INFORMATION TO USERS

This manuscript has been reproduced from the microfiim master. UMI films the
text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleedthrough, substandard margins, and improper alignment
can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and
there are missing pages, these will be noted. Also, if unauthorized copyright
material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning
the original, beginning at the upper left-hand comer and continuing from left to
right in equal sections with small overlaps. Each original is also photographed in
one exposure and is included in reduced form at the back of the book.

Photographs inciuded in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9” black and white photographic
prints are available for any photographs or illustrations appearing in this copy for
an additional charge. Contact UMI directly to order.

®

UMI

Bell. & Howell Information and Learning
300 North Zeeb Road, Ann Arbor, Mi 48106-1346 USA
800-521-0600

CPSS: A FLEXIBLE AND EFFICIENT SIMULATOR FOR
WORMHOLE-ROUTED MULTICOMPUTERS

HoaAaNG UYEN TRANG NGUYEN

A THESIS
IN
THE DEPARTMENT
OF
COMPUTER SCIENCE

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF MASTER OF COMPUTER SCIENCE
CONCORDIA UNIVERSITY
MONTREAL, QUEBEC, CANADA

JUNE 1997
© HoaNG UYEN TRANG NGUYEN, 1997

il

National Library

of Canada du Canada

Acquisitions and Acquisitions et

Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

395, rue Wellington
Ottawa ON K1A ON4

Bibliothéque nationale

services bibliographiques

Your file Votre référence

QOur file Notre reférence

L’auteur a accordé une licence non
exclusive permettant a la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-40221-5

Canada

Abstract

CPSS: A Flexible and Efficient Simulator for Wormhole-Routed
Multicomputers

Hoang Uyen Trang Nguyen

In this thesis, we present the design and implementation of the Concordia Parallel
Systems Simulator (CPSS), a simulator for wormhole-routed multicomputers. The
ultimate purpose of the CPSS is to provide a parallel programming environment which
allows users to study impacts of system and software factors on program performance
and to locate performance bottlenecks in parallel programs.

The major challenge in the design of the CPSS is to make a good tradeoff between
the accuracy of simulation results and the feasibility of simulation time. The CPSS
can accurately simulate a large range of regular topologies that represent the com-
munication structures of most applications in scientific computations as well as the
topologies of many large-scale wormhole-routed networks. Users are given the flexibil-
ity of changing communication and computation parameters as often as needed. This
flexibility allows for thorough analyses of program performance under different sets
of systems parameters, or on various multicomputer systems having different charac-
teristics. The CPSS provides a rich, powerful and user-friendly set of correctness and
performance debugging tools. Performance statistics at several levels of details are
available for users to fine-tune their programs.

To support efficient network communication, we also propose optimal program
mappings specifically designed for wormhole-routed networks. Qur theoretical work
in program mapping on wormhole-routed networks aims at emphasizing the impor-
tance of good mappings on such networks. As wormhole routing has become more
popular, network sizes are expanded, and communication overheads are reduced, good
mappings are indispensable to ensure high performance of applications running on

wormbhole-routed networks.

i1

A cknowledgements

I would like to thank Dr. Lixin Tao for his thesis supervision for the last four years.
My thanks also go to the CPPE team: Dr. Lixin Tao, the team leader, and Hassan
Hosseini designed and implemented the CPCC; they and Thien Bui also participated
in the design and implementation of the code execution module of the CPSS.

[am grateful to the professors of the Computer Science department, especially Dr.
Grogono, who gave an excellent course on programming methodology (COMP244),
Dr. Probst, who taught me so many courses, and Dr. H.F. Li, who has offered me
guidance, advice and encouragement.

Thanks are also due to the administrative assistants of the department, especially
Ms. Halina Monkiewicz and Ms. Stephanie Robert. Their friendliness and adminis-
trative support have made graduate students’ life much easier. Thanks must also go
to the UNIX system administrators, who have provided superior system support and
services.

My good friends always deserve my appreciation: Mara Janto, Darm Muthiayen,
Rong Fan and Hassan Hosseini. They have shared with me not only my accomplish-
ments but also my frustration.

My family has been very supportive, especially my parents. I am equally grateful
to my uncles and their families for their help and encouragement.

My thanks also go to my fiancé Tam for his unconditional love and support. He

helped to draw most of the graphical figures in this thesis.

v

Contents

List of Tables
List of Figures

1 Introduction

1.1 Motivations

................................

1.2 Approaches e e e
1.3 Contributions of the Thesis
1.3.1 Parallel System Simulator
1.3.2 Wormbhole-Routed Network Simulator
1.3.3 Optimal Mappings on Wormhole-Routed Networks

1.3.4 Summary
1.4 Thesis Outline

.............................

...............................

2 Literature Survey

2.1 Code Execution Simulation

.......................

2.1.1 Direct Execution
2.1.2 Direct Execution with Code Augmentation
2.1.3 Functional Simulation
2.1.4 CPSS Simulation Technique
2.2 Wormhole-Routed Network Simulation
2.2.1 Routing Techniques
2.2.2 Wormhole-Routed Network Simulators
2.2.3 Our Network Simulation Technique
2.3 Program Mapping on Wormhole-Routed Networks

X1

Fal
O W 0~ D P N =

bt
o

3 System Architecture and High-Level Design 34

3.1 Design Objectives 34
3.2 Modeling the Multicomputer System 36
3.2.1 System Architecture 36
3.2.2 Communication Parameters 37
3.2.3 Computation Parameters. 40

3.3 Application Programming Model 42
34 CPSS High-Level Design 43
3.4.1 General Structureof the CPSS 43
3.4.2 The Code Execution Module 44
3.4.3 The NetworkModule 46
344 TheUserlInterface 47
3.4.5 The Debugging Monitor 47

3.5 Measures to Meet the CPSS Design Objectives 48
3.5.1 Accurate Simulation 48
3.5.2 Performance. 48
3.53 Tlexibility 49
3.54 Repeatability 51
3.5.5 Correctness Debugging 53
3.5.6 Performance Debugging 54
3.5.7 User-Friendliness and Portability 54

4 The Code Execution Module 56
4.1 Processors e e e e e e e e e o7
4.1.1 Virtual Processors versus Physical Processors 57
4.1.2 Processor Numbering 58
4.1.3 Data Structures o . 58
4.1.4 Physical Processor Allocation 60
4.1.5 Context Switching 61

4.2 Memory Management 62
4.2.1 Physical View of Local Memories 62
4.2.2 Design Choices 63
4.2.3 Implementation 64
4.24 Memory Management for Processes 66

vi

4.3

4.4

4.5

4.6

5 The
5.1

4.2.5 Memory Management for Function Calls 73

Processes i e e e e e e 76
43.1 DataStructures 76
4.3.2 Parallelism by Time Slicing 78
43.3 ProcessStates 78
4.3.4 Process Scheduling 82
43.5 Deadlock. 84
fork Processes e 87
44.1 fork Statement 87
44.2 fork Process Creation 88
44.3 fork Process Termination 95
444 gjoin Statement 98
forall Processes e 100
4.5.1 forall Statement 100
4.5.2 forall Information Blocks 102
4.5.3 forall Process Creation 105
4.5.4 forall Process Termination 113
Channels 115
4.6.1 Channel Variables. 115
4.6.2 Channel Design Issues 117
4.6.3 Channel Descriptors 119
4.6.4 Channel Buffers for Basic Types 120
4.6.5 Channel Buffers for Composite Types 124
4.6.6 Channel Operations on Basic Types 126
4.6.7 Channel Operations on Composite Types 131
Wormbhole-Routed Network Simulator 135
Network Parameters 135
5.1.1 Network Topology 135
5.1.2 Network Size 136
5.1.3. Virtual Channels 137
5.1.4 Messageso e e e e e e 141
515 Packets L 141
516 Flits e 142

vii

5.1.7 Message Startup Overheads 143

5.1.8 RoutingScheme. 143

5.1.9 Flit Routing Latency 144

5.2 Data Structures and Their Operations 145

521 Network Clock 145

522 Nodes e 145

523 Links. e e e 146

524 Virtual Channels 149

525 Messages. e e e e 150

52,6 Packets e 152

527 Flits e e 153

5.2.8 RoutingScheme. 154

5.3 Network Simulation Algorithm 155

5.3.1 Overall Algorithm 155

5.3.2 CommunicationStep, 157

5.3.3 Link Bandwidth Allocation 163
5.3.4 Approximate Round-Robin Scheduling for Link Bandwidth Al-

location 165

5.3.5 Header I'lit Overheads 170

5.4 Performance Comparison with Dally’s Simulator 170

6 Optimal Program Mappings for Wormhole-Routed Networks 174

6.1 Definitions and Notations 175

6.2 Mapping Functions 176

6.2.1 Review of Existing Mappings 176

6.2.2 Mapping of aRingontoaLine 176

6.2.3 Mappingof aRingontoa2-DMesh 177

6.24 MappingofaRingontoa3-DMesh 178

6.2.5 Mapping of a 2-D Torusontoa2-DMesh 180

6.2.6 Mapping of a 3-D Torusontoa 3-DMesh 181

6.3 ExperimentalResults 183

7 Conclusion and Future Work 186

vili

A Parallel Features of the CPC Language
A.1 Creation of Parallel Processes
A.l.l fork Statement

A.12 forall Statement,

A.2 Parallel Architecture Definition

A.3 Mapping Processes to Virtual Processors

......................

A.4 Process Communication via Channel Variables
A.4.1 Declarations of Channel Variables
A.4.2 Binding Channel Variables to New Processes
A.4.3 Read and Write on Channel Variables.

B CPSS User’s Manual
B.1 Getting Started e
B.2 An Overview of CPSS Commands

B.3 Basic Commands

....................

.............................

B.4 Setting the Physical Architecture
B.5 Displaying and Changing System Parameters.
B.6 Displaying Process Status

........................

B.7 Setting Breakpoints L oo
B.8 Stepping Through a Process
B.9 Writing Variables o oL oo
B.9.1 Variables of Basic Types
B.9.2 Variables of Type Structure
B.9.3 Variables of Type Array
B.9.4 Variables of Type Channel
B.10 Tracing Variables
B.11 TIME Command
B.12 Displaying Processor Utilization
B.13 Settingthe Alarm Lo e

B.14 VARYSPEED Command

.............................

.............................

.........................

C CPPE’s vCode Instructions
C.1 List of vCode Instructions
C.1.1 Load/Store

........................

............................

ix

189
189
190
193
199
200
201
202
204
206

210
210
211
212
213
214
215
215
216
217
217
218
218
219
219
221
222
223
223

225

C.1.2
C.13
C.l4
C.15
C.1.6
C.1.7
C.1.8

Other Memory Operations 226
Conditional Statements. 226
Mathematical and Logical Operations 227
Function Calls 227
Parallel Processes 228
Channel Operations 228
Miscellaneous, 229

List of Tables

1 Performance comparison with Dally’s simulator

x1

List of Figures

O 00 ~J O W o> W N =

— e = =
™ W o = O

—
(&1

16
17
18
19
20
21
22
23
24
25

General structureof the CPPEo, 6
Modeling the multicomputer system 12
CPSS structure and operations 44
Physical view of local memories 63
Data structures of the memorypoolinC 65
Implementation of the common memory pool 67
Memory management for processes 69
Examples of a new child’scode 70
Structure of an activationrecord. Lo oL T4
Function call (vCode instructions are in bold face) 74
Process control block structurein C, 79
Process state transitions L0000 82
Process scheduling algorithm 85
Examples with fork statement 87
Algorithm for fork process creation (vCode instructions are in bold

face) e e 88
Algorithm of vCode instruction NewForkChild 91
Initializinga PCB o oo 92
Parent process preparing for parameter evaluation 93
fork with parameter passing (vCode instructions are in bold face) . . 94
Algorithm of vCode instruction WakeupProcess 94
Algorithm of vCode instruction ForkChildEnd 96
Function forkDeathProcessing() 97
Examples of forall statement 100
Structure of forall informationblocks 103
The steps of executing a forall statement 105

xii

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
30
51
52
53
54
35

The parent’s stack during execution of a forallloop 106

Instruction BegForallLoop 107
Algorithm of vCode instruction NewForallChild 108
Instruction EndForallLoop 110
Control flow for executing a forallloop. 111
Function forallDeathProcessing() 114
Examples of channel variables and operations 116
Channel data structuresin C 119
The steps of readinga channel 121
Data structures of the channel bufferin C 121
Implementation of the channel buffer 122
The list of free buffer entries (freeList). 123
Implementation of composite-type channels 125
Algorithm of vCode instruction STChannel 128
Algorithm of vCode instruction LDChannel 132
Two virtual channels sharing a physical link 138
Virtual channel abstraction for simulation 138
Simulationof a flit transfer 139
Structure of an 8-bytepacket00 142
Link numbering L oo oo 148
Handshaking protocol between two adjacent routers 158
Chittor’s algorithm for one communicationstep 159
Dally’s algorithm for one communicationstep 162
Chittor’s implementation of flit movement 166
Link scheduling dependency 167
Dally’s implementation of flit movement 168
IMustration for the proof of Proposition 3 177
Mapping of a ring onto a 2-D mesh (m=7) 179
Mapping of a ring onto a 3-D mesh (m=53) 180
Iustration for the proof of Proposition 4 182
Experimental Results 185

Xiil

Chapter 1
Introduction

Many scientific and engineering problems have required large-scale computations
which cannot be provided by uniprocessors. Parallel processing has shown its poten-
tial to meet the demands for high computing power. People have resorted to parallel
computers to speed up the processing of many important scientific and engineering
applications (e.g. weather forecast, oceanography, astrophysics, computational aero-
dynamics, energy resources exploration, genetic engineering). To increase application
performance using parallel processing is nonetheless a complex task because perfor-
mance of parallel applications is influenced by many hardware and software factors
such as algorithm design, system architecture, message routing technique, network
speed, programming model, data and program mapping, and operating system.

In order to evaluate and improve performance of parallel applications effectively,
all deciding factors must be taken into account. Also, programmers/designers should
be able to observe effects of these factors on their applications so as to detect system
bottlenecks and thus optimize performance of the applications (this is referred to
as performance debugging). Unfortunately, there has been a lack of performance
debugging tools for parallel applications and architectures.

The objective of this research is to provide flexible and efficient software tools for
developing parallel code as well as evaluating and optimizing performance of parallel
applications to be run on message-passing multicomputers.

In this chapter, we first discuss the motivations and objectives of our work. We
then present the approach to realize our objectives, and a summary of our contribu-

tions. An outline of the thesis chapters is also included.

1.1 Motivations

Parallel computers are architecturally classified into two categories: shared memory
and message passing. In a shared-memory multiprocessor, all processors uniformly
share a centralized physical memory. Processes on different processors communicate
via shared variables residing in the shared memory. A message-passing multicomputer,
in contrast, has no shared memory: each processor of the multicomputer accesses its
own local memory. Communication between processes is achieved by messages sent
across the network connecting the processors.

Shared-memory architecture suffers from long delays of remote memory accesses.
Another serious drawback of this architecture is the lack of scalability due to the
centralized shared memory. It is very difficult to build a large shared-memory mul-
tiprocessor using a physically shared memory because the number of pins and pads
on the memory chip is very limited. Only a few tens of processors may be connected
to the physically shared memory. The shared memory can also be implemented by
physically distributed memories connected by a common bus, a crossbar switch, or
a multi-stage network. However, scalability is still a problem since every memory
access must now go through the bus, the switch, or the network. Memory access traf-
fic would degrade application performance significantly as the system size increases.
Shared-memory architecture is thus not suitable for very large systems or applications.

Message-passing multicomputers, on the other hand, are more scalable due to
the distributed nature of local memories. The main concern is latency incurred by
message sends/receives. However, with the advancement of hardware technology,
high-speed networks and efficient routing techniques have made message-passing ar-
chitecture the developing trend for parallel computing.

This thesis studies message-passing applications and architectures. Our main goal
is to help programmers write efficient parallel programs by detecting and eliminating
performance bottlenecks in the programs. Performance of parallel programs depends
on many hardware and software factors. Important influencing factors include sys-
tem size and topology, algorithm design, program and data mapping, and routing
technique.

The performance of an application may be good on systems with small sizes but
degrade tremendously as system size increases. The problem here is the lack of

scalability of the application. Therefore, system size is an important factor to be

considered in evaluation of application performance.

Another factor affecting program performance is system topology. For the sake of
programmability, message-passing programs are usually written using virtual topol-
ogy, the topology most natural to express the program structure. For example, the
natural topology for matrix operations is 2D-mesh or 2D-torus. The virtual topology
may be the same as or different from the topology of the physical system on which
the program is running. Ideally, the underlying machine topology should match the
organization of the application in order to obtain best performance: mapping commu-
nicating processes to processors close to each other can help minimize communication
latency. Therefore, system topology must be taken into account when selecting or
developing a multicomputer for specific applications.

To achieve high performance, algorithm design should consider both computation
and communication complexities. Algorithm design is even more crucial to parallel
programs than to sequential programs due to the addition of communication cost to
program performance. One of the design goals should be to minimize the amount
of data to be sent. Furthermore, communicating processes should be placed close to
each other to reduce communication latency and traffic. Another design issue is the
scalability of algorithms. Ideally, application performance should increase linearly
with the system size.

Program and date mapping are essential for parallel programs to achieve high
performance on message-passing multicomputers. Well-designed mappings are needed
to place communicating processes close to each other so as to minimize interprocessor
communication cost. Data mapping is equally important. Each process must rely
mainly on its own local variables and its own local portion of the shared data. The
message passing for data exchange must be relatively infrequent to limit interprocessor
communication.

Since communication overhead may dominate the total cost of an application,
routing techniques have direct impacts on program performance. Whether a routing
technique is suitable for a specific application depends on the communication pattern
of the application. For example, in low traffic, wormhole routing offers low latency
to individual messages. However, packet switching may achieve higher throughput at
high loads [28].

Our objective has been to provide a parallel programming environment which

allows users to study impacts of system and software factors on program performance,

3

and locate performance bottlenecks in the program.

1.2 Approaches

We had three choices to realize our objective mentioned above:

1. Analytical modelling: Performance aspects of a parallel program under specific
conditions may be estimated using mathematical formulation. This approach,
however, is suitable only for simple and small computer systems and applica-
tions. Multicomputer systems and their applications are sufficiently complex to

make analytical modelling very difficult.

2. Use of real machines: We could run parallel programs directly on a multi-
computer to study their performance. However, testing and debugging tools
supported on real multicomputers are currently very limited. Moreover, real
parallel computers are non-deterministic in nature: the probability for some
bugs to occur may be one over ten thousand. Thus it is very hard to test,
debug and tune a program on a real multicomputer. Topologies and sizes sup-
ported by a real multicomputer are also restricted within small ranges. This
limitation does not allow for studies of scalability of parallel algorithms. Fur-
thermore, real multicomputers are expensive resources which are available to

only a restricted number of users.

3. Simulation: Sequential software running on a uniprocessor can be used to emu-
late program execution on a real multicomputer. The uniprocessor running the
simulating software is called the host machine; the simulated multicomputer
is referred to as the target machine. The simulating software is supposed to
accurately mimic the behavior of the target machine, and yield correct program
outputs as if the program had been executed on the target system. Simulation

has several advantages over the other two approaches:

e Simulation is a more encouraging method for performance debugging than
analytical modelling: it is simpler, easier to understand, and more user-
friendly. In reality, systems too complex to model accurately can often be
simulated, and resulting measurements can be used to guide design and

performance analysis.

o The sequential simulation software is deterministic in nature. Therefore
repetition of executions of a parallel program will always produce the same
results under the same system parameters. This provides a stable environ-
ment to study the program at different levels of detail and from different

perspectives (e.g. computation aspects versus communication aspects).

e Correctness and performance debugging is much easier with simulation
due to the repeatability of sequential programs which perform simulation.
(Correctness debugging helps to locate syntax and semantic errors in the
program so as to make the program work correctly.) Simulation gives
users more control over the debugging process. It permits debugging code
to be inserted into simulation code: this allows users to obtain different
kinds of debugging data and statistics at any given point in time. As a re-
sult, simulation helps to pin-point programming bugs, determine resource

requirements, and identify system bottlenecks.

e High flexibility is provided by software systems which simulate behaviors of
target systems. Simulation allows users to experiment with their programs
on a wide range of topologies and system sizes (simulated system size is
limited only by memory capacity of the host). This helps, for example, to
study the scalability of a parallel algorithm on very large systems, which
may not be feasible to do on real machines. Users are also given the
flexibility to change various computation and communication parameters
to tune their programs to a desired performance. Simulation also helps to

predict performance of hypothetical or unavailable hardware.

Based on the pros and cons of the above three approaches, we selected the sim-
ulation approach. In this thesis, we present the design and implementation of a
simulator for wormhole-routed multicomputers: the Concordia Parallel Systems Sim-
ulator (CPSS). The simulator is a sequential program written in C language and to
be run on uniprocessors such as UNIX workstations and PCs. The code execution
capability of processing elements and operations of the wormhole-routed network are
accurately simulated. The simulator is also fast, flexible and user-friendly. To sup-
port efficient network communication, we also propose optimal program mappings

specifically designed for wormhole-routed networks.

Parallel
program

Intermediate
code

Application outputs
Debugging information
Performance statistics

Figure 1: General structure of the CPPE
1.3 Contributions of the Thesis

The CPSS is a major component of the Concordia Parallel Programming Environment

(CPPE) which consists of two main modules (Figure 1):

1. Concordia Parallel C Compiler (CPCC): The CPCC accepts parallel programs
written in the CPC (Concordia Parallel C) language and generates intermediate
code which will be the input to the CPSS.

2. Concordia Parallel Systems Simulator (CPSS): The CPSS reads in the interme-
diate code produced by the CPCC, simulates execution of the application, yields
program outputs, and provides various performance statistics. An interactive

debugger is built into the CPSS to facilitate program testing and debugging.

The scope of this thesis is the design and implementation of the CPSS, which is

made up of two main components:

1. Code Execution Module (CEM): The CEM plays the role of the processing

elements of a multicomputer system; it executes the intermediate code produced

6

by the CPCC.

2. Network Manager: The role of the network manager is to allocate network
resources to messages, route and deliver messages, and detect deadlock in the

network if any.

The thesis also presents optimal mappings for programs running on wormhole-
routed networks. Optimality of proposed mappings are proved theoretically and con-

firmed by experimental results obtained from the simulator.

1.3.1 Parallel System Simulator

Two potential problems simulation usually encounters are accuracy and speed. There
is a tradeoff between these two factors: the more accurate the simulation is, the longer
the simulation time takes in general. Qur simulator has been carefully designed to
give most accurate simulation results within a reasonable amount of time.

The CPSS uses the functional simulation technique [13, 34, 25] which offers the
most accurate results among the existing simulation techniques (e.g. trace-driven
[10, 11, 21], direct execution [32], code-augmented direct execution [12, 19, 35]). This
technique interprets parallel object code instructions at the functional level, hence the
accuracy. In the CPSS, accurate simulation is also achieved by parameterizing system
measurements (e.g, system clock cycle, execution times of object code instructions of
the target architecture, packet size, link buffer size, link delay, message and packet
startup overheads). The ability of changing system parameters allows the user to
simulate any target architecture accurately by just redefining the system parameters
in the simulator to reflect the characteristics of that architecture.

As far as performance is concerned, parallel primitives are interpreted at a rea-
sonable level of abstraction so as to obtain fast simulation and not to compromise
simulation accuracy. We do not go into very low levels of details but retain essential
characteristics of the target processors and network. The entire simulation system,
including the application program, is run by a single process. The simulation does
not incur any host context switching, and thus saves simulation time.

Besides accuracy, the functional simulation technique also outperforms the other
simulation techniques in terms of flexibility and convenience of debugging. Our sim-

ulator can simulate a wide range of multicomputer topologies and sizes. It also

supports a large set of configurable parameters which permit users to fine-tune their
applications and simulate various multicomputer systems. Moreover, the same par-
allel program can be mapped to different physical architectures at run time. In the
CPSS, parameter or mapping changes do not require any modifications to the simu-
lator program or the application program. This convenience is unique to the CPSS
among the existing multicomputer simulators. In other simulators [12, 19, 35], when
a parameter (e.g. physical topology) is changed, the simulator program must be
modified, re-compiled and re-linked with the application.

The routing technique currently supported by the CPSS is wormhole routing. The
design and implementation of the simulator are modular and decoupled. Therefore,
any kind of network other than wormbhole routing (e.g. packet switching, circuit
switching) can be implemented independently and integrated into the simulator easily.

The CPSS provides many debugging tools to facilitate users’ code development.
Design concepts of the debugging tools are borrowed from sequential programming
environments to make the tools as user-friendly as possible. Performance statistics
at various levels of details are also available to support algorithmic and architectural
performance evaluation and tuning.

Finally, the CPSS provides repeatability which is essential for implementing a.
stable and reliable debugging environment. On real machines, a deterministic appli-
cation may generate a different result for each run due to race conditions and varied
speed of CPUs and routers. The CPSS also supports multiple executions of a non-
deterministic application to give users a broad and accurate view of the application’s
behaviors under different outcomes of race conditions. Multiple executions are equally

useful for testing the robustness of a deterministic application.

1.3.2 Wormhole-Routed Network Simulator

This is a concise, accurate, fast and flexible wormhole-routed network simulator.
Messages, packets, flits, physical links, virtual channels, arbitration queues, and
operations on these entities are simulated in details. Simulation results are thus very
accurate. To speed up the simulation process, we selectively left out low-level hard-
ware details which do not compromise simulation results. Also, to reduce simulation
time, we employ an approximate version of round-robin scheduling of virtual channels

time-sharing a physical link. Default arbitration/allocation schemes are either FIFO

or round-robin (wherever applicable) to obtain fast simulation. However, arbitra-
tion/allocation schemes are parameterized so that other schemes can easily replace
default settings.

The network simulator can simulate a wide range of topologies (lines, rings,
meshes, tori and hypercubes), and accommodate large networks of up to thousands
of nodes. Most network parameters are configurable to allow users to fine-tune per-
formance of their programs as needed. The simulator can be used as a stand-alone

network simulator or embedded into the CPSS to simulate execution of real applica-

tions.

1.3.3 Optimal Mappings on Worinhole-Routed Networks

Unlike packet switching, wormhole routing has communication latencies that are
nearly independent of path lengths [17, 8]. Therefore minimizing path lengths is
no longer a mapping objective for wormhole-routed networks (1, 3, 17]. Random
mapping is claimed to be good enough for second generation wormhole-routed multi-
computer systems [9]. In fact, small system sizes and high communication overheads
are limiting the effect of contention from becoming serious in current systems. With
an increase in system sizes and a reduction in communication overheads in future sys-
tems, contention can significantly degrade communication performance (2, 4]. Never-
theless, there has not been enough emphasis on the importance of program mapping
on wormhole-routed networks or on good mappings themselves.

In this thesis, we propose several optimal mappings for programs running on
wormbhole-routed networks. The mapping objective is to minimize link contention
among messages. The mappings cover a wide range of topologies and system sizes.
The optimality of the mappings is proved theoretically and then justified by exper-
imental results obtained from real parallel applications running on our simulator.
Simulation results show that our mapping functions significantly outperform random

mappings in terms of communication performance, especially on large networks.

1.3.4 Summary

The CPSS is especially useful for the development of architecture-independent parallel
applications. It is intended to be a tool for evaluating impacts of system and software

factors on application performance. The ultimate goal is to determine performance

9

bottlenecks in the program so as to improve its performance. The simulator is equally
helpful to the design and analysis of novel multicomputer systems. It can also serve
as a teaching tool for users who want to learn parallel programming. The simulator
is accurate, fast, and flexible; its debugging environment is user-friendly.

Our theoretical work in program mapping on wormhole-routed networks aims at
stressing the importance of good mappings on such networks. As wormhole routing
has become more popular, network sizes are expanded, and communication over-
heads are reduced, good mappings are indispensable to ensure high performance of

applications running on wormhole-routed networks.

1.4 Thesis Outline

In chapter 2, we present a critical review of existing multicomputer simulators and
wormbhole-routed network simulators. The review includes an analytical comparison of
different simulation techniques. Chapter 3 gives an overview description of the CPSS.
Design objectives and system modelling are discussed. Major components of the CPSS
are also described at a high level. In chapter 4, the design and implementation of the
code execution module are described in details. The description focuses on parallel
execution aspects of multicomputer systems, and highlights the simulation techniques
we have used. We then discuss the design and implementation of the wormhole-routed
network simulator in chapter 5. In chapter 6, we propose several optimal mappings
for programs running on wormbhole-routed networks. The optimality of the mappings
is theoretically proved, and then confirmed by experimental results obtained from
the simulator. Chapter 7 provides a summary of the thesis and suggestions for future
work.

Three additional appendices are given at the end of the thesis. Appendix A pro-
vides a description of parallel features of the CPC language which allow the creation
of parallel processes, the definition of parallel architectures, process communication
via channel variables, and process-to-processor mapping. Appendix B serves as a
user’s manual for using the CPSS. It begins with general instructions on how to use
the CPSS to run programs. Then each command of the interactive debugging tools
is described. Finally, the set of intermediate code instructions used by the CPPE is
listed in Appendix C.

10

Chapter 2
Literature Survey

The general structure of a multicomputer system consists of a set of processors (or
nodes) connected by an interconnection network as illustrated in Figure 2. Each pro-
cessor has its own processing element (PE) , local memory (LM), router (R) and other
supporting devices. The processing element and the local memory run computation
activities, while the router and the network support communication among processors
via message passing.

Consequently, simulating a multicomputer system should effectively reflect two
separate aspects of the system: computation and communication. A good simulator
should accurately simulate both computation and communication activities taking
place in the target system. However, depending on the purpose of a simulator, the
simulation of either aspect can be simplified to focus on only one kind of activity.
For example, the Multi-Pascal simulator [34, 25] emphasizes on the accuracy of code
execution simulation (i.e. computation aspect) but has a very simple implementation
for network communication. In fact, the simulator does not support dynamic network
simulation at all; arrival times of messages are calculated based on a predetermined
communication model. The PARSE simulator [26], in contrast, simulates network
activities in details but simplifies code execution simulation for more efficiency.

Our simulator is intended to provide accurate simulation of both computation and
communication activities. The purpose of the simulator is to provide a flexible and
user-friendly environment for correctness and performance debugging of parallel pro-
grams. We also focus on the issue of program mapping on wormhole-routed networks
to help programmers further optimize performance of their applications. Another

important objective is to produce simulation results within acceptable time limits.

11

Interconnection Network

PE PE PE

/1 /!
\LM \LM o LM

Figure 2: Modeling the multicomputer system

This chapter presents a literature review of existing code execution simulation
techniques and typical simulators which employ these techniques. Wormbhole-routed
network simulation techniques are also discussed in a similar manner. We also provide

a literature survey on program mapping on wormhole-routed networks.

2.1 Code Execution Simulation

Several simulation systems for parallel computers have been developed [12, 19, 35,

25, 26]. Existing simulation techniques can be classified into three categories.

1. Direct execution. A parallel program is first compiled into object code which is
in the assembly language of the host. During compilation, the compiler identifies
two kinds of instruction for the purpose of simulation: local instructions and
non-local instructions. An instruction is local if it has effects on only the local
processor. Examples of local instructions are register-to-register instructions
or memory accesses to a local variable residing in the local memory. Non-
local instructions, in contrast, impact another part of the system such as a
remote processor or the network. In particular, non-local instructions perform
parallel tasks such as process creation/termination, message sends/receives or
process synchronization. Each non-local instruction will be simulated via a
procedure call which interprets the instruction at the functional level. Local
instructions, on the other hand, are executed directly by host processes and

timed with the host’s clock. This simulation technique is fast but not accurate

12

since the simulation is timed with the host’s clock and not the clock of the

target architecture.

2. Direct execution with code augmentation. This approach enhances the pure
direct execution technique by adding cycle counts of local instructions to the
object code during the compilation phase. The cycle count of an instruction
is the time it would take to execute this instruction on the real machine. The
simulation of local instructions is no longer timed with the host’s clock but
accumulated using cycle counts added to the object code. This approach thus

results in a more accurate simulation than the pure direct execution technique.

3. Functional simulation. A parallel program is first translated into intermediate
code of a virtual parallel machine. The set of intermediate code instructions
is definable and can be different from the host’s assembly language. At run
time, the intermediate code instructions are interpreted at the functional level
as if they were being executed on the target machine. Functional simulation
in general takes more simulating time than the other two techniques, but its

simulation results are the most accurate.

The following sub-sections will analyze these techniques in details. We will discuss

their characteristics, advantages, drawbacks, and example simulators.

2.1.1 Direct Execution

In this approach, a parallel program is first compiled into object code which is in
the assembly language of the host. During compilation, non-local instructions are
converted to procedure calls that interpret the instructions. Local instructions are
compiled directly into host assembly instructions. During program execution, each
application process is simulated by a distinct host process. Local instructions of an
application process are executed directly by the corresponding host process since they
do not affect other parts of the system. Non-local instructions, however, need to be
interpreted at the functional level. That is, the behavior of each non-local instruction
is emulated by a host routine as if the instruction were being executed on the real
system. There is an additional process (called the simulation engine) which executes
all non-local instructions. Since non-local instructions affect components other than

their local processors, their execution must be centralized and coordinated to ensure

13

program correctness. When an application process encounters a non-local instruction,
the corresponding host process passes the control to the simulation engine which will
run that non-local instruction.

An example simulator is the CARE simulator {32, 33] which simulates LISP code
using direct execution and a hardware timer. In this simulator, non-local instructions
are interpreted by the simulation engine. Local instructions are directly run by the
host’s simulating processes and timed with the host’s clock.

This technique is generally faster than the functional simulation approach because
local instructions are executed directly instead of being interpreted. However it suffers
from a major drawback: difficult debugging. Local instructions are directly executed
by the host and the simulation engine does not have much control on the execution of
local instructions. Thus it is very difficult to establish the connection between user-
application statements and low-level data or simulation activities. Such connection
is essential for in-session debugging and fine-tuning an application. (In-session de-
bugging refers to the debugging interaction between the user and the program during
execution of the program. Examples of in-session debugging are single-stepping the
program, setting break points or tracing a variable after breakpoints). For example, it
is very hard to examine the value of a local variable belonging to a particular process.
Sequential debugging tools such as dbz are not able to locate the desired process in
order to access its local variable (unless monitoring code is added to the application
to identify the desired process). In-session debugging is in general not feasible with
the direct execution technique.

Because each application process is simulated by a host process, context switch-
ing will incur high overhead if the number of application processes is considerable.
Furthermore, the number of application processes that can be simulated concurrently
is very limited.

An even more serious drawback of this approach is low accuracy. The reasons for

inaccurate simulation results are:

o Coarse granularity of the host’s clock which is usually workstation clocks. There-
fore, the timing is not accurate because execution time of an instruction is often
truncated to the nearest milliseconds. Within a millisecond, the target multi-
computer may have executed thousands of instructions or sent hundreds of

messages.

14

e Control code added to monitor the simulation. Monitoring code is often needed
because in-session debugging is very hard with direct execution. Such code frag-
ments would not be executed on the target machine. However, in this approach,
there is no way to distinguish the monitoring code from the application code.
Therefore the direct execution technique also times the monitoring code and

this affects the overall execution time.

In summary, the direct execution technique is fast but inaccurate. This approach
is usually used for studying hardware features such as caching in shared-memory mul-
tiprocessors or network performance evaluation. In such applications, the accuracy of
code execution simulation is not important. In addition, debugging tools provided by
direct-execution simulators are very limited and based primarily on monitoring code
added to the application and the simulation engine.

This approach is not suitable for the purpose of our simulator, which is to ac-
curately simulate both computation and communication activities of a target multi-
computer, and to provide a user-friendly debugging environment.

There exists an enhancement to the direct execution technique, which employs

code augmentation to count execution time of local instructions on the target system.

2.1.2 Direct Execution with Code Augmentation

Code augmentation is an extra step added to the compilation process, which inserts
cycle counts to the compiled object code. The cycle count of an instruction is the
time the target system would take to execute that instruction. Cycle counts of object
code will be accumulated during simulation as if the code were being executed on the
target multicomputer. This results in a more accurate simulation.

Like the pure direct execution technique, code-augmented direct execution is gen-
erally faster than functional simulation since local instructions are not interpreted
but executed directly. Code augmentation, on the other hand, offers more accuracy
to simulation results than pure direct execution.

However, the problem of difficult debugging still exists. In fact, correctness and
performance debugging in direct-execution simulators relies heavily on the instru-
mented software technique due to the difficulty of in-session debugging. In the instru-
mented software approach, additional code is inserted into the simulation engine and

the application to monitor the simulation. Adding monitoring code to the simulation

15

engine does not cause any side-effect except that the added code may slow down
the simulation. However, adding monitoring code to cycle-counted code (i.e. local
instructions blocks) can be problematic. A simple addition will change the behav-
ior of the simulation since the cost of monitoring code is also included in the cycle
counting. Conditional compilation flags or macros can be used to exclude the cost
of added monitoring code [12]. However, even with conditional compilation flags or
macros, the addition may change the behavior of the application. This is because
the additional code may affect the surrounding code indirectly. For example, if the
additional code uses several registers, the surrounding code may spill more registers
than the previous version (which contains no monitoring code). This would increase
the cost and thus could change the behavior of the system. The more debugging or
statistic traces are required, the more perturbed the simulation can be.

Several simulators were implemented using the code augmentation approach. Typ-
ical simulators of this kind are Proteus [12], Tango {19, 22], EPPP [35, 36] and
PARSE [26].

Proteus

The pure direct execution technique correctly simulates the functionality of local in-
structions but ignores the exact calculation of the actual execution time. Proteus [12]
(developed at MIT in 1991) uses code augmentation to count the cycles required by
the target machine to execute local instructions.

The application program is first compiled into the host’s assembly language. A
code-augmenting program will then add cycle counts to local instructions of the object
code. The compiled code is first divided into basic blocks of local instructions. A
basic block is the smallest block of code delimited by a non-local instruction or an
instruction where the execution can branch (e.g. a jump, a function call). Each
instruction of a basic block is then matched with a cycle count by looking up a table.
The cycle counts of all the instructions in that basic block are then summed and an
instruction updating a global cycle counter is added at the end of the block. The cost
of each basic block is thus a fixed number and determined at compile time.

Each application process of the target is simulated by a light-weight process
(thread) of the host. Context switching on the host is required to interleave exe-

cution of threads which run local instruction blocks. Each thread context switching

16

takes 3 microseconds. Non-local instructions are implemented by procedures and in-
terpreted by the simulation engine as in the pure direct execution approach. During
program execution, the simulation engine also manages simulating threads: when a
simulating thread finishes execution of a basic block, it updates the cycle counter of
its simulated processor and gives control to the engine. The engine then selects the
next available block for execution and passes control to the corresponding simulating
thread. The engine also handles interprocessor communications.

A specific engine must be defined for each simulated MIMD architecture. When
the user chooses to simulate a specific multicomputer system, the user has to modify
the parameters of the engine. The engine is then re-compiled and linked with the
user’s application.

Proteus’ debugging capability depends heavily on the use of sequential dbz tools.
The user is also allowed to add monitoring code into the simulation engine and the
application. During program execution, monitoring code produces data and event
traces, and logs the traces into an output file. When the program execution is com-
pleted, an graph generator is used to interpret the trace file data and present the
results of the simulation.

Although Proteus simulation is fast, it suffers from several drawbacks.

e The timing results may not be accurate because the cost of each basic block is
determined at compile time and is a fixed number. In reality, the cost of an
instruction depends on other run-time factors such as the operands (or cache

hits if the target machine is a shared-memory architecture).

e The simulator can simulate accurately only a limited set of architectures whose
instruction sets are similar to that of the host. If the instruction set of the
target machine is quite different from that of the host, the assignment of a cycle

count to every local assembly instruction is no longer accurate.

e Simulation performance may be substantially degraded if the application in-
volves many processes. In addition to the simulation engine process, a host
process is created for each application process. If the number of application pro-
cesses is large, this may incur substantial overheads of context switching among
the simulating threads. In practice, augmentation overhead is an insignificant

part of simulation cost. Simulating non-local instructions and context switching

17

dominate the cost of simulation [12].

e The simulator is not flexible from the user’s point of view. When the architec-
ture is changed, the engine parameters must be modified. The engine is then
re-compiled and linked with the user application. This is not convenient, for
example, for experimenting with program mappings. This experiment would
require to run the same program on different architectures of varied sizes. The
simulator must be modified, re-compiled and linked with the application code

every time the topology or system size is changed.

e Debugging capability relies mainly on software instrumentation. In-session de-

bugging facility is very limited and depends on sequential dbz tools.

