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ABSTRACT

Finite Element Solutions of the Euler Equations
in Primitive Variables Form

Guido Baruzzi

Most of the current approaches to the solution of the Euler equations are based on explicit
or semi-implicit time-marching schemes. These schemes suffer from poor convergence

rates due to the time-step restrictions imposed by stability constraints.

In this thesis a new approach, based on solving the steady Euler equations, is presented
and is shown to be a more efficient scheme to capture steady-state solutions. The scheme
is constructed by adding dissipation terms, in the form of Laplacians of the solution
variables, on the right-hand side of the governing equations. The residuals of the equations
are minimized via the Galerkin weak form, allowing the recovery of contour integrals that
yield natural boundary conditions. The finite element discretization also permits a natural
approach to the extrapolation of boundary conditions necessary for hyperbolic systems,
guaranteeing that the Euler equations are satisfied at the boundaries. The resulting
equations are linearized by Newton's method and solved in a fully coupled manner by a

direct solver to achieve quadratic convergence.

Solutions for interna! and external transonic flows show that the scheme is practical and
efficient. Furthermore, this thesis illustrates the non-uniqueness of the steady Euler

equations by capturing multiple solutions for a class of internal flows.
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CHAPTER1

1.1 Introduction

Many of the partial differential equations that govern the dynamics of physical systems do
ot permit an exact solution. Such solutions can only be obtained for special or simplified
cases. In the engineering aerodynamics environment one deals with complex problems,
consequently two different approaches can be pursued: tite reliance on empirical
information database gathered through experience or the development of algorithms for the
numerical solution of the governing equations. Such computer simulations are becoming
the norm in the aerospace industry and help reduce the development time and the
investment required to produce a new aerodynamic design. The objective of these
simulations is not to eliminate experimental testing but to selectively focus it, thus
providing a more efficient and effective global design tool. In addition, in some
engineering areas where experiments cannot be easily carried out, computer simulation

provides the only way to determine the flow behavior.

Examples abound of the application of numerical codes to the design of aerodynamic
shapes in the development of modern aircraft, space shuttles, missiles and the space plane.
Codes developed for acrodynamics are also sometimes adapted to a variety of fields, from

the design of the America's Cup winner to power and process applications.

While some numerical techniques for the approximate solution of partial differential
equations were introduced before the appearance of the digital computer, it is only the
power of such machines that has made possible their application to complex and practical
problems. Computational Fluid Dynamics has therefore developed as a multidisciplinary

endeavor between engineering, applied mathematics and computer science. It belongs to a



broad family of relatively new but growing sectors of the applied sciences that have come

to maturity due the advances in the digital computer.

In the area of transonic acrodynamics, in particular, practical numerical techniques started
emerging in the late '60s. Murman and Cole [1] were pioneers in the development of an
upwind finite difference scheme for the solution of the Transonic Small Disturbance
Equation. Their breakthrough consisted of switching from a centered stencil in subsonic
regions to an upwind difference one in supersonic regions. Centered schemes allow both
compression and entropy-violating expansion shocks to form during the numerical solution
process. The Murman and Cole algorithm succeeded in selectively capturing compression
shocks and suppressing the non-physical expansion ones, thereby handling the mixed
elliptic-hyperbolic nature of the equation as the flow changes from subsonic to supersonic
and vice versa. This, together with their use of a Successive Line Over Relaxation (SLOR)

scheme, permitted successful transonic solutions.

Jameson [1] then showed that upwind finite difference stencils are equivalent to the
combination of a central difference and a dissipation operator which resembles in nature the
viscosity terms of the Navier-Stokes equations, hence the label artificial viscosity. This
artificial viscosity introduces the necessary dissipation mechanism for the selective
formation of compression shocks in an otherwise inviscid fluid. This concept of artificial
viscosity, dissipation or upwinding, is used today, in one form or another, in all shock-

capturing transonic schernes.

The numerical solution of the Full Potential Equation was the next milestone [1]. Results
for arbitrary lifting transonic airfoils were obtained and subsequently the analysis of 3-D
complex configurations and unsteady flows also became possible. Invariably the partial

differential equations were discretized via finite difference or finite volume methods



because of the ease of shifting from central to upwind stencils between subsonic and

supersonic regions of the flow.

1.2 Limitations of the Full Potential Equation

The Full Potential Equation has been recently shown to yield multiple solutions for certain
ranges of Mach number and angles of attack for external transonic flows. This non-
uniqueness problem, analyzed in detail by Salas, Jameson and Melnik [2], is attributable to
the incomplete shock-jump conditions of the Full Potential Equation. It can be
circumvented either by explicitly correcting the total pressure downstream of the shock, or
by solving an additional Poisson equation for pressure, as proposed by Hafez et al. [3] and
Habashi et al. [4].

For internal flows the Full Potential Equation suffers equally from non-uniqueness {4].
For choked flow in a nozzle, for example, purely isentropic exit flows are the only possible
solutions. Should a shock form somewhere in the nozzle, its position would be arbitrary
because its strength cannot affect the back pressure. Habashiet al. [4] resolved this
difficulty by modifying the classical imposition of boundary conditions for internal choked
flows. Their method, known as the Modified Potential, specifies an arbitrary value of the
potential at the exit to produce intermediate choked solutions which, after calculating the
proper total pressure loss across the shock, may not lead to the target back pressure.
Successive corrections of this exit potential value are made until the desired back pressure

is reached. The method has found application in supersonic choked turbomachinery

The Full and Modified Potentials are nevertheless irrotational models and do not account
for the entropy generated downstream of strong curved shocks. An alternative is the Euler

equations, solved either in primitive variables or in stream function forms. The latter is



attractive from the point of view of exact mass conservation, but suffers from the double-
valuedness of the density vs mass flux for a given Mach number. It has been developed
for external and internal transonic flows, for both finite differences [5] and finite elements

[6], its extension to 3-D is not simple.

L3 The Euler Equations

The introduction illustrated the current interest in the solution of the Euler and,
consequently, of the Navier-Stokes equations. The Reynolds-Averaged Navier-Stokes
equations describe the physics of viscous fluid flows, but their numerical solution was
considered impractical until recently because of the large computer memory requirements
associated with the solution of systems of equations in several variables and the fine grids
necessary to accurately resolve the boundary layer regions. The Euler equations in
primitive variables form, a system of quasi-linear hyperbolic equations, are the subset of
the Navier-Stokes equations obtained by neglecting the viscous terms. Although no fluid
can be really considered inviscid, the Euler equations provide a reasonable, but by no
means complete, estimate of the behavior of a fluid when the Reynolds number becomes
very large. Their numerical solution is an interesting and challenging problem en route

towards the development of efficient schemes for the Navier-Stokes equations.

Since efficient elliptic solvers had already been developed for the solution of the Full
Potential equation, hyperbolic algorithms for the Euler equations became the focus of very
intense research efforts. Of the many computational schemes developed, three have
become quite popular: the time-explicit Lax-Wendroff [7] and Jameson [8] schemes and
the time-implicit, finite difference variation of the factored Beam and Warming [9] scheme
attributable to Pulliam and Steger [10]. These schemes, based on the unsteady form of the

equations, substitute time-marching procedures for the iterative process. Both the explicit



and implicit algorithms have slow convergence rates and require additional techniques to
achieve reasonable computational efficiency. Nevertheless good results have been obtained

for wing, wing-body combinations and entire aircraft with these techniques.

14 TheFinite Element Method and High-Speed Computational Fluid Dynamics

The finite element method is known to be suited to problems involving irregular domains.
For many years it has been the method of choice for the structural analysis of complex
configurations but is still largely underdeveloped by the North American CFD community

in spite of several important successes, especially among the Europeans.

The finite element method is based on the subdivision of the solution domain into a finite
number of smaller regions, or elements. In each element a polynomial representation of the
function(s) to be solved for is assumed. A minimization procedure, usually of the
weighted residual type, discretizes the partial differential equations into a set of algebraic

equations or ordinary differential equations. As the mesh is refined, the size of the
elements becomes small and the approximate solution approaches the exact solution. The

main advantages of the finite element method are:

¢ it does not require a global topological mapping to transform a complex domain into

aregular form,

e itis based on a Weighted Residual formulation of the governing partial differential

equations for which a minimum or a maximum can be identified,

e the approach generally yields physically relevant boundary conditions, easy to

implement,



e a library of progressively sophisticated elements can be easily included in a

computer code,

e Different variables may have different levels of interpolation over the same element,

similar to the use of a staggered grid,

e it has a more implicit stencil than finite difference or finite volume because more

grid points are connected together.

The classical approach in the finite element method requires the simultaneous solution of all
the nodal unknowns in the field and hence is associated with the solution of large systems
of equations. Memory limitations have therefore constituted one of the strongest objections
to the use of this method. However, modern approaches have shown that it can be used

with no difficulty in implicit, semi-implicit or even fully explicit manner.

Although the finite element method is generally based on symmetric operators, upwinding
can be introduced at the expense of simplicity. Symmetric operators are optimal for the
discretization of second-order partial differential equations like the Potential or the stream
function, but first-order hyperbolic wave equations require either upwind-biased operators
or the addition of artificial viscosity terms in the governing equations. The FEM simulation
of transonic Potential flows with shocks became practical only with the application of the
concept of artificial compressibility, an upwind cormrection of the density that is similar to an

artificial viscosity, details of which are given in Ref. [3] and [4].

A successful finite element formulation of the Euler equations in primitive variables form
can be considered a useful CFD tool. The Least-Squares scheme of Fletcher [11] for the
so'ution of the steady Euler equations in primitive variables was perhaps among the first
attempts at a finite element simulation of the hyperbolic system of equations. The extension

of this solution to transonic flows was not attempted, however, for the absence of artificial



viscosity in the formulation. This formulation is quite novel because groups of variables,

not single variables, are the unknowns.

Donea [12] analyzed several explicit time stepping schemes for the Euler equations and
found that Taylor series expansions of the time derivatives were suitable for Galerkin FEM
formulations. Lohner, Morgan and Zienkiewicz [13] extended one of the Taylor-Galerkin
schemes of Donea, derived from the Lax-Wendroff scheme, to transonic flows by adding
an artificial viscosity term and showed that it can be reduced to a characteristics scheme.
Unfortunately, as it will be shown, this scheme does not provide a consistent set of

boundary conditions even if its weak formulation is considered.

Angrand et al. [14] devised a time-explicit scheme with triangular finite elements. This
weighted residual subdomain scheme is equivalent to a finite volume method because the
weight function is unity and the integration is performed assuming lumped-mass elements.
1t will be shown in Chapter 3 of this thesis that the set of boundary conditions provided by
the authors is inconsistent with the density boundary conditions on solid boundaries.
Stoufflet [15] improved this method by extending it to second-order accuracy and by

showing that an entire family of implicit and explicit schemes can be obtained from it.

Tezduyar and Hughes [16] have developed the Petrov-Galerkin formulation to construct
streamline-upwind FEM schemes for the Euler equations, but their scheme is cumbersome

as a result of the complications introduced by the upwind formulation.

