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ABSTRACT

DEVELOPMENT OF A MODEL FOR OPTIMIZING WATER STORAGE

Hirad Mousavi, Ph.D.
Concordia University, 1997

The purpose of this study is to develop an efficient optimization model to
determine storage strategies for water supply purpose in multi-reservoir systems. The
specific goals in designing a multi-reservoir system for water supply purpose is to
optimize the reservoir sizes and configurations to satisfy demands for water supply at the

minimum cost.

Four models are developed to optimize the configuration of multi-reservoir
systems for water supply purposes. These models apply optimal control theory (OCT) and
penalty successive linear programming (PSLP) as the most promising techniques to
optimize large and complex water resources systems. Three of these models are based on
the OCT. They have, however, different approaches to join the cost function to other
objectives. The fourth model employs a new composite optimization algorithm, which is
introduced in this study. This is called PSLP-OCT model and consists of two OCT and
PSLP modules. These two modules interactively share their results during the
optimization iterations. Multi-objective programming methods are implemented in the
four models in order to consider the two non-commensurate objectives of minimizing cost
and water deficit. The weighting and epsilon constraint methods are used as the most

suitable generating techniques to incorporate the problem objectives.
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The comparative performances of the design models on several case studies
showed that the design models based on the OCT algorithm fail to design the multi-
reservoir system optimally. However, The PSLP-OCT performance indicated that it is a
very promising optimization method to design multi-reservoir systems regardless of their
size. The PSLP-OCT model is the first model of its type that applies the proposed
composite algorithm and incorporates multi-objective programming into the multi-
reservoir design problems. Due to the inherent characteristics of the optimal control
theory, the control variables in the OCT, module is not sensitive to the initial solution.
The model structure is adapted such that the PSLP module is independent of the design
period length. Therefore, using large hydrologic data does not affect its problem

dimension.
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NOMENCLATURE

Ci(X) : Nonlinear constraints in a PSLP general formulation.

C.* - Coefficient in the nth reservoir area-storage relationships.

D#j - The jth demand area.

Dt Total annual water demand in the hydrosystem (L*).

D Annual water demand at demand area j (L*).

D/ Monthly water demand at demand area j (L?).

D™ Maximum predicted water requirement at demand area j (L*).

D, : Degree of optimality.

E. Losses (e.g., evaporation) from the nth reservoir during time ¢.

F(): Objective function value.

N;: Number of selected non-inferior solutions.

N, Total number of municipal, industrial, and irrigation demand areas.

Ny : Number of state and control variables (reservoir capacities, yields and
releases).

P Exponent in the nth reservoir area-storage relationships.

PlX) Linear approximation of the exact penalty in the PSLP formulation.

O : Unregulated local inflow into reservoir # during month ¢ (L3).

R.: Control variable; a variable showing the release/yield from the nth

reservoirs during time 7.

R,"™, R,™":  The upper and lower bounds on the ntA control variable.
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RES#n :
W, br ]
W, -

W,,ﬁ :

n;f :

The nth candidate reservoir.
A weight coefficient applied to the bang-bang control on reservoir release.
A weight coefficient applied to the bang-bang control on reservoir yield.

A weight coefficient applied to the terminal storage function corresponding
to the nth reservoir.

Penalty weights used in the PSLP module.

A weight coefficient applied to the cost function corresponding to the nth
FESEervoir.

A weight coefficient applied to the water supply objective.
Decision vector in the PSLP module with X=[x,, x5, .., xa] elements.
A vector [X; 0, X20... Xx.0] showing the initial/trial solution.

A vector [d), d,.. dy] showing the step size for N decision variables.

Water supply target, corresponding to demand area j, for reservoir # during
month ¢

. . 2 . .
Evaporation per unit area (L3/L") from reservoir # during month z.
The cost function of the #1th reservoir.

A deviation variable corresponding to the ith nonlinear constraint in the
PSLP module.

Denote the smallest value of the objective function fi(X) in the epsilon
constraint algorithm.

Denote the largest value of the objective function fi(X) ) in the epsilon
constraint algorithm.

Cost penalty weight in the OCT-I model.

A deviation variable corresponding to the ith nonlinear constraint in the
PSLP module.

Storage penalty weight in the OCT module/model.

The maximum permissible release from reservoir n (L%).
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Yny
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The minimum permissible release from reservoir n (L*).

The release from the reservoir » during month ¢ (L*).

Initial storage capacity of the reservoir » (initial condition of the system).
The upper bound on reservoir n (L?).

The lower bound on reservoir 72 (L*).

State variable; a variable showing the storage capacities of the nrh
reservoirs at the beginning of the time period # (L%).

Reservoir yield obtained at previous PSLP iteration (L’).
Yield from reservoir » to the demand area j during month 7 (L*).

The maximum permissible yield of reservoir # to demand area j during
month ¢ (L?).

The minimum permissible yield of reservoir # to demand area j during
month 7 (L?).

The element of the return flow matrix.
The element of the layout configuration matrix.
A pre-specified ratio of the dead storage to capacity of the nth reservoir.

The cost penalty function corresponding to the reservoir ».

A monthly fraction of the annual water deficit.
A ratio, showing the spatial distribution of water demands and/or water

deficits in the hydrosystem.
The upper bound to the kth objective function value specified by the

epsilon constraint method.

Total annual water deficit in the hydrosystem (L?).
Annual water deficit at demand area j (L*).
Monthly water deficit at the Demand area j (L*).

Terminal function representing the storage deviation from terminal storage
target.
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Storage penalty function of the nth reservoir at the beginning of time 7~ /.
Maximum permissible dead storage bound (L?).

Minimum permissible dead storage bound (L*).

A coefficient for return flow from the demand area j during month m.
Upper bound (step size) on the change in the nonlinear variables.
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CHAPTER 1

BACKGROUND

1.1 Definition of the Problem:

Allocating and managing water resources are among the most important problems
that planners and water resources engineers are facing. This is because water is often
available at times, locations, in quantities and with qualities that may not be desired. To
satisfy the growing demand for water, reservoir storage is required to control the uneven
temporal and spatial distribution of water and provide enough water to consistently meet
the demand at specified locations. However, due to financial and environmental reasons
only a limited number of reservoirs can be constructed in a river basin. Therefore, an
optimal policy is needed to design a multi-reservoir system to accomplish the problem

objectives (e.g., supplying water demand) at the minimum cost.

The limited water supply must satisfy the demand of a rapidly increasing
population for water quality control, fish and wild life maintenance, recreation,
navigation, irrigation, domestic and industrial use. Therefore, the limited water resources
must be developed and managed in the most efficient way. Social interests should also
be considered as the maximum benefit to society, which are not always obtained by

producing the maximum profit. For instance, in some cases, under certain social or



environmental conditions, water may be attributed to some users, even though it could be

attributed to other users in a more optimal fashion.

To have a fully beneficial and optimal multi-reservoir system, first the design of
the system configuration of the reservoirs and then, the operating policy of the system
should be optimized. In the design phase, the layout and sizing of reservoirs are the
major concerns. However, with the existing reservoirs, in the operation phase. the
primary concern is to decide, when to release or store water to achieve the prescribed
goals. Optimizing the operating rule of a multi-reservoir system without optimizing the
reservoir sites and sizes is beneficial. However, in an ideal situation, configurations of
reservoirs and operating rules should be optimized together with the same objectives. In
this case, the hydrosystem will work with the highest possible efficiency. Neglecting
optimal design of a system for certain objectives will result in a poor or less optimal

operating policy.

Optimal design of a large multi-reservoir system usually results in a nonlinear,
non-convex optimization problem with a high dimension. Therefore, achieving the
global optimality cannot be guaranteed. It is difficult to solve such a problem by any of
the existing optimization technique. Therefore, an optimization technique with a high
degree of accuracy, convergence, and low computer time and memory is required. The
algorithm should be capable of handling different hydrological characteristics of the
hydrosystem such as losses, reservoirs layout, tributaries, and routing (if applicable). In
some optimization techniques such as discrete dynamic programming, these factors
cannot be implemented directly in the optimization algorithm. As a result, a simulation

model is required to verify the feasibility of the final result. Inclusion of these factors



will remove the necessity of applying a simulation model to verify the feasibility of the

final solution of the optimization model.

1.2. Importance of the Problem:

Construction of a reservoir has become increasingly difficult for a variety of
political, financial, and environmental reasons. The number of future reservoir projects
may be limited. Therefore, those reservoirs that are constructed should represent an
optimal configuration that will meet the water demands at the minimum cost.
Constructing a reservoir on a particularly advantageous site not only may result in a

foreclosure of future opportunities, but also lead to a high construction cost.

A water resources planner needs to evaluate the different scenarios to find the best
configuration of reservoirs that can supply water at the minimum cost. Optimizing the
layout of a multi-reservoir system may help the decision-makers to save millions of
dollars in construction cost. It can also avoid any inappropriate social and environmental
impact in the region. A review of available design models indicates that most of these
models lead to a large number of control variables and constraints in practical situations.
Consequently, the development of an efficient algorithm, to optimize the configuration of

reservoirs in multi-reservoir systems is still called for.

1.3 Research Objectives:

The main objective of this study is to develop a more compact and

computationally efficient screening model to select between potential reservoir sites and



optimize their sizes and the associated yields in a large multi-purpose reservoir system.

The criteria to achieve this objective are:

1-

The model should be accurate and fast.

The formulation of the model should be as general as possible in a way
that minor changes in computer program codes are required, if it is applied

to different hydrosystems.

The model operator does not have to assume relative values for each
variable by not using a single monetary objective function in the

optimization formulation.

The model should be capable of introducing tradeoffs between different
possible water demand in the future and the optimized reservoir
configurations. This feature lets decision makers evaluate the sensitivity
of each candidate reservoir to different water demand levels. The less

sensitive reservoir has the priority in being built.

Finding the best initial solutions of the optimization variables, especially
for large multi-reservoir systems, is a very cumbersome task. To avoid
this difficulty, the design model should preferably be insensitive to initial
conditions. This feature decreases noticeably the necessary time to design

a multi-reservoir system.

The developed design model should screen the sizes and locations of a series of

potential reservoirs sites in a multi-reservoir system by applying the fastest and most

promising optimization technique(s) applicable to large-scale multi-reservoir systems.



Based on the study performed by Hiew (1987), optimal control theory (OCT) and the
penalty successive linear programming (PSLP) would be the candidate techniques. To
alleviate the dimension of the optimization problem in PSLP and consequently decrease
its required computer time, a methodology will be introduced in this study to reduce the
number of decision variables and constraints in PSLP. Then, screening models based on
these two optimization techniques will be developed and the performance of each model
will be analyzed. Finally, the model which results in a better optimal solution and gives a

more suitable performance will be selected as the proposed screening model.

The selected reservoirs are going to be used to store water to supply for domestic,
industrial, or irrigation demands at any time and location later. One possible strategy is
to find the optimal design of such a system to satisfy water demand at the minimum cost
subject to a set of system constraints that incorporate all the other objectives such as
controlling minimum flow requirements and maximum flows in channels. To determine
the optimal reservoirs configurations, it is necessary to develop a computer model to
optimize the layout of several reservoirs in a river basin based on two non-commensurate
objectives of supplying water and minimizing the cost. The related problem. is a
nonlinear, constrained optimization problem. The multi-objective programming
approach (generating method) is being used to achieve these two objectives to design the
number of reservoirs and their locations. This will maintain the classical role of the

analyst in designing the multi-reservoir system.



1.4 Anticipated Benefit:

Once the model is developed, it can be used by planners to determine the best
strategies for utilizing water resources in large multi-reservoir systems. The model will
optimize the configuration of reservoir system at minimum cost. The optimization model
is formulated to supply water for different water demand areas while considering other
objectives such as flood control and minimum channel flow requirement. The model will
be a general model, capable of considering any possible reservoir configuration to supply
water. Therefore, it can be used easily for local situations and adapting the program
codes to the physical networking of the candidate reservoirs would be the only change

required of the model.

1.5 Contributions:

This research provides a contribution to the systems analysis in general and water
resources planning and management area in particular, by introducing a new composite
optimization algorithm. The proposed algorithm is a general-purpose optimization
technique that can be used in any optimization problem consisting of both static and
dynamic (time dependent) control variables. This study also contributes to the design of
multi-reservoir systems by adapting the proposed composite optimization technique that
can incorporate the different water resources planning objectives (such as flood control
and minimum flow requirements) more accurately. Using the fastest and the most
promising techniques in analyzing the large-scale multi-reservoir systems provides the

ability to include system characteristics in more detail in the optimization problem. In all



previously developed screening models, a single objective function was used and some

restrictive assumptions were made to simplify the design procedures. The assumptions of

neglecting evaporation losses, concentrating all the water demand areas at the

downstream of the last reservoir, or neglecting the channel flow capacity render some of

these models to be less interesting in applying to real situations. Unlike previously

developed models, the current design model considers the target demands and minimal

design cost as two equal objectives in a multi-objective decision making analysis. The

detail contributions of this research can be described as follows:

1-

The new composite optimization algorithm introduced in this study
employs the optimal control theory and the penalty successive linear
programming as the two most promising optimization techniques in
optimizing large and complex systems. This algorithm helps engineers to
get benefit from the advantages of the optimal control theory in problems

consisting of both static and dynamic control variables.

A design model based on the new composite algorithm is proposed. This
model optimizes the layout and sizes of a series of candidate reservoirs to
supply water for irrigation, municipal, and industrial needs at different

demand locations.

The proposed design model requires less variables than all previously
developed models of the same type, by not using the monetary objective

function.



A strategy is used in the design model that reduces the number of
optimization constraints dramatically.  This strategy optimizes the
capacities of the mutli-reservoir system simultaneously while optimizes

reservoir yields by analyzing one reservoir at a time.

Finding the best initial solution to run the model is not a major task. This
is because the major part of the optimization process is assigned to the
OCT and hence is insensitive to the initial solution. The model may need
an initial guess for reservoir capacities, if the reservoir cost functions are

not convex.

More realistic system constraints are included in the optimization
formulation as: (/) minimum channel flow requirement for recreation,
navigation, wild life, and dilution of wastewater, (7/) maximum channel
capacity for flood control, (iii) reservoir evaporation, (iv) reservoir dead
storage, and (v) return flows from upstream demand areas considered in
the screening model. All these components have not been generally

considered together in any of the previously developed models.

The model can result in designing a system with less operating policy
requirement. This can be done by minimizing the rapid variations of each
reservoir operating policy over the time by considering the bang-bang
control as one of the objectives of the problem. This feature results in an

easier reservoir gate operation.



Using generating multi-objective programming techniques, the two
objectives of (1) minimizing the cost and (2) supplying water are
considered equally important to represent a non-inferior set that shows the
tradeoff between two objectives. This approach will not only show the
different scenarios for different possible future demands, but will enable
water resources planners to perform the sensitivity analysis tests. This
feature is very important one and can help the policy makers to find out
the chronological priority in building the reservoirs. The reservoir, most

insensitive to different demand levels, should be built first.

The present study enhanced the understanding of the OCT capabilities and
its application in the water resources engineering area by demonstrating

some of its shortfall in designing multi-reservoir systems.



CHAPTER 2

LITERATURE REVIEW

The study on simulation and optimization models is an important topic in water
resources planning and management. Simulation models are descriptive models that
represent the physical characteristics of a system (Yeh 1985). The main disadvantage of
simulation models is that for a complex-large system, many efforts are needed to find the
best strategy that although may meet the objectives, may be far from the optimal solution.
CEQUEAU and SSARR (WMO 646, 1986), HEC-3, and HEC-5 (Simonovic 1992) are
examples of simulation models. Simulation model with some capability of self-
optimization is preferable to alleviate the number of trials needed to obtain an optimum
or near-optimum policy (Yeh 1985). ACRES Reservoir Simulation Program (ACRES
1988), and Jacoby and Loucks (1972) applied a combination of simulation and

optimization models to a river basin planning.

Optimization models consist of a set of mathematical equations developed to
explain the response of a system. They use mathematical programming techniques to
find the best possible solution based on a specified performance function and some
physical constraints. Mathematical programming includes several techniques such as
dynamic programming (DP), nonlinear programming (NLP), linear programming (LP),

optimal control theory (OCT), and genetic algorithms (GAs). Each of these techniques

10



has its advantages and disadvantages. Based on the characteristics of each hydrosystem
and the objective used, one of the above techniques may perform better than the others.

In the following sections, each method is described briefly.

2.1 Dynamic Programming Models (DP):

Although DP can be formulated either in continuous or discrete form, the later is
more popular for its simplicity (Hiew 1987). Bellman (1962) developed the discrete
dynamic programming and defined it as "the theory of multi-stage decision processes".
DP has been widely used in water resources engineering problems (Hiew 1987). The
advantages of discrete DP over other methods such as LP are that the problem is solved
one stage at a time and there is no restriction of any kind on the type and form of the
objective function. In discrete DP, the computational burden is dependent on the number

and discretization of the state variables. For a system with one control variable, » state

variables (e.g., reservoir storage), and A levels of discretization, There are A’
combinations that should be considered at each stage of analysis (Mays 1992).
Therefore, computational efforts increase exponentially in DP, which creates the so-
called "curse of dimensionality” and is considered as the major disadvantage of DP
(Bellman 1962). The large increase in computational time and computer memory
requirements, constitutes one of the major difficulties in using DP (Hiew 1987). Different
techniques have been introduced in the literature to reduce the computational burden and

dimensionality problem of DP (e.g., Heidari et. al. 1971; Becker et. al. 1976; Labadie et.

11



al. 1980; Turgeon 1980). Yakowitz (1982) has reviewed the application of DP models in

water resources problems.

2.2 Nonlinear Programming Models (NLP):

Nonlinear programming is the most generalized mathematical programming
method (Hiew 1987). Analytical solution of the NLP may not be computationally
feasible for the most large-scale nonlinear problems. Therefore "direct” methods, which
are iterative search procedures, will be used to find the optimal solution. NLP method
has been used in some studies in the field of water resources planning and management
(e.g., Lee and Wazirrudin 1971; Hanscom et. al. 1980; Rosental 1981; Lansey et. al.
1989). However, NLP methods are less popular than DP and LP methods in water
resources systems analyses. Slow convergence, large computer memory requirement,

and the complicated theory of the method are the reasons for its unpopularity (Yeh 1985).

2.3 Linear Programming Models (LP):

LP has been used by many researchers such as Bechard et. al. (1981), Loucks et.
al. (1981), and Draper and Adamowski (1976) in planning and management of water
resources systems. The main limitation of LP is that the objective function and all the
constraints have to be linear. However in water resources systems (W.R.S.), objective
functions or system constraints are mostly nonlinear. In order to use LP in this type of

problems, a linearization scheme has to be applied.

12



There are two methods to problem linearization. The first method is called the
piecewise linearization that converts the original nonlinear function to series of linear
functions (Windsor 1973). The second method solves nonlinear optimization problem via a
sequence of linear programs. The linearization scheme in the second method is based on the
first-order Taylor series expansion of a nonlinear function about a given initial solution.
This method has different names in the literature as the method of approximation
programming (Palacios-Gomez et. al. 1982), iterative LP (Grygier 1983), and conventional

successive linear programming (SLP) (Hiew 1987).

SLP method performs better, if the nonlinearity is related to the objective function
only. In this case, the existance of convergence can be proved theoretically (Palacios-
Gomez et. al. 1982). Another algorithm known as SLP Reject (SLPR) has been proposed by
Palacios-Gomez et. al. at 1982 that can cope better with nonlinear constraints. SLPR
algorithm is attractive because it is fairly easy to implement, if an efficient and flexible LP
code is available. However, there is no theoretical proof of convergence for it (Hiew 1987).
The last generation of the SLP is called penalty SLP (PSLP). Baker and Lasdon (1985)
have developed a simplified version of PSLP. Later, Zhang et. al. (1985) improved the
PSLP algorithm and gave a convergence proof of it. In both SLP and SLPR, the values of
two successive objective functions were used to accept or reject the step bound and the new
point at each iteration. This criterion may yield an optimal solution with a non-vertex
optimum point i.e., the optimum point lies in the interior of the feasible solution space
(Hiew 1987 p-52). In this case, SLP and SLPR may face "Oscillations" and "Zigzagging" in

the vicinity of the optimum solution Therefore, choosing an appropriate step size at each
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iteration is crucial. To fix this problem, a new criteria for varying the Taylor series step

bounds for accepting or rejecting new iterates are introduced in PSLP (Zhang et. al. 1985).

Grygier (1983), Hiew (1987), and Reznicek and Simonovic (1992) applied SLP to
optimize reservoir operations. In SLP, the computer time is a function of the product of
number of variables and number of constraints (Grygier 1985). Based on his work, it may
be concluded that computer time would increase as the square of the number of reservoirs

and time stages.

To solve the LP-based problems, separate constraints should be considered for
each time stage. Therefore, many variables and constraints are required in an LP model
to analyze a large hydrosystem. For example to optimize the operation of 17 reservoirs
over 24 months, 872 constraints and 433 variables are needed (Draper and Adamowski,
1976). "Cycling" is another problem in LP-based models i.e., The LP method may go
through an endless sequence of iterations without ever finding an optimal solution
(Chvatal 1983). Cycling may happen, if large numbers of equality constraints exist in the
problem formulation (Roef and Bodin 1970). However, cycling is a rare phenomenon

(Chvatal 1983).

2.4 Optimal Control Theory (OCT):

OCT is a method that applies the minimum principle of Pontryagin to optimize
dynamic system over time and space (Bryson and Ho 1975). In this sense, it is like DP.
However, it has many similarities with NLP in terms of computational procedures.

Pontryagin's minimum principle is based on the theory of calculus of variation, which
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was limited by the requirement that the control variable must be the time rate of change
of the state variable. The Pontryagin's minimum principle originally explains the set of
optimality condition for continuous-time optimal control problems. However, the

discretized form of minimum principle was developed later (Hiew 1987).

Hiew (1987) compared five deterministic optimization algorithms and evaluated
their performances on a hypothetical five-reservoir hydropower system. The algorithms
were incremental DP (IDP), successive linear programming (SLP), feasible direction
method (FDM), objective-space dynamic programming (OSDP), and optimal control
theory (OCT). The criteria to compare were: accuracy of results, rate of convergence,
smoothness of resulting storage and release trajectories, computer time and memory
requirements, robustness of the algorithm, and sensitivity to the initial solution. In his
test, the optimal objective values reached were within 1% for all methods except
objective space dynamic programming (OSDP). IDP obtained the highest objective
value, while OCT and SLP had values very close to IDP. In terms of computer time, the
differences among the different methods were considerable. OCT and SLP are the fastest
among the five mentioned algorithms and needed only 10 and 20 seconds respectively
while IDP used 2000 seconds to run on the Cyber 205 "super" computer at Colorado
State University. Heiw’s study showed that the optimum state and release trajectories
determined by OCT are also insensitive to the initial solution. This feature of OCT is an
important one especially in large-scale systems where efforts in determining an initial
solution can be significant. OCT can generally lead to smoother policies in comparison
to other methods. These characteristics come from the gradient-based and non-extreme

point technique of OCT. Hiew (1987) concluded that considering all the criteria
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mentioned before, OCT and SLP are the most efficient algorithms for optimizing the

nonlinear, non-convex objective functions of large hydrosystems.

The augmented objective function is obtained by adjoining the system dynamic
equations to the original objective function using Lagrange multipliers (co-state or
adjoint variables). The physical bound will also be added to the original objective
function by Lagrange multiplier or penalty functions, where the later is a simpler
approach. According to Pontryagin's minimum principle, an optimal trajectory can be
found by minimizing the augmented objective function over the set of all possible control

values (Bryson and Ho 1975).

