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ABSTRACT

Automated Detection of Multiple Sclerosis Lesions in

Magnetic Resonance Images of the Brain

Micheline Kamber

Magnetic resonance (MR) imaging is a medical technique which permits the
visualization of a variety of tumors, lesions, and abnormalitics present within the
soft biological tissues of the body. Segmentation of medical image datais the process
of assigning anatomically-meaningful labels to each component of the image. This
thesis describes the development of a tool for the segmentation of MR images of the
head. In particular, the tool is designed for the detection of multiple selerosis lesions
of the brain. The design was based on two objectives: 1) to evaluate the effectiveness
of incorporating a priori knowledge of brain anatomy in the classification process,

and ii) to compare the statistical and symbolic approaches to machine learning.

Knowledge of neuroanatomy is represented in the form of a tissue probability
model. The model was constructed to provide a priort probabilities of brain tissue
distribution per nnit voxel in a standardized 3D ‘brain space’. Use of the model to

detect multiple sclerosis lesions reduces the number of false positive lesions by 50%..

The performance of the statistical minimum distance and Bayesian classifiers
was compared to that of a symbolic decision tree learning algorithin, A version
of this algorithm for the handling of noisy data was included in the comparative
study. Each classifier performed at about the same level of accuracy. The statistical

classifiers were the fastest in training, yet were the slowest in recall.
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RESUME

La détection automatisée des lesions de la sclérose en plaques du

cerveau en imagerie par résonance magnétique

Micheline Kamber

L’imagerie par résonance magnétique (IRM) est une technique médicale qui per-
met la visualisation d’une grande variété de tumeurs, lésions, ou autres anomalies
anatomiques du corps humain. La segmentation des images médicales est le pro-
cessus d’affectation d’une entité anatomique identifiée par un nom (matieére grise,
maticre blanche, fluide cérébro spinal, ..) & chaque composant de 'image. Cette
these déerit le développement d'un outil pour la segmentation des images IRM
du cerveau. Cet outil a été construit en particulier pour la détection des lésions
caracteristiques de la sclérose en plaques. Son développement a été réalisé avec
deux objectifs: 1) évaluer Pefficacité de I'utilisation de la connaissance a prior: de
Panatomie cérébrale dans le processus de classification, et ii) comparer les approches

statistiques et symboliques de Papprentissage automatique.

La connaissance neuroanatomique est représentée par un modéle de probabilité.
Ce modele a été construit pour fournir les probabilités de distribution des tissues
cérébraux par ‘voxel’ dans un systéme de coordonnées standard. L’utilisation du

modele a permis d’éliminer 50% des fausses positives lésions.

Les performances des algorithmes de classification des plus proches voisins (PPV)
et Bayesien ont été comparées avec celles d’un algorithme symbolique d’arbre de

décision. Une version de cet algorithme pour les données bruitées a aussi été évalude.
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Chapter 1

Introduction

1.1 Segmentation of Magnetic Resonance Images

Magnetic Resonance Imaging (MRI) is a noninvasive medical technique employed
to produce cross-sectional (i.c. tomographic) images of the human body, permitting
the detailed visualization of biological soft tissues. As a diagnostic tool, Ml al-
lows the detection of a variety of tumors, lesions, and abnormalities present within
internal anatomical structures. Although it can be applied to all parts of the body,
MR!I has been particularly useful for imaging the brain and spinal cord. This is
due to its ability to discriminate between grey and white matter tissues, and fluid
spaces, unlike computed tomography, ! an carlier commonly used imaging system.
MR data is generally acquired as & series of 2-dimensional (2D) images spanning

the organ under study. The 2D images or ‘slices’ make up a volume of MR data.

Segmentation or tissue classification of magnetic resonance images is the division
of the image data into regions corresponding to anatomical tissues, fluids, and
structures. Regilons occur as individual pixels are assigned class labels with each

label representing a different tissue type. Figure 1.1 shows an example of a magnetic

'Computed tomography, or CT, is an ionizing imaging technique similar to X-ray imagery.

A computer is used, instead of filin, to hold images.



Figure 1.1: A typical magnetic resonance image of the head. Major
tissue classes include: grey matter (G), white matter (W), ventricular
cerebrospinal fluid (V), and external cerebrospinal fluid (C). Ventrie-
ular cerebrospinal fluid is located in structures referred to as the ven-
tricles. External cerebrospinal fluid refers to the cerebrospinal fluid
beneath the ‘arachnoid’ layer of the brain. ‘Folds’ or convolutions of
the brain are referred to as gyri.



resonance image of the head. The classes of interest correspond to the ‘gross’ or
major tissues of the brain. These include grey matter, white matter, ventricular

cerchrospinal fluid (CSF), and external CSF.

Magnetic resonance imaging is typically used qualitatively with radiologists in-
specting the 2D images for abnormal structures or deformations. Theve is a growing
interest, however, in the development of computerized tools to permit quantitative
analysis and visualization of anatomical structures in 3D, particularly in images
of the brain [Kubler and Gerig, 1990; Spitzer and Stiehl, 1989]. These tools re-
quire accurate segmentation of MR volume data. The segmentation of head MR
data in routine clinical applications gives important quantitative infermation about
anatomy in normal and discased brain. Salient examples include brain atrophy,
tumor volume, and morphological changes of cerebral structures. Such quantitative
analysis aids in the evaluation, diagnosis and study of neurological diseases and psy-
chiatric disorders. Work in seginentation has been done to study changes in brain
tissues in patients with Alzheimer’s disease and schizophrenia [Press, Amaral, and
Squire, 1989; Kohne, 1989], and to study the process of aging [Jernigan, Press and
Hesselink, 1990; Wahlund, Agartz, Almqvist, Basun, Forssell, Saaf, and Wetter-
berg, 1990; Pfefferbaum, Zatz, and Jernigan, 1986]. Quantitative measurements of
cerebral structures such as the emygdala and hippocampus have been conducted in
order to investigate their contribution to epilepsy and memory functions [Cedes, An-
dermann, Watson, Evans, Gloor, Melanson, Gotman, Leroux, Olivier, and Peters,
1991; Cascino, Jack, Parisi, Sharbrough, Hirschorn, Meyer, Marsh, and O’Brien,
1991). The quantitative measurement of tissue volumes also assists in assessing the
effectiveness of drug treatment and radiation therapy intended to reduce the size of

abnormal tissues.

MR segmentation can be used to detect multiple sclerosis lesions of the brain.
Multiple selerosis (MS) is an autoimmune disease characterized by lesions or ‘dam-
age’ of the myelin covering (fatty white substance) of neurons of cerebral white

matter. In MR images, these lesions appear as regions of hyperintensities, initially



small and isolated, but becoming more extensive and connected as the discase pro-
gresses (Figure 1.2). Quantitative measurement of MS lesion volume is important
for the study of the disecase, the evaluation of drug treatments, and MS patient

follow-up.

It is possible to view a set of 2D images and mentally reconstruct the 3D shape of
the anatomical structures within them. This visualization task, however, is diticult
and requires extensive training [Gerig, Martin, Kikinis, Kubler, Shenton, and Jolesz,
1991]. Automated segmentation of MR volume data allows the computerized display
of individual brain structures in 3D. Procedures permitting the 3D visualization of
anatomical structures can serve as educational tools, as well as facilitate surgical
and radiotherapy planning. Surgeons, for example, would like to have 3D views of
the internal structure of the brain so that they can assess the depth and shape of a
lesion as well as its geometrie relationship to other internal structures [Levin, Hu,
Tan, Galhotra, Herrmann, Chen, Pelizzari, Balter, Beck, Chen, and Cooper, 1989].
This means of accurate tumor localization would enable radiation therapy to be
planned more effectively to treat malignant tissues and to minimize the irradiation

of adjacent tissues [Fan, Trivedi, Fellingham, and Gamboa-Aldeco, 1987).

Manual segmentation of individual structures is tedious, time-consuming, and
costly. Errors occur due to poor hand-eye coordination, low tissue contrast, and
unclear tissue boundaries made up of data elements appearing as partial vohumnes?,
Thus, despite its potential clinical value, segmentation is seldom performed man-
ually [Ozkan, Sprenkels, and Dawant, 1990]. Accurate automated segmentation of

MR images is the first step towards promising quantitative and 3D visualization

applications of magnetic resonance imaging,.

Segmentation is a central problem in medical imaging. Hwmnan investigators

implicitly segment an image into its anatomical components, drawing on a stored

2Partial voluine refers to the case of a data element (pixel or voxel) containing more than one

tissue type. (A voxel is a 3D pixel).



Figure 1.2: A typical magnetic resonance image of the brain of a
patient afflicted with multiple sclerosis. Multiple sclerosis lesions (ar-
rows) are demonstrated by the bright areas distributed across the area
of the image.
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knowledge of anatomy to overcome image artifacts, noise, and lack of tissue contrast.
The pattern recognition qualities of the eye and brain are often overlooked until one
attempts to imitate them with a computer algorithm. Thus, aside from being of
interest to the medical community, the segmentation of magnetic resonance images
presents an interesting challenge to computer scientists. It is a real-world problem
for which pattern recognition and machine learning methods can be developed,

applied, and tested.

1.2 Approaches to Image Segmentation
Magnetic resonance images have the {ollowing characteristies:

1. MR images contain noise and artifacts. While some artifacts are spe-
cific to the scanner used, the majority are inherent in the imaging method
itself. Factors causing MR artifacts include patient motion as well as inho-
mogeneities and nonlinearities in the magnetic fields applied during image ac-
quisition [Porter, Hastrap, Richardson, Wesbey, Olson, Cromwell, and Moss,
1987]. As a result, intensity values of pixels for the same tissue can vary within
a slice, from slice to slice, or from one volume to another. Thus, approaches to
segmentation such as thresholding and statistical classification based on pixel
intensity aloue are not reliable, The characteristic thresholds or intensities
used to segment a particular tissue in one arca of an image will not neces-
sarily apply to other occurrences of the tissue type within the same slice o1
volume. For this reason, segmentation methods which are solely data-driven

are limited by the quality of image data on which they are applied.

2. Outlines of regions in MR images can be of varying sharpness or
contrast [Kapouleas, 1990bL]. Depending on voxel size and on the angle at
which a slice is acquired, a given voxel may contain a composite of tissue

types. This phenomenon, known as the partial volume effect, makes the use



of edge detection methods difficult and unreliable. As the outline of an organ
-an contain edges of varying sharpness, its automatic detection may not be
possible without the inclusion of edges from adjacent structures. Fan et al.
[1987] note that when a physician manually segments imaged structures, he
will base the hand-drawn outlines not only on statistical information available
in the mmage, but also on e priori knowledge of anatomy and medical expe-
rience. This is the premise behind model-based approaches to segmentation
which make use of knowledge such as the size and shape or relative loca-
tion of anatomical structures in their classification. These methods generally
use low-level operators to create regions which are then matched to anatom-
ical models. However, the high-level decision component of these strategies
is not always able to correct the mistakes make in the low-level segmenta-
tion. Difficulties in finding proper data structures to represent objects and
models, and in controlling program flow must be overcome [Stansfield, 1986].
Knowledge-based analysis of image data has produced promising preliminary
results; however, it is still at an early stage. Novel ideas for describing and
representing natural structures in conjunction with artificial intelligence tools
are needed for generally applicable methods of analysis [Kubler and Gerig,

1990).

1.3 Objectives and Scope of Thesis

Use of A Priori Knowledge. The segmentation method developed in this thesis
uses a model-based approach to classification which incorporates a priori knowledge
of average brain anatomy. The idea behind the development of the model was to
use information about a voxel’s location in 3D space as a heuristic in pred%%][ PitinterError: (
tissue type. Prior to seginentation, a head MR volume is affine transformed into a
3D proportional grid system which acts as a standardized ‘brain space’. The space,

reforred to hereafter as Talairach space, was defined by Talairach, Szikla, Tournoux,
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Prossalentis, Bordas-Ferrer, Covello, Jacob, Mempel, Buser, and Banecaud [1967] in
their work on brain atlases. (A later version is found in Talairach and Tournoux
(1988]). Talairach space is routinely used in neuroscience work involving the com-
parison of human brains as it adjusts for variation in individual cerebral size and
proportion. The transformation into the Talairach coordinate system uses trans-
lation, rotation, and scaling so that brains within the space appear geometrically
equivalent (ignoring non-linear morphological differences). If coordinate (o, y, ) of
brain A is a voxel of grey matter, for example, then the same coordinate in brain
B is likely to be of grey matter as well. A tissue probability model was constructed
based on MR brain data obtained from a group of healthy volunteers, giving for
each voxel in Talairach space, the probabilities of that voxel bhelonging to each of
the possible tissue types. The model is used to guide brain MR image segmentation,
serving as a 3D probabilistic template for gross tissue structures. Thus, the tissue
classifier uses geometric information about the location of voxels, as well as statisti-
cal information based on grey scale values in the given image. This thesis explores
the extent to which a prior voxel-based tissue probability model can overcome elas-
sification errors inherent in solely data-driven procedures due to the effects of noise,

partial volume, field inhomogeneities, and other artifacts.

The tissue probability model or canonical mask should also be useful in segment-
ing lesions or tumors characterized by their location of occurrence. In this thesis,
it is used in the detection of MS lesions of the brain. Ninety to ninety-five percent
of MS lesions occur in white matter tissue [Maravilla, 1988]. Thus, knowledge of
whether a voxel is in an arca of the brain having a high probalility of white matter

can be used in detecting multiple selerosis lesions.

Statistical vs. Symbolic Learning Approach. In selecting a classifica* m
algorithm, various learning techniques were studied. Empirical learning techniques
can be divided roughly into three categories: statistical [Duda and Hart, 1973,

neural networks, and symbolic learning techniques such as induetion of decision
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trees? or production rules.

Statistical techniques, nenral networks and symbolic learning are approaches to
supervised learning that can be used to classify a sampis pattern into a specific
class. Methods from these categories differ in the ways in which class deseriptions
are represented. A decision tree or rule-based approach has the advantage of of-
fering a modularized, clearly explained format for a decision, and is compatible
with a human’s reasoning procedures and expert system knowledge bases [Weiss
and Kapouleas, 1989]. Mooney, Shavlik, Towell, and Gove [1989] stress the issue of
human interpretability by stating that symbolic learning can produce interpretable
rules, while mathematical formulae or weights determined by neural networks are
harder to grasp. Symbolic learning procedures, however, tend to be more complex,

often requiring manipulation of a knowledge base.

Bayesian classifiers employ a statistical approach to classification which assumes
that the classification problem can be posed in probabilistic terms and that all rel-
evant probability values are known [Duda and Hart, 1973]. If the assumptions hold
true, then Bayesian classifiers have the minimum error rate in comparison with
all other classification algorithms. Relevant probability values include the a prior
probabilities or distribution of the classes to be recognized. Such data is rarely
complete in real-world problems. Thus, the assumption that classes are equally
probable is common. Class conditional independence of features is assumed in or-
der to reduce computation (the presence or absence of each feature is assumed to
be independent of the presence or absence of others). Proton density is a mag-
netic resonance tissue-specific parameter commonly used as a feature in statistical
pattern recognition for tissue classification. This parameter reflects the number of
maguetized protons within a given voxel. Ozkan et al. [1990] note that the dis-
tribution of proton density values is not normal and thus violates the multivariate

normal distribution assumption made for Bayesian classification. Hence, although

3A decision tree is a recursive structure for representing classification: rules.



in theory, Bayesian classifiers have the minimum error rate, in practice this is often

untrue due to the inaccuracy of assumptions made for its use.

In view of the advantage in representation of classification rles obtained by
symbolic learning techniques, and of the theoretical superiority of Bayesian classi-
fication, it is interesting to compare the performance of a Bayesian classitier with
that of a symbolic learning algorithm, applied to the tissue clnssiﬁ;'utinu of MR
images of the brain. ID3 [Quinlan, 1979, 1983, 198th], a Jecision tree algorithm,
was chosen as it is a popular and relatively simple symbolic learning algorithm and
has been extensively tested on problems ranging from chess end games [Quinlan,
1983} to object recoguition [Shepherd, 1983]. In addition, ID3 has been angmented
with techniques for handling noisy data [Quinlan, 1986a; Quinlan, 1987¢; Niblett
and Bratko, 1986]. In separate studies performed by Weiss and Kapouleas [1989]
and Mooney et al. {1989] on real-world data, ID3 was found to perform at least as
well as statistical classifiers. Weiss and Kapouleas note that numerous experiments
by Breiman, Friedman, Olshen, and Stone [1984] showed that, in most cases, a
decision tree classifier is superior to alternative statistical classification technigues.
If both the statistical and symbolie classifiers perform at the same level, then the

latter may be preferred for its greater hnunan interpretability.

The objectives of this thesis are the following:

1. to develop a tool for the segmentation of magnetic resonance images of the
brain at the gross tissue-type level. In particular, the tool is to allow for the

automated detection of multiple scierosis lesions.

2. to evaluate the effectiveness of incorporating e prior: knowledge of brain
anatomy in tissue classification. A model of e priort tissue probabilities per
voxel in a standard 3D ‘brain space’ is to he used along with statistical infor-

mation based on image grey level values.

3. to compare the performance of statistical Bayesian and minimnm distance

10



classifiers with that of the symbolic decision tree classifier, ID3, trained for
MR image segmentation. The minimum distance classifier is included as it is

often cited as a basis of comparison with other classification methods.

The desirable characteristics of the segmentation tool are:

1. The segmentation algorithin employed should be robust and accurate: Seg-

mentation accuracy should not be dependent on optimal image quality.

2. Minimal or no user nteraction is desired: This is especially important if
computerized analysis tools are to become an accepted component of the
medical environment where physicians and clinicians have limited amounts

of time to spend in front of work stations.

3. Users should be able to modify the program’s proposed segmentations or (#s-
sue maps) in case of disagreement. In the ideal case, the system would adopt
the user-provided corrections to improve its accuracy on subsequent trials. At
the very least, users should be able to manually edit output segmentations if

necessary.
4. The segmentation process should be efficient on standard work stations.

The segmentation process should make use of the 3D information inherent

(]

within volumes of MR data.

6. Knowledge of anatomy should be employed: It seems logical for the segmen-
tation process to use a priori knowledge of anatomy during the classification
process as this is what human experts do. Human experts require prior knowl-
edge of anatomy and medical experience when performing manual segimenta-

tion.

The remainder of this thesis presents the steps taken in achieving the stated

objectives. Chapter 2 deseribes the basie principles of magnetic resonance imaging.

11



Chapter 3 presents a review of segmentation techniques, with particular attention
given to methods for classifying tissues in magnetic resonance images of the brain.
Chapter 4 presents a review of machine learning techniques. The review was con-
ducted to aid in selecting a symbolic learning algorithm for the segmentation tool.
Readers familiar with the review material may wish to proceed directly to Chapter
5 which describes the development of the tissue probability model and the imple-
mentation of the Bayesian, minimum distance, and decision tree elassifiers. Chapter
6 presents obtained results. The final chapter draws conclusions from the use of the
model, and of the statistical and symbolic classifiers, followed by a disenssion on

future related work.

12



Chapter 2

Magnetic Resonance Imaging

This chapter presents a brief deseription of the principles behind magnetie resonance

nnaging,.

