3 cycles of the voltages/currents within the fault period reduced the
training set. This smaller training set improved the convergence speed of the NN,
Although these are important gains, an alternative method was investigated to verify

if improved the results could be obtained by the recall process.
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Table 3.3: Training set using maximum values of input data .

Case Input Vector Outputs

Vn Vb vc ]a lb 1(‘

NF 0.4401 | 04393 | 0.4361 | 0.3128 | 0.3625 | 0.4401 | NF=1
AG 0.2194 | 0.2098 | 0.2268 | 0.2687 | 0.8232 [ 0.3016 | AG=1
BG 0.2355 | 0.2284 | 0.2268 | 0.2687 | 0.8232 | 0.3016 | BG=1
caG 0.2363 | 0.2368 | 0.2364 | 0.2428 ( 0.2964 | 0.8278 | CG=1
AB 0.1307 | 0.1351 | 0.0912 [ 0.7094 | 0.6590 { 0.1369 | AB=1
BC 0.1025 [ 0.1012 | 0.0998 | 0.0859 | 0.7253 | 0.6601 | BU=1
CA 0.1495 | 0.0892 | 0.1599 | 0.6477 | 0.0736 | 0.7205 | CA=1
ABG | 0.1323 | 0.1285 | 0.0926 | 0.7149 | 0.6534 | 0.1389 | ABG=1
BCG 0.1004 | 0.0974 | 0.0964 | 0.1157 | 0.7280 | 0.6540 | BCG=1
CAG | 0.1480 | 0.0883 | 0.1565 | 0.6435 | 0.1064 | 0.7213 | CAG=1

ABCG | 0.1261 | 0.0835 | 0.0858 | 0.6024 | 0.5825 | 0.5172 | ABC=1
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A Fault Case
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Figure 3.5: NN output for AG, AB, and ABG fault cases -
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3.3.2 Training using the average values of the input

Choosing maximum values as the characteristic features for the fault cases did not
result, in satisfactory recall. During the recall process, few vectors are in the vicinity
of the maximum value characteristic vector and therefore classification errors occur
for the input vectors which are not close by. This suggested the use of anaverage
value over 3 cycles characteristic vector of the voltages/currents for categorizing a

fault.

The new average values training set is given in the Table 3.4.

AC; Fault Case

1 e e P Yooooonenins T - 1
B L N S S I S P -
0 F feae H H
035 0.4 0.45 0.s 0.55 0.6 0.65 0.7
seconds
ABRB Fault (*ase
N S L R T e e e S P Tororsrrerai es = ceeiro]
g 0S| e e e e boveeeeies e e e s e e
0 T Jearonee ons deoee +
0.38 04 0.48 0.5 0.55 0.6 0.68 0.7
seconds
ABCG Fault Clase
-
e 0.5 caeeen _
0 S R H H H
0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

seconds

Figure 3.7: NN output for AG, AB, and ABG fault cases. Training set uses average

values .

The Fig. 3.7 shows the recall results obtained for the same fault types plotted in
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Fig. 3.5. The response for double line and double line to ground is much improved,
Indecision regions are much reduced (Fig. 3.8) when compared to the previous resnlts

(Fig. 3.6). Similar resuits were obtained for other types of fault.

Table 3.4: Training set using average values of input data .

Case Input Vector Out puts

vn ‘/b ‘/(‘ Iu Il» I.~

NF 0.4246 | 0.4214 | 0.4289 | 0.3940 | 0.3872 | 0.3912 | NI'=1
AG 0.1574 | 0.2145 | 0.2235 | 0.8739 | 0.2140 | 0.2642 | AG=1
BG 0.2254 | 0.1593 | 0.2222 | 0.2696 | 0.8686 | 0.2174 | BG=1
CG 0.2238 | 0.2275 | 0.1646 | 0.2244 | 0.2699 | 0.8648 | CG=]
AB 0.0874 | 0.0938 | 0.1282 [ 0.7316 [ 0.6467 | 0.1169 | AB=1
BC 0.1475 | 0.1014 | 0.1101 | 0.1369 | 0.7376 | 0.6270 | BC=]
CA 0.0952 | 0.1289 | 0.0892 | 0.6464 | 0.1184 | 0.7311 { CA=1
ABG | 0.0760 | 0.0831 | 0.1221 | 0.7319 | 0.6460 | 0.1398 | ABG=]I
BCG | 0.1385 | 0.0888 | 0.0980 | 0.1617 [ 0.7343 | 0.6309 | BCG=]

C'AG | 0.0850 | 0.1225 | 0.0782 | 0.6525 | 0.1418 | 0.7252 | ABC=I

The delay of one cycle in the detection of the fault, due to the computation of
RMS values, is still present. Moreover, for the case of the ABG fanlt, the time elapsed
until the detection of the beginning of the fault is shorter. In Fig. 3.8, it is observed
that the beginning of the fault is detected as a BG fault. Then the NN indicates

an AB fault, and later an ABG fanlt. This sequence of events is in accord with the




theory of fanlt build up, and it is not an error in the indication provided by the NN.

