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ABSTRACT

Possibilistic Sonar Modeling and Localization for Mobile Robots

Mohammad Molhim

Sonar sensors are widely used in mobile robots applications such as navigation,
map building, and localization. The performance of these sensors is affected by
the environmental phenomena, sensor design, and target characteristics. Therefore,
the readings obtained from these sensors are uncertain. This uncertainty is often
modeled by using Probability Theory. However, the probabilistic approach is valid
when the available knowledge is precise which is not the case in sonar readings.
In this thesis a new model of uncertainty in sonar readings is proposed by using
Possibility Theory. The possibilistic approach is valid when the available knowledge
is imprecise and coherent as in sonar readings. It is verified experimentally that the
behavior of the sonar readings obtained from a corner is the same as the behavior of
these obtained from a wall only when the sensor is at distances less than 75cm. Based
on this finding, a new approach for corner detection is implemented on the mobile
robot, Pioneer 1. Unlike signal and image processing approaches, our approach is
not time consuming because it depends on direct interpretation of readings obtained
from different sensors in the same time (TOF'). Stationary and dynamic localization
methods are presented and applied on Pioneerl. These methods can be generalized

for different robots configurations, especially the ones with a ring configuration.

ii1



ACKNOWLEDGEMENTS

[ would like to thank Dr. K. Demirli' for his professional supervision, guidance,
and patience, throughout this study. It was pleasure working with him especially
in the last few months when the real action took place. I would also like to thank
Dr. A. Bulgak for his supervision, understanding, and valuable advice regarding the
thesis.

The financial support of the Canadian International Development Agency
(CIDA) and Natural Science and Engineering Research Council of Canada (NSERC)

are gratefully acknowledged.

iv



TABLE OF CONTENTS

LISTOF FIGURES . . . . . . . . . ittt vii
LIST OF TABLES . . . . . . . e Xiv
1 Introduction 1
1.1 Mobile Robots . . . . . . . . .. L 1
1.2 Literature SULVEY . . . « « o v v v v e e et e e e e e e e e 3
1.3 Outline of the Thesis . . . . . . [ 11
2 Ultrasonic Transducers 12
2.1 Time of Flight Measurement (TOF) . . . . .. .. ... .. .. .... 12
2.2 Factors affecting ultrasonic sensors behavior . . . . . .. ... . ... 14
3 Uncertainty Modeling and Possibility Theory 23
3.1 Introduction . . . . . . . . . . .o 23
3.2 Types of available information . . . . . .. ... ... ... .. .... 28
3.3 Modeling of Uncertainty . . . ... . ... ... ... ........ 29
3.4 Fuzzy Measures . . . . . . . . . . . . 0 ottt e 31
3.5 Evidence Theory . . . . . . . . . . .« . e 32
3.6 Possibility Theory . . . . . . .. e e e 36

3.7 Possibilistic approach for modeling uncertainty in physical measure-

MENES . .« & . v e e e e e e e e e e e e e e e e e e e e e e e e 37

3.8 Possibilistic measurement . . . . . . . . .. ..o oL 37
3.9 Possibilistic Histograms . . . . . . . . . ... ... 000 38

4 Modeling Uncertainty in Sonar Sensors 45



4.1 Experimental Setup . . . . . . . . . . . ... 46

4.2 Modeling angular uncertainty and radial imprecision for sonar read-
ings reflected fromawall . . . . . . ... ... ..o 47

4.3 Reduction of angular uncertainty and radial imprecision in the wall
CASE  « v« e e e e e e e e e e e e e e e e e e e e e e e 35

4.4 Modeling angular uncertainty and radial imprecision for sonar read-
ings reflected fromacorner . . . .. ... ... ..o 64
Application to Mobile Robots 74
5.1 Sensor based localization . . . . .. ... ... ... ... 75
5.2 Pioneer 1 Configuration . . . . . . . . . . ... ... 76
5.3 Localization for Pioneer 1 . . . . . . . . . .. ..o 76
Discussion and Conclusions _ 92
6.1 Discussion . . . . . . . . . .. .. e e e e 92
6.2 Summary and Conclusions . . . . . . .. . ... 96
6.3 Future Work . . . . . . . . . . . L 98
A Appendix A 105

vi



2.1

o o [\)
W (V] sV

(V]
¥

3.1

4.1

4.2

4.3
4.4

4.6

LIST OF FIGURES

Typical echo produced by exciting the ultrasonic transducer with a
short-duration voltage pulse. . . . . .. ... ... ... .......
A possible beam pattern. . . . .. ... Lo Lo
The effect of beam width on the sonar readings. . . . . . .. ... ..
Beam spread can cause object surfaces to be blurred. . . . . . .. ..
Scattering of the echo in different directions when the beam incidence
angle is more than the critical angle of the surface. . . . .. ... ..
Sonar sensor gives a false reading after bouncing off other objects in

the environment . . . - -« o« ot e e e e e e e e e e e e e e e e e

A simple Possibilistic histogram with its candidate points (top). Three

examples of piecewise linear continuous approximations (top).

Experimental setup. . . . . . . ... ... .. L
Experiments for studying the behavior of the sonar sensor when it is
in front of a wall (top) and a corner (bottom). . . . .. .. ... ..
Possibility distribution for the field of view of a sonar sensor.

Error calculation for sonar reading coming from a wall at a certain
distance and angle. . . . ... ... Lo ool
Radial imprecision represented by possibility distributions when the
sensor is at a distance from 50cm to 175cm (top), when the distance is
from 200cm to 275cm (middle), and when the distance is from 300cm
to 370cm (bottom). . . . . . ...

Three possible cases for the readings obtained from two sensors.

vil

44

46

33



4.7
4.8

4.9

4.10

4.11

$.12

4.13

4.14

4.15

Two sonar sensors detecting the same wall. . . . ... ... ... ..

Reduced angular uncertainty for readings coming from a wall, dsl <

ds2 (top), ds2 > dsl (middle), and dsl = ds2 (bottom). . . ... ..

Shortest distance estimating from radial imprecision and angular un-

certainty. . . . . . .. L.

Reduced radial imprecision when the sensor incidence angle is 1° and

the distance from a wall is from 50cm to 175cm (top), from 200cm to

275cm (middle), and from 300cm to 370cm (bottom). . .. ... ..

Reduced radial imprecision when the sensor incidence angle is 7.5°
and the distance from a wall is from 50cm to 175cm (top), from
200cm to 275cm (middle), and from 300cm to 370cm (bottom).

Error calculations when the senor detects a corner at distance L from

thesensor. . . . . ... . ... e e e e e e e

Possibility distribution for field of view of a sonar sensor facing a

60 04 ) o T T

(Possibility distribution for radial imprecision when the distance be-
tween the sensor and the corner is from 50cm to 175cm (top). Possi-
bility distribution for radial imprecision when the sensor is at distance
from 200cm to 275cm (middle). Possibility distribution for radial im-

precision when the sensor is at distance from 300cm to 370cm (bot-

1) 1) S

Reduced angular uncertainty for readings come from a corner, when

dsl < ds2 (top), when ds2 < dsl (middle), and when dsl = ds2

(bottom). . . . .. . ... ... e e e e e e e e e

viii

63



4.16

4.17

4.18

5.1

5.3

Reduced radial imprecision for readings coming from a corner when
the incidence angle is 3°. The distance between the sensor and the
corner is from 30cm to 175cm (top), when the distance is from 200cm

to 275cm (middle), and when the distance is from 200cm to 275cm

(bottom). . . . . . ..

Reduced radial imprecision for readings coming from a corner when
the incidence angle is 7.3°. The distance between the sensor and the
corner is from 50cm to 175cm (top), when the distance is from 200cm

to 275cm (middle), and when the distance is from 200cm to 275cm

(bottom). . . . . . ..

Reduced radial imprecision for readings coming from a corner when
the incidence angle is 5°. The distance between the sensor and the
corner is from 50cm to 175cm (top), when the distance is from 200cm

to 275cm (middle), and when the distance is from 200cm to 275cm

(bottom). . . - . . . ..

Pioneer 1 Configuration. . . . . .. . ... ... ... .. ......
The map of the environment. . . . . . ... .. .. ... ... ...

The robot trying to followa wall. . . . . . . ... ... ... ....



(1]
~l

ot
o

6.1

6.2

Possibility distribution of the value of X in the sensor’s coordinates
when 8 = 3° (top - left). Possibility distribution of the value of X
in the robot’s coordinates for 8 = 3° ( top - right). Possibility dis-
7

50

tribution of the value of X in the sensor’s coordinates when 6 =
(middle - left). Possibility distribution of the value of X in the sen-
sor’s coordinates when 8 = 7.5° (middle - right). Combined possibility
distribution of (top - right) and (middle - right) that represents the
value of X in the robot’s coordinates (bottom). . . . . . . ... ...
The possibility distribution of the normal distance in the robot’s co-
ordinates when @ = 1° (left), when § = 7.5° (right), the possibility
distribution that represents the combination between the left and the
right (bottom). . . ... .. .. [
The four possible initial stationary location of the robot in our test
ENVIFONMENt. . . . . . v v e e e e e e e e e e e e e e e e e e e e
The detection of a front wall may reduce the initial possible locations.

Matching between the initial location and the new one after an in-

crease in the readings obtained from SO occurs. . . . . . . .. .. ..

Two-transducer system at zero incidence angle from wall and corner.
g, is the angle for echo amplitude for the corner. . . . . . . ... ..
Amplitude versus incidence angle for wall reflector (top). Amplitude

versus incidence angle for corner reflector (bottom). . . . ... ...

Incidence angle versus radial imprecision for readings obtained from

a wall at distance 25CImM. . - - -« ¢ . e e e e e e e e e e e e e e e e e

87



A.2 Incidence angle versus radial imprecision for readings obtained from
a wall at distance 50cm. . . - . . . . . ..o
A.3 Incidence angle versus radial imprecision for readings obtained from
a wall at distance 75cm. . . . . . - .« o .o oo oo
A.4 Incidence angle versus radial imprecision for readings obtained from
a wall at distance 100cm. . . . . . . . .. . ... ..o
A.5 Incidence angle versus radial imprecision for readings obtained from
a wall at distance 125cm. . . . . . . . ..o ..o oo
A.6 Incidence angle versus radial imprecision for readings obtained from
a wall at distance 150cm. . . . . . . . .. ..o
A.7 Incidence angle versus radial imprecision for readings obtained from
a wall at distance 175cm. . . . . . . . . ..o
A.8 Incidence angle versus radial imprecision for readings obtained from
a wall at distance 200cm. . . . . . . . .. .o oo oo
A.9 Incidence angle versus radial imprecision for readings obtained from
a wall at distance 225Cm. . . . . . o . e e e e e e
A.10 Incidence angle versus radial imbrecision for readings obtained from
a wall at distance 250cm. . . . . . . . ..o e oo e e e
A.11 Incidence angle versus radial imprecision for readings obtained from
a wall at distance 275cm. . . . . . . . oLl e e
A.12 Incidence angle versus radial imprecision for readings obtained from
a wall at distance 300cm. . . . . . . . ..o oo oo
A.13 Incidence angle versus radial imprecision for readings obtained from

a wall at distance 325Cm. . - . . . e e e e e e e e e e e e e e e



A.14 Incidence angle versus radial imprecision for readings obtained from

a wall at distance 350cm. . . . . ... ..o 125
A.15 Incidence angle versus radial imprecision for readings obtained from

a wall at distance 370cm. . . . . . . .. ... oL 126
A.16 Incidence angle versus radial imprecision for readings obtained from

a corner at 25CIM. . . . . oL . . .l L o e e e 127
A.17 Incidence angle versus radial imprecision for readings obtained from

acorner at 50cm. . . . . . ..o Lo 127
A.18 Incidence angle versus radial imprecision for readings obtained from

a corner at 7ocm. . . . . . . . I T 128
A.19 Incidence angle versus radial imprecision for readings obtained from

acorner at 100cm. . . . . - . . L.l 128
A .20 Incidence angle versus radial imprecision for readings obtained from

acornerat 125cm. . . . . - . .. ..ol 129
A.21 Incidence angle versus radial imprecision for readings obtained from

acornerat 1530cm. . . . . - . .. ..o oo 129
A.22 Incidence angle versus radial imprecision for readings obtained from

acorner at 175CmM. . . - - -« . . . ..o e e e e e e 130
A.23 Incidence angle versus radial imprecision for readings obtained from

acorner at 200cm. . . . . - . . .. ..o oo 130
A.24 Incidence angle versus radial imprecision for readings obtained from

a corner at 225cm. . . . . . .. B 131
A.25 Incidence angle versus radial imprecision for readings obtained from

a corner at 250Cm. . . . . . . . e e e e e e e e e e e e e e 131



A.26 Incidence angle versus radial imprecision for readings obtained from
acorner at 275CmM. . . . . .. L. L L. oo
A.27 Incidence angle versus radial imprecision for readings obtained from

a corner at 300cm. . . . . ... e e e e

xiii



4.1

4.3

4.4

4.6

Al
A2
A3
A4
Ab

LIST OF TABLES

The field of view of the sonar sensor at different distances from a
wall. e 49
Radial imprecision intervals when the sensor in front of a wall at
different distances. . . . . . . . . . . ..o 35
The reduced radial imprecision intervals when dsl < ds2 and the
incidence angleis 1°. .. .o Lo oo 61
The reduced radial imprecision .intervals when dsl < ds2 and the
incidence angle is 7.5°. . ... L. oo 61
The field of view of the sonar sensor at different distances from a
COTNEL. e e e e e e e e e e e e e e e e e e 66
The radial imprecision of sonar readings reflected from a corner at
different distances. . . . . . . . . . . .. 67
Error accumulation in dead reckoning over the distance at a velocity
of 90MM/SEC. . . . . . . e e e e e 76
Error accumulation in dead reckoning over the distance at a velocity
of 180mMmM/SEC. . - -« « . . o e e e e e e e 76
Summary of all possible cases for_ dsl, ds2,ds3,and ds4. . . . . . .. 86
Sonar readings from a wall 25cm away from the sensor. . . . . . . .. 106
Sonar readings from a wall 50cm away from the sensor. . . . . . . .. 107
Sonar readings from a wall 75cm away from the sensor. . . . . . ... 107
Sonar readings from a wall 100cm away from the sensor. . . . . . .. 108
Sonar readings from a wall 125cm away from the sensor. . . . . . .. 108

xiv



A.6 Sonar readings from a wall 150cm away from the sensor. . .. . . .. 109

A.7 Sonar readings from a wall 175cm away from the sensor. . . . . . .. 109
A.8 Sonar readings from a wall 200cm away from the sensor. . .. .. .. 110
A9 Sonar readings from a wall 225cm away from the sensor. . . . . . . . 110
A.10 Sonar readings from a wall 250cm away from the sensor. . .. . . .. 111
A.11 Sonar readings from a wall 275cm away from the sensor. . . . . . . . 111
A.12 Sonar readings from a wall 300cm away from the sensor. . .. .. . . 112
A.13 Sonar readings from a wall 325cm away from the sensor. . .. . . .. 112
A.14 Sonar readings from a wall 350cm away from the sensor. . .. . . .. 113
A.15 Sonar readings from a wall 370cm away from the sensor. . . . . . .. 113

A.16 Sonar readings from a 90 corner at 25c¢m from the sensor and x=y=17.67cm
fromthenearwalls. . . . . . . . . . . . . .. ... 114
A.17 Sonar readings from a 90 corner at 50cm from the sensor and x=y=35.35cm
fromthenearwalls. . . . . . . . . .. ... . 114
A.18 Sonar readings from a 90 corner aL: 75cm from the sensor and x=y=53.0cm
fromthenearwalls. . . . . . . . . . . . . ... oo 114
A.19 Sonar readings from a 90 corner at 100cm from the sensor and x=y=70.7cm
fromtheneartwowalls. . . . . . . . . . ... ... 115
A.20 Sonar readings from a 90 corner at 125cm from the sensor and x=y=88.4
from the neartwowalls. . . . . . . . .. ... .. ..o 115
A.21 Sonar readings from a 90 corner 150cm from the sensor and x=y=106.0cm
from theneartwowalls. . . . . . .. .. .. .. ... Lo 115

A.22 Sonar readings from a 90 corner 175cm from the sensor and x=y=123.7cm

from the near two walls. . . . . . . . . . . . Lo oo e 116

Xv



A.23 Sonar readings from a 90 corner 200cm from the sensor and x=y=141.4cm
from the near two walls. . . . . . . . . . . ... .. ... 116
A.24 Sonar readings from a 90 corner 225cm from the sensor and x=y=152.0cm
from the near twowalls. . . . . . . . . ... ... ... ... .. 116
A.25 Sonar readings from a 90 corner 250cm from the sensor and x=y=176.8
from theneartwowalls. . . . ... .. ... ... ... ... ... .. 117
A.26 Sonar readings from a 90 corner 275cm from the sensor and x=y=194.5cm
from the near twowalls. . . . . ... ... ... ... ... ... 117
A .27 Sonar readings from a 90 corner 300cm from the sensor and x=y=212.13cm
from thenear two walls. . . . . . . . . . ... ... L. 117
A.28 Sonar readings from a 90 corner 325cm from the sensor and x=y=229.8cm
from thenear twowalls. . . . . .. .. ... ... ... ..., 118
A.29 Sonar readings from a 90 corner 350cm from the sensor and x=y=247.5cm
from the near two walls. . . . . . . . . . ... ... L. 118
A.30 Sonar readings from a 90 corner 370cm from the sensor and x=y=261.6cm

from the near two walls. . . . . . . . . . . . . ..o 118



Chapter 1

Introduction

1.1 Mobile Robots

A robot is a mechanical device equipped with different types of sensors working under
a certain architecture. The data obtained by the sensors are send to the processor.
A new stream of data is created by the processor then send to the controller which
gives certain commands to the actuators to do some functions suitable for the robot’s
task. There are various types of robots such as: a manipulator arm, multiple arm,
a multi joint multi-fingered hand, wheeled or legged vehicle, free-flying platform, or
a combination of these and each has its own tasks [1]. Mobile robots depend on
their movements, either translation or rotation or both of them, to perform different
tasks such as: patrolling warehouses and storage areas, transporting materials, and
fighting fires. Mobile robots should perform their tasks without the interface of the
humans. Our study is concerned only with mobile robots.