2.1 Basic Principles

Magnetic resonance imaging is based on an inherent property of nuclear particles.
Nuclei containing an odd number of protons, an odd number of neutrons, or both,
have a spin. Every charged particle in motion has a magnetic field associated with
it. Thus, as nuclet are charged particles, they exhibit smait magnetic fields. Some

nuclei also display a vibration effect or precession.

Every object that can be made to spin or ‘precess’ will do so more strongly
under the influence of a force applied at the same frequency as the natural resonant
frequency of the object. An example of this resonance is illustrated with a pair
of identical tuning forks. If the first tuning fork is struck, it will start to vibrate.
The vibration energy is transferred to the second tuning fork, causing it to vibrate
as well. A similar resonance effect occurs when atomic nuclei are subjected to

electromagnetic waves at their own vibration frequency [Philips, 1984].

Hydrogen is the body’s most abundant nuclei which obeys this principle of mag-
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netization. If hydrogen nuclei are placed in a magnetic field, a number of them
will tend to line up in the field’s direction. Since the protons of the nuclei are in
motion, they will precess around the direction of the field like a spinning top. (This

direction is referred to as the ‘cquilibrium direction’).

In MRI, objects to be imaged are placed in a strong magnetic field of 0.5-1.5 Tesla
(1 Tesla = 10 kgauss). A group of the object’s hydrogen nuelei will align about the
direction of the field as described above (Figure 2.11L). A radiofrequency (RF) pulse
is then applied perpendicular to the direction of the magnetic ficld (Figure 2.1¢).
This stimulates the nuclei, causing them to tilt away from the aligned equilibrium
direction and precess around the direction of the magnetic field. The frequeney of
this precession is equal to the frequency at which the RF field is applied and is
dependent on the strength of the applied magnetic ficld and on the type of nuelei.
Typically, the strength and duration of the applied radiofrequency signal is made to
tilt the nuclei 90 or 180 degrees from the aligned equilibrium direction. During this
displacement, the nuclei absorh energy from the radiofrequency pulse. Onee the
RF signal is removed, the nuclei gradually realign themselves in the direction of the
original magnetic field while emitting their own radio or resonance signal (Figure
2.1d). These signals can be detected by an antenna and analyzed by a computer to

create a grey scale image of the object.

2.2 MR Tissue-Specific Parameters

Data for MR images is generated by the electromagnetic signals originating from
the imaged objects. The number of protons at a given image pixel is referred to as
proton density and is dependent on the tissue type at the pixel. The greater the
proton density, the larger the emitted signals with be; thus providing a means of

distinguishing various tissues within an object.

Image contrast is also influenced by two other tissue-specific MR parameters
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Figure 2.1: Sequence of events in MR observation.

a) Randomly oriented nuclei.

b) Nuclei align in direction of applied magnetic field (equilibrium di-
rection).

¢) Radiofrequency pulse is applied, causing the axis of rotation of the
nuclei to tip.

d) The nuclei precess about the direction of the applied radiofrequency
field and emit their own radiofrequency signal.

Reproduced from Introduction to MR Imaging, Philips Medical Sys-
tems, The Netherlands, 1984.



known as TI (longitudinal relazation time) and T2 (transverse relazation time).
T1 describes the rate at which a displaced axis of rotation returns to equilibrium.
T2 is related to the time required for the emitted resonance signal to decay. White
matter of the brain, for example, has a T1 of 690 ms and a T2 of 107 ms. Grey
matter of the brain has a T1 of 825 ms and a T2 of 110 ms [Peters, 1988]. These
differences are responsible for the contrast between white and grey matter in typical

MR images.

The rate at which the radiofrequency pulse is applied is known as TR (repetition
time). The resonance signals can be measured at various time points within a TR
interval. This is analogous to taking different ‘snapshots’ of the emitted signals.
Each snapshot or echo gives an image whose brightness at any point is related to the
signal emitted by nuclei at that position at the the time of measureinent. The time
interval between the application of the radiofrequency pulse and the measurement
of the resonance signals (or the time at which the snapshot is taken) 1s referred to as
TE (echo delay timme). If the resonance signals are measured more than once within
a TR interval (i.e. more than one snapshot is taken), this is known as multi-echo
acquisitton. The repetition time and echo delay times are generally varied so as
to best demonstrate a particular pathology in the image, or the contrast between
grey and white matter tissues. The variance of the repetition and echo delay times
is done to make use of the characteristic proton density, T1, and T2 values of the

individual tissues.

Magnetic resonance images can he acquired with various imaging sequences,
each of which generates a signal whose strength depends on the MR tissue-specific
parameters mentioned above. Two imaging sequences nsed in this thesis are the
Spin Echo (SE) and Fast Field Echo imaging (FFE) sequences. In the spin ccho
imaging sequence, tissues with a high proton deusity and a long T2 relaxation time
appear bright. This sequence is considered to be the standard, although images ean

be acquired at a considerably faster rate with the fast field echo sequence.
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Given an image, the proton density, T1, and T2 values at each pixel can be
computed, hence providing tissue-specific information useful for classification. The
calculation, however, requires large amounts of computation. Rather than calcu-
lating the pure proton density, T1, and T2 values, in clinical practice it is eas-
ier to acquire a set of proton density-weighted (‘proton density-like’), T1-weighted,
and T2-weighted images as multi-echoes. Each pixel can then be represented by a
three-dimensional vector whose components are the intensity values in the proton
density-weighted, T1-weighted, and T2-weighted images respectively. Classification
schemes which make use of this vector or combinations of proton density, T1, and

T2 values are examples of multispectral classification.

2.3 Concluding Remarks

The basic principles of magnetic resonance imaging have been described. The radio
frequency energy applied during image acquisition is non-ionizing, and thus does not
expose the patient to risks associated with X-ray imagery. Acquisition parameters
TR and TE can be varied to enhance the contrast between individual tissues. Proton
density, T1, and T2 are tissue-specific parameters available per pixel and can be

used as features in classification.
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Chapter 3

Review of Image Segmentation Techniques

This chapter presents a review of image segmentation techniques. Particular at-
tention is given to methods for the segmentation of magnetic resonance images of
the head and for the detection of multiple sclerosis brain lesions. The techniques
studied include thresholding, edge detection, region growing, and statistical elassi-
fication. Knowledge-based strategies, typically employing models of anatomy, are

also discussed.

3.1 Segmentation Techniques

3.1.1 Thresholding

In segmentation by intensity thresholding, ranges of grey level values are assigned
to characterize each tissue type. If a pixel’s intensity value falls within the range
for a specific class, then the pixel is assigned to that class. This procedure assumes
that tissue classes are definable by non-overlapping ranges of intensities and that

the intensity for each tissue class is the same at all points in the image.

Lim and Pfefferbaum [1989] describe a thresholding system for the segmentation

of MR images of the head. They note that the major obstacle to any thresholding
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approach to MRI segmentation is the artifact of radiofrequency (RF) inhomogeneity
which causes some portions of an image to contain higher or lower intensities than
others for equivalent tissues.

Kapouleas [1990b] describes a thresholding method employed to detect the out-
line of the brain and of multiple sclerosis lesions in MR images. A 3x3 gradient
operator for edge detection is applied to a 256x256 image which is then divided
into 16x16 subimages. A local threshold for cach subimage is then calculated by
the averaging of edge pixels detected by the gradient operator. The method works
well and has the advantage of heing automatic; no user interaction is required. The
thresholding, however, is not successful on its own. Heuristics are necessary to cor-
reet errors. A geometric model or ‘template’ of the brain is used to eliminate false
positive lesions (non-MS voxels which are mis-classified as MS) according to their
location. Furthermore, postprocessing is required to join erroneously disconnected
regions.

Thus, the thresholding approach to segmentation is unreliable due to image

artifacts. The use of e priori knowledge of anatomy is suggested as a means for

improving thresholding results.

3.1.2 Edge Detection and Region Growing

Edge detection and region growing are image analysis techniques that have been
applied to the segmentation of MR images. In edge detection, gradient operators
are employed to distinguish edges by the high rate of change in grey level value
between neighboring pixels. Bomans, Hohne, Tiede, and Riemer [1990] presented a
3D extension of the Marr-Hildreth operator (a Laplacian of a Gaussian) which they
used to segment structures of the brain. Kennedy, Filipek, and Caviness [1989)
proposed a modification to the Sobel operator (estimation of partial derivatives)
which was also applied to the classification of brain tissues. In region growing, a

seed is planted (normally by a user) by marking a pixel or group of pixels within
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an area to be segmented. An iterative algorithm checks for pixels that are adjacent
to the seed and of an intensity similar to it. Pixels satisfying a similarity condition
are added to the seed, allowing it to grow as a region. Jernigan et al. [1990} used
region growing to locate regions of brain tissue within an image. Fan et al. [1987]
presented an edge-limited region growing scheme where regions are grown according,
to a similarity condition and stopped at edge-labeled pixels. This was tested on the
segmentation of images of the prostate and bladder. To the untrained observer,
Fan et al.’s [1987] segmentation results appeared correct. However, the computer-
generated segmentations differed from hand-drawn outlines made by a physician
who accounted for the presence of a U-shaped sling of musele lying between the
two structures. The muscle had appeared blurred in the image because of partial

volume effects, and so was improperly segmented by the algorithun.

Edge detection and region growing schemes operate on the assumption that
gradient-based edges separate structures of interest. This may not always hold true.
These methods of segmentation are highly constrained by image noise, artifacts, and
partial volumes. The edges of an object can vary in contrast, making the automatic
detection of its outtine difficult without the inclusion of edges or areas of adjacent
structures. Furthermore, as noted by Fan et al. [1987], physicians do not base their
manually drawn outlines solely on visible sharp edges. Knowledge of anatomy is
also employed. They sugge.t that systems for medical image segmentation utilize o

priort knowledge of anatomy.

3.1.3 Statistical Classification

Statistical classification techniques, such as Bayesian classifiers, linear regression,
neural networks, and cluster analysis, have been applied to image segmentation.
Each pixel of an image is represented by a set of features or feature vector. Fea-
tures may be based on local mean intensity, variance from the local mean, as well

as on spatial, morphological, and other textural measures [Meinzer, Engelinann,



Sehleppelmann, and Schafer, 1990]. Statistical classifiers, when applied to tissue
classification, operate on the assumption that each tissue type has a characteristic
stignature or partition in feature space. A statistical classifier receives, as input, a
training set of user-selected samples from each class. These are examined and used

to define classification rules describing each tissue type.

As described in section 2.2, multi-echos or ‘snapshots’ of an object can be ac-
quired so as to reflect the tissue-specific parameters of proton density, T1, and T2.
The feature vector of a pixel can consist of its intensity value in each of the echo
images. Statistical approaches to segmentation which make use of this vector are
examples of multispectral classification. The multispectral image classification tech-
nology was originally developed for and by NASA with the intention of processing
multispectral satellite images [Vannier, Butterfield, Rickman, Jordan, Murphy, and
Biondetti, 1987]. Algorithms employed in previous work in multispectral classifi-
cation for the seguaentation of MR images include a supervised Bayesian classifier
[Amamoto, Kasturi, and Mamourian, 1990; Gerig et al., 1991; Hyman, Kurland,
Levy, and Shoop, 1989] and multiple linear regression [Jernigan et al., 1989]. Gerig
et al. [1991] also developed a clustering technique. The method of classification de-
scribed in Cline, Lorensen, Kikinis, and Jolesz [1990] works on the assumption that
each tissue has a bivariate normal probability distribution, estimated from training

samples of dual-echo images.

Experiments in MR segmentation with neural networks include Ozkan et al.’s
[1990] and Dawant, Margolin, Ozkan, Aramata, and Kawamura’s [1990] use of the
backpropagation algorithm to classify tissues of the brain. Katz and Merickel [1989)
applied the same algorithm to the segmentation of the aorta from MR images of
the heart. Raff and Newman [1990] explored the use of autoassociative memory
and a novelty filter for the detection of multiple sclerosis lesions of the brain. In
autoassociative memories, a pattern is retrieved by an incomplete version of itself.
The novelty filter stores the feature vectors of training samples and is used to extract

characteristics of the memorized patterns.



The success of statistical classification schemes based on features derived from
image grey scale values depends largely on image quality and on the selection of
adequate features. Geriget al. {1990] note that the statistical classification approach
to MR segmentation requires optimal image data, acquired so that each tissue forms
a distinct partition in feature space. A drawback of statistical classification is its
requirement of a training set. This can involve considerable user interaction. In
supervised learning, where a teacher assigns a class label to each training sample, the
subjective bias of the teacher is introduced. Fully automatic methods are necessary

for accurate reproducible results.

3.1.4 Knowledge-Based Segmentation

Difficulties in data-driven approaches to segmentation due to noise, blurred edges,
partial volume, and artifactual variations in intensities within tissue types have led
to the increased development of knowledge-based systems. When applied to medi-
cal image segmentation, these systems are typically rule-based, encoding knowledge
of anatomy, of image acquisition parameters, and of the nature of the imaging
technique employed (MRI, X-ray, computed tomography, ete.). Anatomical infor-
mation can be modeled symbolically (describing the properties and relationships of

individual structures) or geometrically (serving as masks or templates of anatomy).

Symbolic Models. Stansfield [1986] developed a rule-based expert system
for the segmentation of coronary vessels in images obtained by digital subtraction
angiography (DSA). This imaging technique requires the injection of a contrast
material into the blood flow. The subtraction of X-ray images acquired hefore and
during the flow of the contrast media yields an image of the vasculature. The
expert system employs edge detection and region growing to create segments which
are grouped and classified with the use of production (IF-THEN) rules. These
miles encode low-level knowledge of segmentation and shape analysis, as well as

high-level knowledge of cardiac anatomy and physiology. Stansfield comments that
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without the use of a priori knowledge, the system’s search procedures succumb to
a combinatorial explosion. A noted problem was the incorrect labeling of noise

structures as vessels.

Use of a symbolic anatomical model of the brain is described by Sokolowska
and Newell [1986] in their system for the segmentation of computed tomography
scans. The system employs a bottom-up approach, grouping pixels in blocks to
form segments, which are in turn grouped and classified as anatomical regions. The
classification is guided by a ‘jigsaw puzzle strategy’ that attempts to match regions
to the anatomical model. The model lists the structures that may be present in a
transverse ! brain image, deseribing their characteristic intensity-based properties,

as well as probable spatial relationships between structures.

An anatomical model of the brain is also used in an expert system devised by
Vernazza, Serpico, and Dellepiane [1987] for the classification of organs in three
types of slices of head MR data (a transverse slice through the eyes, a transverse
slice through the ventricles, and a sagittal ? slice). Elementary regions, created by
region growing, are classified with the use of production rules that define search
heuristies, and a semantic network ? describing the organs (such as brain, eyes,
nose, skin, and boue) possible in each shice type. As in Sokolowska and Newell’s
[1986] model, organs are described in terms of shape, densiometry and spatial inter-

relationships.

Menhardt’s [1988a, 1988b] approach to segmentation of MR images uses fuzzy
logic where uncertainty values ranging from 0 to 1 are assigned to pixels to rep-
resent their degree of membership in each class. The characteristics of tissues in
T1-weighted and T2-weighted images are used to define fuzzy logic operators for

the identification of brain, skull, skin, and cerebrospinal fluid. Menhardt [1988a]

'A transverse plane is any plane which divides the brain into top and bottom.

2A sagittal plane is any plane which divides the brain into left and right pieces.
3A semantic network is a graph that uses nodes to represent objects, and arcs to represent the

relationships between them,
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uses a hierarchical description of anatomy and of the signs and symptoms of neu-
rological diseases, as well as grey scale intensity values, to evaluate hypotheses for

the presence of various pathologies of the brain.

Geometric Models. A geometric model can be used to provide prior informa-
tion regarding the positions of anatomical regions. As mentioned earlier, Kapouleas
[1990a, 1990b] employs a geometric model of the brain in the segmentation of multi-
ple sclerosis lesions. The model is deformable to comply with the variations in brain
shape amongst individuals. The top-down system employs a thresholding techuigue
to suggest possible lesions. The modeling method, based on bicubic B-spline sur-
faces, uses surfaces that are easy to identify (such as the brain’s outer surface, the
ventricles, and the interhemispheric fissure * ) as landmarks when fitting the geo-
metric model to a given slice. The model is used to approximately locate the arca
of white matter adjacent to the ventricles (‘periventricular white matter'), where
the majority of MS lesions can oceur. Proposed lesions which are not within this
area are rejected. Another example of the use of geometric models for image seg-
mentation can be found in Dann, Hoford, Kovacie, Reivich, and Bajesy [1989] in
their work on the elastic matching between an idealized anatomie atlas and a given
data slice. Ayache, Boissonnat, Brunet, Cohen, Chicze, Geiger, Monga, Rocchisani,
and Sander [1989] also developed a method to fit deformable models of structures

to detected edges.

The intention of this review of knowledge-based techniques was to deseribe ways
in which a priori knowledge has been used for the segmentation of medical images.
Symbolic or geometric models of anatomy are typically employed. Difficulties to

overcome in the use of knowledge-based segmentation include the following:

o Appropriate knowledge representation schemes are needed [Kubler and Gerig,
1990; Stansfield, 1986). Knowledge representations are often incomplete, In

regards to the segmentation of brain MR data, models are necessary for de-

4The interhemispheric fissure is the space separating the left and right. hemispheres.
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scribing the entire brain, and not just particular types of slices.

e Incorrect labeling can occur due to noise and errors in low-level segmentation.
Model-based systems generally use segmentation techniques such as edge de-
tection and region growning to create segments for anatomical labeling. Errors
which occur in the segments due to noise, partial volume, and image artifacts

are difficult to overcome, even with the use of a model [Kapouleas, 1990b)].

e Complex forms of control (involving heuristics) are required when searching to
select plausible hypotheses and avoid exhausting available memory resources

[Vernazza et al., 1987; Stansficld, 1986]

e Knowledge-hased systems depend heavily on heuristics, making their applica-

tion to other domains difficult.

Nonetheless, the use of a priori knowledge to guide the segmentation process is

promising as it resembles the human processes involved in manual segmentation.

3.2 Concluding Remarks

This chapter has described data-driven approaches to medical image segmentation
as well as knowledge-based techniques. Data-driven methods are highly suscepti-
ble to noise, artifacts, and variations in tissue intensities across slices and image
volumes. Knowledge-based systems tend to exhibit greater robustness due to their
assimilation of symbolic or geometric models of anatomy. Problems exist, however,
in finding appropriate schemes for representing knowledge, and in controlling search

procedures,

The review was conducted to serve as a background in the design of an image
segmentation tool for the detection of MS lesions. The following decisions were

made regarding the design of the system:



e Methods which involve low-level segmentation such as edge detection or region
growing were not be employed as they depend heavily on the quality of image

data.

e Multispectral data was to be used, as it provides more tissue-specifie infor-

mation than a single image.

e The Bayesian and minimum distance statistical classifiers were to be imple-
mented. These are used, however, with e priori knowledge of gross neu-
roanatomy. A geometric model of brain tissue probability was to be con-
structed based on a group of healthy volunteers. The model must provide «
prior: probabilities of grey matter, white matter, and cerebrospinal fluid per
voxel in a standardized 3D ‘brain space’. The model should aid in the de-
tection of MS lesions, which occur primarily in highly probable white matter
areas. The tissue model is to cover the entire brain and thus should be useful

in the segmentation of volumes of brain MR image data.

