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Abstract

Finite Element Analysis for Eigensolution Variability
of Non Self-Adjoint Mechanical Systems

with Stochastic Parameters

S. Venkatesan

This thesis concerns itself with quantifying the free dynamic response of non self-
adjoint mechanical systems, the parameters of which have a stochastic distribution. A
general non self-adjoint eigenproblem with stochastic coefficients, that models the
vibration response of a Multi-Degree-of-Freedom (MDOF) system with stochastic
parameters is considered. This MDOF mechanical system is obtained using the Finite
Element Method. The Young's modulus and mass density are modelled as independent
stochastic fields. The axial loadings are modelled as a random variable. Employing an
asymptotic series solution, the sample functions of eigensolutions are expressed through
the sample functions of stochastic system parameters and the stochastic sensitivity
gradients. Based on these asymptotic solutions and the response moment calculation
method, the stochastic characteristics of eigensolutions are quantified. Expressions for
the first- and second-order probabilistic moments of eigenvalues and eigenvectors are
derived. The relative influences on the eigensolution variability of randomness in various

system parameters are quantified.



The applications of the developed solutions to the whirl speed 2nalysis of high
speed roter-bearing systems are considered. The solutions de veloped for a general class
of non sclf-adjoint systems is deployed as the basis for the determination of stochastic
characteristics of whirl speeds and whirl modes. A parametric study is conducted in order
to determine (i) the effects of the correlation characteristics of material property stochastic
fields, (ii) the influences of bearing flexibility and (iii) the influences of the mesh size on
the probabilistic moments of whirl speeds. Based on the results of this parametric study,

design implications are determined and discussed.
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Chapter 1

Introduction

1. 1 Randomness in System Parameters

The parameters of any mechanical or structural system possess a random variation
when mass products are considered. The randomness in system parameters encompasses
the uncertainties involved at the design and production stages, as well as the uncertain
nature of the operating cnonditions. At the design stage, randomness is present in the test
data .egarding material strength values, elastic constanis, engineering constants,
deterioration parameters, damage parameters, parameters that correspond to the
environmental effects and ibe material properties pertinent to the service life. At we
production stage, manufacturing errors, machining errors, measurement errors, variation
in the strengths of fasteners, joint strengths etc., give rise to system parameter fluctuations
over m.ass products. At the service stage, the environmental effects, deterioration of the
structural components, degradation of structural joints and variation in joint strengths lead
to the system parameter randomness. The randomuess in material properties significantly
affects the functioning of the mechanical component and is unavoidable even with the

best quality control measures.



Tests on a single material specimen or structure yield a definite value for each
material parameter such as the elastic constant, engineering constant and damage
parameter. But when a number of specimens are tested, (i) the parameter values randomly
fluctuate from specimen to specimen, (ii) within the same structure itself, the values o.
any parameter display an uncertain spatial variation, (iii) due to environmental degradation
the paiameters have uncertain fluctuations. The sample-to-sample variation, spatial
fluctuations within the structure, structure-to-structure variations and variaiions due to
environmental effects of strength, deterioration, deformation and damage parameters of
most of the present-day engineering materials are random [Hori, 1973]. This is
particularly the case with fibre reinforced composite materials. Variations in fibre size,
fibre volume fraction, fibre orientation, void content, matrix properties, interfaces and
thickness of lamina are alv’ays present and unavoidable. As a result, the elastic constants,
engineering constants and deformation parameters of fibre reinforced composites have a

random variation {Borri, 1993].

At the structural level, the geometric properties, damping corstant, stress
propagation parameters, joint strengths, degree of fixity, fastener strengths, boundary
conditions, and damage properties always possess a random variation from structure-to-
structure as well as within a single structure itself. As a result, the response and
deformation parameters of the structural system or a mechanical component possess a

random spatial variation.



1. 2 Sensitivity of Dynamic Response

The dynamic response of continuous mechanical and structural systems, i.e.
systems with infinite degrees-of-freedom, are described by partial differential equations
in space and time. A finite element formulation or any other suitable method can be
employed 1o obtain the relevant discrete mechanical and structural systems that have finite
degrees of freedom. The dynamic response of these discrete mechanical and structural
systems, are described by ordinary differential equations in time. The system matrices
such as the stiffness matrix and mass matrix that define the dynamic response are
obtained through the finite element formulation. Depending on whether these matrices
are symmetric or non-symmetric, the mechanical or structural system is accordingly called

as self-adjoint or non self-adjoint system [Meirovitch, 1980].

Many important mechanical systems including rotating machinery components,
aircraft structures, gyroscopic systems, actively-controlled mechanical or structural
systems, coupled fluid-structure systems and non-conservatively loaded structural systems
belong to the category of non self-adjoint systems. The non self-adjointness in these
systems arise due to the interaction of fast moving continuous media with deformable

bodies, coriolis accelerations, gyroscopic forces and active control forces.

The vibratory response and stability of a mechanical or structural system have
been shown through past investigations [Rajan, Nelson and Chen, 1986; Pedersen and
Seyranian, 1983; Plaut and Huseyin, 1973; Fox and Kapoor, 1968] to be highly sensitive

to any small fluctuations or variations in one or more parameters of the system. In

3



particular, the sensitivities of the response and stability characteristics of the non self-
adjoint systems [Leipholz, 1988; Meirovitch, 1980} are considerably large [Nelson and

Nataraj, 1986; Pedersen and Seyranian, 1983].

Significant research activity has taken place during the recent past regarding the
quantification of sensitivities of mechanical and structural systems [Rajan et al, 1986, Fox
and Kapoor, 1968]. However, all these works deal only with the sensitivities of system
response characteristics to known deterministic variations in the parameters of the system.
When the system parameter variations are known and deterministic, the sensitivities of
response and stability characteristics can be calculated and they also are deierministic. On
the other hand, when the system parameter variations are random, the sensitivities
correspondingly become random and the quantification of the absolute values is not
possible. The probabilistic viewpoint must be employed in this case. The sensitivities can
then be quantified using the theory of stochastic processes and the resulting sensitivities

become correlated random processes [Sankar et al, 1993; Ramu and Ganesan, 1993].

1. 3 Random Eigenvalues and Eigenvectors

The eigenvalues and eigenvectors essentially constitute the performance indicators
and state descriptors of a dynamic system, since the system charcteristics, properties and
hence the behaviour of the system are all embedded in them. The dynamic response as
well as the stability of a dynamic system are represented in terms of its eigenvelues and
eigenvectors. For instance, the natural frequencies of a dynamic system can be expressed

as the eigenvalues of the system of algebraic equations of motion describing the free

4



response. The forced response of the structural system is represented in terms of the
eigenvalues and eigenvectors of the dynamic system using the concepts of modal analysis.
Further, the critical loads or buckling loads of structural and mechanical systems are
expressed as the eigenvalues of the corresponding algebraic equilibrium equations in
terms of the flexural as well as the geometric stiffness coefficients pertinent to the static
response. In the case of non self-adjoint systems, the so-called kinetic or dynamic method
of stability investigation [Leipholz, 1980; Bolotin, 1963] leads to the calculation of the
critical loads of the structural system. The corresponding mathematical problem is an
eigenvalue problem, and the critical loads are related to the eigenvalues of the system.
This way, the eigenvalue problems are central to the response and stability analysis of any

mechanical or structoral system.

The magnitude and distribution of eigenvalues are dictated by the inertial (mass),
energy dissipation (damping) and compliance (flexibility or stiffness) characteristics of
the dynamic system. The compliance and inertial characteristics are functions of both the
material properties as well as geometric properties of the structural component. When
these properties have 4 random variation, the inertial, energy dissipation and compliance
properties of the mechanical system become random. Hence, when the material properties
such as the Young's modulus and mass density have a random variation, the eigenvalues
and eigenvectors of the mechanical system will also have a random variation. A
probabilistic approach should then be employed for analyzing the mechanical systems
with random material property variations. The probabilistic characteristics of eigenvalues
and eigenvectors are functions of the probabilistic characteristics of system parameters

which are in wum functions of material and geometric properties.




The probabilistic description of the eigenvalues and the eigenvectors has been
developed in past investigations [Benaroya, 1991; Ibrahim, 1987; Soong and Cozzarelli,
1976; Boyce. 1968]. However, only the self-adjoint systems have been analyzed and even
among them a few simple cases have been treated. Moreover, in most of the existing
works the random material properties are modelled only as random variables. Further

details in this regard are provided in the next chapter.

1. 4 Scope and Objectives of the Thesis

Non self-adjoint mechanical systems that have a random distribution of material
properties have not so far, been analyzed for the probabilistic characteristics of the
eigenvalues and eigenvectors. However, (i) many of the important mechanical systems
such as the rotating machinery systems are non self-adjoint in nature, (i1) the sensitivities
are large when the mechanical system is non self-adjoint. So, a detailed analysis of non
self-adjoint systems with random parameter variations becomes only natural and essential.
Such an analysis of non self-adjoint systems is considered in this thesis. The development
of computational solutions that both characterize and quantify the variability in
eigenvalues and eigenvectors of non self-adjoint mechanical systems is the objective of
this thesis. Since the Finite Element Method (FEM) has established itself as a powerful
and versatile tool for analyzing mechanical and structural systems, computational solutions

that can be directly employed in a finite element formulation are developed in this thesis.

Modelling of the random parameter variations using random variables can not take

into account the spatial correlation properties of the material properties, which are very
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important in that they considerably influence the second-order probabilistic moments of
response variables such as the eigenvalues and eigenvectors. Considering this fact, the
material properties are rigorously modelled using one-dimensional univariate
homogeneous stochastic fields [Vanmarcke, 1983] that are characterized by the ensemble
mean values, standard deviations, and autocorrelation functions or equivalent power
spectral density functions in each case. The probabilistic moments up to the second order
i.e. the ensemble mean values and standard deviations of both the eigenvalues and the
cigenvectors of the mechanical system are determined. The solution is sought in a form

suitable for finite element formulation.

Based on this solution, a probabilistic description for the whirl speeds and whirl
modes of high speed rotor-bearing systems is developed. A finite element solution is
developed. The finite element formulation that has already been developed for the
dynamic analysis of high speed rotor-bearing systems with deterministic parameters
[Nelson and McVaugh, 1976] is employed for analyzing the deterministic counterpart of
the rotor-bearing system with random parameters. The random variations in the material
properties of the rotor-bearing system are modelled using homogeneous stochastic fields.
The sensitivities of whirl speeds and whirl modes are quantified. The probabilistic
moments of the whirl speeds and whirl modes of the rotordynamic system are determined
in terms of both the probabilistic moments as well as the power spectral density functions
of the material property stochastic fields. The sensitivities of the rotordynamic system are

employed as a basis for solution development. Associated software is fully developed.



Design implications are systematically brought out based on the developed
solution. Since the field data on the random variations in the material properties of the
commonly-used engineering materials have different correlation characteristics, the effects
of the correlation structure of the material property variations on the second-order
probabilistic moments of whirl speeds are quantified. A parametric study is carried out

in this regard.

1. § Organization of the Thesis

The detailed literature survey regarding the random eigenvalue problems is
presented in chapter 2. The non self-adjoint eigenproblem with stochastic parameters is
considered in chapter 3. The stochastic parameters are modelled as multidimensional
multivariate homogeneous stochastic fields. An asymptotic solution that represents a
sample function of eigenvalues and eigenvectors corresponding to a sample function of
material property stochastic fields is developed. Based on this asymptotic solution, the

probabilistic moments of eigenvalues and eigenvectors are determined.

In chapter 4, the high speed rotor-bearing systems with a random distribution of
material properties are considered. Based on the solutions developed in chapter 3, the
probabilistic moments of whirl speeds and whirl modes are determined in terms of that
of the material properties and their power spectral density functions. Associated software
is fully developed and described in this chapter. In chapter S, the parametric study
encompassing the effects of different correlation characteristics of the material properties

and the effects of the bearing flexibility on the probabilistic moments of the whirl speeds



of the rotor-bearing system is presented. Also, the effects of modelling, that is, the size

of the finite elements on the variability of whirl speeds are brought out.

The research results are summarized and some of the useful design implications

are described in chapter 6. Suggestions for the future work are also provided therein.



Chapter 2

Literature Survey

2. 1 Random Eigenvalue Problems

2. 1. 1 _Eigenvalue Problems of Mechanical Systems

Eigenvalues and eigenvectors constitute a set of system descriptors and
performance indicators of a dynamic sysiem, since information about the characteristics,
behaviour, state and time evolution of the dynamic system are embedded in them. Also,
the stability parameters and critical loads of the so-called self-adjoint as well as non self-
adjoint mechanical systems are usually obtained through solving an associated eigenvalue
problem. Whirl speeds of high speed rotor-bearing systems, critical flow velocities of
fluid conveying pipes, critical active control forces and other similar stability paramelters
can be cited in this regard. Moreover, modal analysis is an effective way of conducting
a forced vibration analysis of dynamic systems, for which the eigensolutions obtained

from the homogeneous case serve as a basis.
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2. 1. 2 Sensitivities of Eigensolutions

The sensitivity of the response of mechanical and structural systems to variations
in their parameters is one of the basic aspects in the design of structures and machine
components. The sensitivity of the stability parameters and critical loads of structural and
mechanical systems is another basic aspect in the design. Since information about the
behaviour of a dynamic system are embedded in its eigenvalues and eigenvectors, changes
in the system behaviour due to parameter variations are reflected in its eigenvalues and
eigenvectors. Hence the sensitivities of eigenvalues and eigenvectors of mechanical and
structural systems should be examined when dealing with the design of systems that have
stochastically varying geometric and material properties.  Appropriate design

modifications should be worked out based on the resulting information.

Eigenvalue and eigenvector sensitivities have been extensively used in analyzing
and designing self-adjoint systems [Fox and Kapoor, 1968] and non self-adjoint systems
[Plaut and Huseyin, 1973]. Lund [1979] calculated the sensitivities of the critical speeds
of a rotor shaft resting on isotropic bearing supports to changes in the design parameters
using a state vector-transfer matrix formulation. Palazzolo et al [1983] presented a
generalized receptance method for eigensolution reanalysis of rotordynamic systems. A
non-perturbation approach has been used in their work that has the advantage of
accomodating original system modifications of arbitrary magnitude. Such modifications
are treated simultaneously so as to eliminate emror propagation which occurs when
modifications are treated in sequence. The efficiency of the procedure developed

11



increases with the total number of analyses made. Rajan et al [1986] developed equations
for the sensitivities of the whirl speeds of linear rotor-bearing systems modelled using
finite elements, including the bearing damping. They have shown that the (damped)
critical speed sensitivity coefficient, can be evaluated with a knowledge of the spin speed

(whirl frequency) sensitivity coefficients as well as the design parameters.

2. 1. 3 Eigenvalue problems of Uncertain Systems

Eigenvalue problems of uncertain structural systems subjected to conservative
loadings have been analyzed in the works of Boyce [1968], Shinozuka and Astill [1972)
and Soong and Cozzarelli [1976]. Probabilistic modelling of system parameters such as
material and geometric properties results in random eigenvalues and eigenvectors, the
statistical properties of which are determined by the random coefficients associated with
the inertia and stiffness terms of the equations of motion. The probabilistic description
of the eigenvalues and eigenvectors has been obtained, in the literature, only for a limited
and simple class of continuous and discrete systems [Benaroya, 1991; lbrahim, 1987).
Statistical measures such as the expected values, variances, and covariances of the
eigenvalues and eigenvectors have been determined. The treatment of these systems is
based on the analysis of random matrices and random differential operators [Scheidt and

Purkert, 1983].
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2. 2 Random Eigenvalue Problems of Continuous Systems

Continuous systems involve uncertainties in the geometric properties, material
properties and the boundary conditions [Boyce and Goodwin, 1964]. For these systems
the random eigenvalues have been analyzed using both analytical and numerical

approaches.

2. 2. 1 Numerical Solutions

The numerical solutions have been obtained using the following two methods:
1) the Monte Carlo Simulation (MCS) method, and

2) the Stochastic Finite Element Method (SFEM).

2. 2. 1. 1 Monte Carlo Simulation (MCS) method

In the Monte Carlo simulation method, a set of random samples of uncertain
system paramelers are generated and they are used for computing numerically the
eigenvalues and eigenvectors of the system. These eigenvalues and eigenvectors
constitute a sample sct. A number of such sample sets are determined from which the
statistics of eigensolutions are computed. This is a very computationally-expensive
method since it requires a large number of numerical solutions, and hence it becomes

unrealistic and impractical when dealing with medium or large size systems. The MCS
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methods have been used to solve problems that are related to the nonlinear random
vibration of mechanical and structural syst*ms. Different versions of MCS methods
involving digital simulation of random fields have been used to analyse mechanical
systems with stochastic parameters. The applicability and limitations of these
methodoiogies have been reviewed by Shinozuka [1987), Shinozuka and Deodatis [ 1988)
and Spanos and Mignolet [1989]. Cach of these reviews have been confined to a certain
simulation strategy, thereby lacking a detailed comparative study of the various simulation
strategies. Further, the computing environments have since seen rapid improvements in
terms of computational efficiency aind accuracy. An exhaustive and crowprehensive
review has been put forth by Ramu et al [1996] that addresses the following issues
pertinent to the various approaches used for simulation: (i) the accuracy achieved for a
particular computational effort involved, (ii) the suitability of each method to cope with
modern computational systems, (iii) the flexibility and expandability so as to account for
more general system behaviour, and (iv) the evaluation of the merits and demerits of these

approaches.

The various simulation models proposed in the literature can be classified
according to the representation of the stochastic field that is being simulated. On this
basis, the available works can be grouped into three categories: Spectrum models, Time

Series representation, Filter models and Hybrid models.
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Spectrum models

This category of simulation methods consists of methods that are based on the
summation of trigonomeiric functions. The methods are, hence, appropriately termed as
wave superposition or spectrum :aodels. The basic representation of the stochastic field
[Spanos and Mignolet, 1987] is an adoption of Rice's formula [1954], i.e. the simulation
is accomplished by summing a large number of cosine functions with weighied
amplitudes and random phase angles. Such a representation has first been used by
Borgman [1969], * herein the simulation of ocean surface elevation as a multidimensional
process has been atiempted. Practical methods of simulation of stochastic fields have
been farther developed by Shinozuka [1971]. Through a series of papers, significant
centributions to the analog and digital simulation of stochastic fields in space by spectral
representation methed have been made [Shinozuka and Deodatis, 1988; Yamazaki and
Shinozuka, 1928, Shinozuka, 1987, Shinozuka and Lenoe, 1976; Shinozuka, 1972;
Shinozuka and Jan, 1972, Shinozuka and Wen, 1972]. The first work that uses spectrum
model for the generation of multivariate and multiuimensional random fields in space has
been reported in {Shinozuka, 1974]. In this work an efficient use of Fast Fourier
Transform (FFT) techniques, the algorithms for which were just then available have been
made, thereby rendering the method computationally powerful. A natural extension to
simulate non-gaussian fields and stochastic waves has also been performed recently
[Devdatis and Shinozuka, 1989] so that the more complex problems of natural disaster
engineering can be addressed. A detailed discussion of the other works that make use of
the spectrum model for Monte Carlo Simulation can be found in [Ramu et al, 1996).
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Time series representation

The second category of simulation methods is based on the time series
interpretation of stochastic fields. Parametric models in terms of the differential equations
are developed and employed to describe the dynamic systems in this category. Unlike
the FFT-based techniques, the usage of parametric models avoids the demand for large
memory space because a very limited data such as the coefficient matrices of stochastic
fields, are stored. A recursive relationship which depends on the model under
consideration generates the output stochastic field using this limited information.
Homogeneous and non-homogeneous fields are generated [Spanos and Mignolet, 1987},
although, the non-gaussian nature has not been fully represented. For the purposes of
digital simulation, the Auto-Regressive Moving Average (ARMA) model is a very

effective tool.

Filter models

The third category constitutes the classical method of digital generation of random
data. This method consists of generating a random process as the output of an
appropriate analytical filter subjected to a simulated white noise. While most of the
works treat nonstationary cases, those of Schueller and Bucher [1988] as well as Amman

{1990] pay particular attention to non-gaussian cases.
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Hybrid Methods

By suitably modifying the filter and time series models, and combining these
methodologies, various new models have been devised. These models are called "Hybrid
models". For instance, a slightly modified version of the linear filtering models
constitutes the so-called "Pulse Train Method" which involves the generation of a pseudo
white noise process [Itagaki and Ogawa, 1975]. In [Li and Kareem, 1991], another hybrid
method is adopted wherein the linear filtering model anc the wave summation model are
combined together to yield, a non-gaussian distribution for a general n-dimensional and
m-variate stochastic field. Quite recently, Li and Kareem [1993] have generated long-
duration multivariate random processes using a hybrid discrete Fourier transform and a

digital filtering approach.

From a study of the models described above, the following observations can be

made regarding the advantages/disadvantages of these approaches [Ramu et al, 1996]:-

a) The trigonometric summation method becomes ineffective when a wide-band process
is considered, due to the large number of cosine terms. However, this drawback has
been overcome by Yang [1972] so as to enable the usage of the FFT technique in an
efficient manner even for large number of terms.

b) It is well known that obtaining an exact solution for a set of nonlinear equations is
very difficult if not impossible. Simulating this problem based on a parametric model
is quite involved.
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c)

d)

e)

The model order selection scheme in the case of parametric models is rather empirical
and is not well established.

The filter models are restricted only to one-dimensional, univariate cases and are less
effective than both the time series representation and spectrum models.

Generation of envelope processes, which are needed in reliability studies of machines
and structures, is too difficult with parametric models when compared with the wave
summation models.

The capabilities of wave summation models such as the flexibility to incorporate
methods based on "orthogonal increments” [Shinozuka, 1987} underscore their
superiority over other methods, despite the computational disadvantages associated

with the wave summation models in extreme cases.

2. 2. 1. 2 Swchastic Finite Element Method

The finite element method is widely used as an efficient numerical method for

systems whose parameters are assumed to be of a deterministic nature. However, in

practice, such parameters exhibit randomness thereby violating the above assumption.

Analyses of systems with random parameters have been carried out based on statistical

and non-statistical approaches [Liu et al, 1985]. Stochastic finite element method is a

non-statistical approach that applies the finite element analysis in a probabilistic

framework. Knowledge of the first two probabilistic moments of s;stem parameters is

sufficient for this method and there is no need for the multivariate distribution functions.

A comprehensive review of the various versions of the stochastic finite element method
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that have been developed during recent times can be found in the work of Benaroya and
Rehak [1988]. Most of these methods use as a basis the finite element method as
applicable to a deterministic problem and are categorized as: (1) first-order second-
moment methods [Ramu and Ganesan, 1993; Spanos and Ghanem, 1989; Yamazaki et al,

1988; Contreras, 1980] and (2) reliability methods [Liuv et al, 1986].

Astill et al [1972] used a combination of the deterministic finite element method
and the Monte Carlo Simulation method 1o analyze the problem of impact loading of
structures with random geometric and material properties. Nakagiri and Hisada [1982]
developed a stochastic finite element method based on a mid-point discretization scheme
to estimate the statistics of eigenvalues and eigenvectors of structures with uncertain
material and geometric properties. Vanmarcke and Grigoriu [1983] defined a scale of
fluctuation that can be used in the finite element modelling. They developed a solution
using the finite difference method for obtaining the first-order and second-order statistics
of the deflection of beams whose properties vary randomly along the longitudinal axis.
Weeks and Cost [1980], in their study of the reliability of « composite structure subjected
to random loading, justified the use of finite elements in light of the abrupt changes in
mass and stiffness in composites. Nakagiri et al [1987] used a version of the stochastic
finite element method to analyse the eigenvalue problem of laminated composite plates
considering the stochastic variations in the stiffness. Random variables have been used
for modelling the material property variations. Zhu and Wu [1991] determined the
eigensolution statistics using local averages and showed the superiority of their stochastic
finite element method over that developed earlier by Nakagiri and Hisada [1982].
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In the stochastic finite element methods discussed above, either a random variable
modelling of material properties has been employed or the stochastic fields that model the
material properties are converted into a set of random variables. Further, the calculation
of the covarances between coefficients of characteristic matrices requires repeated
integration of full length autocorrelation functions. This results in the finite element
discretization becoming a function of the material property stochastic fields. Also, a
significant loss in the accuracy with which the response moments are evaluated has becn
observed. Further, most of these works consider only one material property variability
at a time. The Monte Carlo Simulation of stochastic ficlds along with the recursive
solution of system equations renders them computationally inefficient and expensive.
Ramu and Ganesan [1993] developed a new stochastic finite element methodology using
the Galerk:n weighted residual method to analyse structures in which more than one
system parameters are stochastic. The superiority of their methodology over the

methodologies developed earlier has also been: brought out in this work.

