Biblioth

National Library
du Canada

of Canada

hd |

Canadian Theses Service

Ottawa, Canada
K14 ON4

NOTICE

The quality ofthis microformis heavily dependent upon the
quality of the original thesis submitted for microfilming.
Every effort has been made to ensure the highest qualiiy of
reproduction possible.

It pages are missing, contact the university which granted
the degree.

Some pages may have indistinct print especially if the
original pages were typed with a >oor typewriter ribbon or
if the university sent us an inferior photocopy.

Reproduction in full or in part of this microform is governed
by the Canadian Copyright Act, R.S.C. 1970, ¢. C-30, and
subsequent amendments.

NL-339 (r.88/04) ¢

e nationale

Service des théses canadiennes

AVIS

La qualité de cette microforme dépend grandement de la
qualité de la these soumise au microfilmage. Nous avons
tout fait pour assurer une qualité supérieure de reproduc-
tion.

S'il manque des pages, veuillez communiquer avec
funiversité qui a conféré le grade.

La qualité d'impression de certaines pages peut laisser a
désirer, surtout si les pages originales ont été dactylogra-
phiées a I'aide d'un ruban usé ou si l'université nous a fait
parvenir une photocopie de qualit# inférieure.

La reproduction, méme partielle, de cette microforme est

soumise & la Lni canadienne sur le droit d'auteur, SRC
1970, c. C-30, et ses amendements subséquents.

. Canada

FULL IMPLEMENTATION OF A TEST DESIGN METHODOLOGY
FOR PROTOCOL TESTING

Vassilios Koukoulidis

A Thesis
in
The Department
of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Engineering at
Concordia University
Montréal, Québec, Canada

March, 1989

© Vassilios Koukoulidis, 1989

I I National Library Bibliothéque nationale
* of Canada du Canada

Canadian Theses Service Service des théses canadiennes

Otltawa, Canada
K1A ON4

The author has granted an iirevocable non-
exclusive licence allowing the National Library
of Canada to reproduce, loan, distribute or sell
copies of his/her thesis by any means and in
any form or format, making this thesis available
to interested persons.

The author retains ownership of the copyright
in his/her thesis. Neither the thesis nor
substantial extracts from it may be printed or
otherwise reproduced without his/her per-
mission.

L'auteur a accordé une licence irrévocable et
non exclusive permettant a la Bibliotheque
nationale du Canada de reproduire, préter,
distribuer ou vendre des copies de sa thése
de quelque maniére et sous quelque forme
que ce soit pour mettre des exemplaires de
cette thése a la disposition des personnes
intéressées.

L'auteur conserve la propriété du droit d’auteur
qui protege sa thése. Ni la thése ni des extraits
substantiels de celle-ci ne doivent étre
imprimés ou autrement reproduits sans son
autorisation.

ISBN 0-315-51363-2

Canada

m

ABSTRACT

Full Implementation of a Test Design Methodology
for Protoco! Testing

Vassilios Koukoulldis

The implementation of a system for analysis of protocols Is presented. This
analysls Is currently used for test sequence generation for protocol implementa-
tlons. The protocol must be specified in Estelle, a protocol speclfication language
based on an extended finlte state machine model. The analysis first verlfies that
the specification s free of syntax and semantlc errors. Next, a statlc analysis
called normalization Is applled. Normalization eliminates the transfer of control
Introduced by Estelle constructs such as procedure or function calls, conditlonals,
loop statements and state sets. Next, module merging Is performed In order to
eliminate intermodule communication In case of multl-module specifications.
Intermodule communlcation Is undesirable In black box testing, because it Is not
possible to observe internal interactions. The next step is the generation of infor-
mation for graphlcal representation of data and control flow. Data flow models
the operatlons applied on the Input interaction parameters and context varlables
In order to determine the value of the output interaction parameters. Control
flow models the finite state machine lmplemented by the Estelle specificatlon.
The output of the system can be used for generatlon of black box testlng data.
Test generatlon is demonstrated using a two module protocol specification and

applylng all the steps of processing untll test sequences are produced.

v

ACKNOWLEDGEMENTS

Many people have contributed in the preparation of this thesls and the sys-
tem described in it. I would llke to thank my supervisor professor Behcet Sarl-
kaya, who developed the theory implemented here and Introduced 1t to me. He
read thoroughly earller drafts of this thesls and made useful suggestions and
remarks that resulted in the current form. I would alsc like to thank the Depart-
ment of Communlcations of Canada for providing financlal support, Michel Bar-
beau for explalning to me the detalls and difficult points of a similar system
developed by him thus helping 10 design a new more general Implementation, and

Rick To for programming the algorithm for merging finite state machines.

Last but not least I would llke to thank my parents, Nlcolas and Maria, and
my brother, Yannls, for providing me financlal and moral support, my flancée
Gina Cabadalidls for being so understanding and supporting durlng the last two
vears and my frlend and colleague Vassllls Zoukos for helplng me to understand
detalls of the fleld of protocols and distributed systems with his Intrigulng discus-

sloms.

ApiepiveTal aTouvs

Niko, Mapia, Tavvn kot T(iva

Table of Contents

LIST OF FIGURES ...ccevcenietrennssiansncssrens cressesnenesnnenes terereessnneeaiietsssansannsnonns
LIST OF TABLEScccvotmnveniennnennne rerssnone beserserassnettisnrtnsensnsisssrinas cereerseresesennees
CHAPTER 1: INTRODUCTION corssseeranes vrrsnsssnennas sessasareesesnse sessenns
CHAPTER 2: A TEST DESIGN METHODOLOGY .acccriiiriaceniiniinnecesieannns
2.1 The Estelle Protocol Speclficatlon Language ctesececnsrensrrensessesans
2.2 Transformatlons and Control and Data Flow Information vernes
2.3 Data and Control Flow Graphs and Protocol Functlonscceeeeeurenns
2.4 Test Sequence Generatlon ..iiccieciersscrececnuurncertesessieriiiranestnnmossessarcanas
2.5 The Prolog Programming LANEUILE ceeveerrrcrarecacanses cirvesens cesresensene
CHAPTER 3: COMPILATION AND NORMALIZATION reresranies
3.1 COMPILATION .iiicccercetiicreenessceneeemeresesnssmssssrsascasssnisrsssesssssansessasannes
3.1.1 Syntax Tree Bullderccccevvenennns everesssassecessrrennans creseensesnensrenes

3.1.2 Conversion of the Syntax Tree to a Prolog Term

3.1.3 Translation of Symbol Tabie tO Prolog ...ccccusierceranseriasencsse .

3.1.4 Performance of the Compller Module ...ccccieiinrerniiiiiinencscennnns

3.2 NORMALIZATION ..cineiiicnnunnisecescsesnane ceeeenens erssenereces cereasesene
3.2.1 Declaration Part ProcessIng ...c.ceeeeeens tresmeensrrisecstetarentasessasanane

3.2.2 With Statements Replacement cesssaemansesersanes ceveescrsesctoesene

Vi

x1

10

10

14

16

17

17

20

25

29

36

TR

R

Mg A Qe STESTAGYYR A TS e

3.2.3

3.2.4

3.2.5

3.2.5

3.3 IMPLEMENTATION OF NORMALIZATION MODULE

3.3.1

3.3.1

CHAPTER 4:

Procedure and Function Calls Replacementccceccienisssonens
3.2.3.1 Procédure CallS wereiriisreiriecereniniiessseiiieniesecssenesnes
3.2.3.1 Functlon Calls .ccceeiemmmressinnccresssiesnsismmmnescessesisnmserssans
Condlticnal Statements Replacementcccevreneceresreceneens corecees

For, All and While Statement< Replacement

........................

Processing of From and TO ClaUSES ..cciiivreeireresnironssessssacsescess

Performance of Normallzation Module

Printing

DATA AND CONTROL FLOW ANALYSIS

4.1 DATA FLOW ANALYSISccccoveeeanns seetveasannerneitatsnisssissonesassasiiresananse

4.1.1

4.1.2

Data Flow Analysls - First Phase

4.1.1.1 Declaration Part Processing

4.1.1.2 Transltion Declaration Part Processing

4.1.1.3 Implementation of First Phase of Data Flow

ANAIYSIS tiieiiiniiirnttinariniresireascertiiiosrictiereitassasnosarsrens

4.1.1.4 Peyrformance of the First Phase of Data Flow

ADALYSIS tirenererierortennneracscnsessnssrseonsseraessearssssarssrsasssnns
Data Flow Analysls - Second Phase ...ccueeceiercrneessenenseiiersnnnns

4.1.2.1 Implementatlon of Second Phase of Data Flow

ADNAlYslS .ccereeeenees crenves sesenrerecassesirsensans ceearessnensvararonnes

4.1.2.2 Performance of the Second Phase of Data Flow

vii

39

44

62

82

vill

ADalysls .eeeennne crrssaene cersesencsennnssnssreranans cresseenseene creseee 86

4.2 CONTROL FLOW ANALYSIS cceeniieennirsnreessecceeesanses veressesssansonns wee 87
4.2.1 Implementation of Control Flow Analysls veressoseanee crsene 87

4.2.2 Performance of Control FIOW ADAalYSIS .eccciverveccrriismecensceorasens 88
CHAPTER 5: MODULE MERGING teeessnassessereacssesansanninse SO ° ¢

5.1 Combining Transitlons In the Extended Finite State Machline

MOdE] .ciiviirniiiiiticrinciiinuiescasaiissosssirastiisssissasassssencasssssesrensnrnsssssanans 91

5.2 An Algorithm for Module Mergingc.ceeciveceescencees senseseens crevensessase 23
5.3 Implementation sesvenseerte cesresnse srresseses Ceviescrvssactvsnitnrseces teessecensens 97
5.4 Performance of Module Mergingccceeeernvsesennenes eesbessasescsssrneasasarnonsae 99
CHAPTER 6: A TEST SEQUENCE GENERATION EXAMPLEccoueu. 100
8.1 Normalization and First Phase of Data Flow Analysls connisenee 101
8.2 Module Merging ...cceeeveenes seessenae cresssseses trecnasrnssanss sreessenarsionanas crnsoosnes 101
6.3 Control Flow and Second Phase of Data Filow Analysls cevereanen 102
6.4 Partitloning of Data Flow Graph to Protocol Functions ceversenes 102
8.5 Test Generatlonccerremerriceasasanirnsesncaseennsssses cerseeeraneens rrserensnensissas 104
CHAPTER 7: CONCLUSIONS Cretessesetisesssressarernrissssnaentssisens sessssnns 108
REFERENCES ..tviveccettiarmiiiieciimmiimeseesiimmimsnsssisirtesssesssisssssssssssnosanssssss veer 108
APPENDIX A: USER'S GUIDE ...ccctuicrseeracnirimnisssssecsenssesesnsssismsssssscsssssss 111
A.1 Introductionc.eeeee ceeetesnsranussinstssnserserirssesrerseransisiraransatsette ceenosrenes 111

A.2 Commands ceeresensareses S, ceeenonses veesnssseneacesseres cecresescecssesasasess 111

A A R L S

IR o PR M T R T5°T 70 MR s e

ix

A.2.1 nf (Normal Form) Command verrersasectanes cersenes ereesersunnienns 112

A.2.2 cmbn (Combine Modules) CoOmmAandcccoceereeeereceecreererersenns 113

A.2.3 dtf (Data and Control Flow) Commandcceeesreeecererererionnes 114

A.3 Warnings and ETTOT MESSAEES iveereceereeesnreserse ~~1oseaesnsssnrssrsecssssssssansnns 115
A.3.1 Compllation Phase Warnings and Error MeSSagescoveeerenen 115

A.3.2 nf Command Error MeSSages ...cc.ceceeerencrmiumsnesossisanessinnseenans 115

A.3.2 Unchecked Problems ..cececessecenisssnssssesacsanssressnsiaorssssnsesanas 118

Ald GIOSSATY tereirencecriicancniimeansianuusssnsssresscermnsiosonsesssssssssrnsssssssnssssrinsseseress 117
APPENDIX B: THE ALTERNATING BIT PROTOCOL ...cccecvvevrvrvrnrennnn. 119
APPENDIX C: MERGED ALTERNATING BIT PROTOCOLccccvreenens 124

APPENDIX D: TEST SEQUENCES FOR THE ALTERNATING BIT

PROTOCOL .ciiiiiiiisiiinrenniinestiinsnnesesninieni. crereereaneennanens 129

Flgure 1.1.

Flgure 1.2.

Figure 1.3.

Flgure 2.1.

Figure 3.1.

Flgure 4.1.

Figure 4.2.

Figure 4.3.

Figure 6.1.

Flgure 8.2.

List of Figures

The Open Systems Interconnection Model

Structure of an OS] layer

A test architecture

Structure of a system for processing of Estelle specifications
Structure of the compller module

Data flow graph representation of reference to an array element
Data flow graph representation of ANY clauses

Control flow graph of the alternating bit protocol

Functlons of the alternating bit protocol

Control flow graph of the merged alternating bit protocol

Table 3.1.

Table 3.2.

Table 7.3.

Table 4.1.

Table 4.2.

Table 4.3.

Table 56.1.

List of Tables

Performance of the compiler module
Performance of the normallzation module
Performance of the printing module
Performance of data flow analysls - phase I
Performance of data low analysls - Phase II
Performance of control flow analysls

Performance of module merging

x1

CHAPTER 1

INTRODUCTION

A computer network Is a collection of autonomous interconnected comput-
ers. The International Standards Organization (ISO) has modeled the structure
of a computer network with the OSI (Open Systems Interconnection) Reference
Model, (6] (figure 1.1). Any system deslgned for networking can follow OSI's
layering approach., Each layer uses the services provided by the lower layer In
order to offer certain services to the higher layer and so on (figure 1.2). The ser-
vices provided by each layer are explicicly speclfied by the ISO. The detalls of
implementation of a layer are shlelded from the iayer's service user. Therefore,
layer N on one machine can carry on a conversation with layer N on the remote
machine abstracting from the detalls of how thls conversation is carrled through
by the service provider (layer N-1). A protocol s the set of conventions and rules
used In the conversaulon between corresponding layers (also called peer processes),
[24]. The data exchanged between peer processes are carrled with protocol data

units (PDUs).

There exists a large varlety of protocol Implementatlions from different
manufacturers running on different machines Implementing the services of each
layer of the OSI model. In such an heterogeneous environment the most practical
way of proving that networking can be achleved Is testing the varlous Implemen-
tations, [21]. This thesls focuses on a type of testing called conformance testing.
The alm of conformance testing is to check whether an Implementation conforms
to the protocol standard defined by ISO. Conformance testing can be single-layer

or multi-layer. Multi-layer testing is out of the scope of this thesis.

Open System A Open System B
Application | _ APDUSs | Appiication
Layer 7”1 Layer

t 4
\ 4

Presentation | PPDUs .| Presentation
Layer 7] Layer

$ $
‘ Session ' SPDUs Session

Layer [»(Layer
L___._l‘ T
v v
Transpont TPDUs | Transpont
Layer) > Layer
A 'y
A v
Network | Network
Layer) <4—>| Layer

'Y i
v

Communication

Data-link N .| Data-link
Layer < > Network Layer
t 4
h 4

Physical Phy sical
L:;’:er H H Layer

Flgure 1.1. The Open Systems Interconnection Model

Flgure 1.3 shows an architecture (known as distributed single layer archltec-
ture, {14]) which can be used to test N-layer OSI protocols. The upper tester Is a
task using the N-layer service provided by the lmplementation under test (IUT).
The lower tester Is a task uslng (IN-1)-layer service and resides In a remote com-
puter. The lower and upper tester are coordinated (using the test coordination
procedures) In order to stimulate the I[UT with a gilven sequence of Input interac-
tlons and observe the IUT's outputs. Thls sequence of interactions wlll be
referred to as test sequence and Is made up of a number of protocol data unlts

(PDUs) sent to or recelved by the IUT.

A methodology for test sequence generation has been introduced by Sarikaya

{N+ 1)$Servlce

<>

Layer N+1

!

i

(N)+ Service

Protocol
Entity

Y

{N)-protocol

< >

I

Protocol
Entity

LayerN

!

(N-1)- SERVICE PROVIDER

Figure 1.2. Structure of an OSI layer

Lower

Tester

Test Coordination
i Procedures il

Upper Tester

Abstract Service
Primitives

<

Abstract Service
Primitives

Implementation
Under
Test

Service Provider

Flgure 1.3. A test archltecture

e thc 1Y

T AT TG E Ny I TG BT

Ty

st

et al. In [16]. This methodology considers the IUT as a black box and assumes
that a formal specification of the protocol Implemented by the TUT ls avallable.
Estelle, [8], has been chosen as the formal speclfication language. Estelle Is based
on an extended finite state machine model which assoclates each transition with a
nuinber of actlons, [11]. Sarlkaya et al. propose a number of transformatlons
that slmplify an Estelle specificatlon. These transformations are referred to as

normalization. They elimlnate control paths and procedure/function calls, and

__merge the modu'iles of a multl-module specification to a single module uslng sym-

bollc execution, [5]. The normalized specification Is further processed to generate
control and data flow graphs. The graphs are decomposed into subtours (l.e.
sequences of transltlons starting from and ending av the Inltlai state) and protocol
functions, respectively. Then test sequences are deslgned considerlng the values

of Input parameters and determining the corresponding outputs.

The objectlve of thls thesis Is to lmplement a system that normalizes and
performs module merging on an Estelle specification and then produces control
and data flow Information. The output can be used by graphlcs tools developed

earller in order to display control and data flow graphs and design test sequences.

The thesls work Is based on an earller work done 1n 1987, [2]. That system
covered a llmited subset of an older dlalect of Estelle. The implementation pro-
posed by this thesls accepts an Estelle specificatlon as defined by the newest
Estelle standard. Addlitionally, 1t performs transformation< on more Estelle con-
structs such as while and ftor loops, with and case statements and varlant
records and array data types. Also, the module merging routines have been
added. Another Important difference with the older system Is the adaptation of
an Estelle compller written entirely in C, while the older system used Prolog for
Impiemecntation of semantic analysls. The new approach Increases the speed of

compliation dramatlcally. These Improvements make possible the analysls of real

protocols such as LAP-D, flle transfer access and management (FTAM) or tran-
sport protocols. According to performance measurements Included In the
chapters to follow, the time needed to process totally a protocol specification
ranges from a few seconds for small examples up to 40 mlnutes for large real-life
protocols. It Is not possible to make performance comparisons with the older sys-
tem for two reasons: several of the older system's modules were Implemented
using a Prolog Interpreter, while the newer system uses a Prolog compller, and
the Estelle dialect used by the older system Is Incompatible with the new Estelie.
To the best of our knowledge there exists no other simllar system with which per-

formance comparisons could be made.

The system consists of a compller which verifies that the specification does
not contaln syntactic or semantic errors and generates an Intermedlate form sult-
able for processing by the normallzation, control and data flow analysls and
module merging routines. The Intermediate form 1s the speclfication’s syntax tree
accompanled with a symbol table contalning Information about varlable and data
type declaratlions. The complier 1s implemented under the UNIX operating sys-
tem and 1t uses the UNIX tools YACC and LEX for syntactic and lexical analysls

and the language C for semantlc analysls and Intermedlate form generation.

Normzlizatlon, control and data flow, and module merging are written In
Prolog. The dlalect used is Quintus Prolog, [28], which 1s compatible with DEC-
10 Prolog, a rather standard Prolog dlalect. Programming in Prolog conslsts of
deflning oblects and rules describing the logle relationships between the objects,
and asking questlons about the objects and thelr relationships, [4]. The advan-
tages of using Prolog Instead of a conventional language for bullding a prototype

can be summarlzed as follows, [25]:

' Less development time Is required because the declarative style of Prolog

facllltates the transfer of a problem specification Into a program.

. The llkelthood of bug producing errors is reduced. The closeness of problem
speclfication and program makes the correctness of Prolog code easlly
apparent. Errors can be easily detected because of the declarative style and

modularity of Prolog.

° Prolog programs can be easily modified and malntalned, slnce Prolog clauses
are small self-contailned units directly related to the specificatlon of the

application.

Lisp Is slmilar to Prolog and could also be chosen as the !mplementation
language. The reason for choosing Prolog instead of Lisp was that during the
development perlod we had better Prolog tools (l.e. a very efficient compller) and

more working experience on Prolog.
The materlal in thls thesls Is organized as follows.

Chapter two glves an overview of the test deslgn methodology introduced

and describes brlefly the Estelle and Prolog languages.

Chapter three descrlbes In detall the compller and normalization units. The
lexlcal, syntactic and semantlic analysls and error handling phases of the compller
were based on a prototype Estelle compller developed by the Natlonal Bureau of
Standards and enhanced by adding Pascal sets as explalned In sectlon 3.1. A
new phase that generates the syntax tree and symbol table was deslgned and
Implemented as part of this thesls work (sectlons 3.1.1 - 3.1.3). Sectlon 3.1.4
glves performance measurements of the compller module. The theory of normali-
zatlon was developed by Sarlkaya et al. In references [19] and (18] and Is dis-
cussed In detall In sectlons 3.2.1 - 3.2.8. The theory s accompanled with a
plethora of examples lllustrating the varlous transformatlons applied on the Input

Estelle specification. A contribution of this thesls Is the Implementation of the

normalization theory and Is described ln sectlon 3.3. The routlnes that perform
the normalization vransformations are explalned. Section 3.3.1 dliscusses a utllity
program that produces an Estelle specificatlon from Its Prolog syntax tree. All
the examples of normalized Estelle code are output from this utllity. Sectlon

3.3.2 dlscusses the performance of the implementation.

Chapter four explalns the generatlon of data and control flow information.
The transformations were based on background theory developed by Sarlkaya In
[19). The scheme for explicitly 1dentifying PDUs Is similar to the scheme followed
by Barbeau in [2]. The major contributions of this part of the thesis are the use
of variant records for declaratlon of PDUs, the processing of primitive
procedures/functions with parameters referring to PDUs, the expansion of a tran-
sition If the tnput PDUs cannot be ldentifled from the provided clause, the pro-
cessing of buflers keeping more than one kind of PDU, speclal handling of arrays
and any clauses and the implementatlon of data flow analysls. Section 4.1
descrlbes the two phases of data flow analysls, the implementation of each phase
and thelr performance. In section 4.2 extraction of control flow information from

an Estelle speclficatlon and its Implementation and performance are discussed.

Chapter flve glves a module merglng algorithm and dlscusses 1ts implementa-
tion. An earlier version of this algorithm for finlte state machines was Introduced
by Sarikaya and Bochmann In (15]. This thesls extends the earller version to
extended finlte state machilnes and explalns how transitions of Interacting
modules are merged (sectlon 5.1). Sectlon 5.2 gilves the new version of the
module merging algorithm and sectlon 5.3 discusses lts Implementation. Perfor-

mance Is addressed In section 5.4.

Chapter six demonstrates with an example how test sequences can be gen-

erated starting from the protocol specification. The protocol used Is the alternat-

ol

ing blt protocol with two modules. The specification Is normalized and passed
through the first phase of data flow analysls. Next the two modules are merged
and Information for data and control flow graphs 1s produced. The data flow
graph Is displayed using an already developed program and partitioned into pro-
tocol functions. For each of those functions a number of subtours of the control
flow graph Is generated, each subtour deflning a test sequence. The programs for
subtour and test sequence generatlon were developed earller, [23], and are not

covered In detall by this thesls.
Chapter seven states the conclusions of thls thesls.

The user's gulde of the system Is glven In appendix A. It contains the com-
mands to which the system listens, the list of error messages, and a glossary of

the terms appearing during the Interaction with the user.

Appendix B contalns a specification In Estelle (the alternating blt protocol)

which is used In chapter six for test sequence generation.

Appendix C gives the output of applicatlon of module merging on the alter-

nating blt protocol.