Statistical classification has been applied extensively to the segmentation of MR
images. This approach has been eriticized for its poor human interpretability, and
because of the assumption of conditional class independence generally made for
the use of Bayesian classification. A goal of this thesis is to evaluate the extent
to which a symbolic learning approach may overcome these limitations. The next
chapter presents a review of machine learning techniques, with the intent of aiding
in the selection of a learning algorithm to be used in combination with the model
of brain anatomy for the detection of MS lesions. The performance of the symbolie

algorithm chosen is to be compared with that of the statistical classifiers.
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Chapter 4

Review of Machine Learning

This chapter presents a review of research in machine learning. The review was con-
ducted to provide a background for the selection of a symbolic learning algorithm
for the development of an MR image segmentation tool. The chapter starts with a
discussion of the rationale for the study of machine learning, followed by a descrip-
tion of its basic terminology. A historical review of activity in the field is presented.
The remainder of the chapter details past work in machine learning, arranged in
the form of a taxonomy. The proposed taxonomy separates the development of

practical automated learning algorithms from their theoretical analysis.

4.1 Machine Learning

The field of artificial intelligence has grown out of the desire to automate intelligence
in machines. Intelligence can be defined to include the ability to reason, to acquire
and apply knowledge, and to perceive and manipulate objects in the physical world
[Winston, 1984]. Artificial intelligence, or Al is a domain containing a broad range
of sciences. It interests computer scientists and engineers, working to find ways to
make computers more useful, and psychologists, biologists and philosophers, seeking

to understand the principles of intelligence. Since Al first gained recognition as a
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discipline in the mid 1950s, machine learning has been a key area of research.
Such prominent attention is highly conceivable, as any attempt to understand and

automate intelligence must embody an understanding of learning itself [Quinlan,

1986b)].

4.1.1 Rationale for the Study of Machine Learning

Two reasons for the study of machine learning are:

e to reach beyond the limits of traditional computer science by providing com-
puters with the ability of learn. To enable a computer to perform not only

tasks which it has been programmed to do, but new tasks which it has learned

to do.

¢ to gain understanding of the phenomenon of learning by simulating the learn-
ing process. Simon {1983] notes that once learning is understood, this knowl-

edge may be used to help make humans more efficient at their work.

Machine learning plays an important role in knowledge acquisition for the design
of expert systems. Automated learning techniques would enable a system to develop
decision rules from examples of experts’ decisions and through the automated anal-
ysis of facts in a database [Michalski, 1986]. Learning as discovery or ‘the finding of
new things’ [Simon, 1983] may uncover concepts not yet known to exist. The design
of successful learning techniques should involve the input of computer seientists in
artificial intelligence and software engineering, researchers in neural networks as

well as in the field of cognitive neuroscience.

4.1.2 Machine Learning Terminology

Definitions of Learning. Simon [1983] proposes the following definition of learn-

ng:
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Learning denotes changes in a systemn that are adaptive in the sense that
they cnable the system to do the same task or tasks drawn from the same

population more efficiently and more effectively the next time.

This definition includes speed-up learning (the ability to perform a task faster

than one had done previously). It comprises learning as an acquisition of new
methods and knowledge, or as an improvement in existing methods and knowledge
to make them faster, more accurate, and more robust [Cohen and Feigenbaum,

1982).

Dietterich [1990] presents a definition of learning whicl involves induction, the
reaching of a conclusion by reasoning from individual facts. An agent (being a
person or a program) learns when it is told a fact, F, which it did not know, or
when it can logically infer F' from its existing knowledge. To illustrate, Dietterich
provides an example of an agent learning the game of poker. The agent is told that a
hand containing three Jacks is superior to a hand containing only two Queens. The
agent also knows that a haud containing three Tens is superior to a hand containing
two Eights. Learning occurs when the agent is able to infer that any hand containing
three cards of rank R, is superior to any hand containing at most two cards of rank
Ry. According to this definition, learning is not said to result when a system finds
a faster way to infer a fact that it already knew. Thus, unlike Simon’s definition of

learning, Diettericl’s definition does not include speed-up learning.

A definition commonly adopted by researchers in the field of expert systems
is that learning i¢ the acquisition of explicit knowledge, often represented in the
form of rules. An explicit representation is important so that the knowledge can be
easily verified, modified, and explained [Cohen and Feigenbaum, 1982]. Learning
as the acquisition of explicit rules from examples can include rules for efficiency

improvement.

An alternative definition of learning is that it is skill acquisition. This reflects

the accepted view that performance of a task improves through practice. Cognitive



scientists and psychologists are particularly interested in understanding the ways in

which knowledge is acquired in order to perform skillfully.

Learning can also be described as discovery. This definition views learning as
theory and hypothesis formulation and inductive inference (the process of inferring,
general rules from specific examples). This learning perspective centers on under-
standing how scientists formn hypotheses to construct theories to explain complex

phenomena.

Laird [1990] avoids defining learning by instcad describing the nature of a learn-
ing program. Most learning systems can be thought of as scarch programs. As
searching proceeds, changes in state occur which represent learning if they exhibit
an improvement in computation or prediction. He describes learning programs ide-
ally as search procedures whose space requirements increase slowly in comparison
to the size of input data, and which exhibit gradual improvements in hypotheses.

His view is similar to that of Simon.

We shall accept the view that learning is any process by which a system acquires
explicit knowledge and/or improves its performance. A learning system can receive
input from its environment (usually a teacher) and a knowledge base. A system
learning how to recognize tumors visible in medical images, for example, may access
a knowledge base containing explicit information about the types of different tnmors
and their characteristic size, shape and location. The environment supplies infor-
mation to the system in the form of examples of cach tumor type. As the system
learns, it may update or modify the contents of its knowledge base, The learning

process typically involves searching through a large space of possible hypotheses.

Basic Terminology. Learning as an acquisition of knowledge can he divided
into two phases: training and recall. During the former phase, the learning program
is presented with a training set consisting of examples of each class or concept to be
learned. The learning program must derive a function or classification rule which

will allow it to accurately classify or label input examples. An example is repre-
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sented by a set of features or attributes which describe it (eg. size, shape, color).
The set of features for an example make up its feature vector. The classification
rules can be expressed in several ways (e.g. as a set of production rules, a decision
tree, an artificial neural network, or a logical definition). Since classification rules
represent concepts, this form of learning is also referred to as concept learning or
concept acquisition. During the recall phase, the system uses the learned rules to

classify new examples.

Learning can be either supervised or unsupervised. In supervised learning, a
teacher labels each training example with the class to which it belongs. In unsu-
pervised learning, the examples presented during the training phase have not been
class labeled. Discovery is a form of unsupervised learning designed to investigate
domains in an unaided, exploratory way to discover ‘unknown’ concepts and re-
lationships between them. Clustering is another form of unsupervised learning in
which the learning program examines the examples and separates them into groups
or ‘clusters’; where members of a cluster appear similar. The task is then to find
a classification rule to define each cluster. Clustering is also called learning from

observation or concept formation.

The following sections present an account of the history of machine learning,

followed by a review of individual works in the field.

4.2 Historical Background

In 1956, John MeCarthy, coiner of the term ‘artificial intelligence’, helped organize
a conference to bring together scientists interested in this new field. Since then,
machine learning has been a central area of research in artificial intelligence. The
history of machine learning in Al can be divided into three phases of activity.
These are 1) exploration (during the 1950s and 1960s), ii) development of practical

algorithms (1970s), and iii) increase of research directions (1980s and onwards)

31



[Shavlik and Dietterich, 1990].

The most recogmized landmark in early machine learning history is Rosenblatt's
[1958] perceptron algorithm. The perceptron, a system of randomly connected lin-
ear threshold units, can learn to associate specific responses to specifie stimuli, It
characterizes machine learning work of the exploration phase, kindled by psycholo-
gists and neurobiologists who sought to develop and test computational analogues

of neurons.

Similar early work in machine learning includes that of Feigenbaum [1961], whose
Elementary Perceiver and Memorizer Program (EPAM) was developed to simulate
the behavior of subjects in experiments involving the rote learning of nonsense

syllables.

Amongst the earliest contributions to speed-up learning is Samuel’s {1959 work
in evaluating static functions for game-tree strategies in checkers by memorizing

previous board positions.

Minsky and Papert [1969] unveiled the drawbacks of the perceptron learning
algorithm. Single-layer perceptrons are incapable of learning coneepts which are
not linearly separable. This finding, along with limitations in hardware, dampened

enthusiasm for research in computational neuronal modeling for nearly 20 ycars.

The development of practical learning algorithms characterizes the second phase
of research in machine learning, occurring during the 1970s. Many researchers, in
recognizing that learning is a difficult and complex process, shifted their efforts
towards the easier problem of learning single concepts. Workers adopted the view
that the learning of complex, high-level concepts can not be accomplished with-
out providing the learning system with background or domain knowledge of the
application to be learned. An influential publication which prompted this change
in view was Winston’s [1970] thesis on blocks-world learning. Other work during
this phase includes Buchanan and Mitchell's [1978) METADENDRAL system for

the learning of mass-spectroscopy prediction rules, and Michalski and Chilausky’s



[1980] AQ11 program. AQ11 has successfully been applied to the diagnosis of soy-
bean diseases, producing results superior to that of human experts. An example
of early work in discovery is Lenat’s [1977] AM program. AM performs a heuris-
tic search on a knowledge base of mathematical concepts to discover concepts in

elementary mathematics and set theory.

The latest stage of activity in machine learning, from the 1980s onwards, has
seen an increase in research directions. Efforts have centered on the use of machine
learning as a tool for knowledge acquisition. Research directions include the fur-
ther development of symbolic, clustering, discovery, and explanation-based learning
strategies, a resurgence of neural networks, and advances in the theoretical analysis

of learning. Work from each of these areas is described in the following section.

4.3 Taxonomic Review of Machine Learning

This section presents a taxonomy of machine learning as summarized in Figure 4.1.
The proposed classification separates the development of practical machine learning

techniques from their theoretical analysis.

Machine Learning Techniques. Machine learning techniques can be classi-
fied according to the degree of inference ' they involve [Cohen and Feigenbaum,
1982; Michalski, Carbonell, and Mitchell, 1983, 1986]. A learning system uses in-
ference to transform information provided by the environment (knowledge from an
external source) into some usable representation which in turn may be added to a
knowledge base. The degree of inference performed reflects the level of information
provided by the environment. ‘High-level’ information is very abstract, requiring
a great deal of transformation, whereas ‘low-level’ information requires little or no

transformation. For example [adapted from Roch, Pun, Hochstrasser, and Pelle-

'Inference is the deriving of a conclusion from induction or deduction - a conclusion arrived at

in logic.
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grini, 1989], a medical image is stored digitally in pixels (low-level representation).

A more abstract representation of the image could be in pixel regions, made up

of pixels with similar characteristics. An even higher level of information may use

attributes such as the number, size, and shape of each region, etc. The taxonomy

of machine learning strategies in Figure 4.1 is based on the amount of inference the

learning system must perform to bridge the gap between environmental and system

knowledge levels. Four categories are defined. These are [Cohen and Feigenbaum,

1982):

rote learning, in which no inference is performed. All information is in a form

directly usable by the learning system.

learning by deduction, in which the information given by the environment is
too general or abstract to be understood by the system. The learning system

must specialize the given data by hypothesizing to fill in the missing details.

learning by induction, in which the information provided by the environment
is too specific and detailed. The learning element must hypothesize more

general rules (generalize).

learning by analogy, a combination of inductive and deductive learning in
which the information provided by the environment is analogous to the con-

cept the learning system is trying to learn.
» these four categories, one can add:
explanation-based learning, an analytical learning technique which generalizes

rules after the observance of just one example. This is in contrast to the above

four categories which are empirically-based.

hybrid leaning, which combines artificial intelligence and numerically-oriented

machine learning techniques.




The explanation-based learning and hybrid learning categories are not distinet

in that they may exist as combinations of the first four groups.

Other classification schemes for machine learning strategies have been proposed
by Dietterich [1990] and Michalski et al. [1983]. Dietterich suggests a three-part
taxonomy divided into speed-up learning, learning by being told, and inductive
learning. Michalski et al. [1983] note that machine learning techniques can also
be classified according to the knowledge representation used (eg. decision trees,
semantic networks, production rules), or according to the domain of application

(eg. medicine, chemistry).

Each of the six categories of machine learning techniques, as listed above, is

further described within the remainder of this section.

4.3.1 Rote Learning

Rote learning, also referred to as learning by memorization or learning by being
programmed, is the most elementary form of learning. A rote learning systemn simply
stores the information it obtains for future retrieval and thus involves no inferenee
or reasoning at all. The information it receives (from a teacher or program) must

already be in a directly usable form.

In general, a learning system can be considered as performing a function, f, that
takes an input pattern (£, rs, ..., r,) and computes an output pattern f(ury,r,, ...,
Zn) = (Y1,Y2y- -« » Y )- Arote learning system memorizes the associated pair [(ry,.ry,
ceesZn)y (U1 Y2y - - -, Y )]. During recall, whenever the input pattern is again (ry, ro,

.vy&y), the rote learning system need simply retrieve (yy, y., - - -, ¥ ) from memory

and thus avoid re-computation of f(xy, ry,...,x,).

A good example of experiments in rote learning is Sammel’s [1959] work on
programming computers to play the game of checkers, Samuel’s goal was to teach

a computer to play well by having it memorize and recall the worth of previously
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played moves. The program uses the minimax search algorithm which employs a
‘look-ahead’ strategy to search for optimal moves. The minimax search procedure
uses a static evaluation funection to estimate the ‘goodness’ of a move based on
the resulting board positions should the move be played. For each move that the
computer can play, in building the game-tree the minimax search will counsider the
opponent’s possible countermoves, as well as the countermoves of those moves, and
s0 on. The time required to generate moves and evaluate board positions increases
as the search descends deeper into the tree. The minimax procedure is limited by
the time and memory required to find a good move. Ideally, the deeper the search

can continue in the tree; the better the move found is expected to be.

Samuel used rote learning to store the board positions encountered and their
estimated worth. By accessing this memory record, computing time could be saved.
The idea was that if the computer used the saved time to compute further in depth,

then it would improve with time.,

Samuel’s seemingly simple approach resulted in a fairly powerful learning scheme.
His program was able to play a better-than-average game. The method was, how-
ever, constrained by limitations of storage space. Thus, an issue relevant to rote-
learning systems is the storage-vs-computation trade-off. Once the cost required to
find and retrieve an associate pair (X,Y) becomes greater than the cost required
to ve-compute f(17), rote learning becomes ineffective. For such learning, careful

consideration must also be given to the memory organization technique employed.

4.3.2 Learning by Deduction

Deduction is the process of inferring specific facts from general data. This process is
also referred to as specialization. For example, given the background knowledge that
*All demyelinating diseases attack the central nervous system’ and the teacher pro-
vided sentence ‘Multiple selerosis is a demyelinating disease’, then the fact ‘Multiple

sclerosis attacks the central nervons system’ can be deduced.
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In deductive learning systems, a teacher provides advice or information that is
too vague, general, or high-level for the system to understand. In order to use this
information, the system must relate it to procedures or a format which it already
knows - to something more specific. This transformation is known as operational-
tzation. Deductive learning systems are often implemented as tools for acquiring
or editing knowledge in expert systems. This form of learning is also referred to as

advice-taking.

Mostow’s [1979] FOO (First Operational Operationalizer) is an example of a
deductive system which learns to take advice on how to play the card game of hearts.
The human advice-giver can input playing hints such as ‘Avoid taking points’. This
advice is not operational since FOO has no procedures to avoid taking points. It
does, however, have methods for selecting and playing cards. Thus, the advice can
be converted into a form usable by FOQ, such as ‘Play a low card’. FOO has a few
noted shortcomings. Errors in operationalization are prone to occur when there is
a large gap between the advice in the form it is input and in a form useable by
the program. FOO does not have any way to integrate its acquired operational
advice into a knowledge base that could drive a Hearts-playing program. It must
be instructed by a user as to which operationalization rules to apply. In spite of its

weaknesses, FOO presents an important study in techniques of operationalization.

4.3.3 Learning by Induction

Learning by induction has been the most active area of research in machine learn-
ing [Michalski et al., 1983, 198G; Cohen and Feigenbawm, 1982; Michalski, 1983).
Induction is the process of inferring general hypotheses from specific facts. This
process, also known as generalization, is based on the inductive paradigm which
can be stated as follows: given facts and background knowledge, find a hypothesis
or general rule which together with the background knowledge implies or explains

the given facts i.e.

38



hypothesis + background knowledge — facts

For example, from the facts ‘Joe, a gardener, plants tomatoes’ and ‘Sue, a gar-
dener, plants tomatoes’, and the background knowledge ‘All gardeners plant the
samne foods’; the rule ‘All gardeners plant tomatoes’ can be induced. In contrast
to deductive learning, which results in the adding of deduced facts to a knowledge
base, inductive learning systems can be used to add or refine general rules to the
knowledge base. The design of an expert system typically involves a series of inter-
views between an expert and a knowledge engineer, whose task is to represent the
expert’s knowledge explicitly. This can be an extremely lengthy process. Feigen-
baum [1981], in noting that the interview approach to knowledge acquisition cannot
keep pace with the increasing demand for expert systems, has termed this the ‘bot-
tleneck’ problem. Inductive learning algorithms are generally acknowledged to be
most valuable in overcoming the bottleneck problem of constructing a knowledge

base in the development of any AI system [Elomaa and Holsti, 1989].

Michalski [1983] presents a formalism of inductive learning theory. He describes
conceptual inductive learning, a form of inductive learning whose final products (hy-
pothesized rules) are symbolic concept or class descriptions expressed in high-level,
human-oriented terms. This is in contrast, he notes, to classification rules generated
by traditional mathematical and statistical data analysis techniques, such as regres-
sion analysis, numerical taxonomy, and factor analysis, whose results are ‘merely
mathematical formulas’. Conceptual inductive learning has a strong cognitive sei-
ence flavor as it emphasizes inducing human-oriented rather than machine-oriented
class deseriptions. As illustrated in: Figure 4.1, the taxonomy of learning by induc-
tion separates conceptual inductive learning techniques from the traditional math-
ematical and statistical inductive learning techniques. These two subdivisions can

in turn be organized into supervised and unsupervised strategies.

Conceptual Inductive Learning. Amongst the supervised conceptual induc-

tive learning strategies are Michalski’s [1983] STAR algorithm and Quinlan’s [1979,
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1983, 1986b] ID3 decision-tree algorithm. Examples of unsupervised conceptual
inductive learning include Michalski and Stepp’s [1983; Stepp and Michalski, 1986)
conceptual clustering, Fisher’s {1987 COBWEB, and Lenat’s [1977) AM. These

algorithms will be discussed briefly below.