Akay and Ecer [17] have explored the Clebsch transformation of the primitive variables to
convert the Euler equations from first to second order. The Clebsch formulation advocates
replacing the original variables with new ones, thereby reducing the size of the system of
partial differential equations and reducing the computational effort, however special

considerations must be made for rotational regions in the flow. In these regions the



velocity Potential part of the Clebsch formulation is no longer valid and must be replaced

by a non-isentropic Potential which is not strictly consistent.

Bruneau, Laminie and Chattot [18] have studied vortex flows over delta wings through a
finite element variational approach based on the least-squares wes, hted residual method and
the Newton linearization. Similar to Fletcher they have not introduced any artificial
viscosity and are hence limited to smooth flows without shocks. Moreover, their scheme
does not yield a set of natural boundary conditions and is cumbersome to implement. One
of their interesting conclusions is that the Euler equations, although inviscid, support
separation in the case of vortex flow over delta wings even without the help of numerical

dissipation.

1.5 Thesis Outline

The focus of this thesis is threefold. First, a comparison of several 1-D schemes is
conducted to show that the use of time-marching explicit or implicit schemes for the steady-
state solution is unnecessary and that a more efficient scheme can be constructed directly
from the steady Euler equations via a Newton Method. This formulation is capable of
handling any regime of flow, from incompressible to supersonic, with the convergence rate

independent of the minimum mesh size.

The second part focuses on the methodology of developing a finite element algorithm for
the Euler equations. The proposed finite element scheme shows no particular difficulties
for steady-state hyperbolic systems of equations and presents some distinct benefits in the

. implementation of boundary conditions.

‘While a mathematical confirmation that the steady 2-D Euler equations, or {or that matter

the Potential equation, should yield unique solutions in the presence of a discontinuity



[19,20] has still not appeared, the third contribution of this thesis is to demonstrate non-
unique solutions of the steady Euler equations for a particular class of 2-D transonic

internal flows.
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CHAPTER 2

2.1 1-D Explicit and Implicit Schemes for the Unsteady Euler Equations

The numerical solution of the compressible Euler equations in primitive variables, time-
dependent conservation form is considered to be one of the classical problems of CFD.
The need for primitive variables Euler algorithms arises from the various limitations of the
simpler formulations, like the potential or the stream function approaches, which are

unsuitable for modelling rotational problems.

The apparent simplicity of the compressible Euler equations belies their coupled, quasi-
linear hyperbolic nature, therefore the construction of their numerical approximations must
account for these factors, particularly in the treatment of the boundary conditions. Even
though the equations can be written in conservative or non-conservative form, for flows
with shocks the numerical scheme must be based on the conservative form to account for

the correct shock-jump conditions.

Several explicit and implicit methods have been developed and among them one can cite the
schemes of Lax-Wendroff, MacCormack, Jameson, Beam and Warming, Steger and
Pulliam. These algorithms are based on Finite Difference or Finite Volume methods and
take advantage of the characteristics of the hyperbolic system of equations by upwind
d:fferencing, while the Finite Element Method has lagged somewhat behind for its lack of

such capability.

In this chapter a comparative analysis of four Euler schemes is conducted. The schemes
are the explicit Taylor-Galerkin scheme, the two implicit methods of Lerat and the steady-

state Newton scheme. All schemes are implemented in a finite element manner, although
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the Lerat schemes had never been discretized that way before. The first three schemes are

time-marching while the Newton method tackles the steady-state form of the equations.

It will be shown that a very large number of iterations (2500-8000) is required for
reasonable convergence to steady-state for the explicit scheme and that Lerat's two methods
are more efficient in terms of convergencerates and elapsed CPU times, even though they
require more work and storage per iteration. Furthermore, it will be demonstrated that the
time-marching schernes cannot compete with the Newton method in terms of convergence
rates, CPU times and range of applicability. The convergence rate of the time-dependent
schemesis a function of the minimum mesh size, while the Newton method is independent
of it. Mureover the steady-state form of the Euler equations is applicable to the solution of
any flow regime while the time-dependent form of the equations is overdetermined for
incompressible flows, unless it is recast in a form that does not contain density as one of

the dependent variables.

2.2 Quasi 1-D Isothermal Form of the Euler Equations

The isothermal case, although not likely to occur naturally, was chosen as a test case
because it consists of only two equations, a considerable simplification compared to the
three partial differential equations and the algebraic pressure equation of the general case.
The procedures developed in this section are, however, generally valid for inviscid

conservation laws.

The system of inviscid conservation laws can be stated in vector form as:

U oF _
-5-‘-'+ax =S (2.1)

or in quasi-linear vector form as:
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U  ,oU_
-a—‘-+A-a—x-—s (2.2)
where:
pa ou 0
U= F= §=
a1
pau pa(c2+u2) PCZE
and
0 1 U
A=g£-= C:g——f]: 9
cz—u2 2u f-ﬁ 0
adx

The system is hyperbolic if the Jacobian matrix A has real eigenvalues; the set of inviscid
gas dynamics eciuations always satisfies this condition. The eigenvalues of A in the present

case are:
Aj=u+c A =u-c

The eigenvalues of the equations of gas dynamics are also called characteristic speeds, or
simply characteristics, and have a physical meaning: they represent the velocity of
propagation (or convection) of the signals along the coordinate directions. It should be
noted that the number of characteristics is always equal to the number of dependent

variables, although each characteristic is not necessarily linked to any specific variable.

2.3 The Hyperbolic Nature of the Equations and its Implications

The hyperbolic nature of the Euler equations must be examined in detail before attempting
to derive a new scheme or explain the construction of an existing one. The numerical

treatment of systems of hyperbolic equations is fundamentally different from that of elliptic
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«quations: the Euler equations are a set of first-order wave equations and exhibit a series of
features common to wave equations. In particular, the mathematical model of the equations
shows that disturbances in the flow appear in the form of non-linear waves and that any
disturbance is convected away from its source with at most m distinct characteristic wave
speeds, where m is the number of partial differential equations under consideration. In
addition, the waves are subject to all the phenomena associated with other wave models,

like absorption, diffraction and reflection.

Suppose that the same smooth subsonic flow (no shocks) has to be solved using a scheme
based on the Potential and one based on the primitive variables form. Both will produce
the same results within a small numerical error for the same sample problem, however the
treaiment of the boundary conditions will be completely different from one scheme to the
other because the Potential approach does not support the wave-like nature of the Euler

equations.

For primitive variables formulations the numerical treatment of the solution schemes and
their boundary conditions must be consistent not only with the physics of the flow itself but
also with the wave-like nature of the equations. Pulliam [21], Chakravarthy [22] and Yee,
Beam and Warming [23] provide an excellent discussion of the boundary treatment
methods. Note that in the case of the Euler equations the number of boundary conditions
required by the discrete approximation is always higher than the number of analytical (or
Dirichlet) boundary conditions. Some of the variables cannot be determined a priori on
certain boundaries, therefore the additional numerical boundary conditions required to
completely define the system of equations on the boundary are generally obtained by

extrapolating some quantities from the interior of the solution domain,

Consider the four different cases that can arise at the boundaries if the single-element

solution domain of Fig. 1 is examized. The arrows in the time-space Cartesian coordinates
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represent the disturbances coming from the solution at previous time levels and terminating
at the boundary nodes at time ¢. When the two converging characteristics have opposite
signs the flow is subsonic and when they have equal signs the flow is supersonic, since 4,
is always positive and A4, is negative for u < c. Case (a) represents an element completely
embedded in a subsonic region, case (b) is an element extending through a subsonic-
supersonic transition interface, case (c) is an element embedded in a supersonic region and

case (d) is an element extending through a supersonic-subsonic transition zone.

Referring to case (a) one notes that at node I one characteristic is coming from outside
(+ve), the other (-ve) from inside the solution region. The positive characteristic carries
information from the outside to the boundary of the element, while the negative one carries
information to the boundary from within the solution domain. The conditions existing
outside the soluticn region must be known a priori, hence one of the two variables must be
constrained at node I, but since the characteristics are not related to any variable in
particular, either of the solution variables pa or pau can be specified. At this stage the
positive characteristic will be arbitrarily associated with the particular variable that has been
constrained. The other characteristic being (-ve) reaches node 1 from inside the solution
region and carries all the information necessary to determine the second variable by
extrapolation from the previous time levei or from the nearest adjacent internal point: the
vaiue of that variable must be allowed to float. Node E can be treated in the same manner
but with the order of the variables reversed. For subsonic flow twe possibilities are
therefore available: either the density may be specified at node I and the mass flow at node
E, or vice-ver.3, and the solutions would be identical. The advantage of a FEM over other
discrete methods is that at the boundaries no explicit extrapolation is required since all

variables have a continuous representation through the element shape functions.

As a rule, the number of Dirichlet boundary conditions is the same as the number of

characteristics coming from the outside of the solution region. In case (b), one boundary
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condition is specified at node i and no boundary conditions at node E. In case (c), two are
specified at node I, none at node E. Finally for case (d), two boundary conditions are
specified at node 1 and one at node E. For transonic isothermal flows the only possibility is
to constrain the mass-flow at node I and the density at node E.

In order to verify that the boundary conditions are mathematically well-posed it must be
shown that they satisfy the partial differential equation. Consider the following

transformation which always exists for the conservation laws of gas dynamics:

Ag=XAx (2.3)

u+c 0O c—u 1
AA= X=
0 u-c c+u -1

A4 is known as the diagonal matrix of the eigenvalues of A, while X is the matrix of the

where:

1 1
11

u+c u-c¢

eigenvectors of A. Eq. (2.1) can be rewritten in the form:

1Y
En

XAAr‘%i’ =S (2.4)

After further simplification Eq. (2.4) is transformed into:

oU

1
i

+ax12l=xls 2.5)

Defining:

and applying the chain rule to Eq. (2.5), one obtains:

90  , 90 41
5t Mgy —==X"S (2.6)
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Expressed in this form the system of equations is uncoupled and to each variable in @ is
associated one of the characteristics, but the reader should remember that this
correspondence is purely arbitrary since the diagonal elements of the eigenvalues matrix A4
can be distributed in any order. The variables in Q = (Q), Q2)T are the characteristic

variables.

The boundary conditions are of the type:

ow=0 or _— et =)

All known quantities will now be identified with a superscript X and the unknown ones
with UK. In this case assume that pa, now linked to the characteristic u + c, is specified at

node I and pua at node E as in case (a) discussed above, then:

§] o

whose Jacobians with respect to the original variables vector are:

_anK’ 0 O HK_anli(_ 1 0
1 =79Uu ~ U

0 1 0 0

H/|K and HgK are the contributions from the boundary conditions to X1 and X1
respectively. The matrices H;UK and HUK are defined at the boundaries as:

1 0 0
p)

c-u 1

ct+u -1

The total contributions at the boundaries are the sum of the Dirichlet (H{X and HgK) and the

inverve eigenvector matrices (H;VX and HgUK):
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G S 1 0
1 . ) 1 UK
Xi' =Hf +H[* = Xz =Hf +H" =
ctu 1
0 1 2% p/
At the boundaries Eq. (2.5) must be rewritten as:

X & ai Sl =xls @.7)

For the boundary conditions to be well-posed it is sufficient to show that X"! exists, or that
the determinant of X is non-zero so that Eq. (2.4) can be recovered. This can be readily
verified by inspection, therefore showing that extrapolation at the boundary is a valid

method of introducing some of the boundary conditions.