A similar phenomenon is present when the fault is cleared. This method therefore

provides good results for fault identification.

In the next section a similar method is proposed to locate the fault. The expanded

NN will now have two tasks:

o to identify the type of fanlt, and

e to locate the position of the fault.

3.4 Fault Identification and Location using CPN

The combined tasks of identification and location of the fault are accomplished by
using, a CPN. The number of PEs in the hidden layer is increased from 12 to 85,
weording to the number of the categories to be classified. Now there are 15 PEs in
the ontput layer of the NN, The first 11 PEs (channels 0 to 10) indicate the fault
type, while next 4 PEs (channels 11 to 14) indicate the location of the fault. For the
moment only four locations of the fault are identifiable: at the receiving end (R),

after (A), and before (B) the series capacitor, and at the sending end (S).

The characteristic feature of the fault categories is the average over 3 cycles of



the normalized RMS values of the phase voltages/currents. This method provided
very good results previously, and is expected to have the same efficiency for this case,
The training set is presented in Table 3.5. Now the fault are applied sequentially to
all four locations compared to the previous case, fanlt identification only, when the

faults were applied only to the receiving end.

The vesults of the recall process are presented in a three-dimeunsional format. for
a better appreciation of the overall response of the NN, Tho cases presented inelude
line to ground (BG), double line(BC), and double line to ground (BCG) fanlts, Fach

fault is applied sequentially at all four locations and the results are compared.

The results for the case of line to ground fault. (BG) are presented in Figs. 3.9,
3.10, 3.11, and 3.12 for each fanlt location respectively. The fault, type at all the

locations is very well classified.

The results of the NN for a line to ground fanlt, (BG) applied at the reeeiving end
of the line are presented in Fig. 3.9. In this case, there is an imerval where the NN
indicates the fault location as being after the capacitor. This erroncous indication
comes shortly after the fault inception and classification as BG. The response switehes
back to the correct indication after a few iterations. The error is due to the transient,
response at the beginning of the fault. The overall response of NN is very good, with

a fast identification of the fault type, and consistent indication of the fault location.
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Iigure 3.9: Overall view of the NN outpnt for BG fault at the receiving end.



Table 3.5: Training set for fault identification and location .

Case Inpnt Vect-w Outputs

Ve Vi V. I, 1y 1.

NF 0.4230 | 0.4238 | 0.4171 | 03924 | 03986 | 0.3929 | NF=1;R=1
AG 0.1619 { 0.2169 | 0.2184 | 0.8712 | 0.2188 | 0.2082 | AG=LR=1
BG 0.1985 | 0.1463 | 0.1915 | 0.2337 | 0.8990 | 0.1987 | BG=1;R=1
CG 0.1880 [ 0.1926 [ 0.1401 | 0.1916 | 0.2292 | 0.9047 | CG=1;R=1
AB 0.0886 | 0.0917 | 0.1195 | 0.7273 | 0.6540 | 0.1126 | AB=1;R=1
BC 0.0833 | 0.0614 | 0.0628 | 0.0773 | 0.7079 | 0.6914 | BC=1I;R=1
CA 0.0903 [ 0.1175 | 0.0845 | 0.6628 | 0.1106 | 0.7206 | CA=1;R=1I
ABG | 0.0824 | 0.0881 | 0.1230 | 0.6649 | 0.7126 | 0.1424 | ABG=1;R=]
BCG 0.1097 | 0.0740 | 0.0785 | 0.1262 | 0.6935 | 0.6923 | BCG=1;R=I
CAG 1 0.0858 | 0.1208 | 0.0804 [ 0.6570 | 0.1404 | 0.7211 | CAG=1;R=]|

ABCG | 0.0560 | 0.0570 | 0.0569 | 0.5236 | 0.5837 | 0.6127 | ABCG=1;R=]