Appendix D enumerates the test sequences derlved for each function of the

alternating blt protocol.

The examples used In the text are extracted from a slmple transport protocol
and the alternating blt protocol given in references [3] and [11], respectively. The
example used in chapter slx was adopted from reference [2]. LAP-D and FTAM
single module protocols were avallable durlng the system development and used
for performance evaluation of the varlous system units, as well as the slngle
mod ile alternating bit and two module transport protocols from references [11]

..d [3!, respectively. All the performance experiments were conducted on a SUN

3/60 under UNIX 4.2 BSD operating system. The tlme required by the Prolog

programs was measured using Prolog's bullt In routine statistics/0. The pro-
grams executed directly In UNIX shell were timed using the UNIX command

lime.

CHAPTER 2

A TEST DESIGN METHODOLOGY

This chapter outilnes a methodology for discovering errors In a protocol tmple-
mentation. Reference [16] covers the theoretical background of the test design
methodology and reference [23] describes its Implementation. This methodology
Is inspired from functional program testing, [7], which views programs as collec-
tions of functlons which are syntheslized from other functions. Faults In synthesis
of those functions result In program faults. Functlonal program testing has been
proved applicable to protocol testing, [18]. The methodology Is applled on Estelle

speclifications and conslsts of three steps:

a. transformation of the original specification and generation of control and

data fiow information,

b. data and control flow graph generation and determination of protocol func-

tlons and
c. generation of test sequences.

The first section of thils chapter overviews the protocol specification language
Estelle. Next, the test design methodology Is outllned and finally the Prolog pro-
gramming language 1s Introduced. Prolog was used to implement the test deslgn

methodology.

2.1. The Estelle Protocol Specification Language

‘Modeling realistlc protocois with finlte state machlnes (FSMs) results In an
Immeuse number of states. Since many of these states are slmllar In terms of

what the machine expects or responds to upon an interactlon, It Is possible to

11

combine them to a parametrized state (also called major state) thus reducing the
state space slze. Thls ldea leads to the extended finlte state machlines (EFSMs)
which contaln states with varlables. Actlons on these variables can be performed
when a transltlon from one state to another occurs. Estelle (Extended State
Transitlon Language) Is a protocol specification language based on the extended

finlte state machine model.

An Estelle specification consists of modules which communlcate over chan-
nels connected to interaction points of modules. The communlcation over the

channels s achleved through queues. The generlc form of a channel definition s

channel channel_}dentifier (role_1, role_2);
by role_1:
Interactlon_1_1(parameter_list_1_1);

Interaction_1_2(parameter_list_1_2);

by role_2:
Interaction_2_1(parameter_list_2_1);

lnteraction_1_2(parameter_list_2_2);

Roles ‘role_1" and 'role_2’ are used to ldentlfy the role of a module communicat-
Ing over thls channel. The module may output only the Interactions related to
Its role. Each module contalns a number of transitlon rules explalning when a
transitlon from a state Is fired, what actlons are performed durlng the transition

and what the destinatlon state I1s. A transition In Estelle has the followlng form:

12

trans

any vi:type_1, v2:type_2, ... do { for any value }

from state_1 { current state }

to state_2 { next state }

when 1p_id.event { \nput event }

provided predicate { boolean expression }
priority expression { priority of the transition }
delay(min, max) { timing criterion In

spontaneous transitions }
begin
.. { transition block }

end

The any clause Indicates that the transltlon can be executed for each possible
permutation of the values of the varlables v1, v2, ... Varlables v1, v2, ... (l.e the
domain list) can be of ordlnal type only. The from and to clauses speclfy the
current and next state If the transitlon occurs. The when clause shows which
event (l.e. Interactlon or service primitive) at the Interactlon polnt 1p_id results in
firlng the transitlon. The provided clause contalns a predicate on the parame-
ters of the input event and/or the module varlables (context variables). The
priority clause can be used to determine which transitlon from a certaln state
should be executed first. The delay clause specifies timing criterla in spontane-
ous transitions (l.e. transitions without when). The transition Is delayed for a
tlme period 'min’. After thls perlod it may be selected unless another transition
is ellg'ble. When 'max’ perlod elapses the transition must be selected. It s possl-
ble thet ‘min’ equals 'max’. The begin - end block describes In Pascal the

actlons taken when the transition fires. The variables used In a transition body

13

are referred to as context varitables.

Two new statements lntroduced in Estelle are the statements output and

all. Output Is used to express outputs to other modules and Its form s
output Ip_ld.event(expressionl, expression2, ...);

Expressionl, expression2, ... glves values to the parameters of the event. The

general form of all statement s
all operand_list do statement;

The operand_list can declare varlables referring to modules or Pascal varlables.
This thesis transforms all statements whose operand_list refers to Pascal varl-

ables only. In this case, the all statement s structured as

all vi:itype_1, v2:type_2, ... do statement;

All 1terates over the domalns of vl, v2, ... untll all posslble permutations are

covered, but unlike for statements the order of iterations Is nondeterministic.

Estelle supports nondeterminism which s expressed by spontaneous transi-
tlons and more than one transitlon from a glven major state for the same input
event.

Abstracvness of the specification can be achleved by declarlng some data
types incompletely using the three-dot notatlon (e.g. buffer_type = ...) or by
declaring procedure and/or functions as primitive.

Estelle reserved words appear In bold when used Inside text. Program frag-
ments and nam:es of varlables, data types, procedures and functlons are printed

In stalics.

14

2.2. Transformations and Contro) and Data Flow Irformation

Figure 2.1 outlines the structure of a system \mplementing the first step of
the methodology mentioned. The compilation module verlfles that the Estelle
speclfication Is free of syntactic and semantic errors and produces an Intermediate
form of the speclfication easlly processable by the other modules. The transfor-
mations are carrled out by the modules normalizatzon and data flow analysis -
phase I and simpllfy the de.ermination of data and control low graphs. Normall-
zatlon removes from the Input specification all the Estelle constructs that Iniro-
duce paths or transfer of control during the execution of a transitlon (e.g. if
statements, procedure calls, etc.). Data flow analysls consists of two phases.
Application of the first phase on a normalized specification 1dentifies the kind of
PDUs exchanged In Interactlons or referred to by vartables. This Information is
reflected «a the names of variables or interactlions related o PDUs and, subse-
quently, on thelr declaratlions. The result Is an equivalent Estelle specification
which 1s golng to be used by the 1e10alning steps of the test design methodology
and whose transitions are called normal form transitions. Since all the
transformatlons are applled on this Intermedlate form, a printing module Is neces-
sary to get back to an Estelle representation of our specification. The normallzed
specification can be edlted by the user (e.g. when the kind of PDUs cannot be
determined from the context) and submlitted to the module merging routines.
These routines produce a single module specification (If there Is more than one
module). The output 1s passed to the control flow analysis and date flow analysis
- phase I \n order to produce data for control and data flow graph generation
(programs cgtool and dfgtool respectively, [23]). The system of figure 2.1 is the

subject of this thesls and Is covered In detall In chapters 3, 4 and 5.

15

suo[1edoads 3129sH BU[SSa01d UIAISAS ® Jo ainjonayg *1°g N3

induj joojha induy joo)64p

s|skjeus

- wonend] Il 958U ~ 5[S4)
Moy} (011100 N Buybsawi apnpopy N

-eue mol ejeq

uojjeapyseds
9|9)53

uojjejdwo)

uofjesyj2ads
9953
pazjjewionN \

Q

%

0
:";
o
o
o

uojjezjjewsoN I.puwu&nﬂwwﬁ “ Vﬁ Bupupg

wR)sAs sishleuy moj4 jonuo) pue ejeq ‘uoljezyewson

18

2.3. Data and Control Flow Graphis and Protocol Functions

A data flow graph models the manipulations performed on the parameters of
an lnput Interaction or context varlables In order to determlne the values of out-
put Interaction parameters. The data flow grezph comnsists of four types of nodes
J, D, F and O nodes representing Input primitives, data, operations on data and
output primitlves respectively. These nodes are connected with ares Indlcating
the flow of data from the data source (e.;5. I-nodes) to the data sinks (e.g. O-
nodes). If an operation (F-node) uses parameters called by value (D-nodes) the
arcs are directed fromm the D-node towards the F-node. If the parameters are
called by reference thelr corresponding D-nodes are connected to the F-node by a
bidirectional arc. The form of a data flow graph is described In detall In [18] and
[23].

In order to derlve protocol functions it Is necessary to partition the data flow
graph Into biocks, each block representing the flow over a slngle context variable
(modeled by a D-node} or an O-node (when the O-node Is assigned directly by an
I-node or an F-node). Reference [18] describes an alzorlthm that partitions the
data flow graph Into su~., blocks and [23] demonstrates the algorlthm's lmple-
mentatlon In a tool named dfgtool. This refinement of a data flow graph usvally
produces a large number of blocks. Several of these blocks can be comblned to
produce a functional block. A functional block corresponds to a protocol func-
tion. A careful functlonal decomposition of the data flow graph results In func-
tional blocks with minimum communication (l.e. data flow) among them. The
merging of elementary blocks In order to produce functional blocks cannot be
fully automated because 1t 1s not possible to determline automatlcally what varl-
ables were used to form a protocol function. Some automnation can be obtalned
by merglng blocks whose O-nodes are of the same data type. Also, If the I-nodes

of one block are contalned In the O-nodes of another block the two blocks can be

17

merged. Dfgtool provides the user the ability to compose protocol functions from

the data flow graph lnteractively.

Information about major state changes Is excluded from the data flow graph.
A control flow graph models the transitions from one major state to another. A

tool developed to display the control flow grapk (cgtool) 1s presented in {23].

2.4. Test Sequence Generatior

A transition tour over the control flow graph Is a sequence of transltions
starting from the Inltlal state and covering ail possible transitions In the protocol
specification. Any subsequence of the transitlon tour starting from and ending at
the Inltial state 1s called a subtour. Each functional block of the data flow graph
1s assoclated with one or more subtours so that each arc in the block is covered
atl least once. The set of subtours derived for each functional block 1s a test
sequence for the corresponding protocol functlon. The normal form transitions
composing each subtour specify the behavior of the protocol if this subtour is fol-

lowed. Any deviation from this behavior indicates an error.

2.5. The Prolog Programming Language

Prolog Is a programming language based on predicate logle: Glven a number
of facts and rules over these facts, one can ask querics. The constructs of Pro-
log that model the facts and rules are called clauses. A query constitutes a
goal. Syntactically, a clause comprises a head and a body. The head Is a
boolean term and the body a sequence of zero or more goals. Generally, a clause

can be wrltten as

<head> :- <goall>, <goal2>, ...
A Prolog program conslsts of clauses. For example the clauses that Implement

the concatenation of two lists are:

calan

BT L A7 4 W s3 mams X TR

18

append(f], X, X).
append([X1|X], Y, [X1|Z]) - append(X, Y, Z).

In these clauses we can see one of the most frequently used Prolog structures, the
ist. The speclal symbol [] represents an empty list. The notatlon [X|Y]
represents a llst whose first element or head Is X and the list of the rest elements
or tall 1s Y. Thus the append/8 clauses glve a recurslve rule on appending two
lists (second clause) and a fact on the result of appending a list to the empty list

(first clause). The first clause 1s used as the condition that ends the recurslon.

A logleal varlable 1s the means of asking queries that can glve an unknown
answer or mcre than one answer. A varlable can eltner be Instantiated to an

object or not and after Instantiation it can refer only to that object.

Here 1s how Prolog trles to answer a query (l.e. to satisfy a goal). When a
goal 1s set Prolog searches the set of clauses for the first clause whose head
matches or unifies with the goal. That Is, the arguments of the clause match the
arguments of the ,0al. Next, the clause 1s activated and its goals (If any) are exe-
cuted from left to right. If Prolog falls to satisfy a goal, it backtracks rejlecting
the most recently activated clause and undolng all substitutlons made when the
clause and the goal matched. The subsequent ciauses are scarched In order to

find another clause that matches the goal.

As explained In the Introduction, Prolog s sultable for developing proto-
types. The maln reasons are Prolog’'s declaratlve style and modularity, which
produce almost self-documented easy-to-debug programs. New clauses can be
easlly Inserted and modlflcations of older clauses requlre changes to small pro-

g.-am unlts only.

Prolog has been used In a number of software and protocol applications.

©eference [25] describes the use of Prolog to bulld a compller. An interpreter for

19

LOTOS, another protocol specification language, was bullt uslng Prolog as
explalned in [26]. The use of Prolog for expressing and testing protocol

speclfications Is explored in [27].

Throughout this thesls, Prolog routine names are together with the number
of routine's arguments (e.g. append/3) because 1t Is possible that one routine has

more than one definition, each definltion having a different number of arguments.

CHAPTER 3

COMPILATION AND NORMALIZATION

This chapter 1s concerned with three modules of the system belng described:

a. compiler module, which transforms an input Estelle speclfication to a form

sultable for processing by Prolog,

b. normalization module, which performs symbolic execution on the input

Estelle specification produclng an equivalent specification, and

c. printing module, which prints an Estelle specificatlon from a tree represen-

tation produced by the normallzation module.

The printlng module has a general structure and 1t can print any Estelle con-
struct from its tree representation. It Is also used by the data flow analysls and

module merging module.

3.1. COMPILATION

The input Estelle speclfication must be represented as a Prolog term in order
to be efliciently manlipulated by the normallzation module. For example, the

asslgnment statement
credit ;= 0y
can be translated to the Prolog term
stmt(vrAcc(id(credit,149)), xpr(unsgndInt(0))).

This term reads as

21

access the variable whose identifier is credit and assign lo this variable an

expression consisting of unsigned integer 0.

This representation Is an alternative way of deflning a tree In Prolog, [25]. The
root of this tree s stmt. Names stmt, vrAce, td, zpr and unsgndInt correspond to
statement, variable access, tdentifier, expression and unsigned integer, respec-
tlvely. Number 149 in thls term corresponds to llne number and Is used durlng

the processing of an Estelle specificatlon for making error messages.

The representation of an Estelle speclficatlon as a Prolog tree must be
accompanled by a data structure containing information frequently asked by nor-
mallization, data flow and control flow analysls modules. This Information refers
to various Estelle structures and types (e.g. channels or interaction polnts) and is
stored In a user defined Prolog structure named dictionary. The dictionary Is a
sorted tree. Each node of this tree Is labeled with the name of an Estelle declara-
tion and contalns a fleld with the name's definltlon (for more detalls see 3.1.3).
Clearly, searching a sorted tree Is by far faster than searching an unsorted tree of

declarations.

Glven an Estelle specification, the compller module produces a Prolog term
and a dictlonary. It also verlfies that the lnput specification Is syntactically and
semantlcally correct. The structure of the compller Is drawn in figure 3.1. The
implementation of modules for lexical, syntax and semantic analysis, and error
recovery Is based on the Estelle compller developed by the Natlonal Bureau of
Standards (NBS) and they are discussed In detall in [12]. The NBS Estelle com-
plier translates an Estelle specification to a C code program, [13]. In the system
belng described by this thesls, the C code generation functions were removed thus
reduclng the task of the compller to syntax and semantic checklng only. Furth-

ermore, the compller was improved by adding Pascal sets and debugglng the

22

anpou JaJ{duiod 3y JO AUNINIIS *1°¢ NIy

bujypuey 10113

K1zuoidia
g eoif Bojoid

(Buissey)
ww 2] UOPRNIsU0D Aleuo Ll uojjedpdeds
G 1151Q % 9911 Bojoig sishleuy A:lJ sishisuy jeagxe foin i oNo 183

e pis

siskjeuy a)iewds

lajldwon

23

functions for semantic checking of arrays of Interaction polnts.} The modules
that are common to our system and the NBS compller wlll be presented briefly.
The module bullding the parse tree as a Prolog term and the dlctionary s

presented in the sequel.

Lexical analysis module reads tokens from the source speclfication and
Interacts with the parser (syntax analyzer) returning a toker code or a token
value. A token can be an Estelle reserved word or character literal (e.g. +, -, *,
/), an ldentifler, a number (Integer or real), or a character string. A token code Is
an Integer assigned to each reserved word or character llteral. A token value Is a
pointer to the area where an ldentlfler, number or string Is stored. This module

Is implemented using the UNIX utility LEX, [9].

Syntactic analysis module (parser) is produced by compller generator
YACC (a tool of UNIX , [8]). All the actlons performed by the compller (l.e. lex-
ical, syntax and semantic analysis, error handling, Prolog tree and dictionary con-
struction) are invoked from the parser. The parser bullds two trees concurrently:
one to be used for syntax and semantic checking and one to be translated to a
Prolog term. The first tree is bullt In fragments. Each fragment corresponds to
a block of Estelle code (e.g. a transltion block, a procedure/function declaration
or a2 body) and it s destroyed when this block ends. The second tree Is the glo-
bal syntax tree and Is created by an Independent module (Prolog Tree & Dictlon-
ary Construction module in figure 3.1) which Interacts with the parser without
affecting the rest of the parser's actlons. Since all the other modules are called as
part of parsing, the translation of the input Estelle specification Is performed 1n 2

single pass.

+ The problem occured in the declarations of arrays of interaction points whose base type
was a subrange type with undefined low and high bounds (i.e. with low and high bounds

dec¢lared as '...").

24

Error handling is concerned with resynchronizing the parsing and perform-
Ing some actlons when an error occurs (l.e. recovering from errors). For this pur-
pose some alternative grammar rules are specifled in YACC source code. They
use YACC's token error with a llteral (e.g a semicolon) or with the nonterminal

symbol ResynchToken (a symbol Is nonterminal If It Is defined as another rule).

Semantic analysis collects type Information and verifies that operators and
operands are used consistently within expressions and statements. It also per-
forms type coerclons when this s permitted by Estelle ([12], [1]). All the informa-
tlon concerning symbols declared In the Estelle specification (e.g. procedures,
variables, etc) Is stored In the symbol table. The symbol table 1s Implemented as
a hash table consisting of a fixed array of polnters to symbol table entries. The
index Into this fixed array lIs obtalned by hashing on the ldentifier’'s name. In
case of conflict, the new entry Is lilnked to the previous one. In other words each
polnter In the array polnts to a linked list of symbol table entrles. Semantic

analysls Is Invoked from the actions part of the YACC source and Is written in C.

A new feature added to the NBS compller 1s Pascal sets. In the occurrence
of a sel declaratlon, a new symbol table entry Is created and a new node is linked
to the Prolog tree:

StructuredType :

SEQ‘ OF SimpleType
{ Syntaz,
$$ = newtype(SET_T, $3);
mktree(4, 1, S_NULL, S_NULL, S_NULL, S_NULL, S_NULL,
S_NUL%);

where SimpleType 1s the base type of the set (for more detalls on function

mktree() see 3.1.1). This extenslon allows the use of sets in normalization, data

25

fiow and control flow analysis despite the fact that the NBS Estelle compller does

not handle them.

3.1.1. Syntax Tree Builder

The syntactic and semantic analysls routines (YACC source code) bulld frag-
ments of the syntax tree which are destroyed each tlme a block Is exited. In
order to bulld a complete syntax tree without affecting the compllatlon phase, a
stack 1s created In parallel with the stack created by YACC. The routines which

make thils stack are inserted in the actlons part of the YACC source code,

The syntax tree Is bullt bottom-up as follows. Each time a grammar rule 1s
encountered a new parse tree node Is created 1n the following way: 1f the body of
this rule consists of terminal and/or nonterminal symbols, 2 new node for each
one of them Is created and pushed Into the stack. Each one of the nonterminal
symbols corresponds to a new rule, which Is treated in the same way. Therefore,
a rule is completely recognized (l.e. reduced) when all of its nonterminals are
reduced. Tree node creat!on Is an action assoclated with each reduction. When
all nonterminals of a rule are reduced, thelr corresponding nodes are popped out
of the stack and linked -- possibly with terminals, If they exist — In order to con-
stitute the node of the parent rule. This process continues untll we reach the
root node (the specification header). Conslder. for example, the first grammar
rule of the Estelle compller

Specification : | * ref: %Start ¥/
/ * empty */ / ¥ so null file won’t cause errors */

SPE CIFICATION IDENTIFIER SystemClass ’;’
{ Syntaz; specdecl($2, $3); }
DefaultOptions
TimeOptions
BodyDefinition
END
Syntaz;
endbody(TRUE);
mktree(1, 5, $2, S_NULL, S_NULL, S_NULL, S_NULL, S_NULL);

26

priree(); .
:
The parent node s Specification (this node also happens to be the root of the
complete syntax tree). The statement mkiree in rule's actlon part refers to the
node creation. When all the subtrees of the parent node (l.e. SystemClass,
DefaultOptions, TimeOptions and BodyDefinition) are constructed mkiree() (make
tree) is called. The first argument (Integer 1) specifies the node type and 1t Is
used for distinction of rules with the same header (l.e. for rules with more than
one production). The second argument (integer 2) represents the number of sub-
trees. The third argument is the name of the specification (l.e. the value of
IDENTIFIER); thls is a termlnal symbol and also hangs from the root. The
remalning four subtrees are popped from the stack (the stack’s structure will be
shown later In thls chapter) and not glven as arguments. Functlon priree() Is
called when the syntax tree ls completely bullt. It pops the last polnter remaln-
Ing In the stack (l.e. the polnter to the root) and Invokes the functlons which

print the syntax tree as a Prolog term (see 3.1.2).

The structure that defines a node of the syntax tree Is a recursive one:

typedef struct stnode * STNODEPTR; [* parse tree node */

struct stnode { / * node of the complete syntax tree */
int stn_type; / * node type in a multi-production clause */
int stn_line; / * line number */
STNODEPTR stn_fields[6]; / * variable number of sub-trees #/

)

Stack bullding routines are simllar to the ones descrlbed In [10]. The

definition of stack data type ls

#define MAXSTACK 256 / * mazimum stack size */
STNODEPTR stack[MAXSTACK];, [* the stack ¥/
int sp=0; / * next free spot on stack */

27

Function mkiree() bullds the syntax tree from its nodes. This functlon uses
the stack and Is deflned as

mkiree(type, nfields, string0,stringl,siring2 string8,string4, string5)
int lype, nfields;
STR string0, stringl, string2, string3, string4, string5;

unsigned size;
STNODEPTR p;

if (nfields I= 0) {

size = sizeof(*p) + (nfields - 1)*sizeof(STNODEPTR);
if (0 = (STNODEPTR) CALLOC(1, size)) == STN_NULL)
userror(” (mktree) ran out of memory”);

p->stin_Llype = lype;
p->sin_line = yylineno;

.sz'tch (nfields)
default: cerror(”tree: nfields=%d" ,nfields);

case 6:
p->stn_fields[5] =
(string5 == S_NULL) ? pop() : (STNODEPTR)string5;
case 5:
p->stn_fields[{] =
(string{ == S_NULL) ? pop() : (STNOLEPTR)string4;
case 4:
p->stn_fields[8] =
(string8 == S_NULL) ? pop() : (STNODEPTR)string3;
case 8.
p->stn_fields[2] =
(string2 == S_NULL) ? pop() : (STNODEPTR)string2;
case 2:
p->stn_fields[1] =
(stringl == S_NULL) ? pop() : (STNODEPTR)string1;
case 1: .
p->stn_fields[0] = .
(string0 == S_NULL) ? pop() : (STNODEPTR)string0;

push(p);
else push(STN_NULL);

Notlice that the arguments of mktrec() are string polnters which represent the
names of ldentifiers. These polnters are cast to STNODEPTR type and hang

directly from the tree. If the value of formal parameter nfields s greater than

28

the number of arguments (l.e. not all the children nodes are given) the missing

nodes are popped from the stack.

