\

National Library

\.\ l* of Canada
‘ \ . Canadian Theseshgemce

A Ottawa. Canada
\ K1A ON4

NOTICE

¥
The quality of this microfiche I1s heavily dependent upon the
qualty of the oniginal thesis submitted for microfilming. Every
effort has been made to ensure the highest quality of reproduc-
N tion possible

It pages are missing, contact the university which granted the
egree ‘ R

Some pages may have indistinct print especuaffy if the oniginal
pages were typed with a poor typewriter nbbon or if the univer-
sity sent us an inferior photocopy

.‘ L
Previously copyrighted matenials (j l articles, pubhished
tes(s etc.) are not filmed.

Reproducho‘q in full or in part of this film is governed by.the

Canadian Copyright Act, RS.C 1970, ¢. C-30. Please read
thd authorization forms which accompany this thesis.

THIS DISSERTATION °

HAS BEEN MICROFILMED '

., EXACTLY AS RECEIVED

3
. N 339 (17 86/01)

THESES CANADIENNES

|

AVIS '

La qualité de cette microfiche dépend grandement de‘la qualité
de la thése soumise au microfilmage. Nous avons tout fajt pour
assurer une qualité supéneure de reproduction

S'il manque des pages. veuillez communiquer avec I'univer-
sité qut a contéré le grade

La qualné d impression de certaines pages peut laisser
désirer, surtout si les pages originales ont été dactylographiées
a l'aide d'un ruban usé ou si I'université nous a fait parvenir
une photacapie de qualité inférieure “
Les documents qui font déja I'objet d'un droit d’auteur (articles
de revue, examens publiés, etc.) ne sont pas microfiimés.

La reproduction, méme partielle, de ce microfilm est sournise
a la Loi canadienne sur le droit d’'auteur, SRC 1970, c. C-30.
Veuillez prendre connaissance des formules d'autorisation qui
accompagnent cette thése

LA THESE A ETE |
MICROFILMEE TELLE QUE
NOUS L'AVONS REGUE

. . Canadd

@ i i it s

L

Game Trees ;
Searching Technxques
and a Pathological Phenomenon

<

Agata Muszycka
A Thesis
S in
‘The Department
of -

Computer Science

/

!

/
Presented in ﬁgitial Fulfillment of the Requirements
For the Degree of Master of Computer Science at

Concordia Unxversxty
‘Montreal, Quebec, Canada

- ¥ April 1985

®

(:) Agaﬁé Muszycka, 1985

>

ABSTRACT

Game Trees ; Searching Technigues
and Pathologjcal Phenomenon

Agata Muszycka .
. J

H

The pruning strategies Branch-andlbdhnd: Alphabeta,
3! q

Palphabeta, Principal Variation Search,r5c6uk“and SSS* are
empirically compared on uniform and nonuniform game trees,

with four -different schemes of assigning static-values to
leaf nodes. Resdlts are given discussing the relative

>

performance of these strategies based on the number of nodes

. created, node-visits and CPU time. Then different methods

of speeding-up the tree search are presented., These methods

were developed based on the aséumptionvthat one wishes to

search deeper. Usiﬁé a probabilistic model of a game, the
quality of decision made with deeper searching is examined,
The pathological phenomenon is described and the possible

LN

causes of it and cures for it are reviewed.

Y

\

ACKNOWLEDGEMENTS
r

L

\‘

I would like.to thank my teacher and supervisor, Prof.

N

R. Shinghal, for his superb gu{dancc and support throughout
this vork, # o

n

i ilso, to my friends and family I say thank you for your
encoﬁraqement and support.

ot
4
\ -

1)

O e ~ewsn o =

\

-

TABLE OF CONTENTS

ABSTRACT ' S SRR »

,ACKNOWLEDGEMENTS - ,/ .

TABLE QF CONTENTS |) ‘»// | ,
. j

LIST OF FIGURES . . ¥

LIST OF TABLES .
CHA"BR 1' Imnomlon,ldtlloil..Ol'!l.....i'lll

1.1 Notation For Game TreesS.....ccco:e0y2 '
2 /&
.1 Searching Procedures for Game . /, v

'Trees.‘.‘.....‘.......‘..."."."..z‘.‘s
CHAPTER 2. DESCRIPTION OF DIPFERENT
PRUNING STRATEGIES.......c000vsyeesall

‘2.1 . aranch-and-nodnd‘Algorithﬁ (2ﬁhor
’ _ the -negamax framevork)......lieesessll,
v*g.z . Alphabeta Alqorithm,(under/{he)

i ‘negamax fr ework).;..;,./{..:,....13 c
2.1 Palphabeta Algorithm (under the
| ngg;max fraﬁevo;k)...;]%.....,t.v..16

2.4 Principal Variation sfarch (under .

: the negamax £r§mevo?ﬁ).............18

2.5 ‘Scout Algorithm (uﬂdsi the negamax T ’

f rmewo rk) LR 2 B B AN ./ ® 80 0 % B P I P s .‘ * & ¢ 8@ 2 1
‘ ‘ / : :)
2.6 §SS* Algorithm funder the minimax : »

fl'amework)...............-.........2‘

\ , * , \ ‘
CHAPTER 3. EMPIRICAL COMPARISON QF - Ce o -
“PRUNI"G ST%EGIBSOOOOI‘O...:'..IO"CB/I ’
\l ° . b
3.1 Criteria/ﬁsgd for Performance -~
o/ —_
/ s
/ .
./

;

o W

¢ i o
Bvaluationn......;.,...............3;
3.2 Kinas of Game Trees Simulated......33
3.3 Methods 6; Assigning Static-Values
to Leaf Nod;s...{..:......:..u...‘:34
3.4 Some Theoretical Results- for
Compléxity of the Pruning »
'Strategies....:.:}..;..............35
3.5 Scope of the Experiments...:.......39

3.6) Resﬁbts of the Experiments.........40

'3.6.1 Compar ison Based on the Number of
U > All Nodes Created.:veuerevesesosnsdl
3.6.2 Compe rison éased on the Number of
) Leaf Nodes Created............. oo dd
‘ 23.6.3> Comparison‘based on the Number of
S Node-VisitS....vvveeninrvanrneanns 81
i J.6.4 Comparison Based on the CPU time
| TAKEN teivrvnrunessneenssorerssnssB
3,7 - '%verall Remarks on the'Prunihg |

strategies.:.-..;o‘-..c--...u....‘...IOI

THAPTER.4. METHODS OF SPEEDING-UP THE

- TREE-SEARCH. ... iuevseerenenunnessa103
4.1 Parallel Implementation of
| - Pruning Strategies.......... sev o 103
4.2 Ordering of Nodes in a Game Tree..l1l2
4.3) Uge.pf Transposition Tables.......11l2
4.4 The Killer Heuristic........,.....ils_
-

,v:au.m IS S R A

o i&mﬁak}su-hw c

CHAPTER 5; PATHOLOGY IN GAME TREES.........»..117 °
5,1 The Nature of Pathology.......;...i{8
o 5,2 Possible Methods'of QOvercoming
‘ Pathology......:;............:....133
5.3 ' Experiments Simulated on Pathological

*

and Nonpathological Game Trees....1473

5.4 ‘ Concluding RemarksS. .vcoveveveressassld9
CHAPTER 6. CONCLUSIONS.\\vevssssenerensns 160
6.1 Highliéhts of Rfsults Observed....160
6.2 Suggestions for Further Research..161

REFERENCESI..I.'....I.‘.‘.’ll'.“ll'...'l"’0l0163
APPENDIX 1, COMPARISON OF DIFFERENT VERSIONS

OF SCOUT ALGORITHM. .v.vvevovessn..168

)

* .
LIST OF FIGURES

: ‘ | <
FIGURE 1., A specimen game tree.......m..............4

FIGURE A game tree under minimaxing..............7 «

2.
FIGURE 3. A game tree under negaﬁaxing....a........i9
\ FIGURE &. An e;ample to show fhat Alphabeta
. prunes, more nodes than Branch-and-bound..15
~FIGURE 5. An example in which PVS prunes more
_nodes thgp Palphabeta.....ccvivvveeeene. 20
FIGURE 6. An example in which Scout examines more
lodes than Palphabeta or PVS..,..........22
FIGURE 7. Solution trees of a game tree............29
FIGURE 8. A specimen game tree prpcessed by S8S8S*...30
" FIGURE 9. Average number of leaf nodes created for
A uniform tree of depth 4 with integer-

dependent static-values assignment.......45

o

3

FIGURE 10.Average number of leaf nodes created for
uniform tree of depth 4 with real-
dependent static-values assignment......+46

FIGURE 11.Average number of leaf nodes.created for
uniform tree of depth.4 vith unordered-
independeﬁt static-values assignment.....47

FiGURE 12.Average number of leaf nodes éreated'for

uniform tree of depth 4 with 0.2-ordered-

FIGURE 13:Average number of leaf 'nodes qreated fori
uniform tree of depth 4 with (0.4-ordered-

independent static-values assignment,....49

°

‘FIGURE

FIGURE

~ FIGURE

" FIGURE

N " FIGURE

.. FIGURE

- FIGURE

14.Average number of leaf nodes created for »

0

uniform tree of depth 4 with 0.6-ordered-

independent static-values assignment.... .50

15.Average number of .leaf nodes created for

uniform tree of depth 4 with 0.8-ordered-

independent static-values &ssignment,....51

-

16.Average number of leaf nodes created for

uniform tree of depth 4 with l.0~-ordered-

independent static-values assignment..... 52

17.Average number of leaf nodes created for

nonuniform tree of depth 4 with integer-
1
dependent static-values assignment...l...65

18.Average number of leaf nodes credted for

nonuniform tree of depth 4 with real-

dependent static-val assignment....... 66
&

19.Average number of lé 'odes created for

-)

nonuniform tree:of depth 4 with unordered-

independent static-values assignment..... 67

20.Average number of leaf nodes created for

nonuniform tree of depth 4 with 0.2-ordered-

independent static-values assignment..,...68

° FIGURE 21.Average number of leaf nodes created for

Sa

5

.

R

“7nonuniform tree of depth 4 with 0.4-ordered-
independent static-values assignment.....69

FIGURE 22.Average numbet of leaf nodes created for

nonuniform tree' of depth 4 with 0.6-ordered-
. 4, , -
independert static-values assignment..... 70

s . 1. ‘A R {‘,_
FIGURE 23}Averagenhumbe},of leaf nodes created}fdr
nondniform‘tree‘pf dé;th 4kwith 0.8;orderedJ‘
. iﬂdependeng statdc—valués aSsignm%n;:....71 . o
& FIGURE 24.Averégé humb;?tgf leaf nodes created for .
‘nonuniform tree éf"depth 4 with 1.0-ordered-
independent stapic—values assiénment7....72
FIGURE 25.Ayérdge‘CPU time taken for A . .
gghiform tree of’depfh 4 with integer-
dependent static-valués assignment,......85

-

FIGURE 26.Average CPU time taken for' - S

»

uniform tree of depth 4 with real- —
J -

dependent static-values assignment.......86
FIGURE 27.Average CPU time taken for L -
uniform tree of depth 4 with unordéred-
, independent static-values assignment.....87
FIGURE 28.Average CPU time taken for . o
uniform tree ,of depth 4 with 0.2-ordered-

»

independent sjatic-values assignment.....88
*

i

FIGURE 29.Average CPU time taken for
uniform treé of depth 4 with 0.4—05dere§—
independent static-values assignment.....89
" FIGURE 30.Average CPU time taken for
uniform t;ee of depth 6 with‘O.B—ordefed—
‘ %& independent static-values @sgignment....;SO
?IGURE_3i.Averége CPU t;me taﬂén for
. uniform tree of depth 4 wit£ 0.8-ordered-

X

independeht static-values assignment.....91 -

. @

| ° Alm
- . wr e s o e e e = e e e+ o — e e :
- LA

s

‘ FIGURE 38.Average ,CPU time taken for

FIGURE 32.Average CPU time taken for oo,

uniform tree of depth 4 with 1.0-ordered-

independent static-valuesﬂassignment.....92.'j/ '-"F
. FIGURE 33.Averdge CPU time taken for ~ -
A f_-\

A . ! ¢ ot 4
nonuniform tree o dept I\ 4 wi integer-

»
dependent static-values agsignment.......93 -
» ‘ ,
FIGURE«34 Average CPU time taken for ! < .

nonunlform tree of Eepth 4 ¢1th real-

’dependent static-values asstgn@entﬁ......34\

FIGURE 35.Average CPU time taken for .

| nonuniform' tree of depth 4 with unordered- -,

independent static-values assignmentfi:..95

FIGURE 36.Average CPU time taken for Ty B
' nonuniform tree of deéth 4”with 0.2-orderedj
\ independent static- values asngnment.....QG

FIGURE 37. Average CPU time taken for

nonuniform tree of depth 4 with 0.4-ordered- ..

‘independent sqatic—values a§signment.....97

nonunxform‘tree of depth 4 with 0.6~ ordered-
v independent statzc—values assignment.....98

FIGURE jb.Average CPU time taken for

nonuniform tree of dqpﬂh 4 with 0.8-ordered-

independent static-values assignment.....99
FIGURE 40.Average CPU time taken for . \ L

nonuniform tree of dépth 4 with 1.0-ordered- '

independent static—vaiues assignment....100

- ‘

' Flcdis

FIGURE
L FFGURE
. ¥ .’ Ficuns
FIGURE

\ - .)

&~ FIGURE

'FIGURE"

[FIGURE

A FIGURE
. " FIGURE
I

A

: ‘ FIGURE
. N)

FIGURE

-

S
FIGURE

FIGURE

41.Distinction made Ifong sons of nodes in
q - .

3 Jame tree.....e™Meereervecenssncessss 104

.42.Cut—offs which‘may occur in sequential

ndtparallel-Alphaﬁeta;.......n...l.....106
43/Ztatic-or§ering vs dynamic-ordering éf
nodes in algam;;tree..............{....;114
44.8ubsequent values of ERR for uniform game
tree with errly=0:1, err2q=0.1.......n#1
45.Subsequent‘values\of ERR/for uniform qéme
tree with errly=0.1, eér2450.2..........122
46.Subsequent values of ERR for uniform game
tree with errly=0.2, e;?2;=0.1.;........123
47.Su§sequent valﬁes of ERR for uniform game
‘tree with errly=0.2, err2g=0.2..........124
48.Game tree representing the Pegrl-game...128
49.Game tree representing ingremen£al game;131
50.Subsequent valﬂég of ERR for nonunifo;m
gaméﬂlgé; with errla=0.1,,errzd=6;l.....134
51.Subsequent values of'ERR for nonuniform ~

game tree with errly=0.1, e#:24=0.2l....135

52.§ubsequent values of ERlepg nonuniform

! -~

game tree w1t?/er:}d-0 .2, err24=0. 1...:.156
53 Subsequent values of ERR for nonunxform

game tree with er;l¢=0.2, rr24—0.2..... 37
54.An example in which minimaxing differs

from product-propagation in choosing

the move...... ce e s e f et et eas ...140

-

-

%

4]

FI’GURE SSoTheAB* algOrithll.,......-..-.-.f-\........1‘2

FIGURE 56.An example in which the evaluation
4

S function used by Nau is not accurate,...l44

¥

: . -
.\EIGURE SZIAn example in which Scout which uses stm *

ptunes less nodes than Scout presented
IN SECLION 2.5.. v enneinnneneennnenes. 172
FIGURE 58.Average CPU time takeh‘by three different

-~

versions of SCOUt..... vevevoseancasseasslTd

P

9 -

- . LIST OF TABLES %
TABLE I. Rankin3 of pruning strategies under the(
criterion of nodes created...............42 "
TABLE 1I. Newborn's thedretical results for ?
o expected number of leaf nodes created
: by Alphabeta algorithmM.......c.c.esees.. 53
" TABLE III.Aveyéae number of leaf nodes created for
.. ﬁuniform tree of depth 4 with integer-
L , dependent static;values assignment..,....54
TABLE IV. Average number of leaf nodes created for
uniform tree of depth 4 with real-
~ . dependent static-values assignment....... 55
TABLE V. Average number .of leaf nodes created for |
- ‘ uniform tree of depth 4 with unorderéé;‘
~ independent static-values asgigﬁmént 56
TABLE VI. Average number of leaf nodes created for
unifofm tree of 'depth 4\witkgo.2—ordered-
independent static-values assigament.....57
TABLE VII.Average number of leaf nodes created for
uniform treerof depth 4 vigh 0.4-ordered--

. . . \
independent static-values assignment.....58

TABLE VIII.Average nunber of leaf nodes created for

) b g uniform tree of depth 4 with 0.6-ordered-
o ‘/ inaependént static-values ass{gnment;....SB
‘ TABLE IX. Averaqe,ﬁumber of leaf nodes created for
] “uniform tree of depth 4 with 0,8-ordered-
independent static-values assignment..... 60
. y
A ,

..

TABLE,

TABLE

TABLE

TABLE

TABLE

TABLE

TABLE

TABLE

TABLE

k. Average number of leafxnodés created for
uniform tree of depth.4 with l1.0-ordered- -
"independent static-values assignment.....6l

XI. Average number of ieaf nodes created for ,'
nonuniform tree of ;epth 4 with integer—‘
‘dependent sgatic;values assgénment..f;...73

XII.Ayetage number of leaf .nodes created for
nonuniform tree of 'depth 4 with real-"
dependent static-values éssignmeng...’<;.74

XIII.Average number of leaf nodes cfeated'for‘
nonuniform tree of depth 4 with unordered-
independent static-values assignmekt.....?S

XIV.Average number of leaf nodes created for :
nonuniform tree of Bépth 4 with 0.2-ordered-,
independeni static—values,assignmenE 76

Xv. Avé:agennumber of leaf nodes created for
nbnuﬁiform tree o£ depth 4 with 0.4—ofdgfed4
indepéndent static-values assignment.....77

XVI.Average nuhber of leaé nodes‘created for]
nonuniform tree of'dépth 4 with 0.6-ordered-
iﬁdependént static-values assignment.,...78

XVII.Averagg number of leaf nodes created for

* nonuniform tree of depth 4 gigh 0.8-ordered-
independen£ gtatﬁc-values assfénment...;\79

XVII}.AvePagé{number of leaf nodes created for
nonuniform tree of depth 4 with 1.0-ordered-

independent static-values-assignment.....B0

t

¢

.
 mede

. TABLE

TABLE

TABLE

TABLE

TABLE

TABLE

'PABLE

TABLE

TABLE

~

!
XIX.Nau's results for approximation of the

probability of correct decision for the

Pearl'game..a.y...-.....‘.-....-..".......
XX. Results from duplication of Nau's

eXPerimeNt . .. vovvecssocesssocsssssnnsas

XXI.Nau's results for approximation of the

A

..146

.. 147

probability of correct decision for the

incremental games....;..............;..
XXIl.Results from duplication of Nau's
'experiment......“l...:...........“...
XXIII.Approximaéion of the probability of
correct d@cisfon for -uniform trees
with integer-dependent static-values

assignment.......iiieeiiireianenaaenans

XXIV.Approximation of the probability of

correct decision for uniform trees

Y

o

-with redl-dependent static-values

assSignment......c.iieeecisasaavoacnnses

XXV.Nau's results for the estimation of the

probability of correct decision using
prodpct-prépagation rule for tHe

PEArl-game....ccovreamensessaroncnnannns

..148

.. 149

. .152

..153

..155

XXVI.Nau's results for the estimation of the

probability of correct decision using

Y

product-propagation rule for incremental

gametl..d...I.O..C.‘Q-Q'Q"l.‘l..‘...l.

XXVII.Results from duplication of Nau's

~ -

..156

<

;
' -~
. experiment for the Pearl’-game......‘.....'.157
. \ TABLE XXVIII.Results from- duplxcatmn of Nau's -
experiment for the 1ncremental game......158
4 ‘
A
R » o
» » ¢
4 " L} *
Y ’v't'
-
o . .
LY P ’
& .
)
‘ - . '\ ° "';
¥
o < -%
) - N \ ' R - oo
. 1 . v 4 N -

CHAPTER 1.
INTRODUCTION.

!

Games, such as chess and bheckers, hold an inexﬁ!&edbl

v .

fascination for manﬁ people. In order to win one has to

find the strategy which sbecifies the best response to every

conceivable move of the opponent. Computer programé, which
play games, generate moves and choose the best one, based oﬁ
some estimétion of éoodness of game pos&tions. Games may be
repregented by the game trees where the branches are mers,
réplies etc, Game trees are usually seérched by the miniméx

procedure ([21]. - To reduce the search effort, researchers

have proposed different 'tree-pruning strategies, ’ whicg;-
a

create 'only a fraction of the dame tree, ané §ti11 allow

game-playing computer program to make an optimal chpicé fo;
its move. Some of these pruning strateéies are knéhn és«the
Branch-and-bound [12], Alphabeta [12], Scout [23] and SSS*

(30]) algorithms. .
- ' N

A question arises regarding the comparative performance .

of the different pruning strategies. In this thesis the

exhaustive examination of the known prﬁning strategies is
presented and the results obtained are reported."‘ Tﬁeﬁ the
possible methods ,of speeding-up the pruniné strategies, such
as parallel implemertation, traqsposition tables, orde;ing

of nodes and killer heuristic, are discussed.

o

- 2 =
Another interes;ing problem for game-playing programs
is the relation betweefi the depth of search and the quality
: ‘ g .

'//cof decision’ mage. Until recently there was almost an

/ uniQersal' belief that increasing the depth of search

increases the correctness of decision made. But the
7

investigations by Beal [S]; Bratko and Gams [8], Nau [15,16]

and Pearl [RS5] showed that therg-/exist a.class of game trees

for which /£his fact is not true, and such a class of game
\/'\'T:

trees was cdliled patholog{;:f§ In thig thesis the decision

~

_‘quality ‘with deeper searching i nalyzed. The models, for

which incféasing the depth of search is beneficial, and the

models for which it' is not, are discussed‘%\v

'

" This thesis is intended as a contribution to the domain
: - {
of artificial intelligence. _ -
. " :

L4
a

-In the remaininig-part of this chapter the notat jon 'for
the gamé trees is giveﬁ‘and the minimakinb and negamaxing

- search procedures are reviewved.

. 1.1, Notation for Game Trees. . . ~
- w {7. N -

LY
L]

In using the word :games,. we restrict ourselves' té\

.. [
L

two-person, . zero-sum, perfect-informatiom games (fork‘

example, chess). We have two players.‘ﬁenéé'we speak of ‘a
. ’ . . B

N

two-person game. One player wins what the othecﬂéosesh S0

. ' , L Y i : N
the sum of their gains is ""zero. . There is "no conceadled
, N - 12 R N N

3
.

R

5

v
(e

. n S 7 o) \-w

A

information for any of the players, hence we speak of" the
perfect—infgrmation ., game. Any stage in such a game can be
represented by a game tree where ﬁaaes of a tree correspond
to positions in the game.” A specimen game tree is shown in
Figure 1. If from a position p'one is permited to move to
any of the finite number of positions e{, p,ﬂ ey pfy then
in the game tree there exists a branch directed from the
correspondind node p to node Py, another branch frém P to py
and so on. _The value of f 'is called the fan-out of the
node p, and Py+ P2s :+., Py 8re ;alled the siblings of one

anothef, Node p, is the left sibling of the ngdes Piy

Piyg+ ++++ Py, and it is the right sibling of nodes Py ¢ Pa.
«e+s Pj.y - Every node is said to be at ‘léggl L3 0. By
def&nition,' the root is at level 0. If p is at level k,
then nodes p,, Pg: ..., Py are each at ‘level k+1. If node s
is at a distance of nJ; i branch;s from node p{ and if

level of s is greater than level of p, ‘then s is called the

successor of p, and p is called the ancestor of s. For the

special case when n=1, ‘it is sometimes convenient to refer
to s as the son of p, and p as the parent of s. If a node
has no sons it is calledqﬁ\leaf node, else it is called a

nonleaf node.

in a game, the two players move alternately. We assume

-that players choose the moves which are the best for them. "

By convention, playerl moves from nodes at even numbered

levels of the tree; i.e., at levels 0, 2, 4, 6.... Nodes at

o O,
NS

L

]

v

uuo.-...:;.. sepos TUIT e 236" u.u.s. :.s
.'fuodﬂ.«.ﬂaluol.ﬂml-un;u s-oﬂnmolmmllllm.-u

:(..o._bn
- 84 Jo FRWHE e unou.ru s f. 303 5 u . -“ Jh

m~ou£ulu-uu.;- e v 03 —s
13%83 OSN3 UT PREIeP WOTINION B3 1e) seydweke smee sim asyag

_vo 3 -~

these even levels are called MAX node;. Pla&erz moves from
< nodes at odd numbered levels; i.e.,. at levels 1, 3, 5,....

Nodes at these odd levels are called MIN nodes.

1.2. Searching Procedures for Game Trees.’

[

« -

Any search procedure for the game tree consists of a

move-generation procedure, a static evaluation function and

a backing-up procedure. The static evaluation function
assigns a vi&ue to a node vithout generating any of its
sons, hence it assigns values to the leaf nodes of a tree,
The value of a leaf node indicates the goodness (or promise)
" of the correéponding game position from the point of view of
one. of the players. The move-generdting procedure generates
all sons for a node. Breadth-first and deptg;first are two
of many kinds of generation procedures. A breadéﬁ—first
procedure generétes all the-nodes at léQel 1, then at level
2, etc.. A depth~first procedure generates a tree from thé
left. It starts by génerating the ieftmost son of a node.
If. a node is a leaf then all 1its siblings are generatedﬁ
Then the procedure generates the next right;sibling node for
the parent of these siblings, then its leftmost soni and so
on. The backing-up procedure assigns to a nonleaf node a
' value, based on the values of sons of that node.
!