2. 2. 2 Analytical Solutions

The analytical solutions, as detailed in the works of Boyce [1968] and Scheidi and
Purkert {1983], fall into two categories depending on whether the statistical or non-
statistical part of the analysis is performed first in determining the statistical moments of
eigenvalues. One approach consists of first expressing the solution in terms of the system
parameters, without regard to whether these parameters are random or deterministic. The
statistical properties are determined after obtaining the solution. Such an approach is
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referred to as "honest approach" by Keller {1962, 1964] and the solution can be
determined by using the perturbation method, variational method, asymptotic estimate
method, or the integral equation method. Of these four methods, the perturbation method
is the one that has been most widely used in the existing works [Hoshiya and Shah, 1971;

Bliven and Soong, 1969; Boyce and Goodwin, 1964].

The approach is said to be "dishonest" [Boyce, 1967] if the statistics of the
eigenvalues are directly determined by performing averaging analysis based on the
system’s partial differential equation and its associated boundary conditions. The statistics
can be evaluated using either the iteration methods or the hierarchy methods. In the
iteration methods the averaged integral equations of the random eigenvalue problem are
solved based on assumed cormelation relations. The hierarchy methods [Adomian, 1983;
Haines, 1967] enable all statistical functions in question to be calculated. A detailed
account of the various methods used to study the random eigenproblem of continuous

systems can be found in the paper by Boyce [1968].

Purkert and Scheidt [1979a, 1979b, 1977] treated the random eigenvalue problem
of ordinary differential equations with deterministic boundary conditions. They studied
the effects of correlation length on the eigenvalues and eigenvectors. Boyce and Xia
[1985] obtained the upper bounds for the mean values of eigenvalues through a
variational characterization of the eigenvalues. Boyce [1966] and Linde [1969]
considered a Sturm-Liouville boundary value problem with a stochastic non-homogeneous
term. Scheidt and Purkert {1983] analyzed the probabilistic izoments of the eigenvalues
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and mode shapes of random matrices as well as random ordinary differential operators.
Day [1980] developed a number of asymptotic expansions for the random eigenvalues and
eigenvectors of continuous systems. The concept of the Wiener ficld, obtained by
replacing the time variable of a Wiener process by a space coordinate, has been adopted
by Wedig (1977, 1976] as a basis to model the randomly distributed loadings or

imperfections in continuous structural systems.

The statistics of random eigenvalues of elastic strings and bars have been
determined by Boyce [1962] as well as Goodwin and Boyce [1964]. The statistics of the
eigenvalues of elastic beams have been determined by Boyce and Goodwin [1964] using
the perturbation method, the integral equation method as well as a numerical solution.
The geometry of the cross-section of the beam and its support mechanism have been
considered as random variables. Bliven and Soong [1949] carried out a similar study for
the case of a simply supported elastic beam using the perturbation method. The beam has
been considered to possess random imperfections and these imperfections have been
modeled using a lumped-parameter model. Hoshiya and Shah [1971] used the
perturbation method to analyze a beam-column with end axial load and spring-type
boundary conditions. The n-th natural frequency of the beam-column has been
determined using a probabilistic framework and the sensitivity analyses have been
performed. Shinozuka and Astill {1972] also examined a beam-column supported at its
ends by rotational springs for vibration as well as buckling. The spring supports and the
axial force have been treated as random variables. The distribution of material and

geometric properties has been considered as correlated homogeneous random functions
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that are generated using a Monte Carlo Simulation. The mean and variance of the

eigenvalues have been determined using both the perturbation analysis and the MCS.

Vaicaitis [1974] employed a two-variable perturbation expansion procedure to
determine the eigenvalues and normal modes of beams with random and/or non-uniform
characteristics which do not deviate considerably from their mean properties. A Monte
Carlo Simulation has been used to determine the statistical averages of the eigenvalues
and mode shapes of the beam. Hart and Collins [1970], Collins et al [1971], and
Hasselman and Hart [1972, 1971] developed a numerical method for computing the
statistical properties of mode shapes using the component mode synthesis method. Hart
[1973] developed a general algorithm for calculating the statistics of the natural
frequencies and mode shapes of structures. Lin and Yang [1974] suggested that practical
periodic structures always have some disorder due to imprecision in measurements,
imperfect alignment of parts etc. They analysed the random eigenvalue problem of a
disordered N-span periodic beam using the first-order perturbation analysis to determine

the natural frequencies and their associated normal modes.

2.3 Random Eigenvalue Problems of Discrete Systems

The statistics of random eigenvalues and eigenvectors of discrete systems have
been determined using the transfer matrix method, the random perturbation method and

the Monte Carlo Simulation method. Kemer [1954, 1956] developed the transfer matrix
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method for disordered periodic lattice systems. Soong and Bogdanoff [1963) examined
the statistics of the random eigenvalues of a disordered multi-degree-of-freedom using the
transfer matrix method. An N-degree-of-freedom spring-mass chain has been considered
where the masses and stiffnesses have been modelled as independent random variables
with equal mean values and equal standard deviations. Their method is an extension of
the transfer matrix method developed originally for free vibration of deterministic discrete
systems [Thomson, 1981} and utilizes a perturbational exnansion of the random

eigenvalues in terms of the random perturbation of the system parameters.

The random perturbation method (Scheidt and Purkert, 1983] is based on an
asymptotic expansion and combines the perturbation and multivariate statistical analyses.
The multivariate analysis establishes the probability distributions of random eigenvalues
in terms of the coefficients of the governing equatior s of motion. This method is an
extension of the perturbation method developed for the deterministic eigenvalue problems
[Cole, 1968; Meirovitch, 1980]. Each of the random eigenvalues can be expressed, in the
form of a Taylor series. as the sum of the deterministic component (mean value) and the
fluctuating component representing the first and higher order terms. Similarly, each
eigenvector is expressed as the sum of the deterministic component as well as the
fluctuating component. The analysis is called first-order perturbation analysis if the
fluctuating component consists only of first-order terms. It is referred to as the second-
order perturbation analysis if in the fluctuating component terms up to second order are
retained while higher-order terms are discarded. Second-order perturbation analysis is
tedious and computationally-expensive and it involves multivariate statistical analysis.
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As a consequence, most of the works reported in the existing literature deal cnly with the

first-order perturbation analysis.

Collins and Thomson [1969] employed the first-order perturbation analysis and
derived the eigenvalue and eigenvector statistics of a multi-degree-of-frecdom system in
terms of the covariance matrix of the system parameters. Assuming chat the perturbations
are sufficiently small, they computed the mean eigenvalues and eigenvectors as well as
the variances of the eigenvalues from the mean mass and stiffness matrices. Their work
considered the statistical correlation between the system influence coefficients which has
not been considered by McCalley [1960] while studying the sensitivity of the eigenvalues
and eigenvectors to variations in the elements of the mass and stiffness matrix. For a
simple chain of springs and masses with uncorrelated random masses or with random
uncorrelated stiffnesses, Collins and Thomson [1969] have shown that the standard
deviations of the vibration frequencies are linearly related to the standard deviations of
the mass and stiffness influence coefficients. 'l aeir results closely agree with the results
of Soong and Bogdanoff [1963] and have further been confirmed by Monte Carlo
Simulation. However, such a linear dependence vanishes in the presence of correlations
between the mass or stiffness influence coefficients and also, the eigenvalues are not
closely spaced. More recendy, Pierre [1985] considered two different discrete systems,
a mass-spring chain with random mass, and a chain of coupled pendula with random
lengths. The statistics of their eigenvalues have been obtained by employing a first-order
perturbation analysis. The results obtained in this work have been in agreement with the
results obtained by Soong and Bogdanoff [1963].
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2.4 Non Self-Adjoint Systems with Random Parameters

Existing works deal only with self-adjoint systems such as structures subjected to
conservative loadings and mechanical systems that do not involve coriolis forces,
gyroscopic effects etc. However, many important mechanical systems including high
speed rotors, actively-controlled systems, aeroelastic structures and pipes conveying high
velocity fluid flow, are described by non self-adjoint differential equations. The
interaction of fast moving continuous media with deformable bodies, coriolis
accelerations, gyroscopic forces and active control forces give rise to the non scif-
adjointness of the system. Safe and reliable designs of such non self-adjoint systems have
to be developed, taking into account the uncertainties in the parameters of the mechanical
system through a probabilistic framewurk. A stochastic field description of system
parameters involves considerable amount of complexity in the analysis procedures. The
use of only the mean and variance through the random variable modelling of system
parameters is inadequate to precisely describe the stochastic nature of parameter variation.
This is so because, such a parameter variation is described through a unique
auiocorrelation function or scale of fluctuation. Further, when the versatile finite element
modelling is employed to analyse the complex behaviour of real life mechanical systems,
procedures are to be developed to handle the stochasticity in both the stiffness and mass

matrices corresponding to the global dynamic response parameters.

Non self-agjoint systems with stochastic parameters have been first analyzed in
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the works of Sankar et al [1993], Ganesan et al [1993], Ramu et al [1992], Ramu and
Ganesan [1992]) and Ganesan 11996]). A closed form solution to the free vibration
problems of non self-adjoint type, wherein more than one parameter behave in a
stochastic manner, has been obtained by Ganesan et al [1993]. Beck's column and
Leipholz’s column whose Young’s modulus and mass per unit length have a stochastic
variation have been investigated in the work of Ramu and Ganesan [1992]. In these
works, an asymptotic solution to the individual realizations of eigenvalues and
eigenvectors of the non self-adjoint differential equation that describes the free-undamped
oscillations of the system is obtained. Complete covariance structures of both eigenvalues
and eigenvectors are obluired through computationally efficient expressions. Stochastic
sensitivities of eigenvalues and eigenvectors of the non self-adjoint system to the

variations in material properties are systematically brought out.

In all these works, analytical solutions have been developed for non self-adjoint
eigenproblems. A numerical solution based on the finite element formulation has first
been developed in the works of Ganesan et al {1993] and Sankar et al [1993]. The
stochastic finite element method developed by Ramu and Ganesan [1993] has been
employed to analyse the high speed rotordynamic systems [Sankar et al, 1993] an3d the
beam column with non-conservative loadings [Ganesan et al, 1993] in which the material
properties such as the elastic modulus and mass density fluctuate in a stochastic manner.
This methodology has further been extended in the work of Venkatesan and Ganesan
[1995] to analyse a general class of non self-adjoint mechanical systems with stochastic
parameters. Eigensolution variability of non self-adjoint mechanical systems that have
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an uncertain distribution of material properties and loadings has been evaluated based on

a stochastic modelling of uncertain system parameters [Venkatesan and Ganesan, 1995).
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Chapter 3

Probabilistic Moments of Eigensolutions

3. 1 Introduction

The algebraic eigenproblem cormresponding to the non self-adjoint mechanical
systems such as the high speed rotor-bearing systems is considered. The mechanical
system is treated to be a multi-degree-of-freedom system whose material and geometric
properties as well as loadings have a stochastic distribution. Conespondingly,

(i) the coefficients of .2 characteristic matrices such as the stiffness and mass matrices
are modelled as stochastic processes, and

(ii) the eigensolutions are modelled as random variables.

The approach to the probabilistic analysis deployed in the works of Ganesan
[1996]), Ramu and Ganesan [1993] and Ganesan et al {1993] is followed in this thesis.
The formulation and the solutions for the probabilistic moments of eigensolutions,
developed in the past investigations [Ganesan et al, 1993; Sankar et al, 1993] 1re

deploved as the basis in this work [Venkatesan and Ganesan, 1995].
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The sample realizations of the eigensolutions and the coefficients of characteristic
matrices are e <panded into asymptotic series. Based on these expansions and the first-
order second-moment response method of probabilistic analysis, the probabilistic moments
of the eigensolutions are determined. Corresponding computational algorithms are

developed.

3.2 The Random Eigenvalue Problem

The vibrational and stability characteristics of a m» ~hanical system can be
obtained by solving the associated eigenproblem. The eigenproblem cun be written in the

following torm [Meirovitch, 1986]:
(allx = AB1{xd (3.1)

in the above, square matrices [A] and [B] are the characteristic matrices of the mechanical
system, A is the eigenvalue and {1} is the eigenvector. Both the matrices [A] and [B] are
of order nxn where n is the number of degrees of freedom of the mechanical system.
Correspondingly, n number of eigenvalues, A, i =1, 2, 3, .., n, and n number of
eigenvectors, {x}, i = 1, 2, 3, .., n, can be obtained by solving the algebraic

eigenproblem given by Eq. (3.1).

The coefficients of the characterisitic matrices [A] and [B] are deterministic
functions of the material properties, geometric properties and, in some cases, the loadings
on the mechanical system being analyzed. For instance, the coefficients of matrices [A]

and [B] can respectively be the functions of the Young’s modulus and the mass per unit
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length (or the mass per unit area/volume in the case of 2-D/3-D structures) of a
mechanical system. As a result, when the material properties, geometric properties and
loadings are random functions, the coefficients of matrices [A] and [B] become random
functions. Due to this, both the eigenvalues A, i =1, 2, 3, ..., n, and the elements of
their corresponding eigenvectors, {x}, i = 1, 2, 3, ..., n, become stochastic quantities.
When each of the material properties, geometric properties and loadings are modelled by
stochastic fields, each of the matrix coefficients a,; i, j = 1, 2, 3, ..., n and b;; i, j = 1,
2, 3, ..., n are obtained as the derived stochastic fields. In this case, A, i =1, 2, 3, ..., n,
become ra- dom variables and each of the corresponding eigenvectors {x},,i=1, 2, 3, ...,
n, become n-dimensional random vectors, the components of which are correlated random
variables. A sample realization of stochastic fields that model the material, geometric and
loadings of the mechanical system leads to corresponding sample realizations of
coefficients a, and b, (and thus to sample realizations of matrices [A] and [B]). Based
on the sample realizations of matrices [A] and [B], the algebraic eigenvalue problem
expressed by Eq. (3.1) can be solved to yield sample realizations of eigenvalues A, and
their corresponding eigenvectors {x},. The algebraic eigenvalue problem that is expressed

by Eq. (3.1) is called as the "Random Eigenvalue Problem".

For a non self-adjoint mechanical system, such as the high speed rotor-bearing
system, both the matrices [A] and [B] are non-symmetric. The i-th solution pair (A, {x},)

is obtained by solving the equation
(a1, = A, 1B){x, (3.2)

Because of the non-symmetric nature of the characteristic matrices, it is not possible to
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obtain a unique set of eigenvectors {x}, Based on the so-called "Adjoint System"
[Meirovitch, 1980], another set of eigenvectors {y}, can also be obtained. The adjoint

system is described by the following algebraic eigenproblem:
(A1), = A, (B}, {(3.3)
This equation can be re-written as

a1l = A (8] (3.4)

The i-th adjoint solution pair (A,,{y},) is obtained from Eq. (3.4). Based on Egs. (3.2) and
(3.4), it is customary to call {x}; as the "Eigenvector to the right" and (y), as the
"Eigenvector to the left". Both the basic eigenproblem and the adjoint eigenproblem yield
the same set of eigenvalues A;. As is the case of the eigenvector to the right {x},, the
eigenvector to the left, {y},, is also an n-dimensional random vector, the components of
which are correlated random variables. The eigenproblem given by Eq. (3.3) or Eq. (3.4)
is called in this thesis as the "Adjoint Random Eigenvalue Problem", and correspondingly

the eigenproblem given by Eq. (3.1) is called as the "Basic Random Eigenvalue Problem”.

The probabilistic measures such as the ensemble mean, standard deviation and
autocorrelation function (or its equivalent power spectral density function), of the
stochastic fields that model the material properties, geometric properties and loadings of
the mechanical system, are prescribed. From these, the stochastic characteristics of
coefficients a; i,j=1,2,3,..,nand by i,j=1,2,3,..,ncanbe determined based
on the deterministic relationships between these coefficients and the material properties,
geometric properties and loadings of the mechanical system. This way, each of the

coefficients a, and by have their corresponding ensemble mean values, standard deviations
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and autocorrelation functions (or their equivalent power spectral density functions). The
ensemble mean values are denoted by &, and 'B,,, the standard deviations are denoted by
o,, and 6,,, and the autocorrelation functions are denoted by R,; and Ry; (the equivalent
power spectral density functions are denoted by S,; and S;). The sample realizations of
both the matrices [A] and [B] are used to obtain the sample realizations of eigenvalues
A, their corresponding eigenvectors to the right {x}; and eigenvectors to the left {y},
through solving Egs. (3.1) and (3.3). The properties of these sample realizations of
eigensolutions are now described. To this end, egs. (3.2) and (3.4), which are in the form
of the generalized eigenproblem, are written in the form of the standard eigenproblem as

follows (ascuming that the [B] matrix is invertible):

Generalized eigenproblem Standard eigenproblem
[Alx) = A[B)x} --------- - [Cl) = Alx}
KA} = AY[B) --------- =HI1C) = MY
The probabilistic characteristics of coefficients ¢,; i, j = 1, 2, 3, ..., n have to be

determined from that of a, and b,; through the deterministic relationships between them.

(i) If {x), is an eigenvector to the right corresponding to the eigenvalue A;, then x{x},
is also an eigenvector to the right, where y # 0 is an arbitrary scalar. Similarly, if {y}
is an eigenvector to the left corresponding to the same eigenvalue A, then x{y}, is also

an eigenvector to the left, where x # 0 is an arbitrary scalar.

(ii) Both the eigenvector to the right and the eigenvector to the left can correspond to

only one eigenvalue, but an eigenvalue, say A, can have many eigenvectors to the right,
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viz. {x}, {x}y, ..., {x}y and many eigenvectors to the left, viz. {y},, {y)p w0 (¥}
Indeed, any linear combination of the eigenvectors to the right (x},,, {x};0 s {X}uo
corresponding to the eigenvalue A is also an eigenvector to the right. As well, any lincar
combination o1 the eigenvectors to the left {y};;, {y}y, ..., {y)u comesponding to the

eigenvalue A, is also an eigenvector to the left.

(iii) If the eigenvalues of matrix [C] are distinct, then the eigenvectors to the right and
eigenvectors to the left corresponding to these eigenvalues are independent, in the

deterministic sense.

(iv) For distinct eigenvalues of [C], the eigenvectors to the left and eigenvectors to the
right of [C] are orthonormal, that is, {y},T(x}i = 0 if i # j. Further, for i = j, the
eigenvector to the right and that to the left for a given eigenvalue A satisfy the relation

(y}Tixh= 1.
These properties will be used while deriving the probabilistic measures of eigensolutions.
3. 3 Asymptotic Expansions

In order to characterize and account for the stochastic nature of matrices [A] and
[B], an asymptotic parameter o, 0sa<1, which is a deterministic parameter, is introduced

into the mathematical formulation such that the sample realizations of the matrices [A)

and [B] are expanded into their corresponding asymptotic series, according to
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(4] = [A]+ alA(~)]+ P[A(~)]+ ... (3.5)

[B) = [B]+ o[B(~)]+ 0’[B(~)]+ .... (3.6)

In the above, overbars denote ensemble mean values. As can be seen from the above two
equations, the sample realizations of the characteristic matrices [A] and [B] are split into
two components in each case: the mean component (the first term of the asymptotic
series) and the zero-mean stochastically-fluctuating component (the second, third and
higher order terms of the asymptotic series). A procedure for determining the mean
component [A] from a random matrix {A] may be found in the appendix. Based on Egs.

(3.5) and (3.6), the coefficients a, and by of the [A] and [B] matrices are expressed as:

a, = a+ 0a,(~)+ o (~)+ ... (3.7

i

b,

b+ ob (~)+ &b ()% ... (3.8)

The deterministic case is obtained when o=0 and the extreme case of stochasticity is
represented by letting a=1. Substituting Egs. (3.5) and (3.6) into Eqgs. (3.2) and (3.3), the

following pair of matrix equations is obtained:

((A] - A[B)W = - a((A(~)] - A[B(~)D),
= 0 ([A(~)] = A[B~DW), - ...

(3.9

([A)" - MBIW= - a([A(~))" - MB~NDY),
= (AT - AB~)DYY, - oo

(3.10)

Ccmresponding to the asymptotic expansions of characteristic matrices, the sample
realizations of eigensolutions A, {x}; and {y}, are expanded into their relevant asymptotic

series, given by
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A, = Aa,, 0, 0., 0. bs 0, 0,..., 0)

[1} 1 0 1
+ O, (G Gpyeeees by b,

(3.11)
+ azx,,(a,ﬁ’. Aoy B b1+
= A+ Qv oA+
&, = &iay 0, 0., 0, by, 0, 0,..., 0)),
+ alx(a,, ape, by b)), .12
+ 0@y, Gppyeny by B )t e,
= (d+ ald,+ o?ld,+ ...
b, = H(a,, 0,0,., 0, b3, 0, 0,..., 0),
+ 0ly(as Qe by bpyoee ), G13)
+ oly(ay, al... b}, Byt .
= {1+ aly),+ o2yl + ...
where,
6y = a"a(~); by = a"b(~);  m=12,. (3.14)
6y =a,; by =b, s = 12,0 (3.15)

and o is the asymptotic parameter which is a deterministic quantity.

In the above expressions, overbars denote ensemble mean values. Further A,
Ao (X} {x}is... and {y}y, {¥}p.... are the zero-mean stochastically-fluctuating
components of eigensolutions. Now, the asymptotic expansions given by Egs. (3.5) and
(3.6) and (3.11-3.13) are substituted in the basic random eigenvalue problem as well as

the adjoint random eigenvalue problem:
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(A)+ olA(~)]+ 0[A(~)]+ )0+ ol + o2, + ..)
= K+ ah,+ o?h,+ . )([Bl+ alB(~2)]+ 0 [B(~)]+ ...) (3.16)
(6,+ ald, + oy, + ...)

G+ alyl+ a2+ YA+ A+ AT+ ....)
- (v ahge @Phgs O obe o2)e ) B

((B]+ a[B(~)]+ &[B(~)]+ ....)

After expanding these two equations and equating the terms of like powers in the
asymptotic parameter ¢, the following system of equations is obtained:

A1) = A[B1kx), (3.18)
The above equation, obtained by equating the coefficients of o on both sides of Eq.

(3.16), can be equivalently expressed as

() - X, (g by ; rs=1.2,..n) [B))

(3.19)
i (a,, by rs=12,.m) = 0
Eq. (3.17) yields the following equation based on the same procedure:
mr(y-)i = x: [B]Tf)_')‘ (3.20)
The above equation is equivalently written as,
(A - A, @y, by, ; rs=1.2,..n) [BID
(3.21)

ty (@n by s rs=1,2,.m) = 0

In a similar manner, comparing the coefficients of & on both sides of Eq. (3.16), one gets

A+ (AR = B, + KB (~)1G+
A, (Bl

(3.22)

or equivalently,
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(A1 - Aag by i rs = 1,2, ... n) [B])
U@ Gppyeres Oy bpgpe)), =

- ([A(~)] = A(ag by irs = 1,2, ... n) [B(~))

(3.23)
@) b2irs=1,2 .. n),
+ A, (@g, Gy by, b (B
k@ bSirs=1,2, .. n)),
Similarly, comparison of coefficients of o on both sides of Eq. (3.17) yields,
[A)7),+ AT, = KB, + KIB~)G),+
(3.24)
MBI,
which can be written as,
()7 - A8 by rs = 1,2, .. m) (BT
(@, Goees by bl =
- (AN - @, b, s = 1,2, . [B())
(3.25)

as ba s rs = 1, 2, .. ),
+ Ay Gy B BB
{y(a,g, b,?, s rs = 1,2, m)
Similarly, other systems of equations that pertain to higher order solutions can be

obtained.