3.1.2. Conversion of the Syntax Tree to a Prolog Term

‘When the syntax tree 1s completed and If the specification does not contaln
errors, function priree() passes Its root to function spc() (3.1.1):

VOID prtree() {
prolog_tree = OpenWrite(” estelle.tree”);
FPRINTF(prolog_tree, ™ %d.\n", nerrs + nsynerrs);

if ((nerrs + nsynerrs) == 0) {
FPRINTF(prolog_tree, " spc”);
spe(pop());

FPRINTF (prolog_tree, " .\n");
CloseFile(prolog_tree); }
Then spc() fires the tree printing as a Prolog term top-down. There Is one func-
tion for each node type. The initial function, which prints the speclfication
header and all the subtrees hanging off, Is

VOID spc(n)
STNODEPTR n;

{ if (n != STN_NULL)

FPRINTF g)fnlog_tree,
" (1d(%s, %4, tolow((STR)n-> stn_fields[0]), n-> stn_line);

FPRINTF(prolog_tree, = ,sstmClass"),
sstmClass(n-> stn_ﬁelds/l 1)

FPRINTF(prolog_tree, " ,dfitOpt"),
dfitOpt(n-> stn_fields[2]);

FPRINTF(prol.g_tree, ” ,tmOpt");
tmOpt(n->stn_fields[3]),

FPRINTF(prolog_tree, ”,bdDf");
bdDf(n-> stn_fields[4]);

FPRINTF (prolog_tree, ")");

}
}

The first statement inside if's body prints specification’s name. The rest prints

29

the sultrees for system class, default optlons, time options and body definition.
The structural simllarity of this function with the first rule of Estelle comnpller
(see 3.1.1.) Is obvious. If the root node Is not null, stmilar functlons are called to
print the hanglng nodes of the syntax tree. Spc() is called when the starting rule
of YACC source code Is reduced. For example, the tree produced for
specification
~pecification Ezample systemprocess;
timescale seconds;
end.
is
spe(
id(ezample,8),
sstmClass(systemprocess),
dfitOpi,

tmOpt(id(seconds, 2)),
bdDf(dclPrt,initPrt, trDc'Prt)

3.1.3. Translation of Symbol Table to Prolog

The symbol table provides efficlent representation of specificat'cu us-lara-
tions throughout the syntactic and semantic analysis phase. Thils Information s
necessary during the normallzation and data and control flow arnalysis phase.
More specifically, the normallzation and data and control flow analysls phases
require Informatlon concerning
a. procedures, functions and variables,
b. Interaction polnts,
c. channels and
d. data types

in order to perform symbolic replacement and define the lnput, output, function

and data nodes 1n the data flow analysls graph.

30

A convenlent data type for symbol table representation In Prolog Is the dic-

tionary, [25]. A dictionary Is defined recursively. Thus
dic(<name>, <value>,<dic-1>, < dic-2>)

palrs <name> with <+.lue>, where <dic-1> and <dic-2> are subdic-
tionaries. The dictlonary 1s also ordered alphabetically with respect to <name>.

That Is, all names In <dic-1> (<dic-2>) precede (succeed) <name>.

In order to obtain this dlctlonary the symbol table created during the syn-
tactic and semantic analysis phase Is printed as a sequence of Prolog lists of the

form
[<name>, [<class>, [<definition>]]].

The <name>, <class> and < 1efinition> values are obtalned from the symbol
table definitions for each ldentifiler. Each ldentifler corresponds to a node struc-
ture which contalns polnters to suostructures hanging off this identifier (e.g.
flelds, parameters etc.). Thils representation dictates a tree structure for the diec-
tionary entrles which Is reallzed using the list form shown above. Identiflers
declared within the scope of another 1dentifler are represented as nested lists. If
< class> 1s function, procedure or module header this list 1s followed by a
sequence of parameters which are appended to the furn .lon, procedure or module
body definition. The second element of the above list (original or modlfied) con-
stitutes the <wvalue> element of a dictionary entry. Conslder, for example, the
symbol table entry of procedure format_ack In [11] and 1ts converslon to a Prolog
list:

block _begin.

[format_ack, [procedure,[]]].

imsg, [parameter, [msg_type/]].

[b,[parameter, [var,ndata_type]]].
param_list_end.

31

This sequence of lists I1s read by Prolog clause mk_dic which creates a dictionary
entry

format_ack,
[[procedure, [J], [[msg,[parameter, [msg_type]]], [b, [parameter, [var,ndata_typel]]]].

If this entry were the only one, Prolog dictionary would look like

dic(formai_ack

[/procedure,J[]], [[msg, [parameter, [msg_type]]], [b, [parameter, [rar,ndata_type]]]]],
void,

void)
where void denotes an empty dictlonary.

The body of the function converting the symbol table to Prolog lists has the
structure

sym2dic(p, entry_end, unique_name)

IDPTR p; / ¥ identifier pointer */

BOOL entry_end; [+ true if this entry should be closed with *." and "\n" ¥/
BOOL unique_name,

/ * local declarations ¥/

/ * identifier name */
FPRINTF (dic, " [%s,”, unique_name ? p->id_pname : p->1id_name);

/ * identifier class: */
FPRINTF(dic,” [%s, [, nameof[p-> id_class]);

/ ¥ identifier type */
switch(p->1d_class)

case MODULE_ID:
showtype(p->1d_type, 1);
FPRINTF(dic,”]]]\n"); /* close header entry #/
/ ¥ show parameter list and interaction points */
/ * 1. parameter list #/
rlevel++;
Jor(i = p->1d_type->t_low; i != ID_NULL; 1 = i->1d_list) {
Jor (n =1, n <= rlevel; n++) {
sym2dic(t, 1, 0);

/ * 2. interaction points ¥/ _
Jor({ = p->id_type->t_list; 1 I= ID_NULL, ¢ = i->1d_list) {
for (n = 1; n <= rlevel; n++)
sym2dic(i, 1, 0);

32

rlevel--;
FPRINTF(dic,” param_list_end.\n"),'
list_closed = TRUE; / * don’t close list */
entry_end = FALSE, /* don’t print™ " and "\n" ¥/
break;
case PROC_ID:

/ * declare primitive procedures or functions */
if (p->1id_block == 0)

FPRINTF (dic,” primitive”);
FPRINTF(dic,”]|]\n"), [* close header entry #/
/ * show parameter list hanging off this id ¥/

f ((1 = p->id_sublist) |= ID_NULL)

Jor (;¢!=ID_NULL, i = i->id_list)

sym2dic(1, 1, 0),
FPRINTF(dic,” param_list_end.\n"),
list_closed = TRUE;
entry_end = FALSE;
break;

default:
cerror(” sym2dic fails: bad case %d", p->1id_class);

Y

if (llist_closed) FPRINTF(dic,”]|I"),

if (entry_end) FPRINTF (dic,” \n"),
where ". . .” denote parts of code structured stmilerly to the code shown. The
body of sym2dic() s malnly a switch statement over the type of each Estelle
construct (e.g. modvie, procedure, etc.). This construct corresponds to a sym-

bol table entry p whose class fleld td_class constitutes the switch's expression.

Prolog clause mk_dic/1 Is responslible for bullding the dictlonary from the
lists created by functlon sym2dic(). This clause reads these lists one by one and
Inserts them In the dictlonary except when the llst corresponds to a procedure,
function, or module header. In this case a list of parameters follows which
should be appended In the dictlonary entry (clauses app_par). If a parameter Is
defined outside the scope of a block_begin - block_end 1t 1s ignored (the same

parameter Is always redeflned inside a block_begin - block_end body). Also

33

record types whose flelds are declared as parameters are invalld. These restric-
tlons are imposed by the structure of the symbol table slnce sometimes redundant
Informatlon Is stored for semantic analysls purposes and lgnoring the previously
mentloned lists contributes to gettlng rid of thls redundancy. Clause mk_dic/1

returns a dlctionary and is structured as

mk_dic(D) :- read(X),
(X = [_,[type, [record, [[_, [parameter|_]]|_J]]], mk_dic(D));
(X = [, [procedure,][],
X = [, [function,_J];
X=/[, module_lieader, » N D, Value), mk_dic(D))
app_par(X, [Name|Value/), lookup2(Name, D, Value), mk_dic(D)),
((X == block_end, 4{ === block_begin: X = |[_ [parameter,]]),
mk_dic(D));
X == end_of_file

X = /Nam—elValué/, lookup2(Name, D, Value), mk_dic(D))).
Clauses for lookup2 are used in order to Insert new entrles Into the dictlonary:

lookup2(Name, dic(Name, Value, _, _), Value) - /.
lookup2(Name, dic(Namel, _, Before, _), Value) :-
Naeme @< Namel, lookup2(Name, Before, Value).
lookup2(Name, dic(Namel, _, _, After), Value) :-
Name @> Namel, lookup2(Name, After, Value).
lookup2(Name, dic(Name, Valuel, _, _), Value2) -
write(*---’), nl,
write('Rename " ’), write(Name), write(’, ’), write(Value2),
write(™ if needed in the dictionary’), nl,
write('Conflict with "), write(Name), write(’, ’),
write(Valuel), write(*’), nl, !

The first clause lnserts the new entry. The second and third clauses are responsl-
ble for finding where the new definition must be entered. If an attempt Is made
to enter a different value for an already exlsting name, the last clause notifles the
user. The new deflnition Is ignored. These clauses were produced by slightly

modifying the lookup clauses from [25].

3.1.4. Performance of the Compiler Module

The performance of the compller module was measured under an average
system load of 1.18 Erlangs. Thls Joad corresponds to the number of Jobs walting

1n the CPU's queue. Each one of the protocol speclficatlons used was complled

T e T R A O R X T SR TV T

34

ten tlmes. The outcomes of each compllation were averaged and the results are
glven !n table 3.1. The size of the output is glven In the column indlcating the
size of the output syntax tree and it represents the syntax tree to be processed by
the rest of the modules. The size of the programs impiementing the compller

module and bullding the dictlonary and syntax tree Is 12830 llnes.

input size of input size of output runtime
specification (lines) syntax tree (seconds)
(bytes)
alternating bit 242 1,988 2.57
simple transport 786 19,051 5.43
FTAM 1,750 41,904 11.93
LAP-D 2,769 73,356 16.35

Table 3.1. Performance of the compller module

35

3.2. NORMALIZATION

The normallzatlon module Is responsible for a number of transformations

which are applied to the Initlal speciicatlon. The objlective of this module is to

a.

~C.

identlfy all possible paths of each transition,

define a predicate for each path (l.e. determine a boolean expresslon which

should evaluate to true in order for the path to be executed) and

replace all varlables -- including output parameters -- of each path with thelr-— -----

symbolle values, [5].

Therefore, all statements resultlng 1n transfer of control to a statement other

than thelr next one must be ellmlnated. It Is assumed that values of loop bounds

can be determined statically. If this ls not possibie a limited number of 1terations

of the loop body s considered. This results In a non equlvalent specification, but

lterating over the loop body for three values of the loop condlitlonal (l.e. two

boundary values and one produclng no iteration) and making sure that each varl-

able changes at least once provides adequate testing, especlally for while loops,

[7:.

This rule Is not applied In the case of while loops only. In the case of for

and all loops an error message 1s printed If the boundarles of the index variable

cannot be statlcally defined. It 1s also assumed that procedures and functlons are

not deflned recursively. The result of normalizatlon Is an Estelle specification

which contalns only single path transitions. The predicate for each path Is

moved to the provided clause.

The transformations applied are:
With statements replacement.
Procedure and function calils replacement.

Conditlonal (if and case) and repetitlve (for, all, and while) statements

replacement.

36

d. Ellmilnation of major state sets from from clauses and replacement of ele-

ment same in the to clause with the actual state.

The aforementioned transformations lnvolve some modifications in the
declaration part of the specification. Therefore, a processing of the declaration
part Is neeced. In the sequel, the processing of declaration part and the detalls of
each transformation will be discussed. Array data types and varlant records
defining PDUs are treated by the data flow analysls module. Finally, implemen-

tatlon of the normalization module will be explained.

3.2.1. Declaration Part Processing
Two types of Estelle declarations are processed initially:
a. procedures and functions and

b. varlant records.

Procedure and function declarations are removed unless they are declared
as primitive. The formal parameters of a procedure/function are constdered
first. If there exist value parameters, l.e. parameters preceded by the Estelle
reserved word v-al, the possibllity of thelr redefinitlon In the procedure/function
body Is examlned. In this case a new global varlable Is created by appendling the
procedure/function name to the parameter name. All the occurrences of this
value parameter in the procedure/function body are replaced by the newly
created global variable. Then an assignment statement Is added in the beginning
of the begin-end block. This statement asslgns the value parameter to Its global
substitute. Var parameters remaln unchanged. Varlable declarations local to a
procedure /function are converted to global by appending the procedure/function
name to the local varlable name. Consequently, the local varlable names are
replacéd by the global ones Inside the procedure/function body. When the first

procedure/functlon declaratlon 1s encountered a new dictionary Is created.

«W
~1

Thereafter a dictlonary entry Is made for each procedure/function declaration.
This entry contains the procedure/function name (and the function type, In case
of functions), the list of formal parameters and the statement sequence consisting
of the procedure/function body. This preprocessing facllitates the

procedure/function replacement because it speeds up information retrieval.

A record definltion contalnlng a varlant part Is llnearized unless it defines a
PDU type and data flow analysis has been requested by the user. The term
linearization means that the case construct is removed and the tag-field becomes
a regular record fleld. If data flow analysls is required, records defining PDUs
remaln unchanged. This Is necessary silnce the data flow analysls module wlll try
to ldentify the PDUs and the flelds belonging to each one of them. Consider, for
example, the following varlant record definition and assume that the user did not

request data flow analysls:
TPDUandCtrlinf = record

} control information }
ull : boolean;
order . orderTp;
peerAddr : TAddrTp;

{ ﬁelds of TPDU}
: creditTp; used for CR, CC, AK }
destRef . refTp; used for CC DR DC, DT (class 2
only), EDT, AK, EAK, ERR}
SrcRef . refTp, { used for CR, CC, DR DC}
user_date : { optwnal} dataTp, { see TSAP; used for CR, CC, DR (not
in this version of the protocol), DT EDT
case kind : TPDUCodTp of
CR,
CC : (Opts_ind : OptTp;, { see TSAP}
TSAPId_calling,
TSAPId_called : T_sufTp); { optional }
DR : (is_last_PDU : boolean; { control information }
disc_reason reasonTp)

DC : (),
DT : (sendSeq seqNumTp,
end_of_TSDU : boolean);
AK : (expSndSeq . segNumTp),
undef_code : (); { end of case }
end, { of TPDUandCtrlinf }

38

The result of linearization 1s

tpduandcirlinf =

record
Jull: boolean;
order: ordertp;
peeraddr: taddrip;
crul: segnumtp;
destref: reftp;
srcref: reftp;
user_data: datatp,;
kind: tpducodtp;
opts_ind: opttp;
tsaptd_calling: t_suftp;
tsapid_called: t_suftp;
1s_last_pdu: boolean,
disc_reason: reasontp;
sendseq: seqnumtp;
end_of_tsdu: boolean;
erpsndseq. seqnumlip

end;

New varlables are created durlng the production of normal form transltions,
as we shall see later in this chapter. Information concerning these variables is
stored in a list structure durlng transitlons processing. This structure Is used in
order to derlve new declarations and add them to the declaration part of the nor-

mallzed specification.

3.2.2. With Statements Replacement

The general structure of with statement 1s

with v1, v2, ..., vn do s

where vn, n = 1, 2, ..., are the variables In the record varlable list of with state-
ment. Each selector name Inslde statement s Is prefixed with the record varlable
name which 1s referred to by this selector. Then the with statement Is replaced
by statement s. For example the with statement block
with POU do

begin

kind .= CR;
peerAddr := destAddr;

39

Opts_ind := Opts;

crVl .= RCr;
order ;== first;
end;

where selectors kind, peerAddr, Opts_ind, crVI and order refer to record varlable
PDU, 1s changed to

pdu.kind 1= cr;

pdu.peeraddr := destaddr;

pdu.opts_ind := opts;

pdu.crvl ;= rer;
pdu.order := first;

3.2.3. Procedure and Function Calls Replacement

Each transition block 1s scanned in order to ldentify procedure or function
calls. If a procedure or function call is found, a lookup in the dictionary is
invoked In order to obtaln the formal parameters and the statement sequence
comprising the procedure or functlon body. The process of replacing a procedure

call differs from the one for a function call.

3.2.3.1. Procedure Calls

Procedure calls are treated in the following way. The procedure block Is
scanned and all the occurrences of formal parameters are replaced by thelr actual
values (l.e. the varlables or expresslons glven as arguments at the time of call).
Then the modified procedure block replaces the procedure call. The transition

trans

from ESTAB

to ACK_WAIT

when USEND_request

begin
copy(P.Msgdata,Udata);
B.Seq := Send_seq,
Store(Send_bffer,P);
Msgseq := Send_seq;
Format_data(P,B);
output N.DATA_request(B);

end;

where Format_data ls

40

zroqedure Format_data(Msg: Msg_type; var B: Ndata_type);
egin
with B do
begin
Id .= Dt,
Conn := Conn_end_pt_1d;
copy(Data, Msg. Msgdata);
end;
end;

is transformed to

lrans

{1}

when u.send_request

from estab

to ack_wait

begin
copy(p.msgdata, udata);

.8eq /= send_seq,

store(send_buffer, p),
msgseq ‘= send_seq;
b.id := dt;
b.conn := conn_end_pi_id;
copy(b.data, p.msgdata);
output n.data_request(b)

end;

3.2.3.2. Function Calls

In the case of a function call, a global varlable Is created from the function
name by appending a unique number at the end of the function name. This varl-
able 1s added to the declaratlon part after the processing of the transitions
finishes. The function body is retrieved from the dictionary and the new name
substitutes the functlon name inside Its body. The modified functlon body s
Inserted Just before the functlon call and the functlon call s replaced by the
newly derlved global varlable. Consider the call of function DR_PDU

WHEN Map.transfer { PDU }

PROVIDED (PDU.kind = CC) and not (PDU.Opts_ind <= Opts)
FROM wastCC

TO wastDC

begin

OUTPUT TS.TDISind(protocol_error);
OUTPUT Map.transfer(DR_PDU(protocol_error,true));

41

end;
where DR_PDU 1s deflned as

Junction DR_PDU(r: reasonTp, last_PDU: boolean): TPDUandCtriInf:
var PDU : TPDUandCliriinf;

begin
with PDU do
begin
kind := DR;
disc_reason = r;
1s_last_PDU := last_PDU;
order := destructive,
end;
DR_PDU := PDU;
end;

Then normalization produces

lrans
{ 05}
when map. transfer
provided (pdu.kind = cc) and not (pdu.opts_ind <= opts)
from waitce
to waitdc
begin
output ts.tdisind(protocol_error);
pdu_dr_pdu.kind := dr;
pduv_dr_pdu.disc_reason := protocol_error,
pdu_dr_pdu.is_lest_pdu := true;
pdu_dr_pdu.order := destructive,
dr_pdu_9 := pdu_dr_pdu;
doutput map.transfer(dr_pdu_9)
end;

A problem may arlse when a functlon Is called within a provided clause. If
) the function body conslsts of a silngle statement asslgning an expresslon to
the function 1dentifier or
e the functlon body can be reduced by symbolic executlon to a single state-

ment assigning to the function ldentifier a symbolle expression

then thls expression replaces the functlon call. It Is Implled that the formal
parameters wll] be substituted by the actuals when the function replacement is
performed. As an example to the first case the transition

lrans

42

from ACK_WAIT
to ESTAB
when N.DATA_response
provided Ack_ok(Ndata)
begin
Remove(Send_buffer),
Inc_send_seq;
end;

where Ack_ok 1s declared as

jl;unqtion Ack_ok(Nd: Ndata_type): boolean;
egin

dAck_ok := (ND.Id = ACK) and (Nd.Seq = Send_seq);
end,

1s transformed to

irans

{5}

when n.data_response

provided (ndata.1d = ack) and (ndata.seq = send_segq)
from ack_wait

to estab
begin

remove(send_buffer);

;end_seq := (send_seq + 1) mod 2
end;

Next we glve an example to the second case. If the function

function OrderConstraint(T_suf : T_sufTp;
EPId : TCEPHTp;
kind : TPDUCodTp) : boolean,
var OK : boolean,
begin
OK := true;
with TC[T_suf,EPId] do
ALL k: TPDUCodTp DO
if (k <> kind) and PDU_bu,gthe].full
and (PDU_buffk].order < PDU_buflkind].order)
then OK := false,
OrderConstraint .= OK;
end,

is called, symbolic execution results in the equivalent single statement function t

Junction orderconstraint(t_suf: t_suftp; epid: tcepidtp; kind: tpducodip)

1+ This is a special z~se where it is possible to produce a symbolic value because the order
of iterations of all's body is not significant and the value of variable OK is just the logi-
cal inversion of if’s boolean expression.

43

. boolean,
begin
o~derconstraint := not(

((er <> kind) and
pdu_buffcr].full and
(pdu_buffcr|.order < pdu_buffkind|.order))
or
((cc <> kind) and
pdu_buffcc]. full and
(pdu_buflcc]. order < pdu_buffkind].order))
or
((dr <> kind) and
pdu_buf[dr] full and
(pdu_buf[dr].order < pdu_‘uffkind].order))

or
((de <> kind) and
pdu_buf[dc].full and
(pdu_buffdc/.order < pdu_buflkind].order))
or
((dt <> kind) and
pdu_buf[d‘t/. uwll and
(pdu_buf[dt|.order < pdu_buffkind].order))
or
((ak <> kind) and
pdu_buffak]. full and
(pdu_buffak|. order < pdu_buffkind]. order))
or
((undef_code <> kind) and
pdu_buffundef_code].full and
(pdu_buffundef_code/.order < pdu_buffkind].order))
end;
If a call to the functlon OrderConstraint occurs In the boolean expression of a
provided clause, the left hand slde expresslon assigned to variable OK replaces

the function call.

If the function body contalns more than one statement and symbollc execu-
tlon falls to determlne an expression for the function ldentifler (e.g. when a
primitive procedure call occurs), no transformation Is attempted and the user

Is Informed with message
line L: Function_Id is not a single statement function

where L 1s the number of the llne containing the function declaration and

44

Function_Id 1s the name of the function. The reason is that replacement of a
functlon call with function’s body s not possible iIf the call occurs inslde a pro-
vided clause. Estelle does not provide any mechanism which enables insertion of
a statement sequence just before provided's condition Is evaluated. Any state-
ments 1mplied by provided's conditlon are executed internally by the process

implementing the module and no interaction Is assumed.

3.2.4. Conditional Statemen‘s Replacement

If statements inside a transition block are removed by creating new transi-
tlons for each logical value (true or false) of the conditlon. This logical value of
eachh conditlon defines a path lnside the transltlon body. Therefore, a path is
valld If a certaln predicate evaluates true. This predicate Is moved to the pro-
vided clause and the statements assoclated with the corresponuing path comprise
the transition body. If a varlable occurring inside the conditlon of an if state-
ment s assigned a value In the preceding statements a symbolic replacement lIs
applied: the symbolic value of the variable s computed by symbolle executlon
and this value replaces the varlable in the boolean expression of the if statement.
Conslder the transition

TRANS
WHEN Map.transfer { PDU
PROVIDED PDU.kind = A
FROM open
TO SAME
var newCr : 0 .. 255;
begin
w:th PDU do
begin
newCr := c¢rVl + expSndSeq - TSseq;
if newCr >= SCr then
SCr := newCr
else error(newCr);
end;
end,

This tr:nsitlon produces two transitions (also notice the expanslon of the with

45

statement)

trans
{ 024}
when map.transfer
provided (pdu.kind = ak) and
(not (pdu.crvl + pdu.ezpsndseq - tsseqg > = scr))

from open
to open
begin

error(pdu.crvl + pdu.expsndseq - tsseq)
end;
trans
{ 025}
when map.transfer
provided (pdu.kind = ak) and

(pdu.crvl + pdu.ezpsndseq - tsseq > = scr)

Jrom open
to open
begin

dscr ;= pdu.crvl + pdu.expsndseq - tsseq
end;

The user Is notified for a symbolic replacement with message
line L: Var_Id replaced by its value,

where L Is the llne number and Var Td is the varlable 1dentifler.

