Bl i

Acquisitions and

Bibliothéque nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch des services bibliographiques

395 Wellington Street
Ottawa, Ontario
K1A ON4 K1A ON4

NOTICE

The quality of this microform is
keavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
RS.C. 1970, c. C-30, and
subsequent amendments.

Canada

395, rue Wellington
Ottawa (Onlano)

Yo e Volre idtérence

Our e Notee olorence

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la thése <snumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S’il manque des pages, veuillez
communiquer avec ['université
qui a conféré le grade.

La qualité d'impression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont été
dactylographiées a I'aide d'un
ruban usé ou si I'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses amendements subséquents.

FORMAL METRICS FOR QUANTITATIVE ASSESSMENT
OF THE QUALITY OF EXPERT SYSTEMS

ZHISONG CHEN

A THESIS
IN
THE DEPARTMENT
OF

COMPUTER SCIENCE

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
For THE DEGREE OF DOCTOR OF PHILOSOPHY AT
CONCORDIA UNIVERSITY
MONTREAL, QUEBEC, CANADA

SEPTEMBER 1994
© ZnisoNG CHEN, 1994

.*. National Library Bibliothéque nationale

of Canada du Canada
Acquisitions and Direction des acquisitions et
Bibliographic Services Branch des services bibliographiques
oy e
K1A ON4 K1A ON4
Your file Voire réMrence
Ouwr e Nolre rélérence
THE AUTHOR HAS GRANTED AN L'AUTEUR A ACCORDE UNE LICENCE
IRREVOCABLE NON-EXCLUSIVE IRREVOCABLE ET NON EXCLUSIVE
LICENCE ALLOWING THE NATIONAL PERMETTANT A LA BIBLIOTHEQUE
LIBRARY OF CANADA TO NATIONALE DU CANADA DE
REPRODUCE, LOAN, DISTRIBUTE OR REPRODUIRE, PRETER, DISTRIBUER
SELL COPIES OF HIS/HER THESIS BY OU VENDRE DES COPIES DE SA

ANY MEANS AND IN ANY FORM OR
FORMAT, MAKING THIS THESIS
AVAILABLE TO INTERESTED
PERSONS.

THE AUTHOR RETAINS OWNERSHIP
OF THE COPYRIGHT IN HIS/HER
THESIS. NEITHER THE THESIS NOR
SUBSTANTIAL EXTRACTS FROM IT
MAY BE PRINTED OR OTHERWISE
REPRGDUCED WITHOUT HIS/HER
PERMISSION.

‘THESE DE QUELQUE MANIERE ET
SOUS QUELQUE FORME QUE CE SOIT
POUR METTRE DES EXEMPLAIRES DE
CETTE THESE A LA DISPOSITION DES
PERSONNE INTERESSEES.

L'AUTEUR CONSERVE LA PROPRIETE
DU DROIT D'AUTEUR QUI PROTEGE
SA THESE. NI LA THESE NI DES
EXTRAITS SUBSTANTIELS DE CELLE-
CINE DOIVENT ETRE IMPRIMES OU
AUTREMENT REPRODUITS SANS SON
AUTORISATION.

ISBN 0-315-97686-1

Canadi

Abstract

Formal Metrics for Quantitative Assessment of the Quality of

Expert Systems

Zhisong Chen, Ph.D.

Concordia University, 1994

Various systems have to be assessed and evaluated from time to time to assure their
quality, especially in the engineering and scientific disciplines. As a result, many
metrics have been defined and used. In software engineering, it has been shown that
the use of poor quality software can become very costly in the long run. To overcome
this, a large number of metrics have been proposed to quantify the different aspects

of conventional software and much progress has been made.

Expert systems are a special type of software, whose main components are the
knowledge base and inference engine. They are applied to solve complex problems
that need human expertise, and their applications have dramatically increased in re-
cent years in many different disciplines. However, due to their imprecise and iterative
nature, expert systems, especially their knowledge bases are subject to more quality
problems than conventional software. Because of this, expert system metrics are ur-
gently needed to assess and predict the quality of expert systems. Unfortunately, so
far little work has been done in this area, hence techniques in assessing the quality
of expert systems fall far behind those in other disciplines. In view of this, an inves-

tigation into the metric measurements for expert systems was proposed as research

ili

for this doctoral thesis, and it is hoped this work will stimulate more research and

attract more attentions to this area.

Several issues related to expert system metrics are addressed and discussed in this
thesis, such as the appropriate formulation and definition of expert system metrics,
and the validity assessment of the metrics. In order to formally describe and measure
the characteristics of expert systems, an AND/OR digraph is presented. Based on this
digraph and the contents of expert systems, new metrics for measuring ES complexity
have been proposed, which are RC (Rule Base Complexity) and E RC (Entropy-Based
Rule Base Complexity). Five other metrics are formally presented for the measures
of the size and search space, which are NR (Number of Rules), ADSS (Average
Depth of Search Space), ABSS (Average Breadth of Search Space), BC (Buchanan’s
Complexity) and NAC (Number of Antecedents and Consequents). For validating the
expert system metrics, this thesis proposes the metric evaluation techniques from two
perspectives: (1) empirical evaluation that is based on the statistical analysis and
testing of the measuring results; and (2) theoretical evaluation, that is, evaluating
the metrics in an abstract way. Four general criteria and eleven desired properties
regarding the expectation of metric performance are proposed for this purpose, against
which metrics are further evaluated. The evaluation results reveal that RC metric,
designed as a hybrid metric that takes into account the matching paiterns, size and
search space of expert systems, is most effective, giving the best performance among
all the presented metrics, and it can serve as a useful tool in developing quality expert

systems.

iv

Acknowledgements

First, and foremost, I would like to express my sincere gratitude and appreciation
to my supervisor, Professor Ching Y. Suen for his invaluable guidance, advice, and
support throughout this research. Without his encouragement and understanding,

the completion of this thesis would be impossible.

Grateful thanks are extended to Dr. P. Grogono, Dr. R. Shinghal, Dr. S. Lin
of Mechanical Engineering Department, and Dr. M. G. Str~5el of Psychology De-
partment of University of Montreal, for their assistance, suggestions and comments.
I am also thankful to Dr. Alun Preece and students of the expert system classes for

providing valuable data for the experiments conducted in this research.

To all the staff, students at Centre for Pattern Recognition and Machine Intel-
ligence (CENPARMI), I wish to say thank you all for your friendship, help and

cooperation. I will never forget the beautiful memory working at CENPARMI.

Special appreciation goes to my wife, Ying Wang, for her love and wholehearted

support, and to my parents for their patience and encouragement.

This research was funded by Bell Canada. The assistance of Messrs. J. N. Drouin

and F. Coallier are gratefully acknowledged.

Contents

List of Figures xii
List of Tables xvi
1 Introduction 1
1.1 Measuresand TheirRole 1
1.2 Software Concerns ennn.. 2
1.3 Motivation and Goals of This Research 3
1.4 Organization of The Dissertation 6

2 Fundamentals of Software Metrics 10
21 Introduction 10
2.2 Applying Measurement Theory 11
2.2.1 Empirical Relation Systems 12

2.22 Formal RelationSystems 13

2.2.3 Mapping and Software Metrics. 14

2.3 Layer Structureof Metrics 15
24 MetricFactors. e e 19

vi

2.5 Metric Classification
2.6 Scopesof Software Metrics v v v v vttt v i i e

2.7 Use of Software Metrics

3 Conventional Software Measures
3.1 Introduction e e e e
3.2 Size-Oriented Metrics . .
3.3 Control Flow-Oriented Metrics . .
3.4 Data Flow-Oriented Metrics . .
3.5 Information Content-Based Metrics . .
3.6 Hybrid Metrics . .
3.7 OtherlIssues i i it o

4 Characteristics of Expert Systems
4.1 Introduction
4.2 SystemComponents
4.2.1 Knowledge Base.
4.2.2 InferenceEngine
4.3 Rule Base Description Languages
44 RuleDependency i i i i i i ittt et e e
45 RuleBase Anomalies

4.6 Comparisons With Conventional Software

5 Quality Model of Expert Systems

vii

22
24
25

28
28
29
33
37
42
45
46

51 Introduction i e
5.2 Software QualityFacets, ..
5.3 Expert SystemQuality
5.4 Maintainability e
55 Reliability
56 Testability i i it i e e

5.7 A Narrower View of Expert System Quality

Issues Related to Measures of Expert Systems

6.1 Imtroduction
6.2 General Criteria v o0 v i it e e e e
6.3 Strategies i it e e e
6.4 Formal Description of RuleBases
6.5 Current Work i e

Quality Metrics for Expert Systems
7.1 Imtroduction o i i i i e e e e e
7.2 SizeMeasures v v v vt i e e e e e e e

73 SearchSpace it i

Complexity Measures of Rule Bases

81 Imtroduction i it i it e e
8.2 Principles and Definition0 L.
83 Modelof Compiexity i v it

viii

73
73
74
75
7
81

84
84
85
87

8.4 Hybrid Complexity Metric—RC
841 Contents ot o it i e e e
842 Connectivityt i e i e e .
843 Size e e i e e e e,
8.44 Calculation of Complexity
8.4.5 Other Considerations

8.5 Information Content-Based Metric — ERC

9 Examples
9.1 Introduction v v v i i it i e e e e e e e e e
9.2 Animal Identification Rule Base

9.3 Fault Detection, Isolation and Recovery RuleBase

10 Implementing Measuring Tool
10.1 Introduction v v v vt s s e e e e
10.2 Overall System Architecture v,
10.3 Implementation i e e
104 DataStructuret it ittt e e

10.5 Measuring Library i i i

11 Measuring Results
11,1 Introduction it i i e e e e
112 DataCollected
113 Results 0 o o i e e

ix

117
117
117
128

137
137
137
139
142
143

114 Applying Metrics i i i e e e 1587

12 Statistical Analysis and Testing 166
121 Introduction @ o i e e e e e 166
12.2 Correlation Between Two Variables 166

12.2.1 Plotted Diagrams 167
12.2.2 Correlation Coefficient 167
12.3 Rank Order Correlation 169
12.4 Tests of Significance 170
12.4.1 Hypothesis and Alternative Hypothesis 170
12.4.2 Testing A Hypothesis 171
1243 Two Typesof Error. oo 174
12.4.4 Tests of Significance for the Correlation Coefficients 174

12.4.5 Test of Significance of the Difference Between Two Coefficients 177

12.5 Regression Analysis i it e 178
13 Evaluation of Expert System Metrics 181
13.1 Introduction ¢ ot vt i e e e e e e e 181
13.2 Empirical Evaluation 183
13.2.1 Intercorrelations of Metrics. 183

13.2.2 Correlations of Metrics with Anomaly Rates 197

13.3 Comparison of Metrics, 203
13.4 Theoretical Evaluation00 206
13.5 Using Metrics as Predictors 212

14 Concluding Remarks
References

Appendix

A t Values

B r Values

C Z Values

Xi

215

219

229

230

232

234

List of Figures

[~ I

10
11
12
13
14
15
16

Mapping Between Empirical Relation System and Formal Relation Sys-

113 1 o 16
An Example of Metric Layer Structure 18
Software Metric Classifications 23
The Useof Metrics it i, 27
Layer Structure of Several Software Science Measures 34
Span of Data Between References 38
A Typical Expert System 50
Software QualityModel 62
Componerts Affecting Software Quality 66
Features and Quality Factors 68
Relationship Between Several ES Characteristics 71

Strategy for the Formulation of Expert System Measures 76

An AND/OR Representation of A RuleBase 82
Complexity Model of RuleBases 96
Basic Structures in The Rule Dependency Digraph 103
Measurements of Basic Structuresby RC 110

xii

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

An AND/OR Digraph of the Animal Identification Rulebase
Another AND/OR Digraph of the Animal Identification Rulebase . .
Rule Dependency of the Sample RuleBase
Processing Stepsof FILTER
Overall Measuring Structure
Linked ListofRules
ARuleBaseClass
Results of Applying RCtothe Test Data.

Results of Applying ERC to the Test Data

Results of Applying NRtothe Test Data
Results of Applying ADSS to Test Data
Results of Applying ABSS tothe TestData
Results of Applying BCtothe Test Data.
Results of Applying NAC to the Test Data
Anomaly Ratesof theTest Data
Results of Applying RCtothe Test Data.
Results of Applying ERC tothe Test Data
Results of Applying NRtothe Test Data

Results of Applying ADSS to Test Data

Results of Applying ABSStothe Test Data
Results of Applying BCtothe Test Data.

Results of Applying NAC to the Test Data

Anomaly Ratesof theTest Data

xiii

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

Percentage Profile for Expert Systems 158

Percentage Profile for Expert Systems 158
Percentage Profile for Expert Systems 159
Percentage Profile for Expert Systems 159
Percentage Profile for Expert Systems 160
Percentage Profile for Expert Systems 160
Percentage Profile for Expert Systems 161
An Example of Profiling Quality Factor 165
An Example of Plotted Diagram 168
Graphical Illustration of a Critical Region 172
Transformation-Based Test Procedure for Significance 175
RCversus ERC i ittt iiie e 185
RCversus NR i i it i ittt et i e i 185
RC versus ADSS o it e e e e e 186
RC versus ABSS i e e e e e 186
RC versus BC i it ittt e i e e 187
RC versus NAC i it it it e 187
ERCversus NR i ittt ietinnes 188
ERC versus ADSS i i it it e e 188
ERC versus ABSS i v i ittt e e i e i 189
ERC versus BC 0 i i it it it it e et ttne e ane s 189
ERC versus NAC 0 i i i it ittt e e o 190
NRversus ADSSo i it i i e i 190

Xiv

63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78

NRversus ABSS o i i it i i e
NRversus BC v it it o et s s nte e o
NRversus NAC it i i i ittt sine e e
ADSS versus ABSS i e e e e
ADSSversus BC it i i e e i e e
ADSSversus NACo i i it e ittt i
ABSSversus BC 0 i e e i e s
ABSSversus NAC

BCversus NAC i it i e
RCversus AR. i ittt
ERCversus AR. o i it i i iii e s i
NRversus AR i e i i e i e e
ADSS versus AR i it i e e i e e e e e
ABSSversus AR e e e e
log(BC)versus AR0t i it i ittt ie st eiee
NAC versus AR

Xv

List of Tables

10
11
12
13
14
15

Formal Description of the Generic Language 53
A Comparison Between Expert Systen and Conventional Software . . 58
Connectivity Measurement Value forEach Rule 124

Values Derived i i i i it i e e e e e e et e e 124

Valuesderived i i e e 126
Results Measured by the metrics: ERC, NR, ADSS, ABSS, BC and

NAC . o e e e 126
Connectivity Measurement Value for Each Rule 135
Valuesderived v v i ittt e e e 135
Several Measures on the Sample Rulebase 136
Description of RC.CAL Function 145
Description of ERC.CALFunction 145
Description of NR.CALFunction 145
Description of ADSS.CALFunction 145
Description of ABSS.CAL Function 145

xvi

16
17
18
19
20
21
22
23
24

25
26
27
28
29
30
31

Description of BC.CALFunction 145
Description of NAC.CALFunction 146
Application Domains of the Test Data 148
Usual Ranges forthe Metrics v v v v v v oo e 162
Types of Error Associated with Tests of Null Hypothesis 174
Correlation Coefficients Among The Metrics 196
Significance Levels for Each Coefficient 197

Correlation Coefficients Between the Metrics and the Anomaly Rate . 198

Rank Correlation Coefficients Between the Metrics and the Anomaly

Rate i i i e e 202
Results of the Metric Comparisons 204
Metric Evaluation Against The Criteria 206
Evaluation of Different Metries 212
The Metrics Grouped According to Their Performance 212
Tabled t Values i it iiiinen 231
TabledrValues, 233
Tabled Z Values. i i, 235

xXvii

Chapter 1

Introduction

1.1 Measures and Their Role

Precise and well understood metrics can be seen everywhere in our daily life, tem-
perature, size, distance, inflation rate, etc. They are essential and form the basis
for making decisions. Generally, we need metrics because they can extend and en-
hance our ability to sense things not accessible to our innate ability by quantitatively
capturing and providing the attribute information of the target objects. Metrics are
especially useful in scientific and engineering fields, for example, measures in elec-
tronic systems allow us to design a circuit to function properly. Measures of the
building enable us to allocate space. In order to make so-called software engineering
qualify as a real engineering discipline, much effort has been spent in quantitative
metric measurements of conventional software and much progress has been made.
Software engineering is still in a developing process with new metrics being proposed,

examined and evaluated. Some of the best known metrics for conventional software

CHAPTER 1. INTRODUCTION 2

are (1) volume-based “software science” [Halstead, 1977}, (2) control flow-based cy-

clomatic complexity metric {[McCabe, 1976], and (3) Lines of Code.

The major role that metrics play in many applications is to provide a means
of quantitatively assessing the objects and predicting the characteristics associated
with the objects. Assessment implies the situations where the metric values are
used to evaluate objects. Prediction denotes the application that the known metric
values are used to further foretell some important characteristics. The applications
of metrics will result in many benefits, for example, lower development cost, higher
productivity, improved and reliable quality of the products, satisfaction of results,
and so on. Therefore, metrics enable a research area to evolve from an art to an

engineering and scientific discipline.

1.2 Software Concerns

In the literature, it has been shown many times that software with poor quality
has resulted in high development costs. In order to deal with this problem effec-
tively, quantitative measures on the software development processes and products are
needed. Already, for conventional software, many studies and research activities in
this area have been carried out and a rapidly growing number of metrics have being
proposed and applied to predict and assess the different characteristics of software

quality. The followings list some usages of the metric values:

o To characterize the quality of the products and development processes

o To decompose a complex software system into several manageable subparts

CHAPTER 1. INTRODUCTION 3

o To predict software attribute values

o To reveal potential trouble spots (unusual components) of the software
¢ To aid in the distribution of resources to different parts of a system

o To restructure the software to obtain better results

¢ To estimate the development cost

e To evaluate the product

Different metrics are defined and used according their specific needs and pur-
poses, and there exist many types of measures, such as process measures, product
measures, static measures, descriptive measures, code measures, design measures,
date-flow measures, inter-and-intra modular measures, etc., they all aim to provide

information for various quality assurance activities.

1.3 Motivation and Goals of This Research

Expert systems (ES), whose main components are the knowledge bases and inference
engines, are a special type of software applied to solve complex problems that need
human expertise. They possess some features in common with conventional soft-
ware, but also some special features of their own, especially their knowledge bases.
For example, the complex interactions between different pieces of knowledge in the
knowledge base is one such distinctive feature. Recently, the applications of ES have

dramatically increased. Some of the applicatic;n areas include telecommunication,

CHAPTER 1. INTRODUCTION 4

medicine, geology, business, finance, military and others [Suen and Shinghal, 1991,
Liebowitz, 1991]. However, the solutions and domains for these problems are usu-
ally imprecise and ill-defined because of their complexity. This makes the knowledge
bases, one of the main components of ES, which are used to capture the human ex-

pertise, subject to more quality problems than other parts of the systems.

Using rule dases to implement the knowledge bases is a prevalent technique in
knowledge engineering because of the easy construction of rules. Put, the loose con-
struction requirements for the rules may also lead to a complicated rule base which
contains many potential problems such as inconsistency and redundancy, resulting
in an increase in the risk of applying expert systems. Due to the distinctive charac-
teristics of rule bases and their strong influence on the quality of the whole expert
systems, they have been the focus of many studies. In this thesis, we will also place

our emphasis on rule bases, especially, methods of measuring them.

Because of the widespread use of ES and the great concern about ES quality, ES
metrics are urgently needed to quantify the quality of ES, especially their rule bases.
Unfortunately, so far little work in this area has been done, even though the crucial
role of measurements has been widely recognized for conventional software in software
engineering. Also, the few existing proposed ES metrics were designed for some par-
ticular interests only, and they have not been validated by comprehensive experiments
and tests. The lack of study on ES metrics therefore motivated this doctoral research
to investigate the metrics that are related to the qualitative characteristics of rule

bases, especially, the three important quality factors: maintainability, reliability and

CHAPTER 1. INTRODUCTION 5

testability. The objective of our research is to study the application and applicability
of metric measures to ES from both theoretical and empirical grounds. We hope
this research will lay a foundation for future research in which our long-term goal is
expected — building a system of metrics ranging from basic ones to the complex ones
to completely assess and predict the quality of products developed in the knowledge

engineering environment.
The tasks to be done in this thesis include:

e Studying and analyzing meirics measurements.

Conducting comparative investigation between conventional software and ES.

Studying ES quality and measures.

Investigating and building a formalism for describing ES attributes.

Presenting formally some important ES quality metrics.

Proposing new ES complexity metrics.

Implementing a tool for automatically performing the metric measurements on

ES.

Presenting methods for validity assessment and comparison of ES metrics

Using metrics for applications.

CHAPTER 1. INTRODUCTION 6

1.4 Organization of The Dissertation

The organization of this thesis is as follows.

Chapter 1 discusses some background about metric measurements. The motiva-

tion and goals of the thesis are also provided, which indicate the focus of our research.

Chapter 2 introduces some fundamental concepts and principles of measurement
theory, factors, scope and organization of metric measurements and applications. This

chapter provides the rationale for this research.

Chapter 3 investigates the work on conventional software measures. Several main
types of conventional software metrics are presented, from which we can gain the
experience and practice of existing research on the metric measurements, and utilize

them to design ES metrics.

Chapter 4 studies and describes the characteristics of ES. The dependency, the
rule base description languages are discussed, and the anomaly rate in rule bases is
also presented, which is often used as synonymous with the quality from a narrower
point of view. At last, a comparison between ES and conventional software is given,
which can be used as a guide in the adaptation of existing conventional software mea-

suring techniques for ES measures.

Chapter 5 examines the construction and measures of ES quality model. Three
quality factors that are important to ES quality are highlighted. They are the Main-

tainability, Reliability and Testability. Quality metrics will form the focus of the

CHAPTER 1. INTRODUCTION 7

following chapters.

Chapter 6 proposes some general guidelines for the measures of ES. They include
the general criteria and strategies used. Some current ES metrics are examined, and
current research on ES metrics is reviewed. The issue related to a mechanism for for-
mally describing the rule bases is also addressed with the proposition of an AND/OR

digraph.

Chapter 7 presents several quality metrics that are related to the two important
characteristics of rule bases: size and search space. Formal descriptions are also given

for these metrics.

Chapter 8 investigates the crucial characteristic of rule bases which possess many
potential values: the complerity that plays an important role in the formulation of
ES quality. Two new complexity metrics are proposed, RC and ERC which are based

on the presence of several system characteristics and information content, respectively.
Chapter 9 provides two examples to illustrate the above concepts and measures.

Chapter 10 presents our implementation of a tool for automatically measuring the
ES. This tool was written in PROLOG and C/C++, and it will produce the measur-
ing results and analyze their results based on statistical analysis. One of the design
features of the tool is that it can easily accommodate the addition of new functions

(methods) into the system to make new metric measurements.

CHAPTER 1. INTRODUCTION 8

Chapter 11 stows the data collected to test our proposed metrics, and the mea-
suring results (values) by applying the metrics to the test data. Some of metric
applications are discussed, such as the use of metric values to determine the usual
ranges of metrics, to identify the unusual ES or profile ES quality. The measuring

values can also be used to further evaluate the performance of the metrics.

Chapter 12 describes the statistical techniques that are proposed to assess the
validity of the metrics, vhey include correlation analysis, statistical testing and regres-

ston analysis. Several statistical concepts and testing methods are introduced.

Chapter 13 presents the evaluation results of assessing the metrics and compar-
ing their performance from two perspectives: (1) by applyi1 g the presented methods
which are based on statistics to the inetric measuring results; (2) by evaluating the
metrics against the proposed criteria and properties that are generally required and
desired for the performance of metric measurements. The results lead to the con-
clusion that our proposed complexity metric — RC has the best performance and
behavior among all the tested metrics and can indeed be used as a good tool to aid
in assessing ES quality. In order to use RC to predict the quality of ES or its char-
acteristics, the relationship between the RC metric and the anomaly rate is further

quantified based on our data.

Chapter 14 draws conclusions from our research. It has been found that well-
formulated metric, like RC, would be useful for developing quality ES. Finally, it is

hoped that this research will provide the basis for future work on ES metrics which

CHAPTER 1. INTRODUCTION

will meet our long-term goal.

Chapter 2

Fundamentals of Software Metrics

2.1 Introduction

Software metric! is usually described as a general term to cover all aspects related
to the quantification of software products and processes. As indicated in the pre-
vious chapter, the application of quantitative methods or metrics are needed to
reduce the cost of software resulting from poor quality, which was wasted at ap-
proximately one million pounds per hour of effort in the United Kingdom alone
[Moller and Pauliosh, 1993]. Successful application and implementation of software
metrics can be found in a large number of software development organizations. Moller
listed several examples with such experience (Méller and Pauliosh, 1993] which have

proven the effectiveness of the application of software metrics.

It is expected that the use of software metrics, together with other techniques
can resolve the so called “software crisis” which challenges the software engineering

community.

1Here, the term “software” denotes both conventional software and expert systems.

10

CHAPTER 2. FUNDAMENTALS OF SOFTWARE METRICS 1

This chapter discusses the fundamental concepts and principles of soft ware measures?,

and relevant issues.

2.2 Applying Measurement Theory

According to IEEE Standard Glossary of Software Engineering [IEEE, 1983], the term

“software measure” is described as:

A quantitative assessment of the degree to which software possesses a

given atiribute that affects its quality.

Also, in the IEEE Standard Dictionary of Measures to Produce Reliable Soft-

ware [IEEE, 1989), the software measure is defined as:

A quantitative assessment of the degree to which software product or

process possesses a given atiribute.

From these definitions, we can see that a software measure mainly concerns the
assessment of a software or process attribute, which is usually achieved by assigning
a number or symbol to the software to characterize that attribute. Measurement

denotes such assignment process or activity.

By using the measurement theory, we can formally and concretely describe the
above concept. There are three basic parts in the measurement theory: empirical

relation system which represents the empirical world to be measured; formal relation

2]In some research, metric and measure are used as different terms. In our study, we regard them
as synonyms as most other researchers.

CHAPTER 2. FUNDAMENTALS OF SOFTWARE METRICS 12

system that contains a set of formal objects and mapping which indicates the relation-
ships between these two systems. Mapping represents the measures. The following
sections will discuss and present the application of general measurerent theory to

the software measures.

2.2.1 Empirical Relation Systems

When applied to software, the empirical relation system represents our empirical
knowledge about the software world, which includes the entities (software or its
derivation), the attributes possessed by the entities, and empirical properties which

are heid among the entities based on the atiributes. This can be described as:
S= (€, A, P)

where,
S — the empirical relation system
&€ — the set of entities i.e. the set of software or its derivation

A — the sct of attributes associated with each piece of software

or its derivation
P — the set of properties held among the entities
The above empirical model which precedes objective measurement is usually es-

tablished initially by subjective means which reflect the commonly accepted views

about the entities and the related attributes and properties.

