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ABSTRACT

Feature Selection in the Classification
of Time-Variant Patterns

Khalid J. siddiqui, Ph.D.
Concordia University, 1994

A bottleneck in building and using the knowledge base in an
intelligent system is combining the appropriate problem sol-
ving knowledge with physical observations. Another problem is
to derive pertinent information that is subtly available in
physical observations. These problems are resolved by using
the information and knowledge processing techniques available
in the fields of signal processing, pattern recognition and
knowledge engineering. Methods are developed to automatically
measure, recognize and interpret the parameters (features)
from the physical observations. A Successive Feature Elimi-
nation Scheme involving multiple steps is developed to elimi-
nate poorly performing features. Pseudo-Similarity method
which uses inter-class dissimilarity is introduced for feature
ranking. To minimize the problems of information explosion
and redundancy the concept of Pattern Association Hierarchy
(PAH) is introduced to structure and organize the features and
pattern classes in the form of a knowledge tree. Several
classifiers including the two new algorithms PAH classifier
and entropy based decision tree classifier are also developed.
Based on the nature of the training data a number of meta
rules are developed to select the best knowledge organization
and classification algorithms. All these components and
concepts are used as a basis to propose a structure of an
intelligent waveform recognition system. This wunified
approach will not only automate and accelerate the knowledge
acquisition and organization process, but will also formalize
and structure the decision-making process, and thus reduce the

reliance on a human expert.
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The performance of these components is successfully demons-
trated on several time-variant signals from non-destructive
testing (NDT), and non-invasive testing (NIT) generated from
materials (NDT signals), chemical mixtures (PNA spectra),
human brain (EEG signals), and genetic cells (CEL signals). On
the testing set from NDT data with 10 classes an overall per-
formance reaching 84% was achieved and up to 95% when it is
treated as a four class problem. Up to 95.67% of the EEG sig-
nals with 3 classes were correctly recognized whereas a per-
fect score of 100% was obtained on PNA data with 20 classes.
On the CEL data with 19 classes the recognition performance
reached 88.34%.
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Chapter 1

INTRODUCTION

1.1 Intelligent Waveform Sensing

A waveform which may be time-variant or time invariant, is an
electronic signal and it is used to convey information in a
wide range of sensing and recognition applications. 1In these
applications a signal is generated by a physical, chemical, or
a biological phenomenon and its form is governed by inherent
characteristics of some phenomenon such as electrical activity
of brain cells represented as EEG’s. The waveform therefore
carries information about the structure or the functioning of
the source and/or about the path from the source to the
receiver. In time-variant signals the waveform may change its
structure over time whereas the time has no bearing in time-
invariant waveforms. The information carried by the waveforms
may be extracted directly, by known observations of the
waveforms as usually done in manual inspection techniques; or
indirectly, by applying appropriate synthesizing and analyzing
tools to either the waveforms or the measurements derived from
them as usually done in automatic signal processing systems.

A number of applications, particularly for time-variant
signals from both physical and biclogical systems can be cited
in this regard [CHEN-82, COHE-86a,b, NAGA-91]. Notable exam-
ples from the physical systems are non-destructive testing
(NDT) or evaluation (NDE), and spectral analysis of poly-
nuclear aromatic (PNA) compounds (petroleum oils). The
applications from the biological systems are too many to
enumerate. However, some of the examples of such systems
include electrographs (EG's), such as Electrocardiographs
(ECGs), Electroencephalographs (EEG’s), and cell and tissue
categorization.




It is obvious that the information carried by the signals is
phenomenal and an ideal system for processing and interpretat-
ion of signals would include a comprehensive cause and effect
analysis of all attributes of the signals. Different app-
roaches and issues involved in building such systems are
discussed in subsequent sections. A formal approach would be
to model the signals using all measurable attributes compri-
sing the source and phenomenon generating the signals, their

structure, and variations between signals.

Although numerous attempts were made to exhaustively synthe-
size the structure of the signals using analytical and mathe-
matical tools ([KRAU-69, NJP-93, STAL-82, VARY-79], such a
comprehensive model cannot be represented using a mathematical
expression alone. Instead we need methods to determine and
evaluate the information signals carry, and to process large
volumes of information we need automated knowledge based
tools. Emphasizing such need we propose, in this thesis, a
system approach to solve the problems of this magnitude and
developed several essential tools for information analysis and
summarization, and organization and categorization to achieve
the objectives. Modeling the information contents carried by
the signals and utilizing methods and concepts from pattern
recognition, statistical decision theory and knowledge engin-
eering, we developed algorithms to, 1) eliminate redundant
information, 2) rank and weigh the parameters based on their
discrimination power and information contents, 3) structure
and organize the knowledge, based on natural association among
pattern classes, and 4) categorize and interpret the signal
patterns using a suitable classification algorithm. In
addition, we developed rules to select different algorithms
and made efforts to minimize the subjective biases of an
expert/user at each phase of processing. A number of existing
tools and techniques, such as clustering algorithms, Fisher's
feature ranking method, and several traditional classification
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algorithms, wherever they found feasible, are used. However,
appropriate adjustments, as found necessary, have been made in
these tools and techniques to conform with the objectives.
Wherever it become necessary, new methods and techniques are
developed (see Section 1.9). These methods mainly include,
feature elimination and ranking methods, a pattern organi-
zation scheme, and several classification methods. All these
methods are essentially the contributions of this research.

The performance of all these tools and techniques are eval-
uated in two domains of applications, i.e., physical systems
and biological systems. Two examples from the physical systems
considered are non-destructive testing (NDT), and chemometric
analysis and interpretation of oil spectra. One of the
examples from the biological systems is non-invasive medical
testing (NIT) as applied to the interpretation of electro-
encephalographs (EEG’s). The other example is living-body
tissue and cells classification. These applications are
briefly introduced in the following paragraphs.

Obviously, any test which is "destructive" will prevent the
tested object from functioning usefully after the test. A case
in point questions whether a machine which is working well
will continue to do so, or have defects, e.g., hidden cracks,
corrosion, wear and tear, etc., which will likely lead to an
early breakdown. Of course such defects cannot be determined
by running a test under service conditions. Thus a "Non-
Destructive Testing (NDT)" method is introduced to test the
intended or actual performance of a component or a structure
without impairing the usefulness of the structure or the
component. Generally, any test method in which the test
signal has no significantly measurable effect on the proper-
ties of a material can be considered as non-destructive. The
aim of NDT is to obtain information on the performance of

material component or structure. Generally, only some inter-
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mediate effects can be measured, which in turn must be related
to performance. For example, radiographic methods determine
changes in density. These density changes are then interpret-
ed or characterized in terms of defects, which in turn are
attributed to actual performance criteria.

Analogous to NDT methods, medical diagnostic testing by non-
invasive techniques (NIT) can be defined as any test method by
which the performance of living organisms, generally human
beings, can be determined without in any way harming the liv-

ing substance or even causing pain.

The kind of problem we are dealing with in this study is that
of classification and assumes an appropriate name according to
the nomenclature of the problem area. If the signal source is
an NDT application then the classification problem will be
referred to as a recognition problem and if it is a biomedical
application then, synonymously, the classification will be
called a diagnostic problem. The analysis of spectra in chem-
istry can be referred to as a chemometric interpretation
problem. The identification of genetic cells is a biological
grouping problem. Thus NDT, NIT, chemometric interpretation,
and cell identification methods pose a similar problem: clas-
sification or interpretation of signals, based on their
structural characteristics. However, each apﬁlication would
require its own set of parametric measurements. The majority
of currently available techniques for these typical problems
are primarily based on visual inspection and thus are human
operator-dependent. The transfer of such human knowledge into
the computer provides a basis for use of an automatic
knowledge-based system for the interpretation of waveforms.

Although knowledge-based systems have evolved over a period of
two decades, their use in the classification of waveform sig-
nals is still scarce. First, in Section 1.2, a conventional
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signal processing system is outlined and different tools
constituting such a system are described. Later the field of
knowledge-based systems is reviewed, in general, in Section
1.3. Those systems specially designed for NDT waveform pro-
cessing are separately discussed in Section 1.4. Section 1.5
reviews the medical diagnostic systems. Section 1.6 estab-
lishes the need for an intelligent signal processing system
whereas Section 1.7 presents a unifying scheme to build a
multi-disciplinary integrated smart system. Section 1.8
outlines the details of each component of a generalized intel-
ligent recognition system proposed in this thesis. The cont-
ributions this research offers are summarized in Section 1.9.
Lastly, Section 1.10 presents the organization of this thesis.

1.2 Signal and a Signal Processing System

A general signal measurement, classification, interpretation
and diagnostic system is schematically shown in Fig. 1.1.
Usually such a system consists of a transducer coupled with
the information source and extracts the required information.
The transducer, in fact, converts the information into an
electrical signal (analog) which is conditioned and trans-
mitted, digitized, and submitted to digital conditioning (salt
and pepper noise removal), processing (transformation and
manipulation) and/or classification (see Fig. 1.1). The trans-
mitted signal may be corrupted with additive and multipli-
cative noise, and the information required may constitute only
a part of the signal such that irrelevant portions are consi-
dered noise. In such situations signal conditioning techniques
such as noise attenuation and cancellation techniques, or
signal enhancement methods, can be applied in order to
increase the signal-to-noise ratio and/or information con-
tents. A variety of methods are available for the enhancement
of the relevant information in a signal [COHE-86b, STEA-88].
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Scmetimes the signals available may not yield the required
information directly or the information conveyed by even a
clean and massaged signal is not sufficient for high precision
decision-making. In such cases the transformation of signal
has been suggested in the literature [BRAC-86]. The most
common transform applied in the majority of engineering appli-
cations is the Discrete Fourier Transform (DFT). The DFT is
used to transform the signal, usually from the time domain
into frequency domain, so that spectral information about the
signal can be revealed explicitly. In addition to the fre-
quency domain other properties of the transforms can also be
used. In some other situations the signal may drastically
change its properties with time, i.e., signal is time-variant.
In such cases the observations and processes on the signal are
performed only in a finite time window. The length and type
of the window depends on the signal source and the processing
objectives.

Very often only the general wave shape is known. A good
example is the electrocardiographic signal, shown in Fig. 1.2,
where the general shape of the wavelet, also called as PQRST
complex in medical terminology, is known. In order to deter-
mine the patient’s condition, the extraction of this wavelet
present in the signal and its frequency of occurrence (defined
in terms of number of cardiac cycles) is required [DICA-93,
SIDD-93a,b, TRAH-89] . The wavelet can be extracted using seg-
mentation or similar techniques. Other parameters of interest
for this problem are identified in Fig. 1.2 [TRAH-89].

Once conditioning and/or preprocessing is done, the signal or
the extracted wavelet is ready for processing (manipulation).
Again not all the information conveyed by the signal is neces-
sarily of interest. The signal itself may contain redundant
information. When effective storing and transmission are re-
quired, or when the signal needs to be automatically classi-
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fied, these redundancies have to be eliminated. The signal can
be represented by a set of features that contain the regquired
information. These features are subseguently used for stor-
age, transmission and classification. Furthermore, such fea-
tures are also needed for enhancement and reconstruction of
the signal. The number and types of features used dictate, on
one hand, the data reduction rate for efficient storage and
transmission and, on the other hand, the error of reconstruc-
tion. For tasks such as classification and diagnosis, pattern
recognition (PR) techniques are usually used. The processes
shown in the heavy dotted block of Fig. 1.3 are some of the

typical steps involved in PR systems.
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The various functions thus needed in a signal processing and
classification or interpretation/diagnosis system are depicted
in the blocks of Fig. 1.3. The system shown in Fig. 1.3 is a
general system. For specific applications, however, one may
delete some of the components or add some other.

1.3 Knowledge Based Systems

Scientists and engineers from every discipline are increasing-
ly interested in including ‘knowledge’ among the materials
from which they construct their artifacts. Knowledge based
systems is a generic term and is used to characterize a
general class of computer systems which incorporate knowledge
as an integral component for decision making. When this know-
ledge is explicitly acquired from human expert(s), these sys-

tems are called expert systems.

Most knowledge-based systems that have been designed to date
have been cited as expert systems. An expert system is a
knowledge-intensive computer program that solves problems
requiring human expertise so as to enable the computing system
to perform convincingly as an advisory consultant or a deci-
sion maker. In some cases such human expertise is very expen-
sive, rare, and occasionally, not replaceable. The scarcity
~f the experts and the need for an autounomous system has led
the industry and the researchers to store the domain-
dependent expertise into a data base and to computerize its
subsequent utilization. Perhaps for this reason expert
systems and knowledge based systems are growing in many areas,
particularly in business applications. Industrial, medical
(both clinical and electromagnetic diagnosis), and other
scientific fields are beginning to find applications as well.

A typical knowledge based system is shown in Fig. 1.4. Such
systems are usually composed of three principal components, a
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knowledge base, an inference engine, and a user-interface. The
knowledge base mostly contains declarative knowledge that is
usually represented in the form of IF <premise> THEN <conclu-
sion>, expressing a problem solving strategy that may be
followed by an expert for the domain at hand. The inference
engine is made up of decision rules that are used to control
how the knowledge stored in the knowledge base is used or
processeci. The user-interface allows communication or inter-
action between the system and an end-user. A few examples
will follow to illustrate the kinds of consultant services and

Knowliedge Base Inference Engine
Domain Facts | — Control Selection. Firing
& Rules Rute & Execution

—q

Expert/ User

* Menus
* Queries
User Inference ° Display
* Reasoning
« Explanations
* Prompts

Fig. 1.4: Components of an Expert System.
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skills which have been provided bv such systems. MOLGEN
(MARN-77,STEF-81] interactively aids molecular geneticists in
the planning of DNA-manipulation experiments. SACON [BENN-78]
guides engineers in the use of a large progran which integ-
rates structural analysis procedures. ITES [NAGA-91] deals
with human images of feelings and translates them into

ergonomic knowledge.

Well known examples of expert systems developed for industrial
applications include PROSPECTOR [DUDA-78a,b] which has been
successfully used to locate mineral deposits, Dipmeter
Advisor, wnich is used for oil exploration [DAVI-81] and R1,
which is used to configure computers [(MCDE-82]. DENDRAL
[BUCH-78, LIND-80] takes the pattern generated by subjecting
an unknown organic chemical to a mass spectrometer and infers
its molecular structure. SECS [WIPK-74] uses a 'knowledge
base’ of chemical transformations to propose schemes for
synthesizing stated compounds. SES (Spectral Expert System)
uses spectral information to characterize polynuclear aromatic
compounds [SIDD-91a)l. GUIDON is a knowledge-based tutoring
system [CLAN-87]). End-game expert system deploys and discuss-
es chessmaster nowledge and generates improved teaching texts
[BRAT-78,BRAT-80]. Examples of other tutoring systems are
(BRWN-74, BRWN-75, BURT-82, CARB-70].

A number of knowledge-based systems have also been developed
for medical applications [ANBA-87, BETA-91, NAUD-83]. They
will be reviewed separately in Section 1.5. The systems
developed for applications in chemistry are reviewed by the
author and others in [BROW-88, PAVE-86, SETT-87,SIDD-8%a,SIDD-
91al . Further information on many of these systems and other
applications is available in [BUCH-79,IRG0O-90, LIEB-86, MOLD-
87, NAUD-83, SIDD-88, SI1DD-89a,b,c,d, SIDD-90c, SIDD-93a,
SIDD-94a,b].
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1.4 NDT Waveform processing systems

Until the beginning of the 70's, non-destructive techniques
(NDT) grew primarily as an experience-based technology. The
field depended on skilled, experienced inspectors who progres-
sed through certification programs based on knowledge of fun-
damentals and accumulated experience (expert knowledge) [MCGO-
61]. While an underlying science base was developed through
the 1960’'s and 70’s, the qualified inspector remains the
corner stone of the technology. Technological developments
tended to be technique-based and explored new methods for
interrogating materials. Since the 70's, there have been
significant changes, there is not gnly a growing need for NDT
technology, but there is also a broader perception and accept-

ance of its importance and applications.

A case in point concerns large engineering development pro-
jects, which characterize various new approaches to generate,
transport, or use energy. These systems very often use mater-
ials close to their limits and the consequence of any failure
can be catastrophic. The need for a timely and adequate
inspection system is naturally obvious.

In recent years, because of the need for reliable and precise
flaw classification techniques, the thrust of the research has
been shifted from manual/analytical techniques to automatic
multi~disciplinary techniques. Among the multi-disciplinary
approaches, Shankar et al. [SHAN-78], Rose and Singh [ROSE-
79a,b}, Chan et al. [CHAN-85a,bl, and Hay et al. ([HAYD-84,
HAYD-88] have demonstrated the feasibility of applying signal
processing and pattern recognition techniques. Another
approach combines signal processing and artificial intelli-
gence ([SING-83]. Other approaches combine two or more dis-
ciplines of image processing, holography, statistics, signal
processing, artificial intelligence, and pattern recognition
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[CHAN-80, CHAN-82, CHAN-85a,b, ELSL-83, HARR-80, HAYD-84,
MAHL-85, ROSE-84, SIDD-86a, SIDD-88, SING-81].

As a result of these multi-disciplinary approaches, knowledge
based systems and expert systems for NDT are beginning to
emerge. For example, Mahalingam and Sharma [MAHL-85] reported
a preliminary system called WELDEX for testing of welds and
Siddiqui et al. {[SIDD-87a) proposed the design of an expert
system called KNOMES (Knowledge Monitoring Expert System).
Primarily, the WELDEX system is derived from a medical system
[GOME-81] and uses radiographic and cther image processing
techniques to diagnose the weld defects whereas the KNOMES
system was based on signal processing and pattern recognition
methods and was designed to classify NDT signals. None of
these systems showed any experimental results. However, the
work reported in this thesis uses the KNOMES'’ design approach
[SIDD-87a] as the basis and provides experimental results on

several application areas discussed above.

Another system of this type is ICEPAK {(Intelligent Classifier
Engineering Package). To the best of our knowledge this is one
of the most effective and practically operating, and commer-
cially available AI-based system which uses advanced signal
processing and pattern recognition techniques for waveform
characterization. This system has been successfully used on
different kinds of waveforms from both material testing, and
medical interpretation, to characterize flaw/defect and
disease problems of 2 to 6 classes [CHAN-85a,b, HAYD-84, HAYD-
88]. ICEPAK’'s design philosophy is partially used in the
development of preprocessing and feature extraction modules.

1.5 Medical Diagnostic Systems (MDS)

Physicians’ diagnostic decisions are central to the treatment
and care of patients. Often a physician’s decision could mean
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the difference between life and death. The question of how a
physician should react to each new test result is persistent
and pervasive. The information needed to answer a series of
questions related to the outcome of such test results is based
upon experience gained from training, and more immediately,
information sources such as medical records, laboratory
reports, textbooks, documented case histories, etc. In a
majority of cases the answer requires simple list searches and
comparisons, but the amount of information required to conduct
the search, compare and remember is enormous. Human beings
are not perfect. Given both the human limitations and exten-
sive medical training of physicians, many medical errors may
well be due to the limitations of endurance and instantaneous
recall, rather than to remediable flaws in their funds of
knowledge. There have been efforts made to reduce the chances
of such errors [ANBA-87,BUCH-84, COOP-84, GOME-81, MILL-82,
NATH-84, SHOR-76].

For example, WAMIS (German acronym for Vienna General Medical
Information System) is an integrated knowledge-based medical
system [ADLA-89] that combines medical information system with
medical expert system CADIAG-2 [ADLA-86). It links medical
records, hospital testing facilities, pharmacy, patient’s
rooms, and outpatient cliniecs. By putting this information
together, along with the factual and heuristic medical
knowledge in its knowledge base, the knowledge system can
interpret instrument readouts, suggest what the patient’s
illness might be, and advise on the proper drugs and treat-
ment. Such consultant systems and several specialized
disease-oriented systems have been in use since the middle
1970s. For example PUFF (PUlmonary Function) system,
developed at the Pacific Medical Center is a diagnostic system
for pulmonary diseases [AIKI-83, KUNZ-78]. Ventilator Manage-
ment (VM) [FAGA-78, FAGA-80] gives real-time advice on the
management of intensive care patients’ mechanical ventilation
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at the same center. The Regenstrief Institute of Health Care
(Indianapolis, Indiana) knowledge system called CARE, and the
LDS Hospital (Salt Lake City, Utah) knowledge system named
HELP, are both consultants that handle a more comprehensive
range of physicians’ chores [NATH-84, PRYO-83]. HELP has been
shown to reduce healthcare costs. Some of the patients are
treated even at remote locations. Barney Clark, the recipient
of the first artificial heart was among such patients treated
by HELP system. MYCIN [SHOR-74] and INTERNIST (POPL-77] have
outperformed clinical consultants within the bounds of the
systems’ stored expertise. Foetos [BETA-91] is one of the
most recent expert system developed for the assessment of
fetus in a high-risk pregnancy. There are other computer
programs such as, CADIAG-2 [ADLA-86], INTERNIST-1/CADUCEUS
(MILL-84], ONCOCIN [BUCH-84], QUICK [FIRS-85], RECONSIDER
[(TUTT-83), that are practically operating in the hospital or
physician’s office. Some of these systems have already been
tested with hundreds of clinical cases. Additional examples
of medical diagnostic systems are cited in [ANBA-87,RBENB-80,
BUCH-84, COOP-84,FINK-89,GOME-81, HERN-89, LUGE-89, MILL-82,
SIDD-93a,SHOR-74, SHOR-75]. Several medical tutoring systems
are also reported in the literature [CLAN-81,HEID-88].

Most of the knowledge-based MDS systems are general care moni-
toring and analysis systems. 'The inference mechanism (problem-
solving method) used in these systems is basically a variation
of the hypothesize-and-test process. However, recently, a
number of successful attempts of using elementary PR tech-
niques and typical signal processing methods for simple clas-
sification and diagnostic problems in medicine have been
reported [BENB-80,BUCH-84, LUGE-89,PAHL-87,SIDD-93b, SLAG-89].

Only a handful of the MDS systems mentioned above are capable
of simultaneously analyzing, monitoring and diagnosing. Prob-
lems arise because of the complex nature of the input data and
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number of parameters affecting it. Biomedical signals are
usually extracted from living organisms. The living biologi-
cal system is a very complex system governed by interactions
of numerous biochemical, physical, and chemical subsystems not
well understood as of yet [COHE-86a,PICT-88]. The complexity
of the biological system introduces difficulties in measure-
ment and processing procedures. In particular, many aspects
of the complex hierarchical control of the brain and the
nervous system, the genetic control, the neural information
transfer and processing, and other systems are still under
extensive investigation.

The large variations that exist in biomedical signals usually
suggest the use of statistical methods. These variations exist
in signals acquired from an individual and, of course, between
populations. Consequently, the accuracies and confidence
limits that come out of biomedical signal processing are
usually not very high, at least in terms used in engineering
disciplines. The measurement systems most often use Non-
Invasive Techniques (NIT). This means that very often the
requisite information cannot be acquired directly and one has
tec infer it from signals that are non-invasively available.
Fetal heart monitoring is a good example. Rather than applying
electrodes directly to the fetus’ skin which is an invasive
procedure, we non-invasively place the electrodes on the
mother’s abdomen. Unfortunately, the signals thus acquired
are heavily contaminated with the mother’s strong ECG and
muscle activities (EMG).

Thus, one of the MDS problems is to extract pertinent pieces
of information from highly contaminated signals and be able to
analyze and diagnose (recognize) them using a machine. It
appears that, as yet, no operative example of building such a
stand-alone monitoring and diagnostic MDS system exists.
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1.6 The need for a Stand-alone System

From the review of knowledge-based and signal processing
systems presented in Sections 1.3 through 1.5, clearly two
different problem-solving approaches have emerged, signal
processing supplemented with pattern recognition methods and

an expert-system approach.

Perhaps signal (waveform) sensing and processing systems which
are primarily based on numeric processing are among the most
powerful tools currently available for examining the internal
structure of materials, chemical spectra and living biological
substances. Using the waveforms, these systems have found wide
application in industrial flaw detection, thickness gauging,
spectroscopy to identify the compcnents in chemical compounds,
and very recently in medical diagnostic systems such as elect-
rocardiography (ECG), electroencephalography (EEG), electro-
neurography (ENG), electrooculography (EOG), etc. The other
approach that heavily entails symbolic processing is that of
expert systems which emulates human problem-solving in the
form of hypothesize-and-test type symbolic processing.

While both of the above approaches have produced impressive
performance at times, they currently face a number of limita-
tions when applied to real-life problems [REGG-83, WEIS-84,
SIDD-89d, SIDD-93a,bl. For example, problems where multiple
pattern classes with complex representation are present simul-
taneously have proven very difficult to handle [POPL-77, SIDD-
89d]. In addition, AI models of diagnostic reasoning are often
criticized as being "ad hoc" because of the absence of a
formal, domain-independent thecoretical foundation [BENB-80].
Current systems are limited in size (of problem) and scope
with limited learning capability and require extensive amount
of expert/operator input. Rather, these systems provide enhan-
ced displays and presentations to assist the human analyst in
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his/her interpretations more likely with dated knowledge.

Ideally, for any computer software to be called an expert
(intelligent) system, it should at least have the following
characteristics:

a mechanism to extract knowledge from raw observation
and/ or from the expert, i.e., a mechanism that could
combine numeric and symbolic processing.

- a mechanism to optimally asscciate observations to the
pattern classes.

- a domain-specific knowledge base that may be updated as
more knowledge becomes available.

- an optimal mechanism to represent and organize knowl-
edge so that the problems such as information explosion
‘and redundancy could be minimized.

- an inference mechanism that based on the knowledge
available may choose an appropriate decision-making
algorithm.

- an explanation/communication facility that may provide
a logical explanation of the solution plan.

More recent efforts in Al research have stressed the use of
large stores of domain-specific knowledge as a basis for high
performance of expert systems. The knowledge base, which is
the key component of this sort of program (e.g., Dendral
[FEIG-71}, MACSYMA [MART-71], Foetos [BETA-91]}) is tradition-
ally assembled manually. Such an assembly of a knowledge base
is considered an ongoing task that typically involves numerous
man-years of effort and continual interaction with expert(s).
A key element in constructing a knowledge base is the transfer
of expertise from human expert(s) to the computer program.
The process of knowledge transfer is called knowledge engi-
neering. Often, the domain expert is unfamiliar with the
knowledge engineering process and usually unable to structure
his strategic nroblem solving approach into a logical algo-
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rithmic form. Also, it is virtually impossible for an expert
to consistently extract the problem-solving information from
physical observations. These factors make the acquisition of
an expert‘’s knowledge a very difficult task. Further, the
manual acquisition of knowledge from a human expert is a very
labor-intensive process. Therefore, we acknowledged a need to
have automatic and formal aids for knowledge acquisition,
formalization and its processing for the results, as part of

the system.

1.7. Integration of Information Processing Technologies

With the previous discussion it appeared to be essential that
the methods available in a single field would not be able to
provide us a complete set of tools to build the system we
intended. A multi-disciplinary approach is essential. Now
the question arises as to which disciplines to use and how to
blend these disciplines to develop an integrated system to
overcome some of the limitations discussed above. The
approach we adopted is to borrow the concepts from a field
only for those functions that the system can perform best.
Thus considering the ideal characteristics, an intelligent
system should have (see Section 1.6) the general objectives
and scope of the problem we solved were established as below:

- Define a stand-alone signal classification and discr-
imination system that combines physical observations
and expert knowledge.

- Minimize human biases in the selection of knowledge
parameters, selection of knowledge processing techniqu-
es, and decision-making.

- Be able to solve a fairly large set of problems in a
problem domain without degrading the performance.

- Be able to adapt itself to new problem domains by simp-

ly providing the system with a knowledge base in that
problem domain.
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- Be able to function both as an expert and as a consul-
tant.

Two basic approaches of solving classification problems are
discussed in previous sections, namely, pattern recognition
(PR) and expert systems. Pattern recognition approaches
primarily use numerical methods to automate the interpretation
process by defining a set of characteristics for a patteuwn
class. However, the PR techniques make no effort to identify
the specific structure/property involved; they merely try to
suggest structural elements (features) that the unknown may
contain. In fact, this is the information that is used for
the discrimination of a pattern class. A major advantage of
these techniques is that they make no a priori assumption
regarding the structural information used to discriminate a
pattern class. As such, without imposing any solution, it is
possible that useful new information may be uncovered. An
expert system, on the other hand, uses the known interpreta-
tion logic of the human expert which is usually represented in
symbolic form, and since it is stored in machine, the scope
and effectiveness of decision-making is limited to the amount
and depth of the knowledge stored.

The problen-solving approach adopted in this research uses a
hybrid scheme that combines both of the above two approaches
to build on their strengths rather than living within their
limitations. The functional view of a unified system combining
the set of approaches that have been shown diagrammatically in
figures 1.1, 1.3 and 1.4 is presented in Fig. 1.5.

The techniques for signal registry and conditioning are
borrowed, as is, from typical signal processing systems (Block
1 of Fig. 1.1) and used for information acquisition, condi-
tioning and enhancement. The next set of techniques selected
is PR techniques (Blcck 2 of Fig. 1.3). Pattern recognition
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techniques are primarily evolved from the human process of
vigion, recognition and perception. Selection of good pattern
recognition tools could reduce the burden on the human expert
and save an unaccountable number of man-years which are other-
wise required only to acquire the expert’s knowledge. More-
over, since pattern recognition techniques use features which
are easier to represent and easier to apply to decide the
pattern identity, they will be very useful in formalizing and
structuring the reasoning and explaining process for the
actions of an inference engine. 1In addition to PR techniques,
information transformation techniques such as Fourier or
Hartley transform can be used to transform the signal to a
more meaningful and explicit form.

The parameters extracted can be stored in a knowledge base and
then usual expert systems' approach shown in Fig. 1.4, or
knowledge-based pattern recognition methods can be used for
classification. The inference engine, therefore, can be
designed using both the declarative knowledge (from the ex-
pert) and the procedural knowledge. The procedural knowledge
comprised of a set of pattern classification algorithms will
use physical observations (pattern features) for decision
making. To process the declarative and heuristic knowledge
iterative dichomotization as suggested by Quinlan [QUIN-86],
or any other algorithm with similar function can be used.
Thus by combining these disciplines an intelligent waveform
processing and recognition system, shown in Fig.1.5, is
proposed. The details are presented in the following section.

1.8. A General Intelligent Recognition System (IRS)

A general intelligent recognition system (IRS) is shown in
Fig. 1.5. Before we describe the components of this system,
several key terms and the context in which they are used will
be defined.
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The basic objects within the knowledge base are Facts and they
refer to real-world knowledge about the problem domain which
include the physical observation collected from the subject
and any additional knowledge the signal may carry. These
observations (signals) carry information about the source or
the path which may be extracted in the form of pattern
measurements (features). Based on their wvalues, these
features may indicate the pattern belongs to one particular

class, i.e., indication.

The system shown in Fig. 1.5 is composed of three subsystems,
1) Knowledge Acquisition, Representation, and Organization
(KARO) subsystem, 2) Inference Engine, and 3) the Expert/User
Interface. The design philosophy and operational details of
these components are presented in subsequent chapters, how-
ever, a functional overview of the system is presented in the

following paragraphs.

The basic cycle of the KARO subsystem consists of three
phases: namely, fact gathering, knowledge base, and knowledge
formalization and organization. The fact gathering phase
performs three main tasks, 1) acquisition of input data (wave-
form signals), 2) data preprocessing, and 3) pattern measure-
ments. Each of these tasks further entails a series of
operations. Since the pattern measurements are performed
using analytical tools they will be called analytical features
hereafter. Analytical features constitute a major portion of
the knowledge base which is the next component of the KARO
subsystem. A set of analytical features representing one
physical observation constitutes a pattern vector. A set of
pattern vectors representing the design set serves as a set of
examples or reference patterns the system may be able to
classify. Other components of the knowledge include a priori
knowledge, and heuristic knowledge conforming the problem
domain. A priori knowledge includes a number of parameters
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pertaining to the physical and operating characteristics of
the apparatus required for the recognition/interpretation
experiment at hand. The analytical features are further used
to derive empirical knowledge parameters some of which in tuxrn
are used to simulate human judgement and hence these parame-
ters are considered as heuristic knowledge. Heuristic know-
ledge comprises of, 1) a set of rules representing expert'’s
fixed (book) knowledge, 2) a set of procedures that an expert
may apply on physical observations, and 3) a set of empirical
knowledge parameters to formulate an expert’s judgement and
objectives. The function of a priori knowledge is to identify
corrupted signals and based on stored knowledge, direct the
preprocessing that the system should perform. The heuristic
knowledge serves as meta knowledge and is used to select an
appropriate algorithm at different stages of processing and
controls its application on requisite data.

The next component of the KARO is knowledge formalization and
organization wherein a series of operations are performed to
sort, structure and organize the accumulated knowledge. Ana-
lytical knowledge takes advantage of tha natural association
that exists among patterns to build their pattern association
hierarchy (PAH) which is a new concept introduced by the
author in (SIDD-87a]. PAH supplemented with a priori and
heuristic knowledge thus indicates the actions the system
should initiate when some pacameters reach certain thresholds.
To use the knowledge base efficiently, the knowledge is
formalized using a combination of knowledge structuring and
rule building methods. The analytic features corresponding to
an individual pattern are transformed into several sets of
selected feature vectors. Empirical knowledge and heuristic
knowledge pertaining to a set of associated patterns are
stored as declaratives and procedures in structures called
knowledge frames. A knowledge frame with appropriate node-
dependent knowledge is placed at each intermediate node in the
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PAH. Such organization of knowledge not only facilitates the
storage and retrieval of pattern class-dependent information,
but also increases the pattern recognition performance.

The same pattern association hierarchy is used by the infer-
ence engine to classify an unknown pattern. Using the known
identity of the patterns, the inference mechanism of the
engine is trained for an appropriate classifier at each node
of the hierarchy. The classifier and the training information
for each intermediate node is stored in the respective frames.

Once the knowledge is formalized and organized using the known
identity of the signals, and the inference engine is trained
on the problem at hand, the system can be used to characterize

an unknown set of input signals.

Such a system could be designed to operate in two distinct
modes, executive and consultant modes. In the executive mode,
the system can operate autonomously by processing through the
PAH and would not reguire any human input to solve a problem.
To train the system for this mode of operations, supervised
learning is required in which the system has the knowledge of
the pattern classes it will be identifying. In the consultant
mode, the system can be designed to function as a synthesizer
that will allow the expert to monitor the pattern classifica-
tion process by modifying a number of key decision paramet 2rs
that we have identified for this purpose. To train the system
for this mode of operation, unsupervised learning would be
needed in which the expert has to provide initial input on

identification of pattern classes.

If the dual mode of operation is implemented then the utiliza-
tion of heuristic knowledge will depend on the operating modes
of the system. If the system is in the executive mode, only
the pre-stored fixed knowledge is utilized for the final
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determination of pattern’s identity. When the system is in
the consultant mode, expert input is sought at each phase of
the classification process. At present the system assumes the
executive mode of operation only.

The last component of the system which is not implemented in
this research, is the user/expert interface. The function of
this component is to provide a communication and explanation
facility for the actions which the system undertakes. A
skeletal picture of the components and the techniques that are
required for the development of the whole system are summa-
rized in Fig. 1.6.

1.9 The Research Contributions

The objectives discussed in Section 1.6 were established to
define the context of the present work. To successfully
achieve those objectives, a number of new algorithms and
concepts which essentially constitute the contributions of
this research were developed. Some of the notable contribu-
tions are listed below.

1. System Concept Level

Until the work reported in the thesis was carried out, the
knowledge based approaches to system development were essen-
tially isolated. That is, the systems were developed either
using physical observations only or they were emulated using
expert knowledge. This thesis proposes an integrated approach
to a knowledge based pattern recognition syscem that combines
both physical observations and empirical knowledge and deve-
lops several components (see below). Those components
evaluated in this thesis demonstrate the general feasibility
of the approach.
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Knowledge Type
A priori knowledge
* Facts about
- problem domain
- test equipment
- test specimen characteristics
- test conditions
Analytic knowledge (physical observations)
* Statistical features
* Waveform features
Heuristicknowledge (implicit/derived observations)
* From Expert
- judgement & objectives;
- specific methods/procedures including
classification algorithms
* From System
- empirical observation
- meta knowledge

Knowledge Representation and Formalization
Analytical feature vectors
Empirical knowledge and declarative rules

Knowledge Organization
Declarative & Frames
Procedures
Pattern Association hierarchy

I.aference Engine
Machine Learning
- supervised/unsupervised

Inference Mechanism
* Discrimination strategy
- parametric classification schemes
- non-parametric classification schemes

* (Cognitive strategy
- information-theoretic decision tree

Operation (decision making environment)
Executive (Tutorial)
Subordinate (Consulting)

Explanation/Reasoning Mechanism
Forward/backward chaining through the hierarchy

Fig. 1.6: Skeletal View of the components and techniques
used in the Intell '-»nt Recognition System.
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2. Feature Level

What features should be selected? Addressing this issue, we
suggest to extract all useful features one can think of and
then use ‘Successive Feature Elimination Process’ to weed out
the poor performers and later use one of the two feature
ranking and selection algorithms, i.e., Fisher discriminant
index or Pseudo-Similarity method to select a smaller feature
set. Successive Feature Elimination Process and Pseudo-
Similarity method are the contributions introduced in this
thesis.

3. Knowledge Organization Level

To minimize the problem of knowledge explosion and redundancy,
a new concept called the pattern association hierarchy is
introduced wherein several existing algorithms (a few were
modified) and a new clustering algorithm called ‘GCeneralized
Variations’ method are used to hierarchically organize the
pattern classes and their associated knowledge. This arrange-
ment thus always stores the knowledge pertaining to only two
groups {(or classes) at each non-terminal node of the PAH.
Data-dependent ’‘Rules’ are developed to select an appropriate
clustering algorithm.

4, Classification Level

A number of observation-dependent parameters are designed to
automatically determine the data statistics which in turn
determine the pattern classification algorithm to be used.
The new concept of pattern association hierarchy along with
feature elimination and selection methods, data-dependent
parameters, and, a number of parametric and non parametric
classifiers at each node of the hierarchy gives birth to a
flexible PAH-classifier. This method reduces the bias that
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may be introduced by the human judgement while designing each

of the above phases.

5. Integration and Automation Level

Instead of human judgement, the system primarily relies on
analytical tools to synthesize the available information. This
synthesis evolves a set of new parameters (empirical knowl-
edge) which are used to partially simulate human judgement.
Using empirical knowledge a set of rules are designed to auto-
matically select an appropriate algorithm among several avail-
able at different phases of processing. Thus a high level of
automation and integration is achieved.

6. Application Level

The project develops a generic signal classification scheme by
successfully applying the system to three different applica-
tion areas, namely, non-destructive testing, spectroscopy and

medical diagnosis.
7. Size of Problem, Performance, and Robustness

The algorithms we developed are not restrained by the size or
the nature of the problem. We solved four problems with 3 to
20 pattern classes, up to 112 features and 2 to 200 samples in
a pattern class with consistently high individual class
performance of 60% to 100% mark for various problems.

1.10 Thesis Organization

Altogether, the thesis comprises eight chapters. It begins
with a chapter entitled, "INTRODUCTION" that describes wave-
form sensing and reviews some of the important systems
developed for signal processing in first two sections. Review

30




on the knowledge based systems is included next. The systems
developed for two of the application domains, i.e., the NDT
signal processing and the medical diagnostic systems are
briefly reviewed in the next two sections. After establishing
the justifications for a knowledge based intelligent recog-
nition system, the components of the proposed system are
described together with a list of contributions this research
makes.

Chapter two presents a general IRS system and describes its
components. It further describes how the physical observation
and other knowledge components pertaining to a problem domain
are gathered, and analyzed. Several generic algorithms deve-
loped for knowledge organization and selection of optimal
parameters for pattern discrimination are described in Chapter
3. Chapter 4 describes the components of the empirical and
meta knowledge concentrating on techniques ior knowledge abs-
traction and organization. A priori knowledge, physical
observations, and empirical knowledge specifically for the
NDT-domain are described in these chapters. The architecture
of the inference engine is described in Chapter 5. The
inference engine is a composite of two independent solution
strategies, discrimination and cognition. The cognition
algorithms used are also described in this chapter. The
algorithms which formulate the discrimination strategy are
presented in Chapter 6.

Chapter 7 presents the results of several experiments conduct-
ed on four data sets. These results are studied in detail and
the observations made are discussed.

Finally, Chapter 8 concludes the research, reviews individual-
ly all the components of the system and summarizes the contri-
butions of this research. It also presents the directions for
future research in this area.
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Chapter 2
Common Elements of an Intelligent Recognition System

2.1. Introduction

We observed four levels of abstraction in knowledge hierarchy.
They include primary concepts, physical observations, derived
facts, and heuristics. Primary concepts refer to a priori
knowledge pertaining to a problem domain. The information
that the physical observations (raw signals) may carry is
considered as facts. The derived facts and the knowledge
derived from the primary concepts are referred to as the empi-
rical knowledge. Using empirical knowledge and statistical
decision theory a set of meta-rules were derived. Meta-rules
are considered as heuristics and hence these two terms will be
used interchangeably. Using this quadruple concept of know-
ledge abstraction the first subsystem, Knowledge Acquisition,
Representation, and Organization (KARO) subsystem, of the
intelligent recognition system is designed which forms the
main subject of this chapter. The information a waveform
carries is modeled and requisite knowledge pertaining to the
NDT problem is structured. Some thoughts on how to incorpo-
rate instrumentation and operating conditions of apparatus are
also presented in this chapter. The empirical and meta-
knowledge concepts are the subjects of Chapters 3 and 4

respectively.
2.2 Signal Interpretation - Current Practices

To conceptualize the knowledge requirements for individual
problem-domains, it was essential to study how different types
of problems included in the present study are being currently
solved. After carefully reviewing the current state of the
technology we noticed that the majority of such techniques are
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based on visual inspection. In visual inspection techniques
the discrimination is largely based on the indications of amp-
litude and arrival time (or intensity and wavelength), or in
some cases using the signals in the transformed domains (see
Sections 1.1 and 1.2, and Fig. 1.1 and Fig. 1.3) and the
discrimination process simply decides on an accept/reject
criterion. For large scale interpretation and data synthesis,
however, analytical methods for evaluating the signal arti-
facts have been used [STAL-82].

In current methods for spectroscopy, since a majority of poly-
nuclear aromatic compounds (PNA) have unique peaks at a given
wavelength, frequency domain transforms are usually used
whereas in electroencephalographs (EEG) analysis, time domain
signals are considered important. In NDT-testing, however,
the inspection records are usually obtained in three forms,
A-scan, B-scan and C-scan. The A-scan is amplitude/time
display for a specific point on the specimen and basically a
time-domain signal as described above. B-scan is an amplitude
curve along a scan line whereas the C-scan is a planar view (2
dimensional) image and is obtained through a series of scans
covering the surface of the specimen.

Among the recent practices for NDT-testing the A-scan is
further submitted to analysis using signal processing techni-
ques. In most signal processing applications, an important
waveform transformation called Fourier Transform is employed.
This transform has been used to translate a time domain signal
into what is known as power domain signal. A power domain
signal can also be referred to as a frequency signal because
it actually shows the power of the signal at each frequency.
These domains have been used to improve classification consi

derably [HAYD-84, MATT-89). A reference signal is often used
to remove the local geometry and grain properties, in addition
to transducer characteristics. Other techniques involve using
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deconvolution for separating signals. The deconvelved signal
can then be analyzed in two other domains in addition to the
frequency domain. By taking the inverse transform of the
deconvolved signal, a time domain signal is obtained. Accord-
ing to the theoretical model, this signal should be trapezoid-
al function whose dimensions are related to the defect dimen-
sions. Taking the complex logarithm of the spectrum and then
performing the inverse Fourier transform yields the cepstrum,
where peak locations in quefrency are also indicative of crack

dimensions.

The above discussion thus suggests that any automatic inspect-
ion system should select features based on physics and mecha-
nics of the problem with respect to expected modification and
changes in the signal amplitude versus time waveform or versus
wavelength (frequency domain). Time and frequency are impor-
tant domains for information synthesis since many phenomena
occur only at a specific frequency or within a particular
range of frequencies. To enhance the performance of the
categorization process, however, these observations (features)
must be supplemented with the additional knowledge that may
either be obtained from a priori (real world) knowledge, or
the expert knowledge of the operator.

2.3 Modeling the Waveform Indications

Reviewing the signal interpretation process presented in
previous section, we modeled the information a waveform signal
carries. EEG signals, PNA spectra, and NDT api’‘cations, or
perhaps any application that can be represented by signals,
all require electronic data acquisition, preprocessing and
other conditioning according to the factors which contribute
to the nature of the signal and their information contents.
Since each problem domain involves different instrumentation
and different test subjects (or specimens) having a different
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set of inherent characteristics, the factors affecting the
indications would vary from problem to problem. For example,
the EZG signals are corrupted by noise and/or artifacts,
introduced by the electrodes, eye blinks and other body move-
ments, instrumentation fit-up and other elements in the
measurement set up. Here, the application of more complex
methods is needed for a proper evaluation of the differences
in the received indications regarding disease (defect) signals
and interfering signals.