Game trees are usually searched ‘by the minimax

procedure [23?.; This procedure combines the depth-first

¥
? .

K]
S TR

..
-

continuation is presented in Figure 2,

- >
move-generation procedure, the minimax backing-up procedure

and an evaluation function., In.the minimax search procedure,
the leaf nodes are assigned values from the point of view of
playerl. Using this procedure -the nonléaf nodes' are

recur51vg;y evaluated; that is, the value of a nonleaf MAX
Ca !

(MIN) node is comput!d to be the max imuh (mhnimum) value of

_A,,y

its sons. If p is a 1eaf node then its value, calculated by
a static evaluatxon function is denoted as" statxcvalue(p)
The value obtained for playerl at a node p:/ denoted as

BACKVAL(p), is defined as follows : .

if p is a MAX node then:

o

staticvalue(p), if p is a leaf node -
BACKVAL(p)= ‘.

max (BACKVAL(p,), ..., BACKVAL(p,)), otherwigy;
and if p is a MIN node : *

[staticvalue(p), 1if p is a leaf node

BACKVAL(p)= SO

min(BACKVAL(p,), ..., BACKV%i(p,)), otherwiseh
Informally, we say that the value of a son is backed-up to
its parent :node. Thus the value of a nonleaf node p
indicates the best that playerl can achieve from the game
position corresponding to p. "The .minimax procedure
terminates when it computes the value of the root. The

sequence of moves which minimax predxcts as og@g?al for both

51des is called the principal continuation. An example of

static-values, backed-up values .and the principal

v

e b e mm————— s A o et SR T S O 3 2 i S

12
FIGURE 2 _
v)ample of static-values, backed-up values ad principal tontinuation.

o i Ietusasmmthattheleafmdesruvebemmxgmdtmexmplestatic-
- . values, as shown above : .
a p111'12' Py1p"40. , .
P1y."8 Py"8:
L R pu"’“’ M ')
- Ryl Pyl e

Pp3x*l4 Pyt ‘

co - Py

Thét value of 12 is backed-up to node p,, (as_ mmun of its sans values)
the value of 20 1sbadced-uptomiepl3 (asmaxmunof its sons values)
‘thevalueomebadced-uptomdepl (asnummnofltssmsvalues)
. the value of 40 1sbacked—uptontﬂep31 (as maximum of its-sSons values)
the value of 47 is backed-up to node p,, (as maximm of its sons values}
the value of 40 isbadced—xptonuﬂep2~ (as minimm of its sons values).

FmallytheValueofllo is backed-up to node p. .
The sequence of nodes : pz,pn,p211 represent.s the prmc:Lpal contirmation
for this game tree.

[!
- . { N

best son of p~ ; that is, the best move for the player at

N

A variant of minimax is the negamax procedure, in which

the static—value assigned gé a leaf node is‘frem dhe ‘point
of view of the p?ayer whose turn it is to move. Then, tﬁ%
value computed for any nonleaf node p is.the faximum of the
negative values of its sons. Alternatlvely, we can éay éhat
the value assigned to a nonleaf node p is the negatlve of
the minimum of its 'sons values. The value obtained at a

node p for'player whoes turn it is to move is defined as :

staticvalue(p), if p is a leaf node
BACKVAL(p)= _ \ ' J
max(-BACKVAL(p,), ..., -BACKVAL(p,)), othervise e
. ey
or alternatively : \ ",
¢

(staticvalue(p)s if p is a leaf =node
BACKVAL(p) = .
-min(BACKVAL(p,), ..., BACKVAL(p,)), Stherwise *

Y
» .

Negamax does not dlfferentlate between MAX and MIN nodes. .
The dxfferences between negamax ‘and m{ﬁlmax backed -up val
and values assigned to leaf nodes can~be seen by comparing
Figureé 2 "and 3. ,ﬁhe value computed for the root node is
thg same‘bx bijh the minimax-and negamax prﬁcédurgs. . Thus
min}max and «hegamax are-equivalent. For both the minimax
and negéﬁax frameworks, ¢ we can make ' the following
intuitively understandable statement : if the value of\a son

P, is backed—up to its parent p, then p, represents the

node p is to move to node p, . The choice of -adopting

o

negamax or minimax depends on the pruning strategy and the

convenience of implementation selected by the user.

¢ A

i
.
'

@)

-12 -8 -11 -14 -20 0 -8 | -47 -17
FIGURE 3. . Co

' An example of static-values, balked—up values and principal\ continuation

under negamaxing.

The leaf s that are at level 3 of a game tree are assigned values
which are negation of the static-values for minimaxing. Because in
negamax the values are assigned to le&f nodes fram the point of view of
the player who makes the move at these nodes, and af level 3 player2
makes the e. Node Py, is assigned value of 6, because at level 2

playerl makes\the move: W ‘ .
The value of 12 iff backed-up to node p;; (as -min(-12,-8)),
the value of 20 is backed-up to node py3 (as -min(~11,-14,-20))," .

the value of -6 is backed-up to node p;” (as -min(12,6,20)), \

. the value 'of 40 _is backed-up to node Py (as -min(-40)),

the value of 47 is backed-up to.node p 5 (as -min(-8,-47,-17,-23)),
the value of -40 is backed-up to node -min(40,47))},

{as
finally, the value of 40 is backed-up tg node p (as -min(-6,-40)).

Thus negtmaxing and minimaxing are equivalent in terms of the value
backed-up to the root of a game tree, and in predicting the sequence

_ of ncdes: in principal continuation. The principal continuation is the

A]

sequence: p, pzc p2ll lel- \ | .

] t

s

- 10

C S

»
' The game trees have a tendency to beéome very large, ih ///{

a sense of total number of nodes in a tree. 1If the,

searching procedure is going to do brute-force search, then
->

. for example for checkers it has to generaiedgpproximately

i

10° nodes [21]. Thus it is

~

impossible to build a tree.l

. reﬁkesenting the whole game. The goai of game—playiné ‘

programs is to find the best first move, then the next .one,

}

a SO0 on. Researchers [12,16,23,30] have made different

attempts to devise algorithms. which' reduce the size of

searched +trees while still finding the best possible move.

In chapter 2 six different pruning strategies are described.

All of them aim to create only a fraction of the gaﬁe tree ¢ .

to compute the value of the root. This value 1is backed-up

from a, son towards which

a move should be made. The .
< ' .

strategies differ in their details but in essence they have

one property in common: when it is judged that a node p; can

never change the value of its

.below p, can be discontinued;

parent, then further search

that is, the subtree below p,
: -

ﬁay/be cut-off, A cut-off may be obtained in many different

ways, hence we have different pruning strategies. The way, ,

”~

inwhich cut-offs are. obtained, 1is described for every

pruning strateqy presented in

.

3

chapter 2.
. .. v

“

-11- - ~—

o ‘ CHAPTER 2. -
DESCRIPTION OF DIFFERENT

PRUNING STRATEGIES.

In this chapter six different pruning strategies are
d;;cribed. For each strategy an'~informal descriptién
followed by its algorithmic formulati;:\ki given and it is
also mentioned wﬁether~ the strategy Yas implemented under
the negamax or minimax framework. AECOrding‘ to Kumar and

" Kanal [13] the pruning strategies can be viewed as special
cases of a generalized Branch-and-bound. Comments on this
may be found in section 3.7. In the algorithmic
formulation, sdme variables have been declared 'to be of type

' NUMERIC. = This mean; . that these variables are of a type
IN%EGER or REAL depend}ng~Aon whether "the static-values
assigned to leaf nodes are correspondingly integer or real.

The following functions: staticvalue{p), which returns a

" ‘numeric value for the node p, and generate(p), which
. . , X .
. generates all sons of p and returns the value of fan-out for

‘p, are assumed to exist. K\

e
-

2.1. Branch-and<bound Algorithm (under the negamax

LY [
. . , ' .
framework) . :

7
This strategy should in fact be considered as a ﬁaive
Branch-and-bound, considering Kumar and Kanal's [13] results
én generalized Branch-and-bound. However, xo‘be cbnsistept .

ot , [

~12-

with the name used by Knuth et .al. [12], this strategy will

be- simply called as Branch-and-bound.

In this strategy [12], a provisional value is assigned

to a nonleaf node while its sons are being explored. To

-
wt

evaluate a node p, its sons p,, Pys «+., P, are evaluated
sequentially. Suppose at a given_stage, the values of the
nodes p,, Pys ¢«-, P, have been computed. Then we say that .
the~'provision§1 value of their parent p is tfe maximum of

the negative values of p,, p,, ..., pP,. The irue value of p'
can only be greater than or equal to its provisional value.

"1f later we observe that tﬁe provisional value of node p,,,

is > the‘ﬁégative.of the ﬁrovisional value of its parent

‘ p, then we can safely say that the valué of p,aq can never

be backed-up to its parent; that is, pi, can-'never be the

best son of p- So search below p,,4. can be cut-off. Thus

fhe' ﬁrovisignal value of é acts as a bound for the.gbns of

p; For example a node, say'p, has four sons. Two of them

have been evaluatgd'and P, has value of '3, Py has value of

4. So the provisional val%ﬁ of p is -3 after evaluating its

a7 . N

tvo sons. If the provjsfbnai value of P, is later found to

be greater than or equal fo ~3, then the search below py may

be cut-off. Bélow the recuréive algorithm}c formulation for

the Branch—and-b&ﬁqd.stratégy is given, it is invoked by

callind the function Branchandbound(root,MAXINT), where

MAXINT denotes the lérgest integer %¥alue that a computer can

store. . .

U

1.FUNCTION branchandbound (p : TREENODE ; ! |
o | bound : NUMERIC) : NUMERIC ;
2. VAR i,f : INTEGER ; m : NUMERIC ;
3, BEGIN |
4. f;=genefate(p):./' generate sons‘p‘, Ppr «+er Py
of node p */.

. IF f=0 THEN return(staticvalhe(piﬂi
" ‘ ' '

5 /* p is leaf node */
6. m:=-MAXINT ; K . o ' .

7. 'FOR i:=1 TO f DO

8. BEGIN

9. m:fmax(m,—branchaﬁdb&und(p,,-m)5 H

10.‘ IF m3 bound THEN return(m); /* cut-off below node,ﬁ,

. | : and'return.value of m’
~as function value */
11, END;

12. return{m); /*‘return value of m as funct&on value */
13.END, | | ‘v

2.2, Alphabeta Algorithm (under the negamax

framework).

" s

This strategy [(1,4,9,11,12]" is an extension of the

‘Branch-apd-bound ‘algorithm described above. In ‘the

[
Branch-and-bound algorithm, cut-off took place below a node,

when its provisional value was greater than or equal to an

'upper bound. In Alphabeta algorithm, a cut-off takes place

» N

0

14~

below a node, vhen its provisional value is < a lower bound
alpha, or it is > an upper bound beta. The interval
[alpha,beta] representing the range of values over which the

search is to be made is also called the search window. The

rd

actual value of the root must lie within the interval

(alpha, beta) in order to have a suctessful search, but with .

“the narrower initial window more cut-offs are obtained. If

the value of root is < alpha then we have a case of failing .

low, if the value of root is > beta then we have a case of

failing high. For both cases the search must be repeated,"

as shown in {12} \

NS
1) IF BACKVAL(root) < alpha THEN

alphabeta(root,alpha,beta) g alpha,
2) IF BACKVAL(root) > beta THEN

alphabeta(root,alpha,beta) > beta.

Only if élpha < BACKVAL(root) < ' beta then
alphabeta(root,alpha,beta)= BACKVAL(root).

e

\

Alphabeta will always examine the same nodes. .as
Branch-and-bound algorithm for the game* trees of depth

- smaller than four (12]. On levels 4, 5,, of a game

tree Alphabeta 1is able to make deep cut-offs which can not
be obtained by carrying only one bound. , The differen;es
between Alphabeta and‘Branch+and-b0und,‘the deep.and shallow
cut-offs are shown in Figure 4. The algorithmic formulation

%

0

.
L]

L

-15-

- N . . N
~ . . . y
. . ,
s e, .
.
T
! -

“330-310 MOJTRYS ® pRTI®O ST °d

9pou. Je uuﬁﬁnouuo.ua ‘330-3r0 deop v pOTT™ ST d spgy. 3% peureagp
330-3nD “punoq-pue-youely Aq jou Inq ‘ereqeydry Aq peunzd ST d spou yeor
EﬁgggnﬁggﬂgﬁﬁgBﬂgi

A

“y ;oI

R T} 9° ¢ 9. § " 9 * [

v

-16- -

for the Alphabeta is given below. It is - invoked by’ the

function call Alphabeta (root, . -MAXINT, MAXI)T).

\

1.FUNCTION alphabeta (p : TREENODE ; . “

alpha, beta : NUMERIC) : NUMERIC ;

7

2. VAR 1i,f :INTEGER: m : NUMERIC ;
3. BEGIN

4. f:-gineraté(p); /* generate sons p,, Py, ..., D,

¢

of node p .*/

5. IF £=0 THEN return(staticvalue(p))i /* p is leaf node */
6. m:=alpha;.

7f FOR i:=»1 TO f DO

8. BEGIN

9. | :=max(m,—a1phabeta(p‘.fbgta,~m));

10. IF m> beta THEN return(m); /* cut-off below node p,
‘) and return value of m

as function value */
11. END; —

12. return(m); /* return vdlue of m as function value */

. - '

2.3. Palphabeta Algorithm (under the negamax

13.END. £

framewvork).

)

L] <

' Palphabeta algorithm [9,15] attempts to increase the
likelihood of cut-off over the Alphabeta algorithm by

tightening the bounds for a node ; that 1is, by either

L}

- b - ame

- 17 -

réising~ the value of the lower bound or lowering the value

of the upper bound. - Palphabeta uses a concept of a.

minimal-window search, First it evaluates the leftmost son ‘hb
7 o
p, of a node p. Then it invokes, with the window of width 1

“ (called minimal-window), the function Falphabeta, whicﬁ

indicates whether any of the siblihg nodes of p, is
promising enough to be explored any'further; if so, tﬁe node
is explored unéer the wider window with the bound returned
by Falphabeta. However, each subtree which refurns bgtter ;
value then its left siblings must be searched twice. Below
tpe algorithmic formulation for this strategy is given. It

is . invoked by the function call Palphabeta(root).

1.FUNCTION palphabeta (p : TREENODE.) : NUMERIC ;
2. VAR i,f : INTEGER ; m,t : NUMERIC ;
3. BEGIN /’$\5
4. f:=generate(p); /* generate sons p,, P,/ ..., P,
of node p */
5. 1IF f=0 THEN return(staticvalue(p)); /* p is leaf node,*/
6. m:=-palphabeta(p,): |

7. FOR i:=2 TO f DO

8.. BEGIN
9. t:=-falphabeta(p, ,-m-1,-m); ' -

10. IF"£>m THEN m:=la1phabetaip,,—MAXINT,?t);

1. END; - ‘ ~

N

12. return(m); /* return value of m as function value */

13.END. _ | ~

|

PR ————

The function falbhabeta is similar to the function alphabeta
except for two differences : =

line 6 of alphabeta becomes m:=-MAXIﬁT, and I

line 9 becomes m:=max(m,-falphabeta(p, ,-beta,-max(m,alpha)))
«Falphabeta always examines the same nodes as Alphabeta, but
it can give ; tighter boynd on the true‘value of the root
when thé search fails high or lew. This is achieved by the
bound beéing taken to be the maximum of the al}ha bound and
the value of 'the current best son, as specified in line'9 of

the algorithm.

2.4. Principal variation Algorithm (under the negamax

framework).

This strategy, called PVS for short by'Marsland (161,
is an extension of the Alphabeta algorithm. PVS, just like

Palphabeta, also uses the concept of minimal-window search.

P

PVS first evéluates’the leftmost son of a node p. Then it

explores the other soRs under the minimal-window. Note that

)

this window is diffe;enp than a windowsused 'by Palphabeta.

~~It 1is 1initialized to the maximum of alpha bound and the

value of the current best son. If a son returns promising
value (it doesn’t fail low) then it is evaluated, but under
the tighter bounds thap it was done by Palphabeta. The

I

tighter bound for a node is achieved by raising the alpha

<

-19-

v

value of the node p. The game tree processed by the

Palphabeta and Qﬂy PVS is presented' in Figure 5. The .

algorithmic formulation of the PVS is given below. It is

invoked by the function call PVS (root,-MAXINT,MAXINT).

1.FUNCTION pvs (p : TREENODE ; '
_J "alpha, beta : NUMERIC) : NUMERIC ;

’

2, VAR i,f : INTEGER ;’bound,t,m ¢ NUMERIC

3. BEGIN | ”5

4. fzngénerate(p):./* generate sons py, Py, ..., Py

| of node p */

5. IF f=0 THEN return(staticvalué?p)); /* p is leaf node */

6. m:z-ﬁvs(p,,-beta,—alpha); }

7. IF m < beta THEN g l’”st

8. FOR i:=2 T0 f DO

9. BEGIN

10. bound:=max(m,alpha);

11. t:=-pvs(p, ,~-bound-1,-bound);

12. IF t >m THEN

13. m:s-pvs(pi,—beta,-t):.

"14. IFm » beta THEN

15. return{m); /* cut-off below nede piand return
) : . value of m as function value */

16." ' END; -

17. return(m); /* return value of m as function value */

S

18.END. - ' S

-20-

¥

, . o
N,
s - T -
o N
. _ . . @ .

-, ‘0T 30 antea
UIN3a1 03 puUnoj sem T2y I931Je pIlenjeas 82y opou pue ‘p9 jJo antea AN pRuIIaY L SpoN

"SAd a3 Aq pesn spunoq IJIYBTI JO asnesaq sad Aq 3ou 3ng ‘e3aqeydieq Aq peuTERXD

are ICLET1L pue NHNAN& sopoN “eaaqeydred ueys mmmyﬁ alow sauad SAd YOTYM UT oTdumxe Uy

-] &

W - “S OId

60 90z GOT 9Tf . v8v Ge% ovy $9Z bZV BbZ PIZ T€E° FSE Z9Z OIv GL2

44

J 1¢

X

r9

. A
e
~

!

I

;«J * - !
:
o | L -21- LA
. 1 '

-

2.5. Scout Algorithm (unaer the negamax and minimax
framework). |

To ‘evaluate a node p, the Scout}“algorithmh (23] first
evaludtes its son Py Node pgy becomes‘the current bes£ son.
The algorithm then 'scouts’' the rest of the sons P2 + Pg
++«» Py one by one. It invokes Test algorithm, which
returns boolean value indicating if a node is worth to“> be

S

evaluated. 1f a son p, does not appear to retun’a more

‘o

promising value than the current best son, search below pf
is cut-off. Othervise, p, is evaluated, and p, becomes the

current best node. Test does not return a bound which may

-~

be used in.further search, so Scout may examine more nodes

than Palphabeta or PVS. An example of such a situation is’

. shown 'in Figure 6. Pearl Qadl initially proposed this
algor@ihm under the minimax framework [23]. Campbell and
Marsland (9] uééd Alphabeta "instead of Test algorithm in
their negamax version of Scout algorithm. Algorithmic
formulation of Scout under negamax framework< Scout which
invokes Test, is presented below. Compgris&n\\pf ‘three
differént versions of Scout ; minimax, negamax and the
Campbell-Marsland versiwn is discussed in qppendik 1. The
prgsente& functian is invoked by the call Séout(éoot).

\ \

k]

.

u:oowhn uﬂno.uﬁmm noummmumﬁn:uﬁ

ummsmn.mﬂn coaas n::on mﬁﬂwuuocmwo@usoommngﬁ :ﬁuam&mmm umm&

A3 9sneddq ‘SAd Io Eiaqeydrieg A J0U Ing INOOS AQ POWTWEXD ST ds

*SAd 10 e3aqeudied ueyl Sopou aIow S
< . .

Xo INCOS »

yoTyM Ut ﬂ%xm uy
9 RO

9 ¢

L

N-22-

Y

b

-

- /\

S

' -) ’ ' »
ll.FUNCTION scout (p : TREENODE) : NUMERIC ;

2.
3.
4"

N

1d.
. 11,

VAR i,ff: INTEGER ; m : NUMERIC ; op : BOOLEAN ;'

s

BEGIN : \

| : :
fi=qe %rate(p) /* generate sons Pyr Pgr oren by
. . . 1‘ R

o ‘of node p */

]

IF f= 0 THEN retuxn(stat1cvalue(p)) /*‘p is leaf node */

i
-—scput(p1)

B op:=TBUE ; /* parameter used to compare Nodes in

" N \ [N
e function test invoked by scout */

FOR ;?:1_ TO f DO

o

N
KNOT test(pi, -m, not op)) THEN m:=—scou£(pi);

&

if fUnctlon test returns’gplse, scout evaluates node P
! . :

R .

elsejit is not evaluated */ T

;ftufn(m) 7* return value of m as the function-value */

°
0

'END, ‘ (1//

b]
i ‘ , :
/ - P -
I K .
/ 4
s i
! -
i . 4
A)
Lo ' -
! .
; o L) ’
. .
[-
3 - - ~
| . - -
i
: .
i
: ,
,)
] '
[Y #
!
;
i . ¢
JEN
’
[
<

>

“a
P

o

RN

'14.END. ;"

-24 .
3
' 4
« .’7’:'.4;"'(
4 . Bl o
, . , ¢ : ¢
' 1.FUNCTION test (p :TREENODE ; v :INTEGER; op :BOOLEAN)
: "BOOLEAN; ", -
/* if op is true nodes to be compared are at same level
of the tree, else at different l&vels */ ' ///1
2. VAR i,f : INTEGER ; ' ~ .
' | ‘ Co. '
3. BEGIN 1
>

4. f:=generate(p): /* Generate sons Py: Pas «++, Py
of node p */
55 IF =0 THEN /* p is a leaf node */
6. IF ((staiicvglue(p),? v) AND (op)) OR
7. :, J ((staticvafhéfp) > v) Ahb (not op)) THEN
8? ~» return TRUE /* node p can not' be the best son */
9; ELSE return FALSE; /* node p gay become the best son */
10. FOR i:=1 TO f BO B
1. }E NOT test(p, ,-v,not op) THEN ..
12. return TRUE;-/* node P, can not become
the best son */

R 1)

13. return FALSE; (

o~
\/\' .

/

2.6. "SSS* Algorithm (under the minimax framework).

Stockman (30] developed h?; SSS* algorithm based on the
N

A* algorithm given by N1lsson (21]. sss* traverses solutlon
A '

trees, vhere a’solution tree S of a game tree G is defined

-25- -

as follows : ’
a) the root of G is in S;
b) if a nonleaf MIN node of G-is in §, then
all of its sons are in §; and . .'
¢) if a nonleaf MAX node of G is in S, then |

exactly one of its‘SQns is in S.

»
7

A solution tree S represents fhe way playerl cén play,
specifying one responsee’to each of the opponent’'s moves.
VAL(S), the véfﬁg'of S is defined to bé minimum value ovér
all the leaf nodes.in S. It was Shown in [27,30] that the

minimax value of the root of“* the game tree G is equal to the

maximum of VAL{S) over all solution trees S in G. In Figure

- e

\

7 the example of solution trees and their values 'are
presented for the specimen game tree from Figure 1. ¢
Associated with every node p in G is a triple <p,s,m>, where”

s and m are, respectively, called the status and merit of.p;

SG{L:IVE,SOLVED} and me[-INFINITY NINFINITY], If p has .the
status SOLVED, it means p haé been\evaluated. OtherQise it
has status LIVE and it is waiting tQ be evaluated. The
value of merit is defined only for npdes which are examined
by SSS*. For evaluated nodes of a certéin ;olution tree S,
the value of merit is equal to the VAL(S). The algorithm

can then be formulated as fSllows : L.