Michalski’s STAR algorithm presents a general methodology for learning strue-
tural descriptions from examples. It requires a teacher to input a set of positive and
negative examples of the concept to be learned. Michalski’s algorithm defines the
concept of a star as a set of expressions capable of describing all of the given positive
examples and none of the negative ones. The expressions must be maximally gen-
eral, that is, there can be no other relation expressing them which is more general
[Genesereth and Nilsson, 1987]. The algorithm uses a number of generalization rules
to transform the expression from specific to general. For example, the expression
‘MS lesions occur near the ventricles of the brain and in deep white matter tissue’
can be generalized with the dropping generalization rule to ‘MS lesions oceur near

the ventricles of the brain’ and ‘MS lesions occur in deep white matter tissue’,

An appealing aspect of STAR is that it is a fairly simple algorithm for generating
symbolic concept descriptions of objects. However, its success relies greatly on its
background knowledge or knowledge base. Formalizing domain background knowl-
edge is a difficult task. Furthermore, the algorithm is ncnineremental, requiring all

training examples to be input at once at the beginning of the training phase,

Quinlan’s [1979, 1983, 1986b] ID3 (Iterative Dichotomiser 3) is a well-known
example of conceptual inductive learning. ID3 uses a decision tree to represent its
acquired knowledge, the classification rules. A decisisia tree is a form of a flow chart
in which each tree node represents a test on an attribute, and each outgoing hranch
corresponds to a possible outcome of this test. Forinstance, givenis a set of training
examples with the feature ‘color’ which can take one of two values, either ‘red’ or
‘blue’. A test on this feature would be represented by an internal node, ‘color’,

having two branches: one for ‘red’ and one for ‘blue’. Each leaf node represents a
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classification to be assigned to an example.

In order to classify an example, the algorithm tests the examnple’s feature values
against the decision tree. A path is traced from the root to a leaf node. The leaf

at the end of the path holds the class prediction for that example.

Building the tree is a recursive process. At each new node, ID3 uses an entropy
function to select the feature that will best partition the node’s examples into
classes. The feature vector with the lowest entropy is chosen as the test feature.
Branches are grown from the node for each of the test feature’s possible outcomes.
The examples are then sorted amongst the branches (according to their test feature
values) and stored as nodes of the branches. A node containing examples which
all belong to the same class becomes a leaf labeled with the class. The process is

repeated until no more leaves can be created.

The advantages of ID3 are that it is a simple learning scheme which can perform
generalization, organization, and compression of data. It represents classification
rules symbolically as a decision tree, although this form of knowledge representation
has been criticized for Leing difficult to interpret by humans [Cendrowska, 1987). It
also does not allow for the learning of new concepts without reconstruction of the
tree from scrateh. Difficulties arise in the classifier’s predictive ability when it is
either trained or tested on noisy data. Several works have appeared in the literature
suggesting ways in which to improve ID3’s noise-handling ability [Quinlan, 1986a;
Quinlan, 1987¢; Niblett and Bratko, 1986; Mingers, 1989a]. Like STAR, ID3 is
nonincremental, although an incremental version was proposed by Utgoff [1988a).
ID3 also assumes that the given set of features are adequate in discriminating the
examples of one class from another.

Conceptual clustering [Stepp and Michalski, 1986; Michalski and Stepp, 1983).
is a form of unsupervised conceptual inductive learning in which a group of objects
form a class only if it is deseribable by a concept from a predefined concept class.

Conceptual clustering was proposed as an alternative to cluster analysis and numeri-
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cal taxonomy, which are often inadequate for they arrange objects solely on the basis
of numerical measures of object similarity. Stepp and Michalski's CLUSTER/S al-
gorithm is able to learn structural relationships between objects. Its classification
is hierarchical. Learned classification rules are represented by a single conjunctive
statement (list of logical ANDs). This representation form is described as one of the
drawbacks of the technique, providing a limited means of knowledge representation.
Furthermore, the teacher must specify the number of desired clusters in advance,
which can be a hindrance in situations where the number of classes in unknown.

CLUSTER/S is a nonincremental learning technique.

COBWEB [Fisher. 1987] is an ine --mental conceptual clustering algorithm. It

uses a hill-climbing strategy to construct hierarchical classification trees.

AM [Lenat, 1977] is a discovery inductive learning program that uncovers con-
cepts in elementary mathematics and set theory. Unlike the machine learning tech-
niques previously described in this chapter, AM does not learn coneepts for use in
any performance task. It simply seeks to define and evaluate concepts hased on its
knowledge of mathematics. AM’s knowledge base consists of 115 concept definitions
selected from finite set theory, as well as 242 heuristic rules to guide it in its search
for new theories. Each concept in AM’s knowledge base is represented by a frame.
Frames are a form of knowledge representation useful for describing stereotypes of
objects or situations. A frame cousists of a number of ‘slots’ describing features of
the concept it represents (eg. name, definition, examples of, ..). Attached to each
frame is a set of heuristic rules, used to guide the search for concepts not yet known
to AM. AM was able to generate over 200 concepts in mathematics, including the

definition of prime numbers.

Lenat worked to design AM as application independent as possible. Heuristie
rules which would provide guidance in only a single situation were avoided. AM
demonstrated the power of a knowledge base. Its knowledge base and small set of

heuristics were able to guide a nontrivial discovery process, Weaknesses of AM,
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however, lie in its inability to improve its set of heuristic rules. The more concepts
AM discovers, the less efficient its initial set of heuristics is. It is not able to generate
heuristic rules to use the newly discovered concepts in later searches. Solutions to
this were proposed by Lenat [1983] with the EURISKO project, an extension of

AM, which uses heuristies to develop new heuristic rules.

Traditional Inductive Learning Strategies. This category of inductive
learning strategies refers to mathematical and statistical classification techniques
whose classification rules are represented as mathematical formulae. They differ
from conceptual inductive learning in that they do not provide symbolic descrip-
tions of learned coneepts. Artificial neural networks, for example, fall into this cat-
egory. Applications implemented by these networks are training problems rather
thau concept-learning problems [Laird. 1990]. Given a set of positive and negative
examples, the training problem task is to construct a network of linear threshoid
units that agrees with the training set by generating a 1 for each positive example
and a 0 for each negative example. A multi-layer feed-forward network is shown in
Figure 4.2. The inputs ry,.r,,. .., r,, representing the feature values of an example,
are fed simultancously into a layer of neuron-like units. These units make up the
input layer. The outputs of these units are, in turn, fed simultaneously to a second
layer of units, known as a ‘hidden layer’. The hidden layer’s output can be input to
another hidden layer, and so on. The number of these layers is arbitrary, although
in practice, usually only a few are used. The last layer of units is the output layer
which emits the network’s prediction for training examples (1 or 0). Multi-layer
feed-forward networks of linear threshold functions, given enough hidden units, can
closely approximate any function (K. Hornik et al., unpublished manusecript refer-
enced in Laird 1990]. The problem lies in finding a learning algorithm that can
process a set of training examples, setting the weights and thresholds of each unit

correctly.

One such algorithi is the backpropagation algorithm of Rumelhart, Hinton, and

Williams [1986]. The backpropagation algorithm works by minimizing the squared-
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error between the network’s output and the correct outputs provided by the labeled
training examples. In order to reduce this error, the algorithm iteratively computes
a slight change in all of the network’s weights and thresholds. After initializing each
weight to a small, randomly chosen value, for each training example the weights are
updated as follows. Each layer in the network is evaluated and the output value
of each unit is saved. A generalized error is then calculated. The weights of the
output unit are adjusted to minimize the error. The weights of each hidden layer
are then updated layer by layer, towards the input layer. In this manner, the error
is backpropagated, hence giving the algorithm its name. In general, the training set
must be processed several hundreds or thousands of times before the weight values

converge.

Advantages of nenral networks include their high tolerance to noisy data as well
as their ability to classify patterns on which they have not been trained [Le Cun,
Matan, Boser, Denker, Henderdon, Howard, Hubbard, Jackel, and Baird, 1990].

Neural networks are easily adaptable to parallel machines.

Problems with neural networks include the difficulty in choosing a good network
topology. Choosing the right number of hidden units is a trial-and-error task. If
there are too few hidden units, then there may be no setting of the weights consistent
with the training set examples. Initial weights can greatly affect how well a concept
is learned [Shavlik and Towell, 1989]. Neural networks have been shown to classify
as well or slightly better than symbolic learning algorithms like ID3, yet they require
10 to 1000 times as much training time [Mooney et al., 1989; Weiss and Kapouleas,
1989]. Another disadvantage of the connectionist approach lies in the difficulty of

interpreting the learned network. The weights of hidden units can remain unknown.

To summarize, a series of inductive learning algorithms have been described in
the literature. STAR and ID3 are characterized by their ability to generate concep-
tual descriptions of the classes on which they are trained to recognize. AM is an

unsupervised learning program capable of discovering concepts which are not part



of its initial knowledge base. These three approaches are examples of conceptual
inductive learning. They differ from neural network models, including that of back-
propagation, which represent learned concepts with mathematical formulae rather

than symbolic descriptions.

4.3.4 Learning by Analogy

Learning by analogy is a combination of inductive and deductive learning. It is
also referred to as concept learning by analogy or analogical problem solving. An
example of this learning strategy is Winston'’s [1980) ANALOGY program which,
for instance, can learn the structural definition of a cup given its functional deserip-
tion. The program draws analogies between the cup’s functional deseription (‘has
a FLAT-BOTTOM’ and ‘has a HANDLE’) and a library of definitions of other
objects (bricks, howls, suitcases, ete.) derived from previous cases. ANALOGY
infers that because a cup has a FLAT-BOTTOM it must be STABLE by drawing
an analogy to a stored deseription of a brick whose FLAT-BOTTOM canses it to be
STABLE. Similarly, it uses a stored deseription of a suitcase to learn, by analogy,
why a HANDLE causes the cup to be LIFTABLE. Thus, ANALOGY is inductive
learning in that it generalizes to find the analogy between speeifie examples and
precedent cases. It is deductive in that it deduces new rules describing specific
training examples, based on rules defiuing already-seen cases. ANALOGY's rules,
however, consist of a collection of instances of causal relations, rather than general
rules of causality. This ‘weak’ domain theory cannot lead deductively to assertions

about new causal links [Mitchell, Keller, and Kedar-Cabelli, 1986].

4.3.5 Explanation-Based Learning

A recent research topic to evolve in the history of machine learning is csplanation-

based learning, or EBL. As opposed to empirically -hased learning which formmnlates
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generalizations after observing several examples, EBL generalizes from just one
example. Examples of EBL systems may perform varying degrees of inference.
Mostow’s [1979] FOO (deductive learning), Lenat’s [1977] AM (inductive learning),
and Winston’s [1980] ANALOGY (analogical learning) are all EBL systems. A

formalism of explanation-based learning is presented in [Mitchell et al., 1986).

There are two basic steps employed in EBL. These are:

o Erplain: Given one input example, build an explanation using background

knowledge of the concept to be learned.

e Gencralize: Analyze the explanation and construct a generalized concept,

using other training examples.

DeJong and Mooney [1986] describe an alternate view to EBL called explanation-
based generalization (EBG) which combines the explanation and generalization

steps into one.

EBL programs can be classified in the following four categories [Ellman, 1989):

1. Justified Generalization. Given initial background knowledge and a set of
training examples, find a generalization of a concept that is a logical conse-
quence of the background knowledge and the training set. We say the gener-
alization is ‘justified’ because it can be expressed in terms of the background

knowledge.

2. Chunking. Convert a given linear or tree-structure sequence of operators into

a single operator.

3. Operationalization. Convert a given nonoperational expression into an opera-
tional one (expressed in terms of data and actions available to an agent). This

is a form of learning by deduction.



4. Justified Analogy. Given background kuowledge, an analogous example and
a training example, find a feature that is true of the analogous example and

infer that it is also true for the training example.

These categories are not disjoint. Depending on the language and interpretation

used in its deseription, an EBL program may fit into several categories.

EBL requires a great deal of background knowledge. Results of EBL depend
critically on the representation of background knowledge and explanations. Ex-
planations or rules generated by EBL systems can waste storage space and time.
Heuristices are needed in deciding when to create and keep rules. EBL is most useful
in improving the efficiency of an inference program (i.e. for speed-up learning). An

advantage is its ability to explain its predictions.

4.3.6 Hybrid Learning

Hybrid learning comprises the last category of practical machine learning tech-
niques in the presented taxonomy. Hybrid systems merge symbolically-oriented Al

approaches to automated learning with numerically-oriented approaches.

Examples of hybrid systems can by found in Shavlik and Towell [1982] and Hau-
delman, Lane, and Gelfand [1989]. Both systems use a combination of rule-hased
and neural network learning. The rule-based component of the system provides
examples to the network which then learns and generalizes from these examples.
Although based on preliminary results, Shavlik and Towell found that their hybrid

system out performed stand-alone EBL and backpropagation versions of the system.

In summary, practical machine learning techniques have been deseribed. Learn-
ing systems can be divided into four categories based on the degree of inference
involved. These categories are rote learning (which performs no inferenee), leaming
by deduction, learning by induction, and learning by analogy. Two other cate-

gories, explanation-based learning aud hybrid learning, represent recent approaches
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to machine learning which combine methods used in the first four categories.

4.3.7 Theoretical Analysis of Machine Learning Techniques

Thae final branch of the proposed taxonomy of machine learning comprises work

towards the theoretical analysis of machine learning techniques.

The theoretical analysis of machine learning techniques deals with the following

kinds of questions [Laird, 1990]:

e How complex is a learning problem in a particular domain? Can learning

oceur in polynomial time?

e Does the learning time change with the method of knowledge representation

employed?

o How can a learning algorithm be designed with provable performance guar-

autees?

An important step towards answering these questions is found in Valient’s [1984]
probably approzimmately correct (PAC) theory of the learnable. Valient’s theory uses
statistics to judge if a learned hypothesis is probably approximately correct, as

follows:

Let F be a relation for a class within a universe. F is approximately correct if
the symmetrie difference between F and F is small. A learning system is probably
approximately correct (PAC learnable) if:

Probability(error(F, F)>¢) <é

where ¢ is the confidence parameter.

A bound on the number of training examples (m) required to guarantee that F

is PAC can be estimated with:

m > 1(ni + In|H|)
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where H is a set of hypotheses over a universe and |H| is the nnmber of hypotheses

in H.

Valient’s theory also allows one to measure the computational complexity of a

learning algorithuin based on its representation.

Other advances in the theoretical analysis of learning techniques are seen in
Mitchell’s [1980] work introducing the notion of the bias of an inductive learning
algorithm, used to restrict the number of inductive conclusions. Mitehell [1982
also defined the notion of a version state of hypotheses in his development of the
candidate-elimination algorithm. A version state consists of the set of all hypotheses
satisfying each of the positive examples and none of the negative examples of a given

concept.

4.4 Concluding Remarks

This chapter has deseribed research in machine learning. A historical background
was presented, followed by a taxonomic review of work in the ficld. Advantages and
disadvantages of various learning techniques were discussed, as well as a means for
approximating the correctness of a learning system. This review was conducted to
serve as a background in selecting a machine learning algorithm for the tissue clas-
sification of magnetic resonance images. The symbolic learning algorithm chosen is
to be compared to the statistical minimum distance and Bayesian classifiers. Examn-
ples of each tissue class represent specific facts from whiel elassification rules can be
generalized. Therefore, inductive learning is best suited for the elassification task.
Of the two types of inductive learning, conceptual inductive learning is seleeted for
its symbolic representation of class desciiptions. ID3 appears to be a good choiee
of algorithm amongst the conceptual inductive learning strategies discussed here.
ID3 and its successors have been tested on several large medical data sets, including

appendicitis, cancer, and thyroid data [Weiss and Kapouleas, 1989; Quinlan, 1987¢;



Elomaa and Holsti, 1989], audiological disorders [Mooney et al., 1989], and lym-
phography [Niblett and Bratko, 1986]. Shepherd [1983] applied ACLS, a modified
version of ID3, to image classification in a system for the recognition of chiocolates
from a production line. ID3 has been the basis of several commercial rule-induction
systems [Quinlan, 198Gh]. ID3 and the use of decision trees do, however, pose a

number of disadvantages:

¢ Decision trees may contain replicated branches. Pagallo [1989] has proposed
a hybrid system, however, which integrates decision trees and Boolean feature
combination. The system is able to overcome the replication in decision trees

and can express complex DNF 2 expressions which ID3 cannot.

e No additional domain specific knowledge is used to control search other than

the training examples themselves.

o The decision tree algorithm is totally dependent on an adequate set of features,

allowing the discrimination of examples into classes [Quinlan, 1990).

e When constructing a decision tree, the sets of training examples become

smaller and smaller, reducing their statistical siguificance.

e Mingers [1989a] notes that the decision tree algorithm cannot backtrack if the

choice of ‘best’ feature later seems incorrect.

¢ Decision trees have been criticized because they do not convey potential un-
certainties in classification decisions. Quinlan [1987a), however, proposed a

method for assigning uncertainties to decision tree predictions.

e Missing feature values is a problem in the construction of decision trees. Quin-
lan [1989] proposed methods to deal with this issue. (The segmentation tool

does not face this problem).

2Disjunctive Normal Form (DNF): an explanation written as a disjunction (OR) of conjunctions

(1\Nl)s) eg. f\f'gf;; OR f\"‘f;gf;; OR f\“f'g“fa OR ...



o It is difficult to incorporate new knowledge into an already formed decision
tree. Utgoff [1988a) proposed IDSR, an incremental version of ID3 which
allows for the incorporation of new training data without requiring the tree

to be rebuilt from scratch.

In spite of the disadvantages, there are several arguments towards to the use of

a decision tree algorithm:

¢ By expressing knowledge explicitly, decision trees offer greater understandabil-
ity over statistical techniques [Mingers, 1989h]. Quinlan [1990] emphasizes the
need for classifiers to justify the way in which decisions are arrived, in a form
that human decision-makers can understand and serutinize. Deeision trees
represent knowledge symbolically, which is in contrast to statistical classifiers
and neural networks where knowledge is represented as a collection of mun-
bers. [Quinlan, 1986b]. However, in comparison to other representations used
in symbolie learning (such as production rules or frames), decision trees ean he
difficult to understand [Cendrowska, 1987], particularly deep trees [Mingers,
1989h).

o When making a classification, only features occurring on a decision path need
be computed. This may reduce the time spent on feature extraction in com-

parison to classification methods which require the extraction of all features.

¢ The computation time required in building a tree increases only linearly as
modeled by the product of the size of the training set, the number of features
available, and the number of nodes in the tree [Quinlan, 1983]. No exponential
growth in time or space has been observed as the dimensions of the induction

task increase, making ID3 applicable to large training sets [Quinlan, 198Gh).

o Decision trees can represent structural as well as numerical data [Shepherd,

1983).



e The decision tree algorithm is context sensitive. Features may not be uni-
formly helpful in classification, yet the nature of the algorithm allows it to

select the more discriminating features, based on the training samples.

o Decision trees can be simplified to production rules suitable for use in expert

systems [Quinlan, 1987h).

o Ewmpirical comparisons of ID3 to the backpropagation algorithm [Mooney et
al.. 1989] found the two comparable in terms of accuracy. However, ID3
was significantly faster in training and in recall. The backpropagation algo-
rithm was more accurate than ID3 on noisy data, where the noise-handling
version used was the chi-square statistic [Quinlan, 1986a}. (More effective
noise-handling strategies appear in Mingers [1989a) and Niblett and Bratko
[1986]). The comparison of ID3 to linear discriminant, minimum distance, and
Bayesian classifiers by Weiss and Kapouleas [1989] on four types of real-world
data found that complex problems are better off represented with decision
trees. The minimum distance classifier was accurate only when the features
were good discriminators. The backpropagation’s performance was not the
best overall, consuming enormous amount of CPU, and whose accuracy was

comparable to that of ID3.