In this section we will individually model the accumulated
effect of surrounding factors on NDT, EEG and PNA signals.
Several parameters are designed to accommodate these factors
individually.

2.3.1 NDT Indications Model

The inspection and evaluation process poses a special challen-
ge to NDT engineers due to a variety of reasons related to
complex metallurgy, structural geometry, unpleasant or hostile
radioactive environmment, high temperature, noise from the
equipment and environment, random variations in signals,
varied properties of the test objects including their geometry
and thickness, limited access to the component, NDT-method
dependent parameters, and the presence of defects as well as
distance and orientation of test equipment with respect to the
test object and the testing conditions.

Modeling the indicacions requires that a candidate set of
input parameters to the model be defined. This candidate set
must be a summary description of the known and instrumental
variables. In addition, the parameters input must be related
to the physics of the underlying process or at least to an
intuitive understanding of the process. Since human inter-
pretation of NDT signals, or EEG/PNA signals for that matter,
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is dependent solely on the observed characteristics of the
signals, the input parameters should be attributable to

mathematical characteristics of the signals.

To sort the indications a variety of contributors to NDT-
indications mentioned above have to be considered. With the
knowledge pertaining to the source of these factors their
influences can be minimized considerably. Considering these
factors a waveform can be defined as the sum of overlapping
defect and geometrical or structural indications.

Based on simple accept/reject criterion .he NDT-indications
could be divided into defects, and non-defects. The contri-
butors to the non-defect indications primarily include the
parameters from test equipment, operating conditions and the
material properties. Based on the dichotomy of indications
(defects/non-defects) the parameters which contribute to NDT

indications are hierarchically organized in Fig. 2.1.

Thus the basis for modeling these indications in a waveform
(NDT) is a measurement model that relates the output indica-
tions of the system (test equipment), W(n,d), to its various
signal and noise components shown in Fig. 2.1. 1In designing
the model we assumed that the effect of the components is
independent of each other and used an additive measurement

model as defined by:

W(n,d) = W({d) + W(E) + W(C) + W(P) ... 2.3.1
where
W(d) : is the indication produced by the defect, d, in the

absence of non-defect artifacts,
W(E) : is the indication (artifact) produced by the eiipment,

E, and is the sum of artifacts from wave mode, W(mode)
and electromechanical artifacts, W{a), that is,
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W (E) = W(mode) + W(a) ce. 2.3.2

W(C) : is the indication (artifact) produced by the operating
conditions, C, of the equipment,

W(P) : is the indication (artifact) produced by the material
properties, P,

W(n) : is the accumulated indication (total noise) produced by
the non-defect parameters together, i.e.,

W(n) = W(E) + W(C) + W(P) ... 2.3.3

W(n,d) :is the composite indication and consists of both signal
and artifact indications.

By collecting the parameters shown in Fig. 2.1 the factors in
equation 2.3.1 which contribute to corrupt the signals can be
eliminated and the quality of the signal can be enhanced right
at the source. The components pertaining to NDT-problem
domain which would contribute to increased performance are

described in the following sections.
2.3.2 EEG Indications Mcdel

It has been long known that the brain generates waves called
electroencephaloc.aphs (EEG) [GEVI-80]. An EEG is a slow
(0.01-100 Hz) electromagnetic wave that pervades the brain
tissue [PICT-88]. It can be recorded either with electrodes
implanted in the brain or with an array of electrodes affixed
to the scalp. Of special interest are experiments with evoked
responses, for example, see Siddiqui et al. [SIDD-90c].

The evoked responses ur event-related potentials (ERP) result
from a stimulus applied to a person. The stimulus can be an
electrical pulse, a drug, sound, a (soothing) touch, and so
on. The result is a wave representing different aspects of
the brain’s response.
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EEG Indications

|
EEG Signal

Artifacts
Subject Test Conditions Test Equipment
. b
Continuous Transiant
-
-Temperature -Noise
-Noise (Reg.) . Sudden
(baseline) Irregular
| . . . .
Continuous Transiant Continuous Transiant
(£: 2-3 Hz)

-Physical -Limb -Electrodes -Electric
.Breathing movement .Faulty surges
.Humming .Body . Improper Contact
.Prespiration .Head . Loop -Mechanical

.Arm(s) .Noise glitches
~-Limbs .Leg(s) .Position
.Periodic .Eye blinks
.Eye movement -Stimulus
.Eyes open/ - Physical .Auditory
close .Sneezing .Olfactory
.Coughing .Sight

-Phsiological .Hickups .Arousal
.ECG .Yawning
.EMG .Twisting
.ENG -Drug
.EOG - Mood Changes .Quantity

. .Quality

~Mood
.Relax
.Normal
.Alert
.Waxing
.Whining

-Pathological

.Metabolic Disorder

-State
.Medical Condition
.Drowsy

.Awake -Eyes open
-Eyes closed

Fig. 2.2: EEG Indications
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Following the model we developed in equation 2.3.1, the indi-
cations in the EEG type of problems were structured in Figure
2.2. However, the components would have the following inter-

pretation:

W({d) : is the indication produced by the disease, d, in the
absence of non-disease artifacts,

W(E) : is the indication (artifact) produced by the equipment,
E, and is the sum of artifacts from wave mode, W{mode)
and electromechanical artifacts, W(a), that is,

W (E) = W(mode) + W(a)

W(C) : is the indication (artifact) produced by the operating
conditions, C, of the equipment,

W(P) : is the indication (artifact) produced by the limbs and
other organs of the body, P,

W(n) : is the accumulated indication (total noise) produced by
the non-disease parameters together,

W(n,d): is the composite indication and consists of both brain
signal and artifact indications.

W(mode) :is the indication of the subject in question under
normal (healthy) conditions.

2.3.3 PNA Indications Model

A PNA-waveform is an ultra violet visual fluorescence (uv-vis
fluorescence) composad of discrete spectrum produced by
measuring intensity of emission versus wavelength scanned
during a certain time which usually excites with steady state
light at a fixed wavelength [EAST-83, SOGL-85]. These
spectra, like NDT-signals and EEG waveforms are not noise
free. In addition to the usual noise from the equipment and
experimentation, peak-jitters, optical noise from the mixture
and the solvent blank are some of the common factors which
corrupt the quality of the spactra. Adopting the same model
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of equation 2.3.1, we developed the model for PNA spectra.

The PNA indications are structured in Figure 2.3. The
components in equation 2.3.1, however, have the following
interpretation:

W(d) : is the indication produced by the PNA-compound, 4, in

the absence of impurities,

W(E) : is the indication (artifact) produced by the equipment,
E, and is the sum of artifacts from wave mode, W(mode)
and electromechanical artifacts, W(a), that is,

W (E) = W(mode) + W(a)

W(C) : is the indication (artifact) produced by the operating
conditions, C, of the equipment,

W(P) : is the indication (artifact) produced by the consti-
tuents of the compound, P,

W(n) : is the accumulated indication (total noise) produced by
the impurit.es and other non-concerned constituents
present in the compounds,

W(n,d) : is the composite indication and consists of both spec-
tra and artifact indications.

W(mode) :is the indication when running a blank mixture under
the same operating conditions.

2.4 Ideal Knowledge Requirements

To evaluate the components of equation 2.3.1 and to acquire
perrinent knowledge for signal processing and recognition,
accumulated effect of all their constituent parameters has to
be evaluated. To simplify the task we considered the major
noise contributors which are usually known before the experi-
ment - a priori knowledge. These contributors are described
below.

A priori knowledge is considered to be problem-domain depen-
dent generic knowledge that is independent of the presence of
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PNA Indications

Spectral Signal Noise
| l l 'I
Gausian Lorentzian Instrumental Integrated Noise
Artifact (Chemical)
-Symmetry ~-Symmetry
-Shape ~-Shape
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~Wavelength |-Wavelength

|
Environment Equipment Sample Solyent
— I
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-Scatter- -Absrp.
. Lighting -Vibra- -Surges ing . Conta-
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noise width Components rities
. Bruches in -Emission -Absorption . Inten-
electrolytes | distance -Differection sity
. Radio -Excitation -Scattering
frequency distance -Reflection
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-Temperature

Fig. 2.3: PNA Indications
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any pattern class. We defined it as the hard core real world
knowledge which can be used for, a) identification of sources
of noise and artifacts, b) reduction/elimination of noise con-
tributors, c) preliminary interpretation of signals, d) pre-
paratory arrangements for problem solution and establishment
of the scope of the problem.

A defect is a material inhomogeneity which significantly
affects the performance of material or component. Considering
the factors shown in Fig. 2.1, in NDT-problems, a priori know-
ledge about the defects could be divided into six basic
inputs: 1) domain-specific parameters, 2) method-specific
parameters, 3) test specimen characteristics, 4) detailed
defect (source) characteristics including location and orient-
ation of defect(s), 5) test equipment characteristics, and, 6)
the operating parameter ranges of the test.

The domain specific parameters include the general principles

and guidelines that an expert may adopt for, a) describing the
pattern classes and label assignment to pattern classes, b)
selecting the physical (NDT) method and apparatus fcr signal
acquisition, c) selecting the information physical observat-
ions may carry, d) selecting the methodology and algorithms
in each phase of solving a problem, and, e) the methods to
interpret the results and methods to asscciate pattern class
to a physical phenomena.

To correlate defects with appropriate properties of signals

and materials the NDT technology provides a larg. number of

methods. Most commonly used methods are; eddy curren.s [AULD-
83, MARZ-83], ultrasound [KRAU-69, VARY-79], acoustic emission
[HAYD-84), and acousto-ultrasound [DESR-86,KAUT-86, VARY-82,
VARY-87) . Each method encompasses its own set of principles
and characteristics which should be considered when a method

or application is selected. The selection of an NDT method is
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highly dependent on a large number of factors such as compo-
nents to be tested, the kind of defects to be identified, the
kind of defects a method can determine, etc. These factors
are summarized in Table 2.1. A set of theme enquiries design-
ed to establish method versus defect relationship and to
determine the kind of knowledge required in the NDT problem

domain are shown in Table 2.2.

The NDT-signals also affected by inherent characteristics of
the test object. Trese characteristics include material pro-
perty data, shape and geometry of the object, and the know-
ledge pertaining to the defects the specimen may contain. For
example, natural materials produce a more or less pronounced
effect which usually weaken the propagation of sound. This
results from attenuation, which is the sum of scattering, and
absorption losses. The studies in material science suggest
not measuring the individual effect of waves propagation based
on grain [KRAU-69], and geometry or structure [MOYZ-82]. The
point, however, to be made is that the inherent properties of
the material should not be confused with artifacts or defects.
Important characteristics to consider are listed in Table 2.3.
An expert, perhaps reviews them in some logical fashion.

Defect characteristics are normally suspected with high

certainty by experts or seasoned operators, if a material
specimen is presented to them implying that they have suffi-
ciently learned the properties of different defects and can
recognize them by simply eye-balling a few samples. A number
of physical characteristics of commonly found defects are
shown in Table 2.4.

Test equipment characteristics pertaining to initial set-up
and calibration of the testing equipment have immediate effect
on the quality of signals. It is a well known fact that the
pattern recognition techniques are sensitive to an input
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signal which is dependent on the characteristics of the
system. Proper selection of the test equipment is essential
for an acceptable reliability of a system and this would
basically improve signal-to-noise ratio by reducing the elec-
trical artifacts, mechanical glitches and other electromech-
anical artifacts and hence would lead to a high resolution

data requiring the least amount of preprocessing and other

rectifying measures for improving the quality of data.

Table 2.1

Popular ..OT Methods, their Applications and
useful Method dependent Parameters

Method Measures/Detects Test Specimen/ Method dependent
Application Parameters
Acoustic Crack initiation  Pressure vesselg; Transducer must be
Emission & growth rate; stressed struct- placed on part'’'s
internal cracking ures; turbine or surface;
in welds during gear boxes; highly ductile
cooling, boiling fracture; material yield
or cavitation; mechanics; low amplitude
friction or wear; weldments; emissions; part
plastic deforma- must be stressed;
tion; phase operating test
transformations; system noise needs
filtered out;
Ultra- internal defects Wrought metals; Couplant required;
sonics & variations; welds; brazed small, thin, complex
cracks; lack of joints; adhesive parts may be diffi-
fusion; porosity; bonded joints; cult to check;
inclusions; non-metallics; reference standards
delaminations; in-service required; special
lack of bond parts; probes;
texturing;
thickness;
Acousto bonded joint Metals; compo- broadband transducer;
Ultra- defects & stren- sites; structu- sending & receiving
sonics gth variations; ral composites; transducer on the

hidden impact
damage; degradat-
ion from cyclic
fatigue; hydro-
thermal; aging;
overt flaws; de-
lamination;
erosion;
corrosion;

ceramic mat-
erials; porous
metals; fiber
glass composites;

same side of the
specimen; couplant
required; distan-e

between transmitiing
& receiving transducer,

location; amount of
pressure applied;
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Table 2.2

Theme Rules Describing Problem Domain Information

1. Define the problem and determine the nature of defects (classes)

to be identified and also determine the desired extent of the
golution(s), that is, the knowledge pertaining to:

- Number of pattern classes and their identity

- Number of pattern samples in each class

- Number of features and their identity that could best
describe each class

2. Observe

the methods given in Table 2.1 and determine the method

to solve the given problem?

3. Using the above methodology search through Tables 2.1 through
2.5; identify the knowladge required to solve the problem and
search the answers to the questions:

- What
- What
- What
- What
- What
-~ What
- What

are the known physical properties of the test object?
is the geometry of the test specimen?

potential defects are we looking for?

is the test goal?

test apparatus is available?

are the Operating parameters of the apparatus?

are the operating conditions?

4. Set up the design data set.

5. Expert Choices

- Method to be used at each step of processing

- Solution strategy
- Decision parameters and their thresholds

An NDT-test equipment is usually a transducer/pulsar system.
As a general guideline a rather strict acceptance criterion is
for acquisition of the test equipment. In addition,
a transducer acceptance check should be made before acquiring
test data on a particular day which involved acquiring a maxi-
mized echo from the edge of the component, and then comparing
it with the reference echo in time and frequency domains.
factors for proper set-up and calibration of the

necessary

Necessary

test equipment are listed in Table 2.5.
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A priori

Table 2.3

knowledge - Test Specimen

Material Properties

Specimen Geometry

Visually Confirmed
Defects

e - . . e e . e . n = - T 4 W ee e wn B S M T A e e e e S S e e W i e e e e N ety e

Material alloy
Material Grade

Base Material

Weld,

Material Form
surface conditions:
roughness, porosity,

Dimensions: height,
width, length;
Shape

Surface conditions:
degree of roughness;
inspection area:
plane, cylindrical,

Type (Class or Candi-
date classes)
Dimensions (size)
Shape

Orientation

Location

Caugses of defect

coatings machine parts, (Procedure for produc-
bar-type ing defects)

Thermomechanical Confidence levels of

history - grain Observation

structure & size Method of actual crack
Organic structure size determination
Anistropy, Texture
Density, Acoustic
Impedance

Table 2.4
Shape Factors of Some Common Defects
Cracks Porosity Slag Erosion
{ d :-:' A

Sha e {1 N " gl / -

P '§ FEP ,/’/' f:://)
Descritp Vertical Spherical Variable Shape Vertical Planer
tion Planer Volumetric Volumetric Concave/convex

Sharr edges smooth edges Sharp/smooth Sharp edges
edges
size singular singular/ singular singular
clusters
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Table 2.5

Test Apparatus & Test Conditions

Transducer Other Components Operating Parameters
size couplant: type, amount skip distance;
Frequency and distribution motion control:
Material length wedge angle auto-indexing,
focal length, if Reference Block manual-indexing,

focused digital-indexing;
Damping media preparation of part
Frequency spectrum Operating Temperature
Beam width (2 axes) Scanning area, angle
Focal length/water Location of Transducer

path Incidence angle
Wavelength Transient angle
emission rate Sampling period
Cleanliness

Surface preparation

Proper selection of equipment goes in hand with its proper
usage. As discussed above, proper calibration of the equipment
for the type of the experiment at hand is essential for high
quality of data. The operating_ parameters indicative of
effects on signals are listed in Table 2.5.

Although it might be ideal to know all the parameters listed
in Tables 2.1 through 2.5 encompassing the problem at hand,
acquisition of knowledge pertaining to all six areas in addi-
tion to the structural properties of the signals would be a
formidable task. Therefore, we decided to consider an overall
effect of the material properties. Once assured of the proper
quality, the signals based on their structure are carefully
reviewed. The defects identified can be attributed to deci-
sions later such as retirement of material for cause,

remaining life analysis, life extension probability, etc.
2.5 The Knowledge - Our Perspective

Traditionally, a knowledge-based system is meant to mimic the
decision making process of human experts in a specific problem
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domain. It contains large amounts of subtle knowledge of
expert (s) organized into a knowledge base yet separate from
the decision making process.

In these systems, the knowledge pertaining to a given domain
consists of descriptions, relationships, and procedures [JACK-
90]. The descriptions which identify and differentiate objects
and classes are sentences in some functional or object orient-
ed language such as Lisp, Prolog (CLAR-82], OPSS [BRWR-85,
FORM-77), and KL-One [BRAY-85] whose elementary components
consist of either logical constructs or primitive concepts.
A description system generally includes rules or procedures
for applying and interpreting descriptions in specific appli-
cations. A knowledge base also contains particular kinds of
descriptions known as relationships. They express depen-
dencies and associations between items in the knowledge base.
Typically, such relationships describe taxonomic, defini-
tional and empirical associations. Procedures specify opera-
tions to be performed when attempting to reason or solve a
problem [HAYE-83].

This traditional concept of knowledge and its representation
and organization tends to provide a rigid mechanism which can
be constructed only through an exhaustive interaction of a
knowledge engineer with expert(s) and creating a knowlecge
base that could be examined only through the inference engines
based on exhaustive or optimal/suboptimal search strategies.
Furthermore, any update in the knowledge base would require
going back to the knowledge engineer and the expert which in
some cases may lead to a major restructure of the system.
Unfortunately, the structure of expert systems based on such
concepts has now become a commercial standard and a majority
of acclaimed expert systems currently available have blindly
followed such standards.
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In fact, knowledge is an integrated concept which is acquired
through the extensive use of six humaan senses. The five
senses of vision, smell, hearing, touch and taste usually help
in carrying out the everyday chores. The six"h sense is the
human perception and intuition (deep knowlecge) which an
individual acquires through his experience spanning over his/
her lifetime. There are disciplines such as signal process-
ing, computer vision, statistical decision theory and pattern
recognition that use a sub-/super-set of these senses impli-
citly or explicitly, and have techniques available which are
rich in abstracting and formalizing domain-specific knowledge
concepts and can be used to partially simulate, if not to

replace, the human perception.

For example, pattern recognition (PR) techniques have evolved
from the human processes of vision, recognition and percep-
tion. One of the theories considers pattern recognition as
a paradigm-oriented inductive process [WATA-84] that has also
been one of the approaches used in training expert systems.
This theory suggests that the selection of appropriate PR
tools may reduce the time required by the knowledge acquisi-
tion process. The use of PR techniques, however, cannot be
generalized for acquiring knowledge pertaining to all appli-
cation areas. They are more useful than other methods in some

application areas.

One of the suitable areas, for example, is the problem domain
of random signal processing which has applications in material
testing, quality assurance and evaluation, medical diagnostic
systems, chemometrics, spectroscopy, etc. In these applica-
tions, the domain-specific knowledge and the decision parame-
ters used by a human operator or expert can be broken down to
very low level primitives. A majority of these knowledge
primitives can be obtained automatically using feature extrac-
tion methods used in PR and signal processing fields.
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However, some of *he knowledge comporients s.-h as intuition,
judgement, etc., cannot be directly represented using PR or
gignal processing methods. There, we can borrow some concepts
from statistical decision theory. Human judgement and intui-
tion is primarily based on experience and observations. Know-
ledge primitives extracted using signal processing and PR
techniques, on processing through analytical procedures, would
provide some empirical results which can be validated by using
decision theory methods. This approach thus provides analy-
tical and empirical means to simulate human judgement. This
wholesome perspective of knowledge was then used to design an
integrated system for knowledge acquisition, representation,
and organization system, hereafter referred to as the KARO
subsystem.

2.6 The Design of IRS System

The Intelligent Recognition System (IRS) cutlined in Section
1.8 was a formidable task, however, we carefully identified
the major components with three objectives in front of us: 1)
components constituting the system should be implemented as
realistically as possible, 2) conceptually achieve the overall
functionality of the original design, 3) consider the compo-
nents not implemented as "black boxes" at present and that
they may be added on later without any restructure of the
system,

Our original efforts were concentrated towards the development
of the entire system. Acquisition of problem-dependent a
priori and heuristic knowledge for four diverse areas of
applications was a formidable task, particularly, in situat-
ions where we were dealing with commercially sensitive and
proprietary applications such as EEG problem and the CEL data
(19 class) problem. In addition, the availability of analy-
tically coriented expert in each field of our interest was a
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next to impossible task, let alone the transfer of the
heuristic knowledge into procedural kn-wledge. Hence we
decided to rely on analytical knowledge and the knowledge

derived therefrom.

The architecture developed here consists of only the compo-
nents that could be automated using analytical, empirical and
procedural knowledge and algorithms. However, the design is
structured in such a form that expert knowledge and other
components dropped at present could be incorporated at a later

stage as a black box.

In developing this architecture we basically kept the same
structure and the same funcftionality of the system as
described in Section 1.8 with the exception that knowledge
will comprise mainly of analytical and empirical knowledge.
In addition, we eliminated the expert/user interface, since it
is mainly an exhaustive programming exercise, and called the
system as intelligent recognition system instead of a
knowledge based system.

2.6.1 The Knowledge Acquisition, Representation
and Organization (KARO) Subsystem

The first major component of the recognition system is the
Knowledge Acquisition, Representation and Organization (KARO)
subsystem. The objective behind the design of this subsystem
was to acquire a larger set of knowledge primitives and con-
cepts so that an integrated knowledge base could be developed.
The KARO subsystem is a composite of three independent phases,
namely, Fact Gathering, Knowledge Base, and Knowledge Formal-
ization and Organization (see Fig. 2.4). The fact gathering
phase includes the acquisition of the input data (waveform
signals), data preprocessing and the measurements of physical
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Fig. 2.4: The Knowledge Acquisition, Representation, and
Organization (KARO) Subsystem

observations from waveform patterns (feature extraction). The
features thus extracted are organized into a knowledge base.

The Knowledge Base is a knowledge storage and houses three
types of knowledge: analytical, empirical, and meta-knowledge
about the problem-domain. Analytic features are a large sub-
set of pattern measurements performed during the £-~ct gather-
ing phase. Empirical knowledge is derived from the analytical
observations and meta knowledge is obtained through a combina-
tion of empirical knowledge and statistical inZerence. Meta-
knowledge, in fact, partially simulates exper:c'’s judgement.
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2.6.2 Inference Engine

The structure of the inference engine was kept the same as
discussed in Section 1.8, except that it was trained using
supervised learning orly. It will still operate in two modes
of operation, i.e., executive and consultant. In the consul-
tant mode of operation it will still allow the user to select
an algorithm of his/her choice, however, he/she will not be
able to train this mode of operation using unsupervised

learning.
2.7 Signal Conditioning and Treatment

The model presented in equation 2.3.1 was considered as a
composite of several independent terms. Hypothetically by
evaluating the six input components one can minimize the
effect of a majority of noise contributing parameters, but in
practice it cannot be justifisd as cost effective and a small
gain in signal quality may not worth the time and efforts. In
addition, the interaction of the factors influencing the
components in equation 2.3.1 is not possible to determine
exactly. However, using software based conditioning and
treatment of the waveforms, the noise factor W(a) (see equat-
ion 2.3.2) can be significantly reduced. 1In addition, the
effect of other parameters, in reality, can be identified if
more information is extracted from the physical observations
and the parameters listed in Tables 2.1 through 2.5.

The NDT data used in this research was collected using
Acousto-ultrasonic (AU) method. The amount of information in
the ultrasonic (UT) waveform is not known precisely. However,
information theory tells us that the greater the rate of
information transmission, the greater is the required band-
width. Thus a guiding principle in the design of UT or AU-
based NDT experiments is to use broadband transducers and
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amplifiers. The use of broadband transducers and instruments
assures that the system will not limit th. ‘nformation con-
tents of the signals. There is, however, a corresponding
increase in the signal noise level due to broader bandwidth.
Therefore, additional steps must be taken to determine that
signals do, in fact, contain sufficient information on the
defect (s) to permit full exploitation.

Defect detection under simultaneous occurrence of interfering
effects, discussed in previocus sections present a considerable
problem in NDT. If a comprehensive approach is to be used to
relate signal characteristics to reflector properties, it
would be necessary to cousider the characteristics of the
defect as a function of signal properties. Therefore, before
a satisfactory application of a test method it is always
necessary to determine the relationship between different
occurring indications by means of pilot experiments, i.e.,
between the magnetic as well as electrical and the mechanical
properties of the test objects. It has been sugc:sted that
reference samples of known properties have to be available for
exact calibration considering the test parameters [MATT-88].

Even after the above stated calibration it is not guaranteed
that the signals received are noise free. Cross correlation
analysis seems to be promising for testing, because this
method compares a selected reference signal with each signal
occurring during testing and is giving a measure of the simi-
larity. Additional treatment measures suggested are as
follows: .

1. Deconvolution: to remove the transducer characteristics
from the observed signal.

2. Spatial Averaging: to reduce the spatial resolution and
the effect of grain scattaring.

3. Stationary (i.e., temporal) Averaging: to remove noise
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mainly from amplifier and other randor events and to
improve signal-to-noise ratio.

4. Calibration for Maximum Defect Response: by jogging the
probe in both axial and circumferential positions deter-
mine the maximum defect response and repeat the process
on all visually identifiable defects [ORR-79]. The asso-
ciated position coordinates of the transducer were then
noted and the same should be used for data collection.

The conditioning and treatment on NDT data was performed by
the staff at the Tektrend Int., Montreal. The preprocessing

performed on PNA data is reported in [SIDD-91a].
2.8 Mapping and Parameterization of Waveforms

From the previous discussion it became clear that the time
waveform alone is not sufficient for analysis. For flexible
and reliable machine processing, and analysis additional
information is required. 1In the field of signal processing it
is known that from preprocessed time waveforms, a number of
other domains (mapping spaccs) can be generated to provide a
more illustrative representation of the available information.
Siddiqui et al. suggested a pattern measurement system in
[SIDD-90a] and this is reprcduced in Fig. 2.5. The important
feature of the system is the transformation switch whose
function is to transform a waveform into other information
domains and this can be done by nsing a number of suitable
transformation techniques available in the field of signal
processing 'BRAC-86]. One such approach is described in the

following section.
2.8.1 Mapping Space

Altl.ough there are a number of transformation techniques
available in the field of signal processing and information
theory, the Fourier transformation has been used extensively

in waveform analysis [BKAC-86].
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Fig. 2.5: Pattern Measurement System [SIDD-90al

The time varying signals, their transformations and the funct-
ions derived therefrom such as a spectrum, correlation funct-
ion or cepstrum, can be processed further to extract the
information contents. A formal discussion on waveform trans-
formation now follows.

Formally, we defined a signal as: "a sequence of discrete
real and/or complex numbers and is a time function, x(t). The
value of the function at any time t,, x(t,), is a random
variable."

The variable t is chosen since the signals that are considered
here are time-deperdent signals. We assume that we have a

source which generates the function x(t), which is denoted as
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a sample function. The source generates N sample functions
which together are known as an ensemble. At any time, t,, we
observed the values of all sample functions, to get many
"results of experiments." For example, consider the NDT
signal taken by means of a surface transducer located at a
certain location on a piece of material. We want to investi-
gate the properties cof the source material through the NDT

signals.

Thus a data sequence consisting of N samples of signal x(t) is

given by:
samples of x(t) = [ x, ] 2.8.1
= [ xg0 Xy0 ovvs Xy
where k is a time index which ranges from 0 to N-1. The

discrete Fourier transform (DFT) of [ x, ] consists of
(N/2 + 1) complex samples (assume that N is even) given by
[ X, ] =DFT [ x, ] ... 2.8.2
= [ X, Xyy ovnoer Xy )

where [ X, ] is the DFT of [ %, ] and that the index m
designates the frequency of each component X,. X, can also be

represented in polar coordinates as:

Xo =1 X, | exp (3 6,) ... 2.8.3

where | X, | is the amplitude of X,, it is equal to

DX, ] = [ R (x) + I*(x) ]2 ... 2.8.4

where R (x) and I (x) are the real and imaginary components of
the transform. The square of the spectrum | X, | is commonly
referred to as its power and is denoted as,

P (x) =} X, |?

192

= R*(x) + I?*(x) ... 2.8,
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The relationship implemented by the transform between [ x ]
and [ X, ] can be expressed as:
N-1
X = X % exp (-3 (2mr m k/N)} ... 2.8.6

k=0
for m =0, 1, ..., N/2

In this formula X, is an exponential function and it is
complex sinusoidsl and periodic. These characteristics will
be more clearly represented by separating the real and
imaginary parts,

N-1 N-1
X, =Y % Cos (2m m k/N) - j ¥ x Sin (27 m k/N)
k=0 k=0
form=0, 1, ..., N/2

.. 2.8.7

The equations 2.8.2 through 2.8.7 were used to derive a number
of information domains wherein the analytical features in a
problem domain at hand can be measured. The information
domains that this study includes are described below:

Time waveform: The original time waveform, given by equat-
ion 2.8.1 (raw time versus amplitude signals),

Frequency waveform: Real components of the complex expo-
nential in the DFT, equation 2.8.6 (Fourier
transform of the time waveform),

Phase spectrum: The Fourier transform also produces a value
of phase for each particular frequency in the spec-
trum of signal which is useful in determining the
ratio of stored energy to that dissipated in the
system. Phase spectrum of [ x, ] is obtained by
plotting 6, against m (equation 2.8.3),

Power Spectrum: The square of the spectrum given in equation
2.8.5, which is the plot of the power against each
frequency component of the transform,

Auto Correlation: This domain is useful in determining
whether a signal is periodic or cyclic. The time

59




domain signal given by equation 2.8.1 is compared
with itself at different positions (time) and the
similarity between signal segments is determined,

- Cepstrum: Using a Fourier transform of the logarithm of the
power spectrum given by equation 2.8.5),

- Log Power Spectrum: Taking the logarithm of the power
spectrum,

- Convolution: Taking the inverse Fourier transform of the
product of Fourier transform of two sample signals
from a pattern class.

2.8.2 Parameter Extraction

It is difficult to measure the pulse shape discriptors direct-
ly from the above waveforms or spectra. Alternately, an
envelope is constructed from which the pulse information is
extracted. The literature [HAYD-88, SEDG-88] provides several
standard signal envelope extraction algorithms to facilitate
these operations and the feature extraction process. One such

algorithm is outlined below:

1. A convex shape with finite arc length is used to cons-
truct a rough convex hull of the given signal profile.

2. Smoothing is then performed to obtain the desired signal
envelope.

3. A set of typical features listed in Table 2.6 were then
extracted from the envelope. Figure 2.6 shows their
geometrical interpretation.

The feature extraction process essentially measures a number
of statistical, waveform, geometrical, absolute and shape
features in a number of selected domains from the list des-

cribed above. These features, generically, are listed in
Table 2.6. The choice of a transformation domain is again a
problem-dependent activity. For different types of data
different domains and features were used. The set of
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procedures that were used to measure these features are
described in Appendix A.

Table - 2.6

Analytical knowledge features used

Statistical Waveform Geometrical Absolute Shape

mean, standard impulse sum peak location, skewness, amplitude,

deviation, in different rise time, fall kurtosis, area,

higher order data windows time, rise no. peaks, weighted

moments, maxima, slope, fall full pulse, area,

minima slope, half pulse energy
peak width

0 a c d e g

= Iy Pulse Width = AR Pall Slope = DG/GE

Rise Slope = BE/AF Peak Width = BD Pulse Alpllgude =p
=d Pall Tiee =GB Half Mar. Width = I

Pulse Shape Pactors

Fig. 2.6: Geometrical Interpretation of Envelope and Features
Derived Therefrom
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Chapter 3
Analytical Features and Pattern Association Hierarchy

3.1. Introduction

Analytical features constitute a major subset of pattern
measurements and they may be large enough to prohibit
exhaustive analysis. To process them with good performance
(recognition) a hierarchy of naturally associated pattern
classes was developed. The fact gathering phase and the
techniques to develop a pattern association hierarchy are des-
cribed in this chapter.

3.2 PFact Gathering Phase

This phase includes three components, namely, signal acquisi-
tion, preprocessing, and pattern measurements. Signal acqui-
sition and preprocessing are not among the mainstream of the
subjects we studied in this thesis. Both of these steps were
performed by the institutions who have provided their respec-
tive data sets. Tektrend International, Inc. of Montreal
supplied the cata on NDT-signals, EEG signals, and cell data
in the form of feature vectors; the Lockheed-ESC, located in
Las Vegas, furnished the digitized data cn polynuclear aroma-
tic compounds (petroleum oils). These data sets will be
referred to as NDT-data, EEG-data, CEL-data, and PNA-data in
the following chapters.

Brief descriptions of instrumentation and experimental condi-

tions underlying data collection for each problem domain are

presented in Appendix B.
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3.2.1 The Pattern Data

The algorithms we developed were tested on problems from four
different areas; classification of material defects non-
destructively (NDT-~data), the classification of electroence-
phalogram signals (EEG-data), classification of polynuclear
aromatic compounds (PNA-data), and classification of body
cells (CEL-data). The characteristics of the latter three
data are described in Appendix B, whereas the characteristics
of the NDT-data are described below.

NDT data were collected by applying the ultrasonic signals to
mild steel bars of measurements 0.5 inch thick, 1.0 inch wide,
and approximately 2 feet long, wherein slots of different
depths and lengths were artificially machined t- simulate
varying degrees of wall erosion. A total of nin. flaws of
different lengths were introduced into the bars. In addition,
to acquire signals representative of no flaw condition, a bar
without flaw was also tested. The dimensions of each slot
machined into the bar and their corresponding flaws are shown
in Table 3.1. A micro-computer controlled acousto-ultrasonic
data acquisition system ARIUS [LACA-85, MATT-89] was then used
to acquire, digitize, process and store the signals. A total
of 400 data files were created, 40 for each of the nine flaw
types and 40 for the flawless bar. Each data file consisted
of 2048 data points. Four sample waveforms representing four
typical pattern classes are shown in Figures 3.la through
3. .d.

3.2.2 Pattern Measurement Problems

A central problem in using PR techniques is that of extracting
from the pattern the information (features) which is most
relevant for classification. If effective features have been
obtained, then, the pattern classification problem becomes one
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of partitioning the feature space into regions, one region for
each class. Selection of properties that contain the most
discriminatory information is important because the cost of
decision making is considered directly related to the number
of features used in the decision rules. Thus for large
applications when the complexity of the problem increases, it
becomes especially important to develop methods for efficient
design of feature selection and classification algorithms.

Selection of features strongly affects the design of a classi-
fier. That is, if the features show significant differences
from one class to another, the classifier can be designed more
easily with better performance. Therefore, the selection of

features remains a key issue in PR.

Table 3.1

Sizes of Defect Areas and Their Identification

length 76mm (3") 152mm (6") 228mm (9")

depth

0.25mm (0.01") smsh (A) mesh (D) lash (G)
1.52mm (0.06") smme (B) meme (E) lame (H)
3.18mm (0.125") smde (C) mede (F) lade (I)

no (J)
Legend
length => la: large (9"), me: medium (6"),

sm: small (3")

depth => de: deep (.125"), me: medium (.06"),
sh: shallow (.01")

no: no flaw

Example: meme: a class of defect of length 152mm (6")
at depth 1.52 mm (0.06")
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DU W Yo

Fig. 3.la: A typical wave- Fig. 3.1 b: A typical wave-
form from a flawless form representing a
bar (class J) smsh pattern (class A)

Fig. 3.lc: A typical wave- Fig. 3.1 d: A typical wave-
form representing a form representing a
meme pattern (class E) lade pattern (class I)
Legend:

Horizontal Scale: 12.8 us/div.
Vertical Scale: 5.14 units/div.
Data Width : 2048 points

Fig. 3.1: A few typical samples from NDT signals.
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The more complex the pattern we are dealing with, the more
difficult it is to decide what the important measurements are.
The approach we adopted to get around this difficulty is to
collect whatever specific knowledge about the problem has been
suggested in the literature and by the practicing experts
(HAYD-87, MATT-88]. In addition, we included all those
measurements that, in our opinion, could possibly provide

additional valuable information.

An increase in the number of measurements that resulted from
this approach brings about an increasingly complex classifier
structure. Also the larger the feature set (compared to number
of classes) the greater the possibility that a number of
irrelevant and redundant features may have been selected. The
presence of such redundancies in the input data detrimentally
affects the reliability of the classifier.

To minimize these problems, several measures for feature
dimensionality reduction and optimization were employed.
These measures are described in Chapter 4. The classifier
design complexity is reduced by organizing the pattern classes
using a pattern association hierarchy, a concept introduced in
Section 3.3. The PAH ccncept is also used to resolve the

information redundancy and explosion problems (see Chapter 4).
3.2.2.1 Analytical Feature Extraction

Considering the pattern measurement issues discussed above, a
set of features, which are referred to as analytical features
were extracted from an array of waveforms in a class of prob-

lems, such as NDT signal classification.

Based on the problem domain a set of information domains given
in equations 2.8.2 through 2.8.7 were used to measure a number

of analytical features discussed in Section 2.8.2. The choice
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of a transformation domain is a problem dependent activity.
For different types of data different domains and features
were used. The information domains that were selected for
NDT-problems include, time waveform, phase spectrum, power
spectrum, auto correlation, and cepstrum [HAYD-88].

The feature extraction process, essentially measures a number
of statistical, waveform, geometrical, absolute and shape fea-
tures in a number of selected domains from the list described
in Section 2.8.2. The set of procedures that were used to
measure these features are described in Appendix A. The pro-
cedures adopted for the measurement of the featurec from NDT
signals are described in [HAYD-88]. The list of features pro-
vided by Tektrend for tiie NDT data is presented in Table 3.2.

The scheme we adopted conceivably captures a large number of
features among which only a few may be needed. The few which
will be most suitable for classification, were identified
using feature selection algorithms described in Chapter 4. A
number of empirical features were estimated using the analyti-
cal features. The empirical features, in turn, were used in

deriving the components of meta knowledge (see Chapter 4).
3.2.2.2. Homogenizing the Analytical Features

Each analytical pattern measurement varies both in unit and
the range of magnitude from pattern to pattern. However, the
result of analysis (or classification) should be independent
of these variations. Rather than trying to develop an analysis
algorithm which tolerates these variations, it seems reason-
able to eliminate them by proper normalization prior to
analysis. Thus it is expected that analysis will become easier
if parameter variations are eliminated in advance.
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Table - 3.”
Analvtical Features extracted from NDT signal data [HAYD-88]

Feature ™ PW PH CP AC

Description Feature number by domain
peaks above baseline 1 37 55 73 91
# of peaks above 10% max. ampl. 2 3s 56 74 92
# of peakn above 25% max. ampl. 3 39 57 75 93
Greatest peak position 4 40 58 76 94
Greatest peak amplitude 5 41 59 77 95
2nd Greatest peak position 6 42 60 78 96
znd Greatest peak amplitude 7 43 61 79 97
3rd Greatest peak position 8
3rd Greatest peak amplitude 9
% of total area under 1lst peak 10 44 62 80 93
% of total area under 2nd peak 11 45 63 81 99
% of total area under 3rd peak 12
inter-peak distance: 1st to 2nd 13 46 64 82 100
inter-peak distance: 1st to 3rd 14
inter-peak distance: 2nd to 3rd 1s
Greatest peak rise time 16
Greatest peak rise slope 17
Greatest peak fall time 18
Greatest peak fall slope 19
Greatest peak full pulse width 20
Greatest peak half pulse width 21
Greatest peak width 22
2nd Greatest peak rise time 23
2nd Greatest peak rise slope 24
2nd Greatest peak fall time 25
2nd Greatest peak fall slope 26

2nd Greatest peak full pulse width 27
2nd Greatest peak half pulse width 28

2nd Greatest peak width 29
3rd Greatest peak rise time 30
3rd Greatest peak rise slope 31
3rd Greatest peak fall time 32
3rd Greatest peak fall slope 33

3rd Greatest peak full pulse width 34
3rd Greatest peak half pulse width 35

3rd Greatest peak width 36

% of partial power in 1st Octant 47 65 83 101
% of partial power in 2nd Octant 48 66 84 102
% of partial power in 3rd Octant 49 67 85 103
% of partial power in 4th Octant 50 68 86 104
% of partial power in Sth Octant 51 69 87 105
% of partial power in 6€th Octant 52 70 88 106
% of partial power in 7th Octant 53 71 89 107
% of partial power in 8th Octant 54 72 90 108

- e e o ee T e e e = s - S S AR e e M R A R S MR P M Gm MW G E N m-wE e e - -

Domain Key:
TM:Time, PW:Power, PH:Phase, CP:Cepstrum, AC:Autocorrelation
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The principal idea in equalization is to remove the artifacts
of the measurement unit and convert each variable to some
common numerical property. Disposing of the measurement unit
involves dividing all the scores for a variable by a suitable
equalizing factor expressed in some units. The sense in which
the variables are equalized depends on the nature of data and

the kind of equalizing factor chosen.

We investigated several such homogenizing factors. A number of
homogenizing techniques described below, have been applied
depending upon the nature of data. These techniques either
have been borrowed directly from the statistical theory, or
developed here using underlying statistical theory [ANDE-73].

Standard Normal Scheme

One such homogenizing technique which has been most commonly
applied, uses zero mean and unit variance transformation and
is given by:

Xy o= (X'y = x9) / sy ... 3.2.1
where
X;y = transformed value of the j-th feature of the i-th pattern
X’y = original value of the j-th feature of the i-th pattern

Xy

average of x’,; over the whole design set
standard deviation of x';; over the whole design set

S;

This normalization scheme has the serious effect of diluting
the differences between classes on the variables which may be
the best discriminators. To overcome this problem it was
found more effective to standardize using within-class
standard deviations. Thus features were homogenized using this
modified standardizing technique.
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Range Normalization

Next approach we adopted for normalization was to convert the

data into proportions:

Xy = (xlij - x'min) / (xmax - xmj_n) ce. 3.2.2
where
Xy X'y = have same meaning as given in equation 3.2.1

Xpin = miniwum valuve of x';y over all design set pertaining to
a class

]

maximum value of x’;; over all design set pertaining to
a class

xmax

Value Transformation

In PR applications, the features are assumed independent; in
reality it may not be the case. The vast variations within
pattern.classes dictate that their distribution is non-normal.
To make up for such situations a transformation is selected so
that the distribution of the transformed features is suffi-
ciently close to normal. The logarithm stabilizing trans-
formation was performed on the NDT-data, i.e., each feature is
transformed to its logarithm, i.e.,
X;y = log ( x'; )

Elimination of Outliers

A problem inherent to EEG brainwaves and NDT-signals classifi-
cation is the existence of outliers. If the variations among
a few sample patterns and the rest of the samples are very
large then we choose to substitute these outliers. To ident-
ify an outlier a discordancy test was performed. Comparing
the individual feature vectors pertaining to a class with
their respective class means, the outliers were detected.
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The test was conducted for each pattern class. The test
statistic with 95% confidence interval used is the internal

extreme deviation from the mean:

(x; - x) / 8 < 2.56 ... 3.2.3
where x is the maximum likelihood estimate for the mean of
each feature element, and s is the estimate of its standard

deviation, i.e.,

Py

ju1

o)
and s? = 1/(p; - 1) E (xy - x)? ... 3.2.4
j=1 [
for i=1, ..., N
for a set of signals having p; samples in class i. Note that,
N
p° = E pi o« o 3.2-5
i=1
Once identified the outlier is collapsed to its nearest neigh-
bor that is counted twice in the new unweighted vector. This
scheme thus produces a more homogeneous set of samples within
each pattern class without losing much information, that is
the number of samples within a class remain the same. Upon

the resolution of the outliers in the design set, one of the
normalization schemes described above is used.

After normalization the first question to ask is whether the
correct variables have been chosen in the sense that they are
relevant to the type of classification being sought. A
further problem, in general, is that of the number of vari-
ables measured on each pattern. Since the amount of computer
time taken increases dramatically with an increase in the
number of variables, it is desirable to seek to reduce the
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number of variables before using the classification scheme.
This problem of dimensionality reduction and the appropriate-
ness of the variables are addressed in Chapter 4.