Obtaining an analytical solution of the OCT Problem is computationally burdened
and sometimes impossible. Therefore, like NLP, the "direct" method will be used to find
the optimal solution. The OCT has been used by electrical engineers during the last three
decades. However, it still is not popular in water resources system analysis. Dillon and
Morsztyn (1971, 1972) applied OCT using a first order gradient method in a
hydrothermal network optimization. To improve the convergence, Tun & Dillon (1978)
used a second order gradient method. Turgeon (1981) applied discrete OCT to optimize
the daily operation of 3 reservoirs. In all these studies, quadratic penalty functions were
applied to bring the constraints on state variables to the augmented objective function.
Papageorgio (1985, 1986) applied the penalty function technique with the variable metric
method in the OCT algorithm to optimize the hydroelectric power generation of a multi-
reservoir system. Grygier (1983) used "hard" constraints on state variables' lower and
upper bounds, i.e., the state constraints were included in the augmented objective

function by using the Lagrange multiplier. He reported that his optimal control algorithm
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was efficient for small systems. When the optimal trajectory is tangential to storage
constraints, i.e., when storage and release constraints are active at their maximum or
minimum values simultaneously, a significant computational difficulty will be
encountered. This is traced to the fact that the trajectories of Lagrange multipliers make a
jump by some unknown magnitude, when state variables are tangent to storage
constraints (Grygier 1983, Bensalem 1988). Under these conditions, Grygier (1983) used
an incremental algorithm to adjust those multipliers. Hence, the convergence was quite
slow. Grygier (1983) proposed that for an efficient algorithm, penalty functions should
be applied to state constraints and a fast gradient technique with second order

convergence should be used.

In penalty based OCT like any other constrained optimization algorithm, the
optimum can be achieved, if the penalty weight theoretically approaches infinity.
However, it has been found that large penalties can lead to solution divergence (Bryson
and Ho 1975) and make gradient search techniques slow and unstable. On the other
hand, if medium penalty is used, although divergence will not occur, the final objective
value cannot be improved toward the optimal one. An iterative penalty scheme is the key
to the success of OCT and affects the rate of convergence and convergence itself. The
choice of gradient search technique may have some secondary influence on the rate of
convergence (Hiew 1987). The iterative penalty technique applies quadratic penalty
weights, which are increased in a series of iterations. Choosing the initial penalty weight
is crucial and would affect the optimal objective function value, total number of iterations
and computer time. Hiew (1987) showed that any initial penalty larger than 1.00 would

lead to sub-optimal result for any problem. High initial penalty weight causes the
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estimation of Lagrange multipliers to be dominated by penalty terms on state variables
constraints. Hence, it would affect the calculation of new state variables over time in the
system equation. Very small penalty values will change the original problem to an
unconstrained optimization problem and hence the solution may be infeasible. As the
penalty weights start to increase, the objective function values will improve at each
iteration until it reaches a limiting value corresponding to a certain penalty weight. In
this solution, some state variables obtained may still violate the feasibility constraints and
hence fail to yield the final solution. With the larger penalty weight in the next iterations,
the magnitude of violation of constraints decreases, although the magnitude of objective
function does not change significantly. At the final stage of the solution with a large
penalty weight, none of the constraints are violated and hence feasible and optimal
solution will be obtained. Considering a penalty weight as being small or large depends
on the order of magnitude of the state variables. Choosing different sets of increasing
penalty weights would lead to slightly different results. However these differences are

usually small and insignificant.

Hiew (1987) applied the iterative penalty weight technique in his OCT algorithm.
He used an initial penalty value on the order of 0.001 and at each successive iteration
increased this value 5-10 fold. He showed that if a quadratic penalty function approach is
used, the OCT can be impiemented on both large and small systems. Albuquerque
(1997) applied the same iterative penalty weights in optimizing the hydraulic control of
irrigation canals. Ouarda (1991) compared the performances of the exterior quadratic
penalty functions and the barrier function methods in OCT and concluded that the barrier

function methods show no improvement over exterior quadratic penalty function.
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Theoretically, the computer time required in OCT depends on the numi)er of
control variables, number of time stages, and number of iterations required in a general
N-dimensional optimization algorithm to converge to a stationary point for each penalty
weight chosen. For an objective function with N control variables and T time stages, the
computer time requirement for a conjugate-gradient algorithm would be proportional to

N=*T. Therefore, the total computer time requirement for OCT would be a function of

(N*T)z. However, studies done by Papageorgio (1985) and Hiew (1987) showed that if
penalty-based OCT with varying penalty weight is used, even for a highly nonlinear
objective function with N variables, only a small number of iterations (10 to 15% of N*T)
is required for OCT to converge. Although a more conclusive assessment in this regard
was proposed by Hiew (1987), with increase in system dimensions, the computer time

requirement in OCT is slightly higher than linear (power of 1.2 for his case). In other

words, in OCT, the computer time requirement would be equal to (N*T)°. where 2>p>1.
This feature of penalty based OCT makes it attractive in spite of the requirement that the

algorithm has to be run repeatedly at increasing levels of penalty.

2.5 Genetic Algorithms:

The theory behind genetic algorithms (GAs) were proposed by Holland (1975)
and further developed by Goldberg (1989). There are many variations of GAs. They are
adaptive methods, which may be used to solve search and optimization problems. GAs
are based on the genetic processes of biological organisms and principles of natural

selection. The analogy with nature is established by the creation within a computer of a
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set of random initial solutions called a population. Each set consists of the problem
variables. These variables are joined together to form a string of values and are encoded
into chromosomes, which are sets of character strings analogous to the chromosomes
found in DNA (Holland 1975). Each variable is represented by a set of binary numbers
(known as genes). The initial population is allowed to evolve over a number of
generations. At each generation, a measure of how good each chromosome is with
respect to the objective function is calculated. Then, based on their fitness values,
individuals are selected from population and recombined to produce the next generation.
This process is referred to as "crossover” operation. GAs are also referred as stochastic
optimization techniques in that the next generating candidate solutions are obtained with
the help of a pseudo-random number generator. Due to its stochastic nature, there is no
guarantee that the global optimum will be found. However. the number of applications

suggests a good rate of success in identifying good solutions

GA applications in the water resources engineering area have demonstrated their
capabilities to yield good approximate solutions especially in the cases of discontinuous,

non-differentiable functions (Savic and Walters 1997).

2.6 Existing Design Models:

Optimization models have been used greatly in planning and management of
multi-reservoir systems. The subject of optimization in reservoir systems in literature is
mainly focused on reservoir operation. However, a few attempts have been made to

design the optimal configuration of reservoirs in a multi-reservoir system. To find the
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best configuration of reservoirs, based on the watershed topography, several preliminary
proposed reservoir locations should be specified. These potential reservoirs are called the
candidate reservoirs. Then, an optimization model will determine the optimal
configuration of reservoirs based on some pre-specified objectives. In literature, a model
of this type is called a screening model, because it acts the same way as a screen through
which all of the possible combinations of planning alternatives are passed (Cohon 1978).
Loucks et. al. (1981), presented the yield, chance-constrained, and stochastic LP to
design a multi-reservoir system. The piecewise linearization technique was used in their
models to deal with the nonlinearity of the problem. The objective functions of their
models were based on maximizing the expected net benefit. Fontane (1982) used the
discrete DP to develop the methodologies for determining water storage strategies in a
multi-reservoir system. The deterministic approach was used to maximize the water
supply at a minimum cost. Supangat (1987) modified Fontane's model and extended it to
design a multi-reservoir system for hydroelectric power productions. Mays and Bedient
(1982) applied DP to determine the size, location and minimum cost of detention basins
for the flood control problem in urban areas. Their model was a simplistic one and was
applied to a hypothetical watershed. Later, Bennet and Mays (1985), and Taur et. al.
(1987) improved the model developed by Mays and Bedient in 1982. They included the
sizes and types of outlet structures (i.e., overflow weirs and outlet pipes), and
downstream channel modifications in their models. Lall and Miller (1988) developed a
screening model to provide electricity and water to meet different demands at certain
reliability levels. Recreation and flood control at each reservoir site were also considered

in their formulation. They integrated a simulation model into the PSLP to reduce the
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number of constraints in the optimization formulation. The modified sequent peak
algorithm (MSPA) was implemented in their simulation model to determine the optimal
reservoir storage capacities while the PSLP maximized the total annual net benefit.
Khaliquzzaman and Chander (1997) applied network linear programming to determine
optimum sizes of a multi-reservoir system at the minimum cost. A piecewise
linearization model was used to incorporate the reservoir cost functions into their
objective function. They used HEC-5 program as a simulation model to consider the

detail of the hydrosystem and corrected the performance of their optimization model.

A review of these screening models shows that each has some limited
applicabilities in practical situation due to the selected optimization methods and some
assumptions made in the models. The yield model developed by Loucks et. al. (1981)
leads to a linear programming model with a large number of constraints, as the physical
problem size increases (Lall and Miller 1988). A trial and error procedure is required by
the yield model to find those years that permissible failure will reduce the reservoir
capacities. The stochastic LP model developed by Loucks et. al. (1981) is only
appropriate for analyzing relatively small multi-reservoir basin systems where
streamflows are highly cross-correlated (Loucks et. al. 1981). There is also a
dimensionality problem associated with their model in real situations, which can easily
exceed several thousands of constraints (Yeh 1985). Stedinger et. al. (1983) reviewed
and compared the performance of deterministic LP, yield, and chance-constrained
screening models developed by Loucks et. al. in 1981. These models were tested on a

small three-parallel- reservoir system. They concluded that:
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1- The deterministic LP design model based on historical mean monthly
flows does not provide sufficient reservoir capacity to supply the water
demand in dry years. On the other hand, the use of the most critical flows

in the record leads to larger reservoir capacity than what is needed.
2- Yield model produces reasonable reservoir system design.

3- Chance-constrained formulation of Loucks (1970) leads to a conservative

system design.

All the proposed screening models that use DP suffer from the "curse of
dimensionality”. To cope with the dimensionality problem of DP, Fontane (1982) and
Supangat (1987) used a decomposition procedure in which only two reservoirs at a time
were considered for analysis. Their models were originally developed for multi-reservoir
systems with demand areas located downstream of the last reservoir. The main
disadvantage of their models is due to a restricting assumption that is required to apply
their model to systems with demand areas distributed all over the watershed. Based on

this assumption, the water demands in all areas follow the same seasonal distribution.

The deterministic models developed by Bennet and Mays (1985) and Taur et. al.
(1987) had the same dimensionality problem of DP. Selecting a few discretized values
for the state variable restricted their effort to achieve the optimal policy. The model
developed by Lall and Miller (1988) may be considered as the best screening model
developed so far. Their model was not fully successful, compared with the yield model
proposed by Loucks et. al. in 1981, to reduce the required number of variables and

constraints. This was due to the nature of the objective of the model formulated by them,
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which maximized the total net benefit. This approach required introducing additional
variables for expected costs and benefits related to each control and state variable. The
uncertainty inherent in their assumed values for cost and benefit of each variable is

another disadvantage of their model.

Lall and Miller (1988) applied a simplistic assumption to estimate flood control
benefit and constraints on channel flow capacity were not considered. Another
disadvantage of their model is related to the initial solution requirement by the screening
model. To run their model, some effort is needed to choose the best initial values of
variables. To find the best initial solution, they restricted their efforts by comparing the
results of different runs of their screening model by setting: (1) all variables at their lower
bounds, (2) all variables at their upper bounds, (3) all variables halfway between their
bounds, and (4) some variables at their upper and others at their lower bounds. In their
application, Lall and Miller (1988) assumed that all reservoirs are full at the start of the
operation period. However, their MSPA failed to provide full reservoirs on the last
month of the operating period. Therefore in the applications performed, the maximum
storage capacity in the last 36 months, instead of the full capacity, of operation was used
for the last operating period. Another limitation of their model, as Lall and Miller (1988)
mentioned, is the model requirement to pre-specify yield reliabilities over a critical
period that may not be a common period, if the region of application is not hydrologically
homogeneous. The model developed by Khaliquzzaman and Chander (1997), though has
some advantages over other LP-based models, requires piecewise linearization technique

and suffers from the same problem of dimensionality as other LP-based models.
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2.7 Muiti-Objective Programming (MOP):

In most water resources problems, there are several non-commensurate objectives
that have to be achieved simultaneously. Using a single-objective approach on such
problems is unrealistic and restrictive. In such cases, improvement of some objectives
will result in sacrificing the other objectives. It is not possible to say which objective is
more important without making judgment about the relative importance of the objectives.
The decision-makers will usually evaluate the relative importance of the objectives
differently. Therefore, the resolution of the conflicts among the objectives will usually
require a political process. It would be a mistake for the planners to select only one of
these objectives or to assume relative values for the objectives (Cohon 1978). The
traditional economic approach to optimize a water resources system will try to make all
objectives commensurable and optimizes the problem with respect to the "economic-
efficiency” aspects (Changchit and Terrell 1989). In other words, one finds a policy in
which benefits will exceed the costs and the policy with the highest benefit/cost ratio will

be selected.

There are some considerations that make it difficult to put all objectives in a water
resources system optimization problem into a single monetary dimension (Cohon 1978).
First, there are questions of distribution of project impact in terms of classical upstream-
downstream conflict that the economic efficiency objectives cannot address. In order to
maximize the benefit/cost ratio, it may be decided to attribute more water to a certain
region than others located in the water resources system. A pure efficiency criterion
tends to favor further development in the developed regions since some infrastructure

costs may be avoided. This decision may create some discomfort among the different
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users that cannot be converted into the monetary equivalence. Second, the development
of river basins, especially in developed countries, may create environmental impacts that
are considered by many to be undesirable and yet difficult to transfer into monetary
value. Third, There are some uncertainties in terms of predicting the interest rate,
inflation rate, labor cost, and the benefit obtained by selling water to different users
during the project life. Finally, there is always uncertainty in evaluating the social values

into a single monetary equivalence.

Multi-objective programming is an approach that can analyze the tradeoff
between objectives (Wurps 1993). Application of multi-objective Programming has a
number of advantages over conventional single-objective techniques as (Simonovic
1992): (1) more realistic problems can be addressed since the requirement of a single-
objective function is eliminated, (2) non-commensurable objectives can be incorporated
in the analysis, (3) tradeoff functions are available explicitly so that the decision makers

can formulate more appropriate decisions.

The future water demand forecasting in a complex multi-reservoir system is not
an easy task. There is a rather fast increase in water demand and it is very difficult to
make any reliable forecast. Therefore in planning a multi-reservoir system, instead of
assuming only one solution, it is wise to evaluate a range of solutions for different water
demand levels within two boundary conditions of minimum and maximum water demand
(Miloradov 1992). Multi-objective approach can introduce a range of options larger than
the one "optimal” solution identified by single-objective methods. Therefore, the term of
the "optimal solution” in the single-objective context is no longer appropriate and is

replaced by the concept of "non-inferiority" which is also called as "Pareto Optimality" in
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the muiti-objective analysis (Mays and Tung 1992). In other words, in multi-objective
optimization problems, there is no single optimal solution. A solution, which minimizes
one objective, may not, in general, minimize any of the other objectives. Hence,
information about preferences is needed to compare the alternative solutions (Loganathan

and Bhattacharya 1990).

The multi-objective techniques can be divided into three categories of preference-
oriented techniques, generating techniques, and multiple-decision-maker methods. The
latter refers to a case where there are several decision makers with conflicting viewpoints
and the methods are directed at the resolution of conflict among many decision makers
(Cohon 1978). In preference-oriented techniques, the decision-makers articulate their
preference in advance to the analyst and the best compromise solution is defined without
introducing a non-inferior set. Generating techniques end up with a range of solution and
the tradeoff among the different objectives, which is called as the "non-inferior set". By
definition, any non-inferior set is a feasible solution to a MOP. Hence, an improvement
in one objective will cause a degradation in at least one other objective. The idea of non-
inferiority in multi-objective approaches will indicate a range of choice rather than a
single optimal solution. Among the obtained non-inferior solutions, the preferred
alternative is selected by the decision-maker, which is called the "best compromise
solution". Generating methods do not need input of preference and therefore are
compatible with a wide range of decision context and are generally more suitable.
Consequently some researchers are biased toward generating methods. The rationale for
this preference is based on the implied roles for the analyst and decision-makers. In

generating techniques, the analyst plays the classical role as a scientist and information
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provider while decision makers maintain complete control over the decision without
transferring any of that responsibility to the analyst. The only disadvantage of generating
methods is their sensitivity to the number of objectives. Considering more than three
objectives will cause two problems of high computational burden and the difficulty to
display the results. Furthermore, analyzing the tradeoff among more than three or four

objectives is difficult and doubtful (Cohon 1978).

There are relatively few published papers in engineering of experiments involving multi-
objective Programming. However, a notable number of papers has been published in
other areas (Goicoechea et. al. 1992). Shafike et. al. (1992) used MOP to analyze a
groundwater contamination management problem. Ko et. al. (1992) compared the
performances of generating and preference-oriented techniques in dealing with large-
scale multi-reservoir system operations. Afier extensive comparative evaluation of
alternate methods, they concluded that the epsilon constraint method is the most suitable
generating technique for problems with different dynamic characteristics of objective
functions. This method provides the decision-maker with sufficient information to select

the most satisfactory solution among the generated non-inferior set (Ko et. al. 1992).
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CHAPTER 3

THE PROBLEM FORMULATION

The formulation of the water supply problem to meet the different objectives is
described in this chapter. The proposed formulation is discretized over time. The concept
of the problem formulation and its related variables are explained by applying them to a

hypothetical watershed with a variety of demand types and reservoir configurations.

The duration of time periods of a model depends on the availability of data, the
particular objectives, computer capacity, and the purpose for which the model is to be
used (Loucks et. al. 1981). The objective in designing a multi-reservoir system is to find
reservoir sites and related storage capacities. In designing stage, on the contrary to
optimizing the operating policy, it is not intended to find system responses to real time
demands of different areas. The shortest time period considered in such analyses is usually
no less than the time it takes water to travel from the upper end of a river basin to the
lower end of the basin (Loucks et. al. 1981). If a time base less than the river flow travel
time is selected, reservoir and channel routing procedures must be performed in the
optimization algorithm (Chow et. al. 1988). Including routing procedures in the
optimization model would be computationally very intensive with only minor effect, if any,

in the reservoir system design (Mays and Bedient 1982). Therefore, based on the
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watershed size and hydraulic characteristics, e.g., the channel geometry and the flow
velocity, any time base greater than the flow travel time can be selected. This will reduce
the computer time and memory requirement of the screening model. Depending on the
watershed size, the time base can be daily, weekly, or monthly. It is clear that monthly
time base is related to larger watersheds, where the reservoirs may be located far from
each other and the flow travel time from one reservoir to other(s) takes longer. Monthly
period is usually selected as the proper time base in water supply design models. Loucks
et. al. (1981), Fontane (1982), Supangat (1987), Lall and Miller (1988), and
Khaliquzzaman and Chander (1997) developed monthly design models to design a multi-
reservoir system. Once the volume and configuration of reservoirs are specified, the real

time based operating policy of the selected reservoirs can be optimized.

The objective function formulated in this study can accept any time base greater
than the flow travel time. The selected time base is referred as 7,. The entire potential
reservoir sites (candidate reservoirs) and the demand areas in the hydrosystem should be
numbered sequentially from upstream to downstream. The reservoir storage capacities at
the beginning of the time 7, are considered as the state variables. The control variables
are divided into two groups of reservoir releases (spills) and yields. The yield definitions
correspond to those used by Loucks et. al. (1981) and are the volume of water delivered
to demand areas during the time base 7,. The reservoir release is the volume of the nth
release from a reservoir in the hydrosystem spilling directly to the next reservoir at the
downstream during 7,. The unregulated local inflow(s) and the upstream reservoir
release(s) are the total inflows to the next downstream reservoir. The infiltration loss is

assumed to be negligible due to sedimentation and deposition of fine soil (e.g., clay) on the
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reservoir bed area. Evaporation from the reservoir has been assumed to be the only

source of system loss.

A hypothetical multi-reservoir system is shown in Fig. (3.1). This system consists
of six reservoirs where one of them (RES#5) is a mass balance node. Mass balance nodes
are dummy storage nodes with the yield, lower and upper storage bounds of zero. They
are used where river diversions or tributaries exist to check the conservation of mass at
locations. Four demand areas are shown in the system, where two of them are for
industrial (IN), one for agrarian (IR), and one for municipal (M) use. This multi-reservoir

system will be used to explain the concept of some variables in the objective function later.
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Figure (3.1): A multi-reservoir system and its related demand areas.
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3.1 The Problem Objectives:

The primary objectives of the screening model formulated are to determine a set of
optimal reservoir capacities that supplies water for different demand areas at the minimum
cost. Minimizing the rapid variations on reservoir yield and minimizing the storage
differences at the beginning and end of the optimization period are among the secondary
objectives that have been included in the problem formulation. In practice some water
supply objectives have to be met at any cost. These objectives usually appear in the
problem constraints and are mandated by law for political, ecological, or environmental
reasons. Hard constraints in the water supply problem may cause an infeasible problem
and may not be met especially during dry periods. Therefore, most of the formulated
objectives are “soft” in that they can be violated at a price. For example, in the water

supply problem, some demand areas may receive less water than planned.

These objectives are:
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where
Sa' State variable; a variable showing the storage capacities of the nth
reservoirs at the beginning of the time period z.
VYag' : Yield (L*) from reservoir » to the demand area j during the time 2.
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N,: Total number of municipal, industrial, and irrigation demand areas.
N.: Number of candidate reservoirs in the system.

D} : Water requirement (L?) at the demand area j during the time 7.
W A weight coefficient applied to the first term in equation (3.1).
A A weight coefficient applied to the second term in equation (3.1).
\ALS A weight coefficient applied to the third term in equation (3.1).

M The release (L*) from the reservoir » during the time 7.

A A weight coefficient applied to the terminal storage function.

£°: Total cost for reservoir 7 as a function of reservoir storage/capacity.

Reservoir yield and release are control variables and reservoir storage is the state
variable in the formulation presented. The first objective in Eq. (3.1) explains the desired
criteria related to the reservoir yields and releases as the control variables. It consists of
four terms. The first term in Eq. (3.1) tries to minimize the water supply shortage for each
demand area in the multi-reservoir system. The square term is used to minimize the

difference between water supply and demand in either way.

The second and third terms are intended to avoid rapid variations on control
variables (y;' and r,). This is referred as the bang-bang control in the literature
(Albuquerque 1993). Controlling the rapid variation of reservoir yields and releases over
the time makes the reservoir gate operation smoother and easier. The fourth term is the

terminal function, which controls the final state of the system and is intended to provide
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storage volumes in the reservoirs, which are needed for the next operation period. The
square terms in the bang-bang control and terminal function have the advantage of
penalizing larger deviations (in either direction) from their targets.

Based on the order of magnitude and importance of each criterion in Eq. (3.1) to
the designer, different values can be assigned to the weight coefficients (W;¥, W,”, and
W.™). The most important term in Eq. (3.1) should use the highest value. For the design
purposes, usually the first term is the most important term. Quadratic forms were selected
for the last three terms. The advantage of using a quadratic form is that most search
directions algorithms can take advantage of this form by increasing their convergence
characteristics and speed.