2.4 The Lax-Wendroff Scheme

The solution of hyperbolic systems of equations is traditionally obtained through time-
marching algorithms. The Taylor-Galerkin[13] explicit scheme is an example of an explicit
time-marching algorithm based on the one-step Lax-Wendroff{12] method. The scheme

can be constructed by forming a Taylor series of the evolution of the solution through time.

Thus:
U=+ A B;J ‘;:2 %TUE+A3:3 %tzl i (2.8)
The kth order derivatives:
-j;—?k: k=1,2, ...,

can be obtained by rearranging Eq. (2.1). For example, the first order derivative (k=1) is:

?.‘L“:(s_?_f )n 2.9)



18

Substituting Eq. (2.9) and the second-order derivative terms into Eq. (2.8) and setting
AU n_ i} o+l _ U n
The Lax-Wendroff scheme can be written in the form:

ar-afs-2 )82  c(s-20)- 2] a(s-2E)|Jrorats a0

The variables are uncoupled in AU, therefore the problem is reduced to the solution of two
(three for the general isentropic case) tridiagonal matrices which need to be assembled and
decomposed only once since the left-hand side of Eq. (2.10) is linear. Furthermore,
Lohner, Morgan and Zienkiewicz[13] have shown that Eq. (2.10) can be derived by
applying the method of characteristics to Eq. (2.1); the Lax-Wendroff scheme can then be
called a characteristics modelling scheme. Assuming that the matrix A has constant
coefficients, the linear stability analysis of Eq. (2.10) conducted by Lohner, Morgan and
Zienkiewicz [13] shows that the scheme is conditionally stable for
1

At
C=pA-A-x-SV-3'

where C is the Courant number and p, is the largest eigenvalue, or spectral radius, of A.

2.5 The Taylor-Galerkin Scheme

The Taylor-Galerkin scheme is the Finite Element equivalent of the Lax-Wendroff scheme.

Let any variable @ be represented in its discrete form as:

¢=Za>/vj 2.11)
J
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where the subscript j indicates the element nodes local numbers, Qs} is the numerical value

of @ at the element nodes and Njrepresents the shape functions. For linear 1-D elements

(j=1,2) the dimensional shape functions are written as:

XX X=X

N,= Noy=
1 nex 2 n-x

where the subscripts 1 and 2 denote local numbering of the nodes of the elements. A

sketch of the shape functions is shown in Fig. 2.

The Galerkin principle is based on the minimization of the residue of the discrete equations.
It belongs to the family of weighted residual methods and it is the most compact form,
having weights identical to the shape functions. Denoting the solution domain, subdivided

into finite elements, with A and its boundary with S, the Galerkin approach states that:

Jw,. [R1dA=0 2.12)
A

where W; is the weight function and R is the residual of the discrete equations. Applying

the Galerkin principle to Eq. (2.10) yields the following integral:
LWAU“&:::LW;{A! s-;—) Aj[c(s- o ) a"x[A (s-g—':)” }dr 2.13)

The last term in the RHS of Eq. (2.13) can be integrated by parts and the equation can be

cast in the form:
df
ZIM,jMIVj=ArZ{R }+—2{T % (2.14)
el

where:

[M,-ﬂ:ZLWI-NJdr
J




2
e[ (-1
{1y, =§;"L{W"[ A )]n | awsp-5 50 ) ]I}‘*

where [M ] is the local mass matrix, { AU} is the vector of unknowns and {R}and {T}
form the RHS.

2.6 Artificial Viscosity for the Taylor-Galerkin Scheme

No meaningful solutions can be obtained for transonic flow from the Taylor-Galerkin
scheme without the addition of an artificial viscosity, or dissipation, term. Augmenting Eq.

(2.1) as:

JU OF . d(. aU
2, s, ax(“s;) (2.15)

introduces a dissipation term in conservation form, required to ensure the correct shock-
jump conditions and therefore the correct shock location. Performing the same procedure
outlined for the Lax-Wendroff and Taylor-Galerkin scheme yields:

avaw
9z ox

Bu

(M]{aU}={R }+{T}-C,A ¢ sz —t (2.16)

where C,, is the dissipation coefficient. Since the system of equations is hyperbolic, this
type of artificial viscosity must be applied throughout the solution domain, as opposed to

Potential flow solvers where the artificial viscosity can be confined to supersonic regions.
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2.7 Lerat's Implicit Methods

Lerat's methods [24] are predictor-corrector schemes based on an implicit correction of the

truncation error of Eq. (2.13). A slight modification of Eq. (2.13) yields the predictor step:

AW=At(S-%-::)n+ -"2—'2[ c(s--g—f)-%[ A(s—-g}’f)] ]n+0[ as) (2.17)

The coupled implicit corrector step can be constructed from the truncation error of Eq.

(2.17) — with the assumption that the source term § and its Jacobian C can be neglected —

as follows:
ota1-40 8] (s-30)-2 As-I)] |- 572 #4(%)] o
Therefore the corrector step will assume the form:
AU+ pﬁz-’zga;[ Azg;(AU)] = AW (2.19)

Egs. (2.17) and (2.19) form Lerat's coupled implicit method; note that the Egs. (2.19) are

fully coupled and therefore must be assembled and decomposed at each iteration.

Lerat's linear stability analysis shows that the scheme is conditicnally stable for <-1/2,

therefore no restrictions are imposed on the time step; the fastest convergence rate is

obtained by setting §=-1. The corrector step can be modified as follows:

AP )

2 d _
AU+ﬁ -2—--5;[ pA§;( AU)] =AW (220)

where p, is the spectral radius of A.

Eqs. (2.17) and (2.20) form Lerat's uncoupled scheme. Even though in this case Eqgs.

(2.20) are uncoupled, the left-hand sides are non-linear and must be assembled and
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decomposed at each iteration. The scheme follows the same stability requirements of the

coupled method, however the fastest convergence rate is now obtained by setting f=-1/2.

No explicit artificial viscosity terms are required in transonic cases for the uncoupled
scheme, but no meaningful solutions can be obtained in transonic cases for the coupled
scheme without such terms. A heuristic explanation for the upwinding effect of Eq. (2.20)
is based on the theory of characteristics: the spectral radius u + ¢ in Eq. (2.20) acts as a
filter by permitting only the propagation speed of the waves coming from upstream while
all downstream contributions are filtered out. Egs. (2.20), on the other hand, allows all

wave speeds to influence the solution and no upwinding is produced.

Eq. (2.17) is treated in the same manner of Eq. (2.13), replacing AU by AW. Applying
the Galerkin principle to Eq. (2.19) and (2.20) .1d successively discretizing yields

respectively:
| AP <
Y| [M,-,,]—ﬁ—z—[E,-‘J-J]AiJ,-=Z (M, 18, (2.21)
=l =t
L Al z
ZL[AIA'J]—BT[Eﬁ]]A%=Z[MiJ]AWJ (222)
A )
where:

df
oN, oW,
- AN, 2L 2T
LEj ]‘Z,L(Aﬂk) 5 o
df -
dN dW,
P1= , 2Lt
Ef ] Z,L (PN Py =L
Since Lerat's method is not based on an approximate factorization of the Lax-Wendroff

scheme, the boundary conditions are the same for both the predictor and the corrector

terms.
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2.8 Steady-State Euler Equations

Traditionally the approach to the solution of the Euler equations has been based on the
unsteady form of the equations, essentially because the unsteady term permits to solve
easily for all the dependent variables and to construct simple explicit schemes. Most of the
implicit schemes devised to date, on the other hand, must avail themselves of some clever
linearization of the flux terms which conserves a certain degree of coupling among the

equations, complicating the assembly of the discretized equations.

If the steady-state solution is the goal, the most efficient approach consists of solving the
steady Euler equations. The hyperbolic nature of the equations is retained even after the
unsteady terms are discarded and the boundary conditions follow the same guidelines set
for the time-dependent equations, but now the variables vector U will not be used and the

flux vectors can be linearized directly.

To study this approach, consider the following set of isentropic partial differential

equations:
2. (pu)=0 (223a)
&
d 2 da_
;—(pau +m)=-p E-O (2.23b)

Assuming that the total enthalpy (H,.) is conserved, the energy equation can be written in

the form:

p=L2 p(H.,—“?) (223¢)

Eqgs. (2.23) are the steady Euler equations with the assumption of constant total enthalpy.

This form is valid only if no work and heat are produced.
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A finite element discretization of these equations produces a type of scheme based on
central operators which are not suitable for the solution of transonic flows with shocks,
hence a conservative artificial viscosity term must be introduced explicitly in each partial

differential equation, much like the term introduced in Egs. (2.15).

3 P
;(pau)-u}"— (224a)
Lepalepar-pGeen T4 (2240)

Eqgs. (2.24) will be accurate to second order almost everywhere except near regions with
steep gradients. The constant u controls the amoun: of dissipation, therefore the solution
of the two equations 'will be more accurate when 4 is a minimum. Before proceeding
further in the development of the Newton scheme, it is beneficial to rewrite Eqs. (2.24) in
non-dimensional form with respect t0 Poo, Uoo and L, respectively the free-stream fluid
density and velocity and a characteristic length, such as the length of a nozzle. The system

of equations can then be written in the form:

o= L8 5
5 (Pa=n =3 (2.75a)
d, 2 da__ u
-a-(pau +pa)-p;—‘ug Ex? (2.25b)
21 p(n,-2) (2250)
where:
7]
v, = V=
o3  paUL?

The quantities v; and v, are the viscosity coefficients in non-dimensional form: their
optimal value is of the order of Ax/2. In the followiing derivations all the variables are in

non-dimensional form.
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29 The Euler Newton-Galerkin Method

The Galerkin principle, Eq. (2.12), is applied individually to the continuity and x-

momentum equations as follows:

LW‘[%(M)-V‘%;E]‘!":O (2.2Aa)
J [ —a-(pau +pa)—p i‘-—vzi: :|d.t-0 (2.26b)
A

After all terms are integrated by parts, the contour integrals will be neglected inside the
solution domain A, i.e. between adjacent elements and will be accounted for only at the
boundary S of the solution domain A. The formulation is now called a "weak" formulation
because strict conservation of the fluxes at the interior element nodes is automatically

satisfied.