. - [P, SUUTRNUIIY JUSVEVORD
[o et o

_26- k4

1. Put the triple <root,LIVE,MAXINT> on a list called OPEN.

2. Remove from OPEN the topmost triple <p,s,m>. /* The tri-

ples in OPEN are kept in non-decreasing orderyof merit,
Y such that the triple with the highest merit is at the
top of the list OPEN. If two nodes P, » and P, have equal
merit and‘if P, is to rthe left of P, in the game tree, ‘
then triple <p, ,s,m> appears above triple <p; »S,m> in
OPEN}$$yus every triple is said to be in its proper \

-~
sorted position in OPEN, As argued by Campbell and -« '

Marsland [9], this ensures that the SSS* dominates
the Alphabeta algorithm, *7Q

3. If %zroot and s=SQ¥VED, then terminate the algorithm
with m being equal to the minimai value of- the root,
Otherwise continue. ‘

4, Call Gamma (<p,s,m>). /*'this procedure traverses

through the solution trees which coritain node p */

5.' GO tO 2. ’ -

s)

1. PRQCEDURE gamma (p:TREENODE, s:[LIVE,SOLVED], m:NUMERIC);

2. VAR i, f : INTEGER; y

3. BEGIN

4. IF s = LIVE THEN /* p is to be evaluated */

5.4 IF p Vieaf THEN

6. insert‘<p,SOLVED,min(h,staticvalue(p)> in \
7. . its proper sorted position in OPEN

8. ELSE /* p is nonleaf */ :

9. IF p is MIN node THEN

10. put <leftmost-son-of-p,s,m> at the top oﬁ_OPEN H
11. ELSE /* p is MAX node */

f2) FOR i:=f DOWNTO 1 DO *

13. put <p,,s,m> at the top of 8;EN /* f'iS'the

fan-out of p. Nodes p1 R p2 ’ ...p'

are ‘sons, of R, */

14, ELSE /* s = SOLVED */ P ‘
15, IF p is 'MIN node THEN

16, ~ put <p$rent-of—p,s,m> at the top of OPEN and !
17; L delete from OPEN all fr{ples associated with

18. the successors of the parent-of-p :

19. ELSE /* p is MAX node */

. 30, IF p is the rightmost sibling - THEN \ ‘

Zi. * put <parent-of-p,s,m> at the top of OPEN

22. ELSE /* p is not the rightmost sibling */ .
23, put <next;ri§htégibling-of*p,LIVE,m>‘at the top
24, of OPEN ; ' " |
25.END. v

—— = - e v Wi e ke — s b o

DI 4

-28-

‘ \

The way in which SSS* prucesses the specimen gawe tree of Figure 7

is shown ' in Figure-.8.

LR

]

3 @ @R & GG
8 11 14 20 20 8 47 17 23
FIGURE 7 ' ‘ ~

Far this specimen game tree there are 10 different solution trees.
The examples of solution trees are shown one in boldface, another .
ane in brolgn lines.

Values ‘for the example solution trees are 6 for the first one, and
8 far the second one.

values far the rest of solution trees are, fram the left of a game
tree: 6, 6, 6, 6, 6, 40, 17, 23. Based on the thecrem stated by
Stockman[30] and by Roizen and Péar1[28] the minimax vitue of this
gane tree 15 equal to 40. : 8

PO

12

-

(7] (8] (& - [BJs
6

V

CHCICINNO Feom

4

8 14 20 40

FIGURE 8

A specimen game tree processed by SSS* algorithm.

§

Changes in the list OPEN

O 0 N AU bW N

ft
[=]

11.
12.
13.
14.
15.
16.
17.

(p.L,@)
(pl: IQ) (p2: :Q)

(pll.L,cn), (pz,L, ®))
Pyyyrle@) s (pyy el), ‘pz'L"‘”
(pllZ'L’ ©), (PZ,L,Q), (Pyy1+58 12)
(PyrLr@) ¢ (Py7745,12) 4 (P;,,5,8)
(pyysLi®), (plll,S,lZ) 1(Py19¢5,8)
(pzn.,L,'o)1 (By71:5.12), (py5:5:8)
(pzll,s,::o) ' (pul,S,IZ)) (pllz,s,s)
(Py,+5,40) 1 (P1;1,5,12), (P ,/5,8)
(pzz,L,do) ,'(plll,S,l.?) ' (pllz,s,a))

(p222,L 40) (p223,L 40), (pzzul‘ 40) , (plll's 12), (9112'5 8), (p221,s 8)

(P, .S, w0, (pm,s 12), (pm.s 3

(p,S,40)
Minimax value of root is 40.

Nodes cut-off are : 912' pl3,(so also p131, p132, pBQ-

e ———— 4 et g e iy g o

-31-

CHAPTER 3.
EMPIRICAL COMPAR{SON OF PRUNING STRATEGIES.
»
To compare empirically the performance of the different
pruning - strategies described in chapter 2 above, these
strategies wvere tested on various kinds of simulated game
trees using different technlques to assign statEETValueslto

leaf nodes. All the programs were coded in Pascal version

3.6 and implemented on a Control Data Cyber 1?0/835 at

Concordia University, Montreal. Below details of the %?

. ——
criteria used to compare the performance of the different

pruning strategies, the kinds of trees simulated, the
methods of assigning static-values to leaf nodes, and the
scope of the experiments are given. Some’ theoretical

results for complexity of the tree-pruning strategies are

~also discussed.

3.1. Criteria Used for Performance Evaluation. '

Some researchers (2,9,10,12,21,23,27,27,28]} have .

discussed the comparison of pruning strategies based on the
number of leaf nodes created; the fewer the leaf nodes
created,” the Dbetter being the strategy. A node is

considered created, if 35 is not pruned off. One can argue

) -"ij\"i J
that. the criteri;;f;iﬁleaf nodes created may not be enough

-
{

l .
because this places more emphasis on the nodes at theo

deepest level of the tree. Thus, one could also compare the

b

&

‘)

pruning strategies based on all nodes (leaf and nonleaf)
created. However, even this may not be enough. Certain
strategies, foraexamp%e PVS, may prune a larger numbeq of
nodes but they may visit the created nodss fiofe than once;
thus slowing down the pruning. Hence the numbef of
node-visits can be another- criterion. Another important
criterion is the CPU time taken by the different pruning
strategies. This criterion, thever, may be questioned
because it dépgnds on the efficiency of program-coding.
Under above consideration the empirical comparison of
pruning strateéies is based on the : 7

i) average number of all&nodes created,

ii) average number gf leaf nodes created,

iii) average number of node—;isits,

iiii) average CPU time Eaken.
These criteria were tested for every simplated gaﬁe tree.

)
However, the computational effort of game—plgying

programs is in three basic operations :

~

S
i) move generation, |
ii) static-evaluation of leaf nodes, and
iii) move selection or minimaxing.
-- The cost of move generation can vary from game to game. The
cost of assigning static-values to leaf nodés debend; on the
Eomplexity of the function used to assign such values and on

the number of leaf nodes created. In our simulation (as ‘

discussed in section 3.3), the static-values were assigned

~33.

by a random number generator. So when we are compaﬁfng the

different pruning strategies we are restricting ourselves
TR

mainly to the cost of minimaxing.

3J.2. Kinds of Game Trees Simulated.

. ¥

Both uniform and nonuniform trees, which will be now
defined, were simulated. In a uniform tree U(w,d), the
fan-out for every node is equal to w, and all the leaf nodes
are at level d.: In a nonuniform tree N{w,d), thé fan-out of
any node can be utm§st equal to w, and the level of any leaf
node can be utmost equal to d. For both kinds_of grees,
parameters w and d age, resbective}y, called the width and
ggggﬁ of the tree. As'an illustration, the specimen tree
given in Figur; 1l is a nonuniform tree of width 4 and depthk
3. In simulating a nonuniform treés with the predefine;ﬁ$
width ‘and deéth' the actual fan-out. of any nade was
controlled by a uniform random number generator. Nodes with
the zero fan-out wvere considered to be leaf noégs.
Constrained by the amount of the computer memory available
both uniform and nonuniform trees were simulated with th;

following parameter values :

>

.
N

-34-
depth - width ° . g
2 ' 2, 3, &, 5,6, 8, 10, 24
B 2,3,4,5,6,8,10
" ' 2, 3,4, 5
5 ‘2, 3, 4
6 . .2, 3

)

Thus there were 24 different tree-sizes for each of uniform

and nonuniform trees, giving 48 classes of trees. In the

experiments, 50 trees were simulated for each of the 48

classes.

' L v .
3.3. - Methods of Assigming Static-Values to-Leaf Nodes.

In the game-playing programs values atlleaf nodes are
estimated by some evaiuatidn funtfionf Static-values can be
assigned to leaf nodes using a dependeﬁt or inéependent
scheme [10,12,20], the details of which will be now’given.

Dependent scheme : For this scheme, Newborn [20]}

discusses two approaches to assign initial values to all
H
nodes in the tree. In the first approach (called

integer-dependent approach), sifling nodes P, P, --.P 2re

L]

~ .
assigned distinct values from the set 6={1, 2, ..., f}. 1In
»
the secoid approach (called real-dependent approach), 'set

. O={1/F%, 2/f,..., £/f%}, Mhere L is the level of the nodes

\
! /

A .
° .
£ -
1 <,

-35~

tq—which the values are being assigned. As the names of the

two approaches imply, the first approach assigns integer

values and the second assigns real values. For both
approaches, we then compute
static-value-of-a-leaf-node-p = the-assigned-value-of-p
+

the—summation—oﬁrthe—valugﬁ:assigned—to—all-ancestors-of—p.

-

¢
scheme. In the first approach (12] (called
¥
unordered-independent approach), distinct values from.the

]

set- {1,.2/ «.., M} are assigned as static-values to t1§ leaf
nodes, where M 1is the numbef of leaf nodes. Thus each of

the M! orderings of the values are equally likely. In the
’ ~

, ’seconq approagh (called P—ordered—indepeﬁ%ent approaéh), we
first arb;trary choose a large positiVe integer K and a
val&e for Pe[O;l]. Static-vélues afe then assigned to leaf
nodes from the range [1,K), such that the probability of any
nb@é ‘ga&ing its leftmost soﬁ :as thé best son is P. The
values of M, K, and P"° chosen fqr our eﬁperiments are

'

mentioned in section 3.5.

Q -

Independent scheme : There are two ab?%oaches to this

3.4. Some Theoretical Results for Complexity of the

Tree-Pruning Strategies.

1

« Many researchers [4,10,12,20,23,24,26,27,28,29,30,31]

- -/ . .
have .analyzed the pruning strategies in order to determine

~which strategy is optimal over the others (in sense of nodes

created), and to test. the behavxoﬁr cf strategies for

l;:} : ' . K

%

. i . v ' i 2
different schemes ‘of static-values assignment. If by -

Cgy (w,d) we denote the average number of leaf nodes created

by a prunlng strategy ST for a tree of width v and depth d

!
then the branch;gg factor fbr this strategy is deffined as :

> . -

R(w)=dl_’im</CST(w,d) L =
The average number of leaf node created and the ﬂrantuing
factor weré used as the criteria for the complexity ~of a
strategy. The most frequently analyzed strategy is the
Alphabeta algorithm. Slage and Dixon [29] have shoyh that
the number of ‘leaf nodes created by Alphabeta musd lie
begween’tzg bounds :

wl.d‘ij + wrl‘{| C o~ ’l R CAB(w'd) F g we

“

Knuth and Moore [12} have shown that there is always a way

of ordering nodég such that Alphabetarwill not examine more
) d
- nodes than the lower bound, szJ oW ' _ 1. Alphabeta

achieves the lower bound of the number of leaf nodes created
for the case when the leftmost son of any honleaf node is
the node's best son. For such ordering, called the

perfect-ordering {291, any pruning strategy, except

Branch-and-bo nd,} achieves the lower bound of.the number of

a

léaf nodes created.‘,Algo:ﬁthms su¢h as Branch-and-bound or

Alphabeta are directional,- they never examine a node to the

left of one preuiously examined. Other algorithms, such as -
3 .

. §85*,: are non-directional, there 1is no ‘'left-to-right"

e

-37- .

‘e
»
. -

-

: (¢
arrangement of the leaf nodes they visit, Pearl [23]"has(

shaqwn that R*\=%/(1— z.), where gwis the - positive réotn of /

W . .
the x -+x-1=0, is tMe lower bound for the branching factor

of every directional algorithm for ‘unifprm trees with

- < . '

conginEoué static-values. ?o; uniform'trees with discrete 3
st§¥i¢-valugs, the lower b né'fo; the branching factor of

any pruning strategy~is w&?5§§~givén in [28], qurl ’ﬁas
shown that his algorithm, Scouth‘gchi;ves thése lowe%"bduﬁd§¥
for uniform trees. fBéudei'liiy and Pearl [24]‘: have -
indipendentlly ﬁrovéd ‘that the branching Factar of théh“m
‘Alphabeta algorithm also 'achieves these lowef bounds for the |

uniform trees, Tarsi [31] has later showi that the B* and

; ‘ :
w2 are the lower ‘bounds for the branching factor of

non-directional algorithms,ée@rching uniform game trees.

~—

. 1 . . i
“In [28] the theoretical formulas. for the bragching--

factor of SSS* aglgorithm were given and‘comparéd to that of

W <

d{'gAlﬁhabeta." Roizen et al. [28] have shown that for uniform
‘ trees with disc;e;e or continuous static-values the
branching factog of the Klphabeta algarithm is equal to thas
of the SSS* algorithm. Ié [56] the corollary that the
' Alpﬁabeta: has the: lowest branching factor over all
slgo#ithms tpat search uniform “Dgahe " trees bwitﬁ

unordered-independent static-values assignment was stated -

- . »

and proved by Pearl. But the optimality of “the Alphabeta .
for searching a real-world game tree is not quarariteed by

this corollary because the bra%chxng factor quantifies only
N ¢ ¢

+
- . M ' \
. .

R

. .
o . [N DU 1 S —

h3Y

-

the rate of growth of CAB(w,d) 'as d tends to. @ . The
—

analytical results [26, 27, 28].of the average number Qof
‘leaf nodes created by the Alphabeta, SSS* and S$cout

~ - .,
ithms for wuniform trees wi#h unordered-independent

4

élg_

statiscvalues assignment show that !

ré‘s(w,d)=AB(w.§)[R*(w)]u v

‘
s

Cs, (w,d)=Sclw,d) [R*(v) 1" ,
Cegi(w,d)=8S(w,d) [R*(w) 1" . | /

Over the range 2 < w g 20, é <'da <« 20 variab%eS“AB(w,dﬁ_

Sc(w,d) and SS(w,d) satisfy : . '

4.2 > Sc(w,d) > AB(w,d) > §(> 1.2.
. So we see from the theoretical ahalyéis above that th;USSS*V
Alphabeta and Scout algorithms have very §imilqr perf%rmancg
i . charact;ristics fo the uniform trees with

~—~ unordered-independent sfat?é—qalugs assignment in terms of

‘number of leaf nodes created.

’

»

. In section 3.6 the performance of six pruning °’
stgatééies under four ndifferent scheme§\ of agsigning .
Static-valyes'to leaf nodes fo; uniform éﬁd'nonuniform treeé

. will be discyssed. The\resulgs of comparison regard the
number of Agdes.créated, number of nodelviéits and time of
execution. Thgg¥ﬂﬁecture whjbh strategy will be poéu;;f in
géme-playing programs 1s giveh,ln section 3.7. The scope of
experiment.1s described®in mofei detail .in the. foliowing

hY

section. . ‘ ¢

e

§

<

. -39- ,

. ./

3.5. Scope of the Experiments.

»

‘ The pruning strategies described in chapter 2 wvere
tested on both uniform and nonuniform trees. 'For each kiqd
of tree, static-values were assigned to leaf npdes using
both the dependent schemes and both the independent schemes.
For the P—oédered-independent approachi/;he value of K was
500 and the probability P ranged frgg‘O.Z ts 1.0 jn steps of
0.2, For Bny nonleaf node this probability indicates the

likelihood that the node's leftmost son is its best son.

NS

For uniform trees the unordered-independent scheme was :

‘ r
implemented as specified in section 3.3. For nonuniform

1

trees the unordered-independent schem could not be.

. . . . : .
implemented in the manner described in’"section 3.3 because

the number:of'leaf nodes kept varying. Moreover, the leaf

nbdes‘ in a given tree occurred q{:differen; levels. So in

our simulation, the leaf nodes were assigned static values.
. . L

<

from an arbitrarily sélectgd set {1, 2, e o3, 500}.
bependeﬁd'schemes for uniform and nondniform game trees

were implemented exactly as specified in section 3.3.

Considering : the different kinds of ‘trees and the

different approaches to assign static-values to leaf nodes,

a

there were sixteen cases for the experiments. Thus, say,

R " v
all uniform trees with - unordered-independent

L

40~

L. :

static-values-assignmént approach comprised one case, the
trees being of the 24 different sizes mentioned in section
3.2. Note that as mentibned above there were 50 trees of
?ach size. Thus th#lsample size for each case was 24 * 50 =
1200 trees. The sixteen cases are listed 1in Table 1I.
Details of Table I are given in the following se;tion, when
the experimental results are discussed.

»

3.6. Results of the Experiments.

To specify that in a given environment, pruning

strategy S performed better than S, fori=1,2, ...,

)
5« we write them as a list enclosed in parentheses like (s,
Sp 1 eeew Ss). If within this list notation we write the
names of some strategies enclosed in brackets, it means that

those strategies performed éqﬁally‘well.‘ Say, we write (81,

[52' Sg3). S4. Sg. Sg). Then it means that S, and S,

~
performed equally well. They were worse than S{”b t better
than S‘. "

AFirst the performance of the 'six pruning strategies
. based on a;erage number 6(all nodei"c;eated“{leaf-and
nonleaf), the few;r the node§ created tHe better being the
performance, will be compared. Then the results for pruning
strategies under the criterion of average number of leaf

nodes created are pre;énted, and discussgd. Next,‘ the

results of comparison, under the criterion of average number

41

© of node-vgsits and average CPU time taken, are gi;en for

t .

every discussed strategy. ‘ '

A}
J.6.1. Comparison Based on Number of All Nodes

Created. :
| , £
For trees of depth greater than or equal to 4, Table I
shzvs the comparative per}ormance of the pruning strategies
for all the sixteen cases, which we mentioned in section
'3.5. We see that SSSs* consistently creates the least
nodés and Branch-and-bound the most. The other sg?ategies
fall in between, with- PVS among them usually performihg\ the
best, except for nonuniform trees with real-dependent
static-values assignment, in which case PVS per%ormed
§1ightlj worse than §couti PVS,, Palphabeta and Scout
usually perormed better than Alphabeta, For exémple for
6(3,6) with 0.2-ordered-independent scheme SSS;~;reates on
average 316.82 nodes, PVS 377.94, Palphabeta 380.60, -Scout
399.00, Alphabeta 414i94 and Branch-and-bound creates on !
a;erage 523.96 nodes. The exception ooccurs fo; uhiform
trees when . stdtic-values "~ are’' assigned either by
1.0-orde:ed-indepéndent scheme or by one of depérdent
schemes (cases 6, 7 and B of T;ble i)t Faor the l}.0-ordered
scheme, all pruﬁiné sirategiés excépt Branch—an@—bound
performed 'equally‘ well, for examéﬁé ,for u(3,6)

branch-and-bound creates on average lGQ.bO nodes and - all.

other strategies create 124.00 nodes. For. ' the

e . - o — - - - J

s -2~

Case Tyge of Method of sssigning| Rankipg of the prunin
no. tree static values to strategies in decreaa?n;

leaf nodes order of their performance

1. Uniform Junordered-indep.

2. | Uniform O.2-orderod-iq$ep.

. | Unifors |0.4-ordered-indep.-|(855*,PVS,PAB,Scout,AB, BB)

. | Uniform (0.6-ordered-indep.

Uniform |1.0-ordered-indep. ([SSS’.PVS.PABbScout.AB].BB)

. Uniform integer-dependent, {888+, PVS,PAB,AB, Scout, BB)

3
4
5. | Unifora 0.8-ordered—indep.
6
7
8

Uniforn |[real-dependent (sss*,[PVS,PAB,Scout,AB],BB)

g. Noaniforn unordered-indep.

10. Non&%iforn 0.2-ordered-indep.

11. |{Nonuniform]0.4-ordered—-indep. |(SSS*,PVS,PAB,Scout,AB,BB)

12. |Nonuniform[0.6-ordered—indep.

13. {Nonuniform p.e-orderbd—indep.

14. [Nonuniform]1.0-ordered-indep.

15. |Nonuniform|integer-dependent |(SSS*,[PVS,PAB],Scout,AB,BB)

16. {Nonuniform|real-dependent (858*, Scout,[PVS, PAB],AB,BB)

TARLE 1.

Ranking of pruning strategies under the criterion of all nodes
created (leaf and nonleaf] for trees of depth) 4. ¥e observe
thet 8SS* 18 consistently the best and Branch-and-bound
the vorst. Strategies enclosed in brackets performed equally
well for that cese. Note : the ranking of strategies remains
same under the criterion of only leaf nodes created.

legend : ‘ A

AB - Alphabeta {13

BB - Branch-and-bound [12].

PAB - Palphabeta [97] :

PVYS - Marsland's Principal Variation Search f¢]
Scout - Pearl's Scout [23

5S5* - Stockman's State Space Search [30]

{

r

43~

¢ o

real-depgndent scheme, PVS, Palphabeta, Scout and Alphabeta
performed equ;lly well, with SS§* p;rforming better than all
of thenm, fﬁr example for U(3,6) Sssiﬁg}eates on average
150.80 nodes, Branch~and-bohna 346.48 ind all other
strategies 263.84 nodes. In the case of integer-dependent
scheme, Scout pérformed slightly worse th§n Alphabeta. For
example for U(3,5) Alphabeta created on avénage 149.94 nodes

and Scout 151.02 nodes.

Fal

\

For, trees of depth equal to 3, for all sixteen cases
except uniform and_ nonuniform trees with real-dependent
static-values assignment,‘tﬁé strategies can be ranked as
(sss*, [PVS, PaB, Scout],[Aﬁ, BH). For example for U(5,3)

with unordered-independent static-values assignment SSS*

¥ o

created on a;erage 77.36‘nodgs, pvé, Palphabeta and Scout
86.32 nodes and Alpﬁabeta and Branch-and-bound 93.18 nodes.
For the uniform trees with?' real-dependent static-values
assignment the ranking is (SSS*, [PVS, PAB, Scout, AB, BB]).
or example. for U(8,3) SS§* cfeated on average 108.14 nodes
and all otherg,159.10 nodés. For the nonuniform trees with
real-dependent static-values” éssign ent the ranking is ¥
(SSS*, Scout, [PVS, PAB; AB, ;B]). For\ example forl N(10,3)
SSS* ‘created on average 44728 nodgs, Scout 59.06 nodeg and

all other pruning strategies 60.82 nodes. \Here again, SSS*

has always performed .the best.

Ly

For trees of depth equal to 2, the strategies cén bé
ranked as (SSS*, [PVS, PAB, Scout, AB, BB]), for all of the
sixtéen c£§es<“_ For example for N(24,2) with
unorde;edtindePendgnt static-values assignment SSS* created
.on average 131,04 nodes and all other pruning straiegies'

T

created on average 167.16 nodes.

[y

’

For all trees of depth equal to or smaller than 3,
Alphabéta ana Branch—and-bound‘always performed identically,
as e%pected, based on the discussion by‘rKnuth and Moore
[12]. overall, we notice that SSS* always created the
fewest nodes, which confirms the. theoretical results of

Stockman [30] and Roizen and Pearl [28].

z

3.6.2. Comparison Based on ﬁumber of Leaf Nodes

Created.

In Figures 9 to 16, for uniform trees of depth four, we
have plotted the average number of leaf nodes created by the
different strategies versus the width of tree. -In Table II

some results from Néwborn (20] ‘are given for comparison..

) [,

Furtherﬁore,'in Tables III to X thelaverage numbér of leaf
nodes created jh uniform trees by the different strategies
are repo}ted. Under ‘ unordered-independent and
integer-dependent approaches to assigning static-values,

Newborn had theoretically estimated the expected number of

leaf nodes to be created by the Alphabeta algorithm:

LEAF NOO,‘ES CREATED

3

-

45— ’

<

. . .
‘ N
—_—— AB
. . . Ad
[R I e B B
" v

-— PAH, PVS
L R e SCWT _ -
e+ s + e+ —= sss' . .

\

WIDTH OF TREE

\ .
\ . @

Plot of average number of leaf nodes created against width of a un%}h vith

depth &,
.scheme.

Static $aluu were assigned’to leaf nodes by integer — ddpendent

-

' - | N

, AB,PAB,PVS,Scout
' s ¢ e + - it e SSS' .

2 - 3<"4

¢

. WIDTH OF TREE

‘ -

. ' FIGIRE 10+ \ ’ : .
‘Plot of average number of leaf nodes created against width of & uniform tree

with depth 4, Static values vere assigned to leaf nodes by real — dependent
scheme. e .

v,

~47-

" WIDTH OF TREE .

iI.Eun u.
.) o
Plot of average number of leaf nodes created against width of a uniform tree

g with depth 4. Static values vere assigned to leaf nodes by urordered-indepepdent
* schene, ‘ ¢

L
e
Y
«
- L
| g
” .
é |
r-
a
-
’E
]
i
v . ————tt ety b S8

1 200°

- 8-

FIGURE 12.

Plot of average number of leaf nodes created
against width of a uniform tree of depth 4.

Static-values were assigned to leaf nodes by
0.2-ordered-independent schame. ‘

T ———

B gt e v

~49-

FIGRE13. ¢

Plot of average number of leaf nodes’ created against
width of a unifarm tree with depth 4. Static values
were assmgned to leaf nodes by 0.4-ordered-

-._’-’EEEE &

M,,

e e ey

| >, FIGRE U.

. v . .

Plot of average number of leaf nodes created against
1200 width of a uniform tree of depth 4. Static-values ' .
were assigned to leaf nodes by 0.6-orderad-independent)

scheme. , . oL

2 . .

LEAF NODES CREATED

[]

, 51~

L4
. , : . v
FIGURE 15 ' . !

'Plot of age number of leaf nodes created against .
width of a Uniform tree with depth 47 Statxc-values
we.reassxgnedtoleafmdqsbyo&orderedw L
independent scheme. / ¢
5 ' *
. '
- - ~
g ,

LEAF NODES CREATED -

b

¢ 150

-52- / I

] il \l v v'
s .
FIGJ!"G 16. - -

Plot of average number of 1 nodes created against - : . >
width of a mufcm-tree with depth 4, Static - values
were assigned to leaf nodes by 1.0~ ardered- . - .