The objective in Eq. (3.2) is related to the total cost of the multi-reservoir system.
It tries to minimize total reservoir costs as a function of their storage capacities. The total
cost depends on some factors such as the type, dimension of the dam, and the selected
spill out structure. These factors can be related to the reservoir storage capacity.
Therefore, for any candidate reservoir location the total cost can be easily related to the
reservoir capacity by a mathematical function. The formulation presented in Egs. (3.1)
and (3.2) show that objectives will conflict with each other. That is, the improved
achievement with one objective (e.g., storing enough water to supply demands) can only

be accomplished at the expense of increasing total reservoir costs.

3.2 Constraint Equations:

The related system constraints applied to the objectives described in the previous

section are as:
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Continuity equation,;

forn=12_.N,
sL=X,
Sfort=12..T (3.3)

Nr Ng Ny t N,
e+l _ ¢ t k ¢t 4 J t—-m+1 m
sl=s 40> (A Sy D TS o Sy | |-
k=1 J=1 =l

=1 m=1
=y i=n

J
J

t 1+1 Pf'
s +S
eCs| 2—o—
2

where the new variables are as:

On"

AK:

I

Inflow into reservoir » during time interval 7.

The element of the layout configuration matrix of the multi-reservoir
system with Ny rows and columns (Axex). Each row of this matrix shows
the reservoir number and each column shows the release number. The
concept of the matrix A," is explained in Fig. (3.2) for the multi-reservoir
system shown in Fig. (3.1). As it is shown, for the system with six
reservoirs, A has six rows and columns The state of any element at the nth

row and the kth column is defined as follows:

1: if the reservoir » receives the kth release
-1: if reservoir n delivers the &th release
0: otherwise

The element of the return flow matrix with N, rows and N, columns

(I'N_*N, ) that shows demand areas with return flow influent to reservoir n.
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Each row of this matrix shows the reservoir number and each column
shows the upstream demand area that its return flow discharges into the
reservoir n. The concept of the matrix I for the hydrosystem in Fig. (3.1)
is explained in Fig. (3.2). As it is shown, for the system with six reservoirs
and four demand areas, I has six rows and four columns. The state of any

element at the nt/ row and the jth column is defined as follows:

1: if the return flow from demand area j is flowing into reservoir n
0: otherwise
P A coefficient for return flow from the demand area J during time m.
t. . . 342 . . .
€n: Evaporation per unit area (L”/L“) from reservoir # during time r.

C."and P,":  The coefficient and exponent in the surface area-storage relationships of

the reservoir n.

-1 0 0 0 0 0 0000 1101 100000
[ -1 0 0 0 100 0 01 01 110000
0 0 -1 0 0 0 0000 0011 _loo1o000
A=10 0 o0-1 0 o =16 00 0 ¢=loo o1 *“loo o100
01 1 1 -10 0110 0001 111110
00 0 0 1-1 000 O 0001 111 111

Fig. (3.2): The concept of the system matrices for the multi-reservoir system defined in
Fig. (3.1).

Eq. (3.3) is the discrete form of the continuity equation for a reservoir » over T

3
time periods, where s, is the storage (L ) of the reservoir # at the beginning of time f, 0,
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3
is the volume of the unregulated local inflow (L ) into reservoir » during time ¢. The third

term (ZA,* *r.) specifies both the release(s) from reservoir » and all the inflows resulting
from upstream reservoir releases to reservoir n.

The fourth term (Zy,,) shows the total yield supplied by the reservoir n to all
demand areas during time f. N, is the number of demand areas in the hydrosystem. The
fifth term in Eq. (3.3) determines the summation of all return flows that the reservoir »
receives during the time 7 from influent areas. In the last term, the evaporation during time
? is related to the average reservoir capacities through the reservoir's area-storage

relationship.

2. Constraints on release based on the downstream minimum flow needs and flood

control requirements;

0<r! Jor k=12_..N_; fort=12...T

n
.
N,

Na 3.4
S s S eor ) o e

k=1
where the new variables are as:

Ei:  The element of the demand area matrix with N, rows and N; columns
(EN,*N,). This matrix is used to specify the demand areas located in the
downstream of a release. Each row of this matrix shows the reservoir
release number » and each column shows demand area located in the
downstream of a reservoir release 7. An element of £ at column J and row

n is equal to 1, if the demand area j is located in the downstream of the
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release n. The elements of £ are equal to 0 otherwise. The concept of the
matrix &, for the multi-reservoir system shown in Fig. (3.1), is explained in
Fig. (3.2). Asitis shown, for the system with six releases and four demand

areas, £ has six rows and four columns.

C.:  The element of the upstream reservoir matrix with N, rows and columns
(CN*N,). This matrix is used to specify the reservoirs located in the

upstream of a release. Each row of this matrix shows the reservoir release
number 7 and each column shows whether a reservoir is located in the
upstream of a reservoir release n. An element of { at column & and row »
is equal to 1, if the related reservoir £ is located in the upstream of the
release n. The elements of C are equal to 0 otherwise. The concept of the
matrix C,", for the multi-reservoir system shown in Fig. (3.1). is explained
in Fig. (3.2). As it is shown, for the system with six reservoirs, £ has six
rows and columns.
The constraint in Eq. (3.4) controls the minimum and the maximum flow
downstream of each reservoir. Eq. (3.4) determines the total streamflows ie., the
summation of nth release and all upstream reservoir yields flowing toward downstream.

mirn

The minimum flow constraint (#,”") can be other than zero to consider instream
recreation, navigation, and water quality control. The maximum flow constraint r,”* will

prevent the system from being flooded due to excess reservoir release and the upstream

reservoir yields attributed to downstream demand areas.
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3. Reservoir yield constraints for water supply;

N’
(@ >y, <D; for j=12,.N,; fort=12...T 65
n=1 .

(b) yl.mm<y’ll'1 Syl.max for n= 1,2,...,Nr

nJj . n,j

The first reservoir yield constraint in Eq. (3.5.a) is to guarantee that the total water
supplied to any demand area j is within a desirable range. The second constraint in Eq.
(3.5.b) specifies the lower and upper bounds on the yield supplied by reservoir n for the
demand area j. The upper bound y,,"™ can have the same value as D,. In this case the
reservoir n will have the potential to supply the entire water requirement at the demand

tnmun

area j. The lower bound y,,””" is the minimum permissible yield that reservoir n can

supply for the demand area j. If the reservoir n is located at the downstream of the

demand area j or due to any reason is not supposed to supply water for it, the y,,”™" and
Ya, " will be set equal to zero
4. Storage constraints based on physical limits;
forn=12_..N_; fort=12,..T
(3.6)

max
n

-1
s™i<s T <s

n

In Eq. (3.6), the upper and lower bounds on the reservoir storage are defined.
s. " and s,™* are the lower and upper bounds on reservoir » respectively. Storage upper
bound (5,”) of each candidate reservoir can be selected by using the topographic map of
the reservoir site. In Eq. (3.6), the lower bound s,”" can be considered as the

conservation (dead) storage of reservoir » to provide a minimum storage for recreation or

39



the reservoir sedimentation. A constraint to maintain prescribed ratios of minimum
storage to reservoir storage at each site has been considered:

(@) 57" =Q,*x,

| (3.7)
(B) mym<s;" <m™

where (2, is a pre-specified ratio of the dead storage to reservoir capacity x,. Therefore,
the dead storage is a function of the reservoir storage capacity. If a candidate reservoir is
not selected in the optimization process, the related capacity and consequently its dead

mn

) will be equal to zero. " and 4" are minimum and maximum

storage (s,
permissible dead storage bounds. Eq. (3.7.b) ensures that the dead storage will not fall

beyond the maximum and minimum permissible dead storage for the reservoir .

The formulation presented in this chapter (Egs. 3.1 through 3.7) is a general
formulation that describes the system configuration and constraints in detail. By
introducing the Four A, T, €, and { system matrices, the defined problem formulation can

be easily applied to any multi-reservoir system with any possible configuration.
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CHAPTER 4

TECHNICAL APPROACH

Considering the literature review in chapter (2), OCT and PSLP are selected as the
most promising optimization techniques that can be applied to any complex large-scale
multi-reservoir system with a nonlinear objective function. The OCT that is being used in
this research is based on the discrete minimum principle of Pontryagin and the PSLP
technique is based on the algorithm proposed by Zhang et. al. (1985). To consider
different objectives in optimizing multi-reservoir systems, the multi-objective approach is
selected to avoid the monetary quantification of the social and political impacts resulting
from choosing a certain policy. Considering section (2.6), the generating method
(weighting and epsilon constraint) is selected to analyze the tradeoff between the different

problem objectives.

In this chapter, the formulation of general minimization problems in OCT and
PSLP are described separately. These problems resemble the typical optimization
problems in multi-reservoir systems. The theoretical approaches in the OCT and PSLP
methods and the related numerical algorithms to solve optimization problems are

explained. These algorithms are implemented in the developed computer programs.
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Finally, the application of two generating methods (weighting and epsilon constraint) to

optimization problems and their algorithms are reviewed.

4.1 General Objective Functions in OCT:

A general minimization problem in a multi-reservoir system is considered in this
section. The problem is a multi-stage system with state variables specified at the
beginning of the stages. The minimization is over a time span of T periods with (1) known

inflows and (2) initial reservoir capacities. The general problem has Ny reservoirs with any

arbitrary layout configuration, whether in series or parallel.

The objective function for this problem is typically multi-dimensional, nonlinear,
non-convex, and separable in time. A generalized objective function J in the minimization
problem can be stated in order to minimize the function F(.) over time r=1,2, ...T and the
deviation from the target @) at the end of period 7-/. The function F(.) in the
minimization problem is usually a cost function or a function that shows the deviation

from any target. A general minimization formulation is as follows:

Minimize J = izrl F(st R)+g(sT™) 4.1)
n=l t=l
Subject to:
for n=12 .. N , for =1 2, .., T
sl = smivat 4.2)
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s, =5, +Q, - R, -E, (4.3)

n

min t+1 max
a) s;® <s= <s;

_ (4.4)
b) R™ <R <R™
where

R, Control variable; a variable showing the release from the nrh
reservoirs during time interval 7.

F(s', R): Objective function value at time 7.

P ) Terminal function representing the deviation from ending target (if
there is any) at the end of the final time period 7.

s, Initial storage capacity of the reservoir » (initial condition of the
system).

N:: Number of state and control variables (reservoir capacities.
releases, and yields).

E.: Losses (e.g., evaporation) from the nth reservoir during time 7.

S, s The upper and lower bounds on the capacity of the nt4 reservoir.

R.™ R,™: The upper and lower bounds on the release/yield from the nth

reservoir.

The system dynamic equation (4.3) adjoins the objective function J by using a set
of Lagrange multipliers A. The state-space inequality constraints (4.4.a) are included by

using a quadratic penalty function 7 and a penalty weight p; to account for the violation of
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constraints on state variables. The augmented objective function is called the Lagrangian

function L:

Minimize L= i i F(S,',,R,'. )“¢(5:’1)+
v 1 4.5)

N, .
2 i/l;(s,’, -s,'+Q,-R.-E, )+ > b, *(,7:1)-

n=1 t=1 n=1 =1

1 if si'-s™>0 1 if st=-s™>0 (4.6)
i = ) .
0 otherwise

0 otherwise
By the minimum principle of Pontryagin, the necessary condition for L to be the
minimum value (or stationary in general) is that the differential changes in L due to

differential changes in control variables must be zero. It can be shown that this happens

only if (Bryson and Ho 1975):

forn=12... N

L
Os!

n

=0 For t=23,..T @4.7)

on (4.8)
oL
OR;

n

=0 For t=12,.,T (4.9)

Eq. (4.7) is called the "adjoint equation" and Eq. (4.8) is the terminal condition for
it and is also called the "transversality equation". Eq. (4.9) represents the "stationary

condition". To find the optimal solution using the initial values for state variables, Eqs.



(4.5) to (4.9) should be solved simultaneously. That is, the continuity, transversality, and
adjoint conditions together with the stationary condition should be solved to obtain the
optimum values for the Lagrange multipliers A" and R". Practically speaking, solving these
nonlinear equations is not an easy task and in some cases it may be possible to solve them
only numerically. Hence, direct solution methods of mathematical programming are used
instead. In this approach, an initial guess of control trajectories is made. By applying
transversality and then adjoint equations, the related Lagrange multipliers are determined.
Using stationary conditions and the Lagrange multiplier obtained before, a new search
direction is determined to reduce the value of the objective function. The new search
direction shows the next move of the control variable toward the minimum. Then, the
transversality and adjoint conditions are applied again using the new control variables and
the whole procedure is repeated iteratively until the control trajectories converge to the

optimum values.

4.2 Multi-Dimensional Optimization:

In the OCT, the minimization procedure uses nonlinear programming methods. In
these methods to minimize a function f{X) of X=[x;, x5 .., xy] variables, a multi-
dimensional optimization method is used to direct the vector X in N-dimensional space in
some vector direction n at each step. Then, the f{X) can be minimized along the n by a
one-dimensional method. This procedure continues until the minimum point is reached.
There are various multi-dimensional optimization methods, each differs only by the way it

chooses the direction n for the next calculation step. In all these multi-dimensional
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optimization methods, a line minimization procedure is needed. That is a one-dimensional
optimization technique which is used to find the scalar @ in order to minimize the function
J(X+6n). The value of 8 shows the magnitude of the step and n indicates the search
direction toward the next iteration point, which finally goes toward the optimal point. The
application of optimal control theory to optimization problems is summarized in the flow

chart shown in Appendix B-1.

4.2.1 Selecting an Muiti-Dimensional Optimization Algorithm:

Generally speaking, in the case of involving non-convex functions, none of the
optimization algorithms can guarantee that the global minimum can be found. However,
they differ by their convergence rate and memory requirement. Compared to linear
convergence of the steepest descent method, all the conjugate gradient and quasi-Newton
methods have quadratic convergence. Therefore, these methods should always be
preferred over the steepest descent method. Fletcher-Reeves, Polak-Ribiere, and variable
metric methods are among popular methods that use the gradient information. N line
minimization is required in any of these methods to find the minimum of a quadratic

function. However, in the variable metric method, a matrix of size N#N to approximate

the inverse of the Hessian matrix H™! should be stored at each iteration while the Fletcher-
Reeves method requires storage of the order of N. To choose a proper algorithm in
optimizing a large hydrosystem with N-dimensional function, a method that requires
storage of order N is preferable. Fletcher-Reeves and Polak-Ribiere algorithms are among

the most important conjugate gradient methods that are of this type, where the latter is
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probably a superior method (Press et. al. 1990). The Polak-Ribiere method is a variant of
the Fletcher-Reeves method and there is only a small difference between them, which
vanishes when optimizing a quadratic function. In general, objective functions are not
quadratic and more than N iterations are needed to reach the minimum point.
Experimental evidence seems to favor the Polak-Ribiere method over the Fletcher-Reeves

in optimizing non-quadratic functions (Luenberger 1984).

4.2.2 Line Minimization Algorithm:

Every multi-dimensional optimization algorithm requires a line minimization
procedure to minimize the objective function in the search direction specified by the
algorithm. The line minimization algorithm requires bracketing to ensure that a minimum
is in the specified search domain. Therefore, initial bracketing is an essential part of any
one-dimensional minimization technique. Using initial extended boundaries for certainty
can significantly affect the speed and accuracy of the algorithm. Press et. al. (1990)
proposed an algorithm to define the initial bracketing in the line minimization technique.
In this algorithm, an initial guess of two close points @ and b (e.g., @=0, b=1) is made. If
J(a) is not greater than f(B), the role of the two points a and 4 should be switched. Then,
the third point ¢ is defined using point b and the golden section interval. To find out
whether the interval bracketed by a and c includes the minimum point or whether the
minimum point is outside this interval, a parabola is fitted through three points a, 5, and c.

Then by finding the minimum abscissa of the parabola, the function values at this point and
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the points b, and ¢ are compared. Depending on the function values at these points, the

points a, b, and ¢ are updated and the search continued until the downhill trend stops.

Once the bracketing of the interval containing the minimum point is specified, the
line minimization begins in which the function f(X+ 1) will be optimized with respect to
@. In this case it would be a one-dimensional optimization procedure where any one-
dimensional optimization algorithm such as Dichotomous, Golden Section Search,
Fibonacci, or Brent's method may be used to minimize f{X+6n) at any multi-dimensional
optimization iteration step. The new point i.e., Xpew=Xold+ Gninn will be stored for the
next iteration required in the multidimensional optimization search technique.
Albuquerque (1993) showed that depending on the interval determined in the
Dichotomous method, Brent's method is 3.5 to 4.6 times faster and results in a smaller
minimum objective value. Brent's method is a combination of the Golden Section Search
method and the inverse parabolic interpolation (Press et. al. 1990). In this algorithm,
using the step interval a and b, the third point will be specified by Golden Section method.
Then, an inverse parabolic interpolation would be done to reduce the step interval. If it
was unsuccessful i.e., the parabolic step for example fell outside the bounding interval a
and b, the method will switch to the Golden Section Search method which is a
"sure-but-slow technique" (Press et. al. 1990). Regardless of the type of the function.
near the minimum point, the function generally has a convex shape. Hence, using a
parabolic interpolation catches the minimum or at least very near to it and can lower the

computational time. Brent's method is a one dimensional search method, which does not
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calculate the derivative. Since finding abscissa rather than an ordinate is important, the

procedure is technically called "inverse parabolic interpolation”.

4.3 OCT Algorithm:

The algorithm used in this study follows closely the work done by Labadie et. al.

(1988) and Albuquerque (1993) as follows:

1. Set the iteration number i=1.
2. Make an initial guess of the control variables i.e.,
R, forn=l 2, .. N, ;o for t=1,2 .. T

This guess needs not to be a feasible solution. However, a good guess would cause a

faster convergence.

3. Use the system dynamic equation (4.3) to find the corresponding state trajectory.
Then, evaluate the Lagrangian function (Eq. 4.5) for the existing state and control

trajectories; (s, ); and (R,)'); .

4. Test for termination if ~1. The termination criteria are based on the: either (1) the
difference in values of the Lagrangian functions obtained at two successive iterations,

or (2) the gradient of the Lagrangian with respect to the control variables.

5. Calculate Lagrange multipliers in two steps:
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Sa. Solve the transversality equation (4.7) to find:
Ay for n=l2,.., N.
Sb. Solve the adjoint equation (4.6) to find:
A for n=12..N, ; for =T, T-1..2

6. Determine the gradient of the Lagrangian function with respect to control variables R,
(&/ER), using the Lagrange multiplier, control and state trajectories obtained at

previous steps (Eq. 4.9).
7. Determine the search directions (S4) using a multidimensional optimization method.

8. Use a one-dimensional constrained search algorithm to determine a scalar step size 6

that minimizes the Lagrangian function with respect to the scalar step size 6. That is,
Minimize , L[s,’, ,(R,’, +0s;, ),/‘Lﬁ,] forn=12.. . N_;fort=12,...T

. Set the new estimate of control variables:

seti=1i+1
(R’)i = (R’),_l +0(sf,_n )i_l forn=12,...N_; fort=12,.T

n n

If new control variable values violate the control constraints upper and lower bounds in
Eq. (4.4.b), their values should be set equal to their respective upper and lower bounds. In this
case, Eq. (4.4.b) is called "saturation function" which refers to the procedure that simply

truncates control values, which are violating their respective lower and upper bounds.

10. Go to step 3.



The above mentioned optimal control algorithm is called the "double sweep” algorithm
in the sense that it uses backward sweep to calculate the Lagrange multipliers and forward
sweep to update the control variables. The whole steps 1-10 will be repeated for a sequence of

increasing penalty weights starting from a very small value.

4.4 General Objective Functions in PSLP:

The basic concept of PSLP is to approximate all the nonlinear terms in the
objective function and constraints, using first-order Taylor series expansion about an initial
or trial solution. This results in an approximated problem, which is linear in the decision
variables. The PSLP, like all LP-based programming techniques, is a static optimization
technique. That is, control and state variables are treated alike and will be determined
simultaneously from the solution of the PSLP problem. In this algorithm, the original
problem with nonlinear/linear constraints is converted into an exact penalty function P(X).
P(X) is formed by keeping the linear constraints and adding all the nonlinear constraints to the

original objective function using some penalty weights. The result is a linearly constrained

penalty problem:
k k
P(X) = F(X) + Y W?|C.(X)|+ X W,?Max[0,C,(X)] (4.10)
1=1 1=k~1
where:
X: Decision vector with X=/x,, x5, .., xx/ elements. In the multi-reservoir system

optimization, X consists of reservoir yields, releases, and reservoir capacities.
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F(X): Objective function value.

C(X) : Nonlinear constraints. The problem has /4 nonlinear constraints where & of

them are in the form of equality and A-k of them are inequality constraints.
W Positive scalars used as the penalty weights.

Eq. (4.10) is written for a general minimization problem. It should be noted that in
maximization problems, the penalty terms are subtracted from the original objective function.
In the next step, the first-order Taylor series is applied to the exact penalty function (4.10) to

define the Approximating Function PI(X) as:

k h
PI(X)=F(X,)+VF(X,)d + (ZW,”IC, +VCd|+ > W,?Max(0,C, + VC,.d)) (4.11)
=l

1=k+1

where X is the initial/trial solution and d=/d; 4. ... d\] is a vector showing the step size for
N decision variables. P/(X) is a good approximation to P(X) if the step size d is not large.
Thus the nonlinear problem of P(X) can be minimized by a sequence of minimization of P/(X)

with an upper bound on the step size d. This leads to the Approximating Problem:
Minimize  PI(X) 4.12)
subject to the linear constraints and a new deviation constraint as:

~-w<d <o Fori=12,.. N “4.13)

where @ is the upper bound on the Taylor series step size. The deviation constraint is to

maintain a solution in the neighborhood of the current solution.
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To solve the optimization problem (Eqs. 4.12 and 4.13), a Linear Program

equivalent to the Approximating problem will be defined:

k h
Minimze VF(X,)d+Y WP (p,+n)+ > WF(p,) (4.14)

i=l 1=k~+1

subject to all linear constraints, constraint (4.13) and:

fori=12. h
Ci(Xo)+VCi(Xo)d_p. +ni =0 (415)
p,20 ; n 20 (4.16)

In the above, p; and n, are deviation variables. which allow us to represent the
piecewise linear terms of P/ linearly. Eqs. (4.14) to (4.16) constitute a linear problem that
can be solved by the LP algorithm.

PSLP can be viewed as a steepest descent procedure applied to the exact penalty
function associated with the original nonlinear problem. The search direction is determined by
solving a linear program, and the distance moved along that direction is determined by the size

of the step bounds defined for the Taylor series expansion.

SLP-based algorithms have at least linear convergence (Grygier 1983). PSLP is
significantly more robust than SLP and SLPR and at least as efficient. For problems with vertex
optima (at least as many active constraints as variables), PSLP is quadratically convergent
(Zhang et. al. 1985). PSLP usually converges to a local optimum (Zhang et. al. 1985). The
global convergence can be guaranteed, only if the objective function of the minimization
(maximization) problem is known to be convex (concave) over the feasible region (Lall and

Miller 1988).
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4.5 PSLP Algorithm:

The PSLP algorithm is of the trust region or restricted step type which is defined

by the constraint (4.13). This algorithm is based on Zhang et. al. (1985) as follows:
1- Set the iteration number =0

2- Select an admissible initial values X*={x,* x* x\*] for N decision variables that

satisfy all the linear constraints. Also choose WY, the penalty weights in Eq.