Sensors are one of the most important components of the robots. Their im-

portance for robots is the same as the eyes, ears, etc, for the humans. With these



sensors, robots have the ability to wo.rk in unknown environments and replace hu-
mans when the workplace is not safe. Moreover, they give the robots more flexibility;
without them the robot can work in a limited fashion. For example it can perform
repetitive task in a well controlled workplace. However, robots should automatically
decide what motions to execute in order to achieve a specific task.

There are various researchers who are trying to build robots and furnish them
with different sensors to reach fully autonomous capabilities. The resulting robots
countered some problems due to limited computational resources, communication,
and sensors’ uncertainties. To work on a reliable mobile robot becomes an elusive
dream for most researchers. The problems facing mobile robots developers come
from the fact that the robot must interact with the objects that make up the en-
vironment. They must be able to move from a known location to a goal location
without any contact with stationary or moving objects. To do this, the robots
must be equipped with certain types of sensors that sense the robots’ surroundings.
Furthermore, they must be equipped with techniques to represent this information
in short time by using the limited storage and computational resources of mobile
robots. These kinds of sensors are called proximity sensors or time-of-flight (TOF)
range finders. There are many types for these sensors such as ultrasonic or sonar
sensors. infrared sensors, and laser range finders. TOF ranging systems measure the
traveling time needed for a pulse of emitted energy to detect a reflecting surface,
then return back to a receiver. Then the distance is obtained from the measured
traveling time (round-trip time) and the velocity of the energy wave. Nowadays
many researchers are using sonar sensors on their mobile robots. This is generally
due to the low cost of these sensors, and the ease with which the sonar data can

be processed directly to provide range information. Moreover, the range of sonar



sensors is better when compared to infrared sensors and they are inexpensive when
compared to laser range finders. All TOF systems are useful only over a finite range
interval, in other words, they are suitable for indoor environments. The operation
of mobile robots in an outdoor environment adds more challenges to their tasks.
For example, the robots need more sophisticated systems such as GPS for location
information and some types of large scale range finders that can detect far obstacles.
In addition, these new capabilities may add more expenses [2].

Unfortunately, sonar sensors have many drawbacks such as beam width, which
causes uncertainty in the direction of the detected objects. In addition, some envi-
ronmental factors and the angular uncertainty in the sonar readings cause an error
in the measured distance itself. There is also the phenomenon known as false reflec-
tions that result from detecting mirror like reflectors that cause the energy beam
to detect near objects and then go to the receiver, which means big error in the
round-trip time [3]. A more detailed discussion about drawbacks of sonar sensors
will be presented in Chapter 2. The uncertainty in sonar readings are often modeled
by probability theory [4]. In this study we present a novel approach for modeling
the uncertainty in sonar sensors by using possibility theory. In the next section, a

literature survey of using sonar sensors on mobile robots is presented.

1.2 Literature survey

There are always three questions facing a mobile robot going to navigate in a certain

environment:
e What is my current location?

e What is my goal location?



e How can [ go there?

The first question is concerned with the location of the robot at any time while it
is moving or stationary. The second one deals with planning and tasking, and the
third one is about local and global path control [5].

A mobile robot requires a navigation system to determine a reasonable path
to its goal based on the information gathered about the crossed environment.

G.Honderd et al. [6] introduce a method for generating a path for a mobile
robot between two known points in the robot’s environment, the starting point and
the goal point. The method depends on a combination between two image processing
steps, skeleton extraction and distance transformation. It was a assumed that the
robot has a map of the working environment. The map is discretized, that is the
operation area is divided into grids of standard size, to which the robot is either
allowed entrance (bit value 0) or is not (bit value 1). Their robot was equipped with
two types of sensors: collision sensors ( tactile sensors) and ultrasonic sensors. The
collision system consists of 8 tactile sensors placed on the radius at equal angular
distances, and the ultrasonic system consists of four sensors, two are lined in the
front and the others are lined in the back. If an obstacle is detected by these tactile
sensors the robot starts to rely on sonar sensor to avoid the obstacles and go through
a new generated path. The new path is generated between the goal point and the
most close reference point near the detected obstacle.

Cho and Lim (7] suggest a path planning method for a mobile robot inside an
unknown environment based on certainty grid method. Certainty grids method is
a probabilistic, finite-element representation of the robot’s spatial knowledge, often
called the “Occupancy Grids”. The authors introduced a new sensor updating model

based on Bayesian formula. By using this model they were able to identify occupied



cells and empty cells while the robot is moving. The cells in the sensor footprint can
be numbered and arranged according to their distance from the sensor. The cells at
the sensor wedge front fall into the occupied region, and those inside the wedge into
the empty region. The probability that a certain cell is occupied or empty can be
estimated and updated based on the position of the cell from the sensor location, and
the angle from the centerline of the sensor wedge. The proposed method depends on
a large number of sonar readings in one scan. The authors used a simulated model
for mobile robot equipped with 24 sonar sensors each is 15 degree apart.

Beaufrere and Zeghloul [8] analyze the robot’s environment by using a limited
number of distance information. The analysis was used for navigation algorithm
that uses fuzzy logic approach. In the beginning the robot has no information
about its surroundings. It starts to colleét distance information by using 12 sonar
sensors placed on the horizontal front of the rectangular base of the mobile robot.
The available information from the sensors is not enough to describe the environ-
ment in detailed fashion. More knowledge about the environment can be obtained
by analyzing the available information. This can be done by comparing the dis-
tance information provided by three successive sensors. It was shown that there are
three types of configurations; edge, vertex, and channel. Based on this information
Beaufrere and Zeghloul introduced a path planning algorithm that use fuzzy logic.

Demirli [9], and Demirli and Tiirksen [10] use GMP with multi antecedent
decomposition to make navigation decisions. This navigation method starts by
identifying the closest obstacle in the environment, approaching this obstacle, then
follows the boundaries of the obstacle without collision. The distance and the direc-
tion of the obstacle (antecedents) are identified by using fuzzy sets such as too-far,

to the right, etc. The robot’s actions also are described by fuzzy sets such as turn



left, turn Tight, etc.

Freedman and Liu [11] use sonar readings to make perceptual hypotheses about
the environment. The authors propose modeling the uncertainty in sonar readings
by using fuzzy sets. The readings obtained by the sonar can be label as short,
medium, or long, where these labels were presented using three non-overlapping
intervals between 0 and 1. They consider that these readings are coming from an
object as if the acoustic beam was very narrow. This uncertainty model was used
with fuzzy inference mechanism to decide the location of an obstacle to the left or
to the right of the robot.

The other use of sonar sensors in mobile robot applications is map building.
A conventional sonar map can be built from a set of points representing the dis-
tances from the sensors to the boundaries of the environment’s objects. Building
a world model from sonar data is a complex task [12]. A single sonar reading pro-
vides information about a larger area with a wide beam spread, but the uncertainty
in the directions of the reflected points are correspondingly high. The uncertain
data introduce uncertainty into the environment map, and increase the difficulty of
navigation tasks. To use sonar data the environment is assumed planner.

Flyn [13] use two types of range finders, infrared sensors, and sonar sensors
on a mobile robot for map building. The two sensors were coupled to produce data
that are better for building the map than if the sensors were used individually. The
sonar sensors measure the distance to an object, but has poor angular resolution due
to its beam width. In contrast, the infrared sensors, have good angular resolution
in detecting the absence or the presence of objects. By using both sensors to scan
the environment, as shown in this study, the robot is able to build a good map of

its environment.



Bozma and Kuc [14] propose a method for building a map depending on the
characteristics of the echo signals reflected from the environment’s boundaries. The
proposed method depends on differentiating between smooth, moderately rough,
and rough surfaces based on the echo energy and echo duration of the detected
signal. The echo energy and echo duration maps of a certain environment were
built from different places and then integrated to build the global map. In another
study Kuc et al. [13] introduce a method for mapping a certain environment based
on the characteristics of the echo returned from planes, corners, and edges.

A sonar sensor made of one transmitter and two receivers was used for mapping
an environment by Nagashima and Yuta {16]. By computing the difference in the
time of flight (TOF') between left and right rercivers, the inclination angles and the
surface normals of the walls inside the environment were determined. While the
robot was moving, local maps were built which consists of the normal directions
of the walls detected from the current locations of the robot. A global map was
constructed from different local maps. The starting location of the robot was known
in the environment.

Fuzzy sets are used by Poloni and Vendittelli {17] for map building. The
environment can be represented by grids with certain dimensions. Fuzzy sets were
used to characterize these grids as occupied or free. The grid state can be determined
by projecting the sonar model iteratively on the grids given that the position and
the orientation of the grids is known from the sensor location. Several measures
are taken from different known points in the environment, then the global map is
reconstructed.

Sonar sensors are widely used for mobile robots localization in the literature.

Localization is an important issue for mobile robots. Before doing any task, the robot



must be able to determine its initial location inside its environment. A dynamic
localization method is introduced by Crowley [18] for a mobile robot navigating
a known environment. That is, the initial position in the environment is known.
The method depends on extracted line segments from sonar data and then match
them with the given global map. The iine segments were extracted from sonar
readings by using Kalman filter. The model used for modeling the uncertainty in
sonar readings considered that the echo detected by the sensor is coming from an arc
shaped region. The arc radius represents the uncertainty in the measured distance
and the arc length represents the uncertainty in the angle of the detected point.

A method for robot localization based on 360° scan of the environment while
the robot is stationary was introduced by Drumheller [19]. In this method the
possible matches between the environment model and the sonar contour obtained
from the scan were determined, then possibilities that are inconsistent with the fact
that beam can not penetrate solid objects, this is referred to as (sonar barrier test),
were excluded. This method is capable of dealing with clutter and moving objects
while the robot was scanning the environment.

Demirli and Turksen [20] [21] use fuzzy triangulation technique to determine
the location of a mobile robot based on only sonar readings. The method consists of
two parts; the first one is called initial localization. In this part the main issue is to
determine an approximate location of the robot in the environment after matching
the sonar readings with a real map of the environment given to the robot. This part
is necessary when the user doesn’t have any information about the initial location
of the robot, and also it is important when the robot is lost. The second part is
called detailed localization, in which the robot location uncertainty can be reduced

to a fuzzy region. This fuzzy region identifies different locations of the robot each



with a degree of certainty or confidence. This region is determined based on the
combination of two fuzzy sets each representing the location of the robot from a
wall in the environment. This method is the only one which considers the problem
of angular uncertainty in sonar readings.

Saffiotti and Wesley [22] introduce a perceptual based localization using fuzzy
sets. The perceptual-based localization techniques depends on the matching be-
tween fuzzy perceptual clues built by the robot while navigating and current clues
extracted by the robot. The results of the match are represented by fuzzy sets,
and an approximate location of the robot is determined. This method was applied
in long scale environments such as corridbrs. A similar approach was presented in
[23]. In this approach the robot describes an object in the environment based on
four sonar readings obtained from this object. The uncertainty in the measured
distances is represented by using trapezoidal fuzzy sets which are constructed based
on confidence intervals. In this study the angular uncertainty in sonar readings is
not considered.

Different types of sensors; sonar sensors, infrared, and wheel encoders, are used
by Curran and Kyriakopoulos [24] for localization. Extended Kalman filter was used
to combine the sensors readings and the information from the known map of the
environment. The uncertainty in wheel encoders and sonar sensors is represented
by Gaussian distribution.

Beom and Cho [25] include two cylinders having different diameters in the
environment to determine the location of the mobile robot by triangulation. The
sonar readings obtained from scanning the environment were used to detect the
presence of the cylinders, then from the position of the cylinders in the environment,

the robot can determine its location. For this method to work, the presence of the



two cylinders within the scan is a must.

Malik and Polkowski [26] estimate the location of a mobile robot based on
corner detection by using a vision system. However, vision systems are not practical
because they need time to process the collected information. An image consists of
huge amount of information that describes the objects inside the robot environment.
Moreover, there are huge numbers of relations between these objects to be calculated.
For the issue of localization this huge amount of information is not necessary.

In the literature, the uncertainty in sonar readings is often modeled by using
Probability Theory. However, the probabilistic approach is valid when precise knowl-
edge is available which is not the case of the sonar sensors. Different approaches
were used for corner detection such as: vision systems [26] and signal processing
methods [27]. These approaches require more time for processing the data to detect
the corner. Moreover, localization for mobile robot based on corner detection is not
often used because of the large errors in the sonar readings obtained from a corner.
In this thesis, the behavior of sonar readings reflected from walls and corners are
studied, then new models of angular uncertainty and radial imprecision for sonar
readings obtained from corners and walls are proposed. These models are repre-
sented by using possibility theory, mainly possibility distributions. These possibility
distributions are used for estimating the initial location of a mobile robot, Pioneer 1,
inside a known environment. Pioneer 1 has seven sonar sensors; five in the front, one
on the left side, and one on the right side. By combining the information obtained
from these sensors, the initial location is estimated based on a corner and wall detec-
tion. This is referred to as stationary localization. Since any environment consists
of more than one corner, this initial location has more than one possibility. The

robot must move in its environment to collect new pieces of evidence that reduce
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these possibilities and estimate the current location of the robot. This is referred to

as dynamic localization.

1.3 Outline of the Thesis

In Chapter 2, the physical principle of sonar sensors is reviewed. In addition, the
factors that affect the sensors’ performance are discussed. In Chapter 3, uncertainty
modeling theories, including possibility theory, are reviewed. This is followed, in
Chapter 4, by using possibility distributions in modeling the angular uncertainty and
the radial imprecision in sonar readings reflected from walls and corners. In Chapter
5 these possibility distributions are used in stationary and dynamic localization for

Pioneer 1. The discussion and conclusions are presented in Chapter 6.
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Chapter 2

Ultrasonic Transducers

2.1 Time of Flight Measurement (TOF)

Most conventional sonar ranging systems employ a single transducer that acts as
both a transmitter and receiver. Acoustic signals are scattered whenever a change
in the acoustic impedence is encountered- by propagating pulse. The acoustic im-
pedence is a product of the density and the speed of sound of the medium. The
propagation medium for mobile robots is the air, which has a very small acoustic
impedence, and all solid objects exhibit much greater impedence values. Hence
whenever any obstacle is encountered, acoustic scattering occurs. After the trans-
mitted pulse encounters an object, an echo may be detected by the same transducer
acting as a receiver. The waveform of a typical echo observed at the output of the
detection circuit is shown in Figure 2.1. A threshold level, denoted 7, is included
to suppress erroneous readings generated by electronic or acoustic noise. A TOF
system produces a range value computed from the time the echo waveform first

exceeds the threshold. This is shown to occur at time ¢, in Figure 2.1. A range
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measurement R, is obtained from round-trip time-of-flight by [28]:

ct,
Ro = ? (2.1)

where c is the speed of sound in air, equal to 343 m/s at room temperature. The min-
imum range of the transducer is determined by the time required for the transducer
to switch from being a transmitter to a receiver and allowing the large transmit
voltage transients to decay below the threshold value. On the other hand, the max-

imum range is usually determined by the range after which no echo is detected by

the receiver.