7’ | 2

-

m [

. | R
.) .
-
<
.
. B
» ¢ :
’ +
97
' . v
1] . A
o

. .

L]

. y ! '

v a
//
7
/ ‘
A . -
4 -
< ' 3
- -
., \ . . / ’ I
. //‘
' " ’

1§V
:
8.
8
W

\
. 13
v i i N
+ : .
, e L b .
- -+
L]
s i
[

-

i "

v ~ '
.
v

-53-

Tree |Integer:depéndent Incrdered-independent
'size |static-values .” | static-values
. agsignment assignment
U(2,2) | 3.50 ' 3.67
ve,2) 6.89 - 744
U(4,2) 10.92 12.14
u(6,2) | . 20.37 . 23.96
u(s,2) 31.21 . .3B.65
U(24,2)] 143.81 240.29
u(2,3) 6.25 6.84
MRES 16.80 C19.45
U(4,3) 32.93 40.11
u(6,3) 82.14 109,61 .\
u(8,3) 153.66 220.37 .
TABLE II. 3 °

s

Newbern's [20] thecretical results for expected number’
cf leaf ncdes created -by Alphabets algerithm. U(3,2)
stands for uniferm trees cf width 3 and depth 2.

o’

-S4

ﬁ:: AB BB PAB Scout PVS 588«
fu(z,2) 3.60| $60| 3.60] 3.60| 3.60 | 3.22
u(3,2) 7.24 | 7.24 | 7.24 | 7.24 | 7.24 | 6.06
U(4,2) | 12.38 | 12.38 | 12.38 | 12.38 | 12.38 | 10.08
fus,2) | 16.64 | 16.64 | 16.64 | 16.64 | 16.64 | 13.08
u(s6,2) 25.?3“7,5.58 25.58 | 25.58 | 25.58 | 18.66
¥(B,2) | 38.24 | 38.24 | 38.24 | 38.24 | 38.24 | 28.22
U(10,2)| 58.28 | 58.28 | 58.28 | s8.28 | se.28 | 42.82
U(24,2) | 241.76 |241.76 |241.76 le41.76 [241.76 1J79.o4
u(2,3)| 7.04| 7.04| 6.92 | 6.92 | 6.92 | 6.58
u(3,3) 19.10 | 19.10 | 18.34 | 18.34 | 18.34 | 16.73
u(4,3) | 39.70 | 39.70 [37.00 | 37.00 | 37.00 | 33.68
u(5,3) | 70.32 | 70.32 | 63.46 | 63.46 | 63.46 | 5€.68
U(6,3) | 105.28 |105.28 | 95.26 | 95.26 | 95.26 88.10
U(8,3) | 220.62 [220.62 [187.06 [187.06 |1€7.06 |187.04
JU(10,3)| 384.34 [384.34 |322.04 |322.04 {322.04 |321.16
U(2,4) | 12.26 12.-28 11.96 | 12.06 | 11.96 [10.20
U(3.4) | 43.80 | 48.76 | 41.56 | %2.54 | &1.54 | 32.34
U(4,4) | 112.86 |129.92 [103.98 |106.18 |163.86 | 80.72
U(5,4) | 213.08 |253.16 |187.40]190.39 {187.22 [161.30
u(2,5) | 21.48 | 23.32 [20.94 | 21.14 | 20.88 | 18.50
u(3,s) | 116.90 |135.20 103.24 105.82 }102.30 | 93.06
U(4,5) | 334.62 |40B.42 |287.04 |295.24]283.93- |260.36
v(2,6) | 35.62 | 42.72 | 33.78 | 34.94 | 33.70 | 26.34
u(3,6).] 253.56 [341.52 -;.f:zs.;o 236.28 |222.83 |173.34
TABLE I11.

Average nunber of leaf ncdes created for unifern troéa

with uncriered-indepenient static-values pssignzent.

-55- ¢
z{:: AB BB . PAB Scout PVS 858+
u(2,2) 3.52] 3.52 3.52 3.52 |. 3.2 | 3.06
u(3,2) . T.04 7.04 7.04 7.04 | 7.04 | 5.58
U(4,2) 10.70] 10.70 | 10.70 | 10.70 | 10.70 | &.18
u(s,2) 15.68] 15.68 | 15.68 | 15.68 | 15.68 | 11.32
u(e,2) 20.06] 20.06 | 20.06 | 20.06 | 20.06 | 14.42
‘ju(s,2) 31.22] 31.22 | 31.22 | 31.22 | 31.22 |‘22.16
U(10,2) 42.42| 42.42 | 42.42 | 42.42 | 42.42 | 27.86
Y(24,2)| 147.62] 147.62 [147.62 [147.62 [147.62'[84.28
u(2,3) 6.10] 6.10 | 6.10 | 6.10 | 6.10 | 5.50
U(3,3) 16.58] 16.58 | 16.32 1 16.32 | 16.32¥| 14.32
u(4,3)'| 30.52| 30.52 | 29.66 | 29.66 | 25.66 | 26.56
U(5,3) 53.54] 53.54 | 49.70 | 49.70 | 49.70 | 44.98
U(6;3) 81.50f ®&1.50 | 75.70 | 75.70 | 75.70 | 68.12
u(e,3) 162.44] 162.44 |146.52 [146.52 [146.52 [128.68
U(10,3)]| 250.22| 250.22 1220.98 |220.98 [220.98 [197.50
v(2,4) 10.28| 11.32 | 10.28 | 10.52 | 10.28 | &.20
U(3,4) 33.62| 38.66 | 33.22 | 33.94 | 33.22 | 25.28
U(4,4) 77.12 92.oe' 74.46 | 75.88 | 74.40 | 51.44
Ju(5,4) 150.66] 183.24]142.26 |146.76 [142.20 [100.28
v(2,5) 17.74] 20.14 | 17.70 | 18.10 | 17.68 | 14.84
Tvis,5) | ea.16] 102.10 | e1.66 | 84.88 | 81.28 | 64.18
U(4,5) 229.24| 294.00 |214.50 |222.72 |212.60 [176.10
U(2,6) -29.38| 35.62 | 29.22 | 30.20 | 29.16 | 23.94
u(3,6) 161.52) 237.22 {155.74 }162.54 |155.06 {110.44
. TABLE IV. *

Average number cf leaf ncdes created for uniferm trees

with

12

integer-dopendent wstatic-values assignwent.

—%mrm————
v(2,2 3.52 3.52 3.

u(3,2) 6.88 |. 6.88] s.
U(4,2) | 10.30 | 10.30] 7.
U(s5,2) | 14.20 | 14.20] 9.
u(6,2) | 18.00 | 18.00] 11.
U(s,2) 26.3%4 26.34] -15.
U{10,2)] 35.38 35.381 19.
u(24,2)] 118.30 118.30] 47.
u(2,3) 6.10 6.10] 5.42
u(3,3) | 15.60 | 15.60] 12.72
U(4,3) |- 27.46 | 27.46] 22.36
0(5,3) 44.28 | 44.28] 34.28
0(8\3) 66.10 | 66.10] 48.30
"-0(8:3) 122.38 |122.38] B5.14
u(10,3)]| 182.26 J182.26] 125.38

[Size of] ITVS TAE I3 Sss*]’

;

318 |8 I8 |3 |8 |8

U(2,4) 10.48 | 11.32 7.48
U(3,4) 30.96 | 35.56] 18.68
L uta,4) | 63.52 | 16.18] 33.52
u(s,4) | 115.08 J141.06] s5.32
u(2,5) | 17.90 20.{4 13.04
u(3,5) 73.64 88.72] 46.12
U(4,5) | 177.52]227.92] 105.58}
U(2,6) | 28.88 | 35.62] 17.64

0(3,6) | 137.48 J199.72] 64.36

TABLE V.
Average nunber ‘cf loaf ncdes created for unifcrn troes

r

" with resl-depondont staticvaluos r;hnignncnt.

L%

-57-

Tree AB BB PAB Scout PVS SSS»*
size : ;
u(2,2) 3.52 3.52 3.52 3.52 3.52 3.02
u(3,2) 7.44 7.44 7.44 7.44 7.44 5.74
u(4,2) 11.78 11,78 . 11.78 11.78 11.78 8.84
U(s,2) 16.50 16.50 .16.50 16.50 16.50 13.14
u(6,2) 23.36 23.36 23.36 23.36 23.36 15.96
u(8,2) 34,98 34.98 34.98 34.98 34.98 23.02
u(10,2) 49.02 49.02 49.02 49.02 49.02|. 28.00
u(24,2) 14§,46 148.26| 148.26| -148.26| 148.26 64.78
N(2,3) 6.66 6.66 6.56 6.56 6.56 5.98
U(3,3) 19.12 19.12 18.24 18.24 18.24 17.02
U(4,3) 40.30 40.30 37.54 37.54 37.54 34.72
U(s,3) 68.62 68.62 61.74 61.74 61.74 58.80
U(6,3) '106.46 | 106.46 94,22 94,22 94.22 92.72
u(s,3) 204.62 | 204.62| 169.16| 169.16| 169.16| 165.70
U(10,3) 341.72 | 341.72| 278.02] 278.02| 278.02} 1278.00
u(2,4) 11.22 12.14 10.98 11.08 10.98 8.94
U(3,4) 43.80 50.32 40.92 42.10 40.84 33.16
U(4,4) 110.10 | 129.70| 102.06| 106.28| 102.00 73.86
(S, 4) 222.38 | 263.74| 205.56| 213.06| 204.96| 146.34
u(2,5) 19.66 22.38 18.32 18.66 18.26 17.88
u(3,5) 105.12 |{. 126.06 94,96 97.56 94,22 85.68
U(4,5) 345.98 | 432.38| 301.14| 313.06| 297.46| 268.60
u(2,6) 33.56 42.52 31.56 33.10 31,42 24.66
U(3,6) 228.00 | 319.32(201.48| 212.04| 199.34{ 163.46
TABLE VI.

Average number of leaf nodes created for uniform trees
with 0,2-ordered-independent scheme.

-

-58-

Tree AB BB. PAB Scout PVS SSSf
size
u(2,2) 3.50+ 3.50 3.50 3.50 3.50 3.04
u(3,2) 7.28 7.28 . 7.28 7.28 .7.28° 5.76
u(4,2) 10.84 10.84 10.84 10.84 10.84 8.40
u(5,2) 15.20 15.20 15,20 15.20 15.20 10.64
u(e,2) 19.44 19.44 19.44 19.44 19.44 13.68
u(s,2) 29.28 29.28 29.28 29.28 29.28 19.16
u(10,2) 44.94 44,94 44.94 44.94 44.94 26.12
U(24,2) 115.32 115.32 115.32 115.32 115,32 60.68
u(2,3) 6.44 6.44 6.26 6.26 6.26 5.92
u(3,3) 19.16 19,16 18.00 18.00 18,00 16.40
u(4,3) 36.70 36.70 33.44 33.44 33.44 33.20
u(s, 3) 65.70 65.;@ 58.36 58.36 58,36 55.44
u(e, 3) 94.86 94 . 8%, 82.66 B2.66 B2.66 82.64
u(s,3) 179.06 179.06 149.52 149.52 149,52 148.52
u(1o0,3) 306.54 306.54 236.60 236.60 236,60 236.40
u(2,4) 11.16 12.18 10.88 11.06 10.88 8.82
u(3,4) 39,12 46.84 37.44 38.82 37.12 30.88
u(4,4) 100.86 121.56 92.44 94,78 92.32 67.02
u(s,4) 176.90 217.98 160.48 166.46 159,92 120.20
u(2,5) 20.54 22.78 19.56 19.78 19.48 17.72
u(3,5) 95.96 113.36 87.84 89.64 87.58 77.26
u(4,5) 271.76 335.10 236.60 240.26 233.22 208.92
u(2,6) 34,28 43,26 31.90 33.18 31.80 24.00
u(3,6) 208.72 281,38 188.18 195.74 '184.86 143.68
i)

TABLE VII.

Average number of leaf nodes:-created for uniform trees
with 0.4-ordered-independent scheme.

o

-59-

Tree AB BB PAB Scout PVS SSS*
size
u(2,2) '3.50 3.50 3.50 3.50 3.50 3.02
u{(3,2) 6.70 6.70 6.70 6.70 6.70 5.34
u(4,2) 10.16 10.16 10.16 10.16 10.16 7.66
u(s,2) 13.12 13.12 13.12 13,12 13.12 10.26
ul6,2) 16.96 16.96 16.96 16.96 16.96 12.56
u(s,2) 25.72 25,72 25.72 25.72 25.72 18.32
u(10,2) 33.32 33.32 33.32 33.32 33.32 23.80
U(24,2) 89.44 89.44 89.44 89.44 89.44 58.12
u(z,3) 6:.24 6.24 6.08 6.08 6.08 .5.90
u(3,3) 17.18 17.18 16.74 16.74 16.74 14.96
ul(4,3) 33.08 33.08 30.54 30.54 30.54 28.62]
u(s,3) 52.82 52.82 47.24 47.24 47.24 44 .58
ule,3) "78.12 78.12 68.74 68.74 68.74 66.02
u(sg,3) 156.70 | 156.70| 133.02! -133,02 133.02 129.60
ucl10,3) 240,98 | 240.98, 199.86 199.86 199.86 199.98
ui(2,4) 9,20 10.14 '9.14 9.20 9.14 8.44
U(3,s) 32.12 36.84 28.80 29.94 28.64 24.82
u(s,s) 88.36 | 104.16 81.98 84.20 81.80 57.68
u(s5,4) 150.80 | 183.56| 135.92 138.30} ® 135.20 90.88
u(2,s) 19.24 21.96 18.34 18.64 18.28 16.26
u(3,s) 77.02 90.12 74.80 75.63 74.02 62.12
u(4,5) 206.06 | 255.70] 180.58 182.92 178.66 162,34
u(2,6) 32.82 41.16 31.02 31.90 30.82 23.86
u(3,6) 169.64 235.66] 156.66 161.82 156.04| B121.62
TABLE VIII.

b

with 0.6-ordered-~independent scheme.

Average number of leaf nodes created for uniform trees

Tree \?B BB PAB Scout pPvVS S86*
si1ze
S lut2,2) 3.36 3.36 3.36 3.36 3.36 3.02
1u(3,2) é.26 6.26 6.26 626 6.26 5.22
u(4,2) 9.26 9.26 9,26 9,26 9.26 7.22
u(s,2) 12.06 12.06 12.06 12.06 12.06 9.70
u(ef2) 15.36 15.36 15.36 15.36 15.36 11.64
u(s,?2) ©20.06 20.06 20.06 20.06 .20.06 16.60
u(10,2) 28.32 28.32 28.32 28.32 28.32 20.72
u(24,2) 78.64 78.64 78.64 78.64 78.64 56.04
u(2,3) 5.76 '5.76 5,68 5.68 5.68| - 5.34
u(3,3) . 14.66 14.66 14.38 14.38 14.38| . 13.12
ui4,3) 27.32 27.32 25.64 25.64 25.64 23.68
u(s,3) 42.36 '42.36 39.12 39.12 39.12 37.84|
u(e6,3) 59,68 59.68 54.98 54.98 54.98 54.88
u(s,3) 112.78 | 112.78 97.80 97.80 97.80| °~ 97.10
U(10,3% | 175.52 | 175.52| 153.02| 153.02 153.02| 153.00
U(2,4) 10.00 "10.96 9,74 9.82 9.74 8.10
u(3,4) 28.02 32.24 27.04 27.44 27.04 20.92
uts,4) 66.68 79.28 61.70| ' 63.18 61.58 49.96
u(s,4) 101.42 | 126.86 95,42 96.80 95,12 78.12
Uu(2,5) 17.64 19.68 16.84 17.00 16.76 15.24
u(3,s) 69.96 86.18 63.40 64.16 62.84 56.36
U(4,5) 139.34 | 173.02] 130.06| 131.72 129.80| 120.2
U(2,6) 28.66 | 35.56| 27.52|. 28.10] 27.42 21.{6
U(3,6) 116.98 | 169.30| 110.60| 114.14 110.40 90.66
TABLE IX..

-60-

}
Average number of leaf nodes created for uniform trees
with 0,8-ordered-independent scheme.

A

-61-
[y
Tree AB, , Scout, BB
size PVS, SS§*

JuU(2,2) 30 3.00
u(3,2) | 5. 5.00
u{4,2) | 7.¢0 7.00
U€s,2) 9. 9.00
u(6,2) 11.00 11,00 .
U(B,2) _15.00 15.00
u(l10,2) 19.00 19.00
u(24,2) 47.00 47.0Q
u(2,3) “5.00 7 5.00
u(3,3) 11.00 11.00
u(4,3) 19.00 19,00
u(s,3) 29.00 29.00
u(s,3) 41.00 41.00
u(s,3y 71.00 71.00
u(10,3) 109.00 109.00
u(2,4) 7.00 8.00
U(3,4) 17.00 21.00
U4,4q) 31.00 40,00
u(s,4) 49,00 LGS.QO
u(2,5) 11.00 13.00
u(3,5) 35.00 43.00

lu(4,5) 79.00 97.00
ul(2,6) 15.00 21.00
U(3,e6) 53.00 85.00

)
N TABLE X.

Average number of leaf nodes created for unlform trees
with 1,0- ordered 1ndependent scheme

o

\

- (-

~Newborn's results were limited to uniform trees of depths 2

-

and 3 with widths 2, 3, 4, 6, 8, 12, 16, 20, 24, 28, 32, 36,
48, 64, B0, 96, 128 and 19e6. Tabie 1T shows Newborrn's .
results for those tree-sizeéithat are common with the tree
sizes of ‘the expériments. ‘pne can noéjce that the values
for Alphabeta are quite close to the theoretical values
estiﬁétgd by Newborn.” For example, for uniform trees of

width 8 and depth 3, U(8,3), with “unordered-independent

static-values assignment, NeQbOrn'; value was 220.37 (Table

,11), whereas our value is 220.62 (Table III). Occa51onaily,

schemes used to assign static-values. We notice that the

however, Newborn's values and our values are ndt close: for
U(24,2), Newborn gave 143.81 (Table 1T, .inFeger—dependent
static-values hssignment): our corresponding value 1s 147.62
(Table 1V). This discrepancy can perhaps be explained b;
the fact that only 50 trges of any gjven width and depth
vere ;imulated. Having a larger sample-size may hawve given-
a value closer to Newborn's.
/¢ . : N

We now compare Tables III1, IV and V. They show that

for.a given pruning strategy and tree~size; the averéqe

number of leaf nodes created were sensitive to the different

highest number of leaf nodes were created for the
unordered-independent scheme, " fewer- for the
‘integer—debendent " scheme, and the fewes: for the

real-dependent scheme. For example, the average number of

leaf nodes -Created - by $SS* for U(10,3) is 321.16 in Table

i

-63-

1
i

111, 197.50 in Table IV and 125.38 in Table V. This agrees
""with the remark made by Knuth and Moore [12] that fewer leaf
o » , - .

nodes may be created for a dependent static-values scheme as

\
compared to an independent scheme.

In Tables VI to X the average number of leaf nodes
created for uniform tr,ﬁs' with P-ordered-independent

- static-values assignment . is presentéd, vhere value of P
varied .from 0.2 to 1.0.in steps of 0.2. We notice that as
the value of P increased in. P-ordered-independent scheme,
there was a decrease in the average: number of leff nodes
created for Evegy pruning strateé&.' For example for U(3,6)
with 0.2-orderéd static-values assignment (Table VI)
Alphabeta created on average 232.58 leaf nodes, whereas for

N\

trees with 0.8-ordered static-values assignment',ﬁ?able IX)

Alpﬁabeta“created on ave(agé 108.98 leaf nodes. This was, as
_expet-ted based on the results obtainéd by Slagle and 0¥ xon
(29].) Thus _fhe _least 'leaf ‘nodes were created for

1.0-oEderiqg. In fact, then the number of 1leaf nodes

’

" created agreed with the theoretical formula Wi el -1 as

1

'qiven in [lé;fO].

4
A

. i; was shown analytically by Roizen and Pearl [28] that

for ,uniform trees with unordered-independent static-values

assignmént the ratio of leaf nodés created by Alphabeta
algorithm to the leaf nodes. created by SSS* lies -in the

interval [1.1, 3.0}. Rearl [27] has also proved that the

/
[

e
P .

-6l

o
ratio of leaf nodes created by Scout algorithm to the leaf

nodes creaged'by.Alphabeta‘:emains’bele 1.275 and ténds to
unity with increasing search depths. Our experimental
resuits,from Table IEI confirm ' these ~ two “statements. in -
fact, these results hold even for ‘Tables 1V to x,_thaf.is
for 'all cases of siatic—valuesl assignment. We were restricted
to trees of depths up to 6 because of limited computer space
and time.: Up to t%ﬁt depth, the émpirical resulés agree

with the theoretical results of Roizen and Pearl [28) and we

may conjecture that they would agree even for deeper trees,
—~ e -

e

had we been able to simulate. them.
A 3

S e

In Figures 17 to 24, for nonuniform trees of depth 4,
tﬂe average ndﬁﬁgj’;f leaf “nodes t;eated by the different-
strategies versus . the width of tree are plétted.
Furthermore, in Tables XI to XVIII the results observed
about the average number Iof Iéaf ‘nodeg. cggated for
‘ nonuniform trees with the d;fferent kinds of static-values
aésignments are presentéd. ' Thep‘;rend of réﬁults for
_nonunifprm trees is mostly similar to that for' the wuniform

trees, For a given pruning strategy and tree-size, usually:

he highest-number of leaf nodes were created .for the

unordered-independent scheme, fewer for = 'the
integer-dependent * scheme and pbe;‘ fewest for the
. s ; P Y
@) [I
K o
= '
®, ¢
o ' R
a4) ’

2
€

“ .) -6&'3—'~‘\ « ‘ | : . .

: u A - . .

. . 4T EIRREILT. ‘ ‘ \ -

, ' Plot of average mumber of. leaf nodes created.against width
. 120 ., of a nonuniform tree with depth 4. Static - values
, were assigned to leaf nodes by integer - dependent

/e

&

[20

-66-

FIGRE 18.

[

'P16t of average number of leaf nodes created against width

of a nonuniform tree with depth 4. Static - values were -
assigned to leaf nodes by real - dependent schame.

EL

FIGRE 19.

Plot of average mmber of leaf nodes created against .

width of a nonuniform tree with depth 4. Static values
+ wmere assigned to leaf nodes by unordered-independent

I

[y ‘I: ’
b »
P .

u‘ -

2 é WIDIH OF TREE 4'
L . e
' ' . .
S—-‘ \ o e drmy - - -
L

LEAF NODES CREATED

20

-68-

’

FIGURE 20. ‘ ' ~ .

Plot of éveragexﬂ:dnm of leaf nodes created againgt width '
of a nonunifomm tree with depth 4. Static-values were :

~ assigned to leaf nodes by -§.2-ordered-independent scherfé .

anmz FIGRE 21 o o ' “

('Y

Plotofaverqemnberof 1eaf nodes created agunst\n.dﬁx
of a fommnifam tree with depth 4. Static-values were

‘assigned to leaf nodes by 0. 4-o:derad-uﬂegendent scheme.

-~

(¢
.

WIDTH OF TREE

"'

20

[§)]

. -70-
§ , 7 ,
FIGURE 22. o R v

Plot of ‘average number of leaf nodes created against
width of a-nonuniform tree of depth 4. Static-values
were assigned to leaf nodes by 0.6-ordered-independent

Uy

-71~

. FIGURE 23.
f Plot of average. rimber of leaf \luodes"t:reated ‘against width
-{» 20 of a nommifarm tree of depth.4. Static-values were assigned
to leaf n\odes by 0.8-ordered-independent scheme. «
\ s

s kbt s e

LEAF NODES CREATED

-~

| 20

724

FIGURE 24.

Plot of average nutber of leaf nodes created against
idth of a nommifarm tree' of depth 4. Static-values

were assigned to leaf nodes by l.0-ordered-independent
scheme . 3 i .