CHAPTER 2. FUNDAMENTALS OF SOFTWARE METRICS 13

Example 2.1 Consider the case in which the software complexity is to be measured,

then we have:
Entities £: software programs
Aitribute A: complexity

Property P: (z, y) € P if program z is more complex than program y.

2.2.2 Formal Relation Systems

In order to express the measures on the entities of an empirical relation system based
on the attributes of the entities, we need to find a corresponding formal relation sys-
tem for the empirical relation system, such as a numerical relation system, into which

the entities, attributes and properties in the empirical relation system are mapped.

Like the empirical relation system, a formal relation system F can be described

F=(N,T, R)

where,
F — the formal relation system
N — the set of the formal entities
T — the set of attributes associated with the entities

R — the set of properties held among the entities

In the case of numertcal relation system, N is the set of numerical numbers, T is

CHAPTER 2. FUNDAMENTALS OF SOFTWARE METRICS 14

usually the values and R is the properties among the pumbers.

Example 2.2 For the empirical relation system presented in Example 2.1, a corre-
sponding numerical relation system with the following attribute and property can be

formed:
Entities: numerical numbers
Attribute T;: values
Property R: ‘(z, y) €R' if z > y (Corresponding to program z being
more complex than program y).
2.2.3 Mapping and Software Metrics

A software metric or measure I' is defined as a mapping from S to F, that is,

'S F

with the following conditions:

Ve (e € S)A(e = (i, Ai, P)) — 3fi- (fi € F) Mfi = (N, T, Ri))
AT(&:) = Ni) A (T(A:) =T) A (T(R) = R)

The above conditions, called representation conditions require that the mapping
should reflect the correspondence between the entities, attributes and properties of
S and F, that is, mapping preserves all the components in an empirical system by
establishing the corresponding components in the formal relation system, so that the

empirical meanings in S will not be lost. The representation condition entails us to

CHAPTER 2. FUNDAMENTALS OF SOFTWARE METRICS 15

capture the entities, attributes and properties in question and represent them in a

formal system where there exist formal descriptions about its components.

In most software measures, the formal relation system F is the numerical relation
system, and the empirical relation system S is the software relation system. The
mapping I represents the measurements for the software attributes. It maps the
software source codes or control flows in § into numbers, i.e. entities in F. Figure 1

illustrates such a mapping.

Example 2.3 For measuring conventional software, many measures have been pro-
posed, which represent the different mappings based on different purposes and needs.
Some of them are: Number of Lines of Codes, Program Volume, Effort and Level

[Halstead, 1977], and Cyclomatic Complexity [McCabe, 1976].

The formulation of a mapping function denotes the formulation of a software
metric, and the entities in F usually denote the measuring values. More metrics can

be defined based on the mappings. We refine such a structure as the layer structure.

2.3 Layer Structure of Metrics

Further analysis of measures indicates that the mapping from S to F reflects only
one type of metrics, the direct metrics, which are obtained directly in the manner
discussed above. However, there is another kind of metrics, called indirect metrics,
which are defined in terms of existing metrics obtained previously. We can refine this

structure of metrics as the Layer Structure proposed as follows:

CHAPTER 2. FUNDAMENTALS OF SOFTWARE METRICS 16

formal system

system to be measured

formal mappings

0 — objects to be measured

0 formal objects

Figure 1: Mapping Between Empirical Relation System and Formal Relation System

CHAPTER 2. FUNDAMENTALS OF SOFTWARE METRICS 17

1. Layer S): the set of direct mappings from S to F, such as “number of variables”,

“number of distinct operators and operants” and program “size”.

2. Layer S, (n 2 2): the set of metrics which involves at least one metric from

layer n — 1, that is:

Sn=AC|T: Sy x 8-+ xSy X+ X Spcy X Spy <+ Spog — F)

ky knw1

where, k.- # 0.

The higher layer metrics are usually software complexity, maintainability, reli-

ability and testability and so on.

The metrics in the first layer, i.e., the direct metrics, form the fundamental and
primitive measures, and the metrics in the higher layers are usually defined in a

broader sense, that is, they imply more meanings.

Example 2.4 Figure 2 shows the structure of some measures on the conventional
software characteristics. Usually, the measures on software quality factors such as
the maintainability lie in a higher layer, whereas the first layer metrics consist of the

number of lines of codes, number of operators, number of operands, etc.

The layer structure clearly describes the structure of software metrics, and, in gen-

eral, the formulations of different layer metrics can be basically described as follows:

CHAPTER 2. FUNDAMENTALS OF SOFTWARE METRICS

Layer S,
Maintainabllity
L.y.r S,M
Complexity
N\
Layer S,,.,
Size Contrgl Str\scture Dafa Flaw

Figure 2: An Example of Metric Layer Structure

18

CHAPTER 2. FUNDAMENTALS OF SOFTWARE METRICS 19

For first layer metrics:

1. Identify the empirical relation system and formal relation system.

2. Form proper mapping functions which satisfy the “representation conditions”.
For higher layer metrics:

1. Identify the direct metrics in questions.

2. Weight the above metrics.

3. Form a proper function to summarize the direct metrics.

2.4 Metric Factors

There are several factors which affect the metric mezsurements, they are:

o Objectives. The reason for defining metrics is to get some feedback from the
measures for further needs. The metrics without useful feedback are meaning-
less. However, having different objectives, some of them may be contradictory
to each other, may require different types of feedbacks. Even for the same ob-
jective, the viewpoints on it could be quite different. This will lead to different
measurement approaches. For example, there exist many metrics for measuring
the complexity of conventional software, including (i) McCabe’s control flow-
based cyclomatic complexity [McCabe, 1976] which aimed at identifying the

basic control paths in a program for “walking through™; data flow and massive

CHAPTER 2. FUNDAMENTALS OF SOFTWARE METRICS 20

computation are not the concern; (ii) Henry's information flow-based complex-
ity metric [Henry and Kafura, 1981) that was designed to reflect the occurrence
of changes, which was declared to be important; (iii) the complexity metric
for software maintenance cost, which can be simply defined as the number of
source lines of codes based on the claim that a larger program has a higher

maintenance cost [Harrison et al., 1982].

o Scales. There exist five kinds of scales for metric measurements: nominal
scale, ordinal scale, interval scale, ratio scale, and absolute scale [Fenton, 1991,
Zuse, 1991]. It is more practical to have the ordinal scale for some higher layer
(above first layer) metrics, because it provides just a comparison between differ-
ent objects. For example, when comparing the maintainability of two programs
A and B, it is feasible to give the result that A is more difficult to maintain
than B. The reason is that higher layer metric measures depend on many fac-
tors including human aspects about which little is known. It is hard, sometimes
impossible, to exactly measure these factors. However, relative comparisons can
be made based on some existing attributes of the objects. But this kind of result
has only limited use because some further operations cannot be performed on

them {Zuse and Bollmann, 1989).

e Operations. Owing to the different natures of various metrics, it is not always
meaningful to have some operations on these metrics, such as the addition of
different metrics and statistical calculations. For the former, it should be done

in an admissible way, at least it has an intuitive persuasion. Some metrics may

CHAPTER 2. FUNDAMENTALS OF SOFTWARE METRICS 21

have different multi-values depending on different points of views. So simply
adding several measures together to obtain a single value for such metrics cannot
reflect their real values adequately. For the statistical calculations, even for the
measure on the same characteristic, we should still be cautious in applying

them, because of restrictions imposed on them [Zuse and Bollmann, 1989].

o Use. Metric measures give only quantitative values for some attributes of the
objects. They help to analyze the problems but cannot solve them. To further
apply such metric measures may involve many other aspects such as the charac-
teristics of the environment (object features, maintainer’s experience, available
tools, analysis of the relationship between the metric measures and the prob-

lems, etc.) in which such metrics are used and more work needs to be donc.

e Precision vs. Expense. There is a trade-off between the precision of the measure
and the expense required to obtain such a measure. It is obvious that the more
precise the metrics are, the more expensive it usually is to get such metrics,
since more information and processing are involved. For higher layer metrics,
they are defined in terms of several other measures, so the measure of such
higher layer metrics will involve some low layer metrics as well. If we consider
too many factors, hence too many lower layer metrics, then the cost will be high
for a higher layer metric. On the other hand, if too few factors are considered,

it may be too coarse to be meaningful and useful.

So, even if metrics are useful, there exist some conditions for them to be effective.

The above factors must be considered before applying the actual measurements.

CHAPTER 2. FUNDAMENTALS OF SOFTWARE METRICS 22

2.5 Metric Classification

In addition to the the systemic description of the metric structure — the layer struc-
ture, metrics can also be roughly classified into several categories in terms of their

use:
e Direct metrics vs indirect metrics As discussed in the above section.

e Static metrics vs dynamic metrics Static metrics focus on the measures of
static attributes of software products or processes that can be derived from the
end products or process, while the dynamic metrics are obtained at run-time of

the software that aim to measure the dynamic performance of the software.

e Process imetrics vs product metrics Process metrics represent the measures
on the features of software development processes, and product metrics are
the measures of the attributes of the software producis which could be both

intermediat ~ and final.

e Control metrics vs predictor metrics Control metrics are designed for the
control and management of software, and predictor metrics are used to estimate
some characteristics of software. In practice, the same metrics may be used for

both purposes, but the ways in which they are used are different.

More classifications such as volume measures, control flow measures, and date
flow measures [Basili, 1980] and Code measures, design measures, and specification
measures [Sheppard, 1988] can also be seen. The above classifications are not disjoint.

They may overlap among themselves as shown in Figure 3.

CHAPTER 2. FUNDAMENTALS OF SOFTWARE METRICS 23

metrics
- o
- #
,4"'” - -]
= . s ™
™ .) -
-
-]
. 8 . L -
. » . -
] . - - [
- . 3 e - -
[
- . - [} -
. a
= a @ . " .
] [
] [-
- C I | -]
[] -
. - []
] a ..

Boundary between the process and product metrics
Boundary between direct and indirect metrics
Boundary between static and dynamic mertics
Boundary between control and predictor merics

%
3
H

Figure 3: Software Metric Classifications

CHAPTER 2. FUNDAMENTALS OF SOFTWARE METRICS 24

2.6 Scopes of Software Metrics

As mentioned before, the term “software metrics” include a wide range of diverse
activities. They are denoted by the entire process of planning for measurement
(identification of measurement goals, derivation of related metrics, etc), performing
measurements (data collection and validation) and learning through data analysis.

Fenton [Fenton, 1991] described the activities as follows:
e Cost and effort estimation models and measures
e Productivity measures and models
e Quality control and assurance
e Data collection
e Quality models and measures
e Reliability models
e Performance evaluation and models
e Algorithmic/computational complexity
e Structural and complexity metrics

It is obvious that these activities are not disjoint. They represent the main areas
studied by the software metric researchers. In our study, focus is placed on the static

metrics related to the quality model and measures of ES.

CHAPTER 2. FUNDAMENTALS OF SOFTWARE METRICS 25

2.7 Use of Software Metrics

In general, the ultimate objective for developing software metrics is that they can
assist both managers and software engineers in making decisions by providing valuable
quantitative information. Figure 4 shows a general approach to use metrics, which

includes the following steps:

o Set goals. The goals are established with respect to the desired performances
of the objects to be measured. A quantifiable representation of the goals allows
the precise examination of the metric measuring results. The goals will differ

according to different needs and purposes.

¢ Formulate metrics. The metrics will be applied to the target objects and aim
to provide quantitative values of the attributes conceraed, which reflect the
achievements towards the goals. They can be newly defined according to the

measurement requirements of the goals or selected from existing metrics.

o Apply metrics. This denotes the measurements on the target objects. The

metric measuring results are expected to be produced.

e Analyze results. Two tasks are to be performed here: (1) the interpretation of
the result values, which can be performed by comparing them with the expec-
tations and similar results obtained from other objects, (2) the assessment of
the validity of the results, which can be achieved by statistical analysis of the

metric measuring results.

CHAPTER 2. FUNDAMENTALS OF SOFTWARE METRICS 26

e Adjust metrics. Analyzing metric values may reveal the deficiencies of the
metric formulations, and this leads to the adjustment or re-formulation of ap-

propriate metrics.

o Make decisions. Based on the measured results and predefined goals, the de-
cisions could be made, such as to formulate a plan to correct any observed

deviation from the goals.

CHAPTER 2. FUNDAMENTALS OF SOFTWARE METRICS

identity Goals

|

’[Formulate Metrics

Adjust Metrics Apply Metrics

|

Analyze Results

Making Decisions

Figure 4: The Use of Metrics

27

Chapter 3

Conventional Software Measures

3.1 Introduction

Software engineering as a discipline has made considerable progress during the past
few years. Researchers have gained much experience and practice during the past
two decades. A significant issue in software engineering is the identification of the
life-cycle model of conventional software development, which contains Requirement,
Specification, Design, Implementation and Maintenance phases. As an effective way
to predict and measure the characteristics of conventional software development in
all phases, metric measurements have been applied throughout the life-cycle, and the
Metrics Guided Methodology has been proposed [Ramamoorthy et al., 1985]. The
design and use of metrics to assess and predict the quality of end products of con-
ventional software is one of these applications, which is widely used, and empirical
studies have already been conducted using such techniques [Li and Cheung, 1987,

Elshoff, 1984, Harrison et al., 1982). The typical software attributes measured are:

28

CHAPTER 3. CONVENTIONAL SOFTWARE MEASURES 29

size, control flow, data flow, information content or a combination of the above at-

tributes.

ES, as a special type of software, possess both conventional and unconventional
portions, so the measures on them will be divided into those related to their conven-
tional aspects and the ones on their unconventional aspects. In addition, there exist
some similarities in the structures of conventional software and ES, so it would be
helpful to study some mature techniques of conventional metric measurements used
in software engineering, and utilize them to design ES measures. This also allows us
to gain the experience and practice of conventional software measures for formulating
ES metrics. In this chapter, we will review some conventional software measures.
Measurement theory will be used to formally describe them. The comparisons be-
tween ES and conventional software and some characteristics of ES will be discussed

in the next chapter.

3.2 Size-Oriented Metrics

This kind of measures focuses on the size of software products, which is the most
basic and primary attribute of software. It is generally believed that size is a key
component in the formulation of many higher layer measures, especially those related
to software quality. Hence to date, many size metrics have be proposed and used.

Some of them are:

Program length is obtained by counting the lines of code (LOC) in a program.

CHAPTER 3. CONVENTIONAL SOFTWARE MEASURES 30

LOC is the commonly used size measure. The problems with it is that there does not
exist a unique formalism (standard) for counting LOC. A diversity of size metrics
was presented, each of which was based on certain assumptions and circumstances.

A popular definition for LOC [Méller and Pauliosh, 1993] is:

the count of program lines of code ezcluding comments or blank lines,

that is typically given in units of thousands of lines of code.

/ Obviously, LOC is defined as the first layer metric and can be formally described
|
|

LOC: (£, A,) — (N,Tan)

where:
£: programs
A;: size of a program

P (2,y) € P, if size of program z is greater than or equal to

that of program y.
N: natural numbers
T;: values
Ri: (z,y) €ERifz2>y

LOC(€): as defined above

CHAPTER 3. CONVENTIONAL SOFTWARE MEASURES 31

Another question about the LOC is its reliability and applicability. In some sit-
uations, this kind of measure does not reflect the real features of the software, so its
results sometimes could not be further applied for other uses. Consider the case in
which a measure on program maintainability is needed, since LOC does not take into
account the internal control structure of the programs, it is not appropriate to use
LOC alone to predict or assess the maintainability of the program which is largely

affected by the control paths in the program.

Software Science was proposed by Halstead [Halstead, 1977). Aiming to capture
more information than LOC as the size measure, it has been widely used as a typical
software measure. In this measure, the basic elements are operators and operands,
where operators denote the arithmetic and logic operators, keywords, and names of
functions and procedures; operands represent the the variable names, constants and

labels. The basic measures (first layer metrics) involved are:

ny, ng, Ny Np 2 (€, {A1, A}, {P,P}) — (N, Th, R)
where
£: programs
A;: volume of operators in a program
A3: volume of operands in a program

Py: (z, y) € P, if volume of operators in program z is greater than

CHAPTER 3. CONVENTIONAL SOFTWARE MEASURES 32

or equal to that of program y.

P;: (z, y) € P, if volume of operands in program z is greater than

or equal to that of program y.
N: natural numbers
Ty: values
Ri:(z,y)€ER ifz2y
n; (€)= number of distinct operators
n,(€)= number of distinct operands
Ny(€)= number of total operators

Ny(€)= number of total operands

Then, the second layer metrics are defined. They are:

n, N: Source Codes ~—+ Numerical Numbers
n =n; + nz (vocabulary of a program)

N = N; + N; (length of a program)

Finally, the volume metric (V') (third layer metric) of a program is expressed as

the necessary bits to represent the program, that is calculated as follows:

V : Source Codes —_— Numerical Numbers

Volumn(V) = N log,n

CHAPTER 3. CONVENTIONAL SOFTWARE MEASURES 33

which provides an alternative measure for the size of a program. The volume measure
has attained some prominence. Figure 5 summarizesthe dependency structure of the
above metrics. Several other measures were also suggested by Halstead such as Effort,

Level and Difficulty.

Software Science has been well-accepted in software engineering, even though it

is still an active area of research.

3.3 Control Flow-Oriented Metrics

Control flow has been recognized as an important feature formed by the source code
of the programs. A directed graph, G=(V, E), has been used as the flow graph for
representation of a program’s control flow, where V represents a set of basic blocks of
code, which contain no internal transfers of control and have a unique entrance and
exit, E is the set of flows of control among the blocks shown by the edges connecting
the different blocks. The control flow metrics are usually based on an analysis of this

digraph G. In the following, we will discuss some typical ones.

Number of decision nodes (ND) is the simplest control flow-based metric. It can

be formally represented as:
ND: (6, A], P]) — (N, Tl,Rl)

where

£: control flows of programs

CHAPTER 3. CONVENTIONAL SOFTWARE MEASURES

Figure 5: Layer Structure of Several Software Science Measures

34

CHAPTER 3. CONVENTIONAL SOFTWARE MEASURES 35

A;: size of a control flow

Py: (z,y) € P if size of control flow z is greater than

or equal to that of control flow y.
N: natural numbers
Ty: values
Ry: (z,y) € Riifz 2y

N D(€) = number of decision nodes in control flows

The decision nodes are sometimes represented as “diamonds™ in the graph that

denote the conditional and loop constructs in a program.

Cyclomatic number (v) is the best known control flow-based metric. It was pro-
posed by McCabe [McCabe, 1976] and is based on two first layer metrics: volume of

edges (e) and volume of nodes (n) which are:
e n.: (8, {Ala A2}1 {Pla PZ}) Ra— (N’ Tla Rl)

where
E: control flows of programs
A;: volume of edges in a control flow
A2: volume of nodes in a control flow

P;: (z,y) € P, if volume of edges in control flow z is

.

CHAPTER 3. CONVENTIONAL SOFTWARE MEASURES 36

greater than or equal to that of control flow y.

P;: (z,y) € P if volume of nodes in control flow z is

greater than or equal to that of control flow y.
N: natural numbers
Th: values
Ry: (z,y) €ERifz 2>y
€(€) = number of edges in a control flow

n(€) = number of nodes in a control flow

Then, the cyclomatic number (v) (second layer metric) is defined as:

v: Control Flows @ —+ Numerical Numbers
v=e~n-+2
The valuable contribution of cyclomatic number is that it identifies the basic exe-

cution paths in a program, hence, it could be used to assess and predict the prog.am’s

testability.

The number of decision nodes and cyclomatic number are related. In the structural

programs (i.e. single entry, single exit), the following relation exists.
v=ND+1

The relationship can be even extended to multiple exit programs [Harrison, 1984).

CHAPTER 3. CONVENTIONAL SOFTWARE MEASURES 37

So, decision nodes are actually the fundamental elements of control flow-based metrics

which can be used as an objective means to characterize the control flow of a program.

The main problem with the control flow-based metricsis that they do not take into
account the complexity of each node, that is, the contents of conventional statements.
Thus, two modules or programs may have the same measuring results and yet be
widely different due to the different uses of boolean operators, arithmetic expressions,
nested and non-nested decisions, as well as the computation. Some attempts have

been made to rectify this shortcoming [Fenton, 1991, Tai, 1984), which show promise.

3.4 Data Flow-Oriented Metrics

These metrics focus on the the use and flow of data, which are reflected by the data
references. The work includes Elshoff’s span of data reference [Elshoff, 1976] and
Henry’s information flow [Henry and Kafura, 1981}, which are popular in this kind

of meas:res.

Span of Data is based on the data reference points in a program, this method is
a measure of the distance between references (Figure 6). One way to quantify the
distance is to count the number of statements between the references to the same
data with no intervening references to that data, and the final measuring result can
be obtained by computing the mean of the maximum span for each data. The above

idea can be formally expressed as follows:

For each data d;, the span (D;) is defined as:

CHAPTER 3. CONVENTIONAL SOFTWARE MEASURES

X=g(2)

Other Statements

Z=f1X)

Figure 6: Span of Data Between References

5T

; -

v

38

CHAPTER 3. CONVENTIONAL SOFTWARE MEASURES 39

-Dl' : (8, Als Pl) —— (Na Tls Rl)

where
£: data in programs
Ay: reference distance for each data in a program

Py: (z,y) € P, if the reference distance for data z is greater than

or equal to that of data y.
N natural numbers
T;: values
Ri: (z,9)€eRiifx>y

D;(€) = number of statements between references for some data

without intervention.

From the definition, we can see that there may exist several D; values for each
data, suppose the maximum of them is denoted as maxz(1;), then span of data (SD)

for a program can be defined as:
SD: Data — Numerical Numbers

SD = = 3" maz(D)

=1

where,

n is the number of data contained in a program

CHAPTER 3. CONVENTIONAL SOFTWARE MEASURES 40

It is obvious that the order of statements plays an important role in calculating
the value of this measure. Since the more references to each data in a program,
the more complicated the program is, the measure seems intuitively appealing, even

though there is not much empirical evidence to support it.

Information Flow has received considerable attention and the flow between modules
has been the focus. Different attempts have been made to quantify the information
flow between the modules, hence the interactions among the modules have also been
investigated. There are several activities with a module, such as calling some module
or being called, and retrieving or updating some data. The two principle attributes as-
sociated with each module and used to describe these activities are fan-in and fan-out.

They form the basis for defining information-based measures and can be described

as:
fan —in, fan —out: (&, {A1, A2}, {P, P2}) — N, T, R)

where
£: modules
Ay: calling and updating
A3: being called and retrieving

Py: (z, y) € P, if module = performs more “calling and

updating” activities than those of module y.

CHAPTER 3. CONVENTIONAL SOFTWARE MEASURES 41

P;: (z, y) € P, if module z performs more “being called” and

“retrieving” activities than those of module y.
N: natural numbers
Ty: values
Ry: (z,y)eRifz>y
fan-in(€) = number of flows that terminate at a module.

fan-out(€) = number of flows that emanate from a module.

It is obvious that the flow is caused by calling some module or being called by

some module, and retrieving or updating some data.

Henry established a measure (in f) for describing the information flow complexity

of a module M [Henry and Kafura, 1981], which is:

inf: Modules — Numerical Numbers

inf(M) = length(M) x (fan-in(M) x fan-out(M))?

The formula is expected to measure the “degree of complexity of relationships
between subsystems”. It depends on (1) the complexity of 2 module which is simply
given by the length of the module in the measure; (2) the complexity of the interre-
lations between the module and other modules, which are determined by the fan-in

and fan-out. The validity of the measure was shown by applying the measure to the

CHAPTER 3. CONVENTIONAL SOFTWARE MEASURES 42

industrial software — UNIX operating systems and exhibiting a strong correlation
between the measuring results and the occurrences of changes in the UNIX system.
It was further found that actually the measure of the connections of 2 module to its
environment ((fan-in x fan-out)?) is an extremely good indicator of the modular

complexity, and the length measure is not so reliable and necessary.

3.5 Information Content-Based Metrics

Since Channon [Channon, 1974] applied the information theory to analyze the design
of software structure, information theoretic concepts have been widely used for dif-

ferent purposes.

In the field of information theory, a message is made of a string of alphabet
symbols 81, s2, y 8m. The term information refers to some things in a message
that are uncertain and unlikely to occur. And the information content is denoted
as a function that decreases in numerical value as the probability of occurrence of
8i (1 £t £ m) increases [Ingels, 1971). The information content I; conveyed by a
single symbol s; is inversely proportional to the probability of occurrence associated

with s;. The formula for calculating this amount is:
I; = —log p; (bits)

where p; is the probability of occurrence of s;. Information measure is additive; i.e.,
the average information (I) of the combination of s;, sz, y Sm is the weighted

average of information content per symbol s;.

CHAPTER 3. CONVENTIONAL SOFTWARE MEASURES 43

I==Y pilogp; (bits)

=1

The term entropy is used to represent such average information content.

There are several properties associated with entropy. For example,

e [achieves its maximum value logm when p; = p; = ... = pm = 1, i.e., when

the source symbols are equally likely.

o] achieves its minimum value 0 when p; = 1(1 <i<m), p;(1 <j<mAj #

i) = 0; i.e., one svmbol always occurs, and all others do not.

Entropy-Based Complexity Measure: A piece of software can be considered as
a message in which the information is conveyed in the source code. One metric for
measuring such information was proposed and used by Harrison [Harrison, 1992]. The
idea is to examine the empirical distribution of operators within a program, which

can be a special symbol, a reserved word, or a function call.
First, the measure (f;) of occurrences of an operator is performed, which is:
fi . (E) Al) Pl) — (N7 Th Rl)

where

E: operators in programs

CHAPTER 3. CONVENTIONAL SOFTWARE MEASURES 44

Ay: occurrence of operators in a program

P,: (z,y) € P, if operator z in a program occurs more often than

| or as often as that of operator y.
| N: natural numbers

T: values

Ri: (z,y)ERifz 2>y

fi(€) = number of occurrences of i-th operator

Then, the total number (second layer metric N) of occurrences of all operators is

obtained by

N : Source Codes -— Numerical Numbers

N=3_f;

And the probability p; (third layer measure) for an operator is

pi: Source Codes @ — Numerical Numbers

CHAPTER 3. CONVENTIONAL SOFTWARE MEASURES 45

Finally, the entropy (I) (fourth layer measure) of the program is

I: Source Codes —_ Numerical Numbers

I=-Y pilogp:

3.6 Hybrid Metrics

The purpose of defining hybrid metrics is to avoid the shortcomings of single-factor
measurements. Several program properties are taken into account in this type of
measures, such as the program size, control flow, data reference, which are thought

to contribute to the characteristics of a program.