(4.14).
3- Select *; the step bound at At/ iteration in Eq. (4.13).
4- Use the Simplex method and solve the equivalent LP problem (Eqs.4.13 to 4.16).
This will result in new values of decision variables X*** =[x1"'°' ! ]
5- Test for stopping criteria. The algorithm terminates if any one of the four separate

criteria is satisfied to the pre-specified tolerances:

5-a Step sizes have been reduced to below a tolerance 7,

Ix"'" <7, (1 +|x¥ ) ; 1, =107 for n=12, . Nr

n

k
_x"

5-b  No significant change in the exact penalty function value is observed for three

consecutive iterations,
|P(x*) - P(x*)| < o (1+]P(x%)]) 5 = =107
5-c  No significant improvement in the objective function value is observed for three

consecutive iterations,
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7-

5-d

[F(x) - F(x*)| < m(1+[Fx)))
Kuhn-Tucker condition for optimality is satisfied in Eq. (4.10) within the

tolerance 7;.

Update the step bound ®. The expansion and reduction of the step size depends

on the comparative values of the exact penalty functions P(X) and their

approximating functions P/(X) in two successive iterations as:

6-a

6-b:

Compute the actual change in the exact penalty function:

AP, = P(X*") - P(X")

and the change “predicted” by its piecewise linear approximation Pi(X*),
noting that PI(X*)=P(X"):

APl = PI(X*")y— P(X")

AP,
AP,

Compute the ratio of actual to predicted change: r* =

k
If »* <0,then 0* =%, go to step 4:
2

otherwise, update ©" based on the criteria given below:
6-c-1 If Il —r"l < p, then @*"' =2* 0"
a)k
6-c-2 If ll - r"l > p, then ®**' = -
6-c-3 If [x," '-x,"| =0 for 3 consecutive iterations, then @*™ =2*@*

where 0<p;<p,<0. Following Zhang et. al. (1985), the p; and p- are set

equal to 0.25 and 0.75 respectively.

Set k=k+1 and go to step 4
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Selecting small penalty weights (WF) may result in an infeasible solution.
However, if large penalty weights are selected, the decision variables X will be forced to
stay too close to the feasible region for the majority of PSLP iterations. Consequently, it
may cause slow convergence in some problems (Baker & Lasdon 1985). Therefore, based
on the order of magnitude of the objective function and related nonlinear constraints, one
can select reasonable small penalty weights to start the problem. If the PSLP iterations
terminate with an infeasible solution in the original nonlinear problem, increase the weights

and start again.

4.6 Application of the Generating Methods:

A general multi-objective formulation with p-objective problems can be written as:

Minimize F(X) = [ £,(X), f,(X)..... £,(X)
subject to: 4.17)

X:[x,,xz,..,x‘\,] eF,

Where, F; is the feasible domain in decision variable space. Eq. (4.17) is a vector
optimization problem. The p objectives f; to f, conflict with each other and consequently,
the minimum of p objectives cannot be obtained simultaneously. Considering the literature
review in chapter two, generating methods were selected to be used in designing multi-
reservoir systems. In the subsequent sections, the algorithms of two selected generating

methods to solve vector optimization problems are reviewed briefly.
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4.7 Weighting Method:

In the weighting method, a weight is applied to each objective that identifies a
desirable tradeoff between p objectives. The related weighting method problem is formed
by articulating the p weighted objectives as:

Min w i (X)+w, £ (X)+..w, f,(X)

subject to: (4.18)
X eF,

The solution to this problem would be the best compromise solution for the user
who articulates the values of weights. The purpose of the weight coefficients in each
objective function is to set the priority or the order of importance of each of the functions
to the user. For example if the first objective function f; is a more important factor than
the second one, the w; should be selected such that the term wf; has a higher value than
the wyf> term.  In optimizing multi-reservoir systems, the determination of the weight

coefficients is a trial and error process of utmost importance (Albuquerque 1993).

One strategy to determine appropriate weight coefficients is (1) to make a hand
calculation to determine the order of magnitude of all objective functions; (2) to determine
a set of weight coefficients to give priority to the more important terms; (3) to solve the
optimization problem and see if the objectives are being accomplished. If a desired

compromise solution is not obtained, repeat steps (2) and (3).
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4.8 Epsilon Constraint Method:

In this section, the development of objective functions under epsilon constraint
method is considered. The corresponding epsilon constraint problem to the optimization

problem (4.17) is:

Min  f,(X) (4.19)
Subjectto :

fi(X)ss, for k=12, h-1lh+1_p (4.20)
XeF,

Where ¢, is a set of upper bounds for the objective function values specified by the
epsilon constraint method. The problem formulated in Egs. (4.19) and (4.20) is a single
objective problem and can be solved by an appropriate optimization method. For any

fixed g, value, the optimal solution of the optimization method results in a non-inferior

(also called un-dominated) solution of the original multi-objective problem of Eq. (4.17).
By changing the values of g, within the feasible range of objective functions, a set of
solutions 1.e., a non-inferior set will be obtained.

In the epsilon constraint algorithm, different & values will be considered during
successive solutions of the problem (4.19) in order to examine tradeoffs between the
objectives. The values for the & in Eq. (4.20) are selected so that (Cohon 1978): (1)
feasible solutions to the single-objective problem in Eq. (4.19) exist, and (2) all the
constraints on objectives are binding at the optimal solution to the optimization problem.
The epsilon constraint algorithm for the problem introduced in Eqgs. (4.19) and (4.20) can

be described as follows:
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Solve the p individual minimization problems (fi(X), k=/,..p). Call the optimal
solution to the objective k, X*=/x";, x*,, ..xy].

Compute the values of each objective function at each of the p optimal solutions
ie., fitXy), f X9, f, (X*), k=1, 2,.., p. This gives p values for each of the p
objective functions.

Denote the smallest value of the objective function fi(X), as n,° and the largest one
as m°. The n° and m,® are the lower and upper bounds of the kzh objective
function respectively i.e., n;<f, <m; .

Convert the multi-objective programming problem (4.17) into its corresponding
epsilon constraint problem as in Egs. (4.19) and (4.20).

Choose the number of different €, in Eq. (4.20), that are going to be used in the
generation of non-inferior solution. Call it M.

Solve the constrained problem of (4.19) and (4.20) for all values for the &
obtained by:

Jor i=012,..N_. -1 ; fork=12_hA-1h+1..p

R b 0

£

(4.21)

Each objective function in constraint (4.20) is used N, times in the constrained

problem. Therefore, there are N constrained problems that result in N;*’ non-inferior

solutions to the problem (4.17).
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CHAPTER §

NUMERICAL STUDIES OF ALGORITHMS

The problem formulation to optimize multi-reservoir systems to supply water with
a minimum cost was presented in chapter 3. The theories of two optimization techniques,
OCT and PSLP, were reviewed briefly in chapter 4. In this chapter, four optimization
models based on the OCT algorithm alone or in conjunction with the PSLP algorithm will
be introduced. Then, by numerical experimentation, the performances of these
optimization models in designing multi-reservoir systems will be compared. This includes
development of computer programs for two OCT and PSLP optimization methods,
verification of computer program codes by applying test examples, proposing different
design models based on these two optimization algorithms, and comparing the
performance of each design model on a design test example. Results obtained by each
design model are presented and discussed. Finally, the results of these comparative
studies are used to select the most suitable design model for use in the case study of CE-

646 project in the next chapter.
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5.1 Developing Computer Programs:

Two computer programs were developed based on the OCT and PSLP algorithms
described in chapter 4. FORTRAN 77 has been chosen as the programming language.
Based on section (4.2), Polak-Ribiere conjugate gradient and Brent’s methods were selected as
the most suitable minimization techniques. The computer code developed by Press et. al.
(1990) for these two techniques have been modified and updated for the constrained
optimization problems and implemented in the OCT program code. The line bracketing
algorithm developed by Press et. al. (1990) was used to define the boundaries in the line
minimization technique. A PSLP program code was also developed based on the
algorithm explained in section (4.5). The Simplex method program code of Press et. al.
(1990) was extensively modified and used in the PSLP computer program to solve the

equivalent linear problem of Eq. (4.19).

The OCT and PSLP programs constitute the body of the design models that are
being developed later in this chapter. Prior to this, the program codes have to be verified.
The verification of the computer program codes can only be ascertained by numerical
experiments requiring the implementation of the test examples to the program codes.
Finding suitable numerical problems may not be easy since most papers on optimization of

multi-reservoir systems do not provide full details of the data used.

5.2 Testing the Program Codes:

From literature, two optimization problems were selected as the test problems to

verify the OCT and PSLP computer program codes. The performances of the developed
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programs on these test problems were compared with their known solutions. The selected
test problems are relatively small problems but resemble the objective functions that are
going to be implemented in the design models. In the following sections, the test
problems are described. Then, numerical solutions obtained by two OCT and PSLP

programs are compared to their exact solutions.

5.2.1 Testing OCT Code:

Optimal control theory is a dynamic optimization model and consequently the
control variable must be the time rate change of the state variable. Considering this
characteristic, a test problem was selected from section (6.2) of the textbook written by
Fryer and Greenman (1987). This problem has an analytical solution and resembles the
water supply formulation assigned to the OCT. The selected problem has an objective

function with nonlinear terms with respect to state (x) and control variables (u) as:

1S, . .
Minimize J=— (xi +u?) (5.1)
2 k=0
Subject to -
for k=0123 (5.2)

X, =X, —u, +1

a)0<x,<3
b) x,=3 (5.3)
c) x,=0

The OCT program was used to optimize the above test problem. Constraint

(5.3.a) was joined to the objective function by using an external penalty function. The
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terminal condition (5.3.c) is treated as a soft constraint and consequently the Lagrange
multiplier would not be required to adjoin the constraint (5.3.c) to the objective function.
This is to avoid any possible jump in the value of the related Lagrange multiplier that has
been recorded in the literature for large hydrosystems. Therefore, the terminal condition
(5.3.c) was converted into a quadratic form to make the terminal state value as close to
zero as possible. The weighting method is used to consider the order of importance of the
original objective function and the terminal condition. The system dynamic equation (5.2)
adjoins the objective function with a set of Lagrange multipliers. The Lagrangian function

and its corresponding stationary, adjoint, and transversality conditions are:

w > 2 2 2 > 2
= ?Z(xl: +u) +Z[/1k(xk =X — U +1) '*'P(m--l)-] TW. X, (5.4)
k=0 k=0
a, - e A (5.5)

Ay =2w.x, +2pm,

Ay =x,, + A, +2pn,., For k=210 (5.6)

The weight coefficients of 1 and 2000 were found to be appropriate for w; and w»
respectively. The starting penalty weight of .0001 was used to solve the problem and the
maximum penalty weight of 10 was found to be large enough to meet the constraint
(5.3.a). The analytical solution to the problem and the related OCT solution are given in
table (5.1). In this table, the optimal objective function J(X '), the corresponding optimal
points X~ and U’, and the error £ are shown, where E is the difference between the

analytical and OCT solution.
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Table (5.1): A comparison of OCT and analytical solutions.

Table (5.1) shows no significant difference between the analytical and the OCT
solutions, which verifies the developed OCT program code. It can be noticed from table
(5.1) that the maximum absolute round off error of OCT is 3*10°. That could be due to
either the approximations in the optimization procedures or the computing round off error

in the OCT.

5.2.2 Testing PSLP Code:

A comprehensive list of nonlinear test problems and their solutions is given in
Hock and Schittkowski (1981). Among the different optimization problems presented.
problem number 13 was selected. This problem resembles the optimization formulation
assigned to the PSLP model. The objective function of the selected problem has a

quadratic form with a nonlinear constraint and two vanables as:
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Minimize f(x)=(x, -2) +x?
subjectio :

(1-x)-x,20

x,20 Fori=12

(5.7)

The PSLP program was used to optimize the above test problem. A penalty
weight of 1.0 was found to be large enough to keep the solution in the feasible region.
The analytical solution to the problem and the related PSLP solution are given in table
(5.2). In this table, the optimal objective function AIX"), the corresponding optimal points

X, and the error E is shown.

Table (5.2): A comparison of PSLP and analytical solutions.

L | PsIPprogram |  Eror _
FX’ 1.0 1.0 0.0
X, 1.0 1.0 - 0.0
X2 0.0 0.0 0.0

Table (5.2) shows that the PSLP solution matches perfectly with the exact solution

and consequently this verifies the developed PSLP computer program code.

5.3 Design Models:

Using the OCT and PSLP computer programs, four design models are developed
to screen the best possible reservoir configuration. Three of these models are based on the
OCT algorithm and hence are referred to as the OCT-based models in this study. The
fourth model is a composite model based on a combination of OCT and PSLP algorithms.

Since one of the primary objectives of this research is to develop a fast optimization
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model, developing a design model based on only PSLP is avoided. This is because (1)
OCT is reported in the literature to be faster than PSLP, (2) too many constraints and
variables are required in the PSLP algorithm and that increases computer run time, and (3)
OCT is insensitive to the initial solutions. All of these 4 models share the same
subroutines for reading the multi-reservoir system information. They perform a screening
of a series of potential reservoirs for water supply to identify reservoir capacities and sites.
In the subsequent sections, the formulation of each design model is explained. Prior to
this, the design problem and its site characteristics must be introduced. This is because the
derivation of the transversality and adjoin conditions in all design models (Eqs. 3.7, 3.8,

and 3.9) depend on the type of the selected cost function in each problem.

5.4 Selection of Design Test Problem:

A test problem to evaluate the performance of design models has been selected.
Based on the fact that this study is oriented towards applications, the experimental
approach is adopted to evaluate the performances of different design models based on the
PSLP and OCT techniques. A problem from Supangat (1985) was selected as a test
problem to compare the performances of the developed design models. This problem is
based on the project of a graduate course CE-646 in Colorado State University (at Fort
Collins) to develop water storage strategies for water supply (Supangat 1985). The CE-
646 was selected as the test case because (1) the required data and its best-known solution
are available in Supangat (1985) and (2) the numerical problem fairly represents a large-

scale multi-reservoir system. The CE-646 used in this study consists of six reservoirs with
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both serial and parallel reservoirs. The schematic diagram of CE-646 problem is shown in

Fig. (5.1):
Q Qs Qs
RES #1 RES # 4
RES #3
n &}
RES #2 o\ 4 RES #5
Iy Is
Qs
—p—

RES#6ZS

Is v

Fig. (5.1): The layout of the CE-646 test problem. All symbols are defined in the Fig (3.1)

The site characteristics given in Supangat (1985) have been used to develop
mathematical relationships to predict construction costs as a function of reservoir
capacities. Unlike Supangat (1985), nonlinear equations based on the best-fit curve
(regression) were selected to estimate the reservoir cost. This approach is believed to
represent more accurately the cost estimation. The correlation coefficients () in all the
fitted cost equations were higher than 0.992. Other site information such as inflows to
each reservoir, monthly evaporation rates, and physical constraints of the system (Spax,
Smin) are taken from Supangat (1985). The data file for the CE-646 problem is presented
in Appendix A and will be used as the input file to the developed design models. The

specific goal in applying the design models is to determine the best storage strategies
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among these six reservoirs to satisfy demands for water supply. Following the CE-646
test problem, the hydrological data of two consecutive dry years is used to design the
system. However, it should be emphasized that in a real system we need more data with
large number of years to design the system. For the test problem, all the different demand
areas are assumed to be located at the outlet of the most downstream reservoir. This is
called case / CE-646 problem in this study. In the sections to follow, a hydrosystem is
designed using the case 1 CE-646 problem for water supply purposes and the capabilities
of design models in meeting the optimization objectives are evaluated. The results
obtained by each model are compared to the best-known solution of that numerical
problem. The criteria to evaluate the performance of each model are based on the total

water supply and the construction cost of the designed system.

5.5 OCT-based Design Model Formulation:

Three different design models. referred as OCT-I, OCT-II, and OCT-III, are
introduced in this section. These models are based on the problem formulation explained
in chapter (3). The sweep method, as described in section (4.3), is applied to these models
to find the Lagrange multipliers and the optimal trajectories. Each of these models
however, has a different approach to incorporate the cost function (3.2) with other
objectives in Eq. (3.1). The OCT-I applies the epsilon constraint method and OCT-II and
OCT-III models are based on the weighting method. All of the three models include the
same terms with respect to control variables and are constrained to the availability of

inflow and reservoir storage.
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In the following sections, the Lagrangian function, transversality, adjoint and
stationary conditions of each OCT-based design models are derived. To avoid repeating
the derivation of formulation, first the common parts are used to develop the Lagrangian
function to the objectives in Eq. (3.1). Then, the common stationary conditions are
derived for all three models. Finally based on each approach, the related transversality and

adjoint conditions are derived separately.

To solve the optimization problem for designing the multi-reservoir system, first
the Lagrangian function (L;) from the objective function (3.1) is formed. The L, is
obtained by adjoining the continuity equation and state-space constraints to the first
objective function. The Lagrange multipliers are used to adjoin the continuity equation
(3.3) to the objective function (3.1):

L - fﬁ[Wfi(;Z,y'f _ Dj):} + NZ'{W:} S : [Z (i -5t )2]4-

=l n=i =
AP RACER IS S
=1
sios 0+ S (At ) -3y, +
k=1 J=l

T Nr
Z Z /l:'J ( 4 +1 \Pn
o f: Ly 4, Lp.l e Z yo ||-ecCs (—S" ZS: ]

r

(5.8)

v

J=1
sz,

=n J

where p; in Eq. (5.8) is the storage penalty weight for violating constraints on the state-
space and 7,”" is the exterior penalty function of the reservoir storage constraints as given
by Eq. (4.6). The stationary condition is obtained by using Eq. (4.9) and setting it equal

to zero. In the present optimization problem, the control variables for each reservoir
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consist of reservoir yield and release. Consequently, the stationary condition should be

applied to both control variables. For reservoir yields, the stationary conditions are as:

for n=12,_... Nr ; forj=12. Nd

9 =2W”[§ Vit -D'j+i§(ﬂr pm )= 4
n.j J “~ n.J 7 LIRSS Kl ) n

m=t 1=1
i, +W2 (i, - yi3)  sori=1
;’{' =49, +2W> (— Yo, +2y., —y,’,*]‘) fort=23,...T-1 (5.9)
n.J

8+ yiayl ) fore=T

and for any reservoir release, the stationary condition would be:

Nr

’ZW,,"'(r,,’ )+ S (EAn)  fore=1

k=1

o=jawy (~rt w2 -k i (A7) fore=23,.T-1 (5.10)
k=1

Nr

W (—r )+ > (2 A7 ) fort=T
k=1

.

The OCT algorithm implemented at all OCT-based models is based on the iterative
penalty weight method. The iterative approach is used to avoid any divergence or
instability that often occurs when a high penalty weight is used. Therefore, a series of
penalty weights is used to apply the penalty functions to all these models. These weights
start with a small initial value and increase at each iteration up to a pre-specified final

penalty weight.
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5.5.1 OCT-l Model:

The OCT-I model is formulated to practice the epsilon constraint method in the
OCT as the most suitable generating method. In this model the cost of the reservoir » is
assumed to be a continuous function of the reservoir capacity (x,). The logic behind the
cost function in the OCT-I model is based on the simple fact that the required capacity for
each reservoir »n is equal to the largest reservoir storage occurring in time z (s,*). The

cost function f;” in the case 1 CE-646 problem has the following quadratic form.

c=A +B 2
fn nXn nxn (511)

where, x, =s. = Max,(s.) for t=2..T+1

n

The OCT-I applies the epsilon constraint method to minimize the cost of

constructing multi-reservoir systems as:
d(4,x,+B,x)<¢ (5.12)

The quadratic exterior penalty function method was used to incorporate Eq. (5.12)
into the rest of the objectives in the Eq. (5.8). For the same reason mentioned in section
(5.2.1), the “hard” constraint approach is not used to avoid jumps in the values of
Lagrange multipliers related to the epsilon constraint. Therefore, the Lagrangian function

for the whole problem in the OCT-I model is as:

L=L +py?’ (5.13)
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where p. is the cost penalty weight for violating the constraints on the second (cost)
objective function. The iterative penalty weights p, and p. are specified at each loop of the

optimization algorithm. The following is the cost penalty function y in Eq. (5.13):

o (5.14)
0 otherwise

Nr 1 . Nr c 3 0
4 =73(Zﬁf(xn)—gk) Y= if Zf" (x,) €, >

n=l

The related transversality and adjoint conditions obtained by using Eqs. (4.7) and (4.8)

and setting them equal to zero:

forn=12_._ Nr

oA (s = i)+ pit J+ _

(l 5 Y for t=T

A= ) 2pmy + g
(1 +0) )

A, =

(5.15)

for t=T-1T-2..1

where 4 and 6 are dummy variables. These variables represent the derivative of the cost
function and the evaporation term (in the mass balance equation) with respect to the

reservoir storage respectively as:

i 12p.w(4,+2B,s) if t+l=ts )
= (5.16)
0 otherwise
sl +s,_x (p;’l)
o, :O.Se;C:Pj( z 2 2 ] (5.17)

In the iterative OCT algorithm as mentioned by Hiew (1987), at low storage

penalty weights (p;), the solution is infeasible and violates many feasibility constraints;
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only the final solution with the highest selected penalty weight meets the optimality and
feasibility conditions. Therefore, the penalty function on the cost violation is not
implementable until the system is feasible with respect to systems physical constraints.
Consequently, two iterative penalty weights were implemented in the OCT-I model to
consider the storage and cost violations. The iterative storage penalty weights (p,) were
used in the inner loop and the iterative cost penalty weights (p.) were implemented in the
outer loop. In other words for each p., a complete OCT algorithm given in section (4.3)
was being solved. That is, the OCT-I started with a small p. and the whole system was
designed using an iterative penalty approach on storage constraints. The result of the
model at this stage would be a system that is feasible on storage constraints. Such a
system however, violates the cost constraint because of applying a low cost penalty
weight. In the next iteration, a slightly higher p. was selected and the whole problem was
solved using an iterative penalty method on the storage constraint. The flow chart of the

OCT-I model is presented in Appendix B-2.

5.5.2 OCT-ll Model:

In the OCT-I model, the state variable term in the cost function does not play a
role in all optimization iterations unless the total cost is violated. In other words, the
control variable trajectories do not receive any information about the system cost until the
cost upper bound . is violated. This violation may impose sudden changes in multiplier

values, which ultimately affect the control trajectories. To give the control gradients more
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information about the cost throughout the whole optimization iterations, the QCT-II

model was developed.

The weighting method has been used in this model. That is, weighting coefficients
(W.") are used to add the second objective (Eq. 4.2) to the rest of the objectives in Eq.
(5.8). The OCT-II uses the same cost functions as the OCT-I model. The square term is

used to penalize higher costs. The following is the Lagrangian for the whole problem.

L=L,+>Sw(re) (5.18)

n=1

consequently, the related transversality and adjoint conditions for the Lagrangian function

(Eq. 5.18) are:

forn=12,.. Nr

oA (s = st )+ pnit ]+ _
, (1 +5;) fort=T

. (5.19)
n =11 _ gt =1 -1
ln (1 5,, )+2p:nn +#" fort:T—LT—z,...,l
(l +5:T
-1 — zn/nsfnc(An + 2an:!-1) {f d +1 =15 (5 20)
n 0 otherwise -

where u,”’ is a dummy variable that represents the derivative of the cost function with
respect to the reservoir storage. The flow chart of the OCT-II model is shown in the

Appendix B-3.
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5.5.3 OCT-lll Model:

Like the OCT-II, the OCT-II model uses the weighting method to add the cost
function to the rest of the objectives. However, a different approach to cost function has
been considered. In the OCT-III model, cost is a function of reservoir storage and applies
to all operating times ¢=2,.., 7+/. This approach is based on the Bellman’s principle of
optimality that states (Loucks et. al. 1981): “no matter in what state of what stage one
may be, in order for a policy to be optimal, one had to get that state and stage in an
optimal manner.” Hence, for the current design test, for each reservoir » at any time ¢, the
cost functions f,.” and the Lagrangian function for the whole problem in the OCT-III

model are:

fi =45t +B(s.] for t=2,.T+1 (5.21)

L=1L + zv; ’:WTZ[ (7s )} (5.22)

= =2

consequently, the transversality and adjoint conditions are:

Sforn=12,.. . Nr ;, fort=T,T—-1,...1

s (4, +2B s pntt +

t nJ nt+l
X = %) (5.23)
25 (s = ! f t=T
1 (s -s1) if 1 524
At (1-6) otherwise
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The optimization procedure in this model is the same as the OCT-II model

presented in Appendix B-3.