AG 0.1062 | 0.1719 | 0.1709 | 0.9318 | 0.1608 | 0.1891 | AG=1;A=]
BG 0.1758 | 0.1072 | 0.1715 | 0.1942 | 0.9292 | 0.1640 | BG=1;A=]
CG V.1749 1 0.1772 | 0.1071 | 0.1634 | 0.1973 | 0.9278 | CG=1;A=I
AB 0.0651 | 0.0668 | 0.1006 | 0.7205 | 0.6730 | 0.0948 | AB=1;A=]
BC 0.1240 | 0.0802 | 0.0809 | 0.1150 | 0.7350 | 0.6466 | BC=1;A=1
CA 0.0692 | 0.1047 | 0.0665 | 0.6630 | 0.0985 | 0.7283 | CA=1;A=]
ABG | 0.0520 | 6.0550 | 0.0960 | 0.7194 | 0.6757 | 0.1040 | ABG=1;A=]

BCG 0.1143 | 0.0613 | 0.0645 | 0.1218 | 0.7367 | 0.6491 | BCG=1;A=]
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Table 3.6: Training set for fault, identification and location (continued) .

Case Input Vector Outputs

Vi Vi Ve 1, I, I
CAG | 0.0552 | 0.0978 | 0.0514 | 0.6726 | 0.1060 | 0.7218 | CAG=1;A=I
ABCG | 0.0372 ] 0.0372 | 0.0370 | 0.6314 | 0.5576 | 0.5349 | ABCG=1;A=1
AG 0.0918 | 0.1552 | 0.1547 | 0.9443 | 0.1477 | 0.1728 | AG=1;B=1
BG 0.1429 | 0.0845 | 0.1392 | 0.1577 | 0.9544 | 0.1314 | BG=1;B=1
G 0.1403 | 0.1423 | 0.0840 | 0.1329 | 0.1607 | 0.9536 | CG=1;B=1
AB 0.9329 1 0.0195 | 0.0297 | 0.2606 | 0.2442 | 0.0279 | AB=1;B=1
BC 0.0663 | 0.0439 1 0.0443 | 0.0614 | 0.7113 | 0.6942 | BC=1;B=1
CA 0.0584 | 0.0867 | 0.0552 | 0.6779 | 0.0815 | 0.7209 | CA=1;B=1
ABG | 0.0434 | 0.0495 | 0.0860 | 0.6701 | 0.7282 | 0.0940 | ABG=1;B=I
BCG | 0.0765 | 0.0407 | 0.0459 | 0.0825 | 0.6975 | 0.7049 | BCG=1;B=1
CAQG 0.0464 | 0.0813 | 0.0426 | 0.6963 | 0.0886 | 0.7047 | CAG=1;B=1
ABCG [ 0.0286 [ € 0303 | 0.0315 | 0.5308 | 0.5797 | 0.6158 | ABCG=1;B=]
AG 0.0110 | 0.0628 | 0.0609 | 0.9928 | 0.0524 | 0.0613 | AG=1;S=1
BG 0.0765 | 0.0128 | 0.0765 | 0.0755 | 0.9890 | 0.0642 | BG=1;S=1
G 0.0804 | 0.0794 | 0.0152 | 0.0664 | 0.0795 | 0.9880 | CG=1;S=1
AB 0.0278 | 0.0275 | 0.0529 | 0.7152 | 0.6939 | 0.0499 | AB=1;5=1
BC 0.0717 [ 0.0374 | 0.0379 | 0.0665 | 0.7290 | 0.6753 | BC=1;S=1
CA 0.0290 | 0.0552 | 0.0294 | 0.6876 | 0.0519 | 0.7208 | CA=1;S=1

=t
ot




Table 3.7: Training set for fault identification and location (continned) .

Case Input Vector Outputs

Va Vi V. l, I I
ABG [ 0.0086 | 0.06081 | 0.0480 | 0.7771 | 0.6259 [ 0.0431 | ABG=1;5=1
BCG | 0.0558 | 0.0093 | 0.0106 | 0.0490 | 0.7174 | 0.6924 | BCG=1;5=1
CAG |0.0087 | 0.0494 | 0.0094 | 0.7877 | 0.0441 | 0.6123 | CAG=1;5=1
ABCG | 0.0074 | 0.0069 | 0.0079 | 0.6662 | 0.5363 | 0.5180 | ABCG=1;5=I

Figure 3.10
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: Overall view of the NN output for BG fault after capacitor.