Li and Cheung presented a high layer hybrid metric called New; with some com-
prehensive results [Li and Cheung, 1987]. Their measure combined the scope idea
[Harrison and Magel, 1981a, Harrison and Magel, 1981b] with “software science”

[Halstead, 1977}, and was represented by
New,; : Source Codes x Control Flows = —— Numerical Numbers
New, = (1.0 - ZRaownplezities/ ZAdjustedenplexities) + 100%

where

The raw complezity measure is related to the volume measure of a

CHAPTER 3. CONVENTIONAL SOFTWARE MEASURES 46

node and its calculation is based on the operators and operands

contained in a node.

The adjusted complezity measure is expected to act as a measure of
the control structure and the calculation is in terms of the individual

“Influence” of a selected node on other nodes in the control flow.

Li demonstrated that his measure is sensitive to man; “actors of a prozram, which
may reflect different aspects of software, but, no experimental evidence has been given
to show the relationship between the N EW, and some system quality characteristics
such as the error rate, which is also an important part for assessing the validity of a

measure.

3.7 Other Issues

It is generally believed that the cost of software vastly exceeds that of hardware.
Indeed, it has been estimated [Rushby, 1988] that software accounts for 80% of the
total computer system budget of the U.S. Department of Defense, and 60% of the
software budget may be spent on maintenance. This leads to the formulation of
different procedures and methodologies fcr thie measurement of software products, in

order to cure the software quality problems which produce the cost [Suen et al., 1989].

Software quality is represented by its characteristics and software me*zics refer to
a broad range of measures applying to the software to quantify these characteristics.

Most of the techniques and approaches proposed to measure the software products

CHAPTER 3. CONVENTIONAL SOFTWARE MEASURES 47

are based on static analysis.

Empirical studies support the notion that hybrid metrics measurements which take
into account different factors of the software product, could give more reliable and
valid results for general cases (Li and Cheung, 1987, Tai, 1984, Harrison et al., 1982].
Measurements based on only one factor certainly cannot characterize the software

product adequately.

Software measures, like others, form the basis for estimating, evaluating, and ex-
plaining some phenomena. However, it should be noted that measures only identify
problems; and they do not solve the problems [Card and Glass, 1981]. Software met-

rics measurement can only assist the software maintainer or developer in making

decisions and improving effectiveness.

Chapter 4

Characteristics of Expert Systems

4.1 Introduction

Expe.. Systems are a special type of software, designed to capture valuable human
expertise. They have been increasingly used in a variety of domains. Successful com-
mercial applications include Digital Equipment Corporation’s XCON configuration
advisor, which saves $18 million a year [Williams, 1986]. However, the special fea-
tures of ES such as the complex dependency among the rules, make them subject
to more quality problems than the conventional software. Besides, many matured
techniques and methodologies used for the development of conventional software can-
not be applied to expert systems directly [Grogono et al., 1991], so a lot of research
needed to be done in order to assure their quality. One kind of research deals with
the verification and validation of ES, and some issues regarding it were already in-
troduced [Liebowitz, 1990]. Another kind of research presented in this thesis focuses
on the measurement of ES, which is also critical and important. To measure ES,

we must first understand the characteristics of ES, especially those that are different

48

CHAPTER 4. CHARACTERISTICS OF EXPERT SYSTEMS 49

from conventional software. The following sections will address them.

4.2 System Components

A typical ES consists of four essential components:
1. Acquisition Module
2. Knowledge Base
3. Inference Engine
4. Explanatory Mechanism

The relations among these components are shown in Figure 7. Of the components,
the Acquisition Module is responsible for acquiring the knowledge (expertise) from the
experts, and the Explanatory Mechanism will provide the answers and explanation
about the reasoning made by ES to the users. The kernel parts of an ES are the
knowledge bases and the inference engines [Williams, 1986, Forsyth, 1984], which will

be described in the following sections.

4.2.1 Knowledge Base

A knowledge base of an ES captures and represents the knowledge for solving prob-
lems, and it is unique to a particular domain, i.e. it varies as the domain differs.
The past experience indicates that the performance of an ES largely depends on the

quality of the implemented knowledge base [Gevarter, 1982).

CHAPTER 4. CHARACTERISTICS OF EXPERT SYSTEMS 50

/ Expert System

’ L~ Kernel

Explanatoru
Mecchanism

w40

Figure 7: A Typical Expert System

CHAPTER 4. CHARACTERISTICS OF EXPERT SYSTEMS 51

The most prevalent approach to represent knowledge is by production rules, hence,
a knowledge base (rule base) is made of if LHS then RHS rules, where the Left-Hand-
Side (LHS) represents the conditions and the Right-Hand-Side (RHS) is a list of
actions to be taken when the rule fires. The LHS and RHS existing in different
rules construct the dependency or the chaining of rules. This kind of ES is also
called rule-based ES which has been proven particularly useful because of its ease of

development (Kiper, 1992]. Some advantagcs {Landauer, 1990] with them are:

1. local specification of the relation by means of rules, which allows for the decou-

pling of different kinds of knowledge,
2. making domain ki owledge explicit.

The main disadvantage is that the compli-ated interactions resulting from the
rules may cause severe quality problems because of the potential errors (anomalies)
that may be introduced during the construction of rule bases. These errors may come
from different sources associated with the rule bases. Some of them are never noticed
or are noticed too late to make amendments. So, even though the rule bases may
be easy to build and use, it is sometimes risky to use them, especially in critical

situations.
The rules in rule bases are the data to be used by the inference engine.

4.2.2 Inference Engine

For rule-based ES, the inference engine represents the control strategies for the “exe-

cution order” of the firable rules whose LHS parts matched some currently available

CHAPTER 4. CHARACTERISTICS OF EXPERT SYSTEMS 52

facts, and the search strategies for seeking an answer, such as forward chaining and
backward chaining or {he integration of both. Forward chaining forms a line of rea-
soning from the existing facts, and new facts are derived by firing the firable rules.
Backward chaining moves from a given goal, searches the paths (facts and rules) that
derive the goal. In addition to forward and backward chaining, there also exist other
strategies. Details and formal descriptions of these strategies can be found in the Al

literature, see e.g. [Shinghal, 1992}.

The development of an inference engine is independent of a rule base, and an in-
ference engine may be applied to a number of knowledge bases, that is, the inference
engine is not specific to one application. Also, because of its similarities in function to
conventional software; that is, both are the implementations of some algorithms for
the purpose of control, the traditional software measuring techniques may be applied

to the inference engine [Barrett, 1990, Kiper, 1992).

From the above discussion, we can see that it is the knowledge bases that distin-
guish ES significantly from the conventional software, hence, they play an important
role in the formulation of ES quality. This also explains why many studies place their
emphases on the investigation of knowledge bases. In our study, we will focus on the
rule bases, the popular implementation of knowledge bases, and the measures of rule

base attributes, especially those related to their complexity.

CHAPTER 4. CHARACTERISTICS OF EXPERT SYSTEMS 53

(rulebase) ::= (rule)|(rule)(rulebase)

(rule) ::= (rule — id) if (LHS) then (RHS)

(LHS) ::= (pattern)|(pattern)(logic - op){LHS)

(RHS) ::= (pattern)|(pattern)(logic — op)(RHS)

(pai‘ern) ::= (items)| not (items)

(items) ::= ((quali fier), (value))

(qualifier) ::= (symbols)

(value) ::= (symbols)

(symbols) ::= alphabetstring|number|alphabetstring (symbols)|number(symbols)

(logic — op)::= undor

lL(ruIe — id) = alphabetstring

Table 1: Formal Description of the Generir Language

4.3 Rule Base Description Languages

Like conventional software that is implemented by using programming languages,
rule bases are built by using different rule base description languages. So far, many
description languages exist, such as those used in EXSYS, LEVEL 5, OPS5, EMYCIN
and CLIPS. The analysis of these languages is not the focus of this thesis. Qur concern
relates to the rules and the interactions among the rules, which would affect the
quality of the systems. In order to study rule bases written in different languages, we
propose a simple and generic rule base description language into which other languages
can be converted. Table 1 gives the syntax definition of our generic language. The

LHS and RHS are made of pattern lists and each rule is expressed as ‘if (pattern)

CHAPTER 4. CHARACTERISTICS OF EXPERT SYSTEMS 54

and/or (pattern) and/or (patterns) then (patterns) and/or (patterns) and/or
...... (patterns)”. The operator precedence is: or, and, not, from low to high. A
matching happens between a pair of patterns existing in the LHS and RHS parts of

some rule(s).

4.4 Rule Dependency

The most distinctive and important feature of ES is the dependencies (interactions)
among the rules, which are caused by the matching of the existing patternsthat repre-
sent the conditions and consequents of different rules. That is, suppose R represents
a rule base, then the dependency between a pair of rules, r; and r;, can be formally

described as:
;- (ri € R)3rj-(r; € R)- (LHS; € ri A RHS; € r;) A (pat; - (pat; € LHS;)

pat;-(pat; € RHS;)3p-(patip = pat;$))
where
LHS) = the LHS part of the rule ri (k = 1,j)
RHS; = the RHS part of the rule ri (k = ¢,j)
¥ = a general substitution {t;/v;,t2/v2,.....,ta/vs}. t’s are terms,

v’s are distinct variables.

The overall dependencies of an ES form a search space and different search paths,

which could sometimes be enormous and hard to follow.

CHAPTER 4. CHARACTERISTICS OF EXPERT SYSTEMS 55

Because of the critical role of the search space and its characteristics, a mechanism
is first needed to formally describe them. This thesis presents an extended AND/OR

digraph for such a need which will be discussed later.

4.5 Rule Base Anomalies

Because of evolutionary feature of rule bases, anomalies, i.e. unusual structures, are
introduced during the development of the system. Anomalies may reveal many faults.
However, the anomalies do not necessarily mean real errors, they indicate potential

errors. They also reflect the quality of rule bases.

Four classes of anomalies are defined by Preece et al [Preece and Shinghal, 1991).

They are:

1. Redundancy: An expression in ES, whose presence or absence will not affect
the inferring of any conclusions. Redundant situations can be further classified

as: unusable rules and redundant rules.

2. Ambivalence: An impermissible (incompatible) set of conclusions inferred by
the ES. Ambivalence includes impermissible set of hypotheses inferred and in-

consistency existing in the ES.

3. Circularity: A loop occurring in some rule chain of ES; i.e., a circular depen-

dency in a set of rules.

4. Deficiency: A set of permissible inputs for which ES will infer no conclusion.

Some symptoms of deficiency in an ES are the presence of unused literals and

CHAPTER 4. CHARACTERISTICS OF EXPERT SYSTEMS 56

missing values.

Anomaly detection can be performed by the static inspection of ES.

4.6 Comparisons With Conventional Software

In order to adapt many relatively mature techniques used in software engineering for
conventional software, including some metric measuring techniques, it is essential to

recognize the differences between ES and conventional software.

In general, ES possess many special features that distinguish them from the con-

ventional software. Some typical aspects are:

o Application domains. The purpose for using ES is to apply them to solve
difficult problems in the complex domains. Some typical application domains
of ES are fault diagnosis in the telecommunication or aerospace equipment,
disease diagnosis in the hospital, system configuration in the engineering design
and financial advising in the business. Due to the difficulty in expressing these
complicated domains in a formal way, the knowledge about the domains is
usually ill-defined and imprecise. On the contrary, the application domains in
software engineering are well understood and specified. There are formal and

precise quantitative ways to describe the domains.

o Solutions. The solutions represented by the knowledge for solving complex
problems in ES are usually based on heuristics, experience and intuition. Most

of them are the rules of thumb, and no one understands beforehand exactly

CHAPTER 4. CHARACTERISTICS OF EXPERT SYSTEMS 57

how human experts form conclusions, not even the experts themselves. While
in software engineering, the solutions represented by the different formulas and
equations are purely based on theoretical grounds. The software for solving
these problems is a straightforward implementation of the theory, that is, turn-

ing known procedures or algorithms into codes.

¢ Development processes. The development process for most conventional soft-
ware can be described by the “life-cycle” phases. The completion of a phase is
the basis for starting the next one. However, in the development of ES, the it-
erative method is widely used in order to support the exploratory nature of the
knowledge and domain, for example, rapid prototyping has been the de facto

method for developing ES.

¢ System structure. This includes the system constituents and organization. The
major components of ES are the knowledge bases and inference engines. How-
ever, for general conventional software, there are no definite components that
must be vresent to form the systems. Different software may have different
system configurations that are determined by the application requirements. In
addition, the basic elements of designing ES are the rules, whereas it is the indi-
vidual conventional statements that constitute the element of conventional soft-
ware design in software engineering. Each rule in ES acts like a decision node,
but is different from the conventional statement. The dependencies among the
rules constitute more dynamic search paths than the relatively static character-

istics of conventional software; the number of paths may sometimes be enormous

CHAPTER 4. CHARACTERISTICS OF EXPERT SYSTEMS 58

| Expert System

rules

Conventional Software |

conventional statements

rule dependency data reference

rule bases source code

inference engine source code
forward/backward chaining | sequential execution
reasoning calculation

shells programring languages

imprecise specification

precise specification

complex application domain

clearly defined domain

expert-level performance

iterative development

data processing
life cycles

Table 2: A Comparison Between Expert System and Conventional Software

because of the combinatorial explosion of the possibilities of the paths.

e Execution order. In conventional software, it is the statements themselves that

decide the order of the execution of the systems. But, for ES, the rules them-

selves do not directly specify the order of the execution, the order is mainly

decided by the separate inference engine.

e and other aspects. Some other differences between ES and conventional software

include the development team organization, system construction and so on.

Even though ES have so many features that distinguish them from conventional

software, they also possess some characteristics in common with conventional soft-

ware, for example, they contain the arithmetic operations, function or procedure calls

and they employ variables as well. Table 2 summarizes a comparison of rule-based

ES and conventional software on some characteristics.

Bearing the above similarities and differences in inind will help the correct analysis

CHAPTER 4. CHARACTERISTICS OF EXPERT SYSTEMS 59

of the problems, appropriate design of ES metrics and proper implementation of the

measurements.

Chapter 5

Quality Model of Expert Systems

5.1 Introduction

The quality of software (conventional software and expert system) is an important
feature, which shows the degree of excellence that a software product or development
process possesses. However, the viewpoints about it are subjective and they vary from
system to system. Traditionally, quality is described as a mix of factors that reflect
the different facets of products or processes. The measuring of these facets relies on
the primitive software quality metrics such as the size, and data span. In this chapter,
we will discuss and present the different quality facets of software products, especially
the the maintainability, testability and reliability that significantly contribute to the

ES quality.

5.2 Software Quality Facets

In general, quality is a term which could be applied to all the target objects. According

to the IEEE Standard Glossary of Software Engincering Terminology [IEEE, 1983,

60

CHAPTER 5. QUALITY MODEL OF EXPERT SYSTEMS 61

software quality means:
The degree to which software possesses a desired combination of attributes.

Based on this definition, 2 quality model can be derived using a hierarchy struc-
ture as shown in Figure 8, where the nodes represent three types of characteristics:
quality, quality criteria and quality metrics; the arrows indicate that the presence of
the characteristics on the left-hand side of the arrows depends on the presence of the
characteristics on the right-hand side. The characteristics on the first level are usu-
ally called quality factors which characterize the quality directly. The characteristics
on the second level are defined as quality criteria which specify the factors, and the
characteristics on the last level represent quality metrics which are the basic elements
of the hierarchy structure. The basic idea behind the hierarchy structure is ckar-
acteristic decomposition, that is, breaking down the higher level characteristic into
several other more precise characteristics in the lower levels. There exist several com-
monly accepted quality factors [Manns and Coleman, 1988, Deutsh and Willis, 1988,
Arthur, 1985, Schulmeyer, 1987}, which are:

e Correctness. The extent to which the software design and implementation sat-

isfy user’s requirement specifications.

o Efficiency. The amount of resources needed by the software to perform its

intended functions.

e Flexibility. The effort required to modify the software.

CHAPTER 5. QUALITY MODEL OF EXPERT SYS. MS§

Quality

it
Quati ’;erion
Qualit
Fthor

Quality
Cnterion

Quality

riterion

S O
Factor

Quality
Titerion

Figure 8: Software Quality Model

alit
A

lit
etric

Qualit
prac

et

Qualit
etrie

et

Qualit;
etri

Vieirt:

62

CHAPTER 5. QUALITY MODEL OF EXPERT SYSTEMS 63

o Integrity. The extent to which the softwar. can be protected against either

overt or covert access to the software without authorization.

o Interoperability. The effort required to couple the software with software in

other systems or applications.

o Maintainability. The ability to modify the software product after delivery to
correct faults, to improve performance or other attributes, or to adapt the

product to a changed environment.
e Manageability. The degree to which tne environment supports the software.

¢ Portability. The effort required to transfer the software from one environment

to another.

o Usability. The effort required to learn, and the recurring effort to use, the

functionality of the software.

o Reliability. The ability of a program to perform a required function under stated

conditions for a stated period of time.

o Reusability. The extent to which the software can be reused in other applica-

tions.

o Survivability. The extent to which the software could continue reliable execution

in the presence of a system failure.

o Testability. The effort required to test a program in order to ensure that it

performs its intended functions.

CHAPTER 5. QUALITY MODEL OF EXPERT SYSTEMS 64

So, in general,

quality = F(correctness, e f ficiency, ezpendability, flezibility,integrity,
interoperability, maintainability, manageability, portability,

usability, reliability, reusabclity, sa fety, survivability, testability)
where F represents some function.

These factors represent the different facets of the software quality, and there may
exist conflicts or overlapping among these facets. The desirability of the facets varies

and depends on the different quality requirements.

Example 5.1 The software which is used by a government agency run solely on
one machine, and is not shared with other agencies. The portability has a lower
value in this situation, whereas for a software library, the portability is important

[Schneiderman, 1980].

The quality criteria may be further identified as:

o Accuracy. Software attributes that achieve the required precision in calculation,

data and output,

o Completeness. Software attributes that demonstrate a full implementation of

the required functions,

o Complexity. Software attributes that reflect the difficulty to understand the

software,

CHAPTER 5. QUALITY MODEL OF EXPERT SYSTEMS 65

e Conciseness. Software attributes that implement a function in the minimum

amount of code,

o Consistency. Software attributes that provide uniform design and implementa-

tion techniques and documentation,

e Modularity. Software attributes that provide a structure of highly functional

independence of modules,

o Self-documentation. Software attributes that explain the functions of the soft-

ware,
and so on.

The final quality metrics denote the quantitative measures applied to the target
objects, which may help to evaluate the extent to which the criteria exist. They vary

as the needs differ.

There are two components that may affect the assessment of the quality factors and
criteria (such as the maintainability and complexity). One is the external components
wkich reflect the influences of the development environment, such as the use of tools,
maintainer experience and skill, cooperation among maintainers, documentation, and
so on. The other is the internal components which purely relate to the software itself
(Figure 9). Since the environment is sensitive to many factors and hard to measure,
this thesis focuses on the studies of some static internal factors. Comparative results

will be given for such studies.

CHAPTER 5. QUALITY MODEL OF EXPERT SYSTEMS 66

| External internal

Factors Factors

Peopie DJomains Tools Documentatiion Size Data Coupling Complexity

Figure 9: Components Affecting Software Quality

CHAPTER 5. QUALITY MODEL OF EXPERT SYSTEMS 67

5.3 Expert System Quality

The general software quality model (Figure 8) can also be applied to ES. However,
due to the differences between conventional software and ES, the quality requirements
may be different. This is reflected in the skift of emphasis of the quality factors, that
is, the degree of the presence of the different quality factors. So far, there is not one

standard model to which all software must adhere [Arthur, 1985].

As discussed in the previous chapters, ES possess many distinctive features that
make them different from other software systems. Because of these special features
(such as the imprecise and ill-defined nature of the knowledge), certain quality factors
are required to be presented in sufficient degrees in order to assure ES quality. Three
main quality factors for ES are maintainability, reliability and testability. Figure 10
indicates the features that make maintainability, reliability and testability important,

which will be briefly discussed in the following sections.

5.4 Maintainability

ES maintenance is harder and more expensive than that of conventional software, due
to the special features discussed above. Since ES are subject to continuous modifi-
cations, changes and corrections, so maintenance of ES is critical and it plays a key

role in ES quality.

Example 5.2 The iterative development feature of ES can be seen from the XCON

development. XCON, a rule-based expert system that configures computer systems,

CHAPTER 5. QUALITY MODEL OF EXPERT SYSTEMS

Maintainability

il-Specification Complex Dependency Iterative Development
(Domains, Solutions)

Reliability

Inprecise Knowledge Complex Dependency Iterative Development

Testability

1ll-Defined Requirement Complex Dependency

Figure 10: Features and Quality Factors

68

CHAPTER 5. QUALITY MODEL OF EXPERT SYSTEMS 69

has grown from 700 rules to 6200 rules, of which approximately 50% change every
year in order to reflect new products and new computing concepts coming out of DEC

[Soloway, 1987). Now, XCON has over 11,000 rules.

So far, several attempts have been made to increase the maintainability of ES
[Philip, 1993, Jacob and Froscher, 1990, Prerau et al., 1990, Pedersen, 1991, Soloway,
1987}, but, because of the lack of comprehensive experiments and test data, neither
quantitative nor comparative results were given to show how much the maintainability

has been improved.

5.5 Reliability

When applied to ES, reliability denotes the correct portion of the knowledge contained
in an ES and is reflected by the variance of the inferred results from the ES for the
same environment (data). Due to the heuristic nature of the knowledge (expertise)
and the vague requirement specification, ES is usually less reliable than conventional
software developed from precise specification and well-defined solutions. So, they are
“fragile” in the sense that they are sensitive to many external factors, and that they
may therefore contain many potential problems. Also, as an ES changes over time, it

can lose its integrity [Carrico et al., 1989], and hence its reliability.

5.6 Testability

Generally, the testing concepts and methods applied to conventional software can

also be borrowed or adapted to expert systems {Rushby, 1988]. However, there exist

CHAPTER 5. QUALITY MODEL OF EXPERT SYSTEMS 70

several difficulties that may obscure the testing of ES, including the following:

e Lack of explicit specification for the requirements, implemented functions and

meth«ds used to solve problems.

e Complex -ule dependencies which may produce exponential search paths for

solving problems.

In general, the more effort we spend on the testing, the greater confidence we can

have in the ES performance, but the more expense we must pay to gain this confidence.

It is obvious that the maintainability, reliability and testability of ES are all affected
by three primitive and static characteristics of ES: size, search space and complezity.
Hence, the measures of them are investigated in this thesis research. Figure 11 shows

some relationships among them.

5.7 A Narrower View of Expert System Quality

The software quality mudel presented in Figure 8 denotes the ideal theoretical con-
sideration. However, in the real world, extra resources and project overheads are
required in order to assess and measure the model using the decomposition approach,
even for just a small number of quality factors; managers are often reluctant to
accept these extra costs [Fenton, 1991). This situation also occurs in ES quality as-
surance. So it is sometimes feasible to have a rough measure of the quality, which

costs less. In software engineering, successful applications of this idea can be seen,

CHAPTER 5. QUALITY MODEL OF EXPERT SYSTEMS

Quality Factors Qtfw Criteria Quality Metrics
!\/ Content
Maintanability
Accuracy
Testability Consistency
size

Reljability
Complexity

N

ZANNINN

Search Sfacc

Conciseness

Figure 11: Relationship Between Several ES Characteristics

CHAPTER 5. QUALITY MODEL OF EXPERT SYSTEMS 72

where the software defects were used as being synonymous with the software qual-
ity [Grady and Caswell, 1987, Inglis, 1985, Tajima, 1981). From this narrower view-
point, ES anomalies, the counterpart of software defects, can also be used as the

indicator of ES quality. The basic rationale for choosing anomaly rate also includes:

1. Certain relationship existing between anomalies and quality. That is, the higher

the anomaly rate of an ES, the lower the ES quality.

2. Reasonable cost to detect the anomalies contained in an ES, because only static

analysis and checking of the ES ure needed.

So, anomaly is also an important feature of an ES. It has attracted more and
more attention in research on verification, validation and testing of ES. It can be
used either as an attribute of an ES or quality indicator from a narrower point of

view.

Chapter 6

Issues Related to Measures of

Expert Systems

6.1 Introduction

Even though ES metrics are urgently needed, there are several related issues that
have to be addressed in the development of ES measures. These issues deal with the
different aspects of ES metrics and help the proper design of the metrics. In this
chapter, we will discuss and present (1) the general criteria for the definitions of ES
metrics, which can also be used to evaluate the existing metrics; (2) the strategies
ur :d in the formulation of ES measures, which can lead us to an effective design of the
metrics; (3) the formal mechanism for the formal dr.scription of ES characteristics,
which are the basis of measures; (4) the current work on the ES measures, which

keeps us informed of the research status of this subject.

73

CHAPTER 6. ISSUES RELATED TO MEASURES OF EXPERT SYSTEMS 74

6.2 General Criteria

For ES metrics, It is necessary to have some criteria regarding their formulation. We

propose the following general criteria in this thesis.

1. Meaningful This requires that the measure of a metric should at least con-
form to human intuition. For example, the rule bases which are seemingly more
complex should also be declared as more complex by the defined metrics. The
bottom line is that the metric measuring results should confirm to the observa-

tion.

2. Reasonable The range of the metric measuring results should not be too
wide, so as to be useful and credible. For example, a result ranging from zero to

billion would usually give an impression that the measures are not well defined.

3. Reliable The measures should be as reliable as possible. This means that the
effect on the measures caused by some trivial factors or arrangements of rule
bases should be as little as possible. For example, some “ unimportant words”
in the rules or the meaningless re-organization of rule bases should not affect

the measurements.

4. Cost-effective The efforts for obtaining a measuring result should not be
high, that is, the measure should be practical, otherwise it would be useless.
This is extremely important in the measures of rule bases, since the complex
interactions among the rules usually produce enormous (exponential) paths. So,

it would not be feasible for a measure to follow all the actual execution paths

CHAPTER 6. ISSUES RELATED TO MEASURES OF EXPERT SYSTEMS 15

in the rule bases.

These criteria form the basic principles that are followed in our design of ES

metrics.

6.3 Strategies

Since ES, more precisely the rule bases in them contain both (1) the inherent features
which are special to the particular ES; and (2) the common features that are similar
to conventional software, it is clear that an effective way to formulate the measures

is to identify the above two portions, and

e develop new approaches to measure the inherent or particular facets of ES, such

as the measure of dependency among the rules,

e use or adapt existing and well-established measuring techniques applied to con-
ventional software for measuring conventional portions of ES, such as the size

measure.
Figure 12 shows such a concept that will guide our metric design for ES.