5.6 PSLP-OCT Composite Algorithm:

A new methodology is introduced in this section which uses a composite
optimization strategy. This composite algorithm constitutes the PSLP-OCT technique,
which employs OCT and PSLP algorithms as the most promising optimization techniques.
The PSLP-OCT is a general-purpose optimization technique that can be used in any mixed
Iype optimization problem consisting of both static and dynamic (time dependent) control
variables. In the conventional approach to optimize such problems, only static
optimization techniques (e.g., NLP or PSLP) have to be used. The major drawback in
these methods is their initial solution requirement. In the non-convex problems, this
requirement could greatly affect the final solution proposed by these methods. Therefore.
the related computer programs should be run several times to achieve the best possible
local optimum solution. The introduced PSLP-OCT method however. recognizes the
dynamism of the problem and differentiates the dynamic variables from the static ones.
Therefore, based on the nature of the decision variables, the mixed type problem can be
divided into two parts. The OCT optimizes the dynamic part and the PSLP optimizes the
static part of the problem. This approach not only reduces the computer execution time,
but it alleviates the necessity of those programs to be run for several times. That feature is
due to insensitivity of the OCT method to initial solutions and could be extremely helpful

in optimizing large systems with non-convex, mixed type optimization problems. Another
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benefit of the introduced PSLP-OCT method is due to its capability in optimizing
problems with linear (dynamic or static) and dynamic nonlinear variables. The objectives
with nonlinear dynamic variables can be assigned to the OCT part of the composite
algorithm and the PSLP part optimizes the objectives with (non)linear variables. The
application of this new technique in designing the multi-reservoir system is described in the
following sections. That is, the problem is divided into two parts and each part is assigned
to the corresponding component in the PSLP-OCT method. The explained procedure can
be used as a guidance to apply the PSLP-OCT method to other mixed type optimization

problems.

5.6.1 PSLP-OCT Model:

A computer model based on the PSLP-OCT method was developed. To adapt the
objectives described in chapter four to the composite optimization model (PSLP-OCT),
the objectives and system constraints are split into two parts in order to obtain maximum
benefit from the capabilities of the two PSLP and OCT methods. The epsilon constraint
method is also implemented into the composite model as the most suitable generating
method to perform the sensitivity analysis. Based on the literature review in chapter two,
dimension/complexity of the problem in the PSLP will significantly affect the
computational time and the efficiency of the algorithm. Previous studies in the literature
showed that OCT is the most promising technique to optimize the operation of large
hydrosystems. Therefore, the design problem in chapter four is split into two parts. A

small part of the optimization problem (minimizing the cost) is assigned to the PSLP and

77



the OCT handles the major computational part of the optimization problem addressed in

Eq. (5.8).

The essence of the composite model is that the reservoir yield and release over the
operation period are dependent directly on the reservoir capacity and streamflow
sequence. This dependence may be functionalized and evaluated independently by using
OCT with respect to target reservoir capacities in the multi-reservoir system. The
introduced composite model consists of outer and inner optimization modules. The PSLP
is used as the outer module. The reservoir capacities needed are evaluated in the PSLP
module. The PSLP applies the epsilon constraint algorithm to the water supply objective.
This module minimizes the total reservoir costs to supply water at a pre-specified demand
level. Then, the OCT is used as the inner module. The OCT module uses the reservoir
capacities obtained by the PSLP at each iteration and optimizes the corresponding
reservoir releases and yields for different purposes. These two most promising
optimization methods constitute the structure of the new screening PSLP-OCT model that
is presented in this study and is generically illustrated in Appendix B-4. Based on this flow
chart, the PSLP module at each iteration specifies a set of reservoir capacities. Then, the
OCT module minimizes the water deficit for such a system. The optimized yield variables
are transferred to the PSLP module through water supply constraints. Based on these
results, the PSLP module selects the next move to propose a new reservoir configuration.
The process in the PSLP module terminates when optimal reservoir capacities are found

or when a series of successive iterations fails to improve the solution.
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5.6.2 PSLP Module Formulation:

The objectives of the PSLP module are to minimize (1) total reservoir costs, and
(2) monthly water deficits in all demand areas. The PSLP module optimizes these

objectives subject to the reservoir storage constraints:

Nr

Minimize{z (4,x, +B,x ),f;i(z);w > y;',)} (5.25)

n=l J=t =1 n=1

x, " <x,<x7™ for n=12,..N, (5.26)

n

where Djaax' is the maximum predicted water demand during month  at area Jj. Based on
the epsilon constraint algorithm, the PSLP module keeps the cost minimization in the
objective function and transfers the water deficit minimization objectives to the equivalent

constraints:

Nr
Minimize Y (4,x, +B,x2) (5.27)

n=t
subject to Eq. (5.26) and the water deficit constraints:

forj=12_.N,; fort=12...T

4 < t 4 (528)
Dj.M—lX —Zyn.j s€,
n=1

where g/ is the monthly water deficit at the D#j. The constraint (5.28) can be rearranged

as:
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forj=12,.Nd; for t=12....T

L t t t : (5.29)
Zlyn.j 2 (Djw _51)=Dj

Eq. (5.29) represents the water supply constraints and specifies a set of lower
bounds on the reservoir yields to force the PSLP module to meet water demands in
different demand areas. The lower bounds are equivalent to &_values explained in section
(4.8) and are determined by the epsilon constraint algorithm. Reservoir capacities X={x;
X> Xxyr] are decision variabies in the PSLP module. This module has a nonlinear objective
function and a set of water supply constraints in terms of the decision variables of the
PSLP module. The reservoir yield (»;) in Eq. (5.29) is a nonlinear implicit function of

the reservoir capacity x, and can be obtained through the OCT module.

5.6.3 OCT Module Formulation:

OCT is used as the inner optimization module in the PSLP-OCT model. The OCT
module includes other objectives in the design problem. the mass balance equation, and
other system constraints. This strategy reduces the computational burden of the PSLP
module and assigns ilie major part of the optimization problem to the OCT as the most
promising optimization technique. Therefore, the OCT module optimizes objectives in
Eq. (3.1) subject to constraints (3.3), (3.5), (3.6), and (3.7). Once the reservoir capacities
are specified by PSLP at each iteration, the OCT module is applied to determine the

optimal reservoir yields corresponding to the candidate reservoir capacities.
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5.6.4 PSLP-OCT Model Solution Procedure:

The Penalty Successive LP algorithm of Zhang et. al. (1985) is used to solve the
nonlinear optimization problem formulated in section (5.6.1). The procedure to solve
nonlinear optimization problems is given in Zhang et. al. (1985). However, the application
of their algorithm to the problem described in Egs. (5.26) to (5.29) is explained here as

follows:

1. Define the exact penalty function by adding the nonlinear constraints to the
objective function using pre-specified penalty weights. The penalty weights in the
exact penalty function are positive scalars that have to be in excess of the largest
Lagrange multiplier (dual variable) value expected. The exact penalty function for

the formulation proposed in the PSLP model would be as:

Nr Nd 7

r Nr
PX)=3" (4,x, +B,x2)+ ZW}T:Maxl 0, (Dj - \Zyi.,j | (5.30)
=1 t=1 L =1 |

n=i

N penalty weights (7)), corresponding to N, demand areas, have been used for
the nonlinear constraints to consider the scaling of each water supply constraint.
The resulting optimization problem has a nonlinear objective function subject to
the linear constraints (Eq. 5.26). The exact penalty function together with the

linear constraints constitutes the /inearly constrained penalty (LCP) problem.

2. Define the 4dpproximating function PI(X) by replacing all nonlinear parts in the

exact penalty function (Eq. 5.30) by its first order Taylor series approximation

about a base point Xo =[x10X20,...Xxr0]:
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PICX) = 3[4y, + By )+ (4, + 2B, Y, —x,0 )|+
n=1

Nr

Nd T £ ) (5:3D)
Z {W/,p ZMaxliov D,’ - Z (y:[u.o + (xn - xn.O )%J]f

1=l =1 n=} n

PI(X) is a good approximation to P(X) if the step size (x,-x.o) is not large. Thus
the P(X) can be minimized by a sequence of minimization of P/(X) with an upper

bound on the step size. This leads to the Approximating Problem:
Minimize  pl(X) (5.32)
subject to the linear constraint (5.26) and the new deviation constraint as:

~—w<(x,-x,)<w for n=12..Nr (5.33)

where @ is the upper bound on the Taylor series step size. The deviation

constraint is to maintain a solution in the neighborhood of the current solution.

Apply the first order Taylor series expansion to linearize the nonlinear part of
water supply constraints (5.29) about initial solutions (y»,s). According to the
continuity equation (3.3). each yield is a function of its reservoir storage and all

incoming return flows:

Nr Nd 1t

Va, =G> 0 (5.34)

i=l J=I m=1
tzn J=g

Considering the fact that reservoir storage is a function of the reservoir capacity, it

can be stated that every yield is a function of all reservoir capacities as:
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yrlt.j =H(x1) fori:l?z"”?Nr (5’35)
Therefore, the Taylor series expansion of the constraint (5.29) is as:

for j=12,. N, fort=12,..T

55, =z[yn,o¢z<x

n=1

@;.,J . D (5.36)
& J

By applying the chain rule for differentiation, a direct relation between reservoir

yield (ya;") and capacities (x,=s', i=1,2, N;) can be established. Ignoring minor

changes in evaporation losses in the continuity equation, the can be directly

cfx
evaluated as:
(1 ifi=n
: Lmas s
%’t} B {0 l notzr:vme O Z nt ZP' ~" otherwise (5.37)
J J

Eq. (5.37) implies that if a reservoir cannot supply yield to a demand area
(maximum yield is zero), its corresponding yield derivative with respect to x is
zero. The percent error in excluding the evaporation term in Eq. (5.37) is usually

less than 0.1% (Lall 1995) and therefore negligible.

Define a Linear Program equivalent to problem defined in step 2 as:

n=i k=(j-1)T+1

Nr
Minimize >[4, +2B,x,, b, ]+ [W” Zp,‘J (5.38)

subject to the linear constraints (5-26), (5-33) and a new linearized water supply

constraint as:
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Jor j=12..N,; fort=12,..T

Nr Nr Nr [ Nr
Z Z (Zi.nxi )+ Pe— N = Z(Z Z ,x,- }’::.1.0) + D; (5.39)
n=l =1 n=1 \ =l

where k = j *t

In the above, p. and n, are deviation variables, which allow us to represent the

water supply constraints (5.29) linearly in an LP algorithm.

Applying small penalty weights (W) may result in an infeasible solution. If
however, large penalty weights are selected, the decision variables X are forced to stay too
close to the feasible region for the majority of PSLP iterations. Consequently, it may
cause slow convergence in some problems (Baker & Lasdon 1985). Therefore, based on
the order of magnitude of the objective function (Eq. 5.27) and related nonlinear
constraints (Eq. 5.29), one can select reasonable small penalty weights to start the
problem. If the PSLP iterations have terminated with an infeasible solution in the original
nonlinear problem i.e., the demand is not satisfied fully, increase the weights and start

again.

5.7 Numerical Studies of Design Models:

In this section, case 1 CE-646 test problem is applied to the design models
introduced in sections (5.5) and (5.6). The optimal solution to the case 1 CE-646 test
problem is used as a benchmark to evaluate the performance of each design model. These
models have two main objectives: to minimize the cost and water deficit. Therefore, the
success of each model depends on the cost of the designed system and the corresponding

level of water supply. The other objectives are considered as minor (secondary) objectives
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and are considered in the assessment only if all models succeed in meeting the two main
objectives equally.

A series of optimized solutions to the casel CE-646 problem with different water
supply levels and corresponding reservoir layouts is given in Supangat (1985). These
solutions have been obtained by applying the combination of DP and simulation models. It
is believed that providing the highest possible water supply in dry periods (as in the CE-
646 case) is the most difficult task for every optimization algorithm. Considering the
series of solutions given at different supply levels, the reservoir layout with the highest
water supply of 51900 MCM and the total cost of $182.8%10° is selected. This solution is
called the benchmark solution of the case 1 CE-646 problem for the rest of this text and
serves as an assessment of the performances of the developed models. To compare the
model performance with the benchmark solution, the same assumptions of zero minimum
storage and return flows are applied to the system. To minimize the water deficit in the
system, proper &/weight coefficients were assigned in the related models. Very small/zero
weight coefficients were selected for those minor objectives that were not considered in
the benchmark solution. The model with the lowest cost and/or highest water supply
would be the most successful model and is selected as the final design model proposed in

this study.

5.8 Model Performances:

The case 1 CE-646 problem was used to evaluate the performances of the four

design models formulated in sections (5.5) and (5.6). The best cost/storage penalty
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scheme for the case 1 CE-646 problem was one with a maximum value of 100, initial
value of .0001, and a 5 to 10 fold increase after each round of iteration. The & in the
OCT-I model was set equal to $182.8+10°. Several adjustments, based on the procedure
mentioned in section (4.7), were made to find the proper final set of weight coefficients.
The best compromise solution obtained by each design model is presented in the

subsequent sections.

5.9 OCT-based Model Solutions:

In all the OCT-based models, initial storage is a function of the reservoir capacity
and is an initial condition of the algorithm. Zero initial storage was assumed for each
candidate reservoir to allow the OCT algorithm to reject/select any candidate reservoir in
the system. However, a full initial storage assumption was required to make the results of
the OCT-based models comparable to the benchmark solution. Therefore, each model
started with zero initial storage assumption. Then, the final layout of each model was used
in an additional run to specify the reservoir yields with the full initial reservoir storage
assumption. Table (5.3) shows the selected weight coefficients for all objectives in each
OCT-based model. These weights are selected such that the models obtain the highest

yield with the minimum possible construction costs:

h

Table (5.3): Weight coefficients i design models.

OCT-1 1 0 01 - - - - - - 01

ocCT-II 1 0 .01 700 300 600 1 500 1 .01
OoCT-I 1 0 .01 350 200 250 10 280 10 .01
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The outputs of each OCT-based model, including their proposed monthly reservoir
storage and the corresponding total yields are presented in Appendices C-1 to C-3
respectively. A study of these results shows that, not only did all the OCT-based models
result in sub-optimal solutions, but also all these models are very sensitive to the selected
weight coefficients. This is because the appropriate weight coefficients, as mentioned in
section (4.7), depend on the relative magnitude of different objectives. Therefore,
selecting the constant weights conflicts with the fact that in design problems the
magnitudes of cost functions depend on their reservoir capacities that are changing at each
iteration. Regardless of taking enormous weight coefficients in Eqgs. (5.8), (5.18), and
(5.22), sub-optimal solutions were always obtained and all the candidate reservoirs were
selected regardless of their cost expenses. Based on many experiments undertaken in
these models, it was found that the mixed effects of the Lagrange multipliers of each
reservoir (A,') and its downstream ones on the release gradients were mainly responsible
for the sub-optimal solutions. The following paragraphs elaborate the impact of

multipliers on each release gradient and consequently its reservoir capacity.

In optimizing the configuration of a multi-reservoir system, the most expensive
candidate reservoirs have to be excluded from the optimal reservoir layout. That means
the design model has to assign zero storage to the most expensive reservoirs at all time
periods. Considering the inflows to each reservoir, inappropriate reservoir releases at
different periods will assign non-zero reservoir storage in the continuity equation (3.3).
To survey the reasons for obtaining sub-optimal solutions in all the OCT-based models,
the effects of different components in Eq. (5.10) on the release gradients have to be

elaborated.
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The objective function formulated in chapter four is a typical formulation for water
supply problems. Unlike the objective functions in Hydropower optimization problems,
the current objective function does not consist of any multiplicative term with respect to
control and state variables. Consequently, stationary conditions do not include any direct
term with respect to state variables and only Lagrange multipliers at each iteration will

transfer state variable conditions to the control gradients.

Considering the weight coefficients on controlling the bang-bang ( W,'), two main
situations can be taken into account for the release gradients of each reservoir. If large
weights are assigned to smooth the release trajectory, the model will try to have a uniform
release over time. This may not accord with fluctuations of yield and natural inflow in
each time period. Consequently, all the candidate reservoirs will need storage in some
periods to store some part of incoming water to keep the outgoing release as smooth as
possible. That means, regardless of their costs, all the candidate reservoirs have to be
selected in the final layout proposed by the OCT-based models. Comparing monthly
inflows and water demands in the case 1 CE-646 problem, there are water deficits in the
beginning months and excess inflows at the final months. Having excess incoming water
requires more releases in the corresponding months. However. large W,”" weights will
push the model to keep the releases low at the final months, resulting in non-zero storage

at those periods.

If very small/zero W,” weights are assigned to control the bang-bang problem,
only Lagrange multipliers (1) of each reservoir and its subsequent reservoir(s) will mainly

affect the release gradients. Based on the Eq. (5.10), the release gradient of each reservoir
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n consists of additive terms with respect to A of the current and the linked downstream
reservoir(s). The difficulty occurs if the cost constraint or both storage and cost
constraints are binding at the optimum. That is, the minimum/zero water deficit happens

when the minimum storage/cost requirements are equal to their lower/upper bounds.

In the subsequent sections, it is shown that regardless of the initial solution
selected for the control variables, the OCT-based models end up with a system with
cost/storage infeasibilities which result in non-zero Lagrange multipliers (1). Once it
happens, the multipliers affect release gradients, which in turn will keep the non-zero

values of multipliers and result in sub-optimal solutions.

5.9.1 Non-Zero Multipliers:

The terminal storage function results in non-zero final multipliers (A,") in all the
OCT-based models at Eqs. (5.15), (5.19), and (5.23). This value will propagate backward
in time and gives non-zero values to other multipliers at all periods. The cost functions in
the OCT-based models are other sources of non-zero multipliers and their effects depend

on whether the weighting or epsilon constraint method is applied to the cost function.

It goes without saying that if the OCT-I model starts from an initial reservoir
storage that violates the cost, multipliers have non-zero values from the beginning. Let us
assume the system starts with feasible (e.g., small/zero) reservoir storage. Therefore, the
cost and storage constraints are not violated. The algorithm in the OCT-I model starts

with a small penalty on storage violation. This lets the algorithm meet the water demand
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at the expense of pushing the storage to stay in the negative infeasible side, which will
activate the storage penalty function (p;) to bring back the storage into the feasible region.
Therefore, at the end of the first outer (cost penalty function) loop, none of the storage
constraints is violated. This solution will not necessarily assign proper combination of
reservoir capacities and hence violates the system’s total cost constraint. Consequently,

the cost penalty function will assign a positive value to the multipliers.

The behavior of the multipliers in the OCT-I and OCT-II models is different,
however. In these models, due to the nature of the weighting method used in the
formulation, the system cost term is present in the multiplier formulations. In the OCT-II
model, the reservoir capacities at each p; iteration are selected by choosing the maximum
reservoir storage over the whole time period of analysis. This will happens at time z, (see
Eq. 5.20). Therefore, the related multiplier has a positive value which propagates
backward in time. In the OCT-III model, the system cost is a function of monthly
reservoir storage and consequently, a positive value is added to all multipliers at all

periods.

5.9.2 Downstream Multiplier Effect:

The reservoir capacity is a function of its monthly storage, which, in turn, depends
on the unregulated inflow, release from the upstream reservoir(s), water demand and
supply, and the reservoir cost. Therefore, at each iteration the candidate reservoirs may
have different storage and hence different multipliers from each other. When the release

of the nth reservoir increases within the feasible range of state space at each iteration. the
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corresponding storage and consequently its A, will decrease/cease. This is because a
permanent tendency to supply the demand tries to keep the yield as close as possible to the
water demand. If the downstream reservoir has a greater/non-zero multiplier (A';-;), the
A'A." term in Eq. (5.10) pushes the release gradient of the upstream reservoir to decrease.
The decrease in the release of the nth reservoir increases the corresponding reservoir
storage. In other words, if a candidate reservoir has a positive multiplier, all its upstream
candidate reservoirs, regardless of their costs, are selected in the final solution. This is
called the downstream multiplier problem in this study and applies to all candidate
reservoirs starting from the upstream part of the watershed except for the most
downstream reservoir, where the release gradient in that reservoir depends only on its

Lagrange multiplier.

The situation for the most downstream reservoir is different, however. This is
traced to the fact that its existence depends on its cost and the hydrology of the
watershed. In the case 1 CE646 problem, the last reservoir (RES#6) is one of the two
most inexpensive reservoirs. Consequently. it will stay as one of the selected reservoirs in
the system. The presence of this reservoir pushes all the upstream reservoirs to stay in the

proposed layout of the model due to the downstream multiplier problem.

In the next sections, the performances of the OCT-based models are presented.
Then, their specific problems, in addition to the downstream multiplier effect, are

analyzed.
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5.9.3 OCT-l Solution:

The proposed storage trajectories by the OCT-I model represent a sub-optimal
solution due to the problems addressed earlier in this chapter. Fig. (5.2) shows the
monthly storage as determined by the OCT-I model. The detail of the OCT-I solution to

the case 1 CE-646 problem is presented in Appendix C-1.

In spite of the great number of trials and the use of different combinations of
weight coefficients in Eq. (5.8), the OCT-I model failed to design the layout at the pre-
specified cost of $182.8+10°. This was due to the instability of the algorithm caused by
the jumps in the Lagrange multipliers i.e., their values changed in different directions. The
experimental results showed that the two storage and cost penalty terms (ps*7 and p. *)

are mainly responsible for that and this is explained in the next paragraphs.
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Fig. (5.2): OCT-I solution of storage trajectories for the case 1 CE-646 problem.
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With an initial low penalty weight, the OCT algorithm rapidly supplies the full
demand at the expense of assigning infeasible negative storage values. Although this
solution does not violate cost constraint, it is not an acceptable one. As the storage
penalty weight increases in subsequent iterations, the magnitudes of storage violations
decrease. These decreases are achieved by increasing the storage and reconfiguring the

control variable trajectories in order to supply the water demands.