Characteristic matrices [A] and [B] contain coefficients & and b, respectively,

which are in turn obtained from the ensemble mean vaiues of material properties,
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geometric properties and loadings. This way, the algebraic eigenvalue problem expressed
by Eq. (3.18) is defined in terms of the ensemble mean values of material properties,
geometric properties and loadings. The ensemble mean values of A, and the elements of
{x}; can be obtained by solving Eq. (3.18). In a similar manner, the ensemble mean
values of the elements of {y}, are obtained by solving Eq. (3.20). Now, using these
ensemble mean values of eigensolutions, the zero-mean stochastically-fluctuating
components A, {x};, and {y},, are obtained based on Egs. (3.22) and (3.24). To this end,
Eq. (3.22) is pre-multiplied by the transpose of the ensemble mean matrix of the

eigenvector to the left, {y};, to yield the following equation:

A, + B IAG~®, = THY B,
(3.26)

+ THNIB~NW + A, HYBIR,

This equation can be rewritten as

GNA - TOVENU,+ AN,
(3.27)

- x:()-’}xT[B(ﬁ')]m. = l:1{3’-}{(3]5}-'

The adjoint eigenproblem defined by the ensemble mean values of characteristic matrices,
Eq. (3.20), can be rewritten as
oA = KHIE) (3.28)

After post-multiplying the above equation by the stochastic component matrix of the
eigenvector to the right, {x},, and rearranging, one gets

YA, - KHNBIW, =0 (3.29)
Further, from the properties of the random eigenproblems that are listed in Section 3.2,
it can be shown that

MBI, =1 (3.30)
Substitution of Egs. (3.29) and (3.30) into Eq. (3.27) yields the expression for the
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stochastic component of eigenvalue, A;;, as

Ay = THAGCR, - T BB~ 33D
Taking the transpose of Eq. (3.20) and imposing the resulting equation as well as the
othogonality condition described by Eq. (3.30), on Eq. (3.27) yields the following

equation:

M@ Grees by b = W@, by s s = 1, 2, )l [A(~))

& (@ by ins = 1,2, . n}

- Mag by ins =12 .. n) (3.32)
Yag by s rs = 1,2, .. 0 [B(~)]

0 0
&ag by rs = 1,2, .. n)),

It can now be observed that a sample realization of the stochastic component of the
eigenvalue can be obtained as a linear function of the ensemble mean components of
eigenvectors (X}, and {y}, the ensemble mean value of eigenvalue A, and the zero-mean
components of characteristic matrices [A(~-)] and [B(~)]. Now, the sample realizations
of stochastic components {x},, and {y},, are sought. To this end, the following linear

transformations are employed based on the properties of eigensolutions listed in Section

3.2
Wy, = Y 40kl (3.33)
k=
or equivalently,
(@, @ by by, = 3 d MO, (3.34)
kel
and
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]
Wy = X 4G, (3.35)
=t

or equivalently,

y(@g ayn by by = Y d (0D, (3.36)

ksl
These linear transformations express the sample realizations of {x};, (or {y};) in terms
of coefficients d,(i,k) (or d,(i,k)) as well as eigenvectors {x}, (or {y},). The orthogonality

condition with respect to the characteristic matrix [B] is now considered in order to solve

fOl' {x}ll and {y}ll'

WiBI, =8, =1 (337

where &, is the Kronecker's delta. Upon differentiation, the above orthogonality
condition yields

dyY(Blx) + {)d[Blid + ) [Bldl), = 0 (3.38)
Since, for a sample realization d[B)] = [B(~)], d{y}! = {y),," and d{x}, = {x},, Eq. (3.38)
is expressed as

IBI,+ HYIB~W,+ HYBIW, = 0 (3.39)
It may be noted here that, Eq. (3.39) corresponds to a single realization of the ensemble
of equations obtained by differentiating Eq. (3.37). Further, in Eq. (3.39) and in the
sequel {y},’ represents {y(a,’, a ', a,2 .., b.% b,', b.% ... )}. A similar representation
is valid for {x},, also. The linear transformations for {x}, and {y},, that are given by
Egs. (3.33) and (3.35), are utilized in the above expressions and hence the following

constraint equation for the coefficients d,(i.k) and d,(i,k) is derived.
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WIBI,+ BB~ + BB, = 0

(Y d bk ) (Bl BB+ HBI Y d kb, ) = 0

ksl kw]

3.40
d (LDONIBIA,+ BB+ HYIBIA G, = O (.40

d i)+ d i) + BB, = 0

d i)+ d (i) = - OB~

The following orthogonality relationships have been made use of, while deriving the

above result:

WIBIR, =1 3 GBI, =0 (3.41)
ORIBIOY, =1 ORIBIOY, = 0 (3.42)

The above relationships can also be formulated as
WRBW,

H T
This way, the constraint equation for both the coefficients d,(i,i) and d,(i,i) is obtained as

3y (3.43)

[

5, (3.44)

a linear function of the stochastic component of the characteristic matrix [B], eigenvector

to the left {y}, and eigenvector to the right {x},.

In order to solve for the coefficients d,(ik), i#k, first the basic eigenvalue equation

is pre-multiplied by the transpose of the eigenvector to the left.

B ([Al- ABDW), = 0 (3.45)
Differentiation of the above equatios yields the following equation:
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Hli0AT- ABDL + HY(AGN- B~ 3, (B, (3.46)

+ HY((A1- A[BDI, =0

At this stage, the linear transformation for the stochastic component {x},,, given by Eq.

(3.33) is substituted into the above equation.
Wl (A] - A[BDU, +

WA~ - ALB(~)] - A [B]) 1, + (3.47)

WYUAY - MBDY 4Gk, = 0

kel
The first term on the left hand side vanishes by virtue of Eq. (3.2). Substitution of the
orthogonality relationships in terms of the characteristic matrix [B], that are similar to

Egs. (3.41-3.44), into the resulting equation leads to the expression for the coefficient

d,(i,k) as detailed below:

W (1A] - ABDW, + DY (A~ - A[B(~)] - A, [B]) W, +
W (A] - ABDY d (ibld, = 0

Fal
0 + 6N (A~ - A[B(~)) U, - A 0N [B] O, +
WY (Al - ABDY. d ik, = 0

k=)

HI(AG~] - AB~D) W), - 0 + HIUA] ~ A[B)) d (i), = 0
48
HIUA - MBI W, + d i) HY (4] W, (348)
- A dij) b B1 &) =0
WUA] - A[B(~)D) W, + A dGg) - A dii) =0

dij) = b [A] W 7 A -A) -
MO B W, 7 A i

dik) = Yl (A & 7 A -
AVE B~ W, 7 A-A)  ,i#k
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Now the adjoint eigenproblem is considered and the corresponding equation is pre-
multiplied by the transpose of the eigenvector to the right. Following an analysis which
is similar to the above procedure, the expression for the coefficient d (i k) can be obtained
in the following form:

dfik) = GIIACN, 7 -2 -

ADTIBNW, 7 A-A)  ,i=k (3.49)

Also based on the same analyses, the expressions for the coefficients d,/i,k) and d,(i k),

i=k, can be obtained as

dii) = - 1/ 2B~ (3.50)

dii) = - (1/2)h} B~ (3.51)

These relationships satisfy the constraint equation for d,(i,i) and d(i.i) given by Eg.
(3.40). Eqgs. (3.48) and (3.49) correspond 10 a single realization of the respective
stochastic fields. Further, d,(i,i) and d (i,i) are free from the randomness in [A], and are

explicitly governed only by thc randomness in [B].

3. 4 Probabilistic Moments of Eigensolutions

In the previous section, closed form solutions for the first-order terms of the
asymptotic expansions given by Egs. (3.11-3.13) have been obtained. The asymptotic
expansions are¢ now used as a basis to obtain the, probabilistic moments of the
eigenvalues, eigenvectors to the right and eigenvectors to the left. It has already been
said that Egs. (3.11-3.13) describe sample realizations of eigensolutions in terms of

asymptotic series.



3. 4. 1 Ensemble Mean Values of Eigensolutions

The asymptotic expansion for the eigenvalue is first considered and the equations

for two sample realizations are written down as

A0 = T oA .. (3.52)

AP = T+ ah+ .. (3.53)

where the superscripts indicate the sample realizations 1 and 2. The ensemble mean value
of any eigenvalue can be obtained by performing the expectation operation on both sides
of any of the above two equations.
<AV = K>+ <o+ ... (3.54)
Siuce the first term on the right hand side of the above equation is the eigenvalue
obtained by solving Eq. (3.18) and further, the parameter o is a deterministic quantity,
the above equation can be rewritten as
As = T+ acd>+ ... (3.55)
It has already been said that the stochastically-fluctuating terms A, are zero-mean random
quantities and so, the above equation can be further reduced to
AP = X (3.56)
In a simlar way, it can be shown that the ensemble mean value of any sample realization
of A, is equal to the eigenvalue obtained from Eq. (3.18).
AP = X 3.57)
From asymptotic expansions given by Egs. (3.11 - 3.13), the equivalent expression is

written as
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> =Aay0, .., 0b,0, .. 0 (3.58)
In a similar manner, the ensemble mean values of eigenvectors are obtained as

<W> = &(ag, 0, .., 0, by O, ..., O)), (3.59)

<iy)> = Hag, 0, ..., 0, by, 0, ..., O, (3.60)

since a,™, b," are linear functions of zero-mean input random fields, for m 2 1. Hence
the mean values of eigensolution can be obtained by solving only once the so-called

"Averaged Problem" or "Averaged Multi-Degree-of-Freedom (MDOF) system”, given by

(A - K[BH&, = 0 (3.61)
(A" - XBING), = 0 (3.62)

The second-order probabilistic moments of eigensolutions are now evaluated, in terms of
the second order probabilistic moments of material property stochastic fields as well s

the ensemble mean values of eigensolutions.

3. 4_2 Standard Deviations of Eigensolutions

The two sample realizations of any eigenvalue A; given by Egs. (3.52) and (3.53)
are multiplied after their respective ensemble mean values are deducted from them. The
following equation is obtained as a result.

A" - AT - AP>)

o - @ - (3.63)
= K+ AP+ ) = K (K oA ) - % )

At this stage, the expectation operation is performed on both the sides of the above

equation according to
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<P - AP - T> = R2AAD> (3.64)
The above equation is obtained from Eq. (3.63) after substituting Egs. (3.56) and (3.57)

in Eq. (3.63) and retzining terms upto second-order in asymptotic parameter o. The term
on the left hand side of the above equation can be recognized to be the variance of the
eigenvalue A, In a similar manner, the first ttrm on the right hand side can be
recognized as the variance of the stochastically-fluctuating component A, since it is a
zero-mean random variable. As a result, the variance of any eigenvalue is given as a
linear function of the variance of the stochastically-fluctuating component and the
squared-value of the asymptotic parameter o.

Var(a) = «*Var(A;) (3.65)
The variance of the stochastically-fluctuating component A;, is now derived from Eq.

(3.31) as follows. The two sample realizations A, and A,/ can be expressed, based on

Eq. (3.31) as
A = BIIA D,
(3.66)
- TN B Y~
hi = B4 @R,
(3.67)

- KN [B P~ 3,

In the above, superscripts (1) and (2) associated with characteristic matrices [A(~~)] and
[B(~-)] indicate their sample realizations 1 and 2. Multiplying the above two equations
and performing the expectation operation on both the sides of the resulting equation, the

following expression is obtained:
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ANP> = <(GNIACE, - KRB V)
(FHIA P(~NE, - RHVB D (a)}e)>
= <A N~NR A O~
(3.68)
+ EY<BN B V(~NE (B Pl >
- R<BY[B V() HVTA D)) >

- K<BITA O HIB O~ >

When the coefficients of the characteristic matrices [A] and [B] are statistically
independent, the last two terms on the right hand side of the above equation are equal 1
zero. Since the stochastically-fluctuating components A, and A, are zero-mean random
quantities, the term on the left hand side of the above equation is recognized as the

variance of A,,. As a result, one gets

Var(A,)) = <GIA Y(~)0HV[A D)W >
(3.69)

+ (K< (B V(~))3 GV [B P~ G >

The above equation is recast into the following form such that the variances of the
coefficients of characteristic matrices can be identified.

Vard)) = <Y Y Y Y7, 0. (~)%,, 5,8, (~)X >

rel p=l s=] g=l

(3.70)
) n A " L] - (l) - _ (2) _
&) <§ ?:.’ 2; qzl: Vo bra ()%, ¥ by ()5 0>
In the above, y, and y,, indicate the coefficient at the location (r, p) of the column vector
y. In a similar manner x,, and x; indicate the coefficient at the location (s, q) of the
column vector x,. Since these coefficients are ensemble mean values, the above equation

turns into
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Varh) = 3 33 35, ¥, %, ¥, Covia,(~), a,(~))
r=1 p=l s»] gs=} (3‘71)

n n n n

+ Ry )Y )IP I Yip Xa ;ql Cov(b, (~), b, (~))

ra]l pwl s=] gqul

Substituting the above equation in Eq. (3.65) yields the equation for variance of any

eigenvalue A, as

n n n n

Vard) =’y Y Y 35, 3, X, X, Cona,(~), a,(~)
re] pel s=] g=l (3.72)

n n n n

+ (GX',YE 2 E E; o ip X, }'ql Cov(b, (~), bpq(~))

r=1 pel ss| gel

3. 4. 3 Covariance Functions of Eigenvalues

The sample realizations of any two eigenvalues A; and A, are multiplied after their
respective ensemble mean values are deducted from them, and the following equation is

obtained.
(Af”‘ <A.fl)>)0‘u(2)_ <}"1(2)>)
= [+ adi+ ..) - KUK+ oA+ ...) - K] (3.73)

- A2 (M@
= oA, Ay

In the above equation, terms up to second-order in asymptotic parameter . have been
retained. At this stage, the expectation operation is performed on both the sides of the
above equation and makes use of Egs. (3.56) and (3.57).

<POFODT> = a? AL (3.74)
The term on the left hand side of the above equation can be recognized to be the

covariance between any two eigenvalues A, and A, In a similar manner, the first term
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on the right hand side can be recognized as the covariance between the two stochastically-
fluctuating components A;, and A;,, since they are zero-mean random quantities. As a
result, the covariance function of eigenvalues is given as a linear function of the
covariance between two stochastically-fluctuating components A;, and A, and the squared-
value of the asymptotic parameter Q.

Cov(?k‘,ll) = u’Cov(k,I,kjl) (3.75)
The covariance between the two stochastically-fluctuating components A, and A, is now
derived from Eq. (3.31) as follows. The two sample realizations ;" and A;,® can be

expressed, based on Eq. (3.31) as

AP = PIADINR,- THTBOR), (3.76)

= AR - THBOIR, (3.77)

In the above, superscripts (1) and (2) associated with characteristic matrices [ A(~~)] and
[B(~-)) ‘ndicate their sample realizations 1 and 2. Multiplying the above two equations
and performing the expectation operation on both the sides of the resulting equation, the

following expression for the covariance between any two eigenvalues A;and A, is obtained.

df;)lm <({-}T[A (l)(~)]m x [B u)(~)]m )

(B 1A P, - THHB P~ 3)>

TIA V)R HVIA 2~

<y {A D)l iyl | 1%l> (3.78)
+ RE <GB A~ )00 Y [B “(~100)>

- T<HHA U] HYB D) >

- T<GH (B “(~) 0 F (A ] >

50



When the coefficients of the characteristic matrices [A] and [B] are independent, the last
two terms on the right hand side of the above equation are equal to zero. Since the
stochastically-fluctuating components A;, and A;, are zero-mean random variables, the term
on the left hand side of the above equation is recognized to be the covariance between

A, and A;,. As a result, one gets

Cov(h,A,) = <GYTA V(~)BHA O(~)]1F)> +

KE<HNIB V(BB P~ > (3.79)
The equivalent expression for the covariance between any two eigenvalues A and A, is
given by

Cov(?»,.kj) = <(A- <A>,) (k}.- <A> )>

= < {ag, Oy 0, by Oy, O AV~
(@, 0,...y 0, by, O,y O,
@y Opusy O, by Opy O [AP(~)]
(@, Oy 0, by, O,y O >
+ 3(a), 0,y 0, by, 0., 0) 550
A8y, Oy 0, B}, O,..., 0)
< {ag, Oy 0, by, Oy, O [BO()]
tay, O,..., 0, by, 0,..., O,
ags Oyeess 0, By, Oy, O [BA()]

{:(a:’ Ov"’ 09 b‘(])’ ow-) 0)}j >

In the above, Egs. (3.11-3.15) and Eqgs. (3.58-3.60) have been made use of. The cross

covariance terms vanish since matrices [A"(~)] and [B®(~.)] are statistically independent.
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Equation (3.79) is recast into the following form such that the covariance functions
of the coefficients of characteristic matrices can be identified.

Covr, ) = <Y T Y Y5, a ()X, }J',Pa,‘,:)(~)}'q,>

r=1 psl s=1 gsi}

LK TE T T YT, B, 5 b0

rsl pml sal gul
In the above, y, and y,, indicate the coefficient at the location (1, p) of the column vector

(3.81)

y. In asimilar manner, x, and X, indicate the coefficient at the location (s, q) of the
column vector x,. Since these coefficients are ensemble mean values, the above equation
turns into

Cov(h,,A) = rz.:: zl: ‘2; ;37,, Yip X, %, Coa,(~), a,(~2))

mme (3.82)
+ r, xj EE 225" ylp ;‘I Iql COV(b"(Af), qu(N))
rs] pel sw] gu}
The product ¥,.y;, of Eq. (3.82) is called here as the stochastic sensitivity gradient of A,
with respect 10 a,, while the product XX, is referred to as the stochastic sensitivity
gradient of A, with respect to a,. Similarly, the producfi&ﬁw represents the stochastic
sensitivity gradient of A, with respect to b, while the produclij'i,j'iq, denotes the stochastic
sensitivity gradient of A, with respect to b,,. Substiituting the above equation in Eq. (3.75)
yields the equation for covariance between any two eigenvalues A, and A, as
Covir, M) = o YY 3 ¥y, v, x,x, Cova, (~) a,(~))

rul ps]l sw} gel

(3.83)
+@2 X LYY ¥y, ), X, %, Conb(~), b,(~))

ral pwl sl ¢m=]

It may be noted that when i = j, Cov(A;, &) = Var(A). From the above equation,
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substituting i = j the expression for variance of any eigenvalue A; should be obtained.
The resulting expression can be seen to be the same as the expression for Var (A;) that

is given by Eq. (3.72).

The covariarce and variance functions corresponding to coefficients a,, a,,, b,, and
by, are determined from their respective power spectral density functions or their

equivalent autocorrelation functions. For instance, one has

Vara,) = fS,nm d - ffkan(z) eV dE df (3.84)
Var(b,) = [, (0 df = [ [R, (B) e¥® dE df (3.85)

where fand & are wave frequency and lag distance, respectively, of the stochastic fields
of a, and b,,. The Wiener-Khinchine relationship [Vanmarcke, 1983] has been made use

of in deriving Eqs. (3.84) and (3.85).

The equivalent expression for Eq. (3.83) is written as

CovtA) = @ T T 35, %, 5, F, Conamda ) +

p=l q=1 1 s=1

CEEYI VN Y, Ey ¥,y Ey Covlbp b (~) (56

pel g=1 rel 50

where,

Vg *Vmp(@0 0. 0,52, 0 .00 i mp=l.2 ..n (3.87)

Xpo = %@, 0 0,55,0 ..0) 5 mp=l, 2 ..n (3.88)
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K=Ah@n0..0bs0.0 : i=,2 ..n (3.89)
K =M 0..0,b,0..0 ;  j=1,2,..n (3.90)
Ymp and Xy, correspond to the coefficient at the location p of {y], and {x},. When i=j,

Eq. (3.86) corresponds to Var(A,). A similar analysis shows that, after making use of Egs.

(3.48-3.51), the equations for covariance between any two eigenvectors can be written

as
Cov({x},.,(x}j) =YY VX -% ®-% )
ke}l =)
. - o _ (3.91)
<Ey R AT ) - TAF Y BN X))
Ay K AT - TAY N (BEIN T )>
Cov({y},-r,{y}f) = E E &, -%,) & - AN
kel [=]
—r _ — _ (3.92)
<Ayl AN XL - BAY Y (B~ X))
Ay ) AN T), - TAT N B X })>
where,
i, = (ay, 0 ... 0, by, O ... O, : t=1,2, .. n (3.53)
b, = bas, 0 ... 0, by, 0 ... 0)), : t=1,2, .. n (3.94)
A =A@y 0,..0 b0, ..0 ;=L 2, ..n (3.95)

Variances can be obtained from the above covariance equations by substituting i = j.
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3. 4. 4 Complete Covariance Matrix of Eigenvalues

Based on Eq. (3.83), the matrix of covariance functions of eigenvalues is now

obtained. This matrix is expressed as

[ Var(A)  Cov(Agd) . . Cowd,A)

Coviph)  Vard) . . CowAh)
[C] A S (3.96)

| Covia,A) Cov(dgh) . . Var(h)

A matrix, of order 2n°x2n’, consisting of the covariance functions of both stiffness and

mass coefficients is formed according to

Var(a) Cova,,a)) . Covba) . Cowbaa)
Cova,a) Var@) . CowWb,a) . Cowb,a)

Bl i ain ey | 07
AB| | Cowba) Cowba) . Vard) . Cowb,ab)

| Cowbua) Cowbua) . Cowbub) .  Var(b,)

where the square matrices [A] and [B] of size nxn are mapped onto their corresponding
column vectors of size n’x1, so that the covariance functions of their coefficients can be

determined. Accordingly, one can write
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kp i=1; j=1, 2, .. n=k

kp i=2; j=1, 2, . n=k,,,

(3.98)

kv, i=n; j=1, 2, .. n-—-k«.,,wﬁ

Based on the elements of the eigenvectors of the averaged system, the following two
matrices, one corresponding to the elements of matrix [A] and another corresponding to
the elements of matrix [B] each of size nxn? are formed.
[

A Aue Augs 0 Ay W

AZl.ll )'21,12 }‘21.13 vt AZl.ml

[A,,] = Aagr A Aup ¢ 0 Ay (3.99)

i AllI.ll Aul,lz A'uJ,l3 ¢t Aul.mr

where,

Ay Vi %y s A= Yu X (3.100)

7‘21.:1‘ Yiz Xiz 3 weene lp,ﬂ= Yop X 3

In a similar manner, matrix [A,;] is formed according to

[ -ll(All.ll) ')'1(7‘11.1:) ";'l("u.ls) o -AI(AII,M)
'lz(lzn.u) ‘}'z()'z:.n) ’12(121.13) v e "'z("zn.»)
ARy AR A -ty (3.101)

[A.5] =

L-A‘n(lul.ll) 'Au(lu.n) -lu(lul.ﬂ) vt -ll(lllﬂ)
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Combining Egs. (3.96-3.101) and by virwe of Eq. (3.83), the complete covariance matrix

of eigenvalues is written as

c )
u = [[A,,1 1 [AB1] [ M B] (A, | A Q07 (3.102)

Following the same procedures, the complete covar,ance matrix of eigenvector *to the

right, denoted by [Z,] and ot size n’xn’, can be constructed as follows:

21=[[x 11 x,gl) i 1] B di7 (3.103)
xJ 7 ) B A ’

. ere,

[ Varx)  Covxyx) Covixyx) . . Cowxpax,) |
Cov(x,x,) Var(x,)
[z] _ . . Varx) . . . (3.104)
x .
| Conxyax)) . ‘ .« Var@z,2)

X i=1; j=1,2,...n=xj
Xp i=2; j=l,2,...n=x(,,ﬁ
. (3.105)

x”’ i:n; j= 1 ,2,..." =x«._1’,|¢j)
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o %

R

t ’A]

Lt Faln

[ -A () “Ay (%10
A% ARy

I = “Alan) A )

1,13
X213

%313

3,.2.13

=G0
Ay (%19)
=A3(%319)

i -Anz(‘xnz,ll) ~Anz(xnz.12) -An’(xnz.l‘))

with matrices [x,,] and [x,p] being of order n’xn?,
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Chapter 4

Whirl Speed Analysis of Stochastic

Rotor-Bearing Systems

4. 1 Introduction

The high speed rotor-bearing systems that have a stochastic distribution of material
properties and axial loadings, called herein as "Stochastic Rotor-Bearing Systems", are
considered. The stochastic (dynamic) analysis of such rotor-bearing systems is developed
based on a consistent finite element formulation. The va.iation of material properties, the
Young's modulus and mass density, as well as the fluctuations in axial loadings over
mass products are considered to constitute onc-dimensional univariate homogeneous
spatial stochastic fields. The finite element formnation that had been developed earlier
in the work of Nelson and McVaugh {1976] is insidered. This formulation has been
developed for a rotor-bearing system with deterministic material properties and loadings.
This formulation is so furthered and adapted as to account for the randomness in material
properties and axial loadings. The non-self-adjoint eigenproblem that quantifies the whirl
speeds and whirl modes is formulated. The equations for the probapilistic moments of

eigensolutions that have been developed in Chapter 3 are further modified in order to
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derive the probabilistic moments of whirl speeds and whirl modes. The relevent equations

are then recast into a compuationally-convenient form.

4. 2 Finite Element Formulation

The flexible rotor-bearing system that consists of discrete disks, a rotor shaft with
distributed mass and stiffness, and discrete bearings at the ends is shown in Fig. (4.1).
In order to modei the dynamic characteristics of this rotor-bearing system the equations

of motion should be developed. This is carried out in several steps.