In general, the development methods, measuring techniques, and tools for con-
ventional software cannot be directly applied to ES. Due to their specific nature,
measurements on them need to be extended or created both in their semantic mean-

ings and syntactic construction.

CHAPTER 6. ISSUES RELATED TO MEASURES OF EXPERT SYSTEMS

Expert

Combination

Identification

Conventional

Facets

Figure 12: Strategy for the Formulation of Expert System Measures

76

CHAPTER 6. ISSUES RELATED TO MEASURES OF EXPERT SYSTEMS 17

6.4 Formal Description of Rule Bases

In order to formally measure the rule bases, first we must be able to formally describe

the characteristics of rule bases in a formal way.

In Chapter 2, a formal language was proposed to describe the static and syntactic
structures of rule bases, but we also need a formal mechanism to describe the inter-
relation among the rules, that is, the dependencies which form the search space of
an ES. Graphs have been proven to be an effective tool in the structural analysis of
different systems. Their property of connectivity makes the graphs more attractive
for the studies of rule bases [Nazareth and Kennedy, 1990]. Hence, a rule depen-
dency AND/OR digraph is proposed and used to present the rule bases and their

“causality” relations among rules in our analysis.

Given a rule base, a corresponding AND/OR digraph < B,A,0,L,I,E > will be
constructed, where B is the set of starting nodes at which there is no edge incident,
A represents the set of AND nodes from which there are several edges that are jointly
incident at another node whose firing depends on these nodes, O the set of OR nodes
from which there are several edges that are incident at another node who:e firing
depends on only one of these nodes, L indicates the set of terminal nodes from which
there is no edge emanating, and I labels the isolated nodes to which there is no edge
relating. Each node is a rule in R and its formal description is shown in Table 1.
E is the set of directed edges connecting the nodes, which represents the “causality”

relation.

CHAPTER 6. ISSUES RELATED TO MEASURES OF EXPERT SYSTEMS 18

The following is the formal description of our AND/OR digraph and the notion
will be used in our discussion:
r = arule
cons(r) = the set of patterns contained in RHS of a rule r.
ante(r) = the set of patterns contained in the LHS part of a rule r.
¥ = a substitution {t,/v1,%3/vs,.....,1nfUn}. t’s are terms, v’s are distinct variables.
|S| = the cardinality of set S.

[1(R) - the set of all subsets of R.

Then, we have:
E = {(rirj)lriyr; € R A 3¢ (cons(ri)y N ante(r;)y # 0)}
A={r;|3r;j€e RAISCR-(|S|=>2Aenf(rjS)Ar; € S)}
O ={rilri€ R A3r; € R-enf(r; {n})}
B={riri€e RA-3r; € R-(rjr;)€ EA3ry€ R (riri) € E}
L={rjjrie RA-3r; € R-(rir;)€EEA3r,€ R (rx1;) € E}
I={ri|ri € RAVrj€ R- (-3¢ - (cons(r;)¥ Nante(ri)p #0V

cons(r;)y Nante(r;)y # 0))},

where the “enable firing” predicate (enf) is given by:

enf: R x [I(R) — {true, false}

CHAPTER 6. ISSUES RELATED TO MEASURES OF EXPERT SYSTEMS 179

true if Vr € S 3y (cons(r)y Nante(r;)y # 0) A (firing(S)
enf(r; S)= — firable(ri)) A-3S' C S - (firing(S') — firable(r,))

false otherwise
firing: [I(R) — {true, false}

true if all rules in S are fired
firing(S) =

false otherwise

firable: R — {true, false}

true if all antecedents in r; are satisfied and r; is waiting to be

firable(r;) = executed

false otherwise

Definition: the fan-in number (fi(r;)) of a node r, is defined as number of edges
terminating at the node r;, or the number of rules r; that meet the following

condition:
cons(r;)y Aante(r;)y # @

That is the number of rules upon which the firing of r; depends.

Definition: the fan-out number f,(r;) of a node r; is defined as the number of

edges emanating from r;, or the number of rules r; that meet the following

CHAPTER 6. ISSUES RELATED TO MEASURES OF EXPERT SYSTEMS 80

condition:
ante(r;)¢ A cons(r) # @

This is the number of rules whose firing depends on r;.

For terminal or isolated nodes r; € LU I, f,(r;) = 0.

From the above, we can also see that it is possible that A N O # 0. This means

that some nodes may act as both AND and OR nodes. Also possibly
BnA#0

BnO#49
So a starting node could also be either an AND or an OR node, or both.
Some other properties are:

ANnL=19

Anl=10

OnL=49

oni=9

Bni=9

BnNL=29

INL=29

CHAPTER 6. ISSUES RELATED TO MEASURES OF EXPERT SYSTEMS 81

In our digraph, AND nodes are marked by placing an arc on the corresponding

edges; while “OR” nodes remain unmarked.

The AND/OR digraph characterizes the individual rules and their inter-relation.

It also illustrates the search path formed by rules for problem solving.

Example 6.1 Figure 13 shows an AND/OR representation and its components for

an example rule base.

6.5 Current Work

Already, some work has started. For example, Plant presented a rigorous methodology
that used a set of formal specifications toward the implementation of knowledge-based
systems [Plant, 1991b), and the quality improvement through this methodology was
shown by the effect of this methodology on some quality factors such as correctness,
reliability, efficiency, integrity, testability, usability and maintainability, which can be
measured by the metrics [Plant, 1991a). Kiper attempted to extend McCabe’s cyclo-
matic metric to measure the basic search paths contained in rule bases [Kiper, 1992].
Buchanan suggested the complexity metric of solution space to be the measurement of
the width and depth of the rule bases [Buchanan, 1987). Mehrotra defined and used
a “distance metric” to group the rule bases so as to increase the expert system’s com-
prehensibility, maintainability and reliability [Mehrotra, 1991]; Preece suggested that

attention should also be paid to the differences in data-to-rule ratio [Preece, 1990).

CHAPTER 6. ISSUES RELATED TO MEASURES OF EXPERT SYSTEMS 82

if bl and b2 thenc if b2 then cl

® @

if al then bl if a2 then b2 if a3 then b2 if a4 then b2

B=(rl, 12,13, 14 }
A=(rl, 12}

O={(12, 13, 14, 15, 16 }
L={17}

I= ¢

E=(el, €2, ¢3, e4, ¢5, ¢6, ¢7)

Figure 13: An AND/OR Representation of A Rule Base

CHAPTER 6. ISSUES RELATED TO MEASURES OF EXPERT SYSTEMS 83

In the VALID project, several issues concerning the quality control and evaluation
of knowledge-based systems were addressed [Cardefiosa, 1995]. And in the UK, the
Gateway project which aimed at constructing a coherent set of metrics for knowledge-
based systems was developed, and some preliminary findings about the development

of knowledge-based systems by applying Gateway were shown [Behrendt et al., 1991].
To date, several measurements have been suggested for rule bases, such as:
e object volume [Kaisler, 1986],
e number of rules [Suen et al., 1990],
¢ number of antecedents and consequents (items) in a rule [Kaisler, 1986],
o breadih of the knowledge base [Suen et al., 1990],
o depth of the search space [Suen et al., 1990],
o complexity of individual rules [Miller, 1990],
o vocabulary of the knowledge base [Buchanan, 1987],

e dynamic metrics, for example, the number of rules executed per cycle, or average

time required to solve the problem [Kaisler, 1986].

The problem lies in the validity and organization of these measurements; some of
them may be highly inter-related and measure the same factors of the rule bases. Also,
no sufficient evidence and experiments have been shown to support these measures,

even though some are intuitive.

Chapter 7

Quality Metrics for Expert
Systems

7.1 Introduction

As indicated in Chapter 5, quality metrics are the basic and primitive elements for
assessing the quality model. They provide the quantitative information about the
attributes of the objects to be measured. The quality metrics of ES are the measures
of ES characteristics. So, the characteristics of ES are the targets of the measures,
based on which different metrics can be defined and formulated. In this thesis, three
important, quality-related and static characteristics of ES are examined, they are:
size, complezity and search space. The size and search space will be studied in this
chapter, and the complezity in the next chapter. The corresponding metrics are also

presented.

84

CHAPTER 7. QUALITY METRICS FOR EXPERT SYSTEMS 85

7.2 Size Measures

From Chapter 3, we know that the common metric used in conventional software
engineering for measuring the size of the software products is the LOC, the lines of
code. This kind of measure is simple and easy to calculate, however, its simplicity
may also bring many drawbacks as discussed before. The counterpart of LOC in an
ES is the number of rules (NR). NR has as many drawbacks as LOC. However,
since it is easy to count, it is still used. But caution must be taken when inferring

other attributes from it. Based on the LOC, we define NR as:
NR: (§, A,) — (N, T, R))
where

&: rule bases

A;: sizes

Py: (z, y) € P, if size of rule base z is greater than or
equal to that of rule base y.

N: natural numbers

T:: values

Ry:(z,y)ePifz2y

NR(€) = number of rules in a rule base excluding the control rules.

Another measure of the size of an ES is the count of the total patterns (NVAC)

CHAPTER 7. QUALITY METRICS FOR EXPERT SYSTEMS 86

contained in the LHS and RHS parts of all the rules in an ES, which is based on

the following direct metric num, the number of patterns in each rule:
num . (g, A], P]) — (N, Tl, R])
where

E: rules

A,: sizes

Py: (z, y) € P, if size of rule z is greater than or equal to
that of rule y

N: natural numbers

T:: values

Ry: (z,y)eRifz2y

num(€) = total number of patterns contained in the LHS and

RHS parts of a rule.

Then,

NAC: Rule Bases —_— Numerical Numbers

NAC(R) =)_ num(r;)

where:

r; = some rule in a rule base

CHAPTER 7. QUALITY METRICS FOR EXPERT SYSTEMS 87

N AC is a second layer metric, and it seems to consider more details of rule bases,
hence, to be more precise than NR. But our results reveal that NR and NAC
have the same performance for assessing or predicting the ES quality. Also, NAC is
obtained at the expense of extra calculation of the number of patterns in each rule.

Hence most people are more willing to choose N R instead of NAC.

7.3 Search Space

An important and distinctive feature of ES is their search space formed by the rules
and the dependencies among them. Because of its critical role, the search space has
become the focus of many studies. The challenge is how to formally and precisely
represent the search space and how to capture its essential components. In Chapter
6, an AND/OR digraph was proposed for the formal description of the search space.
Based on this AND/OR digraph, we can then formally describe some concepts and

measures related to the search space.
In our discussion, the following notations will still be used:

r = some rule.

R = some rule base.

B = the set of the starting nodes in the AND/OR digraph of R.
cons(r) = the set of patterns contained in the RHS part of a rule r.

ante(r) = the set of patterns contained in the LHS part of a rule r.

CHAPTER 7. QUALITY METRICS FOR EXPERT SYSTEMS 88

¥ = asubstitution {#;/v1,t2/v2,....., 8a/v,}, t’s are terms, v’s are distinct variables.

|S| = the cardinality of set S.

The important characteristics to be considered are then the attributes associated
with the search paths such as the depth of search paths and bdreadth of search paths.
To describe them, we first introduce a concept called AND-GROUP with the follow-

ing definition:

AND-GROUP: a minimum set of rules which jointly make some rule firable, that
is, all the conditions in the LHS part of some rule will be satisfied by the consequents

of this set of rules. Formally, it can be represented as follows:

AND -GROUP, = {{T.‘; T2 eeeens r;,,,}IEIr,- €ER. enf(r_,-, {7‘.‘1 782 coenee r.-,,.})

In R, there may exist several AND-GROUPs, each of which makes some rule
firable, and the intersections among these AND-GROUP may not be empty. The dif-
ference between an AND-GROUP and predicate enf is that enf is an assertion that
specifies both a set of rules and the rule that is made firable by this set of rules, while

AND-GROUPis a set that contains only that set of rules that makes some rule firable.

Now, we can describe the search path as:

Search Path: a path Q is a set of AND — GROUPs w; in R, that is:

CHAPTER 7. QUALITY METRICS FOR EXPERT SYSTEMS 89

where:

1° w; C B is a subset of the starting nodes (rules).
2° w, is the set of some goal nodes (rules).
3°Vi-(1 <i<n— Vuew IvCwe_ enf(u,v))
The above shows that:

(a) a path begins at some starting nodes and ends in some goal nodes.

(b) each rule in the path, except for the starting rules, is enabled by some sub-AND-
GROUP and only by this sub-AND-GROUP.

(c) each AND-GROUP will enable some rule(s) firable in some AND-GROUP: in

the path.

Based on the above description of search paths, all the paths in R can be iden-
tified. Suppose the there are n paths and Qi(1 £ ¢ < n) is some path, then the

measures on the paths are:

Average Depth of Search Space (ADSS): ADSS denotes the average depth of
all the search paths in an ES. To measure it, first we need to measure the length for
each path Q;. Suppose (DP) represents such measure on the length, then it can be

described as:
DP: (£,A,) — (N,T, RBy)

where

CHAPTER 7. QUALITY METRICS FOR EXPERT SYSTEMS 90

E: search paths

A;: lengths

Pyi: (z, y) € P if length of path z is greater than or equal to
that of path y

N: natural numbers

Ty: values

Ri: (z, y)ePifz>y

DP(€) = |€| — 1, which equals the cardinality of each path

minus one.

Then:

ADSS : Search Paths — Numerical Numbers

i=n
3 DP@Q)
ADSS(R) = !.E_l_;_.__

Average Breadth of Search Space (ABSS): ABSS denotes the average fan-in
number of nodes in different paths. So, its measure is based on the measure (AV B)

of average fan-in number of nodes in each path, that is,

AVB: Search Paths — Numerical Numbers

CHAPTER 7. QUALITY METRICS FOR EXPERT SYSTEMS 91
i = |Rj
}: fi(rs)
AVB(Q)=-1=1____
@)= —“RT-18]
where

Q; = some path

R; =the set of nodes in Q;
ri € R;

fi(ri) = fan-in of r;

B;=the set of starting nodes in @;
Then:

ABSS: Search Paths —> Numerical Numbers

i=n
3 AVB(Q)
ABSS(R) = 1=1 -

One approximate measure of ABSS is by calculating the average fan-in number

of nodes in the entire AND/OR digraph instead of each path, that is:

ABSS: AND/OR Digraphs — Numerical Numbers

CHAPTER 7. QUALITY METRICS FOR EXPERT SYSTEMS 92

t = |R|
z Ji(r:)

where

r. €R

fi(ri) = fan-in of r;

B =the set of starting nodes in R

It is obviously that this approximate measure is less expensive, but can still achieve

quite precise results.

Buchanan’s Complexity (BC), which is a measure of the total size of the abstract

search space. It can be described as:

BC : Search Paths — Numerical Numbers

BC(R) = ABSS§ADSS

So, BC is actual based on the measures of ADSS and ABSS.

Chapter 8

Complexity Measures of Rule

Bases

8.1 Introduction

Complexity has been recognized as a crucial characteristic in a software system’s
development and quality, as a consequence, many conventional software complexity
measures have been introduced in terms of different requirements, and many tools
have been developed to use software complexity measures to analyze the software
in order to reduce its cost and improve the quality [Zuse, 1991]. Basically, software
complexity measures attempt to capture major internal and static attributes of the
software products, and summarize these attributes by a numerical value. This value
is expected to have the property of an indicator of some quality factors, such as main-
tainability, testability, reliability. A high value of complexity measure is supposed to

be indicative of low maintainability, testability and reliability, etc.

Even though there exist many complexity metrics for conventional software, such

93

CHAPTER 8. COMPLEXITY MEASURES OF RULE BASES 94

measures on ES are lacking. By the nature of ES, complexity metrics for ES, like the
complexity metrics for conventional software, are also critical and important. In the
following sections, we will investigate complexity measures of rule bases, and propose

our complexity metrics — RC and ERC for measuring the complexity.

8.2 Principles and Definition

As there is no standard definition and no comparative studies done on product com-
plexity, various conventional complexity metrics have been proposed and designed for
different applications in software engineering. There exist a number of complexity
metrics in software engineering. The basic considerations are: What aspects (factors)

should be measured? How to measure them? And for what purpose?

It is generally accepted that the psychological complexities! (as distinct from com-
putational complexities which evaluate the theoretical cost of software with respect to
efficiency, execution time, etc) are a measure of the degree of difficulty in comprehend-
ing and working with a piece of software [Li and Cheung, 1987, Harrison et al., 1982).
Many quality factors like maintainability (including software understandability, mod-

ifiability), reliability and testability, are affected by complexity.

The basic principles underlying the measurements used in software engineering
could also be applied to rule bases. The key issue in complexity measurement is the

measure of the difficulty in understanding the products. But the meanings implied

1n this thesis, the term “complexity” is used synonymously with “psychological complexity” if
no particular specification is given.

CHAPTER 8. COMPLEXITY MEASURES OF RULE BASES 95

by rule bases and conventional software are different. ES are applied to areas in
which expertise is needed. A rule base is used only as a means of encapsulating such
expertise, the control information for the execution (firing) of the rules in the rule
base are not contained in the rules themselves, i.e., the rules are not for the control
of the system, they are the representation of knowledge for solving problems in the
application domains, whereas the statements in the conventional software are the
control codes that decide the system’s execution. In this thesis, the complexity of

rule bases is therefore defined as:

“The measure of the degree of difficulty in understanding and managing

the knowledge represented by the rule base.”

This definition involves ezternal and internal aspects which will be discussed in

the next section.

8.3 Model of Complexity

Similar to other characteristics, the essence of the complexity of a rule base may be
seen from two perspectives. One is due to the ezternal component which influences
the complexity and can only be measured with regard to its environment. Another is
the internal component which reflects the complexity and can be measured in terms
of the rule base itself. This concept model can be characterized by Figure 14. The

external component consists of:

1. Experts. They provide the knowledge for solving problems, thus contributing to

the complexity of the knowledge. It could also be shown that different experts

CHAPTER 8. COMPLEXITY MEASURES OF RULE BASES

Rule Base

Complexity

Experts & Rule Base

Knowledge Attributes
Engineers

External Component Internal Component

Figure 14: Complexity Model of Rule Bases

96

CHAPTER 8. COMPLEXITY MEASURES OF RULE BASES 97

or expert groups may produce the knowledge with different complexities for the

same problem, because of differences in their expertise, personalities and so on.

2. Knowledge Engineers. Since the knowledge engineers are responsible for know-
ledge acquisition and representation, it is obvious that their attributes such as
experience, natural ability, and motivation, also contribute to the formulation
of the complexity. In addition, both the environment in which they work and

the tools they use influence the complexity.

Besides, the “difficulty” in understanding a rule base will also be different for dif-
ferent users who use the ES, because of individual differences in them, such as their

backgrounds.

While it seems that the above ezternal component is, by its nature, situation-
dependent, most difficult to measure, and there is no agreed definitions, actually our

focus is on the measurement of the internal component.

The internal component may be regarded as the attributes of the structure which
captures the knowledge. In rule-based ES, a rule base serves this purpose, and its
attributes characterize the internal component. There exist different kinds of rule base
description languages, which also affect the complexity. But for solving problems, the
rule base attributes are mainly determined by the knowledge itself. So in our analysis,
we will convert different rule bases written in different description languages into those
expressed by the generic form presented in Chapter 4, and concentrate on measuring

the characteristics (attributes) that reflect the complexity of rule bases.

CHAPTER 8. COMPLEXITY MEASURES OF RULE BASES 98

8.4 Hybrid Complexity Metric — RC

From the measuring experience in software engineering, we know that hybrid metrics
can usually reflect the target software more subjectively. Hence, the formulation
of RC will take into account the three important characteristics of rule bases: (1)
contents of the matching patterns, (2) search space, and (3) size. These characteristics
may correspond to the data flow, control flow and size characteristics of conventional
software as discussed in Chapter 3, and our measure (RC) is designed to reflect the

influences of the matching patterns, search space and size on the rule base complexity.

8.4.1 Contents

Miller identified 11 complexity features associated with each rule [Miller, 1990]. They
reflect the content of each rule and are related to possible syntactic errors; that is,
the more the measurement, the more the opportunity for making errors. For different
implementations of the same problem, the measurements could be quite different,
that is, they are sensitive to the implementation. For example, the feature “number
of attributes” could be quite different for various implementations if the attribute
names are allowed to be absent from the rules because of context-dependence. In
our measurement, rules are described as a composition of the patterns which are
expressed as < quali fier, value >? (Table 1), and the measurement is focused on the
connectors which result in the interactions among the rules, hence, the complexity of

the rule bases. It implies two cases:

2The concept used here is similar to that in the Exsys shell. It could increase the reliability of
the measurement, since rule bases, like programs, can be trivially rewritten to give different content.

CHAPTER 8. COMPLEXITY MEASURES OF RULE BASES 99

1. Pattern in the antecedent of a rule, which matches the patterns in the conse-

quent of other rules.

2. Pattern in the consequent of a rule, which matches the patterns in the an-

tecedent of other rules.

The above patterns, called connectors, form the inter-relations among the rules;

these inter-relations correspond to the arcs in the AND/OR digraph.

The variables in the connectors form and produce various matching patterns, and
therefore indicate the dynamically and potentially different chainings among the rules.
So rule bases with different designed variables will be quite different in their complex-
ities. Because of this reason, variables will be considered as a separate component
affecting the complexity of rule bases. Consider a typical example of two rule bases,
one with several variables and the other without any variable. If their sizes and other
measurements are the same, it is obvious that the latter rule base is less complex

than the former one.

Let M denote the set of connectors, and the following components in M: v the set
of variables; v the set of qualifiers; u the set of values, then the content measurement

of a rule base will be a function of M, that is f(M) or f(v, 7, 1). One way to define

J is to let it be the volume or amount measurement of v, 7 and u. Then from this
point of view, this measurement is similar to the one used in software engineering,
that is, the volume measurement method developed in software engineering could be

applied to this conventional portion. Halstead’s volume metric, one of the widely

CHAPTER 8. COMPLEXITY MEASURES OF RULE BASES 100

accepted measurements in software engineering, is adopted here, but the scopes of
operators and operands defined for conventional software need to be extended, which

are composed of:
- variables
- qualifiers
- values, including

e constants

e basic arithmetic operators: +, —, *, /, ()

e relational and Boolean operators: >, >=, <, <=, =
e logic operators: and, or, not

e function or procedure calls

By assigning different weights to the above items to reflect their different “impor-
tance” and introducing Halstead’s volume metric, we have the content measurement

7 given by:

7 : Rule Bases —_ Numerical Numbers

7 = Nlog (1 +n) (1)

which is based on the following measures:

CHAPTER 8. COMPLEXITY MEASURES OF RULE BASES 101

ny, ng, n3, Ny, N3, N3 : (5, {Ah Az, As}, {Ph P, Ps}) — (N’ L, Rl)

where

E: rule bases

A;: volume of variables in a rule base

Aj: volume of qualifiers in a rule base

A3;: volume of values in a rule base

P,: (z, y) € P, if the volume of variables in rule base z is greater
than or equal to that in rule base y.

P;: (z, y) € P, if the volume of qualifiers in rule base z is greater
than or equal to that in rule base y.

P;: (z, y) € P, if the volume of values in rule base z is greater
than or equal to that in rule base y.

N: natural numbers

T3: values

Ry (z,y)eRifz 2y

n;(€)= number of distinct variables in a rule base

n3(€)= number of distinct qualifiers in a rule base;

n3(£)= number of distinctive values in a rule base;

Ny (€)= number of total variables in a rule base;

CHAPTER 8. COMPLEXITY MEASURES OF RULE BASES 102

N,(€)= number of total qualifiers in a rule base;

N3(€)= number of total values in a rule base;

N and n are the second layer metrics defined as:
N, n: Rule Bases — Numerical Numbers

N=wlx N +uw2x N+ w3 xN;
n=wlxn +w2xny+w3 xn3

w; = weights. (1 <5 <3)

It can be seen that the above calculations measure the content of each node of
the AND/OR digraph. The next measurement will focus on the search space, which

corresponds to the connections of AND/OR digraph.

8.4.2 Connectivity

It is the interaction or connection among rules that mainly makes the rule bases more
complex. That is, the connectivity is the main factor which contributes to the com-
plexity of the rule bases. Figure 15 summarizes the basic types of connections among
the nodes which will be used to form the whole dependency digraph of the rule bases.
Figure 15 (a) shows that ry, ry, , ry form one AND-GROUP with regard to r;;
Figure 15 (b) shows the “OR” relationship between the AND — GROUPs G,, Ga,
...... » Gk. When |G| = 1, it represents only one node (rule). Figure 15 (c) indicates

the “fan-out” from rule r; to rules ry, ry, yTa. That is: cons(r;)ypNante(r;)p# 0

CHAPTER 8. COMPLEXITY MEASURES OF RULE BASES 103

h n r, G G Gi fi

(@) ®) (c)
Figure 15: Basic Structures in The Rule Dependency Digraph

for 1=1, 2, ..., n. The connectivity measurement, p(r;), is then designed to measure

the “influence” of the other nodes upon node r;.
For any node r;, p(r;) is affected by two factors:

1. The depth from B to r;

As it increases, the possible connections from other nodes to r; increase, which
could be either direct or indirect, and the possible influence of other nodes upon

r; increases as well.

2. The width of the path leading to node r;

As it increases, it also increases the connections of other nodes to r;, hence the

influence of other nodes upon node r;.

These considerations lead to the following approach in the formulation of p(r;):

p: (£, A, B) — (N, Ry)

CHAPTER 8. COMPLEXITY MEASURES OF RULE BASES 104

where
&: AND/OR digraphs
A;: connectivity

P: (z, y) € P, if node z has more connections with other nodes

than node y, or the same connections as node y.
N': natural numbers
Ty: values
Ri: (z,9)e Ryifz2>y

p(€) = as defined below

1. If r; is an isolated node, that is r; € I, then p(r;) = 0.
2. If r; is a starting node, that is r; € B, then the measurement will be: p(r;) = 1.