Tango

Tango simulator [19, 22] was built at Stanford University in 1990. Tango and Proteus
were developed independently but they are quite similar. However Tango simulates
only shared-memory architectures.

Application programs are written in C or Fortran. Parallel features are provided
by macros. For instance, Lock acquires a binary lock and Unlock releases it. The
compilation process consists of five steps: macro expansion, compilation into assembly
language, code augmentation, assembly and linkage. If a parameter needs to be
changed, the simulation engine must be modified and the compilation process is
repeated.

Like Proteus, Tango may produce inaccurate simulation results due to fixed costs
of local instruction blocks calculated at compile time. Similarly, the target system
is assumed to have a basic instruction set that can be approximated by the host
architecture in order to obtain accurate simulation.

Novel target machine instructions that do not exist on the host are implemented
in libraries and macro packages and will be interpreted at run time. However, if the
target machine instruction set differs considerably from the host instruction set, the
simulation would approach functional simulation.

Tango’s performance is not as good as that of Proteus. Tango uses Unix pro-
cesses to simulate parallel execution while Proteus uses faster light-weight processes

managed by the simulation engine. Context switching time in Tango is 180 to 250

18

microseconds [19]. If the application execution involves a large number of processes,
context switching cost is significant.

Tango does not support any in-session debugging tools. Debugging and statistics
data are provided using the instrumented software approach. Many kinds of trace file
are generated. System events are recorded in trace files. Program outputs are logged
in an output file. There are also process summary file and event trace file. This is
not a user-friendly debugging environment for parallel applications.

Tango was implemented for studying shared-memory behaviors, shared-memory
synchronization and concurrency abstractions, and for architectural evaluation [19]. It
can also be used for application studies. However debugging tools are not adequately

provided for code development or performance fine-tuning.

EPPP Project

The EPPP (Environment for Portable Parallel Programming) simulator [35, 36] is in
fact an extended version of Proteus. Target architectures of the EPPP simulator are
superscalar/superpipelined processors. Applications are written in C with extended
parallel features for superscalar/superpipelined operations.

In this simulator, the augmentation phase is enhanced to accurately simulate a
particular target architecture whose instruction set differ from that of the host. An
application program will first be compiled and optimized as it would be on the target
system. The intermediate code just produced will then be augmented with cycle
counts. A second pass on the augmented intermediate code will generate assembly
code for execution on the host.

The above enhancement requires the compiler to be modified specifically for each
different target architecture. This is a major task calling for much time and effort.
Therefore, the target architectures of the EPPP simulator have been so far limited
to only very few systems [35].

Like Tango, no in-session debugging tools are available in the EPPP. The only
available debugging feature is the optional generation of an extended version of PICL

traces [37]. Traces are then analyzed and interpreted by a software.

19

PARSE

Unlike Proteus or Tango which uses a separate program to augment the compiled
code, PARSE [26] has code augmentation implemented directly in the compilation
phase. The GNU C/C++ compiler was modified to augment parallel code when its
basic block profiling flag is enabled.

This simulator is aimed at analyzing communication architectures and commu-
nication performance of parallel applications. Thus a high level of accuracy of code
execution simulation is not of special interest to the simulator. For example, PARSE
assumes that each instruction takes one clock cycle to execute and that memory
accesses do not take additional cycles.

No tools are provided for correctness debugging of parallel programs. Performance
debugging is available to analyze communication performance. However it is not user-
friendly. The user specifies the monitoring of various events performed within the
communication network through a configuration file. The simulator will generate a
trace file containing a time sorted list of all requested events. Detailed communication

statistics can then be determined by examining these traces using data analysis toeols.

Summary

Direct execution (pure or with code augmentation) is fast but always associated with

two severe drawbacks:

¢ In-session debugging is very hard due to the nature of direct execution. De-
bugging and statistics rely heavily on the instrumented software approach. The
accuracy of simulation results then depends on how much monitoring code per-
turbs system and application behaviors. The more traces/data required, the
less accurate simulation results. This approach is thus not well suited for code

developing or fine-tuning application performance.

¢ Simulation results are not accurate if the host’s instruction set differs from that
of the target. The inaccuracy also results from the fact that cycle counts of
local blocks are accumulated at compile-time. In reality, execution time of an

instruction depends on many run-time factors.

Direct-execution simulation is usually employed for studying hardware-related fea-

tures such as caching, shared memory behaviors, or network properties where accuracy

20

of code execution is not a critical objective.
To effectively support code development and application performance fine-tuning,
another simulation technique is required, which is more accurate and can accommo-

date more powerful debugging tools.

2.1.3 Functional Simulation

This technique interprets instructions of the target machine at the functional block
level as if they were being executed on the target. Each instruction of the target
machine is usually expressed as a host macro/procedure whose size depends on the
complexity of the instruction and the desired level of simulation accuracy.

A parallel program is first translated into intermediate object code. The set of
intermediate code instructions can differ from the host’s assembly language. Ideally,
it should be defined to match the target instruction set. However this is not a nec-
essary condition for accurate simulation because the simulator designer has control
over how to interpret intermediate instructions. The designer may approximate a tar-
get instruction by modifying interpretation code of the corresponding intermediate
instruction.

The level of detail of interpreting intermediate code determines simulation accu-
racy and time. There is a tradeoff between these two factors: the finer granularity of
interpretation, the more accurate results and the longer simulation time. The finest
level of interpretation is machine-instruction level which is architecture-dependent
and very time-consuming.

Although functional simulation generally takes more simulation time than the

direct execution approach, it is a very attractive technique for performance debugging
due to

e Very high accuracy. This is due to the interpretation of intermediate instruc-
tions as if they were executed on the target machine. Also, intermediate in-
structions can be added or removed from the instruction set, and re-defined in
terms of its functionality to match the target instruction set. In addition, cycle
counts of intermediate instructions are accumulated at actual run time (whereas
direct-execution simulators compute execution time of local blocks in advance,

at compile time).

21

e Flexibility. The set of intermediate instructions can be modified and function-
ality of instructions can be re-programmed to match the target architecture.
Also, the level of accuracy can be traded for faster simulation by adjusting the

detail level of code interpretation.

e Flexible and convenient debugging. Code interpretation permits the simula-
tor to have complete control over program execution. This allows to establish
the connection between user program statements and intermediate instructions.
The user can thus set breakpoints, examine trace variables, or single-step the
program fragment belonging to a particular process. The user can also view
status of processes, processors and messages at any point during program exe-
cution. Monitoring code can be added to the simulating code without affecting

simulation outcomes at all: execution time of monitoring code is not accumu-
lated.

A typical simulator employing this technique is Multi-Pascal simulator [34, 25].

Multi-Pascal Simulator

This simulator simulates both shared-memory and message-passing architectures.
The programming language for writing applications is Multi-Pascal [25], which is
based on Pascal and added with parallel features to express parallel operations such
as process creation/termination, message send/receive and process-to-processor map-
ping. Parallel operations are defined at a high-level of abstraction to enhance pro-
grammability. For instance, message send and receive are expressed in terms of or-
dinary Pascal assignments. Writing to a channel variable represents a message send;
reading from the channel variable corresponds to a message receive [25].

User programs are first compiled into intermediate code. Each intermediate code
instruction is associated with a fixed cost which is the cycle count of that instruc-
tion on the target multicomputer. At run time, intermediate code instructions are
interpreted and their cycle counts are accumulated properly.

The simulator and the application are run by a single host process. Parallelism
is simulated by time slicing: each application process is given a quantum to run and
application processes are scheduled in a round-robin fashion. When every application

process has finished its quantum, the global clock is advanced to the next quantum.

22

The implementation is similar to round-robin scheduling of processes on a multitask-
ing uniprocessor, except that the global clock is not accumulating running times of
all processes but is incremented by the duration of the quantum. Since all application
processes are simulated by a single host process using time slicing, there is no context
switching overhead on the host.

Multi-Pascal simulator provides a rich set of debugging tools. It allows users to
set instruction breakpoints and time breakpoints, define and examine trace variables,
and single-step the code of a specific process. Users can also view status of processes
and processors after a breakpoint, processor utilization as a function of time, and
computation/communication time. Multi-Pascal debugging environment is a good
illustration of flexible and convenient debugging provided by the functional simulation
approach.

Despite the advantages inherited from the functional simulation technique, Multi-

Pascal still has some limitations which prevent it from being a performance debugger.

e Cycle counts of intermediate instructions are hardcoded into the interpreting
code of the instructions and not well-defined. For instance, an integer operation
takes the same amount of time as a floating point operation, which is one time
unit. Simulation results thus may not be accurate. In fact, the intended use of
Multi-Pascal simulator is as a parallel programming teaching tool for students
and novice programmers. It was not meant to be a tool for studying performance

of real parallel applications.

e The simulator does not support the concept of virtual architecture. The ar-
chitecture declared in the application program is also the physical architecture.
Users need to specify process-to-processor mapping in the application (unless
they wish to use the default mapping provided by the Multi-Pascal compiler);
there is no run-time mapping. If the physical architecture or the mapping is
changed, the application needs to be modified and re-compiled. This limitation
makes study of program and data mapping inconvenient and time-consuming.
Moreover, the user is forced to organize the program to match the available

physical architecture which may not be a natural structure to the application.

e The simulator assumes an underlying packet-switching network. However, there

is no dynamic network simulation. Communication overheads of message sends

23

and receives are calculated based on a communication model.

¢ The simulator does not support file I/O. In fact, it is not intended for large
applications.

Our simulator (CPSS) attempts to overcome the above limitations to offer parallel

programmers an accurate, fast, flexible and user-friendly performance debugger.

2.1.4 CPSS Simulation Technique

The CPSS uses the functional simulation approach to simulate execution of par-
allel programs on a multicomputer system. Applications are written in the CPC
language which enhances the C language with parallel features to express process
creation/termination and message sends/receives. Parallel operations are defined at
a high level of abstraction and reuse existing syntax of the C language wherever
possible to promote programmability and ease of learning.

The intermediate instruction set is designed based on an analysis of common
operations of parallel systems. The objective is to simulate a wide range of message-
passing multicomputers. Every intermediate code instruction is associated with a
configurable cost which can be adjusted to match a specific target.

The intermediate instruction set can be extended if it is different from the target’s
instruction set. The implementation of the simulator is modular and decoupled. So a
new intermediate instruction can be added easily to the simulator as a routine which
interprets the instruction. The addition of a new intermediate instruction does not
affect the simulation of another target whose instruction set does not contain the new
instruction since this target would not use the added routine at all.

One of our design goals is to obtain simulation outcomes fast. We do not go into
low level details but maintain the essential characteristics of instruction behaviors on
target machines in order to yield program outputs within reasonable time limits. Also,
the intermediate instruction set is defined at a high-level of abstraction. Application
processes are run by a single host process. So there is no host context switching
during simulation. This helps to simulate applications with large numbers of processes
efficiently.

The CPSS supports virtual architecture programming and run-time mapping to

improve programmability of message-passing applications. The burden of program

24

mapping is now shifted from the user to the simulator. The user writes an application
using the virtual architecture most natural to the application. At run-time the virtual
architecture will be mapped to the available physical architecture. Moreover, the
same source program can be mapped to different physical architectures without any
changes to the source code. The simulator provides a library of optimal and optimized
mappings.

The CPSS contains a dynamic network simulator. The simulated network is
wormbhole-routed, flit-based and time-driven. Packets are routed link by link until
completely received. The network simulator offers very accurate message routing and
communication performance statistics.

Similar to Multi-Pascal simulator, the CPSS provides users with a rich set of
debugging tools. Users can set instruction and time breakpoints, define trace variables
and single-step the source code of a particular process. As a performance debugger,
the simulator allows users to define system parameters, examine status of processes,
processors and messages, and view computation and communication statistics.

The CPSS is also very flexible and convenient. Users can configure most com-
putation and communication parameters. Values of the parameters can be changed
within the same simulation session as often as needed. No re-compilation is required:
the same intermediate code of the application and the same simulator code are al-
ways executed. This flexibility is unique to CPSS among the existing multicomputer

simulators.

2.2 Wormhole-Routed Network Simulation

In this section, we first review existing routing techniques to highlight the advantages
of wormhole routing over the other techniques. Example wormhole-routed network
simulators and their simulation techniques are then discussed. We also provide a brief

description of our network simulator, its simulation technique and characteristics.

2.2.1 Routing Techniques

This subsection provides a concise description of existing routing techniques and their
characteristics. These techniques are packet switching, virtual cut-through, circuit

switching, and wormhole routing.

25

Packet Switching

This technique is also called store-and-forward switching [23, 8, 47]. In a packet-
switched network, when a packet arrives at an intermediate node, the entire packet is
stored in a packet buffer. The packet is then forwarded to the next node on the path
when the next output channel is available and the next node has an available buffer.

Let P be the packet size (in bits), B the channel bandwidth (in bits/second), and
D the distance between the source and destination nodes (number of hops). Ignoring
message and packet startup overheads and block time due to resource shortage, the
network latency incurred by one packet is (P/B)D.

Packet switching is simple to implement. It was used in first-generation commer-
cial multicomputers such as Intel iPSC/1 [43], nCUBE/1 [44], Ametek S/14, and FPS
T-series [45]. However, it has become less popular because of the following serious

drawbacks.

e Enormous buffering is required in every node.

e Routing overhead is incurred by the entire packet. The packet is buffered and

retransmitted at every intermediate node on its path.

e The network latency is proportional to the distance between the source and the

destination nodes.

Virtual Cut-Through

This approach can be considered as an enhancement to the packet switching tech-
nique [46]. The enhancement is to reduce the amount of time spent transmitting
data. A packet is buffered at an intermediate node only if the next required channel
is busy.

The network latency for virtual cut-through is (H/B)D + P/B where H is the
length (in bits) of the packet header that stores control information such as the
destination address and the packet sequence number. If H << P, the second term,
P/B, will dominate the total latency. In this case, the distance D has a negligible
effect on the communication latency.

If the network load is light, the routing overhead (buffering and transmission)

is significantly reduced compared with packet switching. Packet routing latency is

26

thus less sensitive to path length. However, if the network traffic is high, the routing
overbead approaches that of packet switching because blocked packets must also be
buffered.

This technique was adopted in the research prototype Harts developed at the

University of Michigan, which is a hexagonal mesh multicomputer.

Circuit Switching

The routing of a packet in a circuit-switched network involves three phases:

1. Circuit establishment phase: a physical circuit is constructed between the source

and destination nodes.

2. Packet transmission phase: the packet is transmitted along the established cir-
cuit to the destination. During this phase, the channels constituting the circuit
are reserved exclusively for this packet. Thus no buffering is needed at inter-

mediate nodes.

3. Circuit termination phase: the circuit is released as the tail of the packet is

transmitted.

The network latency for circuit switching is (C/B)D + P/ B where C is the length
(in bits) of the control data transmitted to establish the circuit. When C << P, the
distance D will produce a negligible effect on the network latency.

Second-generation multicomputers such as iPSC/2 and iPSC/860 [53] employ cir-
cuit switching because of its lower network latency and reduced buffer space require-
ments. However, it is very difficult for circuit switching to support sharing of physical
links among contending packets. This results in low network utilization and suscep-
tibility to deadlock.

Wormbhole Routing

In a wormhole-routed network, a packet is divided into a number of flits (flow con-
trol digits) for transmission. Unlike the other routing techniques, wormbhole routing
requires the buffer at each node to store only a few flits.

As soon as a node examines the header flit of a packet, it selects the next link

on the route and begins forwarding flits down that link. The header flit governs the

27

route. As the header advances along the specified path, the remaining flits follow in a
pipeline fashion. If the header flit encounters a link in use, it is blocked until the link
is freed. The flow control also blocks the following flits and they remain in flit buffers
along the established path. When the last flit of the packet (the tail flit) leaves a
node, the link assigned to that packet is released and may be reassigned to another
packet.

Let F be the flit size (in bits). The network latency for wormhole routing is
(F/B)D + P/B. If F << P, the distance D will not affect the latency much unless
the path is very long.

Virtual channels time-sharing a physical link are possible in wormhole-routed net-
works. However, virtual channels occupied by a message are not relinquished even if
the message is currently blocked, and this may lead to deadlock. Deadlock-free routing
algorithms [15] for wormhole-routed networks have been proposed, which multiplex
multiple virtual channels on the physical link, properly number virtual channels and
route messages in order of decreasing (or increasing) of virtual channel numbers.

Many multicomputer systems have used wormhole routing; among them are Ame-
tek 2010 [9], nCUBE 6400 [48], Intel/DARPA’s Touchtone Delta, Intel Paragon [49],
Intel/CMU’s iWarp [50], and the Transputer IMS T9000 family [51]. The popularity

of wormhole routing is due to the following advantages.

e Network latency is relatively insensitive to path length.

¢ Required buffer space is small: only small FIFO flit buffers are required instead
of large buffers for packets.

e It is easy to support virtual channels which allow contending packets to time-
share a physical link. Virtual channels help to improve network utilization, and
are used to implement deadlock-free routing algorithms in wormhole-routed

networks.

e Wormbhole routing allows packet replication in which copies of a flit can be sent
on multiple output channels (virtual channels). Packet replication is useful in
supporting broadcast and multicast communication [38]. Circuit switching, by

its nature, does not allow packet replication.

28

Summary

Virtual cut-through, circuit switching and wormhole routing are more attractive than
packet switching due to lower latency and reduced buffer space requirements. How-
ever, the behavior of virtual cut-through will resemble that of packet switching if
network contention is significant. Circuit switching, on the other hand, is susceptible
to deadlock and may result in low network utilization due to the absence of virtual
channels.

Wormbhole routing is currently the most popular routing technique because of low
network latency, small buffer requirements and easy support for virtual channels.
Several wormhole-routed network simulators have been implemented for the purpose
of studying/evaluating wormhole routing characteristics and network performance
(2, 29, 18]. In the following subsection, we describe typical simulators and their

simulation techniques, useful features, and drawbacks

2.2.2 Wormbhole-Routed Network Simulators

All existing wormhole-routed network simulators employ the time-driven approach
instead of the commonly used discrete-event simulation approach because it is faster,

simpler to implement, easier to understand, and yet very accurate.

Chittor’s Simulator

This simulator [2] was implemented to study the effects of random and optimized
mappings on communication performance.

The simulator is very simple. Messages are randomly generated and not packe-
tized; each message is treated as one packet of the same size. Flit size is also a fixed
number (8 bits). The simulator does not support virtual channels. The buffer size
at each link is one flit (8 bits). Therefore the simulator can simulate networks of at
most 256 nodes. The following topologies are available: line, hypercube, 2D-mesh,
3D-mesh and tree. However, every time the topology is changed, the simulator needs
to be re-compiled.

The simulation is time-driven. There is a global clock. As the clock advances
by one time unit, messages that are not blocked move forward by one link. Routing

algorithms are deterministic (e.g. XY-routing for meshes and E-cube routing for

29

hypercubes). Message routing is simple since the simulator does not implement virtual
channels. As a message moves forward, only the positions of the head flit and tail flit
need to be recorded.

In summary, this simulator is very simple. It simulates the very basic wormhole-
routed network with no variations or enhancements (e.g., virtual channels, packetiza-
tion, configurable parameters). The major drawback of the simulator is the absence of
virtual channels which are crucial for implementing deadlock-free routing algorithms

in wormhole-routed networks [15].

Saha’s Simulator

This simulator [29] was designed to study wormhole-routed networks embedded within
real-time, application-specific multicomputers. The network of such systems must also
meet stringent timing and dependability requirements of real-time systems.

The simulator simulates only one topology which is 2D-torus and employs deter-
ministic routing (XY-routing).

The simulation is time-driven and node-driven: for each cycle of simulated time,
every node in the network is simulated. Messages of arbitrary length are created and
divided into flits. Each node injects a message with a pre-determined probability. The
destination address of the message is randomly generated with a uniform distribution.
The message is assigned a priority. The router will use message priorities for all
arbitration/allocation decisions wherever applicable.

Each arbitration/allocation scheme is implemented by a prioritized queue based
on message priorities. Thus the simulation is slow due to management of different
kinds of prioritized queues in the system.

Virtual channels are implemented in this simulator. Virtual channels of each link
are organized in the form of a prioritized queue.

The simulator is flit-based: it deals with individual flits. As the header flit of a
message is advanced, the non-header flits of the message simply follow the established
path if possible.

In summary, the simulator is time-driven, node-driven and flit-based. Virtual
channels are effectively simulated. However, the simulation is slow, especially for
large networks, due to management of different kinds of prioritized queues. All arbi-

tration/allocation decisions are based on priorities of messages. This is a stand-alone

30

network simulator with no program execution component. Messages are randomly

generated.

Dally’s Simulator

This simulator [18] supports k-ary n-cube and k-ary n-fly networks. It simulates
interconnection networks at the flit-level. A flit transfer between two nodes is assumed
to take place in one time unit. The network is simulated synchronously moving all
flits that have been granted channels in one time step and then advancing time to
the next step.

For a specific network topology and size, users can define the number of vir-
tual channels per link and the routing algorithm (deterministic or adaptive). The
simulator provides two algorithms for link bandwidth allocation: random and the
oldest-packet-first scheme (deadline scheduling). Deadline scheduling is claimed to
help reduce average message latency and make message latency more predictable [18].

Messages are randomly generated using a pre-determined probability depending
on the purpose of a specific experiment. Each message is also a packet of fixed length
(20 flits). Flit size is not considered in this simulator. Operations of virtual channels
and routing algorithms are simulated in details.

In summary, the simulator is time-driven and flit-based. It simulates virtual chan-
nels and routing algorithms in details. The simulation is slow due to many low-level
hardware details and too many phases involved in a communication step. This is also
a stand-alone network simulator with no support for running real applications. In
fact, it was implemented to study the effect of virtual channels on network perfor-
mance (throughput and latency) [18]. Although the simulator is very accurate, its

simulation time would be unreasonable for our purpose.

2.2.3 Our Network Simulation Technique

Our network simulator also employs the time-driven technique. The simulator is time-
driven and message-driven: for every network cycle, the network manager attempts to
advance each flit of every packet by one link if possible. Physical links are scheduled
for virtual channel time sharing only if required (i.e. if a link is used by at least one
packet); unused links are not scheduled. We use an approximative version of round-

robin scheduling to speed up the simulation time. The scheduling algorithm will be

31

described in details in section 5.4.3.

To further reduce simulation time, we selectively left out low-level hardware de-
tails. For instance, the network simulator does not route actual contents of messages
but simulates the routing using sequence numbers of packets and flits. Therefore
flit buffers need not be implemented. Furthermore, default arbitration/allocation
schemes are either FIFO or round-robin (wherever applicable) for fast simulation.
However, arbitration/allocation schemes are parameterized so that other schemes
(e.g. prioritized queues) can easily replace default settings.

The network simulator is very flexible. It can be used as a stand-alone network
simulator or embedded into the CPSS to simulate execution of real applications. A
wide range of topologies is supported. The simulator can accommodate large networks
of up to thousands of nodes (subject to the memory capacity of the host). Moreover,
users can define most network parameters (packet size, flit size, virtual channel buffer
size, routing scheme, link bandwidth, number of virtual channels per link, virtual

channel allocation scheme, link scheduling algorithm, etc.).

2.3 Program Mapping on Wormhole-Routed Net-

works

Second generation multicomputers (iPCS/2, Symult 2010, iWarp, nCUBE/2) use
wormbhole routing or circuit switching instead of packet-switching employed in the
first generation multicomputers (iPSC/1, nCUBE/1). In packet-switched networks,
communication latency is sensitive to the distance between the source and destination
nodes. As a result, program mapping on packet-switched networks has always aimed
at minimizing dilation costs [6, 7]. Dilation cost of a mapping is the maximum distance
between any two communicating processes.

Wormbhole routing, in contrast, offers low network latency that is relatively inde-
pendent of path length. In fact, experimental results confirm that in wormhole-routed
networks communication performance does not directly depend on path lengths and
minimizing dilation costs is no longer a major concern [1]. However, since packets
must compete for link bandwidth, the blocking time may become significant. Chittor
and Enbody showed that link contention may degrade network performance substan-

tially, especially in large networks [1, 2] or networks with heavy traffic. Now that path

32

length is no longer a problem, link contention becomes a primary concern in ensuring
efficient communication. A good measure that quantifies the level of contention in
a wormhole-routed network, called path contention level (PCL), was introduced in
[2, 4].

Random mapping is claimed to be good enough for second generation wormhole-
routed networks [9]. In fact, small system sizes and high communication overheads
are limiting the effect of contention from becoming serious in the current systems.
However, as the network size increases and overheads are reduced, the contention
problem will surface and seriously impact communication performance [2, 4]. It was
shown that appropriate mappings that minimize contention will enable the network
to support higher traffic with negligible degradation in performance [2, 4].

Nonetheless, there has not been enough emphasis on program mapping for wormhole-
routed networks. As part of this thesis, we study one-to-one mappings among the
most important topologies: lines, rings, hypercubes, square meshes and square tori.
These topologies represent the communication structures of many applications in sci-
entific computations as well as the topologies of many large-scale wormhole-routed
networks [5]. Our mapping objective is to minimize the maximum PCL of a virtual-
architecture program mapped to a given physical topology.

Path contention level of a path p connecting two communicating processes can
be roughly defined as the number of other paths which share at least one link with
path p. Path contention level represents the worst-case contention of a path. That
is, it assumes that all competing paths are working at the same time. In reality,
some of the competing paths may not route any messages at some time, depending
on the application communication pattern. In any case, if we can minimize the path
contention level of a path, the path will have less chance to collide with other paths.
This effectively reduces blocking time of messages.

We make experimental comparisons between network performance of our map-
pings and that of random mappings. The experiments are carried out on the CPSS
under different system and user-defined parameters. Simulation results show that our
proposed mapping functions can significantly outperform random mappings in terms

of communication performance, especially on large networks.

33

Chapter 3

System Architecture and

High-Level Design

In this chapter, we first discuss our objectives for the design of the CPSS. We then
present the modeling of multicomputer systems simulated by the CPSS and the pro-
gramming model used in the CPPE to write application programs. We then describe
the high-level design of the simulator, which is based on the adopted system model

and programming model, and meets the proposed design objectives.

3.1 Design Objectives

The most important objectives considered in the design of the simulator are as follows.

1. Realistic modeling: The simulator should reflect accurately the behaviors of the
multicomputer system as well as the performance of an application program on
this system. So the design should follow realistic computation and commu-
nication models, and retain the essential characteristics of the multicomputer

system.

2. Accurate simulation: The simulator should employ the functional simulation
approach to simulate the execution of parallel application programs [13, 34, 25].
It should, at the same time, execute the application and simulate the behaviors
of the underlying multicomputer system. The outcomes during and after each
execution are thus the outputs of the application program, and information

about its computation and communication performance.

34

3. Performance: Time of simulating the execution of application programs is also
a crucial issue. We selectively left out low-level details so that the simulator can
produce accurate outputs in a reasonable amount of time, especially for large
applications. The granularity of instruction interpretation should be weighted

carefully to meet both the accuracy and performance requirements.

4. Flexibility: The simulator should offer the user the freedom of changing system
parameters for both computation and communication. This enables the user to
tune the application to the underlying hardware at hand, or to obtain a thor-
ough performance analysis of the application on various multicomputer systems
having different characteristics. The flexibility of changing parameters should
also come with convenience: the parallel program need not be re-compiled every

time some parameter is modified.

The design and implementation of the simulator should be modular and decou-

pled to easily accommodate future changes and enhancements.

5. Repeatability: Repeatability is necessary to study different phenomena in an
execution at several levels of detail and from different perspectives. Repeata-
bility is essential to provide a stable and reliable debugging environment that
is not available on real multicomputer systems. Real parallel computers are
nondeterministic in nature and, as such, rarely provides any form of repeatabil-
ity; some bugs may not occur frequently enough for observation. Repeatability
does not mean that the simulator can reproduce only one of the many possible
executions of a nondeterministic application: the simulator should also be able
to simulate multiple executions of an application when it is required to mimic
the nondeterministic nature of real multicomputer systems and of parallel ap-

plications.

6. Correctness debugging: The simulator should provide end-users with convenient
debugging tools and useful debugging information in order to test and debug
application programs. After all, this is the main advantage for using a simulator
rather than a real multicomputer which rarely provides any form of repeatability
and supports only a very limited set of debugging tools. The debugging code
embedded within the simulating code should not affect behaviors of application

programs and their outputs.

35

7. Performance debugging: Computation and communication statistics of appli-
cation execution should be provided to facilitate the study of parallel archi-
tectures, network characteristics, parallel algorithms and program mapping.
Global statistics of an application (such as total execution time, speedup, total
computation time and total communication time) allow the user to tune the
application to a desired performance. Run-time data or traces (such as process
creation/termination information, or message send/receive information) could
be very useful in studying a particular aspect of the application, which cannot

be captured by global statistics.

8. User-friendliness and portability: It should be easy to learn and use the sim-
ulator. An intended use of the simulator is to introduce the field of parallel
computing to new learners. Also, the simulator should be portable to various
platforms (such as workstations, PCs, or even on real parallel computers) with

only very minor modifications to the simulating code.

3.2 Modeling the Multicomputer System

3.2.1 System Architecture

The simulator assumes a distributed-memory, wormhole-routed parallel computer.
This parallel system consists of a number of processing nodes (processors) connected
by an interconnection network. As depicted in Figure 2, each processor includes a
processing element (PE), a local memory (LM) and a router (R). The processing
element runs the application program which resides in the local memory together
with the application data. The router is responsible for receiving incoming messages,
injecting messages into the network, and forwarding them to destination processors.

This wormhole-routed multicomputer is characterized by the following parameters
[14]: the communication delay L, the communication overhead o, the communication
bandwidth g, and the number of processors P. Various aspects of the architecture
are approximated by these four parameters. Parameters used by the simulator can
be categorized to model L, o and g. If communication contention is absent, P is
small, and messages are short, then L can be disregarded. Otherwise, L is decided

by the level of contention, P, and message lengths. P also determines the obtainable

36

speedup of the multicomputer system. Ideally, the speedup should increase linearly
with the number of processors used to run an application. In reality, L and o prevents
the linear increase of the speedup.

The cost model used by the simulator assumes that computation and communi-
cation are overlapped. In other words, the processing element and the router of a
processor are working simultaneously during program execution instead of alternating

their turns.
In our simulator, the characteristics of the multicomputer system are modeled by
two sets of parameters. One set of parameters reflects the communication aspects of

the system while the other set captures the computation aspects.

3.2.2 Communication Parameters

The time Trmessage for a message to reach the destination is the sum of message startup

overheads and communication latencies of its packets. Tiessage 1 determined by

Tmessage = L mstartup +p- Tpacket

where Tinstareup is the startup cost of each message send, p is the number of packets
contained in the message, and Tpecket 1s the communication latency incurred by a

packet.

The communication latency of a packet is in turn the sum of packet startup

overheads and routing latency. Therefore,

Tpackct = Jdpstartup + Trouting

where Tpstartup is startup overhead of a packet send and Trouting is the routing latency
of a packet.

In the absence of link contention, Trouting can be approximated by
Trouting = (F/B)D + P/B

where F is the flit size (in bits), B is the channel bandwidth (in bits/second), P is
the packet size (in bits), and D is distance between the source and destination nodes
(number of hops).

If link contention is present, T,outing is dependent on run-time conditions and is
determined based on the routing latency of flits. The flit routing latency consists of

the following components [26}:

37

o Buffer read time: the time needed to read the flit from the current buffer.

e Router decision time: the time required by the router to determine the next
node on the path. This time depends on the routing algorithm and message
address format. Router decision time applies only to the header flit: after the

routing direction is determined, the remaining flits simply follow the header.

e Virtual channel allocation time: the time needed to allocate a free virtual chan-
nel of the next link where the flit will be deposited. This time is applicable only
to the header flit, and depends on whether there are free virtual channels on
the next link.

e Link scheduling time: the time required to schedule the physical link in order
to know which virtual channel is allowed to use the link in the current clock

cycle.

e Link delay time: the time taken by the flit to traverse the link and arrive at the

next node.

e Buffer write time : the time needed to write the incoming flit to the buffer at
the next link.

All flits require buffer read time, link scheduling time, link delay time and buffer
write time to move from one node to its adjacent node. In addition, header flits incur
router decision time and virtual channel allocation time.

The following communication parameters are taken into account in the wormhole-
routed network of the CPSS:

e Topology and size of the virtual and physical architectures. The simulator
currently supports line, ring, hypercube, mesh and torus topologies. The system
size can be any number provided that the host computer has enough memory
to support all data structures of the CPSS. Most of these data structures are
dynamically allocated and deallocated. We have been able to support systems
with up to 4096 processors.

o Packet size. Large messages need to be split into smaller units called packets.

Typical packet size ranges from 64 to 512 bits [23].

38

Flit size. The flit length is often affected by the network size which determines
the minimal length required to represent node addresses. For example, a 256-

node network requires 8 bits per flit.

Number of virtual channels per physical link. Several virtual channels can be

multiplexed on a single physical link to time-share the link bandwidth.

Buffer size. Each virtual channel of a physical link calls for a buffer to store the
on-going flits of a packet. Many systems make use of one-flit buffers. Larger
flit buffers can improve network performance and help to increase network size

without increasing flit size [8].

Message start-up overhead. This is the startup cost of each message send and

due primarily to message buffer management.
Packet startup overhead. This is the startup cost of each packet.

Flit routing latency components as mentioned above. The components are
buffer read time, link scheduling time, link delay time, buffer write time, router

decision time, and virtual channel allocation time.

Deadlock prevention. To prevent deadlock, we use bidirectional channels to-
gether with E-cube routing (for hypercube networks) or XY routing (for meshes).
We also support deadlock-free deterministic routing for ring and torus; the al-

gorithm was proposed by Dally and Seitz[15].

Routing strategy. Our simulator has so far supported only non-adaptive routing
(deterministic routing). The default routing schemes are E-cube routing for
hypercube networks and XY routing for other topologies. The user can also

specify the desired routing algorithm in the form of a routing table.

Virtual channel allocation algorithm. When there are several outstanding mes-
sages waiting for a virtual channel to be allocated, our simulator uses first-in-
first-out algorithm to decide which message will get the virtual channel. Among
other algorithms are random allocation and priority-queue allocation which 1s

usually used in real-time systems.

39

o Link scheduling algorithm. In the CPSS, round-robin scheduling is used for
virtual channels of a physical link to time-share that link. Among other algo-
rithms are random selection and priority-queue selection which is usually used

in real-time systems.

Our selection of communication parameters is based on their importance and their
influence on the accuracy of program execution simulation as well as the simulation
time [Dally87, Chittor90, Chittor90b, Chittor91, Draper94, Kim94, Olk94]. For ex-
ample, the simulator of a wormhole-routed multicomputer described in [O1k94] made
use of some other detailed communication parameters. We have chosen to ignore those
parameters because that simulator was designed to analyze communication properties
of parallel application domains in order to find the most cost effective communica-
tion hardware configuration matching the requirements of the specific domain. Our
simulator, on the other hand, is aimed at analyzing both computational and com-
munication properties of the parallel program so that the user can obtain the best
algorithm for the problem at hand or to tune the application to a specific underlying
hardware. We have thus made a tradeoff between the feasibility of simulation time

and the accuracy of the simulated hardware network.

3.2.3 Computation Parameters
Processor Clock Cycle

In the CPSS, the clock cycle is expressed in terms of relative timing. That is, a clock
cycle is the minimal time unit. It is up to the user to define the duration of one time
unit. All other computation time parameters are then specified using the minimal
time unit. For example, an integer addition can be defined to take one time unit. If
an floating-point operation is ten times slower than an integer addition then its cycle

count is 10.

Instruction Groups

Intermediate instructions are classified into instruction groups to facilitate the as-
signment of cycle counts to the instructions. Each group has its own execution time.

The major instruction groups are: integer operations, floating-point operations, I/O

40

operations, function calls, process creation/termination, and read/write on channel

variables (which is equivalent to message send/receive)

Context Switching

In the CPSS, many processes can run on the same processor to share the computa-
tion bandwidth of the processor using round-robin scheduling. Each process is given
a time slice to utilize the processor just as with multitasking uniprocessors. Con-
text switching among these processes would incur overheads on the target machine.
Therefore, in the CPSS, context switching is also assigned a cycle count, and context

switching time is a definable parameter.

Computation Quantum

The CPSS implements parallel execution of processes using time slicing: each appli-
cation process is given a quantum to run until its quantum expires or it is put to sleep
by some event. Application processes are scheduled in a round-robin fashion during
every quantum . When every application process has finished its quantum, the global
clock is advanced to the next quantum.

Computation quantum is determined based on flit routing latency that is the time
a flit takes to move from one node to the adjacent node on the path. For example, if
a flit takes 3 time units to advance to the next node on its path then the computation
quantum is 3 time units. In this case, the CEM lets the processes run for 3 time
units, and the network advances unblocked flits by one link. The processes will then
run for another 3 time units, and unblocked flits will move forward by one more link,
and so on. The computation quantum and the communication step are considered
to be running in parallel. Computation quantum can be a fraction number. If the
computation quantum is 0.5 time unit, the processes will run for one time unit every

time the network advances unblocked flits by two hops.
Process States
Possible process states are:
e Ready. The process is ready to be scheduled for running.
e Running. The process is currently executing its code on a specific processor.

41

e Delayed. The process is put to sleep and the wakeup time is known. The process
will be waken up by the scheduler when the wakeup time comes.

e Blocked. The process is put to sleep and wakeup time is not known in advance.
The process will be unblocked by another process (e.g., one of its children) or

an event (e.g., the arrival of a message in the wormhole-routed network).

e Terminated. The process has completed the execution of its own code.

3.3 Application Programming Model

Applications that are to be executed on the CPSS are initially written in the CPC
language (Concordia Parallel C), an enhanced version of the C language used for
parallel programming.

We support both data parallelism and functional parallelism programming. In
data parallelism, the same computation is applied in parallel to different data items.
This is in contrast to functional parallelism, in which several different computational
activities are performed in parallel.

In particular, applications can be programmed using the SPMD (Single Program
Multiple Data) model. In this model, every process of the application is running the
same program. However, at a given time, each process may execute a different part
of the program.

The application programs can be written using the virtual architecture approach.
In this approach, the programmer writes the program in the topology most suitable for
the problem in question. At run time, the simulator will map the compiled program
onto a physical topology specified by the user, which can be different from the virtual
topology. The CPC language also provides features that allow the programmer to
specify a mapping from the virtual topology to the physical topology in the program.

Communications between processes are expressed in terms of channel variables
[25]. A write to a channel variable represents a send, and a read represents a receive.
Writes and reads from channel variables will be converted into sends and receives
respectively by the CPCC (Concordia Parallel C Compiler).

42

3.4 CPSS High-Level Design

This section gives a high-level description of the simulator. The design is based on
the multicomputer system model and the programming model mentioned earlier, and

implemented in a way to meet the proposed objectives.

3.4.1 General Structure of the CPSS

The CPSS (Concordia Parallel Systems Simulator) is an integrated part of the CPPE
(Concordia Parallel Programming Environment). In fact, the CPPE consists of two
components: the CPCC and the CPSS.

The core of the CPCC is a compiler. After reading a parallel program written
in the CPC language, the CPCC builds a complete abstract syntax tree to perform
syntax and semantic analysis, and produces object code for a generic virtual machine.
Such object code is called vCode in the CPPE. The vCode instruction set is defined
based on an analysis of common operations of multicomputer systems. To produce
vCode, the compilation process makes use of the virtual architecture and does not call
for the physical architecture. The advantage of this design is that the CPC parallel
program need not be re-compiled every time the underlying target architecture is
changed.

The vCode produced by the CPCC will be input to the CPSS. Other inputs
to the CPSS are parameters and commands from the user. For example, the user
can specify the physical topology on which the program will run and the virtual-to-
physical-topology mapping. The CPSS then executes the vCode, using the parameters
and commands entered by the user. The outputs from the CPSS are the application
outputs, performance statistics, and debugging information (Figure 1).

The CPSS itself consists of two major components: the code execution module
(CEM) and the network module. There are also two other utility modules interwork-
ing with the CEM and the network module. These utilities are the user interface and
the debugging monitor. The interactions between the components of the CPSS are
illustrated in Figure 3. The following subsections describe the roles and high-level

design of the CPSS components and their interactions.