Hence, ID3 was chosen as the symbolic learning algorithm for implementation within

the segmentation tool.

The following chapter describes the segmentation tool. The implementation
of ID3 and a noise-handling version of the decision tree algorithm is discussed as
well as that of the minimum distance and Bayesian classifiers. Each classification
algorithm is to be used individually in conjunction with a brain tissue probability

model for the tissue classification of MR images.



Chapter 5

Method of Segmentation

This chapter describes the implementation of a tool for the segmentation of MR
images of the head at the gross tissue-type level. In particular, the tool is designed
to detect MS lesions of the brain. A tissue probability model was developed to
provide the segmentation process with a prieri knowledge of brain anatomy. The
development of the model is discussed, followed by a deseription of the classifiers
implemented. These include a minimum distance classifier, a Bayesian elassifier,

ID3, and a noise-handling version of ID3.

5.1 Brain Tissue Probability Model

5.1.1 Background and Rationale

A tissue probability model was constructed to provide e prior probahilities of brain
tissue distribution per unit voxel in a standardized 3D anatomy-based ‘brain space’,
The space, referred to here as Talairach space, is a 3D coordinate system advanced
by Talairach et al. [1967, 1988] as a method of reference for the location of cerebral
structures. The development of the coordinate system stemmed from studies con-

ducted by Talairach during the late 1940’s. Upon examination of a series of hnman



‘adaver brain hemispheres ', Talairach found that the deep grey matter nuclei of
the thalaemus and basal ganglia had the same coordinates in each of the hemispheres
surveyed. Using this notion, Talairach then developed a proportional grid system
as a means of studying and comparing individual brains of varying size and propor-
tion. The axes of the system are derived from the A C-PC or intercommissural line
(joining structures known as the anterior and the posterior commissures), and from
the midline orthogonal to it which reaches the top of the brain. The AC-PC line was
chosen as an axis due to its proximity to the ‘reference’ structures of thalamus and
basal ganglia. Upon definition of the axes, all brains within an MR image volume
can be afline transformed to fit a standardized rectangular block or ‘brain space’.
With the exception of non-linear morphological differences, each brain mapped to
Talairach space is of the same size, shape, and orientation. Talairach et al. [1967,
1988] used the proportional grid system to define a brain atlas - a series of 2D maps
or templates of the more significant cerebral structures. Talairach space has hecome
an integral part of gross neuroanatomy where it is used to determine the coordinates
of cerebral blood vessels for their avoidauce during the insertion of surgical probes.
It is also used in studies of morphometric variability in the normal brain [Evans,
Dai, Collins. T celin, and Marrett, 1991}, and in functional studies of cognition or
sensory physiology where small signals can be detected only by adding 3D images

from different subjects to increase the signal-to-noise ratio.

Talairach’s proportional system provided the basis for constructing the tissue
probability model of this thesis. MR brain image data was obtained from a group
of healthy vohmteers. The image volumes were transformed into Talairach space
and segmented. From the segmented volumes, the respective probabilities of grey
matter, white matter, ventricular CSF, and external CSF in each voxel in Talairach
space were derived to ereate the model. Thus, the tissue probability model is com-
posed of a probabilistic mask for each of the gross-tissue types. The segmentation

of a given brain image volume in Talairach space makes use of the model to provide

UThe brain consists of two hemispheres, left and right

ot
(4]



a priori or a posteriori knowledge of tissue class distribution. As 90-95% of MS
lesions occur in white matter tissue [Maravilla, 1988}, a large number of which are
periventricular (i.e. adjacent to the ventricles), the white matter and ventricular
masks in particular are used to guide lesion detection. (This use of ventricular
probability is the reason the distinction is made between ventricular and external
CSF). The following sections detail the construction of the tissue probability model

and its use in the segmentation of MS lesions.

5.1.2 Construction of the Model

Data Acquisition. The tissue probability model was based on MR brain image
data obtained from a group of 12 healthy volunteers (three women and nine men)
with a mean age of 33.7 years. Iimages were acquired from a Philips Gyroscan 1.5
Tesla superconducting magnet system. Using a 3D Fast Field Echo (FFE) sequence,
56 non-overlapped transverse slices were collected (TR=75 ms, TE=7 ms) at 3 mm
intervals over the entire brain. The data were stored as 256x256 images with 1 mm
square pixels. Iustead of a head coil, a mirror coil was used for its greater signal-
to-noise ratio. The imaging time was 37 minutes. Figure 5.1 shows MR images of

a subset of the group of volunteers.

Transformation into Talairach Space. Each MR volume destined for the
model was transformed into Talairach space. As the anterior commissure is diffi-
cult to locate in MRI, the AC-PC line was approximated from the nser-identified
location of six cerebral structures within or near the midsagittal ? plane. These
landmarks are: the anterior commissure (AC), the posterior commissure (PC), the
inferior aspects of the anterior and posterior corpus callosum, the inferior aspeet of
the thalamus, and the posterior aspect of the cerebellum. The approximate loca-
tion of each landmark is illustrated in Figure 5.2a. From an averaged midsagittal

view, the top of the brain and the extremes of the AC-PC line in the frontal and

2The midsagittal plane separates the left and right hemispheres.



Figure 5.1: MR images of eight of the twelve healthy volunteers used
to construct the brain tissue probability model.



Figure 5.2: Procedure for the transformation of a brain MR volumne
into Talairach space:

a) Approximate location of the landmarks used to estimate the AC-PC
line. These landmarks are: the anterior connnissuie (1), the postenior
commissure (2), the inferior aspect of the anterior (3) and posterion (4)
corpus callosum, the inferior aspect of the thalamus (3), and the top
of the cerebellun (G). Once the AC-PC line 1s defined, the extremes of
the frontal and occipital lobes and the top of the brain are identified
from an averaged midsagittal view.

b) The extremes of the left and right cerebral hemispheres and the
top of the brain are identified on a coronal view.



occipital lobes are identificd by the user for scaling in the coronal * plaue (Figure
5.2a). From a coronal view, scaling in the transverse direction is derived from the
user-identification of the top of the brain and the extremes of the left and right hemi-
spheres (Figure 5.2b) Thus, cach brain volume is transformed into a standardized
rectangular block. Transformed volumes contain eighty slices, with a slice-thickness
of approximately 1.5 mm. Figure 5.3 shows the image volumes of Figure 5.1 after
having been transformed into Talairach space. Aside from minor variations due to
uncertainties in choosing the AC-PC line and to non-linear anatomical variability,

cach brain appears the same at all levels of Talairach space.

Preprocessing of Volume Data. Before tissue segmentation can proceed,
the MR image volumes are modified to reduce artifactual intensity variations cre-
ated by inhomogeneities in the radiofrequency field applied during image acquisi-
tion. This ‘RF inhomogeneity artifact’ causes the intensity of given tissue types to
be a function of position in the field and will compromise any attempt to define
tissue-specific intensity. The artifact was reduced by applying homomorphic filter-
ing [Axel, Costantini, and Listerud, 1987; Levine, 1985). Homomorphic filtering is a
nou-linear filtering process whereby a representation or model of systematic artifact
can be used for its removal from an image. The volune artifact was approximately
modeled by blurring each slice with an empirically-determined kernel size of 60x60
pixels. Although the procedure was not able to completely remove the inhomogene-
ity artifact, it did improve the images significantly. Figure 5.4 shows an MR mage
slice before and after filtering. The non-uniform intensity of white matter caused
by the artifact 1s highly v.sible in the upper left and bottom right corners of the
‘before” image. Individual slice registration or ‘alignment’ was not necessary due to

the 3D image acquisition sequence used.

Segmentation of Volumes for the Model. The CSF ventricles in each

volume were manually outlined with an edge tracing routine so as to distinguish

3A caronal plane is any plane which separates the brain into front and back.




Figure 5.3: The volumes of Figute 5.1 after transformation into Ta-
lairach space. Each brain volume now fits into a standardized reetan-
gular parallelepiped or *bloek’. All are of the same orientation within

the block.
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Figure 5.4: A transverse MR slice before (left) and after (right) ho- |
momorphie filtering. The RF inhomogeneity artifact can be seen as a 7
diagonal band from the upper left to the bottom right of the image.
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ventricular from external CSF. External CSF refers to the CSF beneath the arach-
noid layer of the brain. A supervised Bayesian classifier was then used to segment
each volume into grey matter, white matter, and external CSF. Voxels which did
not belong to these categories were elassified as ‘background®. The features used for
classification were the mean intensity and standard deviation of the mean from a
3x3x3 window about each voxel. The training sets contained tissue samples selected
from throughout the volume. Due to differences in intensity values for like tissues
across different datasets, the classifier was trained on each volume separately. The
area of the brain ranging from the level of the eyeballs to the top of the head was
segmented. Obvious errors in segmentation were manually corrected with o tissue
map editing function. As the volumes had been acquired with high tissue contrast,
the resulting segmentations looked generally correet and did not require a great
deal of manual correction. (Figure 5.5 shows a scatter plot of a typical volume used
in the construction of the model. The graph plots the intensity values of samples of
cach tissue type, illustrating the separability of each tissue eluster). Voxels contain-
ing partial volumes of grey matter and CSF tended to be labeled as grey matter.
Voxels containing partial volunes of grey and white matter tended to bhe elassified

as white matter. These were left unchanged.

Averaging of Segmented Volumes to Create Model. The twelve sep-
mented brain volumes were averaged to create the tissue probabibty model. The
model itself is considered as a volume, with cach voxel corresponding to i coordinate
in Talairach space. Five probability values are stored at cach voxel: the probability
of grey matter, of white matter, of ventricular CSF, of external CSF, and of hack-
ground. These values are derived by caleulating the average of cach tissue class per
voxel from the set of segmented volumes. The model is illustrated in Figures 5.6
to 5.10. Figure 5.6 shows three slices of the model. Each voxel refleets the maost
probable tissue class at that Jocation in Talairach space, based on the population
of volunteers. Tissue classes are color-coded for display. In Figures 5.7 and 5.8, the

probability masks for external CSF, ventricular CSF, external and ventrieular CSF
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Figure 5.5: Scatter plot showing tissue clusters in an MR image vol-
ume of a typical healthy volunteer. The plotted features are the mean
intensity (feature 1) and standard deviation about the mean (feature
2) from a 3x3 pixel neighborhood about each voxel.
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Figure 5.6: The tissue probability model is shown for three slices of the brain in Talairach
space. For illustration, each voxel displays the most probable tissue type at that location
in Talairach space (yellow for grey matter, green for white matter, hrown for CSF).
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Figure 5.7: The tissue probability masks for external CSF, ventricu-
lar CSF, external and ventricular CSF combined (top row) and grey
and white matter (bottom row) are mapped to grey scale values. Low
intensity voxels indicate areas of low tissue probability for the respec-
tive mask. High intensity voxels indicate voxels with high tissue type
probability.




Figure 5.8: The tissue probability masks for external CSF, ventricu-
lar CSF, external and ventricular CSF combined (top row) and grey
and white matter (bottom row) are mapped to grey scale values. Low
intensity voxels indicate areas of low tissue probability for the respee-
tive mask. High intensity voxels indicate voxels with high tissue type
probability.
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Figure 5.9: Transverse, sagittal, and coronal views of the grey matter
tissue probability mask.
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Figure 5.10: Transverse, sagittal, and coronal views of the tissue prob-
ability masks for a) white matter, and Ib) CSF,
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combined, grey matter, and white matter have been mapped to grey scale values to
illustrate the distribution of these respective tissue groups. Low intensity voxels in
the probability mask for tissue T represent voxels with a low probability of being
of type T'. Similarly, high intensity voxels represent coordinates with a high prob-
ability of being of tissue type T. For example, in the second photograph of Figure
5.8 we note that the probability of ventricular CSF occurring towards the top of
the head is zero, indicated by a lack of intensities in the ventricular mask. Figure
5.9 shows the tissue probability mask for grey matter in transverse, coronal, and
sagittal views. Likewise, Figure 5.10 shows the tissue probability mask for white

matter and CSF in each of the three views.

The model contains some anatomical errors due to the partial volume effect. Er-
rors include an under-representation of the thalamus, and the presence of periven-
tricular grey matter in the grey matter mask (Figures 5.7 to 5.9). Errors in the
white matter mask include an overestimation of white matter of the gyri and to-
wards the top of the head (Figure 5.10). The white matter mask is to be used
during classification to indicate the likely location of MS lesions. Due to the excess
of white matter within the model, one may expect a number of voxels to be incor-
rectly classified as MS lesion (false positive lesions). As the model’s periventricular
grey matter should in fact be white matter, one may expect the mis-classification
of MS lesions in this arca. These anatomical errors, however, are small and should

not have a great effect on the segmentation results.

5.1.3 Use of the Model within the Segmentation Tool

This section deseribes the use of the tissue probability model within the image
segmentation tool. An examination of other ways in which the model can be used

is given in the discussion on future related work in section 7.2.

The probability values of the model per voxel can be used in three ways within

the segmentation tool - as a priort probabilities of class distribution in Bayesian
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classification, as geometric features, and as a posteriori information to disallow
proposed MS lesions which do not occur in probable areas of white matter. As the
model contains tissue probabilities per voxel in Talairach space, a given volume for

segmentation must first be transformed into Talairach space.

A Priori. The tissue probability model is used to provide a priori probabilities
per voxel of grey matter, white matter, cerebrospinal fluid (external and ventricu-
lar), and background for the Bayesian classification of these tissue classes in vohumes

b

of healthy brain data.

The tissue probability model cannot be used to provide Bayesian prior probabili-
ties of tissue class distribution when MS lesion is one of the classes to be recognized.
The a priori probability of MS lesion is not known as it varies throughout the brain

and spinal cord during the stages of the disease.

When using the Bayesian classifier, the user specifies whether or not a priors
probabilities are to be used. If the model is not used, tissue classes are assumed to

be equally likely.

As Geometric Features. The tissue probability values can be used as features,
providing heuristic information of probable tissue types based on voxel location.
Since the majority of MS lesions, for example, occur in white matter, the white
matter mask may be selected as a feature in classification. Thus, the feature veetor

for a given voxel can contain:

o geometric ‘knowledge-based’ information, consisting of the grey matter, white
matter, ventricular CSF, external CSF, and backgromnd probabilities at the
correspending voxel in the model (the user selects which masks to include as

features), and

e statistical information, namely the mean intensity value and standard devia-
tion about the mean, based on a neighborhood window about the voxel. The

window or ‘kernel’ size and dimension (2D or 3D) can be specified by the user,




These features are extracted per echo volume.

The user has the option of turning the model ‘on’ or ‘off’. Thus, the seginentation

process can be purely data-driven (model off) or data- and model-driven (model

on).

A Posteriori. The model can be used a posteriori to disallow proposed MS
lesions which oceur in implausible locations. MS lesions appear as hyperintensities
in T2-weighted iages. The majority of false positive lesions oceur in hyperintense
arcas caused by noise and the RF inhomogeneity artifact. The choroid plexus (a
structure within the ventricles responsible for the production of CSF) may also ap-
pear as a hyperintensity. It therefore tends to be mis-classified as MS lesion. Voxels
that have been classified as MS are accepted as such if their corresponding value
in the white matter probability mask is equal to or above a user-defined thresh-
old. Proposed lesion voxels with white m-  er probabilities below the threshold
are accepted if their ventricular CSF probability is greater than zero. This avoids
eliminating true MS lesions which occur near the ventricles, where the probability
of white matter may not be high. When the model indicates that a proposed MS

voxel is in an unlikely location, the voxel is relabeled as ‘other’.

5.2 Classification Methods

The segmentation tool allows the user to select from four classification algorithms:
minimum distance, Bayesian, ID3. and a noise-handling version of ID3. Each of

these classifiers is deseribed Yelow.,

5.2.1 Minimum Distance

The minimum distance elassification method [Vannier et al., 1987] bases predictions

on distance measurements between cach snmple to he classitied and the class centers,



estimated by their means, for each class in the training set.

A training set of sampies is given where each sample s represented by an n-
dimensional feature vector X' = (rry,ra,...,ry,). For each class ¢, the mean feature
vector M, is computed as:

s= X,
S ki

M, =
where S is the number of training samples for class 7. and Xy is a sample of elass
i. For example, if a training set contains a total of 3 samples of grey matter,
represented by the feature vectors (13,20), (17.21), and (12,19). then the mean

feature vector for the grey matter class is:

AIgrey_mnurr = U‘}RU)-*UT:;“H-(“‘“Q = (14.20).

To classify an unknown sample, a distance, D, is caleulated from the sample’s
feature vector to each of the class means. The minimum distance classitier of the

segmentation tool employs the Euclidean distance:

DX M) = \flay = Ml 4 (oy = M)+ 4 (= M2,
X is assigned the elass 7 for which D, is the minimum:
D(X. ML) < DX M)forl <y <m,
where m is the number of elasses. Thus if the unknown sample X is (15.20), and the

mean feature vectors for white matter and CSF are (60,80) and (2.5) 1espectively

(assuming three classes). then X s classified as grey matter,

5.2.2 Bayesian

Supervised Bayesian classitication for continuous-valued features was implemented
within the segmentation tool. This classification algorithun requires the caleulation
of a covariance matrix for each elass, representing the covariance of saunples for each
class in the given training set [Duda and Hart, 1973]. Difficulties were cuconntered,

however, due to the frequent ocenirencee of non-invertible matrices, partienlarly
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when tissue probabilities from the model were used as features. The algorithm was

then replaced by a supervised Bayesian classifier for discrete-valued features.

Bayesian classification is based on Bayes’ probability rule. Given m classes,
C,,C,,...,C,, and an unknown sample represented by an n-dimensional feature
veetor X = (ry,oqa....,0y), Bayes' rule states that the a posteriori probability of
sample X belonging to class ¢ is:

P(C,|X) = PR

where

PX)=yn", P(X|C)P(C,).

=1
As P(X) is constant for P(C,|X), ouly P(X|C,)P(C,) need be maximized.

When elassifying MS lesions, the a priori probability of lesion is not known.
In this case, classes are assumed to be equally likely 1e. P(Cy) = P(C,) = ... =
P(C,.). When classifying healthy brain tissues into grey matter, white matter,
CSF, and background, the tissve probability model is used to provide the a priors
probabilities of P(C,).

In order to reduce computation in evaluating P(X|C,), feature class conditional
independence (the presence or absence of each feature in a given class is independent
of the presence or absence of the others) is assumed. Thus,

P(X|C) = [Tz P ICY).
where the probabilities P(ry|C,), P(r,|Cy).. ... P(r,|C,)) can be estimated from the

training samples by:

Six

P(.I‘kIC,) = —h,

-
Here S, is the number of training samples of class ¢, and S;,, is the number of

training samples of elass ¢ for ry.