Case statements are replaced in a simllar way. For each case constant a
new predlcate 1s created. This predicate Is an equallty consisting of the case-
Index (the expression in the header of the case statement) on the left-hand slde
and the case constant on the right-hand slde. Since the Index-expression should
evaluate to one of the case constants, the paths corresponding to the case state-
ment are explicitly defined (If the case-lndex takes a value other than the ones
specified a run-time error occurs). A new transition s created for each predicate

and its corresponding path.

3.2.5. For, All and While Statements Replacement

If the Index variable of a loop statement (llke for, all and while) has statl-

46

cally deflned values, the statement body Is repeated for each one of these values.
Conslder for example the followlng for loop

INITIALIZE
TO Idle
var kind: TPDUCodTp,
begin
ALL T_suf : T_sufTp DO
ALL EPId : TCEPIdTp DO
with TC[T_suf, EPId/ do
begin
C’lsCerfrs(T_suf, EPId),
for kind := CR to AK do
PDU_buffkind].1is_lact_PDU := false;
PDU _buf/DCJ.is_lasi_PDU := true;
end,
end;

Since varlable kind is of typz TPDUCodTp it can take one of the values CR, CC,
DR, DC, DT, AK, undef_code. Procedure ClsClrBfrs 1s defined as

procedure ClsClrBfrs(T_suf : T_sufTp; EPId : TCEPIdTp);
var
kind : TPDUCodTp;
undef NCEPIdTp,
begin
with TC[T_suf,EPId] do
begin
assgnd_NC = undef;
for kind := CR to AK do
PDU_buffkind] full := false,
end
end;

Then the initialize clause 1s transformed to

tnittalize
to idle
begin
all t_suf: t_suftp do
begin
all epid: tcepidtp do
begin
tcft_suf, epzy assgnd_nc = undef_clsclrbfrs;
teft_suf, epid]pdu_ buﬁcr] Jull := false;

=S

teft_s.), epid).pdu_buffcc] full := false;
te[t_suf, epid].pdu_bu dr].full := false;
teft_suf, ept (/ pdu_bu /dc Jull := false,
teft_suf, epid].pdu_bu /dt Jull := false;
teft_suf, epid]. pdu_buffak] full = false;
teft_suf, epid].pdu_bujfcr].is_last_pdu = false,

47

teft_suf, epid].pdu_ buycc] ts_last_pdu := false;

teft_suf, epz/ pdu_ bu/dr/ is_last_pdu = false;

teft_suf, epz'(/ pdu_buf[dc].1s_last_pdu := false;
teft_suf, epid].pdu_buy d zs _last_pdu := false;
teft_suf, epz pdu buffak].1s_last_pdu .= false,
teft_suf, epz].pdu_bu dc] is_last_pdu := true

end
end
end;

Simllarly, all statement
ALL k : TPDUCodTp DO TC[T_suf, EPId]. PDU_bvf[k].full := false;
Is expanded to

teft_suf, epid].pdu_ buycr//ull ;== false;
teft_suf, epid].pdu_buffcc.full := false,
teft_suf, epid].pdu_bu dr/full = false,;
teft_suf, epid].pdu_ bu/ ¢/ full .= false;
teft_suf, epi/ pdu_buf[dt] full := false;
teft_suf, epia/.pdu_bu/a o). full = false;
teft_suf, epid].pdu_buffunde/_code]. full := false

In the above examples the Index varlable was statically defined, therefore
exhaustlve enumeratlon was possible. If this Is not possible (l.e. when the index
values change dynamlcally) then, In the case of while statements, a llmited
number of iterations Is assumed (in this system we conslder only three lterations).

In the case of for statements a warning of the form
line L: failed to determine range values of Indez tn FOR statement,

whe~e L Is the lilne number and Inéez 1s the index variable, 1s displayed. The
while loop I1s treated as follows: For each of the values that make the guard
expression true a different path is created. Another path Is created for a value of
a varlable that makes the guard expresslion false (l.e. thls path does not Include
executlon of the loop body). If the boolean expression contalns dynamically
changing varlables three paths are taken: one with the expression evaluatlng to
false and two with values chosen so that the loop body wlll be repeated once for

the second path and twlce for the third. Each path, as mentloned before,

48

corresponds to a new transition. For example, the transition:

TRANS
ANY T_suf : T_sufTp,
EPId : TCEPIdTp;
NCId : NCEPIdTp DO
PROVIDED TC|[T_suf,EPId]. FDU_buf[CR].full and
(TC[T_suf, EPId].PDU_buf[CR].peerAddr. N_pref =

NC[NCId|.remoteNaddr)
begin
with TC[T_suf, EPId], NC[NCId] do
begin
assgnd_NC := NCId;
ref :=1;
while ref in activeRefs do ref := ref + 1;
end
end,

Is expanded to

trans
any t_suf: t_suftp, epid: tcepidtp; ncid: ncepidtp do
provided (teft_suf, epid].pdu_buffcr]. full and
(teft_suf, epid].pdu_buflcr].peeraddr.n_pref = nc[ncid].remotenaddr))
from idle
to dle
begin
teft_suf, epid].assgnd_nc := ncid;
ref_assgnnewref ;= 1;
ref_assgnnewref .= ref_assgnnewref + 1;
ref_assgnnewref .= ref_assgnnewref + 1,
end;

lrans
any t_suf: t_suftp; epid: tcepidlp; ncid: nceprdtp do
provided (tcft_suf, epid].pdu_buflcr]. full and
(teft_suf, epid].pdu_bufler].peeraddr.n_pref = nc[ncid].remotenaddr))
from idle
to idle
begin
teft_suf, epid].assgnd_nc := ncid,
ref_assgnnewref .= 1,
ref_assgnnewref := ref_assgnnewref + 1;
end;

trans
any t_suf: t_suftp; epid: teepidtp, ncid: ncepidtp do
provided (tcft_suf, epid].pdu_buffcr] full and .
(tc{t_suf, epid].pdu_buffcr].peeraddr.n_pref = nc[ncid].remotenaddr))

from idle
to tale
begin

teft_suf, eptd].assgnd_nc .= ncid;

49

ref_assgnnewref = 1;
end;

where actlveRefs has been declared as a set of Integers and

ref := 1 for activeRefs = { }
ref := 2 for activeRefs = { 1}

ref ;= 3 for activeRefs = { 1, 2 }.

3.2.6. Processing of From and To Clauses

Finally, majlor state lists or sets in the from clause are eliminated by repeat-
\ng the transition for each state value In the state list. For example a state set of

the form
any_state = [closed, waitCC, waitTCONresp, open, waitDC, closing [;

In a from clause wlill cause the generation of six normal form transltions.

The element same in the to clause Is replaced by the actual destination
state (1.e. the state In the from clause). Therefore the transition

trans

from EITHER

to same

when U.RECEIVE_request

provided not buffer_empty(Recv_buffer)

begin
Q.Msgdata := Retrieve(Recv_buffer);
output U RECEIVE_response(Q.Msgdata);
Remove(Recv_buffer)

end;

where EITHER = [ACK_WAIT, ESTAB] is a state set, Is replaced by two tran-
sitlons:

trans

{2}

when u.recetve_reques:

provided not buffer_empty(recv_bufier)
from estab

to estab

begin

50

. .. { same as above }
end,

trans
{3} ,
when u.recetve_request
provided not buffer_empty(recv_buffer)
from ack_wazt
to ack_wast
begin
... { same as above }
end;

3.3. IMPLEMENTATION OF NORMALIZATION MODULE

The compllation phase generates the syntax tree of the input speclfication.
Durlng normallzation thls tree Is changed. Nodes are deleted or new nodes are
created. Initlally, the syntax tree is read and submltted to the normallzation rou-
tines. Then It Is scanned top-down In order to process the declaration, inltializa-

tion and transltion declaration part. Also a global dictlonary Is created.

Normalization Is done for each module body separately. Clauses n/2 Imple-
ment the normalization algorithm and are deflned recurslvely. A different clause
for each subtree representing an Estelle construct (e.g. a module body definition)
Is defined. Initlally, the complete syntax tree 1s unified with the first argument of
n/2. Then n/2 s called agaln with Its first argument lnstantlated to one of the

subtrees hanging off the root and so on. For example, the Prolog routine

n(mdBdDf(
vl

bdDf(
) DclPrt0o, InitPrt0, TrDclPrt0

!
}d(L)

bd’Dj(
DclPrt, InitPrt, TrDclPrt

51

/ * retract clauses asserted in previous normalizations */

retractall(vrDel(_)), assert(vrDcl([])),

retractall(state_set

retractallfall_states(_)) assert(all states(]])),

wrtte(’NORMALIZA TION OF MODULE BODY "), write(N), write(™’), nl,

n(DclPrt0, DclPrtl),

n(InitPrt0, InitPrt),

n(TrDclPrt0, TrDclPrt)

/ * Append new variable declarations to 'DclPrit1’ +/

neerDcl{DclPrtl DclPrt), .
calls the routines to normallze the subtrees hanglng off the current mcdule
definition. Unification Instantiates varlables DclPrt0, InitPrt0 and TrDclPrt0
with the subtrees representing the original structure of declaratlon, initlalization
and transition declaration part, respectively. Notice the recursive nature of this
clause: the declaration part, for example, has a subtree corresponding to a
declaration and a second subtree corresponding to a declaratlon part (because of
the recursive grammar used for the implementation of this construct). One of
the sub-declaratlons could be a module body definition. Then, the same clause
will handle the new declaration. The result will be a tree of the normalized con-

struct.

Since Prolog does not permit global variables or flags, clause assertion has
been used to store global Informatlon. This Informatlon malnly refers to new
variables created by procedure or functlon replacement and major states. The

set of all major states 1s needed for the from and to clauses processing.

Linearization of a varlant record uses the dictionary entry of the varlant

record and produces a Prolog tree for the linear record definitlon:

linearize(TpNm, FldLst) :-
current_dic(. Dz%
lookup(TpNm, Dic, [[type
reverse(Lst_of_fi elds /D

/record Lst_of_fields]]]),
mkFldLst(, FldLst}

Varlable FldLst is instantiated when the clause exlts to a Prolog tree representing

the flelds of the record type named after the value of varlable TpNm (type

52

nesme).

When the subtree of a procedure or function declaration s encountered
(1.e. the Prolog subtree unlifies with a Prolog structure defilning a procedure or

function declaration) the following actions are taken:

e local varlables are changed to global (clauses chngVrToGlob/4) tn the way

explalned in 3.2.1 and

e the procedure/function declaration along with Its statement block Is saved In

a dictlonary (clause storeInTmp/2) and removed from the syntax tree.

According to a restriction Imposed by the NBS compller, the procedure and func-
tlon declaration part inside the scope of a procedure/function s assumed empty
(l.e. 1t takes always the atomlc value prcAndFncDclPrt). The Implementation of

the clauses for treating procedure or function declarations Is stralghtforward:

n{dclPrt(
DclPrto,
dels(
preDel(
preHd(_, d(N, _), _),
blck(lblDclPrt, cnstDfPrt, tpDfPrt, VrDclPrt,
prcAndFncDclPrt, stmtPri(StmtSeq0))

DclPrg -
((VrDclPrt = vrDclPri(VrDels),
chngVrToGlob(VrDcls, N, StmtSeq0, StmtSeq));
StmtSeq = SimtSeq0),
n(DclPrt0, DclPrt),
/ * Store procedure declaration and statement sequence in clause
‘tmp_dic(X)’ ¥/
storeInTmp(N, StmtSeq), !.

n(delPri(
DclPrto,
dels(
IneDclf
fncHd(_, id(N1, _), _FFPL, _igz,
blck(IblDclPrt, cnstDfPrt, tpDfPrt, VrDclPrt,
prcAndFncDclPrt, stmtPrt(StmtScq0))

53

),
DclPrt) -
((VrDclPrt = vrDclPrt(VrDcls),
chngVrToGlob(VrDcls, N1, StmtSeq0, StmtSeq));
StmtSeq = StmtSeq0),
n(DclPrt0, DclPrt),

/ * Store function declaration and statement sequence in clause
‘tmp_dic(X)’ */
storeInTmp(N1, StmtSeq), /.

Normallzation clauses for the Initlalization and transitlon declaratlon part
are implemented in the same way. We wlll examine how normalization of transi-
tlons Is performed keepin:g 1n mind that the same things apply for the lnitializa-
tlon construct (except that the inltlallzation construct has only provided and to
clauses). Normallzation of transitions Is done in three steps, executed sequen-

tlally. The routines needed for each step are called by the clause

n(trGr(Cls0, TrBick0), TrGrs) -
/*STEP 1 : Replace procedure and function calls and remove WITH, FOR,
ALL and WHILE statements #/
n1(trGr(Cls0, TrBlck0), TrGrsA), !,
/*STEP 2 : Remove conditional statements (IFs and CASEs)

¥/
n2(TrGrsB, TrGrsC), !,
/*STEP 3 : Process FROM and TO clauses

n3(TrGrsg, TrGrs), |
The first step Is represented by clause nl/2 and calls lookForProcOrFunc-
Call/ 2, rep WithStmts/ 2, rep While/ 3, and repForStmts/2 in order to replace
a. procedure and function calls,
b. with statements,
c. while statements,
d. for and all statements,

respectively. Since while statements Introduce paths In the transition block, the

output of the first step Is a number of transitions represented by tree TrGrsA

(vransition groups A).

[R, Y

54

Clauses lookForProcOrFuncCall scan the statement sequence of the transl-
tlon block recursively (each statement sequence tree consists of two subtrees: one
for a statement sequence -- here comes the recursion -- and one for a statement).
A procedure call can occur only as an identifler followed by an expresslon list
(possibly empty) containlng the actual parameters:

lookFerProcOrFuncCall(stmt(id(N, _), XprLst), StmtSeq) -
lookup_tmp(N, [[procedure, {]/, Prms, ProcStmts]),
/ * Replae procedure formal(s) by actual(s) */
repPrms(N, Prms, Xprl.st, ProcStmts, StmitSeqA),
lookForProcOrFuncCull(StmtSegA, StmtSeq), !.
lookForProcOrFuncCall(stmt(id(N, _)), StmtSeq) .-
lookuy _tmp(N, [[procedure, [||, _params, ProcSimts)),
lockForProcOrFuncCall(ProcStmts, StmtSeq), .

A function call can occur In an expression or simply as a varlable access. A new
name for the function's identifler Is created each time a function call replacement
Is done. This name apd its type are asserted in Prolog clause vrDel (variable

declaration) in order to be appended later to the declaration part of the normal-

1zed speclificatlon:

lookForFuncCall(zpr(1d(NO, L), XprLst), Xpr, StmtSeq) :-
lookup_tmp(NO, [[function, [Tp|_]], Prms, FuncStmis]),
mkNewNm(NO, N, [Tp]),
Xpr = apr(vrAcc(id(N, L))),
retract(vrDcl(Vdl)), append([[N, Tp]], Vdl, NewVdl),
assert(vrDcl(NewVdl)), !,
repNm(NO, N, FuncStmts, StmtSeqA),
/ * .leplece function formal(s) by actual(s) */
repPrms(N Prms, XprLst, StmtSeqA, StmtSegB),
lookForProcOrFuncCall(StmtSeqB, StmtSeq), !.

lookForFuncCall(vrAcc(id(NO, L)),

vrAcc(id(N, L)), StmtSeq) -
lookup_tmp(NO, [[function, [Tp|_]], _params, FuncStmts]),
mkNewNm(NO, N, [Tp]),
retract(ercl(le){,, append([[N, Tp]], Vdl, NewVdl),
assert(vrDcl(NewVdl)), !,
repNm(NO, N, FuncStmts, StmtSeql),
lookForProcOrFuncCall(StmtSeql, StmtSeq), !.

Notlce that after a procedure/function call replacement the statement sequence

produced 1s checked for other procedure/function calls.

55

The heart of symbolic replacement of lidentifiers are clauses repNm/4
(replace name). Clauses rep/Nm/4{ are called by any clause attempting symbolic
replacement (e.g. repPrms/6 -- replace parameters). These clauses search a Pro-
log tree In order to find all references to an identifier. When a reference 1s found
the symbollic replacement Is done according to rules specified as rep/Nm/4 clauses.
For example, the rule for replacement of an ldentifier by an expression 1s

repNm(N1, N2, zpr(vrAcc(id(N1, _))), N2) :-
N2 =.. [zpr|_], !

where identifier NI must be replaced by expressilon /N2 The predicate N2 =,
/:z:pr] _/ makes sure that N2 Is an expression. Clauses rep/Nm are based on
Prolog’s predicate univ (=..) 1n order to isolate the chlldren of a Prolog tree:

repNm(N1, N2, S, NewS) :-
S =. (HT],
repNml1(N1, N2, T, NewT),
NewS =.. [H|NewT], !.

repNml1(_, _, A[/, []) -1

repNmI1(N1, N2, [X]Y] [NewX|NewY]) :-
repNm(N1, N2, X, NewX),
repNmi(N1, N2, Y, NewY), !.

A recurslve search I1s performed on each chlld untll all the chlldren are covered.
The expression X =.. L means that L s the list conslsting of the functor of X fol-

lowed by the arguments of X. Functor Is the name of a structure and s written

Just before the structure’s openlng parenthesls.

Replacement of with statements Is stralghtforward. This routine 1s also

recursive In order to cover nested withs:

rep WithStmts(stmt(wthStmt(rerdVrLst(VrAcc), Stmt)), StmtSeq) .-
appFldNm(VrAcc, Stmt, StmtSeql),
rep WithStmts(StmtSeql, StmtSeq), !.

rep WithStmts(stmt(wthStmt(rcrdVrLst(RerdVrLst, VrAcc), Stmt)), StmtSeq) :-
appFldNm(VrAce, Stmt, StmtSeql),
rep WithStmts(stmt(wthStmt(Rcrd VrLst,stmt(cmpStmt(StmtSeql1)))), StmtSeq2),
rep WithStmts(StmtSeq?2, StmtSeq), !.

When a while statement 1s found lts body Is scanned for nested while state-

58

ments. Each nested while produces a number of paths, each path having a
predicate. For each of those paths more paths are created because of the outer
while and so on:

rep While(Cls, stmtSeq(StmiSeq, Stmt), PathLst) :-
\+ (Stmt = stmt(cmpStmt(_));
Stmt = stmt(while_do, _, _)), !,
rep “Vhile(Cls, StmtSeq, PathLst1),
addStmt(PathLst1, Stmt, PathLst)

The for and all statements are treated by the same clause- because of the
simlilarity in thelr structure. It 1s assumed that the index varlables are of a type
with statically defilned values (thls s mandatory for the all statement). After
clauses getPrmLst/5 get the values of the Index varlable in Prolog list Lst, the
for's or all's block 1s repeated for each value. The produced sequence of state-
ments 1s also scanned for for/all statements:

repForStmis(stmt(for_to_do, 1d(N, L), Xprl, Xpr2, Stmt), StmtSeq) .-
getPrmLst(for_to, id(N, L), Xprl, Xpr2, Lst),
iterate(N, Lst, stmtSeq(Stmt), StmtSeq1),
repForStmts(StmtSeql, StmtSeq), !.

repForStmts(stmt(allgtmt(c)i})mLst(dom(idLst(id(NO, L)), smplTp(1d(T,_)))),

tmitd)),

find(T, (Tgpe loalar, fLoul Rest])

nd(T, [[type,[scalar, {Low|Rest//[]),
last{LowlRest&, Hz'gh),/ :

mkNewNm(NO, N, [T]),

repNm(NO, N, Stmt0, Stmt),

repForStmis(stmt(for_to_do,
id(N, L),
xpr(vrAcc(id(Low,O){},
zpr(vrAcc(id(High,0))),
Stmt),

StmtSeq), !.

Clauses n2/2 Implement the second step. The baslc clauses called by n2/2

are:

e getPaths/3 finds all possible paths In the statement sequence of the transl-
tion block and creates the Prolog list pathLst whose elements are “he paths

and thelr predicates. getPaths/8 also check If some varlables need symbollc

57

replacement. If yes the clauses that do the checking assert the clause sym-

RepList/1 which contalns the Information about the varlables to be replaced.

° mkTr/8 makes one transition for each path. It Is implemented using tall
recursion on the path list. The result is a tree with transitlon groups, each

group consisting of one transition.

] If there are varlables needlng to be symbollcally -eplaced (l.e. clause symRe-
pList/1 exists) the transition groups produced by mkZ7r/8 are modlRed
accordingly. getSymVals/ 3 scans each transition in order to get the symbolic
value of variables In the list argument of symRepList/1 and replace 1t In the

provided clause.

The maln clause of the n2/8 clarses Is

n2(trGr(Cls0,
tf[r‘BéCks CDP, TDP, VDP, PAFDP, TN, empStmt(StmtSeq0))),
rGrs) :-

/ * Get each path 1n ’StmtSeq0’ #/
getPaths(Cls0, StmtSeq0, PathLst),
/ * Make one transiticn for each path */
mkTr(PathLst, [CDP, TDP, VDP, PAFDP, TN], TrGrsi),
((retract(symRepList(L)),

getSymVals(TrGrs1, TrGrs, L)),

TrGrs = TrGrs1), !

Conslder getPaths/3 for if statements 25 an example. Each path Is checked
recurslvely for other paths Introduced by nested condltionals:

getPaths(Cls0,
stmtScy(StmtSeq, stmi(if_then_else, bXpr(Xpr), Stmtl, Stmt2)),
PathLst) :-
chckSymb(StmtSeq, Xpr, [, _NmLst),
getPaths{Cls0, stmtSeq(StmitSeq, Stmtl1), PathLstA),
audPred(PathLstA, Xpr, PathLstB),
getPaths(Cls0, stmtSeq(StmtSeq, Stmt2), PathLstC),
addPred(PathLstC, zpr(not, zpr(Xpr)), PathLstD),
append(PathLsiB, PathLstD, PathLst), !.

Clauses mkTr/3 tnild one transition for the head of each path list glven as an

arguiient. The same clauses are called with the tall of the list and so on untll all

the list elements are covered:

58

[

C’ls Stmt_seq 1/14
CDP TDP, , PAFDP, TNJ,
trGrs(
trCr(
Cls,
trBlck(CDP, TDP, VDP, PAFDP, TN, cmpStmt(Stmt_seq))

-l mLTr([Path|RestPaths] Dels, TrGrs) -
mLTr Path], Dcls, TrGrsl),
mkTr Rest aths Dcls TrGrs2),
appendTrGrs(TrGrs2, TrGrsl, TrGrs).

Clauses getSymVals/3 and getSymVals/4 are based on recursively searching the
tree of transitlon groups In order to ldentlfy the statement seyuence that pro-

duces the symbollc value that replaces a varlable in the provided clause:

getSymVals(cls(Cls, cl(provCl(biXpr(Xpr0)))),
cls(Cls, cl(provCl(bXpr(Xpr)))),
ﬁmtSeq,
symbRep(StmtSeq, — Apro, Xpr, L), !

Finally, the third step Is performed by proFromAndTo/2. Its implementa-
tlon Is rather direct accordlng to what Is described 1n sectlon 3.2.6.

proFromAndTo(trGr(Cls0, TrBlck!, TrGrs) :-
/ ¥ Process TQ clause */
proTo(Cls0, ClsA, State),
/ * If TO clause ts omitted next state 1s 'same’ */
(State = same; true),
/ * Process FROM clause ¥/
proFrom(ClsA, ClsB, StateLst),
/ * If FROM clause is omitted the transition applies to all states in the
specification */
((var(StateLst), all_states(StateLst)); nonvar(StateLst)),
pop Whn(ClsB, ClsCZ
popAny(ClsC, ClsD
genTr(ClsD, TrBlc , StateLst, State, TrGrs), !