®g

[PV U o S

-73-
: 3
Tree AB BB PAB ' | Scout PVS | . ssS*
'size i ‘ : - .0
: 4
N(2,2) 1.52 1.52] 1.52 1,52 1.52 ‘1452
N(3,2) 2.42 2.42| 2.42 2.42 2.42 2.36 , -
N(4,2) 3.74 3,74 31.74 3.74 3.74 3.52
N(5,2) 5.18- 5.18{ 5.18 5.18 5.18 4.46 '
N(6,2) 7.10 7.10{ 7.10 7.10 7.10 5.92 |
N(8,2) 9,28 9.28{ 9,28 ,9.28 9,28 7.46 P
N(10,2) 13.50 13.50| 13.50. 13,50 | *13.50 | 11.28
N(24,2) 45.76 45.76! 45.76 45.76 45.76 33.28
N(2,3) 1.48 1.48] 1.48 1.48 1.48 1.48 E
N(3,3) 2.74 2,74 2.72 2.72 2.72 . 2.68 |
N(4,3) 5.88 5.88| 5,78 5.78 5.78 | 5.68
N(S,3) 8.40 8.40! B.0O 8.00 8.00 7.72
N(6,3) 13.34.| " 13.34] 12.64 12.64 12.64 12.36
N(B,3) 28.06 28.06| 25.10 25.10 25.10 25.04 °
N(10,3) | 44.82 44.82] .36.90 36.90 | .36.90 | 36.88 |
N(2,4) 1.42 1.42 1.42 1.42 1.42 1.42
N(3,4) 3.30 3.32] 3.28 3.28 3.27 3.14
IN(4,4) . 7.40- 7.60). 7.40 7.40 7.40 6.28
N(5,4) 17, 20_ 18.31{ 16.29 16.29 16.29 15.20
N(2,5) 1.34 1.44{ 1.44 1.44 1.44 1.44
N(3,5) 4.00 4,10 3.96 '3.98 3.96 3.78
N(4,5) 10.88 12.22| 10.38 610.40 10.38 9.36
N(2,6) 1.40 1.40] 1.40 1.40 1.40 1.40
N(3,6) 3.70 3.94] 3.66 3.68 - 3.66 3.58
TABLE XI.
Average number of leaf nodes created for nonuniform
trees with integer-dependent static-values assignment.
. -
B
¢ A
» .
» ?
o

_i

7

Tree AB BB PAB Scout pPVvs SSS*
size ' ‘ ' .
N{2,2) 1.52 .1.52] 1.52 - I.s2 | 1.52 1.52
N(3,2) 2.38 2.38| 2.38 2.38 2.38 2,24
N(4,2) 3.58 3.58| 3.58 31.58 3.58 332
N(5,2) 4.92 4.92| 4.92 © 4,92 4.92 3.90
N(6,2) 6.70 6.70| 6.70 6.70 6.70 4.96
N(8,2) 8.26 8.26]| 8.26 8.26 "8.26 6.16
N(10,2) | 10.82 10.82| 10.82 10.82 10.82 7.60
N(24,2) 314.17 314,17 34.17 . 34,17 34.17 | 29.03
N(2,3) 1.48 1.48] 1.48 1.48 1.48 1.48
N(3,3) 2.76 2.76| 2.76 2.74 2.76 2.66
N(4,3) 5.94 *5.94f 5,94 5.94 5.94 5.42
N(5,3) 9.12 9,12} -9.12 9.02 9.12 7.62
N(6,3) 14.30 - 14.30| 14.30 14,14 14.30 11.88 .
N(8,3) 26.26 26.26| 26,26 25.98 26.26 24.40
N(10,3) | 43.20 43.20) 43.20 42.40 43.20 31.74
N(2,4) 1.42 1.421 1.42 1.42 1.42 \wi 42
N(3,4) 3.30 3.321 3.30 3.30 3.30 '2.98
N(4,4) 7.22 7.42 7.22 7.10 7.22 5.52
N(5,4) 17.64 19 60| 17.64 17.46 17.64 . 11.60
N(2,5) 1.44 1.44) 1.44 1.44 1.44. 1.44
N(3,5) 4.08 <4.24| '4.08 4,06 4.08 3.76
N(4,5) 11.34 12.68] 11.24 10.96 11.24 - 9.54
N(2,6) 1.40 1.40| 1.40 1.40°| 1.40 1.40
N(3,6) 3.72 4.02{ '3.70 3.68 ©3.70 3.42
"TABLE XII.

Average number of leaf nodes created for nonunlform
trees thh real-dependent static-values assignment.

\

{iim

l7'

-75-

Average number of leaf nodes created for nonuniform
-trees with unordered-independent static-values ass;gnment.

e —————tn L

v 4
Tree AB BB PAB | Scout PVS | .ss§*-
size i : , ~
N(2,2) 1.58 1.58| 1,58 1.58 1.58 | 1.58
N(3,2) 2.54 2.54| 2.54 2.54 2.54 | 2.54
N(4,2) 4.08 4.08| 4.08 4.08 4.08 3.78
N(5,2) .6.32 6.32| .6.32 6. 32 6.32 | 5.64
N(6,2) 8.44 B.44| B8.44 8.44 B 4% 7.38
N(8,2) 14.62 14.62)-14.62 14.62 14:62 | 12.16
N(10,2) | 25.86 25.86| 25.86 |. 25.86 25.86 | 21.42
N(24,2) |143.68 | 143.68|143768 | 143.68 | 143.68 [107.56
N(2,3) 1.48 1.48] 1:48 1:48 1.48 | 1.48
N(3,3) 3.02 3.02 3.02 3.02 3.02° 1 2.78
|N(4,3) 6.62 6.62| b.46 6.46 6.46 | 6.24
N(5,3) 10.64 10.64| 10.48 10.48 10.48 | 9.04
N(6,3) 23.02 23.02| 22.54 22%54 22.54 | 18.80
N(8,3) 50. 82 50.82| 49.40 49.40 49.40 ;.39.72 .|
(N(10,3) |101.20 | 101.20} 96.20 96.20 96.20 | 79.60 |
'N(2,4) 1.50 1.50; 1.50 " 1.50 1.50 1.50
N(3,4) 3.50 3.50/ 3.50 3.50 3.50 1 3.22
N(4,4) 8.80 8.94| 8,56 8.56 8.56 | 7.32 |
N(5,4) 19.84 (l 21.50| 18.05 19.60 19.00 l 13.20 i
. T 1
N(2,5) 1.52 1.527 1.52 ©1.52 1.2 © 1.52
N(3,5) 1 4.20 4.22] 4.18 .| 4.18 4.18 3.98
N(4.5) | 17.18 17.981 16.66 | 16.90 | 16.54 . 15.00 |
. " T
N(2,6) 1.50 1.50| 1.50 1.50 1.50 . 1.50
N(3,6) 5.14 5.24| 5.06 5.08 5.0 4.90
TABLE XIIl.

l o /
-76-
© Bree AB BB PAB . | Scdut PVS SSS*
size .
N(2,2) 1.58 1.58] 1.58 "L 1,58 1.58 | 1.58
N(3,2) 12.52 2.52) 2.52 2:52 2.52 2.52
N(4,2) 4.08 4.08] 4.08 4.08 4.08 3.78 -
N(5,2) 5.88 5.88| '5.88 5.88 5.88 5.06
'N(6,2) | 7.46 7.46| 7.46 - 7.46 7.46 6.64
N(8,2) | 14.52 14.52] 14.52 “14.52 14.52 | 12.12
N(10,2) | 19.40 19.40| 19.40 19.40 19.40 | -15.46
N(24,2) | 93.72 93,72 93.72 913.72 93.72 | 68.88
N(2,3) | 1.48 1.48| 1.48 1.48 1.48 | 1.48
N(3,3) 2.80 2.80| 2.80 2.80 2.80 | 2.68
N(4,3) | 6.54 6.54| 6.36 6.36 6.36 6.08
N(5,3) | 10.52 | 10.52| 9.84 9.84 9.84 | .8.88
N(6.3) | 18.70 18.70(18.34 18.34 18.34. 14.92.
N(8,3) | 44,58 44.58| 42.62 42.62-| 42.62. | 35.12
N(10,3) | 79.94 79.94} 74.98 74.98 74.98 | 60.68
T |
N(2,4) | 1.46 1.46(1.46 1.46 1.46 1.46
N(3,4) ., 3.32 3.327 3.30 3.130 3.30 3.04
N(4,4) | 7.40 7.64(7.16 7.26 7.16 6.73
N(5,4) . 18.80 20.96| ,18.00 ' | 18.12 | s17.86 | 12.08
i L
-~ T
N(2,5) | 1.48 1.48| 1.48 1.48 1.48 1.48
N(3,5) | 4.18 4.20] 4.16 4.16 | 4.14 3.82
'N(4,5) °| 15.64 16.28| 15.00 15.12° (. 14.90 | 13.16
N(2,6) 1.50 1.50] 1.59 1,50 1.50 | 1.50
N(3,6) A.70 4.84| 4.64 4.64 4.64 4.17
TABLE XIV.

Average number of leaf nodes created for nonuniform ' S

trees with 0.2- ordered independent static- values assignment.
-

_77..
< .
A
}')

Tree AB BB PAB Scout PVS SSS* .

‘size. : ‘ . 4
N(2,2) 1.56 1.56] 1.56 1.56%| .1.56 1.56
N(3,2) . 2.39 2.39] 2.39 2.39 2.39 2.30
N(4,2) 3.84 3.84| °3.84 - 3.84 3.84 3.50
N(5,2) 6.26 6.26| 6.28 6.26 6.26 5.32
N(6,2) 7.40 7.40] 7.40 7,40 7.40 6.62
N(8,2) 12.56 12.56| 12.56 12.56 12.56 10.50
N(10,2) 19.28 19.28| 19.28 19.28 19.28 15,32
N(24,2) | 80.70 80.70| 80.70 80.70 80.70.| 65.66
N(2,3) % 1.48. " 1.48| 1.48 1.48 1.48 1.48
N(3,3) 2.80 2.80 2.80 2.80 2.80 2.66
N(4,3) 6.22 6.22 5.94 5.94 5.94 5.56
N{(S,3) 10.12 10.12 9.82 9,82 9.82 8.70
N(6,3). 17.14 17.14| 16.44 16.44 16.44 14.48 B
N(8,3) .38.10 38.10| 35.44 ° 35.44 3§.44 30.92 j‘
N(10,3) 69.42 69.42| 64.52 64.52 64,52 57.42 .
N(2,4) 1.44 1.44 1.44 1.44 1.44 1.44
N(3,4) 3.16 " 3.16 w816 3.16 3.16 3.00
N(4,4) 7.26 7.60 7.12 7.20 7.10 6.80
N(5,4) 16.66 18.24| 16.02 16.24 16.00 11.72
N(2,5) 1.47 1.47(1.47 1.47 1.47 1.287
N(3,5), 4.02 4.18 1.99 4.02 3.97 3.78
N(4,5) 14.82 16.04| 1%.00 14.12 13.96 12.04
N(2,6) 1.48 1.48| 1.48 1.48 §.48 1.48 :
N(3,6) 4.66 '4.80 4.29 4.36 3.20 4.02

TABLE XV.
Average nu%ber of leaf nodes created for nonuniform
trees with 0.4-ordered-independent static-values assignment.
<«
» r‘
.)
, | - rA\\
. ‘ _3:
'\/ ' . . \ A \\“’;/7 ‘:‘

e

| _~_W B

N
\s

Ry

1

-78-

-

. s
Y/ L]
Tree AB BB |.. PAB Scout PVS SS8*
size h
N(2,2) . 1.58 1.58| 1,58 1.58 1.58 | "1.58
N(3,2) 2.32 2.32| 2.32 2,32 2.32 2.28
N(4,2) 3.82 3.82(3.82 3,827 3.82 3.50
N(5,2) 5.22 5.22| 5.22 5.22 5.22 4.52,
N(6,2) 6.38 6.38{ 6.38 - 6.38 6.38 5.72
N(8,2) 11770 11.70| 11.70 11.70 31.70 9.26
N(10,2) | 17.86 17.86| 17.86 -17.86 |° 17.86 | 12,72
N(24,2) | 68.94 68.94| 68.94 68.94 68.94 | 42:30
N(2,3) . 1.48 1.48| 1.48 1.48 1.48 1.48»
N(3,3) 2.80 2.80| 2,80 2,80 2.80 2.64
N(4,3) 5.66 5.66| ' 5.48 5.48 5.48 (', 5.30
N(5,3) 9.88 9.88(9.82 9.82 9.82 7.90
N(6,3) 13.94 13.94| 13.38 13.38 13.38 | 11.94
N(8,3) 30.56 30.56| 28:.94 28.94 28.94 | 26.30-
N{(10,3) | 49.56 49.56| 44.48 44.48 44.48 | 35.80
N(2,4) 1.44 1.44| 1.44 1.44 1.44 | «1.44
N(3,4) 3.14 4| 3.14 3,14 3.14 2.99,
N(4,4) 7:0 .42| 6.98 6.98 6.98 6.66
N{5,4) 16.00 17.62| .15.44 15.96 15.40 | 10.96
i .~ T
N(2,5) 1.46 I.46| 1.46 1.46 1.46 1.46.
N(3,5) 3.98 4,04 '3.80 3.86 3.78 3.72
N(4,5) 12.66 15.00| 12.12 12,26 | 12.06 | 11.90
N(2,6) 1.46 1.46| 1.4% 1.46 1.46 | «l.46
N(3,6) 4.52 4.88| 4.20 4.32 4.18 4,00
- > N\
TABLE XVI. .o

Averaée number of leaf nodes created for nonuniform

tree$ with 0.6-ordered-independent static-values assignment
‘ . ‘ .o '

LY

- »
12) ., '\

Tree | AB BB PAB Scout), PVS SSS*

size -
N(2,2) | 1.s6 1.56| 1.56 1.56(1.56 | 1.56
N(3,2) 2.48 2.48] 2.48°¢ 2.48 2.48 2.42
N(4,2) 3.62 3.62{ 3.62 3 62 3.62 3.22
N(5,2) 4.96 4.96| 4.96 ° 4.96 4.96 | 4.02
N(6,2) "6.32 .6.32] 6. -6.32 6.32 5.30

N(8,2) 10.70 10.70| 10.%0 10.70 10.70 8.46

N(10,2) | 14.50 14.50] 14.50 14.50 14.50 | 10.32
N(24,2) | 61.28° 61.28| 61.28 61.28 61.28 | 36.60
Ni{2,3) 1.48 1.48] 1.48 1.48 1.48 | 1.48
N(3,3) 2.76 2.76f 2.74 |- 2.74 2, 2.64
N{4,63) 5.70, 5.70{ 5.60 5.60 5.60 5.26
N(5,37 9.80" 9.80], 9.72 9,72 9.72. | 7.98
N(6,3) 13.86 13.86| '12.98 12.98 12.98 *{. 11.90
N(8,3) 29.78 | 29.78| 26.68 26.68 26.68 | 25.22
N(10,3) | 44.14 44.14| 37.98 37.98 37.98 | 37.10
N(2,4) .| 1.42 1.42] 1.42 1,42 1.42 | 1.42
N(3,4) | 3.10 3.12| 3.06 378 | 3.06 | 2.98
N{(4,4) 6.98 7.14| 6.80 6.88 6.77 6.50
N(3,4) {11.12 {. 11.98{ 11.00 11.08 11.00 | 10.90
N(2,5) 1.44 . 1.44| 1.44 1.44 .44 1.44
N(3,5) 3.90 3.98| 3.76 3.82 3.74 3.68
N(4,5) 10.84 11.26| 10.02 10.26 10.00 9.54
N(2,6) | 1.4% 1.44) 1.44 1.44 1.44 | 1.%4
N(3,6) 4.06 4,52 3,98 |° 4.02{ 3.98 3.96

TABLE XVII.
.
Average number of‘leaf nodes created ,f‘or nonuniform .

trees with O.Siﬁéggred-independent static-values assignment

. - '
N .‘/
Tree «AB BB’ PAB Scout pvs Sss*
size - '
N(2,2) 1.54 1.54] 1.54 1.54 1.54 1.54
N(3,2) 2.44 2.44) 2.44 2.4¢ 2.44 y. o 1]
N(Y, 2) 3.30 3.30| 3.30 3.30 3.30 2.90
N(5, 2) 4.12 4.12] 4.12 4.12 4,12'| 3.98
N(6,2) 5,42 5.42(5.42 5.42 5.42 1- 4.66
N(8,2) |"10.44 10.44(10.44 10.44 | .10.44 7.42
N(10,2) | 13.38 13.38} 13.38 13.38 13.38 9.52
N(28.2) | 43.44 43.44] 43.44 43.44 43.44 | 23.72
N(2,3)' | 1.48 1.48| 1.48 1.48 1.48 | 1.48
N(3, 3) 2.70 2.70{ 2.68 2.68 2468 2.60
N(4,3) 5.62 5.62| 5.60 5.60 5.60 5.24
N(5, 3) 8.98 8.98| 8.88 8.88 8.88 7.48
N(6, 3) 12.90 12.90| 12.66 12.66 | *12.66 | 11.76"
IN(8.3) 26.98 26.98| 24.16 24.16 24.16 | 24.0%
N(10,3) | 40.12 40.12| 39.04 .04 39.04 | 36.60
N(2,4) 1.42 1.42| 1.42 1.42 1.42 1.42 |
N(3,4) 3.06 3.40{ 3.02 3,02 3.02 2.98
N(4,4) 6.84 7.02{" 6.60 6.76 6.56 | ~5.56
N(5, 4) 10.98 11.24| 10.96. | 10.96 | 10.94 | 10.80
IN(2,5) 1.44 1.44 1.44 1.44 1.44 1.44
N(3,5) 3.78 3 .84| 3.70 3.74 3.68 3.62
N(4,5) 10.18 96| 10.00 10.12 10.00 9.26
7 4
N(2,6) 1.42 1.42) 1.42 1.42 1.42 1.42"
N(3,6) 3.60 3.92| 3.52 3.58 3.50 3.46 |°
TABLE XVIII. ,
-

Average number of leaf pedes created for nonuniform
treeswith 1l.0-ordered<independent static-values assignment

|

realjdependent scheme. Fof‘ example forﬂ N(i0,2) with

¢ real-dependeng ftatig—Values lassignmeqt (Table XIII) SSS*
createq;on Qverage 7.60 leaf nodes, for iég same trees with
integer-depenaent static-values assjgnmeﬁt (Table X11) SSSs*
created 11.2§'léaf nodes on average, and for .trees ,wi;h
unorde;gd-independént static-values assignment (Tagle XIIl)
SSS* created 21.42 leaf nodes oﬁ”ave;age. As we 'seE. the
zf ’ differenée‘ in nﬁmber of leaf nodes created {or‘tﬁe three
étatic-values-aésignment schemes was not as sharp as that

observed for wuniform trees. For the P-ordered-independent

. ' schemes, as the value of P increased, there was a deérease.

%n .the averagel aumbér of leaf nodes created. Knuth and
Moore (12, page 307] showed that for nonuniform trees

{

perfect-ordering is not always the best.' The experimental

results show that for a given nénuniform tree,
~ ‘

perfect-ordering is at least as good as any other P-ordering

(P < 1). As an example : for N(5,4) with J0.2-ofdered

.static-values assignment Alphabeta created 18.80 leaf nodes

on average (Table XIV) and for trees Wwith 0.8-ordered

static-values assignment it -created only 11.12 nodes (Table

_XVIII).

-

A
]

\ 3.6.3. Comparison Based on Number of Node-Visits.

o) " Above the performarice of pruning strategies based on

the ,number of nodes created was compared. One could arque

-82-

that it is not enough, because it has been observed that the
pruning strategies which 'create the fewest nodes are th,
necessarily the fastest. For example, no other pruﬁing
strafegy ever created fewer nodes than SSS*, but SSS* was
found ‘to be the slowest, because not only does it visit some
nodes more than once, it also has/;o maintain a sorted list.
Apart from Alphabeta and Branch-and-bound, all the other
strategies visit many nodes more than once, thus slowing
down the strategy. But this may not always hold in real
games where tﬁg greatest amount of work is done in move
generation and evaluetion, and extra time taken on
subsequent visits °‘may be marginal .because the move'wouldg
already have been generated and evaluated. ‘ Moreover, the
time taken may also depend on the data structures used ;ﬁ
the program: The average number of nodq;visits ifor the
pruning strategies, relative to one gnotﬁer, kept changing
with the type of tree, its depth and-width, and the scheme
adopted to assign static~;alues to its leaf nodes. So no
gener;l statement can be made about comparative performance
4 .

of pruning strategies under the criterion-of node-visits.
However, it was noticed that usually Alphabeta ,visits the
least nodes. For trees of depth equal to 2 PVS visits on
average same amount of nodes as ?alphabeta, less than Scout

For trees of depth equal to 3 PVS visits on average more
nodes thaﬁ‘Palphabeta‘but’still less than Scout. For trees

of depth greater than threée performance of PVS under thé

criterion of node-visits is wusually theé worst among 3all

1
‘¢

-83~ v

tested pruning strategies. For example for U(8,2)’i;h
0.6-ordered-independeh£ static-values assignment PVS visited
on average 31.82 nodes and Scout 38.06, but for y(3,5) with
0.4-ordered-independent static-values ‘ssignment“PVS visited
on'average 239.34 nodes and Scout‘viséied 213.29 nodes. For
trees of depth greater than or equal 4 and width greater
than 3, Palphabeta usuallx visited ‘“less ,ques than
Branch-and-bound. For example fsr u(2,5) with
0.4-ordered-independent " static-values assignment
Branch-and-bound vis%ted 43.30 nodes on average and
?alphébeta 49.54, but for U(4!5) with.same.stafic—values
assignment Branch—and-b&ﬁnd visited on average 491.38 nodes
and Palphabeta 457.76. Performance of §SSS* under the
.criterion of node-visits had a tendency to vary, its
position among other ;lgoritthAkept changing from the last‘
one up to the second best. For example for U(2,3) with
0.8-ord?red-independent static—valqes assignment SSS* was
the worst, but for U(5,2)' with 0,2-ordered-independent

static-values assignment SSS* was second best. . For

~

nonuniform trees the difference between performance of
pruning strategies under the citerion of node-visits was not
as sharp as for uniform trees. . ’

1

3.6.4.‘ Compar ison Based on CPU Time Taken.

A)

YIn this section the CPU time taken by the pruning

strategies will be discussed. Comparing algorithms on the

emed

- 34 -

\
¢

CPU time taken can be questioned because it 'may depend on

efficiency of program éoding. We tried to code the programs
o e

as intuitively efficient as possible. Apart from SSS* the

performance of pruning strategies in terms of node-visits

correspond to CPU time taken by the pruning strategy. We

found that wusually Alphabeta and Branchfapd-bound took the
least CPU time. For _trees with a small totali number of
nodes Branch-and-bound performs slightly better than :
Albhabeta, for bigger trees Alphabeta was lthe‘ best and
Branch-and-bound the second best. | The other pruning
strategies in increasing order of CPU time taken can ge
listed as Palpﬁabeta, Scout, PVS and SSS*. In Figu}es 25 to
40 tﬁe CPU time taken by the various prﬁning Qtrategies for
uniform and nonuniform trees of depth 4 and widths from 2 to
5, when the staticivalues were assigned ‘using ail the

discussed approaches are plotted. As we can see, the least

CPU time was taken fgr trees with N .0-ordered-indepeéendent

static-values assignment. As the value of P decreases in

L N ; .
P-ordered-independent scheme there was an increase 1in CPU
time taken by any bruning strategy. The most CPU time was '
taken for trees with 0.2-ordered-independent static-values

assignment. For example ~for U(4,4) with 1.0-ordered.

N
staiic—galues assignment PVS had taken on average . 4.46 CPU

‘time in milliseconds (Figure 32), whereas for U(4,4) with

d.2-ordered scheme it had taken: 23.}2 CPU time in

A}

milliseconds (Figure 28). For uniform trees as well as for:

nonuniform trees all pruning strateqies pepbarmed a little

B)) . .
o) N .
. ’ T ase ~N ¢
- Sl Tl ~
- i ///// - //
s : " i RN
4 e . R -
. . ._,//
. R R) ~
’ T ~
Y u/x
PR . //l
™
w2 . - =
;..) 3 - %. -
. .
A]
T » ‘
-) <
. . . m m m ®
L ‘] _ N
] 4
s i R _ _ }
o . B .]
- ~ 44 .
Atl » - ” L]
- + 4 + +— } —t —t
- 3 o 0 . o R o
AW, 2 R -] 2 - 0 oo -
T _— . SANODJ3SININ NI I Wil NdD 3IDVUTAY
* - . _ - -D < . ; - .
L < . R) . -
- - N - »
. - h n-h N .
. - - N 4 .
, L N
, .

f'_

" FIGURE 25.

2.

“

Plot of ‘average CPU time
depth 4. Static-values were

, Scheme

*

AT MY

e,

‘ e s
. T, “ * -
» -' :
i 7 ”
' o <
. . -86- :
h - ' ' i
L] ! N
. * * N
. s
. . B , - » » v
t
A ‘ . N - !
.
v ! ‘,)
, s . « '
. 1
+ . f
" oy M -
, -
N B v
¢
ar \ S
.
[- [- .
+ v ’ !
N f
. b
- ’ -
. »
. .
A v hd
. ' ')
. N
B . [
- ¢ » T ' 1 *
. . v “ !
' ™ . 4) e
. '
‘ ¢
. " . - - /‘ ?
R “
a s . “ ; .
‘ '
. . - . .
- .
. v
., v P]
) . A
1 i
N
- ' LI ' *
P
‘
4 "
.
. , .
- v
2 - - i
N '
N . '
N , ’
. . - B
.
- ’
o
d : L
g 1
.)
-
i N -
’
R \
) '
[M » ’
[.
'y <
- . 1 .
\' >
' f Al
! o
' # N
- , . . 2,
ey o @ e o — AB . o
. -

l
|
I
3

. 804
.70
: 6ot
‘ 8 -
‘ z P
g‘
w’ b
T 807
-
-,
i
. X
- L
ra Y -
w 40¢
b §
-
‘ " >
a
ru‘
30+
. W
-]
<
3
. ™
>
X <
I 201-
\ []
, 3
b3

WIDTH OF TREE o

4~

"

FIGURE 26.
Plot of average CPU ‘time taken agamst',mdéh of a

depth 4. Static-values were assigned to leaf nodes by real-dependent’

-
G
-

PP, sl e T -

-t
*

-87=

607

™~ \,
N .._.-0
. /.r.
N
- ?u
N\
\,
~ \
~ L
- —-
~
.
~N .
> .
N .h
AN
¢ -/
N\
A
N
R N
~
AN
N
N
$.0.
§4
!
|
.—I
!)
|
!
]
_ -
¥ + W —.—
2 S & &
SANODISIUW NI 3Ny NI FoWu3AY
| - *

A

L3

»

WiDTh OF TREE

<

"FIGURE 27.
Plot of average CPU time

L]

assigned to

tsm.’

depth 4. Static-values were

te

s e et b o 1§

——

-88-

(

e — — S

Socout
Y e e e e . S88*

3 8

5
©

- F'y 3
o o o
- «

0

201
10t

SAONOO3ISIUW NI 3WiL NdD 3IDVHIAY -

~

5

1™

WIDTH OF TREE

FIGURE 28.

with

depth ‘4. Static-values were assigned to leaf nodes by 0.2-ordered-

independent. acheme.