43

Application output
Debugging information
Performance statistics

Application input
vCode User commands
Parameters

Application
. output
Code Exeuclunon User Interface
Module ICP
Message Debugging information
Informatior] | MAN PSR ICP Performance statistics
PSI ™\
Network Debugging
Module MRNI Monitor
MNR

MAN: Message Arrival Notification ICP: Input/Commands/Parameters
MNR : Message/Network Request PSR: Process/processor Status Request
MNI : Message/Network Information PSI : Process/processor Status Information

Figure 3: CPSS structure and operations

3.4.2 The Code Execution Module

The CEM plays the role of processing elements of a multicomputer system: it executes
the parallel code specified by the parallel program. There is a global clock for the
simulated multicomputer system which is updated periodically by the CEM. The

CEM contains four main parts:

1. Ma.pper.. The mapper maps the processors of the virtual architecture specified in
the CPC program onto the processors of the physical architecture. We provide
a library of optimal mappings whose objective is to minimize the maximum
path contention level of the parallel program [2, 4]. Optimized and random

mappings are also available. The mappings can be one-to-one or many-to-one.

2. Storage Manager. The job of the storage manager is to allocate simulated local
memories to processes upon process creation and deallocate this space upon pro-
cess termination. The storage manager also allocates/deallocates other kinds of
dynamic memory blocks such as activation records upon function calls/returns,

and buffers for messages of composite types (e.g. array, structure).

44

3. Process Scheduler. The process scheduler schedules processes for execution and
updates their process structures according to changes in process and processor
status, local clocks and the global clock. In the CPSS, parallelism is simulated
by timeslicing: each application process is given a quantum to run and processes
are scheduled in a round-robin fashion. During each quantum, the process
scheduler traverses the list of processes, and schedules one process at a time for
execution. The execution starts with the instruction specified by the current
value of the program counter of the process. The local clock of the process is
updated after each instruction. The process runs until its quantum expires or
it is put to sleep by some event. The process scheduler then schedules the next
process for execution. When every application process has finished its quantum,

the global clock is advanced to the next quantum.

4. Instruction Interpreting Routines. These routines interpret vCode instructions.
Each instruction is associated with a cost which the routine will look up in a

cycle-count table to update the local clock of the current process accordingly.

The CEM contains four major data structures:

e List of parallel processes. Each parallel process created by the virtual-architecture
program is associated with a structure PROCESS that contains all the infor-
mation needed to run this process. Each process has a local clock that keeps
track of the present time of this process. All PROCESS structures are placed

on a linked list that is maintained and processed by the scheduler.

e Table of processors. This is an array where each element is a structure PRO-
CESSOR. This array is dynamically allocated at the beginning of each run when
the physical architecture is known. Each PROCESSOR structure records the

status of and information related to a physical processor.

e Memory pool. This is a big array from which local memories of processors are
allocated. The array accommodates local memories of all processors in use.
The memory pool also provides space for activation records upon function calls,
and buffer space for messages of type array or structure. Memory blocks (local
memories of processes, activation records, message buffers) are allocated upon

requests and returned to the common memory pool when they are no longer

45

used. The first-fit allocation scheme [31] is used for management of the memory

pool.

e Message buffers (channel buffers). This is an array where contents of messages
are buffered, waiting to be read. A message of type array or structure is too
big to be stored in this array. In this case, the actual contents of the message
is stored in a block of the memory pool, and the pointer to this memory block

is saved in the array of message buffers.

3.4.3 The Network Module

The network module is under control of the network manager. The role of the network

manager is to

e allocate network resources to messages to be sent,

e route messages and deliver them to destination processors,
e detect and resolve deadlock, if any.

The main features of the wormhole-routed network manager are the reservation
of channels and data paths by messages, the pipelined flow of flits, the release of
the reserved resources by tail flits, and the release of flit buffers associated with each
virtual channel. The network also uses the global clock mentioned above. In each
quantum, all active packets that are not blocked are advanced by one link.

When a message needs to be sent, the sender process writes the message to a mes-
sage buffer, invokes routine WH_.CEM_SENDS_MSG to pass message information to
the network manager, and continues with its execution (non-blocking send). The net-
work manager will route the message using the information received from the sender.
In our design, the network simulator does not route actual contents of messages. It
simulates the movement of flits by advancing their ID numbers. When a message
reaches the destination, the network manager notifies the CEM of the arrival of the
message. The intended reader can then read the message from the message buffer.

The main data structures of the network module are:

o List of new messages. New messages which are being initialized for routing are
queued at this list. The waiting time at this list simulates message startup over-

heads. When the startup overhead time of a new message expires, the message

46

will be removed from this list and appended to the list of active messages.

o List of active messages. This is a linked list of messages which are currently

being routed through the network.

o List of active packets. This linked list contains packets belonging to active

messages.

o Array of physical link structures. Each physical link structure stores information
related to that link such as the link-request queue, number of occupied virtual

channels, an array of LANE structures (a structure for each virtual channel of
the link).

e Routing table. When a packet arrives at an intermediate node, the router uses
the addresses of the current node and the destination to look up the routing

table for the address of the next node on the path.

3.4.4 The User Interface

The user interface enables the user to interactively communicate with the simulator.
The user interface receives parameters and commands from the user, validates the
received information, and pass valid parameters or commands to the appropriate
module (the CEM, the network module, or the debugging monitor). During execution
of a parallel program, the user interface interacts with the debugging monitor to
display performance statistics and debugging information. Program outputs are also
transfered from the CEM to the user interface for displaying. A user manual is

provided in Appendix B which describes the user interface of the CPSS in detail.

3.4.5 The Debugging Monitor

The debugging monitor is responsible for handling the debugging mechanisms. Dur-
ing execution of the parallel program, the CEM and the network manager regularly
update the debugging variables. After each breakpoint and after the completion of
program execution, the debugging monitor collects and processes the values of the
debugging variables to generate performance statistics and other information about

program execution.

47

3.5 Measures to Meet the CPSS Design Objec-

tives

In this section, we discuss how the design and implementation of the CPSS meet the

objectives stated in section 3.1.

3.5.1 Accurate Simulation

The CPSS uses the functional simulation approach to simulate execution of paral-
lel programs on a multicomputer system [13, 34, 25]. The level of detail of code
interpretation decides the accuracy and the performance of the simulation. A fine
granularity of interpretation offers an accurate simulation at the cost of low simula-
tion speed. The tradeoff between accuracy and simulation time has been considered
carefully in the design of the CPSS to provide accurate simulation results within an
acceptable amount of running time. The degree of accuracy is adjustable and decided
by the definition of vCode instructions, their associated costs, and the level of detail
of interpreting each instruction.

Accurate simulation of parallel architectures is also promoted by configurability of
most computation and communication parameters. Conligurable parameters allows
the user to accurately simulate a particular multicomputer system. The user only
needs to set the values of system parameters to those belonging to the architecture

to be simulated.

3.5.2 Performance

Although the CPSS uses the functional simulation technique, the simulation is not
done at the machine instruction level in order to speed up simulation time.

We analyzed basic operations of existing parallel architectures and constructed a
set of parallel primitives which are common to most target multicomputer systems.
Parallel primitives are simulated at the functional level with a reasonable abstraction
to tradeoff between simulation accuracy and simulation time. Because the level of
interpretation is higher than machine instruction level, the simulation is much faster
compared with the traditional functional simulation.

The entire simulation system, including the application program, is run by a

48

single process. The simulation does not incur any context switching on the host, and
thus saves simulation time. In Proteus, which uses light-weight processes to simulate
application processes, a context switch takes 3 microseconds [12]. Tango uses UNIX
processes, so context switching time is as high as 250 microseconds [19].

The simulated wormhole-routed network does not route actual messages. The
routing is simulated using only message information. Moreover, the network uses an

approximate version of round-robin scheduling to speed up the simulation time.

3.5.3 Flexibility

Besides accuracy, the functional simulation technique also outperforms the other sim-
ulation techniques in terms of flexibility and debugging convenience. The CPSS offers

flexibility to users in many ways.

Virtual-to-physical architecture mapping at run time

The application program is written using the virtual architecture which should be the
most natural and efficient architecture for the application. At run time, the virtual
architecture will be mapped to a physical architecture. If the user does not specify
any physical architecture, the default is the virtual architecture itself. In this case,
no mapping is needed.

If the user specifies a physical architecture, a mapping is needed to assign the
virtual nodes to the physical processors. The user can select a mapping function

from the mapping library supported by the CPSS. The mapping library includes

e Optimal mappings which offer the best communication performance. A set

of optimal mapping functions for wormhole-routed networks are provided in
Chapter 6.

¢ Approximative mappings which are optimized to provide good communication

performance.

¢ Random mappings

The flexibility is extended to allow the user to use his/her own mapping. The

mapping is generated by the user, stored in a file which the simulator will read in to

49

map the virtual nodes onto the physical processors. Note that the mappings can be
both one-to-one and many-to-one.

All the above changes (physical architecture and mapping) require no modifica-
tions to the simulator or the application, and thus no re-compilation. This is an
ability unique to the CPSS among existing multicomputer simulators. In the case of
Proteus simulator, to change the topology of the physical architecture, the network
module must be modified to the new architecture [12]. The whole simulator is then
re-compiled and re-linked. The same procedure is applied to the EPPP simulator if
the topology of the physical architecture needs to be changed [35].

With Multi-Pascal and its simulator, there is no support for virtual architecture
[34, 25]. The architecture defined in the program is also the physical architecture.
Processes are mapped onto processors in the application program. If the physical
architecture or the mapping need to be changed, the application program must be

modified and re-compiled.

Simulating a wide range of multicomputer systems

Unlike direct-execution simulators, a functional simulator can be adapted to simu-
late a new architecture more easily because the intermediate instruction set can be
expanded or re-defined in terms of instruction functionality.

The vCode instruction set of the CPSS is constructed using common operations
of multicomputer systems. The cost of each instruction can be adjusted to simulate
a specific target. Instruction functionality can be modified and new instructions be
added easily due to the modular and decoupled implementation of the simulator.

The CPSS simulates a wide range of topologies: line, ring, mesh, torus and hy-
percube. System size can be extended up to thousands of nodes and is limited only
by the memory capacity of the host computer. The simulator also permits users to

change most system parameters to define a specific architecture.

Large set of configurable parameters

Almost all computation and communication parameters can be configured by the user.
The computation parameters listed in section 3.2.3 are all user-modifiable. Besides the
physical architecture and the mapping, the following communication parameters are

configurable: packet size, flit size, number of virtual channels per physical link, virtual

50

channel buffer size, startup overheads, flit routing latency, header flit overheads, and
routing algorithm.

The user can change values of parameters within the same simulation session as
often as needed. No re-compilation is needed: the same vCode of the application is
always executed.

The large set of configurable parameters enables the CPSS to simulate a wide range
of wormhole-routed networks and multicomputer systems. Tuning system parameters
allows the analysis of an application or an architecture to be more thorough and

accurate.

Modularity and expandability

The design and implementation of the simulator are modular and decoupled. Future
changes and enhancements to the simulator would be quick and easy. For example, a
new vCode instruction can be added easily to the simulator. We only need to write
the simulating routine for the new instruction. No other modifications are necessary
(unless the new instruction interacts with existing instructions, in which case other
changes are required to capture the interactions).

The network module is decoupled from the CEM. The interface between these
two modules are clean and well-defined. It is possible to develop a simulator of
another type of network (such as packet switching) independently. It would then be
easy to integrate the new network module into the CEM to simulate packet-switched

multicomputers.

3.5.4 Repeatability

The repeatability is easily achieved since the simulator is a sequential program which
is, in its nature, deterministic and repeatable. Under the same set of parameters,
different executions of the same application yield the same results.

Repeatability does not imply that only one of the many possible executions of an
application can be simulated. In fact, the simulator can reproduce multiple executions
of a nondeterministic application. This is particularly useful for applications whose
behavior is considerably different from one run to another depending on the outcome

of race conditions.

51

In the CPSS, multiple executions are implemented by varying the relative proces-
sor speed. Race conditions can thus be created by the variation of relative processor
speeds. For example, by changing the relative processor speeds, the order of sending
two messages from two distinct nodes may be reversed. If the two messages compete
for the same physical link, the sending order would decide which message will get the
link first.

A pseudo random number generator is used to determine relative processor speeds.
Using the same seed for all executions provides the determinism needed for repeata-
bility. On the other hand, if we vary the seed values, relative processor speeds change
accordingly. This results in different executions of the same application.

Proteus simulator [12] applies the same concept of using a pseudo random number
generator to implement repeatability and multiple executions. However, the seed is
used to randomly choose between two requests with the same timestamp. Different
choices generates multiple executions.

The implementation of the CPSS is different from that of Proteus. If we imposed
a choice on any two requests of the same kind with the same timestamp, this would
slow down the simulation time since the race condition was being simulated at a very
low level (i.e. at the level of requests). Instead, we make use of an alternative which
is to vary relative processor speeds. This meets the same objective (i.e. repeatability
and multiple executions) while offering a higher performance.

Repeatability is critical to provide a stable and reliable debugging environment. It
also helps to study an application at various levels of details and from different angles.
Multiple executions are essential to study nondeterministic applications, applications
which demonstrate different behaviors depending on results of race conditions. An
example of such applications is concurrent branch-and-bound search algorithms. For
example, a concurrent search algorithm would require multiple executions so that
the user can gather a distribution of execution times, which allows for a much more
accurate view of the effectiveness of the algorithm. Multiple executions are also very
useful to test the robustness of deterministic applications. A deterministic program
should work correctly under different outcomes of race conditions occurring in the

system.

52

3.5.5 Correctness Debugging

Another advantage of the functional simulation over the other simulation technique
is easy debugging. Since parallel object code instructions are interpreted at the
functional level, it is convenient to insert debugging code inside the interpretation
code. Unlike the case of direct simulation technique, the amount of inserted debugging
code does not affect simulation results at all.

The CPSS supports the following debugging tools:

e Set and clear instruction breakpoints.

Set and clear time breakpoints.

e Step instruction by instruction; step through two or more instructions.
e Set and clear trace variables.

e View the trace variables.

e Set a particular process to be the current process for debugging. The user may

then use the above tools to debug the current process.
e View the program source code (written in the CPC language).
e View the vCode corresponding to selected lines of the source code.
e View the status of the processes. Information about each process includes

— the processor on which this process is run
— the process status (e.g., ready, running, blocked, etc.)
— the function that is currently executed by this process

— the line in the source code that is currently executed by this process.

The simulator also provides information about network deadlock or deadlock in-
curred by program logic (for example, all processes are waiting to receive messages
but there are no instructions in the program that send messages), if any. For net-
work deadlocks, displayed information includes the physical links and the messages
involved in the deadlock, and their status. In the case of program-logic deadlocks,

the processes involved in the deadlock and their status are displayed.

53

3.5.6 Performance Debugging

The performance statistics produced by the CPSS are:

parallel execution time of the program
sequential execution time of the program
execution time of any portion of the program

computation time of the program (i.e. time the program spent on computation
tasks)

communication time of the program (i.e. overheads incurred by message sends

and receives)
processor utilization

profile of processor utilization as a function of time

In addition, time-dependent data and traces are available for in-depth analyses.

Examples of time-dependent traces are:

process creation/termination information (time, processor number, parent pro-
cess ID)

message sends/receives (time, source node, destination node, message length)

message routing (path, time traces)

These data records are logged into files and can be disabled or enabled as the user

wishes. Time-dependent data and traces are provided at different levels of detail as

requested by the user. It is also easy for users to add their own traces to the simulator

code in order to capture other time-dependent data as they want.

3.5.7 User-Friendliness and Portability

To make the simulator user-friendly, we reuse the debugging concepts of sequential

programming environments. For example, a parallel application is first compiled by
the CPCC and then executed by the CPSS. Debugging tools are similar to those of

54

sequential programming environments such as breakpoints, trace variables, file listing,
etc.

To support portability, the simulator is written entirely in C. It is intended to be
running on any host machine which has a C compiler. Compilation conditional flags
are used to adapt the simulator to different versions of C compiler. Currently, the

simulator can work on UNIX workstations and PCs.

35

Chapter 4

The Code Execution Module

This chapter presents the design and implementation of the code execution module
(CEM). The discussion focuses on the simulation of the most important entities of a
multicomputer system, which are: processing elements (processors), local memories

of the processors, processes, and communication channels among processes.

56

4.1 Processors

4.1.1 Virtual Processors versus Physical Processors

In the CPPE (Concordia Parallel Programming Environment), we distinguish two
kinds of processors: virtual processors and physical processors. The user writes an
application using the architecture most natural and efficient to program performance.
This architecture is referred to as virtual architecture, and its processors are called
virtual processors. For example, the natural topology for matrix multiplication should
be 2D-mesh or torus.

The topology and size of the physical machine may not match that of the virtual
architecture. Processors constituting the physical system are physical processors. At
run time, the virtual processors are mapped to the available physical processors. For
instance the matrix multiplication program may be mapped to run on a hypercube
multicomputer.

The mapping objectives are to minimize communication cost among communicat-
ing processes, and to balance the workload among physical processors.

There are two levels of program mapping. The first level is the mapping from
processes to virtual processors. The second level is mapping from virtual processors

to physical processors.

1. Process-to-virtual-architecture mapping. The mapping can be one-to-one and
many-to-one. Often in the application program the user specifies the ID of the
virtual processor on which a process will run. The virtual processor will be

mapped to a physical processor at run time.

If the user does not provide a virtual processor for a new process, at run time
the process is mapped directly to a physical processor, bypassing the virtual
processor level since a virtual processor is not needed in this case. The physical
processor allocated to the new process is determined by a default processor
allocation algorithm. The default allocation criteria is to balance the work load

among existing physical processors.

2. Virtual-to-physical-architecture mapping. At run time, the user can specify
the desired physical architecture for running the compiled virtual-architecture

program. The user is asked to select a mapping function provided by the CPSS

57

mapping library. Random mapping is also available. The user is also allowed
to import his/her mapping from a file and store it in the mapping table.

If the user does not specify a physical architecture, the default physical archi-

tecture is the same as the virtual architecture.

In the CPPE, many processes are allowed to time-share the computation band-
width of a processor. Processes residing on the same processor are scheduled in a
round-robin fashion to run their code. Context switching among these processes

incurs a configurable cost.

4.1.2 Processor Numbering

Processors (virtual or physical) are identified using absolute IDs. Absolute IDs are

computed as follows.

e Line, Ring: assuming that the system has n processors, the processors are

numbered from 0 to n — 1.

e 2D Mesh and 2D Torus: assuming that the mesh (torus) has R rows and C

columns, the absolute ID of processor (r, ¢) isr - C + ¢, where 0 < r < R and
0<c<C.

e 3D Mesh and 3D Torus: assuming that the mesh (torus) has P planes, R rows
and C columns, the absolute ID of processor (p, r, ¢) is (p- R+71)-C + ¢, where
0<p<P,0<r<Rand0<Lc<C.

e Hypercube: the absolute ID of a processor is the decimal value of the corre-

sponding binary representation of the processor address.

Simulation of program execution utilizes absolute IDs so that simulation routines
are generic and can be used for all types of topology. Only the mapping functions

need to use Cartesian IDs (for meshes and tori) or binary IDs (for hypercubes).

4.1.3 Data Structures

At run time, virtual processors are mapped to physical processors and the mapping is
recorded in the mapping table. Only physical processors need be simulated. Informa-

tion required to simulate a physical processor is stored in a structure called physical

58

processor descriptor (PPD). Every PPD contains the following fields:
e status: processor status that can be one of the following:

— NeverUsed: the processor has never been used since the program execution
started.

— Empty: the processor has been used, but currently there are no processes

working on it.
— Occupied: there is at least one process currently working on the processor.

—~ Reserved: a newly created process has reserved a place on this processor
(the processor may currently run other processes). When the new child

process starts running, the processor status will be changed to Occupied.

Processor status is used only for the purpose of allocating default processors to

newly created processes.
e nbrProcesses: number of processes currently sharing the processor.
e runProcess: pointer to the PCB of the process currently using the processor.

e startTime: time at which the currently running process is scheduled to use the

processor. This field is used to schedule processes sharing the same processor.

e virTime: the running time accumulator of the processor. This field is used to
schedule processes sharing the same processor, and for statistical purposes (e.g.

calculating processor utilization).

o speed: processor speed, that is used to study the undeterministic nature of

parallel program execution (section 3.5.4).

When the program starts execution, an array of PPDs is allocated, one array
entry for each physical processor. The array size is the size of the physical archi-
tecture. The array is indexed by absolute IDs of physical processors. This array
(physProsorTable[]) is referred to as the table of physical processor descriptors.

The data structure of physical processor descriptors in C is as follows.

59

typedef struct

{

ProcessorState status; /*processo; statusx*/

int nbrProcesses; /*number of processes running on the processor*/
ProcDesPtr runProcess; /*pointer to PCB of current running process*/
float startTime; /*starting time of currently Running process*/

float virTime; /*running time accumulator*/

float speed; /*speed multiplication factor; to vary processor speed*/
} PhysProc_Entry;

The mapping from virtual processors to physical processors are computed and

stored in a mapping table (virPhyMapTab[]).

4.1.4 Physical Processor Allocation

In the application program, the user can map a new process to a virtual processor
by specifying the virtual processor ID. In the following example, three processes are

created and mapped to virtual processors with absolute IDs 1, 2 and 3 respectively.

for (i = 0; i < 3; i++)
fork (i+1;) Compute(i);

Before the parent process creates a fork child process, it evaluates the expression
representing the ID of the virtual processor on which the child will run. In the above
example, the parent process calculates the value of 7 + 1. This value is the absolute
ID of the child’s virtual processor. The virtual processor ID is then converted to the
physical processor ID using the mapping table. The new child will be spawned on
the resulting physical processor.

If the user does not specify the virtual processor ID for a new child, the parent
process skips the process-to-virtual-processor mapping. The parent will determine a
default physical processor for the child by executing vCode instruction De fault Proc.
Assuming that the program has n processors numbered from 0 to n —1 using absolute
IDs, the algorithm of instruction DefaultProc is as follows. The parent traverses the
table of physical processor descriptors. The first Empty processor found will be
assigned to the child. If there is no Empty processor, the first NeverUsed processor

60

found is chosen. If there is no NeverUsed processor either, among the Occupied and
Reserved processors, the one with the least number of processes is selected. The
status of the selected processor is then set to Reserved, and the child will be assigned
to this physical processor.

The objective of DefaultProc algorithm is to balance the load among physical
processors. To optimize communication performance of the program, the user should

explicitly map new processes to virtual processors in the CPC program.

4.1.5 Context Switching

Processes sharing the same physical processor are scheduled to use the processor in a
round-robin fashion. The processes are given equal time slices (called switchLimit)
to run. When the switch Limit of a process p expires, another process will take over
the processor.

However, if p is currently using the processor and has higher priority than the
other processes, then p is allowed to continue to run even when its switchLimit
has expired. The use of process priority would facilitate the simulation of real-time
systems in the future.

When the running process completes execution of an instruction, the running time
accumulator (field virTime of the PPD) of the processor is incremented by the cycle
counts of the instruction. When a process is scheduled to take over the processor, field
startTime of the PPD is set to the current value of virTime. The currently running

process has used up its allocated computation bandwidth if virTime > startTime +

switchLimat.

61

4.2 Memory Management

4.2.1 Physical View of Local Memories

In this section, we discuss how memory management is performed on real multicom-
puters. Local memories will be simulated based on this physical memory model.

In our model, several application processes are allowed to time-share a physical
processor. Thus the corresponding local memory is shared by many processes. The lo-
cal memory contains only program variables and other run-time data (e.g. activation
records, dynamically allocated data structures).

When a new process is created on a processor, it is allocated a memory block from

the local memory, which is used for the following types of data:

e working stack: the stack is needed for expression evaluations and for temporary

run-time data.

e activation records: each record contains function parameters, local variables in-
side the called function, and other control information for the function call/return.
An activation record is allocated on every function call, and deallocated on the

function return.

The size of the given memory block depends on run-time conditions and space
requirements of the process execution. We assume that the allocated memory block
is large enough for the process to run until normal termination.

Since several processes may be running on the same processor, memory protection
must be available. The allocated memory block of each process is delimited by two
registers: base and limit registers which contain the starting and ending physical
addresses of the block, respectively. Figure 4a illustrates the local memory of a
processor on which three processes are running. Each process owns a memory block
and a corresponding pair of base and lzm:t registers.

We now consider how a process makes use of its memory block during execution.
When the process starts execution, it uses the memory block asa big working stack for
expression evaluations or for temporary run-time data. A register (top) is needed to
record the current top of the working stack (Figure 4b). If the process calls a function,
an activation record is allocated and it will sit on top of the current working stack.

The value of register top is saved in the activation record because the working stack

62

W.ﬁm e e
’ Working | top2
. stack
Hmit3 —e .
Working Activation
base3 wOrking StaCk Rccord 2
stack top2 Working
limit2 — stack
Activation Activation
base2 Record 1 Record 1
top2 . .
limit1 0P Working Working
-~ stack | stack |
basel
a) b)) d)

Figure 4: Physical view of local memories

now grows above the activation record (Figure 4c). If inside this function another
function is called, then a second activation record is allocated. The current value
of register top is saved in the second activation record, and the working stack moves
above the second activation record (Figure 4d). When a function returns, the previous
value of register top is restored, and the activation record is disposed. The working

stack then returns to the previous position using the restored value of register top.

4.2.2 Design Choices

The first design choice that would come to mind is to implement local memories
exactly as they are on a real multicomputer. That is, each simulated processor has
a fixed-size local memory. The advantage of this design is that it reflects the exact
image of local memories on real multicomputer systems, and the implementation is
very simple.

The issue is how large a simulated local memory should be. If the memory size
is small, some processors with considerable load may run out of space quickly. If the
size is large, a lot of space may be wasted, and we may not be able to simulate very
large systems. Also, if work loads on processors are not balanced, it may happen that
some processors have idle memory space while others are running out of memory.

Therefore, we selected the dynamic allocation scheme. That is, memory blocks are

63

allocated only when required and on a per-process basis. Consequently, if a processor
is unused, the size of its local memory is logically 0. When a process is created on
this processor, the process is allocated a memory block for execution.

The next issue is how much space should be allocated to a process. We do not
know in advance how much space a process would need. Allocating fixed-size blocks
would not be a good choice because some processes may waste unused space while
others do not have enough memory to run. Therefore, we also allocate memory
space to processes upon requests. More specifically, when a process is created, it
is given space for a working stack so that the process can evaluate expressions and
maintain temporary data. When the process calls a function, an activation record is
allocated. During execution of the process, dynamically allocated data structures are
also granted on a request basis.

When a function call finishes, the corresponding activation record is returned
to the system for reuse. Similarly, dynamic data structures are returned when the
process releases them. The system also reclaims the working stack when the process

terminates.

4.2.3 Implementation

We make the following decisions in the implementation of local memories:

e Implementation of local memories does not include storage for program code.
Program ccde is stored in a separate array and is shared by all processes. This
implementation of code storage is economical since processes running the same

code fragments can share one copy of the code fragments.

e Implementation of local memories does not include storage for process control

blocks (PCBs). PCBs are stored in a separate array for use by the simulator.

e Stacks grow from the lowest address to the highest address.

Based on the selected design, memory blocks are allocated to processes upon
requests. There are three kinds of memory requests: request on process creation,
request on function call, and request for dynamically allocated composite-type data

structures (i.e. arrays and structures).

64

typedef struct { /+*basic data entry*/
char type; /* tag 0: int; 1: float */
union {
int intValue;
float floatValue;
} val;
} basicValue, *basicValuePtr;

basicValue storageValue[STORAGE_SIZE]; /* memory pool */

int storageOwner [STORAGE_SIZE]; /#processor owners of memory words*/

Figure 5: Data structures of the memory pool in C

Memory blocks are taken from a common memory pool and distributed to re-
questing processes. The memory pool is a fixed-size array. Each entry of the array
is considered to be a word. An integer or a character requires a word. A pointer
is treated as an integer, thus needs one word as well. A word can also store a float
number. To implement this, every word is associated with a tag indicating whether
to interpret the word as an integer or a float. The data structure in C of the memory
pool is shown in Figure 5. The memory pool is array storageValue(].

Since the memory pool distributes memory blocks to all processes running on dif-
ferent processors, there must be a mechanism to tell to which physical processor a
word belongs. An array parallel to array storageValuel[] is used to store locations
of memory words. This array is called storageOwner and of the same size as array
storageValue[] (Figure 5). Entry storageOwner[il] contains the ID of the phys-
ical processor who owns the memory word storageValue[i]. Figure 6 shows the
structure of two arrays storageValue[] and storageOwner/[].

The location of a variable (i.e., the physical processor on which the variable resides)

is needed to determine

e the validity of an access: a process is not allowed to access a variable on a

remote processor;

65

e the validity of a channel read: only the channel owner can read from that

channel;

¢ the destination of a message send from a channel write.

When memory blocks are no longer needed (e.g. due to process termination,
function return), they are returned to the memory for reuse. Thus fragmentation may
exist: free and in-use blocks are interleaved in the memory pool. In the CPSS, memory
blocks are allocated using first-fit allocation. Compared with the other schemes like
best-fit and worst-fit, first-fit performs as well as best-fit and better than worst-fit in
terms of storage utilization. Moreover, first-fit is generally faster than best-fit and
worst-fit {31].

The simulator keeps track of free memory blocks for reuse. Each free memory block
is delimited using two variables: start which contains the starting address of the block
(memory pool absolute address), and size which is the block size (Figure 6). Free
blocks are managed using an ordered linked list of structures, each structure recording
the starting address and size of a free block (Figure 6). The linked list of free block
structures is ordered in the increasing order of starting addresses (field start). When
using first-fit allocation scheme, this order tends to reduce fragmentation because any

two blocks allocated consecutively have more chance to be adjacent.

4.2.4 Memory Management for Processes
Allocation On Process Creation

When a parent process creates a new child, the parent requests a working stack for
the child. The child will use this stack to store run-time data (such as the forall
information block which will be described in section 4.5.2), or to evaluate expressions.
On a real processor, the size of the working stack is unlimited (or limited by the upper
bound of the physical memory block given to the process as illustrated in Figure 4b).
In the simulator, the allocated working stack is part of the memory pool which is
shared by all processes. Thus a working stack needs a limit. On the other hand if
it is too small, a process may exceed the stack limit during execution, and cause a
run-time error. The CPSS allows users to adjust the working stack size, which is a

user-definable parameter. The very first working stack granted to a new child is called

66

belongs to
processor 6

belongs to
processor 4

belongs to J
processor 5L

belongs to
processor 1

belongs to
processor 0

storageQwner

Free J
L—— Next
Free Size
.................. Start
L—— Next
Free — Size
Start
l Next
Free] DA Size
__________________ Start
-------- e freeBlocks
Linked list of free blocks
storageValue
(memory pool)

Figure 6: Implementation of the common memory pool

67

a process frame. Memory space allocated to a newly created process p is depicted in
Figure 7a.

Using the CPC language, the code to be executed by a new child is denoted by
a CPC expression. The expression can be a single statement, a function call or a
block statement; examples are given in Figure 8. If process p’s code is only a single
statement involving no function call (Example 1, Figure 8), p does not require any
more space. It simply executes the statement, terminates and returns the process

frame to the system:.

Allocation On Function Calls

If process p’s code contains a function call as in Examples 2 and 3 in Figure 8, p
will request space for the activation record and another working stack (Figure 7b).
The second allocated working stack is used for expression evaluation or for temporary
run-time data while the process is inside the called function. The activation record
and its accompanying working stack are always adjacent, and they form a function
frame. Note that this function frame of process p may not be adjacent to p’s process
frame. This is because the memory pool is shared by all processes, and the pool
management is based on a linked list implementation.

If process p calls a second function while it is inside the first function, p will be
given a second function frame, as illustrated in Figure 7c. p now owns two function
frames and one process frame.

A new child’s code can be a single function call as in Example 4 in Figure 8. In
this example, right after being created, the child process calls function RankSort().
The call results in a function frame to be allocated to the new child, just as with
other function calls. Memory space belonging to the child is as in Figure 7b.

The code of a new process can also be a block statement as in Example 5 in
Figure 8. The CPSS treats a block statement as a function with no parameters
and no name. This pseudo function may have local variables though. In the given
example, the new process calls a pseudo function that has two local variables. Similar
to the case of real function calls, the new child is granted a function frame (Figure 7b).

In summary, every time a function is called, a function frame consisting of an

activation record and a working stack is allocated to the calling process.

68

/A stackTopLim
Working
stack 1
Cacivaion [|
/ Doy
] A stackTopLim ; % ¥
Working :_TQ_ Warking stackTopLim g
stack O . stack O X
- ase ase
T 2/
a) On process creation b) First function call
////% stackTopLim
Working
stack2 [~ T
...... 7 S,
":'-"-/record2 B i
7__1:1__ Working | StackTopLim
stack 1
Activation --
: By | recond1 Fomtmmm oo
0
Array A -E stack’l‘opl_im 0
Working fe-----------!
stack O To]
7 asc
77z
d) Dynamic armray allocation

%77

stackTopLim

Working
stack 2

| Activation
record 2

————

.......

P

Working
stack 1

record 1

Activation t--,

.. —_—_—————————,

Working
stack O

7

c) Nested function calls

e) Process O

Figure 7: Memory management for processes

69

stackTopLim

base

[*Ezample 1: New child’s code is a single statement without function call*/

fork if (1)
printf("Hello world!");

/*Ezample 2: New child’s code is a single statement with function call*/

fork if (ReturnTrue())
printf("Hello world again!");

[/*Ezample 3: New child’s code is a single statement with function call*/

fork while(1l) {
int A[10];

RankSort(4);

, ..

/*Ezample 4: New child’s code is a function call*/
fork RankSort(A);

/*Ezample 5: New child’s code is block statement*/
fork {

int 1, j;
scanf("%4", &i);

}..

Figure 8: Examples of a new child’s code

70

Dynamic Data Structure Allocation

During its execution, process p may request a dynamic data structure. For instance,
p executes a. malloc() to create an array A. A memory block of the size of array A
is allocated to p. The block is granted using first-fit allocation scheme, as with other
allocated memory blocks. The starting address of the array is recorded in variable A.

This example is depicted in Figure 7d.

Deallocation

When a function returns, the corresponding function frame is returned to the memory
pool. The same deallocation is performed when a composite-type data structure is

freed. Similarly, when a process terminates, the process frame is released for reuse.

Process 0

Process 0 is somehow different from other processes. It is the first process created
when program execution starts, and it has no parent. Global variables belong to
process 0. Therefore, when the program starts running, the memory pool allocates
the very first memory block (starting at address 1) to process 0 for global variables
(Figure Te). All process 0 does is to call function main(). Thus a function stack frame
is allocated next for the call to main() (Figure 7e). Inside function main(), process
0 may create the first generation of child processes which will be granted memory

blocks as described earlier.

Process Memory Management

As a process is running, its own memory space is maintained and handled by four

pointers which are stored in the process control block (PCB):

e base: pointer to the starting address of the process frame allocated when the
process is created. The value of this pointer never changes for the lifetime of

the process.

e stackTopLim: pointer to the upper bound (the highest address) of the current
working stack. When a function is called, the current value of stackTopLim

is saved in the activation record of the function call. stackTopLim is then set

71

to point to the upper bound of the new function frame. When the function

returns, the previous value of stackTopLim is retrieved.

e T': pointer to the top of the current working stack. T is incremented when a
value is pushed onto the stack and decremented when the top entry is popped
off. Every time the process calls a function, the value of T is saved in the
activation record of the function call. The pointer is then used to manage the
new working stack. When the function exits, the previous value of the pointer

is restored.

e B: pointer to the starting address of the current function frame. If another
function f is called inside the current function, the value of B is saved in the
new activation record allocated to f. B is then updated to point to the starting
address of the new function frame of f. When function f returns, the process

restores the previous value of B.

Figure 7 illustrates the use of these pointers. When a new process is created, it is
allocated a process frame. base and stackTopLim point to the starting address and
the highest address of the process frame, respectively (Figure 7a). T is initialized to
base — 1.

Every time a process calls a function, the previous values of B, T and stackTopLim
are saved in the newly allocated activation record. In Figure 7b and c, the dotted
arrows denote the saved values of these registers. Pointers B and stackTopLim are
then set to point to the starting address and the highest address of the function frame,
respectively. T is set to the current stack top, which is the highest address of the
activation record (Figure 7b and c).

When program execution starts, the pointers of process 0 are set as follows. base
is set to address 1, which is the starting address of the memory block reserved for
global variables. Since a function frame is also allocated immediately for function call
to main(), B and stackTopLim are initialized to point to the starting address and
the highest address of the function frame, respectively. T is set to the current stack

top, which is the highest address of the activation record (Figure 7e).

72

4.2.5 Memory Management for Function Calls

Activation Record Description

When a process p calls a function, a function frame consisting of an activation record
and a working stack is allocated to p. The activation record provides space for function
parameters, local variables inside the function, and call/return control information.
The structure of an activation record is depicted in Figure 9.

The call/return control information block is 9-word long and contains the following

fields listed in the order from the lowest address to the highest address (Figure 9).
1. Function return value.
2. Current value of the caller’s program counter.
3. Static link: pointer B of the lexical parent of the called function.

4. Dynamic link: the caller’s B. B will then be set to point to the lowest address
of the new function frame. The currently active function frames of process p
are linked together by the pointers stored in this field (Figure 7b and c). The

linked list represents the current dynamic link chain of p’s execution.
5. Index of the called function in the identifier table.

6. Reference counter of this activation record. This field is only used when sim-
ulating shared-memory multiprocessors. We list it here to provide a complete

picture of the activation record.
7. Size of the new function frame.
8. Current value of the caller’s T'.

9. Current value of the caller’s stackT opLim.

Function Calls

The code sequence generated for a function call is as in Figure 10.
vCode instruction NewFrame first allocates a function frame. It then saves

the current value of pointer T into the activation record just allocated. Pointer

73

; caller’s stackTopLim

s caller’'s T
Locals '," function frame size
reference counter
Parameters ,"' function index
caller's B
Call/ Return -
control lexical parent’s B
information caller’s PC

function return value

Figure 9: Structure of an activation record

NewFrame; /[*allocate a new stack frame for the function™/
Evaluate the parameters;

Call; /*call the function*/

Figure 10: Function call (vCode instructions are in bold face)

74

stackTopLim is updated to point to the highest word of the new function stack
frame. T is also updated to work with the new stack: T points to the highest address
of the activation record.

The process continues by evaluating the parameters. Their final values are pushed
onto the new stack, at their appropriate locations in the activation record. The process
then executes instruction Call. This instruction saves call/return control information,
updates pointer B to point to the lowest address of this function frame, and sets the
program counter to the starting code address of the function body.

When the function exits, the saved values in the activation record are restored
to allow the process to go back to the caller’s context. The function return value is

pushed on top of the caller’s stack, and the callee’s function frame is freed.

5

4.3 Processes

In this section we discuss how parallel processes and their execution are simulated. We

also describe data structures needed to manage and run simulated parallel processes.

4.3.1 Data Structures
Process Control Block

Every application process is associated with a process control block (PCB) that stores
various information needed for its execution. A PCB is dynamically allocated upon
the creation of a new process, and deallocated when the process terminates. The
PCB of a process p contains the following fields (field descriptions include reference

to the sections that describe the fields in more details):

e processID: process 1D
e PC: program counter

e state: process state, which can be one of the following states: Ready, Running,
Delayed, Blocked and Terminated (section 4.3.3).

o priority: process priority (sections 4.1.5 and 4.3.4). Process priorities are used

to schedule processes running on the same processor.
o parent: pointer to the PCB of the parent process
e base: pointer to the lowest address of the process frame (section 4.2.4)
o T: pointer to the current top of the working stack (section 4.2.4)
¢ B: pointer to the lowest address of the current function frame (section 4.2.4)

o stackTopLim: pointer to the highest address of the current function frame (or

process frame if p currently owns no function frame) (section 4.2.4)
o forallLevel: forall nesting level of this process (section 4.5.3)

o numForallChildren: number of p’s forall children that are currently running
(sections 4.5.3 and 4.5.4)

76

mazForallTermiTime: the most recent termination time of p’s forall children
(section 4.5.4)

forallldzAdr: while p is executing a forall loop, field forallldz Adr contains

the memory address of the forall index variable (section 4.5.3).

repeatProcInGroup: flag used for implementing the grouping option of a forall
loop (section 4.5.3)

forkCount: number of p’s fork children that are currently running (sections 4.4.2
and 4.4.3)

mazForkTermiTime: the most recent termination time of p’s fork children
(section 4.4.3)

joinCount: number of p’s fork children that terminated but have not been

matched with a join statement yet (section 4.4.4)
time: p’s local clock (section 4.3.4)

wakeTime: p’s wakeup time (section 4.3.4). When p is put to sleep and the
wakeup time is known, p’s state is set to Delayed and field wake Time records

the wakeup time.
virProcessor: ID of the virtual processor on which p is running (section 4.1)
phyProcessor: ID of the physical processor on which p is running (section 4.1)

altPhyProsor= when p evaluates parameters on behalf of its parent, p’s ac-
tual physical processor ID is temporarily stored in this field, and p’s field
phyProcessor is set to that of the parent. When p completes parameter eval-
uation, p restores its real physical processor ID from field alt PhyProsor (sec-
tion 4.4.2).

readChannStatus: if p is in the middle of a channel read, this field is set to
AtChannel. When the channel read is successfully completed, readChannStatus
is reset to None, meaning that the process is not reading any channel (sec-
tion 4.6.6). Field readChannStatus can take another value, TimeReserved.
This value, however, is used only in the simulation of shared-memory architec-

tures.