The response to a fanlt applied after the capacitor is plotted in Fig. 3.10. There
is an oscillation in the response of NN regarding the fault location. The indication
oscillates between the receiving end (the correct position) and after the capacitor due
to the impedance of the capacitor. The impedance is too small to make a difference
for values of voltages and currents at the sending end. Thus, the two patterns,
fault location at receiving end and fault location after the capacitor are not entirely
separable, and some oscillations are expected. Also, this is valid when the fault is
applied before the capacitor (Fig. 3.11). Although there is an incertainty in locating

the fault for short periods, the respounse is very good.

2 .8 secotds

€ ‘hannel No.

Figure 3.11: Overall view of the NN output for BG fault before capacitor.

The same excellent results are obtained for the case when the fault is applied
to the sending end (Fig. 3.12). The NN indicates a few erroneous points at the
beginning of the fault, but afterward recovers and provides a good indication. The

error at the beginning of the fault is due to the transition period.

In Figs. 3.13, 3.14, 3.15, and 3.16 are shown the results of the NN when a double




line fault (BC) is applied individnally to all four locations, respectively.

No fault type indication is indicated several times during the fault period. The
NN cannot classify the data in one of the known categories. Several times it indicates
a BCG fault due to similar data for double line and double line to ground.  Also,
there are oscillations in fault location between after and before capacitor, as in the

case of a line to ground fault.

Although, the response is not always equal to the desired one, the error is within
an acceptable range of 10% within the fault period. A much better response is ob-
tained in identification and location of the faults applied before capacitor (Fig. 3.15),
and sending end (Fig. 3.16). In these cases there is a period of uncertainty imimne-
diately after the fault application due to transient factors. However, the erroncous
indication refers to a double line to ground fault, which is not a disastrous false alarm

because at least the correct fanlted phases are identified.

The case of a double line to ground fault (BCG) at different locations is presented
in the Figs. 3.17, 3.18, 3.19, and 3.20. This type of fault is characterized by much
instability. There are more oscillations hetween the double line (BC) and double line
to ground fault (BCG) indication for this case than for the double line fault case, In
addition to the oscillations in identification of the fanlt type, there are oscillations in
the indication of the fault location. The causes for uncertainty in fanlt location are

similar to those previously discussed fault cases.
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Figure 3.12: Overall view of the NN output for BG fault at sending end.
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Figure 3.1 Overall view of the NN output for BC fault at the receiving end.
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Figure 3.14: Overall view of the NN output for BG fault after capacitor.
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Figure 3.15: Overall view of the NN outpnt for BC fanlt before capacitor.
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Figure 3.16: Overall view of the NN output for BG fault at sending end.
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Figure 3.17: Overall view of the NN output for BOG fanlt at the receiving end.
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Figure 3.18: Overall view of the NN output for BCG fault after capacitor.

The combined effect of the oscillations caused by fault identification and location

make the overall response of the NN to be more confusing,

¢ hannel No,

Figure 3.19: Overall view of the NN output for BCG fault before capacitor.

3.5 Fault Identification using ART2

Although the CPN architecture provided very good results in identification and loca-
tion of the fault it does have one shortcoming. The CPN needs a new training set for
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Figure 3.20: Overall view of the NN output for BCG fault at sending end.

every change in the parameters of the system. To overcome this the new ART archi-
tecture is used. ART has the plasticity to learn new categories while preserving the
information previously acquired (section 2.4). However, there is a defined maximum

limit to the new categories that can be learned.

3.5.1 Pre-Processing of Data for ART2

In common with the CPN architecture, the input data used hy ART?2 {or fault iden-
tification are the pre-processed phase voltage/current. signals available at the sending,

end bus.

When ART2 was used in a similar manner to CPN, it did not provide better results
when the training set used was the average of the normalized RMS values of the
voltages and currents. Furthermore, ART2 had additional difficulties to diseriminate
between double line and double line to ground faults. To improve on the classification
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with ARTZ2, a new pre processing procedure based on FFT techniques to monitor

signals was used (section 3.2.2).

A matrix is defined such that its rows hold the sinusoidal values of voltages and
currents at the sending end for a time step. The matrix retains the data for the last
cycle. The sampling rate is of 1.041 ms, thus the matrix has 16 rows and 6 columns.
A 6-point FIT is taken at every time step for each column of the current matrix.
The magnitude of the power spectrum of the Fourier Series is fed into NN (section

3.2.2).

3.5.2 Training Process

The magnitude of the power spectrum of FFT are very sensitive to variations in
phase and magnitude of the signals. Thus, a fault cannot be properly characterized

by those values obtained for only one cycle during the fault period, as was done for

CPN.