In order to classify an unknown sample X, the product P(X|C,,2(C;) is evalu-

ated for each class i Sample X is assigned the class 7 iff
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PX|C)P(C,) > PX|C)P(C)Hfor1< j<m, j#u

5.2.3 1ID3

The Algorithm. Classification rules generated by ID3 are represented o the form
of a decision tree (see section 4.3.3). Decision-trees are constructed with a top-
down recursive divide-and-conquer approach. In building a decision tree, ID3 uses
an entropy function {described below) to examine the feature values of cach training,
example and determine the feature that will best partition the given examples into
classes. Each node of a decision tree represents a test on a feature, and cach leaf
denotes a class, as shown in Figute 5.11. The basie algotithm [Quinlan, 1979, 1983,
1986D) is presented in Figure 5.12. The tree starts as a single node containing,
the training set of labeled examples. If the examples are all of the same elass,
then a leaf is ereated and labeled with the elase, If they are not, then 1D3 needs
to grow branches from the node which will test a feature of the examples. The
examples are then sorted into groups reflecting the different posable values of the
test feature. If the feature’s values are diserete, then one branchiis ereated for each
of the possible values. If the feature’s vaiues are continous, then two bhranches
are grown corresponding to the conditions feature < valuc and foature - calue
where the feature and value pair are determined with the entiopy funetion. The
feature with the lowest entropy is chosen as the test feature, Eacli of the hranehes
of the newly generated node is then examined. If a branch contains examples all
belonging to the same elass, then a leaf node is attached to it and labeled with the
common class. Otherwise, the procedure of 1) considering all features as tests, i)
choosing the best one, and i) growing branches for the possible onteomes of the

test, is repeated until there are no more nodes to expand,

Entropy Function. Quinlan [1979, 1983] proposed an entiopy function as a
measure of selecting the hest diseriminating feature (‘test’ feature) from a given set,

The original function, which handled just two elasses, has sinee been modified for
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Traimming Examples Input to ID3

Feature Class

Age | Origin

) France {| expensive
) Quebec || inexpensive

10 | Quebee || expensive

8 France | expensive
6 Quebee || inexpensive
6 France || expensive

10 | France || expensive

Decision Tree Output by 1D3

ORIGIN -
FRANCF OQUEBEC
BFENSIVE AGE -
cm 6 > 6
INEAPENSIVE EXPENSIVE

Figure 5.11: Example of a Decision Tree to Classify Expensive and

Inexpensive Wines,

-]
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procedure ID3{ cramples)

if ezamples are all of the same class, ¢
then  create a leaf node labeled with class ¢

return

else
select best-feature, the features that minimizes
the expected entropy
for each value v, of best-feature
seleet the examples, ¢, from eramples
for whiell best-feature = v,
construet subtree, using TD3(¢,)
endfor
Retwin a node which tests best-feature and
has subtree, attached.
endif

endprocedure

Figure 5.12: The ID3 Algorithm.
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multiple classes.

The entropy of feature F is [Clark, 1990]:

7

Entropy(F) = L7, w,Entropy(F,)
where Vs the number of values that feature F can take. (V' = 2 for continuous-
valued features, corresponding to the number of branches). w, is the weight of the
i branch and is defined as the number of examples in branch 7 divided by the
total munber of examples at the given node. Entropy(F,) is the eutropy of the iy,
branch, given by

. —_ M

Entropy(F\) = ~ 302, p,logep,
where Af is the number of classes. p, 1s the probability of the jy, elass in brauch ¢,
estimated from the number of training examples of class J having the 4, value of
feature F. The feature chosen as the best diseriminator is the one with the lowest
enttopy. For a given continuous feature, the value on which to branch is the one
with the lowest entropy for that feature.

Using the data in Figure 5.11,1f the test feature at the root of the tree were the
ortgin, the examples would be partitioned into two groups as follows:

origin = France: 4 expensive, 0 inexpensive

origin = Quebee: 1 expensive, 2 inexpensive
To caleulate the entropy for the feature origin:

Entropy(origin = France) = =(log,1 + 0log,0) = 0

2t . - 0= (1 12 2y —

Entropy(origm = Quebee) = —(5log,y + £log,5) = 0.918

. . - 4 . . — 'y . 3 . COrI ) — e o) =
Entropy(origin) = 2Entropy(origimn=Francc)+ 3 Entropy{origin=Quebecc) =

0.394.

Simiilarly, the entropy for the feature age is 0.571 for value 6 (i.c. among the given
age values of 5, 6, 8, and 10, testing on age < 6 and age > 6 has the lowest entropy ).

The origin feature has the lowest cutropy and is chosen for the test at the root.

-J
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In order to keep the trees at a manageable size during implementation, the
features were considered as continuous (implying a single feature value to split the
samples at a node into two branches), thereby avoiding the growth of a branch for
every possible test feature value. If all of the examples at a node have the same
feature vector, but the examples are not of the same class, then Quinfan’s [1986a)
majority voting method for the handling of inadequate features is followed. This
involves converting the node into a leaf and labeling it with the class in majonty

among the given examples.

5.2.4 ID3 with Noise-Handling

Extensions to ID3 have been proposed for the handling of noisy data {Quinlan,
1986a, 1987¢; Niblett and Bratko, 1986]. Noise can result from inacentately mea
sured or missing data. When & decision tree is built, many of the branches will
reflect noise present in the training data. Pruning methods identify and remove the
least reliable branches. Pruning a tree will decrease its accutacy on the traning,
set, yet should inerease the accuracy of the classification of independent test data.
Mingers [1989a] compated the aceutacy of pruned and nnpruned trees and found
that. for three out of four domains tested, prning improved recognition tates by
19% to 25%. As part of the work presented here. a pruning version of ID3 was
implemented. The ertor-cost complexity praning algotithm [Breiman ot al o 1984
was selected as it produces small and acenrate trees [AMingers, 1980a). A drawhiack
of the pruning algorithm is, however, its requirement of an additional test set.
Breiman et al.'s [1984] algorithm for the error-cost complexity pruning of deci
sion trees is summarized in Figure 5,13, In essence, the method generates o group
of trees pruned at different degrees. Selection of the *hest” pruned tree is made with
the use of an independent test set, employed to measute the accuracy of cach tree.
A decision tree is built by recursively partitioning a set of training examples.

Each node records the class distribution of the training examples it represents.
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procedure error-cost_complexity_prune(iree, testset)

while tree has internal nodes

Search for internal node 1,6, With minimum
error-cost complexity., This cost for a given node reflects
the resulting mis-classification rate (based on the training

set used to create tree) should the node be pruned.

Prune tree by cutting off subtrees at node 1,,,,0py.

Classify festset on pruned tree and

caleulate 1ts mis-classtfication rate.

endwhile
Return the pruned tree whose mis-classification rate
(R,ss) on testset is within 1 standard error (SE) of the tree

with the minimum mis-classification error, where

SE = Ry e X (100=Hyp000)

(number samples i testset)’

endprocedure

Figure 5.13: The Error Cost Complexity Pruning Algorithn.



Assuming the features are adequate, each leaf will contain examples of a unique
class. A tree can be pruned as long as it contains internal (non-leaf) nodes. A node
is pruned by removing its branches, The pruned node becomes a leaf and is labeled

by the most frequent class of its former branches.

The pruning algorithm computes the error-cost complexity of cach internal node,
n. This cost measures the pereentage of mis-classified training examples that would
occur should node n be pruned (er1,,,,6(1n)) versus the resulting mis-classification
rate if n were to be kept (erry, .,(n)):

t'TTpr une(ﬂ)—t‘f‘)],,lﬂl)
L-1 '

err_cost_.complerity(n) =

C7"'prum’( ”) = Aéu s

and

1T keep(11) = 3, €1 pryne (101,

where L is the number of leaves in the subtree at node n; S is the number of tiaining
samples; AL, is the number of training samples that would be mis-elassificd if node

n were pruned, and n, are the leaves of n.

The node selected for pruning is the one with the mininnum error-cost complexit v,
The procedure is repeated with each pruned version of the original tree until no more

naodes can be pruned.

An independent test set is used to measure the accuraey of cach pruned tiee,
Ounly the ‘best’ pruned tree is retained.  Breiman’s method seleets the smallest
tree with a mis-classification rate (R,.,,) within one standard error (SE) of the
minimum. The standard error of the mis-classification rate, assuming a binomial

distribution, is:

— R X (1001, .)
SE =/ 9

where R, is the percentage of incorrect classifications on the test set, and T is

the number of samples in the test set. The use of a pruned tree generally results in
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nnproved accuracy on test data, and faster classification.

5.3 Implementation Detalils

The segmentation tool was developed on a SUN Sparc station with 24 Mbytes of

memory and consists of over ten thousas.d lines of ‘C’ language code. This work

was conducted at the Neurolmaging Laboratory located within the McConnell Brain

Imaging Center of the Montreal Neurological Institute. The tool was built on top

of a software package called MSP (Multiple Sclerosis Package). The package was

originally designed to allow clinicians to segment MS lesions in MRI manually (by

tracing or painting in lesions with the use of a mouse-controlled cursor), or by using

edge tracing or region growing routines on each individual lesion.

The steps for the segmentation of a volume are the following:
1

Input: single or dual-echo MR volume.

1.

[&7]

Transformation of volume into Talairach space.

Preprocessing of data with homomorphic filtering to diminish RF inhomo-

geneity artifuct.

Definition of a training set (and test set if desired). Sets can contain samples

from throughout the volume,

Selection of a classification algorithm: minimum distance classifier, Bayesian
classifier, ID3, or an error-cost complexity pruning version of ID3. If the
Bayesian classifier is selected, the user can also indicate if the tissue model is

to be used to provide a priori probabilities.

Sclection of features: These can inelude the grey matter, white matter, ven-

tricular CSF, external CSF, and background probabilities per voxel, as well
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as the local mean and standard deviation about the mean in cach echo vol-
ume for a neighborhood centered at the voxel. The ucighborhood size and

dimension (2D or 3D) can be specified.

6. Indication if the model is to be used a posteriori to disallow proposed lesions
below a threshold probability for white matter tissue. If so, the threshold can

be set.

7. Training of the classifier on a specified training file or by indicating training,
samples interactively. Training samples can be input as individual pixels or

as hand-drawn and labeled regions.

8. Selection of the slices to be segmented. Individual slices or the entire volume
can be selected. If a test set is used, confusion matrices are computed and

can be displayed on scereen or written to a file.

Output: Segmented image data.

Segmented images can be saved as ‘tissue maps’. A “paint-tissue’ function was
implemented to allow users to edit maps interactively in case of ertors produced
by the automated segmentation. Segmented volumes are left in Talairach space
to facilitate comparison with volumes of other patients and of the same patient at

different time points.

When using ID3, the user can specify the ‘window size’ on the training, set (the
number of training samples to be used in building the tree). By default, the entire
set is selected. If a subset is used, the constructed tree is tested on the remaining
samples. If the user finds that the accuracy is less than satisfactory, more training,
samples are added to the window. The user can seleet the initial window size as
well as the number of examples to be added on cach trial. The process of building,
a tree and testing on the remaining samples is repeated until all samples have heen

added to the window, or the user wishes the process to stop.
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All of the segmentation options have default values. The minimum input re-

quired from the user is to provide a training set.

5.4 Concluding Remarks

The method of segmentation employed in the development of an MR image segien-
tation tool has been deseribed. A tissue probability model was constructed from
the segmented MR image volumes of twelve healthy volunteers to provide a prior:
probabilities, per voxel in Talairach space, of the gross tissues of the brain. These
tissue groups are: grey matter, white matter, ventricular CSF, external CSF, and

background. The model is used in three ways:

® as a prior: probabilities of class distribution for the segmentation of images

of healthy brains,
e as geometric features in addition to image intensity-based features, and

e to disallow proposed MS lesions which do not oceur in probable areas of white

matter.

Iu addition to allowing the user to specify the model’s use, the segmentation tool
also permits the user to select the features to be extracted and the classification
algorithm to be employed. The user can choose from four classifiers for the task
of tissue classification. The classifiers have been deseribed in this chapter, and are,
namely, a minimum distance classifier, a Bayesian classifier, ID3, and an error-cost

complexity pruning version of ID3. All classifiers are supervised.

Experiments designed to evaluate the usefulness of the model and the perfor-

mance of cach of the four classifiers are described in the following chapter.

oD
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Chapter 6

Experimental Results

This chapter describes the experiments conducted to evaluate the usefulness of a
3D voxel-based tissue probalility model employed for the detection of MS lesions in
magnetic resonance images of the brain. Four classifiers trained for the segmentation
task, namely a minimum distance classifier, a Bayesian classifier, ID3, and a pruning,

version of ID3, are compared.

6.1 The Problem of Validation

Validation of segmented images is a difficult task. Various methods of validating,

classifier accuracy were considered in designing the experiments of this thesis.

The standard approach to the validation of pattern recognition results is to test
the given classifier on a set of labeled examples (a test set). A confusion matrix,
indicating the number of correct and incorreet predictions per class, is computed as
well as the overall recognition rate (percentage of correet classifications) for the test
data. When a user selects samples for a test set, he will tend to include ouly those
samples whose class membership he is sure of. The test set can then he biased
to contain the ‘casier’ samples and it thus not always a good measurement of a

classifier’s accuracy.
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A common approach to the validation of MR segmentation results is to compare
the output tissue maps with a manually segmented version. Classifier predictions
which do not agree with an expert’s manual segmentation are regarded as incorrect.,
Errors can occur with manual segmentation, however, due to poor hand-eye coor-
dination and partial volumes. As Gerig ct al. [1991] note, it is doubtful whether a
manual tracing of external CSF along the brain surface can give a clear segmenta-
tion to be used as ground truth. Individual voxels may contain several tissue types,
and tissue boundaries can be of varying contrast, making the accurate outlining of

structures difficult.

A third method of appraising the validity of segmentation results is to ask an
expert’s opinion. The expert can judge the results as ‘acceptable’; ‘acceptable with

modifications to be made by hand’, or ‘unacceptable’, for example.

A fourth method quantifies the segmented tissues and compares the mmounts
with known ratios obtained from postmortem studies. Lim and Pfefferbamn [1989)

employed this technique in their segmentation of grey and white matter tissues.

The first three methods each require input from an expert. Ideally the expert
should repeat the task (either of manual segmentation, the provision of test sets,
or overall assessment of results) on the same data on different occasions so that his
consistency in decision-making can be estimated. Individual experts can disagree,
for example, as to whether hyperintense voxels within an image represent MS le-
sion. They may also disagree as to the extent of the lesion. Thus, it is preferable
to have a team of experts validate the accuracy of the segmentation tool. Measure-
ments of inter-observer variance (differences in opinion between experts) should be

considered.

An alternative method for validating the accuracy of a tissue classifier is to test
the classifier on an artificial image volume whereby the class label of cach voxel is
known. The artificial volume can be created in two ways. One method is to huild

an imitation of the real-world object for imaging. A plexiglass model of the brain,



for example, can be constructed. Components within the model can then be filled
with various chemical solutions, each representing a different tissue type [Rousset,
Jacquemet, Lavenne, Chaze, Le Bars, and Cinotti, 1990]. The plexiglass model can
be placed in an MRI system and scanned, creating an image volume for which the
class labels of voxels are known. Alternatively, the artificial image volume can be
generated by a computer program. The testing on such data for which class labels
are known eliminates the problem of inter-observer and intra-observer variability
described above when real-world image data are used. However, artificial data
rarely model their real-world counterpart exactly. It may thus not be an accurate
indication of a classifier’s ability to segment tissues of actual MR image data. The
experiments of this thesis employed both real and artificial data in order to exploit

the advantages of cach approach.

6.2 Experimental Methods

This section deseribes the experiments conducted to evaluate the usefulness of the
brain tissue probability model in the detection of MS lesions. The performance of

four classifiers applied to the tissue classification task is also compared.

6.2.1 Image Data Sets

The experiments were based on both artificial and actual brain MR images of pa-

tients with multiple sclerosis.

Artificial Data. An artificial brain volume depicting MS lesions was generated
as followed. MR image data of the brain of a healthy individual was acquired and
segmented in the manner described for the construction of the tissue probability
model (section 5.1.2). The resulting segmented volume was saved so that each voxel
contained a class label corresponding to either grey matter, white matter, CSF, or

background. With the use of a ‘painting’ function, MS lesions were manually added

86



to the volume according to the size, shape, location, and relative intensity in which
they can be found in real MR brain images of multiple sclerosis patients. The
segmented volume was then used to create an artificial dual-echo image volume
by replacing class labels with the mean grey scale values of cach tissue type as
determined from actual MR T1-weighted and T2-weighted echos (see section 2.2
for discussion of T1 and T2). The mean tissue values (and their variance) are
listed in Figure 6.1. Additione!l versions of the dual-echo artificial brain volume
were generated at various levels of noise. Noise was added to each voxel according
to a gaussian distribution with variances ! of 20, 40, 60, and 80 percent. Figure
6.2 shows the T1-weighted volume at the various noise levels. The corresponding
T2-weighted images are shown in Figure 6.3. The noise level per tissue type is
uniform within an artificial volume. In typical real-world image data, the degree of
noise per tissue may vary from 4-17%, as seen in Figure 6.1. The artificial volumes
were created with the intent of studying the accuracy of each classifier on data at

varying levels of noise.

Real Multiple Sclerosis Data. MR brain image data was obtained from two
patients diagnosed as having multiple sclerosis. Images were acquired from a Philips
Gyroscan 1.5 Tesla superconducting magnet system. Using a 2D Spin Echo se-
quence, 64 non-overlapped transversesslices were collected (TR=1700, TE=30/80ms)
at 2 mm intervals over the entire brain. MRI data w re stored as 256x256 images
with 1 mm pixels. The imag": g time was 29 minutes. Image data was trans-
ferred via Ethernet to the Neurolmaging Laboratory. The image volumes were
then transformed into Talairach space consisting of 80 slices, with a slice thickness
of approximately 1.5 mm. Homomorphic filtering was applied to reduce the RF
inhomogeneity artifact (section 5.1.2). A scatter plot of an MS image volume is
given in Figure 6.4, Using the original version of the MSP software package (see-

tion 5.3), manual segmentation of each volume into ‘MS’ and ‘other’ was performed

lgaussian_noise(level) = \/In(randl) x (=2level) x cos(2w x rand2) where rand! and rend2 are

random real numbers between 0 and 1.0, and level represents gaussian distribution variance,
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Tissue Type

Echo 1
(T1-weighted)

mean (variance)

Echo 2
(T2-weighted)

mean (variance)

grey matter

white matter
CSF
MS lesion

background

167.24 (5.76)
146.06 (6.17)
134.46 (7.59)
173.72 (6.33)

11.14 (3.89)

151.62 (5.80)
135.20 (9.36)
154.74 (8.55)
190.03 (17.17)
17.30 (5.22)

Figure 6.1: Table of typical mean and standard deviation grey scale
values for each tissue type. Note that MS lesions are similar to grey

matter in echo 1 but are brighter in echo 2.