The weak formulation of Egs. (2.26) can be written in the form:

[W; (pau)]s- J-(pau)——zb:-i»VIIa —dx 0 (2.27a)
dudW
[W(pau+pa)]s (pau +pa)—-—dx J-Wp dx+v, -‘-i-—ardx 0 (2.27b)
A

Eg. (2.25c), the statement of constant total enthalpy, permits the elimination of the pressure
from the x-momentum equation. The system of equations is reduced to two equations in

two unknowns, p and u. Substituting Eq. (2.25¢) into (2.27b) yields:
2
IWa(pauz*rpa)ls-J( pid PR "“mu’) { e LJ.W ( %)ﬂ‘dx-

udW;
+v| e dx=0 (2.28)
2, & &
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The system to be solved, Eq. (2.27a) and (2.28), is non-linear. The linearization
procedure adopted is Newton's method, whose chief advantage lies in its quadra‘ic

convergence rate. The linearization is simply stated:
pn+l=pn+Ap un+l=u"+Au

The superscripts n+1 and n indicate the new and old values respectively. The continuity

and x-momentum equations can be written in simple form as:

[(J1{A(pu)}={r}

where [ J ] is the Jacobian of the linearization and {r } indicates the residual of the FEM

equations.

At convergence Ap and Au must vanish, hence the residuals also vanish. With this
approach there is no uncertainty regarding the level of convergence of the iterative

procedure: convergence is assessed directly from the residuals.

The procedure is completed by the introduction of the Finite Element discretization, Eq.

(2.11). The continuity equation can be written as:

df df
5
D UK ity D LK == (R 1, LW, pa (2.29)
= Fl
where:
oW, W, ON,
[Ke"]p=-— , (au)nTdeX'f' Vl LT-T&-J- &

oW,
[Kijlo=- , (ap)'——Nds

oW. oW, 9,0
.} =— oL N —_ap
IR} J;(pau) — de.t+v,Lax L o
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Similarly the x-momentum equation can be written as:

if;%lﬁ@+i%wj= {R; },+ (W, (pa’+pa) ) (2.29b)
» =
where:
‘%,L(%ﬁuw,-d ) J'( byt &Ndx 'IJ Wder
(K J],,=—1171L (pau)"%denl-;—l- L (pﬁffu)nw,-ng dx+v, Aﬂ%&a
{R; }u—-—-H_[p( Lar W, )4; ;L(pau’)“%ﬁ o _[W p"“)dx

All the integrals are evaluated numerically, as opposed *o the exact integrations of the time-
dependent schemes. For i-L cases the Gauss-Legendre integration procedure is exact if
the proper number of sampling points is chosen.
Defining the non-dimensional shape functions. a sketch of which is shown in Fig. 3, as:

N 1= l—tﬁ WYy = -l%é

2

Each integral can now be evaluated numerically using the equivalent form:

ngus
LF(x>d*=z (W Flx (&)1 1711 (2.30)
k=1

where W, are the weights of the numerical integration and J, = Ax/A£ is the determinant of
the Jacobian of the geometrical transformation of coordinates shown in Fig. 2 and 3. The

subscript & indicates quantities evaluated at the Gaussian sampling points.
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2.10 X-Momentum Contour Integral

The special manner in which the boundary conditions are specified for hyperbolic equations
offers two possible ways of evaluating the contour integral of the x-momentum equation.
The boundary pressure integral is evaluated differently depending on whether the pressure
is known or not, while the remainder of the integral remains the same in both cases. For an
unknown pressure the energy equation is again introduced to eliminate the pressure. The

integral becomes:

Wipai®spa)lg=] Wi (LE2 panls =2 pat )| 2.31)

For a known pressure, such as a specified back pressure, the integral becomes:
[W;(pau’+pa) Js=[W; pau’)s+[W,pa J§ (2.32)

where the 125t term is constant and can be evaluated on the right-hand side of Eq. (2.28).
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CHAPTER 3

3.1 AVFinite Element Scheme for the Solution of the Steady 2-D Euler Equations

Four schemes for the solution of the 1-D Euler equations were demonstrated in the
preceding chapter in a finite element context. The Newton scheme has demonstrated to be

the simplest and most rapid and will be extended to two dimensions in this chapter.

Before illustrating this schesile, some remarks about the time-dependent formulations are
necessary. Aside from . e poor rate of convergence of the Lax-Wendroff scheme, it is
evident that none of the presented time-dependent formulations can take full advantage of
the power of the Finite Element method in 3-D or even 2-D. One of the important
attractions of a finite element formulation should be the occurrence of natural boundary
conditions, but it has been demonstrated that these can be recovered neither from the Lax-
Wendroff nor from the Lerat schemes. The enforcement of wall or symmetry line
boundary conditions not originally present in — or not recoverable from — a finite element
scheme conflicts with the essence of the method, whose chief appeal lies in the isolation of

the numerical scheme from the geometrical complexities of the solution domain.

In the following derivation it will be shown that the shape functions of the Finite Element
discretization can easily be used in 2-D as an effective boundary extrapolation method
which does not complicate the formulation of the implicit scheme. This is not the case with
other discretization procedures, such as Finite Differences or Finite Volume, which require
the explicit introduction of the Riemann invariants or other extrapolation schemes to handle
non-reflecting boundary conditions[21). The distinction is a consequence of the nature of
the discretization operators since, unlike the finite element method, the finite differences

and finite volume stencils are based on pointwise operators that do not represent functions
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continuously between nodes. In addition, the contour integrals generated by the weak
formulation can also be exploited to impose no-penetration boundary conditions. Hence
the Galerkin approach can take complete advantage of the Euler Equations without

requiring extra add-on features like all the current schemes.

Among the useful characteristics of the Galerkin scheme is the recovery of the pressure
contour integrals from the two momentum equations: they become very important in case
the pressure is known somewhere on the boundary of the solution domain. It becomes
clear that the Finite Element method is the only method which can really solve the Euler
equations everywhere in the solution domain, including the boundaries. Furthermore it is
the only method which can recover a set of natural boundary conditions directly from the

equations.

3.2 2.D Euler Equations

Consider the 2-D Euler equations for a perfect gas, with the assumption of constant total

enthalpy and 7= 1.4. The system of equations can be written as:

%(pu)+%(p")=0 (3.1a)
-;;(pu2+p)+%(puv)=0 (3.1b)
%(puv)+-a%(pv2+p)=0 (3.1c)
p=-"—'71p(H..—'-‘3-§ﬁ) (3.1d)

As noted for the 1-D scheme, it is necessary to add some viscous terms to the central
operator discretization in order to inhibit the formation of expansion shocks. There is an

ample selection of types of artificial viscosity, however, for simplicity a Laplacian function
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of the solution variables p, u and v was selected. The addition of these terms produces the

following system of equations:

3 o, . (o & )
-‘9—x(pu)+-a-y-(pv)—#(3x%+3y% (3.2a)
Fi Pu )
(P" +P)+ o (puv)= #(3? -37 (3.2b)
% %
= 2 (puv)+ 3 Z(pP+p)= ”(—a 5 _ayz) (3.2c)

where 4 is the artificial viscosity parameter. The equations are converted to a non-

dimensional form with respect to the free-stream conditions p,,, U, and L, where L is a

characteristic length such as the chord of an airfoil or the length of a nozzle. This

transformation yields the non-dimensional form:

%(pu)+%(m)=w(z—25+§%) (3.3a)
—(pu +p)+—(puv) 1»('-;-11 -j—zyi) (3.3b)
;%(puvh ==(p’ +p)= vz(zi g;;) (3.3¢)

p:y;ylp(y,,_i‘z_;ﬁj (3.3d)
wegT p=fT

Two artificial viscosity parameters now appear in Eqgs. (3.3), both uniquely determined by

the selection of y and the free-stream conditions.
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3.3 The Newton-Galerkin Finite Element Scheme

The Galerkin integral is constructed separately for each equation. Note that in the
following outline the weights W;are identical to the Finite Element shape functions,

denoted by N;. The surface of the solution region is denoted by A and its contour by S.

Egs. (3.3) can be recast in the integral form as follows:

”W[a (pu)+—(pv) v;(%-zx% %zy%)]dfﬂﬂ (3.4a)
JjW[—(pu +p)+ (o) (."—2 2-5)]“ 0 (3.4b)
_”w [a (puv)+—(pv +p)- 1&(% é-z-J]dA 0 (3.4¢c)

The pressure term can be recast in terms of the unknowns by introducing Eq. (3.3d).

Thus:

=J' W; p(gq-n)d —j W, -a-p-as (3.5a)
S S n
TIPS PETEE B i o) J (2u2, 20 2% )
.U[( Gy Ty Py ””“) ox (o) 3 j 9x 9% "oy gy A
J.W pu(q: n)dS-‘-J‘Wpdy dS—J. (3.5b)

W, aw, W, 2 OW.
y+1 2 =1 2 7-1 ] ”(a__ 3_v__']4,,
”[("“V) p ( 3y pv'- 37 PO ""“) 5 A\ TH S

ijv(q n)dS - ij as- JW, (3.5¢)

where:

oy
i
®
"~
+
<

St
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and n is the local unit vector normal to the boundary.

The equations are non-linear and an iterative scheme is required for their solution. The

Newton linearization can be introduced by setting:
aU=y™ -y
where U = (p, u, v)T and neglecting all the products of order higher than AU.

The process is complete after introducing the finite element discretization of the dependent

variables:
df
U= NU; (3.6)
=
where:
1 .
Nj=;(l+§§,~)(1+nﬂ,) Jj=1..4

are the shape functions for a linear quadrilateral isoparametric element such as the one
shown in Fig. 4. The shape function derivatives can be obtained from the local element

transformation[25]. Let:

P Nl (e) 2 él O 5 N‘ (&) d M @
E3 at  d¢ 9x ox

= =[J ](e)
aN, ox oy | | oM AN,
an an 9 Jy 3y

where the entries of the Jacobian of the local transformations can be computed directly from

the local shape function derivatives. For example the first term can be discretized in the

form:

d N, .
—2=Z'—" . 3.7)




34

where the J?js in Eq. (3.7) are the nodal x-coordinates. The other entries of the Jacobian are

computed in the same fashion. The x- and y-derivatives can be found from the inverse of

the Jacobian — a simple 2x2 matiix which can be inverted directly — as follows:

B aNij(e) i 3N,- 1
ox Pt
=7
ON; N,

[ 3y | | 977 |

After introducing the above procedure on an element basis, the continuity equation can be

recast in the form ;
af daf df
D IKEY D K 1,0+ (K], 85=— (R,
= el Fl
+| Wipta-aas- [ w, L.as
S S an
where:

{Kp] —JJN(unﬂ.’-vna—“:i - Ij(ﬂﬂ-}ﬂﬂ)ﬂ
ijip~ Y ox dy U A dx dx dy dy

u " o, Wi
v AL
[KU]P=L, PN,WJA
oW, aW-] (3W.a n aW.a n)
Y = ot oL {d4— —_0p . __i%p
{R;} LI[(pu) 57+ (Pv) % dA vle e ax+ay 3 dA

Similarly the x-momentum equation becomes:

(3.8a)
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ar
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where:
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And finally the y-momentum equation is in the form:

df af 4
DLKEY doye D IKG ), At 3 1K), 85== (R,
=1

Fl =1

ijv(q 7)dS - J.Wp ds - jwa" (3.8¢)

where:
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Eqgs. (3.8) form a block-tridiagonal system of coupled linear equations. The integrals must
be evaluated numerically, in this case by the Gauss-Legendre quadrature formula:

DPAus ngaus

1,1
[K:,il=‘[l_[lkijlx(§-n wyEmIs |d5dn=z Z W, Wl ki (x(&m), y(6m) 11T | 3,

r=l  s=1

where 'ngaus' is the number of Gaussian points in each local coordinate direction. For all
the 2-D test cases reported here ngaus=3, permitting the exact integration of a polynomial
up to degree 5. Windicates the weights of the Gaussian quadrature and the subscripts r

and s denote quantities evaluated at the Gaussian points [26].