S

i

Plot of average CPU time taken against width of a unifarm tree

-89-

SURP—— V-3

Scout

- gy e Mms sme gue w— -

701

60;

" WIDTH OF TREE

depth 4. Static-values were:

P

R

P e

~)) -

- ;/.) . nu.
. .//// . v . m.m‘
. N .) a:m o
~ Yy .
, N 5
\- . .gA
- AN = g8 7
, \ P43
i // H w.m
AN o .
x
N ¢ 5 wm -
3 « e - // .w ‘ Wm \)
sadtfi} g |
| 0. .‘ G. -
~ " . o AQW .M.d. Lo
I . . Bl mm .
SANODJISINN NI 3 Wil NdD IDVHIAY : - i
A
X \) Y
/ - - .

e
r3

-
IN MILISECONDS

AVERAGE CPU TIME

-
(=]

107

o
9

o
?

'S
Q

w
"4

N * .. 4 . -
+ .3_91_ , + s .
‘ ’ ' W -, . 4
P v » '
‘ . , ?
-~ . Ia s .
‘ , "~ ¢
- : M1 * “)
¥
- ,
ad
~ - -
-
0 3
! r
L c N ,
J& .)
\ :
’ . <t
»)
' 3 AB \ Py
———— ————— —— ", . e .
- } a 4
’ ‘BB . //
—— —— _ PAB ‘ 4
. . / //
—— e e = - WS & 7
Scout -+ '//
—_——— * e
—_————— . SSS ,
® 7/ '
. /
Y/
A, .
7.
| /
e
~ s .
7
7
Ve
7
A [} ;/ ¥

- - WIDTH OF TREE ‘ C .
FIGURE 31. .

Plot of average CPU time taken-agamst width of a uniform tree with
depth,4. Static-values were assigned to leaf nodes by 0.8~crdered-
1rxiependent scheme.

L

o
h~ 4 ," ’g
o ED g
) o
. - ;
o . : .
N 2
i L d
‘ N i3 404-
‘]

CPU TIME

E

i

o r

3

.
»
>
7 o
* [y
PR
N ~ »
'
LI
]
<
'
)
.
.

- - »
) . N
: - P
)

& = ~ .
tl. ‘
) . » .
€ o N
- P
/ ,
L4 -
: : / - .
o T ~ *
S
- \/'\
s ',,.
— e e — AB
‘ BB)
Y K‘
" PAB
v e e o VS
’ [y
: ‘)Scout . \
———— e e -~ B5S8* h
1 ‘//
3 M 7~

. B . WIDTH OF TREE
FIGURE 32. ‘ o
Plot of average CPU time taken against width of a uniform tree with
depth 4. Static-values were assigned' to leaf nodes by 1l.0-ordered-
independent scheme. ~

-

(Fqb -

-~
-

FIGURE 33.

Plot of average CPU time taken against

" .width of a nonuniform tress with depth 4.
Static-values were assigned to: leaf

by j.qmge.r-dqm:dmt scheme.

~

oy

4
E S
&
h]
-
L4
.
1
¥
-
v —— e bad

-94-

. . . ' &

FIGURE 34. g

Plot of average'CPU time taken against width

of a nonunifarm with depth 4. Static-values

were assigned to™leaf nodes by real-dependent
scheme .

5.60

0/
/

(.

. Pk ,;“?;;M,‘* Caphpun et WA ae e W3 e e o e P ‘s .
. . - . el
. 2. .

A

LR et

. PP T WU LS SO AR S S T
et e e s PSRN 2 A L AT =

t scheme.

?

. Plot of average CPU time taken against width of &
nonuniform tree with depth 4. Static-values were

nsigra@bymmdemd—"

FIGURE 35.

4 ‘1

———— —— AB
N ' “
e PAB
‘w
—_———
———— ————

[,

R T N it e sy

-96~

FIGURE 36, |

!

Plot of average CPU time taken against width of -
Static-values

were assigned to leaf nodes by 0.2-ordered

. a nommiform tree with depth 4.

t scheme.

Scout

A Y

|
|
|

- = . ——

L4 i o~ .

ro

ew

WIDTH OF TREE

=)

. 4r4

(SANOCOESTTIIN NI) NDNL JIWNLL 0dO

CPU TIME TAKEN (IN MILLISEOONDS)

-97- - | N
FIGURE 37.
Plot of average CPU time taken\ggunstm.dth of
a nonuniform tree with 4. Static-values
were assigned to leaf by 0.4-crdered
independent scheme.* -

3 4

R ——

Y

| . i L
\ , ’ "." ‘-98— P)

. Oemed.
% {’ PlotofaverageCPUtinetakmagainstwidthofa
o + nonuniform tree with depth 4. Static-valuee were
{4+ assigned to leaf nodesbyos-mdered independent
- 8cheme . . i
)

™o
e

3 3

WIDTH OF TREE

R S&wmﬁﬂa%&

&

2

\w - | : oy

-100-

e FIGURE 40. T . B

Plot of average CPU time taken against width of a - -
" 14 -nonuniform tree with depth 4. Static-valueg were .
. assigned by 1.0-ordered-independent scheme. | AN <

A

L §
J

5
g
N

CPU TIME TAKEN (IN MILLISECONDS)

\
P

)

3

., — 101 -

vorse for trees with real-dependent static-values assignment
than for trees\wigh 1.0-ordered scheme ‘under the criterion
of average CPU time taken. For treés with integer~depeh@ent
static-values assignment pruning ‘strategies performed better
than for trees with 0.4-ordered-independent scheme. For
?nﬁrdéred—indepehdth ;cheme pruning strategigf performed
. better than for trees with 0.2—or&ered-independent scheme.
These resultslare represénﬁative for all kinds of -tested
tfees, although for nonuniform trees the differences were
not as sharp as for uniform trees;) |

L4

3.7. Overall Remarks on the Pruning Strategies. -

Six pruning strategies were compared on uniform and
nonunifofm game .tEFes of twenﬁyofour different sizes, each
being éssigned leaf-node-static-values under four different
schemes. We found that no strategy eQer created fewer nodes
than SSS*, confirming the theoretical resuIts_‘qf [28,30]}.
However, SSS8* was the slowest, mainly‘becaus? it required
maiﬁta{ning a large sorted list. Moreover, to maintain this
list sSs* aiso required extra storage. Palphabeta, PVS and
,scout were slower than Alphabeta and Brancp-and-bound
because t@e former three szﬁtegies isited many nodes more

than once. Kumar and Kanal [(13] argue that pruning

strategies are, special cases of a Generalized

-~

Branch-and-bound. .In theory one may agree with them

completely, but empirically the performance of the pruning

———— a1 nm

- 102 -+~
strate@igs varies substantially.

Based on the theoretical results given in.‘f24,31], it
has béen concluded by Pearl [26,27] that Alphabeta is
asymptotically optimal over all a;gorithms that search
uniform éame tree.with unordergﬂ-independegt—static—values
assignment, ‘Our experiments havé shown that Alphabeta
usually takes the léas; CPU time. Considering Pearl's

results and our results together with the quick resbonse

of;én required, while playing actual gamés. we conjecture

tﬁ;t the Alph!!bta algorithm will continue to be popular as |

a. pruning strategy, when used in conjunction with the

minimax procedure. We however caution that this ‘conclusion

is based on sequential implementation Ff pruning strategies.

The strategies may perform differently undér - parallel

implementation [1,2,11,14].

-103-

CHAPTER 4. * . v

METHODS OF SPEEDING-UP THE TREE -SEARCH.
v

-

-~

In this chapter‘we,will present a survey of sdmg'of the
‘ v L

' known methods developed for speeding-up the pruning

strategies.’ ﬁi{ferent““barallel implementations of - the
.o

Alphabeta algbrithm,"éh%J proposed by Akl et al. (1] and

another one by Finkel et al.” [11] will be presented. The

parallel versions of the Scout '[2]} and SSS* [14] algerithms

————

will be described. Other methods of speeding-up the game

tree search, such as nodes ordering [29], transposition
) ’ B

table [15]) and the killer heuristic' [3] will be also

discussed. \ .
4.1. Pérallel Impleméntations of the Pruning
Strategies. ‘ o

L '

L&
¢ r
i }

. To reduce search-time for the game trees the parallel

A,
~~

versions o{ the pruning strategies were introduced [1,11,14]
In [1] a parallel implementation of the Alphabeta algorithm
is presented. In this implementation disjoint subtrees are
§earched concurréntly.“’ Assuming that the -tree to be
ggarched is perfectly ordered,the . nodes that have to be

e

created are visited first. So the distingtion.is‘fifhde among

LB

the sons of a node.‘ The leftmost son is called left-son,
others are called right-sons (as shown in'Figure 41). The

left subtree of a node.is searched by a left process (which

1

Sm

FIGURE 41. | : - '

bistinction made anong sons of nodes in a game tree,

'I'he‘left:mét'sons of, evm:y m&eﬁ node ;q:resent
/the\nodes which have to becrea,.ted.meyarfvisited

first in a parallel version df the Alpahabeta’

algoritim, as described in [1] , :

. . : ®
v — o
N KN 3
X -
.
r

»
3¢
«* »
- (/S LY
»
'
-
- - R
<
o+ \
' E Y
P /
¢
[.
4 >
v ~

.....

Yan

- 105 - ’ -
) >

is spawned by the parent node) until the value for the left

son is backed-up to the parent node. To obtain this value
the left-son brOCess spawns processes (lefﬂ and right) tg
search all its sﬁbtﬂ%es. Concurrently a temporayy value is
obtained for each of the -right-sans of the parent nodé.

These wvalues are computed by the right son's spawning°a«

o L}
process to search its left subtree, Then these tempgrary

values are compared to the final value of the left+son and
all possible cut-offs are made.

All shallow cut-offs which occur in the sequential
search due to the temporary va%ue backed-up to a node from
its left-son, will also occur inethis parallel search. Some

shallow cut-offs may be missed by the parallelksearch.'nFor

ht

example, when a process 1is’ generated to search the
!
second-right- subtree Wof the root before the first—r:ik

subtree of the root completes its search.and updafe tﬁ?\\\‘

root's value, Some cut~offs‘that are missed in sequential
search will occuy in parallel ggarch. For example, a ;ight
subtree that tgéminates early and cd#uses a change in
parent'savaiue may provide cPt—offs in other right subtrees.
It should be noted that the deep cut-offs allowed byMhe
seqSE%tial Alphabéta do not occur in the parallel version of
this algorithm because initially the nodes of the right
subtree do not 'know' about the values obtained by the ' left
son of_fhe rogt. In Figure 42 the cut:offs which méy occur

in the parallel version of Alphabeta are presented.

°

|) 1014 15 16 22

-106~

A shallow cut-off which will occur in seq_uential
ard in parallel versions of Almébeta algbrithn.

L
It is shown by ,*. N

A shallow cut-off which will occur in parallel, 13ut"

‘not in sequential version of Alphabeta. Search below
node p3 ends earlier and causes achange in the.bomd

‘ value fcr node p, so search at node Pay is cut—off

v
' N . '
4 . ‘ ; .

v
s K
R . ',@“
A
d
\ . J . .
v

@ ' y
~
. ’ ’ l
w .
' shallow cut-off which ww occur in sequential but
* not in parallel version of Alphabéta. The process
03 {0 .gearch the él}b\tree below p; is generated before
the search below P, has been campleted.
JUuUuyU g
~ 10 12 15 18, 11 12

FIGURE’42. . o
Camparison of cutroffs which occur in sequential and paralle} Alphabeta.
L * . .
Q
l ‘ L]

-

-

Y -107-

C Experimental results f&r this parallel algorithm regard
the total run time, number of nodes created ahd number of
nodes-visits for uniform trees U(w,d) where static-values
w;re assigned from a particular probability) distribution.
The\ run time decreases sharply withfhe increasing number of
processors. Also the number of created nodes and number of
node-visits increase with the increasing number of
processors; but these increments are relativelly'skall and a
saturaﬁfon point, is reached quickly (for 5 processors). The

behavior of the parallel algorithm remains unchanged ”{or

differrent’ probabilty distributions of the static-values. ,

'The Same parallel implementaéion of Alphabeta was
empirically compared with parallel version of the Scout
algorithm in [2] for the game tree representing the game of
checkers. A seque ntial version of Scout algorithm uses
procedure EVAL to examine the leftmost son 9f the node and
calls the TEST procedure for 1inequality checking for the
o%he: sons. A parallel implemenation of the EVAL procedure,

evaluates the leftmost son of node while concurrently

testing all other sons. This i§ acomplished by letting the

N

- process which calls the EVAL tb create an EVAL-procéss to -

examine the leftmost son of the nodé and ,TEST-processes to
test other sons. Synchroni;ation is required to ensure that
the evaluation of the leftmost son is completed before any
attempt is made to compare the value of a léaf node with

N

value of the leftmost son. A distinction is made among the

+

~ : - l08 -

P
N

sons” of a.npde. A node which is evaluated by EVAL is called

o> -
&

E-node while a node that is tested by TEST is called a
T-node. E-nodes and T-nodes are searched by EVAL-processes
and TEST-professes respectively. A T-node may become an

E-node, if /it 1is not exempted by the test. The root is ‘an

E-nage and it generates an EVAL-process 'tp evaluate its

18ftmost son. The root node also gen;' tes TéST-processes
to concurre%tly test 3ll its other sons.
\

The experimental results in [2] for comparison of the
parallel Alphabeta and parallel Scout show the rapid
reduction of the run tihe taken . by both algorithms with
incr%asiné number of procegsors' used to searc@ the game
treéi The saturation point is reached for about 5 or 6
ﬁr6Cessors; Beyond thaf point the run time remains
:relatively constant as the numser of processors inérea;es.
.The total number of created nodes and of node-visits for
goth algorithms increases slightly with the icreasing numbéé
of ;used processors, * The satura£ion point is algo reached
for about 5 or 6 prdcessors. It was notiéed thqt the
parallel Scout was siightly moib efficient than the parallel

Alphabeta for the opening éheckerS'game. For the mid—éame

and for the endgame the AlQhabéga algorithm was distinctly
kd M) '

superior.

s

Another version of the parallel Alphabeta algorithm is

presented in [117. In this implementation a game tree is

L

PR

- ~ , - 109 -

decomposed into several parts which are searched
simultaneously. Because of such a decomposition, some
subtrees of the game 'tree wHich are not searched 1in
sequential version may be.searched by the p;rallel version
of Alphabeta, and: some cut-offs may be missed by the
parallel version of the algpritgm. The concurency in search
assures, however, the speed-up of execution. Analysis of
the parallel Alphabeta is done on & parallel computer built
As a tree of the serial computers. A node in this tree is a
processor, A processor's parent is its master and its son
is its slave. In this parallel implemenfét{on of the
Alphabeta the root proccessor evaluates the root position.

-
Each nonleaf érocessor evaluates its assigned position by
generating the sons and queuing them for the parallel
assignment to its ;iave proces%ors. A separate process is

created for each son and each process attempts to gain

exclusiye control of a slave- processor. As a nonleaf

. -t

processor receives responses from its slaves it narrowg its
search window and agknowledgés the working slaves about the
new alpha and beta bounds. When all sons have been
e
evaluated (or 'a cut-off ha§(3§§ured) the nonleaf processor
At
is able to compute the”'}élue of its position. The leaf
processor evaluates it’s assignéd node using the seguential
Alphabeta algorithT. When a processor fin%shes, it reports
the computed value to its magter. A cut-off occurs when
alpha bound has become greater than or equal to the beta

: %
bound. ' -

. . v

N

>

- 110 -

i
H

In [11] the game of .checkers was used to generate a

'game tree and '10 'board positions were choosen. All game

trees werelgeneréted up to depth 8. Processor-trees of

depth 1, 2. and- 3 and width 2 or 3 were simulated. The

'speed-up of a parallel version of the algorithm over the

sequential. version was defined [11] to be the ratio of the

%

CPU time taken by the parallel version to the CPU time taken

by sequential one. With increasing number of processors the

value of speedup, for this: papgllel’ Alphabeta, is also.

increasing. Theoretical analysis shows that for the

worst-case (the rightmost son is the best son) the speedup

over the sequential version is equal to number of processors

*

used. For thé.best-case (the leftmost son of any nonleaf

node is its best son) value of speedup is about k% , where k
is the number of processors used. There were no. empirical
results presented about the number of nodes created or

number of node-visits,

%

: .
_In [14] two schemes for performing the game tree search

Fd

in parallel are discussed. These schemes were implemented

for the SSS* algorithm [14]. In the first approach of the

parallel -implementation of the SSS* algorithm, the multiple

-

processes perform a game tree search. ”For‘ this approach
several searching processes are initialized, one at each
grocessory/yithfdifferent sﬁarting bounds. One process is
stafted w{th the most pessimistic bound to be sure that the

search will be successful. At any time at least one process

i 3

A\

- 111 -

has thg property that if it termiﬁates, it returns an
cpgihum solution. For this approach,the speed-up of 25% was.
achieved when two processors were used for'searching-uniform
trees of different depths and widths, with static-values
assigned from an uniform distribution. This method of.
éearching is useful if we have some information about _the
minimax value of the game tree.

In the second approach of the parallel implementation
of the SSS* algorithm, as presented in [14],'the géme tree
is divided into several ’disjoint parts and each part is
searched concurrently in a depth-first manner by a different
process; the processes work asyncbgpnously. The parallell
version oflSSS* algorithm, obtained by this approach, 'was
tested on uniform game trees. For every w}dth and depth 50
trees were simulated, and the static-values were assigned
from a U“i?gfm distribution. The speed-up was defined as
the ratio of leaf nodes created by the sequential version of
SS§S* to the maximum of the number of nodes created b; the
separate processes in the -parallel SSS*, The average
speed-up was observed to vary from 1.71 to 4.95, depenaing
on the width and depth of a simulated tree. It- was also
noticed that for trees for which tﬁe sequential version of
SSS* created the largest number of leaf nodes the speed:up
w;s larger than the average one, It means that this
parallel implementation is more effective in the situations

/ 4
where it is needed the most,

./” . ‘

- 1ll2 -

\ ' o'
4.2. Ordering of the Nodes in a Game Tree.

Slagle and Dixon [29] have shown the poééibility of

~ '

Aimproving the Alphabeta algorithm by ordering the successors

of a position. They proposed two methods : fixed drdéring

and dynamic ordering to achieve the - speed<up of a
° \

trag;séaxch The flxed orderxng procedure is based on the

assumption that the static¢-value of a node 1is positively
correlated with the node's valye obtained by baéking-gp
values from the de?per levelé‘of'a game tree. ‘Usiné‘ this
method first we estimate the values of the spnslof the root

by the static-evaluation fufiction. The static-ordering

. , . ‘ , ,) '
procedure orders the sons, so one with the highest

static-value (host,likely it will be the best son) is to be
searched first. The procedure -works. in this fashion on
ubsequent levels of a /game’ tree. Résults presented by
Slagle et al. (29] show that using the £1xed orderxng, in’

number of leaf nodes created we may expect an 1mprovement of

two orders of magnitude oVer the exhaustive search. This

-method of ordering may make’tree—searching faSter, but not

1

alvays. We may distovef that our original estimate based on .
Y w - .

the static-value is w%ong and that the nodes we have chosen

, 4

to evaluate first has very unpromxs1ng backed -up value. So
the dynamxc order;ng was proposed Nodes.at the first level

of a game tree are ordered on the basis of their

static-values. Then sons of the chosen node are evaluated.

o ‘ A .
1f any of them: has ' very unpromising ' stattc-value,

P

- 113 =~

-

A}

cbmparatively'to other, then tﬁe reordering of £he p?ev@ous
choice 1is done. The - comparison of static Qand dynamic
ordering is presented in Figure 43, Slagle and Dixon [29]
experimentally showed that the dynamic ordering becomes
worthwile for trees of depth 'greatg} "than six. For the
shallower f}ees the time spent on the réordering of nodes is

same as the CPU time taken for searching additional nodes.

The number of leaf nodes created for tree searching with the

-dynamic ordering is very close to the lower possible bound

of number of leaf nodes created for a certain game tree.

4.3. Use of Transposition Tables.

-

'When sgarching a game tree it is common to find nodes
corresponding to the same positions of a game, Rather. than
reEJild the subtrees correspondyng to the repeated
positions, it is possible to retrieve the results storedv by
5 previous search. The results may be stored in a ;arge
hash table, called ihe transpos;tion table, with each entry
representing ‘a position," as described in [15] by Marsland
and Campbell., If al node p, reéchéc‘ during the search,
matches with the table's entry r then we may do the
following ¢
- if the level of r is less than the level of p, then'the,

search is directed to the best move determined by the
preyvious search on the entry r,

- if the level of r is greater than or equal to the level

-114- ;

FIGURE 43. - ' '
Static-ardering versus dynamic-ardering.

In the static-ordering the search ig based on the static-values
obtatined at level 1 of a tree. Far this specimen tree subtree

below node p, will be searched first, then subtree below node Py

and at the efid subtree below p., will be searched.

In the dynamic-ardering nodes &t level 1 are ordered on the basis

of their static-values. As in static-ordering subtréee below p

will be searched first, next .the subtree below 2% then the tree
below p,. But when node p,, has been evaluated, “its static-value
is' campared to the value 3¢ node p, (as the second best on previous
level). Because value of 1 is unpfamising in camparison with .
ﬂxenthgprogranabaﬂonst}nsearchbelwnodepl,aﬁﬂme '
subtree below Py is searched.)

Node p,., is searched if using static-ardering, but it may be cut off,
when tjig dynamic-ordering is used. '

- 115 - - .

L] x LY
of p, then if the sgarch on r was completed we do not

search p at all - value of p is equal to thé value
obtained for r, otherwise we édjust the current bounds
for further search and we direct the search towards the
best move found for .r.
Transposition tables were described in [15] as being very
. .
effective in chess endgames. In [16] the 30% improvement in
the number of leaf nodes created was ifported when using

transposition table for the game of chess with the depth of

search equal to six.

1

4.4. The Killer Heuristic.

In [3] Akl and Newborn analyze the killer heuristic to
suppiement the Alphabeta algorithm. Any move which causes a
cut-off at level L is said to have refuted.the move at level
L-1. The killer heuristic is based on the assumption that
if move A 'refutes' move B then it is more likely that A

will be also effective for the other positions. Program

which uses a killer heur@ggﬁf saves on a killer 1list moves
»

that are refutations, and later it tries to ' match moves
~ .

: generated at any node with moves from the killer list. If a

- 8 \

"killer move is found then such a move is examined first.
o .

Moves. saved while determining the principal continuation- may

serve as a killer list. Other advantage of the killer
heuristic 1is that it increases the usefulness of the

A
transposition table by continually suggesting the same

»

- 116 - ' .

N ¢

moves. It may be also used for dynamic reordering. The
\ :
actual improvements. in the tree-search using the killer
. .
heuristic over thehﬁure Alphabeta algorithm were analyzed in

[{3] on the King-pawn chess endgame program déveloped by

‘Newborn. The preéented results show that the percentag?(r >
s

improvement of the number of“ leaf nodes created i
oscillaiiyg about 5 fixed value fof a given width, of tree
and different - depths of the search. This percantage
improvement va;ied from 15% to BO%rdepending on tgg startingéa
position for the search, and on the width of the

corresponding game tree.

" Gams [8

‘pathological [18].

vy

- 117 -
A
CHAPTER 5. o

PATHOLOGY IN GAME TREES.

Paind
¥

Researchers proposed different methods of speeding-up

the game tree search based on the assumption that gne wishes

to sedarch deeper. There was almost universal agreement that
increasing the depth of search improves the quality of
decision ma¥e. Re investigation by Beal [5], Bratko and

¢

18,19] and Pearl [25,27]'showed‘t2at there

exist a large class\of the game trees for which searching
deeper will not ihcrease the probability of making the
correct dec?sion, nd such game trees were, called
These researchers analytically and
emp}rically have shown\ that fog this class of the game trees
the q:cision'made become random with deeper search{az; This
phenomenon is not observed in some real-world games,wsuch as
chess 'or checkers, where searching deeper improves the
quality of decision, ‘So a major open question has been why

pathology occurs {n some games and not in others. The

review of theoretical analysis and of some experiments,

carried Dby . researchers (5,8,18,19,25,27] in ‘order ‘tQ'

investigate the causes of pathology will be presentéa. Then \\\.

the possible methods of overcoming the pathologiﬁal
phenomenon will be -discussed. We will also deg;ribe our

experiments and we will report the results we have observed.
e S

'

Vo eire % Ve p———— b R g 4 e | e S . ¢ i oot
i

L

- R . - i
’ C o -118- | . &j’ﬁ
\ .) L ' w\&:ﬁ\

' (:;;%}//’ 5.1. The Nature of Pathology.