4.2 1 Description of Dynamic Motion

The first step is to define the reference {rames which are essential and useful for
both qualifying and quantifying the dynamic motions of the system. For the rotor-bearing
system under consideration, two reference frames, namely, a stationary (fixed) reference
frame and a rotating reference frame, are used to describe the dynamic motions of the
system. As can be seen from Fig. (4.1), the rotor motion is described with respect to two
inertial frames of reference which are (i) the XYZ triad (whicn is the s:ationary frame of
reference) with the X-axis coinciding with the undeformed center line of the rotor shaft,
and (ii) the xyz triad (which is the rotating frame of reference) with the x-axis coinciding
with the undeformed center line of the rotor shaft. This way, the X and x axcs are

colinear and coincident with the undeformed center line of the rotor shaft.
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Fig. 4. 1: Typical configuration of a rotor-bearing system
(Afwer Nelson and McVaugh, 1976 [58])
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The second step is to describe the dynamic motions of the rotor-bearing system
in terms of translational and rotational displacements. The dynamic responsc of the rotor-
bearing system is defined with respect to the stationary frame of reference, by two
translatious V(s, t) and W(s, t) in the Y and Z directions respectively, and two small angle
rotations B(s, 1) and I'(s, t) about Y and Z axes respectively. Here, s denotes the axial
position along the rotor shaft and t denotes the time. This way, the elastic center line of
the deformed rotor system is located using translations V(s, t) and W(s, t), and the plane
of the cross-section is oriented using rotations B(s, t) and I'(s, t). Further, the cross-
section also spins normal to its face relative to the stationary frame of reference. The
cross-section rotation angles are defined using another triad denoted as abc which is
attached to the cross-section of the shaft such that the a-axis is normal to the cross-

section. The frame abc is defined such that:

(i) Small angle rotation I'(s, t) about Z-axis defines the triad a’’b’’c”’
(ii) Small angle rotation B(s, t) about b’" defines the triad a’b'c’

(iil) Spin angle ¢ about a’ defines abc

These cross-section rotation angles are shown in Fig. (4.2). The angular rate of the triad
abc relative to the stationary frame of reference XYZ is denoted in terms of its

components ©,, w,, . that are defined by

a -8inB 1l 0
w,} = |cosB sind O cosd (4.1)
cosBcos$¢ 0 -sind

When only small deformations are considered, the small angle rotations B(s, t) and I'(s,
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Fig. 4. 2: Cross-section rotation angles
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t) are approximately colinear with the Y and Z axes (of the stationary frame of reference)
respectively. Further, when the system is considered to run at a constant speed and when
the torsional deformation is negligible, the spin angle ¢ is equal to £2t, where €2 denotes

the rotor spin speed.

The translational displacements V(s, t) and W(s, t), and the rotational
displacements B(s, t) and I'(s, t) of a typical cross-section (relative to the stationary frame
of reference) are transformed into corresponding translational displacements v and w, and
rotational displacements [ and vy (that are relative to the rotating frame of reference),

through the following orthogonal transformation:

{gl=[(Rlp} (4.2)
where,
v %
(G-I} {p= ;’ (4.3)
and
oswt -sinwt 0 0
(R] = inwt coswt 0 '0 (4.4)
0 0 coswt -sinwt
0 0 sinwt coswt

In Eq. (4.4), o denotes the whirl speed.



4. 2. 2 Finite Element Modelling

The third step is to model the physical (infinite-degree-of-freedom) rotor-bearing
system as a mathematical finite-degiee-of-freedom system i.e. Multi-Degree-of-Fr edom
(MDOF) modes, tnat consists of an interconnected set of discrete elements. This way, the
entire rotor-bearing system is modelled as being comprised of a set of interconnecting
components that are (i) rigid disks, (1i) rotor shaft segments which are the finite elements,
and (iii) linear bearings. Essentially, the rotor-bearing system is modelled as a collection

of finite elements and rigid bodies.

The fourth step is the development of equations of motion for various discrete
elemeats of the MDOF model. In the sequel, first the equations of motion for the rigid

disk are developt d vsing a Lagrangian formulation.

4. 2.2.1 Rigid Disk

Turbine and comipressor wheels as well as gears are usually modelled as rigid
disks, and it is usually assumed that the inertial coupling between the longitudinal,
torsional and lateral motions of the disk is negligible. In many engineering applications,
it is also acceptable to consider the width of the disk tc be negligible in comparison with
the overall length of the rotating assembly. The resulting "thin-disk model" is depicted
in Fig. (4.3). The kinetic energy of a typical rigid disk with its mass center coincident

with the elastic center line of the shaft is given as
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Fig. 4. 3: Thin-rigid-disk model
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GTIDOO a

4= 1 +_w 0 I, 0} {w (4.5)
2:}{’2’%} ' ’ ° °
0 0 I, c

c

Eq. (4.1) that defines the angular rate components of the triad abc (relative to the
stationary frame of reference) is now substituted in the above equation. Further, only
terms up to second order are retained in the resulting equation so that the kinetic energy

is given by

SRR ST

Based on the above expression, the Lagrangian equation of motion of the rigid disk with
respect to the stationary frame of reference XYZ and for constant spin speed, d¢/dt =

is written.
(M8 + (81 (g9t -Qcd {¢g9t = {9} (4.7)

In the above, M;* and M’ denote the mass matrices of the disk corresponding to the

translational and the rotational motions respectively and they are given as

(M) = (4.8)

o © © ¢
oo 8 o
oo © o
©o 0o o o
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0 0 0 o

g 0o 0 0 o0
[MR] = 0 o ID 0 (4.9)

00 0 I,

The matrix G of Eq. (4.7) denotes the gyroscopic matrix of the disk and is given by

0 0
0 0
0 -I,
I, 0

(69] = («.10)

o © OO
o oo o

Further, the velocity and acceleration vectors {dq¥/dt} and {d’q¥/d¢’} are, by virtue of Eqgs.

(4.3) and (4.4), given by

{g} = wls)ip + [RIp} (4.11)

g} = (R - w2 Pl + 20 (8] {p} (4.12)

where overdot denotes differentiation with respect to time, and

-sinwt -coswt 0 0
1, coswt -sinwt 0 0
Sl = = ([R] = )
[s] o)[ ] 0 0 -sinwt -coswt| (4.13)
0 0 coswt -sinwt

The force vector {Q°} relative to the stationary frame of reference is now
determined. The forcing functions include the effects of mass unbalance, interconnection
forces and other external forces on the disk. The force vector {Q%} can be formed
corresponding to each case. In what follows, the proceaure of constructing the force

vector due to mass unbalance is given. Considering a disk, the mass center of which is
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located at (1, §,) relative to the triad abc, the unbalance force vector in the stationary

frame of reference is

d 'Cd

{pd} = S cosQt + {M} sinQe
0 0 (4.14)
0 0

= {02} cosQt + {07} sinQt
It is convenient to write the equation of motion with respect to the rotating frame of
reference. In doing so, an inertial restoring force appears and further, the so-called
Green’s gyroscopic stiffening effect [Green, 1948] is also present. In wrder te write the
equation of motion in the rotating frame of reference, use is made of the orthogonal
transformation, given by Egs. (4.2-4.4) as well as Eqs. (4.11-4.13). These equations are
substituted in Eq. (4.7). Pre-multiplying the resulting equation by [R]" the following

equation of motion is obtained.

tvd 4 (M) BYY + 0 (2([87 + [BY) - vlGd) P} -
W (([MF) + [MF]) +v[E9){pd)= {p9}

(4.15)
The Green's gyroscopic stiffening effect is quantified by the term
-0?([M4f] + [Mg] + v[89){pd}
For the case of a thin disk wherein I = 2I;,, the above equatior: reduces to
(IMF) + [M)) P21+ wi2(8) + (1 -v) [69) P} - .16

W ([MF] +(1 - 2v) (M) {p9) = {PY)
In Egs. (4.15) and (4.16), v denotes the whirl ratio which is equal to the quotient {Yow.
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4. 2. 2. 2 Finite Rotor Element

The distribution of mass and stiffness in a rotor shaft is generally irregular. So,
the rotating assembly (rotor shaft) is divided into a number of shaft segments which are
individually variable and discontinuous in cross-section. Subsequently, each of the shaft
segments with distributed mass and stif{ness (i.e. the case ¢ infinite-degree-of-freedom)
are reduced to a finite-degree-of-freedom element, following either of the following two
approaches: (i) lumped mass model and (ii) consistent mass model. The consistent mass

model approach is very useful and is described herein.

In the rotordynamic system, the material properues viz. the elastic modulus E and
the mass per unit iength y, and the axial compressive load P are considered as fluctuating
randomly about their respective ensemble mean values. The random fluctuations of the
material properties arc modelled here as independent one-dimensional univanate zero-
mean stochastic fields in space and the random fluctuauons of axial loading are modelled
as a zero-mean random variable. This way, the elastic modulus and mass per unit length

are represented by

E{(s) = E(1+aa(s)) (4.17)

pi(s) = pll+ab!3)) (4.18)

where, overbars indicate the ensemble mean values, s rep.esents the axial position along
the rotor shaft, a(s) and b(s) are two independent one-dimensional univaniate
homogeneous real stochastic fields with zero mean, and o is an asymptotic parameter

introduced to characterize the stochastic fields in the equations of motion. These two
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stochastic fields are quantified by their respective varances o, and o,’, and
autocorrelation functions R,,(§) and R, (§), where & is the lag vector, or their equivalent

power spectral density functions S,,(f) and S.(f), where f is the wave frequency.

The compressive axial loading is given by

where overbar indicates the ensemble mean value and ¢ is a random variable quantified

through 1its variance 6.°.

For a mtor shaft element, the time-dependent (translational and rotational)
displacements, V(s, 1), W(s, t), B(s, t) and T'(s, t), of the cross-section are also functions
of position s along the axis of the element. A consistent mass model of the shaft element
with uniform cross-section is now developed by representing the translation of a typical
cross-section of the element in terms of the endpoint coordinates (i.e. nodal displacements
of the finite element). The interpolation using cubic Hermitian polynomials is employed
for this purpose. The rotation of the cross-section can be obtained in a similar manner
from the interpolated displacements. The endpoint coordinates of a finite element arc
denoted by q5, i = 1, 2,....,8, which are the time-dependent displacements (both rotational
and translational) of the finite rotor element shown in Fig. (4.4). Basedon qf, i =1,
2,...,.8, the translation of a typica: point within the finite rotor element is given by

{V(s. t)

= y ° (4.20)
W(s, t)} [F (s))ig®(t)}

where the matrix of interpolation functions, that are functions of axial position s, is given
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Fig. 4. 4: Finite rotor element




by
‘4’1 0 Wz ¢3 0 0 4’4 (4.’21)

(¥] =
0 ¢, -y, O 0 ¥, -y, 0
These interpolation functions are the static displacement modes associated with a unit

displacement of one of the endpoint coordinates while all others are constrained to zero.

These functions can be shown to be

¥, =1-3(§)=+2<-§)3
¥, = s(1-2(2)+(3)?2)
? 1 1 (4.22)

where | is the length of the finite element.

The rotational displacements can now be related to the translational displacements through

ow
(4.23)

As a result, the rotation of a typical point within the shaft finite element is given, by

combining Eqgs. (4.20) and (4.23), as
(4.24)

(s, t) o
R RIS

where the matrix of interpolation functions correspondirg to the rotational displacements

is given as
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(@] =

m’eﬂ . 0 ok ZON PR 0 Y, 9, 0
ol T[4 0 0w e 0 0w
(4.25)

where primes denote differentiation with respect to the axial coordinate s.

The kinetic and potential energy functions are defined in terms of the element
interpolation functions and the Lagrangian equation of motion is then stated. Ix order to
write the element equations for the kinetic and potential energies (due to the flexural
deformation as well as the axial load), these quantities are first stated for a differential
element of length ds. Integration of the resulting expressions over the length of the finite
element then yields the energy functions corresponding to the finite element. Physically,
the shaft element is viewed as being composed of a set of disks. For one such disk that
is located at an axial location s, the expressions for the kinetic energy 4t and the

potential energy due to flexural deformation dU,’ are

AR (1+ab(s)) 0 ' 1!
d e = _J; u P 22
T S {:’} [\ ) E(1+ab(s))] {:} ds+2¢ ids

S8 °] Bl as - bhas a0

0 I,
{V”}T[t(lﬂza(s))l 0 ] {v} ds
w”’ 0 E(i+ga(s))1] W'~

{4.26)

d[]g0 =

NS

(4.27)

The potential energy due to axial load dU,* is given by
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T
e _ _ 1 v’ (1+¢) 0 v’
w3 TN el B e e

Substituting the equations for the translation and rotation of a typical point within the

finite element, in the above three equations, one gets

gre = W (1+ab(s)) g2 T[T g ldss 2471, ds

1
2
+%:i,, (g (@)T[®){g%ds (4.29)
~$i T [ O] T[D,) Igelds

dug = _; E(1+aa(s)) I {97 (¥ "}17(¥ ‘l{geds (4:30)

dug = - % B(i+c) (gt [P )TIP ") {glds (4.31)

It can be observed that the first term in the right hand side of Eq. (4.29) accounts for the
kinetic energy due to rectilinear translation, the second term accounts for the spin-axis
rotation, the third for rotary inentia, and the fourth for gyrnscopic coupling. Based on
these three equations, the kinetic energy, potential energy due to bending, and potential
energy due to axial load of the finite element are obtained, through integration over the
entire element length. The mass and stiffness matrices of the shaft element are identified
while performing these integrations. The total energy of the element is the sum of kinetic
energy and potential energies due to both flexural deformation and axial load, and it is

given by
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Ug + UE +1° = % (g ((Re+KS (~) -R2-K2(~) 1) (g9
" % (g o7 ((Me+MF (~) +ME) ) {ge)

18+ dlgrnelg
The mass matrices are given as

1
(MF] = ftr(mb(sn [®]17(P]ds
0

1
(271 = [1,(@17(@)ds

0

(4.32)

(4.33)

(4.34)

where [M;° ] and [M;° ] represent the mass matrices of the finite rotor element

corresponding to translational and rotational displacements respectively.

The stiffness matrix due to flexural deformation, denoted by [K;° ], and the stiffness

matrix due to axial load (the so-called geometric stiffness matrix), denoted by [K,° ], are

given as

1
[K$) = fm+aa(s))z[w~1f[w“1 ds
[+
1
= fEI[‘P”]T['P”] ds
[4]

1
+ faEa(s)I['i’”]’['!’”]ds
[¢]
= [R§] + [Kg(~)]
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1
(k¥ = [P(1+c) (17T ) ds
o1
=fp['P']T['P']dS (4.36)
° 1
+ f'Pc[‘P ‘1T(¥ ‘) ds
0
= [R7] + [KZ(~)]
All of the above matrices can be seen to be symmetric. The matrix, [N°], in Eq. (4.32)

i$ a non-symmetric matrix and is formed as
1

(Ne] = fi,,[d)r] T(®,) ds (4.37)
0

Corresponding to the constant spin speed restriction, i.e. dp/dt = Q, the Lagrangian
equation of motion in the stationary frame of reference, for the finite rotor element is

derived, based on the expressions for element energies. It is given as

(([M5) + [MZ(~)]) + [M]) {g°) - QG {g°}

+ (([R3] + [Kg(=)]) - ([R3] + [KJ(~)])) {ge}l= {o°}
(4.38)

where the gyioscopic (coupling) matrix [G®] that is skew-symmeltric is given by
(Gel=([N°] - [N9)T) (4.39)
As in the case of rigid disk, the force vector {} includes the effects of mass unbalance,

interconnection forces and other external forces acting on the rotor element. Considering

the effects of mass unbalance, Archer [1963] derived an expression for the equivalent
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unbalance force, based on the consistent mass matrix approach. For an element with

distributed mass center eccentricity (n (s), {(s)) the relevant expression is

-

0%, = [B(1+b(s)) Q% (YT

(s) =§{s)| .
({'C‘(s)}cosnt v {n (s) }smot) (4.40)

= (0% + {02 (~)) cosOit
+ (108 + {02 (~)D)sinQt

o

where the force vectors {Q,°}, {Q.(~)}, {Q,°} and {Q,°(~)} have to be obtained considering
a particular case of mass unbalance distribution. The equation (4.39) can be employed
to obtain the nodal forces due to mass unbalance corresponding to a particular distribution
of mass center eccentricity over the rotor element. For instance, wheq the case of a linear

mass unbalance distribution given by

n(s) = n,(1-5) g (£)

(4.41)
C(S) = cL(l—"gz‘) + cR(-?)

is considered, the ensemble mean components of the equivalent nodal unbalance force

vector are given as
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S0+ Sl =1+ en,d

S%CLJ: * El—ocﬁl: ‘3‘1‘0"]Ll‘ * '2-%“5‘1"
AR L L 1 Sl
(4.42)

In the above, (1, §;) denotes the mass center eccentricity at the left end of the element,
ie. ats =0, and (ng {z) denotes the mass center eccentricity at the right end of the

element, ie. ats = 1.

Subsituting Egs. (4.2-4.4), and (4.11-4.13), after they have been extended to include four
coordinates at each end of the element, into Eq. (4.38) and pre-multiplying the resulting

equation by [R]T yields the equation of motion in the rotating frame of reference as
q y

(([®2] + [M7(~)]) + [Mg]) D€
+ @ (2[M+R2(~)] + (1 -v)[G°]) e}
+ ((({RS) + (kg (~))) - [K]) - ([ ((F])
+ [M2(~)])] +(1 - 2v) [(M7)){pe} = {(Pe)
(4.43)

where the transformed mass matrix is given by
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(R+R2(~)) = [RIT ([M3)+(MF(~)]) (8] (4.44)
In deriving the above equation of motion, due to the fact that the polar moment of inertia
of the element cross-section [, is equal to twice the diametral moment of inertia of the

element cross-section I, the following idzntity has been made use of.

[RIT [MZ] (8] = -;-[G"] (4.45)

Now it can be observed that the finite element formulation described above includes the
effects of the distributed rotary inertia and gyroscopic coupling within the rotor element.
The formulation also accounts for the distributed mass unbalance acting along the length
of the element. Further, the finite element model derived here is based on the so-called
Euler-Bemnoulli beam mode!, which does not account for shear deflections. Consideration
of shear deflections, however, would require the introduction of new interpolation
functions (that can be obtained from the static solutions for the so-called Timoshenko

beam model) into the foregoing analysis.

4. 2. 2. 3 Bearings

The rotating assembly of a machine interacts with other rotating assemblies and
the static support structure through a variety of mechanisms, the most prevalent being the
rolling-elemert bearings, fluid-film bearings and dampers, seals, splines, couplings and
aerodynamic interconnection mechanisms. In most cases, these components are non-linear
in their force-displacement and force-velocity relationships. However, the analysis

methods can be based on the assumption that the rotor-bearing system operates in a small
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neighbourhood of the static equilibrium. When the system is subjected to dynamic
loadings which are superposed on the static loading, it is assumed that the comresponding
interconnection forces acting on the rotating assemblies can be closely approximated by
linear force-displacement and force-velocity relationships. The bearing systems
considered in the present analysis are limited to those which can be represented by the

governing equation of motion of the form
(cP){g® + [KkP){gh = {05, (4.46)

which has been written in stationary frame of reference. In the above

kb b Cb CD
{qb} - {;} ; [KP) = V: ‘: ; [ch) = V: v: {4.47)
kyv Ky Cwvv Cww

and {QP} is the external force vector. Transformation of the equation of motion given
above to the rotating frame of reference can be performed by making use of Egs. (4.2-4.4)

in Eq. (4.46) and pre-multiplying the resulting equation by [R]*. As a result, onc gets
[R]1T[c?]) [R1{pH + [R]7(k®] [R]{pH = (P4, (4.48)

For isotropic bearings, this equation reduces to the following form
cb(11{p® + k2(11{p4 = {PH,,, (4.49)

where ¢® and k® are the damping and stiffness coefficients of the isotropic bearing.

4, 2, m Equations of Motion

The fifth step is to assemble the system equations of motion based on the element

equations of motion. The procedures for assembly of the system equations of motion in
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the stationary and rotating reference coordinates are conceptually equivalent. When the
system equations of motion are assembled in the stationary frame of reference it is
possible to transform the assembled system equations to the rotating frame of reference

through the transformation relationship stated in section 4. 2. 1.

The system displacement vector {¢'} is formed to be consisting of all the nodal
(translational and rotational) displacements and is defined as

{ge il = Ut .. Aglm g™, .o gt o v e ]

elementl element2  ......

Next, the connectivity relationships of each of the finite elements (and the element nodal
displacements) with the system displacement vector given above, are defined. The set of
element nodal displacements constitutes a dependent set whereas the set of systemn nodal
displacements constitutes an independent set, and the connectivity relationships essentially
represent the geometric constraint relations between the element nodal displacements and
the system nodal displacements. For the r-th element with n, degrees of freedom, the

connectivity relationship is written as
g4 = [B)igd,., (4.51)

where [B,] is the connectivity matrix corresponding to the r-th finite element. The
coefficients of this martrix are equal to unity when the element and system reference
frames are the same and also both the element and nodal degrees of freedom are the
same. These coefficients of the connectivity matrix essentially identify the components
of the system displacement vector {q'} that are common to the element displacement

vector {q'}).
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The equations of miotion corresponding to the finite rotor elements are assembled
based on the above connectivity relationship. The assembled undamped system equations
of motion, consisting of the component equations of mouon (4.7), (4.38) and (4.46), are
of the form

(7] + (M (~=))) {g} - Q (6% (g9

2
+ ([R*) + [K°(=))) {g® = {p° ) + {Qs(~>”4n-l (4.52)

in the stationary frame of reference. For computational purposes, it is convenient w0

rewrite the above equation of motion in the first-order state-vector form

[ (0] () + M5 (~) )],
((#° ] + [M5(~)]) -Q(6*)
+[(uw] ¢ M0()]) [0) }{h} -
0 ([R®] + [K®(-)])
(4.53)
where
q}} {m {o} }
# = L - (4.54)
{:q} % +{pe(-)}

4. 3 Whirl Speed Analysis

For an assumed solution of the form, [h/= [hJe™ , the eigenvalue problem

corresponding to the homogeneous case of equation (4.53), is
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[o] [1]

| -{(IR®] + [K°(~)]) !
| ((° ] + [M5(~)])}  {Q([R® 1+ [K2(~)])"2[G®]}

(4.55)

For orthotropic bearings (and when kyy" = k" = 0) and zero damping, the eigenvalues
of equation (4.55) appear as pure imaginary conjugate pairs with the magnitude equal to
the natwral whirl spced. The superpocition of a solution with its conjugate represents an
associated elliptical precession mode. Isotropic bearings produce circular precession

modes for a rotating assembly.

In rotating coordinates and for the case of isotropic bearings, Eq. (4.52) transforms

into the form

(7] + (M5(~)] b} + 0(2([F ] + [H°(~)])
-0[G%]) P} + (([R°] + [K*(~)1) (4.56)
- ([ ) + (M5 (=)])+v[E°])) 9 = P9,

The natural (circular) whirl speeds and the associated mode shapes can be obtained from
the homogencoas form of Eq. (4.56). These modes are constant relative to the rotating
reference frame and, further, the two planes of motion are 90 degrees out of phase. It is
necessary, therefore, to consider only one of the two planes of motion and assume a

constant solation {p*}=(p,}=constant. The associated eigenvalue problem is given by
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([R°] + [K°(-))) {py)

4.57
=@ (([F] + [M*(~)]) + v[G*]) {pg),,., ( !

Tie 2n number of eigenvalues are real and, further, the positive values w, with associated

veciors {p,}® represent the natural (circular) whirl speeds and the mode shapes relative

to the rotating frame of reference at the specifieC whirl ratio .

4. 4 Stochastic Properties of Characteristic Matrices

The stochastic properties of the coefficients os both the stiffness and mass matrices
due to the randomness in material properties and axial loadings, are now determined.
Each of these matrices have been split into a mean component and a stochastically-

fluctuating component. The ensemble mean values of the coefficients p,, are given by

1
<uip = [<E(1+ab(s)) (F,¥; + 10,®)>ds
0

<Bp(1l+ab(s))v,>ds (4.58)

1

= fivijds = By
[¢]

O'—ﬁb-

where, I is the second moment of the area of cross-section while ¥ and ¢ are matrices
of interpolation functions of size 2x8 as can be seen from Eqs. (4.21) and (4.25). The
variance of any coefficient J; is derived by considering two sample realizations of the

coefficient and performing the expeclation operation after multiplying them together.
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Var (pu) = Var (p,,('\'))

1
)2 [<b(§) B (&) >V 5 (81 vy (§r) Oy,
: (4.59)

"h o'su..

Rpp (& = §5)vyy(8,) v;7(§2) d§,dk,

n
E
T:

00

The covariance between any two coefficients j,; and p,, is determined by considering two
sample realizations of p, and p, multiplying them together and performing the

expectation operation,

COV(lJijr Hrg) = Ci’g,zs
11 (4.60)
= (“F)szRbb(El - 52)V11(51)"za(52) dEIdEZ
Q0

The stochastic properties of the coefficients of the stiffness matrix, k;;, and the coefficients
of the gyroscopic matrix, g, can be derived in a similar manner. The probabilistic

moments of k, and g; are given by

<kyp> = f<E (1+aa(s)) I(P7P))>ds = Ky

_ ' (4.61)
o]

1
] (1+ab(s)) £;,>ds = Gyy
[¢]
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112
var (k;;) (afl‘:.l')sz}?“(ﬁ1 - E,)
00
WY ()WY (&) W8, W) (E,) dE,dE, (4.62)

11
+ P 20c2ffll!_/i (§,) ‘l’_lj (€;) d§,d§,
0%

11
(“E)szRbb(Ex - §2) £45(8,) £,5(8,) d€, a8, (4.63)
0’0

var(g;;)

The covariance between any two coefficients of stiffness matrices is given by

11
COV(kij ' kxa) = Cilg,ra = (¢ET) szRaa(El - EZ)
00
VT (E) W (E) Wy (8,) W5 (E;) dIE,) dIE,) (4.64)
11
+ P2o2[ [l (8, W) (8 ¥, (8,) ¥, () B,
00

The cross covariances between the coefficients of mass and stiffness matrices are zero as

the two stochastic fields a(s) and b(s) are independent.
4. S Probabilistic Moments of Whirl Speeds and Whirl Modes

Comparing Eq. (4.57) with Eq. (3.1), the probabilistic moments of whirl speeds
can be obtained. Here the matrix [B] consists of two correlated parts and further, one
scalar multiplier (the whirl ratio) is involved. So, the formulas for the second order

probabilistic moments developed earlier in Chapter 3 are now further adapted.
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The expected mean value of any whirl speed @’ is given by

<> = O,
The covariance function of whirl speeds is now determined.