Amplitude

O A 10 1 0 O N esho

Figure 2.1: Typical echo produced by exciting the ultrasonic transducer with a
short-duration voltage pulse.

Sound results from a vibratory mechanical perturbation that travels through
an elastic medium as longitudinal wave. Each medium has its effect on the propaga-
tion speed of the sound waves. For example the speed of sound in the water is more
than its in the air. The wave length of acoustical energy is directly proportional to

the speed of propagation as shown below [29]:
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(2.2)

| ®

where:

A = wavelength
s = speed of sound

f = operating frequency.

2.2 Factors affecting ultrasonic sensors behavior

The performance of ultrasonic ranging systems is significantly affected by environ-
mental phenomena, transducer design, and target characteristics, as are discussed

below.

2.2.1 Environmental Phenomena

1. Atmospheric Attenuation:
The power of the acoustical wave decreases as the traveled distance increases.
The following equation represents the relation between the traveled distance

and the acoustic power [2]:

T wR? (2.3)

where:

I = intensity (power per unit area) at distance R
I, = maximum (initial) intensity

14



R = range

The medium has an effect on the power of the acoustical wave. This effect can
be represented by [2]:
I =[e %k (2.4)

where « is the attenuation coefficient for medium. The humidity and dust
content of the air affect the value of & as well as the operating frequency does.
The maximum range that can be detected by the ultrasonic transducer is de-
pendent on both emitted power and the frequency of operation. By combining

the above two equations, the governing equation for intensity can be described

by [2]:
Ioe—2aR
" 4w R2

This equation shows how the intensity changes as a function of square of

(2.5)

the distance R. This means that the error in the sonar readings is distance
dependent. The farther the distance the larger the error. This is one of the

many factors that affects the radial imprecision of sonar sensors.

. Air Turbulence:

The variation of wind in the direction and speed, especially in outdoor environ-
ment, can affect the speed and the direction of propagation of the acoustical
wave. The velocity of propagation of the acoustic wave increases if the wind
is in the direction of propagation and decrease if the wind is against the direc-
tion of propagation. Cross wind component must be taken into consideration
in addition to the component parallel to the path of the wave or against it.
Cross wind component forces the acoustic wave off its path causing longer
traveling distances, the error in the measured distance. This error is consid-

ered when the robot is working outside environments when this effect takes
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place. Therefore, sonar sensors are hardly used in outdoor environments.

3. Temperature:
The speed of sound in air is temperature dependent. Temperatures variations
occur in indoor environments. These variations produce error in the measured
distance. For example, there is an error of 1 foot if there is a change in the
temperature over a span of 60° to 90°F. This error can be encountered by
using a correction factor based on the ambient temperature, which can be

measured by an external sensor mounted on the robot.

The correction of range is based on the ambient temperature in the proximity
of the sensor. However, there is a possibility of temperature gradient between
the sensor and the target which means that there is existence of the error in
the readings still exist. In most industrial environment, where mobile robots
are working, this factor has a main effect on sonar readings. However, in office
environment, like our environment, this factor doesn’t have a great effect on

the sonar readings.

2.2.2 Transducer Design

When the radius of the transmitting aperture a is much larger than the acoustic
wavelength A, the radiation forms a beam as shown in Figure 2.2, in which the
acoustic energy is a directed beam. This type of transmitter is commonly modeled
by flat piston of radius a, enclosed in an infinitely large baffle that is vibrating at
frequency f. The beam pattern that is produced has two distinct regions: the near
zone and the far zone. The former extends from the face of the transmitter to a

2

range approximately equal to &. In the far zone, the angular distribution of the

energy in the beam is described by Bessel function, and the propagating pulse is
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considered to be a series of plane waves sweep across the aperture of the receiver.
In addition, in this region the beam diverges with half-angle 8, which represents the
first off-axis zero of the Bessel function. Half-angle 8, can be obtained from [30]:

_,0.61A

8, = sin (2.6)

where A = wavelength of the acoustic signal, and a is the transducer diameter. Since
the wavelength is frequency dependent, then the beam width so is. The higher the
frequency of the emitted energy, the narrower and more directional the beam, and
hence greater the angular resolution.

The presence of the beam width has a noticeable effect on the certainty of the
data obtained by sonar sensor. Firstly, the beam width adds radial imprecision in
the measured distances, which results from the fact that the beam is reflected from
the portion of the target closest to the sensor. Secondly, when there is an object
detected by the sensor, there is uncertainty in the direction of the detected object
from the sensor line of sight. Therefore, we can define two types of uncertainty
related to sonar sensors; radial imprecision , and angular uncertainty. In addition
to temperature changes, air attenuation, and air turbulence, the beam width has a

contribution in the the radial imprecision in the measured distances.

Figure 2.2: A possible beam pattern.

e Radial Imprecision:
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When a sonar sensor is directed perpendicular to a wall, the error in the
reading obtained by the sensor is mainly due to temperature variations, and
air attenuation. However, when the sensor directed in a certain angle from
the surface normal of the wall, the beam width starts to contribute in the
error in the sonar readings. In Figure 2.3 the beam is directed in an angle
from the surface normal of the wall, this angle is called the incidence angle.
The expected reading is |OB|, but due to the fact that the beam is reflected
from the portion of the target closet to the sensor, the reading obtained by the
sensor is |[OA|. The difference between the expected reading and the sensor’s
one is the radial imprecision. This error is affected by the value of the incidence

angle 6.

Wall Sensor

Figure 2.3: The effect of beam width on the sonar readings.

e Angular Uncertainty:
Due to beam width, there is uncertainty in the direction of the object detected
by the sensor [21]. It is impossible to determine the direction of the object from

the centerline of the sonar beam. But we can say that this object is within
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the beam width if it is detected by the sensor. Beam width causes problems
in navigation; it can cause small obstacles to appear wider, and openings to

appear closed as demonstrated in Figure 2.4.

Obstacles can be perceived o be wider than they are.

Opening can be perceived to be closed.

Figure 2.4: Beam spread can cause object surfaces to be blurred.

2.2.3 Target reflectivity

Surfaces can be classified as smooth, moderately rough, and rough surfaces [15]. This
classification is based on the Gaussian distribution of the surface irregularities, with
zero mean and standard deviation o,, and the acoustic wavelength A. For instance,
if o, << A, this surface can be described as smooth. Moderately rough surfaces have
os =~ A, and rough surfaces have o, >> A. In case of smooth surfaces, the angle
of reflection is equal to the angle of incidence. The detection of the reflected beam

occurs when it falls on the receiver element and produce a signal with an amplitude
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greater than the threshold 7. The detected part of the reflected beam is the one
that reflects from the portion of the probing beam that is perpendicular to the
surface. This kind of reflection is called specular reflection or mirror-like reflection.
In rough and moderately rough surfaces, part of the echo energy is scattered in
various directions because of surface irregularities. Therefore, the energy of the
echo reflected from smooth surfaces is more than the energy of the echo reflected
from rough surfaces. The reflection from rough surfaces is called diffuse reflection.
The surfaces in our environment are flat and smooth. Therefore, the acoustic waves
reflect in an angle that is equal to the incidence angle 6.

Each surface has a certain angle a.ffer which the sonar beam is not reflected
to the transducer. The reason for this effect is that the surface normal of the object
becomes out of the beam boundaries as the incidence angle of the sonar beam
becomes shallow as shown in Figure 2.5. This angle is called the critical angle and it
is a function of the operating frequency and the surface roughness. If a sonar reading
returns while the incidence angle is more than the critical angle of the surface, this
means that the reflected pulse may not be detected or it will be detected after
being bounced off some objects in the environment. This phenomenon is called
false reflections. In other words, false reflections occur when an object is detected
to be very far from its real location (see Figure 2.6). One method of eliminating
the possibility of a reading to be false reflection is to combine readings from two
consecutive sensors [19] [21]. If the two readings are close none of them is false
reflection.

In the next chapter, different causes of uncertainty are reviewed. Moreover,
traditional and new theories for tackling uncertain information are discussed. A new

procedure for modeling uncertainty in physical measurements by using possibility
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distributions is explained.

Wall

reflected beam

Senso

Figure 2.5: Scattering of the echo in different directions when the beam incidence
angle is more than the critical angle of the surface.
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Sensor

Wall

Figure 2.6: Sonar sensor gives a false reading after bouncing off other objects in the
environment
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Chapter 3

Uncertainty Modeling and
Possibility Theory

3.1 Introduction

Through the literature Zimmerman [31], Klir [32], and Dubois and Prade [33] dis-
cussed the “Uncertainty’and its causes in different ways. Zimmerman defines the
“Uncertainty” as “the case when one has quantitatively and qualitatively the appro-
priate information to describe, prescribe or predict deterministically and numeri-
cally a system, its behavior or other phenomend”. Anything is not described by this
definition shall be called“Uncertain”. Furthermore, Zimmerman introduces a clas-
sification of uncertainty causes based on the quality and quantity of the available

information. He classifies the causes of uncertainty as follows:

1. Lack of Information: This cause of uncertainty may be considered as the
most frequent one. For example, in decision logic, one calls “Decision Under
Uncertainty” the case in which a decision making process lacks information

about the possible states of nature that will occur. This kind of information
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which is not available can be considered as quantitative lack of information.
The counterpart of this kind of information lack is the qualitative one. In this
case, the decision making process has information about the probabilities for
the occurance of various states but it is not sure which state will occur, this is
called “Decision Making Under Risk”. “Approximation” is another situation
that can be described by lack of information. This depends on the presented
situation, for instance, one can consider that the available information is suffi-
cient for his/her situation and he/she does not have or does not want to gather
more information to make an exact description. Transition from a situation
of “Uncertainty” caused by a lack of information to a situation of “Certainty”
can be achieved by increasing the available information or collecting informa-
tion with better quality which depends on the situation. In our study, there is
a lack of information a bout the initial location cof the robot in the global map.
Because our method depends on detecting a corner and a wall, it is difficult
to decide which corner in the global map is detected. Therefore, the robot
must collect more information by navigating in its environment to reduce the

uncertainty in the initial location.

Abundance of Information (Complexity):

This is due to the capability of a system to process large amount of data in the
same time. To reduce the complexity, people tend to classify the available data
into understandable form by using coarser grid or rougher “granularity” or by
concentrating on the most important features and neglecting the not useful
information for that situation. To do so, especially in scientific activities, some
kind of “Scaling”is used. This scaling method is used in obstacle avoidance

behaviors. The readings obtained from the sonar sensors are classified in
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different ranges, then the robot rotation action is proportional to these ranges.
For example, if the obstacle is detected from a close region the robot rotation

must be very sharp.

. Conflicting Evidence: This situation occurs when the available information
describing two different behaviors of a system are conflicting. The reason
for this conflict may be the erroneous available information, it may also be
information of irrelevant features of the system is being used, or the model
which the observer has of the system is wrong. In this situation, correcting
the available information can make transition from “Uncertain” to state of
“Certain”. False reflection phenomenon is a good example of conflicting pieces
of evidence. When the readings of two sonar sensors detecting the same object
are very far, this means that the information provided by one sensor is not

right.

4. Ambiguity: Ambiguity is a situation in which certain information has differ-

ent meaning based on the situation. From mathematical point of view, it is
the situation in which we have one to many mapping. This type of uncertainty
can be classified under lack of information because adding more information

about the situation may put us in a situation closer to certainty.

5. Measurement: Measurement means describing the physical properties of a

system or objects such as; weigh, temperature, length, etc. The precision
of the measured quantity depends on the accuracy of the used tools. The
quality of measuring technology has increased with time but it hasn’t reached
the perfection. In this situation we have uncertainty about the real measure

and the only available information is the indicated measure. This type of
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uncertainty may be classified as lack of information.

. Belief: This cause of uncertainty appear when subjective information is avail-
able as a kind of belief in a certain situation. This belief is built by an observer
from past subjective information about the system (expert) or by statistical

data about the system.

Klir [32] found that there are six definitions of “Uncertain” in the dictionary:
not certainly known, questionable, problematical;

vague, not definite or determined;

doubtful, not having certain knowledge, not sure;

ambiguous;

not steady or constant, varying;

liable to change or vary, not dependable or reliable.

When a more detailed investigation about these meanings was done, Klir found

that uncertainty can be captured by two classes; vagueness, and ambiguity. The

former is related to the difficulty of making sharp or precise distinction in the world.

The latter is associated with one-to-many relations, which means situations with

two or more alternatives in which the choice between them is left unspecified. In

addition, Klir introduced a recent definition of uncertainty based on its connection

with the information theory. The most fundamental aspect of this connection is

that uncertainty included in any situation is a result of some information deficiency.

Information may be incomplete, imprecise, fragmentary, not fully reliable, vague.

contradictory, or deficient in some other way.
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Dubois and Prade [33] state that imprecision and uncertainty can be consid-
ered as two complementary aspects of a single reality, that of imperfect information.
It has been observed that much of this information often cannot be obtained as
precise and definite numbers for various reasons; imperfect measuring instruments,
the fact that the sole source of information is a human being, and the information is
imprecise, incoherent, and in any case incomplete. Dubios and Prade could clearly
distinguish the concepts of imprecision and uncertainty: imprecision is associated
with the content of a piece of information, while uncertainty is associated with its
truth. Uncertainty can be judged by means of different qualifiers such as probable,
possible, or necessary. Probable has two different meanings, one is related to statis-
tical experiments, and the other is related to a subjective judgment. Like probable,
possible has two interpretations: physicai (as a measure of material difficulty of
performing an action), and subjective judgment. On the other hand, necessary has
much stronger notion, in either the physical or the subjective sense. A piece of infor-
mation will be called precise when the subset associated with its value or component
cannot be subdivided. There are different qualifiers associated with imprecision, for
example, vague, fuzzy, or ambiguous. Ambiguity is allied to language. But vagueness
or fuzziness in a piece of information resides in the absence of clear boundary to the
set of values attached to this piece of information.

From the above overview about uncertainty and it causes it is our opinion that
Dubois and Prade’s definition of uncertainty is more comprehensive and practical
than the others. The readings obtained from sonar sensors contain imprecision in
their values and uncertainty in their directions. The imprecision results from the
factors that are affecting the behavior of the sound waves in the environment. Thus,

the information provided by the sensor is not precise. The direction from which the
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sonar readings are obtained, belongs to the field of view of the sensor, but with
a degree of truth. Therefore, there is uncertainty in the direction of the reflected

beam.

3.2 Types of available information

There are four types of information; numerical, linguistic, interval-valued, and sym-

bolic.

1. Numerical Information: Some systems can be described by numbers, but
since there are different sources of information, it is not enough tc accept only
the numbers. but they must be related to a certain scale. There are five types
of scale levels; nominal, ordinal, ratio, interval, and absolute scale level. For
our scope of research it is enough to distinguish nominal, ordinal, and cardinal
scale levels. On the nominal scale level, the number provided only has the
function of a name (label). For example, when a distance is defined as far or
too far. On the ordinal scale level, the provided numbers are in an ordering
type. Finally, on the cardinal scale level the numbers indicate the differences
between the ordered quantities. In our study we are using the ordinal scale
to represent the imprecision in the sonar readings, and the uncertainty in the
incidence angle. The information about the incidence angle is available in
the form of interval information. These intervals represent the range of the

incidence angles of the sonar beam that guarantee the reflection of the beam.

N

Interval-Information: In this case the available information is described
over a certain range. In other words, this information is valid over a certain

interval on the ordinal scale.
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3. Linguistic Information: This means that the available information take the

form of the natural language and is not in the formal language.

4. Symbolic Information: Sometimes information is introduced by symbols.
There are different ways to introduce these symbols, either by numbers, letters,
and pictures, or by words. The words is not obvious as the other three types
because it is known that words have natural meanings while the others do not

have.

The types of available information in our study, obtained from sonar sensors,

are numerical information and interval information.

3.3 Modeling of Uncertainty

3.3.1 Traditional Models for Uncertainty

Traditionally, two methods of representing imperfect information are available: prob-
ability theory and what is known as interval analysis. Probability theory is a tested
mathematical theory: it has a clear set of axioms and it has has been developed
extensively. The basic axiom in probability is that the probability of disjoint events
can be added. There are three schools that interpreted probability theory in dif-
ferent ways. The first school interpretation is based on “Calculus of Chances” in
games of chance, where the probability of an event is defined as proportion between
the number of favorable cases to the toté.l number of possible cases. The second
interpretation belongs to what is known as “Frequentist School” in which the prob-
ability of an event is defined as limit of the frequency of appearance of this event.