3.3 Pattern Association Hierarchy

At this point we assumed that the identities of the pattern
classes in a problem domain are either known oi are being
determined by the expert during the initial desicn phase of
the system (see Section 3.4).

Thus assume that S is a signal and let X = [x,, X;, X3, ...,
X,]T be the result of n measurements on S where each x, is a

measurement or a feature. Assume that several samples of S

are available and that their label or identity is known. A
portion of this known data set is considered as the design
set, Z which is used for machine learning (see Chapter 5).
Let 2 = {X,, X,, X3, ..., X0} be the set of p, of these n-
features pattern X,, for j=1, ..., p,-

A representation is a label which designates a pattern. Assume
that a function h obtains such representation. Thus each X,

is a representation of signal S.

From design set, Z, and the prior knowledge of the initial
description of pattern classes, the function g gives a
"symbolic" description which abstracts the information.
Abstraction implies suppressing the details that are not
essential while keeping the important properties. For
instance, all the patterns of a cluster or class will be
described or represented by the same symbolic representation,
which may reduce to a name, the same name for all samples in
a pattern class (or cluster).
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Any representation may be associated with at least one inter-
pretation. Assume that there are N possible interpretations

on the design set 2, i.e.,

Q : {w, Wy, Wy, ..., Wy} ... 3.3.1

An identification is a mapping f, which may or may not be
defined on all the space X; or

£: X -> Q ... 3.3.2

or s [%X,, Xa X3, o..0 X)T o> wy

Such an ‘£’ defines equivalence classes C; on the space X or

the set Z, thus
C = {X|f: X » w } ... 3.3.

(V3]

All the samples of a group (cluster) or a class C;, having the
same name w;, are interpreted as the different occurrences of

the same kind (class) of signal S.

To group the classes in the design set Z so that not only the
processing time is reduced but also the efficiency in informa-
tion organization and retrieval is obtained, a concept called
pattern association hierarchy (PAH) is introduced. The PAH
concept is defined by three cooperating functions, h, g, and
£, i.e.,
PAH: {(h, g, £} ... 3.3.4

each of which represents the following:

i) The function h as shown above describes the signals as
feature vectors pertaining to a particular problem

domain.

This description is represented:

- by a set of sample patterns belonging to the design set
Z,
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- by similarity (or distance) measure between patterns
computed from the design set.

- by known labels w; given to the patterns in the design
set.
The domain of h is the space p, of objects (total number of
samples). p, is defined in equation 3.2.5 with N number of
pattern classes and p; sample patterns in class i.

i1i) The function g gives the symbolic description of a
class, and,

iii) The function f produces the hierarchy of associated
patterns.

From the design set and the symbnlic description ‘g’ a hierar-
chy of associated pattern classes is obtained. This means
that all the objects p, of the domain of h have names C’'s from
a finite set of names w. An effective procedure that will be
referred to as clustering procedure performs the mapping
f: X > C. The groups G,, determined by mapping function £ on
Z are called clusters. The set of G, is called a partition G:

G = {Gl’ Gz, « vy Gk}

The properties of Z allow us to compute from the different
patterns a similarity measure between patterns.

Similarit or distance) Measures
The function h uses a similarity (or distance) function. We
will define this function. Let us specify the notations we

will be using.

Let X, be the i-th class and X,,, X;, ..., Xy be p, samples
belonging to the i-th class in the design set. Each sample X
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is represented by n measurements, X;j;, Xjj2, .., Xyyq. Let Yy,
j=1, ...,n be the list of measurements performed on each pat-
tern. Thus the patterns in the design set are represented as:

feature:Y Y, Y, ces Y,
Class Sample
X12 X311 X12 “e Xj1n
X, X2 X121 X322 e Xi12n
Xip 2 Xip1 Xypa2 cen X1p_1n
X X1 X212 Xa1n
X, X2z X221 X222 .o Xoan
x2p 2 x2p 1 x2p 2 e xzp 2n
Xm Xn11 Xn12 .. Xyin
Xy Xy2 Xn12 Xyz2 R Xn2n
Xnp_n Xnp1  Xnp 2 oo Xnp_tn

A similarity measure p (or distance measure d) gives a numeri-
cal value to the notion of closeness (or farness) between two
pattern classes X;, X,, forq, r = 1,2, ..., N; and q # r form

the design set.
p (X5, X)) [or d (X;,X,)] is a real valued symmetric function
whose domain is the set of possible class pairs. A high value

of p (or d} indicates high similarity (or farness).
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A distance d(X,,X,) is a real valued, symmetric function, which

obeys the three axioms of reflexivity, symmetry and triangular
inequality, and whose domain is all pairs of classes. Thus,

d (g,q) =0; d (r,r) =0 ... according to reflexivity

d (q,r) =4d (r,q) ... according to symmetry

d (q,r) s d(gq,k) + d (k,r) ... according to triangle inequ-
ality

Many association (similarity or farness) measures have been
proposed between two objects X,, X, [DUDA-73]. Correlation is
usually used to represent the similarity whereas the distance
is a measure of farness. The fundamental purpose of a distance
or similarity measure is to induce an order on the set of
couples (X,,X,) for any objects (classes/groups) q and r. In
fact, simplicity, calculability and objectivity help to guide
the specialist in selecting a clustering algorithm. He/she
tries to choose a function which seems to be reasonable,
according to what he/she knows of the properties of population
U. In Section 3.4.4, we attempt to provide an objective
solution to the algorithm selection issue.

In order to keep maximum flexibility without outgrowing the
computational complexity we included both kinds of association
measures, that is, similarity and the distance. The similar-
ity measure used is borrowed from [DUDA-73] and is shown in
Fig. 3.4. In the estimation of the distance data-dependent
parameters decide whether to use a linear (Euclidean) distance
or a quadratic distance (Mahalanobis).

The quadratic distance has advantages over linear measure,
that it allows to consider correlations between features as
well. When correlations are zero, it is equivalent to the
square of Euclidean distance measured using standardized
variables (features). The Euclidean distance d(q,r) between

classes q and r is given by:
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[ (%X, - X)) 12

d(q, r)
[(Xg - X)T (Xq - X)) ]2 ... 3.3.1

and the Mahalancbis distance is given by

d(g,r) = (X, - X7 87 (X, - X;) ... 3.3.2
where

S = pooled within class (group) variance-covariance matrix,
and

X+ X, = are pattern vectors belonging to classes g and r
respectively
The purpose of clustering is to obtain a hierarchical fusion
(or partition) of a set 2 of p, objects by the use of an
association measure.

3.4 Clustering Procedures

In this section the main clustering functions (algorithms) f's
are described. There is a large variety of clustering algo-
rithms [ANDE-73,SIDD-87b]. At start, the p, objects X;’s are
known by their measures (features). The goal of the clustering
process is to define a mapping. To give order to a large
number of clustering algorithms each with so many variations,
we classified them according to the way they fuse (or split)
the classes or groups to develop a hierarchy (PAH). All of
these methods start with an initial description:

1. A design set Z of patterns X,, for m=1, ..., p,; each
X, being a 1list of measurements X;;; i,Jj,k respec-
tively designate the class, sample and feature; and
that their domains are known.

[$)

A triangular measure matrix, each measure being an
association (similarity or distance) between X,, and
X, of Z (see Fig. 3.5).
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From this initial description, a clustering algorithm gives a
PAH (symbolic description).

For the sake of efficiency the clustering procedures ’'f’ used
here are hierarchical clustering algorithms. These algorithms
can be subdivided into agglomerative methods which proceed by
a series of successive fusions of the N classes into groups
until one single group is reached, and divisive methods which
partition the set of N individual pattern classes successively
into finer partitions until no further partition is possible.
The agglomerative procedures were adopted when the identity of
the pattern classes was already known whereas the divisive
procedures were adopted when the identity of the classes was
not known. The results of both agglomerative and divisive
techniques can be presented in a tree-like diagram illustrat-
ing the fusions or partitions which have been made at each
successive level (see Fig. 3.2). The clustering techniques
suitable for each of these approaches are described in detail
in the following sections.

3.4.1 Bottom-up Organization

Using this scheme the features and their associated class(es)
are organized as a tree in a bottom-up fashion. The guiding
principle is based on the fact that the association index
(distance or similarity) between two classes in the feature-
space directly reflects the closeness (association) of the two
classes.

The method considers first the N classes as N clusters in the
feature space and then gradually merges them to form, finally,
one group containing all the N-clusters. In this procedure the
two clusters with the maximum inter-class similarity (or mini-
mum distance) are merged earlier. Each operation of merging

two classes and/or groups results in a new group and after N-1
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operations, N clusters become one group and the tree structure
is obtained.

A large variety of clustering algorithms using both similarity
and distance can be used to organize the tree. Following Lance
and William’s [LANC-67] general algorithm, the distance meas-
ure between a group k and a group (ij) is computed by using a

recurrence formula:

d(k,ij) = a; d(k,i) + a; d (k,j) + b d (i,3)

+ ¢ | d(k,i) - d(k,3) | ... 3.4.1
where d (i,j) is the distance between groups i and j and a, b
and c¢ are parameters whose values for the clustering algo-

rithms used in this thesis are given in Table 3.3. p;’s and
p;'s are the number of samples in classes (or groups) i and J.

Table 3.3

Parametric values for different clustering algorithms

Parameters
Algorithm a, I ay | b | c
Single Linkage 1/2 1/2 0 -1/2
Centroid -pi/ (Pi+ps)  Py/ (Pi+Py) -a;.ay 0
Group Average -p,/ (p;+D;) D3/ (Pi+D;) 0 0

The recurrence relation 3.4.1 is not suitable for methods in
which similarities rather than distance measures are employed.

79



A general clustering procedure is demonstrated in blocks of
Fig.3.3. Using the recurrence relation 3.4.1 with an appropri-

ate choice of a distance measure the clustering algorithms

shown in Table 3.3 were implemented using the blocks

3.3. However,

depending on the choice of distance
some of the blocks may not be used.
Euclidean distance only the blocks 2, 3, 4, 7 and 8

For example, in

of Fig.

measure

case of
will be
used in order. The results of applying the algorithms of Table

3.3 on NDT design set are respectively shown in Tables 3.4

through 3.6.
Table 3.4
Pattern Association Hierarchy using
Single Linkage Method

node cluster-g cluster-r distance
1 GHJ ADCEBIF 376.164
2 GH J 16.169
3 G H 16.169
4 ADCEBI F 16.169
5 ADCEB I 16.169
6 AD CEB 14.488
7 A D 12,344
8 CE B 10.713
9 & E 10.562

Table 3.5
Pattern Association Hierarchy using
Centroid Method

node cluster-q cluster-r distance
1 CEBDFGHIJ A 11.359
2 CEBDFGHI J 10.225
3 CEBDFGH I 10.225
4 CEBDFG H 10.225
5 CEBDF G 10.225
6 CEBD F 10.228
7 CEB D 10.225
8 CE B 9.394
9 C E 10.562



Table 3.6

Pattern Association Hierarchy using
Group Average Method

node cluster-q cluster-r distance
1 FIBEAJ GHCD 47.475
2 FIBEA J 47.187
3 FI BEA 46.621
4 GHC D 45,715
5 GH C 44.620
6 F I 43.764
7 BE A 43.689
8 G H 43.575
9 B E 40.027

To use the similarity measure as a clustering criterion, again
following the block of Fig. 3.3, a stage-wise clustering algo-
rithm shown in Fig. 3.4 was developed by modifying the similar
algorithm given in [(DUDA-73]. This algorithm was used by Sid-
diqui et al. on similar NDT-data the results of which are
reported in [SIDD-89b].

5761234

576 1234

I_s_l___l } !12 34 ‘

5 7

Fig. 3.2: Hierarchical Clustering Procedure.
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From the trairning cata, estimate mean-vesior and Sovariance matrix
tor all N ciasses; sach pattern is representec by n teature eiements :
Milkl, k=1,....n; Cilk,1], k.1 = %.....nci = 1.....N

¢
Build the similarity matrix R based on similarity 2
index of choice (see the text); R{i,il, i,j=1,....N:i>j

Find maximum (minimum) similarity (distance) coefficient in R [i,j];
the row and column inaexes give the ciusters 10 be merged; save the
identity of the clusters in table TREZ [i,row, col,.similarity]

- Stop

Compute the mean vector M ang the covariance 6
marix C of the newiy formed group

N/
Compute the similarity between the new group and all Vi
the rest {not merged so far), and update the R matrix

i=m j=1 8

A

Fig. 3.3: Block diagram of Tree Organization.
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/* Consider an (N-1) X (N-1) lower triangle similarity matrix
R = [p;y 1, shown in Fig.3.5, where the coefficient p; is
related to the class correlation or to distance. If py is
related to the class correlation then entry p;; is given by:

plj = Uij /\J Gi,-_ - Ujj ) 3.4.2

where 0< p,® <1, with p;;? =0 for dissimilar classes and p;?® =
1 for completely similar classes or groups. If pr is related
to inter-class distance then entry p;; is given by:

Piy = d(xu xj) .e. 3.4.3

where p,; designates the distance (Euclidean/Mahalanobis)
between mean-vectors for classes/groups i and j. */

Step 1. Begin with N classes. Every training class is consid-
ered to be a cluster with its mean-vector as sample in
that cluster. From the mean feature-vectors belonging to
the training set, estimate the mean vectors and the cova-
riance matrices for N classes,

Step 2. Define between-class similarity, build up the similar-
ity matrix R in the feature space,

Step 3. Search the similarity matrix for the most similar pair
of classes. Let the chosen clusters (group of classes) be
labeled g and r and let their associated similarity be

Sqxs d > Y.

Step 4. Reduce the number of clusters by 1 through the merger
of clusters q and r. Label the product of the merger with
gr and form a new cluster. Compute the similarity bet-
ween this new cluster and each of the remaining clusters
and update the R matrix. Delete the rows and columns of
R pertaining to clusters q and r. Copy the identity and
the statistics about clusters g and r to the knowledge
frame. The merger constructs a node of the knowledge
tree.

Step 5. If all the clusters have been merged into one big cl-
uster, stop (i.e., steps 3 and 4 have been performed a
total of N-1 times), otherwise go to Step 3.

Fig. 3.4. Bottom-up Algorithm for organizing the analytic
features and corresponding classes in a tree struc-
ture.
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1 2 3 4 N-1
2

3. p o

4 p p

5 P P P P

N p p »p p

Fig. 3.5: Lower triangle similarity matrix (p,; is the
similarity between classes (groups) i and j, it can
be defined by any one of the association measures de-
scribed in Section 3.3. Assuming that the 51mxlar1ty
is symmetric, i.e., p;; = p;; , the schedule of simi-
larities for all N(N 13/2 p0591b1e pair combinations
of classes can be arranged in a lower triangle simi-
larity matrix).

3.4.2 Generalized Variations Clustering Procedure

Ward [WARD-63] proposed that at any stage of an analysis the
loss of information which results from the grouping of
individual classes into clusters can be measured by the total
sum of squared deviations of every pattern from the mean of
the cluster to which it belongs. At each hierarchical step in
the analysis, the union of every possible pair of classes or
clusters is considered and the two clusters whose fusion

results in minimum increase in error sum of squares, i.e.,

P
a = Min (X X2 -pM?H ... 3.4.4
(j=1,...,N-1) i=1

are combined. In above equation X is a pattern vector, and My
is the mean of cluster j at the first stage of fusion.

We extended this idea to handle clustering problems involving
the comparison of several pattern classes and rest this exten-
sion on the assumption of multivariate normal distribution.
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We picked this idea from univariate statistical theory for
testing the hypothesis of equality of population means.
Assuming that samples are from a normal population, the
appropriate test statistic is,

t = (_x-Mo)/ (s/ vV p) ... 3.4.5

This is Student’s t distribution with p-1 degrees of freedom.
Taking the quare of t and transforming 3.4.5 into a squared
distance from the mean vector, M,, i.e.,

t? = p (X - M)T (2] (X - M) ... 3.4.6

The value t? is the squared distance from sample mean X to the
test value M, (or cluster mean) and the units of distance are
expressed in terms of estimated standard deviation of X.
Instead of using feature vectors, we decided to use inter-
class variations between two classes to evaluate the associa-
tion between pattern classes. This was done by computing
their paired differences, thereby eliminating much of the
influence of extraneous feature-to-feature variations.

For multivariate extension of the paired comparison procedure
it 1is necessary to distinguish between n features, two
classes, and p observations (samples) in each class. We
labelled the n features associated with the j-th sample of N

classes as:
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X114 = feature 1 under class 1
X124 = feature 2 under class 1

Xinj = feature n under class 1
X214 = feature 1 under class 2
X224 = feature 2 under class 2
Xnj = feature n under class 2
Xy = feature 1 under class N
Xyay = feature 2 under class N
Xty = feature n under class N

and the n paired differ=nce random variables between classes,
say, q and r become,

Dy = Xq3 - Xny
Day = Xgz3 - Xray
Doy = Xqny = Xemy
Let Dy = [Dyy, Dy, ..., Dyl® and assume for j=1, 2, ..., P,
that
E (Dj) = 6 = [61, 62' o ¢ o g bn]T
and
Cov (Dj) = g,
Assume that, D,, D,, ..., D, are independent normal with

N, (8, 0,) random vectors, the association between pattern
classes q and r about the vector of mean differences 8 can be
based upon following similarity (distance) index,
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T =p (D - 8T 8, (D - &) .. 3.4.7
where

D - 1/p E D, and

Se=1/(p-1) L (D, - D) (D, - D)T

The statistic T? is called Hotelling’'s T? distribution for
multivariate sampling distribution. Thus classes q and r will
be merged only if T? is minimum for all q,r =1, ..., N; and
q #» r. The results of applying this algorithm to the NDT
design set are shown in Table 3.7.

Table 3.7

Pattern Association Hierarchy using
Generalized Variations Procedure

node cluster-q cluster-r distance
1 AIFBCD GHEJ 10974.178
2 AIF BCD 10680.808
3 GHE J 10630.133
4 GH E 10444.704
5 AI F 10355.179
) G H 10185.185
7 BC D 9948.950
8 A I 9637.046
9 B c 9523.489

e wn w eP M M En Y e A v AP D Gy A e e PP M NS Gw Mp am S NS S me P P W G Ge G e En M W R me e o e e

3.4.3 Top-Down (Divisive) Organization

As mentioned earlier in Section 3.4 the PAH can be built
bottom-up or top-down. The top-down method can be used in
cases where the identity of the classes is unknown. The
general idea of this approach is to use the splitting (divi-
sive) method iteratively to construct the tree structure in a
top-down order. This is just the inverse process of the
bottom-up approach described in Section 3.4.1.
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First, consider all N classes as one big group, and according
to the optimization function given by equation 3.4.10, split
the group to form two subgroups respectively and then their
groups in a left to right sequence. The process will continue
until all the terminal subgroups contain only one class and
the entire binary structure is formed. The algorithm devel-
oped for this organization scheme is presented in Fig. 3.5.

The criterion function J used here is based on the scatter
matrix concept [FUKU-72]. Note that any other criterion
function can also be used. Let S, and S, be the inter- and
intra-class divergence matrices, respectively:

N

Sw = l/po Z pi Si “ e 3-4.8
i=1
N

Sp = 1/pPo 2 Pi (My - Mg) (My - M)T

i=1

and the total divergence matrix S, given by
S. =S, + S ... 3.4.9
where
p; : number of samples in class i, for i=1, ..., N
S; : covariance matrix for class i
M; : mean vector of class i

M, : overall mean of N classes

The scatter matrices S, and S, are not independent, and one can
either choose to minimize S, or maximize S,. In either case
one will affect the other, so we choose only the trace of S,
as the basis of the J value:

J = trace S, = 1/p, [pg (M; - M,)T (M, - M)
+ Pr (Mi - Mo) (Mi = Mo)T]
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= Pg - Pr /Po [(My - M)T (M, - M,)] ... 3.4.10

where M, and M, are, respectively, the mean vectors of the two
groups G; and G,. From equation 3.4.10 it is clear that J can
be obtained from any two mean vectors of the three groups G,
Gy, and G,.

Several other methods have been implemented by varying the
procedures used for defining the most similar pair in above
two algorithms bottom-up and top-down, (at step 2) and for
updating the revised similarity matrix. For the algorithm
given in Fig. 3.6 a number of choices can be made to compute
the J value.

3.4.4 Clustering Algorithm Selection Criterion -
Meta Knowledge

Clustering procedures, f'’s described in previous sections are

potentially very useful techniques. However, they require
care in their application because of the many procedures and
various decision criteria associated with them. Different

algorithms may provide different groupings on the same data.
To maintain the objectivity of an approach we did not merely
accept the results of one algorithm or the other, instead we
used meta knowledge (statistical or empirical knowledge
derived from the analytical knowledge) about the data to
determine the algorithm to be used.

The number of clustering algorithms available is large, as is
the number of procedures in applying them. Hierarchical tech-
niques are the most suitable since they require far less com-
puting time; consequently they are feasible for use with large
data sets particularly in the situations such as ours where
the objective is to built a hierarchy of associated classes.
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/* Consider all N sample patterns (feature-vectors) belong to
certain group G,. Let G, and G, be the two subgroups of group
G,. Initially, let all the N samples be in G; and let G, be
empty. Define an objective function J as a criterion of the
divergence between two subgroups. */

Step 1.
Initialize the groups G, , G; and G, as defined in commen-
ts. Define the criterion function J (see the text).

From the mean feature-vectors belonging to each group,
estimate the mean vectors and the covariance matrices for
groups G, and G,.

Step 2.
For initial division use the K-means algorithm to allo-
cate the samples to each of the groups G, and G,.

Step 3.
Compute the criterion function J for all possible splitt-
ing combinations of the patterns in each group;

Step 4.
Search the criterion functions for maximum J value in
each group. This value gives the way splitting should be
done.

Step 5.
Increase the number of clusters by 1 for each split.
Label the subgroups and form new clusters. Compute the
criterion function for each new cluster. Copy the iden-
tity and the statistics about clusters q and r to the
knowledge frame. Each split constructs a node of the
knowledge tree.

Step 6.
If all the clusters have been split until no divisgion is
possible stop (i.e., steps 3 and 4 have been performed a
total of N-1 times), otherwise go to Step 3.

Fig. 3.6. Top-down Algorithm for organizing the analytic fea-
tures and corresponding classes in a tree structure.

Their suitability is also dictated by number of classes in a
given domain (which is also a variable) and the features to
represent their classes may be quite large. The major diffi-
culty with these techniques lies in the choice of one method
from the many available and in the choice of which similarity
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or distance measure to use. Of the agglomerative hierarchical
techniques, single linkage is the only one that satisfies
various mathematical criteria [JARD-71]. Forgey [FORG-65]
also concluded that single linkage performed well with very
distinct clusters of any shape, but as soon as a moderate
amount of noise was added, the results quickly become erratic.

Thus to decide on a particular clustering algorithm ‘£’ a
decision tree shown in Fig. 3.7 was developed. The scheme we
developed considers the pattern classes that are optimally
compact in the sense of minimum intra-class variations as
homostats and the one that are not compact, as segregates -
the terminologies originally used by Cattell and Coulter
[CATT-66] in the similar semantics. For examp.e, assuming
that the pattern classes are known, if pattern classes fulfill
the criterion for being homostat then obviously one would
select the single linkage method. Following the decision tree
of Fig. 3.7 a set of meta rules shown in Table 3.8 have been
designed to guide the expert/user in selecting an apwropriate
procedure. Another set of meta rules for the selection of

classification procedures are described in Chapter 6.
3.5 Knowledge Organization Strategy

No matter whichever of the above clustering algorithm is used,
they all lead to a hierarchical organization of the pattern
classes, or simply a pattern association hierarchy (PAH).
This hierarchical organization is transferred to the organiz-
ation of the layered structure of the knowledge contained in
features and the pattern classes.

This transfer leads us to modify our terminologies. The tree
will be called a knowledge tree wherein each non-terminal node
stores the knowledge pertaining to the groups or pattern clas-
ses merged at that node. 1In this context each non-terminal
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node will be called a knowledge frame and the terminal nodes
designate the ultimate decision node where an individual pat-
tern class is identified. Thus the tree would become a tree of
associated knowledge frames, realizing an efficient represen-
tation and formalization of knowledge tree designing strategy.
The pattern-dependent information pertaining to each group at
the individual intermediary nodes of the knowledge tree is
obtained and stored in the corresponding node while performing
the clustering. The concept is further elaborated in Chapter
4,

Table 3.8

Rule set for the selection of Clustering Procedure
and Similarity Index

1. 1Is the number of pattern classes known?
(2. Yes, 3. Nol

2. Decide whether classes are homostats or segregates.

2.1 Enter the pattern classes in order.

2.2 Enter the number of samples in each class in the same
order.

2.3 /* processing by the system */

Arbitrarily pick 20% (minimum 2 classes) of pattern clas-
ses and the system will read all samples belonging to the
pattern classes chosen, compute the mean and variance.

intra-class variation: . .
threshold:

Is the intra-class variation = threshold
(4. Yes, 5. No]

3. Classes are unknown; expert input is required.

3.1 Select the top-down (divisive) Clustering Procedure
/* The system would apply the algorithm; build the tree
and ask the user to assign the actual identities to the
dumi y identities */

contd.
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Table 3.8 (Contd.)

Rule set for the selection of Clustering Procedure
and Similarity Index

10.

11.

12.

Sample patterns in a class are segregates.

4.1 /* This step automatically determined by evaluating
the inter-class variations. If the inter-class variations
are small; select either the "Variations Scheme" or the
"Group Average" method */

Are the variations in the feature values significant?
[6. Yes, 7. No]

Sample patterns in a class may be homostats.

5.1 /* If the intra-class variations are s threshold,
select "Single Linkage Method". The system would show
the inter-class variations for the selected classes */

Can you call the pattern a homostat ?
[8. Yes, 9. No]

Select the "Generalized Variations" clustering algorithm.
/* Apply the algorithm and exit */

Select the "Group Average" clustering algorithm.
Go to Rule 10

Select the "Single Linkage" clustering algorithm.
Go to Rule 10

Select the "Centroid" clustering algorithm.
Go to Rule 10

/* Clustering algorithm has been selected, now select the
proximity index */

Do you want the variables to be weighegd?
[11 Yes, 12. No]

Select the Mahalanobis proximity index
/* RApply the algorithm using the selected index, build
the tree and Exit */

Select the Euclidean proximity index
/* Apply the algorithm using the selected index, build
the tree and Exit */
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Chapter 4

Feature Selection, Empirical Knowledge, and
Organization of Knowledge Base

4.1. Introduction

The issue of information explosion is addressed in this
chapter. Several algorithms developed to eliminate redundant
features are also described. The empirical knowledge which is
another major component of the knowledge base is identified
and structured. The empirical knowledge as considered here
includes problem-domain dependent statistical parameters
derived from analytical knowledge. This knowledge is used as
meta knowledge and performs transition when switching from one
phase of processing to another. These knowledge components
are described in detail and the entire knowledre base is
hierarchically organized using the PAH concept introduced in
Chapter 3. The schemes for knowledge formalization, update
and information retrieval are also developed. At this stage
we have gathered all the knowledge that is required by the

system.
4.2 Selection of Optimal Features (Analytical)

The amount of information gathered through the extraction of
analytical features was prohibitively large. Two basic quest-
ions arise; what are most discriminatory features and how many
of them should be used. Both of these questions are resolved
using two basic postulates, 1) reduce the dimensionality of
the problem, and, 2) select an optimal feature set, in the
sense of giving maximum discrimination between classes.
Several analytical methods arxe developed to resolve these
issues.
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4.2.1 The Size Selection

The initial set of raw measurements on patterns was quite
large. For classification, such a large set of measurements
is prohibitive. Our goal was to find a smaller set which
shall contain the most discriminatory information needed to
identify the given pattern classes. The difficult question of
how many features as compared to the number of samples in the
design set are needed for an adequate classifier design
naturally arises.

The deleterious effects of inadequate sample size have been
discussed in the past. Estes [ESTE-65] showed that the error
rate using the Fisher linear discriminant for feature select-
ion deviates severely from the theoretical optimum when the
ratio, ¥ = p,/n, of sample space p, to the number of features
n is small. Hughes [HUGH-68] and Abend et al. [ABEN-69)
showed that the average probability of correct classification
over all possible discrete class distributions deteriorates as
this ratio decreases. Kanal and Chandrasekaran [KANA-58]
noticed that the number of features that can be used for a
fixed sample size depends upon the probability structure
assumed for the problem.

In literature it has been shown that the design-set error rate
is a biased estimate of the test-sec error rate and the amount
of this bias is dependent upon the ratio ¥ [FOLE-72). It is
recognized that the greater the value of ratio ¥, the better
the recognition results will be. One of the approximation
suggests that when the ratio ¥ is greater than 3 the design-
set error rate (on average) is close to the test-set error
rate which implies a closeness to the optimum error rate
[KANA-68] . These observations, thus led us to assume that the
size of the design-set and the information contained in it
will determine the approximate number of features one should
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select. We found that a smaller value of the ratio ¥ will be
useful only if the features selected are discriminatory. Thus
for NDT problem in which 108 features were selected to repre-
sent a pattern class with 20 samples each, 4 to 15 discrimi-
natory features depending on the choice of the classifier were
considered optimal. 1In the following discussion n’", n", n’
and n, all represent the number of features in a pattern
vector at different stages of processing.

4.2.2 Feature (Label) Selection

After deciding on the number of features, the answer to the
second question was sought. That is, which of n (size) feat-
ures among the larger set should be selected. The problem of
feature subset selection can be considered as a problem of
selecting a subset of size n features from a large set of n’"
features. There are (n’"Cn) = n’"!/n!(n’" - n)! such subsets
to choose from. Exhaustive evaluation of all the subsets is
computationally prohibitive, as the number of subsets to be
considered grow very rapidly with the number of features.

A number of techniques for optimal/suboptimal selection of
features have been applied in the past [AHME-85,AHME-86,DEVI-
82,SIDD-90a). For example, stepwise techniques (MUCC-71] and
dynamic programming solutions [CHAY-73] are more efficient
because they avoid exhaustive enumeration, but they offer no
guarantee that the selected subset would yield the best subset
among all subsets of size n [NARE-76]. Considering the size
of the problem a number of optimal/suboptimal solutions such
as Fisher's discriminant function, branch and bound and
dynamic programming would also produce a prohibitive amount of
partial solutions and thus exceeding the computational
bounds. 1In order to encompass a broader range of characteris-
tics in a feature selection problem, including numbexr of
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classes, number of features extracted, discrimination among
the classes, a stage-wise feature selection scheme with a
number of options at each stage is developed below.

The scheme involves two steps, Front-end and Back-end dimen-

siconality reduction. Up front a simple feature elimination

scheme called Successive Elimination Process is introduced in

order to eliminate the redundant features and to reduce their

size. At the second step two powerful feature optimization
| schemes which use a linear and a quadratic objective function,
i respectively, are introduced. The user/system can select one
of these optimization schemes at each node of the tree to
further reduce the size of the feature set without losing the
recognition correctness. This stepwise optimization scheme
will alsc give a choice to the user to select a particular
optimization criterion among several available.

4.2.2.1 Successive Elimination Process

Front-end dimensionality reducer is a feature preprocessor
which uses a Successive Feature Elimination Process consisting
of three steps. The objective of this preprocessor is three
fold, 1) eliminate those features that remain constant over
entire design set of a class, 2) eliminate features whose
variations do not qualify the Student’s t-test at a signi-
ficance level of 99%, and, 3) remove and/or merge the highly
correlated features. These steps are described below.

A. First Step: Removing The Stationary Features

The first step involves the elimination of stationary fea-
tures. For deleting stationary features, the following
algorithm is developed:
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Step 1. Compute the mean feature-vector of the samples for
each group at each node of the inference tree.

Step 2. Compute the pair-wise within-class variance of indivi-
dual features.

Step 3. Delete the features with variance less than a small
threshold §,.

Using this algorithm features listed in Table 4.1 were deleted
from the NDT-data.

Table 4.1

Stationary Features (NDT-data) removed

feature id’'s feature id’s feature id‘s
5 41 43
59 76 77
84 85 86
87 88 89
95

B. Second Test: Discordance Test

The second step eliminates features that fail to meet a
discordance test. The discordance test performs a Student’s
t-test to eliminate features which had very close class means.

— —

Let x, and x, be the estimates of class means of feature x for
classes C;, and C, and each class consisting of p, and p,
samples respectively; and s? a weighted average of the varian-
ce estimates s, and s,?, then the statistic:

t = (%X, - X)) / s (1/p, + 1/p,)*? ... 4.2.1
where s is given by

s? = {(Pl - 1) 82 + (p, - 1) 82} / (p, + p, - 2)

99




follows the t distribution with £ = p, + p, - 2 degree of
freedoms. Generalizing, the distance for a general PR problem
with N classes, t can be defined as:

N-1 N — =
t =3 > (% - x5) /s (1/py + UpyY? ... 4.2.2
i=1 j=2
i =3
The following hypothesis of closeness of means was selected to
delete the features:
H,: Reject by the application of Student’s t-test the
features which have means within a specific thres-

hold 6, and occur over distinct pairs of features
with frequency threshold §4,.

The tabulated value of t was then determined at degrees of
freedom £ = p, + p, -~ 2 at significance level of o = 0.01. The
hypothesis of closeness of means was then tested by comparing
the absolute value of t against the tabulated value, say, t,’,
with degrees of freedcm corresponding to level of significance
of 0.01. If jt| > t,’, and the value has occurred in 6,
distinct pairs of features, the hypothesis of closeness of
class means was rejected with 99% confidence limits. This
implies that the feature x; has some discriminatory power and
may be kept. By checking all the features with t-test, those
with significant class mean were selected. The features that
were rejected by the algorithm for NDT-data are listed in
Table 4.2,

C. Third Test: Colinearity Test

The statistical independence of the features was checked next
by determining the linear correlation coefficient between
them. If these coefficients distinctly deviate from zero, for
example, in absolute value greater than 0.45 for a given
number of patterns, it may be concluded that the features are
not statistically independent. Therefore, the third step
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performs the colinearity test which involves eliminating
features that have correlation with several other features
higher than a preset threshold, say, 6,. The value of
threshold 6, should be such that loss of useful information is
minimum. In this test the feature to feature correlations are
considered for the remaining features obtained from step B,
above. The features deleted by applying the test are listed
in Table 4.3.

Table 4.2

Features (NDT-data) rejected by t-test

feature id’'s feature id’s feature id’'s
15 16 17
37 38 58
60 66 67
68 69 72
73 74 75
81 91 92
93 24 9€
97 98 99

100 101 102

103 104 105

106 107 108
Table 4.3

Features (NDT-data) deleted by Collinearity test
(features in parenthesis indicated original id’s)

feature id’'s feature id’s feature id's
9 (10) 11 (12) 14 (18)
15 (19) 17 (21) 19 (23)
20 (24) 23 (27) 24 (28)
25 (29) 26 (30) 27 (31)
30 (34) 31 (35) 41 (49)
43 (51) 44 (52) 46 (54)
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If there are too many collinear features; their successive
elimination may cause severe loss of information which may not
be affordable; therefore, to retain the effect of both feat-
ures we decided to merge them. Using a variation of PAH-
correlation algorithm the features with a high correlation to
another feature were merged. The algorithm is given below:

D. Merge Correlated Features

Step 1. Consider a n"-by-n" correlation matrix, R = [p,],
over entire design set, where the correlation coeffi-
cient pi;j is related to the covariance by

pyy = 0y / (o . a2 for i,j=1, 2,... n"
Step 2. Find the most correlated pair of features, say, y, and
y; and the amount of correlation, say, cor.
Step 3. Set the initial correlation threshold §.=cor % 0.099.

Step 4. Merge all distinct pairs of features, y; and yy; by
averaging them, replace y; by this average and delete
y;,» and decrement n" by number of pairs merged.

Step 5. Reset the threshold 6., = #. + 0.1.

Step 6. Repeat steps 1 through 6 until the correlation between
two subsequent deletions of features becomes less than
the threshold 6,,.. Go to step 7.

Step 7. Determine the number of features left, say it is n and
exit.

The features that were deleted as a result of applying this
algorithm on NDT-data set are shown with lower order number
(id) and the ones that were replaced are shown with higher
number in Table 4.4. A two tuple in parentheses represents
the corresponding mapping onto the 108 original features.

102



Table 4.4

Features (NDT-data) merged by 2nd Collinearity test

Number feature id’'s Number feature id’s
1. 24, 21 (a6, 24) 3. 29, 28 (56,55)
2. 41, 38 (82,78) 4. 27, 25 (53,48)

4.2.2.2 Back-end Feature Dimensionality Reduction

Since the criterion for front-end feature selection does not
warrant that a best feature set has been selected, so it can-
not be considered an optimal feature selection algorithm.
Therefore, it is not recommended to use the front-end
algorithm alone, i.e., selecting a very small a’ compared *o
n'", It was observed that use of successive elimination
process would cause significant loss of information if the
thresholds are lowered further. However, to further reduce
the size from n’ ton (n € n’) one of the two powerful schemes
suggested for this stage, is recommended. Two criteria are
being investigated for this stage: 1) selecting features one
by one, and, 2) selecting features simultaneously.

4.3 Optimal Feature Selection - One By One Criterion

In this formulation the features are assumed to be independent
and the feature selection problem is designed as a linear
discriminant problem using Fisher’s index [DUDA-73]. This
formulation would require to find n best features, one at a
time, which the classifier should choose for recognition in
order to maximize the performance. 1In particular, the method
ranks features in order of decreasing uncorrelated discrimi-
natory power in a stepwise manner [COOL-71]. It was also
assumed that the classes have multivariate normal distribution
with equal covariance matrices. This covariance matrix is
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estimated by pooling the covariance matrices of different
classes. The resulting matrix is called the intra-class or
within class estimate S,. A second matrix S, represents the
overall covariance matrix estimated from all patterns of the
classes together. The features were ranked on the basis of
Fisher ratio F,. The Fisher ratio of feature i was computed
with the corresponding feature variances from matrices S, and
Sr.

Fi = (1 - Syot / Sr.j_) / (Sw-i / 51-1) [(Po = N)/(N - 1)]
4.3.1

where s,; and s;; are the variances of feature i in matrices
S, and S;, respectively. The largest values of F, correspond
to the most important features which best reflect the discri-
mination among all pattern classes. In the first step the
feature Y, with the largest F ratio is selected as the best
discriminating feature. By performing covariance adjustments
in matrices S, and S; to remove the covariance of Y,, with the
other features and an adjustment of the degrees of freedom,
the F ratios are computed again to select the second feature,
Y,, with the greatest amount of uncorrelated discrimination
power. In this manner, the fecatures were ranked in an order
of decreasing discrimination power. Considering the multi-
class situation the features selected by the algorithm for the
NDT-data are listed in Table 4.5.

The problem with this method is that one best feature is
selected at a time and once a feature is selected its effect
must be removed by recomputing the variance-covariance matrix
from the remaining features. This characteristic makes the
algorithm very expensive and time consuming. Another dis-
advantage is that best combination of more than two features
cannot be found, because the already ranked features limit the

checking of all possible combination of features.
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Table 4.5

Features (NDT-data) ranked using Fisher Index

Rank feature Rank feature
id’s id’'s

1 40 21 20
2 44 22 6
3 53 23 22
4 50 24 79
5 47 25 56
6 3 26 25
7 1 27 36
8 2 28 33
9 82 29 64
10 83 30 8
11 90 31 39
12 4 32 70
13 45 33 62
14 46 34 71
15 11 35 26
16 13 36 65
17 80 37 32
18 7 38 57
19 61 39 14
20 9 40 63

4.4 Optimal Feature Selection - Simultaneous Features
Selection Criterion

Although we have developed a comprehensive preprocessing
scheme to eliminate poorly performing features, the features
remain cannot be considered linearly independent since the
thresholds were chosen arbitrarily. Fisher’s method becomes
very time consuming particularly in situations where one has
to select a small feature subset from a very large one. We
formulated the selection problem using mathematical program-
ming. Using this approach we can always select the best n
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features subset simultaneously in the sense of minimum Mahala-
nobis distance without removing the influence of selected
features. We called this method as Pseudo-Similarity method
and it is described below.

4.4.1 The Pseudo-Similarity Algorithm

In an effort to determine different ways to use variance-
covariance matrices gave birth to the Pseudo-Similarity
algorithm. One of the main characteristics of the algorithm
is that it uses the variance-covariance matrix from the
original data, i.e., n’ feature patterns and it does not
require us to re-evaluate this matrix every time a feature is
selected and removed from comparison. Hence it is more
general than its counterpart, i.e., the Fisher’s method. For
the sake of comparison with Fisher’s method we decided to use
the sample mean as the representative of each pattern class.
Thus only the means of the pattern classes were used to select
an optimal teature set. The feature subset selection problem
is viewed as an optimization (optimal selection) problem where
the objective was to maximize the inter-class variation so
that the pattern classes are as distinguishable as possible.
The inter-class variation is evaluated by computing the
covariance - the class dissimilarity. However, this distinc-
tion should be possible with significantly smaller feature
subset. In this selection process, we selected n features,
where n « n’. The value of n is selected according to the
size (or user objectives) of problem (see Section 4.2.1) and
recognition performance. These n features are those that
maximize the discrimination among the pattern classes.

A. Feature Selection Criterion

Let X, = (X4, Xps -+« X% i= 1,2, ...,p.» be a sample
pattern of n’ feature components, and that it belongs to

106




pattern class C;. The overall mean, M is:

M = (m, my, ...m,)T
where
B
ml = 1 / pi Z Xj , PR 4.4.1
j=1
and p; is the number of samples in class i. The overall

unbiased patterns variance-covariance matrix is S = (S),m,
where s,;; is covariance of features i and j and is defined in
Chapter 3. It is clear that S is a dissimilarity measure
between the pattern classes and it is symmetric. Without loss
of generality we may assume it is positive definite. Each
column S; (or row S!) of S corresponds to one component m, of
M, or precisely, one feature in the n’-feature set.

For an n-feature selection process, n s n’, we select an

n-features subset:
91’-‘- {Yi-k :k=1,2, P ¢ I ij<ik ifj <k)

from an n’-feature set:
¢={vY :1i=1,2,..., n'}.

This is equivalent to discarding (n’ - n) features from the
subset ¢ \ 9,. From an n feature selection process, we obtain
a sample mean of n’ features:
M = (m* mt', ..., m,.4)7T
where
my if 2, € 9
mt =
3 .
0 otherwise

for j=1, 2, ..., n’, and my is j-th element of M. There are
(n’Cn) = {n't/(n! (n’ - n)!)} number of M,’s. Let

Q=M :i=1,2, ..., n'!/(nt(n’* - n)! }. It is clear that
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for each M,, there exists a corresponding %,. Among all M,’'s
in Q, a feature set 9,, is said to be the best n feature subset
of ¥, if the corresponding M,, satisfies the following:

M,T S M, = MTS!M, for all M, € Q.

It is clear that S is positive definite, since S is assumed
positive definite.

B. Feature Selection Model

In order to select the best n feature subset of ¢, we
considered the following mathematical model:

(P) Maximize M,T S M,
subject to M; € Q

It is clear, M; = MZ, where 2 is an »’ x n’' diagonal matrix,
whose components are:

. i -
1 if o' = my
Zj =

0 if mji 0

Then, by the construction of @, solving the above program (P)
is equivalent to solving the following quadratic program (QP):

(QP) Maximize MT 2T st Z M
nl
subject to 2 2, =n,
i=1
to choose n features out of n’, and that,

2y, = 0 or1l.

Maximizing M' 2T S'! Z M can be expressed as,
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= [(myz,, mz,,

v ey ML2,]

mzZ, Sy, + MyZ, Sy + ... + My 2,

. - . .

mlzl SIi + 'n222 szi + LI ] + mnlzn'

myZ,; Sy + MyZy Sy + ... + MZy
-nl -7
2 mz; Sy, m, 2,
i=1
nl
2 mz, Sy m; 2,
i=1
n’ .
> MyZy Sin: My Zye
i=1 | —
n’ n’
2 myz, 2 mZ; Sy
=1 1=1
n' n’
2 T M2y Sy . MyZy
J:l =
n’ n’
2 Z m My Sy . 2y 2
]=1 =
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since 2, = 0 or 1, 2.2, =0, or1l

Letting t,; = 2;2;, the following integer linear program (ILP)
is obtained, which is equivalent to (QP).

(ILP) maximize

n' n' n'-1 n'
2 2 sy mizg o+ 2 3 C 2 sy myomy ty
i=1 J=1 i=1 J=1+1

subject to

21+zj-t”=l

Z;, tyy = 0or 1 for all i, j.

Using the optimization model the optimal solution z* = (z*,,
z*,, ..., z*,) was obtained. If z*, = 1 the i-th feature is
selected, otherwise it is discarded. The optimal set of

features selected are shown in Table 4.6.