-

To 1illustrate the nature of pathology in game
. trees, as described in [25], let us conﬁ&?er a uniform tree
» of width two and depth d > 0, where any leaf node may be WIN

or ﬂOSS with probability p and 1-p, respectively. It is

’ easy to see that each node in such a game tree is either a
forced win or a forced loss node. As ';e know a static
evaluation function provides the estimates of the strengtg‘
of\any leaf node. We may assume that for any leaf node s in

such a game tree staticvalue(s) is either 1, which should
correspond to WIN, or 0, wvhich should cgrrespond to LOSS.

. However, this evaluation function might assign valﬁe of 1 to

a LOSS leaf pode, ér it might assign value of 0 to a WIN
node. The informedness of such a ggnction may be quantified

. by two error parameters (P stands for probability) :

> 2
f

errl=P(staticvalue(s)=1 | s is LOSS),

err2=P(staticvalue(s)=0 | s is WIN).

ey

S

For any node of a game tree we may consider its
characteristic parametegg to. be the following
probabilities :

2\

S %
“

W * . 1) probability that node is WIN ii

Tz g

2) probability that the estimated value of the node is 1,

. ~and ifs true-value is LOSS ;

Iy

~119>

&

4 .

3) probability that the estimated value of the node fgz;;ic,

and its trge—value is WIN.

-
4

a-‘k v b ’ -
Any‘leaf node has an initial state of :the

. parameters, which may be represented as a vector

(errl,, err2,, py). For any node at level L-1, where .

Y

d>L >0, we may compu&é these parameters recursively as

given in [8,25] :

~

\ - . . | '
R - a
errl, | = 1-(I-err2{); n
, : -] ,
(1) err2 , = [(1-p Jerrl + Zﬁg(l-errZL)]err%L/(l+pL):D
P pL—|h = "il.-[pi.' - A : . \, .

1. " -~ L

A

“These equatians describe what happens to evaluations pf the

leaf nodes as these evaluations are backed-up the tree. The

probability that at a certain 6 node the decision made. is

node's sons. Let us assume that we ‘have a node with two

\
&

sons : one corresponding to WIN, one to LOSS. It may happén"
that the WIN son obtains lower estimate thangthe LOSS son;
then the wrong“deéision will be made. Probabilty of such a
situation, denoted ¢ as ERR, is equal to 1/2(errl+err2).
Researchers [5,6,8,18,19,25,27] have tested anqukiCaliy and

empirically the behaviour of the ERR with increasing depth

_of search. If one wants to analyze the benefit of

increasing the depth of search by one, two, levels,

1

then one has to ’coﬁpare the' va(ues of _vector

K

characteristic_

v . \
correct depends on the accuracy of the minimax values of—

ORIy

v . A
€ . ; (
[] Y 9

(errld,erer,pd) obtained byeﬁassing through 4 iterations of.
, p .
(ﬁfluko that obtained by passing through.d+l, d+2,

" 3
iterations., Pearl [26] assuming that the static evaluation

4

fuhction is equally informed at "all levels of the game, has

i

concluded that the effect df increasing the seareh: depth,
N . - 7
equivalent to additional iterations'of (1), always increases

the value of ERR. ¥

¢

Y

. 'For uniform trees of width two and depth of search
varing from 1 to 10, the subsequent values ofVERR from (1)
for differentk'.‘ igl valpes of errld, err2d, P4 .havg been
computed. ' It’ 'was assumed that thkese initial values do not
depend on the deptﬁ of search. Depending on the value 'of
Pg: we got different values of the vectors (errl,,, err2g,),
(errld_z, ’
differeQF values 6f ERR. For some initial values of errlg,

err2y), .., (errly, err2g), which results in

t

errzqfwe‘have gﬁo ted in Figures'44 to.47 the changes in the

. 'v?lues of ERR ,with subsequent iterations ‘of (1), when the
value of Py was varing‘from'O.Z to 0.9. As we see the value

: » ‘ .
of ERR migrates. towards 0.5 with subsequent iterations of

-

(1) for gllapreiented Pyr errly, err2q.. }f (errly + err2,)

¢

> .1 then"the value of ERR becomes greater than 0.5.which

means that the evaluation function used is misleading. ..The -

33

information backed-up "is free of error only if initialy

errl=0 and err2=0. In such a case the evaluation 'functipn

‘g

*perféctly estimates values of the leaf nodes. _

« »
P, I .- -
8 W
. . ; -
. N . e :
). Ta s =

3

L .
A ﬂ

- f\ - = &
© 7Y 0T WRAep ‘Z PIPTM YITM WIOITUN ST 3913 aue) T-0=Pzire ‘I'0=Plit® jo senfea
.. TeTITUL °"NIM ST Spou Jeot 3oyl A¥ITqeqoad ay3 3surebe W JO sonTea jusnboaqns jo 3014

/. e ‘ -
M . ~ . - .
Y - A e —
- - - - = 3
- .
. . .

i
: . L YOI

> -

B 8 .2 . 9 g ¥ <

—aft—4 A

NIM ST ®pou FesT .3eyl A3r{Tqeqoxd

~121-

-122-

k 4

N -
. N N . ~ ﬁ
0T Y3dep ‘ZYIPTM 3ATM tIOJTUN ST 3ax3 aued *z°0="zime ‘TpsPrare Jo senTea ’ : 7
TeT3TUI "NIM ST Spou JesT jeyy ATTTqeqoad oy 3Isutebe W3 JO senTea juenbesqns Jo 30T -)
o . “J R ~ - . .» .
. . ‘ M1 !
b 8 - 2) , S b’ ¢ A
- ’IM st spou Feet 3o ATriqecod - . - - . \
L, A
|
A
[_
|
4
N

T

0T yidep ‘Z WIPTM JO wITUn ST S0a3 auwed -['0=Pzixs ‘z(=PliTe Jo ssnTEA TETITUT
“NIM ST spou jeeT 3jeyy AITTqeqoad sy3 3Isurebe g JO sonTea juanbosqus JO 3074

.) » . . . Ws Hr.H .
b . 8 yA 9 S - 4 c [
-y A A 4 —e s L A ;
. NIM ST Spou jeeT ey ATITgeqold K m,\
L} . . , . St .
R T , . ‘ -

A\\Illll uoT3eI=]}T

pug T

-123-

uoTIeISIT
Wy

-

—~ - UoTIeINT
-

uoT3eINT

y3g
uoTIRINTY
[T —

J

-t

-124-

/

0T REOP ‘Z BPTM JO WIOJTUR ST 9913 kD *Z 0=Pzate ‘Z°0="TiIo wo santea
TeTITUL "NIM ST 9pou Jeol jeys AQrITqeqoad ay3 3jsurebe Wi Jo sonyea juonbasqns Jo 3014

A Y

. i Ly WOTA
6. g 4 v ¢ vy <

Y

NIM ST 3pou jeoT jey3 Arrrqeqoad .

N

125 S I _,f

Let us consider a more general case vhere an

evaluation-function takes on multiple discrete or continuous
_values, as presented in [26]. The connection ® between
k maénitude of a static-value and the actual value of any node

is characterized by the following pair of distribution

functions : it

. w
F, =P(staticvaiue(s) ¢ x | s is a LOSS node);
Fy=P(staticvalue(s) €« x | s is a WIN node).
4

For any fixed x, the events staticvalue(s) ¢x ‘and
staticvalue(s)>x propagate with the same logic as the
‘staticvalue(s)¥0 * and staticvalue(s)=l1 in the bi—vgiued
model. So two functions may be defined -:

err;(x)=l~FL(xﬂ, err2(x)=Fy(x).

.

Equations (1) hold also for this general case, bec&use wit

each minimax operation the pair (errl(x),err2(x)) undergoes

same transformations as (errl,ei?ZL\iP (1). «For the case
when the evaluation functidh returns continuous random
values, the probability of making the wrong decision amounts

‘to the area below the curve h, such that err2=ﬁ(err1), and

v

+ ~

may be described as :

1

(2) ERR=’/ err2(x)d(errl(x)) =¢zf h(errl)d(errl)
- 120

’ 4

Analyzing different initial values of (errl,err2,p) Pzgrl

o

LY

-126-

[26] has concluded that the value of ERR in (2) will migrate
towards 0.5 with icreasing depth of search. Only if errl;
or err2, initialy has a value of 0 then, depending on value

of Py - the value of ERR may be 0,

If the evaluation function takes on multiple discrete
values then the value of ERR will amount to the area
enclosed by the polygon connecting points (errl,err2) as
their values are obtained passing through iterations of (1).
The Valuepof ERR will alsd migrate towards 0.5 if”i?nitially
errl # 0 ang erg% # 0.)

b
LY

£

Similar analysis as above may be done for the uniform

trees with width greater than two, For such trees equations

~ -
«

(1) become :

Y

w
errl = 1-(l-err2)7

err2, _, [l/(l—pL)]w{[(l—pL)err1L+ pL(l—eirZL)]w-
(p, (1-err2 1"}
R '
For bi-valued evaluation function,the value of ERR will be

equal to :

vt

ERR = errl(l-p) + err2*p , as given in |[8].

!
!

-

For this case and for the case of multi-valued. evaluation

function anaiysis of the value of probability of making

-127-

ES

wrong decision will be similar to that for binéry trees.
1

From this theoretical analysis it is clear that the
whole class of wuniform trees with random static-values is
pathological, increasing the depth of search for such a game
tree degrades the quality of a decision made. The first
game proved by Nau [183! to be pathological, is the
Pearl-game. The initial playing sdoard for this game is
constructed by rahdomly assigning to each squarﬁ lof the.
board values of i' or O, witﬁ probabilities.p; ané‘l-p¢'
respectively.' Playerl,divides the board in w, w» 2, parts
vertically and chooses one part, discarding others. Player2
divides what is left horizontally in w parts and chooses one
part. The play continues in this manner until only one
square is left, this square represents the ending position
of a game,. Note) that a leaf node wusually does not
correspond to the terminal position of a game. If. the
square ‘has a ~value of 1 then the playerl wins at this
;osition, otherwise his opponent wins. In Figure 48 an
example of a gamé tree which corresponds to the Pearl-game
is presented. ' As originally described in [23] the class of
Pearl-games is playqd.~on an initial board measuring
v qu7 . squares. Since the value of ERR quantifies the
probability of erroneous decisiom we may say that the value
of 1-ERR quantifies the probability of making. correct
decision. Analytical and émpirical results for the value of

1-ERR for the Pearl-game, presented by Nau [18,19]); show

~-128-

b=~ Jo]o
on—»or—a-\
- lo I~ lo
O i O

011 ofo
0 {0 Player2 to move 1j1
11 0f1
1o 1fo
01 , 1]1 o] o a1
Do 1 Jo] Playerl NIT7 1o g
to move X
0 1 Player2
0 0 1 0 1 1 to move
ojlo] }io} 1) [a]lloe) Lol lai lo]l2 1] [1][o
Y
" FIGURE 48

An uniform game tree of width two and depth four representing
the Pearl-game.) .

-129-

14

-
-

"that the probability of making the correct decision for

binary trees tends to increase with an increasing depth of
search d, but only for trees representing games with

¢
terminal positions up to the seventh level. As the level t

of the terminal positions becomes greater, the probability
of choosing the correct son of the root as the best son
éecreases wi;ﬁ an increasing depth of search. Iﬁéreasing
the depth of search causes the decrease in the value of
probability of correct decision even for smaller than s$even
depths of terminal positions for uniform trees of width
greater than two.. We simulated similar to-Nau's experiments
to prove that pathology occurs for-the Peari-games. We
comment on the results obtained by Nau and by us in thes
section %.3. \

A question arises regarding causes of pathology. Nau
[18,19] and Pearl [26] question why the Pearl-game is
path?logical and games such as chess or checkers aré not.
One of the possible reasons is that in games of chess or
checkers ‘'the board positions change incrementally. -

Describing strength of a node as the possibility of winning

for the player who moves ~from the corresponding game

position, we may say that a strong node is likely to have

s{rong sons and the values of the sibling nodes are }ikely
to be similar. This property does: not occur for the
Pearl-game, where the values for any two nodes at the same

level of a corresponding game tree are independent of each

DU

-130-

other as the fﬁnctions of independent variables. -In ordenﬂ
to investigate games in which the strength of a node changes
incfementally, a class of incrementali games was defined by
Nau in [18]. While the manner of moving, size 6f the board

and criterion for winning are the same as in the Pearlh-game,

-the assignment of static-values is done differently for

»
incremental game. Each node is independently and randomly

given the value 1 with probability p, and value -1 with
probability l-p, - If the terminal node has a positiv; sum
of itself plus the values df all its ancestors, then 't is
assigned a vailue of 1, otherwise it &s assigned a value of
0. An example of an incremental game‘is given' in Figure
49, Empirical Vresqlts*presented'by Nau f18,19] have sgown
that pathology does not occur for such i%cremental éames.
We also simulated experiments to prove that pathology does
not occur for incremental games. Discussion and comparison

of Nau's and our results obtained for this experiment is

presented in the section 5.3.

' i
Bratko and Gams [8], assuming that the nodes of same
true-value (WIN or LOSS), are grouped together, have shown
that the error parameters errl and err2 converge towards O

if initially errl, < l—gw, and err2, < §.. Beal [6] has

" shown tQ?t the assumption of grouping holds for the

-King-pawn chess endgame. So we may conjecture that the

minimaxing is beneficial for the real-world games because of

incremental changes in position values for such games.

M :

-131-

[] 500

(-1 1) (1 10 ()1-10) .11

0-2,02—20-2—4020—220‘42

FIGURE 49.

Construction of a game tree corresponding to the incremental
game of width 2 and depth 4. Every node in .a tree is assigned
value of } with probability p, » ‘or value of -1 with probability
1-p, - For this case p, wasequalto} 1f for a leaf node value
of itself plus sum of values of all its ancestors is >0 then
such a leaf node has a static-value of 1, otherwise 0.

0{0[0]0 / : ,
11110 mﬂusspgcinmmcretentalgm,mlzdxan *
g géi / initial playing board appears at the root of

the tree.-

-132-

=

A real-world game may terminate at any level; The more
realistic model representing a game should capture this

property. For such a model the .leaf nodes may be present at

~any level of a'game tree (if a leaf node is at a level

‘ . .
higher than the search depth, then it is the tprg&gal node -’

noge which cor?espondsnfo the end of a g%ﬁe). Assuming
that each node has a, non-zero probability q of being a

terminal, and that the evaluation function 1identifies the

e

L]

(1), as given in [26] : ‘ ‘ .

l . / v ! . . . '
terminal -‘nodes without error, -we obtain modified ve?fldn of

. B R - .) ' ~

Y .
errl = [1‘(l‘err?t)][(l-q)p{]/[l—(l-q)(l—pt)],

)

.F3) err2., ‘[(l—poetm; +‘2pL(l-err?L)] errlL/(l¥pLY,

8) #,

Biew - =(1-@)(1-p}) S o
5 .
-) .

Analyzing the trajectory of the vector (errl(x),err2(x))

Pearl [26] concludes that the preéence of tefminal nodes in

game trees, even at a low density of 5%, completely

“eliminates the search—depth pathology for trees where pd#(g—

qiﬁ/(l—zg), g vas defined in section-3.4. For this initial

P, the‘(errlo,erer) migrates towards the points (0, 0:8089).

and (0.842, 0). | 5 .

-133-
i ‘ \
For uniform trees of width two and depth of search

viby{ng from 1 to 10 we have computed values of ERR for

k)

—

diferent 1n1t1al :elues of errld, err2y, py and dlfferent
values of q. Values. of errld and err2‘j varled from 0.5 to
0.1, of I from 0.9 to 0.2 and value of q var{ed - from 0,25

to 0.05. We have noticed that for every tested¥alue of

(errl,, err2,, p,) the value of ERR was decreasing with '5u

subsequent iterations of (3). Only for initial pd=0.6 the
value of ERR increases with the subsequent iterations of

(3{. This was as predicted by Pearl's analysis [25,27]. In -

\
Figures 50 to 53 we have plotted the changes in the value pof

qERR for trees for which g=0.05, for same initial values of §

errld, érr2d as plotted for dniform trees, with value of Py

‘VarYing from 0.2 to 0.9. As we see the results agree with

the Pearl's conclusions- We have noticed that the decrease,
of the wvalue of E§R with subsequent iterations of (3) is
-

quicker with the smaller initial values of errly and err2;

5.2. Possible Methods of Avoiding Pathology.

, i
As we have seen pathology may dﬂsapper if the game tree

is nonuniform: ;§uch _property “is common jfor real-world

games. For gamesi;uch as Pearl-game, which have a uniform

© structure, Pearl [25,26,27] has suggested that pathology

)

might be avoided if: the evaluation function used would
return the prepbability that a leaf node is forced win, and

if for Dbacking-up we replace the minimaxing rule by a

L) T

1

a -
-
S
o "
11}

"0T U3dSp ‘Z UAPTM UITM WIOFTUMWOU ST 9913 aukD *[*0afgim ‘T-0s‘ram jo senrea

WUEH "NIM ST 9pou yeaT jeyy A3rTTqeqoad ayi jsutefe ¥MI JO seritea juenbeeqns Jo 1014

iteratipn

t - ~

g’ L. e g o ¢O8 TDLL .

NI Eao L Rl e ,

13
. i
, ;
b ‘ o r
‘
£
=
* t -
‘ L]
3 R =
L8 t. -
1
>
. .
-
B ! .
A -
L}
N Ve
N &
N - ™ -
. p21sic | <‘
1.
.
:
\ - ;
B -
r 2
- = . £
P 4 * 3
Eal - ‘1
- A
B
. N
. i
- . .
. f . . e
. « .
p—— N o P T TR I S S T

.
~

- A

¢

mw 1pdap ‘'z PP 543:50.««:28: ‘5T 9o aueo ‘z°0sfraze '1°0e"1a1@ JO snTEA

TRTITUL "NIM ST apou jeel Jeyd-Aq1TTqegoxd wm.ﬁﬁqﬁ WA Jo-sen[RA Juenbesqns Jo 301d >
- . . o : . o 1S OId ,
B’ 8 . A S b’ % ¢
UOTARERAL - A A L N n
. Qwot NIM ST apou Jway 3wyl A3 r{rqegoad -
uoTIRIS}T Y38 :] P
uoTIeISIT 3y . s
uoTIRIF] o .
¢,) r—.&v - e M,
uoT3® b
o - - . “\\ :) .
. i J .k
& —_— L N
!,//\\\ - — .] A
. ., .m.\,
, \ . Y
»ﬂ v
!n.
a wm
_ , s
3 '
’ {

[
"

-136-

B

. .c ‘ Sop s ’ . oug.ﬂu.>
‘0T WAdep ‘Z WPPTA 3TM WIOJIUNUOU ST 3813 SuRD ‘1°(Q=7Z1i® ‘Z°(Qs"1118 J

TeTITUI °"NIM BT apou Jeal a3 ArTrqeqoad an uwﬁ.mrmn 3 Jo ao:du,\, juanbaeqns 30 301d

| . . gandIa
m ‘ w . N P w m L q‘ § . ‘ ﬂ.] 0 N. .-

UOTIRITAT b “RIN ST SpNT JUOT I9qT ATTTTQeoat— ———t
. et | R

v

LA

¢

-137-

' | Y VO A F's
uol T 'NIM ST spou geal eyl A3rTrqeqoxd

‘0T ...T% ‘Z UIPTM Y3TM WIOJTUTWOU ST 9013 awen 'z°0=Pzixe ‘z-p«Praim jo sohrea
dmﬁ..nﬁ.zuzwgwmmaumﬁbﬂﬂﬂo&wnum:.dmmmﬁmuo%ﬂ?uc%ﬂ:muo%ﬁ

H .
_ » 4
- m. .w w. Nﬁ @. m- AW.IVM.-QQUHL N.

N 4

UOTIRIRIT
uoTIeIn T .

=L ANE ’ -
UOTIRISN T ,

€ F -
. m N -y ’ g B
b .. \
N .
e - - L

’ e - 138 -

product propagation rule. - Using this method of searching
the' game trees, we may say tHa; for every node we compute
its winability. The probability estimation function, f
denﬁted as probest, assigns‘a winability vatues to the leaf

nodes. Value obtained for\pfgyerl at a node r, denoted as

winability(r), is defined as followed .
. / "
-

1€ r és a MIN node :

probest(r), if r is a leaf node ;

winability(r)=
)

!

i

ay | winability(r), otherwise; r, is son of r.
if r is a MAX node :

probest(r), if‘r 1s a leaf node;
winabil\ty(r)= ' / |
1-[._"](l-winability(r,)), otherwise.

LaN
™ 'K '

Such . a method of searshinq game trees has__a few
disadvantages. First is how ‘to esfimate the probab?%ity
that’\a position 1is a jorced‘ win ? Very likely such an P
estimation function will be -just a mapping of a ;tatic
. evaluation function on the interval (0,1]. sSecondly, it is
difficult to invent a aood pruning algérithm for chh‘ a
method of Backing-up. And, as we well know, it is ngt
practical to perform an e;hau§t1ve,seérch of a game \tree.
Third is that for gome instancé;'mxnxmaxing,differS*from
prodﬁct propagqgation 1in predlct;ng which mgbé shall be

~hosen, Assuming %tnat at a roct playerl chooses a move

°

(3¢

- 139 -

towards the node which returns the highest winability, then

"for example, for the tree shown in Figure 54 move towards p,

will be chasen by minimaxing and move towards p, will be
chosen by a pro@uct propagation rule. Which one is
correct ?

The first investigation of the probability estim;tion
in conjunction with the product propagation was done by Nau
[18,1§]. As an estimation of the probability that a 1leaf
node is a forced win Nau used a function which returns the
ratio of tﬁixnuﬁber of terminal WIN nodes to the total
number ofkwt;rminal nodes corresponding to this leaf node.
Such a function is in fact a mapping of the previously used
static evaluation function into the interval (0,1). Nau's
empirical results show that for the Pearl-game pathelogy
does not occur when the product prbpadation is used as the
rule for backing-up. Nau's and our experiments performed
for such a strategy of game-pl?yinq are described in the

v

section 5.3, ‘ \

It is also possible to imprové the decision quality by
employfing more appropriate backing-up rules [27]. One such
rule is represente% in Be}liner's [7}] B* algorithm, where
each node 1is quaptified 'by an optimistic and pessimistic
estimate of 1ts strength. These eétimateslprovide a range
on the ‘values of the node's successors. We may also say
that this range delimits ﬁhg uncertainty in the evaluation.

w

P P12

11

0.42 T 0.94

. FIGURE 54 -

-140-

Py

0.55

22

0.52

An example to show that minimaxing differs fram the product
propagation in choosing the move.
Assuning that the static-values are equivalent, then for ¢

~ minimaxing :

a) 0.42 will be backed-up to node p;
b) 0.52 will be backed-up to ncde p2

Move towards P, will be chosen.

- product propagation :)
a) 0.42+0.94 = 0,3948 will be cofputed for node P

b) 0.55*0.52=0.2860 will be canputed far node P,

Move towards p
prabability of

loe

ing a WIN.

\

P s T T Ry T NPRVIRG R

will be chosen, as one having the highest

- 141 -
The B* proves that the true value of one of the root's sons
is » the values of the other sons. This is accomplished
by showing thqé the pessimistic value of one of the sons of
the root is 3 \\\the-optimistic values of the rest of the
root's sons. The ihitializatjon of the B* algorithm is
shown in Figure 55.

[N

©

The B* ‘algo}ithm first expands the root. It has to
decide which hode to explore énd also if it wants to raise
the pessimistic value of the current best son above the.
_optimistic values of the other sons, or would it be easier
to lower the optimistiﬁ value of remaining sons to below
pessimistic vaiue of the current best son.‘\ The rules fo%
making 'decisions throught the B* search are based on a
simple probabilistic model, as discussed in {22] by Palay:
These‘ rules were testéd in [22] 6n simulated game trees and
they were shown to provide a saving of 65% of the work:
required by the exhaustive search. Further §tu§ies on B*

are needed to conjecture if this strategy is effective ~for

playing the real world-games.

L4

] &1)

26,29 [9,35 [27,30] S . |

FIGURE 55. ‘ -

The B* algorithn.

The opﬁ;nistic and pessimistic values associated with any node are
shown in brackets, the optimistic value being the leftmost of the
pair. These values are updated as the search progresses.

For this game tree the algarithm tries to ‘raise the lower bound of the ™

node p,, as the most optimistic, to the value not worse than the upper

bound 8 node p,.

-

. oy
d - 143 -
- .
5.3. Experiments Simulated on Pathological and

\

Nonpathological Game Trees.

.