Routines popWhn and popAny move the Estelle clauses when and any to the
beginning of the transitlon clauses (any comes first). Thus it Is made sure that
transition clauses appear In a certaln order \n the normalized specification {any,

when, provided/delay/priority, from, to).

59

Future modifications of the normallzation module can be made easlly
because of the small size of Prolog clauses and the declarative and modular pro-
gramming style followed. It has become clear that each Estelle construct Is
mapped to an equlvalent Prolog tree fragment which undergoes all the process-
Ing. Thls tree fragment has a specific structure imposed by the grammar rules of
Estelle. Modificatlons to the rules describing an Estelle construct imply
modlifications to the related heads of clauses or data structures. If the program-
mer understands the tree structure resulting from the Estelle compller rules, the
changes or addltlons of clauses become trivial. Utility routlnes that apply on
many different constructs have been designed as general as possible. For example
clauses repNm/4, discussed earller In this sectlon, require minlmum change
because of the use of univ operator. Even though untv Imposes a non-declarative
programmlng style and makes the program cryptic, it has been used for funda-
mental actlons such as symbollc replacement of identliflers, parameters, pro-

cedures and functions.

3.3.1. Performance of Normalization Module

The performance was measured under an average CPU load of 1.28 Erlangs.
The execution times presented in table 3.2 are the averages of the tlme results of
ten experiments for each protocol. Columns 'size of Input syntax tree' and 'slze
of output syntax tree' glve the slze of data processed and produced, respectively.
The number of transitlons glve a rough ldea of the Increase of the specification
slze. Notice that the largest specification (LAP-D protocol) s normallzed faster
than FTAM due to the lower complexity of path producing constructs in LAP-D.
FTAM contalns more declarations that have to be processed and expanded.
These declarations are usually variant records which are llneaiized and procedure

or function calls which should be placed in the dlctlonary for reference during

€0

normalization. LAP-D specification contalns only one vartant record and most of
the procedures or functlons are declared as primitive. The normallzation

modauale required 1496 lines of Prolog code for 1ts implementation.

3.3.2. Printing

The printing clauses print an Estelle speclfication from Its parse tree. The

tree Is depth-first searched starting from the root when a call to the routine

p(spc(ld, SstmClass, DfitOpt, TmOpt, BdDJ), I) :-
write(’specification ’), p(Id), ; - specification header +/
p(SstmClass, I), writeln(’;’), [* system class */

p(DAtOpt, 1), / * default options */
p(TmOpt, I), / * time options +/

Newl is I + 4, / ¥ no. of indentation spaces */
p(BdDf, Newl), / ¥ spectfication body */
writeln(’end.’), !. / * end of specification */

occurs. When the nodes that correspond to terminal symbols are reached these
terminals are printed out. Care has also been taken to pretty-print the output
specificatlon using indentation (variables I and Newl) above. Each time a new or
nested block of statements s Introduced the tab varlables J and New! (as they are
referred to throughout the printing module) are changed to reflect the nesting
level. The size of the Prolog program \mplementing the printing routlnes s 662

lines.

Table 3.3 shows the results of performance measurements of the printing
routines. The Input Is the syntax tree of the normalized speclficatlon (measured
In bytes) and the output is the normallzed speclficatlon. The average system
load durlng printing was 0.30 Erlangs and the experiment was conducted ten

times for each protocol.

61

input size of | number of | number of size of runtime
specifica- input transitions | transitions [output (seconds)
tion syntax before after syntax
tree tree
(bytes) (bytes)
alternating| 12,267 5 9 14,840 1.522
bit
simple
transport 16,438 20 37 22,80 12.878
ap module
simple
transport 17,358 5 93 159,816 21.033
map
module
FTAM 81,267 36 103 99,958 88.105
LAP-D 167,418 128 475 692,686 52.399
Table 3.2. Performance of the normalization module
normalized size of input size of output runtime
specification syntax tree specifcation (seconds)
(bytes) (lines)
alternating bit 15,084 271 1.175
simple transport 226,886 2,071 14.342
FTAM 145,248 2,332 8.650
LAP-D 691,249 8,741 49.703

Table 3.3. Performance of the printing module

CHAPTER 4

DATA AND CONTROL FLOW ANALYSIS

After having normalized the input specification two types of flow are speclfied,
[16]:
e Flow of data which shows how operations 1n the actlons part of a transition

are applled on the input interactlon parameters or context varlables 1n order

to determine the value of the output Interaction parameters, and

e Flow of control which shows the major state changes (l.e. the finltc state

machine Implemented by an Estelle specification).

This chapter explalns how this Information Is collected and stored in a form

sultable for processing by graphles tools.

4.1. DATA FLOW ANALYSIS

Data flow analysls consists of two phases. The Input to the first phase Is a
normalized specification. The output Is an equlvalent specificatlon such that all
the PDUs exchanged In Interactions or processed In transitlon blocks are expll-
citly identified. The second phase processes the output of the first phase, deter-
mines the nodes of the data flow graph and prints them in a form sultable for a

graphlcs tool.

Examples are extracted from normallzed specifications of single module alter-
nating bit, {11}, or two module transport protocol, 3], excent when the normal

form structure and the original one are the same.

63

4.1.1. Data Flow Analysis - First Phase

In thls phase the decldratlon and transition declaration parts are processed
separately. Declaratlon part processing s Intended to expand the declaratlons
referring to PDUs in order to meet the symbollc replacement of 1dentiflers, which

takes place 1n transition declaration part processing.

Knowledge of the kind of PDU exchanged in an interaction 1s important dur-

ing the partitioning of data flow graph Into protocol functions.

4.1.1.1. Declaration Part Processing
Four types of Estelle structures are processed 1n thls module:
a. Varlant records,
b. Channel deflultions,
¢. Varlable declarations,
d. Primitive procedure and functlon declarations.

A case where variant records are frequently used Is the declaration of
PDUs. Each PDU Is identified using a tag-fleld. Conslder for example the record

definition

TPDUCodTp = (CR, CC, DR, DC, DT, AK, undef_code);
TPDUandCtrlinf = record

{ control information }
full . boolean;
order . orderTp;
peerAddr : TAddrTp;

{ fields of TPDU }

cerV1 :ereditTp; used for CR, CC, AK}

destRef : refTp; used for CC, DR, DC, DT (class 2
only), EDT, AK. EAK, ERR

SrcRef s refTp; { used for CR, CC, DR, D

user_data : { optional } dataTp, { see TSAP; used for CR, CC, DR gnot
tn this verston of the jiotocol), DT, EDT

case kind . TPDUCodTp of

CR,

CC : (Opts_ind : OptTp;, { see TSAP}
TSAPId_calling,
TSAPId_called : T_sufTp); { optional }

DR : (is_last_ PDU : boolean; { control information }

disc_reason : reasonTp);
DcC : ()
DT : (sendSeq . segNumTp;

end_of_TSDU : boolean),
AK : (expSndSeq : seqNumTp);
undef_code : (); { end of case }
end; { of TPDUandCtrlInf }

Tag-fleld kind 1s used to identify seven possible types of PDUs, namcly CR, CC,
DR, DC, DT, AK and undef_code.

The first phase of data flow analysls determlnes which flelds belong to a cer-
taln PDU type and creates a separate record definitlon for each type. Clearly, all
the flelds appearing In the fixed part of the record declaration should be present
in the recoird definltlon of each PDU. Thus, the fields which are used by each
PDU type are explicitly defined. Addltlonally, one more data type containing all
the flelds of fixed and varlant part and the tag-fleld as a common record fleld Is
produced (l.e. case is removed). The reason ls that some data structures may
hold more than one kind of PDU at the same tlme {e.g. a buffer). In this case the
data structure must be deflned as the unlon of all the PDU data types. A case

where this Is used s presented 1n sectlon 4.1.1.2. The record definitlon ylelded

for CR PDUs Is

tpduandctrliinf_cr =

record
full: boolean;
order: ordertp;
peeraddr: taddrtp;
crvl: credittp;
destref: reftp;
srcref: reftp;
user_data: datatp,
opts_ind. optlp;
tsapid_calling, tsapid_called: t_suftp

end;

65

Tags In PDU varlant records can be repeated instead of repeating the same
flelds for different PDU types (which s not semantically correct). In this case all
the flelds belonging to a PDU type are collected and then a record definitlon for
this PDU I1s made. In record definltion

rec = record
f1: integer;
f2 : boolean,
case Tag : TagType of
t1: (f3 : integer);
t2, t1: (f4 : char)
t3, t1: (f5. any_type);
end;

tag t1 Is repeated (tag-fleld 1s a scalar type TagType = (i1, t2, t3)). Then data
flow analysls produces the records

rec_t8 =
record
f1: integer;
f2: boolean,
[5: any_type
end;
rec_tl =
record
[1: integer;
f2: boolean,
/3: integer;
f4: char;
[5: any_type

rec_t2 =
record
f1: integer;
f2: boolean;
f4: char
end;
There 1s no restriction concernlng the case constants of a variant record but when
thils record 1s used for PDU deflnitlon the case constants (l.e. PDU identifiers)
should not be slgned numbers, slnce thls will introduce errors when the record

name and case constant name are concatenated.

The enumeration of PDU varlant records affects other Estelle structures

which use parameters of PDU record type. These types are channels, variables

66

and primitive procedures and functions.

When an Interaction 1n a channel definition carrles PDUs 1t Is expanded so
that the type of the PDU exchanged In thls Interaction Is explicitly specified. For
example, the channel definition

CHANNEL PDUandCtrlPrims(protocol, mapping);
BY protocol, mapping :
transfer (PDU : TPDUandCtriinf),
term;
BY mapping:
ready; { ready for one more block }
{ end of PDUandCtrlPrims }

is expanded to the channel definltion

channel pduandctrilprims(protocol, mapping);
by protocol:
transfer_cc(pdu: tpduandctriinf_cc);
transfer_cr(pdu: tpduandctrlinf_cr);
transfer_dr{pdu: tpduandctriinf_dr);
transfer_dc(pdu: tpduandctriinf_dc);
transfer_dt(pdu: tpduandctrlinf_dt);
transfer_ak(pdu: tpduandctrlinf_ak);
transfer_undef_code(pdu: tpduandctrlinf_undef_code);
term,
by mapping:

transfer_cc(pdu: tpduandctrlinf_cc);
transfer_cr(pdu: tpduandctrienf_cr);
transfer_dr(ﬁdu: tpduandctriinf_dr);
transfer_dc(pdu: tpduandctrlinf_dc),
transfer_dt(pdu: tpduandctriinf_dt),
trancfer_ak(pdu: tpduandctrlinf_ak),
transfer_undef_code(pdu: tpduandctrlinf_undef_code);
term,
ready;

Notlice that each role and i1ts lnteractlon definitions has been llsted separately

(the shorthand notatlon followed by the orlginal specificatlon has been expanded).

Varlable declarations referring to PDUs (e.g. varlables of type
TPDUandCtrlinf) are also expanded. Data flow analysls of the variable declara-

tion

recPDU: TPDUandCtrlinf;

67

produces a number of declaratlons:
recpdu_undef_code: tpduandctriinf_undef_code;
recpdu_gak: tpduandctriinf_ak;
recpdu_dt: tpduandctriinf_dt:
recpdu_dec: tpduandctriinf_dec;
recpdu_dr: tpduandctriinf_dr,
recpdu_cr: tpduandctrlinf_cr;
recpdu_cc: tpduandctrlinf_cc;
Prefixes _undef_code, _ak, _dt _dc, _dr, _cr and _cc are used to denote the PDU

type carrled by each of the new varliables.

Next procedure and functlon declarations with directives primitive, exter-
nal, or forward are handled. This processing s done after the data flow
analysls of transitions Is compieted. When a procedure/function call is found
Inside a transitlon block, it I1s checked whether any of the formal parameters or
the function itself are of PDU type (e.g. of type TPDUandCtrlInf). In such a case
all the necessary Information s stored In a Prolog clause and new

procedure/function declarations are derived In the followlng way:

a. formal parameters referring to Input PDUs are redefined to be of the record

type defining the kind of PDU in hand,

b. other formal parameters are redefined to be of the same type as the type of

PDU being processed Inside transition block,
c. data type of PDU under processing becomes the type of functlon and

d. the names of Input PDU and PDU under processing are appended to the

name of procedure/functlon in order to form the new declaration.

Assume, for example, that procedure process_PDU is defined as

procedure process_PDU(in_PDU: TPDUandCtrlInf;
var out_PDU: TPDUandCtrlinf),

primitive;
and vhen 1t Is called sn_PDU 1s assigned an Input parameter referring to a CR

PDU and out_PDU should return a CC PDU. Then data fliow analysls produces

68

procedure process_pdu_cr_cc(in_pdu: tpduandctrlinf_cr,
var out_pdu: tpduandctrlinf_cc);
primative,
Clearly, this process results in a minimum number of declarations. Each time a
call to a routlne with a new permutation of PDU kinds occurs, a new declaration
Is ecreated. In the previous example, If all possible PDU kinds had been con-

sidered (l.e. seven PDUs) 49 procedure declaratlons would have been created even

If only one was necessary.

4.1.1.2. Transition Declaration Part Processing
The translition declaration part must also be changed: PDUs exchanged as
interaction parameters must be ldentified and the Interaction names must change

accordingly. Data flow analysls Is applied on normal form Estelle transitions in

order to deflne the kind of PDUs in
° Input Interactions and
. Transition Block and Output Interactlons.

The next step Is the replacement of varlable and interactlon names with names
denotlng explicitly the PDUs carrled. The declaratlons defining varlables and
interactions referring to PDUs are created durlng the declaration part processing

of normalization (3.2.1).

In order to determine the kind of incoming PDUs (when clause) the pro-
vided clause of a transitlon Is scanned. This may indicate the PDU expected as
an Input. If this scanning is successful the Interaction name In the when clause
Is changed so that It reflects the klnd of PDU exchanged. I'>r example, the pro-
vided clause \n the transition

WHEN Map.transfer
PROVIDED PDU.kind = DR
FROM wastCC

TO closed
begin

69

OUTPUT TS.TDISind(PDU.disc_reason);
OUTPUT Map.term;
end;
Implles that the PDU expected In the Ilnput Is of kind DR, otherwise the transi-
tion cannot be fired. The result of data flow analysis Is
trans
{04}
when map.transfer_dr
provided true
from wazitcce
to closed
begin
output ts.tdisind(pdu.disc_reason);

output map.term
end;

?

The boolean expression In the provided was replaced by true since the Interac-

tion transfer_dr carries a DR PDU.
It should be noted that It Is possible that the kind of PDU expected does not

appear in the provided clause of the orlginal transition (e.g. when more than

one PDU kind are handled). In this case there are two possibilities:

a. There Is some reference to PDU kinds In conditional statements inslde the
body of the transitlon. The conditions must imply the PDU kind excluding
all other kinds, otherwlse amblguitles may be introduced. Normalization
module moves these conditlons to the provided clause generatlng a new
transition for each path 1n the body of the original transition (see 3.2).
Therefore, data flow analysls can determline the PDU Kkind for each normal

form transition.

b. If the kind of PDU exchanged in an Input Interaction cannot be determined

from the provided clause of the normal form transition,
™ a new transition for each PDU kind Is generated and

) asslgnment statements assigning the input PDU to a varlable of data

type designed to hold more than one kinds of PDU at the same time

70

(e.g. a buffer) are replaced by a sequence of assignment statements
asslgning each fleld of the Input PDU to the corresponding fleld of the
variable. The original declaration of thls varlable must be PDU record
type. Since varlant PDU records are enumerated the new type must be
a unlon of all the enumerations. Also the tag-fleld of the case structure
of the original PDU record type must be inluded in the new definltlon

in order to define what kind of PDU is In the buffer.

Conslder the translition,

TRANS
ANY T_suf : T_sufTp; EPId : TCEFPIdTp DO
WHEN AP[T_suf, EPId].transfer { PDU
{ghis. input may occur with any value of T_suf, EPId}
egin
TClT_suf, EPId].PDU_buf[PDU.kz’n‘(y .= PDU;
with TC[T_suf, EPId] PDU_buf[PDU kind] do
begin
Jull := true;
end
end;

where TC 1s an array of record keeplng Information about local and remote
references, network connections and Incoming PDUs. The latter are put In an
array of type TPDUandCtrllnf named PDU_buf. The definition of PDU_buf
should not be expanded. Data flow analysls produces seven transitlons, two of
which are

lrans

{1 o

any t_suf t_suftp; epid: tcepidtp do

provided true

when apft_suf, epid.transfer_undef_code

from idle

to idle

begin
teft_suf, epid]. pdu_bu{/unde f_code] user_data := pdu.user_data,
teft_suf, epi .pdu_bu/undef_code].srcref ;= pdu.sreref;
teft_suf, epi .pdu_bu/undef__code/. destref := pdu.destref;
tcft_suf, epi c/.pdu_bu /undef_code}.crvl = pdu. crvl;
te[t_suf, epid]. pdu_bu /undef_code].peeraddr = pdu peeraddr;
teft_suf, cpi/.pdu_bu undef_code/.order := pdu.order;
teft_suf, epid].pdu_buffundef code] full := pdu. full;

71

teft_suf, epid]. pdu_buyundef_code].kind .= undef_code;
;c/t_suf, epid]. pdu_buffundef_code].full := true
end;

trans

{7} o

any t_suf: t_su'tp, epid: tceprdtp do

provided true

when apft_suf, epid].transfer_cc

Jrom 1idle

to 1dle

begin
teft_suf, epid].pdu_buf[cc] tsapid_called := pdu.tsapid_called;
teft_suf, epid].pdu_bu /cc]. tsaptd_calling := pdu.tsapid_calling;
teft_suf, epid].pdu_bu /cc]. opts_tnd := pdu.opts_ind;

telt_suf, epid].pdu_buf[cc).user_data = pdu.user_data;

teft_suf, epi .pdu_bu/cc].srcref .= pdu.srcref;

teft_suf, epid].pdu_buffcc| destref = pdu.destref;

teft_suf, epid].pdu_buffcc]. crvl := pdu.crul;

tefi_suf, epid].pdu_buffcc/.peeraddr := pd- peeraddr;

teft_suf, epia/.pdu_bu ccl.order := pd» der;

teft_su) epz'a/.pdu_bu/cc].fu[=" ull;

teft_suf, emid].pdu_buffcc] kind := cc;

dtc/t_suf, epid]. pdu_buffcc/. full := true

end;

Simllar transitlons are created for Input Interactlons for AK, DT, DC, D and
CR.
Next transitlon block and output Interactions are processed.

If a varlable refers to a PDU,

e the PDU Kind is determined from a statement assigning the PDU kind
to the varlable's tag-field or, If an Input PDU exlsts, from a statement
assigning the input PDU to this variable,

. the statement asslgning the PDU kind to the varlable's tag-fleld Is

removed and

® varlable's name is extended with PDU's kind.

72

Varlable pdu_cc_pdu In the transition

trans

{06}

when ts.tcorresp

provided accptdopls <= opts
from wattlconresp

lo open

begin
opts := accptdopts;
trseq := 0,
tsseq ;= 0;

pdu_cc_pau.kind := ce;

pdu_cc_pdu.opts_ind ;= opts;

pdu_cc_pdu.crvl := rer;

pdu_cc_pdu.order := first;

cc_pdu_10 := pdu_cc_pdu;

output map.transfer(cc_pd'u_10)
ena,

refers 1o CC PDU. Any reference to this varlable Is replaced by pdu_cc_pdu_cc
which s declared of type tpduardcirlinf_cc and defines CC PDUs only:

lrans

{ 06}

when ts.tconresp

provided acceptdopts < == c¢ts
Jrom waittconresp

lo open

begin
opts := accptdopts,
trseq ;= 0;
tsseq ;= 0;

pdu_cc_pdu_cc.opts_ind := opts;
pdu_cc_pdu_cc.crvl :== rcr;
pdu_cc_pdu_cc.order := first;
cc_pdu_10_cc ;= pdu_cc_pdu_cc;
output map.transfer_ccfcc_pdu_10_cc)
end;

If the PDU kind cannot be determlned, the user 1s Informed with message
line L: failed to determine PDU kind referred to by variable V,

where L is the llne number and V the variable name. In such a case the variable

remalins unchanged in the output of thils phase.

Next, the names of output interactions carrylng PDUs are considered. The

output Interactlon name changes according to the kind of its PDU parameters.
The actual parameters are varlables whose kind 1s found In the previously
desceribed way. Output interaction transfer(cc_pdu_10) Iin the previous example
carrles a CC PDU. After data flow analysls the Interactlon becomes
transfer_cc(cc_pdu_10_cc) which 1s declared to have as parameters CC PDUs
only (sectlon 3.2.1). If the kind of output PDU cannot be determlned, the user s

informed with message
line L. failed to determine PDU kind referred to tn interface event Event,

where L 1s he llne number and Event the Interactlion name.

The current implementation can handle more than cne PDU kinds per tran-
sitlon block. That is, different variables can be of different PDU type. Also, 1t Is
not necessary to specify the PDU kind corresponding to a variable in the begin-
ning of the transition block. Thlis could be done anywhere Inside the transition

block.

4.1.1.3. Implementation of First Phase of Data Flow Analysis

The data flow analysis module searches the parse tree of the normallzed
specificatlon 1t & depth-first way. It analyzes each part of the specification pro-
ducing a new subtree for this part. Finally, a new syntax tree Is created and

printed as an Estelle specificatlon using the printing module (see 3.3.1).

First, the declaration parct 1s processed. The PDU varlant records are

expanded by the clauses

normRec(TpName, fldLst(VrntPrt), TpDfs) :-
assert{pdulicrdFzdPri(empty)), /* record fized part is empty */
getCsCnstFlds(VrntP, .), / ¥ get cuse constants from variant part ¥/
recDf(TpNeme, TpDfs), ! / * make new record defs for each PDU kind ¥/

normRec{TpName, fidLst(FzdPrt, VrntPrt), TpDfs) -

74

assert(pduRcrdFzdPrt(FzdPrt)), /* record fized part is not empty */
getCanstFlds(VrntPrt / ¥ get case constants from variant part */
recDf(TpName, TpDfs),

When channel declarations with Interactions carrving PDUs are encountered

the clavses mkChBlck/2 expand the channel block enumerating Interactlon

definitions. The channel definitlon and {ts roles are obtalned from the dictionary:

mkChBlck(N, ChBIck) -
/ * get definition of channel N from dictionary (N1, N2 are roles) */
find(N, [[channel, [[N1, IntDJs1], [N2, IntDfs2][]]),

mkIntGr(Nl IntD s1, IntGrI / ¥ make interaction group of role N1 */
mkIntGr(N2, IntDfe2, i fGr2) / * make interaction group of role N2 #/
ChBlck = / * make channel block */

chBlck(chBlck(IntGr1),IntGr2), !. | * from tnteraction groups */

Varlable declarations referring to PDUSs are expanded by the clause

dtf1(vrDcl(IdLst, tpDntr(smplTp(id(PduT, _)))), VrDcls) .-

pduTp(Pdu T) / * If variable(s) isfare) of PDU */

/ * record type: */
pduLst(Pdul), / * get list of PDU kinds, */
getlds(IdLst, 1dl.), / * get a Prolog list of variable(s), */

mkVrDcls(Pduv/., IdL, PduT, VrDcls), !. | * make new variable declarations. */

Primlitlve functlon or procedure declarations are handled by the clauses
mkPrcDf/ 1 and mkFncDf/1. Since clause assertlon was used to store information
about the input parameters, the input PDU type, the PDU kind processed by the
transition block and the function name, the new new declaratlon Is made by
retracting the clauses keeplng thls information (prcDf/4 and fncDf/4) and bulld-
Ing a procedure/function declaration st“tree from prcDf/4{'s or fncDf/{'s con-

tents:

mkPrcDf(dclPrt(DclPrt,
dels(prcDel(prcHd(procedure, 1d(N, 0), FrmlPrmLst), BéTp)))) -
retract(prcDf(NO, K, InpPrms, InPduTpj),
find(INO, [!/procedure lleT /], PrmLstO]}
reverse(PrmLst0, [, PrmLst),
conc(NO, K, N1}
conc{Ni, InPdqu, N),
mkFrmlPrmLst(PrmLst, FrmlPrmLst, K, InpPrms, InPduTp),
mkPrcDf(DclPrt), !.