The iterative cost penalty function implemented in the OCT-I model is supposed to
avoid any divergence or instability in the storage trajectories. However, due to the
downstream multiplier problem, the designed layout at the end of each inner loop fails to
get closer to the optimal solution. Consequently, even with increasing the cost penalty
weight in the next outer loops, a large cost violation still exists. Therefore, at each inner
loop, the cost function imposes a large positive multiplier and hence, the storage
trajectories jump back to negative/small values. As soon as this happens, the cost penalty
function is inactivated and the storage penalty function has to bring the storage trajectories
back to the feasible region. By building up storage and bringing them into feasible region,
the same scenario of cost violation happens and the jumping of the system back and forth
continues. At the final OCT-I solution, when the effect of the storage penalty function is
dominant over the cost function, the p,#7 term forces the storage trajectories to stay in the
feasible region and increase the reservoir storage at the expense of violating the cost
constraint. Due to the downstream multiplier problem, although this system violates the
cost constraint, the total reservoir capacities are not large enough to fully supply the

demand.
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To reduce the instability of the OCT-I model, the penalty function approach was
replaced by the barrier terms. The results showed that, despite the reduction in the model
instability, the OCT-I failed to reach closer to the optimum solution. This is obviously due
to the permanent presence of non-zero multipliers in Eq. (5.15) and consequently, the
downstream muitiplier problem. The barrier function applied to Eq. (5.12) could not keep
the cost upper bound inside the feasible region either. This is because, as the upper cost
boundary is approached, and since search techniques use discrete steps, a step leading
outside the region may indicate a false success by showing a decrease in the value of the
Lagrangian function L. An explicit check of the cost constraint value in Eq. (5.12) can
prevent such a false success. However, this approach does not eliminate the downstream

multiplier problem and hence was not applied.

5.9.4 OCT-Il Solution:

The OCT-II model was applied to the case 1 CE-646 problem. The result is
presented in detail in Appendix C-2. The proposed monthly storage of each reservoir is
also shown in Fig. (5.3).

The experimental investigation showed that, like the OCT-I model, the OCT-II
model suffers from the downstream multiplier problem and the multipliers jump.
However, the instability problem observed in the OCT-II model was slightly less than in
the OCT-I model. This may be due to the permanent effect of the cost function on control

gradients at periods less than # that is felt through multipliers by the algorithm.
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Fig. (5.3): OCT-II solution of storage trajectories for the case 1 CE-646 problem.

When p; is small in the beginning, the effect of the system cost through
multipliers will increase the control variables (r and y), resulting in negative storage values
in the next iteration. These infeasibilities stay until p, is large enough, compared to the
cost weight coefficient, to bring back the storage into a feasible region. Unlike the OCT-I
model, control gradients receive the effect of the system cost through multipliers even
inside the feasible region. In other words, the system cost adds a positive value to the
multipliers at time # which propagates backward in time. This positive value reduces the
effect of the negative storage penalty function on multipliers. Consequently, control
variables will take smaller steps to bring back the storage into the storage feasible region.
This results in smoother changes in state and control trajectories and hence, the OCT-II is

less unstable than the OCT-I model.
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5.9.5 OCT-lll Solution:

Like two previous OCT-based models, the downstream multiplier problem resulted
in a sub-optimal solution. Appendix C-3 presents the detail of the proposed solution and

Fig. (5.4) shows the monthly storage as determined by the OCT-III model.
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Fig. (5.4): OCT-III solution of storage trajectories for the case | CE-646 problem.

The formulation and the behavior of the OCT-III model are quite similar to the
OCT-II model, except the cost function affects the multipliers at entire optimization
periods. This might be the reason for its better performance compared to the OCT-II

model. Compared to other OCT-based models, the OCT-III model was able to supply a

higher demand at a lower cost.

5.10 PSLP-OCT Solution:

The PSLP-OCT model was applied to the CE-646 problem. To meet the water

demand fully, zero deficits (g') were considered in the water supply constraints. In spite
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of applying different combinations of weight coefficients to the objective components in
Eq. (5.8), the PSLP-OCT model, though close to the benchmark solution, was never able

to fully supply the monthly water demands.

Several model experiments showed that two factors are mainly important in
selecting the proper yield weight coefficients in the OCT module. These factors are: (1)
the relative magnitudes of candidate reservoir capacities with respect to each other and (2)
the ratio of the system’s hydrology (flow variability) to the demand levels. To survey the
effect of reservoir sizes and their inflow on the OCT module performance, a closer look
into the OCT algorithm is necessary. As was mentioned earlier in section (5.9.3), with an
initial low penalty weight, the OCT algorithm supplies the demand fully at the expense of
violating the storage constraints. As the storage penalty weights increase in subsequent
iterations, the magnitudes of these feasibility violations decrease. At the final solution
with the largest penalty weight implemented. the multi-reservoir is supposed to supply the
demand without any storage constraint infeasibilities. In the problem formulation (Eq.
4.1), all the reservoirs are contributing to supply a certain demand and hence share the
same yield gradients. The yield gradients at each OCT iteration depend on the total water

supplied at the previous iteration.

A multi-reservoir system like the case 1 CE-646 problem can be characterized as a
system with high water demand levels and large differences in the selected reservoir
capacities. In this system, small candidate reservoirs are incorporated with low inflows
and large reservoirs with large ones. High demand levels impose large yield gradients in

the OCT module. As mentioned in the previous paragraph, large yield gradients in small
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reservoirs push the algorithm to supply yield at the expense of infeasible storage
trajectories (i.e., negative storage) that stay in the infeasible region for most of the penalty
iterations of the OCT algorithm. Therefore, even with moderate storage penalty weights
(ps), the small reservoir yields are more than what they can supply in reality and other
(large) reservoirs in the system supply the remaining unsatisfied demand. When the p; are
large enough, the yields of small reservoirs decrease and hence their storage goes back to
the feasible region. This may change the flow pattern (upstream reservoir releases) in the
system and increase the unsatisfied demand (yield gradient) which has to be supplied by
other reservoirs in the system. The new situation for the gradient search techniques is like
a new problem starting with a high penalty weight. This situation, as was mentioned in the
literature review, leads to solution divergence and makes gradient search techniques slow

and unstable.

To remove the effect of a small reservoir on large reservoir yield trajectories. a
slightly different approach is required. In this approach, the OCT module can optimize the
water supply problem using one reservoir at a time. To accelerate the OCT convergence,
different yield weight coefficients, based on the ratio of flow availability to demand level,
can be assigned to candidate reservoirs. Using smaller yield weight coefficients for the
small reservoirs with low inflow reduces their yield gradients and hence increases the OCT
convergence. In this approach, the OCT module optimizes the first objective (Eq. 4.1) by

using one reservoir at a time.

To do this, reservoirs are numbered sequentially from upstream to downstream.

Once the PSLP module determines the reservoir capacities at each outer (PSLP) iteration,
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the OCT module starts from the most upstream reservoir and considers one reservoir at a
time to optimize its yield trajectories in order to minimize the water deficit. Then, the
remaining water deficit is calculated and the OCT module uses the next downstream
reservoir to supply the water deficit. To accelerate the OCT convergence, the original
yield weight coefficients (") can be changed into new coefficients (#”,,) that can be
different for each candidate reservoir n. Based on the new approach, for each reservoir »,

the Eq. (3.1) is rewritten as:

Min f, = iW;{ TI (_V:,, —d;,):j|+W,.by[r_l > (}’:...;l ‘y:,.j):-l+
< pm J

W"’TZE( “Up ) ewE (s = st)’ (3.1-R)

t=1

Equation (3.1-R) is the revised version of the original water supply objectives. In
this equation, d,, is the water demand assigned to the nth reservoir and is determined in

the sequential water supplying procedure in the OCT module as:

OCT Module
{ PSLP Module Using Eq. (3.1- R))—T

doj'=dng"-Yo-1;

The new approach was adapted into the PSLP-OCT model and was applied to the

case 1 CE-646 problem. The model was able to optimize the system successfully at
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$160.83%10°. The penalty weight W/ of 80 was large enough to meet the monthly
demand levels in Eq. (5.39) and there was no difficulty in assigning proper weights in the
OCT module. Table (5.4) shows the assigned weight coefficients for only the selected
reservoirs in the OCT module. The weight coefficients related to non-selected reservoirs
are not reported, because they were just mass balance nodes (inflow=outflow) to the OCT

module and could not affect the optimal result.

Table (5.4): Selected weight coefficients in the OCT module.

RES#4 1.0e-7 0.0 1.0e-3 1.0e-5
RES#6 1.0 0.0 1.0e-4 1.0e-2

The PSLP-OCT model was able to supply water demand successfully at a
proposed construction cost lower than the benchmark solution. The monthly reservoir
storage of the selected reservoirs and the corresponding total water supply are shown in
Figs. (5.5) and (5.6). The detail of the PSLP-OCT model computations regarding the
monthly yield and release of all reservoirs is shown in Appendix C-4. Zero values for
monthly yields and releases, and reservoir capacities are assumed as the initial solution for
the PSLP and OCT modules. Using these initial solutions, the PSLP-OCT model required
68 seconds of execution time on a Pentium-Pro 180 Personal Computer to solve the case
1 CE-646 problem. It goes without saying that a better initial solution can further reduce

the execution time.
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Fig. (5.5): PSLP-OCT solution of optimum state and control trajectories of RES#4 for the
case 1 CE-646 problem

—&@— Release atRES_6

~--f\- Storage at RES_6

25000 & -~@l-- Yield stRES_6 a
- |2
p .
Geo000 >
z A
P A & & a
«%15000 -
= A
E A & 4
:';‘10000 o L &
- -
3
g
[ 2}
g
4
v
g
=

Month

Fig. (5.6): PSLP-OCT solution of optimum state and control trajectories of RES#6 for the
case 1 CE-646 problem

It took only a few (3-4) iterations to construct a good approximation to the

optimal solution. However, the gradient algorithm in PSLP converged slowly near the

optimum. Consequently, a relatively large number of iterations (16 iterations in this

example) were required to find the true optimum, which resulted in only a small
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improvement in the objective function value. At the optimal result, the terminal storage
objective (S,”'=S,) though very close, was not fully met. Increasing the terminal storage
weight coefficient could be a remedy. However, this will affect the optimum yield
trajectories as is discussed in the weight coefficient sensitivity analysis. A simpler remedy
is to adjust corresponding reservoir releases manually. These adjustments are unlikely to

affect the optimality of the final results since they are relatively small in magnitude.

5.11 Comparison of Results:

The layouts designed and the total water supplied by the models together with the
benchmark solution are shown in Table (5.5). These results show that all three OCT-
based models give sub-optimal solutions and the PSLP-OCT model is the most successful
model.

To compare the relative performance and achievement of each design model in
minimizing the water deficit at the minimum cost, a degree of optimality (D,) is
introduced. The D, is indicated by the ratio of the yield unit cost (Y*) of each design
model to the benchmark solution:

Nd T Nr
(r*) 2. 2.2,

m A Yuc — J=1 =1 n=l (5_40)

O)M (Yuc)b , ZV_‘:R:
=1

where the subscripts m and 4 denote the design model and benchmark solutions and R, is

the construction cost of the nth reservoir. Table (5.6) shows the degree of optimality of
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each design model with respect to the benchmark solution obtained by the combination of

DP and simulation models.

OCT-1 32.14 31.00 35.35 26.38 11.92 31.51 254.7 4;/4.4
OCT-II 2111 18.84 18.43 32.20 5.648 72.28 201.4 4772
OCT-II 7.685 13.21 8.659 46.51 3.646 97.66 186.6 482.1
PSLP- - - - 3.954 - 2475 | 160.8 519.0

OCT

Bench - - - 4.000 - 288.0 182.8 519.0

Mark

different design models.
_OCT}¥ . OCT-H . OCE-HI - PSLP-OCT
0.656 0.834 0.910 1.137

The degree of optimality of the design models shows that the proposed PSLP-

OCT is the most successful model, able to design the multi-reservoir system at a lower

cost than the benchmark solution. All the objectives in the OCT module are formulated in

a way to have a quadratic form. This assists the gradient search techniques to achieve the

minimum for the related inner problem of water supply. The objective function of the

PSLP module in this problem is convex and its nonlinear constraint is concave. Therefore,

it can be ascertained that the global optimum was achieved in this case study.
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Compared to the benchmark solution, the proposed PSLP-OCT model requires
smaller reservoir capacities to supply water demand. There is a small difference between
the proposed capacity of RES#4 in the two models that obviously is because of the
discretization procedure used in the DP model. However, the difference in proposed
capacity for RES#6 is quite significant. In the original reference (Supangat 1985), there is
no discussion on the result obtained and no details are given on the monthly reservoir
storage and releases. In his result discussion, Supangat (1985) focuses only on the
sensitivity of reservoir capacities to different demand levels.

According to Supangat (1985), the simplifications made in his DP model mught
have resulted in a system, which may be under-designed or over-designed. The
simplifications were due to the decomposition technique and variable discretizations in the
DP model. According to Supangat (1985), the storage discretization was equal to 1% of
the mean annual critical flow to each reservoir (i.e., 200 to 800 MCM) and yield
discretization is determined such that the maximum number of yield levels and their
associated storage values is 30 (Supangat 1985, p-121). The degree of optimality of the
PSLP model shows that the DP model developed by Supangat over-designs the system by

a bit less than 14 percent.

5.12 Sensitivity of the Weight Coefficients:

As was mentioned earlier in section (4.7), the appropriate selections of the
weight coefficients depend on the order of magnitude and the importance of all objectives.
In this section, the sensitivity of four weight coefficients in the OCT module is analyzed.

Then the effect of different penalty weights in the PSLP module is evaluated. Among the
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four weight coefficients (W,;/, W,”", W,Y and W,F) the yield coefficient is the most
important one. One strategy to select the proper weight could be to choose yield weight
coefficients for each reservoir and then find the appropriate weights for other objectives.
Based on this strategy and considering the order of magnitude of the hydrologic data,
yield weight coefficient equal to one and zero weights for secondary objectives were
selected in the beginning and the performance of the OCT module was examined. Then
based on the obtained result, appropriate weights for all objectives were determined. For
the case 1 in CE-646 problem, 4-5 adjustments were made for each weight coefficient to

find the most appropriate coefficients.

As was mentioned in section (5.10), larger terminal weight coefficients (W) were
not used to meet the terminal storage conditions. This is due to the fact that larger
weights (W,) increase the effect of the Lagrange multiplier on the yield gradient and may
eventually reduce the reservoir yield. Small W, on the other hand, increase the deviation
of final storage from its target storage. The same situation applies to the bang-bang
weight coefficients. Increasing W,” and W,” will smooth the control trajectories over
time. However, they generally lower the total water supply and hence lead to a higher
system cost. Therefore, if in designing a multi-reservoir system, having smooth control
trajectories is not as important as the system cost, the related weights should be kept as
small as possible. While bang-bang control on yield W,” will definitely reduce the total
system yield all the time, assigning reasonable bang-bang weights to the release may help
the system to supply water more efficiently. However, large #,” causes the bang-bang

term dominate the multiplier term in the release gradient. This may result in inappropriate
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(too large/small) releases and consequently, pushes the storage to stay in the infeasible

region.

The penalty weights in the PSLP module have to be at least greater than the
related decision variables in the dual problem. The PSLP-OCT model performance
showed that the model is insensitive to the penalty weight W/ as long as its value is
greater than the decision variables in the dual problem. However, large W7 may keep the
deviation variables in the basis for the majority of PSLP iterations which usually slow
convergence. Therefore, the best strategy to find the proper W7, as Zhang et. al. (1985)
mentioned, is to start the problem with a small . If the current solution is infeasible in

the PSLP module (monthly demands are not satisfied), increase the weight and start again.
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CHAPTER 6

MODEL EXTENSION TO MULTI-DEMAND AREA

PROBLEMS

In chapter 5, the performances of four screening models in designing the case 1
CE-646 multi-reservoir system were compared to the benchmark solution obtained from
an available DP model. It was shown that the proposed PSLP-OCT model offers the best
compromise solution and is a promising optimization model to design multi-reservoir
systems regardless of their sizes. In this chapter, a more complex and realistic design
problem with a multi-demand area distributed over the whole watershed is considered.
Then, the capability of the PSLP-OCT model in designing multi-reservoir systems to
supply water for those demand areas is investigated and the necessary model adaptation is
introduced. By implementing this adaptation, the finalized form of the proposed model in
this study is established. This model can be used to design any multi-reservoir system with

any number and types of demand area.

6.1 Case 2 Study with Multi-Demand Areas:
Case 2 study in this research is based on the CE-646 problem, which is generalized

to a situation with demand areas distributed over the whole watershed. The new scenario
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shown in Fig. (6.1) illustrates the different demand areas of different types. Each demand
area can be supplied by its upstream candidate reservoir(s). This case study is based on
Supangat (1985) and annual demand levels of 2500, 5000, 5000, 2500, and 36900 MCM
are required by demand areas #1 to #5. Due to inherent limitations of the DP model in
Supangat (1985), all the demand areas in the case 2 CE-646 problem share the same
seasonal distributions of water demands. This feature, however, does not affect the
PSLP-OCT model performance since it is indifferent to demand distributions and is

capable of handling any seasonal arrangement.

Qi Q

/N RES #1 RES #3 LN RES #4
n

Gy RES #5 & @

Ts

RES #6 @

Fig. (6.1): The hydrosystem layout of CE-646 multi-demand area. All symbols are defined
in Fig (3.1).

The PSLP-OCT model was applied to the case 2 CE-646 problem to design the
multi-reservoir system considering all the demand areas at the same time. The PSLP-OCT
solution showed a considerable sensitivity to the selected weight coefficients, which makes
it inconvenient for any model user. The case 2 CE-646 problem can be characterized as a
hydrosystem with high differences between demand levels in different areas. It goes

without saying that large demand levels (such as D#5) result in larger yield gradients. This
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causes a problem in the model performance and is named here as domination of large
gradients over small ones. During several model experiments, it was found that the OCT
module gives priority to satisfy large demand levels by increasing the corresponding
reservoir vields. Consequently, in spite of assigning reservoir capacities in the PSLP
module to meet water requirement for a certain demand area, the OCT module may use
them to satisfy large demand levels at other areas. This trend in the OCT continues until
yield gradients of the large and small demand areas fall into the same order of magnitude.
At that iteration, the OCT module can use the assigned capacities to provide yield for the
same demand area. This causes the PSLP module to assign extra capacities for some
reservoirs. Consequently, up to that iteration, a more expensive system is designed, if
those reservoirs happen to be the expensive ones in the hydrosystem. Once all demands
are satisfied in an expensive selected layout, the PSLP module has to reconfigure the
whole system by reducing the size of those expensive reservoirs that supply water for the
large demand areas and equivalently increase the size of other inexpensive reservoirs.
Therefore, the domination of large gradients increases the computational burden of both
the OCT and the PSLP modules and increases computer execution time. Moreover, this
calls for an efficient, large LP solver which, as Hiew (1987) and Grygier (1983) pointed

out, is crucial to the success and satisfactory performance of PSLP.

For instance, in the case 2 problem, the first reservoir is among the most expensive
candidate reservoirs and it should not be selected unless it is the only reservoir capable of
supplying water to a certain demand area. In the current case study, the first demand area
can only be supplied by RES#1. Therefore, the model is expected to increase the capacity

of the RES#1 only to that level to supply water for the D#1. To design the whole system
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at the same time, the PSLP-OCT model can be used directly without requiring any
modification to the original code. In this case, the PSLP module increases the capacity of
the first reservoir to satisfy the D#1. However, the OCT module will use this capacity to
provide water mainly for higher demand levels at areas #2 and #5. Consequently, in the
next PSLP iteration, the module increases the capacity of the RES #1 again to meet the
water requirement of D#1. This causes the RES#1 to have a capacity larger than it
should. The same scenario happens to other reservoirs upstream of D#S and
consequently, the system will be designed at a higher cost and hence the result will be sub-
optimal at this point. Therefore, the PSLP module tries to reconfigure the system. That
is, it reduces the size of RES#1 to a value to supply water for the first demand area and
increases the size(s) of some other inexpensive reservoirs such as RES#4 or RES#6 to

provide the demands in the D#5.

Step size reduction is another potential problem that is created by the domination
of large gradients. As was explained in section (3.5), a certain relative improvement
(25%) in the PSLP objective values is required to keep the same step size in the next
PSLP iterations. Supplying water for small demand levels compared to the effects of
supplying large demand levels at other areas results in a small improvement in the
objective value. Consequently, the step size in the PSLP module is reduced by half in the
next iteration and eventually, the step size tends quickly to zero and terminates the PSLP
iteration. In other words, the step size at each PSLP iteration depends mainly on the
improvement of that part of the objective function that supplies the large demand levels.

To cope with the rapid reduction of step sizes, a larger initial step size is required in order
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to provide the necessary number of iterations to reach the optimal solution. Hence, a

higher computer execution time is required to design the entire system.

One strategy to cope with these problems is to use lower weight coefficients #,
for large demand levels. In this case, the yield gradients in Eq. (3.1-R) would have the
same order of magnitude. During the experiments, it was found that this strategy, though
effective, calls for careful #,;” selections. Selection has to be based on the combining
effects of the system hydrology and the scaling of the demands, and consequently, may not

be an easy task in large, complex hydrosystems.

To cope with the problems of rapid step size reduction, domination of large
gradients and sensitivity of the weight coefficients to the yield gradients, an alternative
approach was implemented in the PSLP-OCT model. In this approach, the design model
considers one demand area at a time and tries to design the multi-reservoir system for that
single demand area. To do this, demand areas are numbered sequentially from upstream
to downstream. This allows the algorithm to proceed sequentially from upstream to
downstream demand areas, specifying storage strategies to supply each demand area in the
hydrosystem. The model formulated thus leads to a sequential reservoir screening
algorithm with tradeoffs between the OCT and PSLP modules. The PSLP algorithm then
begins with the first demand area and proceeds downstream. For each demand area, the
OCT module considers one reservoir at a time and optimizes the corresponding yield.
This approach will require running the OCT module as many times as the number of
demand areas multiplied by the number of reservoirs (N *N,). That is, for case 2 CE-646

problem, first the OCT module is used for a small system of one reservoir (RES#1) with
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one demand area (D#1) and the model optimizes the capacity of the RES#1 to supply
D#1. Then, in the next step, a system with two reservoirs and one demand area (RES#1,
RES#2, and D#2) will be considered. These two reservoirs are the candidate reservoirs
that potentially can supply water to D#2. Once the PSLP module specifies the related
reservoir capacities (x; and x;), the OCT module optimizes the yield of RES#1 (v,
t=1,..,T). Then, the yield trajectories of RES#2 are optimized in a way to supply the
water deficit that could not be satisfied by RES#1. In other words, at each step, the PSLP
module considers one demand area with all the related candidate reservoirs. Then. the
OCT module considers one reservoir at a time to optimize the corresponding yield. At
first glance, this approach may seem to increase computer time due to its sequential
procedure. However, by the sequential policy and considering one demand area at a time
a great simplification in the PSLP formulation can be done that dramatically reduces the

number of yield constraints.

The computer execution time in the PSLP-OCT model depends on several factors
such as the problem size, the shape of objective functions, and the initial solution in each
module. In the next paragraphs, it is shown that the sequential procedure reduces the
problem dimensions in both the OCT and the PSLP modules and eventually, lowers the
computer time. Solving the problem for one reservoir and one demand area at a time
needs N *N; times running the OCT module sequentially. This is a V,; increase in number
of times that the OCT module is called. However, the problem size of the OCT module in
the sequential strategy is much smaller than before. According to literature, for a problem

with N variables and 7T time stages, the rate of change in the computer time in the OCT
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varies as (N+*TY, where 1<p<2. By applying the sequential strategy, the change in
computer execution time for the OCT module varies from N, *{T#N,+1)} in the original
model to N,*N,#2+T)°. Several experiments with a different number of variables were
performed on the OCT module. It was found that the power p for the water supply
problem of the OCT module is equal to 1.23. This result shows a close agreement with
the value (p=~1.2) that Hiew (1987) has recorded. That is, for the case 2 CE-646 problem
with 24 months hydrologic data and 5 demand areas, the sequential policy increases the

total OCT execution time by 1.3.