The third school is called “Subjective School”, by whom the probability is defined as

29



proportional to sum an individual would like to pay if a proposition that he asserts
prove false.

Interval analysis, used extensively by the physicist, tends to represent the
inaccuracy in a measuring instrument, in the form of interval, through the measured
quantity. Mathematically, one evaluates the image of a function whose arguments
are subsets. Interval analysis has no gradation: while one does not know the exact
value of a parameter, one does know the exact limits of its domain of variation.

It commonly occurs that imprecision of the error-of-measurement kind is present
at the heart of a series of trials intended to exhibit a random phenomenon. In such
a case it can be observed that one can hardly represent the information in a purely
probabilistic form without introducing further hypothesis. In fact, a hypothesis
fundamental to the applicability of probability to statistics is that there should be
relation between the sample space and the event space: to every event there is an
associated the set of sample points that realize it( which is nonempty if the event
is not impossible), and for every point of distinct events there is at least one sam-
ple point that realizes one but not the other. This hypothesis therefore allows the
sure event to be partitioned into elementary events, each corresponding to a specific
sample point. In the case of collection of statistical data, this amounts to supposing
that there is a nontrivial partition of the set of realizations such that the result of
each experiment can be associated with one and only one element of this partition.

A probabilistic model is suitable for the expression of precise but dispersed
information. Once the precision is lacking, one tends to question the validity of the
model. Because sonar readings are imprecise, probability model is not suitable to

represent this imprecision.
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3.3.2 New Methods for Modeling Uncertainty

Nowadays, non-probabilistic mathematical methods for the representation of uncer-
tainty are developed. Klir {34] calls these methods “ General Information Theory
(GIT)”. GIT consists of fuzzy sets, systems, and logic; fuzzy measures; random set
and Dempester-Shafer evidence theory; possibility theory; imprecise probabilities;
probability bounds; rough set theory; and others. The importance of such theories
become evident when used in engineering applications. Fuzzy systems theory is the
most prevalent component of GIT, and until recently possibility theory has been
tightly linked to fuzzy systems [35]. Traditional fuzzy semantics is based on the
interpretation of fuzzy sets as representations of human, cognitive categories. The
other components of GIT are measurement methods other than cognitive modeling.
Semantics of possibility theory beyond the traditional fuzzy semantic has been ex-
tended to include the modeling of complex systems without regard to the presence

of human, cognitive agent.

3.4 Fuzzy Measures

Definition 1 (Fuzzy Measure) Given a universal set Q and the set of all its crisp

subsets (power set) P(1), a function

g: 'P(Q)A — [0,1]

is defined such that g(A) indicates the degree of certainty that an element of Q
belongs to a certain crisp set A. In order to achieve this purpose, function g must

meet the following requirements:
® g(¢) =0and g() =1
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e forall A, Be P(Q), if AC B, then g(A) < g(B).

The first requirement is called boundary requirement and it says that, the
empty set does not contain any element, therefore, it cannot contain the element
of our interest, either. On the contrary, the universal set, contains all elements,
therefore, the presence of our element in the universal set is sure. The second
requirement is called the monotonicity requirement, which states that the evidence
of the membership of an element in a subset of another set must be smaller or equal to
the evidence that the element belongs to the big set itself. Since both ANB C A and
AN B C B for any two sets - and B, it follows from the monotonicity requirement

of fuzzy measures that the inequality:
g(A N B) < min[g(A), g(B)] (3-1)

is satisfied for any three sets A, B, AN B € P(). Similarly, since both A C AU B
and B C AUB and B C AU B for any two sets, the monotonicity of fuzzy measures

implies that the inequality
g(AU B) = max(g(4), g(B)] (3.2)

is satisfied for any three sets A, B, AU B € P(Q).

3.5 Evidence Theory

Evidence theory is based on two dual non additive measures: belief measures and
plausibility measures. Given a universal set (, assumed here to be finite, a belief

measure is a function:

Bel : P(Q) — [0, 1]
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such that Bel(¢)=0, Bel(2)=1. and
Bel(AiU 42U ... UA,) > ¥, Bel(A;)
— S Bel(A; M A) + ...+ (=1)""'Bel(A; N A, N...N Ap) (3.3)
i<k
Foreach A € P(Q), Bel(A) is interpreted as the degree of belief that a given element
of Q belongs to the set A.

When the sets A;, ds,....4,, in equation (3.3) are pair-wise disjoint, the
inequality requires that the degree of belief related to singleton sets. In this case the
belief measure becomes a probability measure. This means that probability measures
are special cases of belief measures for which the equality in (3.3) is always satisfied.

Equation (3.3) implies the monotonicity requirement of fuzzy measure, then

the following fundamental property of belief measures can be defined [34]:
Bel(A) + Bel(A) <1 (3.4)

Another measure called the plausibility measure PI is coupled with the belief mea-

sure, and it can be defined by the equation

PI(A) = 1 — Bel(A) (3.5)
for all A € P(Q2). Similarly,

Bel(A) =1 — PI(A) (3.6)

From the above equations it is shown that Belief measures and Plausibility measures
are mutually dual. But Plausibility measures can be defined separately from Belief

measures. Therefore, a Plausibility measure is a function
PI : P(Q) — [0,1] (3.7)
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such that PI{¢) =0, PI(Q?) = 1. and
PI(A,N A0 .. .0 A,) < 55 PI(A4;)
— > PI(A;Ude) + ...+ (-1)"'PI(4, U AU ... U Ay) (3.8)
j<k
then, similar to (3.4)

PI(A) + PI(A) > 1 (3.9)

Belief and Plausibility measures can conveniently be defined by a function

m : P(2) — [0,1] (3.10)
such that m(@)=0 and
Y. m(A4) =1 (3.11)
A€P(Q)

This function is called a basic probability assignment. For each set A € P(Q),
the value m(A) express the degree to which all available and relevant evidence
emphasizes the claim that a certain element of Q2 belongs to set A. This value m(A)
associated with only one set A does not represent any additional claim regarding
subsets of A. If there is some additional information strengthening the claim that
the element belongs to a subset of A4, say B C A, it must be expressed by another
value m(B).

Even though there is a similarity between equation (3.11) and the equation for
probability distribution function, there is a fundamental difference between them.
The latter is defined on 2, while the former is defined on P(Q2).

Basic probability assignment has the following properties:
e it is not required that m(Q2) = 1;

e it is not required that m(A) < m(B) when A C B; and
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e no relationship between m(A4) and m(A) is required.

It follows from these properties that the basic assignments are not fuzzy measures.
However, given a basic assignment m, a belief measure and a plausibility measure

are uniquely determined for all set 4 € P(Q) by the formulas

Bel(A)= > m(B) (3.12)
B|IBCA

PI(A)= Y m(B) (3.13)
BlANB#0

From equation (3.12), m(A) and Bel(A) has the following meaning: m(A)
represents the degree of evidence or belief that an element belongs to the set A
alone, and Bel(A) represents the total evidence or belief that the element belongs
to A as well as to the various special subsets of A. The plausibility measure PI(A), as
defined in (3.13), has a different meaning: it represents not only the total evidence
or belief that an element belongs to set A or to any of its subsets, but also the

additional evidence associated with sets that overlap with A. Hence,
PI(A) > Bel(A) (3.14)

for all A € P(£2). '

Every set A € P(Q) for which m(4) > 0 is usually called a focal element of
m. Focal elements are subsets of £ on which the available evidence focuses. When
Q) is finite, m can be fully characterized by a list of its focal elements A with the
corresponding values m(A). The pair (F,m), where F and m denote a set of focal
elements and associated basic assignment, respectively, is often called a body of
evidence.

Total ignorance is expressed in terms of the basic assignment by m(Q2) = 1

and m(A) = 0 for all A # Q. That is, we know that the element is in the universal
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set, but we have no evidence about its location in any subset of Q2. It follows from
(3.12) that the expression of total ignorance in terms of the corresponding belief
measure is exactly the same: Bel(2) = 1 and Bel(A) = 0 for all A # §2. However,
the expression of total ignorance in terms of the associated plausibility measure is
quite different: PI(¢) = 0 and PI(4) =1 for all A # ¢. This expression follows

directly from 3.13.

3.6 Possibility Theory

Possibility theory is a special branch of evidence theory that deals only with bodies
of evidence whose focal elements are nested. Special counterparts of Belief measures
and Plausibility measures in possibility theory are called Necessity and Possibility
measures, respectively. Let a given finite Body of evidence (F,m) be nested. Then,
the associated belief and plausibility measures have the following properties for all

A, B € P(Q):

Bel(AN B) = min[Bel(A), Bel(B)] (3.15)
PI(AU B) = max[Bel(A), Bel(B)] (3.16)

Since necessity measures are special Belief measures and Possibility measures

are special plausibility measures, they satisfy equations (3.4) - (3.6) and (3.9).

Hence,
Nec(A) + Nec(4) <1 (3.17)
Pos(A) + Pos(A) > 1 (3.18)
Nec(A) =1 — Pos(A) (3.19)
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Furthermore, it follows immediately from (3.15) and (3.16) that
min[NVec(4), Vec(4)] =0 (3.20)

max[Pos(4), Pos(4)] =1 (3.21)

3.7 Possibilistic approach for modeling uncertainty

in physical measurements

When we need Possibilistic data, it is almost always preferable to collect them
in a form similar to their Possibilistic representation. Thus objective empirical
measurement procedures are required that yield data in accordance with semantic
aspects of possibility theory. The additivity of frequency data results from the
specifity of observations of singletons. Therefore, we need non-specific data which are
possibly non-disjoint, and thus not yielding traditional frequency distributions. This
is the concept of set statistics. Joslyn Cliff [36] used interval valued set statistics,
obtained from studying a certain physical phenomenon, and then their empirical
random sets, to develop a method for constructing possibility distributions in the

form of Possibilistic histograms [37] [38] [39] [40] [36] [41].

3.8 Possibilistic measurement

To derive a possibility distribution from an empirical source, it is necessary to ob-
serve subsets B, C €. These subsets are called general measuring record as defined

below:
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Definition 2 (Measuring Record) A general measuring record is a vector

B:=(B,) = (B, Ba,...,Buy)

where 1 < s < M, and B;’s are subsets of .

Definition 3 (Empirical Focal Set) Given a general measuring record B, let
.FE = {Bs} = {BL,BQ,. ..,BN}

be an empirical focal set derived by eliminating the duplicates from B, where:

1<j<N,N<M,VB; e FE 3B, € B, B, = B;.

Definition 4 (Set-Frequency Distribution) Given a general measurement record
B and empirical focal set FE, C; := C(B;) is the number of occurrences of Bj in B

VB; € FE. Then a set-frequency distribution is a function mE : F€ — [0, 1] where:

mE(B]-) = E:?E, mf = mE(B]-).

Definition 5 (Random Set) Given an evidence function m, S = {(Bj,m;) :

m; > 0} is a finite random set where B; C Q2 and m; := m(B;)

The mathematics of the random sets is complicated, but for our purposes, and
especially in the finite case, they can be seen simply as random variables taking

values on subsets of Q.

3.9 Possibilistic Histograms

Possibility distributions derived from consistent empirical random sets can be prop-
erly described as Possibilistic histograms, similar to ordinary (stochastic) histograms,
but resulting from overlapping interval observations, and thus governed by the math-

ematics of random sets.
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Definition 6 (Possibilistic Histograms) Assume S® is consistent, or is a con-
sistent approrimation. Then a Possibilistic histogram is the possibility distribution

r determined from the plausibility assignment formula (3.13).

The Possibilistic histogram can be obtained as follows:

rw) = S mE = Z5,30C) (3.22)

B, 5w M

Definition 7 (Empirical Focal Set Components) Let Q = R, and assume a

random set SE.

e Let each observed subset B; € F£ be closed interval denoted by its endpoints

B; = [lj, 7]

e Let [; and r(j) be the order and “reverse order” statistics of the left and right

end points, so that
loyy<lgy <... <y, Ty Srv-1 <--- ST() (3.23)
are permutation of the {;, r;.

e Denote the vectors of endpoints and ordered endpoints as

El = (l]_,l2; .- -1lN>1

s

To= (rlrr'Z’""rN)y
E:= (llleP"71N7r1)r21--‘er>1
E:=(

l(1)7 1(2)3 LR l(N): T(N)» T(N=1)s---» r(l))'
e If FF is consistent then

1. max; lj = Z(N) < TNy = minj Tj,

so that C(ﬂ') = [l(N), T(N)].
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2. the joint linear order on Eis
ly <l <...Swy Srvy STv-py $--. ST (3.24)
Definition 8 (Possibilistic Histogram Components)

o Let
E := {ex}, Et:={e,}. E™:={e}
be the sets of endpoints with duplicates omitted from E, E! and E™ respec-
tively, and ordered as in ( 3.24), where
Ver € E, Vel € ET, Vel € E',

l<k<Q:w=|E, 1<K<Q:=|E|, Q :=|E|>k>1,
so that E=E'UE™ and Q'+ Q™ = Q.

e Let
lex, ex+1) ek, ex+1 € E!
G == [ek, ek+1] er € E', er+1 € BT
(e, 6k+1] er, ek+1 € ET.

for1<k<@-1

e Let

T = {{z,y) e R x [0,1] : € Gk, y = 7(z)}.
forl1<k<@-1

e For an interval I € R and y € [0, 1], let m() = y denote that Vz € I, n(z) = y.

For more explanation see the example in section 3.9.3.
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Definition 9 (Possibilistic Histogram Form) If 7 is a Possibilistic histogram,

then
1. C(m)=[efy, ef-], is the core of the possibility distribution .
2. U(m)=[e!,e]]=UZ Gk, is the support of the possibility distribution 7.

3. m([ -00, e}))=m((e}, o0 |)=0.

3.9.1 Continuous Approximation
Definition 10 (Continuous Approximation) Let T be a continuous posstbility

distribution which approzimates a Possibilistic histogram .

One of the most significant differences between Possibilistic and stochastic his-
tograms is that the former are collections of the intervals T, not discrete points.
Therefore, normal interpolation or approximation methods(such as curve-fitting or
maximum-likelihood estimation) are not appropriate. Instead, a representative set
of points from the intervals T should be selected from =, and then a continuous

curve 7 is fitted to them.

3.9.2 Candidate Points

Definition 11 (Possibilistic Histogram Candidate points) Assume a Possi-

bilistic histogram considered as a locus of points

m = {{ex, m(ex))} S R x [0, 1]

Then denote:
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e The left and right endpoints of each of the T, 1<k<@Q-1:

&) (ew (o) ), e €E
( €k, ﬁ(ek+l)>1 e € ET.

tr o { ( €k+1: W(ek) )7 €k € El
P

( €+l Tr(ek-{—l))y ex € ET.

The midpoints of each of the T}, 1 < &£ < Q - 1:

+
hy = <e_’°___;lﬂi’ 7r(ek)>

The midpoint of the core:

l
Cc = th = <——-———(N) ZT(N) , 1>

The endpoints of the support on the axis:

| = tll = <l(1),0>, r:= ta__l = <T(l)70>’

The set of all the interval mid- and end-points to which a continuous curve

may be fit:
K' = {t\, t%, he}.

The set of all the interval mid- and end-points to which a continuous curve

actually will be fit: K C K'.

Finally, the set of all the points to which the curve will be fit:

D:={cl,r}UKCm
where K may be any subset of K'. Note that K = ¢ is allowed.
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3.9.3 Example

Consider the example in Figure 3.1. The top shows two intervals in dashed lines
below the axis, each of which is observed once. The components of the Tp with
N =M =2,Q =3, and ¢ = hs are also shown. t{ and ¢} are excluded from K due

conflicts with [ and r, leaving a candidate set:
K' = {hy,t],t5, t5, ha, t3}

Any subset K C K’ (including the empty set) can be chosen as long as it does not

contain either set of conflicts {¢],t5} or {t5,¢}.

3.9.4 Piecewise Linear Approximations

Once a set of points is selected, a variety of curve-fitting methods are available to
determine 7. The simplest and most direct is to connect them with line segments,
producing a piecewise linear, continuous distribution. Three of these are shown in
Fig 3.1 for the sets K = {hi, t5, 5, hs}, &, {t],t4}. An advantage of the line-segment
method is that the approximated 7 has the same form as the fuzzy intervals and

numbers typically used in fuzzy systems applications.
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Figure 3.1: A simple Possibilistic histogram with its candidate points (top). Three
examples of piecewise linear continuous approximations (top).
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Chapter 4

Modeling Uncertainty in Sonar

Sensors

In this chapter models of angular uncertainty and radial imprecision for sonar read-
ings reflected from a wall and a 90° corner are represented by using possibility
distributions discussed in Chapter 3. These models are used in estimating the ini-
tial stationary location of a mobile robot when its sensors detect a wall and a corner
at the same time. To build these possibility distributions, it is important to study
the behavior of sonar readings when they are reflected from a wall and a 90° cor-
ner, two common components of any indoor environment. The experimental setup
described in Section 1 is used for this purpose. In Section 2 the angular uncertainty
and radial imprecision models for one sonar sensor is presented. Then the angular
uncertainty and the radial imprecision are reduced by combining the readings from
another sensors that are reflected from the same wall. In Section 3 similar models
are presented if the reflecting object is a corner. Finally, in Section 4 these models,
for the corner and the wall, are used for localization of mobile robot, Pioneer 1,

inside a known environment.