/ * make new record defs for each PDU kind #/

mkPrcDf(dclPrt) - !
mkFncDf(dclPrt(DclPrt,

75

dels(fneDel(fncHd(function, d(N, 0), FncFrmlPrmLst, 1d(T, 0)),

BdTp)))) :-

retract(fncDf(NO, K, InpPrms, InPduTp)),

ﬁnd{NO}!{functwn /Type BdTp]] Prm st0]),
reverse(PrmLst0,], PrmLst),
((pduTp(Type),

conc(Type, K, T

’ 2

ype),
conc(NO, K, N1),
conc(N1. InPduTp, N),
mkFncFrmlPrmLst
mLFnch(DclPrt)
mkFncDf(dclPrt) .-

{PrmLst FneFrmlPrmLst, K, InpPrms, InPduTp),

The clause processing the Input Interactions, If the PDU kind can be deter-

mined from the provided, is

proWhenAnuProv(Cls0, Cls) .-
getinint(Cls0),
proProv(Cls0, Cls1, Vr),
proWhen(Cls1, Cls2),

inpPrms(Prms),
((member(/Vr[_], Prms),

(piu_ Lmu(K)

conc(Vr, K, NewVr),
repNm(Vr, Neer Cls2, Cls))),
retractall(pdu_ kmd(_)) A

/ * get input interactions from clauses */
/* get PDU kind. Vr = PDU variable */
/ * change input interaction if provided */
/ ¥ implies input PDU kind */

/ * Get parameters of input interaction */
/* If Vr is input parameter don’t #/

/ * replace its name; */

/ * otherwise ¥/

/ * concatenate PDU kind to var name */
/ * and replace name in the clauses */

/ ¥ Remove information about PDU kind */

If the kind of Input PDU cannot be determined clause ezxpand When/2 gen-

erates one transition for each PDU kind:

expand Whenl(trGr(Cls0, trBlck(Cdp, Tdp,
TrGrs) -
proProv(Cls0, _,
not retract(pdu_ kind),
retractall(inInt(_, _)),

getinInt(Cls0),
pduTp(Tp),

retract(inlnt(_, Prms)),
member([Pdu, [paraemeter, [Tp]]], Prms),
pduLst(agLst
pdu_id_kind(F)

Vdp, Pafdp, Tn, cmpStmt(StmtSeq))),

/ * If PDU kind is not implied by #/
/ * provided (retract/1 fails) then #/
/ * remove old information
for input interactions */
/ * get new information
for input interactions */
/ * et name of PDU record #/
/ * check if any of tne inpul #/
/ * parameters s PDU ¥/
/¥ get the list of PLU kinds #/
/ * get the name of the tag-field */

76

ezpandTrans(Cls0, Pdu, K, / * make a path for each PDU kind +/
TagLst, StmtSeq, PathLst),
mkTr(PathLst, / * Make one trans for each path and */
|Cdp, Tdp, Vdp,Pafdp, Tn|, / * link them in a new set */
TrGrs), ! / * of transition groups */

When the transition block Is processed, clause getPduKind/2 determines the

Kind of PDU belng processed by examining each asslgnment statement:

getPduKind(stmt(VrAccO, Xpr), stmt) .-
lastFldSpc(VrAccO, Namel), [+ If the tag-field of a PDU variaole ¥/
pdu_td_kind(Namel), / * is being assigned */
varRefToPdu(VrAccO, _, _), [+ If VrAccO refers to a FDU #/
/ ¥ Ezamine the value of ezpression Xpr: ¥/

value(Xpr, V1), / ¥ the value of Xpr is VI #/

pduLst(L), /* L ts list of PDU kinds */

member(VI, L), / * tf the value V1 of Xpr denotes PDU kind ¥/
retractall(pdu_kind(_)), / * remove old info about PDU kind »/
assert(pdu_kind(V1)), . / * store new info about PDU kind +/

Concernlng the modifiabllity of the data flow analysls - phase I - module the
same remarks as the ones stated In sectlon 3.3 hold: Any modifications to the
Estelle syntax rules should be reflected to the syntax tree structure and subse-

quently to the clauses manlpulating this tree.

4.1.1.4. Performance of the First Phase of Data Flow Analysis.

The performance experlments were executed under an average CPU load of
1.36 Erlangs. Each protocol was processed ten times and the resulting times were
averaged. Table 4.1 shows the results of the experlments. The lnput and output
syntax trees represent the data processed and generated, respectively. The pro-
cessing time ls proportional to the number of transitions 1n the Input and is not
related strongly to the Increase of thls number. The slze of the programs lmple-

menting the first phase of data flow analys!s is 1045 llnes.

4.1.2. Data Flow Analysis - Second Phase

The input to the second phase of data flow analysls Is a normallized Estelle

input size of | number of | number of size of runtime
specifica- input transitions | transitions | output (seconds)
tion syntax before after syntax
tree tree
(bytes) (bytes)
alternating| 14,840 9 9 15,084 3.461
bit
simple
transport 22,802 37 37 29,327 17.417
ap module
simple
transport 159,816 53 59 179,394 150.683
map
module
FTAM 99,958 103 103 145,248 110.911
LAP-D 692,686 475 530 691,249 587.321

Table 4.1. Performance of data flow analysls - phase I

speclficatlon produced by the normallzation (section 3.2) and the first phase of
data flow analysls (sectlon 4.1.1). This speclficatlon may need some modifications
by the user If the first phase of data flow analysls falled to 1dentify the PDLJ kind
In an Interaction or carrled by a varlable. The second phase calls the compller
module described In sectlon 3.1 in order to check the normallzed speclfication
agalnst syntax and semantlc errors and produce a syntax tree and a dictlonary as
Proiog clauses. The output Is a model of the information flow In the Estelle

specification, excluding the major state changes, [21], and It Is printed as a transi-

tion table. There are four kinds of data fiow graph nodes:
° I-n~des representing Input primitives,
¢ D-nodes representing data (varlables and constants),

® F-nodes representing operatlons on data (l.e. functlons, procedures and

78

operators) and
¢ O-nodes representing output primitives.

Information about node types and arcs of the data flow graph Is printed in a flle
in the following form:

%nodes
node-namel node-typel data-type-of-nodel
node-name?2 node-type? data-type-of-node?

%arcs
- source-nodel destination-nodel transition-numberl
source-node2 destination-node? transition-number?

The arcs emerge from nodes representing data sources (e.g. I-nodes, D-nodes
corresponding to constants) and are directed towards data sinks (e.g. O-nodes).

D-nodes modellng actual parameters of a procedure or function call (modelled

by an F-node) are connected with the F-node by

. a unldirectional arc directed towards the F-node If the parameters are called

by value or

. a bldlrectional arc If the parameters are called by reference (var parame-

ters).

The data type of each node Is used by another tool (dfgtool, [23]) for merging
blocks of the data flow graph. The transition

lrans

{7)

when n.data_response_dt

provided (true) and (not (ndata.seq = recv_seq))

from ack_wait

to ack_wast

begin
copy(q.msgdata, ndata.data);
b_ack.seq := ndata.seq;
b_ack.conn := conn_end_pt_id;
empty(b_ack.data);
output n.data_. cquest_ack(b_ack)

end;

corresponds to a data flow graph deseribed by the transitlon table (%arcs

79

section)

21Qcopy g.msgdata 7

g.msgdata 21Qcopy 7
data_response_dt.ndata.data 21Qcopy 7
data_response_dt.ndata.seq b_ack.seq 7
22Qempty b_ack.data 7

b_ack.data 22Q@empty 7

b_ack.conn data_request_ack.ndata.conn 7
b_ack.seq data_request_ack.ndata.seq 7
b_ack.data data_request_ack.ndata.data 7

where number 7 denotes the transition number and the nodes appearing are
declared (%nodes section) as

b_ack.conn 2 subrange

b_ack.seq 2 subrange

b_ack.data 2 unspecified

g.msgdata 2 unspectfied

g.msgseq 2 subrange

data_response_dt.ndata.seq 1 subrange

data_response_dt.ndata.data 1 unspecified

data_request_ack.ndata. conn 4 subrange

data_request_ack.ndata.seq 4 subrange

data_request_ack.ndata. data { unspecified

21Qcopy 8 procedure

22@empty & procedure
Numbers 1, 2, 4 and 8 declare I-nodes, D-nodes, O-nodes and F-nodes respec-
tively. Prefilxes n@, where n s a number, are used to name each F-node
unliquely. This iIs done in order to distingulsh among calls of the same functlon,
procedure or operation In dlfferent transitlons. When these operators are

displayed the prefix 1s removed. Thus one F-node per operatlion Is printed.
Speclal processing 1s done for two Estelle structures:

e Arrays and

) any clauses.

If the array elements are used as regular context variables then access to an
array element 1s shown ln the data flow graphs as a procedure or function call.

More specifically an asslgnment statement of the type

80
aft] ;== b;
corresponds to the procedure call

assign_array(a, 1 b);

and an asslgnment stetement of the type

TS

b = afy];

corresponds to the function call

b ;= index_array(a, 1);

Procedure assign_array and function tndexr_array can be viewed as belng declared

as

procedure assign_array(var a: any_array_type;
1: any_ index_Lype,
b: any_element_type),
primstive;

Junction index_array(var a: any_array_type; i: any_indez_type);
primitive;

Conslder the statement sequence

ezample_array[1] := retrieve(send_buffer);
b_dt.data := example_array[1];

where e:z:ample_array has been deflped as an array. Data flow analysls produces
the transition table

5Qassign_array example_array 1
ezample_array 5Qassign_array 1
6@1 5Qassign_array 1
send_buffer 7@retrieve 1
1Qretrieve 5Qassign_array 1
9Q1 8@indez_array 1
8Qindex_array example_array 1
example_array 8Qindex_array 1
8Qindex_array b_dl.data 1

which 1s displayed as the graph of figure 4.1.

1)

TN,
< emgtf_bu$ j retrieve) Gssign_arrey}%ex_am;ay)

¢ ! i 1 1)
L/
[examplie_array| B{[b_dt .datal

81

Flgure 4.1, Data fiow graph representation of a reference to an array element

It Is possible that an array !s connected to a channel. Thls, for example,

happens when the array's Indlces are of type transport connection identifier

(tc_id In reference [22]) or transport suffiz and end-point identifier (t_suffix and

ep_ld In reference {3]). In this case only one node Is created contalnlng the full

array name Including the Indices. For example, the nodes produced for array ic

In the transitlon

trans

{3} o _

any t_suf: t_suftp; epid: tcepidip do
provided true

when apft_suf, epid].transfer_dt

Jrom idle

to 1dle

begin
teft_suf, epz/ pdu_ bu/dt] end_of_tsdu := pdu.end_of_tsdu;
teft_suf, cpza/ pdu_ bu/dt sendseq ;= pdu.sendseq,
teft suj epid].pdu_buf[dt]. user_data := pdu.user_data;

end;

are

tc[ANY?_ suf,ANYepz/ pdu_buf, dt] end_of_tsdu 2 unspecified
te[ANYt_ suf,ANYepzl/ pdu_ bu/dt .sendseq 2 unspecified
tc[ANYt suf,ANYepid|.pdu_buf[dt].user_date.l 2 unspecified

Notlce that Indices of array of ips ap are the same as in {c (l.e. there Is a kind of

Isomorphlsm between tc and ap).

82

The any clauses are removed durilng the second phase and the varlables in
the domaln list are treated as global varlables. The keyword ANY 1s displayed
wlith the varlables in the domaln Ilst of the any clause to remind the user that
one transitlon should be generated for each value of the varlables Introduced by
the any clause. The reason for not repeating the transition is that 1t would
clutter the data flow graph and make the graph's manipulation complex. For
example the varlable reason in the any clause of the transition

lrans

{11}

any reason: reasontp do

provided reason <> ts_user_init

from open

to wait_for_dc

begin
output ts.tdisind(reason);
pdu_dr_pdu_dr.disc_reason := reason;
pdu_dr_pdu_dr.is_last_pdu := false;
pdu_dr_pdu_dr.order := destructive;
dr_pdu_13_dr := pdu_dr_pdu_dr;

oulput map.transfer_dr(dr_pdu_13_dr)

end;

corresponds to node ANYreason In figure 4.2.

4.1.2.1. Implementation of Second Phase of Data Flow Analysis

The syntax tree of a normalized Estelle specification s scanned In a top-

down fashlon. When a transitlon group Is found the clause

dtf2(trGr(Cls, TrBick)) :-
/ * process ANY clauses */
proAny(Cls, AnyVrs, GlobVrs),
retractall(inint(_, _)),
/ ¥ assert name and parameters of transition’s tnput interaction */
getinint(Cls),
/ * data flow aralysis of transition block considering variables in
ANY clause as global variables #/
dif2(TrBlck, AnyVrs, GlobVrs), !.

calls the routines that analyze the input clauses (getInlInt/1) and the transition

block (dif2/3).

83

(transfer_dr.pdu.disc_reason)

[protocol_error] [ts_user_init]

ANYreason

.
" 3 0

[pdu_dr_pdu_dr.disc_reason|

l[protocel_error]

1

(3d1sind.dis_reason) (transfer_or.pdu.ai sc_reason)

Figure 4.2. Data fiow graph representailon of ANY clauses

Clauses getinInt/1 find the input Interactlon and store its name, parameters

and type (I-node) in Prolog clause tonode/3. The maln clause is

getInmt(cl(whnCl{mtRef(IntPntRef, id(Ie, _))))) :-

IntPntRef = / l/zd(Ipr,)/ / * Get the parameters of */
getIntEvPrms (Ipr, Prms), / * tnterface event Ipr +/

(retract(wnode(]e Prms 1) true), /*and essert them in Prolog */
assert(ionode(le, Prms, 1)) / * clause fonode/8 (O-node = 1) ¥/
assert(inint(Ie, Prms)) A / * Assert the same info tn clause ¥/

/ * inInt/ 2 (used by first phase) #/

The transition block consists of a statement sequence. Each statement type

Is processed separately. The following clause processes the output statements:

dtf?{stmt(autStmt(mtRef(thntRef(zd(Ipr, =), wd(Ie, _)), XprLst)), N) -
XprLst =.. [zprLst'], / * Variable XprLst 1s an
expression list */

getintEvPrms(Ipr, Ie, Frm{PrmLst), / * Get interface event parameters */
(retract(tonode(le, F rmlPrmLst, 4) true), | #* and assert them in Prolog */
assert(ionode(le, Frmi{PrmLst, 41), / ¥ clause tonode/8 (O-node = {) +/
getActPrmLst(XprLst, ActPrmbst) [* Get list of actuals of OUTPUT #/
assertArcLst(le, FrmlPrmLst, / * and assert arcs from actu- ¥/

84

— ActPrmLst, N), 1. / * als to formals (N = trans. no.) */

A procedure call Is processed by the clause

dtf2(stmt(id(ProcNm, _), XprLst), N) :- / * procedure call */
getActPrmLst(XprLst, ActPrmLst), / * get list of actuals */
mkUnigque(ProcNm, Nm1, fnode, procedure), / * make a unique name from
procedure’s name */
find(ProcNm, [[procedure, _], FrmlPrmLst]), / * Assert arcs from actuals */

assertArcs(Nml1, FrmlPrmLst, actPrmLst, N),!. [* to formals (N=trans.no)

An assignment statement can be one of the types:
a. varlable assigned the value of a fun..on (with or without parameters),
b. array element asslgned an expression,
¢. Vvarlable assigned the value of an expression contalning an operator and
d. varlable assigned the value of an array element.

Clearly, a. Is a speclal case of d. In both cases there Is an edge connecting the
D-node representing the varlable (or the varlable's flelds In case of record) with
the F-node representing the function or the operator. The reason for treating
them separately Is the difference between the syntax of function calls and simple
operations. An expression can aiways contaln a function call., The recurslve
nature of dif2 clauses (Implementing the second phase of data flow analysis)
ensures that any comblnation wlll be analyzed regardless of nesting level. The
clauses handling the aforementioned cases of assignmen. statements are:

/ * variable assigned by a function #/
dif2(stmt(VrAce, zp7vrAcc(id(Nm0, _J))), N) -
/¥ 1_? NmU/’/ s a unctz}}ln_/i)dcntzﬁer ¥/
And(NmO, [[function, TJ|_J),
(T = [Tp|: T = [Tp, _J), ,
/ * make a unique name from function’s name ¥/
mkUnigue(Nm0O, Nm1, fnode, Tp),
/ * get the full name of node in left side of assignment statement
and the list of its fields */
leftStde Node(Vr.Acc, Nm2, FldLst),
/ ¥ assert an arc jrom function’s name to each field of record variable */
assertArcLst4(N, Nm1, Nm2, FldLst), !.

85

/ * variable acsigned by a function with parameters +/
aif2(stmt(VrAcc, zpr(td(Nmo, _), XprLstj). N) .-
J* if " NmO is a funclion identifier +/
find(Nm0, [[function, T], FrmlPrmLst]),
(T = iTp]! T = [Tp, j), |
/¥ make a unique name from function’s name */
mkUnigue(Nm0, Nm1, fnode, Tp),
/ * get the full nau.e of node in left side of assignment statement
and the list of its fields */
leftSideNode(VrAcc, Nm2, FldLst),
/ ¥ assert an arc from function’s name to each field of record variable */
assert.ArcLst{(N, Nm1, Nm2, FldLst),
/ * get function’s actual parameter list #/
getActPrmLst(XprLst, ActPrmLst),
/ ¥ assert arcs from actuals to formals (N = trans.no) */
assertArcs(Nml, FrmlPrmLst, ActPrmlst, N), 1.

/ * tf an array element is assigned replace the assignment statement with a
call to procedure ’assign_array’ and analyze it in the usual way */
dtffi{stmt(vrAcc(vrAcc(id(Nm, L)), zprLst(Xpr1)), Xpr2), N) -
tf2(stmt(id(assign_array, 0),
zprLst(zprLst(zprlst(zpr(vrAcc(id(Nm, L)))), Xpr1), Xpr2)), N), !.

/ # 1f a varwable 1s assigned an ezpression referring to :
- an operator (the expression may also include function designators)
- an array element (equivalent to function call index_array’)
use 'getNodeNm/>’ to get the name of the F-node in the right hand side
of the expression. 'GetNodeNm/3’ also asserts arcs implied by expression
Xpr but not directly connected with variable referred to by variable
access VrAce #/

dtf2(stmt{VrAcc, Xpr), N) :
getNodeNm(N, Xpr, Nodel),
/ * get the complete name and the field list of the variable +/
leftSideNode(VrAce, Node2, FldsLst),
/ * assert arcs from Nodel to all fields (FldsLst) of Node2 */
assertArcLst2(N, Nodel, Node2, FldsLst), !.

As discussed earller In this chapter and chapter three any changes to the
syntax of Estelle affect the structure of the clauses manipulating the fragments of
the syntax tree. The output of the second phase can be easlly changed to meet
the requirements of any data flow graph drawing .>ol: since the data flow Infor-
matlion Is stored in Prolog clauses the routines printing thls Information can be

modifled to produce any desirable format,

86

4.1.2.2. Performance of Second Phase of Data Flow Analysis

The performance experiments were conducted ten times under an average
CPU load ot 1.48 Erlangs. The resulting execution times were averaged and the
outcome 1s glven in table 4.2. The InTut Is the specification's syntax tree and the
output Is data flow Information expressed as a table of nodes and arcs. In the
case of transport protocol and FTAM the number of nodes Is greater than the
number of arcs. The reason)s that one node Is created for each record fleld but
not necessarlly used If this fleld Is not asslgned a value expllicitly. The unused

nodes can removed by the graphles tool displaylng the data flow. The size of the

program lmplementing the second phase of data flow analysis Is 709 llnes.

input size of output | number of | number of | runtime
specifica- input data flow nodes arcs (seconds)
tion syntax informa- created created
tree tion
(bytes) (bytes)
alternating| 15,084 4,512 74 98 5.542
bit
simple
transport 29,327 203,981 1,496 204 167.917
ap module
simple
transport | 179,394 64,882 2,755 1,674 505.333
map
module
FTAM 145,248 146,688 1,595 1,207 949.433
LAP-D 691,249 344,738 3,145 7,065 1499.67

Table 4.2. Performance of data flow analysls - Phase II

87

4.2. CONTROL FLOW ANALYSIS

Control flow analysls generates the transitlon table of the finite state
machine corre._onding to a normal form Estelle specification. The Input to thils
module s vhe Prolog clause representation of syntax tree of a normalized
specification. The output 1s printed In the form:

inttial-state

from-statel nputl lList-of-outputsl to-statel

from-state? input2 list-of-outputs? to-state?2
This output Is read by a graphles tool (cgtool, [23]) which displays the finite state
machine on a Sun statlon as a graph (figure 4.3). For example, control flow
analysis of the transition

trans

{7}

when n.data_response_dt

bégin

output n.data_request_ack(b_ack)
end,

generates the transition table entry

7 ack_wait n.data_response_dt [n.data_request_ack] ack_wait

If a transition has no Input or output Interactions the word nil 1s printed In

the place of the missing interaction.

4.2.1. Implementation of Control Flow Analysis

The syntax tree of a specification 1s searched In top-down fashion in order to
ident!ify the transition subtrees (l.e. the transitlon groups in Estelle terminology).

Then the clause

ctri(trGr(Cls, trBlck(_, _, _, _, ., cmpStmt(StmtSeq)))) :-
retract(transCount(N0)), / ¥ increase transstion */
N s NO + 1, / * counter by 1 ¥/
assert(transCount(N)), / * current transition 1s N */

88

N\
A2

10

‘.8 ..Q.H/\. [ack_wai ()
A

Figure 4.3. Control flow graph of the alternating bit protocol

assert(nfTrNo(N)), / * assert normal form trans. no. */
(transInp(Cls, N); / ¥ get transition nput, if input ezists */
assert(nfTrinput(N, nil))), /* otherwise snput 1s nil */
assertFrom(Cls, N), / *¥ assert FROM state */

assertTo(Cls, N), / ¥ assert TO state ¥/
transOut(StmtSeq, N), !. / * get output interactions */

collects Information about when, from and to clauses and output statements.
This Information 1s asserted as Prolog clauses which are called when the control

flow analysis finlshes In order to print out the transitilon table.

The modlifiabllity Is similar to modifiabllity of data Zow analysis - phase II -
module. Unless a change to the Estelle syntax imposes extenslve modifications, 1t
Is very easy to output additional information by simply adding it to the clauses
used for storlng control flow informatlon. Next, the programmer must change
the routlnes outputting and formatting thls Informatlon, l.e. the clause writeC-

triInfo/0 and the clauses 1t Invokes.