110



Table 4.6

Features (NDT-data) ranked using
Pseudo-similarity Algorithm

Rank feature Rank feature
id’'s id’s
1 40 21 47
2 47 22 45
3 7 23 33
4 90 24 82
5 2 25 57
6 6-: 26 79
7 80 27 65
8 46 28 56
9 63 29 39
10 82 30 71
11 9 31 36
12 32 32 83
13 22 33 6
14 70 34 53
15 20 35 4
16 26 36 11
17 62 37 13
18 61 38 8
19 1 39 3
20 14 40 44

4.5 Weight Allocation to Features

It was desirable to achieve high recognition performance
without necessarily using the large feature set. One method
for increasing the performance of decision criterion
(proximity index, or discriminant value) involves additional
analysis of features in the design set. Those features which
were found to be more reliable than others were given more
importance when making classification. The idea behind this
was to try to make the intra-class distance as small as
possible while maximizing the inter-class distance simul-
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taneously. Thus several weighing factors were determined
which cause the more reliable features to make larger contri-
bution to the decision measure between two pattern classes.
Several parametric and non-parametric approaches to estimate
feature weights are discussed in [CASH-87, ULLM-73].

Intuitively, the feature that has smaller intra-class variance
is more reliable and should contribute more to the decision
process. Following Sebestyne [SEBE-62], therefore, a reason-
able approach would be to assume:

w, =1/ o4 ... 4.5.1
The denominator of the above equation, o, is the average
standard deviation of feature i ovar all N classes and

computed as follows:

N
O’i = 1/N [‘Z Sij ] .« 0. 4-5.2
$=1

Hsia (HSIA-81] has proposed a weighing factor and is given by,
wl=Si/ |m1| . . 4‘5.3

where s; is the standard deviation of the i-th feature, and
| m{ | is the magnitude of the mean of the i-th feature over
the entire design set. Tou and Gonzalez [TOU-74] derived the
following weighing factor:

N 2
w,i = 1/ (s, jgl 1/84% ] ... 4.5.4

This approach differs from the two above in that a weighing
factor is computed for each feature of every class, rather
than just one weighing factor for each feature that is used
for all of the classes. Another factor that could be useful
if the intra-class variation is small would be:
w;, = S ... 4.5.5

This is the same as the factor suggested by Hsia except that
the denominator has been set equal to 1. If there is a large
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intra-class variation, then the following weight might prove

useful,

w, =8, / 04 ... 4.5.6
where the denominator is defined in equation 4.5.1. 1If there
are large inter-class variations, perhaps it is not necessary

to allocate variable weights, and as such w; = 1, for
i=1, ..., n may serve the purpose.
Fisher weights for e.ch feature were also computed. To

separate class j frcm k by means of feature i, the Fisher

weight w; is given by:

Vi 4k = { M,y = My 4 V / {pjsidz + Px suf}
4.5.7

The Fisher weighing factor w, of feature i for all N linear
class separation is:
N-1 N

wg =2 {% ¥ w;,/ N(N-1) } ce. 4.
j=1 k=j+1

3]
@

These weighing factors were incorpcrated and tested on

different data sets.
4.6 Empirical Knowledge

Although, empirically a large number of parameters can be
used, human experts tend to rely more on visual, graphic, and
summary characteristics of the data. To recognize a signal in
NDT problems, for example, most popular features that have
been considered by a fairly large group of experts include
rise time, peak amplitude, duration, peak counts above certain
threshold and to identify the location of a defect, the time
at which the signal/peak has occurred. These features have
already been represented by analytical knowledge components in
earlier chapters. 1In addition to the analytical knowledge
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parameters listed in Table 3.2 (Chapter 3), more specific data
dependent information is also available. The data dependent
knowledge comprised of a set of empirical observations which
were derived using analytical features from the design set of
data by subjecting it to a number of analytical and
statistical procedures. These procedures evaluate the
parameters that we considered useful for classification and
include:

- individual class probabilities (a priori and condi-
tional) obtained from the design set, see Chapter 5,

- threshold settings based on the characteristics of the
design set,

- statistical distribution parameters for the design set,
see Table 4.7,

Table 4.7

Empirical and Statistical Decision Parameters

Empirical Parameters

inter-group (cluster/class) distance
intra-group (cluster/class) distance

number of features and their labels

feature selection algorithm

feature weighing criterion

classification procedure selection algorithm
PAH building criterion

Statistical Parameters

mean (Class & Overall)

dispersions (Class & Overall)

Covariance (Class & Overall)

Correlation coefficients

first four central moments

Inverse (Class & Overall)

shape characteristics - skewness and kurtosis
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The empirical and statistical parameters described above were
estimated and the acquired knowledge corresponding to each
group of clusters was allocated to the respective nodes of
PAH. These parameters were then stored in a knowledge base
with conceptually the same structure as PAH'’s. While
processing, each intermediary node of the PAH can be selected
and modified to provide the user/expert various options to
modify the following decision parameters.

- threshold adjustments based on the nature of the problem
domain, objectives and the design data,

- option to use a variety of algorithms to build the
initial Pattern Association Hierarchy,

- option to use a variety of proximity indices to estab-
lish the pattern association,

- opticn to use a variety of discrimination algorithms to
classify an unknown pattern,

- option to use a variety of algorithms to select an opti-
mal feature set, or to use subjective features,

- option to retrain a nodal classifier,

- option to use a variety of feature weighing criteria.

Thus empirical knowledge was used to drive a set of meta rules
which in turn are used to select, 1) a suitable algorithm for
building pattern asscociation hierarchy (PAH), 2) suitable
algorithm(s) for feature selection, 3) appropriate
algorithm(s) for pattern classification, 4) parameters for
decision making in regards to both (1) and (2) above, 5)
appropriate weights for each feature, and, 6) the rules
required for various stages of processing including the rules
for the final stage of classification. Another function of

this knowledge is to identify an anomalous event.
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4.7 Knowledge Formalization, Representation and
Organization

Several techniques for knowledge organization have been
developed for AI systems [RICH-91, CHAR-85]. These techniques
can roughly be divided into two types: declarative methods
(such as predicate 1logic) and procedural methods. The
declaratives are of two types, static and dynamic. Static
declaratives in which most of the knowledge is represented as
a static collection of facts, are the knowledge objects
constructed either at the design-time using a priori know-
ledge, or at the learning-time, using empirical knowledge.
The dynamic declaratives are the objects which are created by
the system during the learning time and may be modified as the
learning progresses. The declaratives are further accompanied
by a small set of general procedures for manipulating them.
In procedural methods, the bulk of the knowledge is
represented as a set of procedures for using it. We
conceptually used similar methods for knowledge representation
and organization which are described below.

4.7.1 Knowledge Formalization and Representation

We used pseudo-dynamic objects to formalize and represent
knowledge which is basically a hybrid of the two concepts
described above. The pseudo-dynamic objects constitute a
knowledge frame storing the requisite knowledge corresponding
to each internal node of the PAH accompanied by a set of
procedures for manipulating them [STEF-81,WEIS-84,IGRO-90].
A frame, as shown in Fig. 4.1, is a collection of information
associated with a group of classes at a specific node. The
information consists of a set of group-dependent knowledge
objects and appropriate indices to further lower level
components in the knowledge base. The information regarding
the classification procedures to be used by the discrimination
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system is also stored in the frame. The analytical features
are organized in arrays of vectors and the reference samples
pertaining to each class were stored separately. This
formalization has greatly enhanced the flexibility compared to

the traditional approaches.
4.7.2 Hierarchical Knowledge Organization

The Knowledge Base holds analytical features, and empirical
and statistical knowledge about the problem domain at hand.
Not all the knowledge components are utilized simultaneously.
To structure the knowledge according to its oxder of
utilization, the knowledge base was partitioned into groups
corresponding to the way the groups (classes) are merged
during building of PAH-tree (see Chapter 3). The organization
of knowledge uses the PAH skeleton as its design strategy.
The structure of the tree as shown in Fig. 3.2 is composed of
layers of nodes linked with branches. Nodes are of two types,
terminal and non-terminal nodes. At each nonterminal node a
knowledge frame is placed wherein the knowledge acquired
during the system design phase is stored. A frame can be
accessed by the discrimination system when needed. Each
terminal node represents a class (an ultimate decisive
situation). Non-cerminal nodes represent the intermediary
decisions. A frame, as described in previous section is a
collection of information associated with a group of classes
at an internal node of the PAH. Thus with this arrangement of
knowledge structure the knowledge base becomes a binary tree
of frames containing knowledge pertaining to associated
classes distinguishable by their characteristics stored in the

knowledge frame at each non-terminal node.

Major advantages of this arrangement include minimum infor-
mation ordering and redundancy problems with greatly increased
flexibility as compared to their traditional counterparts,
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which consequently brings in efficiency in storing and
retrieving the pertinent information to and from the knowledge
base.
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Group Information
- within group: mean, covariance
- No. of features, no. of samples

Cluster p/q information
- identity of membership
- within group: mean, covariance
- between group: mean, covariance
- distance (weighed/unweighed) -- Euclidean, Mahalanobis

Feature-related parameters
- full set
- Successive Elimination process
- ranked feature set
+ Fisher ranked
+ Pseudo-Similarity ranked
- feature weights

Classifier-related parameters
- No. of samples in the design set
decision thresholds
feature optimization procedures
analytical knowledge (optimal feature set)
discriminant functions

Nodal Classifiers (Procedures)
- Parametric
+ Linear Discriminant function
+ Quadratic Discriminant function
+ Bayesian
* approximation using distance for
* approximation using covariance (within/between
groups)
* heuristic approximation
- Non-parametric
+ K-nearest neighbor; k=1,..,5
+ Minimum distance

User-defined Parameters
- selection of the design set
- no. of samples in the design set
- no. of samples in the testing set
- features and their weights
- procedures to be used .or weighing
- learning procedure
- decision thresholds
- procedures to be used for feature optimization
- classification algorithms to be used
- decision criterion for the selected classifier

Fig. 4.1: A typical organization of knowledge frame.
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Chapter 5
Inference Engine and Machine Learning
5.1 Introduction

The inference engine primarily signifies the problem-solving
mechanism which may be adopted by the system. Traditional
inference engines are inductive and in these systems the
decision is evolved through an unwieldy interaction with the
user or expert. We adopted an evolutionary approach that does
not entirely rely on the bidirectional human-machine interact-
ion. The strategy we developed uses the PAH tree as the
sequence of events that the system has to follow and as such
the terms PAH and inference tree will be used synonymously.
The inference tree uses both the decision theoretic and the
information theoretic type of classification algorithms. The
system can operate in two modes, executive mode and consultant
mode. In executive mode the system is intended to function as
a stand-alone system whereas the consultant mode is designed
to let the user/expert use the parameters and algorithms of
his/her choice. In either modes, for classification the
system accepts a signal classification problem that falls in
one of the system’'s domains of expertise, preprocesses,
analyzes, performs classification process and finally comes
out with a solution. In the consultant mode, however, the
system performs like an assistant to the user and provides a
large number of choices which a user can choose at each stage
of processing, ranging from the building of the PAH to the
selection of a classification algorithm at each non-terminal
node of the PAH.

This problem-solving strategy has been programmed into the
inference engine through two cooperating processes, Discrimi-
nation subsystem and Cognition subsystem. This incorporation
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of evolutionary approach makes the inference engine more
realistically a problem-solving machine which tactically
analyzes the problem, sorts out the knowledge to be used and
interprets the knowledge accessed from the knowledge base;
subsequent knowledge gained during the operation, supplements
the decision-making. The inference engine developed for the
intelligent recognition system is described in this chapter.
Several algorithms for training the inference engine are also
developed. A new classification algorithm based on infor-
mation theoretic approach is also described in this chapter.

5.2 Components of the Inference Engine

The design of the inference engine developed here is shown in
Fig. 5.1. The two-fold structure of the inference engine -
the discrimination subsystem and cognition subsystem allows to
meet the following classes of requirements:

- dual (executive and consultant) mode of system operations;

- knowledge accumulation (acquiring, extending, modifying and
automatically maintaining the consistency of the knowledge
base) ;

- hierarchical parametric inference, providing most suitable
classification scheme for each subset of the classes;

- natural grouping of pattern classes using supervised/un-
supervised hierarchical clustering schemes;

- deductive inferencing, based on pattern classification pro-
cedures;

- tree-based inference structure providing backtracking faci-
lity;

- parametric and non-parametric learning of the inference tree
by using appropriate nodal classifier, features and pattern-
class dependent decision parameters;

- plan refinement during problem decomposition through selec-
tion of optimal features or user-defined features and clas-
sification algorithm;
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- classification or learning path modification, according to
the user requirements.

The above requirements are accomplished by an inference engine
consisting of three main components, namely, discrimination
subsystem, cognition subsystem and the failure control sub-
system (see Fig. 5.1).

The discrimination system, using a suitable pattern classifi-
cation algorithm (see Chapter 6), performs the primary classi-
fication of the signals under a very strict range of decision
parameters determined from the design set. The classification
process may in fact terminate hexre, if the system is in the
executive mode and the input pattern closely agrees with the
characteristics of one of the reference patterns.

Communication Subsystem Inference Mechanism
I = Cognition  Discrimination
* +  Subsystem Subsystem
Tree
Communication [ Rule - gsegd?j Structure
ymbolic
Interface ~ ~a—— Processor R Features MDC
T l KNN
BYC
EDT D
Knowledge Algorithm LDC
Base QDC

Fig. 5.1: Schematic Design of the Inference Engine.

122



The cognition system is another classifier. It uses an infor-
mation theoretic algorithm that we called Entropy based
Decision Tree (EDT) classifier. The success of the cognition
system can be measured by its recognition performance.
Chapter 8 presents several suggestions to improve its

performance even further.

The discrimination system may fail at any intermediate node.
When this happens the Failure Control scheme will attempt to
classify the unknown pattern one more time using the single
layer classifiers. 1If the Failure Control system also fails
an unresclvable situation is detected which may yield the
consequence of, 1) an anomalous class might have been found,
or, 2) the pattern in question may belong to a gray area that
may still fall between two or more of the existing classes.
In the latter case the user may change a number of parameters
in an attempt to reclassify the event, however, the former
situation warrants the presence of an unknown event which may
require the retraining of the system. This situation is not

dealt with in this research.
5.3 Inference Mechanism

As described earlier .he incorporation of several classifi-
cation algorithms has truly transformed the PAH into an intel-
ligent recognition system wherein the signal classification
can be performed by one of the two types of independent clas-
sifiers and ma:aged by a control subsystem. These classifi-
cation schemes include decision theoretic and information

theoretic algorithms.

The controlling task is the coordination of the other two
components (see Fig. 5.2). The primary function of this sub-
system during the learning phase is to examine the data
(design set) characteristics and based on them apply the meta
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knowledge pertaining to the selection of a classifier and to
choose an appropriate classification scheme. For the clas-
sification of unknowns it acts as an interface between the
classification algorithms and the main inference mechanism and
directs the classification process to select the algorithm

determined during the training.

To classify and interpret, it basically lets a pattern
traverse through the PAH, invoking the appropriate components
of the inference mechanism at each node and performing the
classification in order, until a decision regarding its

identity is made.

The primary components of inference engine, namely, the
cognition system, and the discrimination system are basically
the knowledge processing systems. The choice of a particular
type of classifier depends on the objectives of the user when
one is using the system as a consultant. However, when the
system is working as a stand-alone system it will use discri-
mination subsystem only. The discrimination subsystem is a
procedure based system and uses several decision-theoretic
algorithms. These algorithms include two basic types of
classifiers, parametric and nonparametric. Among parametric
classifiers, linear discriminant classifier (LDC), quadratic
discriminant classifier (QDC), and Bayesian classifier (BYC)
are included, whereas minimum distance classifier (MDC) and
K-nearest neighbor (KNN) were selected as non-parametric
classifiers. Based on the nature of the design data set or
the user/expert choices the system selects an appropriate
classification algorithm at every non-terminal node while
traversing (inferencing) through the knowledge tree. The
discrimination algorithms are described in Chapter 6.

The cognition system is a decision tree based processing
system and uses an information theo: .ic algorithm for classi-
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fication (see Section 5.6). The failure control mechanism is
a back up system and will only be invoked upon the failure of
the discrimination subsystem. It also uses the same decision
theoretic algorithms of the discrimination system.

In order to let the inference mechanism perform its task of
problem solving and decision making, the machine needs to be
trained on the kind of problems it will be solving. Since the
inference engine is a composite of two types of classification
algorithms, appropriate learning schemes for each type of
mechanisn were sought accordingly.

5.4 Machine Learning

The ability to learn must be the part of any system that would
exhibit general intelligence. Feigenbaum [FEIG-83] has called
the 'knowledge engineering bottleneck’ the major obstacle to
the widespread use of knowledge based systems. This bottle-
neck refers to the cost and difficulty of building such sys-
tems through the efforts of knowledge engineers and domain

experts.

There is as yet no unifying theory for machine learning
[LUGE-89] . However, Carbonell [CARB-86] suggested a few
guidelines to approach the learning problems. This list of
themes categorizes learning in terms of, a) the specific type
of training data, and, b) the data structures and operators of
the learning program.

Two schemes were developed for the learning program emphasi-
zing particularly on the second issue of data structures and
operators for training. The design data set discussed in
Chapter 3 was used to train the system. The discrimination
system was trained using a supervised learning scheme.
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The cognition system is an information theoretic classifi-
cation system and 1is trained using the pseudo-symbolic
analytical knowledge (see Section 5.6).

The learning frxrom the design set involves performing the
inducticn of general principles from a set of reference pat-
terns. Such learning may be either incremental, modifying its
concepts in response to each training instance, or in batch
form, forming concepts in response to the entire design data.
The Cognition system learns the process by selecting the
feature that contains the most discriminatory information to
categorize the reference patterns.

5.4.1 Learning by the Discrimination System

The discrimination subsystem attains its decision making cap-
ability through a supervised learning scheme. The system uses
several pattern classification algorithms which utilize the
pattern association hierarchy (PAH) concept. This concept
primarily constructs a tree of classes by assigning the
classes or group of classes with greater similarity to the

same node.

The learning process involves two steps, first it selects an
appropriate clustering algorithm to construct the tree through
automatic assignment of known pattern classes from the design
set to an appropriate node. Second, it provides a mechanism
(see Chapter 4) to automatically select the optimal feature
set and evaluate the empirical knowledge parameters necessary
for selecting the most suitable classification algorithm that
maximizes the discrimination between the classes or groups

associated with each node.

Generically, the discrimination is done through a decision
plane of thickness 27, where 7 is a method dependent threshold
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and is determined empirically from the design set of respec-
tive data eeots. The learning process determines a decision
plane with no patterns within a dead zone of +7 from the
plane.

This arrangement is intended to improve the correct assignment
of an unknown pattern into one of the designated classes while
conducting the classification. The actual learning process is
described below.

Supervised Learning Process

The learning from any design set available can be done either
incrementally using one instance (pattern sample) at a time or
as a single batch process using all the samples simultaneous-
ly. The incremental learning, although computationally more
complex, did not perform any better than the single batch
process and hence will not be discussed any further.

In batch learning, the feature vectors (analytical knowledge)
from the design set, having known the identity of the pattern
classes, were iteratively used to build the initial inference-
tree in a bottom-up fashion. The tree building procedures are
already explained in Chapter 3. The tree in the form of class
hierarchy represents the range of signal clasgses that can be
inferred. The learning process yields the known identity of
the class(es) or group of classes at every node of the tree
which are recorded in the corresponding knowledge frames.
Using the knowledge already stored in the frames a set of
optimal features for the individual groups at every node were
selected. A set of statistical parameters described in
Chapter 4 were also evaluated and saved in the respective
knowledge frames.

The procedure for supervised learning of the discrimination
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system using the design set is shown in Fig. 5.3, whereas the
training process for classification adopted at individual
non-terminal nodes is given below.

Ser uo the featura-vec:ors for the design set

| =1

|

Invoke the PAM routine to organize the
knowledge tree with ultimate classes at terminal
nodes and features of the respective class(es) at
.the non-terminal nodes

r

Starting from the root, using breadth-first traversal evaluate a sat of
emoirical paramaters by invoking the statistical proceduras

h 4
Seiec: the optmal feature set using
appropriate feature optmizaton algorithm

Compute ana store a new set of empirical parameters from the
optimized feature set and record them in corresponding frame

' 4
Invoke the nodal training scnema of Fig.5.4.

Stop

l i=i+l kr N

Fig. 5.3: Supervised Learning procedure for the
Inference Tree.
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In fact, the learning of the discrimination process was
performed simultaneously while the tree building process was
administered.

Once the system is trained for a specific kind of problem, an
inference tree (intelligent recognition system) which will be
capable of using several classification algorithms with same/
different set of features at every node, is obtained. The
discrimination algorithms and the decision parameters for the
selection of an appropriate classifier are described in
Chapter 6.

Nodal Training

The process of building PAH has produced two classes at each
node. If the two classes form well separated clusters in the
pattern space, it is possible to find a decision plane which
would maximally separate the classes. The objective of the
nodal training was to construct such decision planes. At each
node, the training starts with an appropriate discrimination
plane passing orthogonally through the origin of the cluster
(see Fig. 5.4). The decision plane is defined by a decision
vector which is a function of the discrimination function, and
the reference group decides whether a pattern lies on the left
or right of the decision plane implying belcnging to cluster
(or a class) on the left or right of the current node. The
scalar product r for linear discriminant function (see Chapter
6), for example, may be given by equation 5.4.1. It 1is
computed from weight vector W and pattern vector X. Assume
that it is positive for the cluster on the left and negative
for the cluster on the right.

where x;, i=1, ..., n, is a feature of a pattern of the
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cluster at the current node, and w;’s are components of the
vector W. If a pattern is misclassified during the training
phase the weight vector is corrected as follows:

W =W+¢ .X ... 5.4.2

After this correction the distance between X and the decision
plane lies on the correct side of the plane. The same
consideration is wvalid for the scalar product r before

correction and r’ after correction, i.e.,

r’' = - xr ... 5.4.3

From equation 5.4.1 we can write,
W. X=-W. . X ... 5.4.4

From 5.4.2 and 5.4.4 an equation for the correction factor

can be obtained, i.e.,
W+¢.X) . X=-W.X ... 5.4.5

Substituting r’ = W . X, and using equation 5.4.2 the value
for the correction factor is obtained as,

¢ =-2.r/(X. X) ... 5.4.6

Based on the nature of the data, several methods for computing
the weight vector were developed. These methods include
linear weighing and variance weighing of a feature and have
already been described in Section 4.5.

5.4.2 Learning by the Cognition System

The cognition system is designed to perform independently
using the transformed analytical features which will be called
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Fig. 5.4. Nodal Training Scheme - Discrimination System.
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pseudo-symbolic features. The cognition system deal‘ng with
the pseudo-symbolic knowledge uses an information theoretic
algorithm called entropy-based decision tree (EDT) algorithm
to select an appropriate set of features to discriminate the
nattern classes. The actions corresponding to the selected
features and the classification scheme are performed in order,
to arrive at the final conclusion, i.e., determination of
class labels of the unknown.

The EDT algorithm first ranks all the pseudo-symbolic features
and then builds the tree by successively sele¢cting one feature
at a time and determining the classes that can be identified
using the selected feature. The algorithm then recurs on each
branch with the remaining features. When all the branches
lead to a single classification the algorithm halts. This
learning process is used to train the cognition system. The
learning cycle includes the following steps:

- Determination of the relationship between the pattern
classes and the pseudo-symbolic features.

- Exercising of detective actions using the EDT algorithm and
building a decision tree.

The EDT algorithm uses analytical features from the design set
as knowledge objects. To work with the information-theoretic
concept the analytical features were transformed to pseudo-
symbolic features. Based on the information the pseudo-
symbolic features carry all sample patterns in the design set
were hierarchically dichotomized until all pattern classes are

individually identified.
5.5 Discrimination System - The Process

The discrimination subsystem (see Fig. 5.2) performs the
primary signal classification. In either of the two operating
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modes, executive, and subordinate, the system (See Fig. 5.1)
uses the same tree which has been organized using the known
identity of the waveform signals during the knowledge organi-
zation phase. In effect, at a node, if the g-th group of
class(es) and the r-th group of class(es) have the highest
similarity and had been merged to form an i-th group then
while performing discrimination, these two groups (or classes)
should be distinguished at this node. The unknown sample to
be classified iterates from the root to the leaves in hypothe-
ses and test fashion. It is first assigned to one of the
groups, each of which contains several classes, of the nodes
in the first level. This procedure continues at each hierar-
chical layer of the tree and the classification becomes finer
and finer while the sample goes higher and higher up the tree,
until finally it arrives at one of the terminal nodes contain-
ing only one designated class. This algorithm is described in
Fig. 5.5. The discrimination algorithm and the parameters used
for their solution are described, in detail, in Chapter 6.

5.6 “ognition System - The Process

As described in Section 5.4.2 the cognition system is designed
to perform independently using the pseudo-symbolic features
and EDT classification algorithm. It builds the tree by first
ranking all the features in terms of their effectiveness, in
partitionirng the design set into two target groups (or
classes) from an information-theoretic standpoint. It selects
the feature with the highest rank and then makes this feature
as the root of the tree; each branch represents a partition of
the set of classes. The algorithm then recurs on each branch
with the remaining features. When all the branches lead to a
single classification with specified thresholds, the algorithm
halts. Complete details of the EDT algorithm are provided in
Section 5.7.




5.7 Entropy-based Discrimination Tree (EDT) Algorithm

A cognition algorithm called Entropy-based Discrimination Tree
(EDT) algorithm which is based on information theoretic
approach is introduced in this section. This approach hierar-
chically selects one feature at a time based on its informa-
tion content. Then using a decision function, it determines
the samples which can be placed in either of the two groups.

Step 1.
Initialization; i = 1, to represent the root of the

tree;

Step 2.
Scan the knowledge frame at the i-th node of the
knowledge-tree and determine the classification algo-
rithm, a best feature set (Fisher ranked or Pseudo-
similarity ranked), and other parameters required by the
algorithm.

Step 3.
Invoke the nodal classifier and assign the input pattern
to one of the groups (child) at the current node. If the

classifier fails, go to Step 6.

Step 4.
Assign i the rank of the cluster in the knowledge-tree,

and repeat steps 2 through 4 until the unknown input
class is assiquied the identity of a leaf node.

Step 5.
If 1 corresponds to the highest terminal node the pattern

has been classified; so exit; otherwise go to Step 6.

Step 6.
The system failed to classify the unknown pattern;
invoke the Failure Control system and exit.

Fig. 5.5. Tree classification mechanism of the Discrimination
System.

The ID3 (Iterative Dichotomization) method [QUIN-83] is a
popular example of such an approach to learn a discrimination
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tree which is closely related to the Concept Learning System
of Hunt [HUNT-62]. A major difficulty with this approach is
that it is particularly useful when there are a small number
of patterns, and each of which is made up of a short list of
qualitative symbolic feature values. An additional problem is
that the features are considered mutually exclusive and that
they may be binary valued. These limitations restrict the
scope of the algorithm. Borrowing the basic decision making
concepts we transformed this algorithm to acquire the know-
ledge from the design set wherein the sample patterns may be
modeled with numeric features. In addition to this premise we
did not consider the features to be mutually exclusive. In-
stead we considered a feature with a specific range of values
to be mutually exclusive. Incorporating these improvements a
modified ID3 algorithm called EDT (Entropy Based Decision
Tree) algorithm is developed.

{,2,3,4,5,6,7}
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Fig. 5.6 Information-theoretic organization of knowledge
and pattern classes.
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The EDT classifier consists of a root node, a number of non-
terminal nodes and a number of terminal nodes. Figure 5.6
illustrates a hierarchical organization of features and

classes. The nodes containing the information enclosed in
braces represent a group of classes. The nodes with bare
numbers, 1, 2, ..., 7, representing identity of the classes,

are the terminal nodes whereas the top node, having the entire
set of classes, in braces, into which a sample could possibly
be classified, is the root. A nonterminal node has both
ascendant and descendant nodes, and as such represents an
intermediate decision. The immediate descendant nodes of a
non-terminal node represent the outcomes of an intermediate
decision. A terminal node corresponds to a terminal decision,
i.e., the decision-making procedure terminates and an unknown
being classified at this stage is assigned the label of the
corresponding class of the node.

5.7.1 Design of the EDT Algorithm

The EDT algorithm consists of five components, 1) the value
of knowledge objects used at each non-terminal node, 2) compu-
tation of entropy for corresponding classes (or groups) at
eac. non-terminal node, 3) best feature selection based on
reduction ir entropy between two subsequent nodes, 4) a
hierarchical ordering of features based on their information
contents, and 5) the decision function to be used at each
non-terminal node. The algorithm for the accomplishment of
these steps is presented in Fig. 5.7 and the explanation of
the procedures for the accomplishment of these steps are

described below.

1. Evaluation of Knowledge Objects

The knowledge objects are derived from the analytical featu-
res. Originally, the analytical features available were
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Step

Step

Step

Step

Step

1.
Initialize the root node with the input group consisting
of the entire design set.

2.
Traverse the tree, beginning from the root and using a
depth-first search algorithm until a decision node with
a terminal output group is found; assign the label of the
output group to this node, i.e., becomes a designated
class, and go to Step 3. If no such node exists, then
EXIT because the tree construction process is completed.
Any terminal nodes found during this traversal are igno-
red.

3.

At the current node, compute the entropy of the input
group. If entropy is zero, a terminal output group is
found; assign the label of the input group to this node,
i.e., becomes a designated class, and go to Step 2. If
the entropy is greater than zero then the current node is
just an intermediary node and go to Step 4.

4.

At the current node, use each knowledge object to
classify the input group into two output groups, and
compute the reduction in entropy using equations 5.7.2
and 5.7.3. Select the knowledge object that produces the
largest reduction in entropy.

5.

Use the selected knowledge object to create two new child
nodes for the next level of the tree, and mark this
object as the ’‘selected feature’. Assign the output
grcups of the current node as the input groups to the
respective child nodes. Repeat steps 2 through 5 until
done.

Fig. 5.7 Procedural steps of the EDT Algorithm.

numeric. To construct the knowledge objects we transformed

the analytical features into pseudo-symbolic features. The
pseudo-symbolic features were developed as discriminating
values of the analycical features which were used to split the
numeric feature into a feature which is either less than,

greater than, or equal to an observed discriminating value.

Thus

a knowledge object can be defined as a tupple of two
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components. One component designates feature identification
and the other represents the value of that feature, i.e.,

Knowledge Object : (Y, v';)

where Y, is the label of the i-th feature, and v’, is its
discriminating value at a particular stage in the decision
tree which is estimated as:

less ifvy, <1y
vy = equal ifv, =1";
greater if v’y > 1’

Each feature was examined to determine its discriminating
value v’;. This was done by finding minimum and maximur
values of each feature in every pattern class. When the ra. .
of the feature in one class did not overlap the range of the
same feature in another class, two candidate discriminators

were identified, i.e.,

max v’ —_—
Range (7',) = Val Overlap (v';y) ... 5.7.1
min v’ for i =1, ..., n

j'—'—'l, I ] N

where 7’;, is a non-overlapping range of a feature’s value
between two or more classes and Overlap (v‘y) is a function
that returns the 1limits of the feature value v',, which

overlaps in two or more classes.

We observed that some features had no candidate discrimi-
nators, and hence they were eliminated; some other features
had multiple candidate discriminators, and consequently
appeared several times, with different ranges of course, in
the list of candidate discriminators.
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2. Entropy Computation

The entropy I, of an input group is defined by:

N

I, = Y [- P (i) log, P (i) ] .. 5.7.2
i=1

and that P (i) = pi/ Po

where

N : number of classes in the group

®(i) : probability of occurrence of class i

Pi : number of patterns in the group from class i,

Po : Total number of patterns in the group

The range of I, values implies that

I, =2 1 if a group contains several classes, and each
class having an equal number of samples,

I, < 0 if a group contains several classes, and one
class is dominant,

I, = 0 if a group contains all samples from one class.

Notice that the entropy will be greater tuan or equal to 1.0
when a branch contains samples from several classes with each
having equal number of samples. The magnitude also depends
on the number of classes. When the samples in a group pre-
dominantly constitute one class, the entropy will be less than
one. Finally, when all samples in a group are strictly from
one class, the entropy is zero.

3. Best Object (Feature) Selection

For training, all samples in the design set forr che initial
learning group. The entropy for this group was c~rputed.
Then each available feature was used to dichotomize the
group. The entropy of the resulting system of groups was
found by using equation 5.7.2 and also computing the entropy
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of each individual group. The entropy of the output system
for each branch was evaluated using the relation:

G
I, = Y Iy (pg/ Po) .o 5.7.3

g=1

where

G : number of output groups

I, : total entropy of the output group

I, : entropy of group g

Pq : number of patterns in group g

Po : number of patterns in all output groups

The equation 5.7.3 reflects that the entropy of a group is
weighed by the proportion of its membership. The feature
which produces an output system with the greatest reduction in
entropy is the best one to use for the node of the decision
tree. Select feature for which the amount of decrease in
amount of entropy is maximum, i.e.,

Y, = Max (I, - I,) ... 5.7.4

Then each of the output group becomes an input group to the
descendant nodes of the tree.

4. Building the tree

The initial input group consists of all the patterns in the
learning set. As a node is built, each of its output groups
become the input group of the descendant nodes. At any given
node, the entropy of the input group is computed using equat-
ion 5.7.2. Each candidate discriminator is used to produce
two descendant nodes. Then entropy of each descendant node is
evaluated using equations 5.7.2. and 5.7.3. The reduction in
entropy between two subsequent nodes is the new entropy sub-
tracted from that of the input group’s entropy and that reduc-
tion is saved for each candidate discriminator. When all
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candidate discriminatcrs have been tested, the one with the
largest reduction in the entropy is saved as the discriwinator
at the current node. When an output group constitutes all
samples of one class, i.e., entropy becomes 0, its node
becomes a leaf node, and the identification of the class is
saved. When there are no output groups with mixed classes in
them, the tree is considered complete, and it was considered
as the trained cognition subsystem. Notice that the initial
entropy of the system has been reduced at every node of the
tree, and the final result is a system with zero entropy.

5. Decision F ‘mction

The decision function at each non-terminal node is a simple
binary decision which assigns a pattern to the left or right
branch of the tree based of the entropy of the selected
feature.

5.7.2 Computational Complexity and Problems

The EDT algorithm is an interesting example of how a restrict-
ed representation can simplify the learning process. Because
of this restriction the algorithm is able to construct an
effective tree in a highly efficient (polynomial time) fash-
ion. The basic task is that of calculating the entropy for
each branch. Assuming that there are b values for each of the
n features, there will be b computations for each feature. At
the next level for each of b branches, b values for each of
(n - 1) features would be evaluated, out of which one best
would be selected.

Thus the amount of computations would be {b? . (n-1) + n-2}.
As the tree grows, many branches would lead to one class
membership. Assuming that L-level tree is as complex as L./2
level tree, the computational complexity increases approxi-
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mately as n.bL; i.e., it increases exponentially with respect
to L, but polynomially with respect to number of features, n,
and their possible values, b.

One of the problems associated with the types of techniques
however, is the complexity involved in the initial construc-
tion of the tree particularly when the initial . ure set is
large and have a large number of pattern samples. This usual-
ly would lead to a large size of the tree with multiple paths
for the recognition of the same class. Furthermore the
successive partitions may not necessarily be unique. In
addition, any new knowledge or new samples would require a

complete restructure of the system.

Despite the above stated problems invelved in the initia..
construction of the tree, c¢lassifying an unknown becomes
fairly simple. The unknown traverses the tree straight down
one path which would be the orxrder of log L, where L is the

level of the tree.
5.7.3 Merits of the EDT - Classifier

The EDT technique is more realistic in the sense it uses the
features (or knowledge objects) based on their information
content. It is practical as it can handie a large feature set
and a fairly large number of classes without degrading the

performance. Itemized list of its merits is given below:

1. Classification Accuracy

By using only one feature that is the most useful for classi-
fication at a given node, the classification accuracy is imp-
roved. Also, the dimensionality problem is not as severe as
in single layer classifiers which use more features at one
time to perform classification.
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2. Comparison sequence

The algorithm provides a natural and efficient knowledge-
dependent order to the classification process, thus suggesting
an information-based clagsification strategy without involving
human biases.

3. Information accumulation during learning

While builading the hierarchy (learning phase), important
class/group characteristics can be stored at each node which
can be efficiently utilized by the classification process.

4. Reduction in size of the problem

By hierarchical organization of classes and features a multi-
class problem is reduced into a hierarchy of two-class prob-
lems with only one single feature determining the membership
of a pattern. The membership assignment can be done by a
simple binary decision without using a pattern classification
algorithm.

5. Natural Grouping of classes

The algorithm provides a natural grouping of classes with the
least amount of system designers’ biases. Finer segregation
of classes is followed as one moves down the hierarchical
structure.

6. Reduction in computational complexity/cost

Since he decision process is organized hierarchically, the
reduction in complexity and subsequent gain in processing
efficiency is quite obvious.

5.8 Failure Control

The failure control mechanism is an additional pattern classi-
fication scheme and uses the decision theoretic algorithms of
the discrimination system in the sense of a single layer clas-
sifier. It has been developed to handle the failures of the

discrimination system.
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The discrimination system may fail at any intermediate node of
PAH. In such case the Failure control scheme attempts to
classify the unknown pattern one more time using the same
parent classifier but against all classes above the PAH-node
in question. The Failure control system learns its decision
making capability through a supervised learning scheme and
uses an unabridged feature set to performs the classification.
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Chapter 6
Discrimination Subaystem
6.1 Introduction

Discrimination Subsystem is the last major component develop-
ed in this research. 1Its function is to classify a pattern
utilizing stored knowledge. To perform this task it uses a
number of algorithms. To improve the recognition performance
a hierarchical classification scheme, called PAH-classifier
based on the PAH concept is introduced. The PAH-classifier
primarily dichotomizes the classification process using
variable feature sets and allows to train each node for a
suitable classifier including the one introduced in this
research. In this chapter, different classification methods
are reviewed and categorized on the basis of their underlying
operating principles. Several parametric and nonparametric
classification methods are developed. A number of data depen-
dent rules based on empirical knowledge have been designed for
automatic selection of an appropriate classification algo-
rithm. The expert, however, has the option to override the
choices made by the system.

6.2 Discrimination Subsystem

The last major component of the system is the Discrimination
subsystem. The decision making process that the discrimi-
nation system uses can be formally stated as follows:

Let X = [X,,%X,, ..., X,]7T be an unknown partern vector of n
characteristic measurements (features), and let w = (w,, w,,

., wy) be the set of N classes. Based on the characteristic
measurement values x’s, a decision making process either
assigns the unknown pattern to one of the known classes (w,,w,,
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., wy) or rejects it. The decision making process can be
developed in a number of ways. We structur=d several commonly
used algorithms and developed a procedural scheme to select an
appropriate algorithm based on characteristics of the data,
nature of the problem, and the performance objectives of the
expert/user. In addition we developed a new classification
algorithm, called PAH-classifier that can use any of the

existing algorithms.
6.3 Classification Methodologies

The development of a good decision making process in the sense
of minimum classification error has been one of the recurring
topics of research in the field of pattern recognition.
Methods from various theoretical and applied fields, such as
mathematics, statistics, theory of formal languages, graph
theory, heuristics, etc., have been explored and applied to

solve pattern classification problems.

The selection of a classification method depends on the domain
of an application, objectives of the designer, size cf the
problem and the types of features, numerical or structural,
extracted from the pattern. For example, if the extracted
features represent structural properties, and the application
at hand requires both the description and classification, then
the syntactic classification scheme, discussed in the forth-
coming sections, appears to be a reasonable choice. However,
when only discrimination between classes is the objective,
pure numeric approaches are emphasized; although in some
situations very poor performance is reported [FUKS-82]. Many
different classification approaches have been reported in the
PR literature. These approaches can be loosely placed in four
categories, namely, decision-theoretic, information theoretic,
syntactic, and graph-theoretic. These approaches are briefly
reviewed in the sections to follow.
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Although these methods are applicable to ar.. general types of
patterns, the aim of this review and the objectives behind the
development of new methods are: 1) to highlight their applic-
ability to the signal classification problems, 2) to justify
the need for a classification scheme which should consider the
knowledge parameters according to their discrimination power,
3) to select a classifier that produces the best training
results, and, 4) to justify the need for a classification
scheme which should partition the problem space to improve the
performance and perhaps may update the knowledge base (adapt-

ive learning) without interfering the decision making process.
6.3.1 Decision Theoretic Approaches

The development of decision-theoretic models for pattern
classification has been a major subject of research [FUKU-90].
Two prominent approaches of modeling have emerged as a result
of these efforts, parametric and non-parametric approaches.
Several methods in each of the categories were developed and
their performances were tested on patterns from a large
variety of applications [COHE-86b,HAYD-84, SIDD-91c]. These
methods may be distinguished from each other on the basis of
their underlying assumptions.

The basic concepts involved in the development of different
forms of decision functions and the salient characteristics of
the parametric and non-parametric methods are briefly reviewed
in the following sections. The classification algorithms used
by the Discrimination subsystem are primarily from this class
of approaches.

6.3.1.1 Parametric Approaches

Parametric classification methods which are also known as pro-
babilistic classification methods refer to the development of
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statistically defined discriminant functions in which the
underlying probability density functions arr assumed known or
may be evaluated from the given data. The most commonly used
such assumption is the density function given by normal dist-
ribution. It then remains to simply estimate a set of parame-
ters which will then approximate the functional form of the
assumed distribution function for the pattern classes. One of
the main reasons for selecting normal statistics is the
relative ease with which analyses can be handled under such
assumptions. However, the parametric PR machine will only be
as useful as the validity of known (or estimated) underlying

class densities.

If the prototypes and unknowns do not conform to the assumed
statistics, the classification accuracy will suffer according-
ly as the underlying distrib:tion functions may not necessari-
ly reflect the distribution of the characteristic measurement
vectors obtained from the samples in the design set.

To implement these methods, each class, say, w, is associated
with a priori probability P(w;) and conditional density
P(X/wy), for j=1,2, ...,N. There are several ways one can
estimate a priori and conditional probabilities [DUDA-73,
NADL-93, SIDD-81, TOU-74]. Based on P(w,) and P(X/wl), the
function of a classifier is to test N statistical hypotheses
that an unknown pattern X belongs to the class w, by defining
a decision function D; (X). Bayes theorem is generally used
in defining such decision functions [NILS-65). Most commonly
used form of this decision function D;(X) is defined as:

Dy (X) = P(w) P(X/w,) ... 6.3.1

This classification procedure is also known as Bayes optimum
decision rule. Thus, using Bayes classification rule an
unknown pattern X is accepted as a member of the class w; if
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Dy (X) > Dy (X), for i,j=1,2, ..., N, and i = j.
6.3.1.2 Non-Parametric Approaches

Non-parametric approaches in statistical decision models are
often resorted to when underlying probability densities are
unknown or the data do not follow any of the known distribu-
tions. Thus if a priori knowledge of the problem does not
lend itself to a safe density assumption, a variety of non-
parametric procedures may be utilized to develop the discrimi-
nant functions necessary for classification. These are simple
and intuitive approaches and can be roughly categorized into
probability estimation methods, direct decision methods, tran-
sformation methods, and adaptive decision methods. Direct and
adaptive decision methods are the most commonly applied non-
parametric metheds and are dealt with in detail in the follow-
ing sections. Other methods are as follows. Probability
estimation methods require estimating the density functions
P(X/w;) from sample patterns. If these estimates are satis-
factory, they are substituted for the true densities in
designing the classifier. Another method in this area con-
sists of directly estimating a posteriori probability P(w;/X).
The latter method is closely related to direct decision
methods. The transformation methods primarily transform
feature space so that the parametric methods may be applied in
the transformed space.

6.3.1.2.1 Direct Decision Functions

These methods bypass the estimation of a posteric.si probabi-
lity and directly evaluate the decision function. The
decision function is usually assumed known or decided by the
designer. Nearest neighbor methods and minimum distance
classifiers are some of the popular methods among direct
decision methods. In general these methods work as follows.
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Let x(p) = {X,, ..., X;} be a set of p labeled samples, and
let X, is the k-th sample of x(p) and assume that it is near-
est to X. The nearest neighbor rule for classifying X is to
assign it the label associated with X,. The number of nearest
neighbors may be varied. When the decision is based on a
single nearest neighbor the method is called minimum distance
method, otherwise it is based on identity of the majority of
the nearest neighbors. The nearest neighbor rule and minimum
distance methods are suboptimal procedures; their use usually
leads to an error rate greater than the minimum possible, the

Bayes rate.
6.3.1.2.2 Adaptive Decision Functions

In adaptive methods it is usually assumed that forms of the
discriminant functions are known. The cthresholds used to
design the decision functions are deterministic and are
usually based on the values obtained from the design set. 1In
these methods a pattern classification problem is formulated

in terms of one or more discriminant functions.