3. If r; is not a starting node, that is r; € AUO U L — B, suppose there exist k
AND — GROUPs G, Gy,, Gy w.r.t. r; (like figure 3(b)), and each AND-
GROUP acis as an “OR™ node, that is, firing all rules in one AND — GROU P
Gi (1 < I £ k) will make node (rule) r; become “firable”. Then there are two

steps in calculating p(r;):

First, obtain the maximal p value of each AND — GROUP G; (1 <1 <L k).

p(G)), which contains nodes ri1, ryz, s Tiny (B 2 1) wart. ng.

p(Gi) = max p(ri;)

CHAPTER 8. COMPLEXITY MEASURES OF RULE BASES 105

where:

1<j<n

The second step is to calculate the connectivity for each node r;:
e If r; is an internal node, that isr; € AUO — B - L, then
P = Y HGi) + flr) -
o If r; is a terminal node, that is r; € L, then

k
p(ri) =2 p(G)

1=1
Since for any internal node, there will be normally at least one edge connecting it
with other nodes, which doesn’t contribu‘e to the comparison of the connectivity of
rule bases. So the —1 term is added in the calculation of p(r;) to discard this normal
situation, and the threshold of 1 is set for the p(r;) value, i.e. p(r;) > 1, to reflect the
degree of influence caused by connections which exceed the “normal value™3. Such a

se. of nodes is defined as the influznced node set P, that is:

P={rlri€ RAp(ri) > 1}

8.4.3 Size

This measurement captures the size of the digraph which reflects both the size of the
rule bases and the amount of edges of an AND/OR graph. It can be simply charac-

terized as:

SWe regard the number of edges connecting a node as normal if it is less than or equal to two
(one edge emanates from the node, another one incidents at the node.)

CHAPTER 8. COMPLEXITY MEASURES OF RULE BASES 106

v:

AND/OR digraphs —~— Numerical Numbers

v = nn + ne. (2)

where, nn and ne are defined as follows:

where

nn,ne: (€, {A, 42}, (P, P2}) — (N,T, Ry)

£: AND/OR digraphs

A;: volume of nodes in an AND/OR digraph

A;: volume of edges in an AND/OR digraph

Py: (z,y) € P, if volume of nodes in AND/OR digraph z is greater
than or equal to that of AND/OR digraph y.

P;: (z,y) € P; if volume of edges in AND/OR digraph z is greater
than or equal to that of AND/OR digraph y.

N: natural numbers

Ty: values

Ry: (z,y) € Rifz 2y

nn(€) = number of nodes in an AND/OR digraph

ne(€) = number of edges in an AND/OR digraph

CHAPTER 8. COMPLEXITY MEASURES OF RULE BASES 107

It is obvious that when a rule base contains circularity, redundant rules or other
anomalies, the value of v will increase. Also the “key” nodes which have more con-
nections with other nodes contribute more to the value of v.

8.4.4 Calculation of Complexity

Having identified the v, 7, p factors that constitute the complexity, and their corre-
sponding measurements; the complexity metric (RC) of rule bases can now be defined

as a function (g) of these factors. That is:

RC : Rule Bases —— Numerical Numbers

RC(rule bases) = g(r, p,v) (3)

From the formulations of 7, p and v, we know that as these values increase, the

RC will also increase. To reflect this characteristic, a formula in the following form

is applied:
1.0
1”"10+A@) (4)
where,

w=mT,p0

A = a function of w

A is designed to reflect the influence of 7, p and v on RC, and its value is designed

to be greater or equal to 0, which makes the overall value of expression (4) greater

CHAPTER 8. COMPLEXITY MEASURES OF RULE BASES 108

than 0, but less than 1.

Based on the expression (4), the formula (3) is further refined as the follows

empirically:
k

RC(R) = [W,*(IO I},,)+ Was *(1. o—)]" 5)
r"l P(l)

where

R = some rule base
P = influenced node set
r, €P
ki, ky, ks = scale factors
n = constant
Wi, Wo, W3 = weights
The weights have been set in such a way that W; + W, + W3 = 1 and they indi-

cate the different contributions of the three components relating to p, 7, and v. One

possible setting! for the above parameters is:

=
i

5
)
Wir ol -

B
!

41t is based on our empirical data.

CHAPTER 8. COMPLEXITY MEASURES OF RULE BASES 109

k1 =100
k2 =100
ks =50

n=2

The other rationales for expressing RC as formula (5) are summarized as follows:

e The complexity may be of a higher order than linear in terms of the three

components,
o As p, 7 and v increase, the value of RC expression (formula (5)) also increases.

¢ Reasonable results can be achieved when formula (5) is applied to some sample

rule bases.

¢ Only empirical studies and experiments may be used to deduce this kind of

measurements.

Some simple basic structures among three rules and their corresponding RC val-
ues are shown in Figure 16 to illustrate the effectiveness of our measurement. The
measuring resulis show that rule bases No. 1 and No. 3 have the highest complexity
because of their relatively more complex connectors even though all of these four

structures have almost the same degree of connections.

The RC metric (formula (4)) has some interesting properties listed below (suppose

R represents a rule base):

CHAPTER 8. COMPLEXITY MEASURES OF RULE BASES 110
No. Sample Rules Dependency Digraph RCR)
1 1l: a—b 3
12: b—=cC r2 0.0019
13 c—d
rl
) rl:a—b 3
12 c—b
. d 0.0016
3. b— i DS
13
3 rl: e—b
2:.c—d 0.0019
13: b,d" € 1l r2
4 rl; a—b r2 13
12; b—=c 0.0011
13: b—sd ?1

Figure 16: Measurements of Basic Structures by RC

CHAPTER 8. COMPLEXITY MEASURES OF RULE BASES 111

(a) 0< RC(R) < 1.

(b) Adding a new node (rule) or edge (connection) to R will increase RC(R) except

that the added node is isolated.

(c) For any subset © C R, RC(©) < RC(R), the complexity of each sub-rule bases

is less than or equal to that of the global rule bases.

(d) RC(R) = 0 denotes that R contains only isolated nodes in which each node acts

as a separate subgraph.
(e) 0.0003 < RC(R) < 0.4445 if R forms only one search path.

(f) RC(R) > 0.0011 if there are more than one path in R.

The first and second properties may be proved from the approach and formulas
described above. The third one may be deduced from the second property. The last

three properties are based on the following observations:

e For isolated nodes:

=0

v=1

P=y
r%D/"("i)=0

So:
RC(R)=0

CHAPTER 8. COMPLEXITY MEASURES OF RULE BASES 112

o For nodes that constitute only one search path:

r22
v>3
P=40
So:
W, % (1.0 — kzk_:w) > W (10— kzk:-2)
W » (1.0 — 1,'6215") > Wa * (1.0 — 12:';3)
Win (L0) =0
[Wa % (1.0 - k,kiz) + Wax (1.0 - %‘:—}gi)]" < RC(R) < (W, + Wy)"

that is: (suppose the values of the parameters are set as above)

0.0003 < RC(R) < 0.4445

¢ For nodes that form more than one search path:
>3

v>9H
(P20

So:

ka) > Wy # (1.0 - k2

Wg*(l.o—k2+7r k2+3)

CHAPTER 8. COMPLEXITY MEASURES OF RULE BASES

1.0+ 1.0+ &3

k3
0= > 0-
Wax (10~ %) 2 Wax (L0 - =)
ky
10- 20
ki + 3, .ep p(ri)

k2 1.0 + k3 n
RO(R) 2 [Wa s (1 - i) + Was (10— 201,

that is:
RC(R) > 0.0011

8.4.5 Other Considerations

113

The dependency AND/OR digraph for a rule base may consist of several separate

subgraphs that are independent of each other. That is, there is no edge connecting

these subgraphs and within each subgraph, each node is connected to some other

nodes by edges. Such a subgraph represents a subset (group) of the rule bases, which

is not related to others and could be obtained by applying some grouping algorithms.

These features occur in many ES, especially those which are related to “classification”

problems, e. g. fault diagnosis, disease diagnosis, animal identification, efc.

Because of this “independence” feature, the complexity measurement could be

applied to these subgraphs in turn to reflect the different complexities of the different

separate sub-rule bases. And the global complexity of the rule bases can be the

maximum value of the complexities of these sub-rule bases, that is:
RC(R) = maz(RC(R:), RC(R;),RC(Ry))

R = a rule base to be measured.

CHAPTER 8. COMPLEXITY MEASURES OF RULE BASES 114

RCR(1<igk).

The RC measurement may also be applied to a deliberately chosen subset of a
rule base, that is, applied to some rules which are chosen to form a subset of the
whole rule bases for a certain purpose. This application could be used in many cases,
such as the distributions of efforts to be put into the different parts of a rule base in
terms of the measurements in the maintenance process. It is also obvious that the RC
value for a modular rule base is lower than that of an unstructured rule base, which
is intuitively correct, since a modular rule base reduces the inter-relation among its

rules.

8.5 Information Content-Based Metric — ERC

The principles of information-based measures used for measuring conventional soft-
ware can also be applied to ES. Obviously, for rule bases, the information is contained
in the items of each pattern in rules, which can be the predicates, the function calls,
the mathematical operators and operands, etc. Therefore, our proposed metric (ERC)

is based on the empirical distribution of these items within a rule base.

Suppose there are n items in a rule base, then the probability p; for each item s;

is:

pi : Rule Bases —— Numerical Numbers

CHAPTER 8. COMPLEXITY MEASURES OF RULE BASES

where f; and N are the following measures:
fl' . (8’ Als Pl) —_— (N’ Tla Rl)

where
£: items in a rule base

A;: occurrence of items

115

P: (z,y) € A if item = occurs more or equally often than item y.

N: natural numbers
Ty: values
Ry (z,y)eR ifz2y

fi(€) = number of occurrences of the i-th item

and N is defined as the second layer metric:

N : Rule Bases — Numerical Numbers

i=n

N=Zf.-

s=1

that is, N is the total number of occurrences of all items in a rule base.

Thus, the entropy (ERC) of the rule base is

ERC: RuleBases —+ Numerical Numbers

CHAPTER 8. COMPLEXITY MEASURES OF RULE BASES 116

i=n

ERC = - Y p:logpi

i=1

E RC is then computed and used for different ES as another ES complexity mea-
sure in addition to RC. Ard the hypothesis used is that a rule base with a higher
entropy, on the whole, is more complicated than another rule base with a lower en-

tropy.

The evaluation results presented in Chapter 13 will show that the performance of
ERC is inferior to RC. The purpose for defining ERC is to compare the different

metrics that are defined based on variou.. viewpoints.

Chapter 9

Examples

9.1 Introduction

In order to illustrate the concepts and measures presented in the previous chapters,
especially our proposed RC metric, this chapter selects two sample rule bases as
measurement examples. They are: {a) the animal identification rule base [?] which is
often used as a typical example in most expert system textbooks, and (b) the subset of
fault diagnosis rule base [Rushby and Crow, 1990] from a real industrial application.
The former is written in natural language using if - then format and the latter is
written in CLIPS. Simple comparisons and analysis of the measuring results based
on our intuitions are also conducted. A complete evaluation of the measures will be

given in Chapter 13.

9.2 Animal Identification Rule Base

This rule base is designed to identify different animals. The rule base contains fifteen

rules as shown below:

117

CHAPTER 9. EXAMPLES 118

rl:

r2:

r3:

r4:

r5:

r6:

if (animal has hair) then (animal is mammal)

if (animal gives milk) then (animal is mammal)

if (animal has feathers) then (animal is bird)

if (animal can fly)
(animal lays eggs)

then (animal is bird)

if (animal eats meat) then (animal is carnivore)

if (animal has pointed-teeth)
(animal has claws)
(animal has forward-eyes)

then (animal is carnivore)

CHAPTER 9. EXAMPLES 119

r7:
if (animal is mammal)
(animal has hoofs)

then (animal is ungulate)

r8:
if (animal is mammal)
(animal chews cud)

then (animal is ungulate)

r9:
if (animal is mammal)
(animal is carnivore)
(animal has tawny-colour)
(animal has dark-spots)

then (animal is cheetah)

ri0:
if (animal is mamsal)
(animal is carnivore)
(animal has tavny-colour)
(animal has black-stripes)

then (animal is tiger)

CHAPTER 9. EXAMPLES

rit:
if (animal is ungulate)
(animal has long-neck)
(animal has long-legs)
(animal has dark-spots)

then (animal is giraffe)

ri2:
if (animal is ungulate)
(animal has black-stripes)

then (animal is zebra)

ri3:
if (animal is bird)
(animal does-not fly)
(animal has long-neck)
(animal has long-legs)
(animal has black-and-white-colour)

then (animal is ostrich)

ri4:

if (animal is bird)

120

CHAPTER 9. EXAMPLES 121

9
r10 g 8
] rl 12 16

Figure 17: An AND/OR Digraph of the Animal Identification Rulebase

(animal does-not fly)
(animal does swim)
(animal has black-and-white-colour)

then (animal is penguin)

ris:
if (animal is bird)
(animal does fly-well)

then (animal is albatross)

Two separate AND/OR digraphs deduced from the rule base are given in Figures

17 and 18 respectively, which correspond to two subsets of the rule base:

Ry = {ry, ra, rs, re, r7, rs, 19, r10, P11, T12,}

CHAPTER 9. EXAMPLES 122

1 14 11§

B "

Figure 18: Another AND/OR Digraph of the Animal Identification Rulebase

Ry = {ra, r4, 113, 14, 715 }

The paths contained in R, are:

1. { {1‘5,1‘1},{7‘9} }

(3]

. { {rs;r2}, {ro} }

(=)

. { {r1yre}, {re} }

-

. { {r2, 7}, {re} }

[

. { {rsym}, {ro} }

(=2}

. { {rs,r2}, {r0} }

-3

. { {r2,76}, {r10} }

oo

. { {r1, 76}, {r1a} }

w

A {n}{rsds{ru} }

CHAPTER 9. EXAMPLES 123

10. { {r:},{rs},{ru}}
1. {{n}:{rs}.{ra} }
12. {{r:},{r1},{r12} }
13. {{n},{rs}:{rn}}
14. { {r2}, {rs},{ru}}
15. { {n},{rs},{r12}}
16. { {r2}, {rs},{r12} }
And the paths in R, are:

1. {{rs},{ra}}

2. {{r}, {ria} }

3. {{rs}, {rua} }

4. {{r}, {ru}}

5. {{rs}, {rs} }

6. { {re}, {ris} }

Tables 3 and 4 show the derived values for the RC measurements, in which the
qualifiers are (animal is), (animal has), (animal gives), efc. The values are (hair),

(mammal), (bird), etc.

CHAPTER 9. EXAMPLES 124

| rules | pfr) |

Ty
r2
T3
T4
r's
T'e
7
rs
T'g

[y Fe

T'10
11
12
13
T'14
T15

|
]
s
|

Table 3: Connectivity Measurement Value for Each Rule

NN O] | D] b} GO COf = | r=t] bt] st

items T v RC
Ry 60.37 26 0.092
R, 15.85 11 0.014

Table 4: Values Derived

CHAPTER 9. EXAMPLES 125

Rule bases | ERC | NR| ADSS | ABSS | BC | NAC ||
R 2.938 | 10 | 1.50 | 2.67 | 4.36] 102 |
I &, 2935 5 | 1.00 | 200 |2.00] 57 |

Table 5: Results Measured by the metrics: ERC, NR, ADSS, ABSS, BC and NAC

Table 5 shows other metric measuring results on the two subsets of the sample

rule base.

From the above results, we can see that

RC(R)) > RC(Ry)

ERC(Ry) > ERC(Ry)
NR(Ry) > NR(Ry)
ADSS(Ry) > ADSS(Ry)
ABSS(R,) > ABSS(Ry)
BC(Ry) > BC(R,)

In addition to the “natural partition” of R which results in R; and R;, we can
also choose some rules from R; and R; to form some other artificial sub-rule bases.

For example, the following “artificial partitions” could be made:
g

Ry = {7'1,"2,1‘7, T8, T11, "12}

CHAPTER 9. EXAMPLES 126

itgms x v RC
R 32 14 0.040
R, 9.51 5 0.004 ||

Table 6: Values derived

Rulerbases
2 -
R, 28261 3 1.00 200 [200] 33 |

Table 7: Results Measured by the metrics: ERC, NR, ADSS, ABSS, BC and NAC

Ry = {7‘3,7'4,7‘13}

The measuring results on R3; and R, which are related to RC are shown in Table

6, and other measuring results are shown in Table 7.

Also, the conclusions about the rankings of R3 and Ry made by these measures

can be obtained:
RC(Rs) > RC(Ry)

ERC(Ry) > ERC(Rs)
NR(R;) > NR(R,)
ADSS(Rs) > ADSS(Ry)

ABSS(Rs) = ABSS(Ry)

CHAPTER 9. EXAMPLES 127

BC(Rs) > BC(R4)

NAC(Rs) > NAC(Ry)

By partitioning a rule base into different sub-rule bases and applying the metric
measurements on them, we can then compare the different parts of a rule base, and
find out the key components in its formulation, which have the significant measuring
values. This reveals one of metric applications which would help to maintain and test

a rule base.

Summarizing and combining the above results, we have

RC(Ry) > RC(Rs) > RC(R;) > RC(Ry)
ERC(Ry) > ERC(R;) > ERC(R;) > ERC(R3)
NR(Ry) > NR(Rs) > NR(R;) > NR(R,)
ADSS(Rs) > ADSS(Ry) > ADSS(R;), ADSS(R;) = ADSS(R.)
ABSS(Ry) > ABSS(R;), ABSS(R;) = ABSS(Rs)= ABSS(Ry)
BC(Ry) > BC(Rs) > BC(Ry), BC(R;) = BC(Ry)

NAC(R,) > NAC(Ry) > NAC(Rs) > NAC(R,)

These results show:

CHAPTER 9. EXAMPLES 128

e Due to the different considerations (viewpoints) of the various measures, the
rule bases are ranked differently in some cases, i. e. there are no unanimous

rankings about these four rule bases, especially R, and Ra.

e R; has the highest value in most zneasures except ADSS, which meets our

intuition. ADSS measure does not rank R, high, because, in general, it is

possible that the average depth of a rule hase (in this cases, R;) may be less

than that of its sub-rule base (R;).

e R, has the lowest value in most measures except ERC, which is reasonable.
ERC is defined in terms of the occurrences of all items in a rule base, it does
not relate to the overall structure of the rule base or search space directly, so,
in some cases, its results are not so satisfactory. One modification over ERC
measure is that not all the items in a rule base are counted for occurrence, only
those which are in the matching patterns are considered, since the matching

patterns (items) are generally believed to contribute significantly to rule bases.

¢ When applying the above measures to characterize some attributes of the rule
bases, their validity and performance could be quite different. A further com-

parison and assessment of these measures will be conducted in Chapter 13.

9.3 Fault Detection, Isolation and Recovery Rule

Base

The MMU FDIR system is a rule-based ES for the task of fault detection, isolation,

and recovery of the Manned Maneuvering Unit (MMU) apparatus used in aerospace.

CHAPTER 9. EXAMPLES 129

One part of its rule base is summarized and modified as follows (complete detail is

described by Rushby [Rushby and Crow, 1990)):

Rule A:
(defrule cea-a-test-prime-mode
(check status of MMU)
(side a on)
(side b on)
=> (assert (failure cea))

(assert (suspect a)))

Rule B:
(defrule cea-a-test-backup-mode
(check status of MMU)
(side a on)
(side b off)
=> (assert (failure cea))

(assert (suspect a)))

Rule C:
(defrule cea-b-test-backup-mode
(check status of MMU)
(side a off)

(side b on)

CHAPTER 9. EXAMPLES

=> (assert (failure cea))

(assert (suspect b)))

Rule D:
(defrule test-failure-cea-suspect-a
7a<- (failure cea)
(suspect a)
(side a on)
?b <~ (side b on)
=> (retract ?a ?b)

(assert (side b off)))

Rule E:
(detrule test-failure-cea-a-good

(not (failure cea))
?x <~ (suspect a)
72 <- (side b off)
?b <- (side a omn)

=> (retract 7a ?b 7x)
(assert (side b on))
(assert (side a off))

(assert (cea-a-good)))

130

CHAPTER 9. EXAMPLES 131

Rule F:
(defrule test-a-cea-side-b-good
(not (failure cea))
(side b on)
(side a off)
(cea-a-good)

=> (assert (failure cea-coupled)))

Rule G:
(defrule print-failure-cea-a
(not (failure cea))
(side a off)
(side b on)
(failure cea-a)

=> (assert (done)))

Rule H:
(defrule print-failure-cea-b
(not (failure cea))
(side b off)
(side a on)
(failure cea-b)

=> (assert (done)))

CHAPTER 9. EXAMPLES 132

Rule I:

(defrule test-failure-cea-a-bad
?7a <- (failure cea)
(suspect a)
?b <- (side b off)
?c <- (side a on)
(not (failure cea-b))

=> (retract 7a ?b ?c)

(assert (failure cea-a)))

Rule J:
(defrule test-failure-cea-b-bad

?a <- (failure cea)
(suspect b)
?b <~ (side a off)
?c <- (side b on)
(not (failure cea-a))

=> (retract 7a ?b ?c)
(assert (side a on))
(assert (side b off))

(assert (failure cea-b)))

CHAPTER 9. EXAMPLES 133

Rule K:
(defrule test-a-cea-side-a-and-b
(failure cea)
(failure cea-a)
?7x <~ (side b on)
(side a off)
=> (retract 7x)
(assert (failure cea-a-b))

(assert (side b off)))

Rule L:
(defrule test-b-cea-side-a-and-b

(failure cea)
(failure cea-b)
7x <- (side a on)
(side b off)

=> (retract ?x)
(assert (failure cea-a-b))

(assert (side a °ff)))

Based on an analysis of the above rule base, the corresponding AND/OR digraph
is constructed (Figure 19), which shows the dependency among the rules. F.om the

digraph, we can derive the following five paths:

CHAPTER 9. EXAMPLES 134

Figure 19: Rule Dependency of the Sample Rule Base

CHAPTER 9. EXAMPLES 135

13

Rule H 8
Rule 1 13
Rule J 8
Rule K 13
Rule L 12

Table 8: Connectivity Measurement Value for Each Rule

Rule Base | " v RC
MMU FDIR 65.01 26 0.17

Table 9: Values derived
1. { {A}, {D}, {E}, {F} }

2. {{A}, {D}, {E}, {C,E}, {3}, {B, J}, {L} }
3. { {A}, {D}, {E}, {C, E}, {3}, {H} }

4. { {A}, {D}, {B, D}, {1}, {G} }

5. { {A}, {D}, {B, D}, {1}, {1, C} {K} }

The measuring results are listed in Tables 8, 9, 10.

It is obvious that this rule base is more complicated than the first sample rule

base, the measuring results reflect this intuition by assigning the second sample rule

CHAPTER 9. EXAMPLES 136

NR | ADSS | ABSS [NAC | BC | RC | ERC
[12] 4.6 1.55 | 100 | 7.51 [0.17] 4.01 |

Table 10: Several Measures on the Sample Rulebase

base higher values than those of the first rule base.

Chapter 10

Implementing Measuring Tool

10.1 Introduction

To support the measuring task, an automatic measuring tool (system) is needed. In
this thesis, such a tool is implemented using high level programming languages, which
will ease the measures of rule bases and analysis of the measuring results. Different
rule bases to be measured form the input data to the tool. In the following sections, we
will briefly introduce this tool and address several implementation issues such as the

system architecture, design, rule base class (main data structure), and implemented

functions.

10.2 Overall System Architecture

The structure of the measuring system (tool) built to support our presented metric

measurements is shown in Figure 21. It consists of three major parts.

e FILTER, which is designed to parse the rule bases to be measured. These

rule bases are written in different rule base description languages, and they

137

CHAPTER 10. IMPLEMENTING MEASURING TOOL 138

inputed rule bases

~S 4

1
!
|

tnput rule bases in different
languages

Parse rule bases according to
the syntax of the langauages

Convert the rule bases to the
ones In our generic langusge

Output the converted rule bases

PRI

Outputed rule bases

Figure 20: Processing Steps of FILTER

will be converted by FILTER into
language. FILTER is written in

a good tool for writing the parser

involved in FILTER.

those described by our rule base description
PROLOG which is generally believed to be

. Figure 20 summarizes the processing steps

o MEASURES, which is the central component of the tool. According to the

formulation of different metrics, it performs the measures on the rule bases

converted by FILTER, and outputs the desired ES measuring values. It is

written in C/C++, the prevalent tool, and the detailed implementation will be

shown in the following sections.

CHAPTER 10. IMPLEMENTING MEASURING TOOL 139

e ANALYSIS, which will further analyze the measuring results given by MEA-
SURES. It compares the metrics, performs some statistical analysis, and pro-
duces further results such as the regression line between some metric and the
anomaly rate, which can be used for the prediction. Some existing statistical
analysis packages will be utilized, like the ones for correlation and regression
analysis implemented in Matlab. New features, like the non-parametric statis-

tical comparison will be added by writing new functions in C/C++.

10.3 Implementation

The language tools — PROLOG, C/C++ and Matlab are chosen for implementing

the measuring system. The main considerations for using these tools are:

e PROLOG is believed to be a good tool for implementing a parser, because PRO-
LOG’s DCG (definite clause grammars) facility provides a convenient notation
for implementing formal grammars in PROLOG, defining and expressing a lan-
guage, and parsing strings to be evaluated according to the stated grammars

which is directly executable by PROLOG as a syntax analyzer.

Example 10.1 To recognize and parse the CLIP rules, the following grammar

rules in DCG are constructed and used:

defrule(header(Name, Comment), Antecedents, Consequents) -->
[’ (*], [*defrule’], symbol(Name), string(Comment),

antecedents(Antecedents), [’=>’], consequents(Consequents), [’)’].

CHAPTER 10. IMPLEMENTING MEASURING TOOL

R
ot .
Rest
@ It 'ﬂ: A
0\) F g N
| s
Conveted {
n L jee—>>{NEASURES
OJW——’> Rebeses !
! §
E |
R $

Figure 21: Overall Measuring Structure

1ot ot

s

e 1t

140

CHAPTER 10. IMPLEMENTING MEASURING TOOL 141

defrule(header(Name, ’""’), Antecedents, Consequents) -->
[’(’], [’defrule’], symbol(Name), antecedents(Antecedents),

[’=>’], consequents(Consequents), [’)’].

Based on the DCG grammars and some other descriptions, the rules in target
rule bases can be parsed, analyzed and converted to the required formats. For
other kinds of rule base languages, a similar set of rules, like those presented in
example 10.1, can be built for the analysis. Hence, PROLOG is ideal for the

implementation of FILTER.

o The popularity of C language is well-known. In addition, as the extension of
C, C++ entails the application of object-oriented paradigm in the design and
implementation of systems, it adds more desired features to the implemented
software. One of them is the improved ezpendability that could facilitate the
additions of new funciions, and is an important factor to be considered in de-
signing our measuring system, because of the possible addition of new measures

in the future. C/C++ are then chosen as the tool to implement MEASURES.

e Matlab. Matlab is a tool designed for the mathematical analysis. The functions
in it include the correlation and regression analysis which will be used for cal-
culating the correlation coeflicient between two variables, and the coefficients
of the regression model, and plotting the results. These functivns plus other

statistical functions implemented by us constitute ANALYSIS.

CHAPTER 10. IMPLEMENTING MEASURING TOOL 142

10.4 Data Structure

Class has been proven to be an effective and useful data structure in the design of
software systems. Many features that object-oriented paradigm brings come from the
introduction of classes. Since a rule base, the main focus of the system, is an abstract
data object, it is defined as a class in the system, which contains the rules, other

attributes of the rules, and the methods for measuring the rules and rule bases.