Just after the inception and at the ending of the fault the input signals have har-
monics which are not present during the fault period. Therefore the power spectrum
of these signals is different from the power spectrum during the fault period. Al-
though they are different, they are part of the same fault and ART has to be trained

to learn them. This gives a faster identification of the beginning of the fault.
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The training set for ART contains as the characteristic feature the magnitude of
the power spectrum of the signals at the beginning, the end and at the middle of the

fault period. We recall that only the latter one is used for training of C'PN,

A very important parameter for ART is the wvigilance factor. This factor measures
the degree of mismatch between the presented pattern and the existing one. 1t
computed for every pattern presented and is compared to a desired valne. 1F it is
lower than the desired value, the pattern is classified as being part of that category,

otherwise a new category is created.

As can be envisioned it is very diflicult to estimate the optimal value of the
Vigilance Factor (VF). A high VF value will create many new classes, and thus ART
will loose the ability to sense the common feature of a class. Every sioall variation
in input is seen as a sufficient condition to create a different category. While a lower
VF value makes ART to place all the patterns in too few classes. A large variation in
input pattern will make no difference and the patterns which need to be in different,

categories are classified together.

By trial and error, a VF of 0.983 was sclected. Since the vigilanee factor is high,
there are 2-3 classes for each type of fault. Additional post-processing is required 1o

cluster these classes into a single fault class type.

The recall process is done with different data. The same types of fanlt, are applied,

64



bhut different fault resistances are used.

3.5.3 Discussion of the Results

The recall phase starts after the training of the NN. The resulis for three fault cases
AG fault, AB fault and ABG fault at the remote end, are presented in Fig. 3.21.

These fault cases are similar to those discussed in section 3.3.2.

The AG fault (Fig. 3.21 a) is very well identified, and there is no delay in detection
of the inception and «ad of the fault. A faster detection of the fault inception is
pussible (by including in the characteristic feature of a fault samples from both
transient periods of the fault as part of the fault). During the recall the VF is chosen
high enough to obtain the best recall result. A vigilance factor of 0.9 is used during

the recall,

Also, for AB fault there is a fast, and correct identification of the beginning of
fault and its type. The result is ! etter ihan that one obtained using CPN (section
3.3). Although, there are instances where he NN indicates a BC fault, the response

of the NN is improved. The vigilance factor is 0.95 for this case.

For an ABG fault, there are fow instances with false indication. As in the method

using CPN (section 3.3), there are oscillations between AB fault. and ABG fault, and
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additional instances indicating a BG fault and a BC'GS fanlt. The latter ones appears

in the transient period at the end of the fault.

In conclusion, ART2 provides a faster identification of the beginning of the fanlt
than CPN. Although there are few instances when the NN does not indicate the

proper type of fault, the overail response of the NN is good.
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Figure 3.21: ART2 output for fault identification .
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Chapter 4

Conclusions & Further Work
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4.1 Conclusions

The thesis proposes a novel approach for the protection of series compensated trans-
mission lines. Two different NN architectures were studied, and both architectures

offered snitable methods to identify and locate the fanlt.

One major advantage of the proposed technique over existing traditional meth-
ods consists in its ability to function without a telecommunication channel, This
means considerable savings in capital and operating costs for the protection system.,
Furthermore, in the case of traditional methods the lack of a telecommunication link

results in improved reliability.

Another major advantage is the adaptability of the NN to a new environment.
If the power system parameters or configuration change, a new training st is all
that is needed to re-use the protection system based on the NN. All the existing
protection equipment remains in place. Using the traditional methods a change in
the system parameters/configuration will probably result in a change and re-design

of the protection equipment.

The importance of a judicions choice of a training set has heen shown in seetion
3.3. The task of choosing an optimal training set is not trivial. The snecess of
the recall process relies on the zubility of the training set vo reflect the characteristie
features of each specific category. 't is also required that the categories be separable,
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As has been explained in section 3.3, a small variation in the method of computing
the training set can change the results drastically. Using average instead of maximum
values for the training set makes a significant difference in the accuracy of the output

results.

CPN provides good results for hoth tasks of identification and location of the
fault. One possible limitation of using the CPN is that a new training set will be
reqitired if the parameters of the system change. A minor problem with the CPN
is a delay of one cycle due to the computation of the RMS values for the input

voltage /current, signals.

To overcome some of the problems of the CPN a new type of NN architecture
(ARTZ2) was used. ART2 can preserve previously acquired experience while learming
new categories. Since the method of obtaining the training set is changed, for ART2,
the training incorporates the behaviour of the system during the transient period
al the bheginning and end of the fault. This new information is in addition to that

already existing about each type of fault.