Suppose that n cnaracteristic measurements X = [X,,X%,, ...,
x,]T represent a pattern in n-dimensional feature space. Then,
discriminant functions D;(X)’s associated with pattern classes
w,'s, for j=1,2,...,N, partition the measurement space into N
mutually exclusive reg..ons, where each region corresponds to
a particular pattern class. This is an ideal situation and it
may happen only when classes are distinctly apart. The
classification procedure using discriminant analysis is as

follows.

Given an unknown pattern X and the discriminant function Dy,
the classification process is to assign the unknown to class
wy, if D,(X) > D,(X), for i,j =1,2, ..., N, and i # j. To
classify N classes maximum N-1 discriminant functions would be
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required. Several functional forms of discriminant functions
have been proposed in the 1literature [DUDA-73,SCHA-92].
Commonly used forms are linear, piece-wise linear and polynom-

ial discriminant functions. A linear dis.riminant function
Dy(X) is a linear combination of feature elements, that is,

n
Dj (X) = Z ij . xk + Wjo « o0 6.3-2
k=1

where Wy = [wy,,W;;, ..., wy] is a weight vector estimated from
the design set of the j-th class and w;, is a constant. Several
parametric and nonparametric approaches to estimate these
weight vectors are described in Section 4.5. Linear discrimi-
nant functions have been used by Hay et al. [HAYD-84],
Siddiqui et al. [SIDD-88, SIDD-89al, and several others for
signal classification [COHE-86b,SETH-82].

Linear discriminant functions are relatively easy to imple-
ment. One of their major disadvantages is that they assume
that individual patterns are separated by neat and clean
class boundaries, which in general, is an unrealis‘'ic assump-
tion. To achieve the maximum separability, use of piecewise
linear discriminant function is usually suggested. In the
piecewise linear discriminant approach more than one weight
vector for each class is used. This approach is formally
described as follows.

Supvose that W,,W,, ..., Wy, are the N sets of weight vectors
associated with N classes (w,, w,, ..., ), respectively, and
that the weight vectors in a set W; are denoted as wf, for k =
1,2, ..., uy, where uy; is the number of weight vectors in the
set Wy. A piecewise linear discriminant function ig defined
as:

D. (X) = Max ( D;‘ ) ... 6.3.3

’ (1 sk s u)
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where D/* is the k-th discriminant function for the j-th class.

An alternate formulation to this approach considers N sets of
weight vectors W,,W,, ..., Wy as the set of reference vectors
from N classes (w,,w,, ..., w;) respectively, and the distance
d,* (X, W) between k-th reference vector of the j-th class
and the unknown pattern X is used to define the discriminant
function as follows:
D; (X) = MIN (df (x, W) ... 6.3.4
(1 sk sw)

The nearest neighbor method discussed in [COVE-67] is an
example of this approach. The application of this technique
in signal processing and its suitability in dealing with the
problems, such as, representative reference vector selection
(ANDE-73, ANDR-58] and optimum decision-making criterion can
be found in [DUDA-66, DEVI-82, NADL-93].

Another functional form which is termed as polynomial discri-
minant was developed to atiain maximum separability through
the nonlinear discriminant functions, especially when the
classes are not linearly separable. Generally, a polynomial

discriminant function is defined as:
n
D; (X) = ¥ wy . & (X) ... 6.3.5
j=1

where &; (X) is a function of the characteristic measurement

vector X.

Several methods based on orthogonal expansion, least square
approximation and stochastic approximation, etc., have been
suggested [MEIS-68,SPEC-67,ULLM-73] to obtain the functional
form of D;(X). The approaches presented above may perform
well for non-overlapping classes, however, in practice, it is
hardly the case. To deal with this problem other methods were
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investigated [DUDA-73, FUKU-90, SCHA-92], some of which are
presanted in the following sections.

6.3.2 Information - Theoretic Methods

Entropy is a statistical measure of uncertainty and can be
used to measure the intra-class dispersion and is given by:
H=-T, {(1lnp)} ... 6.3.6

where p is the probability density of the pattern populaticn,
and E, is the expectation operator with respect to P [TOU-74,
KOSK-92]. This concept can be used to design a pattern
clrssifier using features which minimize the entropy of the
pittern classes under consideration. The EDT classification
algorithm that we developed in Chapter 5 is a good example of
this concept.

6.3.3 Syntactic Approaches

In various pattern recognition applications, along with the
discrimination, the description of a pattern is also required.
The syntactic approaches were primarily developed to fulfil
these requirements. Considerable theoretical as well as
applied studies on this subject have been reported in PR
literature [ALI-77a, ALI-77b, FUKS-82, FUKS-86, KRAM-73, LINC-
86, NARA-69, YOUN-86, ZHAN-80]. 1In this approach a pattern is
viewed as complexes of primitive structural elements, usually
called primitives. The relationships among the primitives are
defined using syntactic rules. The primitive structural parts
are perceptually higher level objects than scalar numerical
measurements. In practice, structural approach involves a set
of independent processes: 1) identification and extraction of
primitives; 2) identification of relationship to be defined
among primitives; 3) recognition of allowable structures in
terms of the primitives; and, 4) the relationship among

structures. These processes are jointly used to design a
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syntactic classifier. The classifier is basically a syntax
analyzer that classifies an unknown pattern into one of the
known classes and provides an adequate description, implicitly
or explicitly, of the underlying pattern. A number of struct-
ural methods have been reported in [FUKS-82, LINC-86, PAVL-77,

SKOR-86] .
6.3.4 Other Decision Making Strategies

In addition to the techniques described in previous sections
there have been several other efforts which explore methods
from other areas such as graph theory and heuristics. No
clear boundaries exist between the graph-theoretic and heuris-
tic approaches except that heuristic approaches may either
apply ingenious ways to combine established PR methods or use
pure heuristic decision rules such as production rules to
capture the common sense decision making process whereas the
graph-theoretic approaches are based on well postulated axioms
from graph theory [FARI-83,KATS-69, NADL-93,SCHA-92, WATT-71] .

6.3.4.1 Graph Theoretic Approaches

Graph theory has been applied to classify patterns in many
different ways. These techniques differ from each other in
respect of pattern representation and decision making proce-
dures. Generally, patterns are represented as graphs with or
without attributes. In a graph representation without attri-
butes, the special points in a pattern, such as end points,
junction points etc., are considered as vertices and lines
joining these vertices are regarded as edges of a graph. On
the other hand, in a graph representation using attributes,
called attributed graph, rules are prescribed for assigning
attributes to each vertex or edge. The decision making

process used in this approach may be stated as follows:
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Let U, and U, be graphs constructed from an unknown pattern and
the reference pattern respectively. If U, is isomorphic to U,
then X is assigned to the r-th class. 1In case U, and U, are
attributed graphs and if there exists an isomorphism between
U, and U, such that the attributes of corresponding vertices
or edges differ only within a prescribed threshold, then X is
still assigned to the r-th class.

It is evident chat in order to establish the isomorphism
between two gruphs, vertices and edges needed to be compared
which is a time consuming task. A special form of graph known
as the decision tree may be used to minimize the classifica-
tion time. Decision trees are constructed using features
extracted from the training patterns. The features extracted
from an unknown pattern X are compared with the features
stored at each node of the decision tree. Depending upon the
comparison result of a randomly selected feature of an unknown
pattern at the root node, a path to an expected subclass is
selected. Once the expected class is established, the fea-
tures relevant to that subclass are tested and further
decision is made about the unknown pattern. The possible
decisions at each node include the correct classification of
an unknown pattern, return to root node, or move one level
up/down to a node for further processing.

This process continues until an unknown is either classified,
misclassified, or rejected as an invalid pattern. This
decision making process involves the search of the known
pattern. Thus, the design of a decision tree can affect the
classification speed. The optimal design of decision trees
has been an important topic of research ard several methods
have been proposed in [DATT-80, LIN-80, NADL-932, SCHA-92,
SWAI-77, WANG-84].



6.3.4.2 Heuristic Approaches

Heuristic approaches constitute either an adhoc solution or a
composite of several decision-theoretic approaches or syntac-
tic methods. Adhoc approaches usually apply AI methods in
designing the decision rules. One such approach uses produc-
tion rules to capture the common sense decision making process
[CHAS-88] . Another set of approaches combine statistical and/
or mathematical approaches with syntactic approaches [BLAC-74,
DUER-80] . S :.veral hybrid approaches combining decision-
theoretic and syntactic methods in different orders have been
proposed in the literature [FUKS-82,KANA-72,NADL-93,TSAI-80].

6.4 Trends in Decision Making Process

In general, the basic function of a decision making process is
application dependent. To apply these algorithms in a general
sense, however, it is required that every pattern recognition
system should, 1) incorporate the knowledge p.ovided by the
statistical (numerical) and structural characteristic measure-
ments, 2) be flexible in learning the variations in patterns,
and, 3) be able to classify large class (size) problems with-

out degrading the performance.

A solution to the first issue might help in developing a
system which can perform satisfactorily in real life appli-
cations. One sclution suggested by the researchers is the
combinations of structural and statistical approaches [KANA-
72, BLAC-74, TSAI-80, DUER-80]. The problem with these
approaches lies in both feature extraction and classification
since two different types of feature extraction schemes and
two different classification schemes would be required.
Another solution which has been emphasized throughout this
thesis and originally suggested by the author in an earlier
article [SIDD-87a) is the incorporation of the knowledge
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provided by the physical observations and expert knowledge.

A solution to the second issue is usually addressed by consi-
dering a large training set of sample patterns [FUKU-89]. It
is assumed that the sample patterns in a design set reflect
all possible wvariations. A priori knowledge obtained from
these samples is used in the form of weight vectors, probabi-
lity distribution parameters, grammars, prototypes, graphs or
decision rules, etc. A formal knowledge representation method
which allows update and organization of knowledge, without any
change in the decision logic, is required. It should be noted
that the decision making approaches based on syntax or deci-
sion trees need recrganization of decision making process for
every pattern not perceived during the training session of the
classifier. The knowledge organization and representation
schemes described in Chapters 2 through 4 present a formal
method for the elimination of some of the problems in classi-
fication methods discussed above.

The solution to the third problem is usually suggested by
using the decision trees [DATT-80,EAST-91, FUKU-75,QUIN-88].
These approaches perform the classification task which can be
implemented either, 1) by successive identification of a fea-
ture that could partition the pattern space; successive parti-
tions may not necessarily be unigque, or, 2) by successive
dichotomization of the pattern space. Both of these approach-
es are described in the following sections.

6.5 Classification (Search) Strategies

The classification or the class search strategies of the
existing pattern classification algorithms can be broadly
grouped into two categories, hierarchical or multi-layered and
non-hierarchical or single-layered. Most approaches discussed
in Section 6.3 above, use single layer strategies which class-
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ify a given set of patterns into a predetermined numhr .r of
classes in one step (layer). Such approaches have significant

drawbhacks.

Among numerous drawbacks, the significant ones are, 1) only
one of the possible combinations of pattern features is used
for the classification of all the classes, 2) the same clas-
sification strategy needed to be used for all unknown pat-
terns, 3) if rejection is to be incorporated, there is no way
to establish rejection against which class, 4) each unknown
sample is tested against all classes which may cause higher
rejection or misrecognition, 5) for large problems (in terms
of number of classes and number of features) such classifiers
tend to become computationally more complex and expensive with
proportionately degrading performance. All these factors lead
to a relatively high degree of inefficiency, misclassificat-
ion, and rejection and as such they are incapable oi providing
any reasonably general solution for a pattern classification

problem in a given domain.

In single-layer strategies, the use of only one feature subset
is inevitable and as a consequence some features which are
pertinent for discriminating between some classes are not
selected since chey may not be useful in discriminating other
classes, whereas a few other features which may be marginally
contributory over a large set of classes may get selected.
Therefore, this overall 'best feature set’ selected for
classifying input samples into classes over a probklem space
may not be the best features for discriminating between
specific groups or pair of classes. The problem turns even
more severe when there are a large number of classes, since a
larger feature set would be required for classification.
Another problem of using a large number of features is the
need for corresponding increase in the number of training and
testing samples so that, statistically speaking, the results
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obtained may still be reliable. Furthermore, some patterns
may not need all the features in order to arrive at correct
classification, but a single layer classifier measures these
features any way which usually decreases the efficiency.

On the other hand the hierarchical strategies, which have
recently become a useful decisior tool, usually reduce the
search space by partitioning the single-layered decision
making strategy into a hierarchy of decisions and as such, at
least, guarantee the efficiency in decision making. As des-
cribed in previous section these strategies can be implemented
in several possible ways. The most popular approach has been
the successive dichotomization of the pattern space through
successive identification of a feature or features that could
partition the pattern space; successive partiti ..; may not
necessarily be unique. For several reasons dis uissed below
this approach was not used in designing the search strategy of
the Discrimination system. Instead, we used the PAH concept
to partition the pattern space.

6.6 Hierarchical Decision Approaches

The graph theoretic methods and the methods based on tree are
some of the well known examples of hierarchical methods. A
number of examples of methods hased on this approach are des-
cribed in Section 6.3.4.1. A majority of these approaches are
based on hierarchically selecting features and then using a
decisicn function to determine which class or classes can be
correctly recognized. The problem associated with these tech-
niques is the large size of the tree and multiple paths for
the recognition of the same class. Another problem is that
successive partitions may not necessarily be unique. The
hierarchical classification scheme developed for the Discrimi-
nation system not only sclves most of the problems associated
with single layered schemes but also those associated with
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traditional hierarchical schemes. To the best of our know-
ledge, there is no hierarchical technigue present which is
capable of using more than one classifier or feature set at
different nodes and layers of the tree and offers a unique
classification path for each class. Furthermore, the tech-
nique is more realistic and practical as it can handle a large
feature set and a fairly large number of classes without

degrading the perfc_mance.
6.6.1 The PAH - Classifier
The PAH-classifier is a tree classifier and consists of a root

node, a number of non-terminal nodes and a number of terminal
nodes. Figure 6.1 illustrates a hierarchical organization of

-Mmﬂm Ohmuuo

Fig. 6.1: PAH Classifier Design.

161



the classes which is the basic information utilized by the
PAH-classifier. The nodes containing the information enclosed
in braces represent a group (cluster) of classes. The nodes
with bare numbers, 1, 2, ..., 7, representing identities of
the classes, are the terminal nodes whereas the top node,
having the entire set of clasces, in braces, into which a
sample could possibly be classified, is the root. A non-
terminal node has both ascendant and descendant nodes, and as
such represents an intermediate decision. The immediate
descendant nodes of a non-terminal node represents the out-
comes of an intermediate decision. A terminal node corres-
ponds to a terminal decision, i.e., the decision-making proce-
dure terminates and an unknown being classified at this stage
is assigned the label of the corresponding class of the node.

At each node, in fact, any single-layered classifier can be
used, which could either be the same for the entire tree orxr
different for different nodes. Thus a tree classifier, using
the appropriate features and a selected ncdal classifier
classifies an unknown by starting the unknown sample at the
root and traversing a path of the tree, where each non-
terminal node encountered invokes the nodal classifier and
decides the subsequent path wuntil the unknown ends at a
terminal node, whose identity is the label assigned to the
unknown sample.

6.6.2 Design of the PAH-Classifier

The PAH-classifier may be considered as consisting of five
components, 1) a hierarchical ordering of the pattern classes,
2) the number of features used at each non-terminal node, 3)
selection of features for corresponding classes at each non-
terminal node, 4) the classifier to be used at each non-
terminal node, and S5) the training of every node for respect-

ive nodal classifier.
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The first step is accomplished by using hierarchical cluster-
ing algorithms and has already been described in Chapter 3.
This step also determines the number of samples to be used at
each node. Based on the tree structure obtain=d in Step 1,
the number of features to be used at each internal node can be
determined using theoretical rules described in Chapter 4 (see
Section 4.2.1). This solves the second step. The third step
is carried out using either the Fisher ranking algorithm or
the algorithm proposed in (SIDD-90a]. Both of these algo-
rithms are described in Chapter 4 (see Sections 4.3 and 4.4).
The choice of the classification algorithm at the fourth step
is based on the problem specifications which can be estab-
lished by applying the rules described in Section 6.9, how-
ever, the classification procedure, in general, is described
below. The fifth step requires one to select appropriate size
of the training set to justify the practicality of the system
and this has already been discussed in Chapter 3. Additional
training issues and algorithms are already described in
Chapter 5.

The mathematical formulation of the PAH classification proce-
dure is as follows. Assume that D is the optimal decision
function, with equal a priori probabilities (and a zero-one
loss function) for testing class (group) pair G;, G;, at each
internal node and Q is the decision of D, for all

i,3 = 1, ..., 2N-1, and i # j, we have,
Q = D (G, Gy) ... 6.6.1

with
G; if ry =271

Gy otherwise

where r;; is the nodal classifier-dependent decision criterion
and 7 is the corresponding threshold evaluated on the design
set. With Q and D defined above, the PAH classification pro-
cedure can be defined in recursive form:
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Qi = D (Gi' Qi-l) for i=2, v ey N . s o 6.6.3

with Q, = G,,

where N is the number of classes. The recursive formula of Q
starts with Q,; and Qy is the final decision which determines
to which class the urknown sample uelongs.

6.6.3 Computational Complexity

Each of the steps of the PAH-classifier discussed above invol-
ves its own level of complexity. The complexity of hierarchi-
cal ordering depends on the number of pattern classes and the
number of samples in each class; how the tree is built,
bottom-up or top-dow-.; and also on the number of features and
the procedure used for ordering the classes. The second
function that adds on to the complexity of the classifier is
the training of the system. This factor is primarily based on
the number of features, feature weighing mechanism, and the
kind of classifier used at each non-terminal node of the tree.
Finally, the classification of an unknown involves additional
complexity which is based on the size of the path the process
has to traverse in reaching a leaf-node. Thus, the computa-
tional complexity of a PAH-classifier, i.e., C(PAH) will be:

C(PAH) = C {Oord (PAH)} + C {Train (PAH)} +

; lC {Class (node)} ... 6.6.4

i=1
where C {Ord (PAH)} is the amount of complexity involved in
ordering the initial pattern association hierarchy, C {Train
(PAH) } is the complexity involved in training the classifier,
and C {Class (node)} is the amount of complexity of the
classifier selected at a node. The complexity C {Ord (PAH)},
for example, for a bottom-up tree building process would
require T, computations.
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N
Tb = Zi (i - l)/?.. +Cf o o0 6.6.5
1=

= (N (N -1) (N -2)}/6 + C

In above the first term on the right hand side gives the
number of similarity indices the clustering method, f would
compute to organize N pattern classes whereas C, is the comp-
l2xity of the clustering method, £ itself. Assuming that
there are n features in a pattern vector, the centroid
clustering procedure just using Euclidean distance would
require n multiplications and n additions, i.e.,

C, = O (n) ... 6.6.6

The complexity of the classification process depends on the
shape of the pattern association hierarchy, the association
may generate a balanced tree or a skewed one. If N is the
number of classes, then PAH-classifier makes at most N-1
comparisons (classifications) for a successful search for a
pattern class and N-1 comparisons for an unsuccessful search.
In other words the time for a successful search or for an
unsuccessful search is close to O(n). In the best case for
both a successful search and for an unsuccessful search number
of comparisons is one. To determine the average behavior we
need to look more closely at the PAH tree, equating its size
to the number of element comparisons in the algorithm. The
distance of a node from the root is one less than its level.
The internal path length, I, is the sum of the distances of
all internal nodes from the root. The external path length,
E, is defined analogously as the sum of the distances of all
external nodes from the root. It is easy to show by induction
that for any binary tree with g internal nodes, and path

lengths E and I, the quantities are related by the formula,

E =1+ 2q ... 6.6.7
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It turns out that there is a simple relationship between E, I
and the average number of comparisons in a binary tree. Let
S(q) be the average number of comparisons in a successful
search and U(q) the average number of comparisons in an un-
successful search. The number of comparisons needed to clas-
sify at an internal node is one more than the distance of this

node from the root. Hence,
S(gq) =1 + I/q ... 6.6.8

The number of comparisons on any path from the root to an
external node is equal to the distance between the root and
the external node. Since every binary tree with g internal
nodes has g+1 external nodes, it follows that:

Ulq) = E/(g+l) ... 6.6.9

Using these formulas for E, S(q), and U(g) we find that,

S(g) = (1 + 1/q) Ulg) - 1 ... 6.6.10

The minimum value of S(q) and U(q) is achieved by an algorithm
whose binary decision tree has minimum external and internal
path length. This minimum is achieved by the binary tree
whose external nodes are o. adjacent levels.

It follows that E is proportional to q log q. Using this in
the preceding formulas, we conclude that S(q) and U(g) are
both proportional to log q. Therefore, the complexity of the
classification process for traversing the PAH-tree is appro-
ximately proportional to log g. However, the complexity of an
algorithm in branching a pattern to left or right of the tree
depends upon the classification algorithm used at various
nodes. As described earlier any classification algorithm can
be used at each non-terminal node of the PAH-tree. The
complexity of various methods used in this thesis for classi-
fying a pattern for an N pattern class problem is given in
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Table 6.1. 1In the table A;’s denote the approximate average
complexity of the corresponding method for evaluating the
decision function. 1In these computations a single pattern for
each of the reference class is assumed, however, for KNN
method p; samples for each of the N classes are considered.

Table 6.1

Complexity of Unweighed Pattern Classifiers

Method Complexity

| Classifier Comments

DL e e VB e PR e T D TE TS S en T T Em e S Rk G e G ey e e e e T TR YA MR W U B W W G e e R e S A6 e mm v Y e e e s on vw e

MDC NA, + N/2 A, is the complexity of the decision
criterion used; for e.g., for Euclidean
[ distance it is equal to O(n).
KNN | N.p; A + A, is the complexity of evaluating
| O (n-k) the neighborhood; for e.g., for Euclidean

| distance it is equal to O(n).

LDC NA, + n A, is the complexity of evaluating
the linear discriminant function; for
e.g., using the pooled covariance n+l
coefficients of the function require O(n)
computations.

QDC NA, + On? A, is the complexity of evaluating
the quadratic discriminant function; for
e.g., using the individual class covaria-
nces n+l coefficients of the function
| require O (n?) computations.

BYC NA; + Pg A; is the complexity of Bayesian
classifier, if log probabilities are
used it is equal to O(n). P, is addi-
tional one time cost of evaluating the a
posteriori probabilities and approximate-
ly requires O(n?) computations.
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6.6.4 Merits of the PAH - Clasgssifier

The five steps of the PAH-classifier bring about several per-
formance advantages, the important ones are described below:

1. Classification Accuracy

Since any number of features can be used at a non-terminal
node; by using only features that are pertinent for classifi-
cation at a given layer, the classification accuracy will be
improved. Also, since a small number of features are used at
one stage, the dimensionality of the problem is not as severe
as in single layer classifiers which use more features at one
time to perform classification.

2. Natural sequence of comparison

It provides a natural class-dependent order to the classifica-
tion process, thus suggesting a problem-based classification
strategy.

3. Information accumulation during learning

While building the hierarchy (learning phase), important class
or group characteristics can be stored at each node which can
be efficiently utilized by the nodal classifier and thus supp-
lementing the classification process and pertinent information
collectiocn with ease.

4. Reduction in size of the problem

By hierarchical organization of classes and features a multi-
class problem is reduced into a hierarchy of two-class prob-
lems. A two-class problem is much simpler problem and
generally does not require a complex classifier or a large
feature set. Thus the selection of an appropriate classifi-
cation algorithm and the locally optimal feature subset at
every node is realistically possible.

5. Natural Grouping of classes

The algorithm provides a natural grouping of classes with the
least amount of system designers’ biases. Finer segregation
of classes is followed as one moves down the hierarchical

structure.
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6. Reduction in computational complexity/cost

Since the decision process is organized hierarchically, the
reduction in complexity and subsea nt gain in processing
efficiency is quite obvious.

6.7 Nodal Classifiers

The decision-theoretic type of pattern classifiers were used
at different nodes of the PAH-tree to meet a wide range of
decision objectives. The following classifiers represent

linear, parametric, and non-parametric approaches:

Empirical Bayesian classifier

K-nearest neighbor classifier

Minimum distance classifier

Linear discriminant function classifier
Quadratic discriminant function classifierr

The basic principles underlying these methods, in general,
have been discussed earlier in this chapter. 1In the following
sections the methodology used to develop these methods is
discussed.

6.7.1 Empirical Bayesian classifier
Empirically a Bayesian classifier could be designed using a

variety of approaches for the estimation of probabilities. To
design a Bayesian classifier assume that:

P(r) = a priori probability of input pattern belonging to a
class r
P(X) = probability of input pattern being the particular

pattern X
P(X|r)= conditional probability of the input pattern being the

particular pattern X, given that it belongs to class
r
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P(r|X)= conditional probability of the input pattern belong-
ing to class r, given that it is the particular

pattern X.

To minimize the probability of misrecognition, an unknown
pattern X should be assigned to class s such that,

P(s]X) > P(r|X) for all r, and r # s.
According to the Bayesian rule,
{ P(s) P(X]|s) / P(X) } > { P(r) P(X|r) / P(X) }

Since P(X) is independent of recognition class, it can be
omitted, thus,

P(s) P(X|s) > P(r) P(X|r) for all r, and r = s.

The assumption of statistical independence of features leads
to a practical method of estimating P(X|r). If there are n
features in each pattern, P(X|r) can be expressed as:
n
P(X|r)= [T Plxy {x) ... 6.7.1
i=1
Each P(x; |r) can be estimated individually, and the maximum

likelihood classification rule can be expressed as:

n n
P(s) J] P(x; |s) > P(x) [] P(x; |r) c.. 6.7.2
i=1 i=1

for all r, and r # s.

For further simplification, we assume that a priori probabi-

lities of all pattern classes are equal, then we have:
n n
T P(x; sy > ] Plx |x) ... 6.7.3

1=1 i=1
for all r, and r = s.

Using monotonic function of the above, we have:

n
og P(xy |s) > Y log Pix; |r) ... 6.7.4
i=1

B3

1
iy
for all r, and r = s.
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The expression 6.7.4 is a general rule and can be approximated
in several possible ways. We approximated the distribution of
P(x; |r) by an empirical method which required a training set
of patterns for each class.

Let x;, denote the i-th feature of a member in class r. Also
assume that the value of x;, varies in the range of v,, which
can be split into b non-overlapping regions of variable sizes.
Determine the number of samples in each region. Using the
labeled patterns of the design set a training matrix MAT was
computed, each element of which is given by:

MAT (ijr) = log P (x'y= vy | x) ... 6.7.5

where x>y is the j-th region of feature x;, with 1 s j s b,

1 <1 s n, and class r. Therefore,
b
P(x; | ¥) =3 log P (x5 | r) ... 6.7.6
j=1

From the training matrix, log P(X | r) can be computed for any

given feature vector X = (X,, X, ..., X,]T whose value is,
say, vy, vy, R ' P=suming class conditional
independence:

n

log P (X | r) = ¥ log P (x5 | x)
i=1
n
= ¥ MAT (ij, x) e.. 6.7.7
i=1

Using this method, log P (X | r) was estimated for all the
pattern samples in the design set. Substituting the
expression 6.7.7 in 6.7.4 empirical Bayesian classification
rule is obtained. The probability for any unknown belonging
to a particular class can be estimated simply by adding the
log probabilities of feature x, having certain value v,. Using
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this rule X is assigned to class s such that

n n
Z MAT (ij‘_S) > Z MAT (ijir) ... 6.7.8
i=1 i=1

for i,j =1, ..., N, and 1 # j.

6.7.2 K-Nearest Neighbor Classifier

The K-Nearest Neighbor (KNN) classification is a standard
method and is especially marked out by its simplicity

[COVE;I67, MEIS-72]. Let x(p,) = {X;, ..., X,} be a set of
P, = 2 p; labeled samples, where p, is the number of samples
i=1

in class i and that there are N pattern classes. Let also
that X, (a member of x(p,)) be the sample nearest to X. The
nearest neighbor rule for classifying X is to assign it the
label associated with X,. In order to find the nearest
neighbors of the unknown it is necessary to compute the
distances between X znd all other samples of the design set.

The number of neighbors which are considered for classifica-
tion is usually denoted by K. When K is greater than one a
voting scheme (majority rule) is applied to determine the
class identity of the unknown. Formally we define a KNN clas-
sification rule which assigns an unknown pattern X to the
class of its majority of K nearest neighbor:, i.e.,
K
D (¢,X) = Min { D (Cp,X) } ve. 6.7.9
1=1
for m =1, ..., N
where D is any distance measure definable over the pattern
space. Different distance measuring schemes are already des-
cribed in Chapter 3. We introduced a reject option. Under
this mode of operation, the classification decision is made
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when one class C; receives a number of votes which is at least
equal to the qualifying majority level 6,, otherwise the pat-
tern is rejected.

The KNN-method does not require linearly separable classes and
no training is necessary because the recognition performance
is not dependent on the training set. New patterns may be
added to the data set without difficulties. The main dis-
advantage of the original KNN-method is the fact that no data
compression is possible; all pattern vectors must be stored
and many computations are necessary to find the nearest neigh-
bor. The nearest neighbor rule is a suboptimal procedure; its
use will usually lead to an error rate greater than the mini-
mum possible, the Bayes rate.

6.7.3 Minimum Distance Classifier

Applying the assumption of statistical independence, the
probability P(X|r) can also be estimated from vector X and

parameters M, = [M,, M,, ..., M,]", where the M, 's are the
estimates of the i-th feature conditional probability P(x,
|r). Assuming that the patterns are normally distributed,
then:
exp [-1/2 (X-M)T s.* (X-M,)]
P(X|r) =
(2 1.l.)n/Z (=Sr=)1/2
6.7.10

Where X and M, are column vectors

M, = [ My, Mo, ... M,l"

X = [x11 Xar v ey xn]T

and S, is an estimate of the r-th class covariance matrix with
Sy as its elements. For i,j = 1,2, ..., n, S, is the
average of (x; - M,) (x, - M,)" over the whole training set.
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Thus, if the p patterns constituting the r-th class training

set are X,, X,, ..., X, and

Sey = 1/p § (Kng = Mg) (Xpy - My)T ... 6.7.11
h=1
S,y is a measure of correlation between x; and x, in patterns
belonging to the r-th class, S,* and |S,| denote the inverse
and determinant of S, respectively. Assuming that a priori
probabilities of classes are equal, equation 6.7.11 becomes:

log P(X]r) = 1/2 [-n log (2 w) - log (|S;]) - XT 8. X]

+1/2 [ 2 XT 81 M, - MT S, M,] ce. 6.7.12

In equation 6.7.12 above, -n/2 log (2w) is common to all
decision functions and can be omitted from maximization. If
the covariance matrices of all classes are equal, the terms
-log (|s,]) and -1/2 XT 8, X can also be omitted since they
are independent of r. The maximum likelihood decision rule

which is equivalent to Mahalanobis distance then becomes:
X" s,'M, - 0.5 MTS,;'M, > XS PM - 0.5MTS M
6.7.13

for every r, and r # s, also, for i,j = 1,2, ..., n,

Si3 = O unless i=j, and S,; = S,

which implies that the features are statistically independent,
and the statistical variability of all features is equal. 1In
this case S,* is scalar and can be omitted from expression

6.7.13. Thus, X will be assigned to the class for which:
XTM - 1/2 M M, ... 6.7.14

is maximum. This rule is equivalent to minimum Euclidean

rule.
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Considering every member in the training set as a represen-
tation point, the algorithm can determine the distance of an
unknown X from every pattern in the training set. The distan-
ces given by equations 6.7.12, through 6.7.14 can alsoc be used
to compute the distances for KNN-method. For an arbitrary
constant K, these equations can be used to find the K nearest
patterns to the unknown X. The pattern X is thus assigned to
the class to which the majority of the K nearest neighbors
belong.

6.7.4 Linear Discriminant Classifier

A discriminant function is a function d (X) which defines the
decision surface. This classifier is a linear combination of
feature element which defines a hyperplane to separate one
class of signals from another in the feature space. The condi-
tional probability for a given value of x; can be found by
assuming that the probability distribution is highly likely to
peak at the mean value m;,. This can be approximated by the

normal distribution:

P(x;lr) = exp [-(x; - my)? ] ... 6.7.15

Taking the logarithm,

log P (x,}r) = -{x%; - my)® = 2 x;, my - x* - m?

by

6.7.16
Then for n features,

o]

(2 me X, - m152 - x,,Z] >

=1

-

n
Z [ 2 m, X3 - mxrz - xxz]
i=1

Since x is independent of a recognition class, omitting this
from maximization, we have

175




n n
TOXg Wig o+ Wog > ) Xy W, 4 W, ... 6.7.18
i=1 i=1
n
where wy; =2 my, and w, = 3 - my?

i=1
The maximum likelihood rule has been reduced to a set of
linear functions of the features for each class k.
C(X)=Wey Xn + o0e + Wiy X; + o0 + Wp Xo + Wy Xy + W
.. 6.7.19
such that the pattern X is said to belong to class s if
Gy, (X) > G, (X) for all r, and r # s ... 6.7.20

and this set of linear functions G are known as linear
discriminant functions.

6.7.5 Quadratic Discriminant Classifier

A simpler approach is to ignore the problem of estimating the
class densities, and concentrate on the problem of estimating
the decision surfaces. We may express the discriminant

function for class w; as:
p
gy (X) = 3 gy (X) ... 6.7.21
j=1

where g,y (X) is the discriminant function associated with the
j~th sample of class i.

The Mahalanobis distance of sample X; from class i is given
by:
g«.j (X) = (Xj - Mi)T Si-l (XJ - Mg)

The following nonlinear decision rule was used to design the
pattern classifier that discriminates between the classes.
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The decision rule employed is called the Quadratic Discrimi-
nant Classifier (QDC). The QUC classifier is preferred when
the pattern observations either lack the information or it is
required to provide data for the loss matrix and a priori
probabilities required for minimizing the Bayes risk. This
classification scheme implements a quadratic decision boundary
to separate the pattern classes. Let X be a sample pattern.
Also, let N be the total number of classes. Let M, and S; be
the mean vector and covariance matrix for class i, i=1, .. ,
N. The QDC rule with the assumption of multivariate normal
distributions, the QDC assigns sample X to class k, if,

(x - M)T s;7t (X - M) ce. 6.7.22

is minimum for i = k.

The expression 6.7.22 is biased by a constant e which is
chosen such that the number of samples misclassified in the
design set is minimized, thus 6.7.21 can be written as:

d? = (X - M)T s (X - M) + e ... 6.7.23

The decision rule 6.6.22 represents the general form of a
minimum distance classifier with distance metric d,> and also
could be interpreted as Bayes’ classifier or maximum likeli-
hood classifier with a Gaussian assumption of the distri-
bution of features. For Bayes classifier, e in 6.7.23 is
log (}s,]/18,)) - 2 1log (P (w,) / P (w,)). For maximum likeli-
hood classifier, e in 6.7.23 is log (|S,}/1!S,]). In these
expressions P (w,) is the a priori probability of class w,, and
!S,] is the determinant of the covariance matrix S, of class
i, i=1,2.

The classifier is easy to implement since to determine unique-
ly, only M;, S, and P(w,) have to be determined. If the fea-
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tures are Gaussian distributed and S; = S, then QDC gives a
better classification accuracy than an LDC.

6.8 Classification Process

As described in Section 5.5, the unknown sample to be classi-
fied iterates from the root to the leaves in a hypothesis and
test fashion. It is first assigned to one of the groups at
the nodes in the first level and then proceeds to ‘he next
level. This procedure continues at each hierarchical layer of
the tree and the classification becomes finer and finer while
the sample goes higher and higher up to the leaves ol the
tree, until finally it arrives at one of the terminal nodes
containing only one designated class. Using one of the most
suitable pattern classification algorithms, the unknown input
is sequcntially classified according to the performance index
among groups at each level of the tree. This is done under
very strict range of decision parameters determined from the
design set. The classification process may in fact terminate
here, if the system is in the executive mode and the input
pattern closely agrees with the characteristics of the refer-
ence pattern. In case the discrimination system fails the
control is passed over to the Failure Control system where one
final attempt is made to classify the unknown. If the Failure
Control system is unable to identify the unknown, it may
either be rejected or the controi is handed over to the expert
depending upon the mode of operation. The expert then can
change a number of parameters in an attempt to classify the

event.

The discrimination system includes two basic types of classi-
fiers, parametric and nonparametric classification algorithms.
Among parametric classifiers the Bayesian classifier (BYC),
Linear discriminant classifier (LDC), and quadratic discrimi-

nant classifier (QDC) are incl'ded. Minimum distance classi-
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fier (MDC) and K-nearest neighbor (KNN) were selected as non-
parametric classifiers. For each of the five algorithms the
system/user has the option of selecting three different deci-
sion (similarity measure) criteria. Based on the nature of
the design data set or the user/expert choice, the system at
every non-terminal node selects a suitable feature set and an
appropriate classification algorithm while traversing
(inferencing) through the knowledge tree.

6.9 Parametric Selection of a Classifier

The choice of a classification procedure best suited to a
specific problem is influenced by four factors of practical
interest. First of these is the factor of imprecision of the
design data where simply because of the testing conditions,
the test equipment, or the test object itself, we are
constrained to accept a given vector representation of the

physical world. These issues have been addressed in Chapter 2.

The second factor is the number of dimensions of the vector
space. Although it is within our power to choose whatever we
think is useful information, the exact kind and number of
different features of patterns we must describe in order to
gain a complete characterization is beyond the capabilities of
any machine. These questions, to the extent of practicality,
are answered in Chapter 3. The IRS system provides wide
choices of features that may be generated and does, for the
purpose of discrimination between classes, sufficiently repre-
sent all classes. From the chosen features the system or the

user can select the optimal features.

Once the dimensions of the pattern space are chosen, the third
factor is to select a number of representative samples for
each class. The exact number of samples is not significant,
although different classification algorithms are influenced to
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different extent by the sample size on which they operate.
More accurate estimates of the required sample size can be
made by statistical methods, here, however, only practical,

"rule of thumb" is considered.

Generally speaking, the number of samples required by the
decision procedures is related to the number of undetermined
coefficients that must be established by the learning process.
Linear discriminant classifier requires the smallest number of
given samples, since only lower order statistics are needed to
establish the decision rules. Decision rules that use various
distance measures must estimate covariance matrices with a
corresponding increase of the required sample size. From a
mathematical point of view, a sample size several times the
number of dimensions of the space is desirable. The number of
samples on which the recognition is learned should exceed

(n+pCp), where n is the number of dimensions and p is the

degree of the polynomial (decision function).

After the selection of the vector space and the sample space,
the fourth factor is to determine the method of classification
to be employed. 1In the solution of practical physical prob-
lems this choice can be made relatively easily, for physical
arguments can often be advanced in support of the adequacy of
one procedure or another. This simplest solution is always
the most desirable one, since it is usually the one that can
be implemented most readily. Experimental evidence may indi-
cate that members of a class lie close to one another and
classes are well separated. If this is the case, LDC will, in
general result in decision making with a sufficiently low
error probability. If classes are believed to consist of
subclasses, and groups are believed to possess different
properties, it is best not to consider the employment of any
of the linear methods. If the number of dimensions is low,
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nonlinear methods are promising. If little or nothing is known
about the data, the unsupervised or adaptive method, is parti-
cularly useful. With it, an intuitive notion of the nature of
the probability density of a given class can be gained. This
choice in most instances is difficult and can be made only
intuitively by experts.

To select a classifier, theoretically one should seek the
answer to these questions: 1) Does the method create optimal
boundaries between clagses? 2) How does it resolve overlapping
boundaries? 3) How reliable and efficient the algorithm is?
and, 4) Whether the effectiveness of the algorithm in regards
to both complexity of the data and timeliness of the classi-
fier is important? Whichever the classification rules one
selects, it should produce as correct as possible classifi-
cation decisions, and it should be easy to apply.

By answering these questions we attempt to distinguish between
different methods. The general aim of supervised PR is to
develop rules for classification of samples of unknown origin,
on the basis of a design set with known classification which
have been characterized by a number of features. The success
of classification algorithm depends on whether the classifi-
cation rules are optimal for the problem at hand. Optimal
rules imply optimal class boundaries. If the variables used
for the classification are appropriately chosen, then objects
belonging to different classes are situated in separate
regions of the pattern space and the classification rules
correspond to boundaries of those regions. Optimal boundaries
can be obtained only if the distribution of the population in
pattern space is exactly known, and so is its parameters
[DERD-86] . Theoretically, then, optimal boundaries can be
nbtained only if each class is represented by an infinite
number of samples. In practice, population distribution and
its parameters are estimated from the samples of restricted
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size. It is imperative to remind the rules of sampling theory
in order to draw representative samples. Thus, one distinct-
ion between techniques can be made based on the information on
their underlying population distribution. The non-parametric
techniques make no assumptions on the population distribution
while parametric techniques do. The parametric techniques are
based on a well defined distribution. LDC and QDC, for
instance, are based on the assumption that the population
distributions are multivariate normally distributed. Conse-
quently they yield optimal boundaries only if the populations
are indeed normally distributed. The efficiency of parametric
techniques is greater than that of non-parametric techniques,
especially when small samples are used. If no such infor-
mation is available then non-parametric techniques should be
used. Deviations from these assumptions about the distri-

bution may result in boundaries far from optimal.

Often closely similar classes create overlapping regions and
it usually becomes impossible to find a combination of para-
meters that allow complete distribution, in such situations
piecewise LDC or QDC may be useful.

A third possible distinction between techniques can be deve-
loped on the basis of their degree of reliability. Algorithms
such as KNN and MDC can be considered deterministic in
character whereas modeling and BYC methods are probabilistic
methods. With a deterministic technique an object is classi-
fied in one and only one of the training classes and the
degree of reliability of this decision is not measured. In
probabilistic techniques, the boundaries of the classes

correspond to confidence limits defined on a statistical

basis.

The distinction based on effectiveness is concerned with the
timeliness of the decision. 1In certain situations the time

182




constraints are so absolute that even a correct classification
is of no use after a given time. For example, in a vision
system the robot must see (recognize) the object before it
moves its hands to pick up the object. Similarly, in medical
montoring systems the signals received from a terminally ill
patient must immediately be recognized to save his/her life.

The theoretical aspects pertaining to the selection of a
classifier can then be summarized in Table 6.2. Referring to
Section 3.4.4, similar to clusters, we considered the pattern
classes that are optimally compact in the sense of minimum
intra-class variations as homostats and the ones that are not
compact, as segregates. All the thoughts described above can
be structured into a set of meta rules shown in Table 6.3.
These rules, based on the characteristics of the data, would
guide the expert/user in selecting an appropriate classifi-

cation procedure.
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Table 6.2

Properties of Classification Algorithms

Method

Advantages

Disadvantages

- s om e e - . v - . P i e e S " e S % b Am m e W G @ T TR TN e R S AR M Gm e W S A ME SR A N M b S e

LDC

QDC

BYC

PAH-U*

PAH-V+

Distribution free,
Simple and fast, work
well if classes are
homostat.

Digtribution free,
Only assumption is high
correlations between
nearby features.

No training necessary.

Parameters can be inter-
preted in terms of main
effect and interactions.

No particular assumptions.

Only n parameters/class.
Good performance if dist-
ribution is normal.

Easy to implement and
carries the advantages of
the classifier used.

More reliable and robust.

Small amount of noise
can significantly lower
the performance.

Limited if classification
speed is important -
though could be modified.

Small/large n
Performance drops if
classes are segregates.

Small n or very large n.
Computationally expensive.

Assumes independent vari-
ables. Usual assumptions
of parametric methods.
Performance drops if data
deviates from assumption.

Carries the disadvantages
of the nodal classifier
used.

Difficult to implement
and carries the multiple
of disadvantages pertain-
ing to every classifier
used.

D . T I T R e T . T I I P

* PAH Classifier with same classifier at each node
+ PAH Classifier with different classifiers at each node
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Table 6.3

Set of rules used in the selection of Classification
Procedure and Feature Weighing Criterion

Is the number of pattern classes known?
(2. Yes, 3. Nol

Are the pattern class distributions known?
(4. Yes, 5. Nol

Classes are unknown; expert input is required.

3.1 Unsupervised learning is required.
/* The system does not support this situation as yet,
Exit . */

Use Parametric Classifier.

/* To identify a suitable parametric classifier, first
decide whether classes are homostats or segregates by
calling the procedure Structure. */

Structure
4.1 Enter the pattern classes in order.

4.2 Enter the number of samples in each class in the same
order.

4.3 /* processing by the system ¥*/

Arbitrarily pick 20% (minimum 2 classes) of pattern
classes and the systemwill read all samples belonging to
the pattern classes chosen, compute the mean and
variance.

intra-class variation: ' .
threshold:

structure end

Is the intra-class variation = threshold?
[6. Yes, 7. Noj

Can you estimate the distribution parameters?
(8. Yes, 9. No]

contd.

185




Table 6.3 (Contd.)

Set of rules used in the selection of Classification
Procedure and Feature Weighing Criterion

6.

10.

11.

12.

13.

Sample patterns in a class are segregates.

6.1 /* This step is determined automatically by evaluat-
ing the inter-class variations. If the inter-class vari-
ations are small; select either the QDC or the 3YC
method. */

Are the variations in the feature values significant?
[10: Yes, 11. No]

Sample patterns in a class may be homostats.