The problem size in the PSLP module depends on the number of variables and the
problem constraints. For a problem with N variables and T time stages, the changes in
execution time in the PSLP modules are proportional to Nox (Ng*T+2N;). Unlike the case
for the OCT module, the sequential approach reduces the PSLP execution time. This is
achieved by decreasing the number of time periods of yield constraints T fold and is
discussed in the next paragraph. Consequently, for case 2 CE-646 problem, the sequential

policy decreases the PSLP execution time by 7.8.

It should be noted that in most practical cases. the hydrologic data length (T) is
much larger than the number of candidate reservoirs or demand areas. Considering the
slow rate of increase in the OCT execution time and rapid rate of decrease in the PSLP
execution time, one can expect an overall reduction in the execution time of the sequential
PSLP-OCT model. It should be added that due to the sequential policy, a smaller initial
step size would be sufficient which can further lower computer time. The approximated

water supply constraint (5.36) can be rearranged as:
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Jor j=12, N, ; fort=12,...T

N, Nr N, Nr 6.1
35 (Z,,x)2 D -z(y;_,.o —z<z,.nx.‘o>j ©b
n=1 i=l n=1 =1

Due to the sequential policy of the PSLP-OCT model, the return flows from the
upstream demand areas are treated as constants and consequently, cease during yield
differentiation. Therefore, the Eq. (5.37) reduces to:

e (6.2)

H

Py _, z{l fyi7=20; ifi=n
|0 othewise
Eq. (6.2) shows that the right hand side of Eq. (6.1) is a constant and its value
depends on the reservoir yields obtained at the previous iteration (y.jo). The left-hand
side of Eq. (6.1) is the summation of the capacities of reservoirs that are physically capable
of supplying water for demand area j. Therefore, Eq. (6.1) states that for every demand
area, the summation of reservoir capacities should at least be equal to the largest right
hand side value over the design time period. This concept can be used to reduce the
number of constraints in the PSLP module and consequently alleviate the optimization

problem dimension dramatically. That is, for every demand area j, there will be only one

constraint to reflect the water supply constraint as:

Jor j=12,.N,

i i (Z,.,,x, ) > Max, [D - i (yﬁ,_,,o - NZ (Z,.x,, )H (6.3)

n=l 1=l n=1

Therefore, the equivalent Linear Problem in the sequential model has N, decision

variables and N,~2N; constraints and consequently, is independent of the design period
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length. This feature enables the PSLP module to use longer periods of hydrologic data to
design multi-reservoir systems without affecting its dimension.

The objective function (4.1-R) and system constraints (Eq. 4.3 to 4.7) in the OCT
module are similar to those specified for single demand area formulation in section (5.10).
The algorithm, however, is slightly different, in that the PSLP module needs to account for
the physical networking of both the reservoir system and the demand areas. Therefore,
the candidate reservoirs and demand areas should be numbered sequentially from upstream
to downstream. The PSLP algorithm then starts with the first demand area and proceeds
downstream. For each demand area, the PSLP module may assign/increase the capacity of
some reservoirs. These reservoirs are contributing to supply water to that demand area.
Therefore, the OCT module considers only the contributing reservoir(s) and optimizes
their yield. If a reservoir is not contributing to a demand area, the OCT module assigns
zero values to the corresponding yield variables. This feature not only reduces the
computational burden of the OCT, but also limits the number of yield weight coefficients
that have to be selected. The new approach was implemented into the PSLP-OCT model.
To evaluate its performance and speed, the PSLP-OCT model was applied to the case 1
CE-646 problem. The result showed that the new approach achieved the same result
while the execution time reduced from 68 to 46 seconds on the Pentium Pro 180 personal

computer.

6.2 Solution to the Multi-Demand Area Case Study:

The PSLP-OCT model was applied to the case 2 CE-646 problem. Unlike the

case 1 problem, all the decision variables (reservoir capacities) do not appear in the yield
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constraint of the PSLP module i.e., for each demand area, only those reservoirs capable of
supplying water are considered. Following the assumptions made in Supangat (1985), no
return flows from demand areas into the stream system were considered. The optimal
configuration designed by the PSLP-OCT model and the benchmark solution obtained by

the DP model are shown in table (6.1).

Table (6.1): Model performances comparison between the DP and PSLP-OCT models.

0.7285 19.65 2.534 6.156 - 225.7 187.6 519.0

3.160 19.86 5.970 8.780 - 2555 218.2 519.0

The monthly storage of the selected candidate reservoirs and their corresponding
yield and release trajectories for each demand area are plotted in Figs. (6.2) to (6.6). As
expected, the required construction costs are higher than in the previous case due to the

additional yield constraints.
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Fig. (6.2): Optimum state and control trajectories of RES#1 by the PSLP-OCT model for
case 2 CE-646 problem.
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Fig. (6.3): Optimum state and control trajectories of RES#2 by the PSLP-OCT model for
case 2 CE-646 problem.
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Fig. (6.4): Optimum state and control trajectories of RES#3 by the PSLP-OCT model for
case 2 CE-646 problem.
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Fig. (6.5): Optimum state and control trajectories of RES#4 by the PSLP-OCT model for
case 2 CE-646 problem.
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Fig. (6.6): Optimum state and control trajectories of RES#6 by the PSLP-OCT model for
case 2 CE-646 problem.

The configurations obtained from the above water supply screening procedure
represent the best compromise solution. The computer execution time for this case on a
PC (Pentium-Pro 180) was 83 seconds. The degree of optimality of the PSLP-OCT
model for the case 2 CE-646 problem was 1.163. The result shows that, like the case 1
study, the PSLP-OCT was capable of designing a system at around 16% lower cost. As
was mentioned earlier, the main reason for proposing an over-designed system by the DP
model has to be related to 1) the decomposition technique implemented in the DP model:
and 2) the discretization levels considered for the storage and decision variables. Due to
lack of information on the monthly storage and releases proposed by the DP model at
Supangat (1985), it is not possible to investigate its proposed storage/release trajectories
and to analyze further the reason(s) for over-designing the system. Regardless of the

reasons that the DP model over-designed the system, the lower cost multi-reservoir
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system designed by the PSLP-OCT model indeed proves the success of the PSLP-OCT

model.

As in the case 1 CE-646 problem, the terminal storage objective was not fully met
and the minor deviation (from target storage) had to be adjusted by changing the
corresponding release. The assigned weight coefficients for the contributing reservoirs are
presented in Table (6.2). Following the strategy explained in section (5.12) and
considering the order of magnitude of the hydrologic data, yield weight coefficients of /
were selected a priori for all demand areas. Then with the zero weights for the secondary
objectives, the performance of the OCT-PSLP model was examined. Based on the
obtained result, appropriate weights for the first and secondary objectives were

determined such that the system could supply water at the minimum cost.

Table (6.2): Selected weight coefficients in the OCT module for case 2
CE-646 problem.

W,." 1.0 - . . _
W, - 1.0 - - -
W, - - 2.0 - -
W4’ - - - 1.0 -
W, - - - - 1.0
W,” 0.0 0.0 0.0 0.0 0.0
W, l.e-5 0.0 le-5 0.0 0.0
W,* 01 01 0l 01 l.e-8
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Table (6.3) shows the selected penalty weights in the PSLP module. These weights
have to be greater than the related decision variables in the dual problem. Several
experiments on the PSLP-OCT model performances showed that besides the above-
mentioned restriction, any penalty weight # can be selected and the PSLP module is not
sensitive to penalty weights at all. Therefore, one can simplify the model formulation to
one penalty weight for the whole system without any effect on the final result. The unique
penalty weight in this case has to be greater than the largest decision variable in the dual
problem. However, in problems where scaling of yield constraints varies widely, it may be
desirable to have separate weights for each constraint. This is because selecting a large
unique penalty weight may keep the deviation variables in the basis for the majority of
PSLP iterations which usually slow convergence. Based on Table (6.2). the proper unique
penalty weight for the above case study hence would be 200. The unique penalty weigh
approach was applied to the case 2 problem and the OCT-PSLP model resulted in the

same solution with no significant difference in execution time.

Table (6.3): Selected penalty weight coefficients in the PSLP module for
case 2 CE-646 problem.

wif 190 180 200 150 150
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6.3 Sensitivity of the Candidate Reservoirs to Demand Levels:

The epsilon constraint method provides a range of solutions for various levels of
water deficit. It should be noted that despite having N,#7 yield constraints in the original
PSLP formulation (5.39), only N; upper bounds would be sufficient to investigate the
effect of water demand levels on designing the reservoir sizes and configurations. This
can be done by assuming that the seasonal water demand at each area (D)) is a monthly
fraction of its annual water demand (D;"). Consequently, the monthly water deficit at each

demand area (&) can be defined as a monthly fraction of the annual water deficit (g") i.e.,

D_J’::__fza: S (6.4)
Hence, the epsilon constraint method will consist of Ng+1 components
corresponding to the objectives of minimizing the total cost (f;) and Ny water supply
constraints (f, , j=2,N;+1). The procedure explained in section (3.8), is used to find the
proper upper and lower bounds on the f objectives. Due to the independence of these
objectives from each other. their upper and lower bounds would simply be equal to the
maximum and minimum annual water deficit at each demand area (0.5f,<D,"). Therefore,
one can use the procedure explained in section (3.8) to specify a set of annual water
deficits at each demand area and investigate the sensitivity of reservoirs to different water

deficit levels.

Taking the whole hydrosystem as a unit can result in a further simplification in
reservoir sensitivity analysis. This will call for considering an allowable water deficit for

the entire multi-reservoir system (£*) and analyzing reservoir patterns and sizes under
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different total water deficits imposed on the system. Based on this concept, the annual
water deficit (e*) follows the same spatial distribution as the corresponding total annual
demand level (D). Therefore, the annual water deficit at each demand area can be

defined as a fraction of e” i.e.,

DY g4 Nd
D=8, i 3p= (6.5)
j=

where [ represents the spatial distribution of the total annual water demands and deficits
in the hydrosystem. This feature not only shows the relationships between different levels
of water supply and their associated reservoir costs, but also clarifies the sensitivity of an
individual reservoir size to the hydrosystem’s demand levels. Considering the uncertainty
of future demands for water, this sensitivity information can be extremely useful in water
resources planning and greatly facilitates the decision making process. The epsilon
constraint approach applied to the case 2 CE-646 problem combines the effects of Ny
water deficit constraints (f, j=2,N;+/) and considers them as one deficit constraint.
Therefore, the epsilon constraint method should consider the objective of minimizing the
total cost (f;) and the total allowable water deficit constraint (f;). The procedure
explained in section (3.8), is used to find the proper upper and lower bounds on the f>

objective as follows:

1- Optimize the f; objective function individually. This would mean that one should
solve an optimization problem that tries to minimize the cost without any
restriction on the supplying demand. The result of this optimization problem,

without requiring solving it, is a system with zero cost (no reservoirs) i.e., a system
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whose water supply depends on the river yield capabilities. Therefore, the PSLP-
OCT model was adapted to minimize the water deficit for a zero storage reservoir
system. That is, for each demand area, the OCT module considers only the most
upstream zero storage reservoir to supply water for that demand area and all other
zero storage reservoirs are considered as mass balance nodes. This is called the
case 3 CE-646 problem and the corresponding model results are presented in
Appendix C-5. The same penalty weights as the case2 CE-646 were used in this
case. However, based on the flow hydrology and the demand levels, slightly
different weight coefficients are selected for the OCT module and are shown in
table (6.4). The water deficit obtained in this problem is equal to 19301.86 MCM.

This is the maximum possible deficit and is denoted as m".

Optimize the objective function f> without considering the system cost. That
would mean solving an optimization problem that tries to supply fully the total
demand. The result of this problem is obviously a system with zero deficit and is
known in advance without any computational requirement. The zero deficit in this

situation is denoted as 7°.
Set the upper and lower bounds on the water deficit objective: 0.<f; <1930/.86

Choose Ng, the number of different & in Eq. (3.25). The number Ng, depends on
the decision-makers’ preferences and their certainty about the future water demand
scenarios. The larger the Ng the more information is provided about the

sensitivity of each candidate reservoir to the possible future demand levels. For
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illustrative purpose, four levels of water deficit are considered in this section.

Consequently, Eq. (3.26) can be rewritten as:

£

£, =nf + (N—':—J(m -nf)  fori=01..3 (6.6)

The upper bound € is equivalent to the annual water deficits (¢*) in the CE-646
water supply problem. By inserting the corresponding parameters in the Eq. (6.6), a set of
annual deficit levels was calculated and rounded up. Then, the demand levels were
calculated by subtracting the annual deficits from the maximum annual demand (51900

MCM). Table (6.5) shows the selected annual deficits and their corresponding water

demand levels.

Table (6.4): Selected weight coefficients in the OCT module for case 3
CE-646 problem.

1.0 - - - -
W,2' - 1.0 - - -
W,5’ - - 1.0 - -
wn,-ty - - - 1.0 -
W,.s - - - - 1.0
W, 0.0 0.0 0.0 0.0 0.0
W, le4 0.0 0.0 0.0 0.0
w," le-1 le-1 le-l 1.0 le-2
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Annual 0.00 6450.00 12900.00 19301.86
Deficit

Annual — | 5,64 o9 45450.00 39000.00 32598.14
Demand

Based on Table (6.5), two additional cases were required to investigate the multi-
reservoir system’s response to the selected demand levels. The results of the case 4 with
45450 MCM and case 5 with 39000 MCM annual demand levels are shown in Appendices
C-6 and C-7 respectively. The same penalty weights as in Table (6.3) were used for these
cases. The selected weight coefficients for the OCT module in each case are also

presented in Tables (6.6) and (6.7).

Table (6.6): Selected weight coefficients in the OCT module for case 4
CE-646 problem.

- RES#6
“ln,ly 1.0 - - - -
wn,zy - 1.0 - - -
W3’ - - 2.0 - -
wnl-iy - - - 1.0 -
W, - - . - 2.0
W, 0.0 0.0 0.0 0.0 0.0
\ l.e3 l.e-3 0.0 0.0 1e-5
w," le-2 l.e-3 le-3 le-2 le-2
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Table (6.7): Selected we ~ht coefficients in the OCT module for case 5 CE-646 problem.

W, 1.0 - - - -
W, - 1.0 - - -
W, - - 2.0 - -
W,.& - - - 1.0 -
W,.s' - - - - 2.0
W, 0.0 0.0 0.0 0.0 0.0
W, le-5 0.0 0.0 0.0 le-5
w,* l.e-3 l.e-5 l.e-3 le-3 le-2

6.4 Discussion of Results:

Based on the results obtained from the epsilon constraint method, the effects of
different water deficit levels on the selected reservoir storage strategies can be analyzed.
The responses of the hydrosystem to different water supply levels are shown in Fig. (6.7).

Two axes with different scales are used in Fig. (6.7) to consider the scaling of the

reservoir capacities.
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2000 =
L ==~ RES3 IR T
1800 | --€-- RES_4 Rt 1 2«00¢
- —%— RES_S a L 4 22000~
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5 L 200005,
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21200 P 16000 ..’
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«  tr S e
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Fig. (6.7): Water storage strategies for CE-646 problem at different supply levels
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Fig. (6.7) indicates that RES#1, RES#2, RES#3, and RES#6 are sensitive to the
levels of total water demand. Their sizes increase monotonically with increasing supply
levels and therefore, should be carefully sized. Among these reservoirs, RES#2 and
RES#6 are more sensitive in that their sizes change rapidly at different supply levels.
Therefore, caution should be used to avoid foreclosure of future opportunity. The results
also show that RES#5 should not be built regardless of the demand levels. Candidate
reservoirs #1, #2, and #3 are also insensitive to the levels of demand at the area D#S and
they should be built only to satisfy the demand areas located at their downstream limit.
Candidate reservoir #4 is exceptional. The results of CE-646 problems (cases 1 to 5)
show that RES#4 should be built at all demand levels greater than the yield capability of
the river (Case3). The size of RES#4 can be decided easily, as it shows a mild sensitivity
to the change of demand levels. The required capacity at this site ranges between 570 to
615 MCM when supply levels change from 39000 to 51900 MCM. The selected capacity
of RES#4 in the case S is slightly larger than the case 4 problem. This is due to the
relatively higher cost of RES#6 at that size and consequently, some part of the assigned
capacity in the RES#4 is reserved to supply demands at D#5. As the capacity of RES#6
increases, it becomes a less expensive reservoir than RES#4 as in the case 2 problem,

where the PSLP module will not increase RES#4 capacity to supply water for D#5.

The sensitivity of the individual reservoir sizes can be useful in developing
guidance for construction and investment timing in the river basin. The less sensitive
reservoir has a chronological priority over others and should be built first. Fig. (6.7)
shows that if, at that moment, the available total budget is less than the required total cost,

decision-makers should definitely give priority to build RES#4. Then, depending on some
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other factors such as the remaining budget, social aspects. and the possibility of expanding
the capacity of each reservoir in the future, the decision-makers can give their preferences

for building other candidate reservoirs.

Similar analyses can be done in multi-reservoir design problems by using different
g" levels to specify a set of water storage strategies. The slope of each curve in graphs
such as Fig. (6.7) show the sensitivity of a candidate reservoir to different water deficit
levels. High slope curves show that extra caution should be used in estimating the future
water demand levels in the related demand area(s). This information can help the
decision-makers to select the best reservoir configuration and to avoid building these

reservoirs either too small or too large.
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CHAPTER 7

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

7.1 Summary and Conclusions:

Four optimization models are developed to optimize the configuration of multi-
reservoir systems for water supply purposes. These models apply optimal control theory
(OCT) and penalty successive linear programming (PSLP) as the most promising
techniques to optimize large and complex water resources systems. Three of these models
are based on optimal control theory. However, they differ from each other by taking
different approaches to join the cost function to other objectives. The fourth model
employs a new composite optimization algorithm, which is introduced in this study. This
model consists of two modules. The first module uses the PSLP to minimize the reservoir
costs subject to the water supply constraint. The second module employs the OCT to
minimize the water deficit of the system. These two modules interactively share their
results during the optimization iterations. The final solution of the PSLP-OCT model
proposes a multi-reservoir system that meets the objectives in the two OCT and PSLP

modules.

The developed models are design models that determine water storage strategies

in a multi-reservoir system. These models are written in FORTRAN 77 to optimize the
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reservoir sizes and select from given configurations for water supply purposes at a
minimum cost. The muiti-objective programming methods are implemented in the models
in order to consider the two non-commensurate objectives of minimizing cost and water
supply. The weighting method and epsilon constraint method are used as the most

suitable generating techniques to incorporate the problem objectives.

To develop the design models, first the computer codes based on the OCT and
PSLP algorithms were developed and tested for general nonlinear problems. The
performance of the OCT program was compared to the analytical solution of a test
problem. The results were consistent between them with a maximum absolute difference
of 4x107. The performance of the PSLP program was compared to another test problem
and the PSLP result exactly matched the problem’s best known solution. The four design

models were developed based on these two computer codes.

A multi-reservoir system was selected as a case study to evaluate the
performances of the developed models in designing the reservoir configuration. This case
study consists of six candidate reservoirs with serial/parallel layout that fairly represent a
large hydrosystem. The best known solution to the case study is proposed by the
combination of dynamic programming and simulation models and was used as the
benchmark to evaluate the success of each design model. The results of the design model
performances were illustrated in chapter S. Based on these results, all the design models
based on the OCT algorithm fail to design the multi-reservoir system optimally. However,
the PSLP-OCT model provided the design for the system successfully. Compared to the

benchmark solution, the PSLP-OCT model supplied the same level of water demand at a
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lower cost. The PSLP-OCT performance showed that it is a very promising optimization

method to design multi-reservoir systems regardless of their size.

The newly proposed PSLP-OCT model incorporates multi-objective
programming into the multi-reservoir design problems. The water supply objectives in the
OCT module have quadratic forms. Therefore, not only does the OCT achieve the non-

inferior solution, but also yields a result that is not sensitive to the initial solution.

The PSLP-OCT model applies a sequential strategy. That is, the demand areas
and candidate reservoirs are numbered sequentially. The PSLP module starts from the
most upstream demand area. Considering each demand area at a time, the proposed
model designs the multi-reservoir system by considering one reservoir at a time.
Designing the system for one demand area at a time has the advantage of enabling the user
to interrupt the analysis after supplying water for that demand area. For example, the user
may feel that a particular weight coefficient should be changed to provide a higher yield or
meet a specific objective. The screening procedure can be interrupted at that point and the
related weight coefficients can be modified. If the user is satisfied with the result (water
supply level vs. the system cost), the program then proceeds to the next demand area.
The entire procedure of considering one demand area at a time is repeated until all demand
areas in the system have been analyzed. Due to the sequential strategy, the PSLP module
is adapted such that it is independent of the design period length. Therefore, using large

hydrologic data does not affect its problem dimension.

The proposed PSLP-OCT, when applied to different case studies, demonstrates

the application of the epsilon constraint in designing multi-reservoir systems. The
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sensitivity analysis performed to show the response of the system configuration to
different water supply levels. The sensitivity of the individual reservoir size to different
water supply levels can be a useful information in developing guidance for construction
and investment timing in the river basin. The most insensitive reservoir to the demand

levels has priority and must be built.

7.2 Recommendations:

The present study has been limited to dealing with problems of deterministic
approach: That is, the stream flows are assumed to be known with certainty. A stochastic
formulation is generally a more realistic representation of a hydrosystem since stream
flows have randomness and are stochastic in nature. However, in stochastic optimization
models, the reliability of the designed system is not considered. Therefore, a probabilistic
approach (e.g., chance-constrained/yield formulations) is recommended to be incorporated
to the PSLP-OCT model. The probabilistic approach though adds to the complexity of the
problem, will help the water resources engineer to design the multi-reservoir system with a

desired reliability.

The second recommendation is to extend the developed methodology to include
the objective of hydropower production in addition to the objective of water supply. The
objective of hydropower optimization can be considered by adding the related constraints
and objective(s) in the PSLP and OCT modules respectively. This requires some
modifications in the OCT and PSLP computer codes. The objectives of supplying water

and generating hydropower in a multi-reservoir system may be two non-commensurate
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objectives and oppose each other. That is. the best strategy to supply water is not
necessarily the best one to generate hydropower. Depending on the order of importance
of water supply and hydropower objectives, proper weight coefficients must be assigned

to the objectives in the OCT module to meet the design objectives.
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Input Data File of the Case 1 CE-646 Problem:

*  (Total months) T (Total reservoirs) Nr (Total demand areas) ND
24 6 1
* Ratio of minimum storage Smin(n) to reservoir storage i.e., OMEG(n).
6*.0
* Upper bounds on minimum storage TAUU(n)
6*0.
* Lower bounds on minimum storage TAUL(n)
6*0.
* Upper bounds on reservoir storage/capacity Xmax(n)
10780 15360 16030 1000 9500 48700
* Lower bound on reservoir storage Xmin(n)
6*0.
* Maximum water demand at area j during month t [D(j.t)]
7214.1 7162.2 6279.9 4100.1 3788.7 2595.0 1141.8 1453.2 2698.8 39444 55533
5968.5 7214.1 7162.2 62799 4100.1 3788.7 2595.0 1141.8 1453.2 2698.8 39444
5553.3 5968.5

* Upper & lower bounds on reservoir yields Ymax(n,j,t), Ymin(n,j,t)

* RES#1 Ymax(n,j,t) Ymin(n,j,t)
24*50000. 24*0.

* RES#2 Ymax(n,j,t) Ymin(n,j,t)
24*50000. 24*0.

* RES#3 Ymax(n,j,t) Ymin(n,j,t)
24*50000. 24*0.

* RES#4 Ymax(n,j,t) Ymin(n,j,t)
24*50000. 24*0.