Note that the system of Egs. (3.8) is not diagonally dominant and requires a Gauss solver,
however it has been found that the ill-conditioning of the global matrix is not severe enough

to require the introduction of pivoting.

3.4 Unsteady Flows

The steady-state formulation outlined in the previous section can be extended to the time-
dependent Euler equations to analyze the stability of shock waves in converging-diverging
channels. The method that will be outlined is only first-order accurate in time, however,
the issue concerning the time accuracy of the solution is of secondary importance compared

to the investigation of shock wave instability.
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A time-marching scheme for the Euler equations can be constructed by adding discrete time

terms to the steady-state formulation. For a truly unsteady formulation the assumption of

constant H, is not acceptable and the complete energy equation must be solved along with

continuity and momentum. The time-dependent Euler equations with added dissipation

terms can be cast in the form:
i Ja )

Z (o2 (pu)+a (pv)= v,( =3 S-y% (3.92)
2 (Pu)+a (Pu +P)+a (puv)= ”2(%2' -gz—“) (3.9b)

( 2, azv) 10
(pv)+,3 (puv)+—(pv +p)=1, Szt Ey_ (3.9c)
(Pe)+a [u(Pe+P)]+a v(pe+p))= Q(%— g—zf-) (3.9d)

2..2

p=(r-1)p(e-“ ;v ) (3.9¢)

where y=1.4 as before.

The time derivatives can be discretized by a two point backward difference to produce a

hybrid implicit scheme. The procedure is simple:

1 n 2

20" 3 piye D)= (ze 9_22)

v +ax(pu)+ay(pv) Y 812+ay2 (3.10a)
@ —(puf 0 2, D (& za)

Y +3x(pu +p)+ay(puv) ') 3 +3y (3.10b)
@M=y 2 gy Lo p)= (2.2_ QZ_V) (3.10c)
e) 32 aze

-”———’”—+—[u(pe+p)]+—[v(pe+p)] =% 32*57 (3.10d)
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The backward time differences can be simplified even further once Newton's method is

applied to the first term in Egs. (3.10). The (n+1) time term for Eq. (3.10b), for example,

reduces to the form:

(ou)™ - (pu)® _ (p"+4p)(u™+4u)-(pu)® _u"dp+p"Au
at Aar At

The same principle applies to the other equations. The space discretization is based on the

samne procedure outlined for Eqgs. (3.4) to (3.8). The finite element form of the continuity

equation becomes:
d
zlx,,l,,Ap, 2[1{,ﬂ,,4u-+2 (K} 1p9,=={R; 3,
el
Eh)
Wip(q-n)s+v ) Wim=dS (3.11a)
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Similarly the x-momentum equation becomes:
df df df df
Z [K&],Aﬁ»,-»rz [K?J-LA&,-+Z [K,-",,-].,A\"j'*z [Kij)ud2;=—{R;},~
P = F =

2. .2
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s s 2 /dS
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where:
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The y-momentum becomes:
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Finally the energy equation assumes the form:

daf af af df
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Egs. (3.11) form a coupled implicit time-marching scheme which requires the solution of a

block tridiagonal system of linear equations at each iteration. The integration of the
influence matrices is obtained by the same method used for Egs. (3.8). The value of the
time increment At is kept constant during the unsteady analysis. Note that for Az = e
Newton's method is recovered and Eqs. (3.11) will converge quadratically to the steady-

state solution of Egs. (3.9).
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3.5 Boundary Conditions

The description of the two schemes outlined in the previous sections would not be complete
without a discussion of their boundary conditions. To put the 2-D Euler equations in a
form more suited for analysis, consider Eqs. (3.1) rewritten in their vector notztion:

U JF 3G6_, 3.12)

7+§;+'§;‘_

where, for four equations, the vector terms are defined as:

9 - -

[ p] [ pu pv
pu pu’+p puv
U= F= G=
pv puv pi+p
L e L u(pe+p)] L v(pe+p)]

At this point Egs. (3.12) can identify both a system of three conservation laws, such as
Eqs. (3.1), or a system of four conservation laws like Egs. (3.9). In general the
expression "three equations model” is used to identify three partial differential equations —
continuity and two momentum equations — while "four equations modr:1" refers to four
partial differential equations ~ continuity, the two momentum and the energy equation. The
presence of the equation of state in terms of pressure, while taken for granted in both
systems, is not mentioned explicitly because it is an algebraic relation that does not
influence the hyperbolic nature of the system of equations. Note that the assumption that
the total enthalpy H,, is constant everywhere when the system of equation reaches the
steady-state has an innocuous appearance, nonetheless it also has a subtle effect on the

treatment of the boundary conditions.

Proceeding with the analysis of the boundary conditions, Eg. (3.12) can be recast in the

quasi-linear form:
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U , U U _
-a—‘+A zd-na—y--o (3.13)

where A=0F/0U, B=0G/dU and the matrices for the four equations model are defined as

follows:
[ 0 1 0 0 ]
L2, 21,2 ~(7-3 ) “r-1v  (r-1)
A=
—-uy v u 0
| cmer(r-1ulev?)  e-Elalaen?) Ar-tw w

[ 0 0 1 0 ]
w v u 0
B= =32, 7-12
7V U ~7-1)u -3 (r-1)
—We+()’-1)v(u2+v2) ~{y-1)uv w-y%l(iivzﬂtz) w

The Jacobian A has four real eigenvalue::
Ay=u Ay=u Ay=u+c Ag=u-c
where c is the speed of sound. Similarly the Jacobian B has four real eigenvalues:

A=v Ay=v Ay=v+c Ag=v—c

Since all the eigenvalues are real it follows that Egs. (3.12) or Eqs. (3.13) are hyperbolic

with respect to time. In the case of the steady-state formulation the classification of the

nature of the equations appears to be more complex.
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In all the known finite difference and fimte volume formulations the time-dependent terms
are always used as a vehicle iv capture the steady-state solution, but often additional
techniques, such as the residual averaging and enthalpy damping of Jameson or the more
widely used multigrid acceleration [8], are incorporated to improve the notoriously poor
convergence rate of the basic explicit schemes. Most of the schemes modified in this
fashion are no longer time-accurate, however they still conserve their hyperbolic nature,
which is clearly independent of the intrinsic definition of time. In substance the modified
schemes which are no longer time-accurate can be thought of as being hyperbolic with
respect to a pseudo-time. If the time-dependent terms are eliminated altogether, as in the
present formulation, the classification of the system changes from hybrid for subsonic
flows (some eigenvalues are real, some are imaginary) to hyperbolic for supersonic

flows[27,28].

The boundary conditions for the Newton-Galerkin formulation are introduced in
accordance with the theory of characteristics outlined in Chapter 2. The hybrid nature does
not create difficulties if the system is treated as the limiting case of a time-dependent
formulation as the transient terms vanish. Note that it appears that there are now eight

eigenvalues for Egs. (3.12), however the eigenvalues to be considered are the four vector

sums — consistent with the local streamline direction — of the eigenvalues of A and B.

Typically for the four equation model four types of boundary conditions may be imposed:
a) For a subsonic inlet p, u and v are specified.
b) For a supersonic inlet p, u, v and e are specified.
¢) For a subsonic exit p is specified.

d) For a supersonic exit none of the variables needs to be specified.




The variables that are not constrained must be extrapolated from the interior of the solution

domain, a mechanism already implicitly provided by the finite element shape functions.

As already anticipated at the beginning of this section, it is necessary to consider the

implications of the simplification introduced by the constant total enthalpy. Consider the
steady partial differential equation for energy:

%{u(pe+p)]+%tv(pe+pn=o (3.14)

Before exploring the effect of constant total enthalpy, consider the normal definition of

pressure based on energy:
2
p=(7—1>p(e—92—) (3.15)
where g denotes the total magnitude of the velocity.

Eq. (3.14) and (3.15) are generally encountered in the four equation model. Substituting
Eq. (3.15) into Eq. (3.14) yields:

ol 20 o0

The next step focuses on showing whether the assumption of constant total enthalpy is

true. In this case the pressure can be defined as:
2
p=Lto(r-1 ) 317

where H,, denotes the freestream total enthalpy. Substituting Eq. (3.17) into Eq. (3.14)

yields:

A sl p ] 2 S o]0 20

Introducing Eq. (3.16) into Eq. (3.18) yields the simple equation:
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After applying the chain rule to the partial derivatives and introducing the continuity
equation it can be shown that Eq. (3.19) is satisfied identically if yis a constant. Since it is
necessary to assume the validity of Eq. (3.16) to complete the derivation, it is clear that the
assumption of constant total enthalpy is valid only for the steady Euler equations.
Furthermore even though it is not necessary to solve Eq. (3.14) explicitly, it still is a part of

the system of equations and manifests itself in the selection of the boundary conditions.

It would be incorrect to assume that the three equation model has only three eigenvalues;
they are in fact still four, including the eigenvalue generated by the energy equation,
therefore the Dirichlet boundary conditions are the same of the full system of equations
except for the fact that the energy equation is not present. For the three equation model the

boundary conditions are introduced according to the following scheme:
¢ For a subsonic inlet p, u and v are specified.
¢ For a supersonic inlet p, u, v are specified.
o For a subsonic exit p is specified.
¢ For a supersonic exit none of the variables is specified.

Pressure is introduced at the exit boundary through the contour integrals in the two

momentum equations, except in the case of a supersonic exit.

The solid wall, or no-penetration, boundary conditions are one of the most elegant features
of the Newton-Galerkin formulation. The current practice for finite differences and finite
volume schemes requires scaling the two components of velocity at a wall so that the

resultant vector points in the tangential direction of the surface, an operation that must be




46

introduced explicitly and whose accuracy is strongly dependent on the orthogonality of the
mesh near the wall {21,29]. In contrast, the Newton-Galerkin formulation imposes no-
penetration by simply neglecting the contour integral carrying the term (¢ -n) in Eq. (3.5a).
This term states that the mass flux normal to the wall vanishes, is not affected by the local
orthogonality of the mesh, does not require the explicit extrapolation of g at the wall and

accounts for both x- and y-components of velocity in a single operation.