Cov(w?,, @) = < (0, - @5). (0 - @5)> = <0, , &) >
= <({ps NIk () U B ), -0 p5 N ([M5(~) ]
+ G~ U)o dps Kk~ H B Y

-0 ps KM ()] +p(G(~))) (BT )) >

= < Py K~ 1T ), A D IR~ I ) >
+ @ . @, A ps KM ()] + ples(~ ) {B5 ),

{ps NIM ()] +p(G () D (BT ) >

+ o, <d ps TR () U T ), L ps T IME () )

+RIGH~ 1) {B7 ), > + @ <l p5 V(M5 (~) ]

s~y DE ), A ik~ (B )>

(4.65)

(4.66)

(4.67)

where the symbol ~. indicates the adjoint system eigenvector and the symbol = indicates

the corresponding ensemble mean value.

The variance function for any whirl speed is obtained from Eq. (4.67) by

substituting 1 = j.
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Var(@?) = <{ pf (kS (~) U B ), - {ps MK~ DT ), >
s . <A PP M ()] + HIGH () ])
{z ) {ps M) ) + G~ 1) {5, ) >
+ @ (<A ps VRS () HBD Y, A pg TUIMS (~) )
+ RIGH~) ) (BT ) > + <l pg V(Mo () )

CH{m) 1T ), A ps HiKks(~)] (T )
+ U INDsl, Aps h{K:(~)] AT 1> ) (4.68)

The equations for covariance function, Eq. (4.67), is recast into the following

computationally-convenient form:

n n n

covia’, , @) =YY V¥ <kppla) kisl~)>
1 1 1 1

(ps 1, dgh, dps I, dB5h,,
+of, . Y Y Y Y <mi(~) mi(—) >
1 1 1 1

dps ), desh, dps 1, dBgh,,

(4.69)

That the cross correlations between stiffness and mass matrices are zero in the above
equation has already been taken into account. In the above equation, m'm =m, +Ag,
and ({p%)" ), denotes the r-th element in the array {p~,}", of the solution pair (o’ ,

{ﬁo}s )

From Eg. (4.69) the variance function for any whirl speed @ can be obtained by
substituting i = j. The complete covariance matrix of whirl speeds can be generated using
the expressions developed. Following the same procedure, the probabilistic moments of

whirl modes are determined as follows:
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<{ pJ)> = { B},
covi{py), . {p),) =<tip), -} . (lp) -1{B))>
=< {p),. {p) >

= <$ d, (1, k) {po}k; d. (7. k) B > (4.70)

coviip, ¥, {p ))) = <Y d, (i, k)BT Y d, (4, kip)]> (4.71)
1 1

ie.,

covi{p ), \ {p ) =¥ Y 1/ @ -@0) . 1/ (@ - @)
1 1
< Ups i (R (~)) LB )
- o4l ps e~ 1B ) s i (K (~)) (T )

- ol ps ()BT L) >

(4.72)
and
Covilp, l , {p, N1 =YY 1/ @ -0 . 1/ (@ -,
1 1
< Ups (ko (m)] {15 1)
- o psh, (M () HUB L) . U ps V] (Ko~ I T ),
- oiips ) e B L) > (4.73)
where,

[Mox ()] = [ME()] + U [GE(A) ]
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Chapter 5

Variability of Whirl Speeds of

Rotor-Bearing Systems

5. 1 Introduction

Based on the theoretical developments described in Chapter 4, the variability of
whirl speeds of a high speed rotor-bearing system is studied. The effects of the stochastic
distribution of Young’s modulus and mass density of the material, on the whirl speeds of
the rotordynamic system are quantified. The variation of the probabilistic moments of
whirl speeds with the correlation properties of stochastic fields that model the uncertain

material properties is analyzed in detail. Design implications are discussed.
5. 2 Description of the Rotor-Bearing System

The rotor-bearing system that has previously been employed for numerical study
in the work of Lalanne and Ferraris [1990] is considered. This rotor-bearing system is
shown in Fig. (5.1) and it consists of a flexible horizontal shaft and 3 disks. The shaft

is mounted at its ends either on fixed supports or on flexible bearings.
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5. 2. 1 Geometric Properties

The length and cross-sectional radius of the shaftare 1.3m and 0.05m respectively.
The dimensions of the three disks, denoted in Fig. (5.1) as D,, D, and D,, are given below
in Table (5.1). The disks D,, D, and D, are located along the longitudinal axis of the
shaft at a distance of 0.2m, 0.5m and 1.0m respectively. The two flexible bearings at the
ends of the shaft are assumed to be identical and they are characterized by their

stiffnesses that are given as follows: k, = 5x10"N/m ; k,,= 7x10"N/m ; k,,= k,,= 0.

Table 5.1: Dimensions of the disks in the rotor-bearing system

DISK D, D, D,
Thickness (m) 0.05 0.05 0.06
Inner Radius (m) 0.05 0.05 0.05
Outer Radius (m) 0.12 0.2 0.2

5. 2. 2 Finite Element Model

The shaft is modelled using n number of uniform finite elements. The lengths of

the finite elements may or may not be equal. Further, in the parametric study, the shaft
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is modelled using 4, 6, 8 and 10 finite elements. The lengths of the finite elements as

well as the location of the disks in each of the above cases are detailed below.

Case (i) ; 4 elements

Lengths of elements 0.2m, 0.3m, 0.5m, 0.3m
Disks located at nodes 2,3,4

The finite element model of this configuration is shown in Fig. (5.2).

Case (ii) : 6 elements

Lengths of elements 0.2m, 0.2m, 0.1m, 0.2m, 0.3m, 0.3m
Disks located at nodes 2,4,6

Fig. (5.3) depicts the finite element model of the shaft comprising of six finite elements.

Case (iii) : 8 elements
Lengths of elements 0.2m, 0.2m, 0.Im, 0.2m, 0.2m, 0.1m, 0.2m, 0.1m

Disks located at nodes 2,4,7

The finite element model is show:: w1 Fig. (5.4).

Case (iv) : 10 el.
Lengths of elements 0.2m, 0.1m, 0.1m, 0.1m, 0.2m, 0.2m, 0.1m, 0.1m, 0.1m, 0.1Im

Disks located at nodes 2, 5, 8

The finite element model of the rotor system with three disks and a shaft consisting of

ten finite elements is shown in Fig. (5.5).
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5. 2. 3 Stochastic Field Modelling of Material Properties

The disks and shaft used in the rotor-bearing system are made of steel. The mean
value of the Young's modulus and mass density of steel are taken to be 2x10" N/m”and
7800 kg/m’ respectively. The Young’s modulus and mass density are modelled as onc-
dimensional univariate homogeneous stochastic fields. The correlation properties of the
stochastic fields representing the fluctuating components of the Young's modulus and
mass density are represented using five different correlation models. The choice of thesc
models in this work is due to their wide use in the literature [Vanmarcke, 1983). These
correlation models that characterize the second order stochastic propertics of both

Young’s modulus and mass density are:-

1. Triangular Correlation Model

2. Markov Model (or First-order Autoregressive Model)
3. Second-order Autoregressive Model

4. Gaussian Correlation Model

S. Finite Power White Noise Model

Triangular Correlation Model

The triangular corr:lation function decreases linearly from 1 tc 0 as the lag

distance increases from 0 to a, i.e.
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(. JE-E ]
¢ (E,-E,) 1 1 - =5 for|E,-E,|<a,
0 for|§,-§,|2a

wherc a is a constant. (§;-§,) is the lag distance and ¢(§,-&;) is the correlation function.
For the purpose of illustration, the correlation values of the triangular correlation model
are plotted as a function of the lag distance in Fig. (5.6). The effects of constant a on the

correlation properties are brought out for three values of a, viz. 10, 30 and 50.

Markov Model

The first-order autoregressive correlation model (commonly known as AR(1) of

Box-Jenkins models) is given by

¢(E,-E,) = el b < constant = f(e)

where (§,-&,) is the lag distance and ¢(&,-€,) is the correlation function. It may be noted
that this model can be interpreted as the Markov process representation of the random
fields. The constant 1/b governs the shape of the correlation function and is related to
the correlation length e. Figure (5.7) shows a skeich of the first-order autoregressive
model as a function of the lag distance for three values of the constant b viz., 10, 30 and
50. The correlation length is determined by the condition that the correlation is negligible
for 1§, - &I > €. For instance, if the correlation at € is reduced to 5% of that at IE, - £,
= 0, the correlation function can be written as

(1€, - &l =€) = ¢(€) = 0.05
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Fig. 5. 6: The triangular correlation function for a = 10, 30 and 50.
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Fig. 5. 7: The first-order autoregressive function for b = 10, 30 and 50.
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in which case we have b = 0.3338¢. This type of exponential correlation is widely used

in practical applications.

Second-order Autoregressive Model

The correlation function ¢(&;-&,) in the case of the second-order autoregressive
correlation model is given by
¢(8,-8;)= (1 ' IEI;m]e-m-wc , € = constant

where (§,-&,) is the lag distance. The correlation values of this model are shown in Fig.
(5.8) as a function of the lag distance. The influence of the constant ¢ on these

correlation values is presented for ¢ = 10, 30 and 50.
Gaussian_Correlation Model

The squared exponential correlation model which is commonly known as the

Gaussian correlation model is given by

¢ (§,-8,)= e Wtl/d® 4. congtant

where (§,-&,) is the lag distance and ¢(E,-&,) is the correlation function. This model is

illustrated in Fig. (5.9) for three values of the constant d, viz. 10, 30 and 50.
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Fig. 5. 8: The second-order autoregressive function for ¢ = 10, 30 and 50.
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Fig. 5. 9: The Gaussian correlation function for d = 10, 30 and 50.
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Finite Power White Noise Model

The sine function correlation model which represents the finite power white noise

field is given by

4 (51"82) = 230 51n[€;:(—5612'€2) 1

where (§,-&,) is the lag distance, ¢(&,-,) is the correlation function, S, is the strength
of the white noise and f, is the upper cut-off frequency of the power spectral density

function which in turn is given by

S, = =% for|f|<£
sif) ={ ° 2&, .
0 for|f]|2f,

In the above equation, o is the variance of the stochastic field. For the purpose of
illustration, the finite power white noise model is sketched in Fig. (5.10) for S, = 0.001,

0.003 and 0.005.

5. 3 Software Development

The development of the algorithms for computing the covariance matrices of the
eigenvalues (whirl speeds) has been carried out in several stages. As a first step, the
flexural vibrations in the XZ plane of a beam comprising of N number of finite elements
with translational and rotational degrees of freedom was considered. The mass and
stiffness matrices for each of the finite elements were determined and assembled to yield

the structural mass and stiffness matrices. The natural frequencies were determined based
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Fig. 5. 10:  The finite power white noise correlation function for
S,= 0.001, 0.003 and 0.005 ; f, = 10.
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on this finite element model through an eigenvalue analysis. The eigenvalues and
eigenvectors of the beam problem were obtained using the eigenvalue routine, that is
available in MATLAB, using the structural mass and stiffness matrices. The eigenvalue
routine available in MATLAB was later found to be not very robust for non self-adjoint
eigenproblems and was replaced by an algorithm developed to handle any general matrix
[Hatter, 1973]. The beam was modelled as 3, 4, 5 and 6 finite elements and was analyzed

in each of these cases for its eigenvalues.

Since the rotordynamic system involves a coupled vibratory motion in the XYZ
inertial frame, the beam considered above was extended so as to include the XY plane
thus yielding a shaft. The translational and rotational degrees of freedom correspending
to both XY and YZ planes are included in the finite element model. Correspondingly,
the mass and stiffness matrices were altered. The coupled motion of the rotordynamic
system involves the gyroscopic matrices. These gyroscopic matrices of the shaft elements
were developed [Nelson and McVaugh, 1976] and assembled to obtain the structural
gyroscopic matrix. The gyroscopic matrices corresponding to the disks are formed and
incorporated into the structural gyroscopic matrix. The non self-adicint eigenproblem
represented by Eq. (4.57) is then formulated. The whirl ratio was chosen as 1 in this

computation.

The stochasticity in Young's Modulus and/or mass density causes variations in the

whirl speeds which are quantified by the covariance matrix of whirl speeds. The relevant

algorithm has been developed as follows:
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1 z _ z
(Cov(A;,A;)]= {A] -[bl][km][b).] T -[bll{lbkm][Ep][bkm] THOAT

= [8A}{(3km) (NEP][;p][bEp]T) [(0km)}T }[82)7

_[8a 1 aa
103~ | 3% &‘n] -

[ 1 8k dk
35| (%)
[dkm] =
[GmW dm
| TE. [ﬁ} (2n3x2N)
[SDs)  [0)
[dEp] =
[0] [SDP] (2Nx2N)

SD ----+ Standard Deviation

[2 } [Re  [0]
E =
[0] [RP] (2Nx2N)
R ---- Correlation Function

where n is the number of degrees of freedom of the shaft and N is the total number of

finite elements that the shaft is divided into.

Using the structural stiffness matrix [K] and structural mass matrix (M] of the rotor

system, the eigenvectors to the left {y} and that to the right {x} are computed. After

matrices [K] and [M] are transformed into column vectors {k} and {m}, for the purposes
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of stochastic analysis, the sensitivity matrix [0A] is computed using the following

algorithm:

A, O, X Ve
8k, 8K, 1M 1,

3k, 83, . B,
Tm—;; 8Mra IEKta

i=r=s=1..n ; j=1..n?*

The matrix [dkm] can be assembled from {k} and {m}, i. e. the stiffness and mass
matrices in the column vector form. The submatrices [8k/8p) and [6m/SE] of [Skm)
vanish since the stiffness matrix is not a function of mass density and the mass matrix is
not a function of Young's modulus. The matrix [SEp] consists of two submatrices that
characterize the standard deviation of E and/or p corresponding to each of the finite

elements,

5. 4 Parametric Study

A parametric study has been conducted based on the rotor-bearing system

described in section §. 2, with the following objectives:

(i) to quantify in the amplitude domain the effects of stochastic distributions of Young’s
modulus and mass density of the shaft material, on the stochastic properties of whirl
speeds of the rotor-bearing system.

(ii) to distinguish between the effects of stochastic distribution of mass density and that

of stochastic distribution of Young's modulus.
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(iii) to quantify the effects of frequency-domain stochastic properties of material property
stochastic fields on the amplitude-domain stochastic properties of whirl speeds of the
rotor-bearing system.

(iv) to quantify the effects of elastic bearing supports on the stochastic properties of the
whirl speeds of the rotor-bearing system.

(v) influence of finite element modelling on the calculated stochastic properties of whirl

speeds.

5. 4. 1 Mean Values and Covariances of Whirl Speeds

In order to demonstrate the variability in whirl speeds, the mean values and
complete covariance matrices have been determined using the finite element model shown

in Fig. (5.2) when,

(i) the Young's mrdulus has a stochastic distribution,
(ii) the stochastic field representing the fluctuations of Young's modulus has a triangular
correlation structure,

(iii) the rotor system is supported on rigid bearings.

The mean values of the whirl speeds are given in Table (5.2) and plotted in Fig. (5.11)

for the various whirl modes of the rotor system. The complete covariance matrix of the

whirl speeds is given in Table (5.3).
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Table §.2: Mean values of whirl speeds of the rotor-bearing system
E is random ; Rigid bearings ; Number of finite elements = 4

o

Whirl Modes Mean values of whirl speeds (rad. / s)

1 0.0444*10*

2 0.0629*1¢*

3 0.1609*10*

4 0.2275*10¢ |
S 0.3707*10*

6 0.5246*10*

7 0.5438*10*

8 0.7485*1¢*

9 0.7691*10*

10 1.0588*10*

1] 1.8013*10*

12 2.5548*10*

13 2.8861*10*

14 4.0754*10*

15 6.5102*10*

16 9.1323*10*
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Mean values of whirl speeds

Whirl modes

Fig.5.11:  Mean values of whirl speeds of the rotor syst>m on rigid bearings;
E is random and has a triangular correlation structure;
Number of finite elements = 4.
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Table 5.3: Covariance matrix of whirl speeds when the rotor system is
mounted on rigid bearings and E is random

[Cov (. A)] = 10°*

2.1359 1.0662 1.0333 0.9711 0.8246 0.1956 1.7220 0.9290
1.0662 (¢.5322 0.5158 0.4847 0.4266 0.0976 0.8556 0.4637
1.0333 0.5158 0.4999 0.4698 0.4134 0.0946 0.8330 0.4494
0.9711 0.4847 0.4698 0.4415 0.3885 0.0889 0.7828 0.4223
0.8546 0.4266 0.4134 0.3885 0.3420 0.0783 0.6890 0.3718
0.1956 0.0976 0.0946 0.0889 0.0783 0.0183 0.1583 0.0859
1.7220 0.8596 0.8330 0.7828 0.6890 ¢.1583 1.3892 0.7503
0.9290 0.4637 0.4454 0.4223 0.3718 0.0859 0.7503 0.4059
0.9081 0.4533 0.4393 0.4128 0.3634 0.0835 0.7326 0.3957
0.4684 0.2338 0.2266 0.2129 0.1874 0.0433 0.37683 0.2046
0.8828 0.4407 0.4271 0.4013 0.3533 0.0817 0.7132 0.3860
0.9332 0.4658 0.4515 0.4243 0.3734 0.0857 0.7528 0.4065
0.2482 0.1239 0.1201 0.1128 0.0994 0.0235 0.2014 0.1097

0.0494 0.0479 0.0450 0.0396 0.0093 0.0803 0.0436

0.0713 0.0691 0.0649 0.0572 0.0135 0.1159 0.0631

0.0501 0.0486 0.0456 0.0402 0.0094 0.0812 0.0441

0.0991
0.1428
0.1004

.2482
.1239
.1201
.1128
.0994

.0991
.049¢4
.0479
.0450
0396

.1428 0.1004
.0713 0.0501
.0691 0.0486
.0645 0.0456
.0572 0.0402
.0135 0.0094
.1159 0.0812
.0631 0.0441
.0611 0.0428
.0318 0.0222
.0602 0.0415
.0627 0.0440
.0177 0.0120
.0069 0.0048
.0101 0.0069
.0069 0.0048 |

0.9081 0.468¢
0.4533 0.2338
0.4393 0.2266
0.4148 0.2129
0.3634 0.1874 0.3533 0.3734¢
0.0835 0.043) 0.0817 0.0857 0.0235 0.0093

0.8828 0.9332
0
0
0
0
0
0.7326 0.3783 0.7132 0.7528 0.2014 0.0803
0
0
0
0
0

.4407 0.4658
.4271 0.4515
.4013 0.4243

00 0OO0OO0OO0O O
0O00O0O0OOCOO

0.3957 0.2046 0.3860 0.4065 0.1097 0.0436
0.36864 0.1995 0.3761 0.3970 0.1062 0.0423
0.1995 0.1032 0.1946 0.2050 0.0553 0.0220
0.3761 0.1946 0.32673 0.3864 0.1048 0.0416
0.3970 0.2050 0.3864 0.4080 0.1090 0.0435
0.1062 0.0553 0.1048 0.1090 0.0309 0.0121
0.0423 0.0220 0.0416 0.0435 0.0121 0.0048
0.0611 0.0318 0.0602 0.0627 0.0177 0.0069
0.0428 0.0222 0.0419 0.0440 0.0120 0.0048

O 000 0DO0ODDOODOODOOOO
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Now, the mass density is considered to have a stochastic distribution and the mean
values as well as the complete covariance matrix of whirl speeds are given in Tables (5.4)
and (5.5) respectively. As can be seen from these tables,
(i) the mean values of whirl speeds are not changed, and
(ii) the values of covariances of whirl speeds are considerably larger than the covariances

of whirl speeds when the Young's modulus is random.

Both the Young’s modulus and mass density are now considered to have a
stochastic variation and an analysis similar to the above analyses is conducted. The mean
values as well as the covariances of the whirl speeds are given in Tables (5.6) and (5.7)
respectively. The values of covariances of whirl speeds are seen to be closer to the
values of covariances when the mass density is random while the mean values of the
whirl speeds remain unchanged. The elements of the covariance matrices in Tables (5.3),
(5.5) and (5.7) are real and positive. The matrices exhibit symmetricity and their diagonal
elements, representing the variances of the eigenvalues, show a decreasing trend. It may

thus be noted that the variance of the eigenvalue decreases with increasing eigenvalues.

5.4. 2 Effects of Bearing Flexibility on the Mean Values and

Covariances of Whirl eds

The two ends of the rotor-bearing system are now considered as being mounted on
isotropic flexible bearings. The influence of isotropic bearings on the covariance matrix
of whirl speeds is observed. The mean values and covariances f the whirl speeds are

determined when
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Table 5.4: Mean values of whirl speeds of the rotor-bearing system

m is random ; Rigid bearings ; Number of finite elements = 4

116

Whirl Modes Mean values of whirl speeds (rad. / s)
1 0.0444*10*
2 0.0629*10*
3 0.1609*10*
4 0.2275*10*
5 0.3707*10*
6 0.5246*10°
7 0.5438*10*
8 0.7485*10*
9 0.7691*10*
10 1.0588*10*
11 1.8013*10*
12 2.5548*10°
13 2.8861*10*
14 4.0754*10*
15 6.5102*10*
16 9.1323*10*



Table 5.5: Covariance matrix of whirl speeds when the rotor system is
mounted on rigid bearings and m is random

[Cov (. &) = 10° *

6.8693 3.4909 1.3678 0.6856 0.5359 0.2621 0.0916 0.0480
3.4909 1.7740 0.6951 0.3484 0.2723 0.1332 0.0465 0.0244
1.3678 0.6951 0.2724 0.1365 0.1067 0.0522 0.0182 0.0096

0.6856 0.3484 0.1365 0.0684 0.0535 0.0262 0.0092 0.0048
0.5359 0.2723 0.1067 0.0535 0.0418 0.0206 0.0072 0.0038
0.2621 0.1332 0.0522 0.0262 0.0206 0.0103 0.0035 0.0019
0.0916 0.0465 0.0182 0.0051 0.0072 0.0035 Q.0012 0.0006
0.0480 0.0244 0.00596 0.0048 0.0038 0.0019 0.0006 0.0003
0.0458 0.0233 0.0091 0.0046 0.0036 0.0018 0.0006 0.0003
0.0240 0.0122 0.0048 0.0024 0.001% 0.0009 0.0003 0.0002
0.0219 0.0111 0.0044 0,0022 0.0017 0.00039 0.0003 0.0002
0.0112 0.0057 0.0022 0.0011 0.0009 0.0004 0.0002 0.0001
0.0041 0.0021 0.0008 0.0004 0.0003 0.0002 0.0001 0.0000

0.0021 0.0011 0.0004 0.0002 0.0002 0.0001 0.0000 0.0000
0.0003 0.0002 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000
| 0.0002 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 ¢.0000

0.0458 0.0240 0.0219 0.0132 0.0041 0.0021 0.0003 0.0002 ]
0.0233 0.0122 0.0111 0.0057 0.0021 0.0011 0.0002 0.0001
0.0091 0.0048 0.0044 0.0022 0.0008 0.0004 0.0001 0.0000
0.0046 0.0024 0.0022 0.0011 0.0004 0.0002 0.0000 0.0000
0.0036 0.0019 0.0017 0.0009 0.0003 0 0002 0.0000 0.0000
0.0018 0.0009 0.0009 0.0004 0.0002 0.0001 0.0000 0.0000
0.0006 0.0003 0.0003 0.0002 0.0001 0.0000 0.0000 Q.000C
0.0003 0.0002 0.0002 0.0001 0.0000 0.0000 0.0000 0.0000
0.0003 0.0002 0.0001 0 ‘001 0.0000 0.0000 0.0000 0.0000
0.0002 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000
0.0001 0.0001 0.0001 0.0000 0.0000 0.0000 ©¢.0000 0.0000
0.0001 0.0000 0.0000 0.0000 0.0000 G.0000Q0 0.0000 G.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.6000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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Table §.6: Mean values of whirl speeds of the rotor-bearing system
E and m are random ; Rigid bearings ; Number of finite elements = 4

| Whirl Modes Mean values of whirl speeds (rad. / s)
1 0.0444*10*
2 0.0629*10*
3 0.1609*10*
4 0.2275*10*
5 0.3707*10*
6 0.5246*10*
7 0.5438*10*
8 0.7485*10*
9 0.7691*10*
10 1.0588*10*
‘1 1.8013*10*
12 2.5548*10°
13 2.8861*10*
14 4.0754*1¢*
15 6.5102*10*
16 B 9.1323*10*
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Table 5.7: Covariance matrix of whirl speeds when the rotor system is
mounted on rigid bearings and both E and m are random