The attributes associated with a rule base class include:

o Rules, which can be defined as the classes themselves. The relationship between
the rule base class and rule class is the containership which indicates that the
rule class is a data member of rule base class. The attributes of a rule class
can be the name, antecedents and consequents. All the rules in a rule base class
are linked together and form a list of objects, which are indicated by the head

pointer and tail pointer (Figure 22).
e Head pointer, which points to the head of the rule list in a rule base.
e Tail pointer, which points to the tail of the rule list in a rule base.
e Data RC, ERC, NR, ADSS, ABSS, BC and NAC which store the values of

different rule base measures, defined in the previous chapters.

The main methods (functions) associated with a rule base class are:

e “loadrule”, which reads in the rules from the file and forms the linked list of

rules.

CHAPTER 10. IMPLEMENTING MEASURING TOOL 143

Head-Pointer Tall-PoliMmter

Rule Rule Rule RAule

Figure 22: Linked List of Ru! s

o “dependency”, which analyzes the interrelation among the rules and stores the

relationships.

e RC.CAL, ERC.CAL, NRCAL, ADSS.CAL, ABSS.CAL, BC.CAL and
NAC_CAL, which are the methods for calculating the different metrics and

storing the values in the corresponding attributes.

Representing the rule bases in the above structure makes the further addition of
new measures convenient, which will be the addition of new methods based on the
existing data members and methods. Figure 23 illustrates the structure of the rule

base class, and its attributes as well as methods.

10.5 Measuring Library

The set of measuring functions (methods) for the presented metrics form the mea-
suring library which can be extended by adding more functions for more measures.

Tables 11 to Table 17 list the functions which were implemented in the system.

CHAPTER 10. IMPLEMENTING MEASURING TOOL 144

Attributes

Rule Head-Pointer Tail-Pointer Metric Values

Rule Base

«

Load-Rules Dependency Analysis Metric Calculations

Methods /

Figure 23: A Rule Base Class

CHAPTER 10. IMPLEMENTING MEASURING TOOL

Function
Description
Input
Output

RC CAL

145

Applying to a rule base and measuring it according to RC formalism
A rule base whose rules are represented in a list structure
RC value

Table 11: Description of RC_.C AL Function

Function | ERC.CAL
Description | Applying to a rule base and measuring it according to ERC formalism
Input A rule base whose rules 2ve represented in a list structure
Output ERC value _
Table 12: Description of ERC_C AL Function
Function | NR.CAL -
Description | Applying to a rule base and measuring it according to NR formalism
Input A rule base whose rules are represented in a list structure
Output NR value _
Table 13: Description of NR.C AL Function
Function ADSS.CAL —
Description | Applying to a rule base and measuring it according to ADSS formalism
Input A rule base whose rules are represented in a list structure
Output ADSS value .
Table 14: Description of ADSS_C AL Function
Function | AB5S.CAL —
Description | Applying to a rule base and measuring it according to ABSS formalism
Input A rule base whose rules are represented in a list structure
Output ABSS value 3 N

Function
Description
Input
Output

Table 15: Description of ABSS_CAL Function

BC.CAL
Applying to a rule base and measuring it according to BC formalism
A rule base whose rules are represented in a list structure

BC value

Table 16: Description of BC_.C AL Function

CHAPTER 10. IMPLEMENTING MEASURING TOOL 146

Function NACCAL
Description | Applying to a rule base and measuring it according to NAC formalism

Input A rule base whose rules are represented in a list structure
Output NAC value

Table 17: Description of NAC_CAL Function

Chapter 11

Measuring Results

11.1 Introduction

To test the effectiveness of the presented metrics, we apply them to measure different
rule bases. 76 rule bases are collected as test data. In addition, the anomaly rates
found in these rule bases are also counted and presente;l. The metric measuring results
plus the anomaly rates provide the basis for further evaluating the performance of

these metrics.

11.2 Data Collected

Two sources of data were collected for the measures. The first set of data came from
the students’ projects and another set from real expert systems. Table 18 lists the

main application domains of the test data.

147

CHAPTER 11. MEASURING RESULTS 148

_ _ Application Domains
| First Set of Data Second Set of Data |

Software Selection Telecommunication Line Diagnosis
Mutual Fund Investment | Fault Detection, Isolation and Recovery

Medical Diagnosis Aerospace Apparatus Diagnosis
Library Management Tape Selection
Course Selection Medical Diagnosis
Automobile Fault Diagnosis

Chess
Hospital Management
Software Evaluation
Phone Line Fault Detection
University Selection
Steel Wire Rope Selection
Tree Identification
Animal Identification
Trip Route Finding
| Computer Purchasing

s

Table 18: Application Domains of the Test Data

11.3 Results

Figures 24, 25, 26, 27, 28, 29 and 30 show the results of applying the metrics to the
first set of data! and Figure 31 shows the anomaly rates of this set of data. Figures
32, 33, 34, 35, 36, 37 and 38 show the results of applying the metrics to the second
set of data and Figure 39 shows the anomaly rates of this set of data. In these figures,
the horizontal axis represents different rule bases, and the vertical axis denotes the

metric measuring results of these rule bases.

In measuring, for comparison reasons, the rules in these rule bases that mainly perform “input”
and “output”, or do not connect with other rules are not taken into account.

CHAPTER 11. MEASURING RESULTS 149

os F RC

o.1 L

0.0
Rule Bases

Figure 24: Results of Applying RC to the Test Data

% TERC

4 1

|
f *

Figure 25: Results of Applying ERC to the Test Data

CHAPTER 11. MEASURING RESULTS 150

tl‘ J' . . ll’ IH 1l

Figure 26: Results of Applying NR to the Test Data

|

!

lti

Figure 27: Results of Applying ADSS to Test Data

CHAPTER 11. MEASURING RESULTS 151

€ 1 rnss

L .

3 A

Figure 28: Results of Applying ABSS to the Test Data

‘

|

i

Figure 29: Results of Applying BC to the Test Data

CHAPTER 11. MEASURING RESULTS 152

300 T NAC

l,: l‘ H Hum ’ !

Figure 30: Results of Applying NAC to the Test Data

40 T AR

l {
°: | 1l|l (l

Rule Bases

Figure 31: Anomaly Rates of the Test Data

CHAPTER 11. MEASURING RESULTS 153

Figure 32: Results of Applying RC to the Test Data

LA NP 25

Figure 33: Results of Applying ERC to the Test Data

CHAPTER 11. MEASURING RESULTS 154

Figure 34: Results of Applying NR to the Test Data

2.5

1.5

“%
k]
i
I

;

3
f
b3

;

k4
4
"I-
3

0.S

Figure 35: Results of Applying ADSS to Test Data

CHAPTER 11. MEASURING RESULTS 155

P
Rule Bases

Figure 36: Results of Applying ABSS to the Test Data

e
Bostils

Figure 37: Results of Applying BC to the Test Data

CHAPTER 11. MEASURING RESULTS 156

3800

2000

1500

M

Figure 38: Results of Applying NAC to the Test Data

Figure 39: Anomaly Rates of the Test Data

CHAPTER 11. MEASURING RESULTS 157

From the results indicated in the figures, we can see that

e The measures of the second set of test data are in generz! higher than the first.
This is due to the nature of the real expert systems, i.e. their complex domains

and knowledge;

e The ranges and distributions of the different metric values vary significantly. In
two typical cases, RC value varies from 0 to 0.7. However, for ERC, its values

range from 0 to 3500.

e There exist some normal ranges in which the measures on most rule bases fall.

This normal ranges differ as the applications vary.

Further comparisons and applications of the metrics and their measuring values

will be discussed in the next section and Chapter 13.

11.4 Applying Metrics

The measuring results presented in the previous section show the distributions of the
metric measuring values, which can be further examined to determine the normal
range of the metric values in order to identify abnormal rule bases whose metric val-
ues exceed the normal range. Figures 40, 41, 42, 43, 44, 45 and 46 show the calculated

percentages of rule bases whose metric values fall within different ranges.

CHAPTER 11. MEASURING RESULTS 158

00 QR-200=~0"

000 -J00~0"

0.0--0.138 0.128--0.28 0.28--0.378 0.378--0.80
Renges of RC volues

Figure 40: Percentage Profile for Expert Systems

0018 1.8--3.0 2.0--40 4860
Rorges of ERC values

Figure 41: Percentage Profile for Expert Systems

CHAPTER 11.

180 <200~0"

MEASURING RESULTS 159

Figure 42: Percentare Profile for Expert Systems

8B R 8 ¢ &8 & 8

Q.00--1.38 1.98--2.80 2.080--3.78 278--4.00
Roges of ADSS voluse

Figure 43: Percentage Profile for Expert Systems

CHAPTER 11. MEASURING RESULTS 160

00 0~300-0

0.0--1.8 18--30 3.0--48 a0
Borges of ABRSS valuss

Figure 44: Percentage Profile for Expert Systemns

00030007
B 8 8 8 & ¥ 8 8

-
o

o—-78 76--180 180--208 238- -300
Roanges of BC valuss

Figure 45: Percentage Profile for Expert Systems

CHAPTER 11. MEASURING RFSULTS 161

47.22 47.22

0Q00~3860=~0"

417

WO--228 £38--300
Nanges of NAC vaiues

Figure 46: Percentage Profile for Expert Systems

CHAPTER 11. MEASURING RESULTS 162

We can further refine the above ranges (percentages) and obtain the normal ranges
where most rule bases fall in. Rule bases that have abnormal ranges are then identified
as abnormal rule bases. There may exist many possible reasons for the abnormal
values, such as the complicated knowledge, inappropriate representation of knowledge,
and anomalies in the knowledge. The project development team and experts need to
work together to find out the the most likely reasons or explanations. The normal
ranges of our presented metrics for the student’s projects are summarized in Table

19 which can be used to
o Identify existing abnormal rule bases;
¢ Guide the design of future rule bases;
¢ Evaluate the performance of students and the student classes.

Another important application of the metrics, as indicated in the previous chap-
ters, is the use of their measuring values to assess the quality model presented in
Chapter 5. One way to perform the assessment is to profile the quality by its quality

factors which are further profiled by the quality criteria, and fina'ly the criteria are

Metrics | Normal Range | P?Ece_gtage_]]
RC 0.0 — 0.3 93.06% |
ERC 12 —35.1 93.06%
NR 6 — 46 93.06%
ADSS 1.0—4.5 91.67%
ABSS 10—35.0 93.06%
BC 1.0 —110.0 93.06% ||
NAC | 20—155 93.06% |

Table 19: Usual Ranges for the Metrics

CHAPTER 11. MEASURING RESULTS 163

evaluated by using the metric values. In this way, the quality profile is represented
as a histogram that identifies the degree of quality factors achieved, which can be
based on a scale of 0 to 100. The following steps describe the procedur= of our profile

method:

1. Select and compose the metrics for a quality factor, suppose there are m;, m,,

2. Decide the normal range for m; (1 < i < n);

3. Assign a weight w; (percentage) for each metric m,; such that wy+wy+......4w, =

100%;
4. Obtain the measuring value v; for each metric m; (1 <i < n);
5. Calculate the deviation o; of each metric value v; from its normal range;

6. Calculate the percentage profile for the presented quality factor by using the
formula:

100% — 63 X Wy —0g XWy=—vcees —Op X Wy,

7. Output the profile.

Example 11.1 To evaluating the testability, we may group and use the metrics of
NR, ADSS, ABSS and RC, that is, these four metrics are designed to compose the

testability. Based on the normal ranges of these metrics, the testability of different rule

CHAPTER 11. MEASURING RESULTS 164

bases is assessed. The rule bases which meet all the ranges of the above four metrics
that compose this quality factor will be characterized by 100% testability. Others
are evaluated in terms of their variation from each normal range, and will have a less
than 100% testability. Figure 47 shows a rule base with the different metric values,
and its profile for the quality factor — testability. Other quality factors can also
be evaluated in the same way with a different composition of metrics. The overall
profiles of quality factors ther demonstrate the quality of an ES. How to compose
the metrics for profiling different quality factors depends on the managers, expert,

development team, users, and applications of the ES, which is beyond the scope of

this research.

Other applications of metrics include their use as predictors which will be discussed

later.

CHAPTER 11. MEASURING RESULTS
Metrics Values
RC 04
ADSS 4.0
ABSS 55
NR 4.5
J Percentage
1001 85%
80+
601
40+
20T &
Taslabiliy Quality Factor?

Figure 47: An Example of Profiling Quality Factor

165

Chapter 12

Statistical Analysis and Testing

12.1 Introduction

Having observed the metric measuring results presented in the last chapter, we now
proceed to evaluate and assess the validity and performance of these metrics, and to
compare and select appropriate metric(s) for various applications. Statistical analysis
and testing provide a means to help us to achieve these objectives. This chapter
presents and discusses several statistical techniques applied to the analysis of the

metrics described in this thesis.

12.2 Correlation Between Two Variables

Correlation analysis examines whether two variables are inter-related, and give a
quantitative value for describing the degree of relatedness. In the following dis-
cussion, we will use X to represent one variable with a set of measuring values
{z1, z2y +-+ x; -++, z4}, Y to represent another variable with another set of mea-

suring values {y;, ¥2, -** ¥ -+, ¥n}, and n > 1. To analyze the relation between X

166

CHAPTER 12. STATISTICAL ANALYSIS AND TESTING 167

and Y, we usually first examine the scatterplot diagrams between X and Y.

12.2.1 Plotted Diagrams

By plotting one variable X against another Y using z; and y; values (1 < i < n),
we can obtain a scatter diagram which demonstrates the relationship between X and
Y. This is useful when at first we don’t have any knowledge about the relationship
between X and Y. A plotted diagram can give us some indications such as the
existence of a po itive relation between X and Y, even though we cannot precisely
specify the relations at this moment. For example, Figure 48 suggests that there is a

relation between X and Y, and that relation may be described by a linear model.

12.2.2 Correlation Coeflicient

To further obtain the precise and quantitative information about the relation between
X and Y, the correlation coefficient r which shows the degree of correlation can be

calculated by the following formulas:

Jj=n

i=1(Zi = Z)(y; — F)
Tia(zi — TP s (v - §)?

where

< sl

f]
S| S
S, . . ~»
1] Bon i
[3 - 3

< s

It can be shown that r varies from —1 to +1.

CHAPTER 12. STATISTICAL ANALYSIS AND TESTING 168

c 1 L

005 01 015 02 025 03 035 04 045

Figure 48: An Example of Plotted Diagram

CHAPTER 12. STATISTICAL ANALYSIS AND TESTING 169

In addition, when r is near +1, it indicates a strong positive correlation, when r
approaches —1, it indicates a strong negative correlation, and when r is near zero, it
indicates no linear relation between X and Y. The correlation coefficient r is usually
referred to as the product-moment correlation coefficient, to distinguish it from the

rank order correlation coefficient which will be discussed in the next section.

12.3 Rank Order Correlation

In this analysis, X and Y are the ranks of n objects, which are assigned by two groups
of “judges” and treated as discrete variables. The point is to determine whether the

two ranks are related or show any agreement.

It can be shown in this case that

i=n J=n 1
dai=Y 4= En(n +1)(2n+1)
=1 j=1
Jj=n Jj=n 2 _
2 (=7 =3 (4;~9)’= nir —1)
y=1 j=1 12

and the correlation coefficient between the ranks X and Y is:

i=n d'z

1 l—l 1

s = n(n’ ~1)

where

i=n f=n 1 i=n

Y &= (zi-y) = =3 (n+1)2n+1)-2) iy

=1 =1 i=1

CHAPTER 12. STATISTICAL ANALYSIS AND TESTING 170

The r, then shows how well the ranks X and Y are correlated.

Product-moment correlation coefficients and rank order correlation coefficients

can be further tested to determine their significance.

12.4 Tests of Significance

The word “significance” denotes how strong the evidence we have against a null
hypothesis about some observations (correlation coefficients, comparison of values,

etc.). Test of significance means testing a hypothesis for the significance.

12.4.1 Hypothesis and Alternative Hypothesis

A statistical hypothesis is usually a statement about a statistical population or the
values of some parameters of the population [Ostle and Malone, 1988]. To reject or
accept a hypothesis, we must conduct an experiment based on an underlying model
and observe the outcomes of the result. To perform the experiment, a basic hypothesis
to be tested must be first specified, which is called the null hypothesis. The null
hypothests is the basis for specifying different parameters of the model in the testing.
Another hypothesis should also be set up, called alternative hypothesis, which states
what will be accepted if the null hypothesis is rejected. Both null hypothesis and

alternative hypothesis must be specified before the experiment.

CHAPTER 12. STATISTICAL ANALYSIS AND TESTING 1

12.4.2 Testing A Hypothesis

In addition to the specifications of the null hypothesis and alternative hypothesis, &
statistic is needed to be identified, called the test statistic, the value of which will be
used to decide whether tc accept or reject the null hypothesis. The test statistic is
related to the sample size and the testing can be performed based on the decision-
making rules which can be a subjective matter to some extent. A region in which the
outcomes of the experimental results (values of the test statistic) under the specified
model are unlikely is called critical region, for which we will reject the null hypothesis,
because the null hypothesis can not give a reasonable explanation of the observed
experimental results. If the observed values of the test statistic is not in the critical
region, we do not reject the hypothesis. When the critical region contains the values at
both ends of the possible range of the test statistic, we call it a two-tail test of the null
hypothesis. Figure 49 gives the graphical illustration of a possible rejection region.
The total probability of all the outcomes of the test statistic falling in the critical
region is defined as the significance level, and an observation (outcome) contained in
the critical region is significant at that level, which provides significance evidence to

reject the null hypothesis, in favour of the alternative hypothesis.
The following steps summarize the test procedure:
1. Specify a null hypothesis.
2. Specify an alternative hypothesis.

3. Identify the underlying model and test statistic.

CHAPTER 12. STATISTICAL ANALYSIS AND TESTING 172

f Probability Distribution

Underlying Model

Critical Region

Test Statistic

Figure 49: Graphical Illustration of a Critical Region

CHAPTER 12. STATISTICAL ANALYSIS AND TESTING 173

4. State a decision rule, i.e., all possible values of the test statistic must be assigned

to the established critical region or the rest region.

5. Obtain the outcome (value) of the test statistic that will allow us to validate

the hypotheses based on the weighting of the probability.

Usually, the hypothesis that (1) permits precise specification of the probabilities of
all outcomes and parameters of the experiment (model), and (2) expresses scepticism
of the claim being made or of the result we would like to be true, is assumed as the

null hypothesis.

In testing, when the probability for a statistic based on a sample is unknown,
tests of significance are commonly made by transferring that into another statistic
for which the probability is known under the null hypothesis. The t distribution and
standard normal distribution Z are commonly used, into which other statistics are
converted. So, the experimental underlying models are the Z and ¢, and the test

statistics are the Z and t values. The critical region is
It 2t

or

1Z| 2 2,

where t, or Z, are the critical points that lie on the boundary points between the
critical region and the rest region. Their values are calculated from the problems or

specified critical regions. The probability of the test statistic falling into the critical

CHAPTER 12. STATISTICAL ANALYSIS AND TESTING 174

True Situation
Decision Null Hypothesis is true | Null Hypothesis is false
Accept the null hypothesis No error Type 1l er ror
Reject the null hypothesis Type I error No error

Table 20: Types of Error Associated with Tests of Null Hypothesis

region, that is, the significant level, can be obtained by calculating the area under
the critical region using the t or Z distribution function. By computing the outcome
of the test statistics and observing if the value (outcome) falls into the critical region,
we can hence judge the hypotheses. Figure 50 shows that testing procedure based on

the transformations.

12.4.3 Two Types of Error

When we make a decision to accept or reject a hypothesis based on the outcome of the
test statistic, it is possible to commit two types of error. A T'ype I error occurs when
a null hypothesis is in fact true, but the value of test statistic leads us to reject the
null hypothesis. The probability of Type I error is exactly the probability of all the
outcomes contained in the critical region. Type Il occurs when the null hypothesis is
in fact false, but the value of test statistic does not make us reject the null hypothesis.

Table 20 summarizes the types of error.

12.4.4 'Tests of Significance for the Correlation Coefficients

Having calculated the correlation coefficient r between variables X and Y, we need
to examine the value of r. If r is very close to 0, we can be satisfied that no relation

exists between X and Y. On the other hand, if r is close to £1, we are happy to

CHAPTER 12. STATISTICAL ANALYSIS AND TESTING 175

Calculate the variable value

Specify the null hypothesis
Specify the alternative hypothesis

Transform the variable value to a known statistic

Identify a test statistic

Specify the critical region
Calculate the significant level

Observe the outcome of the test statistic

The observed outcome is in the critical region?
Yes No

Reject the null hypothesis Null hypothesis is tenable

Figure 50: Transformation-Based Test Procedure for Significance

CHAPTER 12. STATISTICAL ANALYSIS AND TESTING 176

claim that there is a correlation. But, if the value of r is intermediate, say 0.350, we

then need an objective way to assess and test the variable r.

It has been shown that when the sample size n is 10 or more, a function of r,

n—-2
t=r 1—r2 (6)

under the null hypothesis that no relation exists between X and Y, can be approxi-
mated by the t-distribution with (n — 2) degrees of freedom [Clarke and Cooke, 1983,
Edwards, 1976). Hence, based on formula (6), the outcome of the test can be obtained
by substituting the r value, and a two-tailed test on r can be performed (under the
experimental model). Table 29 in the Appendix lists different ¢ values with the de-
gree of freedom at various significance levels. By using this table and the calculated
outcome of t that corresponds to r from formula (6), the significance level where r lies
can be determined. Hence, the decision of rejection or acceptance of the hypothesis
can be made. By substituting the various values of n and the tabled values of ¢ at
different significance levels to solve for the value of r in the formula (6), a Table about
the r values can be given, which is Table 30 in the Appendix. So, the calculated r
value can be directly compared with this Table, and the significance levels can be

determined.

It should be noted that the ¢ distribution is affected by the sample size (degrees
of freedom). If r is based on a small number of observations, even a relatively large
observed value of r may not be significant enough to reject the null hypothesis from

the calculated probability (significant level). On the other hand, when n is increased,

CHAPTER 12. STATISTICAL ANALYSIS AND TESTING 177

a relatively small value of r may be significant enough to reject a null hypothesis.

12.4.5 Test of Significance of the Difference Between Two

Coefficients

Another question about the correlation coefficients is the significance of the difference
between two values of obtained correlation coefficients, r; and r,. It is needed to in-
vestigate if the values r,, say 0.875, and ry, say 0.756, are significantly different, or
they may come from a common population and are both the estimates of correlation

coefficient of the same population.
There is a Z transformation which can be applied to transfer any value of corre-
lation coefficient to a new variable, Z, that is,
1
Z = 5log.(1+ 1) - log.(3 —)]

where, r; is some observed value of the correlation coefficient.

The expression of Z is approximately normal distributed with variance
o:=1/(n-3)

[n is the sample size, i.e., the number of pairs of observations from which r; was cal-

culated].

To make the test of significance of difference between the coefficients r; and r,
we transform both r; and r; by Z transformation, say Z; and Z,, and the variance

of 2, — Z; is given by:

Var(2, — Z;) = Var|Z,} + Var[Z,] = 02 + 7,

CHAPTER 12. STATISTICAL ANALYSIS AND TESTING 178

Then, the difference between Z, and Z, divided by the square root of Var([Z, - Z,)

results in

A}

2= JVar(z, - Z3] @

Under the null hypothesis that r; and r; both are the estimate of the same pop-

ulation, expression (7) follows a standard normal distribution A'(0,1). This model is
then used as the experimental model from which the significance level is calculated.
In this case, the Z) — Z; value which corresponds to ry — r, is the test statistic. The
MN(0,1) model can be further tabled. Table 31 shows the Z values and the cumulative
probability for the area up to 2, that is, Z < 2, on which the probability for the area
{Z| 2 z can be calculated, which represents the significance level. If the significant
level is quite small, the null hypothesis of no difference between r; and r; is rejected,

the alternative hypothesis that ry and rp are significantly different is accepted.

12.5 Regression Analysis

In many applications, it is necessary to seek a way of expressing the functional rela-
tionship between two variables X and Y in terms of their their values z; and y; (i=1,

2, n). This can be solved by applying regression analysis techniques.

A regression model, that denotes the functional relationship between X and Y,

CHAPTER 12. STATISTICAL ANALYSIS AND TESTING 179

can be described as:

where Y is the response variable which represents the estimation of Y, ¢ is a math-
ematical function that is usually called the regression function, X is the independent
variable or predictor, and b,, , 8, are ¢ unknown parameters. An example of a
regression model is the linear model which involves the linear estimation of Y based
on X. It is postulated as:

Y =6,X + 6

The parameters 8y and 6, are estimated from observation data by applying the
least-squares estimates, whose principle is to minimize the sum of the deviation be-
tween estimated values and and observed values of Y. The deviation indicates the
residual of the model, and the square of the residual, that are to be minimized, can

be expressed as

Q= (yi—) =Y (vi — bizi — o)’

where the z; and y; are the experimental observations of X and Y.

By minimizing the value of @, we get:

CHAPTER 12. STATISTICAL ANALYSIS AND TESTING

180
where
T= 1 zn:z-
“n'-___, '
_ 1
y—ngy-

n n
Szz = Z(z; -Z)? =Y z? — n7?

i=1 =1

Soy = 35— Z)(yi =) = 3"zt — 07T

=1 =1

The estimated variances of 0; and 6, are:

St = S/ 3 (i ~ 7Y

=1

§2 = S3((1/n) + 7/ g(m.- 7y

where
SE‘ = (Syy - 015::1)/(" -2)

Sy = En(yi - -.'7)2

i=1
It has been shown that minimizing Q results in a sample regression line that best
fits the observational data.

The above discussion provides the basis for the next chapter in which X and Y

are replaced by the different correlation coefficients and other parameters.

Chapter 13

Evaluation of Expert System
Metrics

13.1 Introduction

Evaluation is an important and necessary step for accepting and using existing met-
rics. The questions to be addressed are: (1) the effectiveness and quality of the
metrics; and (2) the selection of appropriate metric(s), in the sense that they are all

used as indicators or predictors of some ES characteristics for certain applications.

In this chapter, we are going to investigate the validity and performance of the
metrics, that is, the extent to which a metric in fact assesses or predicts the quality
characteristics [Itzfeldt, 1990]. So far, there are no established criteria for validating
a software metric, and the most often used approach is by comparing a metric of

interest with

1. Other metrics measuring the same characteristics.

The internal consistency among the metrics is validated, that is, if different

181

CHAPTER 13. EVALUATION OF EXPERT SYSTEM METRICS 182

metrics are designed to measure the same characteristics, then they must be
consistent. The evaluation is based on the assertion that the closer the met-
ric correlates with other metrics, the more they are internally consistent with
respect to measuring the same quality characteristics, if the definitions of the
different metrics are based on different considerations (viewpoints) which are
reasonable and necessary. Also, the overall high correlation of a metric with
all other metrics indicates that the formulation of that metric reflects those

considerations made by other metrics, so it is more sound and well-defined.