77

The data structure of PCB in C language is shown in Figure 11.

List of Processes

When a new process is created, a PCB is allocated and appended to the list of pro-
cesses. This is a singly-linked list managed by three pointers: actProcHead pointing
to the first entry of the list, act ProcTail pointing to the last entry of the list and

cur Proc pointing to the PCB of the process currently running.

4.3.2 Parallelism by Time Slicing

Parallel execution of application processes are simulated by time slicing. The execu-
tion of a parallel program is divided into quanta, each quantum lasting ¢ clock cycles
(or time units) where ¢ > 0. During each quantum, the scheduler traverses the list
of processes, and schedules every process in a round-robin fashion. If the process
is able to run (i.e. it is not blocked or delayed), it executes until its time slice of
g time units expires or is put to sleep by some event. The scheduler then gets the
next process in the list and schedules this process. As the scheduler moves downward
the list, the value of pointer cur Process is updated to identify the process currently
running. When the last process in the list (i.e. the process whose entry is pointed
to by actProcTail) finishes its time slice, the global clock (globClock) is advanced
by ¢ time units to the next quantum and a new quantum begins. Such a quantum
simulates g time units of parallel execution of all processes on a real parallel machine.

The duration of a quantum is the time for a non-header flit to move from one
node to an adjacent node (flit latency). For example, if ¢ = 3, the CEM (code
execution module) runs parallel processes for 3 clock cycles, and then the network
simulator moves unblocked flits forward by one link. The computation quantum and
the communication step are considered to be running in parallel. The quantum can
be a fractional number. For instance, when ¢ = 0.5, parallel processes run for one

clock cycle every time the network simulator advances unblocked flits by two hops.

4.3.3 Process States

Possible states of a process p are

e Ready: p can be scheduled for running.

78

typedef struct ProcDescStruct
{
int processID; /*process ID*/
int PC; [*program counter*/
enum States state; /[*process state™/
enum Priority priority; /*scheduling priority*/
struct ProcDescStruct *parent; /*pointer to parent’s PCB*/
int base; /*lowest address of process frame*/
int B; /*lowest address of current function frame*/
int T; /*current stack top™/
int stackTopLim;
/*highest address of the current function/process frame* /
int forallLevel; /*forall nesting level of this process™/
int numForallChildren; /*number of forall chidren currently running*/
float maxForallTermiTime; /*most recent forall termination time*/
int forallldxAdr; /*memory address of forall indez*/
char repeatProcInGroup; /*flag for implementing grouping option™/
int forkCount; /*number of fork chidren currently running*/
float maxForkTermiTime; /*most recent fork termination time*/
int joinCount;
[*number of fork children terminated but not matched with join™/
float time; /*local clock of this process™/
float wakeTime; /*wakeup time if process state is Delayed* /
int virProcessor; /*virtual processor ID*/
int phyProcessor; /*physical processor ID*/
int altPhyProsor;
/*to save actual physical processor ID on parameter evaluation™/
enum ReadStatus readChannStatus; /*status during channel read*/
} ProcDescriptor, *ProcDesPtr;

Figure 11: Process control block structure in C

79

e Running: p is currently executing its code.

o Delayed: p is put to sleep and the wakeup time is known. The process will be

waken up by the scheduler when the wakeup time expires.

e Blocked: p is put to sleep and the wakeup time is not known in advance. p will
be unblocked by another process (e.g., one of its children) or an event (e.g., the

arrival of a message in the wormhole-routed network).
e Terminated: p has completed the execution of its code.

Figure 12 shows the interchanges between the states. Following are the conditions

for process state transitions.

o from Delayed to Ready: the wakeup time of p has expired. The state change
will be done by the scheduler.

¢ from Delayed to Running: p has just been created. Now it is running to evaluate
the parameters on behalf of its parent (the parameters are to be passed to the
child by the parent). The parent will change p’s state from Delayed to Running

during process creation procedure if there are parameters to be passed.
o from Ready to Running: p is scheduled to run by the scheduler.

e from Running to Blocked: ome of the following cases may cause the state of

process to change from Running to Blocked.

— p must wait for its newly created children to complete parameter evaluation

before proceeding to the next instruction.

— p must wait for all its forall children to terminate before proceeding to the

next instruction.

— p must wait for one or more fork children to terminate before it can ter-

minate.
— p hits a join statement with joinCount = 0.

— p must wait on a channel read because no data is currently available for

reading.

80

e from Running to Delayed: when p has finished parameter evaluation (on behalf
of its parent), its state is changed from Running to Delayed. The scheduler will

change p’s state to Running again when p is scheduled to run.

e from Running to Terminated: p has completed the execution of its code and

has no children to wait for. Therefore p can terminate now.

e from Blocked to Delayed: one of the following cases may cause the state of

process to change from Blocked to Delayed.

— p was waiting for its forall children to terminate. These children have

terminated. Thus p is unblocked.

— p was waiting for its fork children to finish in order to terminate. The last
fork child has just terminated. Thus p is unblocked. However, the local
clock of this process has not reached the termination time of the child (the
wakeup time). Therefore, this process is delayed until the wakeup time

expires.

— p was blocked on a join and a fork child has just terminated. However,
the local clock of this process has not reached the termination time of
the child (the wakeup time). Therefore, this process is delayed until the

wakeup time expires.

— p was waiting on a channel read. A message has just arrived and p is the
first process in the waiting list at the channel. Thus this process is given

the data item.

In the above cases, the scheduler will change the state of p from Delayed to

Running when p is scheduled to run.

e from Blocked to Running: p just created one or more child processes. All its
new children have completed parameter evaluation on its behalf. This process

can now be scheduled to run again.

e from Blocked to Ready: one of the following cases may cause the state of process

to change from Blocked to Ready.

81

Figure 12: Process state transitions

—~ p was waiting for its fork children to finish in order to terminate. The last
fork child has just terminated, and the termination time has passed the

time on the local clock of p. Thus p is ready to run again.

— p was blocked on a join and a fork child has just terminated. The child

termination time has passed the time on the local clock of p.

4.3.4 Process Scheduling

Every process has its own local clock (field time in the PCB). This local clock does
not exist in a real system. However, in the simulation, the local clock is needed for
the process to synchronize with the global clock and with other processes.

When a process is created, its local clock is initialized with the time on the par-
ent’s clock. Every time the process finishes a vCode instruction, its local clock is
incremented by the cycle count of that instruction. When the local clock reaches (or
exceeds) the time on the global clock, the process knows that its time slice in this
quantum is up. The scheduler will schedule another process to run. The local clock
of this process will then try to catch up the time on the global clock.

The scheduler first advances the global clock to the next quantum. It then at-

tempts to schedule every process for running. If the state of a process p is

e Delayed, this means that p was put to sleep and the wakeup time is known. If

82

the global clock has not reached the wakeup time (wakeupTime > globClock),
p continues to sleep. Its local clock is updated to the time on the global clock.
If the wakeup time has come (wakeupTime < globClock), its local clock is set
to the wakeup time. The scheduler also changes the process state to Ready and
then schedules p as a Ready process.

e Running, the scheduler checks the local clock. If the local clock has not reached
the time on the global clock (time < globClock), the process is allowed to run

until its time slice expires. Thus p is scheduled to run.

The cycle counts of some instructions may be longer than the quantum du-
ration. It may happen that after an instruction is completed, the local clock
of the process exceeds the global clock (i.e., time > globClock). Every time
the scheduler sees time > globClock, it simply skips p and schedules the next
process in the list. p will be able to run again when the global clock surpasses

p’s local clock (i.e. when globClock > time).

e Ready, this means that the local clock has not reached the global clock (tzme <
globClock), and this is true for all processes with Ready state.

— If p’s processor currently has no Running process or p is the only process
on this processor , p's state is changed to Running, and p is scheduled to

run.
— If another process m is Running on the same processor, then

+ If m’s context switching limit (switchLimit) has not expired yet, p
is not allowed to run (since m will be using the processor in this
quantum).

% If m has higher priority than p, p is not allowed to run either (even

when m’s context switching limit has expired).

+ If m’s context switching limit has expired and m’s priority is not higher
than p’s, the scheduler performs a context switching on p’s processor:

p is scheduled to run and its state is updated to Running.

In any case, if p is not allowed to execute in this quantum, p’s local clock is

updated to the time on the global clock.

83

e Blocked, p’s local clock is updated to the time on the global clock.

e Terminated, p’s entry is removed from the list of processes and its PCB is freed.

The process scheduling algorithm is summarized in Figure 13.

In summary, when the scheduler allows a process to run, the process state is
updated to Running. When a process starts executing an instruction, this implies
that the value on its local clock is less than the value on the global clock.

If the scheduler does not permit a process p to execute in this quantum, and p’s
local clock has not reached the global clock, then the local clock is updated to the
time on the global clock.

If p’s state is Blocked, an event will unblock p later. Let the time at which the
event ends be ¢, and the value of p’s local clock when the event occurs be time,. The

event will change p’s state to either Ready or Delayed depending on the values of ¢

and time,.

o If t > time,, the process state is changed to Delayed, and p’s wakeup time is

set to t. When p’s wakeup time expires, the scheduler will let p run again.

o If ¢ < time,, this means that the event had ended and p is thus able to execute

now. The event sets p’s state to Ready.

An exception is when a new child process completes parameter evaluation on be-
half of its parent and unblocks the parent. In this case the parent’s state is changed
from Blocked to Running. The reason for this exception and more details on param-

eter evaluation upon process creation will be presented in section 4.4.2.

4.3.5 Deadlock

Two kinds of deadlock may occur during execution of a parallel program: network
deadlock and logic deadlock. Network deadlock may happen due to network resource
contention. Messages involved in the deadlock cycle cannot move forward.

Logic deadlock is caused by errors in program logic. For example, the total number
of channel reads is larger than the total number of channel writes. In this case, some
readers will be blocked forever. When a logic deadlock happens, the state of all

existing processes are Blocked. However, when the state of all processes are Blocked,

84

JobScheduler()
{ logic_deadlock = TRUE; done = FALSE; count = 0;
do { count ++;
if (curProc == actProcHead) globClock += quantumDuration;
/*completed one round, so advance global clock to next quantum*/
p = curProc; /*p points to PCB of process currently running*/
if (p->state == Delayed)
if (p->waketime < globClock) /*time to wake up*/
{ p->state = Ready;
if (p->waketime > p->time) /*wakeup time exceeds local clock*/
p->time = p->waketime; /+*update p’s local clock*/
} else /*continue to sleep*/
{ p->time = globClock; /*update p’s local clockx*/
logic_deadlock = FALSE;
}
if (p~>state == Running)
{ logic_deadlock = FALSE;
if (p->time < globClock) done = TRUE; /*p will continue to run*/
} else if (p->state == Ready)
{ logic_deadlock = FALSE;
m = pointer to PCB of process currently Running on p’s processor;

if (m == NULL) /*there is no Running process on p’s processor*/
{ curProc = p; p->state = Running; /*p is scheduled to run*/
done = TRUE;

} else if ((m reached contextSwitchLimit) and
(m’s priority <= p’s priority)) /*then context-switch#¥/
{ curProc = p; p->state = Running;
m->state = Ready; done = TRUE;

} else p->time = globClock; /*p is not allowed to runx/
} else if (p->state == Blocked) /*continue to sleep*/

p->time = globClock; /*update p’s local clockx*/
else if (p->state == Terminated) /#*p terminatedx*/

remove p’s PCB from the list of processes;
else if (! done) /*if p gets here, p is not allowed to run*/

P = p~>next; /*consider the next process in the listx*/
} while(!(done or (logic_deadlock and

count > total number of processes)));

if (logic_deadlock and no messages in network) System_Deadlock();

}

Figure 13: Process scheduling algorithm

85

this may not mean a logic deadlock. In this case, the reason may be that all processes
are waiting for messages that are being routed and have not arrived at the destinations
yet.

A system deadlock that really blocks program execution happens when one of the

following scenarios exists:

o There is a network deadlock. This implies that some message cannot be deliv-
ered to the destination. Therefore, its intended reader process would be blocked

forever.

o The state of all processes are Blocked, and there are no messages to be routed

in the network. This implies a real logic deadlock.

When a system deadlock happens, the program execution is aborted. Detailed infor-

mation about the deadlock can be obtained from the debugging monitor.

86

a) Body is a function call with parameter passing
fork (i+1;) Add(opl, op2, &sum); [*map to virtual processor (i+1)*/

b) Body is a function call with no parameter passing
fork (; chanl, chan2) PrintResult(); /*owner of 2 channel variables™/

¢) Body is a block statement

fork {
int k;
Input{k);

}...

d) Body is a single statement
fork printf("Hello world!");

Figure 14: Examples with fork statement

4.4 fork Processes

4.4.1 fork Statement

Execution of a fork statement will create a new process. The parent can specify
the virtual processor on which the child process will run. The parent can also assign
channel variables to the child so that the child will use these channel variables to
communicate with other processes. The child will be the owner of the assigned channel
variables and only it can read from these channels.

After a parent process spawns a fork child, it can continue with the instruction
following the fork right away. The parent and the child are then running in parallel.

When a parent process wants to terminate, it must wait for all of its children to
finish first. The parent will be blocked until the last child terminates; this child will
wake up the parent and let the parent terminate.

Detailed description of the syntax and semantics of fork statement is provided in

Appendix A. Figure 14 provides examples of fork which will be used for discussion
in this section.

87

Step 1 : Calculate the ID of the virtual processor on which the child will run;
Step 2 : Assign the specified channel variable(s) to the child;
Step 3 : NewForkChild; /*create a new fork child*/
Step 4 : ForkJump; /*after creating the child, the parent jumps to
the nezt instruction following the fork (Step 5b)*/
Step 5a: Child executes the code body of the fork;
Step 6 : ForkChildEnd; /*the fork child terminates®/
Step 5b: The parent executes the instruction following the fork

Figure 15: Algorithm for fork process creation (vCode instructions are in bold face)

4.4.2 fork Process Creation

The algorithm for executing a fork is shown in Figure 15. In the algorithm, the
parent process executes steps 1, 2, 3, 4, and 5b, while the new fork child will execute

steps 5a and 6.

Parent’s Operations

The parent process first computes the ID of the virtual processor on which the new
child will run (Step 1 in Figure 15). If the user specifies the virtual processor ID (as
in Example a in Figure 14), the parent evaluates the value of the expression denoting
the processor ID. In the mentioned example, the virtual processor ID is the value of
the expression z + 1. If no processor ID is specified, the parent provides a default
virtual processor ID by executing vCode instruction DefaultProc. The algorithm
of instruction Default Proc was described in section 4.1.4. In any case, the child’s
virtual processor ID is pushed onto the parent’s stack. The virtual processor will be
mapped to a physical processor later using the mapping table.

If there are channel variables to assign to the child (Example b, Figure 14), the
parent binds these variables to the child’s processor (Step 2 in Figure 15). vCode
instruction MV ChannVar is executed for each channel variable to be bound. Let a be
the address in the memory pool of a channel variable to be assigned, MV ChannVar
sets storageOwner[a] to the child’s physical processor ID to make the new child
the owner of this channel variable (i.e. only the child is allowed to read from this

channel).

88

The parent then executes instruction NewForkChild to really create a new pro-

cess (Step 3 in Figure 15). The algorithm of NewForkChild is discussed below and
summarized in Figure 16.

e The parent first allocates a PCB to the new child.

e The new PCB is initialized. Function Init_PCB() in Figure 17 contains the

initialization code.
e The new PCB is appended to the end of the list of processes.

e The parent requests a process frame for the new child. The pointers base,
stackTopLim and T (in the child’s PCB) are set to keep track of the allocated

process frame.

e The child’s virtual processor ID on top of the parent’s stack is mapped to a
physical processor ID using the mapping table. Using the physical processor
ID, the parent updates the corresponding physical processor descriptor. The
processor status is set to Occupied and the number of processes using this

processor is incremented by one to include the new child.

e The child’s virtual processor ID on top of the parent’s stack is no longer needed.

Thus it is popped off the stack.

e The parent copies its forall information block (FIB), if any, to the new child’s

working stack. The structure and use of FIBs will be discussed in section 4.5.2.

e Field forkCount in the parent’s PCB is incremented by one to account for the
new fork child.

e If no parameter passing from the parent to the child is required (Examples b, c,
and d in Figure 14), the parent sends a birth message to the child’s processor.
However, if the child’s code is a function call with parameter passing (Example a
in Figure 14), the birth message will be combined with the parameters into one
message which will be sent to the child’s physical processor after the parameters
have been evaluated. The parent will let the child evaluate the parameters on its
behalf. Therefore it executes function Prepare_Parm_FEval() to prepare the child
for this task. The code of function Prepare_Parm_Eval() is shown in Figure 18.

89

After the parent has finished the execution of NewForkChild, the child becomes
an independent process and will be scheduled for running. If the fork does not involve
any parameter passing as in Example d in Figure 14, the parent immediately proceeds
to the next instruction that is ForkJump (Step 4 in Figure 15). All ForkJump does
is to set the parent’s program counter to the instruction following the fork statement
in the CPC program. The parent then continues its execution in parallel with the
child (Step 5b in Figure 15).

If the fork is accompanied by a function call with parameter passing, the parent
would have to evaluate the parameters and send the values of the parameters to the
child. However, in our implementation, the child will evaluate the parameters on
behalf of the parent, and charge the processing time to the parent’s processor. The
reason for this implementation will be explained shortly. During the parameter eval-
uation, the parent process is blocked. When the child finishes evaluating parameters,
it wakes up the parent. The parent resumes execution with instruction ForkJump

as just mentioned above (Step 4 and 5b in Figure 15).

Child’s Operations

If the fork does not involve any parameter passing (Examples b, ¢ and d in Figure 14),
the child simply starts executing its own code (Step 5a in Figure 15) and runs in
parallel with the parent. Consider Example d in Figure 14. After the parent finishes
instruction NewForkC hild and the birth message arrives at the child’s processor, the
fork child executes print f statement and then vCode instruction ForkChildEnd to
terminate. In Example b (or c) in Figure 14, the new fork child calls a function (or
pseudo function) with no parameter passing from the parent. In this case, the child
runs the code for a function call as shown in Figure 10.

However if the fork requires parameter passing from the parent to the child,
the child begins by evaluating the parameters on behalf of the parent. On a real
multicomputer, the parent would evaluate the parameters and pass them to the new
child. We could simulate the same thing: the parent would evaluate and save the
parameters on its stack. The parent would then copy the final values of the parameters
to the child’s stack. To eliminate this copying and thus reduce simulation time, we
let the new child evaluate the parameters. The final values of the parameters are thus

stored directly on the child’s stack. The following details must also be included in

90

NewForkChild
{
/* Precondition: ID of child’s virtual processor is on top of the parent’s stack*/
/*childPtr: pointer to the PCB of the new fork child*/
/*parentPtr: pointer to the PCB of the parent
(process running this NewForkChild)*/
/*childPhysProcID: ID of child’s physical processor™/

Allocate a PCB for the new child;
Init PCB(); /*initialize the child’s PCB (Figure 17)*/
Append the new PCB to the list of processes;
Allocate a process frame for the child {
childPtr->base = starting address of the process frame;
childPtr->T = childPtr->base - 1;
childPtr->stackTopLim = childPtr->base +
(size of process frame) - 1; }
Update the descriptor of the child’s processor {
physProsorTable [childPhysProcID] .status = Used;
physProsorTable [childPhysProcID] .nbrProcesses++; }
Pop the top value off the parent’s stack;
/*this value is child’s virtual processor ID that was used in function Init PCB()*/
CopyPreviousForallInfo();
/*copy previous forall info from parent’s FIB to child’s process frame* [
/*forall information block will be explained in section 4.5.2%/
parentPtr->forkCount++; [*parent has one more fork child*/
if the child begins with a function call /*e.g. Ezample a, Figure 14*/
Prepare_Parm_Eval(); /*prepare for parameter evaluation (Figure 18)*/
else /*child’s code is a single statement (e.g. Ezample d, Figure 1{)*/
Send a birth message to the child’s processor;

}

Figure 16: Algorithm of vCode instruction NewForkChild

91

Init_ PCB()
{
childPtr->processID = the next available process ID;
childPtr->PC = parentPtr->PC + 1;
/*vCode generation ensures that the first instruction of the

child’s code is always at (parentPtr->PC + 1)*/
childPtr->state = Blocked; /*until the birth message arrives*/
childPtr->priority = LowPri;
childPtr->parent = parentPtr;
childPtr->B = parentPtr->B;
childPtr->forallLevel = parentPtr->foralllevel;
childPtr->numForallChildren = O;
childPtr->maxForallChildTime = 0.0;
childPtr->repeatProcInGroup = FALSE;
childPtr->forkCount = 1; [*child counts itself as one fork child*/
childPtr->maxForkTermiTime = 0.0;
childPtr->joinCount = O;
childPtr->time = parentPtr->time;
childPtr->virtualTime = 0.0; /*child just started*/
childPtr->virProcessor = value on top of the parent’s stack;
childPtr->phyProcessor = physical processor ID; /*from mapping table*/
childPtr->altPhyProsor Nil;
childPtr->readChannStatus = None;

Figure 17: Initializing a PCB

Prepare_Parm_Eval()

{
/*parentProcID: ID of the parent’s processor™ [
parentPtr->state = Blocked; [*until child finishes parameter evaluation™®/
childPtr->state = Running; /*to evaluate parameters*/
childPtr->priority = HighPri;
childPtr->altPhyProsor = childPtr->physProcessor; /*child is temporarily

using parent’s processor, so save child’s processor ID*/
childPtr->physProcessor = parentPtr->physProcessor; /*= parentProcID*/
/*parameter evaluation time is charged to the parent’s processor™ [

physProsorTable[parentProcID] .runProcess = childPtr; [*child is running*/
physProsorTable [parentProcID] .nbrProcesses++; [*counting the child*/

}

Figure 18: Parent process preparing for parameter evaluation

this implementation.

e We must charge parameter evaluation time to the parent’s processor and not
to the child’s processor because parameter evaluation is actually the parent’s
job. This is why in function Prepare_Parm_Ewval (Figure 18) we save the ID
of the child processor in field alt Phy Prosor, and then set the child’s processor
to that of the parent.

e While the child is evaluating the parameters, the parent must be blocked. When
the child completes parameter evaluation, it wakes up the parent so that the

parent can resume its execution.

In summary, if the fork is followed by a function call with parameters, the child
will execute the code shown in Figure 19. Compared with the code sequence of an
ordinary function call in Figure 10, the code sequence in Figure 19 is added with an
extra vCode instruction, which is WakeupProcess. This instruction lets the child
wake up the parent after the parameters are evaluated. The pseudo-code of instruction
W akeupProcess is given in Figure 20. After waking up the parent, the child calls

the function as any other ordinary function by executing instruction Call.

93

NewFrame; [*allocate a function frame for the function™/
Evaluate the parameters;

WakeupProcess; /*wake up parent after parameter evaluation®/
Call; [*call the function*/

Figure 19: fork with parameter passing (vCode instructions are in bold face)

WakeupProcess

{
[*childPtr: pointer to the PCB of the fork child that wakes up the parent*/
[*parentPtr: pointer to the PCB of the parent®/
/*parentProcID: ID of the parent’s physical processor™/

if (!child->repeatProcInGroup)
/*repeatProcInGroup is used for forall process creation (section 4.5.3).
repeatProcInGroup is always set to FALSE for a fork*/
{ parentPtr->time = childPtr->time
parentPtr->state = Running;
physProsorTable[parentProcID] .runProcess = parentPtr;
/*parent resumes erecution on this processor®/
physProsorTable[parentProcID] .nbrProcesses--;
[*remove the child from the parent’s processor™/
childPtr->physProcessor = childPtr->altPhyProsor;
[*move the child back to its actual processor*/
childPtr->priority = LowPri;
Send birth message and parameters from parent’s processor to child’s processor;
childPtr->state = Blocked; /*until birth message and parameters arrive*/

Figure 20: Algorithm of vCode instruction WakeupProcess

94

4.4.3 fork Process Termination

After a fork child has completed its code, it executes vCode instruction ForkChildEnd
to terminate. The algorithm of instruction ForkChildEnd is discussed below and
summarized in Figure 21.

The terminating fork process p itself may be the parent of other fork children.
If this is the case, p must wait for all of its fork children to terminate before it can
terminate. p checks field forkCount in its PCB. If forkCount > 1, p has at least
one fork child that is still running. Thus p runs the following steps:

o p decrements forkCount by one (because when p was created, it counted itself

as one fork child of its own).

e p decrements its program counter by one so that when p’s last child has finished,

p will re-run this instruction ForkChildEnd to terminate.
e p releases the processor on which it is running.

e p’s state is set to Blocked. p is put to sleep until p’s last fork child terminates

and unblocks p.

If all p’s fork children have terminated, p executes the following steps to terminate
itself.

e p returns its process frame to the memory pool.

p sends a death message to its parent, say process g, to notify g that it has

terminated.

p updates ¢’s state and child information by calling forkDeathProcessing().
This function will be described shortly.

p releases the processor on which it is running. p also updates the processor

descriptor accordingly.

p’s state is set to Terminated. The scheduler will remove p’s PCB later when

it attempts to schedule p and sees p’s state is Terminated.

95

ForkChildEnd
{
[* p: pointer to PCB of process exzecuting this instruction */
if (p~->forkCount > 1)
{ p->forkCount-~;
p->PC--; [*p reruns this instruction when the last child finishes™/
Release the processor on which p is running;
p->state = Blocked;
}
else /*all fork children terminated*/
{ Return process frame to the memory pool;
Send a death message to the parent;
if (death message is intra-processor) /*arrival time is known™/
forkDeathProcessing(); /*update parent’s state and child information™®/
Release the processor on which p is running;
p->state = Terminated;

}
}

Figure 21: Algorithm of vCode instruction ForkChildEnd

Function forkDeathProcessing() updates the process state and child information

of the parent process q. The pseudo-code is shown in Figure 22, and the algorithm is
as follows.

e Field forkCount of ¢’'s PCB is decremented.
e Field mazForkTermiTime of ¢’s PCB is updated (if required).

e If ¢ is being blocked on a join, g is unblocked so that g will be able to run again.

Field joinCount of ¢’s PCB is incremented to account for p’s termination.

e If ¢ is blocked on its termination and p is the last child that terminates, ¢ is

unblocked so that ¢ will be able to terminate as well.

We now explain why a new fork process counts itself as one fork child of its own
(Figure 17). A process p can be blocked for several reasons. One of the reason is that
p is the parent of one or more fork children and wants to terminate, but at least one

fork child of p is still running. Thus p’s state should be set to T'erminatingWaiting

96

forkDeathProcessing()
{
/* arrivalTime: arrival time of p’s death message */
/* q: pointer to PCB of the parent of terminating child p */

q->forkCount--; /*one less fork childx/
if (q->maxForkTermiTime < arrivalTime)
q->maxForkTermiTime = arrivalTime;
if (gq->joinCount == ~1) /*q is currently blocked on a join*/
if(q->time < arrivalTime)
{q->wakeTime = arrivalTime; q->state = Delayed;}
else g->state = Ready;
q->joinCount++; /*one more fork child terminates*/
if (gq->forkCount == 0)
/*q terminated and the last child (p) is terminating+*/
if (q->time < q->maxForkTermiTime)
{ g->state = Delayed;
q->wakeTime = g->maxForkTermiTime;

>
else gq->state = Ready;

Figure 22: Function forkDeathProcessing()

(terminating and waiting for children to finish first). When a fork child of p ter-
minates, it checks if (parent’s state = TerminatedWaiting and parent’s forkCount
= 0) is true. If so, it should unblock the parent to let the parent terminate. We
wanted to eliminate one process state (T'erminatingWaiting) and one of the two
conditions in the above i f statement. Thus we let p count itself as one fork child of
its own when it is created. When p wants to terminate, it decrements forkCount by
one for itself. When a fork child f of p sees the parent’s forkCount = 0, f knows
that its parent has terminated and is waiting for f to terminate. This is equivalent

to the previous i f statement: if (parent’s state = TerminatedW aiting and parent’s
forkCount = 0).

97

4.4.4 join Statement

An example of the join statement is shown below. More explanations on the use of

join statement can be found in Appendix A.

for(i = 0; i < 10; i++)

fork (i) Compute(i);

for(i = 0; i < 10; i++)

join;

To implement the join statement, each process needs a variable called joinCount
which is stored in the PCB. joinCount is initialized to 0. Whenever a fork child
terminates, joinCount is incremented by 1. Thus joinCount of a process records
the number of fork children of that process which have terminated. joinCount can
be thought of as the complement of forkCount. But there is more to joinCount as
explained below.

When a process hits a join statement, its joinCount is checked. If joinCount > 0,
this means that one or more fork children have terminated. So the process passes
this join to get to the next instruction. It also decrements joinCount by 1. More
precisely, joinCount is the number of fork children which have terminated and not
been matched with a join yet.

If joinCount = 0, the process is then blocked by this join. joinCount is set to
—1 to indicate that the process has an outstanding join and is waiting for a fork
child to terminate in order to pass this join.

The process is blocked until one of its child terminates by executing ForkChildEnd.
In ForkChildEnd, the child increments its parent’s joinCount and unblocks the par-
ent (Figure 21). The parent can then pass the join and resume execution.

A join statement in the CPC program is translated to vCode instruction join

whose implementation is shown below.

98

join
{

/* p: pointer to the PCB of the process ezecuting this join */

if (p->joinCount > 0)
p->joinCount--; [*pass this join*/

else

{ p->joinCount = -1
p->state = Blocked; /*until e fork child terminates™/
physProsorTable[p->physProcessor] .runProcess = NULL;

[*release the processor while being blocked* /

99

[*Ezample a*/

forall i (0; 10; 4) /*from 0 to 10, grouping 4*/
(i/4; c[il) Compute(i);

/* Ezample b*/

forall i (0; 10; 3) /*from O to 10, grouping 3%/
forall j (1; 20; 5) /#from 1 to 20, grouping 5*/
forall k (0; 4;) /+from O to 4, grouping 1 (defaunlt)=*/
Calculate(i, j, k);

[* Ezample c*/

forall i (0; 10;) /*from 0 to 10, grouping 1 (default)=*/
PrintOutput();

Figure 23: Examples of forall statement
4.5 forall Processes

4.5.1 forall Statement

Execution of a forall statement allows a parent process to create one or more forall
children. The number of forall children to be created is determined by the values
of the lower bound and the upper bound of the forall index, and the value of the
grouping. In Example a in Figure 23, three child processes are created: the first
process will execute function Compute() for 7 from 0 to 3; the second process, from
4 to 7; and the third process, from 8 to 10.

For each forall child to be created, the user can specify the virtual processor on
which the new child will run. The parent process can also bind the channel variables
to the child process so that the child will communicate with other processes using
these channel variables. The child will receive messages from other processes via the
assigned channels, and only it can read from these channels.

After a parent process has created all forall children required by the forall loop,
it will be blocked until all these forall children terminate. The last forall child that

finishes will wake up the parent. Only then can the parent resume execution.

100

Figure 23 shows examples of forall statement, which will be used for discussion
in this section. More details on the syntax and semantics of forall statement are
given in Appendix A.

Following are the definitions of some terms that will be needed for discussing

forall processes.

e forall level: The forall level of a process is defined as follows.

— Process 0 is at forall level 0.

— If the forall level of a process p is k, a forall child created by p is at
forall level k + 1.

— A fork child has the same forall level as its parent.

e from bound (fromB) and to bound (toB): the lower bound and the upper
bound of the forall index specified in the forall loop, respectively.

In Example a in Figure 23, the from bound and the to bound of the forall

loop are 0 and 10 respectively.

o child lower bound (childLoB) and child upper bound (childUpB): Each forall
child is considered to execute a for loop whose number of iterations is the value
of the grouping, say g. If (toB — fromB +1) is not divisible by g, then the for
loop of the last child has less than g iterations.

The lower bound and upper bound of such a for loop of a new child is referred
to as the child lower bound and child upper bound respectively. In Example a
in Figure 23, the first child has childLoB = 0 and childUpB = 3; the second
child, childLoB = 4 and childUpB = 7; the third child, childLoB = 8 and
childUpB = 10.

e current loop lower bound (curLoopLoB): After a forall child has been created,
the forall index is incremented by the grouping value to prepare for the creation
of the next child. The current value of the forall index is referred to as the
current loop lower bound. The curLoopLoB will become the child lower bound
of the next child to be created. The current loop lower bound is used only by the
parent process. After creating a forall child, the parent compares the current
loop lower bound against the to bound. If cur LoopLoB > toB, the parent exits
the forall loop.

101

4.5.2 forall Information Blocks

The index variable of the forall loop is not shared by all the forall children. Each
child process can see only a unique value of the index. To allow the children to refer
to the index, each child process must keep its own copy of the index. Also, each new
forall child has its own child lower bound and child upper bound. These values must
also be recorded in order for the child process to iterate a number of times required
by the grouping. forall information blocks are used to hold all the information just
mentioned.

Every process at forall level 1 and up has a forall information block (FIB) stored in
the process frame, starting at the lowest address of the frame. Since forall statement
can be nested (Example b in Figure 23), the FIB of a process at forall level k records
the information of forall loops from level 1 to level k.

When a new process is created at forall level 1 (Example a in Figure 23), the

child’s FIB contains the following information.

/*child’s forall level == 1%/

/*child: pointer to the new child’s PCB*/

/*base = child->basex/

storageValue[base] .val = childLoB; /*child lower boundx*/
storageOwner[base] = address of forall index at level 1;
storageValue[base+1] .val = childUpB; /*child upper bound#*/

/*storageOwner[base+1] is unused*/

Note that in a FIB, the entries of array storageOwner[] no longer hold processor
IDs but store addresses of forall indexes at different levels. The FIB of a forall child
at level 1 is depicted in Figure 24a.

When a parent at forall level &k creates a new child, it copies most information in
its FIB to the child’s process frame. More specifically, the first k words of the parent’s
FIB are copied to the child’s FIB using function CopyPreviousForallIn fo().

/*parent’s forall level == k (k >= 0)*/
/*parent: pointer to the parent’s PCB*/
/*child: pointer to the new child’s PCB*/
/*baseChild child->base*/

/*baseParent = parent->basex*/

102

a) FIB at forall level 1

Child’s
process frame

b) FIB at forall level 2

Child’s
process frame

Parent’s
process frame

¢) FIB at forall level k+1

Child’s
process frame

Parent’s
process frame

upperbnd 1 |

lowerbnd 1

e base

upper bnd 2

child

lowerbnd 2

lower bnd 1

—— base g

upper bnd 1

lower bnd 1

| base
parent

upper bnd k+1

child

lower bnd k+1

lower bnd k

lower bnd 2

lower bnd 1

fo—base g

upper bnd k

Iower bnd k

lower bnd 2

lower bnd 1

le— base parent

P

index addr 1

P

index addr 2

index addr 1

A

index addr 1

A

index addr k+1

index addr k

index addr 2

index addr 1

27

index addr k

index addr 2

index addr 1

forall info

% child-specific

a) FIB at forall level 1

} child-specific

forall info

} child-basic

forall info

} Parent’s FIB

forall info

% child-specific

child-basic
forall info

Parent’s FIB

Figure 24: Structure of forall information blocks

103

CopyPreviousForallInfo()

{
for(x = 0; x <= k-1; x++)
{
storageValue[baseChild+x] .val = storageValue[baseParent+x].val;
/*child lower bounds from level 1 to k*x/
storageOwner[baseChild+x] = storageOwner[baseParent+x];
/*addresses of forall indexes at level 1 to kx/
}
}

This block of k£ words is called previous forall information. All children at level
k + 1 of a process p will have the same k& words of forall information copied from p’s
FIB.

Assume that the parent’s forall level is £ (k = 0). If the new child is a fork
child, the child’s forall level is also k£ (i.e., child->forallLevel = k). The child’s
FIB holds all the previous forall information copied from the parent’s FIB as described
above.

If the new child is a forall child, the child’s forall level is now & + 1 (i.e.,
child->forallLevel = k+1). Since this is a forall child, the parent will add more
information related to the child’s own forall loop to the child’s FIB. This is done by
calling function AddCurrentForallln fo().

AddCurrentForallInfo()

{
storageValue[baseChild+k] .val = childLoB; /*child lower bound*/
storageOwner [baseChild+k] = address of forall index at level k+i;
storageValue[baseChild+k+1] .val = childUpB; /*child upper bound*/
/*storagelwner [baseChild+k+1] is unused*/

}

This added information is called current forall information since each distinct
child at level £ 41 has its own child lower bound and child upper bound. Figure 24b
and c illustrates the FIB of a forall child at level 2 and k + 1, respectively.

104

Step 1: Load the address of the forall index onto the stack top;
Step 2: Evaluate the from bound and push the final value onto the stack top;
Step 3: Evaluate the to bound and push the final value onto the stack top;
Step 4: Evaluate the grouping expression and push the final value

onto the stack top;
Step 5: BegParallel;
Step 6: BegForallLoop; /*jump to Step 14 when done*/

Step 7: Evaluate the virtual processor ID of the child (if specified);
Push the child’s physical processor ID onto the parent’s stack top;
Step 8: Bind the specified channel variable(s) to the child;
Step 9: NewForallChild; /*create a new forall child*/
Step 10: Jump; /*jump back to instruction BegForallLoop in Step 6*/
Step 11: Child executes the code body of the forall;
Step 12: TstGrpIncldx; /*check grouping option; increment forall indez*/
Step 13: ForallChildEnd; /*the forall child terminates™/
Step 14: EndForallLoop;
Step 15: EndParallel;

Figure 25: The steps of executing a forall statement

4.5.3 forall Process Creation

The algorithm for executing a forall statement is described in Figure 25. The parent

process runs steps 1 to 10, and 14 to 15. The new forall child will executes steps 11
to 13.

Parent’s Operations

The parent first calculates the address of the forall index (if necessary), and pushes
the address onto the top of its stack (Step 1, Figure 25). In Example a in Figure 23,
the address of index 7 is loaded onto the parent’s stack. The parent then evaluates the
from bound expression, and pushes the final value onto its stack (Step 2, Figure 25).
The same operations are performed for the to bound and the grouping expression
(Step 3 and 4, Figure 25). After Step 4, the parent’s stack is as shown in Figure 26a.

During the parent’s execution of the forall loop, the values of the index address,
the o bound and the grouping are unchanged. The from bound, however, becomes
the current loop lower bound (curLoopLoB), and the curLoopLoB is incremented

by the grouping value after a new child has just been created. The increment is

105

o8 e L N 3 [N N) LA K]
T grouping = 4 grouping =4 grouping = 4 grouping = 4
T-1 toB =9 toB =9 toB =9 toB =9
T-2 curLoB =0 cutLoB =4 curLoB =8 curLoB =12
T-3 address of i address of i address of i address of i
LN N] LR N] see eee
a) When loop begins b) After 1st child ¢) After 2nd child d) After 3rd child

Figure 26: The parent’s stack during execution of a forall loop

performed by instruction EndForallLoop (Step 14, Figure 25) on memory location
storageValue[T-2] (Figure 26b, c), where T is the current top of the parent’s stack.

Right after Step 4, the parent executes vCode instruction BegParallel which
resets field numForallChildren in the parent’s PCB to 0 (Step 5, Figure 25). The
next instruction to be executed (Step 6, Figure 25) is BegForall Loop whose algorithm

is as follows.

e The grouping value is validated. If grouping < 0, the system state is set to
GrpErr (Grouping Error) which will halt the program execution.

e The current loop lower bound (curLoopLoB) is compared against the to bound.
If curLoopLoB > toB, this means that the parent has created all the children
required by the forall loop. The parent will pop the top four elements off its
stack (which were pushed in during steps 1, 2, 3, and 4). The program counter
is set to instruction EndParallel (Step 15, Figure 25) so that the parent will

execute this instruction next.