[Cov (4, A)] = 10°*

[ 6.8714 3.4919
3.4919 1.7746
1.3688 0.6956
0.6866 0.3489

.5368 0.2728

.2623 0.1333

.0933 0.0474

.0489 0.0248

.0467 0.0237

.0244 0.0124

.0228 0.0116

.3688 0.6866 0.5368 0.2623 0.0933 0.0489
.6956 0.3489 0.2728 0.1333 0.0474 0.0248
.2729 0.1370 0.1071 0.0523 0.0191 0.0100
.1370 0.0689 0.0539 0.0263 0.0099 0.0052
.1071 0.0539 0.0422 0.0206 0.0078 0.0042
.0523 0.0263 0.0206 0.0103 0.0037 0.0020
.0191 0.0099 0.0078 0.0037 0.0026 0.0014
.0100 0.0052 0.0041 0.0020 0.0014 0.0007
.0096 0.0050 0.0039 0.0019 0.0013 0.0007
.0050 0.0026 0.0021 0.0010 0.0007 0.0004
.0048 0.0026 0.0021 0.0009 0.0010 0.0005

0

0

0

0

0

OO0 O0OO0OO0ODOCO

.0122 0.0062 0.0027 0.0015 0.0013 0.0005 0.0009 0.0005
0.0043 0.0022 0.0009 0.0005 0.0004 0.0002 0.0003 0.0001
0.0022 ¢.0011 0.0005 0.0003 0.0002 0.0001 0.0001 0.0001
0.0005 0.0002 0.0001 0.0001 0.0001 ©.0000 0.0001 0.0001
0.0003 0.0001 0.0001 0.0001 0.0001 0.0000 0.0002 0.0000

000000000 OO0

000000000000
0O0D0DO0O0ODO0O0CO0OODO0OO0OOO0ODO0OO

0467
.0237
.0096
.0050
0039
.0019
.0013
.0007
. 0007
.0004
.u005

. 0244
.0124
.0050
.0026
0021
.0010
.0007

.0228 0.0122 0.0043 0.0022 0.0005 0.0003
.0116 0.0062 0.0022 0.0011 0.0002 0.0001
.0048 0.0027 0.0009 0.0005 0.0001 0.0001
.0026 0.0015 0.0005 0.0003 0.0001 0.0001
0021 0.0013 0.0004 0.0002 0.0001 0.0001
.0009 0.0005 0.0002 0.0001 ©.0000 0.0000
.0010 0.0009 0.0003 0.0001 0.0001 0.0001
.0004 0.0005 0.0005 0.0001 0.0002 0.0001 0.0000
.0004 0.0005 0.0005 0.0001 0.0001 0.0001 0.0000
.0002 0.0003 0.0002 0.0001 0.0000 0.0000 0.00G0
.0003 0.0004 0.0004 0.0001 0.0000 0.0001 0.0000
.0005 0.0002 0.0004 0.0004 0.0001 0.0000 0.0002 0.0000
.0001 0.0001 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000
.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
.0001 0.0000 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000
.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |

0O 000000 OO

CO0O 0000000000 O0

0O 00 O0ODO0ODO0ODO0OO0DOD0DO0OO0OOO OO
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(i) the Young's modulus has a stochastic distribution and
(ii) the stochastic field representing the fluctuations of Young’s modulus has a triangular

correlation structure

Table (5.8) shows the mean values of the whirlspeeds and Table (5.9) contains the
covariance matrix of the whirl speeds. Figure (5.12) shows the mean values of the whirl
speeds corresponding to different degrees of freedom of the rotor systera supported on
isotropic bearings. A comparison of Tables (5.8) and (5.9) with Tables (5.2) and (5.3)
indicates that the mean values of whirl speeds and their covariances are higher when the

rotor system is mounted on elastic supports.

A similar study is carried out with the mass density considered to have a
stochastic distribution. The mean values of the whirl speeds are given in Table (5.10)
and, as can l ¢ seen, they are same as the mean values of the whirl speeds in Table (5.8),
corresponding to the case when the Young’'s modulus has a stochastic distribution. The
covariances of the whirl speeds presented in Table (5.11) are, however, significantly

higher than the covariances of the whirl speeds when the Young's modulus is random.

When the Young's modulus and the mass density are both random, the mean
values and covariances of the whirl speeds are computed and presented in Tables (5.12)
and (5.13) respectively. The mean values of the whirl speeds are not affected, as can be
seen by comparing Table (5.12) with Tables (5.8) and (5.10). Table (5.13) indicates that
the covariances of the whirl speeds are fairly close to the covariances given in Table

(5.11) for the case when the mass density alone is random and are much larger than the
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Table 5.8: Mean values of whirl speeds of the rotor-bearing system
E is random ; Isotropic bearings ; Number of finite elements = 4

Whirl Modes Mean values of whirl speeds (rad. / s)
1 0.0067*10°
2 0.0076*10°
3 0.0084*10°
4 0.0089*10°
5 0.0148*10°
6 0.0182*10°
7 0.0290*10°
8 0.0407*10°
9 0.0516*10°
10 0.0729*10°
11 0.0731*10°
12 0.0980*10°
13 0.1034*10°
14 0.1378*10°
15 0.2187*10°
16 0.3112*10°
17 0.4254*10°
18 0.6005*10°
19 0.8539*10°
20 1.1957*10°
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Table 5.9: Covariance matrix of whirl speeds when the rotor system is
mounted on isotropic bearings and E is random

[Cov (A, , A)] = 107+

[

O 00 OO0 000000000 OHWWRLN

. 0658
.2299
.6683
.4508
.1891
.9014
.7620
814
.3883
.2035
.2056
.1868
.1146
.2181
. 1490
.1082
.0616
. 0640
.0539
. 0466

O O 0O O 0O 0O C0C O 000 00 OO0 0NN O

.2056
.1223
.3638
. 3423
.1181
. 0900
.0764
.0270
.0389
. 0211
.0213
.0192
0121
.0222
. 0152
.0111
. 0064
. 0066
. 0056
. 0049

D00 O0O0DO0ODO0DO0ODO0DODDO0DO0ODO0ODODOO0DO0OO0O OO

.2299
7323
.1845
.0549
.7080
.5366
.4535
.1531
.2311
11211
.1223
.1111
.0681
.1297
.0886
.0644
.0367
.0381
.0321
0277

O OO0 OO0 00 OO0 00 O0OOC H - MNMDOWOY D W

.1868
.1111
.3301
.3107
.1073
.0817
.0694
.0244
.0354
.0190
.0192
.0174
.0108
.0202
.0138
.0101
.0058
.0060
.0081
.0045

O 0O 0O 000D O0OO0OO0O0DO0ODODOOO0O OO0 OO0 O0O

.6683
.1845
5216
11342
1128
6002
3508
4549
6883
3602
3638
3301
.2023
.3858
2633
11912
1089
(1131
.0953
.0822

OO0OD0DO0OO0ODODODOOCOKHPLEPOUNDW

0.1146
0.0681
0.2023
0.1504
0.0658
0.0502
0.0427
0.0154
0.0218
0.0120
0.0.21
0.0109
0.0069
0.0126
0.0086
0.0063
0.003s
0.0037
0.0032
0.0028

.4508
.0549
.1342
.7698
.9874
.5054
.2710
.4281
.6476
.3389
L3423
.3107
L1904
.3631
.2478
L1799
.1028%
.1064
.0897
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O OO0 0000000000 OO0 O VO K

.2181
.1297
.3858
.3631
.12853
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.0809
.0281
.0412
.0220
.0222
.0202
.0126
.0234
.0160
.0117
.0067
.0069
.00s8
.0051

O 0O 00000 000000000000 O

.1891
.7080
.1128
.9874
.6847
.5188
.4382
.1478
.2233
.1170
.1181
.1073
.0658
.1253
.0855
.0621
.0354
.0367
.0310
.0267

O 0000000000000 K HF OO

.1490
.0886
.2633
.2478
.0855
L0651
.0553
.0192
.0282
.0151
.0152
Q138
.00886
.0160
.0110
.0080
.0046
.0047
.0040
.0035

O OO0 000000000000 O0O0OOLO O
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9014
.5366
.6002
.5054
.5188
.3934
.3327
.1128
.1695
.0891
.0900
.0817
.0502
.0953
.0651
0473
.0270
.028¢0
0236
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O OO0 000000000000 O K oo

.1082
.0644
L1912
.1799
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.0473
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.0142
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.0110
0111
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.0080
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.0033
.0035
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O 0O 000 00000000 OO OO OO O

.7620
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.3509
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. 0958
<1435
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. 0402
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O OO0 OO0 00 OO0 00 000000 OO O
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.0354
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. 0058
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O 0000000000 O0CDOODODOOCOOO

.0640
.0381
.1131
.1064
.0367
.0280
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.0047
.0038
.0020
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.0015
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.3883
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6476
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.1695
1435
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.0412
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.0117
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.0102
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.0539
.0321
.0953
.0897
.0310
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.0071
.0102
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Fig. 5§, 12:  Mean values of whirl speeds of the rotor system mounted on isotropic

bearings; E is random and has a triangular correlation structure;
Number of finite elements = 4.
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Table 5.10: Mean values of whirl speeds of the rotor-bearing system
m is random ; Isotropic bearings ; Number of finite elements = 4

Whirl Modes Mean values of whirl speeds (rad. / s)
1 0.0067*10°
2 0.0076*10°
3 0.0084*10°
4 0.0089*10°
5 0.0148*10°
4] 0.0182*10°
7 0.0290*10°
8 0.0407*10°
9 0.0516*10°
10 0.0729*10°
11 0.0731*10°
12 0.0980*10°
13 0.1034*10°
14 0.1378*10°
15 0.2187*10°
16 0.3112*10°
17 0.4254*10°
18 0.6005*10°
19 0.8539*10°
20 1.1957*10°
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Table 5.11: Covariance matrix of whi:l speeds when the rotor system is
mounted on isotropic bearings and m is random

[Cov (A,, A)] = 10°
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Table 5.12: Mean values of whirl speeds of the rotor-bearing system
E and m are random ; Isotropic bearings ; Number of finite elements = 4

Whirl Modes Mean values of whirl speeds (rad. / s)
1 0.0067*10°
2 0.0076*10°
3 0.0084*10°
4 0.0089*10°
5 0.014¢£«10°
6 0.0182*10°
7 0.0290*10°
8 0.0407*10°
9 0.0516*10°
10 0.0729*10°
11 0.0731*10°
12 0.0980*10°
3 0.1034*10°
14 0.1378*10°
15 0.2187*10°
18 0.3112*10°
17 0.4254 Y
18 0.6005*10°
19 0.8539*10°
20 1.1957*10°
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Table 5.13: Covariance matrix of whirl speeds when the rotor system is
mounted on isotropic bearings and both E and m are random

[Cov (A , A)] = 10'°*
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covariances given in Table (5.9) corresponding to the case when only the Young's
modulus has a stochastic distribution. The elements of the covariance matrices in Tables
(5.9), (5.11) and (5.13) exhibit symmetricity and their elements are real and positive as
in the case of Tables (5.3), (5.5) and (5.7). The diagonal elements of the matrices in
Tables (5.11) and (5.13) show a decreasing trend, while the diagonal elements of the
matrix in Table (5.9), corresponding to random Young’s modulus, do not exhibit such a

decreasing trend.

5. 4. 3 Effects of the Correlation Structure

The following case studies are performed so as to compute the effects of the
correlat ,n structure of material properties on the covariance matrix of whirl speeds for

the rotordynamic system described in section 5. 2:-

se 1. Rotor-Bearing System on Rigid Bearings
Case 2. Influence of Bearing Flexibility

Case 3. Influence of Finite Element Modelling

In each of these cases, after computing the covariance matrix of the whirl speeds,
the sensitivity of the variance of the first whirl speed , to the stochastic fluctuations in
the material properties is analyzed in detail. The effects of the various cormelation
models, discussed in Section 5. 2. 3, on the variance of the first whirl speed is also
studied. A more standardized measure used in the literature is the coefficient of variation

and is adopted in this work. The coefficient of variation of a whirl speed is defined as

128




the ratio of the square root of the variance of that whirl speed to the mean value of the
whirl speed. The coefficient of variation of the first eigenvalue, which is essentially the
coefficient of variation of ®,? is computed throughout this study. The coefficient of
variation is normalized and the effects of the correlation structure of the material

properties on this coefficient are presented graphically in each of the case studies.

Case 1. Rotor-Bearing System on Rigid Bearings

The coefficient of variation of ®, for the case of the rotor mounted on rigid
bearings is determined when the Young’s modulus is random and the number of finite
elements is fixed. The standard deviation of the stochastic field that models the
fluctuations about the mean of the Young’s modulus is varied. For each value of the
standard deviation, the five correlation models detailed in Section 5. 2. 3 are considered.
Within each correlation structure the effect of varying the lag distance on the coefficient
of variation of the first whirl speed is studied. The change in the coefficient of variation
of w,? with a corresponding change in the lag distance, when the stochastic variations in
Young's modulus are considered, for 5 different values of the standar ucviation is shown
in Figs. (5.13-5.17) corresponding to the 5 correlation models. I Figs. (5.13) and (5.14),
corresponding to the cases of the Triangular and First-order Autoregressive correlation
models, the coefficient of variation of w,? varies in a non-linear manner with increasing
values of the lag distances. Figs. (5.15), (5.16) and (5.17) show that the sensitivity of the
first whirl speed to the lag distances of the Second-order Autoregressive, Gaussian and

Finite Power White Noise correlation models is not significant.
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Fig. 5.13:  Effect of the lag distance on the coefficient of variation of w,? of the
rotor system on rigid bearings; E is random and has a triangular

correlation structure.
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Fig. 5.14:  Effect of the lag distance on the coefficient of variation of ®,? of the
rotor system on rigid bearings; E is . andom and has a first-order
autoregressive correlation structure,
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Fig. 5. 15:  Effect of the lag distance on the coefficient of variation of w,? of the
rotor system on rigid bearings; E is random and has a second-order

autoregressive correlation structure.

132




1

Coeff. of Variation of o,

1 .0003 I 1 1 ¥ T | T 1 T
E is random
1.0002 Gaussian Correlation Model .
1.0001 -
ir - =X
__f‘.‘,.sg—f:—/ e W s W T S
- Standard Deviation = 1e-5 J
-- Standard Deviation = 4e-5
-. Standard Deviation = 7e-5
. Standard Deviation = 1e-4 4
* Standard Deviation = 1,.3e-4
0.9997 | 1 [ L 1 1 1 1 1
10 12 14 16 18 20 22 24 26 28 30
Lag distance

Fig. 5. 16:

Effect of the lag distance on the coefficient of variation of w,’ of the
rotor system on rigid bearings; E is random and has a Gaussian

correlation structure.
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Fig. 5. 17:  Effect of the lag distance on the coefficient of variation of w,?of the
rotor system on rigid bearings; E is random and has a finite power

white noise correlation structure.
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Using the same finite element model, the effect of random mass density on the
coefficient of variation of w,? is studied. The standard deviation of the stochastic field
that models the fluctuations about the mean of the mass density is varied for each of the
5 correlation models. For each correlation model, the coefficient of variation of w,? is
analyzed for 5 values of the standard deviation and are shown in Figs. (5.18-5.22). The
results obtained in this case are found to be qualitatively similar to the results obtained
when the Young’s modulus is random. A similar study is carried out with a stochastic
variation in both the Young's modulus and the mass density. The coefficient of variation
of @, is plotted in Figs. (5.23-5.27) as a function of the lag distances of the 5 correlation
models for 5 different values of the standard deviation. The results obtained in this case,
viz. random Young’'s modulus and mass density, are very close to the results obtained
when the mass density alone is randem. A comparison of the coefficient of variation of
®,* prior to being normalized indicates that the stochastic variation in the mass density
has‘ a significantly larger influence on these values of the coefficient of variation of ®,?

than does the stochastic variation in the Young’s modulus as highlighted in Fig. (5.28).
Case 2. Influence of Bearing Flexibility

The stiffnesses of the bearings are incorporated into the eigenvalue problem to
study the rotor-bearing system mounted on flexible bearings. First, the Young's modulus
is considered to have a stochastic distribution and the number of finite elements is fixed.
For the same finite model, each and all of the five correlation models have been
considered. For each correlation model, the standard deviation of the stochastic field that

models the fluctuations about the mean of the Young's modulus is varied.
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Fig. 5. 18:  Effect of the lag distance on the coefficient of variation of ©,? of the
rotor system on rigid bearings; m is random and has a triangular

correlation structure.
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Fig. 5.19:  Effect of the lag distance on the coefficient of variation of w’of the
rotor system on rigid bearings; m is random and has a first-order

autoregressive correlation structure.
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Fig. 5. 20:  Effect of the lag distance on the coefficient of variation of ©,* of the
rotor system on rigid bearings; m is random and has a second-order
autoregressive correlation structure.
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Fig. 5.21:  Effect of the lag distance on the coefficient of variation of 2’ of the
rotor system on rigid bearings; m is random and has a Gaussian

correlation structure.
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Fig. 5. 22:  Effect of the lag distance on the coefficient of variation of ®,* of the
rotor system on rigid bearings; m is random and has a finite power

white noise correlation structure.
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Fig. 5.23:  Effect of the lag distance on the coefficient of variation of v’ of the

rotor system on rigid bearings; Both E and m are random and have

a trian~ular correlation structure.
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Fig. 5. 24:  Effect of the lag distar.ce on the coefficient of variation of wof the
rotor system on rigid bearings; Both E and m are random and have

¢ first-order autoregressive correlation structure.
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Fig. 5.25:  Effect of the lag distance on the coefficient of variation of ®,? of the
rotor system on rigid bearings; Both E and m are random and have
a second-order autoregressive correlation structure.
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Fig. 5.27: Effect of t'.2 lag distance on the coefficient of variation of ®,’ of the

rotor system on rigid bearings; Both E and m are random and have

a finite power white noise correlation structure.
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Fig. 5.28:  Coefficient of variation of ®,? prior to normalization (C. O. V.) of the

rotor system on rigid bearings. Stochastic distributions in E, m and
both E and m are considered to study their influence on C. O. V.
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The effect of the various correlation structures, the variation of the lag distance
within each correlation structure and the different standard deviations, on the coefficient
of variation of w,? is analyzed to study the influence of the bearings. The values of the
coefficient of variation of w,* are found to be slightly higher than that in the case of the
rotor on rigid bearings. Again, the stochastic variation in thic Young’s modulus is found
to have not much of an infiucnce on the coefficient of variation of @, when compared
with the stochastic variation in the mass density and this fact has been brovght out in Fig.
(5.29). When the Young’s modulus is considered to have a stochastic variation, the
change in the coefficient of variation of ®, as a function of the lag distances in each of
the 5 correlation models is shown in Figs. (5.30-5.34). These figures correspond to the
S correlation models each of which are studied for 5 different standard deviations. In a
similar manner, the coefficient of variation of w,’ obtained due to a stochastic variation
in mass density is presented in Figs. (5.35-5.39) as a function of the lag distances of the
various correlation models, for 5 different values of the standard deviation. The effect
of stochastic variations in the Young's modulus and mass density on the coefficient of
variatic 2 of w,? is captured in Figs. (5.40-5.44). The graphs obtained in the case of the
rotor system with isotropic bearings show a trend similar to the results obtained when the
rotor is mounted on rigid bearings. Although they have a qualitative resemblance,
quantitatively there is a slight difference. There is a non-linear variation in the coefficient
of variation of w,? for the Triangular and First-order Autoregressive correlation models,
while there is a linear variation in the cases of the Second-order Autoregressive, Gaussian
and Finite Power White Noise correlation models. Also, in the latter three cases, the

coefficient of variation of ®, does not exhibit significant sensitivity.
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Fig. 5.29:  Coefficient of variation of w,? prior to normalization (C. O. V.) of the
rotor system on isotropic bearings. Stochastic distributions in E, m
and both E and m are considered to study their influence on C. O. V.
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Fig. 5.30:  Effect of the lag distance on the coefficient of variation of ©’of the
rotor system on isotropic bearings; E is random and has a triangular

correlation structure.
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Fig. 5.31:  Effect of the lag distance on the coefficient of variation of © of the
rotor system on isotropic bearings; E is random and has a first-order
autoregressive correlation structure.
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Fig. 5.32:  Effect of the lag distance on the coefficient of variation of w,’ of the

rotor system on isotropic bearings; E is random and has a secund-

order autoregressive correlation structure.
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Fig. 5.33:  Effect of the lag distance on the coefficient of variation of w?of the
rotor system on isotropic bearings; E is random ard has a Gaussian

correlation structure.
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Fig 5. 34: Eflfect of the lag distance on the coefficient of variation of w,? of the
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power white noise correlation structure,
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Fig. 5.35:  Effect of the lag distance on the ceefficicnt of variation of ©,? of the
rotor system on isotropic bearings; m is random and has a triangular

correlation structure.
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Fig. 5. 36:  Effect of the lag distance on the coefficient of variation of w,” of the
rotor system on isotropic bearings; m is random and has a first-order

autoregressive correlation structure.
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Fig. 5. 37:  Effect of the lag distance on the coefficient of variation of ,?of the
rotor system on isotropic bearings; m is random and has a second-
order autoregressive correlati»:. structure.
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Fig. 5. 38:  Effect of the lag distance on the coefficient of variation of w,* of the

rotor system on isotropic bearings; m is ranaom and has a Gaussian

correlation structure.
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Fig. 5.39:  Effect of the lag Cistance on the coefficient of variation of w,?of the
rotor system on isotropic bearings; m is random and has a finite

power white noise correlation structure.
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Fig. 5.40:  Effect of the lag distance on the coefficient of variation of w?of the
rotor system on isotropic bearings; Both E and m are random and

have a triangular correlation structure.
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Fig. 5.41:  Effect of the lag distance on the coefficient of variation of ®,? of the

rotor system on isotropic bearings; Both £ and m are random and

have a first-order autoregressive correlation structure.
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Fig. 5.42:  Effect of the lag distance on the coefficient of variation of ©,* of the

rotor system on isotropic bearings; Both E and m are random and

have a second-order autoregressive correlation siructure.
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Fig. §. 43:

Effect of the lag distance on the coefficient of variation of 2 of the
rotor system on isotropic bearings; Both E and m are random and

have a Gaussian correlation structure.
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Case 3. Influence of Finite Element Modelling

In this study, for a particular mesh, the rotor-bearing system with rigid bearings
is considered and the effect on the coefficient of variation of ®,> of the stochastic
variations in the Young's modulus is quantified. The analysis is repeated so as to study
the effect of changes in the mesh on the coefficient of varation of w,®. The above

procedure is then followed for the rotordynamic system with flexible bearing supports.

The stochastic fluctuations in Young's modulus are considered to have a triangular
correlation structure. The shaft is mounted on rigid bearings and is modc'led using 4, 6,
8 and 10 finite elements. In each of these cases, the coefficient of varation of w,” is
computed for a given value of standard deviation of the Young's mo¢ :lus The analysis
is repeated for different values of the constant a of the triangular correlation model. The
effects of the change in the nuruber of finite elements on the coef{icient of variation of
®,? are shown for § vaiues of a, viz. 10, 15, 20, 25 ard 30, in Fig. (5.45). The mean
values of the whiil speeds corresponding to the various degrees of freedom of the rotor
system mounted on rigid bearings is shown in Fig. (5.46), comesponding to the cases

when the shaft is modelled as 4, 6, 8 and 10 finite elements.

In order to study the effects of bearing flexibility on the influence of modelling,
the shatt is cosidered as being mounted on elastic supports and is modelled using 4, °
8 and 10 elements. For a stochastically fluctuating Young’s modulus with a triangular
correlation structure, the influence of bearing flexibility on the coefficient of variation of

w,? is studied for a fixed value of the standard deviation of the Young’s modulus. The
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Fig. 5.45:  Influence of finite element mndelling on the coefficient of variation of

,? of the rotor system on rigid bearings; E is random with a fixed
standard deviation (S. D.); The triangular correlation model is used
with 5 different values of the constant a.
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change in the coefficient of variation of w,’ as a function of the number of finite elements
is presented in Fig. (5.47) for different values of the constant a. The mean values of the
whit] speeds corresponding to various degrees of freedom of the rotordynamic system
mounted on elastic supports are shown in Fig. (5.48), when the shaft is modelled using

4, 6, 8 and 10 finite elements.