7.1 /* If the intra-class variations are < threshold,
select LDC. The system would show the inter-class
variations for the selected classes */

Can you call the pattern a homostat?
[12. Yes, 10. Nol

Go to Step 4
Use Non-parametric Methods.
/* To choose an appropriate method one basically has to

decide whether the pattern classes are homostats or
segregates */

call procedure Structure

Is the intra-class variation =z threshold?
[13. Yes, 14. No]

Select the QDC algorithm.
Go tc Rule 15

Select the BYC algorithm.
/* Apply the algorithm and exit */

Select the LDC algorithm.
Go to Rule 15

Select the KNN algorithm.
Go to Rule 15

contd.
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Table 6.3 (Contd.)

Set of rules used in the selection of Classification

Procedure and Feature Weighing Criterion

14.

Select the MDC algorithm.
Go to Rule 15

15. /* Classification algorithm has been selected, now select

le6.

17.

18.

the feature weighing criterion. */

Determine the appropriate weights of the features.
Do you want the variables to be weighted?
[16 Yes, 17. No]

Select the appropriate weight of features.
16.1 w, = 1 /* equal weight to all features */

16.2 w, = 1/0, /* if features have smaller intra-class
variations */

16.3 w, = s;/|m| /* Hsia weight [HSIA-81] */

N
16.4 w, ={ 1/ [s; ¥ 1/sy] } 2 /* Tou and Gonzalez weight
j=1 features */
16.5 w;, = s,;/o, /* 1f features have smaller intra-class

variations */

16.6 Wiy = {mi,j - mkk,j}z / {P 51,32."' Pk si,kz}
/* if features have smaller intra-class */

N-1 N

16.7 w, = 2[ )3 S wi:/N(N-l)) /* Tou and Gonzalez
j=1 features */

Go to Rule 18

Select the Classification Algorithm specified.
/* Apply the algorithm to classify the unknown and Exit.
*/

Select the algorithm specified in the descendent rule
along with the weight function.

/* Bpply the algorithm wusing the selected weight,
classify the unknown and Exit. */
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Chapter 7
Classification Experiments and Results

7.1 Introduction

The recognition methods we developed were put to practical use
to evaluate their performance on real-life data sets. The
data set signals were taken from non-destructive testing (NDT)
and non-invasive testing (NIT) generated from known/unknown
materials. These data sets will be referred to as NDT-data,
EEG signals or EEG-data, genetic cell data or CEL-data, and
petroleum oils (polynuclear aromatic hyd.ocarbons) data or
PNA-data. The algorithms constituting the system discussed in
previous chapters were implemented and several classification
experiments were conducted.

The experiments reported in this chapter include: 1) Classi-

fication of NDT data set with full (unabridged) and abridged
feature sets using the single layer classifiexrs, 2) Classifi-
cation of NDT data with optimal feature sets using single
layer classifiers, 3) Classification of NDT data with an
overall (global) optimal feature set and the same classifier
at each node of the PAH tree, 4) Classification of NDT data
with locally optimal feature sets and the same classifier at
each node of the PAH tree, 5) Classification of NDT data with
different nodal classifiers at each node of the PAH tree -
PAH-V classifier, 6) Repeating experiments conducted in 1 to
5 on EEG data (3 class problem), 7) Repeating some of these
experiments on PNA data (20 class problem), and, 8) Repeating
several of the experiments on CEL data (19 class problem).

Before we report any experiment, we recap the structure of the
methods so that the reader can visualize the complete picture

without flipping through the previous chapters.
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7.2 The Functional View of the Recognition Components

To demonstrate the feasibility of the concepts and the perfor-
mance of various algorithms presented in previous chapters a
working model of the components described was developed. As
described in Chapter 2 these components are composed of two
major subsystems, 1) Knowledge Acquisition, Representation,
and Organization (KARO) subsystem, and, 2) Inference Engine.
The building blocks and operational details of these compo-
nents are presented in previous chapters. We present here a
functional and operational overview of the system.

The KARO subsystem consists of three phases: namely, fact
gathering, knowlcedge base, and knowledge formalization and
organization. The fact gathering phase performs three main
tasks, 1) acquisition of input data (waveform signals), 2)
data preprocessing, and, 3) pattern measurements. Each of
these tasks further entails a series of operations. The pat-
tern measurements which have been referred to as analytical
features (or knowledge), constitute a major component of the
knowledge base. Other components of the knowledge base
include empirical knowledge and the meta knowledge regarding
the requisite problem domain. Meta knowledge comprises of, 1)
a set of rules constructed to represent statistical knowledge
present in a data set, 2) a set of procedures that an expert
may apply on physical observations, and 3) a set of empirical
parameters to monitor the classification process. The meta
knowledge is used to formulate an expert’s judgement and
objectives.

The next phase of the KARO is knowledge formalization and
organization. The knowledge was organized using a new concept
of 'pattern association hierarchy (PAH)’ developed in this
thesis. Analytical knowledge formalized as feature vectors,
takes advantage of the natural association that exists among
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pattern classes to build their association hierarchy and hence
the concept of PAH was introduced. The empirical and meta
knowledge pertaining to each set ¢f associated pattern classes
is organized in structures called knowledge frames. Each
knowledge frame comprises procedures and a list of decision

parameters described in Section 4.6.

A knowledge frame with appropriate node-dependent knowledge is
placed at each intermediate node of the PAH. The same pattern
association hierarchy is used by the Discrimination subsystem
(a component of the inference engine) to classify patterus
(see Section 3.5). The classification process is a two-tier
system and includes the Discrimination System and Cognition

System, which are described below.
7.2.1, The Function of The Discrimination Subsystem

The discrimination subsystem is a procedure-based pattern
classification system and uses several decision-theoretic
classification algorithms. These algorithms include two basic
types of pattern classifiers, parametric and non-parametric.
Among parametric classifiers, linear discriminant classifier
(LDC), quadratic discriminant classifier (QDC), and Bayesian
classifier (BYC) are developed, whereas minimum distance clas-
sifier (MDC) and K-nearest neighbor (KNN) were selected as
non-parametric classifiers. Each of these classifiers again
can select one among several decision criteria available, any
size of feature subset, and a weighing function among various
provided. Based on the nature of the design data set or the
user/expert choices the system at every non-terminal node can
select an appropriate classification algorithm while traver-
sing (inferencing) through the knowledge tree.

Each of the classification algorithm can function on a general
PR problem with 2 to 21 pattern classes, 2 to 100 samples in

190




a pattern class, and each class may have a variable number of

samples, and, 1 to 112 features in a pattern vector. Note
that these parametric values are merely the practical limits,
the algorithm itself does not care for such wvalues. These
algorithms are tested on various data sets using abridged
feature set (Feat-A), i.e., feature set selected by Successive
Feature Elimination Process, the Fisher ranked feature set
(Feat-F), and the features ranked by the pseudo-similarity
methcd, i.e., feature set Feat-S. The feature sets Feat-F and
Feat-S are selected after eliminating the poor performers.
Feat-F and Feat-S are sets of ranked features from which any
number of features can be selected.

The Discrimination Process

The decision process uses two types of classifiers - single
layer and hierarchical. A single layer classifier uses a
common feature set and evaluates a decision function through
all pattern classes simultaneously and selects the one giving
the highest value (discrimination). This is a well understood
phenomenon and questions about its merits have been raised in
the literature [FUKU-90] and at several places in this thesis,
it will not be discussed any further. However, to demonstrate
some practical insights several results using this kind of
search strategy are described in the sections to follow.

The PAH classifier is a hierarchical classifier. This, in
fact, is an inference tree and can, 1). use the same classi-
fier at each internal node of the tree, or 2). different
classifiers at different non-terminal nodes of the tree. Thus
to distinguish N classes N-1 different decision functions or
classifiers can be used. In the first case it will be called
PAH-U -- stands for PAH-Uniform, and for the latter case it
will be called PAH-V -- stands for PAH-Variable. Using any of
these classifiers, the unknown sample to be classified
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iterates from the root to the leaves in a hypothesis and test
fashion. It is first assigned to one of the groups at the
first lev:l, each of which contains several classes and then
to the next group at one of its child nodes in the second
level. This procedure continues at each hierarchical layer of
the tree and the classification becomes finer and finer as the
sample goes higher and higher up (towards the leaves) the
tree, until finally it arrives at one of the terminal nodes
containing only one original class whose label is assigned to

the unknown.
7.2.2 The Function of The Cognition Subsystem

The cognition system implements an information-theoretic algo-
rithm for pattern classification. It is an alternate classi-
fier and performs classification independe t of other classi-
fication algorithms. It uses the transformed analytical
features (pseudo-symbolic features). This algorithm, called
entropy-based decision tree (EDT) algorithm learns its classi-
fication capability by selecting one best feature at a time
based on its (feature) information content. The feature
selected is used to split the available patterns into two
groups. The prnocess is continued hierarchically until all
samples at a given node belong to the same pattern class. At
this point such node becomes a terminal node and the label of
the pattern class is assigned to this node and a search (clas-
sification) path is established for the pattern class. The
feature selection, hierarchical splitting and class labelling
process is continued until the entire design set is assigned
to some terminal node. Note that such decision tree organiza-
tion eliminates the need for any classification algorithm.

The tree so constructed is saved and later used for classi-
fication. To ciassify, the unknown entering from the root,
iterates through the tree and is assigned the label of a
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terminal node based on maximally matching its information
content.

7.2.3 The Function of The Failure Contrcl Subsystem

The failure control mechanism which also uses the decision
theoretic algorithms of the PAH-U and PAH-V classifiers is an
additional pattern classification system which has been deve-
loped to handle the failures of the PAH-U and PAH-V classi-
fiers. Both of these algorithms may fail at any intermediate
node of the hierarchy. In such case the Failure control
system attempts to classify the unknown pattern one more time
using the same parent classifier (in their traditional pers-
pective) but against all classes above the current PAH-node.
The Failure control system learns its decision-making cap-
ability through the scheme described earlier (see Chapter S)
and uses an overall optimal feature set determined by the
Fisher discriminant function of equation 4.4.1 to perform the

classification.

7.3 System’s Training

For every classification problem all the classifiers were
available at each non-terminal node of the PAH. However, the
classifier selected by the rules was tagged for a particular
node and the selected classifier was individually trained for
the classes already assigned (by the tree building process) to
that node, so that the system while classifying an unknown in
the expert mode simply selects the tagged classifier. Avail-
able to each node of the hierarchy is its optimal feature set
and other empirical knowledge components. The classifier and
the training information for each intermediate node is then
stored in the respective knowledge frames. The system can now
be used to characterize any set of input signals (in the
respective problem domain, of course). The following sections
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summarize the results obtained from the different classifi-

cation experiments.
7.4 Performance of the Recognition Components

The recognition and interpretation components were individual-
ly trained on four different data sets using several classifi-
cation algorithms. The implementation details of these algo-
rithms are described in following sections. With a few excep-
tions, the performance of the system on the training sets from
all four data sets was very impressive, ranging from 82.5% to
100% for a majority of pattern classes from various algo-
rithms. Hence these results are reported here only if we
found it necessary. However, the results on the testing sets
will be discussed in detail since they are indicative of per-
formance potentials of the methods in,a realistic environ-
ment. The performances of individual feature selection
schemes and classifiers are observed and several interesting
results are reported in sections to follow.

7.4.1 Implementation of MDC

The Minimum Distance Classifier (MDC) was the first classifier
we implemented using two different decision criteria - Eucli-
dean distance and Mahalanobis distance. The MDC classifier
with two decision criteria will be referred to as MDC-E and
MDC-M in the following discussion implying the MDC classifier
using Buclidean distance and the classifier using Mahalanobis
distance, respectively. Each of these classifiers can be
trained individually to function as a single-layer stand-alone
classifier. 1In addition, they are designed to function with
any given number of samples, feature sets and decision

criteria.
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These classifiers can also be used on one or more non-terminal
nodes of the PAH. A set of unique distance thresholds are
evaluated from the design set and placed at each decision node
of the tree. These thresholds were used to implement the
reject option on the PAH to eliminate further classification
process.

7.4.2 Implementation of KNN

The K-nearest neighbor (see Section 6.7.2) was implemented for
k=1, 3, 5. Euclidean distance with various weights, and
Mahalanobis distance were used to evaluate the neighborhood
criterion and the KNN classifier using each of the distances
will be referred to as KNN-E and KNN-M in the following
discussion. To improve the performance, k-nearest samples to
the unknown from each class were selected from which the final
k neighbors were examined. Since the Mahalanobis distance
involves heavy computations, we evaluated the distance from
four arbitrary samples and the mean of the concerned class
only.

7.4.3 Implementation of LDC

The linear discriminant classifier with discriminant function
given in equation €.7.19 was implemented. The coefficients of
the discriminant function were defined as:

c, = S M ... 7.4.1

where M, is the mean vector of the k-th group (class) and S is
the pooled variance-covariance matrix of the groups (classes).
To account for lack of equality in the covariance matrices
each component of the function can be weighed using one of the
weighing functions described in Section 4.5.
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As reported in Chapter 6 and for several other reasons
discussed in previous sections this classifier performs well
on homostat data only and one should not apply this scheme as
soon as the within-class variations exceed certain data-
dependent threshold.

7.4.4 Implementation of QDC

In fact, the computer program for Quadratic Discriminant
Classifier (QDC) was implemented by enhancing the program for
LDC. The program for QDC computes the discriminant different-
ly; instead of computing the pooled variance/covariance
matrix, individual group (class) covariance matrices were used
to compute the coefficients of the discriminant function. To
account for non-normality in data, we included the provision
to multiply each discriminant function by one of the several

weights described earlier.

The quadratic and linear discriminant classifiers are useful
for a wide range of distributions. LDC performs as well as
QDC unless there is a great difference in the covariance

matrices of different classes.
7.4.5 Implementation of BYC

The Bayesian classifier (BYC) was implemented using the algo-
rithm described in Section 6.7.1. As mentioned in that sec-
tion, the Bayes rule is optimal if minimum overall error of
classification is required. To achieve this objective we
carefully examined the feature variations both within classes
and between classes and estimated the posteriori class pro-
babilities using various ranges of features describing each
pattern class. For this purpose one needs a larger feature
set and a larger sample size. Since we did not have much
choice on the size of data, we decided to use a larger feature
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set. As such we used 62 features for the NDT data, i.e., the
features obtained after processing through the first two steps
of the Successive Elimination Process. For EEG data we had a
sufficient size of the data and as such the abridged set was
used to estimate the posteriori probabilities for this
problem.

7.4.6 Implementation of PAH

Various algorithms comprising the PAH classifier have been
described in Section 6.6. We implemented this classifier
using a composite of two procedures consisting of all those
algorithms. One procedure reads the appropriate tree cons-
tructed by one of the selected clustering procedures, and
computes and stores the empirical and statistical knowledge
pertaining to cluster of classes for every non-terminal node
of the tree in the form of an indexed sequential storage.
This knowledge is utilized by the classifier (tagged one, or
the one selected by the user) to recognize an unknown. The
other procedure is the driver which implements the two modes
of system’s operations, 1i.e., executive (expert), and
consultant (assistant) modes. The driver, in either of its
modes lets a pattern (known or unknown) run through the tree,
retrieving the appropriate knowledge and applying the user-
indicated nodal classifier or the tagged one to identify the

pattern in question. The decision of the classifier could
either be in favor of one of two groups (classes), or
rejecting both. In case of a favorable decision the

classification will continue to the subsequent node until a
terminal node is reached, whose identity becomes that of the
unknown. In case of rejection the Failure Control process is
invoked whose task is to make one more attempt to classify the
rejected pattern using the selected classifier and all the

classes above the current node.
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The classifier was implemented in two ways: PAH-U and PAH-V.
In PAH-U, ‘U’ stands for uniformity, implying that the same
classifier is used at each non-terminal node of the tree. 1If
different classifiers are used at various nodes, the classi-
fier is called as PAH-V, i.e., PAH Variable.

7.4.7 Implementation of EDT

Because of the size of the decision tree the Entropy-based
Discrimination Tree (EDT) algorithm (see Section 5.7) was
implemented on an AT&T 3B2 minicomputer. The algorithm
selects one feature at a time based on its capability to split
the entire design set into two groups. A specific range of a
feature is considered most capable if it has the maximum
entropy at the current node. The selected feature is assigned
to the node. At the next step a feature that brings maximum
reduction between entropies of an input group and a corres-
ponding output group is selected. The process is continued
until each path emanating from the root of the tree ends up
with zero entropy. In that case the node becomes a terminal
node, the label of the pattern class is assigned to it and the

prccess terminates.
7.5 Performance on NDT Data

Forty samples of NDT data were collected from acousto-
ultrasonic tests of each of 9 artificially induced defects in
a steel bar. The same number of samples were also collected
from a flawless bar. The characteristics of the data are
already described in Section 3.2.1 and the nomenclature of the
10 pattern classes is listed in Table 3.1. Since NDT data was
the most noisy data and had all sorts of problems (see Fig.
7.1) a PR designer can imagine, it was used as a test case for
developing all the components of the system. In addition, we
had most of the required information available including the
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raw signals. The complexity of this problem can be examined
by the amcunt of variation within different classes (see Fig.

7.1). The amount complexity of this problem can be examined
by the amount of variation within different classes (see Fig.
7.1). The amount of variation within different pattexrns of

the same class was in the order of 10®*. We stabilized the
variations by using the log transformation (see Section
3.2.2.2). The results obtained during different intermediary
steps, such as feature nomenclature, features selected at
different phases of "Successive Elimination Prccess", and
various pattern association hierarchies, i.e., PAH's cons-
tructed, have been reported in previous chapters. The pattern
classification experiments conducted on this data are reported

in this section.
7.5.1 Experiment - A: MDC

Initially, we used the unabridged feature set (Feat-U). The
performance of the classifier was very low, recognizing only
0% to 60% of samples for various classes giving an impression
that features might have been just a bunch of random numbers.
Upon using the abridged feature set Feat-A and ranked feature
sets Feat-F and Feat-S the performance was improved signifi-

cantly.

Using an overall best feature set (abridged) of 40 features,

Feat-A, that is the features obtained by applying the Succes-
sive Elimination Process, the classifiers MDC-E and MDC-M were
applied to all 10 classes simultaneously, the results of which
are shown in Table 7.5.Al1, and Table 7.5.A2 respectively.
These results were only slightly better giving a peak perfor-
mance of only 82.5% correct recognition with MDC-M classifier.
Major failure was encountered on the recognition of ‘small’
defect classes, particularly, small-medium and small-deep
classes. This observation can be interpreted as, ‘small
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defects far inside the material are difficult to identify’,
and for all practical purposes their misrecognition or
rejection may not be severe to cause any catastrophic loss.
However, (see Table 7.5.A2) only two defective patterns were
misclassified as non-defective and the no-defect class was
itself 90% correct which implies that the system is capable of
successfully discriminating, at least, between defects and
non-defects.

The above experiments were repeated using optimal feature
sets, Feat-F, and Feat-S, the results of which are shown in
Table 7.5.A3, and Table 7.5.A4. It appears that Fisher ranked
features were more effective than Pseudo-similarity ranked
features giving an overall performance of 70%. However, in
case of Feat-F we have to weigh each feature with a weight of
1/s;, i.e., scale the feature with the standard deviation of
feature i for the class comparing with, whereas the Feat-S was
weighed using 1/s,, i.e., scaling the feature with the overall
standard deviation of feature i. The first weight is compu-
tationally more expensive to evaluate than the latter one.
Another interesting observation to note is that the perfor-
mance of both feature sets Feat-F and Feat-S was comparable
for medium, large and no-defect classes, however, Feat-F was
more sensitive than Feat-S$ in recognizing ‘small defect’
classes.

A similar experiment was conducted using MDC-M classifier and
even better results were obtained (see Table 7.5.A5) suggest-
ing to use Mahalanobis distance instead of weighted Euclidean
for cases where the pattern classes are 'segregates’, i.e.,

have large within class variations.
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Table 7.5.A1

Classification Results on NDT Data using
Linear Organization of Pattern Classes
(MDC -~ Euclidean Distance)
(Feature Set: Feat-A = 40, wt=1/sd,)

Class output 1 2 3 4 5 6 7 8 9 10 Recog.

input s
1 12 1 4 3 60

2 8 4 3 3 2 40

3 1 2 10 1 3 3 50

4 1 2 2 10 1 3 1 50

5 3 1 1 11 1 3 §5

6 19 1 9s

7 1l 1 2 15 1 75

8 3 2 1l 13 1 65

9 1 1 18 80
10 i 1 1 1 16 80
Total Receg./No. Misrecog./ Av. Recog. 132 68 66

Table 7.5.A2

Classification Results on NDT Data using
Linear Organization of Pattern Classes
(MDC - Mahalanobis Distance)
(Feature Set: Feat-A = 40)

Class output 1 2 3 4 5 6 7 8 9 10 Recog.
input %
1 18 2 90
2 15 2 1 1 1 75
3 1 1 12 2 1l 1 2 60
4 3 1 2 13 1 65
5 2 1 1 16 80
6 20 100
7 1 1 18 90
8 1 1 1 17 85
9 1 1 18 90
10 2 18 90
Total Recog./No. Misrecog./ Av. Recog. 165 35 82.5
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Table 7.5.A3

Classification Results on NDT Data using
Linear Organization of Pattern Classes
(MDC - Euclidean Distance)

(Feature Set: Feat-F = 20, w=1/sd,)

Class output 1 2 3 4 5 6 7 8 9 10 Recog.
input %
1 14 1 4 1 70
2 10 3 1 4 2 s0
3 1 i 10 2 1 1l 2 2 50
4 2 2 2 8 1 2 1 2 40
5 2 2 2 11 1 2 55
6 20 100
7 1l 1 18 90
8 1 2 1 1l 14 1 70
9 1 1 18 90
10 1 1 1 17 85
Total Recog./No. Misrecog./ Av. Recog. 140 60 70

Table 7.5.A4

Classification Results on NDT Data using
Linear Organization of Pattern Classeu
(MDC - Euclidean Distance)
(Feature Set: Feat-S = 25, w=1/sd,)

Class output 1l 2 3 4 5 6 7 8 9 10 Recog.

input %
1 10 1 2 3 1l 3 S0
2 1 11 1 1 4 1 1 55
3 3 2 5 1 1l 1 4 3 25
4 4 2 7 1 4 1 1 35
S 1 4 10 2 2 1 50
6 20 100
7 1 18 1l 90
8 1 1l 1 1 14 1 1 70
S 1 1l 18 90
10 1 1 1l 1 16 80

Total Recog./No. Misrecog./ Av. Recog. 129 71 64.5
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Table 7.5.A5

Classification Results on NDT Data using
Linear Organization of Pattern Classes
(MDC - Mahalanobis Distance)
(Feature Set: Feat-F = 20)

Class output 1 .2 3 4 5 6 7 8 9 10 Recog.
input £
1l 17 2 1 85
2 3 14 2 1 70
3 3 15 2 75
4 17 1l 1 1 85
5 6 8 3 2 1 40
6 7 2 11 55
7 1 2 3 1 13 65
8 4 1 2 13 65
9 20 100
10 2 18 90
Total Recog./No. Misrecog./ Av. Recog. 146 54 73

7.5.2 Experiment - B: KNN

Using KNN the performance of the classifier on the design sets
for NDT data was in the range of 40% to 60% for various feat-
ure sets. Table 7.5.B1 shows the performance of KNN-E for
Feat-A=40. We reported the number of rejects for each class
as well. 1In some cases more than 50% of samples in a class
were rejected. This observation can be attributed to large
variations between patterns of those classes but also shows
the reliability of the classifier. Similar experiment was
repeated using Mahalanobis distance to determine the neighbor-
hood, the results of which are shown in Table 7.5.B2. The
results reported in this table were much better than those
reported in Table 7.5.B1. This observation shows that, at the
expense of heavy computations, satisfactory results may be
obtained. Theoretically, since KNN classifiers are useful for
homostat type data, it was understandable to obtain such a

poor performance from the classifier. Hence, we did not
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perform any additional experiments with this classifier on
NDT-data.

Table 7.5.B1

Classification Results on NDT Data using
Linear Organization of Pattern Classes
(3NN - Euclidean)

(Feature Set: Feat-A = 40, wt=1/sd,)

Class output 1 2 3 4 5 6 7 8 9 10 Rej. Recoq.
input L

1 10 2 1 7 76.92

2 13 1 1 5 86.67

3 1 1 2 1 1 14 33,33

4 4 3 1 1 11 44.44

5 1 1l 1 8 1 1 1 6 57.14

6 1s 5 0 75.00

7 1 1 1 5 3 9 45.45

8 1l 1 5 4 9 45.45

9 1 2 6 7 4 37.50

10 1 1 1l 1 3 1 8 4 50.00

Total Recog./No. Misrecog./No. Reject/Av. Recog. 76 55 69 58.02

Table 7.5.B2

Classification Results on NDT Data using
Linear Organization of I''* _ern Classes
(3NN - Mahalanobis Distance)
(Feature Set: Feat-A = 40)

Class output 1 2 3 4 5 6 7 8 9 10 Rej. Recog.

input ¥
1 11 1 1 1 1 5 73.313
2 15 1 4 93.75
3 1 s 1 1 12 62.50
4 7 1 1 1 10 70.00
5 1 1 10 1 1 1 5 66.67
6 20 0 100.00
7 1 10 1 1l 7 76.92
8 1 8 2 9 72.73
9 12 S 3 70.59
10 1 1 1 1 8 8 66.67

Total Recog./No. Misrecog./No. Reject/Av. Recog. 106 31 63 77.37
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7.5.3 Experiment - C: LDC

The performance of linear discriminant classifier (LDC) on NDT
data was examined and as expected the results were very poor
and were not worth reporting here. As explained in Sections
7.4.3 and 7.4.4 and as the rules described in Table 6.3
dictate it, this classifier performs well on homostat data
only and hence no further experiments on NDT data were
conducted using this classifier.

7.5.4 Experiment - D: QDC

The performance of the quadratic discriminant classifier (QDC)
on NDT data was also examined and the results were in the
range. of 71% to 84% for various feature sets. As explained in
Section 7.4.4 and also supported by the rules described in
Table 6.3, this classifier performs well on "segregates" data
since the classifier uses the individual within class co-
variances to determine the likelihood. Table 7.5.D1 shows the
performanice of QDC for feature set Feat-A=40. The results
shown vary between 55% and 90% giving an overall average of
71%. Similar experiment was repeated using the weight of
1/sd; to determine the best proximity, the results of which
are shown in Table 7.5.D2. The results reported in this table
were comparatively better than those reported in Table 7.5.D1
and an average performance of 74% was achieved. This obser-
vation shows that the variations between and within classes
may be inconsistent, however, at the expense of slightly added
computations satisfactory results may be obtained. The last
experiment was repeated using optimal feature sets Feat-F and
Feat-S, giving an average performance of 84% and 81.5%,
respectively. The results are reported in Table 7.5.D3 and
Table 7.5.D4. These results show that comparatively better
results can be obtained if best features are used, however,
the features ranked by Fisher index appear to give slightly
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better results than the one ranked by the pseudo-similarity
algorithm. The reason for the difference in the performance
is due to the way two algorithms rank the features. Since the
NDT data had large amounts of variations the Fisher'’s ranking
performed slightly better as it uses both within and between
class variations in ranking the features. By reviewing the
confusion matrix (Table 7.5.D3) another observation we made is
that Fisher index clustered the classes around a narrow diago-
nal band, implying that a majority of the misrecognized
samples were confused with their close neighbors. Theoreti-
cally, since QDC classifiers are useful for "segregates" type
data, it was understandable to obtain better performance from
this classifier as compared with that obtained from MDC-E, KNN
and LDC classifiers.

Table 7.5.D1

Classification Results on NDT Data using
Linear Organization of Pattern Classes
(Classifier: QDC)

(Feature Set: Feat-A = 40)

Class output 1 2 3 4 5 6 7 8 9 10 Recog.
input %
1l 12 3 1 1 2 1 60.00
2 2 15 1 2 75.00
3 1 2 13 3 1 65.00
4 1 2 11 4 1 1 55.00
5 1 1 13 1 1 1 2 65.00
6 1 14 5 70.00
7 2 1S 3 75.00
8 1 1 2 16 80.00
9 2 3 15 75.00
10 1 1 18 90.00
Total Recog./No. Misrecog./ Av. Recog. 142 S8 71.00
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Table 7.5.D2

Classification Results on NDT Data using
Linear Organization of Pattern Classes
(Classifiex: QDC)

(Feature Set: Feat-A = 40, wt=1/sd,)

Class output 1 2 3 4 3 6 ? 8 9 10 Recog.
input

1 12 2 2 1 2 1l 60.00

2 2 16 1 1 80.00

3 1 2 14 3 70.00

4 1 2 213 3 1 65.00

5 1 2 12 2 1 1 1 60.00

6 1 15 4 75.00

7 3 15 2 75.00

8 1 2 17 85.00

9 2 2 16 80.00

10 1 1 18 90.00

Total Recog./No. Misrecog./ Av. Recog. 148 52 74.00

Table 7.5.D3

Classification Results on NDT Data using
Linear Organization of Pattern Classes
(Classifier: QDC)

(Feature Set: Feat-F = 20, wt=1/sd,)

Class output 1 2 3 4 5 6 7 8 9 10 Recog.

input %
1 13 3 2 1 1 65.00
2 2 16 2 80.00
3 3 15 2 75.00
4 2 18 2 80.00
S 1 2 15 2 75.00
6 2 17 1 85.00
7 18 2 90.00
8 1 19 95.00
9 1 19 95.00
10 20 100.00

Total Recog./No. Misrecog./ Av. Recog. 168 32 84.00
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Table 7.5.D4

Classification Results on NDT Data using
Linear Organization of Pattern Classes
(Classifier: QDC)

(Feature Set: Feat-S = 20, wt=1/sd,)

Class output 1 2 3 4 5 6 7 8 9 10 ‘Reccg.
input %

1 13 3 3 1l 65.00

2 1 16 2 1 80.00

3 1 3 15 1 75.00

4 1 1s 3 1 75.00

S 1 2 14 2 1 70.00

6 1 17 2 85.00

7 19 1 95.00

8 2 18 90.00

9 1 2 17 85.00

10 1 19 95.00

Total Recog./No. Misrecog./ Av. Recog. 163 37 81.50

7.5.5 Experiment - E: BYC

The Bayesian classifier was also applied to all 10 classes
simultaneously and much better performance with an overall
average of 78% correct was obtained. These results as com-
pared to the two earlier experiments (Tables 7.5.A1, 7.5.A2)
are much better and can be attributed to more accurate evalua-
tion of the class probabilities. These results are reported
in Table 7.5.El. Again the BYC was able to distinguish
defects from non-defects 100% of the times, whereas only one
non-defect out of 20 samples was recognized as defect, thus
correctly recognizing non-defects at 95%. In fact had the
data been of a larger size, the performance ratio might have
been better. The large defects were far better recognizable
than small defects. It is suspected that the physical obser-
vatious from smaller defect classes may not be representative.
This observation may be attributed to the poor quality of the
data acquisition system wherein the quality of the transducer/
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receiver system may be questioned. The probing system may not
be powerful enough to transfer certain meager information

pertaining to smaller defects.

Table 7.5.E1

Classification Results on NDT Data using Linear
Organization of Pattern Classes
(Bayesian Classifier, Feature Set: Feat-A = 62)

Clasg Qutput 1 2 3 1 5 6 7 8 9 10 Recog.
Input %
1 15 1 4 75
2 2 13 1 2 1 1 65
3 1 2 14 1 1 70
4 3 11 4 2 55
5 1 1 13 4 1 1 65
6 18 1 1 90
7 17 3 8S
8 1 18 1l S0
9 1 1 18 90
10 1 19 95
Total Recog./No. Misrecog./ Av. Recog. 156 44 78

7.5.6 Experiment - F: PAH

The MDC classifier was applied on a PAH tree constructed by
different clustering algorithms. Using the single linkage
algorithm for building the tree and MDC-M classifier at each
node of the tree a classification experiment was conducted.
Table 3.4 (see Chapter 3) lists the hierarchical organization
of the pattern classes. The classification results obtained
are shown in Table 7.5.F1. These results giving 76.5% are
slightly better than those reported in Table 7.5.A5 which are
the results of applying the sare classifier on all 10 classes
simultaneously. This observation supports our claim that by
hierarchically classifying the two associated classes (groups)
at a time, misclassification can be reduced. BAnother experi-
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ment was conducted by transforming the 10 class problem into
a 4 class problem. In this experiment all three classes
involving each of ‘deep’, ’‘medium’ and ’'shallow’ defects were
combined into one class each. Table 7.5.1 shows the way these
4 classes construct their hierarchy (PAH). Using this tree
much better results, with an overall average of 91.50% correct
performance, were obtained. The no-defect class remains
separate from other classes. Table 7.5.F2 shows the results
of this experiment on the testing set. These results i.e.,
91.5% correct recognition, show performance superior to any
other algorithm of the Discrimination Subsystem. These
results indicate that excellent performance can be achieved by
reducing the size of the problem; in fact, by grouping the
similar classes together.

Table 7.5.1

Hierarchical Organization of Pattern Classes
(Single Linkage Method)

Class | Node Left Right
Shallow (A)

Medium (B) 1 AD BC
Deep (C) 2 B C
No Defect (D) 3 A o)
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Table 7.5.F1

Clasgification Results on NDT Data using Hierarchical
Organization (Single Linkage) of Pattern Classes
(MDC - Mahalanobis Distance)

(10 Class Problem)

Class output 1 2 3 4 5 6 7 8 9 10 Recog.

input %
1 20 100
2 14 1 5 70
3 2 1 13 1 1 1 1 65
4 2 4 14 70
5 5 4 10 50
6 5 4 11 55
7 20 100
8 7 1 12 60
9 20 100
10 1 19 95
Total Recog./No. Misrecog./ Av. Recog. 153 47 76.5

Table 7.5.F2

Classification Results on NDT Data using Hierarchical
Organization (Single Linkage) of Pattern Classes
(MDC - Mahalanobis Distance)

(Four Class Problem)

Class output 1 2 3 4 Recog.
Input %
Shallow (1) 54 2 4 90.0
Medium (2) 55 5 91.7
Deep (3) 3 4 54 1 90.0
No Defect (4) 20 100.0

Total Recog./No. Misrecog./Av. Recog. 183, 17 91.50

7.5.7 Experiment - G: EDT

The EDT algorithm was independently applied to the NDT data
and perfect performance of 100% was obtained on the design
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set, however, when it was applied to the testing set 76% of
200 patterns were correctly recognized. The results of this
experiment are shown in Table 7.5.G1l.

Notice that all patterns of the no-defect class were correctly
recognized, and only one defect pattern, ‘small-deep’ was
confused as no-defect. An even better result is obtained when
the 10 class problem is transformed into a 4 class problem
with classes Shallow, Medium, and Deep by combining all three
of shallow, medium, and deep defect categories from 10
classes. The no-defect class remains separate and an overall
average of 95.50% correct performance was obtained. Table
7.5.G1 shows the results of this experiment on the testing

set.
Table 7.5.G1
Classification Results on NDT Data using EDT
Algorithm
(10 Class Problem)

Class output 1 2 3 4 5 6 7 8 9 10 Recog.

input ¥
1 16 4 80
2 10 1 S 4 50
3 2 9 3 1 2 2 1 45
4 4 1 15 75
] 4 1 15 75
6 2 2 15 1 75
7 20 100
8 S 2 13 65
9 1 1s 95
10 20 100
Total Recog./No. Misrecog./Av. Recog. 152 48 76
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Table 7.5.G2

Classification Results on NDT Data using EDT
Algorithm
(Four Class Problem)

Class Output 1 2 3 4 Recog.
Input ¥
Shallow {1) 59 1l 98.33
Medium (2) 59 1 98.33
Deep (3) 3 4 52 i 86.70
No Defect (4) 20 100.00

Total Recog./No. Misrecog./Av. Recog. 190 10 95.00

7.5.8 Comments: Performance on NDT Data

From the engineering point of view the performance of the
system on the design sets from NDT data was not very impres-
sive. The recognition results were in the range of 25% to
100% for various pattern classes from different algorithms and
several of those results are vreported in Sections 7.5.1
through 7.5.7. Because of the large variations within and
among classes several, classifiers, e.g., KNN, and MDC-E
failed to give even a half decent performance. The perfor-
mance of MDC-M, BYC, EDT, and PAH classifiers was marginal.
QDC with ranked features produced satisfactory results.
However, high performance was obtained when the 10 class
problem was reduced to a 4 class problem. 1In particular PAH-U
classifier produced close to perfect performance (87% to
100%) .

In majority of the cases lower performance (35% to 65%) is
caused by the three smaller defect classes, namely, small/
shallow (smsh), small/medium (smme), and small/deep (smde).
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By removing these three classes the performance from most of
the classifiers reached between 80% and 95%. For example, the
performance of MDC-M on classes 5 through 10 (see Table
7.5.A2) reached 89.1%; the performance of MDC-E on the same
classes reached 81.7% (see Table 7.5.A3); the performance of
QDC reached 90% mark (see Table 7.5.D3); and the performance
of BYC reached 85.8 percentage point (see Table 7.5.E1).
Lacasse et al. [LACA-88] reported the similar observations on
smaller defect classes and showed only 60% performance on a 4
class problem (3 smaller defect classes and one no-defect
class) using hand-picked features. Another interesting obser-
vation was that, though KNN did not perform well (see Table
7.5.B1 and Table 7.5.B2) it treated all classies equally. The
performance on large defect classes was generally very high
(90% to 100%) which was equally comparable to other results
reported elsewhere [LACA-88,LAMB-89]. This observation should
not undermine our approach as we have presented a generic
solution and did not care for the size of the problem, charac-
teristics and representation of data, and source and the
nature of problem. In addition, all these steps were
performed automatically.

We tried to further verify our results with current industry
standards and found that the attempts to solve large multi-
class defect classification problems are scarce. Major
concern on reliability of the NDT techniques comes from the
lack of dependable scanning probes and data acquisition equip-
ment to collect data in a noisy or hostile environment. As
described in Sections 1.4 and 2.2 a vast majority of indust-
rial NDT problems are solved using human-operator-based signal
display systems [STAL-82, SING-92] and as such there is no
direct one-to-one match to our solution. There are only a
handful of systems which solely perform automated signal
classification or used PR based methods. Even these systems,
as much we are aware of them, can solve problems with much
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smaller dimensions: usually 2 to 4 class problems and using a
few manually selected features only.

Industrial systems usually do not rely on one individual NDT
test. They generally perform a comprehensive failure analy-
sis. For example, Silvus [SILV-92] reported one such system
at Southwest Research Institute and suggested the NDT industry
to use specialist, "Failure Analyst" who is placed remotely
from the failure site and has full array of communication with
the testing staff including extensive photographic and textual
documentation on the failure characteristics. A failure
analyst performs NDT operations first; these usually include
multiples of visual inspections, two/three dimensional view x-
radiography, electrical and mechanical checks to confirm
reported failure mode and one or more electromagnetic (NDT)
tests, and perhaps, other tests that are relevan to a parti-
cular type of component. Disassembly, visual inspection and
photography at each step come next; during this process other
techniques such as scanning-electron micrography and energy
dispersion X-ray analysis are employed to provide additional
insight into the failure mechanism or to document particular
observations. After disassembly is complete, selected parts of
the failed device may be cross-sectioned to reveal features
that are not visible from their surface. From this comprehen-
sive point of view the routine NDT tests have become a meager
component in an integrated system environment where even a
marginal performance is acceptable. Several researchers have
reported only 65% to 75% performance on primarily two classes
from NDT tests [ALDR-92,MOWR-88, SILV-92). 1In addition these
classes were major defects which were considered potentially

dangerous.

Aldrich [ALDR-92] and Singh [SING-92] have also supported
developing computer aided design (CAD) approach to disassemble
the components so that the operator can inspect the component
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from a variety of angles and positions and be able to make a
well informed decision. These comprehensive systems are
normally supported by huge data bases and the categorization
problem is treated as relational data base search (pattern
matching) problem. Several large vendors such as Siemens
[NPJ-92, NPJ-93], General Electric (GE) [ALDR-92] and EPRI
[ROBE-92) have developed and are promoting a variety of hard-
ware and software devices to support the operator-based
testing environment. Examples of such devices include Video-
mapping, Videodisc, RVT (remote visual testing) and GE’s GERIS
(GE’'s Remote Inspection System) which allow the inspection
crew to collect data in a hostile environment and receive/
transmit from/to a remote site [NPJ-92,NPJ-93,ALDR-92].

Recapping the discussion we can safely conclude that the
experiments we conducted have demonstrated that the non-
destructive testing and monitoring can be performed in an
efficient and cost effective manner without resorting to
comprehensive system supported manual testing and disassembly.
The PAH-based classification approach supplemented with data
dependent rules for the selection of an appropriate algorithm
at various stages certainly can substantially improve the
classification performance. If nothing at all, at least, our
algorithms can be used to identify the defective material from
large piles of questionable material and in such situations
one would need to simply analyze (test) the defective material
only. Some of these results and observations have been
reported in {SIDD-94a,b].
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7.6 Performance on EEG Data

The data on EEG signals were provided by the Department of
Psychiatry, McMaster University, Hamilton, Canada upon the

request of Tektrend. The data were collected on three
classes, namely, eye-artifacts, muscle-artifacts, and non-
artifacts. These classes are respectively called "eye",

"mus", and "cle" in the tables reporting the results. Ten EEG
channels corresponding to the standard 10-20 system points
were applied in the frontal (F4 and F8), central (C4), tempo-
ral (T4, T6), parietal (P4), occipital (02), and corresponding
left sided locations on a patient’s skull. A plot of each of
these classes from various channels is shown in Fig. 7.2.
Each class was represented by 100 samples for both the design
set and the testing set. Each sample pattern was represented
by 112 features, listed in Table 7.6.1. The procedure for
data collection and nomenclature of the features are described
in Appendix A. The data were one of the cleanest data and
hence the problem turned out to be relatively simple. The
features from the design data set were processed through the
Successive Elimination Process, which was able to delete 90

features listed in Table 7.6.2.

The remaining 22 features constitute the abridged feature set,
Feat-A for this data set. Using Feat-A several classification
experiments were conducted. The rankings of these features
based on Fisher’s discriminant index and Pseudo-similarity
algorithm are shown in Table 7.6.3. Using these feature sets
several additional classification experiments were performed

and are reported in sections to follow.
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Electroencephalogram (EEG) Signals f£xom various Channels
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7.2. A few typical samples from EEG signals.




Table 7.6.1

Features used for EEG Problem
(see Appendix A to decode the abbreviations)

o en e e e e e e e % e e e e e L er M S N e A g S W M R T R S A R R e e e e e

F e a t ur e D om a i n s
Statistical Zero Hjorth Slope Time/Pulse Derived from
Cross. Descr. Shape Raw Signal
1: SMV 6: AVF 12: MOB 14: NPK 25: AIN
2: SSD 7: AFD 13: CPX 15: PK1 26: PKD
3: SKF 8: AF1 16: PK2 27: DRl
4: KUR 9: AF2 17: APR 28: DR2
5: CVR 10: AF3 18: APF 29: DR3
11: AF4 19: PRT 30: DR4
20: PRS 31: DRS
21: PFT
22: PFS
23: PPW
24: HPW
F e a ¢t u r e D o m a i n s
Frequency Power Distribution Auto - Correlation
Low High Shape Spectra-Dist.

e % m e e T e M e N e e R T e e M W e e e e e M e e e e e e e m s

37: P06, S5: P24, 73: P42 89: PH6 100: 2PP 110: PF6
38: P07, 56: P25, 74: P43 90: PH7 101: 2PA 111: PP7
39: POB, 57: P26, 75: P44 21: PHS 102: PKA 112: PP8
40: P09, S8: P27, 76: P4S 92: PH9 103: TAR
41: P10, 59: Pl8, 77: P46 93: XPH 104: PDS

42: P11, 60: P29, 78: P47 94: NPH
43: P12, 61: P30, 79: P48
44: P13, 62: P31, 80: P49
45: P14, 63: P32, 81l: P50
46: P15, 64: P33, 82: MXP

47: Ple, 65: P34, 83: MNP
48: P17, 66: P35
49: P18, 67: P36

220




Table 7.6.2

EEG - Problem: Features Deleted
Using Successive Elimination Process

A.

B.

C.

D.