4.1 Experimental Setup

Our experimental setup consists of a sonar sensor, a rotary table, a computer, and a
mobile robot. The sonar sensor is mounted on a rotary table and it is wired directly
to Pioneer 1. The robot receives the sonar firing commands from the computer
through a special software called Saphira. Both the robot and the computer have
radio modems for communication Figure 4.1. The rotary table is controlled by the
computer through a serial link. The rotary table is adjusted to rotate in steps of

two degrees.

7= Radio Mudem 2

< (S(“ﬁ“‘“' Mobile Robot —

[ enn———— @

ﬁ /"
" Saphira
I Radio Modem1 Software
Rotary Table 'l—’ = =]

Figure 4.1: Experimental setup.

The sonar sensor is placed in front of a wall at distance d and an initial direction
perpendicular to the wall, i.e., § = 0. A command is issued from the computer to
the robot to fire the sonar sensor. After fhe sensor detects the echo received from
the wall the reading that represents the distance to the wall is sent directly to the
computer. This reading represents the measured distance to the wall. The error
is calculated as the difference between the actual distance and the measured one.
The direction of the sonar sensor (the incidence angle #) is increased in a step of
2° by commanding the rotary table to rotate to the left one step Figure 4.2, then

the sensor is fired and the measured distance is registered as well as the direction 6.
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This procedure was continued until no readings were received from the wall. The
direction 0 is then decreased in steps of two degrees by rotating the table to the
right and the measured distances as well as the direction were registered until no
echo is received. This experiment is then repeated for different distances: 25, 50,
75, 100, 125, 150, 175, 200, 225, 250, 275, 300, 325, 350, and 370cm. This last
distance represents the maximum range of the sonar sensor, i.e., after 370cm there
is no reading coming from the wall. The second set of experiments is done while
the sensor is facing a 90° degree corner. The same steps in the case of the wall are
repeated and the results were tabulated in Tables A.1 to A.30 in appendix A.

The most significant issue for representing the angular uncertainty in sonar
sensors is the field of view of these sensors when the sensor’s readings are reflected
from walls and corners. The field of view can be defined as the interval of angles
which contains the sensor direction when an object is detected. Table 4.1 summarizes
the field of view of a sonar sensor at different distances from a wall. Following
the procedure discussed in Chapter 3, a possibility distribution that represents the

angular uncertainty in sonar readings can be formed.

4.2 Modeling angular uncertainty and radial im-

precision for sonar readings reflected from a

wall

In this section, angular uncertainty for a sonar sensor is represented by possibility
distributions. Based on the assumption that the field of view is not a function of the
distance d as the Table 4.1 shows, the inteérvals of the field of view of the sensor can

be considered as random sets obtained from an empirical source. Then possibility
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Wall

Sonar sensor

Corner

Sonar Sensor

Figure 4.2: Experiments for studying the behavior of the sonar sensor when it is in
front of a wall (top) and a corner (bottom).
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Distance from a wall(cm) | Field of view of the sensor
50 [14, 14]
75 [-10, 12]
100 [-12, 14]
125 [-10, 12]
150 [-12, 12]
175 [10 16]
200 [-10, 14]
225 [-10, 12]
250 [-10, 14]
275 [-10, 14]
300 [-10, 14]
325 [-10, 14]
350 [-10, 12]
370 [-10, 12]

Table 4.1: The field of view of the sonar sensor at different distances from a
wall.

distributions can be constructed as follows:

e the general record is represented by the vector
B .= <[—14, 14],[~10,12], [-12, 14], [-10, 12],
[-12,12], [-10, 16],[-10, 14], [-10, 12], [—10, 14],
(—10, 14], [~10, 14], [~ 10, 14], [~10, 12], [~ 10, 12]>

e the empirical focal set is given by:
F = {[-10,12],[~10, 14], [-14, 14], [-12, 12], [-10, 16], [-12, 14]}
Where N=6, and M=14.

e the set frequency distribution is given by: m(B; = [—10, 12]) = 5/14, m(B2 =
[—10,14]) = 5/14, m(B; = [—14,14]) = 1/14, m(B, = [-12,12]) = 1/14,
m(Bs = [~10,16]) = 1/14, m(Bs = [~12,14]) = 1/14.
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the order and reverse order statistics of the left and right endpoints is

—14<-12<-12< =10 < ~10,12<12<12<14<14<14< 16

The vectors of endpoints and ordered endpoints are:

= (=10, —10, —14, =12, =10, —12), E' := (12,14,14, 14,12, 16, 14), E :
(—14, -12,-12, -10, —10, 12, 12,12, 14, 14, 14, 16)

the sets of endpoints with duplicates omitted from E, E', E" are: E :=
{—14,-12,-10,12,14,16}, E' = {-14,-12,-10}, E™ = {12,14,16} note
that 1<k<Q=6,and 1<kl <Q'=3,1<k"<Q =3

consistency requirement:
max; l; = l(v) < rv) = mingr; —10 < 12. So that the core of the possibility
distribution is [-10, 12]. The core represents the case of high confidence that

the sonar beam can be reflected from this field of view.

G can be defined as follows:
G, = [~14,-12), G := [-12,-10), G5 = [-10,12], G5 := (12,14], Gs :=
(14, 16].

T can be obtained as follows:
Ty == {{z1, m([-
T, := {(zq, 7([-12, —10)) = 7(—12) = 1/14 +2/14 = 3/12) : 2, € G2}
T3 := {(z3,7([—10,12]) = 1) : z3 € G5}

Ty = {(z4,m((12,14]) = 7 (14) = 8/14) : z4 € G4}

Ts := {(zs, m((14,16]) = 7 (16) = 1/14) : z5s € G5}

14, —12)) = m(—14) = 1/14) : ; € G}



The core of this possibility distribution is [-10, 12] which represents the case
of high confidence that the sonar beam can be reflected from this field of view,
i.e., from [-10, 12]. The support of the possibility distribution is [-14, 16} which
represents a random set which has less specifity, i.e., it is not as specific as the

core.

the left and right endpoints of each of the T} are:
th o= {(—14,1/14),(-12,3/14),(—10,1),(12,8/14), (14.1/14) }
ro= {(-12,1/14), (—-10,3/14). (12, 1), (14,8/14),(16,1/14) }

the midpoints of each of the T are:

hi - {(=13,1/14),(~11,3/14), (1,1), (13,8/14), (15,1/14)}

the midpoint of the core:

c:=(1,1)

the endpoints of the support:

| := (—14,0), (16,0)

the set of all the interval mid- and end-points to which a continuous curve
may be fit:

K = {ti, t};, hk}

the set of all the interval mid- and end-points to which a continuous curve
actually will be fit:
K CK'. K ={-10,12}

the set of all the points to which the curve will be fit:

D :={1,-14,16} U {-10,12}
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Figure 4.3: Possibility distribution for the field of view of a sonar sensor.

In Figure 4.3 the possibility distribution of the field of view of the sonar sensor
facing a wall is presented. The information that can be taken from this distribution
is that there is a possibility 1 for getting a sonar reading from the wall if the incidence
angle of the sensor is in the interval [—~10° 12°] and there is less possibility to get
readings if the incidence angle is less than —10° and greater than 12°. Since we
have the possibility distribution ready, this can be utilized in finding new nested
pieces of evidence. The most important new piece of evidence is the support and
the core. They are nested because [—10°,12°] C [-14°,16°]. It is clear that the
angular uncertainty of the sonar sensor is very high when it is facing a wall. The
next step is to find the possibility distributions that represent the radial imprecision
in sonar readings. Radial imprecision can be defined as the actual distance minus
the measured one (the reading from the sensor). The radial imprecision can be
calculated from

OA

e=—=-0C (4.1)

where, OA is the vertical distant between the sensor and the wall and OC is the

distance detected by the sensor as shown in Figure 4.4.



Sonar sensor.

OB is the expected distance.

Figure 4.4: Error calculation for sonar reading coming from a wall at a certain
distance and angle.

Following the same procedure for angular uncertainty three possibility distri-
butions for radial imprecision for readings approximately from 50cm to 175cm, from
200cm to 275cm, and from 300cm to 370cm are constructed. This partitioning of
the range is done because the radial imprecision is a function of the distance d as
shown in Table 4.2. These possibility distributions are shown in Figure 4.5. In the
next section the angular uncertainty and the radial imprecision in sonar readings

obtained from a wall are reduced based on new information.
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Figure 4.5: Radial imprecision represented by possibility distributions when the
sensor is at a distance from 50cm to 175cm (top), when the distance is from 200cm
to 275cm (middle), and when the distance is from 300cm to 370cm (bottom).



Distance from a wall(cm) | Radial imprecision (cm)
50 -7, -3]
75 (-4, -3]
100 [-6 -2]
125 [-3,

150 [-3,

175 -6,

200 - 6v O]
225 -7, -2]
250 [-7, -1]
275 [-8, -1}
300 -8, 0]
325 [-9, 0]
350 [-9, 0]
370 [-9, -1]

Table 4.2: Radial imprecision intervals when the sensor in front of a wall at different
distances.

4.3 Reduction of angular uncertainty and radial

imprecision in the wall case

To reduced the angular uncertainty and the radial imprecision, additional informa-
tion is needed. This information may come from another source of information such
as another sensor facing the same wall and placed in a known angle from the first
sensor. If two sonar sensors are detecting the same wall, the readings coming from
the two sensors may vary in their values according to the direction of each sensor.
The shortest reading is the one that is coming from the sensor with the smallest
incidence angle from the wall as shown in Figure 4.7 [20]. Actually this is a new
information that can be used to reduce the angular uncertainty in sonar sensors.
This new information can be used for constructing less uncertain possibility distri-
bution for negative surface normal to the wall. Based on the principle of minimum

specificity [42], a natural approach is to select the least specific body of evidence
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that contains as many elements as possible. We have a less specific field of view of an

interval [-14, 16], then based on the shortest distance information, three significant

cases are obtained as shown by Demirli and Turksen [20]:

1.

(8]

#, = 16° and 6, = 1°

In this case 4, is on the left boundary of the field of view and it is shown in
Figure 4.6 (top). Due to the fact that the angle between the two sensors is
15°, then 8, = 1°. Since, #; has the minimum incidence angle, ds2 is expected
to be the minimum distance reading between the two, i.e., ds2 < dsl, i.e., the
shortest distance is ds2, where dsl1 is the reading obtained from S1 and ds2 is

the reading obtained from S2. In this case the surface normal is 8 =6, + 1

61 = 7.5° and 02 = —7.5°
In this case ds1 = ds2 and the surface normal is § = 8, —7.5° or 8 = 6, + 7.5°.

This is shown in Figure 4.6 (middle).

. 02 = —14° and 61 =1°

This case is shown in Figure 4.6 (bottom). The shortest distance is dsl and

the surface normal is § =6, — 1

Based on this analysis, we have the following possibilities of the surface normal:

e from cases 2 and 3, if dsl < ds2 then:

’/T([Bh 91*1)) = 0.0, and 7!'([91—1,61—7.5]) = 10, and 71'((91'—7.5, 91—15]) = 0.0

e from cases 1 and 2, if ds2 < dsl then:

71'([62 + 1,60, + 75]) = 1.0, and 7r((92 +7.5,0, + 14]) =0.0.
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e from cases 2 and 3, if dsl = ds2 then:
7([61,6: — 7.5)) = 0.0, 7([6 — 7.5]) = 1.0, and 7((6y — 7.5,6, — 15]) = 0.0, or
71'((92, 02 + 75]) = 00, Tf([92 T 75]) = 10, and 71'((92 + 75, 92]) =0.0.

Figure 4.6: Three possible cases for the readings obtained from two sensors.

From these possibilities value of the surface normal three possibility distri-
butions are obtained and shown in Figure 4.8. These possibility distributions are
considered the reduced model for angular uncertainty in sonar readings coming from

a wall. Because the angular uncertainty is reduced, this will be projected on the

57



Figure 4.7: Two sonar sensors detecting the same wall.
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Figure 4.8: Reduced angular uncertainty for readings coming from a wall, ds1 < ds2
(top), ds2 > ds1 (middle), and dsl = ds2 (bottom).
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radial imprecision. For the above three cases, it is shown below how the reduced
angular uncertainty affect the radial imprecision, and how the shortest distance to
the wall is estimated from the sensors readings, reduced angular uncertainty, and

the reduced radial imprecision.

e if dsl < ds2, the sensor direction belongs to the intervals {1°, 7.5°] with possi-
bility one. Moreover, the incidence angle belongs to the intervals |0°, 1°{ and
]7.5°, 15° with a certain possibility as shown in Figure 4.8. Any angle belongs
to these intervals is considered as a source of information with reliability equals
to the possibility value of this incidence angle. Therefore, the radial impreci-
sion has different possibility distributions associated with this incidence angle.
By considering the reliability of the source, i.e., the possibility of the incidence
angle, the radial imprecision associated with each incidence angle is changed
as follows [43]:

! = min(r, w) (4.2)

where, 7w the possibility distribution of the radial imprecision at a certain in-
cidence angle before taking into account the reliability of this incidence angle,
w is the reliability of the incidence angle, and =/ is the possibility distribution
after taking into account the reliability of the incidence angle. For example,
if the reliability of the incidence angle is one, as the case for 1° and 7.5° the
possibility distribution for their radial imprecision is the same after taking into
account their reliability. On the other hand, if the incidence angle has a relia-
bility less than one, i.e., the incidence angle belongs to the interval ]7.5%, 157,
the possibility distribution of the radial imprecision of this incidence angle has
a maximum value less than one. Therefore, this possibility distribution has

to be renormalized but this is out of the scope of this study. Consequently,
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only the incidence angles that belong to the interval [1°, 7.5°] are considered.
From ds1 and the possibility distributions for radial imprecision at 1° and 7.5°
obtained from Tables 4.3 and 4.4, the shortest distance between the sensor and
the wall is estimated by rotating the distance dsl from the incidence angle to
direction of the negative surface normal of the wall. This rotation is achieved
after considering the radial imprecision associated with the incidence angle. In
this situation two possibility distributions representing the shortest distance
to the wall are obtained. These possibility distributions are combined dis-
junctively (union) [43] to obtain a new possibility distribution for the shortest

distance to the wall [20]. This is shown in Figure 4.9.

[/

combined shortest distance
after rotation (union)

N\
\
radial
imprecision
at7.5 © \

radial imrecision

\\\ 7 0 at1©
dsl \/'5)\)
\\ ds\l
AT
\\\
W\

A\
A

Figure 4.9: Shortest distance estimating from radial imprecision and angular uncer-
tainty.
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Distance from a wall(cm) | Reduced radial imprecision(cm)
50 -4, -3]
75 (-4, -3]
100 -4, -3]
125 -5, -3]
150 [-5, -3]
175 [-6, -3]
200 [-7.-5]
225 [-7, -6]
250 [-7, -6]
275 [-8, -6]
300 -8, -7]
325 -9, -7]
350 [-9, -7]
370 -9, -7

Table 4.3: The reduced radial imprecision intervals when dsl < ds2 and the inci-
dence angle is 1°.

Distance from a wall(cm) | Reduced radial imprecision(cm)
50 -4, -3]
75 [-4, -3]
100 [-4, -3]
125 -3, -3
150 [-3, -3]
175 [-6, -3]
200 [-6, -3]
225 -7, -4]
250 [-7, -4]
275 -8, -4]
300 -8, -5]
325 [-9, -5]
350 -9, -5]
370 [-9, -4]

Table 4.4: The reduced radial imprecision intervals when dsl < ds2 and the inci-
dence angle is 7.5°.
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-6 -5 -3 -3 radial imprecision (cm).
T
1.0
-8 -7 -6 -5 radial imprecision (cm).
bid
1.0
-9 -8 -7 radial imprecision (cm).