* RES#5 Ymax(n,j,t) Ymin(n,j,t)
24*50000. 24*Q.

* RES#6 Ymax(n,j,t) Ymin(n,j,t)
24*50000. 24*0.
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* Upper and lower bounds on reservoir releases Rmax(n) and Rmin(n)
6*99999. 6*0.

* WY (n.j)
le-7 1. 1. 1. 1. L
* Wby(n)
6*0.
* Wbr(n)
le3 0. 0. 0. 0. le-4
* Wfs(n)
le-5 0. 0. 0. 0. 1le-2
* Coefficients of Evaporation function
* RES#1 Ce(n) Pe(n)

0.410 0.7
* RES#1 monthly evaporation rate m/month EVAP(n,t)
0.2103 0.3737 0.412 0.2798 0.141 0.0717 0.0312 0.025 0.0247
0.1030 0.2103 0.3737 0.412 0.2798 0.141 0.0717 0.0312 0.025
0.0388 0.1030
* RES#2 Ce(n) Pe(n)

1 .64
* RES#2 monthly evaporation rate m/month EVAP(n.t)
0.2103 0.3737 0412 0.2798 0.141 0.0717 0.0312 0.025 0.0247
0.1030 0.2103 0.3737 0412 02798 0.141 00717 0.0312 0.025
0.0388 0.1030
* RES#3 Ce(n) Pe(n)

0.33 0.67
* RES#3 monthly evaporation rate m/month EVAP(n.t)
0.2103 0.3737 0.412 0.2798 0.141 0.0717 0.0312 0.025 0.0247
0.1030 0.2103 0.3737 0.412 0.2798 0.141 0.0717 0.0312 0.025
0.0388 0.1030
* RES#4 Ce(n) Pe(n)

1.730 0.51
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* RES#4 monthly evaporation rate m/month EVAP(n,t)

0.2103 0.3737 0412 0.2798 0.141 0.0717 0.0312 0.025 0.0247
0.1030 0.2103 0.3737 0.412 0.2798 0.141 0.0717 0.0312 0.025
0.0388 0.1030

* RES#5

Ce(n)
0.475

Pe(n)
0.72

* RES#5 monthly evaporation rate m/month EVAP(n,t)

0.2103 03737 0.412 0.2798 0.141
0.1030 0.2103 0.3737 0.412 0.2798 0.141 0.0717 0.0312 0.025

0.0388 0.1030

* RES#6

Ce(n)
0.74

0.0717 0.0312 0.025 0.0247

Pe(n)
0.74

* RES#6 monthly evaporation rate m/month EVAP(n,t)

0.2103 0.3737 0.412 02798 0.141 0.0717 0.0312 0.025 0.0247
0.1030 0.2103 0.3737 0.412 0.2798 0.141

0.0388 0.1030

* Coefficients of reservoir cost functions cost(n)=A(n)*X(n)+ B(n)*X(n)"2

* RES#I A B
0.01875305419 -1.1624993e-07

* RES#2 A B

.01565203799 2.302339%e-7

* RES#3 A B
.01963009329 2.78487678e-07

* RES#4 A B

.00427404517 1.818244446e-6

* RES#5 A B
0.02175264227 -3.96866e-9

* RES#6 A B

0.00712305011 -2.844271e-8

* Inflows to reservoirs Q(n,t)

* RES#1
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1379.7 470.412 239.148 191.844 178.704 444.132 717.444 575.532 1200.996
1411.236 1847.484 1876.392 1295.604 559.764 278.568 176.076 207.612 281.196
743.724 1395.468 1340.28 1663.524 4685.724 4231.08

*RES#2

24*0.

*RES#3

1865.880 940.824 438.876 375.804 617.580 680.652 551.880 2128.68- 1584.684
1902.672 3148.344 3161.484 1905.300 706.932 417.852 325.872 362.664 430.992
814.680 1479.564 2084.004 3390.120 5072.04 6312.456

*RES#4

312.732 212.868 84.096 70.956 78.840 228.636 165.564 825.192 791.028 633.348
1032.804 738.468 396.828 228.636 155.052 84.096 102.492 299.592 331.128
517.716 1185.228 2304.756 2183.868 1844.856

*RES#5 )

24%0.

*RES#6

1011.780 851.472 317.988 365.292 520.344 312.732 -44.676 1500.588 1274.58
1400.724 3524.148 2341.548 1450.656 512.46 339.012 354.78 30222 312.732
473.040 -512.460 696.420 3211.416 2147.076 4420.296

* Return flow fraction RHO(j,t)

24* 0.

* Maximum penalty weight Pmax

100
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APPENDIX B

FLOW CHARTS OF COMPUTER PROGRAMS

B-1  Flow Chart of the Optimal Control Theory Algorithm
B-2  Flow Chart of the OCT-I Model

B-3 Flow Chart of the OCT-HI and OCT-III Models
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APPENDIX B-1: Flow Chart of the Optimal Control Theory
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APPENDIX B-2: Flow Chart of the OCT-I Model
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APPENDIX B-3: Flow Chart of the OCT-II and OCT-III Models
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APPENDIX B-4: Flow Chart of the PSLP-OCT Model
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C-5

C-6

C-7

APPENDIX C

OCT-I Model Solution to the Case 1 CE-646 Problem
OCT-II Model Solution to the Case 1 CE-646 Problem
OCT-III Model Solution to the Case 1 CE-646 Problem
PSLP-OCT Model Solution to the Case 1 CE-646 Problem
PSLP-OCT Model Solution to the Case 3 CE-646 Problem
PSLP-OCT Model Solution to the Case 4 CE-646 Problem

PSLP-OCT Model Solution to the Case 5 CE-646 Problem



C-1: OCT-I Model Solution to the Case 1 CE-646 Problem

Reservoir Yields y(n,j,t), n=1 to Nr, =1 to Nd. t=1toT

y( Lj,t)

250.608 2.135 497.270 384.606 163.137 0.000 23.554 11.063 31.101 31.124
31.124 31.124 35.338 500.468 493.541 0.000 0.000 0.000 0.000 189.801 225.673
120.224 669.758 641.707

y( 2,j,t)

934.010 1284934 1703.776 1486.401 1482.691 987.666 466.089 14.569 170.429
309.283 244.749 72.788 529.128 1569.877 2836.380 1174.329 1240.500 499.505
279.504 254411 987.242 770.265 0.088 0.088

y(3,5.T)

3012.509 2421943 150.190 2737 70.545 146.138 43.145 218368 717.537
1650.948 2128.951 2741.347 3908.696 1552.148 250.849 365.378 362.664 105.467
39.252 401.426 1204.431 1485.258 3508.121 2993.674

y(4,5,T)

104.850 201.742 1472.236 764.613 162.554 57.709 42.765 38.490 47.167 47.057
47.057 47.057 11.992 638.599 467.121 725.821 23.261 0.000 0.000 0.000 149.377
184.378 181.027 189.256

y(5.5,T)

20.253 132.192 739394 686.407 132974 81.780 72.613 13.945 15.862 15.886
15.886 15.886 21.366 607.173 848.349 495.229 794.147 331.000 331.000 517.000
93.331 95.563 92.144 48.501

y( 6,3,T)

2665.865 2750.652 1301.859 399.001 1256.256 836.911 253.695 922.448 1497.204
1670.607 2866.038 2840.803 2475.014 1591.025 680.194 546.251 302.220 84.137
487.410 0.000 38.954 1288.712 1102.716 2095.828

Reservoir Releases r(n,t), n=1to Nr t=1to T

r( 1,T)

1034.000 776.000 756.000 774.000 783.000 694.000 599.000 596.000 732.000
798.000 819.000 827.000 864.000 957.000 935.000 886.000 829.000 395.000
587.000 841.000 1186.000 1532.000 1847.000 1978.000

r(2,T)

36.000 0.000 0.000 0.000 0.000 0.000 15.000 16.000 16.000 16.000 16.000 15.000
14.000 0.000 0.000 0.000 0.000 0.000 14.000 406.000 198.000 283.000 307.000
313.000

r(3,T)

379.000 391.000 413.000 358.000 494.000 507.000 431.000 349.000 296.000
258.000 228.000 204.000 185.000 159.000 183.000 71.000 0.000 210.000 718.000
1049.000 863.000 877.000 892.000 900.000

r(4,T)

163.000 129.000 141.000 147000 111.000 133.000 126.000 212.000 220.000
237.000 259.000 285.000 243.000 300.000 336.000 378.000 427.000 331.000
331.000 517.000 632.000 863.000 832.000 882.000

r( 5,T)
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113.000 41.000 16.000 0.000 0.000 8.000 19.000 22.000 22.000 22.000 22.000
22.000 19.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 188.000 262.000
262.000 200.000

r( 6,T)

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 337.000 721.000 1040.000 1712.000 1924.000 2024.000
2066.000

Reservoir storage s(n,t), n=1 to Nr t=1 to T+1

S(1,T)

3213.689 3308.387 2999981 1985.220 1018.154 250.638 0.756 95.643 64.109
501.996 1084.090 2081.406 3099.511 3495380 2597.010 1446.485 736.318
114.867 1.055 157.774 522.432 451.027 462.315 2631.238 4242.410

S(2,T)

3099.802 3163.541 2654.181 1706.015 993.419 293.666 0.000 117911 683.334
1228.892 1701.590 2259.806 2998908 3319.528 2706.215 804.495 516.043
104.505 0.000 293.496 474.078 474.827 953.550 2493.430 4158.213

S(3,7)

3535.205 2009.428 137.171 12.831 27.890 80.918 108.426 186.158 1747.462
2318.594 2312.302 3103.668 3319.724 1131.202 126.888 110.857 0.337 0.336
115.858 173.283 202.418 218.989 1246.843 1918.743 4337.447

S(4,T)

2637.984 2682.843 2564.928 1035.751 195.079 0.363 38.289 35.088 609.789
1133.648 1482.937 2209.681 2616.081 2757.894 2047.891 1399.786 380.043
32.270 0.862 0.989 1.705 405.556 1662.932 2833.769 3607.356

S(5,T)

1191.875 1221.276 1176.474 561.546 21.974 0.000 43.220 77.601 253.646 435.768
634.858 855927 1102.895 1305.184 997.418 484.593 367.147 0.000 0.000 0.000
0.000 350.669 856.080 1333.876 1967.163

S(6,T)

3151.100 2023.577 554871 0.000 324291 82.232 73.016 239.619 1204693
1315.970 1341.979 2265.885 2007.019 1199.653 279.077 120.471 0.000 0.000
101.595 98.206 0.737 195.188 1615.809 2096.961 3767.657



C-2: OCT-IO Model Solution to the Case 1 CE-646 Problem

Reservoir Yields y(n,j,t), n=1 to Nr, j=1 to Nd, t=1toT

y( 1,,,T)
287.345 3.004 2.819 2.693 323.076 4.840 1835 1.044 11.685 11.435 11435

255.271 397.355 364.677 64.259 0.000 0.000 0.000 0.000 92.852 56.145 159.459
1449.792 1653.685

y(2,j,T)

1370.887 619.863 1392.007 944.928 1155.235 732.480 275.744 32.748 513.398
959.273 889.732 551.720 959.623 1142217 1524.451 687.564 807917 292516
32.992 933.028 577.540 503.661 248.029 98.085

y(3.5,T)

2281.853 914499 4.441 4285 5099 7999 3248 430.125 502.890 489.071
1199.378 1885.790 2184.900 1191.958 3.419 2.884 8.193 0.000 2.756 188.329
270.869 502.139 2262.851 3240.984

y(4,,T)

599.511 1901.003 1102.653 8.224 9.038 110.489 14.792 5.804 6.099 200.601
900.108 833.317 251.218 403.033 640.938 490.663 55.890 129.411 71.648 38.976
681.413 740.072 183.964 205.231

y(5,5,T)

351.982 34.324 216.255 28.337 0.000 71.469 0.000 0.000 0.000 0.000 0.000 0.000
72.190 129370 419.054 435461 109.224 274.010 239.059 192.964 113.216
104.177 104.171 0.000

y(6,j,T)

1972.093 3271.289 3157.479 2716.874 1843.530 1069.461 528514 751.098
1413.772 2023.236 2291.864 2181968 2781.262 3334.985 3087.165 1977.002
1973.766 888.476 683.825 7.050 999.617 1934.892 1304.493 770.954

Reservoir Releases r(n,t), n=1to Nr t=1to T

r( 1,t)

1168.000 719.000 657.000 631.000 606.000 551.000 588.000 665.000 899.000
998.000 1043.000 1049.000 925.000 896.000 818.000 664.000 538.000 281.000
551.000 1275.000 1213.000 1453.000 1694.000 1784.000

r( 2,t)

0.000 0.000 0.000 0.000 0.000 0.000 5.000 5.000 5.000 5.000 5.000 6.000 28.000
17.000 92.000 252.000 306.000 0.000 366.000 338.000 557.000 628.000 657.000
664.000

r(3,t)

420.000 439.000 481.000 546.000 646.000 724.000 728.000 1149.000 1207.000
1208.000 1147.000 962.000 402.000 314.000 348.000 451.000 575.000 522.000
716.000 1387.000 1760.000 2070.000 2234.000 2291.000

r(4.t)

47.000 48.000 54.000 73.000 86.000 114.000 78.000 71.000 60.000 63.000 71.000
82.000 103.000 158.000 210.000 223.000 183.000 274.000 259.000 394.000
485.000 568.000 513.000 779.000

r( 5,t)



3.000 5.000 13.000 43.000 83.000 55.000 0.000 0.000 0.000 0.000 0.000 0.000
73.000 42.000 12.000 12.000 78.000 0.000 10.000 211.000 335.000 392.000
392.000 116.000

r( 6,t)

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.060 0.000 0.000
0.000 0.000 0.000 0.000 0.000 881.000 1416.705 2261.000 2524.000 2624.000
2657.000

Reservoir storage s(n,t), n=1 to Nr t=1 to T+1

S(1Ly)

2110.887 2034.955 1782.882 1361.748 919.648 169.200 57.480 185.082 94.565
384.869 786.655 1579.668 2151.658 2124.614 1423.245 819.188 331.109 0.688
0.884 193.603 221.212 292.339 343.394 1885.292 2678.537

S(2t)

1884.376 1681.314 1780.145 1044.843 730.765 181.480 0.000 307.256 934.497
1315.083 1348.792 1497.033 1988.228 1925.420 1661.891 863.165 587.470 11.516
0.000 152.008 155.976 234.431 555.762 1344.712 2366.539

S(3,t)

1843.316 1007.249 594.460 547.795 373.254 339.710 288351 108.980 658.530
533.318 738.912 1540.864 1854.506 1172.808 373.671 440.024 311.960 91414
0.403 96.325 0.559 53.694 871.670 1446.844 2227.261

S(4,t)

3219.786 2885.982 1149.811 77.232 66.960 50.760 54.905 127.676 876.063
1600.990 1970.735 2032.427 1855.569 1898.159 1565.729 869.812 240.231
103.829 0.009 0.489 85.228 104.043 1100.726 2587.626 3448.240

S(5,t)

564.825 256.684 265.156 89.731 91.323 94.286 81.800 159.790 230.779 290 766
353.749 424.721 506.636 464.267 450.591 229.265 4.718 0.492 048] 10421
0.455 37.237 109.054 125.871 788.787

S(6,T)

7227.767 6687.465 4707.068 2358.030 594.186 0.000 22.271 182.062 2085.459
3158.097 3748365 6132.220 7258378 6427.820 3974.013 1674.856 766.537
53.744 0.000 0.215 0.000 87.802 1930.238 3431.548 7493.666

156



C-3: OCT-III Model Solution to the Case 1 CE-646 Problem

Reservoir Yields y(n,j,t), n=1 to Nr, j=1 to Nd, t=1toT

y( Ljt)

549.571 42511 0.000 0.000 0.000 0.000 0.906 0.000 43.399 165913 235.803
418.530 240.305 0.539 0.425 0.429 0.000 0.000 0.000 198277 0.000 0.000
1220.282 1742.662

y(2,j,)

814.277 88.924 647.041 978.007 1136.078 479.447 306376 235.526 691.901
935.221 1089.717 755.599 776.564 1138.129 1431.470 511.939 353.493 133.370
0.000 117.060 480.451 829.310 1236.745 225.568

y(3.),t)

2046.235 435.321 0.078 0.061 0.767 2.185 0.000 392.025 515.549 522515
1247.960 1602.964 1719.553 1050.139 0.278 0.284 0.464 0.000 0.000 0.000 0.000
311.303 1795.931 3218.708

y(4.5.t)

1015.958 2354.221 1685.371 7.643 33.728 279.265 0.000 0.000 0.000 396.117
784.118 837.591 1255.322 692.382 89.277 69.030 165.954 272.399 104.959
133.214 564.139 419.138 0.584 56.625

y( 5.0.t)

101.619 106.657 25.366 10.930 21.162 13.797 0.000 0.000 0.000 0.000 0.000
0.000 126.144 146.639 96.378 342601 51.958 27.000 0.000 0.000 22.747 16.691
0.066 0.066

y( 6,j,1)

2535.206 3871.366 3556.839 2738.355 2227.720 1221.582 639.592 670.067
1318.661 1729.025 2090.831 2249668 2720.079 3489.900 4158.177 2666.766
2100.240 931.693 1036.375 1004.740 1631.630 2368.082 1300.246 725.384
Reservoir Releases r(n,t), n=1toNr t=1to T

r( 1,t)

790.000 423.000 451.000 463.000 508.000 444.000 520.000 684.000 1058.000
1207.000 1239.000 1196.000 913.000 700.000 575.000 484.000 438.000 306.000
619.000 1078.000 1349.000 1831.000 2434.000 2059.000

r( 2,t)

129.000 126.000 0.000 0.000 0.000 0.000 93.000 93.000 93.000 93.000 93.000
93.000 19.000 4.000 4.000 4.000 198.000 172.961 493.000 834.000 773.000
769.000 778.000 771.000

r( 3,t)

298.000 331.000 396.000 493.000 618.000 762.000 928.000 1359.000 1444.000
1409.000 1380.000 1165.000 462.000 262.000 267.000 350.000 505.000 446.000
693.000 1478.000 2034.000 2594.000 2852.000 2616.000

r( 4,t)

13.000 14.000 20.000 25.000 21.000 20.000 39.000 54.000 59.000 62.000 65.000
76.000 118.000 135.000 180.000 208.000 17.000 27.000 151.000 242.000 234.000
239.000 251.000 497.000

r( 5,t)



11.000 12.000 13.000 17.000 28.000 34.000 19.000 23.000 28.000 30.000 31.000
24.000 4.000 13.000 52.000 107.000 0.000 0.000 51.000 199.000 96.000 97.000
90.000 0.000

r( 6,t)

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 512.000 941.000 1656.000 1906.000 2009.000
2043.000

Reservoir storage s(n,t), n=1 to Nr t=1 to T+l

S( L,t)

768.480 808.464 813.101 600.984 329.694 0.365 0.497 197.030 88.556 188.149
226.465 599.129 860.923 1003.058 861.992 564.869 256.393 25976 1.169 125.889
245.074 236.347 68.865 1100.285 1529.601

S(2,1)

1320.634 1167.218 1375.043 1178.725 663.566 35.447 0.000 120.624 476.092
749.181 927.947 984.208 1331.544 1448.831 1006.456 145.820 113.837 0.331
0.000 126.000 252.935 348.477 581.158 1000.394 2062.748

S(3,t)

865.894 387.485 561.908 604.604 487.281 486.064 402.516 26.392 404.043 29.175
0.332 520.711 914.201 637.886 32.615 183.156 158.714 15.904 0.895 122.574
124.136 174.137 658.949 1083.045 1560.750

S(4,1)

4650.805 3934.549 1779.153 157.851 196.156 220.264 149.633 276.196 1047.386
1779.413 1954.641 2138.323 1963.190 986.679 387.912 273.671 80.730 0.266
0.459 75.628 218.129 605.218 2251.833 4184.112 5475.327

S(5,t)

364.632 264.882 160.049 141.532 138.505 110.297 82481 102.473 133.465
164.456 196.445 230.427 282.372 270.108 245.267 276.664 34.958 0.000 0.000
100.000 142,992 258.234 383.526 544.428 1041.238

S(6.1)

9765.957 8676.850 6120.397 3286.163 1421317 359.504 246554 602.229
2907.623 4428.322 5631.730 8568.489 9940.562 9152.361 6448.142 2947.599
1095.020 0.000 0.000 161.665 214.441 526.191 2923.393 5480.843 10518.132
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C-4: PSLP-OCT Model Solution to the Case 1 CE-646 Problem
Reservoir Yields y(n,j,t), =1 toNr, j=I1toNd, t=1to T
y(1, LY
24*0.000
y(2, Lt
24*0.000
y(3, LY
24%0.000
y(4, 1,y
328.602 319.673 243.803 76.302 75.245 233.783 182.874 697.918 732.738 757.005
795902 756.884 621.448 303.648 182.594 122462 106.113 299.592 331.128
517.716 1185.228 1780.563 1611.122 854.713
y(3, Ly
24*0.000
y(6, 1,t)
6885.499 6842.527 6036.097 4023.798 3713.455 2361.217 958.926 755.282
1966.062 3187.396 4757.398 5211.616 6592.653 6858.552 6097306 3977.638
3682.586 2295.408 810.672 935.484 1513.572 2163.836 3942.177 5113.787
Reservoir Releases r(n,t), n=1 to Nr t=1to T
r( 1,t)
1379.700 470.412 239.148 191.844 178.704 444.132 717.444 575.532 1200.996
1411.236 1847.484 1876.392 1295.604 559.764 278.568 176.076 207.612 281.196
743.724 1395.468 1340.280 1663.524 4685.724 4231.080
r( 2,t)
1379.700 470.412 239.148 191.844 178.704 444.132 717.444 575.532 1200.996
1411.236 1847.484 1876.392 1295.604 559.764 278.568 176.076 207.612 281.196
743.724 1395.468 1340.280 1663.524 4685.724 4231.080
r( 3,t)
1865.880 940.824 438.876 375.804 617.580 680.652 551.880 2128.680 1584.684
1902.672 3148.344 3161.484 1905.300 706.932 417.852 325.872 362.664 430.992
814.680 1479.564 2084.004 3390.120 5072.040 6312.456
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r( 4,t)

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.00G 0.000 0.000 0.000 0.000 0.000 128.756 572.744 990.138

r( 5,t)

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 128.756 572.744 990.138

r( 6,t)

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 137.000 379.000 729.000 1162.000 1590.000
2113.000

Reservoir storage s(n,t), n=1to Nr t=1 to T+1

s( 1,t)

25*0.000

s( 2,t)

25*%0.000

s( 3.t)

25*0.000

s( 4.t)

395436 379.558 272738 113.019 107.667 111.259 106.111 88.800 216.074
274.363 150.706 387.607 369.186 144.559 69.538 41.990 3.622 0.000 0.000 0.000
0.000 0.000 395.436 395.436 395.436

s( 5,t)

25*0.000

s( 6,t)

24747750 22112.271 17520.930 12470.509 9374.100 6975.015 6050.343 6315.658
9764.780 11858.492 13385.155 17146.748 19311.570 17364.355 12275.666
7206.281 4081.965 1270.886 0.225 1083.930 2131.898 4009.838 9077.465
16022.018 24745.959
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C-5: PSLP-OCT Model Solution to the Case 3 CE-646 Problem
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C-6: PSLP-OCT Model Solution to the Case 4 CE-646 Problem
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to the Case 5 CE-646 Problem
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