5. § Design Aspects

The physical properties of engineering materials exhibit considerable spatial
variations. The extent to which thesc variations occur depend on a number of factors
including the chemical composition of these materials. The yandom nature of these
variations as well as the uncerainty in the loading conditions necessitates the use of the
so-called minimum strength and the safety factor during the design phase.  Shinvzuka
and Lenoe [1976] have studied the probabilistic characteristics of the material propeities
s0 as to construct a probabilistic model that can be used for digital-analytical simulauon
of these material properties. When the correlation structures of the matenal properties
cannot be precisely modelled, the probabilistic design of a rotor-support system can be
based on the bounds on the second-order probabilistic moments of whirl speeds and whirl
modes. For the case of a rotor-bearing system mounted on ngid bearings, t.e bounds on
the coetficient of variation of ®,” when the Young's modulus 1s random with a standard
deviation of 6, = 1x10* have been obtained for each of the five correlation structues and

are given below:
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Fig. 5.47:  Influence of finite element modelling on the coefficient of variation of

®,? of the rotor system on isotropic bearings; E is random with a fixed
standard deviation (S. D.); The triangular correlation model is used
with § different values of the constant a.
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Triangular Correlation function ---- 3.2883 10 3.3017
AR (1) correlation function -~ 3.2886 10 3.3017
AR (2) correlation function ----  3.3081 10 3.3083
Gaussian correlation function ---- 3.3078 10 3.3083

Finite Power White Noise

Correlation function ----  2.3455 10 2.3463

The bounds for the coefficient of variation of the first whirl speed when the mass density

is random, with a standard deviation of 6, = 1x10°, are:

Triangular Correlation function ---- 186.4824 10 187.2589
AR (1) correlation function ---- 186.4992 10 187.2608
AR (2) correlation function - 187.6294 10 187.6441
Gaussian correlation function ---- 187.6121 to 187.6423

Finite Power White Noise

Correlation function —-- 132.5147 10 132.5612

Similar bounds have been established for the coefficient of variation of w,? for other
values of the standard deviation corresponding to each of the above two cases as well as

when both Young's modulus and mass density are random.

The influence of bearing flexibility on the bounds of the second-order probabilistic
moments of whirl speeds is studied next. For a standard deviation of ¢, = 1x10°* for the

Young’'s modulus, the bounds on the coefficient of variation of ®,? for each of the five

correlation structures are given below:
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Triangular Correlation function
AR (1) correlation function
AR (2) correlation function
Gaussian correlation function
Finite Power White Noise

Correlation function

== 6.8006 1o 6.8224
---- 6.8011 t0 6.8224
----  6.8327 10 6.8331

---- 6.8323 10 6.8331

5.3421 to 5.3433

When the mass density is random, the bounds on the coefficient of variation of w,? for

a standard deviation of 6, = 1x10°%, are given below:

Triangular Correlation functicn
AR (1) correlation function
AR (2) correlation function
Gaussian correlation function
Finite Power White Noise

Correlation function

--- 212.6019 to 213.4688
---- 212.6207 t0 213.4709
----  213.8825 to 213.8988

----  213.8633 10 213.8967

152.3429 10 152.3945

Similar bounds have been established for the coefficient of variation of w,* for other

values of the standard deviation in each of the above two cases as well as when both

Young's modulus and mass density are random.

5. 5. 1 Sensitivity of the Whirl Speeds to Young's Modulus and Mass Density

The stochastic vanation in the mass density has been found, from Figs. (5.28) and

(5.29), to have a much greater influence on the coefficient of variation of w,2 than does
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the stochastic vanation in the Young's modulus. The effect of fluctuations in the
Young's modulus and mass density on the whirl speed of the rotor-bearing system is now
studied. The Young's modulus and mass density have been represented by Egs. (4.17)
and (4.18) while the eigenvalue has correspondingly been expanded into an asymptotic
series as shown in Eq. (3.11). The variance of the stochastic component of the eigenvalue
can be shown 10 be the ratio of the variance of the comesponding eigenvalue (obtained

from the covariance matrix, Cov (A, A)) to the square of the mean eigenvalue.

By varying the standard deviation of the Young's modulus (i. e. the value of a(s) in
Eq. (4.17)) the standard deviation of the stochastic component of the desired eigenvalue
and hence that of the corresponding whirl speed has beer determined. The standard
deviauon of the Young’s modulus has been varied from 1% of Young's modulus
(a(s)=0.01) to 50% of Young's modulus (a(s)=0.5) and the corresponding standard
deviation of the whirl speed can be seen in Figs. (5.49-5.51). The shaft has been
modelled using 4 finite elements and the Triangular correlation model has been used. In
a similar manner, the standard deviation of the mass density (i. e. the value of b(s) in Eq.
(4.18)) is varied to study the change in the standard deviation of the stochastic component
of the desired eigenvalue and hence that of the corresponding whirl speed. Figs. (5.52-
5.54) show the change in the whirl speed when the mass density is varied from 1% of
mass density (b(s)=0.01) to 50% of mass density (b(s)=0.5). It may be seen that the whirl
speed is very sensitive to fluctuations in the mass density. For a 50% increase in mass
density, the whirl speed increases by about 325%. On the contrary, when the Young’s

modulus is increased by 50%, the whirl speed increases by just over 40%.
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Chapter 6

Discussions and Conclusions

Non self-adjoint eigenproblems in which the coefficients of the characteristic
matrices are stochastic functions have been considered in this thesis. The objective has
been 0 both qualify and quantify the effects on the variability of eigenvalues and
eigenvectors of the randomness in these coefficients. For a mechanical or structural
system, the coefficients of the characteristics matrices stem from the material properties
and extermal loadings of the system. Hence, the randomness in the coefficients of the
charactenistic matrices arises due to the randomness in the material properties and external
loadings of the mechanical or structural system. For a distributed-parameter or continuous
mechanical or structural system, a corresponding MDOF system model can be obtained
based on the finite element formulation. The FEM can be employed to determine the
relationships between the parameters such as the stiffness coefficients and the mass

coefficients of the MDOF system, and the material properties.

In the present work, the stochastic functions of MDOF system parameters are
derived in terms of the stochastic functions that model the variations in the material
propertics and external loadings. The material properties, the Young's modulus and mass

density, are modelled using independent one-dimensional univariate homogeneous
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stochastic fields. The external loading such as the end axial thrust 1s modelled using a
random variabie. Each of the stochastic ficlds are charactenized by their ensemble mean
values and autocorrelation functions or their equivalent power spectral density functions.
The random variable is characterized by its mean value and standard deviation. The
stochastic properties such as the ensemble mean values and autocorrelation functions of
MDOF system parameters are derived in terms of that of the material property stochastic

fields and the probabilistic moments of the random variable that models the axial loading.

The probabilistic nioments of eigensolutions are determined in Chapter 3 using the
asymptotic expansion and the first-order second-moment response method of probabilistic
analysis. Each eigenvalue 15 expanded into an asymptotic series in terms of cach and all
of the MDOF system parameters. The randomness in the MDOF system parameters is
characterized by introducing an asymptotic parameter into the asymptotc series.  This
asymptotic parameter takes on any value between 0 and 1 depending on the degree of
randomness mn the material properties and axial loading. The value of 1 represents the
extreme case of randomness, i.e. a white noise stochastic field. The value of 0 represents
the other extreme case of randomness, i.e. perfecly comelated stochastic field. For a
particular eigenvalue, its corresponding asymptotic series is interpreted to be constituting
a sample realization in the ensemble of that particular eigenvalue. This way, equations
for the sample realizations of each and all of the cigenvalues of the MDOF system are
derived. In a similar manner, the sample realizations of eigenvectors are determined. The
sample realization of each MDOF system parameter is expressed in terms of the sample
realizations of material properties and axial loading. The sample realization of each

eigenvalue and eigenvector is, thus, expressed in terms of the sample realizativns of
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material properties and axial loading.

Using the asymptotic serics for the sample realization of each eigenvalue, and
based on the method of response moment calculation, the probabilistic moments of each
eigenvalue are determined. The relationship tetween the the sample realization of cach
eigenvalue and the sample realiz tions of material properties and axial loading (that has
been derived previously), is central to this evaluation, The probabilistic moments of each
eigenvalue are determined in terms of (i) the stochastic properties of material properties,
(ii) the probabilistic moments of axial loading, (iii) the asymptotic parameter
uiaracterizing the randomness in material properties and axial loading, and (iv) the so-
called "stochastic sensitivity gradients”. The stochastic sensitivity gradients are expressed

in terms of the eigensciutions of the so-called "averaged MDOF system".

It is observed that the first-order probabilistic moments can be obtained by solving
the non self-adjoint eigenproblem with averaged coefficients, only once. From the
equations for the second-order probabilistic moments cf eigenvalues, it is observed that
(i) for 2 given set of values of the coefficients of variation of the material properties and
axial loading, the second-order probabilistic moments of eigenvalues vary with the
correlation properties of the stochastic fields, (ii) the second-order probabilistic moments
of each eigenvalue are linearly related to the autocorrelation functions of the material
property stochastic fields as well as the variance of the sandom variable modelling the
axial loading, (iii) the second-order probabilistic moments of eigenvalues are reiatively
more sensitive to the randomness in mass density than the randomness in the Young's

modilus, and (iv) the difference between the effects of the randomness in the mass
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density on the second-order probabilistic moments of eigenvalues and that of the Young's

modulus is oi the order of the squared value of ihe eigenvalue under considetation.

Whirl speed analysis of high speed rotor-bzaring systems has been considered in
chapter 4. The effects on the variability of the whirl speeds and whirl modes, of
randomness in material properties and external loadings ar¢ quantificd. Using a rotating-
coordinate formulation and finite element method, the whirl speed analysis is formulated
into a random non self-adjoint cigenproblem. The equations developed for a general non
self-adjoint system are considered and suitably madified in order to derive the equations
for the first- and second-order probabilistic moments of whirl speeds and whirl modes.
From the equations developed, it can be observed that (i) the variability in whirl speeds
and whirl modes is severely effected by the randumness in the mass density of the rotor
shaft, (ii) the second-order probabilistic moments of each whirl speed are lincarly related
to the ensemble mean value of that eigenvalue, and to the actocorrelation functions of the

Young’s modulus and mass density of the shaft material.

A parametric study is conducted, in chapter 5, n order to characterize the effects
on the variability of whirl speeds and whirl modes, of power spectral density functions
of material property stochastic ficlds. That is, the effects of the correlation properties of
the material property stochastic ficlds on the variability of whirl speeds are considered.
It is well known that in practical applications, it is seldom possible to determine precisely
with a prescribed confidence level the exact autocorrelation functions or the power
spectral density functions of the material properties. But, it has already been pointed out

that the correlation structures or the power spectral density functions of material property
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stochastic ficlds significanty affect the second-order moments of the whirl speeds. A
probabilistic design or a reliability-based design of a rotor-support system requires, as a
central input information, the second-order probabilistic moments of whirl speeds and
whirl modes. If the correlation structures of the material properties are not precisely

modelled, the proper design configuration cannot be achieved.

However, in these circumstances, the design can be based on the bounds on the
second-order probabilistic moments of whirl speeds and whirl modes. In the present
thesis, thesc bounds are obtzined in a systematic manner, by considering the most-
commonly observed autocorrelation functions. Five different correlation functions viz.
the triangular correlation function, the Markov process or AR (1) correlation function,
second-order autoregressive correlation function i.e. AR (2) correlation function, Gaussian
correlation function, and finite power white noise correlation function are considered. An

extensive numerical study has been conducted and the following observations have been

made:

1. A study of the absolute va'ues of the second-order probabilistic moments of whirl
speeds indicates that there is a significant increase in each and al! of the coefficients of
the covariance matrices of whirl speeds for increasing values of the standard deviations
of the Young’s modulus and mass density of the shaft material used. This has been
observed for five different values of the standard deviation (G, in the case of Young’s
modulus and @, in the case of mass density) viz., 1x107, 4x107%, 7x10°, ixi)* and
1.3x10*. For each value of the standard deviation the parametric study has been carried

out for 5 different correlation functions i.e., triangular correlation function, the Markov
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process, second-order autoregressive correlation function, Gaussian correlation function,
and finite power white noise correlation function. The above findir.g has been consistent

in each of these cases.

2. For a given set of values of the standard deviations of the material property random
fields, the triangular corrclation function, AR (1) correlation function, AR (2) correlation
function and the Gaussian correlation function each yield coefficients of the covariance
matrix of whirl speeds v'hose absolute values are very close to each other. The absolute
values of these coefficients for the finite power white noise correlation function, however,
are much less than that of the coefficients that correspond to the above 4 correlation
functions. This was observed to be the case for each of the standard deviations

considered in this study.

3. Bounds for the second-order probabilistic moments of the fundamental whirl speed of
the rotor-bearing system have been obtained considering three different cases viz., when
the Young's modulus is random, when the mass density is random and when both the
Young’s modulus and the mass density are random. In each of these cases, the bounds
have been obtained for the five correlation functions corresponding to each of the five

different values of the standard deviation viz , 1x10°%, 4x10°, 7x10°%, 1x10* and 1.3x10™.

4. A study of the influence of the lag distance in each of the correlation functions on the
absolute values of the coefficient of variation of ®,* has been performed. The coefficient
of variation of ;> has been found 'o be very sensitive to the lag distance for the

Triangular and AR(1) correlauon functions. The coefficient of variation of ®,? vary in
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a non-linear manner with increasing values of the lag distances for these two correlation
functions. The sensitivity of the coefficient of variation of «,’ to the lag distances of the
Second-Order Autoregressive, Gaussian and Finite Power White Noise correlation
functions are found to be relatively less significant. This behaviour has been observed
when the Young's modulus is random, when the mass density is random and when both

Young’s modulus as well as mass density are random.

5. The randomness in the mass density of the material has a considerable impact on the
second-order probabilistic moments of whirl speeds when compared with that due to the
randomness in the Young's modulus of the material. Since the randomness in the
Young's modulus of the material has to be controlled at the micromechanics level, more
attention should be paid, during the design stage, to handle randomness in the mass

distribution of the mechanical component.

A comparative numerical study regarding the relative influences of randomness
in Young's modulus and randomness in mass density, on the percentage variation of
fundamental whirl speed is very helpful for reliability-based design applications. Such

a comparative study has also been performed and the results plotted in Chapter 5.

The parametric study has been extended to the case of a rotor-bearing system
mounted on isotropic bearings. As in the case when the rotor-bearing system is mounted
on rigid bearings, the second-order probabilistic moments of whirl speeds are determined
for § different values of the standard deviation of the Young’s modulus and mass density.

In each case, the numerical study is carried out for the 5 correlation functions so as to
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quantify the influence of the bearing flexibility on the second-order probabilistic mrments

of whirl speeds. The following observations were made:

6. The coefficient of variation of ®,* due 1o the randomness in Young's modulus and
when the rotor is mounted on flexible (and isotropic) bearings, has been determined. This
value is almost twice that of the coefficient of variation of ©,? due to the randomness in
Young’s modulus when the rotor is mounted on rigid bearings. Consistent observations
have been made for the five cermrelation models and different values of standard deviations

of material property random fields.

7. When the mass density is random, the coefficient of variation of ®,? in the case of the
rotor-bearing system resting on isotropic bearings is higher than the coefficient of
variation of ®,?> when the rotor rests on rigid bearings. The proportional increase in the

coefficient of variation of ®,? is not as high as that when the Young's modulus is random.

8. Bounds for the second-order probabilistic moments of the fundamental whirl speed of
the rotor-bearing system have been obtained for threc different cases viz., when the
Young’s modulus is random, when the mass density is random and when both the
Young’s modulus and the mass density are random. In each of these cases, the bounds
have been obtained for the five correlation functions corresponding to each of the five

different values of the standard deviation viz., 1x10°%, 4x103, 7x10°%, 1x10™* and 1.3x10*,

9. QObservations 1, 2, 4 and § made in the case of the rotor-bearing system resting on

rigid bearings have also been noticed when the rotor is mounted on isotropic bearings.
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The influences on the second-order probabilistic moments of whirl speeds of the
mesh size in the finite element model of the actual rotor-bearing system have been
considered next. A numerical study is conducted by modelling the shaft as 4, 6, 8 and
10 finite elements. The coefficient of variation of ®,? is determined when the Young's
modulus is random and has a standard deviation of ¢, = 1x10° and when the shaft is
modelled as 4, 6, 8 and 10 finite elements. The study has been carried out for the 5
correlation functions viz. Triangular, AR(1), AR(2), Gaussian and Finite Power White
Noise. The second-order probabilistic moments of whirl speeds are found to increase
gradually as the number of finite elements are increased from 4 to 6. When the shaft is
modelled as 8 finite elements, the coefficient of variation of w,? increases sharply. This
is followed by a sharp decrease in the coefficient of variation of @, when the shaft is
modelled as 10 finite elements. The influence of finite element modelling on the second-
order moments of whirl speeds, when the rotor is mounted on isotropic bearings, is also
studied. The second-order probabilistic moments decrease slightly when the number of
finite elements is increased from 4 to 6. When the shaft is modelled as 8 finite elements,
there is a sudden increase in the coefficient of variation of ®,* followed by a sharp
decrease when the shaft is modelled using 10 finite elements. This sharp decrease is on
account of the fact that the lag distance (§,-&,) exceeds the triangulation correlation

constant 'a’, for the case when the modelling of the shaft exceeds 8 finite elements.

The values of the standard deviation in the Young’s modulus and mass density,
used in this thesis for the purpose of carrying out a parametric study, were arbitrarily
chosen (viz., 1x10%, 4x107%, 7x10°%, 1x10* and 1.3x10* ) to bring out the relative effects

of the various correlation structures on the coefficient of variation of the square of the
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first whirl speed, ®’ A similar parametric study with practical values of standard
deviation in Young's modulus and mass density, say 1-5 % of the mean value of the
Young's modulus and mass density respectively, has been set aside for future work in the
interest of time. Particular attention should be paid to the algorithm that computes the
eigenvalues and eigenvectors so as to make it robust. Also, care should be taken to
ensure that the resulting eigenvectors are orthonormal as this is a requirement for

designing the software that computes the coefficient of variation of ,*.

The probabilistic moments of whirl speeds and whirl modes have been obtained
in this thesis. For normal distribution function, the first two moments completely define
the probability structure of whirl speeds and whirl modes. In addition, the so-called
"level crossing probabilities”, i.e. the determination of the probability for a particular
whirl speed to exceed a design speed, and the so-called "envelope statistics”, i.e. the
probabilistic structure of bounding values of whirl speeds can be determined using the

probabilistic moments of whirl speeds that have been determined in the present work.

The results developed in chapter 3 encompass the cases when the moment of
inertia and the cross-sectional area of rotor shafts are also random. The misalignment
problems and the randomness inherent in such cases can also be treated using the results
of chapter 3. The specific applications to the cases when the Young's modulus and mass
density are stochastic have been considered in chapter 4. The formulations are exactly

the same for the othei cases mentioned above.

The independent variable x in E(x) and m(x) is a parameter representative of the
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attribute of the material property randomness. It can be a metallurgical process variable,
time, degree of damage to the material etc. This way, the variability in dynamic response
is analytically related to a measure of the attributing factor to the randomness in the
dynamic system. The results of micromechanics can thus be made use of in the design
of mechanical components for reliability. Equivalendy, if it is desired to reduce the
variability in dynamic response of the mechanical component, the information as to whas
is the corresponding change that must be made at the material level, can be obtained

using the probabilistic analysis prescnted in this thesis.

In practical applications, it is seldom possible to precisely determine the
correlation function for the test data on material property fluctuations. But the type of
the correlation structure has considerable influence, for the same standard deviation of the
material property fluctuations, on the probabilistic moments of whirl speeds and whirl
modes. It is very useful in design applications if a quantitative information as to the
relative influences of various correlation structures is available. Such an information has

been obtained in the present work.

Morcover, in these situations, the reliability-based design can be achieved by
considering the bounds on the probabilistic moments of whirl speeds and whirl modes,
through the so-called “"extreme value hypothesis” of probabilistic design. It is

demonstrated that these bounds can be obtained from the results of present work.

While performing a finite element analysis for design, the relevant mesh size is

determined based on the type of the structural system, problem characteristic difficulties
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such as singularities, steep stress gradients etc. and the nature of the loadings. It has been
shown in the present work that the mesh size has a direct bearing on the probabilistic
moments of the whirl speeds, whirl modes and hence the dynamic response. It is shown
that an increase in the number of finite elements in the finite element model of the
structural system may aiso result in the underestimation of the variability in dynamic
response, for a given standard deviation of the material propertics. The design then
becomes unsafe and the reliability is reduced. For a particular configuration of the
structural system, the optimum mesh size from the probabilistic point of view can be
determined through a parametric study. The results of the present work can be used in

this regard. The relevant procedure has been demonstrated in chapter 5.
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Appendix

This appendix is related to Section 3. 3 of the thesis and describes a procedure that
serves to illustrate the method used to generate sample realizations of a random matrix
[A] and obtain the averaged matrix [A) of these sample realizations. Each of the
elements of the various sample realizations of the random matrix [A] is characterized by
a certain mean and standard deviation. Thus, the (i,j)th element of the various sample
realizations have the same mean and standard deviation. Sample realizations of a random
matrix [B] are generated and the averaged matrix [B) obtained in a manner identical to
that for matrix [A]. Each of the elements of the various sample realizations of the

random matrix (B} are characterized by a certain mean and standard deviation.

The eigenproblem is studied, using the first sample realization pair [A,] and [B,]
of size mxm as the characteristic mat-« -, for the eigenvalues (A, A, ..., Ag,), the
eigenvectors to the left ({y},,, {¥}a1» .. {¥)e)) and the eigenvectors to the right ({x},,,
{x}a1, . {X}a;). This study is repeated with the subsequent sample realization pairs of
[A] and [B] ( [A;] and (B,], [A,] and [B,], ..., [A,] and [B,] ) and the eigenvalues (A,
A oo A i A Ay o Ay 4 5 Ay Agy s Ay, the eigenvectors to the left ({y),,
(Y o oo {¥)m2 s {¥)ise (¥} oo YDy s o 5 A {¥}ar oo {Y)aa) as well as the
eigenvectors to the right ({x},5, {X}55, s {X}az 3 {X}i3s {X D230 oo {X)ms 5 oooe 3 {X} 1o (X }ome

..» {X) o) are computed in each of these cases. Finally, the eigenproblem is studied with
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the averaged matrices [A] and [B] and the corresponding averaged eigenvalues (X,i
7.,,,), the averaged eigenvectors to the left ({y},, {y}s .. {¥}a) and the averaged
eigenvectors to the right ({x},, {7&}2. {'i}m) are determined. A comparison is done
between the averaged eigenvalue (A,, A,, 7\.,,,) and the mean (A, A,, ..., A,) of the
eigenvalues (A, Ayyv oo Ay 3 Az Agss coos Az 3 v 3 A Mg oo Agg). Similarly, the
averaged eigenvector to the right ({‘f},. (X} e {X)g) is compared with the mean ({x},,
{x}2 ... {X])p) of the eigenvectors to the right ({x}y, {X}y coos {X}m 5 (X} (X}a30 e
{X}mz 5 ooe s {X}ia {X}a oo { X)), While the averaged eigenvector to the left ({y},, {Y],

v {¥)) is compared with the mean ({y},, {y}s ... {y}a) of the eigenvectors to the left

Uyho (Yo oo ¥ mi s (5 h2e (¥}22s o (¥ )m2 5 o 5 I Hiw (Y )2mr oo Y V)

Random numbers within the range of 0 to 1 arc generated using the formulation
presented in Gottfried [1984] that have a normal distribution. A normal random variate

X is generated as:

N
; (U, - N/2)
z = X
VW72

where, p and ¢ are the mean and standard deviation of the variate X, while Z is the

X=p+0*Z ;

standard normal and U, represents independent uniform random numbers. In this
exercise, Z is computed by choosing N=100 thus requiring U,'s to be generated 100 times
by invoking the "rand" function each time. The normal random variatc X is then
computed using this value of Z and a knowledge of the mean p and and standard

deviation ¢ of X. The value of X thus computed forms the (i,j)th element of a sample
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realization [A,], with mean p and standard deviation ©,, of a random matrix [A]. The
other elements of the sample realization [A,] are similarly determined with a knowledge
of the mean and standard deviation of each of these elements. After constructing the
sample realization [A|], subsequent sample realizations of [A] are constructed. For
purposes of illustration, matrices of size 3x3 are constructed and 50 sample realizations
of a matrix are generated. The different sample realizations of the random matrix [B] are
generated in a manner similar to that for the random matrix [A]. For simplicity, the mean
W, and standard deviation o, for the (i,j)th element of the various sample realizations of
[B] is chosen to be the same as that for the (ijjth element of the various sample
realizations of [A]. The averaged matrix [A] is oblained by computing . . mean of the
individual matrix elements of [A] over the various sample realizations. The averaged
matrix [B] is formed similarly. During the generation of the various sample realizations
of the random matrices [A] and [B] care is taken to discard singular matrices that results

in division by zero.