4.2.2. Performance of Control Flow Analysis

The performance experiments were run ten tlmes and the resulting execution

times were averaged. The CPU load was 1.48 Erlangs. Table 4.3 shows the

89

outcome of the performance experiments. The Input Is the specificatlon’s syntax
tree and the output control flow Informatlon Is the transition table of the FSM
descrlbed by the protocol speclfication. Control fiow analysis 1s Implemented 1n

290 llnes of Proiog code.

input size of output | number of | number of | runtime
specifica- input control nodes arcs (seconds)
tion syntax | flow infor- | created created
tree mation
(bytes) (bytes)
alternating|| 15,084 46 2 9 1.346
bit
simple
transport 29,327 1,626 6 37 3.467
ap module
simple
transport 179,394 2,418 1 59 6.533
map
module
FTAM 145,248 4,760 18 103 5.266
LAP-D 691,249 38,486 8 530 32.116

Table 4.3. Performance of control flow analysls

CHAPTER 5

MODULE MERGING

Module merging Is the transformation of an Estelle specificatlon contalning two or
more modules to an equivalent speclficatlon of one module only. Test sequence
generation requires a singie module representation of the protoccl. The reason is
that interactlons between modules of the same specification cannot be observed
and/or .controlled by the tester of the protocol implementation, assuming black

box testing, [17].

It 1s assumed dlrect Interactlon between modules (rendez-vous) which Is
referred to as intermodule communication and s carrled over channels intercon-
necting chlldren modules of a parent module. The assumption of rendez-vous
type of communication 1s essential. Estelle does not support this kind of com-
munlcation but thls restriction can be worked out If the protocol specification
Imposes only one message In the queues at any time. Theses messages can be
consumed by the modules lmmedlately after they appear, thus simulating
rendez-vous communication. It is up to the protocol designer to decide whether
he/she will follow a specification style that satisfles this assumption. If rendez-
vous Is not assumed, module merging results in a remarkable lncrease of the state
space since the contents of the channel queues should be considered as part of the

global state of the system.

This chapter explains how Intermodule communlcation can be ellminated by
merging communicating modules of a protocol specificatlon. The algorithm used
Is called limited reachability analysis for extended finite state machines and was

first introduced In [15). Reference [18] Is an improved version of [15] and also

01

discusses Implementation Issues. Limited reachablility analysis Is intended to be
used In valldating protocol specificatlons. In thls thesls, 1ts use is restricted to

module merging.

Module merging is applled on a normal form speclfication passed from data
flow analysls - phase I and the resulting single module speclificatlon becomes Input
to data flow analysls - phase II and control flow analysls (figure 2.1). Module
merging 1s an optlonal step of the specification analysls. If the user does not wish
to have a merged specification or If the specificatlon consists of only one module,
he/she can skip the ¢cmbn command (user's gulde, appendix A) and go on with

the dtf command for the control flow and the second phase of data flow analysls.

5.1. Combining Transitions in the Extended Finite State Machine
Model

Each module of an Estelle specification can be represented by an EFSM.
The product machlne of two EFSMs Is the EFSM produced by the merging of the
two EFSMs. In module merging, a normal form transition of one module that
produces an output to an Internal channel (called combiner NFT) i1s comblned
with a normal form transitlon of the other module that consumes this output
(called combinee NFT). The result is a transitlon of the product machine and is

derived In the following way:

a. The state varlable In the from clause Is assigned an ordered palr consisting
of the states in the from clauses of the comblner and the combinee NFT,
respectively. The state varlable itn the to Is created from the to states of

the combined transitlons in the same way.

b. The when clause of the combiner NFT (If present) becomes the when

clause of the produced cransttion. Thils clause cannot refer to an internal

c'

e.

92

Interaction (section 5.1.1).

The domaln Ilsts In the any clauses of the combined NFTs are concatenated

to for.n the domaln list of the produced NFT.

The boolean expressions In the provided clauses of the combined NFTs are
anded. If the provided clause of the comblnee NFT refers to an internal
Interaction parameter, the parameter 1s replaced by its actual value l.e. the
expression corresponding to this parameter In the output statement of the

comblner NFT.

The transitlon blocks of the combined NFTs are concatenated. The output
In the combiner NFT which Is consumed by the input of the comblnee NFT
Is removed. The Input parameters of the comblnee NFT are re;;laced by the
expressions assigned to those parameters by the output statement of the

combiner NFT.

Conslder, for example, the transitions

lrans

{08}

when ts.tdisreq
from open

to waitdc
begin

end

and

pdu_dr_pdu_dr.disc_reason := ts_user_init;
pdu_dr_pdu_dr.is_last_pdu .= false;
pdu_dr_pdu_dr.order := destructive;
dr_pdu_12_dr := pdu_dr_pdu_dr;

cutput map.transfer_dr(dr_pdu_12_dr)

2

trans

(5} o

any t_suf: t_suftp; epid: tcepidtp do
provided true

when apft_suf, epid]. transfer_dr
from dle

to idle

begin

teft_suf, epid].pdu_buffdr].disc_reason := pdu.disc_reason;

33

teft_suf, epid] pdu_buf[dr].is_last_pdu := pdu.is_last_pdu;
teft_suf, cpza/ pdu_ bu/dr] user_data := pdu.user_data;
te[t_suf, epid].pdu_buf[dr].srcref := pdu.srcref;
teft_suf, epz‘/ pdu_ bu/dr/ destref := pdu.destref;
teft_suf, epz‘/ pdu_buf[dr].crvl := pdu.crvl;
teft_suf, ept du_bu dr .peeraddr = pdu peeraddr,
teft_suf, eps pdu buf, dr] order := pdu.order;
teft_suf, epi pdu_bu dr].full := pdu.full;
teft_suf, epi u_bu/dr] kind := dr,
teft_suf, epid] pd'u_bu Jdr]. full := true

end;

The comblned transition Is

trans

any t_suf: t_suftp; epid: tcepidtp do

when ts. tdzsrcq

provided true

from open_idle

to wastde_sdle

begin
pdu_dr_pdu_dr.disc_reason = ts_user_init;
pdu_dr_pdu_dr.is_last_pdu = false;
pdu_dr_pdu_dr.order := destructive;
dr_pdu_12_dr ;= pdu_dr_pdu_dr;
teft_suf, eprd). pdu_ buydr] disc_reason := dr_pdu_12_dr.disc_reason;
teft_suf, epid].pdu_ bu/dr] is_last pdu = dr_pdu_12_dr.is_last_pdu;
teft suf, epz .pdu_buf[dr].user_data := dr_pdu_12_dr.user_data;
teft_suf, cpid].pdu_ bu/dr] srcref = dr_pdu_12_dr.srcref;
teft_suf, epz /pdu bu/dr/ destref := dr_pdu_12_dr.destref;
teft_suf, cpz du_bufldr].crvl ;= dr_pdu_12_dr crul;
teft_suf, cpz pdu buf[dr].peeraddr := dr_pdu_12_ dr. peeraddr;
teft_suf, epz/ pdu_bu dr order ;= dr_pdu_12_ dr order;
teft_suf, epid].pdu_ bu] dr Jull := dr_pdu_12_dr.full;
teft_suf, epza/ pdu_bu dr/ kind = dr;
teft_suf, eprd].pdu_buf[dr] full := true

end;

Notlez that the state values In the from and to clauses of the comblined trans!-
tlons are just concatenated because Estelle syntax does not permit ordered palrs

as values of the state varlables.

5.2. An Algorithm for Module Merging

The module merging algorithm 1s a modified version of the algorithm In [18].
The difference Is that the new version applles to EFSMs. The mod!fled algorithm

is as follows.

94

Input:
Component EFSMs are EFSM1 and EFSM2;
EIPL is the external interaction polnt list and IIPL is the internal interaction

polnt list used for communlcation between EFSM1 and EFSM2;

Output:
Comblned EFSM.

Functions:
Input(T(1]): returns null If transition T[1} is spontaneous, otherwlse returns
the Input interaction of T[l] with the corresponding interaction point.
output(T{l]): returns the next output of transition T(l] with the correspond-
Ing Interactlon point or null If there Is no more output left.
Ip(Interaction): returns the Interaction point of an input or output lnterac-
tion.
from(T(1]), to(T(l]): return the value of the state varlable in the from or to
clause of T1].

Procedures:
comblne_nft(T[t], T[], T[1.}]): combine normal form transitions T[l] and T[)]
In one transition T|t,J].
append_body(Tlk], T[]): append body of transition T[k] to T[)]'s body

(modifies T[J]).‘

STEP 1:
for each transition T[i] 1n EFSM1 do
If (input(T(1]) = null) or (1p(input(Ti})) In EIPL) then
repeat
outl := output(T[l])

if outl <> null then

85

begln
for each transition T}j] in EFSM2 do

If ip(1nput(T[)]) = ip{outl) then
begin
combine_nft(T[1], T[], T[1.J]);
tag the comblined transition T[1,)] if T[}] has an
output to an internal interaction;
end
end

until outl = null;

for each transition T[i] In EFSM2 do

{ Interchange EFSM1 with EFSM2 and do the same processing as above}

for each tagged combined transition T[1,)] do
repeat
outl := output(T[])
if outl 1n ITPL then
beglin
for each transition T[k] in EFSM1 or EFSM2 do
If (ip(input(T[k])) = ip(outl)) and (to(T[1,J] = from(T|[k|) then
begin
to(T[1.]) := to(TK]);
append_body(T[k], T(1.)]);
end
end

until out!l = null;

86

STEP 2:
for each transitlon Tl in EFSM1 with no lnput or output to Internal
interactlon points do
for statel in States(EFSM2) do
begin
add T[i] to the list of combined transltlons to be processed by
STEP 3 by palring its from and to states with statel;
end
for each transition T[!] In EFSM1 with no Input or output to Internal
interaction points do

{ Interchange EFSM1 with EFSM2 and do the same processing as above

STEP 3:

StateList := {;

for each combined transition T[]} do

begin
StateList := StateLlst + from(T[1.}});
StateList := StateList + to(T[,}])

end;

for each transitlon T[l] output from STEP 2 do
If (from(T[1]), to(T[1])) In StateList then

add T[1] to the list of combined transitions

else

eliminate T[i];

End of the Algorithm

97

If the specification contalns more than two modules the algorithm can be
apolied inltiaily on two modules, then the resulting module can be combined with

a third module and so on.

5.3. Implementation

Clause assertion is used In order to store informatlon needed througnout the

processing of the modules to be merged. This Informatlon Is:

® Interaction polnts connected via a connect statement are stored In clause
cennStmt/ 2. This \nformation Is needed for checking whether the Input cnan-

nel of a combinee NFT meiches the output of the combiner NFT.

) The lists of external and internal Interactlon points are stored in clauses

etpl/1 and i1pl/ 1, respectively.

e The names of the modules to be merged are stored In clauses md(l, Md1)

and md(2, Md2).

. The module body deflnitlon of each of the modules to be merged 1s stored In
clause mdBdDf/3. This plece of Information will be later used to get the
transitions, the names of the module bodles to create the comblned module
body name and the declaratlons of each module body to put them in the

comblned module.
This preprocessing 1s performed by the initialize/6 clause.

The for loops In the module mergling algorithm are implemented with recur-

slve depth-first searching of the subtree for transition declarations.

Combine/6 s the maln clause of the module merging program. Its structure
follows strictly the structure of the algorithm in section 5.2:

combine(Tree, System, Md1, Md2, Eipl, Iipl):-
intticlze(Tree, System, Mdl, Md2, Eipl, Lipl),
step_1(Ltsul, Md1, Md2),
step_2(List2, Md1, Md2),

g8

step_3(List1, List2, Comblist),

fiz_tree(Tree, System, Md1, Md2, Comblist, NewTree),

tell{OutFile),

p(NewTree, 8),

told,

clean_up, !.
where Listl, List2 are the transitlon lists output from step 1 and step 2, Comblist
is the list of combined transitions and System represents the parent module of the
combined modules. A new syntax tree is created from Comblist (varlable
NewTree), which is printed In a flie named after the value of varlable OutFile.
The name of the combined module Is produced by concatenating the names of

the merged modules (varlables Md1 and Md2).

A partial Implementation of the module merging program exlsted at the tlme
of develonment of this thesls. That Implementation supported module merging
of finite state machines considering only when clauses and output statements.
A modification of the transitlon combination routines was applied In order to
combine the statement sequences comprising the transicion bodles. The first step
of the algorithm checks each transihvion of one module agalnst each transition of
the other module to find out If a merging is possible. This s done by goal
get_output/10 \n get_transl/7 clause:
get_transi(trGr(Cls, trBlck(CnstDfPrt, TpDfPrt, VrDclPrt, PrcAndFncDclPrt,

TrNm, cmpStmt(StmtSeq))),
TrDclPrt2, Md1, Md2, List, 1, Done) :-
Done 15 0,
(find_when(Cls, Input), !, eipl(Input); / * spontaneous or */

1), / * external source ¥/

TrGr = trGr(_, trBlck(CnstDfPrt, TpDfPrt, VrDclPrt, PrcAndFncDclPrt,
TrNm, cmpStmt(_)))

get_output(S)tmtch, TrDclPrt2, Mdl,]\,Jda List, TrGr, Cls, StmtSeq,
1 J.

Clauses gel_output/10 gets the output Interactlon In the statement sequence
StmtSeq of a transitlon of the first module and trles to find a transition with a
matching input in the transition declaration part TrDclPrt2 of the other module.

Clauses get_output/10 were modified so that If such a transition Is found the

1)

output statement Is replaced by the transition block. Transitlon comblnation
implles that any reference to the Input parameter of the combinee NFT will be
replaced by the corresponding expression In one of the output statements of the
comblner NFT. This symbolle replacement Is performed by clauses repNm/4

explalned In sectlon 3.3.

Modiflcatlons of the program can be done easlly as long as the structure of
the Input syntax tree does not change. Since the program s structured as the
algorithm 1n sectlon 5.2, further processing of an Estelle construct can be

achleved by slmply adding more goals to the appropriate place.

5.4. Performance of Module Merging

The performance experlments were executed with three speclfications: a two
module alternating bit protocol and a simple transport protocol adopted from
references [3] and [2] and the finlte state machine descriptlon of the transport
protocol In [18]. The experlment was agaln run ten times and the execution
times were averaged resulting In the table 5.1 Due to lack of real multl-module
specificatlons the results have only Indlcatlve nature. The linplementation of

module merging required 1518 lines of Prolog code.

input size of input size of output runtime
specificati-n (lines) (lines) (seconds)
two module
altenating bit 266 227 4.812
protocol
normalized
simple transport 2,071 4,248 18.428
transport (FSM
only) 456 337 2.417

Table 5.1. Performance of module merging

CHAPTER 6

A TEST SEQUENCE GENERATION EXAMPLE

In thls chapter we give an example of test design for the alternating bit pro-
tocol using the methodology Introduced In chapter two. The specification of the
alternating blt protocol used contalns two modules: one describing the maln
behavior of tlie protoco: and a timer (appendix B). There are two types of PDUs
exchanged with the peer process: DT, which carrles data, and AK, which ack-
nowledges the reception of data. The user of the protocol interacts with it using
the primitlves SEND_request, RECEIVE_request and RFECEIVE_response.
Whei the user wishes to establish communlcation he/she sends to the peer entity
a SEND_request with a DT PDU assigned the sequence number 0. At the same
time the user sends a TIMER_request primitlve to a timer module and walts for
an acknowledgement from the peer entity. The acknowledgement should arrive
before the timer responds (primitive TIMER_response) otherwise the PDU sent Is
assumed lost and is retransmitted. Thls process Is repeated untll an ack-
nowledgem-=nt 1s recelved within a certaln time perlod after retransmission. Upon
reception of an acknowledgement the sequence number of the next PDU to be
sent becomes 1 (0) If the previous sequence number was 0 (1). Durlng reception
of data the PDUSs recelved are acknowledged and stored In a buffer. The user can
retrieve these PDUs by sending a RECEIVE_request primitive. Then PDUs are
sent to the nser carrled by RECFEIVE_response primitives. The communlcation

of the alternating blt protocol with the lower layer Is achleved via the

DATA_request and LATA_response primitives.

First, normalizatlon and the first phase of data flow analysls are applied.

101

The result 1s a normalized speclficatlon with all the PDUs ldentified. WNext,
module merglng generates a single module speclfication (appendix C) which Is
passed through control and the second phase of data flow analysls. The output ls
used by a graphlcs tool to display the data and control flow graphs. The data
flow graph 1s partitioned Into protocol functlons and subtours are generated from
the control flow graph. The subtours coverlng each protocol function provide the
test sequences. The graphics tools and subtour and test sequence generation pro-

grams were developed earller and discussed In reference [23].

6.1. Normalization and First Phase of Data Flow Analysis

The data type defining the PDUs used by the alternating bit protocol s a

varlant record:

Id_type = (DT, AK),
Ndata_type =
record
case Id: Id_type of
DT: (Data: Data_type);
DT, AK: (Seq: Seq_type);
end;
‘We can submlit this speclficatlon to the system discussed in the previous chapters
using the command nf (appendix A) which produces a normalized specification
and ldentifies the PDUs carrled by variables or interactlon parameters. The
arguments needed are the specification’s file name and the name of the PDU

record type.

6.2. Module Merging

The result of the procedure described In the previous section Is processed by
the embn command with the followlng arguments: the normallzed speclficatlon’s
flle rame, the name of the maln module body (alt_bit_body) as the name of the

module where the merged machine will be piaced, alt_bii_body and timer_body as

102

the names of the modules to be merged, fu,n/ as the list of external Interaction

polnts and [s/ as the list of Internal Interaction polnts.

6.3. Control Flow and Second Phase of Data Flow Analysis

After module merging the command dif 1s applied. Its argument 1s the
merged specification’s flle name. The result Is a table describing the major state
changes along with lnput and output interactlons (control flow analysls) and a
table of nodes and arcs describlng the flow of data from the lnput to the output
over the context variables (second phase of data flow analysls). This Is the last

step of processing done by the system descrlibed In this theslis,

8.4. Partitioning of Data Flow Graph to Protocol Functions

The data flow Information generated by the previous step Is fed into a
graphles tool called dfgtool which displays the data flow graph on a SUN worksta-
tion. Input interaction parameters are placed In the upper part of the data flow
graph. Slmllarly output Interaction parameters are placed In the lower part.
The other nodes representing variables, constants, procedures and functions are
placed In the mlddle. The numbers next to the ares correspond to transition

numbers.

The data fiow graph consists of a number of blocks. Each block 1s automati-
cally generated by the dfgtool and represents the flow over a varlable or related
varlables. These blocks can be merged Interactively 1n order to describe protocol
functions as mentioned In sectlon 2.3. In our example four functions are
ldentifled: ser:ding data, recelving data, sequencing the data or acknowledgement,
and timing (1.e. statements that change control varlables used by the tlmer). The
user of dfgtool can Interactlvely merge the data flow graph blocks In order to

generate functlonal blocks, each representing one of the four functlons. Flgure

ah e d e

103

6.1 glves the functions of the example protocol.

timer sending data
(send_req.udata)

i

I_C’-F\—Mil_i I’_Cl?é \ r.'\\J/
falsej|stop_bis(true] [fa 1se][stop|[true] [empty][send_bufter] b.dt.data

-on
L]

J
(data_req_ dt.ndata.data)

sequencing recetving data
(data_resp_dt.ndata.seq)l(data resp_dt.ndata. data)

18

sas

(Yata_req dt.ndate.seq) (data_req sk.ndsta.seq) ((receive_resp.udata)

Flgure 8.1. Functlons of the alternating bit protocol

104

8.5. Test Generation

The last Interactive tool used Is called testgen. This tool Inltlally produces

subtours of the control flow graph of the speclfication (figure 6.2).

r/—\\
G sad A3

Flgure 6.2, Control flow graph of the merged alternating blt protocol

Each subtour corresponds to a sequence of transitlons and starts from and ends
at the inltlal state. The subtours must be checked considering the provided
clauses. It I1s possible that the transitlon sequence defined by a subtour cannot
occur If the provided clauses of one or more transitlons are not satisfled. An
\nteractive program called ed:tfour that does this Job had been developed earller,
[23]. This program displays the transitions comprising a subtour and enables the
uses to change the subtours that cannot occur. In our example editing of the
subtours was not necessary. Each of the protocol functlons specified In the data
flow graph partitloning is covered by a number of subtours. For example, func-
tlon sending data Is covered by the subtour

14689102

The lnput and output Interactlons of each transition 1n thls subtour define a test

sequence for thls function. Thls test sequence is

estab_open

ack_walt_open
ack_walt_open
ack_walt_open
ack_walt_open
ack_walt_open
ack_walt_open

u.send_req
n.data_resp_dt
n.data_resp_dt
u.recelve_req
nll

nil
n.data_resp_ak

105

[n.data_req_dt]
[n.data_req_ak]
[n.data_req_ak]
[u.recetve_resp]
nil

[n.data_req_dt]
nll

D) = © 00D

Each line contalns the from state, lnput, output and transition number of a

transition in the subtour. The Initlal and final state s estab_open (the last tran-

sitlon, 2, drives the machine to estab_open upon reception of a data_resp_ak

primitive from the lower layer). Each input In the above sequence puts the pro-

tocol to a new state and results In an output which can be observed by the tester.

Any variation from this sequence 1s an indication of error. The subtours covering

the rest of the functions and the complete set of test sequences are gliven in

appendix D.

CHAPTER 7

CONCLUSIONS

A system for processing Estelle specifications In order to derive data and
control flow Information has been implemented. This system has been tested
with realistic protocol specifications and we concluded that 1t can process real
protocols efficlently. The current implementation is portable to any system that
can run YACC, LEX and has a C anc¢ Qulntus Prolog compller. Quintus Prolog
also offers a utllity which can produce executable code running independently

without Invoking the Prolog environment.

The processing of Estelle specifications creates speclficatlons whose behavlor
Is equlvalent to the orlglnal one. The changes Implled by normallzation and data
flow analysls alm to the production of a simplifled specification from which test
sequences can be drawn easlly. The speclfication resulting from the analysis Is
not meant to be !mplemented slnce features such as transltion atomleity and

channe] definitlons are not conserved.

The experience gained by processing large speclificatlons leads to a major
future modificatlon that will Increase performance and efficlency: the syntax tree
can be created \n fragments representing autonomous parts of Estelle code, l.e.
declarations, Initlallzation and transitlon bodies. Instead of processing the whole
syntax tree 1t s possible to process each autonomous part separately, output the
result and free the memory from the processed part. This modlfication may
Increase the executlon time by Increasing Input/output. In the case of the system
developed, much of the execution time Is spent in recovering from stack overflows

and new memory space allocatlon. If small syntax tree fragments are used and

107

the clauses use fallure instead of recursion to lmplement iteration the memory
overflows can be reduced or even ellminated. Another advantage of this
modlification Is that It mmakes the system portable to smaller machines with higher

memory size restrictions than a SUN workstation.

Another modification resulting In tlme and space efficlency 1s the reduction
of the slze of the names of the syntax tree nodes. This modificatlon should be
done when the development Is entirely completed because otherwlse, It may make

the syntax tree upreadable by a human, thus creating problems in debugging.

Module merging was achleved using a llmlted reachabllity analysls algo-
rithm. This algorithm can reveal errors in Inter-module communlcation such as
deadlocks, channel overfilows and unspecified receptions. The power of this algo-
rithm was not completely used. Extending the module merglng program to per-
form llmited reachablilty analysls and using 1t along with the programs for nor-
mallzation and data and control flow analysls creates a protocol design tool, This
tool can be used for valldation of protocols agalnst the previously mentloned

errors.

(1]

(2]

[3]

(6]

(7]

(8]

(0]

(10]

(11]

REFERENCES

A.V.Aho, R.Seth! and J.D.Ullman, "Compllers, principles, technlques, and

tools”, Addlison-Wesley, 19886.
M. Barbeau, "Prototype d'un Systéme d'Alde a la Conception de Test de

Protoccles”, M.Sc. Thesls, Unlversité de Montréal, fevrier 1987.

G.v.Bochmann, "Speclficatlon of a Simplified Transport Protocol Using
Different Formal Description Techniques”, Research Report, Unlversity of
Montreal, Publication 623, April 1987.