Although there were some false indications present during the fault, ART?2 pro-

vided a faster identification of the beginning of the fanit when compared to CPN.

In summary, the novel methods deseribed in this thesis demonstrate the feasibility

of using NNs for fault identification and location in power transmission systems.
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These methods show enough promise to merit further in depth investigations.

4.2 Further Work

The work described in this thesis has demonstrated the feasibility of using NNs in the
identification and location of typical faults in a series compensated transmission line,
Much further work is needed before a practical implementation of these technigues
can be applied. Some additional work which could not he finished during this project

i1s discussed below:

1. Improvements to the simplified power system simulation model used here are

needed to provide a more realistic simulation,

2. The NN architecture used were able to identify only four locations. These NN

architectures could be enlarged to provide a finer location of the fault,

3. The NN architecture to locate the fault could be implemented using Back-
Propagation (BP) type of NN. The BP is a type of NN that can be trained to
approximate functions. The fault location is a function of the line impedance
which is given by the relation between the bus vollages and line earrents. "Fhus,
a training set can be created to correlate the fault location and the value of the

bus voltages and line currents.
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Appendix A

Power System Data

Subsystem no. 1 - Sending End
e R=1.1Q, L=0.1171 H
o shunt: R = 1949, L =5.17T H
o [y, = 624.62 kV, W, = 441.67 kV, Iy = 0.6788 kA
Subsystem no. 2 - Receiving End
e = 4662 Q, L =0621 H
o shunt: R = 1949 Q, L =5.17T H
Subsystem no. 3 - Transmission Line
o scries capacitor (in the middle of the line): 170 pF
e line length: 214 miles
o line model: -4 1 sections with the following structure

7l




- R = 1.24655 §), L = 0.09286 H
— capacitors between phases: 0.1728 pl

— capacitors between line and ground: 0.9161 pF

72




Appendix B
EMTDC data file

0.00005 0.7 0.001 / DELT FINTIM PRTSPT
1 /NUMBER OF SUBSYSTEMS
27 /NUMBER OF NODES IN SUBSYSTEM # 1

0 /NO INITIAL NODE VOLTAGES
171.1 /A PHASE SENDING END
740 0.1171 /

-4 0 19.49 5.17 /SHUNT

28 1.1 /B PHASE

850 0.1171 /

-5 0 19.49 5.17 /SHUNT

391.1 /C PHASE

960 0.1171 /

-6 0 19.49 5,17 /SHUNT

4 5 100000.0 /to simulate faults at the sending end
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5 6 100000.0 /first 3 are LL

6 4 100000.0 /

4 0 100000.0 /next 3 are LG
5 0 100000.0 /

6 0 100000.0 /

4 25 1.24655 / 1st half of the transmission line

25 10 0 0.092865728 /

5 26 1.24655 /

26 11 0 0.092865728 /

6 27 1.24655 /

27 12 0 0.092865728 /

10 11 0 0 0.172805 / C between phases - these will also be used for faults
11 12 0 0 0.172805 /

12 10 0 0

o

.172805 /
10 23 0 0 0.916455 / C between line & ground - see above

11 2300

o

.916455 /

12 23 0 0 0.916455 /

10 13 1.0 0. 0. 1. / arrestor
11 14 1.0 0. 0. 1. /

12 15 1.0 0. 0. 1. /

-10 13 0 0 170.0 / series C

-11 14 0 0 170.0 /
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-12 15 0 0 170.0 /

13 14 100000.0 /fault simulation after C LL
14 15 100000.0 /

15 13 100000.0 /

13 23 100000.0 / next 3 are LG

14 23 100000.0 /

15 23 100000.0 /

-13 16 1.24655 0.092865728 / 2nd half of the transmission line
-14 17 1.24655 0.092865728 /