The software developed to generate the various sample realizations of a random
matrix and compule the averaged matrix is presented at the end of this appendix. The
mean and standard deviation of the matrix elements of [A] and [B] are chosen as
follows:-
ua(1,1) = pp(1,1) = 0.5; a,(1.1) = 0x(1,1) = 0.01;

pa(12) = pp(1,2) = 0.3; 6,(1,2) = 6,(1,2) = 0.01;

na(1,3) = pp(1,3) = 0.7; 6,(1,3) = 65(1,3) = 0.01;
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Ha(2,1) = pg(2,1) = 0.3; 6,(2,1) = 6,4(2.1) = 0.1;
HA(2:2) = p(2,2) = 0.4; 0,(22) = 0x(2,2) = 0.1,

HA(23) = Hp(2.3) = 0.6:6,(2.3) = 6,(2,3) = 0.1;

UA(3,1) = pg(3,1) = 0.2; 6,(3,1) = 0,(3,1) = 0.05;
13.2) = (3.2) = 0.6; 6,(3.2) = G,4(3.2) = 0.05;

HA(3,3) = pa(3.3) = 0.8; 6,(3,3) = 6,4(3,3) = 0.05;

The algorithm also solves the eigenvalue preblem and is used with each of the 50 sample
realizations of the 3x3 random matrices [A] and [B] so as to compute the eigenvalues
A Ao My A s Ayt 5 Ao Aasos Aggg), the eigenvectors to the left ({y),, {Y ).y
(Yha 5 {yhae {¥) (¥ )52t 3 {yhiso {Y )0 (¥ )3s0) and the eigenvectors to the right
({xhs (%o (X} s X (X }aas (X} 5 e {X )50 {X) 2500 {X)350). The mean of the
eigenvalues computed above are determined and denoted as (A, A,. A,) Similarly, the
mean of the eigenvectors to the left and the mean of the eigenvectors to the right are
computed and denoted respectively as ({y },. (v}, {y},)and ({x},, {x}, {x};). Using the
averaged matrices [A] and ['I-B], the eigenvalue routine determines the averaged
eigenvalues (_5\,,3\,2. ;\3), the averaged eigenvectors to the left ({—y}.. (¥, {;'},) and the
averaged eigenvectors to the right ((x},, (X}, {X}5). Itis noted that due to the relatively
small number of sample realizations chosen, for illustraling the objective set forth in the
beginning, the averaged eigenvalues (il.—).-.,. ;»3) do not compare well with the mean (A,
M. A3) of the eigenvalues. Similar observations are made with regards to the eigenvectors
to the left as well as the eigenvectors to the right.
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ALGORITHM

Step 1 Input the mean y, and pg fur each of the elements of matrices [A] and [B]:
u,\(l'l) * uh(lsz)’ sy uh(3'3) ; pB(lli) v “B(lvz)v ey uB(313)
Input the standard deviation 6, and o of the [A] and [B] matrix elements:

OA(lvl) 1 OA(loz)v seey CA(313) ; 03(111) ’ 03(1,2), sy 03(393)

Step 2 Renea; steps 3 to 8 so as to construct 50 sample realizations of non-
singular random matrices [A] and [B), discarding those matrices that are

singular.

Step 3 Construct a sample realization of [A] by computing A(i,j) for i, j = 1, 2,

3 using steps 4 and 5.

Step 4 Generate a random number U, (0<U<1), k =1, 2, ..., 100

Step 5 A(i,j) is computed using the mean p,(i,j), the standard deviation 6,(i,j) as

well as the random numbers U,, generated in step 4, as follows:

100

A(d, ) = pald,J) + (0,04, ) s (=2 05713 )]
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Step 6

Step 7

Step 8

Step 9

Step 10

Construct a sample r:alization of [B] by computing B(i,j) for i, j = 1, 2,

3 using steps 7 and 8.

Generate a random number U, (0<U,<1), k=1, 2, ..., 100

B(i,j) is computed using the mean pg(i,j), the standard deviation Gx(i,j) as

well as the random numbers U,, generated in step 7, as follows:

100
(U, - 100/2)

B(i,J) = pp(i,J) + log(i, F) (=2 )]

vi00/12

Using an eigenvalue routine, for each of the samplc realizations [A,] and
{B,], determine the eigenvalues (A, A, A;y), the eigenvectors to the left
({yhis {y)ir {y)is) and the eigenvectors to the right ({x};,, {x},, {x},y), i

=1,2,..50.

Compute the mean of the eigenvalues as:

50 50 50
;Ail ;AIZ pllij
e Tl R N

Similarly, the mean ({y},, {y}.. {Y};) of the eigenvectors io the left as well
as the mean ({x},, {x}; {x]),) of the eigenvectors to the right are

computed.
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Step 11 The mean of the various sample realizations of [A] and [B], viz. [A] and
[B), are constructed from the computation of the individual matrix elements

A(i.,j) and B(i,j) using the following relation, for i, j =1, 2, 3.

50 50
A, ) =;Ak(i'j) i Bl(i,3) =;Bk(i,.7')
=] al

Step 12 Using the eigenvalue routine for the averaged matrices [A] and [TB]
determine the averaged eigenvalues (‘71,.7-\,2 A,), the averaged eigenvectors
to the left ({y),, {y}, {¥}),) and the averaged eigenvectors to the right

({x},, (X} (X))
Step 13 Compare the eigenvalues (7\,,7‘2,3‘4) with (A, A,, A,); the eigenvectors to

the left ({y},, {')"},, {')7}3) with ({y},, {y},, {Y}s); and the eigenvectors to

the right (X}, {X},, {X}3) with ({X},, (X5, (x}).

197




Bibliography

(1]
[2]

[3]

[4]

(5]

(6]

(7]

(8]

(91

Adomian, G., "Stochastic systems", Academic, New York, 1983.

Amman, D., "Approximation and generation of Gaussian and non-Gaussian
stationary processes”, Structural Safety, Vol.8, pp. 153-160, 1990.

Archer, J. S., "Consistent mass matrix for distributed mass systems", Journal of
the Swructural Division, Proceedings of the ASCE, Vol. 89, ST4, pp. 161-178,
1963.

Astill, C. J., Nosseir, S. B. and Shinozuka, M., "Impact loading on structures with
random properties”, J. Struct. Mech., Vol. 1, No. 1, pp. 63-77, 1972.

Benaroya, H., "Random eigenvalues and structural dynamical models”, In
"Stochastic Structural Dynamics I -- New Theoretical Developments”, Lin, Y. K.
and Elishakoff, 1. (Eds.), Springer Verlag, Berlin, pp.11-32, 1991.

Benaroya, H. and Rehak, M., "Finite element methods in probabilistic structural
analysis: A selective review", Appl. Mech. Rev., Vol. 41, No. 5, pp. 201-213,
May 1988.

Bliven, D. O. and Soong, T. T., "On frequencies of elastic beams with random
imperfections”, J. Franklin Inst., Vol. 287, pp. 297-304, 1969.

Bolotin, V. V., "Nonconservative problems of the theory of elastic stability”,
Pergamon Press, Oxford, 1963.

Borgman, L. E., "Ocean wave simulation for engineering design”, ASCE J.

Waterways Harbours, Vol. 95, WW4, pp. 557-583, Nov. 1969.

198



>

[10]

[11]

[12]

{13]

[14]

[15)

[16]

[17]

(18]

[19]

Borri, A., "Stochastic behaviour of special materials: The Composite Material",
In "Dynamic Motion: Chaotic and Stochastic Behaviour”, Casciati, F. (Ed.),
Springer-Verlag, pp. 171-202, 1993,

Boyce, W. E., "Random vibration of elastic strings and bars", Proceedings of the
4th US National Congress of Applied Mechanics, Berkeley, pp. 77-85, 1962.
Boyce, W. E., "Stochastic nonhomogeneous Sturm-Liouville problem", J. Franklin
Inst., Vol. 282, pp. 206-215, 1966.

Boyce, W. E., "A ’dishonest’ approach to certain stochastic eigenvalue problem",
SIAM J. Appl. Math,, Vol. 15, pp. 143-152, 1967.

Boyce, W. E., "Random eigenvalue problems", In "Probabilisitic Methods in
Applied Mathematics -- Vol.1", Bharucha-Reid, A. T. (Ed.), Academic Press, New
York, pp. 1-73, 1968.

Boyce, W. E. and Goodwin, B. E., "Random transverse vibrations of elastic
beams”, J. SIAM, Vol. 12, No. 3, pp. 613-626, Sept. 1964.

Boyce, W. E. and Xia, N.-M., "Upper bounds for the means of eigenvalues of
random boundary value problems with weakly correlated coefficients”, Q. Appl.
Math. Vol. 42, No. 4, pp. 439-454, 1985.

Cole, J. D., "Perturbation methods in applied mathematics", Blaisdell, Waltham,
MA, 1968.

Collins, J. D., Hart, G. C. and Kennedy, B., "Statistical analysis of the modal
properties of large structural systems", Society of Automotive Engineers, National
Aeronautics and Space Engineering and Manufacturing meeting, Los Angeles, CA,
SAE paper 710785, 1971.

Collins, D. and Thomson, W. T., "The eigenvalue problem for structural systems

199




[20])

[21]

[22)

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

with statistical properties”, AIAA Journal., Vol. 7 No. 4, pp. 642-648, 1969.
Contreras, H., "The stochastic finite element method®, Comput. Struct., Vol. 12,
pp- 341-348, 1980.

Day, W. B., "Asymptotic expansions of eigenvalues and eigenfunctions of random
boundary-value problems", Q. Appl. Math., Vol. 38, pp. 169-177, 1980.
Deodatis, G. and Shinozuka, M., "Simulation of seismic ground motion using
stochastic waves", ASCE J. Engrg, Mech., Vol. 115, No. 12, pp. 2723-2737, 1989.
Fox, R. L. and Kapoor, M. P., "Rates of change of eigenvalues and eigenvectors”,
AIAA J., Vol. 6, No. 12, pp. 2426-2429, 1968.

Ganesan, R., "Probabilistic analysis of non self-adjoint mechanical systems with
uncertain parameters”, Int. J. Solids Structures, Vol. 33, No. 5, pp. 675-688, 1996.
Ganesan, R., Sankar, T. S.,, and Ramu, S. A., "Non-conservatively loaded
stochastic columns”, Int. J. Solids Structures, Vol. 30, No. 17, pp. 2407-2424,
1993.

Goodwin, B. E. and Boyce, W. E., "Vibrations of random elastic strings: Method
of integral equations”, Q. Appl. Math., Vol. 22, pp. 261-266, 1964.

Gottfried, B. S., "Elements of Stochastic Process Simulation", Prentice-Hall, New
Jersey, 1984,

Green, R. B., "Gyroscopic effects on the critical speeds of flexible rotors",
Transactions of the ASME, Vol. 70, pp. 369-376, 1948.

Haines, C. W., "Hierarchy methods for random vibrations of elastic strings and
beams", J. Eng. Math,, Vol. 1, pp. 293-305, 1967.

Hart, G. C,, "Eigenvalue uncertainty in stressed structures”, J. Eng. Mech., Vol.

99 (EM3), pp. 481-494, 1973.

200



(31]

(32]

(33]

(34]

(35]

(36]

[37]

[38]

[39]

Hart, G. C. and Collins, J. D., "The treatment of randomness in finite element
modeling", Society of Automotive Engineers, Aerospace Fluid Power conference,
National Aeronautic and Space Engineering and Manufacturing meeting, Los
Angeles, CA, SAE paper 700842, Oct. 1970.

Hasselman, T. K. and Hart, G. C., "Dynamic analysis cf structures with random
properties by component mode synthesis”, Society of Automotive Engineers,
Aerospace Fluid Power conference, National Aeronautic and Space Engineering
and Manufacturing meeting, Los Angeles, CA, SAE paper 710786, Sep. 1971.
Hasselman, T. K. and Hart, G. C., "Modal analysis of random structural systems",
J. Eng. Mech., Vol. 98 (EM3), pp. 561-579, (1972).

Hatter, D. J., "Matrix computer methods of vibration analysis", John Wiley &
Sons, 1973.

Hori, M., "Siatistical theory of effective electrical, thermal and magnetic properties
of random heterogeneous materials - 11", J. of Math. Phys., Vol. 14, pp. 1942-
1948, 1973.

Hoshiya, M. and Shah, H. C., "Free vibration of stochastic beam-column", J. Eng.
Mech., Vol. 97, pp. 1239-1255, 1971.

Ibrahim, R. A., "Structural dynamics with parameter uncertainties”, Appl.
Mech. Rev. Vol. 40, pp. 309-328, 1987.

Itagaki, H. and Ogawa, T., "Digital simulation of stationary Gaussian random
process for the reliability experiments”, In "Reliability approach in Structural
Engineering", Freudenthhal, A. M. et al. (Eds.), Maruzea Co., Tokyo, pp. 161-172,
1975.

Keller, J. B., "Wave propagation in random media", Am. Math. Soc., Providence

201




[40]

(41]

[42]

[43]

(44]

[45]

[46]

[47]

(48]

149}

[50]

RI, pp. 217-246, 1962.

Keller, J. B., "Stochastic equations in random media", Am. Math. Soc.,
Providence, RI, pp. 145-170, 1964.

Kemer, E. H., "Periodic impurities in a periodic lattice”, Phys. Rev., Vol. 95, No.
3, pp. 687-689, 1954,

Kemer, E. H., "The band structure of mixed linear lattice", Proc. of the Phys. Soc.,
Vol. 69A (433A), p. 234, 1956.

Lalanne, M. and Ferraris, G., "Rotordynamics prediction in engineering”, John
Wiley & Sons, 1990.

Leipholz, H. H. E., "Stability of elastic systems”, Sijthoff-Noordhoff Co.,
Netherlands, 1980.

Leipholz, H. H. E., "On the occurrence of non-selfadjointness in the control of
elastic structures”, Acta Mechanica, Vol. 73, pp. 95-119, 1988.

Li, Y. and Kareem, A., "Simulation of multivariate nonstationary random processes
by FFT", ASCE J. Engrg, Mech., Vol. 117, No. 5, pp. 1037-1058, 1991.

Li, Y. and Kareem, A., "Simulation of multivariate random processes; Hybrid DFT
and digital filtering approach”, ASCE J. Engrg, Mech., Vol. 119, No. 5, pp. 1078-
1098, 1993,

Lin, Y. K. and Yang, J. N., "Free vibration of a disordered periodic beam", J.
Appl. Mech. , Vol. 41, pp. 383-391, 1974,

Linde, Van Der R. H,, "Eigenfunctions of random eigenvalue problems and their
statistical properties”, SIAM J. Appl. Math,, Vol. 17, No. 6, pp. 1298-1304, 1969,
Liu, W. K., Belytschko, T. and Mani, A., "Probabilistic finite elements for

transient analysis in nonlinear continua", Advances in acrospace structural analysis,

202



[51]

(52]

[53]

[54]

(53]

[56]

[57]

(58]

(59]

Proceedings of the ASME WAM, Miami Beach, FL, (Eds. Bumside, O. H. and
Parr, C. H.), vol. AD-09, pp. 9-24, (1985).

Liu, W. K., Belytschko, T. and Mani, A., "Probabilistic finite elements for
nonlinear structural dynamics”, Comput. Methods Appl. Mech. Eng., Vol. 56,
pp.61-81, 1986.

Lund, J. W., "Sensitivity of the critical speeds of a rotor to changes in the design",
J. Mech. Des., Vol. 102, pp. 115-121, Jan. 1980.

McCalley, R. B. Jr., "Error analysis for eigenvalue problems", ASCE 2nd
conference on Electronic Computation, Pittsburgh, PA, Conference papers, ASME
New York, 1960.

Meirovitch, L. "Elements of Vibration Analysis", McGraw-Hill, New York, 1986.
Meirovitch, L., "Computational methods in structural dynamics", Sijthoff-
Noordhoff Co., Netherlands, 1980.

Nakagiri, S. and Hisada, T., "Stochastic finite element method applied to structural
analysis with uncertain parameters”, Proceedings of the International conference
on Finite Element Methods, pp. 206-211, 1982.

Nakagir, S., Takabatake, H. and Tani, S., "Uncertain eigenvalue analysis of
composite laminated plates by the stochastic FEM", Trans. ASME,, J. Engrg. Ind.,
Vol. 109, pp. 9-12, 1987.

Nelson, H. D. and McVaugh, J. M., "The dynamics of rotor-bearing systems
using finite elements”, Journal of Engineering for Industry - Transactions of the
ASME, pp. 593-600, May 1976.

Nelson, H. D. and Nataraj, C., "The dynamics of a rotor system with a cracked

shaft", Journal of Vibration, Acoustics, Stress, and Reliability in Design, Vol. 108,

203



[60]

(61]

(62]

[63]

(64]

[65]

(66]

[67]

{68]

(691

pp. 189-196, April 1986.

Palazzolo, A. B., Wang, B. P. and Pilkey, W. D., "Eigensolution reanalysis of
rotordynamic systems by the general receptance method", Trans. ASME., J. Engrg.
for Power, Vol. 105, pp. 543-550, July 1983.

Pedersen, P. and Seyranian, A. P., "Sensitivity analysis for problems of dynamic
stability", Int. J. of Solids and Structures, Vol. 19, No. 4, pp. 315-335, 1983.
Pierre, C., "Analysis of structural systems with parameter uncertainties", PhD
thesis, Duke Univ., Durham, NC, 1985.

Plaut, R. H. and Huseyin, K., "Derivatives of eigenvalues and eigenvectors in non
self-adjoint systems", AIAA J., Vol. 11, No. 2, pp. 250-251, 1973.

Purkert, W. and Scheidt, J., "On the approximate solution of the mean value
problems for the eigenvalue of stochastic differential operator (in German)", Z.
Angew. Math. Mech., Vol. 57, pp. 515-525, 1977.

Purkert, W. and Scheidt, J., "On the dispersion of the stochastic eigenvalue
problems (in German)", Z. Angew. Math. Mech., Vol. 59, pp. 611-623, 1979a.
Purkert, W. and Scheidt, J., "Stochastic eigenvalue problems for differential
equations”, Rep. Math. Phys., Vol. 15, pp. 205-227, 1979b.

Rajan, M., Nelson, H. D. and Chen, W. ]., "Parameter Sensitivity in the dynamics
of rotor-bearing systems", Journal of Vibration, Acoustics, Stress, and Reliability
in Design, Vol. 108, pp.197-206, April 1986.

Ramuy, S. A., Ganesan, R. and Sankar, T. S., "Stability analysis of stochastically
parametered nonconservative columns”, Int. J. Solids Structures, Vol. 29, No. 23,
pp- 2973-2988, 1992.

Ramu, S. A. and Ganesan, R., "Stability of stochastic Leipholz column with

204



(70]

(711

[72)

(73]

(74]

(75]

[76]

(77

[78]

stochastic loading", Archive of Applied Mechanics, Vol. 62, pp. 363-375, 1992.
Ramu, S. A. and Ganesan, R., "A Galerkin finite element technique for stochastic
field problems", Comput. Meth. Appl. Mechan. Engrg. Vol. 105, pp. 315-331,
1993.

Ramu, S. A., Ganesan, R. and Channakeshava, K. V., "A critical review of digital
simulation strategies for probabilistic structural analysis”, Journal of Structural
Engineering, Vol. 23, No. 1, pp. 1-7, April 1996.

Rice, S. 0., "Mathematical analysis of random noise", In "Selected Papers on noise
and stochastic processes”, Wax, N. (Ed.), Dover Publications Inc., New York,
1954.

Sankar, T. S., Ramu, S. A. and Ganesan, R., "Stochastic finite element analysis
for high speed rotors”, Trans. ASME, J. Vibr. Acoust., Vol. 115, pp. 59-64, 1993.
Scheidt, J. and Purkert, W., "Random eigenvalue problems", Elsevier, New
York, 1983.

Schueller, G. I. and Bucher, C. G., "Non-Gaussian response of systems under
dynamic excitation”, In "Stochastic Structural Dynamics”, Ariaratnam, S. T. et al.
(Eds.), Elsevier, New York, pp. 219-239, 1988.

Shinozuka, M., "Simulation of multivariate and multidimensional random
processes”, J. Acoust. Soc. Amer., Vol. 49, No. 1, pp. 357-368, 1971.
Shinozuka, M., "Monte Carlo solution of structural dynamics”, Computers Struc.,,
Vol. 2, pp. 855-874, 1972.

Shinozuka, M., "Digital simulation of random processes in engineering mechanics
with the aid of FFT technique", In "Stochastic Problems in Mechanics”,

Ariaratnam, S. T. and Leipholz, H. H. E. (Eds.), University of Waterloo Press, pp.

205




[79]

(801

(81]

(82]

(83]

[84]

(85]

(86]

(87

(88]

277-286, 1974,

Shinozuka, M., "Stochastic fields and their digital simulation”, In "Stochastic
methods in structural dynamics", Schueller, G. 1. and Shinozuka, M. (Eds.),
Martinus Nijhoff, Dordrecht, 1987.

Shinozuka, M. and Astill, C.A,, "Random eigenvalue problems in structrual
analysis", AIAA Journal, Vol. 10, pp. 456-462, 1972.

Shinozuka, M. and Deodatis, G. "Stochastic process models for earthquake ground
motion", J. Probabilistic Engrg. Mech., Vol. 3, No. 3, pp. 114-123, 1988.
Shinozuka, M. and Jan, C. -M., "Digital simulation of random processes and its
applications”, J. Sound Vib., Vol. 25, No. 1, pp. 111-128, 1972.

Shinozuka, M. and Lenoe, E., "A probabilistic model for spatial distribution of
material properties”, J. Engrg. Fracture Mechanics, Vol. 8, pp. 217-227, 1976.
Shinozuka, M. and Wen, Y. K. "Monte Carlo solution of non-linear vibrations",
AlAA J., Vol. 10, No. 1, pp. 37-40, 1972.

Soong, T. T. and Bogdanoff, J. L., "On the natural frequencies of a disordered
linear chain of N degrees of freedom", Int. J. Mech. Sci., Vol. 5, No. 3, pp. 237-
265, 1963.

Soong, T. T. and Cozzarelli, F.A., "Vibration of disordered structural systems,"
Shock Vib. Digest, Vol. 8, pp. 21-35, 1976.

Spanos, P. D. and Ghanem, R., "Stochastic finite element expansion for random
media", J. Engrg. Mech., Vol. 115, pp. 1035-1053, 1989.

Spanos, P. D. and Mignolet, M. P., "Recursive simulation of stationary
multivariate random processes - Part I (Mignolet and Spanos) and Part II (Spanos

and Mignolet)", J. Appl. Mech., Trans. ASME, Vol. 54, pp. 674-680 and pp. 681-

206



(89]

(90]

(91]

[92]

193]

(94]

[95)

[96]

(971

(98]

687, 1987.

Spanos, P. D. and Mignolet, M. P, "ARMA Monte Carlo simulation in
probabilistic structural analysis”, Shock Vib. Dig., Vol. 21, No. 11, pp. 3-14, 1989.
Thomson, W. T., "Theory of vibration with applications", 2nd ed., Prentice-Hall,
Englewood Cliffs, NJ, 1981.

Vaicaitis, R., "Free vibrations of beams with random characteristics", J. Sound
Vib., Vol. 35, pp. 13-21, 1974

Vanmarcke, E., "Random fields: Analysis and Synthesis", MIT Press, Cambridge,
1983

Vanmarcke, E. and Grigoriu, M., “Stochastic finite element analysis of simple
beams”, J. Engrg. Mcch., Vol. 109, No. 5, pp. 1203-1214, 1983.

Venkatesan, S. and Ganesan, R., "Variability in dynamic response of non self-
adjoint mechanical systems”, Proc. of the ASME Design Engineering Technical
Conf., Vol. 3, Part A, Boston, MA, pp. 1037-1045, 1995.

Wedig, W., "Moments and probability densities of dynamical systems under
stochastic parameter excitation", Proc. of the 7th Int. Conf. on Nonlinear
Oscillations, Berlin, pp. 469-492, 1976.

Wedig, W., "Stochastic boundary and eigenvalue problems”, In "Stochastic
problems in dynamics", Clarkson, B. L. (Ed.), Pitman, London, pp. 54-66, 1977.
Weeks, E. and Cost, T., "Complex stress response and reliability analysis of a
composite elasiic-viscoelastic missile configuration using finite elements”, Mech.
Res. Commun,, Vol. 7, No. 2, pp. 59-63, 1980.

Yamazaki, F. and Shinozuka, M., "Digital generation of non-gaussian stochastic

fields", ASCE J. Engrg. Mech., Vol.114, No. 7, pp. 1183-1197, 1988.

207




[99] Yamazaki, F., Shinozuka, M. and Dasgupta, G., "Neumann expansion for
stochastic finite element aralysis", J. €ngrg. Mech., Vol. 114, No. 8, pp. 1335-
1354, Aug. 1988.

[100] Yang, J. N., "Simulation of random envelope processes”, J. Sound Vib., Vol. 21,
No. 1, pp. 73-85, 1972.

(1011 Zhu, W. Q. and Wu, W. Q., "A stochastic finite element method for realeigenvalue

problems", Probabilistic Engineering Mechanics, Vol. 6, pp. 228-232, 1991,

208