If cur LoopLoB < toB, this means that the parent still has one or more children

to create. The parent’s priority is set to HighPri for this task.

Figure 27 shows the pseudo-code of instruction BegForallLoop.

106

BegForallLoop

{

if (grouping <= 0)

systemState = GrpErr;

else if (curLoopLoB > toB) /*no children to create*/
{ pop the top four elements off the parent’s stack;

}

set PC to instruction EndParallel; /*step 15, Figure 25/

else set priority to HighPri;

}

Figure 27: Instruction BegForallLoop

Similar to the case of a fork statement, before creating a child, the parent cal-

culates the child’s virtual processor ID if it is specified in the forall statement.

Otherwise, a default physical processor ID is obtained from execution of instruc-
tion De fault Proc (section 4.1.4). In either case, the child’s physical processor ID is
loaded on top of the parent’s stack. This is done in Step 7 of Figure 25.

If there are channel variables to assign to the child, the parent binds these vari-

ables to the child’s processor (Step 8, Figure 25) by executing vCode instruction

MV ChannVar for each channel variable to be bound. This step was described in

detail in section 4.4.2.

The parent then executes instruction NewForallChild to really create a new

forall process (Step 9, Figure 25). Instruction NewForallChild is similar to vCode

instruction NewForkChild. Their differences are listed below.

o After the previous forall information is copied from the parent’s FIB to the child

process frame using function CopyPreviousForallIn fo(), the parent adds cur-
rent forall information to the child’s FIB by calling function AddCurrentForallIn fo().

These two functions were described in section 4.5.2.
If this is the parent’s first forall child, the parent accesses its PCB and updates
field maz ForallT ermiTime to the time on its local clock.

After creating all required forall children, the parent process will be blocked
until all its forall children have terminated. mazForallT erm:Time records
the death time of the forall child that terminated the most recently. After the

107

NewForallChild
{
/* Precondition: ID of child’s processor is on top of the parent’s stack*/
/*childPtr: pointer to the PCB of the new fork child*/
/*parentPtr: pointer to the PCB of the parent
(process running this NewForkChild)*/
/*childProcID: ID of child’s processor*/

Allocate a PCB for the new child;

Init_ PCB(); /*initialize the child’s PCB (Figure 17)*/

Append the new PCB to the list of processes;

Allocate a workspace for the child {
childPtr->base = starting address of the workspace;
childPtr->T = childPtr->base - 1;
childPtr->stackTopLim = childPtr->base +

(size of process frame) - 1; }

Update the descriptor of the child’s processor {
virProsorTable[childProcID].status = Used;
virProsorTable[childProcID] .nbrProcesses++; }

Pop the top value off the parent’s stack;

[*this value is child’s virtual processor ID that was used in function Init PCB()*/

CopyPreviousForallInfo();

/*copy previous forall info from parent’s FIB to child’s process frame*/

AddCurrentForallInfo();

/*add current forall info to child’s FIB*/

if (parentPtr->numForallChildren == 0)
parentPtr->maxForallChildTime = parentPtr->time;

parentPtr->numForallChildren++; /[*one more forall child*/

if the child begins with a function call /*e.g. Figure 14a*/

Prepare Parm_Eval(); /*prepare for parameter evaluation (Figure 18)*/
else [*child’s code is a single statement (e.g. Figure 14d)*/
Send a birth message to the child’s processor;
}

Figure 28: Algorithm of vCode instruction NewForallChild

108

last forall child terminated, the scheduler checks field maz ForallT ermiTime

of the parent to decide whether the parent is allowed to resume execution.

o Field numForallChildren (instead of field forkCount) in the parent’s PCB is

incremented by one to account for the new forall child.

The algorithm of NewForallChild is given in Figure 28.

If the forall does not require any parameter passing (Example ¢, Figure 23) after
finishing instruction NewForallChild, the parent executes instruction Jump which
sets the parent’s program counter to the code address of instruction EndForallLoop
(Step 14, Figure 25). If the forall body is a function call with parameter passing
(Example a, Figure 23), the parent will let the child evaluate the parameters on
its behalf (the reason for this implementation was explained in section 4.4.2). The
parent will be blocked until the child finishes parameter evaluation and wakes it up.
The parent then resumes execution with instruction Jump to jump to instruction

EndForallLoop as just mentioned above. Following is the algorithm of instruction
EndForall Loop.

‘e The current loop lower bound (curLoopLoB) is incremented by the grouping

value.

e The current loop lower bound (cur LoopLoB) is compared against the to bound.
If curLoopLoB < toB, the parent’s program counter is set to the code address
of instruction BegForallLoop (Step 6, Figure 25) so that the parent will repeat
the loop to create the next forall child.

If curLoopLoB > toB, this means that the parent has created all the children
required by the forall loop. The parent will pop the top four elements off its
stack (which were pushed in in steps 1, 2, 3, and 4). The parent’s priority is
set back to LowPri since it is no longer required to create any more children
for this forall loop (in the CPSS, process creation is given high priority so that

new processes are spawned as early as possible).

The pseudo-code of instruction EndForallLoop is given in Figure 29.
In instructions BegForallLoop and EndForallLoop (Steps 6 and 14 respectively),
if curLoopLoB > toB, the next instruction to be executed is EndParallel. In this

instruction, if at least one forall child is still running, the parent is blocked until all

109

EndForallLoop
{
curLoopLoB = curLoopLoB + grouping;
/*curLoopLoB is stored at storageValue[T-2]*/
if (curLoopLoB <= toB)
set parent’s PC to instruction BegForallLoop; [*step 6, Figure 25%/
else
{ pop the top four elements off the stack;
set parent’s priority to LowPri;

}
}

Figure 29: Instruction EndForallLoop

of its forall children terminated. Only then is the parent allowed to run again. The

pseudo-code of instruction EndParallel is as follows.

EndParallel
{
/*parentPCB: pointer to the parent’s PCB*/
if (parentPCB->numForallChildren > 0) /#*some child still running*/
{ parentPCB->state = Blocked; /*blocked until all children finishx*/
physProsorTable[parentPCB->physProcessor] .runProcess = NULL;

/*release the physical processor*/

It may happen that the forall children’s code is very short. By the time the
parent executes instruction EndParallel, all the children have terminated. In this
case, the parent simply proceeds to the instruction following EndParallel.

Figure 30a summarizes the parent’s control flow for executing a forall loop. The

numbers in the figure are the step numbers as denoted in Figure 25.

Child’s Operations

If the new child’s code does not require any parameter passing from the parent (Ex-

ample ¢ in Figure 23), the child starts running its code, and executes in parallel with

110

1,2,3,4 5 6 | culoB<=toB | , ¢4 10
curLoB > toB curLoB <=toB
Loop begins
15 14
curLoB > toB

Loop ends

a) Parent’s flow

childindex <= childUpB childIndex > childUpB

Child starts L l Child terminates
—i 11 12 13 —re

b) Child’s flow

Figure 30: Control flow for executing a forall loop

the parent. However, if the parent has parameters to send to the child (Example a
and b in Figure 23), it will let the child evaluate the parameters on its behalf and go
to sleep. When the child completes parameter evaluation, it will wake up the parent,
and start executing its own code. The implementation of parameter evaluation upon
process creation was explained in details in section 4.4.2.

The new child’s code includes the body of the forall statement. Unlike a fork
child that executes the body of the fork statement only once, a forall child may
have to run the body of the forall statement more than once. This happens when
grouping > 1. In fact, the child’s code can be considered as a for loop whose body
is the body of the forall statement, and the lower bound and upper bound are the
child lower bound (childLoB) and child upper bound (childUpB) respectively. The
index of this for loop is called child forall indez (childIndz). childIndz is initialized
to childLoB when the child is created, and incremented after each execution of the
body of the forall statement. Thus childLoB < childIndr < childUpB + 1 (when
childIindz = childUpB + 1, the child exits its for loop to terminate). The effect
of the for loop is implemented by instruction T'stGrplIncldz (Test Grouping and
Increment child’s Index) (Step 12, Figure 25).

After one execution of the body of the forall statement (Step 11, Figure 25), the

111

child executes instruction T'stGrpIncldz (Step 12, Figure 25) to test the child forall
index. If childIndz < childUpB, the process runs the following steps:

o childIndz is incremented for the next execution of the child’s for loop.

e The child’s program counter is set to the starting code address of the body of
the forall statement (Step 11, Figure 25) so that the child will run the code

once maore.

o Field repeat ProcInGroup of the child’s PCB is set to TRUE. The use of field
repeat ProcInGroup will be described shortly.

Therefore, if childIndz < childUpB, the child will jump back to Step 11. Steps 11
and 12 effectively implement the child’s for loop.

If childIndz > childUpB, the child exits the for loop and proceeds to the next
instruction which is ForallChildEnd (Step 14, Figure 25). The child will execute
instruction ForallChildEnd to terminate. Figure 30b illustrates the child’s control

flow.

Field repeatProcInGroup

If the body of the forall statement is a function call with parameters (Example a
and & in Figure 23), the function call is executed as shown in Figure 19. Therefore

the child’s code is as follows.

/* Step 11 */
NewFrame; /*allocate a function frame*/
WakeupProcess; /*wake up parent after parameter evaluationk/
Call; /*call the function*/
/* Step 12 */
TstGrpIncldx; /*iterate if grouping > 1%/
/* Step 13 */
ForallChildEnd; /*to terminatex/

Before the function is called, the parent is put to sleep and the child evaluates the
parameter on behalf of the parent. When parameter evaluation is completed, the child

wakes up the parent by executing instruction WakeupProcess. The waking up action

112

should be done only once, namely in the first iteration of the child’s for loop when
the new child was just created (i.e. when childIndez = childLoB). If grouping > 1,
the child will jump back to Step 11. However this time, the child does not have to
wake up the parent since there is no parameter passing (all required parameters were
passed when the child was spawned). Therefore when childIndexz > childLoB, the
child does not wake up the parent.

Field repeat ProcInGroup is used to tell a forall child when to wake up its parent
and when not to. This field is

e initialized to FALSE by instruction NewForallC hild,
e set to TRUE by instruction T'stGrpIncldz;

o tested by instruction WakeupProcess (only if there are parameters to be passed
from the parent to the new child). If repeat ProcInGroup is FALSE, this means
that the parent just created a child and was put to sleep so that the child would
evaluate the parameters. The child has finished parameter evaluation, and thus

wakes up the parent (Figure 20).

If repeat ProcInGroup is TRUE, this means that instruction TstGrpIncldz
was executed at least once. Thus this is not the first iteration of child’s for

loop, and the child does not have to wake up the parent.

4.5.4 forall Process Termination

After a forall child finishes its code (i.e. when childLoB > childUpB), it exe-
cutes vCode instruction ForallChildEnd to terminate (Step 13, Figure 25). In-
struction ForallChildEnd is the same as instruction ForkChildEnd (section 4.4.3),
except that the function used to update the parent’s state and child information is
forallDeathProcessing() and not forkDeath Processing(). Let p be the terminating
forall child and ¢ be p’s parent. The algorithm of function forallDeathProcessing()

is described below and summarized in Figure 31.

o Field numForallChzldren of ¢’'s PCB is decremented to account for p’s termi-

nation.

o Field maz ForallT ermiTime of ¢’s PCB is updated (if required).

113

forallDeathProcessing()

{

}

/* p: pointer to PCB of terminating process */
/* q: pointer to PCB of the parent of the terminating child p */
/* arrivalTime: arrival time of p’s death message */

q->numForallChildren--;
if (q->maxForallTermiTime < arrivalTime)
q->maxForallTermiTime = arrivalTime;
if (q->numForallChildren == 0) /*all q’s forall children finished*/
{ g->state = Delayed; /+#unblock q*/
q->wakeTime = g->maxForallTermiTime;

¥

Figure 31: Function forallDeathProcessing()

e If p is the last forall child that terminates, g is unblocked and its state is set
to Delayed (g was blocked waiting for all of its forall children to terminate).

114

4.6 Channels

Write/read operations on channel variables in a CPC program abstract message
send/receive in the real multicomputer. A channel can be considered as an infi-
nite buffer owned by some process p, where other processes can deposit messages
of the same type for p to read. In this section we discuss how channel buffers are

implemented and how messages are deposited to and read from buffers.

4.6.1 Channel Variables

To send a message of type msgType to the receiver process r, the sender s identifies
a channel variable v of type msgType owned by process r. Process s executes an
assignment statement where v is on the left-hand side (LHS) of the assignment. The
message content is the value of the expression on the right-hand side (RHS) of the
assignment.

Process r must be aware of to which channel s has written the message (since
r may have more than one channel of type msgType). Process r then executes a
channel read on that channel to get the message from s. If the message has not
arrived at r’s processor, r’s execution is suspended until the message is available,
at which time = removes the message from the channel buffer. Examples of channel
variables and operations are given in Figure 32.

Message types and thus channel types can be either basic types (integer, char,
float, pointer or enumerate) or composite types (structure, array). For example, we
can have a channel of float where every message written to or read from this channel
is a float number. Similarly, every message written to or read from a channel of array
must be an array (of a pre-determined type). Note that we cannot access individual
elements of a channel of array (or structure). An entire array (or structure) must be
written to or read from the channel. Examples are shown in Figure 32.

More details about channel variables and channel operations are provided in Ap-
pendix A.

115

typedef int arrayType[10];
typedef struct {

float x, y, z;
} structType;

channel int CI; /*channel of integer*/
channel float CF; /*channel of float*/
channel arrayType CA; /*channel of array*/

channel structType CS; /*channel of structurex*/
void writer()
{

int i, j;

float £f;

arrayType a;

structType s;

/*Input i, j, f, array a, and structure s*/
CI = (i + j)*2; /#write to channel of integer*/

CF = £/2; /*write to channel of float*/
al5] = 0;
CA = a; /*write to channel of array*/
s.y = 0.5;
CS = s; /*write to channel of structure*/
}
void reader()
{
int m, n;

float u, v, w;
arrayType b;
structType t;

/*Input m, n, v and w*/

m=(m+ CI) * n; /*read from channel of integer*/
u=v*w* CF; /*read from channel of float*/
b = CA; /*read from channel of array*/
n = b[5]; /¥ n =0 */
t = CS; /*read from channel of structurex/
w=t.y; /*w = 0.5%/

}

Figure 32: Examples of channel variables and operations

116

4.6.2 Channel Design Issues

Channel Buffers

e Write and read operations on channels abstract message send and receive re-
spectively. When messages arrive at destinations, their contents are to be stored
in buffers. In the CPSS, message buffers are also called channel buffers. The

design issue is how channel buffers are implemented.

e The buffer of a channel is assumed to be infinite. That is, a channel is assumed

to be able to accept an unlimited number of messages.

e Each channel is associated with one and only one channel variable and one
channel ID number. The user declares and uses the channel variable in the
CPC program to perform message send/receive between the process owning the
channel variable and other processes. The variable owns a word in the memory
pool as other basic-type variables. The CPSS uses the equivalent channel ID to

execute message send/receive specified by the user.

e Messages of a channel must be read in the order they arrive at the channel.
Therefore each message is associated with a timestamp which denotes the avail-

able time of the message.

The available time of a message is defined as follows. Assuming that a message
arrives at the destination at time t,,, the overhead of copying the message from the
router buffer to the channel buffer is b, and there are no other messages to be copied
to the same channel, then the available time ¢, of the message is t, = tm + b.

If several messages of the same channel arrive at the same time, then blocking
time at the channel buffer is added to the actual available time of a blocked message.
The blocking time is incurred by the overhead of copying messages from the router
buffer to the channel buffer.

The available time can be roughly defined as the earliest time at which the message
will be available for reading. The definition implies that a message needs to be written
to the reader’s buffer before it is actually available to the reader. The reason is that
we do not route actual contents of messages. When a message is sent, the message

content is copied into the reader’s buffer right away. However, the value is not made

117

available until the message actually arrives at the destination. The availability of a

message in a channel buffer is determined by its available time.

Channel Operations

Channel write/read are represented by assignment statements of C language.
If the left-hand side (LHS) of the assignment is a channel variable, this is a
channel write. If a channel variable exists in the expression on the right-hand
side (RHS), the assignment involves a channel read. The RHS may have more
than one channel variables. If both sides of the assignment statement contains
channel variables, the channel read operation(s) are performed first and the

final value of the RHS expression is written into the channel on the LHS.

Each channel can have only one reader process, which is the owner of the chan-

nel.

A channel can have many writers. However, we do not distinguish which value

was written by which process.

Message sends are non-blocking. After a process executes a channel write, it

can proceed immediately to the next instruction.

Message receives are blocking. If the reader executes a channel read and no

data is available, the reader is blocked until a message arrives at that channel.

Although the reader does not identify the writer of a message, it considers
arrival times of messages. Messages must be read in the order they arrive at

the channel.

After a message is read, it is removed from the channel buffer. That is, a

message can be read only once.

A channel is said to be opened when it is accessed for the first time (either by

a read or write). Before that the channel was inactive.

118

typedef struct
{ int head; /*pointer to the head of the list of channel values*/

int dataCount; /*number of elements in list of channel values*/
ProcessNodePtr waitProcQueue; /*pointer to blocked reader’s PCB*/
int chanElemSize; /*message sizex*/

} Channel;

Channel chann[MAX_NUM_CHANNELS+1]; /*array of channel descriptors*/

/*entry chann[0] is unused*/

Figure 33: Channel data structures in C

4.6.3 Channel Descriptors

Control information of channel is stored in a structure called channel descriptor.

When a channel is opened (i.e. accessed for the first time), it is allocated a channel

descriptor which contains the following fields:

e head: a channel is considered to be an infinite buffer of messages of the same
type. Messages written to a channel are sorted in the increasing order of writing
times, and maintained in a list for reading by the channel owner. This list will
be referred to as the list of channel values. head points to the first element of
this list.

o dataCount: the current number of elements (messages) in the channel list of

values

o waitProcQueue: when the reader is blocked on a channel read because no data
is available, this field is set to point to the PCB of the reader process. When

the message has arrived, the waiting reader is unblocked.

o chanElemSize: size of messages written to this channel

The data structure in C is shown in Figure 33.
Channel descriptors are taken from an array of channel descriptors, array chann[]

(Figure 33), to allocate to channels when they are opened. The array of channel

119

descriptors is a fixed-size array, and channel descriptors are allocated consecutively
starting from chann[1].

A channel variable is a program variable. Thus it has an entry e in the memory
pool (array storageValuel[], Figure 6) as other variables. The index of this entry
in the memory pool is called the address of the channel variable. The issue is what
should be stored in entry e because, unlike a normal variable such as an integer or a
float, a channel variable does not have a specific value. It represents a list of values
(messages). Before the channel is opened, entry e was initialized to 0, meaning that
the channel is currently inactive. When the channel is accessed for the first time
(either for read or write), a channel descriptor is allocated to the channel. The index
of the channel descriptor in the array of channel descriptors chann[] is called the
channel ID, which will be stored in entry e of the memory pool. Every subsequent
access to the channel will use first the channel variable address and then the channel
ID.

The steps involved in a channel access can be summarized as follows. From the
channel address, the process (reader or writer) accesses the entry of the channel
variable in the memory pool and obtains the channel ID. Assuming that the channel
has been opened, from the channel ID, the process retrieves the channel descriptor
from the array of channel descriptors. Field head in the channel descriptor will then
point the process to the list of channel values (for reading or writing). The steps of

reading a channel variable is illustrated in Figure 34.

4.6.4 Channel Buffers for Basic Types

Messages of basic types (e.g. integer, char, enumerate, float) are stored in a buffer
called the channel buffer waiting for being read. The channel buffer is a fixed-size
array and shared by messages of all opened basic-type channels. Each entry of the
array buffers a message until it is consumed.

Since the channel buffer array is used for float numbers as well, every entry is
associated with a tag indicating whether to interpret the value as an integer or as
a float (char, enumerate and pointers are treated as integers). Figure 35 shows the
data structure of the channel buffer in C. The channel buffer is array channValue(].

Messages of a channel are read in the order they were written to the channel.

Therefore the available time of a message must be recorded with the data itself.

120

chanAddr: address of
channel variable

Access memory word storage Value[chanAddr]

chanlID: channel ID

Access channel descriptor chann[chanID]

head: pointer to the
list of channel values

Read channel buffer entry channValue[head]

the read value

Figure 34: The steps of reading a channel

typedef struct { /*basic data entry for both memory pool and channel*/
char type; /*tag 0: int; 1: float*/
union {
int intValue;
float floatValue;
} val;
} basicValue;

basicValue channValue[MAX_NUM_CHAN_VALUES+1]; /*channel buffer*/
float channValTime[MAX_NUM_CHAN_VALUES+1]; /*message available times*/
int channValLink [MAX_NUM_CHAN_VALUES+1];

/*to link channel values and to link free entries*/

Figure 35: Data structures of the channel buffer in C

121

Index ... 15 16 17 18 19 20 21 22 23 24

channValue .- -1 |98] -5 100 36

channValTime --- i1s!21| 2 5 11

chamVallink --- 17 | NIL| 21 23 16
head = 18

Figure 36: Implementation of the channel buffer

Another array parallel to array channValue[] is used to store available times of mes-
sages. This array is named channValTime[] (Figure 35). An entry channValTime[i]
(i > 0) contains the available time of the message whose content is stored in entry
channValue[i]. Figure 36 illustrates the two parallel arrays channValue[] and
channValTime(].

When a value (message) is written to a channel, the writer requests a free entry
from the channel buffer, writes the value to the entry and inserts the entry into the
list of channel values. The issue is how a list of channel values is implemented.

Messages belonging to a channel may not be stored consecutively in the channel
buffer (array channValue[]) because the buffer is shared by all opened channels.
To link the messages of a channel together into a list, we introduce another array
parallel to array channValue[]. This array is called channValLink{]. Let entry
channValue[j] follow entry channValuel[i] in a list of channel values of a chan-
nel ¢ (channValue[i] and channValue[j] may not be consecutive in the channel
buffer). The content of entry channValLink[i] (corresponding to channValue[il)is
j, which is the index in the channel buffer array of the entry following channValue[il].
channValLink[j] in turn points to the entry following channValue[j] in ¢’s list of
channel values.

The index of the first entry of ¢’s list of channel values is recorded in field head of
¢’s channel descriptor. Figure 36 shows an example of a list of channel values pointed
to by pointer head. The list has 5 values whose indexes in the channel buffer are 18,

21, 23, 16, and 17. This order is also the order of their available times as maintained

122

Index 1 2 3 4 5 6 7 8 9 10 11 12

channVallink | 2 | 3 4| 516171819 10] 11 12] 13

fm@mﬁn%\\m / N\

channValLink g8 |13 3 9| 10{11]5s 20 --- [NL| --- ®)

_//

Figure 37: The list of free buffer entries (freeList)

(a)

by the list of values.

After a message has been read from a channel, it is removed from the list of
channel values. The entry should be re-used for future messages. The freed entry is
inserted into the list of free buffer entries (also called freeList). All the free entries
of the channel buffer are kept on this list. When a writer process requests buffer for a
new message, the front entry of the freeList is granted. When an entry is returned
after a read, it is added to the front of the freeLzst.

The list of free entries is implemented similarly to a list of channel values. The in-
dex of front entry is recorded in variable freeChan Entry. An entry channValLink [k]
(k > 0) corresponding to free entry channValue[k] stores the index of the free en-
try following channValue(k] in the freeList. Figure 37a depicts the freeLzst when
program execution starts. All entries of the channel buffer belong to the freeList.
The head of the list is pointed to by freeChanEntry. Figure 37b shows the freeList
after several write and read operations on different channels.

Note that every entry of the channel buffer belongs to either an opened channel
or the freeList.

In summary, channel storage and operations are implemented based on three par-

allel arrays:

1. channValue[] where contents of messages are buffered waiting to be read.

2. channValTime[] which records available times of messages. Message write

times permit readers to know when a message will be available for reading.

123

The list of values of a channel is ordered based on message available times as

well.

3. channValLink[] which provides links to form lists of channel values and the

list of free buffer entries.

4.6.5 Channel Buffers for Composite Types

We first consider channels of structure. The same implementation will be applied to

channels of array as well.

Channel of Structure

A channel of structure is a list of messages, each of which is a structure.

Consider a normal structure variable. The content of the structure is stored
in a memory block, and the structure variable records the starting address of the
memory block. Therefore, a channel of structure can be implemented as a list of
values where each value is the starting address of a structure memory block. The
structure addresses can be treated as integers and stored in the channel buffer (array
channValue[]). Actual contents of the structures (messages) can be saved in the
memory pool, one memory block for each structure. The CPSS uses this scheme to
implement buffers for channels of structure.

When a message is written to a channel of structure, a memory block from the
memory pool (array storageValuel[]l) is allocated. The content of the message is
copied into the memory block. The starting address of the memory block (which is
treated as an integer) is recorded in the channel buffer (array channValue[]). That
is, the front entry of the freeList is allocated and written with the starting address
of the memory block. When the message arrives at the destination, its available time
is updated and the entry is inserted into the list of channel values as if this were an
integer number.

In short, the list of values of a channel of structure is in fact a list of addresses, each
address pointing to a structure in the memory pool. Figure 38 illustrates the storage
implementation of a channel of structure; the size of each structure (message) is three
words. The addresses are treated as integers, and read/write operations on the chan-

nel of structure are also based on the three arrays channValue[], channValTime[]

124

storageValue see

(memory pool) ™ 494
493
492

channValue 451

""""""""" 456
(chanpel buffery J _ pememe=e=e----ed Pt

|

ees 223220 492 455 cee

..............

..............

b e e

Figure 38: Implementation of composite-type channels

and channValLink([].

When a process reads from a channel of structure, the first entry of the list of
channel values is retrieved. From that entry, the reader obtains the starting address
of the structure block in the memory pool. The reader will read the content of the
structure from the memory pool. After the read is completed, the structure memory
block is returned to the memory pool. The read entry in the channel buffer, which

stores the structure address, is also given back to the freeList.

Channel of Array

An array can be considered as a structure whose elements are of the same type.
Therefore channels of array are implemented in the same manner as channels of
structure. That is, an entry in the channel buffer records the starting address of a
memory block in the memory pool. That memory block stores the actual content of
the message of type array. In summary, for a channel of array, the list of channel
values is a list of memory addresses, each address pointing to an array residing in the

memory pool.

125

4.6.6 Channel Operations on Basic Types

In this section, we consider only channel variables of basic types (e.g. integer, float,

char).

Channel Write

A channel write takes the form of an assignment statement whose left hand side (LHS)
is a channel variable. The message content is the value of the expression on the right

hand side (RHS) of the assignment. Figure 32 shows some examples of channel writes.

A channel write consists of three steps:

1. The address of the channel variable on the LHS is loaded onto the top of the

writer’s stack.

The writer will access the memory location at the indicated address, retrieve
the channel ID, and use it to access the channel descriptor for the pointer to

the list of channel values (Figure 34).

2. The expression on the RHS is evaluated. The final value of the expression is
pushed onto the top of the writer’s stack. The expression value will be the

message content.

3. The writer executes vCode instruction STChannel (STore Channel) which
writes the message content to an allocated entry of the channel buffer (ar-
ray channValue[]). If this is an intra-processor message (i.e. the source and
destination of the message are the same physical node), the writer inserts the
message into the corresponding list of channel values. If this is an inter-processor
message, the writer injects the message into the network for routing. When the
message arrives at the destination, the network manager will insert the message

into the list of values for reading.

Steps 1 and 2 are in fact preparations for execution of STChannel instruction.

The algorithm of ST Channel instruction is described below and summarized in Fig-
ure 39.

o The writer restores the address of the channel variable from the top of its stack,
and saves the address in a temporary variable chanAddr. The address of the

channel variable is then popped off the stack since it is no longer needed.

126

The writer accesses the memory pool at location chanAddr to retrieve the
channel ID (chanID).

If the channel has not been opened (chanID = 0), the writer requests a free
channel descriptor from the array of channel descriptors (chann[]), and ini-
tializes the new channel descriptor. The new channel ID is saved at memory

location chan Addr.

The writer requests a free buffer entry (from the freelist) whose index is
bufIndez.

The value of the RHS expression on the top of the writer’s stack is copied into
the allocated buffer entry (channValue[bufIndex]). The read value is then
popped off the stack. The writer also updates the list of free buffer entries
(pointer freeChanFEntry).

If this is an intra-processor message, the actual available time of the message
is computed, which also takes into account buffer write contentions if any. The
writer then inserts the new buffer entry into the list of values of the written

channel by executing function insertValueInChan@(). This function will be

described below.

If the new message is inter-processor, the writer sets the message available time
to a very big value which indicates that the message has not arrived at the
destination yet, and the arrival time is unknown for the time being. The writer
process then injects the message into the network for routing by executing func-
tion WH.CEM _SENDS_MSG(). The network manager receives the following
information from the writer: source and destination node IDs, message length,
send time, channel ID of the written channel, and index of the buffer entry
bufIndex. When the message reaches the destination, the network manager
will calculate the actual available time of the message, and insert it into the list

of values of the written channel by calling function insertValueInChan@() as

well.

In function WH_ CEM _SENDS_MSG(), a message structure is allocated and
intialized with the message information passed by the writer process. The message

is then inserted into the list of new messages, waiting for being routed.

127

STChannel

/* Pre-conditions: the address of the channel variable and
the value of the RHS ezpression are on the stack top*/

chanAddr = address of the channel variable; /*obtained from stack top*/
Pop address of channel variable off the stack after using it;
chanID = storageValue[chanAddr];

if (chanID == 0) /*channel has not been opened; get a new channel descriptor™/
{ chanID = index of the allocated channel descriptor in array chann[];
storageValue[chanAddr].val = chanID;
Initialize the new channel descriptor;
}
/*Request an entry from the channel buffer*/
buflndex = index of the allocated entry in array channValue[];
Initialize the new buffer entry {
channValue[buflndex] = value on the stack top; /*this is the value of
the RHS ezpression pushed in before (Step 2 of a channel write)*/
channValLink[bufIndex] = NULL; }
Pop the top value off the stack; /*it has just been used*/
Update the list of free buffer entries; /*update pointer freeChanEntry™/

if (physical destination == physical source) /*intra-processor message*/
{ Compute message available time;
[*considering buffer write contention, if any*/
channValTime[buflndex] = available time;
InsertValueInChanQ(chanID, bufIndex, availableTime); /*insert entry
buflndex into list of channel values using computed available time*/
}

else /*inter-processor message* [
{ channValTime[buflndex| = infinity; /*arrival time not known yet*/
WH_CEM_SENDS_MSG(source, dest, msgSize, sendTime, chanID, buflndex);
[*inject the new message into the network for routing*/
}

} /*end STChannel*/

Figure 39: Algorithm of vCode instruction ST Channel

128

The algorithm of function insertValueInChan@Q() is as follows.

e The function considers the available time of the new message, and inserts the
message into the list of channel values. The insertion position respects the

increasing order of available times of the messages in the list.

o If the owner of the channel is currently blocked due to a previous channel read,
the owner process is unblocked: its state is changed to Delayed and the wakeup

time is the available time of the new message.

e Field dataCount of the channel descriptor is incremented to account for the

new message.

After completing the channel write, the writer process proceeds to the next in-

struction of its code. As implemented, channel writes are non-blocking.

Channel Read

A channel read is performed when a channel variable is present on the RHS of an
assignment statement. In Figure 32, the process executing function reader() per-
forms a read on channel ch. If no data is currently available, the reader process will
be blocked and queued at the channel queue (field wait ProcQueue of the channel
descriptor); we say that the channel read is suspended. When a message is available
for reading, the reader will resume execution and re-run the channel read to get the
value.

If the data is available, the content of the first entry of the list of channel values
is returned, and the entry is removed from the list. In this case, the channel read is
said to be successful. After a channel read is completed successfully, the read value
is treated as if it belonged to a normal variable. That is, the value read from the
channel will be pushed on the top of the reader’s stack and used for evaluating the
RHS expression. Therefore the post-condition of a successful channel read is that the
top of the reader’s stack contains the read value.

A channel read consists of two steps:

1. The address of the channel variable to be read is calculated and stored in a

temporary variable chan Addr.

129

2.

The reader executes vCode instruction LDChannel using the address of the

channel variable stored in chanAddr.

The pre-condition of LDChannel is that the address of the channel variable to

be read is stored in a temporary variable chanAddr. The algorithm of instruction
LDChannel is as follows.

The reader verifies if it is really the owner of the channel to be read.

If so, the reader accesses the memory pool at location chanAddr to obtain the
channel ID (chanID).

If the channel has not been opened (chanID = 0), the reader requests a free
channel descriptor from the array of channel descriptor (chann[]), and ini-
tializes the new channel descriptor. The new channel ID is saved at memory

location chan Addr.

The reader’s channel read status (field readChannStatus of the PCB) is set to
AtChannel (i.e. in the middle of a channel read).

If the channel is empty, the reader’s state is set to Blocked. If the channel is
not empty but the data is not available yet (i.e. the reader’s local clock has
not reached the available time of the message), the reader’s state is changed to
Delayed and the wakeup time is set to the available time of the message. In

either case, the following steps are also executed.

— The reader releases the processor on which it is running since it will be
blocked until the data is available.

— The reader is queued at the channel queue: field wait ProcQueue of the

channel descriptor is set to point to the reader’s PCB.

— The reader’s program counter is decremented by one so that when the
message becomes available later, the reader will re-run this instruction
(LDChannel) to read the channel again.

— The reader exits from instruction LDChannel and goes to sleep.

If the data is currently available, the reader gets the message from the channel

buffer and updates channel information as follows.

130

— The content of the first entry in the list of channel values is copied on top

of the reader’s stack.

— The read entry is removed from the list of channel values, and returned to

the list of free entries.

— The channel descriptor is updated: field head is set to point to the next
entry of the list of channel values; field dataCount is decremented for one
less message; the pointer to the reader’s PCB at the channel queue (field

wait ProcQueue), if any, is removed.

The post-condition of LDC hannel is that if the channel read is successful, the read
value is pushed on top of the reader’s stack. The algorithm of instruction LDChannel

is summarized in Figure 40.

4.6.7 Channel Operations on Composite Types

In the following discussion, we use channels of array as examples. Read and write

operations on channels of structure are performed in the same manner.

Channel Write

As described earlier, the list of values of a channel of array is a list of memory
addresses, each address pointing to a memory block in the memory pool which stores
the actual content of the array message.

We also mentioned that it is not allowed to read/write an individual element
of a message of type array. The whole array must be copied into a normal array
variable which then enables access to each individual array element. In Figure 32,
the assignment statement CA = a is a write on channel of array CA. Array a is a
normal array.

Write operation to a channel of array is indeed similar to write to a channel of
integer. The difference is the extra work required to copy the contents of the array
on the RHS of the assignment statement to a new memory block requested from
the memory pool for the array message. Following is the algorithm for a write to a

channel of array, which consists of four steps.

1. The address of the channel of array variable (on the LHS of the assignment

statement) is pushed onto the top of the writer’s stack.

131

LDChannel

{

}

/* Check if this process is the owner of the channel*/
chanOwner = storageOwner[chanAddr];
if (chanOwner != reader’s processor ID)
{ set system state to ChanReadErr (Channel Read Error); break; /*ezit*/ }
chanID = storageValue[chanAddr];
if (chanID == 0) /*channel has not been opened; get a new channel descriptor™
{ chanID = index of the allocated channel descriptor in array chann[];
storageValue[chanAddr].val = chanID;
Initialize the new channel descriptor;
}
chanPtr = &chann[chanID]; /*pointer to the channel descriptor*/
readerPtr = pointer to the PCB of the reader process;
if (readerPtr->readChannStatus == None)
readerPtr->readChannStatus = AtChannel; /*in middle of a channel read*/
datalndex = chanPtr->head; /*first entry of list of channel values*/
if ((chanPtr->dataCount == 0) [*channel is empty*/
or (channValTime[dataIndex] > readerPtr->time)) /*data not yet available*/
{ /*the reader process is put to sleep*/
release the reader’s processor; /*set runProc to NULL*/
channPtr->waitProcQueue = pointer to the reader’s PCB;
if (chanPtr->dataCount == 0) [*channel is empty*/
readerPtr->state = Blocked;
else /[*channel is not empty, but data is not available yet*/
{ readerPtr->state = Delayed;
readerPtr->wakeTime = channValTime[datalIndex]; /*available time*/
} readerPtr->PC--; [*nezt time this channel read will be re-ezecuted™/
}
else /*data is available for reading*/
{ copy value channValue[datalndex| onto top of reader’s stack;
return the read entry to the freelList;
chanPtr->head = channVallLink[dataIndex]; /*nezt entry of list of values*/
chanPtr->dataCount--; /*one less entry in list of values*/
if (channPtr->waitProcQueue) [*waiting queue is not empty*/
remove the waiting entry from the queue;
readerPtr->readChannStatus = None; /*successful read*/

}
/*end LDChannel*/

Figure 40: Algorithm of vCode instruction LDChannel

132

2. The starting address of the normal array (on the RHS of the assignment state-
ment) is pushed onto the top of the writer’s stack. Steps 1 and 2 are to prepare

for instruction CopyT oNewBlock in step 3.

3. The writer executes vCode instruction CopyToNewBlock which does the fol-

lowing tasks:

e get a block of the size of the array from the memory pool;
e copy the contents of the array on the RHS to that newly allocated block;

e pop the address of the RHS array variable off the stack (the address was
pushed onto the stack in step 2);

e push the starting address of the new block onto the top of the writer’s

stack, preparing for instruction ST Channel in step 4.

After step 3, the writer’s stack top contains the address of the LHS channel
variable and the value to be written into the channel buffer. This value is the
starting address of the memory block that stores the actual contents of the

message of type array.

4. The writer executes instruction STChannel which treats the starting address
of the memory block containing the message content as an integer. This integer
is inserted into the list of values of the channel of array. The algorithm of

instruction ST Channel was presented in section 4.6.6.

When the array message arrives at the destination node, the same code for chan-
nels of integers is executed for channels of array. That is, the network manager first
computes the actual available time of the message. The network manager then calls
function insertValueInChan@() to insert the address of the new array into the list

of channel values.

Channel Read

An example is the assignment b = CA in Figure 32, where b is a normal array and
CA is a channel of array. A read operation on a channel of array consists of three

steps.

133

1. The starting address of the normal array (on the LHS of the assignment state-

ment) is pushed onto the top of the reader’s stack.

2. The reader executes instruction LDChannel which accesses the list of channel
values and copies the first entry onto the top of the reader’s stack (if the data is
available for reading). The first entry contains the starting address of the array
(message) to be read. The algorithm of instruction LDC hannel was presented

in section 4.6.6.

After step 2, the reader’s stack top holds the starting addresses of the LHS
array and the array (message) to be read. This is the pre-condition for vCode

instruction CopyBlock executed in step 3.

3. The reader executes instruction CopyBlock which copies the content of the
array message to the LHS array. CopyBlock also pops the top two values off
the reader’s tack.

134

Chapter 5

The Wormhole-Routed Network

Simulator

This chapter describes the design and implementation of the wormhole-routed net-
work simulator. We first discuss candidate network parameters needed for simulation
accuracy. Major data structures of the network simulator and their operations are
then described. We also present simulator algorithms which include communication
step for advancing unblocked flits, and approximate round-robin scheduling algorithm

for link bandwidth allocation.

5.1 Network Parameters

Communication model was described in Chapter 3. In this section we present candi-

date network parameters which are essential for accurate network simulation.

5.1.1 Network Topology

Typical network topologies are line, ring, mesh, torus and hypercube. In high-
dimensional networks such as hypercube, the average distance between nodes is small.
The routing latency is thus reduced accordingly. High-dimensional topologies, how-
ever, are wire limited. The reason is that the number of physical connections between
nodes is limited by the number of available pins and pads on the router and the
available chip area for communication-related hardware. The more dimensions, the

more links in that topology, and thus the more difficult the topology is to fabricate

135

in a limited area.

Low-dimensional topologies (such as line, ring, mesh and torus) offer higher wire
efficiency. However, the average distance between nodes is relatively large.

For networks in which the routing latency depends on the path length (such as
packet switching), hypercube is the most popular choice because of its short internode
distance. However, in networks supporting circuit switching or wormhole routing, the
network latency is almost independent of the path length if the contention is absent
and the packet length is relatively large. In this case, low-dimensional meshes and
tori are favorite topologies.

In our simulator, we support both low and high dimensional topologies. Specifi-
cally, the following topologies are simulated: line, ring, 2D-mesh, 2D-torus, 3D-mesh,
3D-torus and hypercube.