The last remaining boundary condition involves the determination of the density at a solid
boundary. The practice in finite difference or finite volume schemes is to extrapolate the
normal derivative of pressure at the wall and obtain the corresponding density from the
normal momentum equation. This operation is carried out explicitly and is also dependent
on the orthogonality of the mesh. Again the finite element model provides a more elegant
approach: the contour integrals containing the term (g -n) in the two momentum equations
are evaluated and stored in the global matrix and right-hand side. No further operations are
necessary since the shape functions of the finite element meth.d implicitly contribute to the
extrapolation of density to the wall and in addition ~ since the two momentum equations are
solved in full form — the correct value of density will be computed. Note that even though
the term (g -n) is analytically zero at the wall, the two component of momentum that carry
this term may not necessarily ! ~ zero numerically in the finite approximation, therefore it
wotld be incorrect to eliminate the contour integrals entirely since their absence would

introduce errors in density, on the discrete level, at the wall.
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CHAPTER 4

4.1 Quasi-1D Subsonic Flow in a Channel

The following sections describe the details of the quasi-1D numerical tests conducted to
verify the time-dependent and Newton-Galerkin codes. All the results for the 1-D test
cases are compared to the respective exact solutions. Consider the converging-diverging

channel [13] whose area distribution is described by the equation:

2
_2(. 5
a-1+§3(x--2-) 0<x<S5 4.1

The first test case examined is a purely subsonic isothermal flow with an inlet Mach
number of 0.4 and incompressible flow as the initial guess. Inlet static temperature and
pressure are assumed to be =290 °K and p=110 kPa. The boundary conditions are pau
known at the inlet and pa known at the exit, in accordance with the signs of the two
characteristics for subsonic inlet and exit conditions. Each test is conducted with 40
equally spaced elements with A x=0.125 and the iterative procedure is stopped when the

L,-norm of the residual is below 1.0x106,

The exact solution can be obtained by combining the continuity and momentum equations

and solving for the area as a function of the Mach number as follows:

2 2
a, M, M:-M
-—22—1‘8-—2_- (4'2)

Since the channel area is given, the exact Mach number distribution can be found from Eq.

(4.2) after solving for M, iteratively.
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4.1.1 Subsonic Taylor-Galerkin Scheme

The Mach number distribution obtained for the Taylor-Galerkin explicit scheme is shown in
Fig. 5. There is virtually no difference between the results of the numerical scheme and the

exact solution and no artificial viscosity is required for subsonic flow.

The convergence history, with the value of the residual sampled every 50 iterations, is
shown in Fig. 6. The number of iterations required to reach the target convergence limit is
5013. Such slow convergence, typical of explicit Euler schemes, is a symptom of the

restrictive limitations imposed on the Courant number by the requirements of numerical

stability.
4.1.2 Subsonic Lerat's Exact Method

The Mach number distribution obtained for Lerat's exact implicit scheme is shown in Fig.
7. Again there is virtually no difference between the results of the numerical scheme and
the exact solution. The convergence history for the test case is shown in Fig. 8 with the
value of the residual sampled at intervals of 10 iterations. A dramatic improvement in the
convergence rate with respect to the Taylor-Galerkin scheme is noted, with convergence in
86 iterations. It should be noted that the time per iteration is greater than that of the explicit
scheme because the corrector step requires the assembly and decomposition of two

additional matrices.
4.1.3 Subsonic Lerat's Approximate Method

The Mach number distribution obtained for Lerat's approximate implicit scheme is shown
in Fig. 9. There is no difference between the results of the numerical scheme and the exact

solution. The convergence history for the test case is shown in Fig. 10 with the value of
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the residual sampled at intervals of 50 iterations. The convergence rate deteriorates with

respect to the exact scheme and convergence to the chosen limit requires 648 iterations.
4.1.4 Subsor c Newton-Galerkin Method

This scheme is based on an isentropic formulation. The Mach number distribution obtained
for the Newton-Galerkin implicit scheme is shown in Fig. 11. The inlet Mach number is
0.4 and the initial guess is uniform flow. There are no differences between the results of
the numerical scheme and the exact solution. For this subsonic test case the artificial

viscosity parameters vy and W, are both 0.

The convergence history ~ shown in Fig. 12 — is quadratic and reaches machine accuracy
in 7 iterations. Fig. 12 also demonstrates that the residual cannot decrease below machine
limit after iteration 7 and that 10 iterations were completed. Note that or.y five iterations
are required to reach the less demanding convergence limit set for the time dependent

schemes.
4.1.5 Performance of the Subsonic Schemes

The details concerning the performance of the various schemes for the subsonic test case
can be viewed in Table 1. All the CPU times quoted were measured on the VAX 8550 at

Concordia University.
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Table 1 Performance comparison for the subsonic tests

Scheme No. iterations CPU time (sec.)

Taylor-Galerkin

Lerat's Exact

Lerat's Approximate

Newton-Galerkin

From Fig. 12 one can observe that for the Newton-Galerkin scheme only five iterations are
necessary to reach the same convergence limit imposed on the time-dependent schemes and

in this cese the elapsed CPU time would be marginally greater than one second
4.2 Quasi-1-D Transonic Flow in a Channel

This is the most interesting aspect of the testing of the quasi-1-D schemes since the flow

can experience a sudden discontinuity in the form of a shock wave.

In order to obtain an exact transonic solution the isothermal shock-jump conditions must be
derived from the momentum equation. Denoting the upstream and downstream surfaces of
the shock wave with the subscripts u and d respectively, the isothermal Mach number
shock jump condition becomes:

M “714' 43)

The static pressure jump, a function solely of the upstream Mach number, can be

formulated as follows:

P=P M (4.4)
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Eqs. (4.2) to (4.4) are sufficient to determine the Mach number distribution in the nozzle

for a predetermined back pressure.

The throat-to-inlet area ratio defines the choking Mach number as 0.4468 and the selected
inlet and back pressures are P=110 kPa and P,=100 kPa which produce a shock located at
x=4.1043. Note that even for the exact solution the shock location is determined iteratively

until the desired back pressure is satisfied.

The initial guess is again obtained by linearly interpolating pa between the inlet and exit
values and setting the distribution proportional to the inverse of the channel area, while pau
is held constant throughout. For the isothermal formulation the back pressure must be
converted to the corresponding value of density which can be easily computed from the
ideal gas law. The boundary conditions are the same as those of the subsonic test case

since the boundaries still experience a locally subsonic flow.
4.2.1 Transonic Taylor-Galerkin Scheme

This test case requires the introduction of artificial viscosity to suppress the non-physical
expansion shock that would otherwise be captured. The Mach number distribution
obtained is shown in Fig. 13. There are some noticeable oscillations before and after the
shock, caused by a low value of the artificial viscosity parameter. These oscillations would
disappear if more artificial viscosity were introduced, however the shock would be smeared
over several elements. The convergence history for the test case is shown in Fig. 14.

Convergence to the preset limit is achieved in 1713 iterations.
4.2.2 Transonic Lerat's Approximate Method

This scheme does not allow control of the level of artificial viscosity introduced. The Mach

number distribution obtained is shown in Fig. 15. There is an overshoot in the distribution
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just upstream of the shock, apparently caused by the misalignment of the elements with
respect to the exact shock location, however the shock is captured within a single element.
The convergence history for the test case is shown in Fig. 16. Convergence to the preset

limit is achieved in 393 iterations.
42.3 Transonic Newton-Galerkin Method

This scheme allows control of the level of artificial viscosity introduced, a very important
feature that can be exploited to overcome the convergence problems encountered when
Newon's method is started on a poor initial guess. The Mach number distribution
»btained for this isentropic test case is shown in Fig. 17. The inlet Mach number is

M..=0.43025, the inlet static pressure is p=101 kPa and the back pres.ure is p,=90 kPa.

The uniform flow initial guess is not close enough to the final solution and Newton's
method will not converge. The artificial viscosity parameter is used to overcome this

situation. The iterative procedure is started with a high value of u until the residual drops
to an intermediate limit, say 10-3, then the value of u is decreased and the iterative

procedure is restarted from the previous results, until the intermediate residual limit is

reached again. This cycle is repeated until the final value of y is introduced, in which case

the iterative procedure is terminated only when the residual drops to machine limit.

The convergence history for the test case is shown in Fig. 18. Convergence to machine
limit is achieved in 13 iterations with 2 global iterative cycles and values of 4=7.0 and 3.2.

The final value of p corresponds to vj=0.02186 and v,=0.01807.

4.2.4 Performance of the Transonic Schemes

The details concerning the performance of the various schemes for the transonic test case
can be viewed in Table 2. All the CPU times quoted were measured on the VAX 8550 at

Concordia University.
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Table 2 Performance comparison for the transonic tests

Scheme No. iterations CPU time (sec.)

Taylor-Galerkin

Lerat's Approximate 393 17

Newton-Galerkin

4.3 Influence of Grid Adapting on Convergence and Accuracy

The introduction of a grid adapting routine in the iterative procedure of the Euler schemes

has some beneficial effects. This technique attempts to decrease the truncation error
introduced by the discretization schemes by refining the mesh where the gradients of the
solution are large. The truncation error is proportional to the mesh size and the higher
order derivatives of the solution; while no control can be exerted on the higher order
derivatives, the truncation error can be reduced by a local refinement of the mesh, at the
expense of the size of the elements in regions where the error is small. In order to improve

the accuracy of the results three mesh adapting methods are available,.
a) Mesh refinement through the introduction of additional elements.
b) Mesh refinement through the relocation of the nodes of the elements.

c) Introduction of additional nodes within an element to switch to higher order shape

functions.

All three methods have favorable and unfavorable characteristics. For example, case a)

requires a complete revision of the nodal connectivity table and the addition of the extra
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clements increases the computational effort. This method is extendable to 2-D and 3-D
formulations only in conjunction with triangular and tetrahedral elements respectively.
Method b) requires the recalculation of the shape function derivatives. Method c) is
suitable only for the finite element method and requires both a revision of the nodal
connectivity table and the recalculation of the shape function derivatives. Furthermore it is
not well suited to the simulation of phenomena that include sharp discontinuities in the
solution, as in the case of transonic flows. In view of the potential for extension to 2-D

quadrilateral elements, a variant of metnod b) was selected.