WH.F. Clocksln and C.S. Mellish, "Programming in Prolog”, Springer-

Verlag, New York 1981,

L.A.Clarke and D.J.Rlchardson, "Symbollc evaluation methods for program
anaiysis”, In "Progam Flow Analysis”, S.S.Mudnick and N.D.Jones Eds.,
Englewood Cliffs, NJ: Prentice-Hall 1981.

J.D.Day and H.Zimmermann, " The OSI reference model”, Proceedlngs of the
IEEE, volume 71, pp. 1334-1340, December 1983.

W.E.Howden, "Functional! program testing and analysis®™, McGraw-Hill,
1987.

ISO IS 9074, "Estelle - A formal description technlque based on the extended
state transition model”, 1988

B.Kernlghan and R.Plke, " The UNIX Programming Environment”, Prentice
Hall, 1984.

B.Kernighan and D.Ritchle, "The C Programming Language™, Prentlce Hall,
Englewood Cliffs, N.J., 1978.

R.J.Linn, "A revised draft tutorlal on the features and facllities of Estelle”,

[12]

(18]

[14]

[15]

[16]

[17]

[18]

[19]

[22]

109

Natlonal Bureau of Standards, August 1987.

Natlonal Bureau of Standards, “Internals Gulde for the NBS Prototype

Compiller for Estelle”, Report 1 . .8T/SNA-87/4, September 1987.

Natlona! Bureau of Standards, " User Guide for the NBS Prototype Compller

for Estelle” Report No. ICST/SINA - 87/3, October 1987.

D.Rayner, "OSI Conformance Testing”, Computer Networks and ISDN Sys-
tems, volume 14, 1987, pp. 79-98,

B.Sarlkaya and G.v.Bochmann, "Dynamlic analiysls of specifications in an

extcnded finlte-state machlne model”, Research Report, Concordla Univer-

sity, March 1088.

B.Sarlkaya, G.v.Bochmann and E.Cerny, "A test design methodology for
protocol testlng”, IEEE Transactlons on Software Englneering, volume SE-

13, no. 5, May 1987,

B.Sarlkaya, G.v.Bochmann and J-M.Serre, "A method of valldating formal

specificatlons™, Research Report, Concordla Unlversity, 19886.

B.Sarlkaya, V.Koukoulldls and G.v.Bochmann, " A method of analyzing for-

mal specifications”, submitted for publication, January 1989.

B.Sarlkaya, "Normal form transitions for the transport protocol class 27,
Document de travall, Départment d'Informatique et de recherche

opérationnelle, Unlversité de Montréal, mars 1984.

B.Sartkaya, "Test design for computer network protocols”, Ph.D. thesls,

McGlill Unlversity, March 1984.

B.Sarikaya, "Conformance Testing: Architectures and Test Sequences”, 1o

appear In Computer Networks and ISDN Systems, 1989.

B.Sarikaya, M.Barbeau, S.Eswara and V.Koukoulidls, "Improvements to the

Gl s adel

23]

(24]

[25]

(28]

[28]

110

test tool and FTAM testing”, Flnal Report for the Department of Commun!-

cations of Canada, Contract DSS File No. 1NER.38100-7-0157, May 1988.

B.Sarlkaya, S.Eswara, V.Koukoulldls and M.Barbeau, " A formal specification

based test gepneratlion tool”, submitted for publication, June 1988.
A.S.Tanenbaum, " Computer networks™, Prentice Hall, 1988.

D.H.D. Warren, "Loglc Programming and Compller Writlng”, Software-
Practice and Experlence, vol. 10, 97-125(1980).

L.Logrlppo, A.Obald, J.P.Brland and M.C.Fehrl, "An Interpreter for
LOTOS, a specificatlon language for distributed systems”, Software-Practice

and Experience, vol. 18, 385-385(1088).

G.v.Bochmann, R.Dssoull, W.L.de Souza, B.Sarlkaya and H.Ural, "Use of
Prolog for bullding protocol deslgn tools”, In Protocol Specification, Testing
and Veriflication, V, M.Dlaz (edltor), Elsevier Sclence Publishers B.V.

(North-Holland), IFIP 1988.

Quintus Computer Systems, Inc., "Qulntus Prolog User's Gulde™, verslon 10,

March 1987,

APPENDIX A

USER'’S GUIDE

A.l. Introduction

The system described In thls gulde processes a protocol speclfication in
Estelle 1n order to derive control and data flow Information which can be used by

other tools to draw control and data flow graphs.

To follow thils gulde and be able to Interact with the system, ycu must be
famlliar with the concepts of protocol analysis used by the system. Terms like
lezical, syntactic and semantic analysis, normalization, date flow analysis, con’rol

flow analysis and module merging are defined In the Glossary (sectlon A.4).

It 1s assumed that you have access to a Quintus Prolog compller on your
local computer system. Once you have the system lnstalled you can enter the
Prolog environment and load the programs needed for the analysis of a protocol

by typlng the command
norm

This loads to Prolog all the routines y~u need to use the commands described 1n

section A.2.

A.2. Commands

Once the system is Invoked it prints the famlllar Prolog prompt

| %

indlcating that 1t Is ready for your commands. If you wish to exlt type the

112

command
" halt.

You must always end y- .r command with a full-stop mark. Prolog conslders
newlines as character separators and reads tlLe command typed untll the first

full-stop unless the full-stop mark 1s surrounded by single quotes.

After you type a comma.:d the system responds by printing Information
about Its processing state and, possibly, error messages and/or warnings. The
description of each command tells what information Is displayed durlng execu-

tion.

A.2.1. ~f(Normal Form) Command

The nf command normallzes an Estelle speclfication. If you wish you can
apply the first phas- of data flow analysls by identifylng the record typ: defining

the PDUs. The syntax of this command 1s
nf('Estelle-specification’).

for normalization only of the Input Estelle specification, or
nf('Estelle-specification’, PDU-record-type).

for normallzation and the first phase of data flow analysls. The argument PDU-
record-type must be given in lower case letters regardless how 1t appears in the
Input Estelle specificatlon. The name of the output nor.nallzed specification is

derlved by suflixing the name o[the input specification with .LIST.

A typlcal Interaction with the system using the nf command has the follow-

ing form

113
lvie. | ?- nf(’example_spec.e’, pdu_type). INPUT FILE: altoult.est LEXICAL,
SYNTACTIC AND SEMANTIC ANALYSIS
0 syntax errors, O warnlings, O other errors detected
READING THE SYNTAX TREE OF THE SPECIFICATION ... CONSTRUCT-
ING THE GLOBAL DICTIONARY ... NORMALIZATION OF MODULE
BODY “"example_body_1" NORMALIZATION OF MODULE BODY

"example_body_2" DATA FLOW ANALYSIS . PHASE I PRINTING THE SPEC
FROM ITS PARSE TREE ... OUTPUT FILE: ezample_spcc.e.LIST

yes | *- "

A.2.2. cmbn (Combine Modules) Command

If the specification contains more than one modules which should be merged,

the you can Invoke the ¢cmbn command. The syntax of this command Is

cmbn('normal_form_spec’, parent_module, modulel, module2,

external_linteraction_point_list, Internal_interaction_point_list).

where normal_form_spec s the name of a normalized Estelle specification,
parent_module 1s the body name of the parent module of the modules to be
merged, modulel and module2 are the body names of the modules to he merged,
and the last two arguments are the lists of the external and lnternal Interaction
polnts. External Interaction polnts are used for communication of modulel and
module2 with other modules and internal Interaction polnts are used for commun-
lcation between modulel and module2. The name of the output file is derived hy

suffixing the name of tiiv Input flle with .MRG.

A typlecal execution of this command results in the following sequ .ce

iv16. [?- cmbn(‘example_spec.e.LIST’, parent_body, module_bodyl,
module_body2,

[elp1, elp2, elp3, elp4], [iip1, 11p2]). INPUT FILE: tp.e.LIST LEXICAL,
SYNTACTIC AND SEMANTIC ANALYSIS

0 syntax errors, O warnings, 0 other errors detected

114

READING THE SYNTAX TREE OF THE SPECIFICATION ... CONSTRUCT-
ING THE GLOBAL DICTIONARY .. MODULE MERGING OUTPUT FILE:
tp.e.LIST.MRG yes

|7

A.2.3. dtf (Data and Control Flow) Command

The dif command 1s applled to the normal form specification generated by
the nfor cmbn command. This command generates information that can be used

by graphles tools for displaylng the data and control flow graphs.

The syntax of dtf command s
dtf("normal_form_spac’).

For each module body two flles are generated: one contalning data flow informa-
tlon and one contalining control flow Information. These flles are named after the

corresponding module body name suffixed with .DTF and .CTRL, respectively.

A typical Interaction with dif is shown below.

tab("); tvie. | ?- dtf('example_spec.e'). INPUT FILE: example_spec.e.LIST LET-
ICAL, SYNTACTIC AND SEMANTIC ANALYSIS

0 syntax errors, O warnlngs, O other errors detected
READING THE SYNTAX TREE OF THE SPECIFICATION ... CONSTRUCT-
ING THE GLOBAL DICTIONARY ... DATA FLOW ANALYSIS - PHASE I

OUTPUT FILE: example_module_body.DTF CONTROCL FLOW ANALYSIS
OUTPUT FILE: example_module_body.CTRL yes

|-

A.3. Warnings and Error Messages

This sectlon descrlbes the error messages occurring during the analysls of a

speclfication.

115

A.3.1. Compilation Phase Warnings and Error Messages

Durlng the lexlcal, syntactic and semantic analysls phase -- preceding every
command - warnilngs, syntax and semantics errors are listed along with the llne

number on which they occurred.

Rename "X" i{f needed In the dictionary

Conflict with "Y™

An attempt to Ipsert to the dictlonary an identlfier with definitlon "X was
made but thls ldentifler was already Inserted with a different definlton "Y™.
For example this may happen If a constant Is defined within an enumerated
type. Thils warnlng does not occur for identifiers defined within the scope of
different structures (e.g. flelds of different records may have the same
names). Thls message does not Interrupt executlon and the user may ignore

1t for ldentiflers related to scalar or subrange types.

A.3.2. nf Command Error Messages
line "X": "Y" Is not a single statement function

If Y is a function whose body cannot be reduced to a single statement with
symbolic execution and Y is called inside a provided clause of a transition,
the above message 1s displayed. You should replace the function with
another one consisting of a single statement (or reduclble to a single state-

ment).

llne "X": "Y" replaced by Its value

116

another one consisting of a single statement (or reduclble to a slngle state-

ment).
llne "X™: "Y™ replaced by its value

This 1s a warnlng. The user Is notified that the variable Y used lnside the
condition of an if statement is replaced by 1ts symbollc value. This Is neces-
sary when this variable Is assigned a value by statements preceding the if's
condltion.

line "X": falled to determlne range values of "I" In FOR statement
A for statement s symbollcally expanded for each possible value of the
index varlable I. It Is assumed that I has been statlcally defined, otherwise 1t

Is not possible for the system to determine the values of I and the user ls

Informed about thls situatlon.

line X: falled to determine PDU kind referred to in Interaction "Y™

llne X: falled to determine PDU kind referred to by variable "Y™

The kind of PDU carrled by a varlable or exchanged at an output Interac-
tlon could not be determined by the context. You should add one statement
in the transitlon contalnlng llne X such that the tag-fleld of a PDU type
varlable or Interaction parameter Is asslgned a constant corresponding to a

PDU kind.

A.3.3. Unchecked Problems

Nested procedure or function declarations are not supported. If you do such
declarations no error message will be printed and the nested declarations will be
ignored. Normallzation does not support nesting of transitions and repeat state-
ments. In case of nested transitlons and repeat statements no actlon Is taken

and the correspondlng part of the input speclfication remalins unchanged.

117

A.4. Glossary
control flow analysis:

The generation of the transition table of the finlte state machlne described

by an Estelle speclfication.
data flow analysis:

Protocol data unlt (PDU) identificatlon and generation of information
modeling the manlpulation performed on Input Interactlon parameters or

context variables In order to determline the values of output Interaction

parameters.
dictionary:

A data structure bullt as a sorted tree which ‘s used for storing variable and

data type declarations.

lexical analysls: The conversion of the Input specificatlon to a sequence of tokens

to be submitted for syntactic analysis.

module merging:

The merging of two communicating modules having the same parent module

in one module.
normalization:

The removal of constructs that Introduce paths or transfer of control during

the execution of a transition.
semantic analysis:

The process of collecting type information and verifylng that operators and

operands are used conslstently within expressions and statements.

syntactic analysis:

118

The process of deciding If a sequence of tokens can be generated by a gram-

mar.
syntax tree:

A hlerarchlcal data structure representing the grammatical phrases of the

Input specification.

APPENDIX B

THE ALTERNATING BIT PROTOCOL

specification example systemprocess;
{ The alternating bit protocol }

timescale seconds;

type

Data_type = ...;

Seq_type = lnteger;

Id_type = (DT, AK);

Ndata_type =
record
case Id: Id_type of
DT: (Data: Data_type);
DT, AK: (Seq: Seq_type);
end;

{ Channel definitions }
channel U_access_polint(User, Provider);
by User:
SEND_req(Udata: Data_type);
RECEIVE_req;
by Provider:
RECEIVE_resp(Udata: Data_type);

channel N_access_polnt(User, Provider);
by User:
DATA_req(Ndata: Ndata_type);
by Provider:
DATA_resp(INdata: Ndata_type);

channel S_access_polnt(User, Provider);
by User:
TIMER_req;
by Provider:
TIMER_resp;

{ Module header definitions }
module Alt_blt_type process;

Ip
U: U_access_polnt(Provider) common queue;

120

N: N_access_polnt{ User) common queue;
S: S_access_point(User) individual queue;
end;

module Timer_type process;
Ip S : S_access_point(Provider) Individual queue;
end;

{ Module body definitions }
body Alt_blt_body for Alt_bit_type;

type
Buffer_type = ...;

const
Empty = any Buffer_type; { empty buffer }

var
Send_seq, Recv_seq: Seq_type;
Send_buffer, Recv_bufler: Buffer_type;
B: Ndata_type;

state
ACK_WAIT, ESTAB;

stateset
EITHER = [ACK_WAIT, ESTAB]J;

procedure Format_data(s : seq_type; d : data_type; var A: Ndata_type);

begln
Ald := DT;
A.Data ;= qd;
A.Seq = 8
end;

procedure Format_ack(s : seq_type; var A: Ndata_type);

begin
Ald = AK;
A.Seq =s
end;

procedure Store(var Buf : Buffer_type; data : data_type);
primitive;

procedure Remove(var Buf : Buffer_type);
primitive;

function Retrleve(Buf: Buffer_type): data_type;
primitive;

function Buffer_empty(Buf: Buffer_type): Boolean;
primitlive;

procedure Inc_send_seq;
begin

Send_seq := (Send_seq + 1) mod 2
end;

procedure Inc_recv_seq;
begin

Recv_seq := (Recv_seq + 1) mod 2
end;

initialize

to ESTAB

begin
Send_seq := O;
Recv_seq :== O;
Send_buffer :== Empty;
Recv_buffer := Empty;

end;

{ Transitions }
trans

{ Sending data }
when U.SEND_req
from ESTAB
to ACK_WAIT
begin
Store(Send_buffer, Udata);
Format_data(Send_seq, Udata, B);
output N.DATA_req(B);
output S.TIMER_req
end;

when S. TIMER_resp

from ACK_WAIT

to ACK_WAIT
begin

Format_data(Send_seq, Retrieve(Send_buffer), B);

output NNDATA_req(B);
output S.TIMER_req

121

122

end;

when N.DATA_resp
provided (Ndata.Id = AK) and (Ndata.Seq = Send_seq)
from ACK_WAIT
to ESTAB
begin
Remove(Send_buffer);
Inc_send_seq
end;

{ Recelving data }
when N.DATA_resp
provlded Ndata.ld = DT
begin
Format_ack(Ndata.seq, B);
output N.DATA_req(B);
If Ndata.Seq = RecVv_seq then
begin
Store(Recv_buffer, Ndata.data);
Inc_recv_seq
end
end;

when U.RECEIVE_req
provided not Buffer_empty(Recv_bufler)
from EITHER
to same
begln
output U.RECEIVE_resp(Retrieve(Recv_buffer));
Remove(Recv_buffer)
end;

end; { End of the Alt_bit_body }
body Timer_body for Timer_type;

const
Retran_time = any Integer;{ Retransmlssion tlme }

var
Stop, Stop_>ols : boolean;

state
OPLEN;

initiallze
to OPEN
begin
Stop = true;
Stop_blis :== true;

end;
trans
when S.TIMER_req
beglin
{ Cancel previous timer }
Stop :== true;
Stop_bis := false;
end;
trans
provided not Stop_bis
begin

Stop_bis :== true;
Stop :== false;
end;

trans
provlded not Stop
delay (Retran_time, Retran_time)
begin
Stop :== true;
output S. TIMER_resp
end;

end;
end. { End of specification }

123

APPENDIX C

NORMALIZED AND MERGED ALTERNATING BIT PROTOCOL

specification example systemactivity;
timescale seconds;

type
data_type = ...;
seq_type = lnteger,
id_type = (dt, ak);
ndata_type_dt =
record
data: data_type;
seq: seq_type
end;
ndata_type_ak =
record
seq: seq_type
end;
ndata_type =
~ecord
id: 1d_type;
data: data_type;
seq: Integer
end;

channel u_access_point(user, provider);
by user:
send_req(udata: data_type);
recelve_req;
by provider:
recelve_resp(udata: data_type);

channel n_access_polnt(user, provider);
by user:
data_req_ak(ndata: ndata_type_ak);
data_req_dt(ndata: ndata_type_dt);
by provider:
data_resp_ak(ndata: ndata_type_ak);
data_resp_dt(ndata: ndata_type_dt);

channel s_access_polint(user, provider);
by user:

125

timer_reg;
by provider:
timer_resp;

module alt_bit_type_timer_type activity;
Ip
u: u_access_point(provider) common queue;
n: n_access_point(user) common queue;
end;

body alt_blt_body_timer_body for alt_bit_type_timer_type;

type
buffer_type = ...;

const
empty = any buffer_type:

var
b_dt: ndata_type_dt;
b_ak: ndata_type_ak;
send_buffer, recv_buffer: buffer_type;
send_seq, recv_seq: seq_type;

state
ack_walt_open, estab_open;

procedure store(var buf: buffer_type; data: data_type);
primltive;

procedure remove(var buf: buffer_type);
primlitive;

functlon retrieve(buf: buffer_type): data_type;
primlitlve;

function buffer_empty(buf: buffer_type): boolean;
primitive;

const
retran_time = any integer;

var
stop, stop_bls: boolean;

initlallize

Ry

126

to estab_open

begin
send_seq := 0;
recv_seq := 0;
send_buffer := empty;
recv_buffer := empty;
stop := true;
stop_bls :== true

end;

trans

{1)

when u.send_req

from estab_open

to ack_walt_open

begin
store(send_buffer, udata);
b_dt.data := udata,;
b_dt.seq := send_seq;
output n.data_req_dt(b_dt);
stop == true;
stop_bis := false

end;

trans
{2}
when n.data_resp_ak
provided (true) : nd (ndata.seq = send_seq)
from ack_walt_open
to estab_open
begin
remove(send_buffer);
send_seq := (send_seq + 1) mod 2
end;

trans
{3}
when n.lata_resp_dt
provided (true) and (not (ndata.seq == recv_seq))
from estab_open
to estab_open
begin
b_ak.seq := ndata.seq;
output n.data_req_ak(b_ak)
end;

trans
{4}
when n.data_resp_dt
provided (true) and (not (ndata.seq = recv_seq))
from ack_walt_open
to ack_walt_open
begin
b_ak.seq := ndata.seq;
output n.data_req_ak(b_ak)
end;

trans
{5}
when n.data_resp_dt
provided (true) and (ndata.seq = recv_seq)
from estab_open
to estab_open
begin
b_ak.seq := ndata.seq;
output n.data_req_ak(b_ak);
store(recv_buffer, ndata.data);
recv_seq :== (recv_seq + 1) mod 2
end;

trans
{e}
when n.data_resp_dt
provlded (true) c=d (ndata.seq = recv_seq)
from ack_walt_opewn
to ack_walt_open
begin
b_ak.seq := ndata.suq;
output n.data_req_ak(b_ak);
store(recv_buffer, ndata.data);
recv_seq := (recv_seq + 1) mod 2
end;

trans

{7}

when u.recelve_req

provided not buffer_empty(recv_buffer)

from estab_open

to estab_open

begin
output u.recelve_resp(retrieve(recv_buffer));
remove(recv_buffer)

127

end;

trans

{8}

when u.recelve_req

provided not buffer_empty(recv_buffer)

from ack_walt_open

to ack_walt_open

begin
output u.recelve_resp(retrieve(recv_buffer));
remove(recv_buffer)

end;

trans
{9}
provided not stop_bls
from ack_walt_open
to ack_walt_open
begin
stop_bls := true;
stop :== false
end;

trans
{10}
provided not stop
delay(retran_time, retran_time)
from ack_walt_open
to ack_walt_open
begln
stop :== true;
b_dt.data := retrieve(send_buffer);
b_dt.seq := send_seq;
output n.data_req_dt(b_dt);
stop := true;
stop_bls :== false
end;

end;

end.

128

APPENDIX D

TEST SEQUENCES FOR THE ALTERNATING BIT PROTOCOL

Name of Function => sequencing

3 subtours

subtour : O
estab_open
ack_walt_open
ack_walt_open
ack_walt_open
ack_walt_open
ack_walt_open
ack_walt_open

n.data_resp_dt
n.data_resp_dt
u.recejve_req
nll

nil
n.data_resp_ak

subtour : 1
estab_open

n.data_resp_dt

subtour : 2
estab_open

n.data,_resp_dt

[n.data_req_ak]

[n.data_req_ak]

[n.data_req_ak|
[n.data_req_ak]
[u.recelve_resp]
nll
[n.data_req_dt]
nil

Name of Functlon => sending data

1 subtours

subtour : O
estab_open
ack_walt_open
ack_walt_open
ack_walt_open
ack_walt_open
ack_walt_open
ack_walt_open

u.send_req
n.data_resp_dt
n.data_resp_dt
u.recetlve_req
nll

nil
n.data_resp_ak

[n.data_req_dt|
[n.data_req_ak]
[n.data_req_ak]
[u.recelve_resp]
nil

[n.data_req_dt)
nil

Name of Function => recelving data

3

5

N = © @ O A

© 00 & =

3 subtours

subtour : 0
estab_open
ack_walt_open
ack_walt_open
ack_walt_open
ack_walt_open
ack_walt_open
ack_walt_open

u.send_req
n.data_resp_dt
n.data_resp_d¢t
u.recelve_req
nil

nll
n.data_resp_ak

subtour : 1
estab_open n.data_resp_dt
subtour : 2
estab_open u.recelve_req

Name of Function =>> timer

1 subtours

subtour : 0

estab_open

ack_walt_open
ack_walt_open
ack_walt_open
ack_walit_open
ack_walt_open
ack_walt_open

u.send_req
n.data_resp_dt
n.data_resp_dt
u.recelve_req
nil

nil
n.data_resp_ak

Subtours not covered

Subtour O
estab_open
ack_walt_open

u.send_req
n.data_resp_ak

[n.data_req_ak]

[n.data_req_dt]
[n.data_req_ak]
[n.data_req_ak]
[u.recelve_resp]
nil

[n.data_req_dt]
nll

[u.recelve_resp] 7

[n.data_req_dt]
[n.data_req_ak]
[n.data_req_ak]
[u.recetve_resp]
nll

[n.data_req_dt]
nll

[n.data_req_dt]
nll

5

130

O 00 O h =

N

O WA