Figure 4.10: Reduced radial imprecision when the sensor incidence angle is 1° and
the distance from a wall is from 50cm to 175¢m (top), from 200cm to 275cm (middle),

and from 300cm to 370cm (bottom).
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Figure 4.11: Reduced radial imprecision when the sensor incidence angle is 7.5°
and the distance from a wall is from 50cm to 175cm (top), from 200cm to 275cm
(middle), and from 300cm to 370cm (bottom).
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e if ds2 < dsl, the incidence angle belongs to the interval [1°, —7.5°] with
possibility one. The same possibility distributions in the previous case for
the radial imprecision can be used. However, these possibility distribution are
rotated counter clockwise to be projected on the negative surface normal of

the wall.

e if dsl = ds2, in this case the incidence angle of each sensor has a possibility

one to be 7.5° but on opposite directions from the surface normal of the wall.

4.4 Modeling angular uncertainty and radial im-
precision for sonar readings reflected from a

corner

A model for the angular uncertainty and radial imprecision of sonar readings reflect-
ing from a corner can be constructed by following the same procedure for building
the model for readings reflected from a wall. From Figure 4.12 the radial imprecision

for readings coming from a corner can be obtained as:

2% X 2% X

_ 8 —2+r :
€ cos(45 — 6) + cos(45 — ) *cos(90 —0) =2+t (4-3)

where, e is the error in the obtained reading from the sensor reading r, and X as
defined in Figure 4.12. The radial imprecision values, labeled method 1 in Tables
A.16 to A.30, are calculated based on the assumption that the field of view of sonar
readings reflected from a wall is the same as the field of view of the readings reflected
from a corner [28]. This assumption is discussed in Chapter 5. On the other hand,
the radial imprecision values, labeled method 1 in Tables A.16 to A.30, are obtained

from equation (4.3).
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Figure 4.12: Error calculations when the senor detects a corner at distance L from
the sensor.



Tables 4.5 and 4.6 summarize the field of view of the sonar sensor and the

radial imprecision, respectively, when the sensor is facing a 90° corner at different

distances.
Distance from a corner(mm) | Field of view of the sensor
250 [-6, 10]
500 [-10, 8]
750 -6, 10]
1000 [-8, 10]
1250 [-6, 10]
1500 [-10, 8]
1750 -[-8, 8]
2000 [-12, 6]
2250 -10, 6]
2500 [-12, 6]
2750 [-12, 6]
3000 [-12, 6]
3250 [-10, 6]
3500 (-6, 8]
3700 [-8, 6]

Table 4.5: The field of view of the sonar sensor at different distances from a cor-
ner.

From Table 4.5, the possibility distribution of angular uncertainty of sonar
readings can be seen in Figure 4.13. The possibility distributions that represent the
radial imprecision is also shown in Figure 4.14, and it is obtained from Table 4.6.

The angular uncertainty for readings coming from two sensors can be shown
in Figure 4.15 . The reduction in angular uncertainty in Figure 4.15 is made based
on the fact that the angle between the two sensors is 15°. The reduction of angular
uncertainty can lead to a reduction in radial imprecision, like the case of the wall,
based on the shortest distance information. Therefore we have the following three

cases:
e dsl < ds2
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Distance from a corner(mm) | Radial imprecision (cm)
500 [13, -3]
750 [-13, -4]
1000 [-13, -4]
1250 [-12, -4]
1500 [-14, -4]
1750 -9, -3]
2000 -9, 0]
2250 [-10, -4]
2500 -8, 0]
2750 [-10, -3]
3000 [-10, 0]
3250 [-10, -3]
3500 -8, -3]
3700 -9, -3]

Table 4.6: The radial imprecision of sonar readings reflected from a corner at differ-
ent distances.

1.0
13/14

12714
11/14
10/14
9/14
8/14
714
6/14
S/14
414
N4
U4
/14

Figure 4.13: Possibility distribution for field of view of a sonar sensor facing a corner.
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-0 9 8 radial imprecision (cm)

Figure 4.14: (Possibility distribution for radial imprecision when the distance be-
tween the sensor and the corner is from 50cm to 175cm (top). Possibility distribution
for radial imprecision when the sensor is at distance from 200cm to 275cm (middle).
Possibility distribution for radial imprecision when the sensor is at distance from
300cm to 370cm (bottom).
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As shown in Figure 4.15 (top), to estimate the distance X in Figure 4.12 based
on the value of dsl1, two possibility distributions for the radial imprecision when
the incidence angle is 3° and 7.5° are used. These possibility distributions
are shown in Figures 4.16 and 4.17. From equation (4.3), the value of X is
represented by two possibility distributions. These possibility distributions

are aggregated disjunctively as in the case of the wall.

e ds2 <dsl
As shown in Figure 4.15 (middle), the possibility distribution when the inci-
dence angle is 5° is necessary to estimate the value of X in Figure 4.12 from

equation (4.3). This possibility distribution is shown in Figure 4.18.

e dsl =ds2
In this case X can be estimated from the possibility distribution of the radial

imprecision when the incidence angle is either —7.5° or 7.5°.

In the next chapter the reduced models of angular uncertainty and radial
imprecision for readings obtained from a corner and a wall are used in estimating

the stationary and dynamic location of the mobile robot, Pioneer 1.
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Figure 4.15: Reduced angular uncertainty for readings come from a corner, when
dsl < ds2 (top), when ds2 < dsl (middle), and when ds1 = ds2 (bottom).
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Figure 4.16: Reduced radial imprecision for readings coming from a corner when the
incidence angle is 3°. The distance between the sensor and the corner is from 50cm
to 175cm (top), when the distance is from 200cm to 275cm (middle), and when the
distance is from 200cm to 275cm (bottom).
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Figure 4.17: Reduced radial imprecision for readings coming from a corner when the
incidence angle is 7.5°. The distance between the sensor and the corner is from 50cm
to 175cm (top), when the distance is from 200cm to 275cm (middle), and when the
distance is from 200cm to 275cm (bottom).
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Figure 4.18: Reduced radial imprecision for readings coming from a corner when the
incidence angle is 5°. The distance between the sensor and the corner is from 50cm
to 175cm (top), when the distance is from 200cm to 275cm (middle), and when the

distance is from 200cm to 275cm (bottom).
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Chapter 5

Application to Mobile Robots

So far we consider the case of two sensors detecting the same object, and from the
readings obtained from these sensors the direction of the sensors and the distance
from the object can be determined in the local map, i.e., in the sensor’s or the robot’s
coordinates. However, in mobile robots applications, especially in localization, two
sensors are not sufficient. For example, if the two sensors are facing a corner, it is
difficult for the robot to realize that this is a corner, and the same is valid in the
case of a wall. In order to overcome this problem, usually more than two sensors are
mounted on these robots. The number of sensors varies from one robot to another
based on the robot’s architecture and the tasks it performs. Because sonar sensors
are inexpensive, most mobile robots manufacturers tend to mount a ring of sonar
sensors around the robot. This helps the robot to recognize objecfs by combining
information from different sensors. The number of sensors on a ring also varies,
but in general manufacturers design the ring for 24 sensors with 15° between any
two consecutive sensors. Since the configuration of Pioneer 1 consists of five sonar
sensors, it can only detect a corner and a wall in the same scan in the environment.

This information is considered as the core for our localization method.
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5.1 Sensor based localization

Localization based on the robot’s sensors can be divided into three parts; localization
based on dead reckoning method, localization based on solely information from
proximity sensors information, and a combination of both. Dead reckoning is a
simple mathematical method for estimating the current location of a robot. The
current location is calculated from the knowledge of the robot’s velocity and the
time needed to reach the new location. This simple method is problematic because
of the large estimated errors and their accumulation effect. The major errors are

generated due to following reasons:

e slipping of the wheels
e road conditions

e resolution of the encoders.

However, dead reckoning is reliable over short distances. To show the effect of the
problems associated with dead reckoning, our test robot, Pioneer 1, is moved for
a certain period of time at a constant velocity and on a linear path. The initial
position of the robot is marked. Then when it is stopped, the traveled distance was
measured by a metric tape and compared with the registered one from the dead
reckoning. Tables 5.1 and 5.2 show the magnitude of the accumulated error over the
distance. Although the magnitude of the accumulated error varies from one robot
to another, this is a general problem in all mobile robots.

Localization based on the information provided by proximity sensors, like sonar
sensors, is limited by the maximum range of the sensors and the environmental
constrains. This method can be used when the robot has the map of its environment.

The current location of the robot is estimated based on a matching between the new
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Dead reckoning reading(mm) | Actual traveled distance(mm) | Error(mm)
718 600 -118
1766 1270 -496
2700 1830 -870
Table 5.1: Error accumulation in dead reckoning over the distance at a velocity of
90mm/sec. -
Dead reckoning reading(mm) | Actual traveled distance(mm) | Error(mm)
1150 1000 -150
2930 2135 -795
4930 3170 -1760

Table 5.2: Error accumulation in dead reckoning over the distance at a velocity of
180mm/sec.
and the past information provided by sonar sensors. This is the adopted approach

in our localization algorithm which will be shown in the next section.

5.2 Pioneer 1 Configuration

Pioneer 1 is a mobile robot manufactured by RWI, Real World Interface. It consists
of two driving wheels and one driven wheel. The driving wheels are controlled
separately by different motors. It also has two encoders one for each wheel for dead
reckoning estimation. The seven sonar sensors are mounted on the robot as shown

in Figure 5.1.

5.3 Localization for Pioneer 1

This section describes a method for determining the location of Pioneer 1 inside a
known environment given to the robot. Our localization method is based on the
readings obtained from five adjacent sensors with total angle of 60°, i.e., the angle

between any two adjacent sensors is 15°. From these readings a corner and a wall can
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Figure 5.1: Pioneer 1 Configuration.

be recognized at the same time or in the same scan. By this configuration of Pioneer
1, it is impossible to detect the two walls separated by 90°. Our method consists
of two parts; stationary and dynamic localization. The stationary location of the
robot is estimated when the robot is not in motion and facing recognized features
such as walls and corners. This can be done by using the sonar readings obtained
from the detected wall and the corner after considering the radial imprecision and
the angular uncertainty in these readings. Because any environments contains more
than one corner, the initial stationary location of the robot has different alternatives.
Therefore, the robot starts navigating in its environment to collect more information
to reduce these alternatives. The dynamic location of the robot is estimated while
the robot is navigating in its environment. When the robot extracts new local
features based on the the sonar readings, it matches them with relevant features
in the global map. The feature with maximum degree of match is considered the

candidate feature detected by the robot. Then, the location of the robot in the global
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Figure 5.2: The map of the environment.

map is estimated from the sonar readings and the global location of this features.
If two features are found to be candidates, then the robot has two possible global
locations until further evidence is collected and a unique location is identified. The

following steps are used for stationary and dynamic localization.

1. In the beginning, the robot has no information about its location i‘n its en-
vironment (Please see Figure 5.2 for our test environment). The robot scans
its environment until its Y local (see Figure 5.1) becomes parallel to any wall
in the environment. This situation can be detected if S3, S4 or S2, S3 can
give close readings. If the reading obtained from S3 is greater than 100cm the
robot moves forward until it gets closer to the wall. On the other hand if the
reading is less than 100cm, the robot moves back until it goes farther. This

value is considered as a safety displacement between the robot and the walls.

2. The information from the side sensors S0 and S6 is used to check if there is

another wall close to the robot from the left or the right. If there is one wall
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Figure 5.3: The robot trying to follow a wall.

Pioneer |

detected to the right or to the left, the robot rotates 90° in the direction of
the wall. For example if SO gives reading then the robot rotates 90° counter
clockwise keeping the detected wall in Step 1 on its right side. If both S0 and

S6 give readings the robot rotates in the direction of the smallest one.

. The robot starts moving parallel to the side wall. One of the limitations of
Pioneer 1 is that it cannot move in a straight path. Therefore, to keep the
robot following the wall, the robot rotates 3° counter clockwise if there is
decrease more than 10mm in the readings obtained from the side sensor facing
the wall. And it rotates the same degree clockwise if there is an increase more

than 10mm in the readings obtained from the same sensor Figure 5.3.

1. When the readings obtained from the side sensor facing the wall and the

reading obtained from S$3 and S2 or S3 and S4 are approximately close or
close to each other, the robot stops and starts rotating in the direction of
the side sensor (which gives the smaller readings) searching for a corner. The
corner is detected if there are readings obtained from sensors S1, S2, S4, and
S5, given that the reading from S1 is very close to the reading obtained from
S2, and the reading obtained from S4 is close to that obtained from S5. If a
corner is detected, it will be either in front of S1 and S2 or in front of 54 and

S5. Sensors S1 and S2 are in front of the corner if min(S1, S2) > max(S4, S3)
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and in this case S4 and S5 are in front of the wall. The opposite situation is
valid when the corner is detected by S4 and S5. On the other hand, if the
robot couldn’t detect the presence of the corner, it will keep rotating until
the wall which was in front of the side sensor before scanning the corner is

detected. Then the robot repeats the steps as if it was the first detected wall.

. If a corner is detected, the robot determines its stationary location from the
smallest reading obtained from the two sensors which are in front of the corner,
and from the smallest readings of the two sensors which are in front of the
wall. However, there is no unique initial stationary global location of the
robot because any environment contains more than one corner. If the corner
is detected S1 and S2, the robot rotates approximately 8,,tqce angle in the
clockwise direction, and starts navigating in its environment to collect more
pieces of evidence about its initial location. If the corner is detected by S4
and S5, the robot rotates approximately Oroeqce angle in counter clockwise
direction. The following example shows how our algorithm estimates the initial
stationary location of the robot. This example is valid for any environment.
The stationary localization uses the angular uncertainty and radial imprecision

models for readings coming from a corner and a wall.

Example:

Pioneer 1 detects a corner and a wall when the readings obtained from sensors
S1, S2, S3, and S4, are 1358mm, 1366mm, 907mm, and 910mm, respec-
tively. The corner was detected by S4 and S5 because min(1358, 1366) >
max(907,910). The reduced angular uncertainty model for readings coming

from corner can be used to determine the angle of S4 from the corner. Then
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the reduced radial imprecision is used for estimating the value of X in equa-
tion (4.3) which represents one of the components of the initial local stationary
location of the robot. The other component is obtained from the reduced an-
gular uncertainty and radial imprecision models for readings coming from a
wall. In this example dsl < ds2, then the incidence angle belongs to the in-
terval [3°, 7.5°]. By substituting these two angles in equation (4.3), X can be

obtained from the following equations:

e+2r _
X =583 (5-1)
, e+2r
X = 5 86 (5.2)

where equation (5.1) is valid for § = 3 and equation (5.2) is valid for 8 = 7.5.
Then the value of e has four possible values for each incidence angle which are
the possibility distribution parameters of the radial imprecision for readings
obtained from a corner at 3° in equation (5.1) and at 7.5° in equation (5.2).
Therefore, two new possibility distribution are obtained that represent the
possible values of X in the sensor’s coordinates. Then these distributions are
transformed to the robot’s coordinates by considering the position of the sensor
with respect to the robot’s coordinates, i.e., X becomes X + ls4 *cos(45 —9),
where [s4 is the distance from the center of the robot to the sensor position.
Then these possibility distributions are aggregated disjunctively [43] to get
the possibility distribution that represents one of the initial stationary local

components of the robot. This procedure is shown in Figure 5.4.
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Figure 5.4: Possibility distribution of the value of X in the sensor’s coordinates
when 8 = 3° (top - left). Possibility distribution of the value of X in the robot'’s
coordinates for # = 3° ( top - right). Possibility distribution of the value of X in
the sensor’s coordinates when 8 = 7.5° (middle - left). Possibility distribution of the
value of X in the sensor’s coordinates when § = 7.5° (middle - right). Combined
possibility distribution of (top - right) and (middle - right) that represents the value
of X in the robot’s coordinates (bottom).
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Figure 5.5: The possibility distribution of the normal distance in the robot’s coor-

dinates when 8 = 1° (left), when § = 7.5° (right), the possibility distribution that

represents the combination between the left and the right (bottom).
The other component of the initial stationary location of the robot can be
estimated from the reading obtained from S4. This can be achieved by rotating
the possibility distribution that represents the distance dsl, i.e., along the
direction of the candidates incidence angle after the consideration of the radial
imprecision, to be in the direction of the negative surface normal of the wall.
In this situation (when ds4 < ds5) there are two possibility distributions
represent this case; one in the direction of @ = 12, and the other is in the
direction of § = 7.5°. This resultant possibility distributions after the rotation
represent the normal distance between the sensor and the wall. Then, these
two possibility distributions are transformed to the robot’s coordinates and
aggregated disjunctively to obtain the possibility distribution that represents

the normal distance between the robot and the wall (see Figure 5.5).
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The heading angle of the robot can be taken as a crisp value calculated from
the interval [3°, 7.5°]. The heading angle of the robot is the angle of S3. If
we consider the average of the direction of S1, then the direction of S3 can be
calculated because the angle between S3 and 54 is 15°. Therefore the local
heading angle of the robot is approximately 25°. The robot must rotate in
angle O,otate = 120° clockwise to become parallel to the detected wall. From
these two components, the initial stationary global location of the robot can
be estimated based on the global coordinates of the environment. Figure 5.6
shows the four possible initial locations of the robot in our test environment

shown in Figure 5.2.