-15 18 1.24655 0.092865728 /

16 17 0 0 0.172805 / C between phases

17 18 0 0 0.172805 /

18 16 0 0 0.172805 /

16 22 0 0 0.916455 / C between line & ground

17 22 0 0 0.916455 /

18 22 0 0 0.916455 /

-16 22 19.49 5.17 /SHUNT
=17 22 19.49 5.17 /
-18 22 19.49 5.17 /

16 19 468.2 /A PHASE RECEIVING END
19 22 0 0.621 /

17 20 468.2 /B PHASE RECEIVING END

-1
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20 22 0 0.621 /

18 21 468.2 /C PHASE RECEIVING END

21 22 0 0.621 /

-22 23 9.1271 0.076044686 / ground R-L

23 24 0 0.076044686 /

24 0 9.1271 /

999 /END OF BRANCH DATA FOR SUBSYSTEM # 1
1 0 0.00004 /A PHASE SENDING END SOURCE

2 0 0.00004 /B PHASE

3 0 0.00004 /C PHASE

999 / END OF SQURCE DATA FOR SUBSYSTEM # 1
999 / END OF MUTUAL DATA FOR SUBSYSTEM # 1
999 /END OF TRANSMISSION LINE DATA

-1000 +1000 /SCREEN PLGT LIMITS

20 /NUMBER OF PGB’S

624.62 0.45 0.1 0.0 /VARS A phase voltage magnitudes,START FAULT, LENGTH
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Appendix C

EMTDC subroutine to control the
dynamics of the power system

SUBROUTINE DSDYN
C  *xx FORTRAN 77 s*%x date 10/10/91

Cc Associated files -

Cc Datafile: DATATB1
Cc Dsout: DSOUTTB1.FOR
C

C Purpose - Transmission line (332 mi)

Cc Include and Common Block declarations

-1
-1



INCLUDE ’emt.e’

COMMON /S1/TIME,DELT,ICH,PRINT,FINTIM
COMMON /S2/STOR(10000) ,NEXC

COMMON /S3/GVLV(4,4,40) ,NVLV

COMMON /S4/VAR(200) ,CON(200),PGB(75)

C Variable definitions

C INTGL3: CSMF integral function with limits
C LDLAG2: CSMF lead/lag function

C LIMIT: CSMF limiter function

C Variable declarations

REAL INTGL3,LDLAG2,LIMIT
C
Coteoke ok skt ok st ok sk stk sk ko ook ok ok ok ok ke ok kol sk ok ke sk ke ok i sk sk sk ok ok s o s ok o o ok
C LOCAL VARIABLE TO SIMULATE PHASE TO PHASE FAULTS
C WITHOUT DECLARE THEM IN DATA FILE
C

LOGICAL AFTERFLT

REAL G1,G2,G3

[fs]



C ok vk e e ke ok sk e sk ok ok ke ok ok ok 3k ok ok ok ol ok sk ok ke ok 3k sk sk sk ok 3k ok sk ke ok ok ok ok sk 3 ke sk okok Xk

o] CON(1..100) definitions

C * Kk

c VAR(1..100) definitions

C VAR(1)=A phase step voltage magnitude

C VAR(2)=START TIME FOR THE FAULT

C VAR(3)=LENGTH OF THE FAULT

C VAR(4)=TYPE OF FAULT:

C - 1=AG, 2=BG, 3=CG, 4=AB, 5=BC

C - 6=CA, 7=ABG, 8=BCJ, 9=CAG, 10=ABCG
C

C

C Initialization steps

C  —mem—mccccc—————a———
IF (TIME .GT. DELT) GO TO 10
AFTERFLT=.FALSE.
10 CONTINUE
C

C  Program begins
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aQ

NO FAULT INITIALIZATION

IF (AFTERFLT) THEN
GDC(16,17,1)=G1
GDC(17,16,1)=G1
GDC(17,18,1)=G2
GDC(18,17,1)=G2
GDC(18,16,1)=G3
GDC(16,18,1)=G3
GDC(16,22,1)=G4
GDC(22,16,1)=G4
GDC(17,22,1)=G5
GDC(22,17,1)=G5
GDC(18,22,1)=G6
GDC(22,18,1)=G6
AFTERFLT=.FALSE.

ENDIF




START SECTION

VRAMP=VAR(1)
IF (TIME.LT.0.1) VRAMP=VAR(1)*(TIME*11.111111-0.111111)

IF (TIME.LT.0.01) VRAMP=0.0

FAULT SECTION

IF ((TIME.GT.VAR(2)).AND.(TIME.LT.(VAR(2)+VAR(3))).AND. (VAR(

+4) .NE.0.0)) THEN

G1=GDC(16,17,1)

G2=GDC(17,18,1)

G3=GDC(18, 16,1)

G4=GDC(16,22,1)

G5=GDC(17,22,1)

G6=GDC(18,22,1)