5.1.2 Network Size

From the simulator design point of view, the maximum network size that can be
simulated depends on the flit size and the buffer size of virtual channels. If each
virtual channel has a single-flit buffer and the flit size is k bits, the largest network
can have up to 2* nodes. The reason is that every packet must have a flit carrying
the address of the destination node. This information must be received completely
by each intermediate node on the path of a packet to compute the address of the next
node on the path.

In the above case, if we wish to simulate networks of size larger than 2% while
keeping the flit size unchanged, the buffer size of virtual channels must be extended.
For example, a network with a flit size of 8 bits and a single-flit buffer at each virtual
channel can have at most 256 nodes. To simulate networks with more than 256 nodes
and the same flit size, the buffer size of virtual channels must be at least 2 flits. In
this case, intermediate nodes on the path of a packet can receive the complete address
of the destination node from the buffer.

Our simulator can simulate networks of unlimited sizes (provided that the flit size
and the buffer size of virtual channels are properly set). The only limitation is the

memory capacity of the host computer.

136

5.1.3 Virtual Channels

A virtual channel consists of a buffer that can hold one or more flits of a packet and
associated state information [15]. Several virtual channels may be multiplexed on a
physical link and share the link bandwidth. Advantages of virtual channels include
the following:

e Virtual channels enable deadlock-free routing algorithms [15] and many adaptive
routing algorithms [39, 40, 41, 42].

¢ Virtual channels allow many packets to share the bandwidth of a link. This
improves link utilization and enhances network throughput [17, 18].

e By increasing the degree of connectivity in the network, virtual channels fa-
cilitate the mapping of a virtual topology onto a different physical topology,
especially when the physical topology has lower connectivity [8].

e Extra connections provided by virtual channels are useful to route packets

around congested or faulty nodes [8].

e Virtual channels provide the ability to deliver guaranteed communication band-
width to certain class of packets. This ability is important to build real-time
networks. Virtual channels ensure that some minimum link bandwidth can be
allocated to each virtual channel provided that the number of virtual channels

sharing the same link is bounded (8, 29].

Design issues regarding virtual channels are discussed below.

Virtual Channel Abstraction

A virtual channel is a logical link between two adjacent nodes. From the hardware

implementation point of view, a virtual channel is composed of

e A flit buffer in the source node which holds flits waiting to use the link.

e A physical link between the two nodes, which provides a communication medium

between the nodes.

e A flit buffer in the receiver node which stores flits just transmitted over the link.

137

Flit buffers in Flit buffers in
the source node the receiver node

! Physical Link !
. :

Figure 41: Two virtual channels sharing a physical link

A B

[] Physical Link L]
] (m]

a) Physical structure

2 B

b) Logical structure for simulation

Figure 42: Virtual channel abstraction for simulation

Two virtual channels multiplexed on a physical link are shown in Figure 41. There
are two flit buffers in the source node and two flit buffers in the receiver node. One
source flit buffer is paired with one receiver flit buffer to form a virtual channel when
the link bandwidth is allocated to the pair. In the network simulator, such a virtual
channel is abstracted into an entity called lane [18]. Each lane is associated with a
lane buffer which represents a flit buffer at the receiver node. When a flit is deposited
into a lane buffer, it is considered to be stored in a flit buffer at the receiver node.
This is illustrated in Figure 42.

An example of a flit transfer from one node to the next node is shown in Fig-
ure 43. Let links a and b be connected to nodes A and B respectively as illustrated
in Figure 43. In reality, the flit is moved from buffer 1 of node A to buffer 2 of node
B. In the simulation, the flit is transferred from the buffer of lane 1 of link a to the
buffer of lane 2 of link b.

138

H: 1 U L1 IDB
]2 2[] g :

Figure 43: Simulation of a flit transfer

This abstraction does not affect simulation accuracy, and helps to speed up simu-
lation time. The terms “virtual channel” and “lane” will be used interchangeably in

this chapter.

Number of Virtual Channels

Adding more virtual channels help to improve network utilization [17, 18]. However,
as the number of virtual channels increases, link scheduling becomes more compli-
cated, requiring additional hardware complexity. In addition, time-sharing of link
bandwidth may increase network latency if the traffic is high because the link band-
width is divided among several messages.

Therefore the trade-off between enhanced network throughput and longer routing
latency should be weighted when deciding the number of virtual channels per link.

In our simulator, every physical link has the same number of virtual channels, and
the number of virtual channels per link is a configurable parameter. As the number
of lanes increases, space requirements for simulated lanes also increase. However the

increase in the number of lanes per link incurs little simulation time overhead.

Unidirectional versus Bidirectional Channels

Virtual channels can be unidirectional or bidirectional. We can have a pair of opposite
unidirectional channels between two adjacent nodes. The implementation and control
of this scheme are simple. However, one channel may be very busy while the other is
idle; the physical link is thus not fully utilized.

Link utilization can be increased by combining two unidirectional lanes into a

139

single bidirectional lane. If the bandwidth of each unidirectional lane is W, then the
bandwidth of the corresponding bidirectional lane is 2W. Link utilization increases
at the cost of more complex implementation. For instance, a special arbitration line
is needed between two adjacent nodes connected by a bidirectional channel to control
the direction of information flow.

In our network simulator, we assume that bidirectional virtual channels share a
bidirectional physical link.

Buffer Size

Each virtual channel is associated with a buffer. The buffer size of a virtual channel is
an integral multiple of the flit size. Virtual channel buffers are FIFO queues. Larger
buffer size may improve network performance {8, 29], but buffer size equal to packet
size will effectively reduce the benefit of wormhole routing to that of packet switching.
Increasing buffer size helps to support large networks when the flit length is not
long enough to carry node addresses (as discussed in section 5.1.2).
Our network simulator allows the buffer size to be changed whenever needed. The

minimum value is 1 flit; the maximum value is the packet size in flits.

Virtual Channel Allocation Policy

The number of packets sharing a link may be larger than the maximum number
of virtual channels multiplexed on that link. When all lanes of the link are busy,
incoming messages have to be queued at the corresponding router. Free lanes are then
allocated to waiting messages using an allocation policy. FIFO queues are usually used
for lane allocation. In real-time networks, packets requesting free lanes are ordered

and given free lanes using message priorities. Our simulator uses FIFO queues for

lane allocation.

Link Bandwidth Allocation Policy

Each physical link is associated with a scheduler that multiplexes data from the virtual
channels over the physical link. This allows the virtual channels to time-share the
bandwidth of the physical link. A fair scheduling algorithm, such as round-robin, can
be used for link bandwidth allocation. In real-time systems, priorities of messages

occupying the virtual channels can be used for scheduling.

140

To preserve link bandwidth, only those virtual channels which have a non-empty
flit buffer at the sending side and a non-full flit buffer at the receiving side may
participate in the scheduling decision (such virtual channels are called active lanes).
That is, if £ lanes are multiplexed on a physical link with bandwidth W, and a lanes
are active (1 < @ < k), then each active lane should get an effective bandwidth of
W/a. Since the number of active lanes changes over time, the router should be able
to dynamically allocate link bandwidth to the active lanes so as to maximize link
utilization.

In our network simulator, round-robin scheduling is used to allocate the bandwidth

of a physical link to its virtual channels.

5.1.4 Messages

A message is the logical unit of information for interprocess communication. Messages
may have variable lengths. A message is often divided into a number of fixed-length
packets for routing.

Our simulator supports messages of any length, and messages are packetized for

routing.

5.1.5 Packets

A packet is the basic unit carrying the address of the destination node for routing
purposes. Depending on network conditions, packets belonging to a message may
arrive at the destination node out of sequence. Thus a sequence number is required
in each packet to allow reassembly of the message.

In wormhole-routed networks, a packet is further divided into a number of fixed-
length flits. There are two types of flit: control flit and data flit. The destination
address and the sequence number are control flits and occupy the header flits. The
remaining flits are the actual data of the packet (Figure 44).

Typical packet size ranges from 8 to 64 bytes. Factors influencing the choice of
packet size include the routing scheme, link bandwidth, router design and network
traffic intensity [23].

The sequence number may need one or two flits depending on the message length.

The destination address may also occupy two flits if the flit length is not long enough

141

A|S|D| D|DiD|D|D

A : Destination Address
S : Sequence Number
D : Data flits only

Figure 44: Structure of an 8-byte packet

to represent node addresses (in this case, the virtual channel buffer size must be at
least two flits to store the complete address of the destination).

Packet size is a configurable parameter in the CPSS network simulator.

5.1.6 Flits

In wormhole-routed networks, flit is the smallest unit of information transmission.

The network size affects the flit size that must be long enough to represent node
addresses. For instance, a 256-node network requires 8-bit flits. To keep the flit size
unchanged and support larger networks, the size of virtual channel buffers must be
extended as mentioned above.

In section 2.2.1, we see that the network latency for wormhole routing is (F'/B)D+
P/B where F is the flit size (in bits), P the packet size (in bits), B the channel
bandwidth (in bits/second), and D the path length. If F << P, the path length D
will not affect the latency much (unless the path is very long). Thus small flit size
helps to reduce network latency.

Special attention should be paid to real-time networks. Such networks usually
employ many kinds of prioritized queues based on message priorities. Link bandwidth
allocation is based on message priorities and performed at the flit level. If the flit
size is too small, flit overheads may outweigh the benefits of wormhole routing. In
real-time systems, the flit size should be somewhere between four and sixteen bytes
[29].

Other factors deciding the choice of flit size include the routing scheme, link

bandwidth, and router design [23]. The CPSS network simulator allows users to
change the flit size as desired.

142

5.1.7 Message Startup Overheads

The startup cost of a message can be on the order of a thousand instruction cycles
[52, 53, 54]. This is due primarily to message and packet initialization overheads and
buffer management. A message is first divided into packets which are initialized with
the destination address, the sequence number and other routing information. Every
packet is then buffered until the network port is available, and the packet is injected
into the network.

In the network simulator, message and packet startup overheads are configurable

parameters.

5.1.8 Routing Scheme

Routing schemes can be deterministic or adaptive.

e Deterministic routing: The routing path of a message is determined in advance
based on the source and destination addresses and independent of current net-
work conditions. This may lead to higher latency but the implementation is

simple.

e Adaptive routing: To alleviate network congestion, an adaptive scheme may
dynamically re-route the message using additional information such as resource
conflicts and presence of alternative paths. Adaptive routing responds well to
network condition to result in higher throughput. However this is achieved at

the cost of increased hardware complexity and more potential for deadlock.

Deterministic and adaptive routing can be minimal or non-minimal. Using a
minimal routing algorithm, a packet is delivered through one of the shortest paths
connecting the source and the destination. In a non-minimal routing algorithm, the
path for delivering a packet may not be the shortest path.

Our simulator supports only deterministic routing. For line, mesh and hypercube,
we employ dimension-ordered routing. Using dimension-ordered routing, each packet
is routed in one dimension at a time, arriving at the proper coordinate in each di-
mension before switching to the next dimension. By enforcing a strictly monotonic
order on the dimensions traversed, the network is guaranteed to be deadlock free. In

particular, we use shortest-path routing for line topology, XY routing for 2D-mesh,

143

XYZ routing for 3D-mesh, and E-cube routing for hypercube. These routing schemes
are minimal.

For ring and torus topologies, it is impossible to construct a deadlock-free minimal
deterministic routing algorithm [8]. We provide minimal deterministic routing for
rings and torus, which may cause deadlock. To avoid deadlock, we also support
deadlock-free deterministic routing for ring and torus; the algorithm was proposed by
Dally and Seitz[15]. This deadlock-free routing algorithm is non-minimal though.

Above are default routing schemes supported by the CPSS network simulator.
The CPSS also permits users to specify their own routing algorithms using a routing
table.

With deterministic routing, routing decisions can be ezplicit or implicit

e Explicit routing: the source node computes the entire route in advance, before

sending out the message. The router will simply switch accordingly.

e Implicit routing: the routing path is determined by the routers on the path.
Each router will compute the next node on the path based on the addresses of

the current node and the destination.

Our simulator uses an implicit scheme to shift the burden of routing to the routers
which are usually dedicated hardware for communication tasks. Furthermore, support
for implicit routing allows adaptive routing to be added easily to the CPSS network

later.

5.1.9 Flit Routing Latency

The latency for a flit to move from one node to the next node on the path consists

of the following components [26]:

e Buffer read time: the time needed to read the flit from the current buffer.

e Link scheduling time: the time required to schedule the physical link in order

to know which lane is allowed to use the link in the current clock cycle.

e Link delay time: the time taken by the flit to traverse the link and arrive at the

next node.

144

e Buffer write time: the time needed to write the incoming flit to the buffer at
the next link.

In our simulator, buffer read time, link scheduling time, link delay time and buffer
write time are combined into one parameter which is flit latency. All flits require flit
latency to transfer from one node to another.

In addition to the flit latency, header flits incur router decision time and lane

allocation time.

e Router decision time: the time required by the router to determine the next
node on the path. This time depends on the routing algorithm and message

address format.

e Lane allocation time: the time needed to allocate a free lane of the next link
where the flit will be deposited. This time depends on whether there are free

lanes on the next link.

Router decision time and lane allocation time are covered by the parameter called

header overhead. Users are allowed to define the flit latency and the header overhead.

5.2 Data Structures and Their Operations

5.2.1 Network Clock

The simulated network does not have an explicit clock. Each flit transfer from one
node to the next node is assumed to take one time unit (the flit latency). Other
network time parameters are normalized using the flit latency unit. Note that the
computation quantum is also computed based on the flit latency unit as discussed in
Chapter 4.

The network uses a timestamp generator clock_wh to schedule physical links (i.e.
link bandwidth allocation). The timestamp generator is incremented every time all

unblocked flits are advanced by one link.

5.2.2 Nodes

Nodes in the network are identified by absolute IDs. Absolute IDs are computed as

follows.

145

e Line, Ring: assuming that the network has n nodes, the nodes are numbered
from 0 ton — 1.

e 2D-Mesh and 2D-Torus: assuming that the mesh (torus) has R rows and C
columns, the absolute ID of node (r, ¢) is 7 - C + ¢, where 0 < r < R and
0<c<C.

e 3D-Mesh and 3D-Torus: assuming that the mesh (torus) has P planes, R rows
and C columns, the absolute ID of node (p, r, ¢) is (p- R+ 1) - C + ¢, where
0<p<P,0<r<Rand0<c<C.

e Hypercube: the absolute ID of a node is the decimal value of the corresponding

binary representation of the node address.

The network simulator utilizes absolute IDs so that routing functions are generic
and can be used for all types of topology. Only the function computing the next
node on the path needs to use Cartesian IDs (for meshes and tori) or binary IDs (for

hypercubes).

5.2.3 Links
Link Numbering

Links are numbered based on the topology and absolute IDs of nodes.

¢ Ring: Assume that the ring network has n nodes numbered from 0 to n — 1.
Each node in a ring topology is connected to two links: one to the left and the
other to the right of the node. Because in the simulator links are assumed to
be bidirectional, the total number of links is n. To make the link numbering
scheme easy to understand, we consider that each node of the ring is “in charge”
of the link to its right, and this link has the same ID as the node. Figure 45a

shows an example with n = 4.

e Line: Line topology uses the same link numbering as ring. However the two

boundary links connected to nodes 0 and n — 1 are not used (Figure 45b).

e 2D-Torus: Assuming the torus has R rows and C columns, absolute node IDs

then run from 0 to R-C —1. Each node of the torus is connected to four links to

146

the east, west, north and south side of the node. Since links are bidirectional,
the total number of links is 2R-C. We consider that each node ¥ (0 < k£ < R-C)
of the torus is “in charge” of two links: link 2k to the east side and link 2k + 1
to the south side of the node. An example is given in Figure 45c.

e 2D-Mesh: The link numbering scheme of 2D-torus is also used for 2D-mesh.
However boundary links are not used (Figure 45d).

e 3D-Torus: Assuming that the 3D-torus has P planes, R rows and C columns,
absolute node IDs then run from 0 to P- R-C — 1. Each node of the torus is
connected to six links to the east, west, north, south, front and back side of the
node. The total number of links is 3P - R - C since the links are bidirectional.
We consider that each node £ (0 < k < P- R-C) of the torus is “in charge” of
three links: link 3k to the east, link 3k + 1 to the south, and link 3% + 2 to the
back side of the node.

¢ 3D-Mesh: The same link numbering of 3D-torus is applied to 3D-mesh. However

boundary links are not used.

e Hypercube: Let : and j be the absolute IDs of two adjacent nodes. Without
loss of generality, assume that ¢ < j. Let d be the number of dimensions of the
hypercube, and b be the position of the bit where 7 and j are different (with the
rightmost bit being at position 0, 0 < b < d). The ID of the link connecting
nodes ¢ and jis ¢-d + b.

Link Data Structure

Every link is associated with a structure which stores the following information/data

structures:

o lane: an array of dynamically allocated lane structures.
e nbrBusylLanes: the current number of busy lanes.

o scheduledLane: the lane scheduled to use the link bandwidth in the current

network cycle.

147

l——0 1 2 3—J 0 1 2 3

0 1 2 0 1 2
a) Ring (n =4) b) Line (n = 4)
1 1] 1
E 0 1 2 (1] 3
0 2 4 3 6 0 ! 2 2 4
1 3 5 7 1 3 5 7
(v} 1 2 0
8 10 12 3 14 8 ! 10 2 12 3
9 11 13 15 9 11 13 15
E 0 1 2 3 —] 0 1 2 3
16 18 20 22 16 18 20
17 19 21 23
] il il |

c) 2D-torus (R =3,C=4) d) 2D-mesh(R=3,C=4)

Figure 45: Link numbering

o schedTime: the most recent scheduling time. If this time is equal to the value
of the timestamp generator, it means that the link has been scheduled in the

current network cycle.

o queueHead and queueTail: pointers to the head and the tail of the list of packets
waiting for free lanes to be allocated. In the current implementation, these

queues are FIFO queues.
The structure in C is as follows.

struct link
{
Lane *lane;

/*set of lanes of the link (an array of lane structures)*/

int nbrBusyLanes; /*number of busy lanes*/
int scheduledLane; /*lane scheduled to use the physical link*/
float schedTime; /*the last scheduling timex/

QueueEntryPtr queueHead, queueTail;

148

};

/*queue of packets vaiting for free lanes*/

5.2.4 Virtual Channels

Each virtual channel (lane) has a structure which contains the following data:

o packetPtr- the pointer to the packet structure of the packet currently occupying

this lane.

e state: the lane state which can be Free, Busy or FirstLane. A laneis Busyifitis

currently used by some packet. A lane is a FirstLane if it is busy and connected

to the source node.

e nbrFlits: the number of flits currently buffered in this lane.

e lastFlitPassed: the ID of the flit which left this lane the most recently. Assume

that the packet size is p and the flits of a packet are numbered from 1 to p.
When this field is set to p, we know that the tail flit of the packet just left the

lane. Thus we can release the lane.

e prevLink: the previous link on the path of the packet.

e prevLlane: the lane on the previous link and occupied by this packet.

Following is the lane structure in C.

struct lane

{

PacketPtr packetPtr; /*packet currently occupying the lanex/

enum LaneStates state; /*lane statex/
int nbrFlits; /*current number of flits in the lane*/
int lastFlitPassed;
/*ID of the most recent flit leaving the lanex*/
int prevLink; /*previous link on the path of the packet*/

int prevLane; /*previous lane on the path of the packet*/

149

In the simulator, virtual channels are resources. If a packet is requesting a lane
from a link and no lane is available, the packet is appended to the link queue and
its state is set to Blocked. In the current implementation, the queue at each link is
maintained using FIFO order. When a lane becomes free, the first waiting packet is
removed from the queue and given the lane. Other allocation schemes (e.g. random

or priority queue) can be easily added to the simulator.

5.2.5 Messages
In the CPSS, there are three kinds of messages:
e Birth messages that are sent when new processes are created.

e Death messages that are sent by child processes to their parents when the

children terminate.

e Channel-write messages that are generated by writes to channel variables.

Information needed to route a message is stored in a message structure. All

messages require the following information:

e source: the address of the source node.
o dest: the address of the destination node.
o nbrPackets: the message length measured in terms of the number of packets.

e sendTime: time at which the message will be injected into the network. This

time includes all message and packet startup overheads.

e nert and prev: pointers to form doubly-linked lists of messages.

A birth message is destined to a new child process. Upon creation, the child
process is put to sleep until the birth message arrives at the destination node on
which the child will be running. At that time, the child process will be waken up to
run. Therefore, the pointer to the process control block of the child is also recorded

in the message structure.

150

Similarly, when a child process sends a death message in order to terminate, the
pointer to the process control block of the parent process is stored in the message
structure.

When a channel-write message arrives at the destination, the arrival time must
be recorded with the written value so that the reader knows if the value has been
available for reading yet. Therefore, the ID of the channel variable and the buffer
location where the value is stored must also be kept in the message structure.

Thus depending on the message type, the message structure also contains the

following information:

o chanVarNum: the ID of the channel variable,
o chanValldz: the buffer where the message is deposited for reading,

o processToNotify: the process to be notified (if any) when the message arrives at

the destination.
The message structure in C is as follows.

struct message

{
int source; /*source node ID*/
int dest; /*destination node ID*/
int nbrPackets; /*number of packets*/
float send_time; /*injection time including all overheads*/
struct message *next, *prev;
/*linked lists of new and active messages*/
/*Info used to update a channel variable or a process of the CEM*/
int chanVarNum, /*ID of the channel variablex*/
chanValldx; /*message buffer location (index)=*/
ProcDesPtr processToNotify;
/*pointer to process to be notified when the message arrives*/
}

For every message, we consider two kinds of startup overheads:

151

o Message startup overhead ¢,,: startup overhead for a message on initialization,

e Packet startup overhead ¢,: cost to initialize a packet for routing.

For every message the total startup overhead is t,, + p - t, where p is the number
of packets contained in the message.

The simulator does not route actual contents of messages but simulates the routing
using message information stored in message structures.

When a process generates a message, the CEM passes the message information to
the network manager. The network manager allocates a message structure to store
this information, and calculates the actual send time of the message which includes
all startup overheads. The message structure is then inserted into the list of new
messages that is ordered by actual send times of messages.

At the beginning of every communication quantum, the network manager scans
the list of new messages. If the actual send time of a new message has come, the
message structure is removed from the list of new messages and appended to the
list of active messages. This list contains messages that are currently being routed.
The network manager also cuts the message into packets and appends the packet
structures to the list of packets, preparing to route the packets.

When all the packets of a message have been received by the destination node,

the corresponding message structure is removed from the list of active messages and

freed.

5.2.6 Packets

Every message is decomposed into one or more packets. Data needed for routing a

packet is stored in a packet structure which contains the following fields:

e msgPtr: pointer to the message structure. Message information need not be

replicated in the packet structure.

e state: packet state which takes one of the following values: Init (just initial-
ized), InitBlocked (just initialized and being blocked), Advancing (being routed),
Blocked (being blocked).

e headNode: the node where the header flit is currently buffered,

152

e headLink: the link where the header flit is currently buffered,
e headLane: the lane where the header flit is currently buffered,

e nezt and prev: pointers to form a doubly-linked list of packets.
The packet structure in C is as follows.

struct packet

{ MsgPtr msgPtr; /*pointer to the msg structurex/
enum PacketStates state; /*packet statex/
int headNode; /*head nodex/
int headLink; /*head linkx*/
int headLane; /*head lane*/

struct packet *next, *prev; /+*to form the linked list of packets*/

In the network simulator, packet size is modifiable. Every packet is composed of
header flits and data flits. Header flits store the destination address and the sequence
number of the packet. The header size thus depends on the network size and the
message length. The buffer size also affects the header size indirectly: if the header
flit is not long enough to store the whole destination address (or the packet sequence
number), the buffer size must be increased to accommodate more flits to store the
complete destination address.

Packets of a message are routed independently of each other. Therefore they may
arrive at the destination out of sequence. When a packet reaches the destination, the
packet structure is removed from the list of packets and freed. When all the packets
of a message have arrived at the destination, the message is considered to be received

completely.

5.2.7 Flits

There is no data structure for flits. The simulator does not route actual contents of
flits but only consider flit IDs at each lane on the path of a packet.

The current position of the header flit of a packet is recorded in the packet struc-
ture, fields headLink and headLane (section 5.2.6).

153

The position of the tail flit is not kept track of explicitly. When the tail flit of a
packet leaves a lane buffer, that lane should be deallocated. To implement this, we
use field lastFlit Passed of the lane structure (section 5.2.4). This field records the
ID of the flit which left the lane the most recently. Let the packet size be p, and the
flits of a packet be numbered from 1 to p. When field lastFlit Passed of a lane L
reaches value p, this means that the tail flit of the packet occupying L just left the

lane. L can thus be released.

5.2.8 Routing Scheme

Our simulator currently supports only deterministic routing. The routing is specified
in a routing table that is a 2D-array. When a header flit arrives at a node k, the
router should look up the entry (&, d) of the routing table, where d is the destination
address, to determine the next node to route the packet to.

Default routing schemes built in the network simulator are as follows.

e Line: shortest-path routing that is deadlock free.

e Ring: shortest-path routing that may cause network deadlock. Deadlock-free

non-minimal deterministic routing {15] is also supported.
o Mesh: XY-routing that is deadlock free.

e Torus: dimension-ordered routing. Along each dimension, there are two choices.
The default mapping selects the shortest path. This scheme may cause deadlock.

We also support deadlock-free non-minimal deterministic routing for torus [15].

e Hypercube: E-cube routing that is deadlock free.

Users can specify their own routing scheme by filling in the routing table with
appropriate information. The routing information can be read from a file and stored

in the routing table.

154

5.3 Network Simulation Algorithm

5.3.1 Overall Algorithm
System Quantum

Execution time of the parallel program is divided into equal slices; each slice is called
a system quantum. A system quantum consists of a computation quantum running in
parallel with a communication round. This results from the assumption that routers
have dedicated processing units and run in parallel with processing elements.

The duration of a communication round is flit latency that a non-header flit takes
to move from one node to an adjacent node. Therefore during a communication
round, unblocked flits (if any) are moved forward by one link. Let the flit latency be
flit latency, the duration of a system quantum be ¢,, and the duration of a compu-
tation quantum be f..m. We have t, = t.en = flit_latency, since the computation
quantum and the communication round are considered to run in parallel.

Let gecem be
Qcem = tccm/tclock = flit—latency/tclock

where t .. is the clock cycle of the processing elements. In every system quantum,
the CEM runs for g, clock cycles (a computation quantum), and unblocked flits are
advanced by one link (a communication round). For example, if gcem = 5, the CEM
executes for five clock cycles and the network manager advances unblocked flits by
one link. In this case, the processing elements are considered very fast. If the network
speed is high, we may have gcern = 0.25. In this case, the CEM executes for one clock
cycle every time the network manager runs four communication rounds.

The overall algorithm of the simulation is:

while (parallel program not finished)
{
run one computation quantum; /*during this quantum, new messages to
be sent are inserted into the list of new messages*/
run one communication round; /*considered to be running in parallel

with the computation quantum*/

155

Computation Quantum

During a computation quantum, the CEM (Code Execution Module) takes control
of the simulation. It executes parallel program code. If there are messages to be
sent, the CEM passes message information to the network manager. The network
manager then calculates the actual time to inject the message into the network. The
injection time includes message and packet startup overheads. The corresponding
message structure is then inserted into the list of new messages which is ordered by
injection times of messages.

After the computation quantum expires, the control of the simulator is passed to

the network manager that will run a communication quantum.

Communication Quantum

The core of a communication round is the communication step in which unblocked flits
are advanced by one hop. Before the communication step is the message injection
phase during which the network manager scans the list of new messages. If the
injection time of a new message has come, the message is removed from the list of
new messages and appended to the list of active messages. The network manager also
cuts the message into packets and appends the packets to the list of active packets,
preparing for routing.

To prepare for a communication step, the network manager first increments the
network timestamp generator clock_wh that will be used for link scheduling. The
network manager then runs one communication step to advance unblocked flits by
one link. When all packets have been scheduled for moving, the network manager
checks if routing deadlock has occurred. If so, the program execution is aborted.
Otherwise, the network manager passes control to the CEM that will start the next

computation quantum. The algorithm of a communication round is as follows.

communication_round

{
inject timed-out new messages into network;
increment timestamp generator clock_wh; /*used for link scheduling*/
run a communication step; /*advance unblocked flits by one link*/
check for deadlock;

156

A communication step for moving unblocked flits forward by one hop is described

in the next subsection.

5.3.2 Communication Step
Hardware Implementation

The pipelining of successive flits in a packet can be done synchronously or asyn-
chronously. Using synchronous pipelining, the network needs a network clock that is
broadcast to all nodes. As the clock advances by one clock cycle, unblocked flits move
forward by one link. Synchronous pipelining is simple to implement, but in general
slower than asynchronous pipelining.

Asynchronous pipelining can be implemented using a handshaking protocol be-
tween adjacent routers [16]. This handshaking protocol requires a single-bit re-
quest/acknowledge (R/A) between every two adjacent routers in addition to the data
channel. An example is given in Figure 46. The R/A line can be lowered only by the
receiving router B to signal that B has available buffer for a new incoming flit. The
R/A line can be raised only by the sending router A to indicate that A is transmit-
ting a flit over the link. When B is ready to receive a flit, it lowers the R/A line.
When A is ready to send, it raises the R/A line to high and transmits the flit over
the link. While the flit is being received by B, the R/A line is kept high. After the
flit is removed from B’s buffer, the R/A line is lowered again and the cycle repeats.
Asynchronous pipelining can be faster than synchronous pipelining, but it is more

complex to implement.

Chittor’s Implementation

In this simulator, messages are not packetized. The simulator does not support virtual
channels. The flit train of a message is routed by maintaining the position of the
header flit and the tail flit. Flits belonging to a message always occupy consecutive
lanes.

Active messages are messages which are being advanced as opposed to blocked
messages which are queued at routers waiting for the corresponding links to be re-
leased. A message whose header flit has reached the destination node is always active

because the message does not need to request any more links and thus cannot be

187

A Datachannel B A Data channel \ B
))
7/ /
Low High
Fliti it i
i RA Flit i RA
(a) B is ready to receive a flit (b) A is ready to send a flit
A Datachannel B A Data channel B
))
7/ /
High . . Low
RIA Flit i Fliti +1 RA
() Flit i is received by B (d) Flit i is removed from B°s buffer and flit

i+1 arrives at A's buffer

Figure 46: Handshaking protocol between two adjacent routers

blocked.

A communication step which advances unblocked flits by one link consists of three
phases. In the first phase, every active message whose header flit has not reached the
destination computes the next node on the path. The message structure is then
appended to the FIFO queue of the router at the node. This represents a request for
the next link.

In the second phase, the above requests are processed to allocate links to requesting
messages. For every message m in the list of active messages, if the requested link
is currently busy or given to another message (i.e. the first message of the FIFO
queue), m is blocked waiting in the FIFO queue for the link to be released. Thus m
is removed from the list of active messages. However, if m is given the link (i.e. m
is the first message of the FIFO queue), m is removed from the queue and the link
status is set to Busy to indicate that the link has been allocated.

After the second phase, messages remaining in the list of active messages are those
that have been granted a header link and those whose header flits have arrived at the
destinations. Blocked messages were already removed from the list of active messages
during phase 2 and are now waiting in router FIFO queues.

In the last phase, messages in the list of active messages are advanced by one link.

158

Phase 1: Messages request nezt links on their paths
for every message m in the list of active messages
if the head flit has not reached the destination
{ determine the next link;
append message m to the FIFO queue at the next link;
}
Phase 2: Requests are processed to allocate links to requesting messages
for every message m in the list of active messages
if the head flit has not reached the destination
if the requested link L has been busy or given to another message
remove message m from the list of active messages;
else { remove message m from the FIFO queue at the next link;
set status of link L to Busy; /*link is given to this message™/
}
/* After phase 2, messages remaining in the list of active messages will be
* advanced by one link. Blocked messages were already removed from the
* list of active messages and are staying at respective FIFO queues */
Phase 3: Unblocked messages are advanced by one link
for every message m in the list of active messages
{ advance message m by one link;
if the tail flit of m releases a link and the link FIFO queue is not empty
append the first waiting message to the list of active messages;
/*the link is freed, so unblock a waiting message*/
if the whole message m has arrived at the destination
remove message m from the list of active messages;

Figure 47: Chittor’s algorithm for one communication step

The positions of the header flits and tail flits are recorded. When a tail flit leaves a

link, the link is freed and the FIFO queue at the corresponding router is examined. If

there are waiting messages, the first message in the queue is given the link, removed

from the queue and appended to the list of active messages. If the tail flit arrives at

the destination (i.e. the whole message has been received), the message is removed

from the list of active messages.

The algorithm of a communication step is summarized in Figure 47.

159

Dally’s Implementation

This simulator implements virtual channels in details. Messages are not packetized.
Newly sent messages are appended to the list of messages (message_list). There is a
temporary list of links (¢emp_list). When a message makes a request at a link (either
for a free lane or for link bandwidth allocation), if the link is currently not on this
list, the link is added to the list. Only requested links need allocation/arbitration:
the links in the temp_list are examined to process the requests.

A communication step to advance unblocked flits by one link consists of four
phases. In phase 1, every message whose header flit has not reached the destination
requests a free lane on the next link. The message first determines the ID of the next
link on its path. It then appends a request for a free lane to the lane allocation queue
at the next link. If this link is currently not in the temp_list, it is added to the list.
At the end of phase 1, the temp_list contains the links requested by messages for free
lanes.

In phase 2, the temp_list is traversed to process the requests for lanes. Every link in
the temp_list grants its free lanes to requesting messages using a pre-determined lane
allocation scheme. If there are more requests than free lanes, outstanding requests
are discarded. The owner messages of these requests will repeat phase 1 in the next
communication step, attempting to get free lanes for their header flits. At the end of
phase 2, the temp_list is emptied for use in phase 3.

In phase 3, every message requests link bandwidth from the links on its path to
advance the flits. For each link occupied_link on the current path of the message,
a request for link bandwidth is appended to the link bandwidth allocation queue at
occupied_link. The link is then added to the temp_list if it is currently not in the list.
At the end of phase 3, the temp_list contains the links whose bandwidth is demanded
for advancing flits.

The temp_list is scanned in phase 4 to allocate link bandwidth to requesting mes-
sages. Every link in the temp_list is scheduled using a pre-determined link bandwidth
allocation scheme to decide which lane will use the link. Only lanes that have a non-
empty sending buffer and a non-full receiving buffer can take part in the scheduling.
Assuming that lane sched_lane is granted the link bandwidth in this step, the flit in
the previous lane is then moved into lane sched_lane. At the end of phase 4, the

temp_list is freed.

160

The algorithm of the communication step is shown in Figure 48.

CPSS Network Implementation

We wanted to eliminate the implementation with so many phases. The simulation
time would be intolerable when the network is combined with the code execution
module.

In our network simulator, a communication step has only two phases. In the
first phase, all packets whose header flits have not reached the destinations request
the next lanes on their paths. If no free lane is available on a requested link, the
requesting packet is queued at the link, waiting for a lane to be released. Otherwise,
a free lane is reserved exclusively for this packet.

The second phase is also packet-driven. The network manager attempts to advance
unblocked flits of all packets by one link. For each packet p, the network manager
visits every lane on the current path of the packet. The visiting order is from the
header flit going backward to the tail flit. For each lane L belonging to packet p, if
the corresponding link k£ has not been scheduled in this communication step, then
packet p will schedule link £ on behalf of the other packets sharing link k. The ID
of the lane which is allowed to use the link in this communication step (if any) is
recorded in field scheduledLane. If the scheduledLane is lane L, the flit in this lane
(which belongs to packet p) will be moved forward by one link. The algorithm for a

communication step is as follows.

communication_step
{
for each active packet /* phase 1 */
if header flit has not reached destination yet

request the next head lane;

for each active packet p /* phase 2 */
for each lane L on the current path of p
/*starting from header lane going backward to tail lanex/
{ if the corresponding link has not been scheduled in this
communication step /* check field schedTime */
schedule the link;

161

Phase 1: Every message requests a free lanes on the next link
/* Pre-condition: the temp_list is empty*/
for each message in the message_list
if the header flit has not reached the destination
{ determine the next link (nezt_link) on the path;
append a request for a free lane to the queue at nezt_link;
if nezt_link is not in the temp_list
add nezt_link to the temp_list
}

Phase 2: Requested links allocate free lanes to requesting messages
for each link in the temp_list
allocate free lanes to requesting messages queued at the link;
/*If some message is not given a free lane, its request is discarded*/

/* The message will queue a new request in the next communication step*/
free the temp_list;

/* Post-condition: the temp_list is empty*/
Phase 3: Flits of messages request link bandwidth to move forward
/* Pre-condition: the temp_list is empty*/
for each message in the message_list
for each link occ_link occupied by the message
{ append a request for link bandwidth to the queue at occ_link;
if occ_link is not in the temp_list
add occ_link to the temp_list,
}

Phase 4: Links are scheduled to advance flits
for each link on the temp_list
{ schedule the link; the bandwidth is then given to lane sched_lane;
move the flit in the previous lane into lane sched_lane;

}

free the temp_list,
[* Post-condition: the temp_list is empty*/

Figure 48: Dally’s algorithm for one communication step

162

if the lane scheduled to use the link is lane L
/* check field scheduledLane */

advance the flit in lane L;

Using this algorithm, not all links need to be scheduled during a communication
step. In fact, only occupied links are required to be scheduled.

The issue now is how a packet can know whether a link has already been scheduled
by another packet in the same communication step to avoid a second scheduling on
that link. A link is said to be successfully scheduled in a communication step if there
exists at least one lane which is able to use the link in this step (i.e. the lane has a
non-empty buffer in the source node and a non-full buffer in the receiver node).

When a link is successfully scheduled, its schedTime field is updated with the
current value of the timestamp generator to indicate that the link has been scheduled
in this communication step. At the same time, field scheduledLane is recorded with
the ID of the lane that is allocated the link bandwidth in this communication step.
When the network manager tries to advance another packet ¢ using the same link,
it examines field schedTime for the scheduling timestamp and sees that it does not
have to schedule the link a second time in this communication step. The timestamp
generator is incremented after every communication step for this purpose. Packet ¢
will look up field scheduledLane to decide whether its flit is allowed to use the link in
this step.

If the scheduling fails (i.e. no lane can be found at this moment for using the link
bandwidth), field schedTime is not updated. Some lane which cannot be scheduled
now may be able to use the link later (within the same communication step) after

the flits in front of this lane have moved forward.

5.3.3 Link Bandwidth Allocation

A physical link is time-shared by several lanes (virtual channels) to maximize link

utilization. The scheduling is done in a round-robin fashion.

163

Definitions

A lane is not full if the number of flits currently stored in this lane is less than the
buffer size.

A lane is not empty if there is at least one flit buffered in this lane.

The first lane of a packet is the lane on the path of the packet connected to the
source node.

The destination lane of a packet is the lane on the path of the packet connected
to the destination node.

A flit is considered to arrive at the destination node if it has arrived at the desti-
nation lane.

To measure whether a lane is not full or not empty, a counter is used, which is
field num_flits of the lane structure. Field num_flits associated with every lane records
the number of flits currently stored in the lane. Let buffer_size be the size of the flit
buffer at each lane. In general, it should be that 0 < num_flits < buf fer_size.

To save space, field num._flits of a destination lane is also used to count the number
of flits of a packet which have arrived at a destination lane (and thus at the destination
node). Consequently, for destination lanes, the value of num_flits can reach the packet
size which is usually larger than the buffer size. For this reason, we do not perform
the checking lane not full on destination lanes.

Let packet_size be the packet size. A packet is considered to be received completely
by the destination node if its destination lane has num_flits > packet_size. In

summary,
e 0 < num_flits < buf fer_size for non-destination lanes

o 0 < num_flits < packet_size for destination lanes

Schedulability

A lane is schedulable if the flit (or one of the flits) in the previous lane can be advanced
to this lane. So the conditions should be: the current lane is not full and the previous
lane is not empty.

The above conditions cannot always be tested since there are special cases:

e The lane not full checking cannot be done on destination lanes due to the dual

purposes of field num_flits as just mentioned above.

164

e First lanes do not have a previous lane because unsent flits are buffered at the

source node.
If a lane satisfies one of the following cases, it is schedulable.

1. e The current lane is not a destination lane and not full.
e The previous lane is not nil and not empty.

This is the general case described above in the definition of a schedulable lane.

2. e The current lane is not a destination lane, not full and is a first lane.
e The previous lane is nil.
An example of this case is when the current lane is adjacent to the source node.
The lane is scheduled to transfer the flits buffered at the source to this lane.
3. e The current lane is a destination lane.
e The previous lane is not nil and not empty.

Since the current lane is a destination lane, we do not check for lane not full.