In our approach for corner detection, we make use of TOF information only.
The fact that the angle between two consecutive sensors is 15° enables us to
detect the corner for the all possible cases of dsl, ds2, ds4, and ds5. i.e.,
dsl < ds2 and ds4 < ds5 or any possible combination of the state of these

values. This is explained in detail next.

e if dsl < ds2 and ds4 < ds5, let us assume here that the corner is detected
by S1 and S2 and corner A is detected. From Fig 4.15, S1 direction must
belong to the interval [138°, 142.5°]. Consequently, the direction of S4
from Figure 4.8 must also belong to the interval [91°, 97.5°] because S4
and S5 are detecting wall 3 in Figure 5.2. Because the angle between
S1 and S4 is 45° S4 must belong to the interval [138° — 45° = 93°,
142.5° — 45° = 97.5]. This is correct because [93°, 97.5°] C [91°, 97.57).

e ifdsl < ds2 and ds5 < ds4, then S1 direction belongs to the interval [138,
142.5] and the direction S5 will be in the interval [82.5°, 91°]. Because the

angle between S1 and S5 is 60° and from the direction of S1, the direction
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Figure 5.6: The four possible initial stationary location of the robot in our test
environment.

85



of S5 must belong to the interval [78°, 82.5°]. This is consistent with the

angle obtained from the angular uncertainty model for the wall. Note

that we are considering only the possibility 1 from the reduced angular

uncertainty for both the wall and the corner.

If we try all the possibilities we will always have the calculated angle of the
S4 or S5 from the direction of S1 or S4 belongs to the interval obtained
from the angular uncertainty model for the wall. Table 5.3 summarizes the

remaining cases. It is shown in this table that whenever a corner is detected

State of dsl, ds2, ds4, and ds5

951 or 952

954 or 055 Fig 4.8

Estim g4 or fss

ds2 < dsl, ds4 < dsd

[127.5°; 130°]

[91°, 97.57

[97.5°, 100°]

ds2 < dsl, ds5 < ds4 [127.5°, 1307] [82.5°, 917 [82.5°, 85°]
dsl = ds2, ds4 < ds5 142.5° 97.5° [91°, 97.59)
dsl = ds2, ds5 < ds4 142.5° [82.50, 91°] 82.5°
dsl = ds2, ds4 = dsd 142.5° 97.5° 97.5°
dsl < ds2, ds4 = ds5 [138°, 142.57] 97.5° [93°, 97.5%]
ds2 < dsl, ds4 = dsd [127.5°, 130"] 97.5° [97, 52, 100°]

Table 5.3: Summary of all possible cases for dsl, ds2, ds3, and ds4.

with possibility one the wall also will be detected with possibility one.

. Since the robot has these possible locations, more pieces of information are
necessary to reduce these possibilities. This reduction occurs if new environ-
mental features are recognized. As mentioned earlier, the robot rotates 8r,tate
to follow the wall detected by S4 and S5 (in this special example). Then
it moves parallel to this wall until new feature is recognized. There are three
types of features that can be recognized by the robot while in motion; an edge.
a front wall, and a new corner. The first feature is recognized by monitoring
the state of the side sensor, i.e., the sensor that is facing a wall while the robot

is moving parallel to this wall, SO in our example. There are two cases for
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\

l robot}

S3 reading

Figure 5.7: The detection of a front wall may reduce the initial possible locations.

this feature; either an edge that causes a decrease or an edge that causes an
increase in the reading of S0. If there is such a feature in the given map to the
robot, they are identified by different flags. The second feature is a front wall
that is recognized by monitoring the state of sensors S3 and S4 or S3 and S2.
Finally, a new corner is recognized if the readings obtained from S3 is approxi-
mately equal to the safety distance, and the corner detection routine is passed.
The recognition of a front wall doesn’t have a significant effect on the reduction
of the initial location possibilities. The information obtained from this case is
used to eliminate the possibilities of the initial location. This is illustrated in
Figure 5.7. From this figure it is evident that the robot could not have started
in corner A because [ is smaller than the reading obtained from S3, given that
the corner is detected by S1 and S2. This situation doesn’t exist in our test
environment, however, it may be available in any other environments. This

test is implemented in our algorithm as follows:

e search the environment in a counter clockwise direction if the corner is
detected by S1 and S2 and counter clockwise direction if the corner is

detected by S4 and S5, to find the walls that identified a by corner flag;
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a wall is identified by a corner flag if its beginning point is a corner. Then
search all the next walls which the difference between its surface normal

and the surface normal of the starting wall is 90°.

e A wall is a candidate to be the front wall detected by S3 and S2 or S3
and 54 if the following condition is reached:
(z(k) > z(j) and z(k) < z(j+1)) OR (z(k) < z(j) and z(k) > z(j+1)).
where, z(k) is the r coordinate of the starting wall and z(j) is the =
coordinate of the candidate wall. This condition is valid while the robot
is moving parallel to the +y or —y. On the other hand, if the robot is
moving parallel to +z or —z the following test is applied:
(y(k) > y(j) and y(k) < y(j +1)) OR (y(k) < y(j) and y(k) > y(j + 1))
These two conditions are checked simultaneously because the robot is

unable to realize in which direction it is moving.

e Every wall identified by a corner flag has an initial confidence value equal
to one. After the following condition is checked, the confidence value is
updated. For example, if the condition is not reached, the confidence
value for that wall (has a corner flag) is set to zero which means that
this initial location is impossible. On the other hand, if this condition is
reached, the confidence value is kept as it is. abs(y(k) — y(j)) > ds3 OR
abs(z(k) — z(j)) > ds3.

The above mentioned steps have more significance if the traveled distance is
considered. However, because of the large accumulated error in the encoders’
readings, it is difficult to make use of the traveled distance information. As
mentioned earlier, this accumulated error is a general problem in all mobile

robots and it needs further research. This issue needs to be studied extensively
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to come up with a model for the uncertainty in the encoders’ readings.

. To make use of the information obtained from the side sensor, the following
test is applied if there is an increase or decrease in the readings obtained from
this sensor while the robot in motion. This test is applied if the amount
of increase or decrease is greaterthan the length of the shortest wall in the

environment.

e search the map in clockwise direction to find the walls which have flags

for the corner.

e for each selected wall. search all the walls in the environment, starting
from the next wall, to find the ones that have the same normal surface
of the starting wall. Any of these walls are candidate to be the detected
edge if the following test is passed:

(y(k+1) 2y(j+1)and y(k+1) <y(j +1) ) OR
(y(k+1) <y(j) and y(k+1) >y(j +1) ) OR

(z(k+1)<z(j+1)and z(k+1) > z(j + 1)) OR
(z(k+1)>z(j+1)and z(k+1) < z(j +1)) OR

If this test is passed, then the distance of the robot from all the walls are
estimated based on the radial imprecision possibility distributions, then it
is matched with the initial stationary location of the robot. An example is

illustrated in Figure 5.8. The degree of match is obtained from [23):
* Aap (5.3)

where A and B denote, respectively, the possibility distribution for the initial

location and the current location ( after the increase in the sensor readings)
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of the robot, 4,4 denotes the area inclosed by the possibility distribution A,
Ap denotes the area inclosed by the possibility distribution B, and A4p is
the area of the intersection between these two possibility distributions, i.e.,
the black area in Figure 5.8. The new possibility distribution results from
the intersection of the other two possibility distributions that represent the
current location of the robot as a result of having new piece of information
about the robot initial location. Therefore, the confidence about the initial
location is updated as:

Conflk]=min(Conflk], M (4, B)) Note that if the wall (that has a flag of a
corner) doesn’t pass the previous test and pass the matching test, its confidence

value is zero.

. The robot keeps moving tryving to extract more information from its environ-
ment until the reading obtained from S3 is close to the safety distance. Then,
the robot’s initial location is the one with maximum confidence value. Note
that the current location of the robot is always obtained from the readings of
the side sensor. This location represents one coordinate, the other coordinate

is obtained from the dead-reckoning which has a large error.

By these steps, the robot is able to detect a corner and a wall in the same

scan and by different sensors. Then the initial location of the robot is estimated

from the sonar readings obtained from these sensors. The alternatives of the initial

location are reduced by navigating in the environment and extracting features that

have relevant in the global map. Features with maximum matching degree with their

relevant are used for estimating the dynamic location of the robot. Our localization

method is not only valid for Pioneer 1, but it can be generalized for different robots’

configurations such as ring configuration. In the next chapter the discussion and

90



-
s
F
2
=
=3
3
2
=3
3
s
=8
3
2
g
3

new modified location

tobot 's direction of motion

Figure 5.8: Matching between the initial location and the new one after an increase
in the readings obtained from S0 occurs.

conclusions are introduced.
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Chapter 6

Discussion and Conclusions

6.1 Discussion

There are different approaches in the literature for corner detection. One of them
depends on vision sensors to detect corners [26]. However, this approach is not
practical because it needs time for processing the obtained images, and then detect
a corner. Another approach [27] uses sonar sensors for corner detection. This ap-
proach depends on processing the echo signals reflected from different objects in the
environment. It was found that the amplitude of the echo reflected from walls and
corners is a function of the incidence angle §. This relation is usually approximated
as a Gaussian curve. The maximum amplitude obtained if the incidence angle is zero.
From this assumption the field of view of the sonar sensor for readings obtained from
walls and corners is assumed to be the same. Therefore, it was difficult to differenti-
ate corners from walls if only one sensor is used. Then two sonar sensors were placed
at a certain distance from each other and mounted on a stepper motor to study the
behavior of the reflected echo from walls and corners. It is assumed that when the

sonar sensor acts as a receiver and a transmitter in the same time, the sensor can
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be modeled as shown in Figure 6.1, especially when the surfaces are smooth (mirror
like reflectors). From this model. the echo amplitudes Aaal, Aabl, Abla, and Abb
as shown in Fig 6.2 are considered as the bases to differentiate corners from walls.
A corner is detected if Aaal(f) — Aabl(f) > 60 or Aabl(f) — Abbl(F) > 60. A wall
is detected if Aaal(f) — Aabl(f) > 60 and Abbl(#) — Aabl(f) > 65, where o is the
standard deviation in the noise that affects the echo amplitude values. The value of
o is obtained from taking 100 readings of the echo amplitudes at each step in the
scan. o is 2 percent of Ameas(8) = A(f)+noise, where Ameas(d) is the average of

the 100 readings of the echo amplitude at angle 6.

Tranmsmitter a Reciever al
X .
a 8s _ al

\-

bl

b
Transmitter b Wall Reciever bl

Reciever bl

——

Tranmsmitter a

al
Recieveral

b
Transmitter b
Corner

Figure 6.1: Two-transducer system at zero incidence angle from wall and corner. 0
is the angle for echo amplitude for the corner.
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Figure 6.2: Amplitude versus incidence angle for wall reflector (top). Amplitude
versus incidence angle for corner reflector (bottom).
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This method has some limitations. Firstly the distance between the two trans-
ducers constrains the range at which a scan can be made, and this range is smaller
than the sensor range. Secondly the time required to detect a corner or a wall by
this method is large because at each step in the scan 100 readings must be obtained.
Thirdly, this method depends on processing the echo signals to study the echo am-
plitude which needs more time. Moreover, it is verified experimentally (See Tables
A.19 to A.30) that the radial imprecision calculated by considering the behavior
of the corner as the wall’'s (method 1) is greater than when it is calculated by our
method ( method 2) when the sonar sensor is at distances larger than 75cm. Finally
this method is not practical in map building. If this approach is compared with our
approach, our approach is more efficient as it is based on TOF information which
requires less processing. As it also uses more sensors, this increases the possibility
of detecting a corner. Due to that, our method is especially effective on robots with
24 sensors arranged in a ring configuration.

Our approach also considers the angular uncertainty in sonar readings - a fea-
ture that is often neglected by other studies. The above mentioned method considers
that the reduced echo is reflected from the wavefront of the beam and not from the
closest part of the detected object. Then the radial imprecision is modeled as a
noise that has Gausian distribution. This is again an irrealistic assumption as the
sonar data are imprecise where Probability Theory cannot be used, but Possibility
Theory can handle imprecision which we use in our study.

The angular uncertainty for readings coming from a corner is less than the
angular uncertainty for readings coming from a wall Figure 4.3 and Figure 4.14.
In other words, the field of view of the sonar sensor when it is scanning a corner

is smaller than its field of view if it is scanning a wall. This is shown clearly in
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Tables 4.3 and 4.13. Therefor, this characteristic of the sonar sensor can be used to
recognize objects in the environment by using only one sensor.

From Figures A.1 to A.15 and Figures A.16 to A.27 the radial imprecision of
the readings coming from a corner increases with the incidence angle §. However,
the readings coming from the wall do not always have this trend. The increase of the

radial imprecision with the incidence angle is clear from equations (4.3) and (4.1).

6.2 Summary and Conclusions

In our study, models for radial imprecision and angular uncertainty are proposed
by using possibility distribution. The Possibility Theory is valid when the available
knowledge is imprecise and coherent as in sonar readings. This case cannot be
handled by Probability Theory.

It is verified experimentally (See Tables A.19 to A.30) that the radial impre-
cision calculated by considering the behavior of the corner as the wall’s (method 1)
is greater than when it is calculated by our method ( method 2) when the sonar
sensor is at distances larger than 75cm. On the other hand, the radial imprecision
calculated by method 1 is less than when it is calculated by our method ( method 2)
when the sensor is at distances less than 75cm ( See Tables A.16, A.17, and A.18).
Therefore, it is concluded that the behavior of the corner is the same as the wall’s
only when the sonar sensor is at distances less than 75cm. This is contrary to the
generalization made by [27] that the behavior of the corner is the same as the wall's
even though the experiments were done at distances less than 75cm.

A new simple corner detection method is applied on Pioneer 1. This method
depends on direct interpretation (TOF) of the sonar readings obtained from differ-

ent sensors in the same time. This method is not specific to Pioneer 1, and it can
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be generalized for different conﬁgurat'ions especially the ring configuration. More-
over, our approach for corner detection is more practical than any signal or image
processing approaches because they are time consuming.

It is experimentally shown that the field of view of sonar sensor scanning a
corner is less than the field of view of the sensor when it is scanning a wall.

The initial stationary global location of the robot is estimated after corner and
wall detection. Since any environment contains more than one corner, the initial
location has different alternatives. To reduce these alternatives, the robot navigates
in its environment to collect more pieces of information about its initial location.
While the robot is navigating in its environment, it extracts and accumulates ad-
ditional features from the environment and matches them with relevant features in
the global map. The dynamic location of the robot is estimated from the location
of the features with maximum matching degree and the readings obtained from the
sonar sensors.

The matching process between the extracted features and their relevant fea-
tures in the global map given to the robot, is efficient, especially when the global
map contains edges that have close widths, i.e., their widths are greater than 5cm..
The extracted features are used to correct the encoders readings. This is achieved
from the knowledge of the linear length of the wall that is followed by the robot
when an edge is detected.