88



Figure 6.2: Artificial T1-weighted MR brain volumnes at levels of 0%,
20%, 40%, 60%, and 80% noise.
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Figure 6.3: Artificial T2-weighted MR brain volumes at levels of 0%,
20%, 40%, 60%, and 80% noise.
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Figure 6.4: Scatter plot of an MR volume of multiple selerosis data
showing the separation in feature space of MS and non-MS (‘other’)
tissues. The features used are the dual-echio mean intensity based on
a 3x3 neighborhood about each voxel.
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by a research assistant trained by a neurologist in the detection of MS lesions. In all
further experiments deseribed later, classifier predictions which did not agree with
the manual segmentation were regarded as incorrect. For an experienced user of
the MSP package, the procedure of outlining MS lesions in an MR volume requires
4-6 hours. For an inexperienced user, the procedure can take 12-16 hours. For this
reason, it was not possible to find a more qualified expert (such as a radiologist,
neurologist, or neurosurgeon) willing to perform the tedious and time-consuming
task of manual segmentation. (This is also the reason that only two volumes were
manually segmented). The rescarch assistant has, however, been outlining MS le-
sions on MR images for over a year as part of a study conducted by the Multiple
Sclerosis Clinie of the Montreal Neurological Hospital to quantify the volume of
lesion in paticents at various time intervals [Francis, Evans, Baer, Kamber, Collins,
and Antel, 1991). (The manual segmentations obtained for the MS Clinic study
were done for volumes which were not in Talairach space. Therefore, they could not
be used in this experiment). The research assistant, hereafter referred to as ‘the
expert’, has an intra-observer variability of 3-5% in measurement of total MS lesion

volume,

6.2.2 Experiments

Methods. Two sets of experiments were performed, the first based en the artificial
volumes and the second based on the real MS data. The segmentation of each
volume with each classifier was repeated varying the kernel size (1, 3, 5 pixels) and
dimension (2D or 3D) used in the extraction of features. For example, the window
from which the feature vector for each voxel is extracted was varied from 1x1, 1x1x1,
3x3, 3x3x3, ..., 5x5x5. These parameters were varied in order to study their effect

on the classification of data at varying degrees of noise.

The area of the volhunes segmented extended trom above the eyeballs (where the

tissue probability model starts) to just below the top of the brain. Slices towards




the top of the brain were omitted due to strong partial volume effects as the brain
surface curves over to the horizontal. In order to reduce computation time, every
third slice was segmented. As the pereentage of MS lesions is small with respect
to the entire volume, only the tissues within the brain were segmented. (The brain
outline of each slice was detected semi-antomatically with an edge-tracing function
of the MSP package. Voxels outside the region are non-brain and were therefore

excluded).

Artificial Data. The artificial image volumes, representing inereasing levels
of noise, were first segmented in a purely data-driven manner using only the local
mean and standard deviation features deseribed in section 5.1.3. In addition, the
volumes were segmented using the probability masks of grey matter, white matter,
ventricular and external CSF, and background as geometrie knowledge-hased fea-
tures per voxel. Each voxel within the volumes was elassified into one of five elasses:
grey matter, white matter, CSF, MS lesion, or background. The training set con-
tained 500 samples. The test sei employed for decision tree pruning contained 460
samples. The experiments on the artificial data were designed to test the usefulness
of the model in providing geometrie features for the elassiication of normal tissues

(grey and white matter, CSF), as well as for the detection of MS lesions.

Real MS Data. The segmentation of the volumes of real MS data was con-

ducted in four different ways:

¢ data-driven, using just the dual-echo local mean and standard deviation fea-

tures,

e using the model to provide geometric features as above (employing all five

probability masks),

e using the model a posteriori to disallow proposed MS lesions in implausible

locations, and
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e using the model to provide features and a posteriori information (a combina-

tion of the two preceding cases).

When used a posteriori, proposed lesions were accepted if their probability of white
matter (from the model) was greater than the empirically determined threshold of
50%. To avoid eliminating periventricular MS lesions, whose probability of white
matter may not be high, proposed lesions with white matter probabilities below the
threshold were aceepted if then ventricular CSF probability was greater than zero,
except on slices for which it is possible for choroid plexus to occur 2. (This range of
slices was user-determined upon observing a number of MR volumes in Talairach
space and represents another way for the model to incorporate knowledge about
MS lesion location). As the contrast hetween grey and white matter was very poor,
cach voxel was classified as either ‘MS’ or ‘other’. The training set fc - each volume
contained an average of 450 samples. The test set used for pruning contained an

average of 400 samples.

6.3 Results

This section describes the results of the experiments conducted in the segmentation
of the artificial and real MR image volumes containing MS lesions. The pruning

version of ID3 is referred to as PrunelD3.

6.3.1 Results on Artificial Data

Classifier Accuracy. The overall classification accuracy of the minimum distance,
Bayesian, ID3, and PrunelD3 classifiers is shown without the use of the model in

Figure 6.5. Figure 6.6 shows classifier accuracy when the model was employed to

?Choroid plexus, a structure within the ventricles responsible for the production of CSF, can

appear as hyperintensities, similar to MS lesion.
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provide geometric features. Classifier accuracy or ‘recognition rate' is computed
as the number of correct classifier predictions over the total mumber of samples
for the given test set. The minimum distance classifier had the highest overall
recognition rates (ranging from 95.67% on the noise-free data to 77.79% on the
noisiest data when the model was not used). Overall, ID3 and its pruned version
performed as well as the minimun distance algorithm (within at most 5%). ID3 ~nd
PrunelD3, however, out performed the minimum distance and Bayesian classifiers
when the geometric features were added for the classification of the noise-free data,
This addition of features, unimnoriant for the classification of clean data, created
confusion for the statistical classifiers whose recognition rates dropped by around
8%. This illustrates ID3’s ability to base its predictions on the more diseriminating
features. The Bayesian classifier was the least accurate, with recognition rates
ranging from 85.73% without the model (78.40% with the model) for the noise-free
data to 48.26% (50.89% with the model) on the noisiest data.

Pruning did not improve ID3’s overall accuracy. (The test set used in pruning
should perhaps have contained fewer samples). Pruning did reduce the size of

decision trees by 50-60% (Figure 6.7).

Each classifier’s accuracy with and without the model is shown individually
in Figures 6.8 to 6.11. The model is useful in the classification of noisy data,
particularly at the noise levels of 60 and 80%. As expected, the overall recognition
rates decrease as the degree of noise within a volume increases. The recognition rates
are surprisingly high for the noisy data. This is most likely due to the dual-echo
nature of the data, contributing more tissue specific information than a single-ccho
volume. A future experiment of interest could be to :ireasure the effect of the model
on the segmentation of a single-echo volume where one would expect the model to
play a greater role in classifying noisy data. (Figure 6.12 shows a segmented slice
from the artificial image volume with a noise level of 40%, obtained by the minimum

distance classifier without the model).
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Noise Number of Leaves
Level (%) || ID3| PrunelD3
0 16 8

20 28 11

40 o1 18

G0 70 37

80 86 28

Figure 6.7: Average number of leaves in decision trees for classification
of artificial data at varying levels of noise.
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Figure 6.12: Segmented slice of the artificial image volume at the 40%
noise level. Segmentation results was obtained with the minimum
distance classifier without use of the model.
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Feature Extraction Tiimme. The average time in CPU seconds required to
extract four features per slice (the dual-echo local mean and standard deviation

about a voxel) is shown in Figure 6.13 at varying kernel size and dimensions.

Training Time. The overall training time in CPU seconds is given in Figure
6.14 for 500 samples. The minimum distance and Bayesian classifiers are the fastest
classifiers in training. The training times of the statistical classifiers are unaffected
by increases in the level of noise. The time required for the constmiction and prun-
ing of decision trees, however, increases as noise levels rise. The noisier the data,
the larger ID3’s decision tree is (Figure 6.7). Training times of the decision tree

classifiers also inerease as features are added.

Classification Time. The average amount of CPU seconds required to classify
one slice is given for each classifier in Figure 6.15. The classification time for deci-
sion trees increases with the level of noise, due to the larger size of trees on noisy
data. Classification with pruned trees is up to 2 CPU secouds faster per slice than

classification with unpruned trees.

Effect of Kernel Size on Noisy Data. Figures 6.16 to 6.19 show the effect
of varying kernel size and dimension (from 1x1 to 5x5x5) for each classifier at each
level of noise. The use of large windows within the same dimension (3x3, 5x5.
or 3x3x3, 5x5x5) improves classification accuracy of noisy volumes (noise levels at
60-80%), particularly in the Bayesian classifier. Classification of clean data prefers
small windows (1x1(x1)). The extraction of features in 3D (considering voxels in
slices above and below the given slice) improves classification of the noisy data,
particularly for the Bayesian classifier. For example, the use of 3D over 2D for the

Bayesian classification of the 80% noise volume improved results by up to 20%.
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Kernel | CPU seconds

Size per Slice
1x1 1.158
1x1x1 1.700
3x3 12.133
3x3x3 25.617
5x5 22.753
5x5x5 92.767

Figure 6.13: Average feature extraction time in CPU seconds per shiee
at various kernel sizes and dimensions.



Noise CPU scconds for Classifier Training

Level(%) || Minimum Distance | Bayesian | 1D3 | PruneID3
0 0.019 0.050 | 0.867 5.153
20 0.017 0.039 | 2.256 10.951
40 0.019 0.044 | 3.300 17.461
60 0.019 0.050 | 3.767 31.784
80 0.019 0.050 | 3.750 41.683

Figure 6.14: Classifier average training time in CPU seconds for arti-

ficial data (500 training samples).
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Noise CPU seconds per slice for Classification

Level(%) || Minimum Distance | Bayesian ID3 | PruacID3
0 24.054 11.942 | 4.911 4.032
20 24.075 12118 | 8.439 7.322
40 24.159 12.839 | 10.283 8.925
60 24.244 10.826 | 12.019 10.029
80 24.422 12.305 | 10.284 9.999

Figure 6.15: Classifier average classification time in CPU seconds per
slice for artificial data.

107




"ejRp ASION JO UOIJRIYISSR]D
UO 9ZIS [QWIaY JO JOYH :IOYISSRl) ouRjsIp WNWIW :91'9 oIndty

(aouele)) [9AST 8SION

0
C 0l
- 02
- 0€
0%
- 05
- 09
- 0.
- 08
—' [ 06

|19AST] 8SION ‘QE SA g ‘[aule)] bulhiep ool
lsljisse|) aouelsigq wnwiulp jo Aoeindoy

LOOS=®O >

108




jep Astou jo

UONRIYISSR[ U0 9ZIs [JUIY JU JaolF Hajisse]) uetsaleg 119 2InIg

(oouelIe)) |[9AST] SSION
09 oY 0c¢ 0

Ol
- 0¢
- OE
1%
- 05
- 09
A

N

/ﬂ

OO~ mTO >
109

|9A97] BSION ‘(€ SA (02 ‘|auld)] mc_>_m>
lalisse|n ueissAeqg Jo Aoeindoy

- 06




eyeRp ASI0U Jo UOIRIYISSE] UO o21s [su19 JO jo9yq gd] :81°9 oS

(eoueLIEe)) |9ADT] BSION

-0l
- 0c
- 0€
B4
05
- 09
- 0L
- 08

|I9A87 8SION ‘A€ SA Qg ‘[auJay @c_>wm>

lalisse|D €| 1o Aoeinooy

~ 001

<COOI=m@O >

110




) rjEp
ASIOU JO UONRIYISSRY TO 9218 [9llIeY JO Jooyd g[ounid :¢1°9 oingtg

(@oueLep) |9AS] 8SION
09 op 02 0

IR [ 1 0
"0l
- 0C
i - 0E
- Ob
" 05
- 09
- 0.
H - 08
57 " 06
|oAeT 9SION ‘de SA g2 ‘[pusey Buikiep  %°
181JIsse|n €| paunid Jo Aoeinooy

| |

111

OO =m®O>




6.3.2 Results on Real MS Data

Figures 6.20 to 6.22 present examples of the results obtained in the segmentation
of MR volumes of patients with multiple sclerosis. (Figures 6.20 and 6.21 are from
the same volume). Each figure contains a series of four photographs. The first
and second photographs correspond respectively to the T1-weighted (first echo)
and T2-weighted (second echo) images of the given slice. The third photograph
i each set shows classification results obtained in a purely data-driven manner; in
these photographs, the tissue probability model was not used in any way. Voxels
classificd as MS lesion are displayed in dark brown. The fourth photograph shows
the segmentation obtained when the model was used a posterior: to eliminate false
positive lesions. In the third and fourth photographs of each set, the expert’s manual

segmentation of MS lesion is displayed on top of the obtained segimentation results.

The model was effective in eliminating false positive lesions (caused in majority
by the RF inhomogeneity artifact). The elimination of false positive lesions is
indicated with the ‘F’ pointers in the third photograph of Figutes 6.20-6.22 and in
their corresponding locations in the fourth photograph of each example. Although
the use of the model has not eliminated all false positives (such as those at the
‘E’ pointers of Figures 6.20-6.22), it has reduced the number of mis-classifications
considerably (quantitative measures are discussed below). Use of the model was
suceessful in refusing proposed MS lesions in voxels corresponding to choroid plexus
(not shown). The use of the model, however, caused the elimination of some true
positive MS lesions ocenrring in the white matter tracts below the posterior horns of
the lateral ventricles (see mis-classified portion of lesion in area indicated by pointer

‘M’ of Figure 6.20).

The automated segmentation was able to detect MS lesions which had not been
included in the manual segmentation. This is indicated by the ‘T’ pointers in each
of the Figures 6.20 to 6.22. Dr. Douglas Arnold, a neurologist at the Montreal

Neurological Institute and Hospital, verified that the computer identification of
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lesions at these pointers is correct. Dr. Arnold reviewed the segmentation results
obtained with the use of the model and found the program to be ‘more accurate and
more consistent than manual segmentation has been or could be’ (see Appendix for
Dr. Arnold’s evaluation of the segmentation tool). He notes that it is extremely
tedious and difficult for humans to manually segment lesions, particularly in volumes

where lesions are tiny and numerous.

Classifier Accuracy. Figure §.23 shows the overall classification accuracy of
the minimum distance, Bayesian, ID3, and PrunelD3 classifiers. Purely data-driven
classification (without any use of the model) resulted in recognition rates ranging
from 88.96% to 92.51%. Use of the model a posteriori improved classification accu-
racy in each classifier by 3-5%. Recognition rates are also shown for classification
where the model is used to provide features (a posteriori and non a posteriori).
Using the model’s probability values as features did not aid classification. As noted
in the experiments on noise-free artificial data, the additional features cause the
minimum distance classifier’s accuracy to drop considerably. The accuracy of the
Bayesian and decision tree classifiers remained the same. This shows the minimum
distance classifier’s dependence on good features. The pruning version of ID3 per-
formed as well or slightly better (1-2%) than ID3. Pruning reduced the average

number of leaves in decision trees from 38 to 8.

It is important to draw the increase in accuracy brought about by the a posterior:
use of the model into perspective. Purely data-drive segmentation, with recognition
rates of around 90%, would seem to be quite accurate. The quantity of actual MS
lesions, however, is very small in comparison to brain size. The percentage of MS
lesions in the brains of the patients of this experiment ranges from 3.00-4.23%.
Therefore, recognition rates of 90% are not acceptable when detecting MS lesions.
The challenge lies in overcoming mis-classifications in the remaining 10%. Thus, an
increase of about 4% (when the model is used a posteriori) is considered to be a

good improvement,
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Sensitivity and Specificity. The overall sensitivity, specificity, and accuracy
of each classifier is shown in Figure 6.24. Sensitivity refers to the recognition rate
of the MS lesion samples and is defined as [Williams, 1987]:

Sensitivity = TZJPE

where T'P is the total of true positives (samples of MS which are classified as such)
and Tyys is the total number of MS samples.
Specificity refers to the recognition rate of non-MS samples and is defined as:

TN
Tory

Specificity =
where TN is the total of true negatives (samples of ‘other’ classified as such) and

Torn is the total of ‘other’ (non-MS) samples. It can be shown that accuracy is a

function of sensitivity and specificity:
o . T - . P T
curacy = Sensittivity=—-=4— 1 Speci fraty —UILL
Accuracy = Sen YTys+Torn + Specif YTustTorn

Use of the model a posteriori decreased the sensitivity of each classifier in detecting

MS, but increased their specificity and accuracy. Specificity was improved by 4-6%.

Percentage of False Positive MS. Use of the model a posteriori reduced
the number of false positive MS lesions (FPMS) by around 50% (Figure 6.25).
The number of FPMS still largely exceeds the number of actual MS (the lowest
percentage of false positive MS obtained was 124% for the pruned ID3 classifier
using the model a posteriori). The recognition rates, however, were computed
considering the manual segmentation to be the ground truth. It has been shown
and verified that the manual segmentation incorrectly omits several examples of
MS lesion. (The amount of MS lesions is underestimated). Due to inaccuracies
in the manual segmentation, a number of voxels which the program had correctly
identified as MS were incorrectly recorded as mis-classifications in the confusion
matrix. Confusion matrices are shown in Figure 6.26 for the minimum distance
classification of an MS volume with and without the use of the model a posteriori

to reduce the nnmber of false positive lesions.
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Minimum Distance Classification of MS lesions without Use of Model

Classes MS | Other | Error (%) | Recognition (%)
MS | 3481 252 6.75 93.25
Other || 14990 | 129211 10.40 89.60
Total || 18471 | 129463 10.30 89.70

Minimum Distance Classification of MS lesions with Use of Model
A Posterior: to Disallow Proposed Lesions in Voxels Where the

Probability of White Matter is < 50%

Classes MS | Other || Error (%) | Recognition (%)

MS || 3063 670 17.95 82.05

Other || 7892 | 136309 5.47 94.53
Total || 10955 | 136561 5.79 94.21j

Figure 6.26: Confusion matrices for the minimum distance elassifi-
cation of an MS volume with and without the use of the model a
posteriori to reduce the number of false positive lesions. (Au entry
in row ¢ and column j indicates the number of samples of tissue type
¢ which were classified as tissue type j). Use of the model improved
specificity and accurary (recognition rate) by around 5%. The number
of false positive lesions decreased by over 50%.
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Training Time. The overall training time in CPU seconds of each classifier,

based on four features (dual-echo local mean and standard variance about a voxel
neighborhood) for a training set with an average of 450 samples was compared.
As with the experiments on the artificial data, the minimum distance and Bayesian
classifiers had the lowest training times (0.019 and 0.050 CPU seconds respectively).
On the average ID3 required 1.622 CPU seconds and PrunelD3 required 7.822
CPU seconds. PrunelD3’s longer training time is attributed to the additional CPU

seconds required to prune the decision trees.

Classification Time. The classifier with the fastest classification time was
PrunelD3 with an average classification time of 2.283 CPU seconds per slice (brain
region only). The next fastest classifier was ID3 at 4.443 CPU seconds per slice.
The slowest classifiers were the Bayesian and minimum distance classifiers, requiring

on the average of 5.523 and 8.537 CPU seconds per slice respectively.

2D vs. 3D. Classification in 3D did not show a significant improvement over

classification in 2D.

6.4 Discussion and Concluding Remarks

Experiments were conducted to study the usefulness of a tissue probability model
in the segmentation of magnetic resonance images of the brain, particularly in the
detection of multiple sclerosis lesions. The performance of a minimum distance
and Bayesian classifier was compared to that of ID3 and an error-cost complexity

pruning version of ID3.