2. Some phenomena affected by the quality factors and criteria to be measured
by the metrics. The empirical quality data, such as the anomaly rate, could be
used as the phenomena. The evaluation basis is that the closer the metrics cor-
relates with the phenomena, the more valid they are with respect to the quality
characteristics affecting the phenomena. In addition, the high correlation of a
metric with the phenomena shows that the metric performs well when used to

assess or predict the quality characteristics.

Therefore, the metrics are tested by evaluating their (a) validity and (b) perfor-
mance. The former indicates if a metrics is appropriate as the measures on some
quality characteristics, that is, if it is well formulated for measuring the character-
istics, like complexity. The latter shows which metric is most valid in assessing or

predicting the quality characteristics.

The above analytical approach represents the empirical evaluation of metrics.

For this type of evaluation, the statistical analysis and testing is the technique most

CHAPTER 13. EVALUATION OF EXPERT SYSTEM METRICS 183

frequently applied. It should also be noted that the results of the empirical evaluation
are meaningful only under the circumstances that all the metrics are used to reflect
the same characteristic of the quality. In addition to this empirical evaluation, metrics
can also be evaluated in an abstract way (theoretical ground), that is, they can be
evaluated against some general criteria and properties that produce the desired and
expected performance of the metrics. The following sections detail the evaluation

techniques presented in this thesis.

13.2 Empirical Evaluation

One application of the ES metrics is to use them as indicators or predictors of some
ES characteristics, among them is the complexity, that is, their values are all used
to represent the measures of some ES characteristics. We then need to evaluate and
compare them for their validity. The techniques presented in the last Chapter are

applied to the analysis.

13.2.1 Intercorrelations of Metrics

Here, the metrics are compared with each other by plotting each pair of metrics and
calculating their correlation coefficients. If all these metrics measure some common
ES characteristics, their measuring values should show a positive correlation among
them. The scatterplot diagrams of the metric pairs are presented in Figures 51 to 71,
and the calculated correlation coeflicients are listed in Table 21. Moreover, the signif-
icance of these coefficients is tested by using two-tailed test under the ¢ distribution.

The null hypothesis is that no correlation exists between a pair of metrics, and the

CHAPTER 13. EVALUATION OF EXPERT SYSTEM METRICS 184

alternative hypothesis is that there is a positive relation between a pair of metrics.

Table 22 shows the corresponding significance levels for the coefficients between each

pair of metrics.

CHAPTER 13. EVALUATION OF EXPERT SYSTEM METRICS

o
o (L]
T -

ERC - mean{ERC)
a

0 0.1
RC - mean(RC)

Figure 51: RC versus ERC

02

03

04

NA-mean(NR)
8

Figure 52: RC versus NR

03

04

185

CHAPTER 13. EVALUATION OF EXPERT SYSTEM METRICS

-
’

-h
T

2 4
X X x
K Y e Y i
D2 0.1 0 0.1 02 0.3 04
RC-mean{RC)
Figure 53: RC versus ADSS
4 mj
x
3 x

02 03 04

0.1 0

0.1
RC-mean(RC)

Figure 54: RC versus ABSS

186

CHAPTER 13. EVALUATION OF EXPERT SYSTEM METRICS

ik W Mo x g

B2 -0.1 0 0.1 02 0.3 04
RC-mean{RC)

Figure 55: RC versus BC

0.1
RC-mean{RC)

Figure 56: RC versus NAC

187

CHAPTER 13. EVALUATION OF EXPERT SYSTEM METRICS 188

0 1
ERC-mean(ERC)

Figure 57: ERC versus NR

>
3
-

0 1
ERC-mean(ERC)

Figure 58: ERC versus ADSS

CHAPTER 13. EVALUATION OF EXPERT SYSTEM METRICS

1 0 1
ERC-mean(ERC)

Figure 59: ERC versus ABSS

o* x X x
2 3 % “&ifu":‘f"" x

8
!

1) 1
ERC-mean{ERC)

Figure 60: ERC versus BC

189

CHAPTER 13. EVALUATION OF EXPERT SYSTEM METRICS

200 - - v
x
150}
x
.. 100} :
m-
o} 4
-50} J
-1003 2 1 o 1 2 3
ERC-moan(ERC)
Figure 61: ERC versus NAC
- v x
X
2 x * x 1
w
x
= 1 x ,‘!x“ o
2 x x &
e ot x
B % '
| rmean]
-t x >N .
x x x
-2F
x ¢
% 20 0 2 [T) 20
NR-mean({NR)

Figure 62: NR versus ADSS

190

CHAPTER 13. EVALUATION OF EXPERT SYSTEM METRICS

‘ 1 4
| ,
3 . "
gm e x
i
-1k 1
20 20 20 0 % 80
NR-mean{NR)
Figure 63: NR versus ABSS
300
x
250}
m-
Q L 3
%150 3
5 100 x x :
3
50 K % !
x
Xx %
0
= .
%6 20 0 20 80)]
NR-mean(NR)

Figure 64: NR versus BC

191

§

CHAPTER 13. EVALUATION OF EXPERT SYSTEM METRICS 192

g
L

3t
g

2 20
NR-mean{NR})

Figure 65: NR versus NAC

CHAPTER 13. EVALUATION OF EXPERT SYSTEM METRICS

)
o}
w

Figure 66: ADSS versus ABSS

250[-

200

8
x

BC-mean(SC)
8
x
X

$

3) T 0 1
ADSS-mean{ADSS)

Figure 67: ADSS versus BC

193

CHAPTER 13. EVALUATION OF EXPERT SYSTEM METRICS

200 + — e
x
150 b
x
— 100} 4
x
x x
b 4 L RS ®
50 X . X . ox x x
X x X x o x
x X x
[)d Ry b9 x J
x “% x x x
x5 X
-50+ x x x x My % x
X x
+100, 2 A 2 3

0 1
ADSS-mean(ADSS)

Figure 68: ADSS versus NAC

300
x
2501 :
200} .
8150 x]

0 1 2
ABSS-mean{ABSS)

Figure 69: ABSS versus BC

194

CHAPTER 13. EVALUATION OF EXPERT SYSTEM METRICS 195

1501 1
100F

sol X 3X X X

NAC-mesan{NAC)
x
<
x
x
x
x
x
X x
x

] 1 2
ABSS-mean(ABSS)

Figure 70: ABSS versus NAC

200 Lo T - Y — v

1501

100}

NAC-mean(NAC)
g

10 50 10 1% 200 0 300
BC-mean(BC)

Figure 71: BC versus NAC

CHAPTER 13. EVALUATION OF EXPERT SYSTEM METRICS 196

From the above evaluation results, we can see

e RC metric has the best overall correlation with all other metrics which are based
on different viewpoints. Hence, it means that the formulation of RC reflects
the different considerations or information of other metrics. So, this indicates
that our proposed RC metric is well-defined and can be used as an appropriate

indicator or predictor of some ES characteristics, like complexity.

e NR highly correlates with NAC, this is attributed to the nature of their for-
mulations, that is, they both measure the length of rule bases. The very high
correlation also implies that they can be replaced by each other in some situa-

tions. In this sense, it is redundant to have both metrics in one application.

e The null hypothesis can be rejected for all pairs of metrics, except three:
(ADSS, ABSS), (NR, ADSS) and (NR, ABSS). This means that all metric
pairs except these three are correlated, i.e. every metric is correlated or con-
sistent with all or most of other metrics, this explains why sometimes they, to
some extent, were in fact used to measure the same ES quality characteristic,

say complexity. However, our further evaluation of the metrics, which will be

[TERC] NR [ADSS| ABSS| BC [NAC]
RC]0.4701] 0.5231 | 0.4789 [0.4987 | 0.6338 | 0.5726
ERC 0.4905 | 0.3867 | 0.4264 | 0.4066 { 0.5769
NR 0.1760 | 0.2170 | 0.2823 | 0.8843
ADSS -0.0229 | 0.5824 | 0.2864
ABSS 0.4677 | 0.2401
BC 0.3176H

Table 21: Correlation Coefficients Among The Metrics

CHAPTER 13. EVALUATION OF EXPERT SYSTEM METRICS 197

[TERCT NR [ADSS|ABSST BC | NAC]
0.001] 0.001 | 0.001 | 0.001 [0.001 [0.001 |
0.001 | 0.010 | 0.001 | 0.001 | 0.001
0.100 | 0.100 | 0.050 | 0.001
0.700_] 0.001 | 0.050
0,001 | 0.050
0.010

Table 22: Significance Levels for Each Coefficient

presented in a later section, shows that their performance can be quite different.

13.2.2 Correlations of Metrics with Anomaly Rates

One phenomenon reflecting ES quality is the number of anomalies (anomaly rate
(AR)). The presented metrics are further validated by examining the relationship

between these metrics and the anomaly rates.

Our basic hypothesis is that a rule base with a higher metric value (RC, ERC, NR,
ADSS, ABSS, BC, NAC), would usually have a higher anomaly rate than a rule
base with a lower metric value. Based on this assumption, it is expected that all the
metric measuring results would exhibit this characteristic. Therefore, the correlation
analysis technique was applied to examine this relationship. Figures 72, 73, 74, 75,
76, 77 and 78 illustrated such a relationship. They indicate that there are indeed pos-
itive relations between these metrics and the anomaly rate. A linear model may be
appropriate for describing such relations. Furthermore, to quantitatively describe the
relationship, the correlution coefficients between the measuring results and anoma'y
rates are calculated. The significance of these coefficients is tested by using a two-

tailed test with the null hypothesis that no relation exists between the metrics and

CHAPTER 13. EVALUATION OF EXPERT SYSTEM METRICS 198

x lx A A A A ' e 'y 'l
005 01 045 02 A 325 03 035 04 045

Figure 72: RC versus AR

the anomaly rate. The results (Table 23) show that there is sufficient evidence for
us to reject the null hypothesis in favour of an alternative hypothesis that there is a

correlation.

Another method of validating the metrics is based on the analysis of rank order

comparison. The metric measuring results, as the estimators or indicators of the

Metric Pairs | Correlation Coefficients | Significance Levels "
(RC, AR) 0.8026 0.001 “
(ERC, AR) 0.6003 0.001
(NR, AR) 0.5294 0.001
(ADSS, AR) 0.4553 0.001 H
(ABSS, AR) 0.3574 0.010
(BC, AR) 0.5798 0.001
(NAC, AR) 0.5344 0.001

Table 23: Correlation Coefficients Between the Metrics and the Anomaly Rate

CHAPTER 13. EVALUATION OF EXPERT SYSTEM METRICS

Figure 74: NR versus AR

199

T

CHAPTER 13. EVALUATION OF EXPERT SYSTEM METRICS

Figure 75: ADSS versus AR

g g &

B

Anomaly Rate

Figure 76: ABSS versus AR

200

CHAPTER 13. EVALUATION OF EXPERT SYSTEM METRICS 201

3
log(BC)

Figure 77: log(BC) versus AR

Figure 78: NAC versus AR

CHAPTER 13. EVALUATION OF EXPERT SYSTEM METRICS 202

[Metric Pairs | Rank Correlation Coefficients | Significance Levels |

Table 24: Rank Correlation Coefficients Between the Metrics and the Anomaly Rate

ES’s quality characteristics, are used as one “judge” to give the ordinal rank of the
ES. This is treated as one variate and is tested with another variate (rank) given by
the anomaly rates (another “judge”) with the null hypothesis that the two sets of
ranks are independent of each other. Suppose n rule bases are to be ranked: z; is
the ranking in terms of the metric measuring results, y; the ranking according to the
anomaly rates. Then, the correlation coefficient rs between the 1~ 1ks z; and y; can
be calculated. Also, based on the t transformation, and the null hypothesis, a two-
tailed test on r, can be performed and the significance levels of r, can be determined.
Table 24 gives the r, values and the corresponding significance levels, which leads us
to reject the null hypothesis and accept the alternative hypothesis that there exists
a relationship between z; and y;. Since anomaly rate relates to the quality of the
ES, the above results show that all these metrics could be used for the estimation

(assessment) of the ES quality.

CHAPTER 13. EVALUATION OF EXPERT SYSTEM METRICS 203

13.3 Comparison of Metrics

Even though all the presented metrics could be used for assessing or predicting the
ES quality characteristics, their performance would be quite different. Consider the
case in which ali these metrics are used to act as the complexity measures. The
problem then is: which metric is more reliable and precise? Since all the metrics
are correlated with the anomaly rate, this leads us to the investigation and compar-

ison of the values of the correlation coefficients between the metrics and anomaly rate.

The significance of the difference between two correlation coefficients r, and r; ob-
tained from two different observations (correlations between the metrics and anomaly
rate) can be tested by using the 2, transformation under the null hypothesis that no
significant difference exists between r; and ry, and the alternative hypothesis that one
coefficient is higher than another one. Hence, one can compare the different metrics
and select the one with the best performance, i.e. the highest correlation coefficients,

for the purpose of assessment or prediction.

Comparative results appear in Table 25, in which metricl > metric2 means that
there is evidence against the null hypothesis. Hence there is a significant difference
between metricl and metric2, and metricl has a much better correlation with the
anomaly rate than metric2. Meanwhile metricl ~ metric2indicates that the null hy-
pothesis is tenable and the difference between metricl and metric2 is not sufficiently
great, i.e., they may come from the same data population and have equal correla-

tion with the anomaly rate. From these results, we can see that the metrics can be

CHAPTER 13. EVALUATION OF EXPERT SYSTEM METRICS

[Metric Comparison ||
(RC > ERC)
(RC > NR)
|__(RC > ADSS)
(RC > ABSS)
(RC > BC)
(RC > NAC)
[(ERC ~ NR)
" (ERC > ADSS)
 (ERC > ABSYS)
(ERC ~ BC)
(ERC ~ NAC)
(NR ~ ADSS)
(NR > ABSGS)
(NE=~ BC)
(NR~NAC)
(ADSS ~ ABSS)
(ADSS ~ BC)
" (ADS5~ NAC)
(BC > ABSS)
(NAC > ABSS)
ir (NAC ~ BC)

Table 25: Results of the Metric Comparisons

204

CHAPTER 13. EVALUATION OF EXPERT SYSTEM METRICS 205

ranked (from high to low) in the following sequence: RC, ERC, BC, NAC, NR,
ADSS, ABSS. RC correlates best with AR. In other words, RC is the best candi-
date for the assessment of ES quality. This is consistent with the empirical analysis

and study presented below.

¢ The high correlation with AR is an inherent property of the RC measure, de-
termined by our consideration in its formulation, which takes into account the
three important characteristics of ES: content, size and search space. Hence,

RC can indeed act as a good means for assessing the ES quality.

¢ In some applications, the rule bases, especially those with a large number of
rules, can be divided into different subsets of rules without any connection to
each other. As a result, their complexity is reduced considerably, and it may not
look as high as the NR and NAC may indicate. Simply counting the number
of rules or the number of patterns in the antecedents and consequents of rules
without consideration of their internal relations could give the wrong message

and lead to a contradictory decision.

o The contents of the matching patterns in each rule are also an important aspect
which should not be ignored when comparing different rule bases. However,

ABSS, ADSS, BC, NR and NAC reflect the overall size of the rule base or

the abstract search space only; they do not account for the contents.

¢ In fact, ABSS and ADSS measure only a portion of the search space; they
are incomplete measures. So, their performance is even worse than that of the

others.

CHAPTER 13. EVALUATION OF EXPERT SYSTEM METRICS

[Criteria | Meaningful | Reasonable | Reliable | Cost-cflective

RC Yes Yes Yes Yes

ERC Yes No No Yes I

NR Yes Yes Yes Yes

BC Yes No Yes Yes

ADSS Yes No Yes Yes
TABSS Yes No Yes Yes

NAC Yes Yes No Yes

Table 26: Metric Evaluation Against The Criteria

o As mentioned before, the dependency among the rules is an important charac-
teristic of ES, which should not be ignored for all measures. However, ERC,
NAC and N R do not consider this critical part, so their performance is affected

by this deficiency.

The above different empirical evaluation results which are all based on the different
methods (viewpoints) show that RC has the best performance as the indicator or

predictor of ES quality characteristics.

13.4 Theoretical Evaluation

Metrics can also be evaluated in an abstract way. First, as a review, we will briefly

evaluate the metrics based on the criteria defined in Chapter 6.
Table 26 shows the results of the evaluation.

In addition to the criteria, some general properties are also desired and expected
regarding the performance and behavior of ES metrics. In software engineering, a set

of abstract properties was already presented by Weyuker [Weyuker, 1988) for formally

CHAPTER 13. EVALUATION OF EXPERT SYSTEM METRICS 207

comparing and evaluating the conventional software metrics applied. The purpose for
defining such general properties is to assess the suitability of existing metrics from
a more subjective grcund. A similar but different set of properties can also be de-
veloped for the comparison and evaluation of ES metrics. We propose the following

properties to be used for ES merics.

Suppose in the following discussions, the capital letters denote different ES, (R)

represents the metric 6 measured on an ES R. Then we have:

Property 1: 3P 3R - (6(P) # 6(R)).

This property requires that the metric be able to scale and compare different

ES.

Obviously, a measure must satisfy this property in order to be useful.

Property 2: VPVR - (P C R — 6(P) < §(R)).

This property means that the measure on a sub-ES should be less than that of

the ES as a whole.

In general, for the metrics whose values increase as the ES become more com-
plicated, this property should stand. Th?s kind of metrics includes size metrics,

complexity metrics and search space metrics.

Property 3: For a nonnegative constant c, there are only a finite number of different

CHAPTER 13. EVALUATION OF EXPERT SYSTEM METRICS 208

ES! with the measure c.

This property denotes that if there are infinite ES in which there exist some
differences among them, that have the same value of the measure, then the
measure is weak in the sense that it cannot distinguish these ES, that is, the

measure is not sensitive to the differences.

Property 4: 3P 3R - (P/= Q A (P) = 8(R)).
“f=" means the unequal dependency structures of different ES.

This property indicates that ES with different structures may have the same

measure.

Implication behind this property is that a sound metric should not consider only
the rule dependency structure in an ES, different attributes such as the content
of matching patterns should also be taken into account. This can also be seen
from software engineering where the metrics that are purely defined in terms
of control structure have been criticized to lack concerns about the amount of

computations contained in a program.

Property 5: 3P AR - (P <> @ A 8(P) = 6(R)).

“<> " means the unequal functions of different ES.

This property indicates that ES with different functions may have the same

1Two ES are considered to be the same if one is just a renaming of the second one.

CHAPTER 13. EVALUATION OF EXPERT SYSTEM METRICS 209

measure.

Because of the different implementations of the ES functions, it is possible that
in some cases, the measure on these implementations may have the same value,
even though the functions that ES perform are different. This also shows that

it is the detail of implementation that determines the measure.

Property 6: 3P 3R - (P = Q A 6(P) # 6(R)).

“ =" means the ES with the same function.

This property indicates that ES having the same behavior may not have the

Same measure.

Still, this reflects the different implementations of functions from another point

of view.

Property 7: AP 3R - (P # QAH(P)=0(R)A3Q-(6(PU Q) # 0(R U Q)))

This property means that the conjunction of ES may have different effects.

Since an ES, more precisely, a rule base, may potentially have different interac-
tions with the existing rule bases, the conjunctions of that rule base with the °
existing rule bases may change the measuring results differently, even though
they have the same value for the measure before conjunctions. One extreme

case is that P is just the renaming of R, and Q has no item that is common

CHAPTER 13. EVALUATION OF EXPERT SYSTEM METRICS 210

with P, but Q contains several consequents that match some antecedents of R.

A simple case is:

P: Al — A2
R: Bl — B2
Q: Cl— Bl

Property 8: If P is a renaming of R, that is, if there exists a sequence R= P,, P,,
P, =P, P, is obtained by replacing all the instances of an identifier z in P;.,
by y where y does not appear in P;_;, then {or the metric 8, which is based on

the syntactic structures of ES, 6(P) = 0(R).

This property points out that, in general, renaming will not change the measure.

Property 9: 3P 3R - (8(P) + 6(R) = (P UR))

This property asserts that, in some cases, the conjunction of ES decreases the

measure.

Due to the unknown contents in different rule bases, it is reasonable to think
that in some situations the conjunction or combination of two rule bases will
not increase the value for a measure. Consider the case where two rule bases
are identical, then the conjunction of them actually increases nothing but some

redundant rules.

CHAPTER 13. EVALUATION OF EXPERT SYSTEM METRICS 211

!

Property 10: 3P 3R - ((P) + 9(R) < (P U R))

This property asserts that, in some cases, the conjunction of ES increases the

measures.

Clearly, in some cases, the conjunction of rule bases, however, will increase the

value for a measure, because of the addition of extra interaction between them.

Property 11: 3P IR - (P & R AO(P) # 6(R))
“&" sign means the equal dependency graphs of the ES.

This property indicates that for some ES, even though they have the same de-

pendency structures, the measure on them could produce different results.

The reason for having the above property is based on the considerations that in
some cases, the types and contents of dependencies contained in rule bases may
be different and these are not reflected in the dependency graph, however, the
measure should be sensitive to these differences because of their importance.

So, measuring results on them should be different.

Based on the properties introduced above, we evaluate the presented metrics. The
results are listed in Table 27, from which we can see that the performance of the three
metrics: BC, ADSS and NAC are the same. This occurs because they are all based

on the abstract search space and study the search paths in the space. So, they have

the same effect. Also, NR and NAC, as measures of the size, play a similar role.

The performance of ERC is a little better. All the above measures lack the complete

CHAPTER 13. EVALUATION OF EXPERT SYSTEM METRICS 212

(g e 17 (3 [T S[e T[S T[0T}
RC Yes | Yes | Yes | Yes | Yes | Yes Yes | Yes
ERC Yes No | Yes | Yes | Yes | Yes | Yes Yes Yes | Yes Yes

Yes | Yes | Yes | Yes | Yes| Yes | No | Yes| No | No | No

Yes | No | No | Yes | Yes| Yes | Yes | Yes | Yes | Yes | No

ADS S Yes | No | No | Yes| Yes| Yes | Yes | Yes | Yes | Yes | No
ABSS Yes| No | No | Yes | Yes| Yes | Yes | Yes | Yes | Yes | No
|] NAC Yes | Yes | Yes | Yes | Yes| Yes | No | Yes| No | No | Yes

Table 27: Evaluation of Different Metrics

[Metrics Performance |
I| RC Good Performance |
[ERC, BC,NR, NAC | Moderate Performance |
| ADSS ABSS Weak Performance |

Table 28: The Metrics Grouped According to Their Performance

insight into the ES. This is why RC metric performs best among all these measures.
RC takes into account both the search space and size, as well as the content ¢f match-
ing patterns. This result indicates again that the hybrid metric can usually give more

reliable and meaningful results.

According to the evaluation results in this section, the presented metrics can be
ranked as shown in Table 28. The evaluation results are consistent with those obtained

from empirical evaluation and comparison as presented in sections 13.2 and 13.3.

13.5 Using Metrics as Predictors

One ultimate goal of our metric study is to formulate appropriate metrics to predict
and to identify the various factors that have an effect on the quality of ES. From

the above analysis, we have already shown that RC is most effective and has the

CHAPTER 13. EVALUATION OF EXPERT SYSTEM METRICS 213

best correlation with the anomaly rate which is synonymous with ES quality from
narrower viewpoint, or some other quality characteristics. So, RC' is useful in pre-
dicting the quality or some quality characteristics. To further quantitatively assess
the relationship between the anomaly rate and RC, the regression analysis technique
can be applied. The diagram plotted in Figure 72 and the high correlation coefficient
in Table 23 indicate that a linear line (linear model) may fit well into the data points
in the RC and AR relation plane. Based on the existing data, and the use of least

squares method, we get the following equation:
AR =T72.677+ RC + 4.891 (8)

where the estimated variances (S}) and S}) for the slope (72.677) and intercept

(4.981) are

55 =42.276

S7 = 1.085

In formula (8), RC is an independent variable (predictor) which represents the
measure and AR is a dependent variable. Equation (8) can be applied to similar ES to
compare their quality. However, for different kinds of ES with various characteristics
(different application domains, environments, etc.), the coefficients of the formula may
be different, which will be reflected in the differences of the values of the slope and
intercept of linear regression lines in the plane. Furthermore, to improve the accuracy

of prediction using regression equations, the validity of applying them must be further

CHAPTER 13. EVALUATION OF EXPERT SYSTEM METRICS 214

assessed for different usages, since they are also affected by the characteristics of the

applications. This study will be conducted in our future research.

Chapter 14

Concluding Remarks

Software metrics are valuable because they provide quantitative information for as-
sessment and prediction. Some of their applications include the identification of
unusual software, profile and predict software quality and characteristics. The prac-
tices of applying software metrics and their benefits can be seen from many successful
Metrics Programs in different business organizations, where the quantitative metrics
have been used as a powerful tool, e.g. (1) improving product quality; (2) increasing
development team productivity; (3) better project planning and estimation; and (4)
better project management and so on. So, metrics piay a key role and are essential

in software development.

One of the special types of software is ES whose applications have dramatically
increased during the past years. However, due to the special features of ES such as
the complex dependency among the rules, the behavior of such systems is sometimes
hard to predict. This subjects ES to more quality problems and increases the risk

of applying them. Hence, there is an urgent need to formulate certain measures on

215

CHAPTER 14. CONCLUDING REMARKS 216

ES. Like the metrics for conventional software, the development of ES metrics will

definitely help to achieve the goal of assuring the ES quality.

The formulation of ES metrics involves several steps, one of them is the study of
the interesting characteristics of ES. Designing ES metrics further requires the un-
derstanding of the essence of ES, especially the rule bases that possess many special
characteristics which distinguish them from conventional software. This thesis aims
to investigate the formal metrics for ES, which is currently lacking. Several problems
are addressed, including the formal definition and description of ES metrics, and an

evaluation of the presented metrics.

The basis for defining appropriate software metrics is provided by the measure-
ment theory. So to make the metrics reasonable and meaningful, we have to meet
some conditions required by the theory, such as presentation condition which preserves
the empirical propeities of the software in formal systems. The basic components of
the measurement th -ory and its application to metric measurements are presented

and addressed in this thesis with t}e aim to provide a rationale for metric study.