Stationary Features

86 87 88 89 90
91 92 94

Features Deleted with Discordance Test

17 20 22 107 108
109 110 111

Highly Correlated Features
(Correlation = 0.3, Frequency = 4)

5 7 10 11 12
13 14 15 16 19
23 25 26 27 28
29 30 31 32 33
34 35 36 37 38
39 40 43 44 45
47 48 49 50 51
52 53 54 55 56
57 59 61 63 64
66 68 69 70 71
72 73 74 75 76
77 78 79 80 81
82 83 84 85 93
95 96 97 99 101

102 103 104 106

Features Merged

None
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Table 7.6.3

EEG - Problem: Feat -F and Feat-S
Feature Ranking (Fisher and Pseudo-Similarity)

Fisher’s Rank Pseudo-Similarity Rank
Rank Feature Id Rank Feature Id.
1 8 1 6
2 21 2 1
3 2 3 8
4 1 4 16
5 6 5 5
6 7 6 20
7 4 7 22
8 5 8 10
9 14 9 9
10 18 10 21
11 15 11 19
12 17 12 17
13 9 13 3
14 22 14 15
15 16 15 18
16 1l 16 4
17 10 17 14
18 20 18 2
19 19 19 12
20 11 20 13
21 12 21 11
22 3 22 7

7.6.1 Experiment A - MDC

The performance on the design set using feature set Feat-A and
different weights is shown in Table 7.6.A1. It turned out
that if weight, i.e., w = 1/s;, is used, a simple MDC with
Euclidean distance can achieve an overall performance of
87.33%. However, reviewing the performance individually,
Fisher weights turned out tou be the best in identifying eye-
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artifacts and muscle-artifacts each with 96%, however, its
performance sharply dropped when applied to the ‘Clean’
signals. The performance of MDC-E classifier on the testing
set is shown in Table 7.6.A2. The weight 1/s, has produced
the best overall results recognizing 81% of 300 samples from
3 classes. Table 7.6.A3 shows the results of a similar
experiment using MDC-M giving an overall recognition of 93.67%
on the training set and 86.67% on the testing set respective-
ly. The performance using this classifier was the best
obtained among all MDC classifiers, perhaps for the reason

that all the features were appropriately weighed.

We repeated the experiment by selecting 8, 10, 12, 15 and 20
ranked features from both Feat-F and Feat-S sets to determine
the best feature size empirically. Their overall performance
is shown in graphs of Fig. 7.3. The graph shows that a much
smaller feature set can achieve satisfactory results unless
the features selected are the most discriminatory ones. The
last experiment was repeated on feature sets Feat-F and Feat-
S, their performance on testing sets for the best performing
features (15 features) are respectively shown in Table 7.6.A4
and Table 7.6.A5. Both of these tables show that the system
was able to successfully identify the most discriminatory
features, 15 in this case, to achieve the peak performances of
84.33% and 91.33% from the classifiers using feature sets
Feat-F and Feat-S respectively. This experiment also shows
that Pseudo-similarity algorithm is a better ranking algorithm
when the classes are homogeneous.

The experiments reported in Table 7.6.A4 and 7.6.A5 also show
the comparative performance of various weights. It turned out
that weight 1/s, was overall best weighing scheme for feature
set Feat-S and was able to recognize 88% of ’‘eye’, 100% of
'mus’, and 86% of ’‘cle’ signals giving an overall average of
91.33%. The weight sd,/m, is a poor performer implying that
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Table 7.6.Al

EEG Problem: Design Set
Classification Results
(Classifier - MDC-E)

(Feature Set: Feat-A = 22)
w=1 w = 1/sd
input Output Class Recog. input | Output Class Recog.
Class eye mus cle % Class eye  mus cle %
eye | 89 5 6 89 eye | 88 2 10 88
s | 54 6 %4  mus | 93 7 93
cle | 19 26 55 55  cle | 2 17 81 81
‘Overall Average:  79.33  Overall Average: 87.33
w=m / sd, w=m / sd
input Output Class Recog. input | Output Class Recog.
Class | eye mus cle % Class | eye mus cle %
eye | 94 6 94 eye | 91 3 6 91
ms | s 5 95  mus | 95 5 95
‘cle | 20 24 s6 56  cle | 8 27 65 65
‘overall Average: 1 81.67  Overall Average: 83.67
w = £; (Fisher weight) w=1=sd / m
input | Output Class Recog. input | Output Class Recog.
Class | eye mus cle % Class | eye mus cle %
eye | 96 4 9 eye | 88 8 a4 88
ms L % 4 9 mus | 6 8 5 89
¢le | 32 15 53 53 cle | 22 27 51 51
‘Overall Average:  81.67  Overall Average: 76.00
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Table 7.6.A2

EEG Problem: Testing Set
Classification Results
(Classifier - MDC-E)
{(Feature Set: Feat-A = 22)

w=1 w = 1/sd;

input Output Class Recog. input | Output Class Recog.
Class eye mus cle % Class | eye mus cle %
‘eye | 94 1 5 94  eye | 93 o 7 93
mus | 2 o1 7 91  mus | o1 9 91
cle | sz 23 25 25  cle | 30 11 59 59
‘Overall Average: 70 Overall Average: 81
w=m / sd w=m / sd

input I Output Class Recog. input | Output Class Recog.
Class | eye mus cle % Class | eye mus cle %
eye | 92 1 7 92 eye | % 1 5 94
s | o3 7 93  mwus | 03 7 93
‘cle | 4° 18 33 33 cle | 39 26 35 35
‘overall Average: 72.67  Overall Average: 74
w = £, (Fisher weight) w=1sd, / m

input | Output Class Recogq. input | Output Class Recog
Class eye mus cle % Class | eye mus cle %
eye | o4 6 94  eye | 88 8 4 88
mus |1 93 6 83 mus | & 88 6 88
“dle |63 8 29 28 ele | 52 25 23 23
“overall Average: 72 Overall Average: 63.33
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mean is not a good scaling factor whereas standard deviation

is.
Table 7.6.A3
EEG Problem: Design / Testing Set
Classification Results
(Clasgifier - MDC-M)
(Feature Set: Feat-A = 22)
Design Set Testing Set
input Output Class Recog. input | Output Class Recog.
Class evye mus cle % Class | eye mus cle %
eye | 94 1 S 94 eye | 93 7 93
mus |- 2 97 1 97 mus | 1 98 1 98
cle | 9 1 90 90 cle | 30 1 69 69
Overall Average: 93.67 Overall Average: 86.67
100 ! MDC-E, Fean-F 200 ! MDC-Z, Feat-3
b e i e | omemim i =l
} o, 1 $—
[} ] < St - @ : ] e
5905 Bt S PU¥ Y, B e e i e
& ! 3 |ommmmemm oo
[~ H !
S a0 ! .§3°§
e | Y i
g ! / g 0 Th——
g 70 ! / S70 |
g o !
& ' & ' \
60 E 60 ! \
i i
i i
8 10 12 14 16 18 20 22 ]
No. of Features used ég oézFeaéSreslgsedla 20 22

Legend:
eye - e o
mus = = —--
cle = —-

Fig. 7.3: Recognition Performance versus Number of Features.
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Table 7.6.2A4

EEG Problem: Testing Set
Classification Results
(Classifier - MDC-E)
(Feature Set: Feat-F = 15)

w=1 w = 1/sd,

input Output Class Recog. input | Output Class Recog.
Class eye mus cle % Class | eye mus cle %

eye | 87 13 87 eye | 85 1 14  es
s | 2 96 2 9%  mus | 100 100
cle | 37 3 60 60 cle | 28 3 es &9
‘overall Average: 1 81  Overall Average: 84.33
w=m / sd, w=1/ sd,

input Output Class Recog. input | Output Class Recog.
Class eye mus cle % Class | eye mus cle %

eye | o9& 6 9  eye | 8 1 10 89
‘mus | 2 9% 2 %6 mus | 2 % 2 9
cle | 41 3 s6 56 cle | 36 2 62 62
‘overall Average: 82 Overall Average: 82.33
w = f;, (Fisher weight) w=1sd /m

input ! Output Class Recog. input | Output Class Reco?.
Class | eye mus cle % Class | eye mus <cle %

eye | 79 21 79 eye | 83 17 83
mus | 88 12 88 ms | 6 92 L 92
cle | 43 2 55 55 cle | 36 1 63 63
‘overall Average: 78 overall Average: 79.33
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Table 7.6.AS

EEG Problem: Testing Set
Classification Results
(Classifier - MDC-E)

(Feature Set:

Feat-S = 15)

w=1 w = 1/sd;

input Output Class Recog. input | Output Class Recog.
Class | eye mus cle % Class | eye mus cle %
eye | 72 28 72 eye | 88 12 88
s | 1 97 2 87  mus | 100 100
cle | 5 6 89 89 cle | 9 5 86 86
‘Overall Average: | 86  oOverall Average: 91.33
w=m / sd ws=1/sd,

input l Output Class Recog.

input | Output Class Recog.

Class | eye mus cle % Class | eye mus cle %

eye | 79 21 79 eye | 78 22 78
nus | 1 96 3 96 mus | 59 1 99
cle | 27 15 64 64 cle | 5 2 93 93
‘overall Average: 79.33  overall Average: 90

w=sd; / m

input | Output Class Recog.
Class | eye mus cle %
eye | 8 22 78
mus | 87 13 87
cle | 45 2 53 83
‘Overall Average: 72.67

input | Output Class Recog.
Class | eye .us cle %

eye | 63 37 63
‘mus | 11 61 28 61
cle | 12 2 86 86
‘overall Average: 70




7.6.2 Experiment B - KNN

Using KNN the performance of the classifier on the design sets
for EEG data was in the range of 70% to 100% for various
feature sets. Table 7.6.Bl1 shows the performance of KNN-E (k
= 3) for Feat-A=22 on the design set whereas the Table 7.6.B2
shows its performance on the testing set. On the design u.et
the highest average performance of 89.2% was achieved using
Fisher's weight. The KNN-E with weight 1/s, was able to
recognize overall 85.9% of 300 samples in the testing set. We
reported the number of rejects for each class as well,. In
some cases, particularly, for the ’‘clean’ class several
samples were rejected. This observation, while indicating the
presence of a few outliers, also shows the reliability of the
classifier. A similar experiment was repeated using Mahala-
nobis distance to determine the neighborhood, the results of
which are shown in Table 7.6.B3. The results reported in this
table were even better than the those reported in Table 7.6.B2
achieving a high recognition rate of 92.2%. The classes
‘eye’, 'mus’ and ‘cle’ were correctly recognized respectively
with 95%, 96%, and 85.6%. This observation shows that Mahala-
nobis distance which takes into account variations in the data
may be a useful alternative to weighed Euclidean distance.
Since the KNN classifiers are useful for homostat type data,
it may be appropriate toc conclude that EEG data might fit the
definition of homostat data.
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Table 7.6.B1

Classification Results on EEG Data using
Linear Organization of Pattern Classes

(3NN -

(Feature Set:

Euclidean)

Feat-F = 22)

(Design Set)

w =1 w = 1/sd;

input | oOutput Class Rej. Recog input | Output Class Rej. Recog
Class | eye mus cle % Class | eye mus cle %
Teye | 93 5 2 o 93 eye ! 85 1 o o 99
ms | 6 86 8 o 8  mus | 3 % 7 o s
ele 17 28 Tsh 7 ens cle | 3 26 70 1 70.71
“Overall Average: 80.5  overall Average: 86.62
wa=m / sd, w= 1/ sd,

input | oOutput Class Rej. Recog input | Output Class Rej. Recog
Class | eye mus cle i Class | eye mus cle %
Teve ] 92 & 1 o 83 eye | %5 s o o 95
“mis | 8 85 6 1 859 mus | 3 8 7 1  89.9
“cle 1 s 34 s34 ss.2  cle | 6 32 61 1 61.6
“overall Average: 78.3  Overall Average: 82.2
w = £ (Fisher weight) w=8d, / m

input | Output Class Rej. Reccg input | Output Class Rej. Recog.
Class | eye mus cle % Class | eye mus cle %
Teye | 87 2 1 o 87 eye | 94 5 1 o 9
s | s7 3 o 9 mus | 7 8 8 o 85
“dle 1 8 18 71 3 73.2  cle | 5 25 59 11 €6.3
“overall Average: §9.2  oOverall Average: 82.4
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Table 7.6 .B2

Classification Results on EEG Data using
Linear Organization of Pattern Classes
(3NN - Euclidean)

(Feature Set: Feat-F = 22)
(Testing Set)

w= 1 w = 1/sd,

input | Output Class Rej. Recog. input | Qutput Class Rej. Recog.
Class | eye mus cle ¥ Class | eye mus cle %
eye | 92 8 o 92  eye | 94 6 0 94
‘mus | 6 88 5 1 88.9 mus | 4 93 3 o 93
cle | 26 8 60 6 63.8 cle | 20 68 3 70.1
‘overall Average: 81.9  oOverall Average: 85.9
w=m / sd w =1/ sd,

input Output Class Rej. Recog. input | Output Class Rej. Recog.
Class | eye mus cle ¥ Class | eye mus cle %
eye | 88 2 10 o 8  eye | 51 1 7 1  s1.9
‘mus | 6 8 5 0 8  mus | 3 93 3 1  93.9
cle | 39 3 50 8 s54.4 cle | 27 3 64 6  68.1
‘overall Average: 77.7  overall Average: 8a.9
w = £, (Fisher weight) w=s8d /m

input. | Output Class Rej. Recog. input | Output Class Rej. Recog.
Class | eye mus cle % Class | eye mus cle ¥
eye | 4 6 o 94  eye | 90 8 2 91.8
‘mus | 2 9z 4 2 93.9 mus | 5 88 6 1  88.9
ele 1 31 2 ea 3 66 cle | 20 & 62 12  70.5
‘overall Average: 8a.s  overall Average: 84.2
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Table 7.6.B3

Classification Results on EEG Data using
Linear Organization of Pattern Classes
(3NN - Mahalanobis)

(Feature Set: Feat-A =

22)

Design Set Testing set

input Output Class Rej. Recog input Output Class Rej. Recog
Class | eye mus cle 2 Class | eye mus cle ]
eye | 98 2 0 98  eye | 95 1 4 o 95
“mus | 2 ss 2 1 9  mus | 1 95 3 1 96
“cle | 4 2 sz 2 e3.9 cle | 212 2 8 3 8s.6
“overall Average: 95.95  Overall Average: 02.2

7.6.3 Experiment - C: LDC

The performance of linear discriminant classifier (LDC) on EEG
data was cxamined and the results were very encouraging. The
results on the design set and the testing set are reported in
Table 7.6.C1. On the design set the classifier was able to
obtain 93.67% c—~rrect recognition. However, on testing, over
86% of unknown samples were correctly recognized. This shows
that if the data quality is better and most useful features

are selected a simple classifier like LDC can do the job.
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Table 7.6.C1

EEG Problem
Classification Results - LDC
(Feature Set: Feat-A = 22)

Design Set Testing Set

input Output Class Recog. input | Output Class Recog.
Class | eye mus cle ¥ Class | eye mus <cle %
eye | %4 1 5 94 eye| o3 7 93
mus | 2 97 1 97 mus | 1 o8 1 98
‘cle | 9 1 80 90 cle| 30 1 65 s
‘Overall Average:  93.67 Overall Average: 86.67

7.6.4 Experiment - D: QDC

The performance of the quadratic discriminant classifier (QDC)
on EEG data was examined as well and the results were very
impressive producing a range of 86% to 100% for various feat-
ure sets. Using the feature set Feat-A=22, the classification
results on the design set and the testing set are reported in
Table 7.6.D1. On the design set the classifier was able to
obtain 94.33% correct recognition. However, on the testing
set over 88% of unknown samples were correctly recognized.
Although the data appears to be "homostat", the "cle" class
still seems to have large variations between several of its
samples and as a result the performance of this class improved
significantly using QDC. It reached 86% mark - the highest
among all classifiers reported in sections 7.6.1 through
7.6.3. Similar experiment was repeated using the optimal
feature sets Feat-F and Feat-S (15 features each), giving an
average performance of 88.67% and 90%, respectively. These
results are reported in Table 7.6.D2 and Table 7.6.D3. The
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results reported in Table 7.6.D2 were comparatively similar to
those reported in Table 7.6.D1 except that the performance on
class 'eye’ was dropped whereas the performance on other two
classes improved. This observation shows that satisfactory
results may be obtained if best features are used, however,
the features ranked by Pseudo-similarity algorithm appear to
give slightly better results than the one ranked by the Fisher
index. The reason for the difference in the performance is
due to the way two algorithms rank the features and perhaps
due to the characteristics of the data. Since the EEG data
had small amounts of variations within classes (nearly homo-
stat) the Pseudo-similarity ranking performed slightly better.
By reviewing the confusion matrices of these tables (Table
7.6.D2 and Table 7.6.D3) another observation we made is that
the two classes, i.e., ‘eye’ and 'mus’ were mainly confused
with ’'cle’ and there was little or no confusion among them-
selves. Theoretically, since QDC classifiers are useful for
"segregates" type data, and although it is computationally
more expensive, it is always safer to use QDC when within

class variations are detected.
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Table 7.6.D1

Classification Results on EEG Data using
Linear Organization of Pattern Classes
(Classifier: QDC)

(Feature Set: Feat-A = 22)

Design Set Testing Set
input Output Class Recog. input Output Class Recog.
Class eye mus cle % Class eye mus cle %
eye | 88 1 11 88 eye | 89 0 11 89
mus | O 95 5 95 mus | 0 91 9 91
cle | 0 0 100 100 cle | 14 0 86 86
Overall Average: 94 .33 Overall Average: 88.67
Table 7.6.D2
Classification Results on EEG Data using
Linear Organization of Pattern Classes
(Classifier: QDC)
(Feature Set: Feat-F = 15)
Design Set Testing Set
input I Output Class Recog. input | Output Class Recog.
Class | eye mus cle % Class | eye nmus cle %
eye | 84 2 14 84 eye | 80 2 18 80
mus | O 97 3 97 mus | 0 97 3 97
cle | 1 3 96 96 cle | 11 0 89 89
Overall Average: 92.33 Overall Average: 88.67
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Table 7.6.D3

Classification Results on EEG Data using
Linear Organization of Pattern Classes
(Classifier: QDC)

(Feature Set: Feat-S = 15)

Design Set Testing Set

input Output Class Recog. input Output Class Recog.
Class eye mus cle % Class eye mus cle %
eye | 88 1 11 88 eye | 84 1 15 84
nus | 0 98 2 98 ms | o 97 3 97
cle | 1 2 97 97 cle | 10 1 89 89
‘overall Average: 94.33  Overall Average: 0

7.6.5 Experiment - E: BYC

The Bayesian classifier was also applied to all 3 classes
simultaneously and an overall average of 90.67% correct was
obtained. Detailed results are reported in Table 7.6.El.
These results as compared to the four earlier experiments
reported in sections 7.6.1 through 7.6.4 (see Tables 7.6.A2
through 7.6.A5, Tables 7.6.B2/3, Table 7.6.C1, and Tables
7.6.D1 through 7.6.D3) are much better and can be attributed
to more accurate evaluation of class probabilities since each
class was represented by 100 samples. The BYC algorithm was
able to distinguish ‘eye’, 'mus’, ’‘cle’ classes respectively
with 87%, 95% and 90% which is the best performance we
obtained among all the algorithms reported in sections 7.6.1
through 7.6.4. It can be concluded that BYC is always a
better choice when sample size 1s sufficiently large.
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Table 7.6.El

Classification Results on EEG Data using Linear
Organization of Pattern Clasces
(Classifier: BYC)

(Feature Set: Feat-S = 15)

Design Set Testing Set

input | Output Class Recog. input | Output Class Recog.
Class | eye mus cle % Class | eye mus cle %
eye | 91 1 8 91  eye | 87 2 11 a1
mus | o 99 1 95 mus | 1 5 4  es
cle | 1 2 97 97  ele | s 1  so 90
‘Overall Average:  95.67  Overall Average: 90. 67

7.6.6 Experiment - F: PAH

The MDC classifier was applied on a PAH tree constructed by
the single linkage algorithm (SLA). By applying MDC-M classi-
fier at each node of the tree a classification experiment
using feature set Feat-A=22 was conducted. Table 7.6.4 lists
the hierarchical organization of the pattern classes obtained
by SLA. The classification results obtained are shown in
Table 7.6.F1. These results giving 95.67% are better than
those reported in Table 7.6.A3 which are the results of apply-
ing the same classifier on all 3 classes simultaneously. This
observation again confirms that by hierarchically classifying
the two associated classes (groups) at a time misclassifi-
cation can be reduced. These results i.. , 90.67% correct
recognition show performance superior to any other algorithm
of the Discrimination Subsystem. These results indicate that
excellent performance can be achieved by reducing the size of
the problem. Another experiment using PAH-V with MDC-M
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classifier at the root node and QDC classifier at node 2 was
conducted and a perfect performance was obtained.

A third experiment was conducted using MDC-E classifier and 15
Fisher ranked features, i.e., Feat-F 2t the first node and 15
Pseudo-similarity ranked features, i.e., Feat-S at the second
node and an average performance of 90.67% was obtained,
correctly classifying ‘'eye’, ‘'mus’, and ‘cle’ <classes
respectively with 92%, 96% and 84%. These results are

reported in Table 7.6.F2.

Table 7.6.4

Hierarchical Organization of Pattern Classes
(Single Linkage Method)

Class ] Node Left Right
eye (a) |

mus {B) | 1 A BC
cle (<) } 2 c

Table 7.6.F1

Classification Results on EEG Data using Hierarchical
Organization (Single Linkage) of Pattern Classes
(MDC - Mahalanobis Distance)

Class output 1 2 3 Recog.
Input %
eye (1) 95 2 3 95
mus (2) 0 98 2 98
cle (3) 1 5 94 94

Total Recog./Misrecog./Av. Recog. 287, 13 95.67
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Table 7.6.F2

Classification Results on EEG Data using Hierarchical
Organization (Single Linkage) of Pattern Classes
(MDC - Euclidean Distance)

(Multiple Feature Sets: Node 1: Feat-F, Node 2: Feat-S)

Class output 1 2 3 Recog.
Input ¥
eye (1) 92 ] 8 92
mus (2) 0 96 4 86
cle (3) 16 0 84 84

Total - acog./Misrecog./Av. Recog. 272, 28 90.67

7.6.7 Comments: Performance on EEG Data

As described earlier, the data was the cleanest and was
sufficient in size to apply any classifier. However, the
performance is enhanced and the amount of computation was
significantly reduced by selecting a smaller set of the most
discriminatory features, appropriately weighing them and

automatically choosing the most suitable classifier.

Consequently, the recognition performance of the system cn the
EEG data was very high and the recognition results were in the
range of 80% to 100% for various pattern classes from differ-
ent algorithms and some of those results are reported in Sect-
ions 7.6.1 through 7.6.6. Because the data was less noisy all
classifiers, including MDC-E, KNN, and LDC were successful in
achieving over 80% performance. The performance of MDC-M,
BYC, QDC, and PAH classifiers was superior. However, differ-

ent classifiers performed differently on various classes.

In some of the cases lower performance (51% to 80%) is caused
by the ‘cle’ class. By removing this class the performance
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from most of the classifiers tops out to 90% to 100%. For
example, the performance of MDC-E on two classes (see Table
7.6.A2, tablets 3 and 4) reached 93.5%; the performance of
MDC-M on the same classes reached 95.5% (see Table 7.6.A3);
KNN (k=3) was able to produce 94% correct results (see Table
7.6.B2); LDC achieved the performance oi °~.5%. QDC treated
all classes more fairly, recognizing the _hree classes with
89%, 91%, and 86% respectively giving an average performance
of 88.67% (see Table 7.6.D1) using the feature set Feat-A=22.
Almost similar performance was obtained using the set Feat-
F=15, however, using the set Feat-S the performance reached
90% mark (see Table 7.5.D3). These results show that classes
‘eye’ and ’'mus’ have less noise than the ’‘cle’ class. Clini-
cally it can be interpreted that the signals from the: ’cle’
class may have been corrupted with the patient’s eye blinks
since in majority of cases this class is confused with the
‘eye’ class. Slight confusion occurred with the ’‘mus’ class
implying that the interference from muscles was very little.
The performance of BYC reached over 90% correctly recognizing
87% of 'eye’, 95% of ‘mus’ and 90% of ’‘cle’ signals (see Table
7.6.E1). By applying MDC-M and QDC classifiers on a PAH tree
(see Section 7.6.6) the PAH-V was able to achieve perfect
results. Interestingly, using different feature sets at
various nodes MDC-E was able to achieve above 90% performance
(see Table 7.6.F2). This experiment, thus strongly supports
the idea of applying different feature sets at different nodes
of the tree in order to obtain a higher performance.

We tried to verify our results with current clinical standards
and found that the attempts to solve EEG signal classification
problems using PR methodology are scarce. It is only recent-
ly, researchers reported a few efforts on simple two class
problems [GEVI-86,TATS-88,SIDD-90c]. It is partly due to the
reason that the instantaneous sources of brain electric and
magnetic fields are unknown in number, position, and orientat-
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ion. Physicians suspect that at any instant only a small
fraction of the brain’s hundreds of simultaneously active
major systems might be performing processing related to the
sensory, motor, or cognitive functions being studied ([GEVI-
87] . Major concern on reliability of the EEG signals comes
from the difficulty in isolating the neurological effects of
a disease that are buried in pathological a«and unrelated
physiological indications (see Fig. 2.2 in Chapter 2). 1In the
case of brain electrical sources, irregular resistive tissue
enclosing the sources spread and distort the resulting pattern
of signals. Apart from the complexity of the problem, since
human life is directly involved, the factor of disbelief on
part of the physicians has played a significant role in dis-
couraging automation efforts. Consequently, EEG classificat-
ion is entirely done by physicians or technically certified
medical staff. Major focus of these efforts has been towards
the development of enhanced display of EEG waveforms and
analysis and extraction of parameters so that a physician can

make a well informed decision.

Surprisingly, we found that Grajski et al. [GRAJ-86) developed
a decision tree based classification approach only conceptual -
ly related to the EDT algorithm and it was applied to a five
class problem giving 97% correct recognition. In their
approach the tree was constructed by successively selecting a
feature using partitioning type clustering algorithm picking
a pair of groups which maximizes the split between two groups
and was specifically developed for the problem at their hand.
Computationally their approach makes the tree construction
process an exponential one. In addition they resampled the
data at every non-terminal node to maximize the characteris-
tics of the pattern classes and as such they collected the
cleanest possible samples. In our opinion and due to several
concerns the medical community has, such controlled way of
data acquisition has no practical value [GEVI-87].
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The experiments we conducted here have clearly demonstrated a
superior performance on EEG signals. Perfect performance from
classifiers such as PAH-U and PAK-V have clearly surpassed any
of their counterparts. Any classification or monitoring
experiment can be performed in an efficient and cost effective
manner without resorting to comprehensive system supported
visual display and manual interpretation.

7.7 Performance on the PNA Data

Using the same system with the PNA-knowledge base 20 ultra-
violet visual (UV-vis) synchroncus fluorescence spectra of
petroleum oils (polynuclear aromatic hydrocarbons) of various
origins were used to train the system (see Table 7.7.1). The
data on this problem were provided in the form of spectra with
351 data points between 260 to 610 nanometer on frequency
scale by the Lockheed Engineering and Sciences Company, Las
Vegas, NV. A few spectra of different types of oil are shown
in Fig. 7.4. Additional details on the data are available in

Appendix B.

The PNA problem is basically a spectral classification problem
and requires the algorithm to identify the structure of the
spectra which in turn is associated to a particular compound.
Traditionally, this is done by identifying the peaks, their
amplitudes and peak positions which are compared with refer-
ence patterns or searched through large data base libraries.
The extent of applying PR methods was to use grouping or
elastic matching. Eastwood et al. [EAST-91] and Siddiqui et
al. [SIDD-91a) introduced advanced PR methods to this area and
several results on different chemometric problems are reported
in ([EAST-91,SIDD-892,SIDD-91al. Classification of PNA com-
pounds 1is important from both scientific and environmental
points of view. Scientifically we can identify the chemical
structure of liquid compounds non-invasively and thus can
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Polynuclear Aromatoc Hydrocarbons (PNA) Spectra for various Oils
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Fig. 7.4. A few sample spectra of Petroleum Oils (PNA's)
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eliminate the need for expensive and environmentally hazardous
chemical testing laboratories. A majority of PNA compounds
are hazardous to life and environment. Svectral classificat-
ion methods can be efficiently applied to control the level of
pollutants in air and waters, and to control and monitor the

industrial waste and emission.

Extracting the envelopes from the spectra we identified the
number of visible peaks. For the present problem we identi-
fied 3 to 10 peaks in each spectrum. From each envelope we
extracted 10 features which are listed in Table 7.7.2.

The organization of the hierarchical association between
different groups of oils using a centroid method is shown in
Table 7.7.3. The Mahalanobis distances between the oils
ranged from 0.514 for the most similar pair of oils to 6.463
for the two least similar groups. The design set was then
tested using MDC-M classifier and a correct performance of
100% was obtained within a variable threshold ranging from
0.50 to 0.75. Using the trained classifier six unknown oil
spectra were also correctly classified. The distances of the
unknown samples from the closest matched oil in the design set
and the values of the expert knowledge parameters used for the
classification are shown in Table 7.7.4. As seen from the
table the system was able to correctly classify oils unk2,
unk3, and unké using the distance alone, whereas for other
oils, it had to use additional features identified by a
practicing expert [EAST-91] and included features such as
wavelength, peak positions, and relative amplitudes.
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Table 7.7.1

PNA Pattern Classes, their Labels and
number of Samples

Label Class Name Number of Samples

@ mm em m e e e m W E R e MR R W R N T R M NE G YR e T Cm WD e Mm T G EE B A M em S TE R e G M e M W W e wm ms o =

South Carolina Crude 0Oil
Bunker Crude

Arabian Light Crude 0il
Energy Coop

Agha Jari

oo ,n

Sarir

JP-5

DFM Petroleum Equivalent
Marathon 6

Eastern Coop 6HS

(SO S R Y]

Exxon 6 Fuel 0il
2 Fuel 0il
Russian Crude 0il
Prudho Bay
Kern River

oOZ=BEP®R gHIGOQW BHOOQWEYP

Uyt o

Mesa Crude 5
Arabian Heavy 0il 5
DFM Product 5
Venezuelan 5
5 Fuel 0il 5

HhnhAao'w

245




Table 7.7.2

PNA Problem - Features Extracted

Feature Id Feature Name

- . - an e e e o Gt MR e R M R M e e em M M W Gy P SR M Er EE G M e e e e o e e e ae

1 Number of Peaks

2 Ascending span of peak
3 Descending Span of peak
4 Ascending Slope

5 Descending Slope

6 Peak Location

7 Base Width

8 Top Width

9 Width of half rise

0 Width of half descend

Table 7.7.3

Pattern Association Hierarchy using
Centrnid Method (PNA Data)

U W N =

O W mwJo
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18
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7.8 Performance on the CEL Data

Physiology, the science of natural phenomena in living matter
such as organs, tissues, chromosomes, and cells, has been the
key field for understanding internal communication and control
in the biological system. Physiological research heavily
relies on our ability to measure chemical and electrochemical
activities taking place in the cells. Many functions of cells
(e.g., neural, muscular, etc.) are chemical in nature. These
functions, however, prcduce changes in the electric field
which can be monitored by electrodes ([COHE-86a)l. The bio-
electric potentials help physiologists study cell functions.

Usually, the source of the bioelectric signal is a group of
cells. The accumulated effects of all active cells in the
vicinity produce an electric field which propagates in the
volume conductor consisting of various tissues of the body.
The activity of a group of cells such as muscle, or some bio-
logical system, can thus indirectly be measured by means of
electrodes placing on the skin. Fig. 7.5 schematically
depicts the basic structure of a nerve cell, called neuron.
The important parts of the neuron are the cell body (soma),
the dendrites, and the axon. The cell body consists of the
intracellular fluid with the various bodies required for the
functioning of a cell [SPEK-87]. It is surrounded by an
excitable membrane. The cell membrane is extended in various
places to generate root-like structures called dendrites.
These extensions are used for interconnections with other
nexve cells. The axon serves as the output of the nerve unit.
Some membranes have excitability characteristics. When the
membrane is excited by means of electrical stimulus, the
permiabilities of the membrane to ionic transfer undergo some
changes. These changes cause the resting potential of the
membrane to increase, become positive for a short period of

time, and later, when the membrane repolarizes, to return to
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its normal resting potential. The time course of the action
potential, is shown in Fig. 7.6. CEL data, in fact, represent
such action potentials for some undi.closed kind of cells.
The data were collected on 19 classes of those cells, and 85
features were extracted from their action potentials. These
features were furnished by Tektrend in the form of feature
vectors. For proprietary reasons the identity of features and
the pattern classes were never disclosed to the author.
Therefore, to identify various classes we simply used the
coded information to label the classes and the order of the
features was used to identify them (features). This problem
was most difficult in the sense each class had a different
number of samples varying from 7 to 32 and that the class size
was large. Table 7.8.1 lists this information. The data was
arbitrarily split into two sets; number of samples include-” in
each set is also listed in Table 7.8.1. This varied nature of
the problem made the training slightly cumbersome. For
several classes the data was tco small tc have any recogni-
zable effect in the classification process, par:icularly when
the single layer classification algorithms were used. The
Successive Feature Elimination processor was able to remove 45
features listed in Table 7.8.2. Removing these features an
abridged feature set of 40 features was obtained and it will
be referred to as Feat-A=40. The feature set Feat-A was
submitted to the ranking algocrithms. Table 7.8.3 presents the
results obtained from Fisher’s discriminant index and Pseudo-
Similarity ranking algorithms.

249




T-—; SYNAPSE

VOLUME  CONDUCTOR

MYELIN

J[‘:‘a’cm- )

wuSCLE

Fig. 7.5: Schematic structure of a nerve cell (neuron).

50

jm ¥V

~5

J&: *\ 10 meec

ACTION
POTENTIAL

Fig. 7.6: The time course of the action potential.

[ 3]
ul
o



Table 7.8.1

CEL Data Pattern Classes

Class Label Class Name No. of Samples
Total Design Set Test. Set
A Class AA 29 15 14
B Class AB 30 15 15
) C.ass AC 30 15 15
D Class AD 30 15 15
E Class AE 12 7 S
F Class AF 16 10 6
G Class AG 32 16 16
H Class AH 30 15 15
I Class AI 7 5 2
J Class AJ 19 10 9
K Class AK 30 15 14
L Class AL 29 15 15
M Class AM 30 15 15
N Class AN 19 10 9
0 Class AO 29 15 14
p Class AP 30 15 15
Q Class AQ 20 10 10
R Class AR 19 10 9
S Class AS 20 10 10
Total 461 238 223
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Table 7.8.2

CEL - Problem : Features Deleted
Using Successive Elimination Process

Stationary Features

6 23 24 25
27 63

Features Deleted with Discordance Test

3 11 15 le
28 29 31 39
64 82 85

Highly Correlated Features
(Correlation = 0.45, Frequency = 4)

19 20 21 22
35 47 54 56
68 69 74 75
83 84

Features Merged

31, o (55, 12)* 30, 18 (57, 41)
34, 33 (61, 60) 35, 33 (67, 65)
40, 38 (72, 170) 34, 33 (67", 66)
10, 9 (14, 13) 4, 3 (5, 4)

26

17
44

30
58
79

+ Corresponding mapping to original features id's.
+« The feature was new modified feature.
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Table 7.8.3

CEL - Problem: Feat -F and Feat-S
Feature Ranking (Fisher and Pseudo Similarity)

Feat - F Feat - S
Fisher's Rank Pseudo Similarity Rank
Rank Feat. Id Rank Feat. Id Rank Feat. Id Rank Feat. Id
1 33 21 4 1 36 21 2
2 3¢ 22 13 2 27 22 13
3 34 23 31 3 15 23 4
4 27 24 35 4 16 24 37
5 16 25 37 5 5 25 31
6 25 26 2 6 34 26 14
7 15 27 28 7 24 27 7
8 1 28 32 8 33 28 35
9 19 29 12 9 19 29 28
10 26 30 7 10 1l 30 8
11 20 31 14 11 26 31 40
12 S 32 2 12 38 32 30
13 3 33 40 13 3 33 11
14 38 34 9 14 25 34 22
15 24 35 29 15 18 35 9
16 23 36 8 16 23 36 39
17 21 37 30 17 10 37 17
18 6 38 39 18 20 38 6
19 18 39 17 19 12 39 32
20 10 40 11 20 21 40 29

7.8.1 Experiment A - MDC

The performance of MDC on the CEL data design set using its
abridged feature set, Feat-A = 40 was evaluated. Table 7.8.Al
shows the performance using MDC-E unweighed classifier. Using
the weight of 1/s, the performance of classifier on the same
data reached above 91% mark. These results are shown in Table
7.8.A2. The last experiment was repeated on the testing set
and over 79.3% of the data set was correctly recognized (see
Table 7.8.A3). We repeated the experiment using MDC-M classi-
fier and over 82% performance with classes, ’‘sae’, 'sai’, and
'sas’ reaching 100% performance and the classes ’'sac’, ’'sag’,
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Table 7.8.24

Problem : Testing Set

CEL
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7.8.2 Experiment B - QDC

The performance of LDC on the CEL data was evaluated as well,
average recognition of which was below 65% and hence the
results are not reported here. Obviously QDC was an alternate
choice. The performance on testing set using the abridged
feature set, ~feat-A = 40 was evaluated. Table 7.8.B1 shows
the performance of this classifier. The classes ’‘sag’, ‘sai’,
'sar’, and ’'sas’ were recognizable 100% whereas other classes
reached as high as 93.33% producing an overall average of
86.1%. The lower performance is reported by ’saj’, ’‘sam’, and
‘saq’, respectively giving 66.67%, 73.33%, and 70%. Using the
feature set Feat-F=21 the performance of classifier on the
same data reached above 88.34% mark. These results are shown
in Table 7.8.B2. Note that better performance is achieved

uging only 21 ranked features. The last experiment was
repeated on the testing set using ranked features Feat-S=21
producing an average of over 86.55%. These results are

reported in Table 7.8.B3. Reviewing the results of Table
7.8.B2 and Table 7.8.B3, it is obvious that Fisher ranked
features produced slightly better results as compared with the
Pseudo-Similarity ranked features. These observations can be
explained with the fact that the CEL-data had 19 classes of
variable representation and that significant amount of variat-
ions exist between classes, hence Fisher’s discriminant index

performed a little better.
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7.8.3 Comments: Performance on CEL Data

In the medical literature this problem is dealt with in two
different ways, 1) using signals the cells transmit, and 2)
using their electromagnetic images. Several examples are
present for both approaches [ANBA-87, COHE-8¢b, GEVI-87, SPEK-
87]. In some of these examples simple image processing and
pattern recognition methods such as traditional syntactic
approaches, Bayesian classifier, discriminant analys.s (see
Chapter 6 for review and references on classification algo-
rithms), and clustering were applied (see Chapter 3 for review
and references on Clustering algorithms) and several reason-
able results have been reported [CIAC-93,GEVI-87, UMBA-93,
VEKL-93] . None of these examples presented any approach
similar to ours. However, any comparison would not be justi-
fiable unless we know the nature and nomenclature of the
problem. Since we did not have any more knowledge than what
is described in previous sections we were unable to compare
our results with any of the published results. However, a
recap on the results obtained is presented below.

The CEL problem was a 19 class problem having variable numberxr
of samples in various classes with 7 to 32 samples and only
461 samples altogether. Each sample was represented by 85
features. The data in the testing set had only 223 samples
ranging from 2 to 16 samples in various classes. Using QDC
classifier on all 19 classes simultaneously and their optimal
feature sets Feat-F=21 and Feat-S=21 (see Table 7.8.3) a high
recognition of 88.34% and 86.55% respectively was achieved.
The application of such a large problem with so many variants
is almost non-existent in the literature and as such we were
vnable to £ind even a conceptually c'milar example to compare
our results with.
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7.9 Discussion: Overall Recognition Performance

The objective of the present study was to, 1) synthesize and
analyze the available waveform (or spectral) information and
extract appropriate problem-solving knowledge; 2) select an
optimal knowledge representation and its hierarchical organi-
zation scheme so that the pattern classes and the knowledge
pertaining to their inherent characteristics can be naturally
clustered; 3) extract an optimal set of features for a group
of classes at each node; 4) store a number of parametric and
non-parametric classifiers so that the inference mechanism,
based on the parameters saved in the knowledge frame at each
node of the tree, can select an appropriate classifier.

The tools and techniques we presented and demonstrated their
performance in four different areas of applications fully meet
the objectives stated in items 1 through 4. To convert these
tools into an operational system a Human/Machine interface
providing a communication and explanation facility would be
desired which can be added to the system as a black box.

The recognition results on the EEG and PNA data were extremely
good. Although the PNA problem was a 20 class problem, PAH
classifier was able to give a perfect performance. Most of
the algorithms produced excellent results on EEG-data and CEL-
data. In the case of NDT data, for large defect and no-defect
classes the results were generally between 90% and 100%. It
was mainly the small defect classes which have lowered the
overall performance on NDT data. Some of the poor results can
be attributed to a low signal to noise ratio.

The approach that we have proposed is a comprehensive one in
which all phases of a classification/interpretation system are
addressed ir order to develop an optimal classifier design.
It either eliminates or minimizes the possibilities of human
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biases at every step of decision making, thus realistically,
making it an autonomous and more robust system. However,
there is room for improvement in each major phase of the
system. For example, a priori information about the experi-
mental conditions and the source input can be used to adjust
the preprocessing parameters so that the quality of data is
further enhanced. In addition, for knowledge organization, a
binary hierarchy is used, for even larger problems an n-ary
hierarchy can be used to further minimize the overheads.
Several classifiers are independently used; perhaps a hybrid
of classifiers may provide better classification. Additional

discussion on future extension is postponed until Chapter 8.

A comprehensive set of methods and algorithms were developed
for various stages of classification with each giving differ-
ent performance which suggests that there is no single best
method to solve all the problems. Therefore one should not
blindly choose one method or the other. Data analysis is
critically important to achieve good results. 1In fact, the
characteristics of the data should guide the feature selection
process, knowledge organization scheme, and classification
algorithm to be used. In choosing the features one should not
involve individual preferences and personal biases; rather he/
she should acquire as much information as conveniently possi-
ble and let the system identify the best parameters. Parti-
cularly, in situations where no information on source input is
available, the data characteristics are the only means to
guide the classification process. We developed rules and
methods to automatically examine the data characteristics. In
several instances we used existing methods. Several of these
methods were used in different perspectives. For example, a
discordance test to eliminate 1least varying features was
developed using a simple t-test. Outliers in the data were
identified using a z-test; correlated features were removed/
merged using a collinearity test. We provided an order and

254



structure to the entire classification process. We used
several classification algorithms and identified the behavior
of different algorithms and established several rules to
determine the situation where they can be used efficiently.
We observed that non-parametric type of classifiers perform
excellently well on homostat type of data. For data with
significant variations (i.e., segregate type of data) QDC
would be a better choice. If the amount of data is statis-
tically sufficient and variations within classes exist BYC is
an appropriate choice (see Table 6.3). PAH turned out to be
the overall best classifier and is particularly useful for
large data sets and class size problems [SIDD-94a,b].

We evaluated the performance of different classifiers using
three metrics: sensitivity, predictive accuracy, and false
positive rate. We defined these metrics as:

Sensitivity (Sen) = TP / (TP + FN)
TP / (TP + FP)

Predictive Accuracy (Pac)

FP / TS

False Positive Rate (FPR)

where

TP = Total number of True Positive, i.e., corrzctly classified

events.
FN = False Negative, i.e., number of samples missed.
FP = False positive, i.e., number of samples misclassified
TS = Total number of input Samples.

Sensitivity measures the percentage of events that were
correctly detected. Predictive accuracy measures the accuracy
in correctly classifying the detected events and the False
Positive Rate (FPR) measures the rate of misrecognition. Using
these metrics the performance of classifiers on all four data
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sets using various feature sets was measured; detailed results
have already been reported in sections 7.5 th: ~ugh 7.8. Table
7.9.1 summarizes the performance of the cla:. i:fier on 4 data
sets.

All the classifiers except KNN were highly sensitive to the
pattern classes from each problem domain with 91.5% predictive
accuracy on NDT data when it is designed as a 4-class problem.
QDC with Fisher ranked features gave satisfactory results with
84% correct predictive accuracy and 16% false positive rate.
A predictive accuracy of above 95% was achieved on EEG data
with only 4.3% FPR when we used the pseudo-similarity ranked
features and PAH classifier. The same classifier on PNA data
achieved perfect results. Using two different feature sets
and MDC-E based PAH classifier obtained above 90% performance
with 9.3% FPR. On CEL data only a few experiments were
conducted achieving the best performance of 88.3% from QDC
classifier giving 11.7% false positive rate.

A good performance of classification algorithms on data sets
from different problem domains shows that the system developed
is truly a generic and versatile classification system which
automatically prunes the features and selects the best ones
without caring for their identity and the nature of problem,
developing a hierarchy of associated pattern classes to
organize the knowledge and finally classifying the unknowns
using a data-directed classification process choosing an
appropriate algorithm at each stage of the process.
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Table 7.9.1

Sensitivity of Classifiers on Different Data Sets

Data | Feat.| Method | Total | Positive INeg. | Sens.|False|Pred.