Artificial Data. The first group of experiments was conducted on a set of
artificial, computer-generated brain-MR-like volumes, each with a different level of
uniform noise. The eclass label of each voxel of the artificial volumes was known,
providing a means of quantitatively comparing the classifiers’ accuracy, training and

recall time, and robustness under varying noise conditions. Purely data-driven clas-

122




o

sification was compared to modei-and- data-driven classification, where the tissue

probabilities within the model were used per voxel as geometrice or knowledge-hased

features in addition to statistical measures based on image grey scale intensity.

Voxels were classified as either grey matter, white matter, CSF, MS lesion, or back-

ground. The findings were as follows:

1.

The minimum distance classifier was overall the most accurate of the four

algorithms tested.

The statistical classifiers’ (minimwuw distance and Bayesian) use of the model
as features is detrimental in the classification of data with low levels of noise.
In contrast, the addition of the geometrie features for the classification of
such data has no effect on the decision tree algorithms. When the model was
used to provide features, ID3 out performed the minimum distance classifier
in the segmentation of clean data. This illustrates the decision tree algo-
rithm’s ability to select the more discriminating features. When a minimum
distance classifier 1s presented with non-diseriminating features (as is the case
of the geometric features when used on clean data), it becomes confused. In
this set of experiments, the classifier’s recognition rate dropped 10%. This
is similar to observations by Weiss and Kapouleas [1989] who note that the
minimum distance classifier performs well when the features are good. Shep-
herd’s [1983] comparison of the minimum distance, Bayesian, and ACLS (ID3
successor) classifiers also found the minimun distance algorithm to have the

higher recognition rate.

In all other cases, the ID3 classifier and its pruning version were as accurate
or as almost as accurate as the minimum distance classifier (within less than

5%).

The statistical classifiers had the faster training times, however, the decision

tree classifiers were faster in recall by up to 2-14 CPU secouds per slice.
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Use of the model did improve classification on the noisier data by 2-7%.

The extraction of features in 3D as opposed to 2D overall did improve recog-

nition rates on noisy data.

The classification of clean data prefers a kernel size of 1x1 while classification

of noisier data prefers larger kernel sizes of 3x3(x3) or 5x5(x5).

Real MS Data. A sccond set of experiments was conducted on actual MR

volumes of two patients with multiple sclerosis. The MS lesions on each slice were

manually outlined and used to evaluate the classifiers’ accuracy. Voxels were clas-

sified as either MS or ‘other’. The volumes were segmented under the following

conditions;

o without the use of the tissue probability model (data-driven),

e with the model used to provide geometric features of tissue probability per

voxel,

e with the model used a posterior: to disallow proposed MS lesions in anatom-

ically implausible locations,

e with the model used to provide geometric features of tissue probability and e

posteriort information.

The results were as follows:

1.

o

The use of the model a posteriori, in comparison to the data-driven approach,
decreased classifier sensitivity to MS lesions, yet increased specificity (4-6%)
and accuracy (3-5%). The percentage of false positive MS lesions decreased
by 50%. As the proportion of MS lesions within the brain is typically very

small, this is considered to be a good improvement in classification.

All classifiers had similar recognition rates. Pruning improved accuracy of the

ID3 classifier slightly, by 1-2%.




3. The minimum distance classifier, as observed in the experiment on artificial
data, was confused by the addition of all five tissue masks as features. This
shows the minimum distance classifier’s dependence on good features. Use
of the model to provide features did not aid classification. When this use
was combined with the modc! @ posteriort, the results were almost as good
as those obtained when the model was used a posteriors with just the image

grey scale features.

4. The segmentation tool, when employed with the model a posterior:, was found
to be more accurate and more cousistent than manual segmentation (see Ap-
pendix for the comments of Dr. Arnold, a neurologist at the M.N.I. who
reviewed the segmentation results). Dr. Arnold noted ? that the false positive
lesions which are not eliminated with the use of the model are likely due to
an overestimate of white matter within the mask. These mis-classifications

should be reduced once inaccuracies in the white matter mask are correeted.

A method for the detection of MS lesions has been developed in this thesis.
While the use of the tissue probability model appears promising, results should
be validated with further experiments. This would depend, however, on the con-
tribution of a team of experts involved in the manual segmentation or provision
of training sets for several volumes of image data. Ideally the experts would seg-
ment or sample the same data more than once so that measurements of intra- as
well as inter-observer variability can be considered in accessing the accuracy of the

segmentation tool.

Interpretability of Classification Rules. On actual MR data, each classifier
performed at about the same level of accuracy. A difference is seen in the inter-
pretability of each classifier’s learned rules. The minimum distance and Bayesian
classifiers represent class descriptions with mathematical formulae (sections 5.2.1,

5.2.2). ID3 represents its acquired knowledge in the form of a decision tree. The

3Personal cominunication.




average decision tree ouput by the ID3 algorithim was approximately ten levels deep.
The classification rules represented by such large decision trees are barely intelligi-
ble. However, the pruned deeision trees obtained were much smaller. An example
of a pruned tree for the classification of MS lesion and ‘other’ (non-MS) is shown
in Figure 6.27. The features used were the dual-echo mean and standard devia-
tion about the mean for a 3x3 window about each voxel. The pruned decision tree
contains five nodes, three of which were leaves, and is two levels deep. Although a
limited form of knowledge representation, the pruned decision tree is small enough

to be easily understood.

The next chapter, which is the final chapter, summarizes the work of this thesis

and discusses areas of future related work.
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Figure 6.27: Pruned decision tree for the classification of MS lesion.
Non-MS voxels are labeled as ‘Other’.
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Chapter 7

Conclusions and Future Related Work

7.1 Conclusions

A tool for the gross tissue segmentation of magnetic resonance images of the brain
has been developed. In particular, the tool was designed for the automated detection
of multiple sclerosis lesions. The goals of the thesis were twofold: to evaluate the
effectiveness of incorporating knowledge of gross neuroanatomy in the segmentation
task, and to compare the performance of statistical and machine learning classifiers
applied to MR image segmentation. The classifiers under comparison were a mini-
mum distance classifier, a Bayesian classifier, ID3 (a decision tree classifier), and a

pruning version of ID3 for the handling of noisy data.

Knowledge of average brain anatomy was represented in the form of a tissue
probability model giving for each voxel in a standardized ‘brain space’ (Talairach
space), the respective probabilities of the voxel being of grey matter, white matter,
ventricular CSF, external CSF, or background. The model was based on MR image
data obtained from a group of twelve healthy volunteers. Brain image volumes for
segmentation are first transformed into Talairach space in order to make use of the

anatomical knowledge stored within the model.

The segmentation tool was designed to allow three possible uses of the tissue
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probability model:

¢ to provide e priori tissue probabilities per voxel for the Bayesian classification

of healthy brain tissues into grey matter, white matter, and CSF,

o to act as geometric features, providing heuristic information of probable tissue

types per voxel location,

e to provide classifiers with a posterior: knowledge of probable multiple selero-
sis lesion locations. Proposed MS lesions which do not occur in voxels with a
probability of white matter (stored in the model) above a user-defined thresh-

old can be disallowed.

The model was tested on the detection of MS lesions.

Effectiveness of Model. Experiments indicate that the use of the model im-
proves segmentation results when compared to a purely data-driven approach. Use
of the model a posteriori improved classification by 3-5% for each of the classifiers
while increasing classifier specificity by 4-6% and reducing the number of false pos-
itive lesions by 50%. Use of the model to provide features improved accuracy only

on extremely noisy data (> 40% noise).

‘ Comparison of Statistical and Symbolic Learning Classifiers. When
tested on real MR image data, each classifier performed at about the same level of
accuracy. The statistical classifiers were the fastest in training, yet they were also
the slowest in recall.

The decision tree classifier has an advantage over the statistical classifiers in
providing a concise, ‘human-like’ explanation of cach prediction. This may be cas-
ler to grasp then the mathematical formulae of minimun distance and Bayesian
classification rules. The intelligibility of the decision trees, however, is difficult to

measure, particularly in trees extending several levels deep.

The automated segmentation, regardless of the classifier used, was able to cor-
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rectly identify MS lesions which were not included in the manual segmentation. Dr.
Arnold, a neurologist at the M.N.L, reviewed the results of the segmentation tool
obtained with the use of the maodel a posterior: and found the automated classifi-

cation to be more accurate and consistent than manual segmentation (Appendix).

7.2 Future Related Work

This section discusses future research related to the further development of the seg-

mentation tool of this thesis. Research directives can be divided into two categories:

e work concerning improvements and applications of the model, and

e work concerning machine learning and knowledge representation in general.

Future Developments and Applications of the Model. The model can
be refined. First and foremost, its representation of gross neuroanatomy should be
verified and corrected by an individual qualified in neuroanatomy. Present areas
of error within the model include an overestimation of white matter of the gyri,
particularly towards the top of the head. Likewise, the model incorrectly indicates
a presence of periventricular grey matter. These errors are due to the partial volume

effect.

The tissues of the model can be subdivided to provide more specific anatomical
information. Ninety to ninety-five percent of MS lesions occur in white matter
tissue. The majority of the remaining MS lesions can occur within the basal ganglia,
a type of grey matter tissue located near the ventricles. Hence, further subdivision
of the grey matter mask to distinguish basal ganglia should increase the recognition
rate for lesions within this area. Similarly, the white matter mask can be partitioned
to indicate the more probable locations for the occurrence of MS lesions, observed

from the segmentation of a group of brain image volumes displaying the disease.

130



In subdividing the tissue model to represent the presence of pathologies, insight
into the involvement of neurological discases can be studied. For instance, Lim and
Pfefferbaum [1989] note that although the characteristic lesions of Alzheimer disease
are typically found in neocortical and subcortical limbic grey matter, pathological
data has indicated white matter involvement in the disease. The further refinement
of the model may aid in the segmentation of pathological image data, contributing

to the study of disease,

The model could be extended to represent a brain atlas of structures defined
by their functionality, as well as anatomy. Functional activity, such as glucose
metabolism, is not necessarily mapped to the borders of anatomical structures,
While MR images are well suited for imaging anatomy, a technique known as
positron emission tomography is used to measure functionality in terms of energy
metabolism and regional hemodynamics. Using data from positron emission scans,
functional activity can be measured and incorporated into the model. Thus, in ad-
dition to the tissue classification of brain MR image data, future work can involve
the model’s use in the segmentation of functional areas. Furthermore, the model
can be used to study and measure the variability in cerebral structures amongst

individuals [von Keyserlingk, 1988].

The experiments of this thesis used the model a posteriori. A threshold was
selected regarding the white matter tissue mask. Proposed MS voxels whose corre-
sponding model white matter probability was below the threshold were disallowed
and relabeled as ‘other’. An alternative method would be to vary the threshold
for different regions within the model. For example, a hyperintense voxel A within
the white matter of a gyrus may have a white matter probability (from the model)
of p. A hyperintense voxel B near the ventricles may also have a white matter
probability of p. Neurologists are more reluctant, however, in accepting voxel A as
lesion, as lesion is less likely to occur in that arca. Setting a higher white matter
threshold for proposed MS lesions occurring near the cortical rim would be similar

to the reasoning process employed by neurologist and radiologists in this situation.
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The model should also be tested on the segmentation of healthy brain tissues.
The probability values within the model of tissue distribution can be used as prior
probabilities in Bayesian classification.

Errors may occur in segmentation due to an improper fitting of individual brains
to the tissue probability model in Talairach space. At present, the transformation
into Talairach space is implemented as a linear function. A more accurate transfor-
mation would be non-linear, involving the input of several more landmarks. Work

is currently being done in identifying possible landimarks [Evans et al., 1991].

Future Development Regarding Learning and Knowledge Represen-
tation. Research is proposed regarding machine learning and knowledge repre-
sentation. Such work can be applied to the further development of the learning

component of the segmentation tool.

It would be mteresting to compare the performance of other classifiers to those
studied here. Most researchers seem to believe that the ultimate learning algorithm
will involve a combination of explanation-based, empirically-based, and analogical
algorithms [DeJong et al., 198G]. Dietterich [1990] expects that a great deal of
future research will be aimed towards the development of hybrid learning methods.
Utgoff [1988D], for example, proposed a perceptron tree hybrid where leaf nodes
are perceptrons and internal nodes are standard decision trees. The connectionist
backpropagation algorithm has been observed to perform more accurately than ID3
when classifying noisy data although it requires longer training and recall times
[Mooney et al., 1989]. Symbolic learning approaches, such as ID3, have an advantage
over connectionist learning in that they tend to require fewer training examples, can
be less computationally expensive, and can explain their reasoning. Therefore it is
of interest to develop a hybrid learning algorithm which exploits the respective
strengths of the connectionist and symbolic learning approaches. When applied to
magnetic resonance image segmentation, it would be interesting to study how such

a system could use a voxel-based model of @ priori tissue probability to advantage.




Breiman et al. [1984] proposed a decision tree algorithm which incorporates prior
probabilities. Such an algorithm could perhaps be combined with a connectionist

form of leaming.

Unsupervised algorithms should also be explored as they remove subjective bias
and decrease the amount of interaction required by the user in training. Unsu-
pervised learning may reveal characteristics in the data which were unobserved by

humans [Gerig et al., 1991].

Future work in needed in finding representation structures for the encoding of
more complex forms of knowledge. Decision trees are a limited form of knowledge
and do not provide a very compact representation for Boolean concepts in dis-
junctive normal form [Dietterich, 1990]. With respect to the segmentation tool, a
knowledge base facility could be set up to allow experts performing manual segmen-
tation of MS lesions to explain their reasoning behind the inclusion and omission
of hyperintense regions. The representation and use of such knowledge, in addition
to anatomical models and image grey scale statisties, should result in improved

classification.

Further work can be done regarding the association of uncertainties with class
predictions. This topic is particularly important in the segmentation of MR images
due to the inherent ‘partial volume’ nature of the images, where individual vox-
els can be composed of more than one tissue type. Uncertainties can be used to

approximate the distribution of tissues within a voxel.

The segmentation tool should be extended to allow the generalization from vol-
ume to volume without the need for retraining. This is considered as not currently
possible [Katz and Merickel, 1989] as intensity values for volumes of the same patient
with identical acquisition parameters can vary for like tissues. When approached
as a classification problem in itsclf, perhaps this problem of ‘volume generalization’
can be solved. Features for an image volume may include acquisition parameters as

well as the age, gender, and known pathologies of the patient.

133




7.3 Concluding Remarks
The goals of this thesis were the following:

1. To develop a tool for the segmentation of MR images, particularly for the
detection of multiple sclerosis lesions. This goal has been realized. The seg-

mentation tool can be used in a data or model-driven manner.

2. To evaluate the effectiveness of a brain tissue probability model in the detec-
tion of MS lesions. The model was developed and stores the individual prob-
abilities of grey matter, white matter, ventricular CSF, and external CSF for
each voxel in a standardized 3D brain space, based on a group of heathly vol-
unteers. When used a posterior: in segmentation to disallow proposed lesions
in implausible white matter areas, the model was found to improve accuracy
by 3-5%. The number of false positive MS lesions was cut in half. The seg-
mentation tool’s overall performance was found to be more accurate and more

consistent than manual segmentation.

3. To compare the performance of the statistical minimum distance and Bayesian
classifiers with that of the symbolic ID3 learning algorithm. On actual MR
image data, each classifier performed at about the same level of accuracy. The
statistical classifiers were faster in training, while the decision tree classifier
and its pruning version were faster at recall. The ID3 classifier expresses its
classification rules explicitly in the form of a decision tree. Althongh decision
trees provide a limited form of knowledge representation (particularly when

the trees are deep), pruned trees are fairly small and understandable.

Future related research may focus on the refinement of the model and the ways in
which it can be used in classification. The development of more sophisticated learn-
ing systems, such as hybrid methods combining connectionist and symbolic strate-

gies, may be investigated. The development of more encaptive forms of knowledge
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representation schemes capable of encoding complex forms of reasoning is another
area of work. For example, manual segmentations typically performed by experts
to serve as a means for measuring a tissue classifier’s accuracy may be accompanied
by explanations of the reasoning behind the outlining of each lesion and omission
of other lesion-like regions. This knowledge, in addition to models of anatomy and

image grey scale information, could be used to improve classifier accuracy.

Artificial intelligence in medical applications, such as the segmentation of mag-
netic resonance images, is valuable to research in computer science. It encompasses
a large and interesting domain of real-world problems for which AI theories can be

tested, providing insight into future Al research as well as the development of useful

clinical tools.
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Glossary

Acquisition Process of measuring and storing image data.

Choroid plexus A structure within the ventricles responsible for the production of
CSF. In magnetic resonance images, it can appear as a hyperintensity similar

to multiple sclerosis lesions.
Coronal Plane Any plane which separates the brain into front and back.

Computed tomography, CT An ionizing imaging techuique similar to X-ray im-

agery. A computer is used, instead of film, to hold images.

Decision Tree A recursive structure for representing classification rules.  Each

tree node represents a test on a feature, and ecach leaf represents a class.
Deduction The process of inferring specifie facts from general data.

Echo time, TE Time during a TR interval at which the signals are recorded when

acquiring MR images.

External CSF Refers to the cerebrospinal fluid under the arachnoidal layer of the

brain.
Gyrus, gyri (plural) A ‘fold’ or convolution of the brain.

Heuristic A guideline or pointer towards the general area in which a solution to

a problem may be found.
Induction The process of inferring general hypotheses or rules from specifie facts,

Inference The deriving of a conclusion from induction or deduction - a conclusion

arrived at in logic.

Magnetic resonance, MR Absorption or emission of electromagnetic energy by

nuclei in a (static) maguetic field after excitation by suitable (RF) radiation.




MR Sce magnetic resonance,

MR imaging, MRI Non-invasive medical technique which permits the detailed
visualization of internal anatomical structures in living subjects; production
of tomographic (eross-sectional) views of a body, by use of the phenomenon

of magnetic resonance.

Multiple Sclerosis, MS A neurological disease characterized by lesions to the

myelin covering (fatty white substance) of neurons of cerebral white matter.

Partial volume effect Refers to case of a data element (pixel or voxel) containing

more than one tissue type.
Periventricular Adjacent to the ventricles.
Production rule Rules in the form: IF condition THEN action.

Proton Density In the context of MR, the number of magnetized protons per

voxel.

Radio frequence (RF) »ulse Electromagnetic radiation pulse used in magnetic
resonance imaging, commonly in the 1-100 megahertz range. Their principal
effect on the body is energy deposition in the form of tissue heating, mainly

at the surface.

Repetition time, TPR. Period between the beginning of a pulse sequence and the

start of the succeeding sequence.

RF inhomogeneity artifact An image artifact caused by nonuniformities in the

radiofrequency field applied during image acquisition.

Segmentation Process of identifying regions of an image which are uniform and

homogeneous with respect to some given characteristics.

Sagittal plane Any plane which divides the brain into left and right pieces.




T1, longitudinal relaxation time An MR tissue-specific time constant charae-

terizing the rate at which excited nuclei re-align with the external magnetic

field.

T2, transverse relaxation time MR tissue-specific time constant characterising,

the rate at which nuclei reach equilibrium.
Transverse Plane Any plane which separates the brain into top and bottom.

Ventricle, ventricles A structure within the brain in which cerebrospinal fluid is

produced.

Voxel 3-dimensional version of a pixel; a unit cube of image data.

153