Since ES possess both the features that are common with conventional software,
and the distinctive features of their own, it is reasonable to first conduct a compara-
tive study between conventional software and ES, then (1) adapt the existing mature
measuring approaches for conventional software to measure the common features,
and (2) develop new techniques to measure those special features. For rule-based ES,

the commnn features are the conventional operators and operands, so some widely

-

CHAPTER 14. CONCLUDING REMARKS 217

accepted measures, such as the Halstead’s software science can be used to measure

them. The rule and dependency are the distinctive features, which require new for-
malism to be defined. To meet this end, this thesis presents the AND/OR digraph
for formally describing these special features, and based on this AND/OR digraph
and the contents of the rules, metric measuring methods are formally proposed and
presented. Seven ES metrics are presented and examined in this thesis, including cur
proposed RC for the ES complexity measure. It should be noted that little effort has
been devoted to this subject before, even though the complexity measures have been
playing a critical and important role in quality evaluation of conventional software.
The above ES metrics have been developed after taking different viewpoints into
consideration, and they are the basic metrics in the quality model presented in this
thesis, that is, their values form the basis for further assessing or predicting such qual-

ity characteristics as maintainability, reliability and testability which are important to

ES. However, when the metrics are used as the indicator or predictor of some quality
characteristics, it is possible that their performance may be quite different. Some are
more effective than others. This leads us to the study of metric evaluation, a sub-
ject which is essential for accepting and using existing metrics. This thesis proposes
several metric evaluation techniques based on statistical testing and analysis. These
evaluation techniques are based on the empirical ground in the sense that the metric
values are compared with either other metric values or some phenomena affected by
ES quality characteristics. Metrics can also be validated from the theoretical ground,
that is, in an abstract way. A set of general properties and criteria which represent

the desired performance of the metrics are therefore proposed in this thesis. Metrics

CHAPTER 14. CONCLUDING REMARKS 218

are further evaluated against them as well. The above evaluation techniques can help
us to judiciously validate and select the existing metrics, and guide the design of new

metrics that would be proposed in the future.

Assessing the validity of the presented metrics by using the above evaluation tech-
niques reveals that RC is most effective and has the best performance among these
metrics in evaluating ES. This indicates that RC metric, defined as a hybrid metric
that takes into account three important characteristics of rule bases: the matching
contents, size and search space, is well formulated, and it can be a useful tool to assess

and predict the quality of ES.

This thesis also discusses and presents several important issues relating to the ES
metrics. They include: the metrics organization, metrics factors, general methodol-
ogy of metric formulation, automatic measuring tools, and so on. These issues deal

with the different aspects of ES metrics, that should not be ignored.

Currently, this research is limited to the measures of the static characteristics of

rule-based ES. Our future work may include:

¢ Extending the metrics to different kinds of expert systems, such as frame-based

ES, semantic-based ES, and those which contain uncertainty;
¢ Investigating the dynamic characteristics of ES and their measurements;
o Comparing the measurement models against subjective expert opinions.

Similar to the development of conventional software, the development of a good

CHAPTER 14. CONCLUDING REMARKS 219

quality ES needs the proper formulation and application of their metrics, and this
research is a challenging area and yet it is seldomly addressed. We believe that the
study conducted in this thesis is important and hope that it will lay a foundation
for our future research to reach the long-term goal of building a wider spectrum of
metrics for assessing and predicting the quality of products developed in knowledge

engineering.

At last, it is worth mentioning that some results of this research have already
been accepted for publications [Chen and Suen, 1993a, Chen and Suen, 1993b, Chen
and Suen, 1994a, Chen and Suen, 1994b, Chen and Suen, 1994c, Chen et al., 1994d],
where different issues concerning the quantitative assessment of ES are presented and

discussed.

References

[Arthur, 1985] Arthur, L. J. (1985). Messuring Programming Productivity and Soft-
ware Quality. John Wiley & Sons, New York.

[Barrett, 1990] Barrett, B. W. (1990). A software quality specification methodol-
ogy for knowledge-based systems. In Culbert, C., editor, AAAI-90 Workshop on
Knouwledge Based Systems Verification, Validation and Testing. AAAL Unpub-

lished Workshop Notes.

(Basili, 1980] Basili, V. (1980). Tutorial on models and metrics for software manage-
ment and engineering. In Proc. of Fourth International Conference on Computer

Software & Applications Conference, pages 288-293.

[Behrendt et al., 1991} Behrendt, W., Lambert, S. C., Ringland, G. A., Hughes,
P., and Poulter, K. (1991). Gateway: Metrics for knowledge based systems. In
Liebowitz, J., editor, Proceedings of the World Congress on Ezpert Systems, vol-

ume 2, pages 1056-1067, New York. Pergamon Press.

(Buchanan, 1987] Buchanan, B. G. (1987). Artificial intelligence as an experimental
science. Technical Report KSL 87-03, Knowledge Systems Laboratory, Stanford

University, Stanford, CA.

220

REFERENCES 221

[Card and Glass, 1981] Card, D. N. and Glass, R. L. (1981). Measuring Software
Design Quality. Prentice-Hall, Englewood Cliffs, New Jersey 07632.

[Cardefiosa, 1995] Cardefiosa, J. (1995). VALID: An environment for validation of

KBS. Ezpert Systems with Applications, 8(3). In press.

[Carrico et al., 1989] Carrico, M. A., Girard, J. E., and Jones, J. P. (1989). Building

Knowledge Systems. McGraw-Hill Book Company, New York.

[Channon, 1974] Channon, R. N. (1974). On A Measure of Program Structure. Ph.D.

Dissertation, Carnegie-Mellon University, Pittsburgh, PA.

[Chen and Suen, 1993a] Chen, Z. and Suen, C. Y. (1993). Application of metric
measures: From conventional software to expert systems. In Proc. of the AAAI
Workshop on Verification, Validation and Testing of Knowledge-Based Systems,

pages 44-51.

[Chen and Suen, 1993b] Chen, Z. and Suen, C. Y. (1993). Evaluating expert systems
by formal metrics. In Proc. of the Canadian Conference on Electrical and Computer

Engineering, pages 763-766.

[Chen and Suen, 1994a] Chen, Z. and Suen, C. Y. (1994a). Measuring the complexity

of rule-based expert systems. Erpert Systems with Applications, 7(4). In press.

[Chen and Suen, 1994b] Chen, Z. and Suen, C. Y. (1994b). Complexity metrics for
rule-based expert systems. In Proc. of the IEEE International Conference on Soft-

ware Maintenance. In press.

REFERENCES 222

[Chen et al., 1994c] Chen, Z., Grogono, P., and Suen, C. Y. (1994). Quantitative
evaluation of expert systems. In Proc. of the IEEE International Conference on

Systems, Man and Cybernetics. In press.

[Chen and Suen, 1994d] Chen, Z. and Suen, C. Y. (1994d). Metrics for assessing the
quality of rule-based systems. IEEE Trans. on Knowledge and Data Engineering.

Under review,

[Clarke and Cooke, 1983] Clarke, G. M. and Cooke, D. (1983). A Basic Course in

Statistics. Edward Arnold, Caulfield East, Victoria.

[Deutsh and Willis, 1988] Deutsh, M. S. and Willis, R. R. (1988). Software Quality

Engineering. Prentice Hall, Englewood Cliffs, NJ.

[Edwards, 1976] Edwards, A. L. (1976). An Introduction to Linear Regression and

Correlation. W. H. Freeman and Company, San Francisco.

|[Elshoff, 1976] Elshoff, J. (1976). An analysis of some commercial PL/1 programs.
IEEE Trans. on Software Engineering, SE-2(5):113-120.

[Elshoff, 1984] Elshoff, J. L. (1984). Characteristics of program complexity measure-

ment. In Proc. of the Int. Conference on Software Engineering, pages 288-293.

[Fenton, 1991] Fenton, N. E. (1991). Software Metrics: A Rigorous Approach. Chap-
man & Hall, London.

REFERENCES 223

[Forsyth, 1984] Forsyth, R. (1984). The architecture of expert systems. In Forsyth,

R., editor, Ezpert Systems: Principles and Case Studies, pages 9-17. Chapman and
Hall, London.

[Gevarter, 1982] Gevarter, W. B. (1982). An overview of expert systems. Technical
Report Natural Bureau of Standards Report No. NBSIR 82-2505.

[Grady and Caswell, 1987] Grady, R. B. and Caswell, D. L. (1987). Software Metrics:

Establishing a Company-wide Program. Prentice Hall, New York.

[Grogono et al., 1991] Grogono, P., Batarekh, A., Preece, A., Shinghal, R., and Suen,
C. Y. (1991). Expert system evaluation techniques: a selected bibliography. Ezpert
Systems, 8(Issue 4):227-240.

[Halstead, 1977] Halstead, M. (1977). Elements of Software Science. Elesevier North-
Holland, New York.

[Harrison, 1984]) Harrison, W. (1984). Applying McCabe's complexity measure to

multiple exit programs. Software-Practice Ezperience, pages 1004-1007.

[Harrison, 1992] Harrison, W. (1992). Software measurement and metrics. Encyclo-

pedia of Computer Science and Technology, 26(Supplement 11):363-372.

[Harrison and Magel, 1981a] Harrison, W. and Magel, K. (1981a). A complexity mea-
sure based on nesting level. ACM SIGPLAN Notices, 16(3):63-74.

REFERENCES 224

[Harrison and Magel, 1981b] Harrison, W. and Magel, K. (1981b). A topological
analysis of computer programs with less than three binary branches. ACM SIG-

PLAN Notices, 16(4):51-63.

[Harrison et al., 1982) Harrison, W., Magel, K., and Raymond Kluczny, A. D. (1982).
Applying software complexity metrics to program maintenance. Computer, 15:65-

79.

[Henry and Kafura, 1981] Henry, S. and Kafura, D. (1981). Software structure met-
rics based on information flow. IEEE Trans. on Software Engineering, SE-7(5):510-

518.

(IEEE, 1983]) IEEE (1983). IEEE Standard Glossary of Software Engineering Termi-
nology. Software Engineering Technical Committee of the IEEE Computer Society,
IEEE, New York.

[IEEE, 1989] IEEE (1989). Standard Dictionary of Measures to Produce Reliable
Software. IEEE Standard Board, IEEE, New York.

[Ingels, 1971] Ingels, F. M. (1971). Information and Coding Theory. Intext Educa-

tional Publishers, San Francisco.

[Inglis, 1985] Inglis, J. (1985). Standard software quality metrics. AT & T Technical
Journal, 65(2):113-118.

[Itzfeldt, 1990] Itzfeldt, W. D. (1990). Quality metrics for software management and
engineering. In Mitchell, R., editor, Managing Complezity in Software Engineering,
pages 127-151. Peter Peregrinus Ltd., London.

REFERENCES 225

[Jacob and Froscher, 1990] Jacob, R. J. K. and Froscher, J. N. (1990). A software
engineering methodology for rule-based systems. IEEE Transactions on Knowledge
and Data Engineering (US), 2(2):173-189.

(Kaisler, 1986] Kaisler, S. H. (1986). Expert system metrics. In Proc. 1986 IEEE
International Conference on Systems, Man, and Cybernetics, volume 1, pages 114-

120. IEEE.

[Kiper, 1992] Kiper, J. D. (1992). Structural testing of rule-based expert systems.

ACM Transaction on Software Engineering and Methodology, 1(2):168-187.

[Landauer, 1990] Landauer, C. (1990). Correctness principles for rule-based expert

systems. Ezpert Systems with Applications (US), 1(3):291-316.

[Li and Cheung, 1987] Li, H. F. and Cheung, W. (1987). An empirical study of
software metrics. IEEE Trans. on Software Engineering, SE-13(6):697-708.

[Liebowitz, 1990] Liebowitz, J. (1990). Issues in verifying and validation of expert
systems. In Proc. of Fourth International Symposium on Knowledge Engineering,

pages 105-115.

[Liebowitz, 1991] Liebowitz, J. (1991). Operational Ezpert System Applications in

the United States. Pergamon Press, New York.

[Manns and Coleman, 1988] Manns, T. and Coleman, M. (1988). Software Quality

Assurance. Macmillan Education, London.

REFERENCES ' 226

[McCabe, 1976] McCabe, T. J. (1976). A complexity measurement. IEEE Trans. on
Software Engineering, SE-2(4):308-320.

[Méller and Pauliosh, 1993] Maller, K. H. and Pauliosh, D. J. (1993). Software Met-

rics. Chapman & Hall Computing, New York.

[Mehrotra, 1991] Mehrotra, M. (1991). Rule grouping; A software engineering ap-
proach towards verification of expert system. NASA Contract Report 4372, Vigyan
Inc., NASA Langley, Hampton VA.

[Miller, 1990] Miller, L. A. (1990). Dynamic testing of knowledge bases using the

heuristic testing approach. Ezpert Systems with Applications (US), 1(3):249-269.

[Nazareth and Kennedy, 1990] Nazareth, D. L. and Kennedy, M. H. (1990). Veri-
fication of rule-based knowledge using directed graphs. Technical report, School
of Business Administration, University of Wisconsin-Milwaukee, Milwaukee WI

53201.

[Ostle and Malone, 1988] Ostle, B. and Malone, L. C. (1988). Statistics in Research.

Iowa State University Press, Ames, lowa 50010.

[Pedersen, 1991] Pedersen, K. (1991). Well-structured knowledge bases. In Gupta,
U. G., editor, Validating and Verifying Knoledge-Based Systems, pages 365-386.

IEEE Computer Society Press, Los Alamitos, California.

[Philip, 1993} Philip, G. C. (1993). Guidelines on improving the maintainability
and consultation of rule-based expert systems. Ezpert Systems with Applications,

7(2):169-179.

REFERENCES 227

[Plant, 1991a) Plant, R. T. (1991a). Factors in software quality for knowledge-based
systems. Information and Software Technology (UK), 33(7):527-536.

[Plant, 1991b] Plant, R. T. (1991b). Rigorous approach to the development of

knowledge-based systems. Knowledge Based Systems, 4(4):186-196.

[Preece, 1990] Preece, A. D. (1990). The role of specifications in expert system eval-
uation. In Culbert, C., editor, AAAI-90 Workshop on Knowledge Based Systems
Verification, Validation and Testing. AAAL Unpublished Workshop Notes.

[Preece and Shinghal, 1991] Preece, A. D. and Shinghal, R. (1991). Practical ap-
proach to knowledge base verification. In Proc. of the Conference on Applicalions

of Artificial Intelligence 9, pages 608-619.

[Prerau et al., 1990] Prerau, D.S., Gunderson, A. S., Reinke, R. E., and Adler, M. R.
(1990). Maintainability techniques in developing large expert systems. IEEE Ez-

pert, pages 71-80.

[Ramamoorthy et al., 1985) Ramamoorthy, C. V., Tsai, W.-T., Yamaura, T., and
Blide, A. (1985). Metrics guided methodology. In Proc. of IEEE Computer Society’s

Ninth International Compuler Software & Application Conference, pages 111-120.

[Rushby, 1988) Rushby, J. (1988). Quality measures and assurance for Al software.
NASA Contractor Report CR-4187, SRI International, Menlo Park, CA. 137 pages.

[Rushby and Crow, 1990] Rushby, J. and Crow, J. (1990). Evaluation of an expert
system for fault detection, isolation, and recovery in the manned maneuvering unit.

NASA Contract Report CR-187466, SRI international, Meno Park, CA.

REFERENCES 228

[Schneiderman, 1980] Schneiderman, B. (1980). Sofiware Psychology: Human Fac-

tors in Computer and Information Systems. Winthrop Publishers, Inc., Cambridge,

Massachusett.

[Schulmeyer, 1987] Schulmeyer, G. G. (1987). Software quality assurance—coming to
terms. In Schulmeyer, G. G. and McManus, J. 1., editors, Handbook of Software

Quality Assurance, pages 1-13. Van Nostrand Reinhold Company, New York.

[Sheppard, 1988} Sheppard, M. (1988). An evaluation of software product metrics.

Information and Software Technologies, 30(3):177-188.

[Shinghal, 1992] Shinghal, R. (1992). Formal Concepts in Artificial Intelligence.
Chapman & Hall, New York.

[Soloway, 1987] Soloway, E. (1987). Assessing the maintainability of xcon-in-rime:
Coping with the problems of a very large rule-base. In Proceedings of AAAI-87

Workshop on Validation and Verification of Ezpert Systems, pages 824-849.

[Suen et al., 1989] Suen, C. Y., Grogono, P. D., and Shinghal, R. (1989). Appli-
cability of software engineering techniques to expert systems. Report for Bell
Canada, Concordia University, Department of Computer Science, 1455 de Maison-

neuve Blvd. West, Montréal QC, Canada H3G 1MS.

[Suen et al., 1990} Suen, C. Y., Grogono, P. D., Shinghal, R., and Coallier, F. (1990).
Verifying, validating, and measuring the performance of expert systems. Ezpert

Systems with Applications (US), 1(2):93-102.

REFERENCES 229

[Suen and Shinghal, 1991] Suen, C. Y. and Shinghal, R. (1991). Operational Ezpert

System Applications in Canada. Pergamon Press, New York.

[Tai, 1984] Tai, K.-C. (1984). A program complexity metric based on data flow infor-
mation in control graphs. In Processing of 7th International Conference on Software

Engineering, pages 239-248.

[Tajima, 1981] Tajima, D. M. (1981). The computer software industry in japan.
Computer, 14(5):89-96.

[Weyuker, 1988] Weyuker, E. J. (1988). Evaluating software complexity measures.
IEEE Tran. on Software Engineering, SE-14(9):1357-1365.

[Williams, 1986] Williams, C. (1986). Expert systems, knowledge engineering, and ai

tools— an overview. IEEE Ezpert, winter:66-70.

[Zuse, 1991] Zuse, H. (1991). Software Complezxity: Measures and Methods. Walter
de Gruyter, D-1000 Berlin.

[Zuse and Bolimann, 1989] Zuse, H. and Bollmann, P. (1989). Software metrics: Us-
ing measurement theory to describe the properties and scales of static software

complexity metrics. SIGPLAN Notices, 24(8):510-518.

Appendix A

t Values

This appendix presents tabled ¢ distribution in a two-tail test.

The probabilities (significant levels) are given by the column headings, and the

first column shows the degree of freedom. For example, with 60 d.f., we have
P(t > 2.660) + P(t < -2.660) = 0.01

That is the significant level for the critical region: ¢ > 2.660 At < is 2.660.

230

APPENDIX A. T VALUES 231

Significance Levels

d.f. | p=0.1 | p= 0.05 | p=0.02 | p=0.01 | 0.002 | p=0.001
1 {6314} 12.706 | 31.821 | 63.657 { 318.31 | 636.62
2 | 2920 | 4303 | 6.965 [9.925 |22.327 | 31.598
3 [2353 | 3.182 | 4.541 | 5.841 [10.214 | 12924
4 | 2132 2.776 | 3.7147 | 4.604 | 7.173 | 8.610
5 [2015 | 2.571 3.365 | 4.302 | 5.803 | 6.869
6 | 1.943 | 2.447 | 3.143 | 3.707 | £.208 | 5.959
7 11895 | 2365 | 2.998 | 3.499 | 4.785 | 5.408
8 (1860 2306 | 2.896 | 3.355 | 4.501 5.041
9 | 1.833 | 2262 | 2.821 | 3.250 | 4.297 ; 4.781

10 | 1.812 | 2.228 | 2.764 | 3.169 | 4.144 | 4.387
11 § 1.796 | 2.201 2.718 | 3.106 | 4.025 | 4.437
12 | 1.782 | 2.179 | 2.681 | 3.055 | 3.930 ;| 4.318
13 | 1.771 | 2160 | 2.650 ; 3.012 | 3.852 | 4.22]
14 | 1.761 | 2.145 | 2.624 | 2.977 | 3.787 | 4.140
15 | 1.753 | 2.131 2.602 | 2.947 | 3.733 | 4.073
16 | 1.746 | 2.120 | 2.583 | 2.921 | 3.686 | 4.015
17 1 1.740 | 2110 | 2.567 | 2.898 | 3.646 | 3.965
18 | 1.734 | 2.101 2.552 | 2.878 | 3.610 | 3.922
19 [1.729 | 2.093 | 2.539 | 2.861 | 3.579 | 3.883
20 | 1.725 | 2.086 | 2.528 | 2.845 | 3.552 | 3.850
21 [1.721 | 2.080 | 2.518 | 2.831 | 3.527 | 3.819
22 | L.717 | 2.074 2.508 | 2.819 | 3.505 | 3.792
23 | 1.714 | 2.069 | 2.500 | 2.807 | 3.485 | 3.767
24 | 1.711 | 2.064 2492 | 2.797 | 3.467 | 3.745
25 | 1.708 | 2.060 2485 | 2.787 | 3.450 | 3.725
26 | 1.706 | 2.056 | 2479 | 2.779 | 3435 | 3.707
27 | 1.703 | 2.052 2473 | 2.771 | 3.421 3.690
28 | 1.701 | 2.048 2467 | 2.763 | 3.408 | 3.674
29 | 1.699 | 2.045 2462 | 2,756 | 3.396 | 3.659
30 | 1.697 | 2.042 2.457 | 2,750 | 3.385 | 3.646

1.684 | 2.021 2423 | 2.704 | 3.307 | 3.551

1.671 | 2.000 | 2.390 | 2.660 | 3.232 | 3.460

1.658 | 1.980 2358 | 2.617 | 3.160 | 3.373

1.645 | 1.960 2326 | 2.576 | 3.090 | 3.291

Table 29: Tabled t Values

Appendix B

r Values

This appendix shows tabled r values in two-tail test. It is obtained by solving r from

the relation

t=r
where, t represents the { distribution.

The probabilities (significant levels) are given by the column headings, and the

first column shows the degree of freedom. For example, with 62 d.f., we have
P(r > 0.325) + P(r £ ~0.325) = 0.01

That is, the significant level for the critical region r 2> 0.325 A r < -0.325 is 0.01.

232

APPENDIX B. R VALUES

Significance Levels

(=W
bty

0.05

0.01

0.001

0.707
0.666

W 00 =IO O b QN =)

12 | 10 | 0.576
13 | 11 | 0553
14 | 12 |0.532
15 { 13 {0514
16 | 14 10497
17 1 15 | 0.482
18 | 17 | 0.456
20 | 18 | 0.444
21 1 19 | 0433
22 1 20 | 0.423
27 | 25 }0.381
32 | 30 | 0.349
37 1 35 | 0.325
42 | 40 | 0.304
47 | 45 [0.288
52 | 50 §0.273
62 | 60 |0.250
72] 70 |0.232
82 | 80 |0.217
92 | 90]0.205
0.195

0.997 | 0.999
0.950 | 0.990
0.878 | 0.959
0.811] 0.917
0.754 | 0.875

0.834
0.798

0.632 | 0.765
0.602 | 0.735

0.708
0.684
0.661
0.641
0.623
0.606
0.575
0.561
0.549
0.537
0.487
0.449
0.418
0.393
0.372
0.354
0.325
0.302
0.283
0.267
0.254

1.000
0.999
0.991
0.974
0.951
0.925
0.898
0.872
0.847
0.823
0.810
0.780
0.760
0.742
0.725
0.693
0.679
0.665
0.652
0.597
0.554
0.519
0.490
0.465
0.443
0.408
0.380
0.357
0.338
0.321

Table 30: Tabled r Values

233

Appendix C

Z Values

This appendix presents the values of Z, the standard normal variable, from 0.0 to
3.9, showing the cumulative probability up to z, that is, the table entry represents
P(Z < z). The probability for the area (Z > z) A (Z < ~z) (significant level) in

two-tail test can hence be obtained by:
P(Z22)+ P(Z<-2)=2x%x(1.0~P(Z < 2z))
For example, when z = 2.24, from the table, we get

P(Z < 2.24) = 0.9838

Hence,

P(Z 2 2.24) + P(Z < -2.24) = 2 x (1 - 0.9838) = 0.0324

234

APPENDIX C. Z VALUES 235

0.01 002 | 003 | 004 | 005 | 0.06 | 0.07

0.5040 | 0.5080 | 0.5120 | 0.5160 | 0.5199 | 0.5239 | 0.5279 | 0.5319
0.5832 | 0.5871 | 0.5910 | 0.5948 | 0.5987 | 0.6026 | 0.6064 | 0.6103
0.6591 | 0.6628 | 0.6664 | 0.6700 | 0.6736 | 0.6772 | 0.6808 | 0.6844
0.7291 | 0.7324 | 0.7357 | 0.7389 | 0.7422 | 0.7454 | 0.7486 | 0.7517
. 0.7910 | 0.7939 | 0.7967 | 0.7995 | 0.8023 | 0.8051 | 0.8078 | 0.8106
1.0 | 0.8413 | 0.8438 | 0.8461 | 0.8485 | 0.8508 | 0.8531 | 0.8554 | 0.8577 | 0.8599
1.2 | 0.8849 | 0.8869 | 0.8888 | 0.8907 | 0.8925 | 0.8944 | 0.8962 | 0.8980 | 0.8997
1.4 1 0.9192 | 0.9207 | 0.9222 | 0.9236 | 0.9251 | 0.9265 | 0.9279 | 0.9292 | 0.9306
1.6 | 0.9452 | 0.9463 | 0.9474 | 0.9484 | 0.9495 | 0.9505 | 0.9515 | 0.9525 | 0.9535
1.8 [0.9641 | 0.9649 | 0.9656 | 0.9664 | 0.9671 | 0.9678 | 0.9686 | 0.9693 | 0.9699
2.0 109772 | ©.9778 [0.9783 | 0.9788 | 0.9793 | 0.9798 | 0.9803 | 0.9808 | 0.9812
2.210.9861 | 0.9864 | 0.9868 | 0.9871 | 0.9875 | 0.9878 | 0.9881 | 0.9884 | 0.9887
2.4 10.9918 | 0.9920 { 0.9922 | 0.9925 | 0.9927 | 0.9929 { 0.9931 { 0.9932 | 0.9934
2.6 | 0.9953 | 0.9955 | 0.9956 | 0.9957 | 0.9959 | 6.9960 | 0.9961 | 0.9962 | 0.9963
2.8 109974 | 0.9975 | 0.9976 | 0.9977 | 0.9977 { 0.9978 | 0.9979 | 0.9979 | 0.9980
3.0 [0.9987 | 0.9987 | 0.9987 | 0.9988 | 0.9988 | 0.9989 | 0.9989 } 0.9989 | 0.9990
3.2 { 0.9993 { 0.9993 | 0.9993 | 0.9994 | 0.9994 | 0.9994 | 0.9994 | 0.9995 | 0.9995
3.4 10.9997 | 0.9997 { 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997
3.6 1 0.9998 | 0.9998 { 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999 { 0.9999 | 0.9999
3.8 1 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999 { 0.9999 | 0.9999 | 0.9999 | 0.9999

3.9 | 1.0000 L

———— e e et e et

Table 31: Tabled Z Values