Set | Set | |Sample | True False |False|Rate %|PR % |Acc. %
i | (TS) | (Tp) (FP) | (FN){ (Sen) | (FPR) | (Pac)
|

NDT |Feat~A MDC-M 200 165 35 0] 100 17.5 82.5
|Feat~A KNN-E 200 106 31 3 62.7 15.5 77.4
|Feat~F QDC 200 168 32 0 100 16.0 84.0
|Feat-S QDC 200 163 37 4] 100 18.5 81.5
|Feat~F BYC 200 156 44 0 100 22.0 78.0
!

NDT-4 [Feat~S PAH 200 183 17 0 100 8.5 91.5
|

EEG |[Feat—-A MDC-E 300 243 57 0 100 19.0 81.0
|Feat~-A MDC-M 300 260 40 0 i00 13.3 86.7
|Feat—-F MDC-E 300 254 46 0 100 15.3 84.7
| Feat—-S MDC-E 300 274 26 0 100 8.7 91.3
| Feat~A KNN-M 300 273 23 4 98.6 1.3 92.2
|
|Feat~-A QDC 300 266 34 0 100 11.3 88.7
|Feat~F QDC 300 266 34 0] 100 11.3 88.7
|Feat~-S QDC 300 270 30 0 100 10.0 90.0
| Feat~-S BYC 300 272 28 0 100 9.3 90.7
|Feat—-S PAH 300 287 13 0 100 4.3 95.7
|
|Feat~FS PAH 300 272 28 0 100 9.3 90.7
|

PNA |Feat~A PAH 100 100 0 0 100 0.0 100.0
|

CEL |Feat-A MDC-E 223 177 46 0 100 20.6 79.4
| Feat-A MDC-M 223 183 40 0 100 17.9 82.1
|Feat-A QDC 223 192 31 0 100 13.9 86.1
| Feat~F QDC 223 197 26 0 100 11.7 88.3
|Feat—-S QDC 223 193 30 0 100 13.4 86.6
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Chapter 8

Performance Review, Directions for Further Research,
and Conclusions

8.1 Introduction

This study is a unique attempt to incorporate physical obser-
vations, analytical knowledge, empirical methods, and rules of
interpretation along with signal processing and pattern recog-
nition techniques. A number of new ideas and algorithms are
introduced at different stages of the development (see Section
8.2). Along the way a number of existing algorithms have also
been explored and used with appropriate adjustments to conform
with our system design philosophy and performance objectives.

In this chapter we will critically review the performance of
each of the components and the techniques used at various
stages. Several areas are identified where a better approach
could have been used. Directions for future extensions,
improvements and suggestions for further research are present-
ed in the following sections. These directions should be
viewed in the light of an overall scheme and philosophy we
have developed. If someone is interested in simulating these
componernts, this person could learn from our experience and
instead of duplicating the algorithms, perhaps make further
development based on the concepts we have presented.

8.2 Performance Review

The feature selection, knowledge organization and classificat-
ion algorithms were the major techniques and components of the

recognition system that were outlined in Chapter 2. These
components are developed and successfully tested on different
problems of varied nature. The following sections review

268




closely the individual components and their performance on
data collected from four real-life applications. Wherever
discovered, the suggestions for improvements and possible

extensions are included as well.

8.2.1 System Concept Level

The thesis has demonstrated the need for a flexible set of
tools in a generic systems approach to statistical pattern
classifier design and development. It promoted the concept of
pattern association hierarchy (PAH) as the key structure for
a knowledge based intelligent recognition system. Important
tools developed include feature elimination and selection
algorithms, PAH tree building methods, classification algo-
rithms, and the structure and the ways the knowledge is to be

organized as presented in this thesis.
8.2.2 Feature Extraction and Selection Level

Since the data on three of the four problems was provided in
the form of a large set of features without any knowledge
about the source of the signals, one of the major problem we
were faced with the problem to decide: what features should be
selected? Addressing this issue, we suggested that one should
not bother with the enormity of the observations, rather he/
she should extract as much information as conveniently : ossib-
le and then remove the poorly performing features using a
comprehensive feature elimination scheme, called the Success-
ive Elimination Process. The objective behind this approach
was to limit the human biases and let the system choose
appropriate features based on the characteristics of the data.
Furthermore the idea was to develop algorithms that are compu-
tationally inexpensive but efficient in performance and to use
the inherent characteristics of the data to guide the feature

elimination process. A new feature ranking and selection
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algorithm called Pseudo-Similarity algorithm [SIDD-90a] based
on linear (function) selection criterion is developed. This
algorithm meets the objectives specified and it primarily
maximizes the inter-class variations. The performance of this
algorithm is compared with the Fisher’s Discriminant ranking
and turned out to be far less expensive computatiocnally with
comparatively similar results. Extensions to Pseudo-
Similarity algorithm can be done by transforming it to a two-
tier algorithm. One step would minimize intra-class variat-
ions while the other step checks (maximizes) its usefulness to
differentiate between classes. This extension would, however,

increase the cost.
8.2.3 Rnowledge and Knowledge Representation

We emphasized the use of physical observations and the infor-
mation derived therefrom as the prime source for acquiring
knowledge. In addition statistical observations and tools
from statistical decision theory are used to emulate heuris-
tics and human judgement. Although such complete reliance on
statistics has solved most of the problems we encountered, we
cannot deny the need for pure heuristics, i.e., human judge-
ment. This avenue should be investigated thoroughly and
perhaps a simple judgmental call may eliminate hundreds of

statistical computations.
8.2.4 Knowledge Organization Level

To further minimize the problem of information or knowledge
explosion and redundancy, a new concept called the Pattern
Association Hierarchy is introduced to organize the knowledge.
This concept. without imposing any order of itself, uses the
association that naturally exists among pattern classes to
structure the knowledge. A new clustering algorithm called
Generalized Variations Method is also developed to hierarchi-
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cally organize the patterns and their associated knowledge.
This method is developed for situations where we may have too
large intra-class variations and toco 1little information to
separate bketween classes. Large variations between NDT
pattern clrcsses were instrumental in the creation of this
algorithm. Although, the concept uwas very useful for know-
ledge organization and pattern classification, additional
improvements to the PAH concept can be made. For example, the
binary PAH-tree can be transformed to a k;-ary PAH tree with
i=2, ..., u, branches at various internal nodes which would
definitely bring more structure to the knowledge organi-
zation. In addition it would speed up the classification
process as more classes would be eliminated at each node of
the tree. But this approach will complicate the tree building
method as well as the search strategy as k; classes have to be
compared with at each internal node.

The knowledge pertaining to pattern groups (or classes) at
each non-terminal node is stored in frames, other schemes to
structure the information such as scripts and semantic nets
may be investigated and an optimal nodal knowledge organizat-

ion scheme may be selected.
8.2.5 Classification Level

Numerous classification algorithms have been implemented along
with several decision criteria and various weighing schemes.
The objective was to choose an algorithm for the purpose it
can serve best and not to impose any burden the algorithm
cannot handle. A number of observation-dependent parameters
are designed to automatically determine the population para-
meters which in turn determine the pattern classification
algorithm to be used. We heavily relied on statistics in
developing these parameters, there is definitely room for pure

271



heuristics and other non statistical methods. Perhaps a
hybrid of these approaches may be an alternative as well.

A new classification algorithm based on ID3 algorithm [QUIN-
87] is introduced. The algorithm is called Entropy based
Discrimination Tree (EDT) which uses the same numeric features
as were used for decision-theoretic methods. However, to use
the feature in the sense of symbolic features, we developed a
transformation scheme to covert them into pseudo-symbolic
features. The entropy of each feature is used to construct
the decision tree. The EDT's discrimination tree can be
expressed in the form of a body of rules and because of this,
EDT algorithm can be thought of as an inductive inferencing
procedure for machine learning or for optimal rule acquisition
and selection.

The concept of pattern association hierarchy along with feat-
ure selection methods, data-dependent parameters, a number of
parametric and non parametric classifiers at each node of the
hierarchy gave birth to a highly flexible PAH-classifier.
This arrangement reduces the bias that may be introduced
through human judgement. Although the scheme is inductive in
nature, it is extremely flexible and intelligent as varied
sets of features and decision criteria at each node of the
tree can be used. We used empirical knowledge to determine
the different transitional steps and for critical decision-
making, perhaps the use of expert knowledge or the hybrid of
the two may be investigated.

8.2.6 Integration and Automation Level

We demonstrated several elements of a comprehensive classifi-
cation system incorporating a number of algorithms at various
stages of pattern classification. Instead of human judgement,
the system primarily relies on analytical tools to synthesize
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the available information. This synthesis evolves a set of
new parameters (empirical knowledge and meta knowledge) which
are used to partially simulate human judgement. At each step
attempts are made to automate the process so that the depen-
dence on the expert can be minimized. For example, based on
the characteristics of the data an appropriate algorithm for
1) tree building (PAH), 2) redundant feature elimination and
selection, and, 3) a classification algorithm, can be selec-
ted. Some intuitive algorithm at each of the above steps may

also be examined.
8.2.7 Application Level

The literature on knowledge-based approaches generally reports
specialized and highly problem oriented approaches, this
thesis develops algorithms and tools applicable in a generic
signal (perhaps, any pattern) classification scheme and
successfully agplies the algorithms to four problems represen-
ting three different application areas, namely, non-
destructive testing, spectroscopy (chemometrics) and medical
diagnosis. On the last three problems, i.e., NDT, EEG, and
CEL classification we were provided with a large set of

features.
8.2.8 Overall Efficiency and Effectiveness

The approach primarily aims at solving large and complex real -
life problems with high performance and robustness. This
efficiency is introduced by hierarchically segmenting the
probiem into subproblems of smaller magnitude and in most
instances solving a two class problem along with the most
suitable feature set supported with appropriate weights and
the best possible classification algorithm. We used feature
selection and classification algorithms within their normal
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constraints. We avoided making unrealistic assumptions just
to simplify the magnitude of the problem.

Several levels of classification algorithms have increased the
reliability of the system. Presently, only a handful of algo-
rithms are investigated at each node of the tree, in fact any
other classifier or hybrid of classifiers can be used, inclu-
ding a neural-net classifier or a genetic algorithm. 1In fact,
additional efficiency can be achieved by introducing multi-
tasking by allocating a processor at each node of the tree.

8.2.9 Expansions and Growth

As for any software, a system’s life cycle is based on its
flexibility to environment and adaptability to other appli-
cations. The components which were intended to be integrated
into a general purpose classification and interpretation sys-
tem are extremely generic and adaptive, the problem dependent
krowledge is limited to the extraction of features only. Once
the features are extracted every problem application has to
run through rest of the stages. With such generic arrangement
the system can be applied to new applications.

8.3 Directions for Further Research

The limit to the imagination of human mind is beyond skies,
however, we will attempt not to make this section resemble a
script from a novel on science fiction. We will suggest only
what can be accomplished in the immediate foreseeable future.
We reviewed all the components of the system in the previous
section and presented suggestions for their improvement.
Incorporating all those suggestions would certainly evolve a
highly efficient and generic pattern classification system.
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An immediate task would be to develop a fully funccional Know-
ledge Acquisition system and Expert/User Interface and to
integrate all the components into one unit system. One of the
major steps, that is, the introduction of Reasoning and Expla-
nation System will truly convert the present system to an
intelligent expert system that requires the least amount of
input from the expert and the same was initially proposed (see
Section 1.8). Similar improvements can be incorporated into
the inference engine. Additional improvements in each of the

major components are described below.
8.3.1 Future: Knowledge Acquisition

We were supplied with the data in either raw digitized signal
form or in the form of feature vectors. In Chapter 2 we had
to make several assumptions because the information on experi-
mental conditions and testing conditions was not available.
A realistic knowledge acquisition system can be developed by
incorporating all the parameters in their own right so that
appropriate measures based on nature of data, test equipment,
test parameters and the conditions under which the experiment
was conducted can be considered and a high quality data is
generated. In addition, should one require, data dependent
preprocessing methods can be applied to enhance the quality.

8.3.2 Future: Knowledge Formalization and Organization

Analvtical features and empirical knowledge derived from them
were the main source of knowledge. There several problem-
based parameters may be considered so that problem dependent
data processing methods may also be applied. For example, in
NDT problems, if the properties of the material under investi-
gation are known appropriate adjustments to improve the
quality of emitting signals can be made (see Section 2.3.1 for
additional comments). To structure -he knowledge the PAH
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concept was used. In this concept mainly the hierarchical
clustering algorithms were used so that a tree can be develop-
ed quickly. The tree so developed may not be an optimal one.
Other clustering algorithms, though more expensive, such as
partitioning and density matching may be investigated so that
an optimally associated tree of pattern classes is developed.
We introduced the generalized variations method for tree
building (see Section 3.4.2), the major problem with this
algorithm is that it is based on the variations among vari-
ables of different classes which may produce inconsistent
results. Perhaps an algorithm that considers both within and
between class variations may produce a better tree.

In addition, we have no way of knowing how individual features
or parameters are performing in identifying individual clas-
ses. Here the histogram analysis using visual aids can be
developed so that one can view the contribution of individual
parameters should a subjective analysis of the problem is
required.

8.3.3 Future: Modeling the Pattern Classes

We tried to determine the best features to represent a pattern
class. Instead one could try to model a pattern class from
the available information. The model can be prepared by
developing a fuzzy layer around a known kernel. The most
representative samples of a class can be used to determine the
kernel of a pattern class and the variations among pattern
samples of a class could define the fuzzy layer surrounding
the kernel. Addressing the problem in this fashion will open
various research opportunities.
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8.3.4 Future: Inference Engine

A generic inference engine consists of two sets of algorithms:
discrimination, and information theoretic (EDT), both of which
are competing with each other. 1Instead we can use them to
complement each other and a hybrid of the two approaches may
be developed. At all but the highest level intermediate nodes
of the tree, the discrimination system may be used, and at the
highest (non-terminal) nodes the EDT algorithm may be applied.
At these nodes the discrimination system should provide k best
choices it has found, which in turn should be used by the EDT
algorithm to identify the single best choice. In all the
classification algorithms a predetermined decision function is
used. Another improvement would be using a discrimination
function that could be automatically designed based on the
feature values, individual objectives, and variations among
classes at hand. This could be done using similar optimization

techniques as were used for feature selection.

Learning from analogy is possible should we intend to apply
the system on other unknown signal classification problems.
This type of learning applies existing knowledge to a new
problen instance on the basis of similarities between them.
This involves modifications of the existing knowledge to fit
the new case. Learning by analogy is common in human

learning.
8.3.5 Future: Expert/User Interface

The design of the Expert/User interface was briefly discussed
in Section 1.8. To complete the system this component has to
be developed immediately. Upon implementation exhaustive
testing is required to assure the integrity of the system.
The suggested design is untested; during the development
process several gray areas may emerge that may change the
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design objectives. For example, if this phase is to be
developed in a GUI environment various functional changes in
the design may be inevitable.

8.4. The Research Contributions

The results reported in Chapter 7 demonstrated the potential
of a general approach to an Intelligent Recognition System in
several application areas. To successfully achieve the stated
objectives and to maximize the functionality of the system, a
number of new algorithms and concepts which constitute the
contributions of this research were developed. Some of the
notable contributions are summarized below.

1. System Concept Level

Back in 1986 when the work reported in the thesis was origin-
ally proposed, the knowledge based approaches to system deve-
lopment were scarce and they were essentially isolated. This
project has presented an integrated system approach combining
physical observations, empirical and simulated expert know-
ledge. The thesis has also demonstrated the feasibility of
the approach in several applications areas (see Chapters 1 and
7).

2. Knowledge and Knowledge Representation Level

Instead of solely using the expert/heuristic knowledge or the
procedural methods, the emphasis was laid on the physical
observations, analytical features and inherent characteristics
of the data. Empirical knowledge was derived using statisti-
cal methods and analytical knowledge. Data-dependent para-
meters were designed to automatically determine the population
parameters which in turn determine the classification algo-
rithm to be used (see Chapters 2, 3, 4, and 6).
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3. Feature Extraction/Selection Level

To resolve the feature extraction and selection issues, we
suggested to extract all useful features one thinks are essen-
tial and then use ’'Successive Feature Elimination Process’ to
weed out the poor performers and later use one of the two
feature ranking and selection algorithms, i.e., Pseudo-
Similarity algorithm or Fisher’s Discriminant ranking. Except
the Fisher’s Discriminant ranking all feature extraction,
elimination, selection, and several weighing schemes described
in Section 4.5 are developed in this thesis (see Chapter 4).

4. Knowledge Organization Level

To organize the problem solving knowledge, a new concept of
pattern association hierarchy (PAH) is introduced wherein
several existing algorithms and a new clustering algorithm,
called "Generalized Variations" method were used to hierarchi-
cally organize the pattern classes and their associated know-
ledge. This arrangement has reduced the magnitude of infor-
mation explosion and redundancy problems. Rules were also
designed to select a suitable algorithm for knowledge

organization (see Chapter 3).
5. Classification Level

The new concept of pattern association hierarchy along with
feature elimination and selection methods, data-dependent
parameters, and, a number of parametric and non parametric
classifiers at each node of the hierarchy gave birth to the

new flexible PAH-classifier. This arrangement reduces the
bias that may be introduced through human judgement while
selecting a classification algorithm. In addition a new

entropy based classification algorithm called EDT algorithm is
also developed (see Chapters S and 6).
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6. Integration and Automation Level

Instead of human judgement, the system relies on analytical
tools to synthesize the available information. This synthesis
evolves a set of new parameters (empirical knowledge) which
are used to partially simulate human judgement. Using empiri-
cal knowledge a set of rules are designed to automatically
select an appropriate algorithm among several available at
different phases of processing. Thus a high level of auto-
mation and integration with high recognition performance is
achieved.

7. Application Level

The thesis develops a generic signal classification scheme by
successfully applying the system to four different application
areas, namely, non-destructive testing, spectroscopy, EEG
classification, and genetic cell classification. 1In each of
the problem area high recognition performance is achieved.

8. Size of Problem, Performance, and Robustness

The algerithms we developed are not restrained by the size or
the nature of the problem. We solved four problems with 3 to
20 pattern classes, up to 112 features and 2 to 200 samples in
a pattern class with consistently high individual class per-
formance of 80% to 100% for various problems.

8.5 Conclusions

The goal of the present study was to: 1) synthesize and
analyze the available waveform (signal or spectra) information
and extracting appropriate problem solving knowledge without
imposing human biases towards parameters; 2) integrate domain-
dependent expert knowledge and utilize it to find the right

280



solution; 3) select a data driven scheme for knowledge repre-
sentation and its hierarchical organization so that the pat-
terns and the knowledge pertaining to the inherent character-
istics of pattern classes or groups of classes can be cluster-
ed together, 4) extract an optimal set of features for a group
of class(es) at each node using either the Fisher ranking or
the pseudo-similarity algorithm, and, 5) store a number of
parametric and non-parametric classifiers so that the infer-
ence mechanism, based on the parameters saved in the knowledge
frame at each node of the tree, can select the most appropri-
ate classifier for the application at hand.

The tools we presented and demonstrated their performance on
four different problem areas fully meet the objectives defined
earlier in Chapter 1. The results on the EEG and PNA data
were very good. Although the PNA problem was a 20 class
problem PAH classifier was able to give a perfect performance.
Most of the algorithms produced excellent results on EEG-data
and CEL-data. In case of NDT data, large defect and no-defect
classes were generally recognizable at 90% to 100%. It was
mainly the small defect classes which had lower performance.
This can be attributed to a low signal to noise ratio. Since
probes have different sensing ranges, weak signals can be
missed even by a very sophisticated device. The potentials of
the approach in three problem areas we studied are reviewed in
next few sections. Other potential applications of the
approach are described in the last section.

8.5.1 NDT Problem

The non-destructive testing (NDT) methods werxe the prime
target for the development of the recognition components.
This was the only data on which we had available most of the
needed information, including the raw data and hence referen-
ces to this data were made throughout the thesis. NDT methods
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are an integral part of the life-support system of the indust-
rial world. 1Inspection reliability is of major interest and
concern to all the industries. In traditional non-destructive
evaluation (NDE) and inspection techniques, one is expected to
know the boundary conditions of the problem which require the
inspector to know material type, its geometry and type of
flaws anticipated to exist. The automation in this area may
be able to convert the expert’s task to a technician kind of
jok. The methods we developed demonstrated the successful
identification of medium to large size defects of various
kinds at varied depth inside the material without having much
knowledge about signal source and the equipment used for data
acquisition. Use of digital signal processing supplemented
with PR tools and knowledge engineering methods has minimized
the operator dependence. The use of automated data acquisi-
tion and analysis are highly repeatable as compared with
manual inspection system. Thus inspection reliability,
integrity and robustness are improved significantly.

These automated tools should be incorporated into quantitative
NDE programs to create technology based procedures for improv-
ing inspection and detection reliability. The problem of in-
adequate inspection reliability in many critical inspection
situations encountered by armed forces, other department of
defense agencies, and inspection community in general, is far
tco important to ignore. Safety in air and space travel can
only be guaranteed by automated tools like ours. In the
nuclear power industry reason and caution still prevail. A
real-time NDT monitoring incorporating our algorithms can

bring, peace of mind and comfort.
8.5.2 Medical Diagnosis Problem

The diagnostic procedures in the medical profession are very
unstructured and biased. Classification of multidimensional
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data in medicine is an important topic since, if successful,
it can lead to automated diagnosis or at least provide a tool
to speed up and improve diagnosis. The recognition components
we developed can be easily transformed into diagnostic and
interpretation tools. They will be able to perform equally
well if a situation is submitted as a waveform classification
problem. A majority of medical phenomena require multitude of
variables from a variety of physical conditions. There are
applications where nominal or ordinal data may also be
interesting. There are cases where important information may
be included in patients’ symptom records. To accommodate
these variables reascnably, algorithms should allow a2 mixed
type of variables without undermining the importance of any
variable. Introduction of various data normalizing and

feature weighing schemes is an attempt towards that direction.

Although the computing technology has performed many miracles,
there is no substitute to human judgement. The prominent
applications of this trade of human can be vastly observed in
medical diagnosis. To reinforce human judgement we must
provide appropriate analytical power and tools for synthesis
so that the judgement can be supported by analytical argu-
ments. Several classification methods and PAH structure

provide such tools.

We successfully applied the algorithms to the EEG classifi-
cation problem. Several EEG indications have already been
identified in Fig. 2.2 (see Chapter 2). These indications can
be easily incorporated as pattern classes while individual
elements contaminating the EEG signals can be identified or
removed. We applied similar concepts to ECG problem as well
and were able to successfully differentiate normal heart beats
from ventricular beats higher than 98% on hundreds of samples
of data obtained from American Heart Association (AHA data)
(SIDD-93b, SIDD-93c].
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8.5.3 Exploration/Classification of 0ils and Minerals

Ultraviolet-visible (UV-vis) fluorescence has been used for
the identification (spectral fingerprinting) and classificat-
ion of petroleum cils since the early 1970’'s [SIDD-91a]. The
methods established by the American Society for Testing and
Materials (ASTM) have been based on this approach. Synchronous
spectroscopy was found to produce greater spectral structure
and hence increased information contents [EAST-83]. 1In this
approach both excitation and emission monochromatcrs were
scanned at a wavelength offset typically between 3 and 25 nm.
We presented a more powerful and versatile approach which
utilizes more fully the range of similarity raramet.rs and
other pattern features available in the spectrum. We applied
the system to a new data set of UV-vis synchronous fluore-
scence spectra of petroleum oils of wvarious origins (both
crude and fuel oils) and obtained a perfect performance in
identifying 20 different classes of oils. We presented an
original approach using pattern recognition and AI to model
knowledge and spectral information and classifying unknown
oils using advanced classifiers. Potential applications of
the system in chemistry and geology particularly in environ-
mental applications are innumerable.

8.5.4 General Remarks

We considered data analysis as a critically important issue to
achieve good results. We determined that it should be the
characteristics of the data which should dictate the classifi-
cation algorithm to be used. We developed rules and methods
to automatically examine the characteristics of the data. 1In
several instances we used simple statistical methods. For
example, using t-test a discordance test was develcped to
eliminate least varying features. Outliers in the data were
identified using a z-test; correlated features were removed/
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merged using a colinearity test. We provided an order and
structure to the entire classification process. We identified
the behavior of different algorithms and established rules to
determine the situation where one is suitable.

Since minimal expert knowledge is required, the proposed
approach has significantly reduced the time required to
acquire and organize the knowledge. Also the major source of
knowledge is represented in the form of analytical and empiri-
cal knowledge. This arrangement has helped in minimizing the
expert biases and providing consistent and irobust decision
making capability. The hierarchical classification algorithm
was able to solve the signal classification problems of larger
proportions without deteriorating the recognition performance.

In addition the approach will open further avenues in the
research and application of expert systems and knowledge
engineering. The use of pattern recognition methods to
relieve the expert will not only provide another expert system
building tool but also add new dimensions in the fields of
both artificial intelligence and pattern recognition.

In fact, the recognition components we developed are generic
in behavior and can be used for a variety of applications.
The author conjectures that without any major restructure the
system should perform equally well as long as a situation is
submitted as a signal classification problem and a domain-
dependent knowledge base 1is available. However, the input
does not necessarily have to be in the form of signals, since
we are using PR techniques minor data dependent modifications
can be made in the Facts Gathering phase to include other
forms of data. Possible classes of problems include: signal
processing, quality assurance and evaluation of materials
particularly in nuclear and aviation industry, grains and
other food items; medical diagnostic systems; remote sensing,
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and environmental applications and chemometric applications
such as gas chromatography, mass spectroscopy and infrared
spectroscopy.
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Appendix - A
FEATURE EXTRACTION DETAILS

This Appendix provides additional details on the extraction of
features. It is necessary to refer to Chapters 2, 3 and 4 to
understand the contents c¢f this appendix. The features
extracted for two problems, namely: NDT and EEG are described
in order. The features we used for PNA problem are already
described in Section 7.7. We had no information on the CEL
problem and as such the features provided by Tektrend were
labeled in order of their storage, i.e., 1 through 85. A
majority of features in all three problems were measured by
extracting envelopes from the waveform in a specified domain.
Since CEL problem was also a signal classification problem we
suspect that the same methodology might have been used for
this problem as well. The procedures for mapping and the
algorithm for extracting an envelope are described in Chapter

2.

A computer program was developed to identify the significant
peaks in a signal/spectra, in an information doamin. The
procedure returns 24 descriptive values listed in Table A.A.1.
All descriptive values were related to seven reference points

in each peak and are defined below:

P: start of a peak p, = maximum of a peak

end of a peak

Pi
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Ascending and descending slopes at points p,, p,, and p; were
also determined which in turn determined the thresholds for

the ascending and descending amplitudes, i.e.,

Asc_Amp
Dsc_Amp

Ps
Ps
Pe
P,

= sample where Slope > Slope (p,} + (0.1

sample where Slope
sample where Slope
sample where Slope

Slope (p,) - Slope (p,)
Slope (p,) - Slope (p,)

* Asc_Amp)
Slope (p,) + (0.9 * Asc_Amp)
Slope (p;} + (0.9 * Dsc_Amp)
Slope (p,} + (0.1 *

v

v

v

Dsc_Amp)

Table A.A.1

Descriptive Values Derived from the Envelope

Value No. Derivation
1 Ascending span = p; - p,
2 Descending span = p, - ps
3 Ascending slope (S) = (S(ps) -S{p4))/(pPs - p,)
4 Descending slope = (S(p,) - S(p¢) )/ (pP; - Pe)
5 Top = location of the peak’s maximum
6 base width = (p;, - p,)
7 base width = (p; - ps)
8 max (Asc_Amp, Dsc_Amp)
9 half ascent width = Top - (p, + Ppg)/2
10 half descent width = (p, + ps)/2 - Top
11 Pa
12 Ps
13 Pa
14 Ps
15 Ps
16 P+
17 S (p.)
18 S(ps)
19 S (p¢)
20 S (py)
21 Total area under the peak. The baseline was
Min (p,, Pps)
22 Area before Top
23 Area after Top
24 No. of peaks
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A. Features Measured for NDT Problem

To obtain a larger set of features the measurements were made
| in time domain as well as in four other domains. Features 1
i through 108 were measured by the staff at Tektrend, whereas
| the features 109 through 114 were extracted by the author from
the raw waveforms in the time domain. These features are
listed in Table A.A-3.

1. Time Domain

Features 1 through 36, and 109 through 114 are derived from
the time domain. The jump in feature numbers exists because
the last six features were added after the rest of the list

had been created.
Table A.A-2

Time Domain Features

Feature Id Explanation / Procedure to Measure

1 Total number of significant peaks

2 Number of peaks whose amplitudes exceed 10% of the
maximum amplitude of the signal

3 Number of peaks whose amplitudes exceed 25% of the
maximum amplitude

4 Location of the largest peak

5 Amplitude of the largest peak

6 Location of the second largest peak
7 Amplitude of the second largest peak
8 Location of the third laryest peak

9 Amplitude of third largest peak

0

1 Percentage of the total area under all peaks that
the largest peak covers

11 Percentage of the total area under all peaks that
the second largest peak covers

12 Percentage of the total area under all peaks that

the third largest peak covers
Contd.

313



Table A.A-2 (Contd.)

Time Domain Features

Feature Id Explanation / Procedure to Measure

13 The distance (time) between the largest and the
second largest peaks

14 The distance (time) between the largest and the
third largest peaks

15 The distance (time) between the second largest and
the third largest peaks

16 The time of significant ascent in the largest peak

17 The slope of significant ascent in the largest peak

18 The time of significant descent in the largest peak

19 Slope of significant descent in the largest peak

20 The base width of the largest peak

21 The width from half of ascent of the largest peak,
plus the width to half of descent

22 The top width of the largest peak

23-29 Same as features 16 through 22, except they are for
the second largest peak.

30-36 Same as features 16 through 22, except they are for
the third largest peak

109 The sum of the products of the amplitude of each
peak and the distance (time) to its predessor. This
is a slight modification of the Acousto Ultrasonic
Parameter (AUP) suggested by ([VARY-79]. It is an
approximation to the area under the curve formed by
joining the significant peaks of the time domain

110 This is a feature that can be considered another

modification of the AUP. It is sum of the products
of two numbers. The first number is the difference
in amplitude between a peak and its predecessor.
The second number is the distance between the same
peak and its predecessor. The feature is zero if
all significant peaks had the same amplitude, and
it becomes larger as the amplitude of the signifi-
cant peaks becomes more variable.
Contd.
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Table A.A-2 (Contd.)

Time Domain Features

Feature Id Explanation / Procedure to Measure

111-114 These features are related to the Coefficent of
Kurtosis. Coefficent of Kurtosis (CK) for one
peak is defined as:

CK = my /(m2)2I

where
m, = (1/N) * (A, - A)Y,
mz = (l/N) * (Aj_ - A)zr
N = number of samples in the peak,
A, = value of sample i,
and A = mean value of all samples in the

peak.

The CK value is computed for the three largest
peaks.

Feature 111 is CK of the largest peak, 112 in CK of the
second largest peak, 113 is CK of the third largest peak,
and 114 is the sum of 111 through 113.

2. Power Domain

The power domain provides features 37 through 54. Table
A.A-3 lists these features.

Table A.A-3

Power Domain Features

Feature Id Explanation / Procedure to Measure
37 Number of peaks in the data set
38 Number of peaks above 10% of maximum power is the
data set
39 Number of peaks above 25% of maximum power
40 Location of the largest peak
41 Amplitude of the largest peak
Contd.
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Table A.A-3 (Contd.)

Power Domain Features

Feature Id Explanation / Procedure to Measure

42 Location of the second largest peak

43 Amplitude of the second largest peak

44 Percentage of the area under all peaks in the
domain that is under the largest peak

45 Percentage of the area under all peaks that
is under the second largest peak.

46 Distance (frequency span) between the location of
the largest and second largest peaks

47-54 The original plan was that these features would be

the partial power in each octant of frequency.
Because the energy in the highest three quarters of
frequency was filtered out, the remaining quarter
of frequency that still has the data was divided
into eight parts as these eight features.

3. Phase Domain

The phase domain contains features 55 through 72 and are
listed in Table A.A-4:

Table A.A-4

Phase Domain Features

Feature Id Explanation / Procedure to Measure
55 Number of peaks in the data set
56 Number of peaks above 10% of maximum phase in the
data set
57 Number of peaks above 25% of maximum phase
58 Location of the largest peak
59 Amplitude of the largest peak
60 Location of the second largest peak
61 Amplitude of the second largest peak
62 Percentage of the area under all peaks in the

domain that is under the largest peak
Contd.
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Table A.BA-4 (Contd.)

Phase Domain Features

Feature Id Explanation / Procedure to Measure

63

64

65-72

Percentage of the area under all peaks that

is under the second largest peak.

Distance (frequency span) between the location of
the largest and second largest peaks

The original plan was that these features would be
the partial power in each octant of frequency.
Because the energy in the highest three quarters of
frequency was filtered out, the remaining quarter
of frequency that still has the data was divided
into eight parts as these eight features.

4. Cepstral Domain

The cepstrum provides features 73 through 90 and are listed

in Table A.A-5:
Table A.A-5
Cepstral Domain Features
Index Explanation / Procedure to Measure
73 Number ot peaks in the data set

74

75
76
77

78
79
80

81

Number of peaks above 10% of maximum cepstrum value
in the data set

Number of peaks above 25% of maximum cepstrum value
Location of the largest cepstral peak

Amplitude of the largest peak

Location of the second largest peak
Amplitude of the second largest peak
Percentage of the area under all peaks in the
domain that is under the largest peak
Percentage of the area under all peaks that
is under the second largest peak.
Contd.
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Table A.A-5 (Contd.)

Cepstral Domain Features

Index

Explanation / Procedure to Measure

82

83-90

Distance (frequency span) between the location of
the largest and second largest peaks

These features are the partial area of the cepstrum
curve in each octant of cepstral "frequency." It is
not necessary to use only the lowest quarter of
"frequency" because the process of taking the
natural logrithm and doing another FFT spread
energy to all "frequences."

5. Autocorrelation Domain

The autocorrelation domain providcs features 91 through 108
and are listed in Table A.A-6:

Table A.A-6

Autocorrelation Domain Features

Feature Id Explanation / Procedure to Measure

91 Number of peaks in the data set

92 Number of peaks above 10% of maximum autocorrela-
tion value in the data set

93 Number of peaks above 25% of maximum autocorrela-
tion value

94 Location of the largest cepstral peak

95 Amplitude of the largest peak

96 Location of the second largest peak

97 Amplitude of the second largest peak

98 Percentage of the area under all peaks in the
domain that is under the largest peak

99 Percentage of the area under all peaks that
is under the second largest peak.

100 Distance (frequency span) between the location of

the laryest and second largest peaks
Contd.
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Table A.A-6 (Contd.)

Autocorrelation Domain Features

Feature Id Explanation / Procedure to Measure

101-108 These features are derived from the intermediate
product, which is the transform of autoccorrela-
tion. The steps in this transform data were
treated as frequency steps and Fourier power
coefficients were derived (as described above)
from these transform coefficents. These eight
features were planned to be the partial power in
eacn octant, but here again the preprocessing made
all the frequency equal to zero. Therefore, the
lowest quarter of frequancy was divided into eight

parts, and the partial powers in those parts were
saved as these eight features.

B. Features used for EEG Problem

1. Statistical Features

Using standa :d formulas for statistical measures of
variations and measures of dispersions [ANDR-58] these

features were evaluated and are listed in Table A.B.1

Table A.B-1

Statistical Features

Index Label Explanation / Procedure to Measure

1. SMv Signal Mean Value

2. SSD Signal Standard Deviation
3. SKF Skewness Factor

4. KUR Kurtosis Excess

5. CVR Coefficient of Variation
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2. Zero Crossing Features

These features are listed in Table A.B-2

Table A.B-2

Statistical Features

Index Label Explanation / Procedure to Measure

6. AVF Average Frequency of Zero Crossing of Origi-
nal Signal.

7. AFD Average Frequency of Zerxro Crossing in the
same direction of Original Signal.

8. AFl Average frequency of Zexo Crossing of 1lst
derivative.

9. AF2 Average Frequency of Zero Crossing in the
same direction of 1st Derivative.

10. AF3 Average Frequency of Zero Crossing of 2nd
Derivative.

11. AF4 Average Ferquency of Zero Crossing in the
same direction of 2nd Derivative.

3. Hjorth Slope Descriptor

These features are listed in Table A.B-3,

Table A.B-3

Statistical Features

Index Label Explanation / Procedure to Measure

12. MOB MobilityM = sqrt((a2/a0)]
13. CPX ComplexityC = sqrt[(a4/a2)-(a2/a0)]
where a0 is the variance of the original signal
a2 is the variance of the 1lst derivative
a4 is the variance of the 2nd derivative

4. Time Domain Pulse Shape Feature

These features are listed in Table A.B-4
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Table A.B-4

Statistical Features

Index Label Explanation / Procedure to Measure

14. NPK No. of Peaks above base line of the original
signal.

15. PK1 No. of Peaks above 10% maximum signal ampli-
tude.

16. PK2 No. of Peaks above 25% maximum signal ampli-
tude.

17. APR Average Amplitude of Rising Peaks.

18. APF Average Amplitude of Falling Peaks.

19. PRT Greatest Peak Rise Time (Original Signal)

20. PRS Greatest Peak Rise Slope (Original Signal)

21. PFT Greatest Peak Fall Time (Original Signal)

22. PFS Greatest Peak Fall Slope (Original Signal)

23. PPW Greatest Peak Pulse Width (Criginal Signal)

24. HPW Greatest Peak Half Pulse Width (Original
Signal)

5. Featurea from Derivatives of Original Signal
These features are listed in Table A.B-5.
Table A.B-5
Statistical Features
Index Label Explanation / Procedure to Measure

25. AIN Average Interval between 2 consecutive 2zero
crossings of same polarity of (1lst derivat-
ive).

26. PKD No. of Peaks above signal base line (1st
derivative) .

27. DR1 No. of Peaks above 10% maximum signal ampli-
tude (1lst derivative).

28. DR2 No. of Peaks above 25% maximum signal ampli-
tude (1lst derivative).

29. DR3 No. of Peaks above signal base line (2nd
derivative) .

30. DR4 No. of Peaks above 10% maximum signal ampli-
tude (2nd derivative).

31. DR5 No. of Peaks above 25% maximum signal ampli-

tude (2nd derivative).
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6. Low Frequency Spectra Power Distribution Features

These features are listed in Table A.B-6.

Table A.B-6

Statistical Features

Index Label Explanation / Procedure to Measure

32-81 P01 - P50
Features 32 to 81 represent the % of partial

power in 1 Hz sections (from DC to 50Hz)
expressed in units of percentage with res-
pect to the sum of power distributed in the
DC to S0OHz range.

82. MXP Maximum % of Partial Power in the DC to 50
Hz range.

33 MNP Minimum % of Partial Power in the DC to S0
Hz range.

7. Higher Frequency Spectra Power Distribution Features

These features are listed in Table A.B-7.

Table A.B-7

Statistical Features

Index Label Explanation / Procedure to Measure

84-92 PH1 - PH9
Features 84 to 92 represent the % of partial

power in 50 Hz sections (from 50 Hz tc 500
Hz) expressed in units of percentage with
respect to the sum of power distributed in
the DC to 500Hz range.

93. XPN Maximum % of Partial Power in the DC to 500
Hz range.

94. NPH Minimum % of Partial Power in the DC to 500
Hz range.
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8. Auto-Correlation Pulse Shape Features

These features are listed in Table A.B-8.

Table A.B-8

Statistical Features

Index Label Explanation / Procedure to Measure
95. APK No. of Peaks above signal base line (auto-
correlogram) .
96. APl No. of Peaks above 10% maximum signal ampli-
tude (auto-correlogram).
97. AP2 No. of Peaks above 25% maximum signal ampli-
tude Position
98. GPK Position of Greatest Peak
99 GPL Greatest Peak Amplitude
100 2PP 2nd greatest Peak Position
101 2PA Amplitude of 2nd the Greatest Peak
102 PKA % Total Area under the Greatest Peak
103 TAR % of Total Area under the 2nd greatest Peak
104 PDS Distance between the two Greatest Peak.
5. Auto-Correlation Spectra Distribution features

These features are listed in Table A.B-9.

Table A.B-9

Statistical Features

Index Label Explanation / Procedure to Measure
105 PP1 % of Partial power in 1lst octant - auto cor-
relation spectrum (ACR). .
106 PP2 % of Partial power in 2nd octant - ACR
107 PP3 % of Partial power in 3rd octant - ACR
108 PP4 % of Partial power in 4th octant - ACR
109 PP5 % of Partial pewer in 5th octant - ACR
110 PP4 % of Partial power in 6th octant - ACR
111 PP7 % of Partial power in 7th octant - ACR
112 PP8 % of Partial power in 8th octant - ACR
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Appendix - B
Acquisition and Characterigtics cof Data Sets

B.1l NDT Data Set

The NDT data was collected using ARIUS I [LACA-88] system
which drove a 2.25 MHz ultrasonic signal into the steel bar.
The transmitted signal was detected using a model A2385L 3252
Acoustic Emission Technology (AET) transducer and amplified
with an AET model 140 preamplifier with 40 db gain and a
passband from 100kHz to 2 MHz. The resulting acoustic
emission signals were digitized at 16 MHz and the digitized
signal was stored on the ARIUS hard disk. A total of 400 data
files were created, 40 for each of the 9 flaw types and 40 for
the unflawed bar as well. Each data file consisted of 2048
data points. Additional details on this data are given in
Chapter 3.

B.2 EEG Data Set

Data on nine human subjects were recorded from 10 silver
electrodes applied with Grass EC2 cream, and referenced to
vertex. Electrodes placement was done using the standard
international 10-20 placement system, i.e., assigning the
electrodes to points: F3, F4, F7, F8, T3, T4, TS5, T6, 01, 01,
and 02 on the patient’s skull. A Grass Model 8 (16 Channels)
clinical polygraph with filters set at 0.5 Hz was used for all
data acquisition. Data were recorded for 1later off-line
analysis on a 16 channel Vetter - An instrumentation tape
recorder having a minimum 3 db band width of 0-100 Hz. Epochs
of one second duration were sampled at a rate of 256 samples
and then stored on floppy diskettes.

Nine male volunteer subjects were instructed to generate eye

and muscle artifacts. Eye artifacts were produced by blink-
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ing, fluttering eyelids, and rolling eyes. Muscle artifacts
included jaw clenching and raising eye brows. A five minute
sample of eye-closed, resting EEG data was also collected.
Original EEG paper tracings were inspected. A total of 5800
EEG epochs were selected. There were 2285 eye artifacts
epochs (977 obvious, 7%6 subtle, and 552 questionable), 2745
muscle artifact epochs (1639 obvious, 632 subtle, and 474
questionable), and 770 non-artifact epochs. Two subsets were
created, one for use ir. classifier development and other for
testing. Each of these subsets contained 600 epochs (200 eye
artifact, 200 muscle artifact, and 200 non-artifact)

B.3 PNA Data Set

The samples on 20 classes of petroleum oils (polynuclear
aromatic or PNA compounds) were provided by Dr. Eastwood of
Lockheed, ESC. The data was generated using the following

process:

A Spex Fluorolog-2 spectiofluorometer was used to collect all
fluorescence spectra. The system consisted of a double
excitation monochromator and a double emission monochromator
with gratings ruled at 1200 grooves per millimeter and blazed
at 300 nanometer (nm) for excitation and 500 nm for emission.
The excitation source consisted of a 450 Watts ozone generat-
ing Xenon lamp. Photomultiplier tubes used for the emission
detector were a Hamatsu R928 and for the reference detector
(rhodamine - B reference quantum counter) a Hamatsu R508. The
spectrofluometer was interfaced to a Spex DM3000 MS-DOS based
personal computer. Slit widths used in all synchronous data
collection were 1.25 mm {(bandpass = 2.1 nm) for both excita-
tion and emission spectra were collected using 1 ug/mL for the
oils dissolved in spectroquality cyclohexane using a standard
10 mm fused silica cell. Synchronous spectra were collected by

scanning both monochromators with a wave-length interval (off-
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set) of 6 nm and collecting emission data from 260 to 610 nm
and were digitized with a stepsize of 1 nm. All spectra were
collected in the S/R mode, giving a ratio of the emission
signal to the reference signal. The spectra were also
collected using a radiometric correction. The spectro-
fluorometer was initially calibrated using a mercury pen lamp
with daily calibration being done using an ovalene standard
dissolved in polymethylmethacrylate, obtained from Starna
Cells, Inc. Cyclohexane blanks were analyzed with each oil
sample. These background spectra were then subtracted from
the sample spectra. The synchronous spectra were then normali-
zed to compensate for the difference in fluorescence yields
among various oils. Cyclohexane was high purity grade from
Brudick and Jackson. Reference oils were obtained from Oak
Ridge National Laboratory and the Environmental Protection
Agency (EMSL- Cincinnati).
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