This mesh adapting scheme is based on a spring analogy developed by Nakahashi and
Deiwert [30]. The advantage of this approach is that the minimum and maximum mesh
spacings are controllable and the spring constants are a function of any one of the fluid

properties, in this case the gradient of the Mach number.
4.3.1 Grid Adapting Transonic Taylor-Galerkin Test Case

The initial guess and the back pressure are unchanged from the non-adapting test case. The
Mach number distribution obtained is shown in Fig. 19. Note that the pre-shock
oscillations have virtually disappeared. The convergence history for this test case is shown
in Fig. 20. Convergence to the pre-set limit occurs in 1554 iterations. The convergence
history shows three spikes that occur when the residual drops below 103, 104 and 10~
which correspond to the preset limits for the grid refinements. The minimum element size
is 2, 4, 8 times smaller than the uniform mesh spacing for each successive grid refinement
respectively. The spikes in the convergence curve are caused by the linear interpolation of
the nodal variables from one grid to the next In spite of this simplistic approach the self-
adapting Taylor-Galerkin scheme converges faster than the non-adapting method in terms
of the number of iteratious, however the CPU time required increases slightly due to the

iterative nature of the mesh adapting mechanism.
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4.3.2 Grid Adapting Transonic Lerat's Test Case

This scheme exhibits the most dramatic improvement in conjunction with the mesh adapting
routine, as illustrated by %ic Mach number distribution shown in Fig. 21. The convergence
history for this test case is shown in Fig. 22. Convergence to the preset limit requires 479
iterations. Note that the pre-shock osci'lation has virtually disappeared and the shock is
captured over a single eleme.*. The convergence history shows three spikes that occur
when the residual drops below the mesh refinement limits. Unfortunately the approximate
Lerat's method shows a marked deterioration in the overall convergence rate and execution

time with respect to the non-adapting methnd.
4.3.3 Grid Adapting Transonic Newton-Galerkin Test Case

The Mach number distribution is shown in Fig. 23 while the convergence history for the
test case is shown in Fig. 24. Convergence to the preset limit requires 17 iterations. Note
that the shock sharpness has improved as expected. Tke convergence history shows the
three spikes that occur when the artificial viscosity parameter is decreased and the mesh
refinement takes place; nioreover it is evident that within each global iterative step the
convergence rate is always quadratic. The intermediate values of u selected for this test
case are 4.0, 2.0 and the final value is 1.45, corresponding to the values v;=0.009907 and
w=0.008189, which are considerably lower than for the non-adapting test case. Even in
this cese the timing indicates that the total execution time deteriorates when the grid

adapting is combined with an implicit scheme
4.3.4 Influence of Grid Adapting on Performance

The details concemning the performance of the various schemes for the grid adapting
transonic test case can be viewed in Table 3. All the CPU times quoted were measured on

the VAX 8550 at Concordia University.
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Table 3 Performance comparison for the grid adapting tests

Scheme No. iterations CPU time (sec.)

Taylor-Galerkin

Lerat's Approximate

Newton-Galerkin

4.4 Comparison of the 1-D Schemes

The results of the test cases discussed in the previous sections are not sufficient for a
detailed comparison of the four Euler schemes, however some conclusions can be drawn

with respect to the effectiveness of each method.

The Taylor-Galerkin scheme is one of the workhorses of FEM CFD, however it is
beginning to lcse favour because of its notoriously poor convergence rate. This flaw
requires the introduction of the multigrid acceleration technique in order to speed up
convergence. While this technique is based on a simple concept, its practical
implementation is quite complex and cumbersome. It appears that Lerat's exact method is
much simpler and quicker to introduce than multigrid acceleration, however the absence of
artificial viscosity in this scheme p. -vents its extension to the solution of t-ansonic flows.
The approximate method is not as quick, however the decay in convergence rate is offset
by the high accuracy of the solution, particularly the high resolution of shocks. Note that
the accuracy of the solution is sensitive to the mesh spacing distribution and the small
overshoot before the shock was eliminated with the introduction of the self-adapting mesh

refinement method
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The Newton-Galerkin method is considerably faster than any of the time marching
procedures, even more than it appears from a superficia! examination of the number of
iterations os the CPU times quoted in Tables 1-3. It must be underlined that the Newton-
Galerkin test cases where started with uniform flow as the initial guess and are converged
to machine limit, as opposed to the incompressible solution and the convergence limit set at
106 for the time-marching schemes. The time-marching schemes would require a
considerable increase of computational effort if they were run under the constraints of the
Newton-Galerkin scheme, furthermore they do not offer a clear indication of the value of

the residual and the convergence is measured on the values of AU.

The Newton-Galerkin scheme shows that the introduction of a linear artificial viscosity
model produces shocks smeared over several elements. A non-linear model would
certainly improve the resolution of sharp gradients, however the investigation of different

artificial viscosity models was not intended to be the subject of this Thesis.

4.5 High speed flow in 2-D channels

This section is the summary of several internal flow tests conducted to evaluate the

Newton-Galerkin scheme in two dimensions. Two types of channels are considered:

e A short channel with a 10% thick circular arc bump of length 1.0 with an inlet and
exit sections of the same length and height of 1.0. The finite element grid is 64X16
for a total of 1024 elements and 1105 nodes.

e A short chanuel with the same dimensions and grid of the previous channel but with

a 4% circular arc bump.
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These channels have become standard tests for Euler schemes and results for the various

test cases are readily available in the literature.
4.5.1 Subsonic flow in a channel with a 10% circular arc bump

The geometry and details of the finite element grid for this channel are shown in fig 25.
Note that the grid is clustered in the y-direction near the wall to improve the interpolation of

the values of density from the interior of the channel to the wall.

The initial conditions of this test case are uniform flow at M.=0.5 with inlet static pressure
and temperature set at 100 kPa and 288°K respectively. The following boundary

conditions are applied:
e Atthe inlet p, u and v must be specified

e At outflow p is introduced through the pressure contour integrals in the momentum

equations

e At boundaries where p is unknown the pressure contour integrals mst be recast in

terms of H.., p, u and v following Eq. (3.3d)

e The contour integral containing the (g -») term in the continuity equation vanishes

identically on walls

All other contour integrals must be evaluated everywhere

The contours of constant Mach number are shown in Fig. 26. The Mach number
distributions on the upper and lower walls are compared to the results of Ni [7] in Fig. 27,

showing excellent agreement.
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Quadratic convergence to machine accuracy, shown in Fig. 28, is attained in 6 iterations,
requiring 3 min 32 sec CPU time. The timing of the execution indicates that for each
iteration the assembly of the global matrix requires approximately 12 sec and the
factorization and solution require 21 sec while the impact of all the other operations
performed during the iteration is negligible. A single global iteration on the artificial
viscosity parameter is required, with the value u = 0.1 resulting in the coefficients v; =

0.0005879 and v, = 0.0004860.

4.5.2 Transonic flow in a channel with a 10% circular arc bump

The initial conditions of this test case are uniform flow at M.. = 0.675 with inlet static
pressure and temperature set at 100 kPa and 288 °K respectively. At the outflow boundary
the value of pressure is required: since the channel will not choke, the static pressure is

again set to the inflow value. The boundary conditions are the same used in sec.4.5.1.

The contours of constant Mach number are shown in Fig. 29, where a shock is now clearly
visible near the trailing edge of the bump. The Mach number distributions on the upper and
lower walls are compared to the results of Ni[7}in Fig. 30, again showing excellent

agrecment,

Quadratic convergence to machine accuracy, shown in Fig. 31, requires in 9 iterations,
equivalent to 4 min 44 sec CPU time on a VAX 8550 with a standard banded Gauss
elimination solver. Note that the residual oscillates durir:g the first iterations until the shock
location is captured accurately. A single global iteration on the artificial viscosity parameter
is required, with the value set at i = 0.55 resulting in the coefficients v; = 0.002395 and v,
= 0.001980.




4.5.3 Supersonic flow in a channel with a 4% circular arc bump

The geometry and the detail of the finite element grid for this channel are shown in Fig 32.
Note that aside for the thinner bump the configuration is identical to that of Fig.25.

The initial conditions of this test case are uniform flow at M.. = 1.4 with inlet static
pressure and temperature set at 100 kPa and 288 °K respectively. At the outflow boundary
the value of pressure is unknown: since the flow is purely supersonic the static pressure in
the contour integrals is recast in terms of the three dependent variables and H.. using Eq.
(3.3d); aside from the pressure, all other boundary conditions follow the procedure

outlined in sec. 4.5.1.

The contours of constant Mach number are shown in Fig. 33. Note the two oblique shocks
ai the leading and trailing edges of the bump. The leading edge shock should reflect on the
upper surface before vanishing in the expansion fan over the bump, however the grid is too
coarse to capture the details of the reflecting shock. The Mach number distributions on the
upper and lower walls are comnvared to the results of Ni{7]in Fig. 34, showing good

agreement.

Quadratic convergence to machine accuracy, shown in Fig. 35, is attained in 6 iterations,
requiring 3 min 4 sec CPU time. Note that the convergence curve does not show
oscillations since the two oblique shocks are relatively weak. A single global iteration on
the artificial viscosity parameter is required, with the value g = 2.5 resulting in the

coefficients v; = 0.005249 and v, = 0.004339.
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4.6 High speed external flow: the AGARDO2 test case

The AGARDO?2 test case is the second in a series of five tests for the evaluation of the
performance of Euler solvers applied to external lifting flows [31]. The lifting body is the
familiar NACA 0012 airfoil set at 1.0° angle of attack.and the far-field flow speed is set at
M.. = 0.85.

The NACA 0012 does not have a closed trailing edge at the unit chord length, rather the
trailing edge is considered to be closed at cTg = 1.008930411365 where the thickness of the
trailing edge is less than 10-13. For this test case the airfoil must be constructed v:ith a
closed trailing edge and subsequently rescaled to unit chord length to ensure consistency

with the published results.
Two possible types of grids can be constructed around an airfoil:

e O-grids are constructed by mapping the airfoil to a circle which becomes the starting
point for a radial mesh. When mapped back to the original physical plane the
elements are clustered around the leading and trailing edges with poor control of the
element size on the surface of the airfoil. The elements surrounding the trailing
edge are usually badly skewed, particularly if the trailing edge is cusped. This type

of mesh is ideal in conjunction with schemes that require a coordinate mapping.

e (C-grids do not require any mapping. They are constructed by means of simple
algebraic formulae or with the help of variational principles to maximize
orthogonality and smoothness. This type of grid offers optimal control of the
orthogonality and dimension of the elements in the proximity of the trailing edge,
provides a more efficient clustering of the elements on the wake line for cases

which require that a slip line or a complex wake be modelled.
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For this particular experiment the logical choice is a C-grid with 254 bilinear elements
wrapped around and 30 elements in the radial direction for a total of 7620 elements and
7879 nodes; the airfoil itself is surrounded by 204 elements and 204 nodes. The far-field
boundary of the finite element grid is at 30 chords from the surface of the airfoil. The full
finite element grid is shown in Fig. 36 where the aisfoil — situated at the center of the
picture ~ is barely visible, however a detail of the airfoil and its surrounding elements is

shown in Fig. 37.