4. e The lane is a destination lane.
e The previous lane is nil.

An example of this case is when the source and the destination are adjacent
nodes. The lane is scheduled to transfer a flit buffered at the source to the

destination node.

A free lane is of course not schedulable. Only schedulable lanes of a link may

participate in the scheduling in order to obtain the link bandwidth to advance one

flit. The purpose of this implementation is to maximize link utilization.

5.3.4 Approximate Round-Robin Scheduling for Link Band-
width Allocation

The CPSS employs round-robin scheduling with some approzimation for link band-

width allocation. In this sub-section, we explain why such approximation is needed

in our network simulation.

165

] t=0
]] te]
| [}) t=2
u n u u t=3

Figure 49: Chittor’s implementation of flit movement

Motivation: To Speed Up Simulation Time

Chittor’s simulator and Dally’s simulator both support round-robin scheduling for
link bandwidth allocation. Chittor’s simulator does not implement virtual channels.
Message routing simulation is thus straightforward: only the header flit and the tail
flit need to be kept track of. When the header flit moves forward by one link, the
following flits advance accordingly. As a flit moves forward, it leaves behind an empty
buffer so that the following flit can move into this buffer. Flits of a packet are always
buffered in consecutive lanes; there are no empty holes between flits of a packet
(Figure 49). In this simulator, a source node injects the flits of a packet at the rate
of one flit per time unit (flit latency unit). Similarly, a destination node accepts flits
at the rate of one flit per time unit as well.

When virtual channels are implemented, link scheduling is required to allow virtual
channels to time-share physical links. In this case, scheduling one link may depend
on the scheduling result of another link. An example is shown in Figure 50a. We
assume that each physical link is shared by four lanes, and the lane buffer size is
one flit. In the figure, three packets 1, 2 and 3 are being routed on three paths
whose header lanes are la, 2a and 3a respectively. We want to schedule link z that
is shared by lanes la, 26 and 3¢. To maximize link utilization, only schedulable lanes
are allowed to participate in the scheduling. However, we do not know whether lane
2b is schedulable or not until lane 2a is scheduled, at which time we know if the flit
in lane 2a can move forward in this communication step. Thus we need to schedule

link y before link z. Similarly, to know if lane 35 of link y is schedulable or not, we

166

link x link y link z

la 1b
2a 2b 2c
3a 3b 3c

la, 2a, 3a: header lanes of packets 1, 2, and 3, respectively
a) Noncyclic link scheduling dependency

link v link w
4¢c 4b 4a
Sa 5b Sc

4a, 5a: header lanes of packets 4 and 5, respectively
b) Cyclic link scheduling dependency

Figure 50: Link scheduling dependency

have to examine lane 3a first. This requires to schedule link z before link y. The
dependency chain stops here because lane 3a exclusively occupies link z. Therefore
the link scheduling order is z, y, z.

Establishing link scheduling order would require

e searching for packets with lanes which are schedulable and exclusively occupy

corresponding links, and

e ordering the packets to form a dependency chain.

This implementation would slow down the simulation seriously.

Dally’s simulator overcomes this problem by allowing holes in between the flit
train of a packet even if there is only one packet to be routed in the network. That is,
the flits of a packet are not occupying consecutive lanes on the path even if there is no
link bandwidth contention. Figure 51 illustrates the scenario. In this implementation,
the flits of a packet are injected by the source node at the rate of one flit every two
time units. A destination node also receives flits at the rate of one flit every two
time units. In order for a packet to reach the destination, Dally’s simulator must run

approximately twice as many communication steps as Chittor’s simulator. This would

167

= t=0
a t=1
B [] t=2
)] t=3
L] (] (] t=4

Figure 51: Dally’s implementation of flit movement

increase simulation time considerably. Therefore we adopt Chittor’s implementation
of flit movement and add support for virtual channels. Note that holes may exist in
between the flit train of a packet p if some links on p’s path are time-shared by virtual
channels. This scenario is inevitable in the presence of virtual channels. In Chittor’s
simulator, the flits of a packet are always consecutive because this simulator does not
support virtual channels.

To solve the issue of link scheduling dependency and to minimize simulation time,

we employ round-robin scheduling with some approximation.

Link Scheduling Dependency

Scheduling one link may depend on the scheduling result of another link. One of the

following two cases may happen:

1. The dependency chain ends when there is a packet with one lane which is
schedulable and exclusively occupies the corresponding link. The flit in this
lane should be advanced first to allow other links to be scheduled. Scheduling
of other links should then be done following the dependency chain (in the reverse

order).

This case is illustrated in Figure 50a, and has been discussed above. Establishing

link scheduling order would slow down the simulation time significantly.

168

2. We may not be able to find a packet with a lane which is schedulable and
exclusively occupies the corresponding link. In this case we encounter a cyclic
dependency. In order to break the cycle, we should give any schedulable lane
its corresponding link bandwidth to advance the flit stored in this lane, hoping
to break the cycle. In this case, the chosen lane may not have been selected by

the strict round-robin rule.

An example of this case is shown in Figure 50b. In this figure, two packets 4 and
5 are being routed. Their header lanes are 4a and 5a respectively. In order to
schedule link w shared by lanes 4a and 5b, we must determine the schedulability
of lane 5b, which depends on whether lane 5a will be allocated link v. Thus we
must schedule link v before link w. To schedule link v, we must know if lane
4b is schedulable. This knowledge then depends on the scheduling of link w to
determine if lane 4a will be allowed to use link w in this communication step.

Thus link w must be scheduled before link v. This is a cyclic dependency.

In both cases, round-robin scheduling with some approximation is necessary to

either minimize the simulation time (case 1) or to break the dependency cycle (case
2).

Definition of Approximate Round-Robin Scheduling
If

o a lane a is selected by the strict round-robin rule and is not schedulable at this

point in time, and

e there exists a lane b down the round-robin circle which shares the same link and

is schedulable at this point in time

then the link is given to b in this communication step (although a was selected by the
strict round-robin rule).

If we used the strict round-robin rule, it may happen that lane a is eventually
not schedulable when the packet occupying a is moving. In this case, the link would
waste one network clock cycle. We should give the link to a schedulable lane (e.g.
lane b) to maximize link utilization. Approximate round-robin scheduling thus helps

to improve link utilization as well.

169

In summary, the advantages of approximate round-robin scheduling for link band-
width allocation are: to speed up the simulation time, to break the scheduling de-

pendency cycle (if any), and to enhance link utilization.

5.3.5 Header Flit Overheads

We have so far considered only the movement of non-header flits. For header flits, we
must take into account the header overhead that is the sum of router decision time and
lane allocation time (section 5.1.9). In the network simulator, the header overhead is
a definable parameter (headerOverhead) and a multiple of flit latency unit. Thus the
header overhead takes integer values greater than 0.

Field headerOverheadAcc of the packet structure is used to simulate the overheads
incurred by header flits. When a header flit is allocated the next free lane, field
headerOverheadAcc of the corresponding packet is initialized to 0. In each communi-
cation step, the network manager schedules links for moving unblocked flits by one
hop as mentioned earlier. If the network manager sees an empty header lane (field
nbrF'lits = 0), this means that the lane has been reserved for a packet but its header
flit has not been moved into the lane yet. In this case, the network manager compares
field headerQOverheadAcc of the corresponding packet against the value of parameter
headerQOverhead: if headerOverheadAcc < headerQOuerhead, then this header lane is
not allowed to participate in the scheduling (i.e. the lane is not schedulable). At the
same time, field headerOverheadAcc of the packet is incremented to count one more
flit latency unit. After a number of increments, field headerOverheadAcc equals the
value of parameter headerOverhead. Only then does this header lane become schedu-
lable. The header flit is then treated as other non-header flits for advancing to the

reserved lane.

5.4 Performance Comparison with Dally’s Simu-

lator

This section shows the performance comparison between our network simulator and
Dally’s simulator. We did not consider Chittor’s simulator because it does not support

virtual channels. Also, when the number of virtual channels per link is one, our

170

simulator behaves as Chittor’s.

Our goal is to compare the performance of the network portion of the CPSS with
Dally’s simulator. We carried out the experiments using the stand-alone wormhole-
routed network simulator since otherwise run-time overheads of the code execution
module and of vCode interpretation could affect the pure simulation time of the
network.

The comparison results are shown in Table 1. In the table, the first, second and
third columns indicate the topology, network size (number of nodes) and number of
messages involved in each experiment respectively. The fourth and fifth columns show
the simulation times (in seconds) obtained from our network simulator and Dally’s
respectively.

In the experiments, Dally’s simulator uses strict round-robin scheduling while
ours employs approximate round-robin scheduling. In each experiment, I/O time is
excluded to obtain accurate simulation time. Messages are randomly generated. Each
experiment (i.e. each line in Table 1) was run ten times and the resulting simulation
time is the average of the ten runs. The results show that our simulator outperforms
Dally’s in all the experiments. This is due to the use of approximate round-robin
scheduling for virtual channels (section 5.3.3), and the reduction in the number of
phases involved in a communication step (section 5.3.2).

To obtain the results shown in Table 1, the parameters of the simulated wormhole-

routed network were given the following typical values:
e network topology and size: as shown in Table 1
e number of lanes per link = 4
e bidirectional links and bidirectional lanes

e buffer size = 1 flit for networks of 256 nodes or less, and 2 flits for networks of

more than 256 nodes
e packet size = 8 bytes
e flit size = 8 bits
e flit latency = 1 time unit

e message startup overhead = 10 time units

171

e packet startup overhead = 10 time units

e header overhead = 5 time units

We repeated the experiments using different sets of parameters. All the outcomes

are consistent with the results given in Table 1.

172

Topology | Network Size | Number of Running Time (in seconds)
Messages | CPSS Network | Dally’s Simulator
Line 50 100 1.20 1.75
300 4.12 5.95
100 200 5.30 6.67
500 14.48 20.68
300 500 104.60 135.15
800 262.06 369.93
2D Mesh 64 (8x8) 100 0.22 0.45
300 0.70 1.32
100 (10x10) 200 0.60 1.23
500 1.46 3.08
225 (15x15) 300 1.35 3.50
600 2.40 6.82
400 (20x20) 500 5.85 14.03
1,000 11.93 27.90
3D Mesh 64 (4x4x4) 100 0.18 0.53
300 0.57 1.56
125 (5x5x5) 300 0.65 2.51
600 1.38 4.86
343 (7xTx7) 500 3.37 13.08
1,000 7.47 27.95
512 (8x8x8) 600 4.22 18.58
1,000 8.01 34.25
Hypercube 32 100 0.17 0.50
300 0.55 1.43
128 200 0.62 2.15
500 145 5.05
512 500 4.86 17.28
1,000 8.75 36.49

Table 1: Performance comparison with Dally’s simulator

173

Chapter 6

Optimal Program Mappings for
Wormbhole-Routed Networks

In this chapter, we present the one-to-one mappings among the most important
topologies: lines, rings, hypercubes, square meshes and square tori. These topologies
represent the communication structures of many applications in scientific computa-
tions as well as the topologies of many large-scale wormhole-routed networks [5].

Our mapping objective is to minimize the maximum path contention level (PCL)
of a task graph. Path contention level of a path p connecting two communicating
processes can be roughly defined as the number of other paths which share at least
one link with path p. Path contention level represents the worst-case contention of
a path. That is, it assumes that all competing paths are working at the same time.
In reality, some of the competing paths may not route any messages at some time,
depending on the application communication pattern. In any case, if we can minimize
the path contention level of a path, the path will collide with other paths as less as
possible. This effectively reduces blocking time of messages.

We first define the terminology and notations used in this chapter. The mapping
functions are then presented and their optimality is proved. Finally, we provide ex-
perimental results which show that our mapping functions significantly outperform
random mappings in terms of communication performance, especially on large net-

works.

174

6.1 Definitions and Notations

A task graph (G,) is a directed graph that consists of a set of processes (V;) and a
set of communication channels (E;). A communication channel represents message
sends/receives between two communicating processes.

A system graph (G,) is an undirected graph that consists of a set of processors
(V:) and a set of physical links (E,).

A mapping function f maps the processes of G; onto the processors of G,, i.e.,
f : Vi = V.. A mapping is defined by a mapping function f and a deterministic
routing algorithm R. Under a mapping, every communication channel e € G, is
mapped onto a unique path of the system graph.

The dilation cost of a mapping is the length of the longest path connecting any
two communicating processes.

The path contention level (PCL) of a path p corresponding to a communication
channel e € G, is the number of paths that share at least one link with p. The
PCL of the path p or the communication channel e is denoted by PC L(p) or PC L(e)
respectively.

The contention ¢ of a mapping is defined to be the maximum PCL of that mapping.
C = ?'éaé)‘{{PCL(e)}

The link load of a physical link i € E, is the number of paths which traverse link
¢ and denoted by LL(7).
The congestion [of a mapping is defined to be the maximum link load of that
mapping.
l= i%%),{{LL(e)}

In the following sections, all variables assume non-negative integers unless other-
wise stated. Given an integer k£ > 1, we use [k] to denote the set {0, 1, ..., & — 1}.
Given two integers a and b, the notation a <+ b is equivalent to |a/b|. For both the

task graph and the system graph, we use
e 1 to denote the total number of nodes the graph has;

e m to denote the number of nodes along each dimension of a square mesh or

torus; so n = m? for a 2-D mesh or torus and n = m? for a 3-D mesh or torus;

175

o d to denote the dimension of a hypercube. So n = 2¢.

In a line or a ring, the nodes are numbered from 0 to n — 1. In a 2-D mesh (or
torus), each node is identified by a tuple (z,y) where z and y indicate the row and
the column of the node in the mesh (or torus) respectively. Similarly, each node of
a 3-D mesh (or torus) is denoted by the tuple (z,y, z) where z, y and z are the row
number, the column number and the plane number of the node in the mesh (or torus)
respectively. Note that z, y and z belong to [m].

The mappings are one-to-one and every process communicates with all of its neigh-
boring processes in the task graph. We also assume that all physical links of the
system graph are bidirectional.

6.2 Mapping Functions

6.2.1 Review of Existing Mappings

Proposition 1 Any one-to-one mapping function with unit dilation cost has con-

tention 0.

A mapping function with unit dilation cost implies that any pair of neighboring
processes is mapped onto a distinct pair of adjacent processors. So there will be no
physical link conflicts in the wormhole-routed network. [6] and [7] presented several
mappings with unit dilation cost. By proposition 1, these mappings have contention
0.

In the following sub-sections, we propose new mapping functions which minimize

the contentions of task graphs.

6.2.2 Mapping of a Ring onto a Line

Proposition 2 The contention C of a mapping with dilation cost d and congestion
lisbound byl -1 < C < d(l -1).
Proof:
Lower Bound: Since the congestion is I, the contention cannot be less than [—1.
Upper Bound: The longest path p (corresponding to a communication channel
of the task graph) traverses d links, each having load [in the worst case. On each
link, the given path may compete with ! — 1 other paths. Thus, PCL(p) < d(l - 1).

176

path (a,b)

path (a,c))

€9 3

Figure 52: Illustration for the proof of Proposition 3

Proposition 3 The contention of any mapping of a ring onto a line is at least 2.

Proof: Given any mapping 7 from the ring to the line, let a be the process of the
ring mapped onto the first processor of the line, i.e., 7(a) = 0. Let the two neighbors
of a in the ring be b and ¢ respectively. Without loss of generality, assume that
7(b) < m(c). Let d be the another neighbor of b. 7(d) can be either between m(a)
and 7(b), or between () and = (c), or m(c) < m(d). In either case the three paths
corresponding to the communication channels (a,b), (a,c), and (b,d) overlap on at
least one link, as illustrated in Figure 52. Therefore the proposition is true.

The following function z : [n] — [n] maps a ring onto a line:

2u fu<(n+1)+2
z(u) = .
2(n —u) —1 otherwise
It is easy to verify that this mapping has dilation cost 2 and congestion 2. By Propo-
sition 2, the contention C of the mapping is bound by 1 < C < 2. By Proposition
3, we have C = 2, which is also the least contention we can obtain when mapping a

ring onto a line. This mapping is thus optimal in terms of contention.

6.2.3 Mapping of a Ring onto a 2-D Mesh

Given a process u € [n], we define the tuple (z(u),y(u)) denoting the processor to
which process u will be assigned, where z(u) € [m] and y(u) € [m]. When m is even,
the mapping is defined in [6] and has unit dilation cost. Its contention is thus 0 by

Proposition 1. When m is odd and m > 3, the mapping is defined as follows.

177

Let a =(m —4)(m —1)+2m
Case : 0Su<m: z(u)=u,y(u)=0
Case22 m<u<2m—l:z(u)=m-1,yu)=u—(m—1)
Case 3: 2m —~1 <u < a: Definev=u—(2m —1)

y(w)=(m—-1)—(v+(m 1))

_) vmod (m —1) if y odd
x(u)—{ (m —2) —(vmod (m—1)) ify even
Case 4: z(a) =0, y(a) =2
Case 5: z(a+1)=1,y(a+1)=2
Case 6: a+2<u<a+m: z(u)=u—(a+1),y=3
Case T: a+m < u < m? — 3: Define k = u — (a + m)

r(u)=(m—-2)-(k+2)

{ 2 if kmod4=0or(k+1)mod4=0
y(u) = :
1 otherwise
Case 8: z(m?—-2) =1, y(m?-2) =1
Case 9: z(m?—1)=0,y(m?2—-1) =1

The contention of this mapping is 0. It is easy to verify from the mapping function
that each pair of neighboring processes, except the pair (m? — 3, m? — 2), is mapped
onto a distinct pair of adjacent processors (Figure 53). On the other hand, since the
physical links are bidirectional, communications between processes m? —3 and m2 —2
take the path ((2,2)-(1,2)-(1,1)) which does not compete with any of the other paths.
The contention of the mapping is thus 0.

6.2.4 Mapping of a Ring onto a 3-D Mesh

A process u € [n] is mapped to processor (z(u),y(u), z2(u)), where z(u),y(u) and z(u)
are in [m]. When m is even, the mapping is defined in [6] and has unit dilation cost.
Its contention is thus 0 by Proposition 1. When m is odd, the mapping is defined as
follows.

Case 1: 0 S u < m(m?—1):

z=u+(m?-1)

178

task (m - 3)

Figure 53: Mapping of a ring onto a 2-D mesh (m=7)
Let
_J u—z(m?-1) if z even
- { (m? —2) — (u—2z2(m?—1)) if z odd
Casela: 0<t<m: z(u)=t,y(u)=0
Case 1b: m <t < (m —1)% Defineg = (t — 1)+ (m — 1)

z(uy)=m—g
t—g(m-1) if g odd
y(u) = .
(g+1)(m—-1)—(t—1) ifgeven
Case lc: (m—1)2<t<m?—1: Define k=t —(m—1)2—1

{ 1 fkmod4=0o0r(k+1)mod4=0
z(u) =

0 otherwise
y(u) =(m—1) — (k+2)

Case 2: m(m?*—1) <u<m? z(u)=1Ly(u)=1,z(u) = (M- 1) —u
The contention of this mapping is 0. It is easy to verify from the mapping function

that each pair of neighboring processes, except the pair (m3 —1,0), is mapped onto a

179

Figure 54: Mapping of a ring onto a 3-D mesh (m=5)

distinct pair of adjacent processors (Figure 54). On the other hand, since the physical
links are bidirectional, communications between processes m®—1 and 0 take the path
((1,1,0)-(0,1,0)-(0,0,0)) which does not compete with any of the other paths. The

contention of the mapping is thus 0.

6.2.5 Mapping of a 2-D Torus onto a 2-D Mesh

Proposition 4 The contention of any mapping of a 2-D torus onto a 2-D mesh is

at least 2, assuming that XY routing is used.

Proof: Let X and Y be the first and second dimensions, and (X(e),Y (e)) be the
processor onto which a process e is mapped. Assume that every message goes first
along X and then along Y. Let a be the process assigned to the upper left processor,
i.e., X(a) = 0 and Y(a) = 0. Since every process communicates with alll of its
neighbors in the task graph, assume that a broadcasts some messages to its four

neighbors. The four neighbors of a can be mapped as one of the following cases.

¢ More than two neighbors of a are on column 0 (Figure 55(a) and (b)). In this
case, the link load of link {2 is LL(l;) > 3. So contention C > 2 by Proposition
2.

e More than two neighbors of a are not on column 0 (Figure 55(c) and (d)).
Similarly, LL(l;) > 3. So C > 2.

e a has exactly two neighbors on column 0. Let them be b and e (Figure 55(e)).

180

Without loss of generality, assume that Y(a) < Y(b) < Y(e), and that b broad-
casts some messages to its neighbors. b has three other neighbors besides a, and

they are mapped as one of the following two cases.

— These three neighbors of b are not on column 0. In this case, LL(I3) > 3
(Figure 55(f)). So C > 2 by Proposition 2.

— At least one of these three neighbors of b is on column 0. Let d be one such
neighbor. Y(d) can be either between Y (a) and Y (b), or between Y (b) and
Y(e), or Y(e) < Y(d). In either case, the three paths corresponding to
the communication channels (a, b), (a, €}, and (b, d) overlap on at least one
link, as illustrated in Figure 55(f)(see also the proof of Proposition 3). So
PCL(a,e) > 2.

Therefore in all cases, C > 2. We would obtain the same result by a similar proof
if messages go first along Y and then along X.

Given a process (z,y), the processor (fz(z,¥), fy(z,y)) on which process (z,y) is
mapped is defined by

2z fz<(m+4+1)=2
fz(z,y) = .

2(m —z) —1 otherwise

2 fy<(m+1)+2
fy(x’ y) = Y Y ()

2(m —y) —1 otherwise

where z,y, fz(z,y) and f,(z,y) are in [m].

It is easy to verify that this mapping has dilation cost 2 and congestion 2. By
Proposition 2, the contention C of the mapping is bound by 1 < C < 2. By Proposi-
tion 4, C is 2, which is also the least contention we can obtain when mapping a ring

onto a line. This mapping is thus optimal in terms of contention.

6.2.6 Mapping of a 3-D Torus onto a 3-D Mesh

Proposition 5 The contention of any mapping of a 3-D torus onto a 3-D mesh is

at least 2, assuming that XY Z routing is used.

181

11

+ o—t @ t <
0,0
X el el
(e}
0] o
(o]
(o)
(0]
Y
(a) ®) (©)
[l it N
@ aG ll{ & + Fo)
R’
1 ° 4 o o}
Db t
o
0]
o Qe
(d) (e) (43]

Figure 55: Ilustration for the proof of Proposition 4

182

The proof of this proposition is similar to that of Proposition 4
A task graph represented by tuple (z,y, z) is assigned to processor (f-(z,y, 2),
£,(2,9, 2), f(z,y,2)) by the following mapping:
2z ifr<(m+1)+2
fz(z, y? Z) = { ()

2(m —z) — 1 otherwise

2y fy<(m+1)+2
2(m —y) — 1 otherwise

fo(z,y,2) = {

2z fz<(m+1)=2

2(mm — z) — 1 otherwise

fe(z,y,2) = {

where z,y, z, fz(z,y, 2), fy(z,y, z) and f.(z,y, z) are in [m)].

It is easy to verify that this mapping has dilation cost 2 and congestion 2. By
Proposition 2, the contention C of the mapping is bound by 1 < C < 2. By Proposi-
tion 5, C is 2, which is also the least contention we can obtain when mapping a ring

onto a line. This mapping is thus optimal in terms of contention.

6.3 Experimental Results

We selected three parallel programs: Exchange Sort, N-Body and Matrix Multiplica-
tion [25]. Their task graph topologies are line, ring and 2-D torus respectively. Each
program is mapped onto different topologies of various sizes under corresponding op-
timal mappings and random mappings, and executed. Communication time of each
run was recorded.

For a parallel program and for a specific topology of the system graph, let

Total communication_time_under_a_random._mapping

P(s) =

Total_communication time_under_the_optimal_mapping

be a function of s where s is the size of the task graph (or the system graph). P(s)
denotes the increase in communication time due to link contention caused by random
mappings.

The results are shown in Figure 56. We observe that as the size of the task graph
increases, the ratio P(s) goes up accordingly as we would expect. We also see that,

with the same system size s, P(s) decreases as the system graph changes the topology

183

in the order from line, 2-D mesh, 3-D mesh to hypercube. The reason is that the
above order is the increasing order of network connectivity. As the degree of network
connectivity is augmented, the degree of contention incurred by random mappings

tends to be reduced.
To obtain the results shown in Figure 56, the parameters of the simulated wormhole-

routed network were given the following values:

e network topology and size: as shown in Figure 56
e number of lanes per link = 4
e bidirectional links and bidirectional lanes

e buffer size = 1 flit for networks of 256 nodes or less, and 2 flits for networks of

more than 256 nodes
e packet size = 8 bytes
o flit size = 8 bits
o flit latency = 1 time unit
e message startup overhead = 10 time units
e packet startup overhead = 10 time units

o header overhead = 5 time units

We carried out the same experiment using different sets of parameters. All the

outcomes are consistent with the above observations.

184

P(S)., i
61 O 2DMesh
St
ry O 3-DMesh
3L
21 x Hypercube
11
0 + ~ -—r —
64 128 216 256 484 S12 s
Exchange Sort - The task graph is alinc of size s
*
* Line
P
(S)7
6| . O 2DMesh
4t v 0O 3.DMesh
3L
2] e * x Hypercube
L x/x
0 + - —— —
64 128 216 256 484 512 s
N-Body Program - The task graph is a ring of size s
P(s)
5 1
4 + o 2-DMesh
3 + x Hypercube

21/ -
x/x

" + +
t T Y T

16 36 64 121 256

Matrix Multiplication - The task graph is a 2-D torus of size s

Figure 56: Experimental Results

185

Chapter 7

Conclusion and Future Work

As part of the CPPE, the CPSS aims at providing flexible and efficient software
tools for developing parallel applications and optimizing their performance. It allows
users to evaluate impacts of system and software factors on performance of parallel
applications. The main objective is to produce efficient parallel programs by locating
and eliminating performance bottlenecks in the programs.

The CPSS provides accurate information about the timing and behavior of paral-
lel applications and the underlying simulated architecture. Users are given unprece-
dented flexibility to adjust physical architectures and system parameters at run time.
As a result, the CPSS offers programmers a development environment superior to
those available on real multiprocessors. It also outperforms existing simulators in
terms of accuracy and flexibility. '

The CPSS makes the CPPE an excellent environment for developing and fine-

tuning parallel programs. This is due to several advantageous features of the CPSS:

e Accuracy: The CPSS employs the functional simulation technique which offers
the most accurate results among the existing simulation techniques. In addition,
configurable parameters enables the user to accurately simulate a particular
multicomputer system by simply setting the values of system parameters to

those belonging to the architecture to be simulated.

o Flexibility: The CPSS can simulate a wide range of multicomputer topologies
and sizes. It also supports a large set of configurable parameters which per-
mit users to fine-tune their applications and simulate various multicomputer

systems. Moreover, the same virtual-architecture program can be mapped to

186

different physical architectures at run time. The flexibility offered by the CPSS

is unique among existing simulators.

Performance: The simulation is fast because low levels of details are selectively
left out to retain essential characteristics of the target processors and network.
The entire simulation system, including the application program, is run by a

single process, resulting in no host context switching at all.

Repeatability: The CPSS provides repeatability which is essential for imple-
menting a stable and reliable debugging environment. The CPSS also supports
multiple executions of a non-deterministic application. Multiple executions are

equally useful for testing the robustness of a deterministic application.

Correctness and performance debugging tools: The CPSS provides a rich set
of correctness and performance debugging tools to facilitate users’ code devel-
opment. Performance statistics at various levels of details are also available to

support algorithmic and architectural performance evaluation and tuning.

User-friendliness and portability: The parallel programming language used in
the CPPE is based on the popular language C. Design concepts of the CPSS
user interface and debugging tools are borrowed from sequential programming

environments. Currently, the simulator can work on UNIX workstations and

PCs.

Expandability: The design and implementation of the simulator are modular
and decoupled. Future changes and enhancements to the simulator would be

quick and easy.

The CPSS plays a valuable role at all levels of the development of parallel algo-

rithms and applications. It supports testing and debugging, as well as algorithmic

and architectural performance evaluation and tuning. It plays an equally vital role

in the design and analysis of multicomputer systems, from architectures to network

operations.

The simulator is also a powerful tool for parallel research in general. In fact,

the performance of the optimal mapping functions for wormbhole-routed networks

presented in Chapter 6 were validated using the CPSS. Furthermore, the CPSS can

be used as a teaching tool for users who wish to learn parallel programming.

187

The possibilities of expanding the CPSS are numerous. Other routing techniques
besides wormhole routing (e.g packet switching, circuit switching) could be supported
in the CPSS. This could be done easily due to the modular and decoupled design and
implementation of the CPSS. Optimal program mappings could be developed and
added to the CPSS mapping library to support efficient communication. The built-in
functions library could be extended with more services (e.g. barriers, semaphores) to
facilitate users’ programming. Currently, a graphical user interface is being developed

for the CPSS to enhance user-friendliness.

188

Appendix A

Parallel Features of the CPC

Language

CPC (Concordia Parallel C) language is based on the popular programming language
C and enhanced with new features to support parallel programming. The CPC lan-
guage supports both shared-memory and message-passing programming paradigms.
However the scope of this thesis does not cover shared-memory programming paradigm.
This appendix will describe only the parallel features supported for message-passing
programming style. Parallel features of CPC support the creation of parallel pro-
cesses, the definition of parallel architectures, process communications through chan-
nel variables and mapping of parallel processes to virtual processors. CPC preserves

existing sequential features of the C language.

A.1 Creation of Parallel Processes

When a CPC program begins its execution, the simulator creates the very first pro-
cess, process 0, and assigns it to virtual processor 0 (virtual processor ID = 0) for
running. Process 0 will call function main(), if any, to start the execution of the
parallel program. Note that global variables are considered to belong to process 0
and thus reside on processor 0. Process 0 can then spawn other processes which may
then create child processes of their own. This is how parallel activity is initiated
in a program: an existing process that is already running on a processor executes a

“process creation” statement. A process can create child processes using either fork

189

statement or forall statement.

A.1.1 fork Statement
Process Creation

A fork statement followed by any expression will create a new process which will
evaluate the expression and run in parallel with the parent. The parent will continue
execution right after the creation of the child without waiting for the child to termi-
nate. The child and the parent will then be running in parallel. A simple example is

given below.

n++;

fork printf("Hello world!");

m=n;

In the above example, after incrementing n, the parent process will spawn a child
process which will execute the print f statement. While the child is still running, the

parent executes the assignment to variable m and runs in parallel with the child.

Syntax

The general syntax of fork is as follows:
fork <expression>;

where <expression> can be any CPC valid expression. A new child is spawned,
which will evaluate the <expression> on a different virtual processor or on the same
virtual processor (section A.3 will discuss the mapping of new processes to virtual
processors). The parent will continue execution immediately without waiting for the
child in any way. i

The fork statement may precede any CPC expression, causing that whole expres-
sion to be executed as a parallel process. Specifically, fork may be used in front of a
single statement, a block statement, a function call or another fork statement as in

the following examples.

190

/* The expression is a single statement */
fork printf("Hello world!");
fork while(1)

{

int x, y, Zz;

exit;
/* The expression is a block statement */
fork {

int i, j, k, max;

max = FindMax(i, j, k);

/* The expression is a function call =*/
fork QuickSort(A);

/* The expression is another fork statement */

fork fork InsertionSort(A);

Process Termination

After creating a child using fork statement, the parent continues execution immedi-

ately without waiting for the child to terminate. Consider the following example:

for (i = 0, 1 < n; i++)

fork Square(i);

Each iteration of the above for loop creates a new process whose code is function

Square(). As soon as each new child is created, the next loop iteration will proceed

191

immediately. After all n children are created, the for loop will end, and execution
of the parent process will continue immediately at the statement following the for
loop. So the parent will be running in parallel with all of its n children.

Although the parent process does continue with its execution while its fork chil-
dren are still running, the parent is not permitted to terminate until all its children
have finished. If the parent reaches the end of its code while one or more of its children
are still running, the parent will be suspended until all the children terminate. Only
then will the parent be allowed to finish. This implementation prevents a premature

termination by process 0 while some of its children are still running.

join Statement

There are cases where it is desirable for a parent process to wait at some point for
the termination of one or some or all of its children.

Jjoin statement is introduced to be used with fork in order to delay a parent
process until a desired number of its fork children have terminated. If the parent
has only one fork child which is running, the execution of a join by the parent will
force the parent to wait for the child to terminate. If the child terminated before
join is executed, the join will have no effect on the parent when being executed. An

example of the use of join is given below.

fork BubleSort(4); /* the child runs BubbleSort() */
QuickSort(B); /* the parent runs QuickSort() */
join; /* wait for the child to terminate */
for (i = 0; i < N; i++)

cli]l = a[i] + B[il;

In this example, the parent executes join to wait for the child to terminate. In
doing so, the parent ensures that array A is completely sorted before being added to
array B which is sorted in parallel with A by the parent.

If a parent has several fork children, any join in the parent can be matched with
any of these children. When executing a joir, the parent does not specify a particular

child; any child who happens to terminate at that time will satisfy the join. A join

192

is satisfied by one and only one fork child’s termination. Thus if the parent has
multiple fork children, it may execute multiple join statement to wait for some or

all children to finish. Following is an example.

for (i = 0; i < N; i++)
TakeAbs(&A[i]);
for (i = 0; i < N; i++)

join;

In the above example, the parent creates N processes and then waits for all of
them to finish before going further. Without the second for loop with join, the
parent would just proceed, executing in parallel with the children. However, once
the parent reaches the end of its code, it would not terminate until all children had
terminated.

Note that if the parent process mistakenly executes more join statements than it
has children, the parent will be blocked forever, resulting in a logic deadlock in the

program.

A.1.2 forall Statement
Process Creation

forall statement is a parallel form of a normal for loop. Each iteration of a forall
statement creates a child process which will run in parallel with other children created
by the same forall. In the following example, each process spawned by process 0

calculates the absolute value of the integer assigned to it.

main()
{
int i;
int a[MAXSIZE];

forall i (0; 9;) /* create 10 processes, for i from 0 to 9%/

TakeAbs(&(alil)); /* each process executes TakeAbs() once */

193

The above forall statement creates 10 copies of the enclosed assignment statement
and makes each one a separate parallel process with its own unique value of the
variable i. Each of these 10 child processes executes function TakeAbs() and may
be running on a different processor, all in parallel. Each child process has its own
memory space and does not have access to variables belonging to its parent or other
processes (except the forall index and channel variables that the parent gives up to
the new child, as will be described later). As each iteration of the forall loop begins,
the index ¢ is automatically incremented, just as with a normal for loop.

After finishing the creation of 10 processes, the parent process suspends its ex-
ecution, goes to sleep and waits until all of its children terminate. Only then will
the parent continue its execution with the statement following the forall statement.

This is one of the differences between forall statement and fork statement.

Process Grouping

Process creation incurs overheads (software overheads on the parent processor, birth
message send/receive, startup overheads for the new child). So does process termina-
tion (software overheads on the child processor, death message send/receive, software
overheads on the parent processor). If the process grain is too fine, the overheads may
outweigh the speedup gained by parallel processing. In the above example, the time
to create and terminate one process is much bigger than the time to execute function
TakeAbs which returns the absolute value of an integer. The process grain should be
reduced. This is accomplished using grouping option which groups together a certain
index values in each process. This is illustrated in the following modified version of

the above example.

main()

{
int i;

int a[MAXSIZE];

forall i (0; 9; 5) /* 2 processes are created */

194

TakeAbs(&(a[i])); /* each process executes TakeAbs() 5 times */

E Y

In this version, only 2 processes are created, each iterating through 5 indices.
Process 1 iterates through the indices 0 to 4; process 2 iterates through the indices 5
to 9. The forall loop of 10 indices are cut into two parallel normal for loops, each
iterating through 5 indices. Process creation/termination overheads are reduced from
10 to 2 processes. The grouping size should be chosen so as to balance the program

speedup and process creation/termination overheads.

Syntax

Following is the general syntax of the forall statement.

forall <index_variable>
(<from_bound>; <to_bound>; {<group_size>})

<expression>;

<from_bound>, <to_bound> and <group.size> can be any integer-valued expres-
sions. If (from_bound > to_bound) then no new child will be created. Expression
<group_size> is an optional entity. If <group_size> is omitted, the default group size
is 1. If <group_size> does not evenly divide the number of index values in the speci-
fied range, then the last child process will have less than <group_size> index values.
The code to be executed by the new forall children is denoted by <expression>,

which can be any valid CPC expression. Examples of <expression> are shown below.

/* The expression is a single statement */
forall i (101; 200; 10)
printf("Hello world!");

/* The expression is a block statement */
forall j (1; 10;)
{

char a, b, ¢, min;

195

min = FindMin(a, b, c);

/* The expression is a function call */
forall i (0; 9; 4)
TakeAbs(&(alil));

/* The expression is a fork or forall statement */
forall i (1; 10; 5)
fork PrintResults();

forall i (1; 10; 5) /* nested forall loops */
forall k (i; i+9;)
GetInputs();

Nested forall Loops

forall statements may be nested to offer greater parallelism. In the following example,

two two-dimensional arrays are added using nested forall statements.

typedef twoDarray float[10][5];

main()
{
int i, j;
twoDarray a, b, c;
forall i (1; 10;) /* 10 processes are created */
forall j (1; 5;) /* 50 more processes are created */
Sum(ali,j], bli,jl, &c[i,j1);

/* each process executes Sum() once */

196

In this example, the outer forall incurs the creation of 10 processes, one for each
value of i. Each of these child processes will consist of an instance of the inner forall
loop, with the appropriate value of i. When each member of this first generation is
executed, it will then spawn 5 more processes, one for each index j. Thus a total of 50
processes are created in the second generation. The parent process will then have 10
children and 50 grandchildren. So instead of only one physical processor creating all
60 processes, there will be 10 physical processors all creating new children in parallel.

Scope of forall Indices

Although children of a process do not have access to variables belonging to the the
parent process, the forall index is an exception. The child processes can reference

the forall index as if the loop were a normal for loop. Following is an example.

main()
{

int 1, k;

forall i (0; 9;)

{
printf ("Process %d\n", i) ; /% this access to i is allowed */
printf("Value of k = %d\n", k); /* access to k is not allowed */
/* will generate run-time error: reference to a non-local */
}
}

In this example, the forall index i is defined as a local to function main() which
creates 10 child processes. The body of the forall loop is the code of every child
process. The child processes are allowed to read variable ¢ in their code (the first
printf statement). However they are not permitted to access variable k, which is
also a local to main(). Any attempt from a child to run the second print f statement

will generate a run-time error: reference to a non-local.

197

Although the child processes are allowed to access the forall index, there is a
restriction: references to the forall index must be “read” only. In other words, each
child process can see only a unique value of the index. Once a process is created and
assigned its unique value of the forall index, this value cannot be changed within the
process. Any attempt to alter the value of this index in an assignment statement will
result in a compiler error. Similarly, inside the forall body, the forall index cannot
be passed by reference to a function, or used as the target of an I/O read operation
(e.g. scanf). The forall index may, however, be used in any context that does not
change its value. It can be used, for example, in a CPC expression, to index an array,

or be passed by value to a function.

Process Termination

A process terminates when it reaches the end of its code. Processes of the same parent
may not terminate at the same time. This is due to slight variations in processor
speeds, processor loads, or other environmental influences. In any case, the parent
process executing the forall will always wait for all the child processes to terminate
before executing the statement that follows the forall.

Counsider the general case of the following forall statement that creates n children.

forall i (0; n-1;)

<expression>
From the parent’s perspective, this forall results in the following actions:
e Create the n child processes from <expression>.
e Wait until all n children have terminated.
e Continue with the statement following the forall.

The whole forall construct itself is considered as a single statement in the parent
process. The execution of that forall statement begins by creating the child processes.
Then the execution of the parent is temporarily suspended while the children are
running on their respective processors. When all the children have terminated, the
parent’s execution is resumed at the statement that follows the forall. This situation
is in contrast to a fork statement, which allows the parent to proceed right after

creating a fork child, and run in parallel with the new child.

198

A.2 Parallel Architecture Definition

The CPC language allows users to specify the virtual architecture in the CPC pro-
gram. The virtual architecture will then be mapped to a physical architecture at
run-time. The physical architecture can be the same as or different from the virtual
architecture.

As the CPC language supports both shared-memory and message-passing pro-
gramming paradigms, an architecture declaration is needed to identify a message-
passing program. If the architecture declaration is absent in a program, the program
is treated as a shared-memory program. The virtual architecture is specified with the
keyword architecture at the beginning of the program as in the following example.
The architecture of a multicomputer system is defined by the topology and the size

of the system.