IF ((VAR(4).EQ.1).0R.(VAR(4).EQ.7).0R.(VAR(4) .EQ.9)
+.0R.(VAR(4) .EQ.10)) GDC(16,22,1)=10.0

IF ((VAR(4) .EQ.2) .0R.(VAR(4).EQ.8).0R. (VAR(4) .EQ.7)
+.0R.(VAR(4) .EQ.10)) GDC(17,22,1)=10.0

IF ((VAR(4).EQ.3).0R.(VAR(4).EQ.9).0R.(VAR(4) .EQ.8)

+.0R.(VAR(4) .EQ.10)) GDC(18,22,1)=10.0
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IF (VAR(4) .EQ.4) THEN
GDC(16,17,1)=10.0
GDC(17,16,1)=10.0

ENDIF

IF (VAR(4) .EQ.5) THEN
GDC(17,18,1)=10.0
GDC(18,17,1)=10.0

ENDIF

IF (VAR(4) .EQ.6) THEN
GDC(18,16,1)=10.0
GDC(16,18,1)=10.0

ENDIF

GDC(22,16,1)=GDC(16,22,1)

Gbc(22,17,1)=6GDC(17,22,1)

GDC(22,18,1)=GDC(18,22,1)

AFTERFLT=.TRUE.

ENDIF

CALL Esysi1(1,1,2,3,VRAMP,377.0,0.0)

RETURN

END
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Appendix D

EMTDC output subroutine

SUBROUTINE DSOUT
c %% FORTRAN 77 *%*x date 10/10/91

C Associated files -

C Datafile: DATATB1
C Dsdyn: DSDYNTB1.FOR
C

C Purpose - Transmission line

C Include and Common Block declarations

INCLUDE ’emt.e’
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COMMON /S1/TIME,DELT,ICH,PRINT,FINTIM
COMMON /S2/STOR(10000) ,NEXC
COMMON /S3/GVLV(4,4,40) ,NVLV

COMMON /S4/VAR(200),CON(200),PGB(75)

Variable definitions

- o . - —— . - - - — - - -

INTGL3: CSMF integral function with limits
LDLAG2: CSMF lead/lag function

LIMIT: CSMF limiter function

Variable declarations

- - - D S - - - = o -

REAL INTGL3,LDLAG2,LIMIT

CON(1..100) definitions

%%k k

VAR(1..100) definitions

%%k %k




Q

PGB(1..25) definitions
PGB(1)=A phase sending end voltage
PGB(2)=B "
PGB(3)=C "
PGB(4)=A phase receiving end voltage
PGB(5)=B "
PGB(6)=C "
PGB(7)=A phase sending end line current
PGB(8)=B "
PGB(9)=C "
PGB(10)=A phase receiving end line current
PGB(11)=B "
PGB(12)=C "
PGB(13)=REAL POWER FOR SEND END
PGB(14)=REACTIVE POWER FOR SEND END
PGB(15)=REAL POWER FOR RECV END
PGB(16)=REACTIVE POWER FOR RECV END
Initialization steps

- —— - ————— = - —

IF (TIME .GT. DELT) GO TO 10




c

C

Ak Xk

10 CONTINUE

Program begins

PGB(1)=VDC(4,1)
PGB(2)=VDC(5,1)

PGB(3)=VDC(6,1)

PGB(4)=VDC(16,1)-VDC(22,1)
PGB(5)=VDC(17,1)-VDC(22,1)

PGB(6)=VDC(18,1)-VDC(22,1)

PGB(7)=CDC(4,7,1)
PGB(8)=CDC(5,8,1)

PGB(9)=CDC(6,9,1)

PGB(10)=CDC(16,19,1)
PGB(11)=CDC(17,20,1)

PGB(12)=CDC(18,21,1)
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PGB(13)=P3PH2(1,4,5,6,7,8,9,0.00.)
PGB(14)=Q3PH2(1,4,5,6,7,8,9,0.001)
PGB(15)=-P3PH2(1,16,17,18,19,20,21,0.001)

PGB(16)=-Q3PH2(1,16,17,18,19,20,21,0.001)

PGB(17)=VDC(10,1)-VDC(13,1)
PGB(18)=VDC(11,1)-VvDC(14,1)

PGB(19)=VDC(12,1)-VDC(15,1)

PGB (20)=CDC(24,24,1)

RETURN

END
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Appendix E

INNeural Netwvorks

CPN Structure for Fault Identification
e input neurons: 6
e hidden neurons: 12
e output neurons: 11
CPN Structure for Fault Identification and Location
e input neurons: 6
e hidden neurons: 85
e outputl neurons: 15
ART2 Structure for Fault Identification
e input neurons: 36

e output neurons (max.): 48
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