The dynamic localization method used in our study is environment dependent.
It is efficient in environments with unique detectable features. For example, if the
test environment is a square room, the robot cannot eliminate the four alternatives

for its initial location, a limitation that even more intelligent beings cannot overcome.
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6.3 Future Work

e A model of uncertainty in encoders readings has to be well established to
make dynamic localization more efficient. This can be achieved by studying
the dynamic model of the robot including all the factors affecting their motion

such as the friction of the floor and the accuracy of the encoders.

e One of the limitations of our localization approach is that the robot should
move on a linear path. However, this limitation can be removed if a robot with
24 sonar sensors is used so that environmental features can be recognized easily
and then matched with the given map. Another limitation of this method is
that the robot’s environment is considered empty without furniture. We need a

method that will ignore small furniture and conc- “trate on significant features.

e We need a better way of matching between extracted features and their rele-
vant in the global map. This can be done by subset hood measures which is

more established than the matching method used in our study.
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[ Sensor direction 6 deg [ Sonar reading (mm) | Error in sonar reading (mm) |

-20 315 -49.0
-18 320 -57.1
-16 5201 *
-14 302 -44.3
-12 297 -41.4
-10 289 -35.0
-8 284 -31.5
-6 283 _ -31.6
-4 283 -32.4
-2 283 -32.8
0 285 -35.0
2 285 -34.8
4 286 -35.5
6 286 -34.6
8 286 -33.5
10 287 -33.0
12 291 -35.4
14 298 -40.4
16 309 -49.0
18 314 -51.1
20 321 0.6
22 316 -46.5
24 325 -51.3

Table A.1: Sonar readings from a wall 25cm away from the sensor.
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[ Sensor direction # deg | Sonar reading (mm) | Error in sonar reading(mm) |

-14 o978 -62.7
-12 559 -48.0
-10 941 -33.0
-8 335 -30.0
-6 335 -32.0
-4 534 -33.0
-2 335 -35.0
0 335 -35.0
2 335 -35.0
4 335 -33.8
6 536 -33.2
8 536 -31.0
10 937 -29.3
12 942 -31.0
14 357 -41.7

Table A.2: Sonar readings from a wall 50cm away from the sensor.

| Sensor direction § deg | Sonar reading (mm) | Error in sonar reading(mm)

-10 796 -34.4
-8 791 -34.0
-6 787 -33.0
-4 787 -35.0
-2 787 -36.5

0 787 -37.0
2 787 -36.5
4 787 -35.0
6 788 -34.0
8 788 -31.0
10 797 -30.2
12 797 -31.0

Table A.3: Sonar readings from a wall 75cm away from the sensor.
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rSensor direction € deg | Sonar reading (mm) | Error in sonar reading(mm)J
-12 1073 -50.7
-10 1046 -30.5
-8 1039 -29.1
-6 1038 -32.5
-4 1038 -35.5
-2 1037 -36.4
0 1038 -38.0
2 1038 -37.4
4 1039 -36.6
6 1039 -33.5
8 1040 -30.0
10 1041 -25.6
12 1046 : -23.7
14 1056 -25.4

Table A.4: Sonar readings from a wall 100cm away from the sensor.

] Sensor direction  deg | Sonar reading (mm) | Error in sonar reading(mm)
-10 1298 -28.7
-8 1294 -31.7
-6 1290 -33.1
-4 1290 -36.9
-2 1290 -39.2

0 1291 -41.0
2 1291 -40.2
4 1291 -38.0
6 1292 . -35.0
8 1293 -30.7
10 1296 -26.7
12 1301 -23.0

Table A.5: Sonar readings from a wall 125cm away from the sensor.
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[Sensor direction # deg | Sonar reading (mm) | Error in sonar reading(mm)
-12 1562 -28.5
-10 1548 -24.8
-8 1574 -32.2
-6 1543 -34.7
-4 1543 -39.0
-2 1543 -42.0

0 1544 -44
2 1544 -43.0
4 1544 -41.0
6 1542 -34.0
8 1546 -31.0
10 1550 -27.0
12 1557 -24.0

Table A.6: Sonar readings from a wall 150cm away from the sensor.

[Sensor direction 8 deg | Sonar reading (mm) [ Error in sonar reading(mm) |

-10 1832 -55.0
-8 1807 -40.0
-6 1806 -46.3
-4 1803 -49.0
-2 1802 -51.0
0 1802 -52.0
2 1802 -51.0
4 1803 -49.0
6 1804 -44.0
8 1804 -34.0
10 1808 -31.0
12 1809 -20.0
14 1872 -11.0
16 1872 -52.0

Table A.7: Sonar readings from a wall 175cm away from the sensor.
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[ Sensor direction 6 deg

Sonar reading (mm) | Error in sonar reading(mm) |

-10
-8
6

el el S ot
pwom@d—loom,‘;

2070
2060
2057
20533
2053
2054
2054
2054
2055
2055
2057
2061
2069

-39.0
-40.0
-46.0
-48.0
-51.8
-54.0
-53.0
-49.0
-44.0
-34.0
-26.0
-16.3

-7.7

Table A.8: Sonar readings from a wall 200cm away from the sensor.

| Sensor direction § deg

Sonar reading (mm)

Error in sonar reading(mm)

-10 2325 -40.0
-8 2317 -44.9
-6 2316 -61.0
-4 2313 -57.5
-2 2312 -60.0
0 2314 -65.0
2 2314 -62.6
4 2314 -58.5
6 2315 -52.6
8 2319 -46.88
10 2321 -36.3
12 2329 -28.7

Table A.9: Sonar readings from a wall 225cm away from the sensor.
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[ Sensor direction 6 deg | Sonar reading (mm) | Error in sonar reading(mm) |

-10 2580 -41.4
-8 2572 -47.4
-6 2571 -57.2
-4 2567 -60.9
-2 2567 -65.5
0 2567 -67.0
2 2567 -65.5
4 2568 -61.9
6 2568 -54.2
8 2569 -45.0
10 2572 -33.43
12 2577 -21.14
14 2590 -13.46

Table A.10: Sonar readings from a wall 250cm away from the sensor.

[ Sensor direction 8 deg | Sonar reading (mm) | Error in sonar reading (mm) ]

-10 2844 -51.6
-8 2829 -52.0
-6 2825 -60.0
-4 2822 -65.3
-2 2821 -69.3
0 2821 -71.0
2 2821 -69.3
4 2822 -65.3
6 2822 -56.9
8 2825 -48.0
10 2826 -33.5
12 2828 -16.5
14 2855 -20.8

Table A.11: Sonar readings from a wall 275cm away from the sensor.

111



| Sensor direction # deg | Sonar reading (mm) | Error in sonar reading (mm) |

-10 3090 -43.7
-8 3082 -52.5
-6 3081 -64.5
-4 3078 -70.7
-2 3077 -75.2
0 3077 -77.0
2 3077 -75.2
4 3077 -69.7
6 3078 -61.5
8 3082 -52.5
10 3083 -36.7
12 3084 -17.0
14 3095 -3.15

Table A.12: Sonar readings from a wall 300cm away from the sensor.

| Sensor direction 8 deg | Sonar reading (mm) | Error in sonar reading (mm)

-10 3372 -71.9
-8 3338 -56.0
-6 3335 -67.0
-4 3334 -76.0
-2 3332 -80.0
0 3331 -81.0
2 3331 -79.0
4 3331 : -73.1
6 3332 -64.0
8 3335 -53.0
10 3336 -36.0
12 3338 -15.4
14 3348 1.5

Table A.13: Sonar readings from a wall 325cm away from the sensor.

112



| Sensor direction § deg | Sonar reading (mm) | Error in sonar reading(mm)

-10 3615 -61.0
-8 3593 -58.6
-6 3586 -66.7
-4 3585 -76.5
-2 3585 -82.9

0 3584 -84.0
2 3582 -79.9
4 3582 -73.5
6 3585 -65.72
8 3586 -51.6
10 3586 -32.0
12 3588 -9.8

Table A.14: Sonar readings from a wall 350cm away from the sensor.

| Sensor direction 6 deg | Sonar reading (mm) | Error in sonar reading(mm)

-10 3796 -38.9
-8 3792 -35.6
-6 3788 -67.6
-4 3786 -78.9
-2 3786 -83.7

0 3786 -86.0
2 3784 -82.0
4 3783 -74.0
6 3785 -64.6
8 3785 -48.6
10 3793 -36.0
12 3798 -15.3

Table A.15: Sonar readings from a wall 370cm away from the sensor.
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Sensor direction

Sonar reading (mm)

Error method 1(mm)

Error method 2(mm)

-6

N

00 =N O

10

305
300
291
288
288
288
288
289
299

-83.0
-65.0
-49.0
-33.0
-45.0
-33.0
-60.0
-67.0
-82.0

-106.0
-98.0
-81.0
-33.0
-75.0
-74.0
-72.0
-73.0
-90.0

Table A.16: Sonar readings from a 90 corner at 25cm from the sensor and
x=y=17.67cm from the near walls.

Sensor direction

Sonar reading (mm)

Error method 1(mm)

Error method 2(mm)

-10
-8
-6
-4

N

WO & O

5373
555
543
539
335
538
539
539
543
551

-140.0

-110.0
-88.0
-70.0
-52.0
-38.0
-56.0
-70.0
-88.0

-110.0

-133.0
-101.0
-81.0
-75.0
-69.0
-38.0
-77.0
-75.0
-81.0
-93.0

Table A.17: Sonar readings from a 90 corner at 50cm from the sensor and
x=y=35.35cm from the near walls.

Sensor direction | Sonar reading (mm) | Error method 1(mm) | Error method 2(mm)

-6 799 -117.0 -91.0

-4 795 -93.0 -87.0

-2 792 -67.0 -84.0

0 791 -41.0 -41.0

2 792 -67.0 -84.0

4 795 -93.0 -87.0

6 796 -114.0 -85.0

8 801 -137.0 -90.0

10 862 -180.0 -133.0
Table A.18: Sonar readings from a 90 corner at 75cm from the sensor and

x=y=>53.0cm from the near walls.
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Sensor direction

Sonar reading (mm)

Error method 1(mm)

Error method 2(mm)

-8
-6
-4
-2
0
2
4
6
8
10

1071
1051
1048
1047
1047
1047
1048
1049
1054
1076

-185.0
-140.0
-110.0
-80.0
-47.0
-80.0
-110.0
-140.0
-170.0
-210.0

-125.0
-92.0
-91.0
-93.0
-47.0
-93.0
-91.0
-88.0
-91.0

-126.0

Table A.19: Sonar readings from a 90 corner at 100cm from the sensor and
x=y=70.7cm from the near two walls.

Sensor direction | Sonar reading (mm) | Error method 1(mm) | Error method 2(mm)
-6 1298 -160.0 -83.0
-4 1293 -120.0 -80.0
-2 1293 -84.0 -84.0
0 1294 -42.0 -42.0
2 1293 -84.0 -84.0
4 1293 -120.0 -80.0
6 1295 -160.0 -77.0
8 1302 -195.0 -82.0
10 1327 -247.0 -120.0

Table A.20: Sonar readings from a 90 corner at 125¢cm from the sensor and x=y=288.4
from the near two walls.

Sensor direction | Sonar reading (mm) | Error method 1(mm) | Error method 2(mm)

-10 ) 1603 -300.0 -144.0

-8 - 1548 -220.0 -70.0

-6 1542 -178.0 -73.0

-4 1539 -134.0 -78.0

-2 1539 -90.0 -40.0

0 1540 -40.0 -40.0

2 1540 -90.0 -80.0

4 1540 -135.0 -75.0

6 1545 -180.0 -77.0

8 1563 -236.0 -102.0
Table A.21: Sonar readings from a 90 corner 150cm from the sensor and

x=y=106.0cm from the near two walls.
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Sensor direction | Sonar reading (mm) | Error method 1(mm) | Error method 2(mm)

-8 1807 -250.0 -77.0

-6 1792 -200.0 -60.0

-4 1788 -150.0 -61.0

-2 1788 -92.0 -67.0

0 1788 -38.0 -38.0

2 1788 -92.0 -66.0

4 1790 -150.0 -65.0

6 1796 -200.0 -67.0

8 1812 -260.0 -86.0
Table A.22: Sonar readings from a 90 cornmer 175cm from the sensor and

x=y=123.7cm from the near two walls.

Sensor direction | Sonar reading (mm) | Error method 1(mm) | Error method 2(mm)

-12 2038 -350.0 -3

-10 2031 -300.0 -10.0

-8 2034 -260.0 -34.0

-6 2032 -210.0 -45.0

-4 2039 -165.0 -69.0

-2 2039 -11G6.0 -76.0

0 2036 -36.0 -36.0

2 2040 -107.0 -78.0

4 2041 -167.0 -73.0

6 2052 -230.0 -84.0
Table A.23: Sonar readings from a 90 corner 200cm from the sensor and

x=y=141.4cm from the near two walls.

Sensor direction | Sonar reading (mm) | Error method 1(mm) | Error method 2(mm)

-10 2301 -360.0 -45.0

-8 2297 -310.0 -58.0

-6 2291 -250.0 -62.0

-4 2290 -180.0 -72.0

-2 2285 -110.0 -70.0

0 2293 -43.0 -43.0

2 2295 -120.0 -90.0

4 2299 -190.0 -90.0

6 2314 -270.0 -108.0
Table A.24: Sonar readings from a 90 corner 225cm from the semsor and

x=y=152.0cm from the near two walls.
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Sensor direction

Sonar reading (mm)

Error method 1(mm)

Error method 2(mm)

-12
-10
-8
-6
-4
-2
0
2
4
6

[\]
o
-~
~1!

N YNNI NN NN
v UV OV OV OV OV OV OY
O OV b s e e v O
CONO~N~JO O W

-450.0
-380.0
-320.0
-260.0
-190.0
-110.0
-47.0
-115.0
-190.0
-280.0

-27.0
-9.0
-22.0
-34.0
-46.0
-56.0
-47.0
-60.0
-56.0
-76.0

Table A.25: Sonar readings from a 90 corner 250cm from the sensor and x=y=176.8
from the near two walls.

Sensor direction | Sonar reading (mm) | Error method 1(mm) | Error method 2(mm)
-12 2807 -487.0 -110.0
-10 2802 -430.0 -30.0
-8 2799 -363.0 -50.0
-6 2798 -300.0 -67.0
-4 2795 -220.0 -76.0
-2 2796 -135.0 -87.0
0 2796 -46.0 -46.0
2 2799 -140.0 -93.0
4 2804 -230.0 -94.0
6 2815 -312 -101.0
Table A.26: Sonar readings from a 90 corner 275cm from the sensor and

x=y=194.5cm from the near two walls.

Sensor direction | Sonar reading (mm) | Error method 1(mm) | Error method 2(mm)

-12 3050 -520.0 10.0

-10 3048 -460.0 -17.0

-8 3042 -313.0 -60.0

-6 3043 -230.0 -70.0

-4 3042 -140.0 -80.0

-2 3042 -140.0 -80.0

0 3043 -43.0 -43.0

2 3047 -146.0 -90.0

4 3053 -240.0 -92.0

6 3062 -330.0 -94.0
Table A.27: Sonar readings from a 90 corner 300cm from the sensor and

x=y=212.13cm from the near two walls.
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Sensor direction | Sonar reading (mm) | Error method 1(mm) | Error method 2(mm)

-10 3351 -545.0 -117.0

-8 3335 -457.0 -114.0

-6 3320 -363.0 -107.0

-4 3300 -255.0 -85.0

-2 3291 -148.0 -78.0

0 3285 -35.0 -35.0

2 3289 -146.0 -74.0

4 3295 -250.0 -75.0

6 3323 -366.0 -113.0
Table A.28: Sonar readings from a 90 corner 325cm from the sensor and

x=y=229.8cm from the near two walls.

Sensor direction | Sonar reading (mm) | Error method 1(mm) | Error method 2(mm)
-6 3556 -371.0 -76.0
-4 3543 -263.0 -69.0
-2 3536 -152.0 -67.0
0 3532 -32.0 -32.0
2 3535 -150.0 -65.0
4 3543 -263.0 -69.0
6 3535 -370.0 -74.0
8 3569 -470.0 -77.0
Table A.29: Sonar readings from a 90 corner 350cm from the sensor and

x=y=247.5cm from the near two walls.

Sensor direction | Sonar reading (mm) | Error method 1(mm) | Error method 2(mm)
-8 3774 -498.0 -85.0
-6 3760 -393.0 -83.0
-4 3746 -280.0 -76.0
-2 3739 -162.0 -74.0
0 3730 -30.0 -30.0
2 3740 -163.0 -63.0
4 3746 -279.0 -76.0
6 3763 -396.0 -90.0
Table A.30: Sonar readings from a 90 corner 370cm from the senmsor and

x=y=261.6cm from the near two walls.
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Figure A.1: Incidence angle versus radial imprecision for readings obtained from a
wall at distance 25cm.
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Figure A.2: Incidence angle versus radial imprecision for readings obtained from a
wall at distance 50cm.
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Figure A.3: Incidence angle versus radial imprecision for readings obtained from a
wall at distance 75cm.
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Figure A.7: Incidence angle versus radial imprecision for readings obtained from a
wall at distance 175cm.
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Figure A.9: Incidence angle versus radial imprecision for readings obtained from a
wall at distance 225cm.
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Figure A.10: Incidence angle versus radial imprecision for readings obtained from a
wall at distance 250cm.
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corner at 50cm.

127



Error in the measured distance method 1{mm)
] ] |
-]
T T T
»

|
-
w

T

s

~4 -2 0 2 4 6 8 10
Sensor direction{degree)with a comer(90 deg) at distanc 75 cm

L
&’b

Figure A.18: Incidence angle versus radial imprecision for readings obtained from a
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