The initial conditions are uniform flow everywhere and the inflow static pressure and

temperature are 100 kPa and 288°K respectively. Fig.38 shows a schematic C-grid for the

purpose of illustrating the application of the boundary conditions which are imposed as

follows:
e At the far-field boundary, segment ABC, p, u and v must be specified

e At the outflow, segment AC, p is introduced through the pressure contour integrals

of the momentum equations

e At the airfoil surface the contour integral containing the term (4 -n) in the continuity

equation vanishes identically

e At the airfoil surface where p is unknown the pressure contour integrals must be

recast in terms of H.., p, u and v following Eq. (3.3d)
e All other contour integrals must be evaluated everywhere
e No Kutta condition is imposed across the trailing edge

The Mach number contours are shown in Fig. 39. The two shocks on the airfoil can be

clearly seen. Their unequal strengths cause a peculiar phenomenon: the static pressure is
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fixed at the outflow boundary and the static pressure at the trailing edge of the airfoil is
continuous from the upper to the lower surface, therefore the velocity of the fluid must be
discontinuous across the wake since the total pressure loss across the shock on the upper
surface is higher than that produced across the other shock. The C-grid permits to capture
this slip line much more accurately than an O-grid.

Fig. 40 shows that the constant pressure contours are smooth across the wake, therefore
the static pressure is continuous across the wake and the slip line occurs only in the velocity
variables. Fig. 41 compares the values of Cp, on the surface of the airfoil to the results of
Jameson found in the original AGARD report, showing good agreement. Fig, 42 shows
the same values compared to the results of Pulliam [29] which were too late to be included

in the AGARD report.

It should be noted that Pulliam's original contribution to the AGARD report did not
produce accurate results, however Pulliam re-evaluated all the test cases at a later time with
an improved version of his implicit finite difference code ARC2D using 561X65 grids
(36465 nodes!) on a CRAY-XMP. These grids are heavily clustered near the shocks and
across the wake line, accounting for most of the improvement in the accuracy of his results.
To this day these numerical results are the most accurate, but for our purpose solutions on

grids of this nature are outside the performance range of the available computers.

Fig. 43 shows the convergence curve. Three iterations on the value of i are required since
the flow exhibits several discontinuities: two shocks, a slip line and a leading edge
stagnation point. The intermediate values of g are 5.0 and 0.75, the final value is 0.25
which leads to v; = 0.0008646 and v, = 0.0007147. A total of 17 iterations are completed
and the convergence history shows that convergence is always quadratic. The intermediate

convergence limits are set at 10-5 and the results are converged to machine accuracy.



The computation was performed on a Silicon Graphics Power Series IRIS 4D/240GTX
with 4 processors with clock frequency of 25Mhz. The matrix assembly time requires
approximately 55 sec CPU time, the solution by a banded Gauss elimination algorithm

requires 330 sec. and the total CPU time per iteration is 385 sec.

4.7 Conclusions

In the previous chapters a finite element scheme for the solution of the steady Euler
equations was presented: this new formulation takes full advantage of the power of the
finite element method to introduce improvements in areas in which the finite difference and
finite volume method are weak. In particular the recovery of the natural boundary
conditions in the form of flux contour integrals and the implicit accounting on the boundary
of the extrapolation of variables that do not require a Dirichlet boundary condition can be
considered extremely important. The boundary extrapolation technique is carried out
implicitly so that the Euler equations are actually solved 2t the boundary, compared to the
extrapolation procedures used in conjunction with the other two methods which must solve
either a one-dimensional local approximation to the Euler equations (Riemann invariants) or

do not solve the equations at all (lincar extrapolation).

The solutions of the test cases shown in this chapter show good agreement with the results
found in the literature. Clearly Newton's method is the most efficient algorithm for the
linearization of hyperbolic systems of equations when the steady-state solution is the
objective. The artificiai viscosity adopted for the finite element scheme is based on a linear
model and not ideally suited to capture sharp discontinuities. This model can be easily
replaced with a more sophisticated one and in the limit it is possible to construct a high

resolution TVD[32,33] version of the scheme, although the linear model should be retained
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as the starting block for the continuation procedure necessary to overcome the instability of

Newton's method caused by poor initial guesses.
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CHAPTERS

5.1 Consequences of the Non-Uiigieness of the Potential Formulation

The discovery of the non-uniqueness of the Potential formulation [2] generated a
considerable amount of debate in the CFD community and caused a shift in favor of the
solution of the Euler equations in primitive variable form, thought to yield a unique
solution. It should be underlined that the appearance of multiple solutions in the Potential
formulation is a phenomenon !mited to some conditions and in general it cannot be
observed in smooth flows but only in certain transonic regimes of flow around an isolated
airfoil. Hafez et al. [3] and Habashi et al. [4] have shown that the spurious solutions are
generated by the absence of the correct shock jump conditions and that the introduction of
the Rankine-Hugoniot shock conditions for the calculation of density completely eliminates
the appearance of multiple solutions. In spite of all the turmoil provoked by the multiple
solutions considerable research is still being conducted on the Potential formulation [34,35]

which is deemed attractive for its simplicity, a far cry from the complex environment of the

Euler or Navier-Stokes schemes.

Following the problems encountered with the Potential formulation it is only logical to
question the uniqueness of the :slutions of the Euler and Navier-Stokes equations. Not

surprisingly some papers have already started to appear on the subject.

5.2 Non-Uniqueness of the Discrete Euler Solvers

Although it is possible to prove that smooth solutions of the Euler equationis are unique, to

the present day no mathematical theory can analyze the uniqueness of the solutions of the
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inviscid and viscous equations of gas dynamics in the presence of a discontinuity. In the
following discussion two specific classes of non-unique solutions will be distinguished: the
first arises from the non-uniqueness of the discrete system of equations, the second deals

with the nature of the partial differential equations.

Salas et al. [36] have analyzed some model equations and the quasi 1-D Euler equations
and shown that the boundary approximations of the discrete system of equations, as well as
large time steps for implicit schemes, may induce spurious solutions. Stephens [37] has
shown that some finite difference schemes may lead to non-unique solutions and that while
a Galerkin approximation to a non-homogeneous model equation gives unique solutions,
the corresponding central difference approximation produces multiple ones. These two
examples are considered as multiple solutions of the first kind as defined above since they

stem entirely from the discrete systems and say nothing about the PDEs themselves.

The non-uniqueness problem is quite serious since for several space dimensions it is nearly
impossible to find exact solutions to test cases that provide the necessary foundation for the
comparison of results, hence the doubt concerning the validity of a particular scheme is

never completely cleared.

It is possible to show that the steady Euler equations produce multiple solutions for a
particular c!ass of problems. The following sections illustrate this non-unique behavior of

the second kind.

5.3 Non-Uniqueness of the Euler Equations

Consider the flow in a converging-diverging nozzle. Several operating ranges are possible:

a) subsonic inlet flow, nozzle not choked, subsonic outflow



68

b) subsonic inlet flow, nozzle choked, subsonic outflow

c) subsonic inlet flow, nozzle choked, supersonic outflow
d) supersonic inlet flow, nozzle choked, subsonic outflow
e) supersonic inlet flow, nozzle choked, supersonic outflow

If a back pressure other than the corresponding isentropic exit pressure is specified a
compression shock can be obszrved in the divergent portion of the nozzle. The steady
Euler equations, however, are capable of supporting a stable compression shock both in the
convergent and divergent sections of the nozzle for the same boundary conditions but with
different initial guesses. A stability analysis of the shock in the convergent section reveals
that this shock is unstable and will move out towards the inlet or the exit if its position is
slightly perturbed in those directions. Hafez, Palaniswamy and Mariani [19] have
demonstrated this phenomenon via a quasi 1-D finite differences scheme, but the

occurrence of multiple solutions in 2-D has not h=e demonstrated before.

A numerical experiment is conducted on the supersonic inflow in a nozzle with a 15%
restriction, having a profile described by a cosine function and a length of five inlet
diameters. An illustration of the nozzle discretized by 100 X 30 elements is shown in Fig
44, The choice of the cosine function is deliberate: a sharp corner on the inlet plane of the
nozzle would generate a conical oblique shock in 3-D which would reflect inside the nozzle
and form a complex pattern of compression and rarefaction waves, with no possible normal

shocks in the converging or diverging sections.

The critical supersonic inlet Mach number for this restriction is M; = 1.50 (y=1.4). A
higher intet Mach number would generate the necessary conditions for this experiment,

consequently it is fixed at M; = 1.65 and the inlet static pressure is set at an arbitrary value
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of 1 bar. A smooth, fully supersonic solution can be obtained by not constraining the exit
pressure and a shock can be captured if the back pressure is selected with a value higher
than the isentropic one. In this case the desired pressure ratio between 1nle; and exit was
fixed at 3.4. A smooth, fully subsonic solution, can be generated with an inlet pressure of

3.4 bar and an inlet Mach number lower than the subsonic critical value.

The two smooth solutions can be spliced in different locations to construct two initial
guesses, one with a shock in the converging section and one with a shock positioned in the
diverging section. These two initial sets of values are used to initialize the Newton-

Galerkin Euler solver to capture multiple solutions for the same boundary conditions.

The Mach number distributions of the two shocks are shown in Fig. 45 and 46, compared
to the exact quasi 1-D solutions. Fig 47 and 48 show the Mach number and static pressure
contours for the two solutions as well as the Prandtl-Meyer compression and expansion

fans at the inlet of the nozzle. Both solutions cunverge to machine limit in 6 iterations.

The time marching algorithm of Egs. (3.11) can analyze the stability of the two solutions
when the shock location is perturbed. In the first exampie the unstable shock is displaced
towards the inlet of the nozzle. The time ma: ching code shows that the new _nitial guess is
unstable and the shock moves toward the inlet. The three frames of Fig. 49 illustrate the
motion through the Mach number contours. The three frames in rfig. 50 show the motion
of the unstable shock after being displaced towards the throat; the shock is swallowed by
the throat, reemerges ir ~ . divergence section and eventually settles dowr in the stable
position. Finallv .. the shock is displaced near the outflow boundary it tends to move

upstream and settle in the stable position, as shown in Fig. 51.

Fig. 52 to 54 show a more detailed correlation of the shock location as a function of time.
It should be remarked that the time marching code is run with a constant time step. Fig. 55

to 57 show the residuals as a function of time: clearly the solution with the unstable shock
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moves towards the inlet and never converges; the solution with the shock moving
downstream as well as the one with the shock moving upstream from the exit to the stable

position do not converge until the shock arrives to the stable location.

54 Consequences of the Non-Uniqueness of the Steady Euler Equations

At the present time an analysis of the consequences of the non-uniqueness of the steady
Euler equations is limited ¢, speculation. Solutions to several test cases have been shown
and other results that do -1t appzsar in this thesis have been obtained. The multiple
solutions, however, have been demonstrated only in supersonic convergent-divergent
nozzles, both with the 1-D and 2-D finite element schemes. If any doubts regarding the
multiplicity of the solutions should arise, the time marching analysis of the results is

sufficient to verify the stebility of the steady solution.
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Fig. 2 Dimensional shape functions for linear 1-D elements



Fig. 3 Non-dimensional shape functions for linear 1-D elements
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Fig. 53 Correlation between unstable shock location and time step



111

Fig. 54 Correlation between stable shock location and time step
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Fig. 55 Correlation between unstable shock residual and time step
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Fig. 57 Correlation between stable shock residual and time step
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