#include<stdio.h>
##define Dimi1Size 10
##define Dim2Size 20

architecture mesh my_2D_mesh[DimiSize] [Dim2Size];

main()

{

The syntax of architecture declaration is as follows:
architecture <topology> <name_and_size>

where <topology> is one of the following topologies: shared, line, ring, mesh, torus,
hypercube, and fullconnect. shared topology means that the program is intended
for execution on a shared-memory multiprocessor. In a fullconnect topology, each
processor is connected to every other processor. <name and _size> is the name and
the size of the architecture in the form of an array declaration, as illustrated in the

following examples.

architecture shared S[100]; /*shared-memory with 100 processors*/

199

architecture fullconnect F[25]; /*fullconnect with 25 processors*/

architecture line L[10]; /*line with 10 processors*/
architecture ring R[20]; /*ring with 20 processors#*/
architecture hypercube H[5]; /*hypercube with 2°5 = 32 processors*/

If the topology is shared, line, ring or fullconnect, the size of the architecture is
the total number of processors. If the topology is hypercube, the size of the architec-
ture is the number of dimensions of the hypercube.

For a mesh (or torus), the size of the architecture is defined by the size of each
dimension of the mesh (or torus). The minimum number of dimensions of a mesh or

torus is 2. Examples are given below.

architecture mesh twoDmesh[5][7]; /* 5x7 mesh */
architecture mesh mymesh[3][5][10][8][12]; /* 3x5x10x8x12 mesh */
architecture torus threeDtorus[10][10][10]; /* square 10x10x10 torus*/

The above syntax can be rewritten as:

architecture linelring|hypercubelfullconnect |shared <name>[<size>];

architecture mesh|torus <name>[dim1] [dim2]{[dim_n]};

{[dimn]} here indicates zero or more repetitions of the dimension size. The name of
the architecture is required to support multi-phase parallel programs in which different
phases of a program may be running on different architectures. The architecture name
specifies the architecture to be used for a particular phase. However it is not within
the scope of this thesis to describe characteristics and programming rules of multi-

phase parallel programs.

A.3 Mapping Processes to Virtual Processors

Users are allowed to map parallel processes to the processors of the virtual architecture
to optimize program performance by reducing communication latency. Communicat-
ing processes should be mapped to processors sitting close to each other.

Referring back to the syntax of forall and fork statements, we see that each
primitive is ended by an <expression> which will be compiled into the parallel code

to be executed by the new child. The newly created child can be mapped to a

200

particular virtual processor by preceding the <expression> with the absolute ID of
that processor. The processor ID can be specified using any valid CPC expression.
The value of the expression will be the absolute ID of the virtual processor on which
the new child will run. (Please refer to section 4.1 for the conventional conversion
between Cartesian IDs and absolute IDs of processors used by the CPC language
and CPSS simulator.) Following are two examples of process-to-virtual-processor

mapping used with fork and forall respectively.

for (1 = 0; 1 < n; i++)

fork (i;) Square(i);

forall k (i; 10;)
(k-1;) Cube(k);

Thus the syntax of forall and fork can now be extended as follows:

fork {(processor_ID;)} <expression>;

forall <index_variable>
(<from_bound>; <to_bound>; {<group_size>})

{(processor_ID;)} <expression>;

As indicated in the revised syntax, process-to-virtual-processor mapping is optional.
If the user does not specify the virtual processor ID for a new child, at run time, the
CPSS will map the child to a default physical processor. The mapping objective is

to balance the load among physical processors.

A.4 Process Communication via Channel Vari-

ables

Channel variables abstract message sends and receives among processes. A process p
can communicate with another process ¢ by “sending” a message through a channel
variable. Process q will “receive” the message from the same channel variable.

A message send is abstracted by a write to a channel variable. A message receive

is represented by a read from the channel variable. The message forwarding and

201

routing are done by the underlying network simulator, and completely transparent
to the programmer. Conceptually, a channel acts like a first-in-first-out queues of
values (messages) of the same data type. As values are written to the channel, they
are saved in a queue until they are read by some other process. The capacity of the

queue buffer is assumed to be unlimited.

A.4.1 Declarations of Channel Variables

A channel variable is declared using the following syntax:
channel <component_type> <channel_name>;

where channel is the reserved word of the CPC language to declare a channel vari-
able. <component_type> must be a valid type in the C language. In particular, the
component type may be int, float, char, enum, array, and structure. The component
type is the data type of messages written to or read from the channel. For instance,
if the component type is int, every message stored in the channel is of type integer.
We can also have channel of pointer, and pointer to a channel type. <channel name>
is the name of the channel variable. Following are examples of declaring channel

variables:

typedef enum {Red, Green, Blue} Colors;
typedef char[10] arrayChar;
typedef struct
{ arrayChar name;
float mark;
} structStudent;

channel int ci;
channel float cf;
channel char cc;
channel Colors ce;
channel arrayChar CA;

channel structStudent CS;

202

A “channel of channel” is not permitted by th= rule that the component type must
be a valid type in the C language because channel is not a valid type in C.

Channel types may appear at any level of a structured type. For instance, we can
have an array of channels. Similarly, one or more fields of a structure may be of type

channel. Examples are given below.

channel int arrayChan[10]; /*array of 10 channels*/

/*each channel is a list of integer values*/
typedef struct

{ int processID;

channel int mailbox; /*structure field is of type channel*/

} structProcess;

However, nested channels are not allowed: a channel may not contain any channels.
For example, we cannot have a channel of structure where one field of the structure

is another channel.

We can also define a channel type using the following syntax:
typedef channel <component_type> <channel_type_name>;
<component_type> must follow the rules stated above, which are:

e The component type must be a valid type in the C language.

e A “channel of channel” is not allowed, and neither are nested channels.

The <channel type.name> is the name of the new channel type. Following are ex-

amples of channel type definitions:

typedef channel int chanInt; /*channel of integer*/
typedef char[20] arrChar;
typedef channel arrChar chanArrChar;
/*channel of array; the array is 20 characters long*/
chanInt myChanInt; /*variable of defined type chanInt*/
chanArrChar myChanArrChar; /*variable of defined type chanArrChar*/

203

To allow channel variables to more closely reflect the properties of communication
links, the “receiving” end of each channel variable is directly connected to a specific
process. The process connected to the “receiving” end of a channel variable is called
the owner of the channel variable. In the CPC language, only the owner of a channel
variable is allowed to read from that channel variable. Each channel variable has one
and only one owner (reader).

There are two kinds of owners: original owners and delegated owner. The original
owner of global channel variables is process 0. The original owner of a channel variable
local to a function is the process currently executing a copy of the function code which
contains that channel variable.

An original owner of a channel variable ¢ can give up the ownership of c to a child
it creates, provided that the child can access ¢ according to C lexical scope rules. The
child will become the new owner of the channel variable, and only it can read from c
(the parent is no longer allowed to read from c¢; however it can write to ¢). The child
is called the delegated owner of ¢. The next subsection will describe how a parent
process assigns channel variables to its children.

In the CPC language, channel variables are usually declared as global variables.
We may have a channel variable ¢ that is local to a function. However this channel
would be useless because no processes other than the original owner of ¢ can access ¢
(due to the lexical scope rule of the C language). Thus the original owner cannot use
¢ to communicate with the other processes. That is why channel variables should be

declared as global variables so that all processes can see these channel variables.

A.4.2 Binding Channel Variables to New Processes

The following channel declarations will be used for examples in this section, assuming

that the channels are global variables.

channel int CI, CJ, CK; /*channel of integer*/
channel float arrayCF[10]; /*array of 10 channelsx*/
channel int arrayCI[20]; /*array of 20 channelsx*/

channel char arr3Dchan([5][4][8]; /*3D array of (5x4x8=)160 channelsx*/
typedef struct
{ int ID;

float mark;

204

} StudentStruct

channel StudentStruct myRecord;

One or more channels can be assigned to a new process by preceding the new child’s
code (the <expression>) with the names of the channels to be assigned. The syntax

of fork and forall statements presented earlier can thus be extended as follows:

fork {({<processor_ID>}; {<channel_list>})} <expression>;

forall <index_variable>
(<from_bound>; <to_bound>; {<group_size>})
{(processor_ID; {<channel_list>})} <expression>;

The channel 1list is a list of channel references separated by commas. In this
context, a channel reference is defined as being a member of one of the following

categories:

1. a channel variable

2. an array of channels

Examples of categories 1 are channels of base type (int, float, char, and enum),
channel of composite type (array, structure), or an individual element of an array of
channels, in which case any valid C expression may also be used to identify subscripts

of the array element to be assigned. IExamples are given below.

main()
{

int i;

fork (1; CI) ChildCode(); /*assign channel CI to new child#*/
fork (4; arrayCF[4]) ChildCode(); /*assign channel arrayCF[4]*/

/* Input i, then spawn a new process */

fork (i; arrayCF[i]) ChildCode(); /*assign channel arrayCF[i]*/

A channel reference can be an array of channels to facilitate the binding of many
channels of the same component type to a new process. For example, instead of
binding 20 channels (of the same component type) to a process, we could declare an
array of 20 channels, and then bind that array to the process. Any channel in the
array may then be used by that process to receive messages. The array of channels
can be an entire array, or one or more dimensions of a multi-dimensional array (e.g.

one row of a 2D array, one plan of a 3D array). Following are some examples:

main()

{

fork (; arrayCI) BigChildCode(); /*assign 20 channelsx*/
fork (; arr3Dchan[1]) BigChildCede();

/*assign 32 channels (1 plane)*/
fork (; arr3Dchan[1][0]) BigChildCode();

/*assign 8 channels (1 row)x*/

A.4.3 Read and Write on Channel Variables

Channels are written by using their name on the left side of an assignment statement,
and read by using their name on the right side of an assignment statement. A channel
may be written by many writers but read only by one reader, namely the owner of
the channel.

Any process may write values to any channel, provided that the channel variable
is accessible by the process according to C lexical scope rules. However, each process
may read values only from its own assigned channels.

If the channel is empty, the reader is suspended until some other process writes
a value into the channel. However, writer process will never be suspended; channels
are supposed to have unlimited capacity and can hold any number of values. Channel

writes are thus non-blocking.

206

Channel Write

Examples of channel writes are shown below. Note that it is not permitted to use a
subscript with a channel of array. The only operations that can be performed with
a channel of array is reading or writing a whole array from the channel. It is not
allowed to read or write one element in the array. The rules are similar for a channel

of structure: one may not read or write a single field of the structure.

writer()
{
int i;

StudentStruct tempRecord;

/*Write to channels whose component type is a basic type*/
CI =0;

CI=1+1;

arrayCF[1] = 3.1416;

/*Write to a channel whose component type is a composite type*/
tempRecord.ID = 12345;

myRecord = tempRecord; /*channel writex/

Channel Read

Any channel variable names can be part of an expression on the right side of an

assignment statement, as in the following examples:

reader()

{
int i;
float f;
StudentStruct bufferRecord;

/*Assume that this reader owns the channels used below*/

207

/* Read from channels whose component type is a basic type*/
i=2CJ;
f = 2 * arrayCF[1] / 5;

/* Read from a channel whose component type is a basic type*/
bufferRecord = myRecord; /*channel read*/

bufferRecord .mark++;

As stated earlier, for a channel of structure, it is not permitted to read a single
field of the structure. In the above example, to read field mark, one must first read
the whole structure from the front of channel myRecord into an ordinary structure
variable such as bufferRecord, and then use the expression bufferRecord.mark.
The same rules apply to a channel of array.

Channel variables may be used in any expression in the program, provided that
the component type matches the context in the expression. The general rule is that
wherever an ordinary variable of a given type may be used in an expression, a channel
variable with that same component type may be used. For example, channel variables

may be used as array indices or in Boolean expressions, as in the following examples:

anotherReader()

{
int i, j;
/*Assume that this reader owns the channels used below*/
if (CK) i++;

else i=20;

if (arrayCF[S] > arrayCF[6] * 2) i = j;

An exception to the above rule is that channel variables are not allowed in 1/O

statements such as printf, and scanf.

208

Note that each time a channel is read, it produces a different value. This is because
values are queued inside the channel during writing, and removed during reading. Let
CI be a channel of integer. The assignment (n = CI + CI) is not equivalent to (n =
CI * 2). '

Channel Empty Test

If the channel is empty, the reader is suspended until some other process writes a
value into the channel. To avoid this suspension when the channel is empty, the
reader can test to determine if the channel currently contains any values. This is
achieved by using a boolean-values expression containing the name of the channel

variable followed by a question mark, as in the following example for channel ch:

if (ch?)
n = ch; /*read the channelx*/
else

printf(""Channel currently empty");

The expression “ch?” will evaluate to 1 (true) if channel ch currently contains
any values and 0 (false) if the channel is empty. The syntax for channel empty test

is as follows:

<channel_name>?

209

Appendix B

CPSS User’s Manual

This appendix serves as a user’s manual for using the CPSS interactive system. It
begins with general instructions on using the CPSS. Then each command supported
in the CPSS is described in details.

B.1 Getting Started

The program is first compiled by the CPCC. To compile a program, at the system
prompt, type

> cpcc <file_name>

where <filename> is the file name of the CPC program to be executed. The file
must have a .c extension. The file is called source file, and the CPC program is called
source program.

The CPCC will produces a vCode file with the same name as the source file and
with extension .cod. For instance, if the source file is ranksort.c, the vCode file
is ranksort.cod. The CPSS will execute the vCode instructions contained in the
vCode file, and refer to the source file whenever required (e.g. setting breakpoint at
source line n).

To enter the CPSS, at the system prompt, type

> cpss

210

Inside the CPSS, vCode files can be loaded for execution, one at a time using
LOAD command. The vCode of the loaded file is stored in the code buffer of the

simulator. If a file name is specified with cpss command as in the following example:

> cpss ranksort

that file is loaded automatically into the code buffer when the user enters the CPSS,

and ready for execution.

B.2 An Overview of CPSS Commands

Following is a list of interactive commands supported by the CPSS. These commands

are issues directly in the CPSS in response to the CPSS prompt.

LOAD program - Loads the program whose file name is program for execution.
RUN - Runs the whole program from the beginning.

QUIT - Quits the CPSS simulator.

LIST m:n - Lists program source lines m through n on the screen.

ARCH topology size - Sets the physical architecture.

MAP - Gets the virtual-to-physical-architecture mapping from the user.
PARAMETER DIS/CHA - Displays/changes system parameters.

BREAK n - Sets a breakpoint at program line n. Program execution will be

suspended whenever any process attempts to execute this line of the program.
CLEAR BREAK n - Clears the breakpoint from program line n.

CONT - Continues execution of the program after a breakpoint has been en-

countered.

STEP n - Continues execution for n lines in the current process, then suspends

program execution again.

211

WRITE p var - Displays the current value of variable var belonging to process
-

TRACE p var - Makes variable var belonging to process p a trace variable.
Whenever any process attempts to read or write a trace variable, the program

execution is suspended.
CLEAR TRACE m - Clears the trace from memory location m.
DISPLAY - Displays list of breakpoints, trace variables, and the alarm.

ALARM t - Sets an alarm to go off after ¢ time units from the beginning of

program execution. Program execution is suspended when the alarm goes off.
STATUS p - Displays information about the current status of process p.

TIME - Gives the elapsed time since the start of program and since the most

recent breakpoint.
UTILIZATION p - Gives the utilization percentage for physical processor p.

VARYSPEED ON (OFF) - Creates randomly chosen variations in the speed
of processors, to help the user determine if the program has timing-dependent
bugs (section 3.5.4).

B.3 Basic Commands

To load a new program into the code buffer for execution, use the LOAD command

followed by the name of the vCode file (with or without .cod extension). Examples

>> LOAD ranksort
>> LOAD matrix_mult.cod

When this command is issued, if there is another CPC program currently residing

in the code buffer, that program is cleared from the buffer. The CPSS will search for
the file to be loaded, and fetch the vCode into the code buffer. The CPSS does not

212

need the source file for program execution. It only needs the source file if the user
issues commands which reference the source file (e.g. listing source lines).

To run the program, simply type the following:
>> RUN

Inside the CPSS, the user may at any time get a listing of the whole program

(including line numbers) with the command:

>> LIST

To get a listing of a portion of the program with line numbers, indicate the range

“m:n” of line numbers, as in the following example:

>> LIST 25:35

To quit the CPSS environment at any CPSS prompt, type the following:

>> EXIT

B.4 Setting the Physical Architecture

The CPSS can run the same CPC program on different physical architectures. To set
the physical architecture, type the command:

>> ARCH <topology> <size>

where <topology> is one of the following: full (full connect), line, ring, hypercube,
mesh, and torus. If <topology> is full, line or ring, <size> is the total number of
physical processors. If <topology> is hypercube, <size> is the number of dimensions
of the hypercube. If <topology> is mesh or torus, <size> is a list of integers, each
integer being the number of processors along a dimension of the mesh or torus. Thus
the length of the list of integers is the number of dimensions of the mesh or torus.

Examples are given below.

>> ARCH ring 128
>> ARCH hypercube 7
>> ARCH mesh 4 8 4

213

In the above examples, the ring, hypercube and 3D mesh have the same number
of processors, which is 128.

Setting the physical architecture must be done at the very beginning of a run. It
is not allowed in the middle of program execution (e.g. at a breakpoint).

If no physical architecture is specified for a newly loaded program, the default

physical architecture is the same as the virtual architecture indicated in the source

program.

B.5 Displaying and Changing System Parame-

ters

To view values of the system parameters, type the following command:
>> PARAMETER DIS
System information similar to the following will be displayed:

Number of lanes/link = 2

Flit size = 1 bytes
Buffer size =1 flits
Packet size = 4 bytes = 4 flits
Header size = 2 flits
Packet data = 2 flits

Startup_cost/message =5
Startup_cost/packet =2
Non_head_flit_speed/Head_flit_speed = 4

To change the value of a parameter, issue the following command:

>> PARAMETER CHA

A list of system parameters is then shown for selection. After the user specifies
the parameter to be changed, the CPSS prompts for the new value. The CPSS will
get the entered value, verify it, and update the parameter if the entered value is valid.
The user can use command “PARAMETER DIS” to verify the update.

214

B.6 Displaying Process Status

When encountering a breakpoint, the user may use the following command to deter-

mine the status and current execution point of each active process:
>> STATUS
An example output is as follows.

Process Nbr | Function | Line Nbr | Status | VirProcNbr | PhyProcNbr

0 main 46 Ready 0 0
1 pipeproc 17 Blocked 1 0
2 pipeproc 17 Blocked 2 0
3 pipeproc 17 Running 3 0

To display the status of a particular process, specify the process ID in the STATUS

command, as in the following example:

>> STATUS 4

If the current number of active processes is large, the user can choose to view only

a range of processes as in the following command:

>> STATUS 10:20

The status of processes with ID from 10 to 20 will be displayed.

B.7 Setting Breakpoints

In the CPSS system, breakpoints are set by referring to program line numbers. A

breakpoint may be set on any executable line of the source program with the following

command:
>> BREAK <line_number>

To get a list of the location of all breakpoints, use the following command:

215

>> DISPLAY
Individual breakpoints may be removed one at a time as follows:
>> CLEAR BREAK <line_number>

The program runs until any line of the source program with a breakpoint is hit.
The execution will be suspended immediately prior to the execution of the line with
the breakpoint. Then the CPSS prompt will appear, and the user may then set or
remove breakpoints, examine the values of program variables, or use any of the other
debugging commands at this point. To continue execution of the program to the next

breakpoint, use the following command:

>> CONTINUE

B.8 Stepping Through a Process

Each breakpoint is valid for all the processes. When any running process tries to
execute a line with a breakpoint, the whole program execution will be suspended,
including the execution of all the processes. To focus on the execution of a specific
process, the STEP command may be used to follow the execution of that process
line by line. Whenever a breakpoint is encountered by a given process, that process
automatically becomes the current stepped process. All STEP commands refer to only
the current stepped process.

The current stepped process may be changed, as in the following example that

changes the stepped process to process number 9:
>> STEP PROCESS 9

To trace the execution of the current stepped process, the STEP command can
execute a specified number of lines in the stepped process, and then suspends exe-
cution. In the following example, the stepped process will execute five lines of the

source program:
>> STEP 5

Note that blank lines, comment lines, and declarations are not counted by the
STEP command. Also note that during a STEP command, breakpoints are ignored.
Breakpoints are valid only during the CONTINUE command or the RUN command.

216

B.9 Writing Variables

In a CPC program, each process has its own individual execution flow and execution
environment. A variable is said to be currently in the environment of a process if that
process has legal access to that variable. When the program execution is suspended
(e.g. due to a breakpoint), the CPSS allows the user to display the value of any
variable in the current environment of each process with a command of the following

general form:
>> WRITE <process_number> <variable_name>

The <process_number> must be the ID of some active process that appears in the
STATUS command list. The <variable name> is located in the environment of that
process, and the value of the variable will be displayed.

Let the following variables be currently in the environment of an active process

having process ID number 4.

int i;
float £;
char c;
enum {Red, Green, Blue} e;
struct
{ int ID;
int age;
float salary;
} s;
int A[10];

channel int CI;

Examples of using WRITE command are given below.

B.9.1 Variables of Basic Types

Examples of basic types are int, char, float, and enum (enumeration). The following

commands display the values of basic-type variables of process 4.

217

>> WRITE 4 i
>> WRITE 4 £

>> WRITE 4 c

B.9.2 Variables of Type Structure

The WRITE command allows the user to refer to a specific item of a structure as in

the following commands:

>> WRITE 4 s.ID

>> WRITE 4 s.salary

By using the name of a structure, the whole structure will be displayed, including

the names and values of all its components as in the following example:

>> WRITE 4 s

structure
ID 2834952
age 25

salary 5,578.50

B.9.3 Variables of Type Array

In the WRITE command, it is permitted to refer to a specific item of an array as in

the following example:
>> WRITE 4 A[1]

A range of indices in an array may be displayed by requesting to WRITE the

whole array as follows:

>> WRITE 4 A

218

The CPSS will respond with the prompt message “Index Range >”. To display
the entire array, the user simply presses the Return key. The user may also specify

any range of indices as in the following example:

>> WRITE 4 A
Index Range > 5:9

B.9.4 Variables of Type Channel

A channel variable contains a list of values with new values added at the tail and
removes from the head. Using the WRITE command, the current contents of any
channel variable may be displayed as in the following example for a variable ci de-

clared as channel int ci:

>> WRITE ci
ci =8

=0

= -20

The channel contents are written with the head at the top and the tail at the
bottom. It may happen that a value is inserted into the list of channel values before
it is actually available. Such values are also listed as part of the channel contents, but
preceded with a special “**” notation to indicate that they are currently unavailable

for reading. Below is an example.

>> WRITE ci

ci = 15
=3

*k = 1

*k = 285

B.10 Tracing Variables

Besides the BREAK and STEP commands, another command which enables the user

to interrupt program execution is the TRACE command. This command puts a trace

219

flag on any variable. Whenever that variable is referenced during subsequent program
execution, the program will be suspended as it is for breakpoints. The general form
of the TRACE command is as follows:

>> TRACE <process_number> <variable_reference>

The <process_number> plays the same role as in the WRITE command to iden-
tify the process and its environment. The <variable reference> must be a fully
qualified reference that evaluates to a scalar variable of type int, char, float, enum
(an enum variable is evaluated to an int) or a single channel. Individual elements of
an array or structure may be traced, but one cannot use a single TRACE command
for an entire array or structure. With reference to the sample variables declaration
in section B.9.2, the following are all valid TRACE commands:

>> TRACE 4 i
>> TRACE 4 £
>> TRACE 4 s.ID
>> TRACE 4 A[9]

>> TRACE 4 CI

However, the following commands are not accepted by the CPSS, since they refer

to the whole array/structure:

>> TRACE 4 s

Cannot trace a whole array or structure.

>> TRACE 4 A

Cannot trace a whole array or structure.

As with the WRITE command, a TRACE command must refer to variables that
already exist in the environment of the specified process. To get a list of the currently
active trace variables, use the DISPLAY command, which displays the breakpoint

locations and the trace locations as in the following example:

220

>> DISPLAY

Breakpoints on the following lines:

17

29

Trace Variable Name Memory Location
internal 427
i 354

To remove a trace from a variable, use the following command:

>> CLEAR TRACE <memory_location>

where <memory location> is obtained from the DISPLAY command (the memory
location is the absolute address of the trace variable in the memory pool of the

simulator). Below are some examples:

>> CLEAR TRACE 427

>> CLEAR TRACE 354

B.11 TIME Command

The TIME command can be used whenever program execution is suspended to give
the total elapsed time since the beginning of the program and since the last breakpoint

(if any). Following is a typical output from the TIME command:

>> TIME

Since the beginning:
Elapsed Time : 390
Number of Processors Used: 4
SequentialTime/ParallelTime: 0.98
Since last breakpoint:
Elapsed Time: 100
SequentialTime/ParallelTime: 1.02

221

Using the TIME command between breakpoints is useful for focusing attention
on the performance of localized segments of the program. For example, the user can
set a breakpoint and then after hitting this breakpoint, run the program up to a
second breakpoint. The TIME command will then provide information about the

performance of the program between the breakpoints.

B.12 Displaying Processor Utilization

The utilization of a given physical processor is defined as the proportion of the time
the processor is actually running. Any time the program execution is suspended, the
user may issue the UTILIZATION command to obtain a table of the utilization of
all processors up to that point in the execution. This command will also give the
processor utilization since the last breakpoint: the proportion of time since the last

breakpoint that each processor is actually running. Following is a typical display from

the UTILIZATION command:

>> UTILIZATION

Utilization Percentage

Processor | Since the beginning | Since last breakpoint

0 70 65
1 54 74
2 48 68
3 51 72

When using the UTILIZATION command, the display will automatically include
all processors that have been used since the start of the program. Other processors
not listed all have zero utilization. If the list of processors is too long, the user may

specify a range of processors to be displayed as follows:

>> UTILIZATION 25:40

222

B.13 Setting the Alarm

It is sometimes useful to be able to stop the program execution at a specific time.
The ALARM command is supported for this purpose: it will automatically suspend
program execution when a certain time is reached. This is similar to setting an alarm
on an ordinary watch or clock. The following command sets an alarm to go off at 500

time units:
>> ALARM 500

The alarm time is always measured from the start of program execution initiated
with the RUN command. When the program time reaches 500, the execution will be
suspended and the following message will be displayed:

>> Time is 500. Alarm went off.

In some cases, the program may actually stop slightly after the specified alarm
time. Once set with the ALARM command, the alarm setting will continue to remain
valid. The alarm may be reset to a new time if desired. The user can also turn off

the alarm entirely with the following command:

>> ALARM OFF

The DISPLAY command, in addition to listing the breakpoints and trace vari-

ables, will also show the alarm setting if it is on.

B.14 VARYSPEED Command

This command is used for testing multiple executions of non-deterministic applica-
tions and robustness of deterministic programs, as discussed in section 3.5.4. Race
conditions are simulated by varying relative processor speeds.

The VARYSPEED option is turned on using the following command:

>> VARYSPEED ON

223

After this command is issued, the program may be executed by using the RUN
command as usual. When the RUN command is issued, the user will be prompted for
an integer “Random Number Seed.” The seed will be used to create a random number
r; between 0 and 1 for each physical processor ¢ that will be used to increase the speed
by a factor of 1/r;. This randomly selected speed factor for each processor will remain
in effect throughout the subsequent program execution, until another RUN command
is issued, at which time a new Random Number Seed will be requested to select a
new set of random speed factors for the processors. The particular random speed
factors chosen completely dependent on the Random Number Seed: using the same
seed again will result in the same set of processor speed factors.

To turn off the VARYSPEED option, use the following command:

>> VARYSPEED OFF

224

Appendix C

CPPE’s vCode Instructions

This appendix provides a list of vCode instructions used in the CPPE. The instruc-

tions are classified based on their functionality.

C.1 List of vCode Instructions

The set of vCode instructions is categorized into eight groups based on their func-

tionality:
1. Load/store instructions
2. Other memory operations
3. Instructions implementing conditional statements
4. Instructions handling function calls
5. Instructions handling parallel processes and their execution
6. Channel operations
7. Mathematical and logical operations

8. Miscellaneous instructions

Instructions belonged to each group are listed below.

225

C.1.1 Load/Store

Mnemonic Description

LDVal Load value of variable V onto stack
LDAddr Load address of variable V onto stack
LDIndirect Load indirectly from variable V
LDReal Load a real literal onto stack

LDInt Load an integer literal onto stack
LDSP Load the stack top pointer onto stack
STORE Store value into memory location
LoadBlock Load a block of data onto stack
CopyBlock Copy a block of data into another
CopyToNewBlock | Allocate a new block and copy data to it

C.1.2 Other Memory Operations

Mnemonic Description

IndxArray Array indexing

New Dynamic allocation for pointer variables

Dispose Dynamic deallocation for pointer variables
Dereference Replace pointer on the stack by value

DupTop Duplicate the stack top

Pop Pop the top element off the stack
ChecklVarAccess | Check variable access right of the current process

C.1.3 Conditional Statements

Mnemonic | Description

JMP Unconditional jump
JMPZ Conditional jump on zero
SwBeg Begin of switch statement
SwTab Switch table entry

226

C.1.4 Mathematical and Logical Operations

Mnemonic | Description

ShiftL Shift integer to left
ShiftR Shift integer to right
BitOr Bitwise OR

BitXor Bitwise XOR

BitAnd Bitwise AND

BitNot Bitwise NOT

Equal Equal test

NotEqual | Not equal test

LT < test

LE < = test

GT > test

GE > = test

BoolAND | Logical AND

BoolOR Logical OR

BoolNOT | Logical NOT
NEGATE | Negate value on stack
ADD Addition

SUB Subtraction

MUL Multiplication

DIV Division

MOD Modulo

IntToFloat | Convert the integer on the stack top to a float
FloatTolnt | Convert the float on the stack top to an integer

C.1.5 Function Calls

Mnemonic

Description

NewFrame

Call
ExitFunc

Allocate a new function frame
Call function

Exit function

227

C.1.6 Parallel Processes

Mnemonic Description

BeginParallel Begin parallel execution of forall loop
EndParallel End of parent’s execution in a forall loop
NewForkChild Create a new fork child

NewForallChild Create a new forall child

ForkChildEnd End a fork process

ForallChildEnd End a forall process

BeginForallLoop Start of the forall loop body
EndForallLoop End of the forall loop body
SonLDForalllndexVal | Load forall index from stack by child
DadLDForalllndexVal | Load forall index from stack by parent
TstGrplncldx Test grouping index at the end of forall
Wakeup Wake up parent after parameter evaluation
ForkJump Special jump with fork

JOIN Wait for a fork child process to merge
DefaultProc Default processor for a new process
SwitchOff Context switching is disabled

SwitchOn Context switching is enabled

HALT Process 0 attempts to terminate

C.1.7 Channel Operations

Mnemonic Description

LDCHwOffset Load channel variable

LDCHwOffsetInd | Load channel variable indirect
LDCHwAdrOnS | Load channel with address on stack
STChannel Store value from top of stack into channel
TstCHwAdrOnS | Test channel with address on stack
TstCHwOffset Test channel variable

TstCHwOffsetInd | Test channel indirect

MVChannVar Bind a channel variable to a new process

228

C.1.8 Miscellaneous

Mnemonic | Description
NOP No operation/execution
BuiltinFunc | Built-in Function

229

Bibliography

(1} S. Chittor and R. Enbody, “Performance evaluation of mesh-connected
wormhole-routed networks for interprocessor communication in multicomput-

ers,” Proceedings of the Supercomputing Conference, November 1990, pp.647-656

[2] S. Chittor and R. Enbody, “Performance degradation in large wormhole-routed
interprocessor communication networks,” Proceedings of the International Con-
ference on Parallel Processing, 1990, vol.1, pp.424-428

(3] S. Chittor and R. Enbody, “Hypercubes vs. 2D meshes,” Proceedings of the SIAM
Fourth Annual Conference on Parallel Processing for Scientific Computing, 1990,
pp-313-318

[4] S. Chittor and R. Enbody, “Predicting the effect of mapping on the communi-
cation performance of large multicomputers,” Proceedings of the International

Conference on Parallel Processing, 1991, vol.2, pp.1-4

[5] G.C. Fox, et al, Solving problems on concurrent processors, Vol. I, General tech-

niques and regular problems, Prentice-Hall, Englwood Cliffs, NJ, 1988

[6] E. Ma and L. Tao, “Embedding among toruses and meshes,” Proceedings of the
International Conference on Parallel Processing, 1987, pp.178-187

[7] E. Ma and L. Tao, “Embedding among meshes and tori,” Journal of Parallel
and Distributed Computing, vol.18, no.1, 1993, pp-44-55.

[8] L.M. Ni and P.K. McKinley, “A survey of wormhole routing techniques in direct
networks,” Computer, 1993, pp.62-76

230

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

C.L. Seitz, et al, “The architecture and programming of the Ametek Series
2010 multicomputer,” Proceedings of the conference on Hypercube Computers

and Concurrent Applications, January 1988, pp.33-36

A. Agarwal, J. Hennessy, and M. Horowitz, “Cache performance of operating sys-
tem and multiprocessing workloads,” ACM Transactions on Computer Systems,
November 1988, pp.393-431

A. Borg, R.E. Kessler, and D.W. Wall, “Generation and analysis of very long
address traces,” Proceedings of the 17th Annual International Sumposium on
Computer Architecture, 1990, pp.270-279

E.A. Brewer, et al, “Proteus: A high performance parallel-architecture simula-
tor,” Technical Report MIT/LCS/TR-516, Massachusetts Institute of Technol-
ogy, Laboratory of Computer Science, September 1991

D. Chaiken, B.H. Lim, and D. Nussbaum, ASIM User Manual, ALEWIFE Sys-
tems Memo 13, August 1990

D. Culler, et al, “LogP: Towards a realistic model of parallel computation”,
Proceedings of the 4th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, 1993, pp.1-12

W.J. Dally and C.L. Seitz, “Deadlock-free message routing in multiprocessor
interconnection networks,” IEEE Transactions on Computers, May 1987, vol.C-
36, no.5, pp.547-553

W.J. Dally and P. Song, “Design of a self-timed VLSI multicomputer communica-
tion controller,” Proceedings of the 1987 International Conference on Computer
Design, IEEE CS Press, 1987, pp.230-234

W.J. Dally, “Performance analysis of k-ary n-cube interconnection networks”,
IEEE Transactions on Computers, June 1990, vol.39, pp.775-785

W.J. Dally, “Virtual-channel flow control,” IEEE Transactions on Parallel and
Distributed Systems, March 1992, vol.3, no.2, pp.194-205

231

[19]

[20]

21]

22]

[23]

[24]

[25]

[26]

[27]

[29]

[30]

H. Davis, S.R. Goldschmidt, and J. Hennessy, “Multiprocessor simulation and
tracing using Tango”, Proceedings of the 1991 International Conference on Par-
allel Processing, August 1991, vol.2, pp.99-107

J.T. Draper and J. Ghosh, “A comprehensive analytic model for wormhole rout-
ing in multicomputer systems,” Journal of Parallel and Distributed Computing,
November 1994, vol.23, pp.202-214

S.J. Eggers, et al, “Technique for efficient inline tracing on a shared-memory
multiprocessor,” Proceedings of the 1990 ACM SIGMETRICS Conference on
Measurement and Modeling of Computer Systems, May 1990, pp.37-47

S. Goldschmidt and H. Davis, Tango Introduction and Tutorial, Computer Sys-
tems Laboratory, Stanford University, February 1991

K.Hwang, Advanced Computer Architecture: Parallelism, Scalability, Pro-
grammability, McGraw-Hill, 1993

J. Kim and C.R. Das, “Hypercube communication delay with wormhole routing,”
IEEE Transactions on Computers, July 1994, vol.43, pp.806-814

B.P. Lester, The art of parallel programming, Prentice Hall, 1993

E. Olk, “PARSE: Simulation of message passing communication networks,” Pro-
ceedings of the 27th Annual Simulation Symposium, 1994, pp.115-124

S.K. Reinhardt, et al, “The wisconsin wind tunnel: virtual prototyping of par-
allel computers,” Proceedings of the 1993 ACM SIGMETRICS Conference on
Measurement and Modeling of Computer Systems, May 1993, pp.48-60

J. Rexford, et al, “PP-MESS-SIM: A simulator for evaluating multicomputer in-
terconnection networks,” Proceedings of the 28th Annual Simulation Symposium,
1995, pp-84-93

A. Saha, “A simulator for real-time parallel processing architectures,” Proceed-
ings of the 28th Annual Simulation Symposium, 1995, pp.74-83

D. Zukowski, et al, “XPOSE: A simulator for network development,” Proceedings
of the 27th Annual Simulation Symposium, 1994, pp.59-68

232

31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

A. Silberschatz, J. Peterson and P. Galvin, Operating System Comcepts, 3rd
edition, Addison-Wesley, 1991

B.A. Delagi, et al, “An instrumented architectural simulation system,” Technical
Report KSL 86-36, Knowledge Systems Laboratory, Stanford University, January
1987

B.A. Delagi, et al, “Instrumented architectural simulation,” Technical Report
KSL 87-65, Knowledge Systems Laboratory, Stanford University, November 1987

B.P. Lester and G.R. Gutherie, “A system for investigating parallel algorithm
architecture interaction,” Proceedings of the 1987 International Conference on
Parallel Processing, August 1987, pp.667-670

E. Reiher, H.H.J. Hum, and A. Singh, “Simulating networks of superscalar pro-
cessors,” Proceedings of the Supercomputing Symposium, 1993, pp.125-133

G. Gao, et al, “Towards a portable parallel programming environment,” Pro-

ceedings of the Supercomputing Symposium, June 1992, pp.219-228

G.A. Geist, et al, A users’guide to PICL: a portable instrumented communication
library, Oak Ridge, TN, August 1990

X. Lin and L.M. Mi, “Deadlock-free multicast wormhole routing in multicom-
puter networks,” Proceedings of the 18th International Symposium on Computer
Architecture, IEEE CS Press, 1991, pp.116-125

S. Konstantinidou, “Adaptive, minimal routing in hypercubes,” Proceedings of
the Sizth MIT Conference on Advanced Research in VLSI, MIT Press, 1990,
pp-139-153

W.J. Dally and H. Aoki, “Adaptive routing using virtual channels,” Technical

Report, Massachusetts Institute of Technology, Laboratory of Computer Science,
September 1990

D.H. Linder and J.C. Harden, “An adaptive and fault-tolerant wormhole routing
strategy for k-ary n-cubes,” IEEE Transactions on Computers, January 1991,
vol.40, no.1, pp.2-12

233

[42] C.J. Glass and L.M. Ni, “The Turn model for adaptive routing,” Proceedings of
the 19th International Symposium on Computer Architecture, IEEE CS Press,
1992, pp.278-287

[43] Anonymous, “Commercial parallel computer line uses VLSI to cut number-

crunching costs,” Computer Systems Equipment Design, March 1985, pp.9-13

(44] J.P. Hayes, et al, “Architecture of a hypercube supercomputer,” Proceedings of
the 1986 International Conference on Parallel Processing, 1986, pp.653-660

[45] J.L. Gustafson, et al, “Architecture of a homogeneous vector supercomputer,”
Proceedings of the 1986 International Conference on Parallel Processing, 1986,
pp.649-652

[46] P. Kermani and L. Kleinrock, “Virtual cut-through: a new communication

switching technique,” Computer Networks, 1979, vol.3, no.4, pp.267-286

[47] G.S. Almasi and A. Gottlieb, Highly Parallel Computing, Benjamin/ Cummnings
Publishing Company, 1989

[48] nCUBE 6400 Processor Manual, nCUBE Company, Beaverton, OR 97006, 1990

[49] Paragon XP/S Product Overview, Supercomputer Systems Division, Intel Cor-
poration, Beaverton, OR 97006, 1991

[50] S. Borkar, et al, “Supporting Systolic and Memory Communication in iWarp,”
Proceedings of the 17th International Symposium on Computer Architecture, May
1990, pp.70-81

[61] M. Homewood, et al, “The IMS T800 Transputer,” IEEE Micro, 1987, vol.7,
no.5, pp.10-26

[52] T.H. Dunigan, “Performance of a second generation hypercube,” Technical Re-
port ORNL/TM-10881, Oak Ridge National Lab, November 1988.

[53] Intel. Personal Communication, 1991

[54] T. von Eiken, et al, “Active messages: a mechanism for integrated communi-
cation and computation,” Proceedings of the 19th International Symposium on
Computer Architecture, 1992, pp.256-266

234