__To test the changes \Qh:zf value of the ERR for the

[2

Pearl-game, Nau [18,19] Si‘simulated uniform game trees
witﬁ a certain terminal level t. Such trees will be denotgg
as U(w,d,t), where d stan&s for the search-depth and w
stands for the width of tree, d ¢ t. The terminal level
of tree represenés/&he end of a game. Nodes at this level
were assigned values of 1, corresponding to WIN, or O,
corresponding to LOSS, with probabilities p, and l-p,,
respectively. Thesg true-values were then backed-up to the
robt,'anﬁ the forced win son'a;a‘forced 1555 son of the root
were chosen., Trees, for which the root does not héve a
forced win son, were disregarded. Then, the nodes at levels
t-1, t-2, ..., 1 were considered go be the leaf nodes. The
function, which for a certaiﬁ leaf hade, returns the number
of correspondiné terminal nodes_with value 1, was used as an
evaluation function. Naqte, that such an evaluation function
is not Very accurate on the levels greéter than or equal. to
the level t-2. As an example in Figure 56 we present two
cases for which the estimated value of a leaf node is the
same, but for the one case the true-value of the .node is
WIN, and for the other case LOSS. The evaluations of the™
leaf nodes were then backed-up to the root; the Nau's method

of backing-up [19], thought different 1n notation, 1s

equivalent to negamaxing (or minimaxing). As an

-144-

*d epou je SSOT pPeOID] .pue ° ,d dpou

e utm paOI03 sey TIeAeTd Sy3 Ing ‘T JO SNTEA.PIIPUTISO Sues -IY3 aney »d pue d sopoN
| ’ ..mcoﬁm:uﬂm uTe3I30 33 I03 wumusuom jou sT Abotoyzed jo
soue3sTxe a3 anocad oa_..-m.ﬂ neN ~ﬁ PSSn UOTIOUNJ UOTIENTEAD I PR MOYys 03 oTduexo uv

\ . . "9 @AMOIA

-145° .

: - o S
approximation 6f the‘l-ERﬁ, which quantifies the probability
of the correct,deciﬁ}oh,‘Nau1[18,19] uses the ratio of trees
for which the movealowards the forced win son was choséﬁjh‘ﬁ‘;‘
Results obtafhed'by Nau are presented in Table XIX. We have , s

N

gi?ulated very similar experiment® but we used minimaxing

fér backihg—up. We have also chosen the forced win soﬂ and

forced. loss son of the root node, and than we have compared ;
valueéw returned to those sons with the increasing depth of . Ca
search. We héve simulated this experiment on 20606 trees. .
Our results are presented in Table XX, 'The§ are almost
identical with the Nau®s results. The few minimal
differences may be due to the different'sampie sizes used by
us and by Nau. As we see with increasiﬁg width of a tree
the pathology occurs for smaller depths of search. This was

4

-as expected based on the theoreT stated by Nau in [19].
Similar experiments.were performed for the incremental

games. Nau has simulated different U{w,d,t), where nodes at
.thevﬁgrminal level were assigned values of 1 or -1 in"® way
descrihed "in section 5.1. Then the forced win and forcéd‘

loss sons were chosen. The values returned to these “sons

vere compared ggth an increasing . depth of search. The
.function which returns the number of corqespénding terminal

nodes with ivalue 1 wqs wused as the static evaluation
s function. Nau's résults a:zxpresentgd in Table XXI. Our -

results for this experiment are presented in Table XXII.

Both taﬁles shov that fof every tested U(w,d,t) the value of

i

r - 1 e
-146-
* ‘ . i 1
' ‘57 Terminal Depth width~ of sree
level of of , \
the game search 2 3 4 5 6
&
‘ 1 07842 0.760 0.711 0.692. 0.675
2 .,0.867 0.779 0.701 0.671 0.649
5 3 | 0.891 0,777 0.708 0.664 0.638
4 1.000 1.000 1.000 1.000 " 1.000
v 5 1.000 1.000 1.000 1.000 1.000
’ 1 0.809 0.702 0.656 0.637 0.619
“ 2 0.806 0.699 0.641 0.612 0.602
e © 3 0.825 0.713 0.632 0.602 . 0.592
4 0.833 0.692 0.619 0.577 0.565
.5 1.000 1.000 1.000 1.000 1.000
.6 1.000 1.000 1.000 1.000 1.000
" L -
b o.762 o0.666 0.613 0.594
2 0.769 0.655 0.602 0.566
3 0.777 0.653 0.606° 0.559 not
7 4 Q.797 0.648 0.586 0.555 gimiat
5 | 0.811 0.624 0.569 0,538 Soaced
-6 1,0%9° 1.000 1.000 1,000
7 1.00 ¥FTO00 1.000 1.000

. \
TABLE XIX.

. of correct decision for the uniform trees representing the
Pearl-game. In the Nau's meth6§ of backing-up the value of

a node p is computed as follows :

' 1

staticvalue(p) if p-'is a leaf,
BACKVAL(p)*=)
-min(BACKVAL(p,), ..., BACKVAL(p,)) otherwise
3 v ‘ ' 0

and the static-value .is assigned to the leaf node from the

point of view of the player who makes the last move.

. .
Nau's results [19] for the approximation of the probability

. =147~
N . - 5
Terminal Depth Width of tree -~
level of of * ‘ p=
the game sea¥ch 2 3~ 4 5 6
) 1 .{.0.851 0,741 0.701 0.672 0.663
N . 0.878 0.750 _ 0.692 , 0.652 0.604
.5 in/‘ 0.891 0.761 = 0.73¢ 0.653 0.675
. 4 1,000 -1.000 1.000- 1,000 1.000
: ©1.000 1.000. _1.000 1.000 1.000
L] r\\) \
7
1 0.815 0.701 oy
‘ 2 0.803 0.698
. 6 Y3 0.851 _ 0.702
¥ 4 0.833 0.675 not simulated * .
5 1.000 1.000
6 1.000 <;Aooo ¢
1 |- 0.751 0.671 !
2 0.720 0.647 ' o
3 0.737 . 0.663 : - -, . A
. 7 4 0.757 0.662 e
5 | 0.798 _ 0.638 not - similated
6 1,000 . 1.000 /
S 7 1.000+ 1.000 . o
L , : .
e ' . - .,
, , . TABLE XX. Lo y

Results from _ dupligation 'of, Nau s experiments ‘The

approxnnatlon of probab111ty of - correct decision for uniform

2
trees representlng the Peaﬁi\game Minimaxing was used for -

backing-up. '

(>3

* these cases were not smulated by us because the trees becqne to big

4

" to fit w1t}u_n the camputer meneory avallable

," a ‘
a
- . .
. . .

4 ' !

~

H

&

~148-
d
. ’) ‘ v
Termihal Depth ~7 width of " tree
level of of | - <
the game search 2 \ k) 4 5 6
[" ’
L _ . L
1 0.941 0.936 02959 (.968 0.985
2 0.969 0.967 0.976 0.987 0.997
5 3 0.982 0.976 0.987 ,0.994 0.998
4 1.000 1.000 1.000 1.000 1.000
5 '1.000 1.000 * 1.000 1.000° 1.000
1 0.936 0.941 0.966 0.972 0.985
2 0.953 0.961 ° 0.978 . 0.990 0.996
6 3 0.976 0.978 0.992 0.996 0.999
4 0.987 0.983 0.992 0.993 0.999
5 1.000 - 1.000 1.000 1.000 1.000
6 1.000 1.000 1.000 1.000 1.000
1 0.924 0.936 0.948 0.969
2 0.955 0.960 - 0.974 0.992 .
B 3 0.964 0.964 0.977 .0.992 rot.
vi 4 0.980 0.982 0.988 0.996sumulated
. 5 0.985 0.985 0.994 0.998 ,
6 1.000 1,000 1.000 1.000 .
7 1.000 1.000 1.000 1.000 ?
— ' Y J]
TABLE XXE. °

Nau's results .[19] for‘approximatioh of the .pobability of:

correct

incremental games.” Nau's method of backing-up'was used.

decision

for uniform trees representing the

.g\

’

.(‘J

@9

. ’1“9’ p

%

U

«
Terminal Depth - Width of tree
level of vof : o
the game search| 2 K | 5 6
-1 0.960 0.912 0.908 0.916 - 0.924
| X 2 0.972 0.923 0.913 0.929 0.937
5 ! 3 0.976 0.954 0.927 0.941 0.949
; 4 1.000 1,000 1.000 1.000 1.000
: 5 1.000 1,000 1.000 1.000 1.000
| z -
1 T /
1 } 0.929 0.930 !
boot2 1 0.945 0.942 3
6 ? 3 | 0.957 0.959
P4 ¢ 0.971 0.979
! 5 © 1.00 1.000
¥ ¢ . 6 - 1.00p 1.000
! i- | .
i S T ’
. k-] 0.931 0.926
; © 27] 0l%ar 0.9
; , 3 | 0.956 0.937
| 7 8 | 0.964 . 0.959"
[! 5 ! 0.972 0,984
! ! 6 . 1.000 1.000
| g | 1.000 1.000
L y) °
e - TABLE XXII. -
Results from duplication of Nau's experlﬁents; ‘The
- ~ ’

aﬁproximétfdp of probabil:ty of correct de¢ision for-uniform

-/

game trees representing the incremental /Qames.' Minimaxing

was used for backing-up. , : ‘ .ﬁ

* these cases werexin.sumﬁata&tylmsbaumme'dﬁat:ees became t.obig~

!

to fit wvathin the cuxpzter memur) available.

<

estimation ofwthe_prgbability of correct decisjon increases

‘with 1aneasxng depth of search "so there 1s no pathology

for xncremental games.

X .
. ' . .
¢ : .
1) - (N
)
"

We have also simulated different experiments to ‘examine
if * pathology occurs for uniform’ trees with dependent

\

static-values assignment. We Simulated different Utv,d,t)

trees -and we assigned 1nitial values to all nodes 1in every

-

tree as in dependent scheme described 1in section 3.3. So -

.
v

for the ~1nteger~dependent'-approacﬁ sfbling_ nodes were

assigned distinct values from the set GQIlt 2. ..., fi. For

" the real-dependent approach wé used set 8=il/fl, 2/€5, ey

f/fL}, vhere L 1s the level of the hodes to which the values

‘ -) \

were being assigned., For both’ approaches value of &

terminal node was computéd as the sum of #ts assigned vaiue

i

plus the summation of the values of all its. ancestors.
These computed ¥alues were then backed-up to the root of a-

" A3

game tree, Comparing. the values obggxned fér-;he sons of

the root we created a set of best sons. Such set “mhay

cgnsist-only of cne son, 1f only one node at the first level

— & [’ .

'of a game tree returns the highest value. . Trees . for 'which

all sons . of‘-the root returned the same value were

B
»

disregarded. Then ve performed the mznxmax searchxng up to
the deptﬁ d'= :~l, t-2, ..., :. The Jalue for any leaf node
was computed using alread} assigned xnztial va;uesj So- the

¢

static-value was o@mputed as sum of the initial value of a

node plus the summation ~of 'the values of. all node's

"

-

- 0

~

PR—

-151-

‘ ancestors. These static-values were backed-up to.the root

of a tree using the minimax procedure. ‘Then we have
co&pared the highest value obtained for the nodes in the set
ofibesg sons, to the hiqhesqualue obtained for the rest of
the root's sons. Forl every depth of search d we have
computed the ratio of trees for which a correct decision was
made, in'ua séhse ghat a son from the set of best sons had
obtained the highest q'val‘ue.~ Our results for the
integer-dependent and realbdependeét schemes are presented
in Tables XXI1I and XXIV respectively. . For both schemes
usdally the value of estimation of the probability of
correct decision is 1ncreasing with zncreasigé depth of
search. F?: some 1nstances, hovever,(the pathelogy occurs.
For example for U(3,2,6) in Table XX!II, the proportion of
trees for whxch a v.ode from the best sons set obtained the
highest value 1s 0.662 but for U(3,3,6} the propo;txon e
0.654. For'dependeng schemes of assigning static-values the
value of a node does not vary substantxal&z from th value
of 1;§'father, but sometimes a biqéér d:fference maytgsbﬁen,
so for such instances pathology.may occur.

Invéstxgat:ng the alternatives to minimaxing Nau [19]

has tested the product propagation rule for backing-up when

searching the game trees. Assuming that the .evaludtion

~function 3551995 to leaf nodes the probabilities that a nodé

is.. a4 win for a certain player, for uniform trees

represent&ng the Pearl-games and incremental games, Nay [19]

-152-

.
'
. <

Terminal Depth width . of tree
level of of .
the game search 2 3 * 4 5
1 0.812° 0.801 0.7984 0,721
. 2 0.834 - 0.815 0.799 . 0.742
. 4 3 0.8917 0.819 0.805 0.766
4 1.000 1.000 1.000 1.000
1 0.724 0.717 0.690
2 0.729 0.732 0.692
5, 3 0.762 0.754 0.691 . .
g 0.779 0.760 0.699 Mot simulated
.5 1.000 1.000 1.000
i IR 0.633 0.651
{ , 2 0.641 0.662
6 . | 3 0.684 0.654
: 4 0.709 0.673 ~ v
5 0.712 0.699 Mot sumiated
6 1.000 1.000 ‘
9

TABLE XXIII.
" The approx;imaticn of the probability of correct decision for
the uniform trees with integer-dependent static-values

assignment, Minimaxing was used for backing-up.

=

* these cases were not sumlated by us because the trees became to big

to f1t within the computer memory available.

f

-153:
Terminal Depth Width of tree
level of of
the game ' | search|, 2 -3 4 5
1 | 0.726 0.697 0.656 0.612
4 2 0.738 0.699 0.662 0.612
-3 0.749 0.708 0.687 0.624
q . 1.000 1.000 1.000 1.000
1 0.659 0.641 0.612
2 .0.662 0.657 0.624
5 3 0.678 0.649 0.636
4 0.691 0.661 0.639 : :
| 5 1,000 1.000 1,000 1ot simulated®
1 0.610 0,605
2 0.615 0.612
6 3 0.614 0.624
: .4 | .0.624 0.629 o
5 .635 0.629 not simulated
- 6 1,000 1.000 :

\

TABLE XXIV.'
The approximation of the probabilty of ‘correct decision for
the uniform trées with real-dependent static-values
assignment., Minimaxing was used for baék;ng—up:
* these cases were not simulated by us because the trees became to big
to fit within the camputer memory available.

—_— . e

L £N

!

r—

~154-

pgrformed the same experiments as were performed with
minimaxing. Nau's results for the approximation of
probability of correct decision for the Pear-game are
presented in Table XXV, and results for the incremental

games are presented in Table XXVI, Results from Table XXV

show that pathology does not occur for any tested value of

search-depth in the,Pearl-games when the product propagation
P

was used for bécking—up. On incremental games the
probability of a correct decisigg was slightly lower for
product propagation than for minimaxing. Further
Monte-Carlo studies indicate that product propagation

performs only marginally better than minimaxing in terms of

the number of Pearl-games which were won against the minimax

i

search to the same depth. A possible reason for this

o/
disappointing performance of product propagation is that the

evaluation functions used were only approximations of the

probability that a node is.a win,

Our results obtained for searching uniform trees
representing Pear-games and inc;emental games, when product
propagation was used for backing-up, are presented in Table
XXVII and XXVIII; respectively. Resu1£s from Table XXVII
show that pathology does not occur for any tested value of
serch depth when the product propagation was used for
backing-up. For incremental games, however, the results
show tﬁat the probability of making the correct decision was

lower for product propagation than for minimaxing.

-155-

.

*oml yapim jo mmsmwlaumwm‘wzu 103 [61] neN £q paujeiqo s3jInsay °*dn-Burydoeq 10j arni.uoyiesedoad
-3onpoad ayl Buisn pldep YoIE3s jO UOTIIDUNJ B SE UOFSIOAP 31031100 Jo Air1114qeqoad Byl jo uoyplewjisy

. AXX 3T8VL
000°1 £1
000°T 000°T 21
£19°0 000°T 000°T . . 164
099°0 %89°0 00¢‘T 000°T) - 0T
L€9°0 859°0. 11°0 000°T 000°T ‘ 6
8€9°0 9%9°0 $69°0 (%.°0 ~ 000°T 000°T -1 8
829°0 LE9°0 %99°0 01,07 £L4°0 00071 000°T - L
£29°0 0E9'0 %69°C v89'0 [%.'0 Z08°0 000°T 000°T 9
2790 6Z9°0 €%9°0 £89°0 8TL°0 8L'0 [E8'0 000°T 000°T L
Nwo.o“ $£9°0. (%970 9490 80L'0 wS,'0 -STETO0 $98°0 000°T 000°T Y
619°0 £29°0 Z79°0 £/9°0 869°0 9¥°0 6LL°0 -0%8°0 06°0 000°T 000°T £
6190 0790 T¥9°0 699°0 $69°0 Z€L°0 TLL0 918°0 9/8°0 “E£6°0 000°T z
079°0 1Z9°0 €99°0 0£9°0 %690 6Z,°0 I9.°0 608'0 ZYB0 9060 L9%6°0 1
]) : : yoaeag
€1 . 1 1 01 6 8 L 9 S y ¢ 3o
. yadaq
3 ‘awed a2yl jo TaAa] [BUTWII] . .
7

4

-156-

‘om3 Y3Ipa

jo sewed TEIVSWAIDOUT Y3 103 [6T] NeN £q psureiqo s3I[nsaa n:lwmﬁxuma 103 pasn sem 3[na uorjlefedoad

-3onpoiad 3yl °‘p yidep yoieas JO UOFIJUNJ &R 8B ‘UOTSTIIIP uumuuoo\uo £3111qBqO0ad 9Y3 jO uUOTIBWIIBY

]

. IAXX F7€VL
000°1) - . €1
000°T 000" 1 i = (A §
766°0 000°T 000°T ¥ 11
86°0 T66°0 000°T 000°T 01
9260 v86°0 £86°'0 000°T ~000°T 6
£96°0 [L6°0 6.6°0 T66°0 000'T -000°T ’ 8
096°0 696°0 7L6°0 %86°0 [86°0 000°T 000°1 . L
256°0 2960 296°0 €£6°0 .086°0 886°0 000°T 000°T - 9
8%6°0 256°0 (56°0 %960 896°0 8.6°0 £86°0 000°T 000°1 S
9€6°0 £%6°0 0$6°0 846°0 £56°0 896°0 2L6°0 $86°0 000°T 000°1 v
1€6°0 L£6°0 0%6°0 0v6°0 £96°0 796°0 65670 £L6°0 186°0 000°T 000°T g -
776°0 ¥26°0 626°0 826°0 626°0 S%6°0 %%6°0 6v6°0 £96°0 1860 000°T Z
016°0 £16°0 716°0 026°0 7160 ££6°0 726°0 9€6°0 196°0 0£6°0 286°0 T

- - q5Ie58]
€1 A 11 01 .6 g L 9 nm Y £ jo
3 ‘owed sy3 jo [IAIT TeuTwial yadeq

.

.2yl J0j paufe3qo s3I[nsay

E mmudoﬁmﬁumv 1081100 jo A3TTTqEqoad a3yl Jo uoTleWIIE] dﬁmu:weﬁummxwmwmz 30 uofieajidnp woij siynsay
’ . BN CA . .

*dn-3uideq 10j arna uorirel8edoid-3ionpoad ay3 gursn *‘p yidap yoaeas jo uoylouny

*[61] ul uaald 21e s3INEal s, neN

‘oM3 y3pIm jo saweS-yieag - :

- el st s O

, IIAXX 319Vl A .
000°T - ; N . €1
000°T 000°T : . - et
269°0 000°T 000°T * -) 181
(99°0° %69°0 000°T 000°T) _ o1
€99°0 269°0 SOL'0 000°T 000°T :) : . 6
1v9°0 689°0 789°0 “6¥,°0 000:T 000°T . 8
199°0 £89°0 1£9°0- Z£L°0 T16.°0 000°T 000°T . Y .
€€9°0 789°0 %99°0 IZL'0 T9L°0 ZI8'O 000°T 0O0O°T ﬁ) 9
629°0 T/9°0 €§9°0 9TL°0 9TL°0 v6L'0 T80 000°T 000“I - S
£29°0 M 0L9°0 Hmw.o STL°0 . €T£°0 09.°0 618°0 €£8°0 0DO'T 000°T . y
229°0 (79°0 [%9°0 ZIL'0 60L%0 _ 6€L°0 98O ZS8°0 CT60 000°T 0O0O0°T €
0z9°0 529°0 6£9°0 " 669°0 T0L°0 ZZ'0 06/°0 B8I8°0 088°0 TZ6°0 000°T 4
819°0 619°0 £29°0 ~069°0 669°0 Z1L°0 06(°0 L08°0 958°0 706°0 I%6°0 1
yoaeag
€1 Z1 144 01 6 8 L 9 g V) €- jo s
. 3 ‘owed a2yl Jjo T2AdT TPUTWII] . 43dsg
. . .
_ _ , 2 ~.

-158~

- “ - N .
‘fe1] vy uaa1d sae s3insaa s neN ‘oMl yiprm jo sawed jriuswsaouy
3yl ioj paureiqo siynsay c“dn-Bujrdeq 1ol arna uotiededoad-i1donpoad duysn ‘yidap yoaeas jo uojiduny

B SB ‘UoTs8Tdap 1981101 jo A3I3rTiqeqoiad syl jo uoylewyisy -sjusdwjiadxa S,MEN Jo uoyiedyTdnp woay 811Nsay

) [- ITIAXX 316V]

000°T : ‘ e) e
000°T 000°1 ‘ , S
1£6°0 000°T 000°T : , . . S R O
996°0 -~ 656°0 000'T 000°T . , n : o1
“l196°0 5g6°0 LL6°0 000°1 000°1 . . ‘ : 6
8S6°0 £66°0 . 696°0 1.6°0 000°1 000°1 ’ “ .) 8
0560 8%6°0 196°0 7960 6L6°0 000° 1 000°1 ' . .) ¢
76°0 7%6°0 £56°0 656°0 2960 0B6°0 000°1 000°1 £ ; ; 9
Z€6°0 SE£6°0 0S6°0 Z$6°0 156°0 1L6°0 0L6°0 000°1 000°1 . S
826°0 1€6°0 16°0 0%6°0 6%6°0 LS6°0° 15670 £26°0 000" 1 000°1) Y
0Z6°0 126°0 7€6°0 1£6°0 $€6°0 676°0 9£6°0 9560 00670 Q00°T . -000°1 f
Z16%0 ¥16°0 L16°0 81670 126°0 116°0 286°0 GL6°0 . S€6°0 T 7I6°0 000" 1 7
€06°0 906°0 806 "0 z16°0 016°0 (26°0 016°0 L26°0 1£6°0 $96°0 ' 08670 1
] ¢] yaaeagq

1 S z1 181 01 6] L 9 g S £ ~Jo
N N 1 ‘swed ayl jo [3aa] [eujwioal 3 ? Hidag-

- ~ - : . -

~159- ¢ .

-

5.4. Concluding remarks, o v .

\

The fact that increasing the depth of search is

beneficial in real-world games does hot mean that we may
ignore the pathological phenomﬁnodi The absence of
'Jb,pathology in games such. as chess or checkers means only that

"the degradation of the decision quality is maéked by some
other processes. Further stud{es are needed to Qiscovér
suchrproéesses. "More analysis is required‘to understand the
néture of aependencies wvhich exist in real-world games. But
it _is possible to improve the decision qualit§ using
backing-up rules which are more appropriate for evéluating
the Egpe positiéns. It is also possible to -estimate
probabilities of win for a certain position and to use the
product propagation .rule, instead of minimaxing, for
5acﬁing-up.‘ This method proved Mo 'be effective . for
pathological games, but it can not be used for real-world
game§ unltess an appropriate pruning strategy is developéd.
A

+

Q
-160-

, . ' CHAPTER 6.

N CONCLUSIONS

. P

L4

. 6.1. Highlights of Results Observed.

\J

In this thesis different problems araising for the

“ game—pléying computer programswwere discus;ed, we restrict
ourSengs to ' two-person, _ zero-sum - games of
perfect-information. | Six différent pruning st;a%egies(:
Afﬁhabeta [125,.Branch-anﬁ-bound {12], palphabeta (9], PvVSs
[16], Scout [231] ;nd‘ SSS* [30]) were reviewed. The
theoretical analysis of some of theée(strateéies was
presqﬁted, follé&ing [12,25,28], show{ng that Alphabeta,
Scout and SSS* have very similar performance
characteristics. - The empiriéal.fcomparisén of thgﬁg‘sgx
pruning strategies on &ifferent .kﬂgds. of ,sim#lated gafie
téees was then presented. It‘Qas shown that the performance
of these strategies .varies éubstgntiaily. It has been
conc luded Ehat the R{phabeéa algorithm will remain the most

. 'popular’strategy for playing a‘réal—world game. Then the
'Qiffergnt 'metﬁods.:of §§eediﬁg—up‘ the tree seérch were

d. But .the need of searching deeper, which is the

[

reviewe
géal, of these me£hods, may be questioned because of the
béthéloéical\pﬁenomenon, which was also descfibed in this
";ork. e & A was-sﬁown that there exist a iarge class of game
_trees for -which searching deéper éoes not .improvg t he
‘qpality Qf decision'maAe, following [5,7,i8f19;25,27j. The

}

B

-161-

)
)’
/
e
product propagation rule for Qacking-up‘and,ﬁhe B* procedure

. el .
were discussed as the possible methods of overcoming

» ‘ . ,
pathology. On the nonuniform trees and on game trees

representing the incremental ganes the pathology was not '

observed. So, the existance of terminal nodes at any level
, i

of a game tree and the dependencies between parent and son

nodes may be the possible reasons why patholqgy 1is not

observed on the real-world games.

6.2. Suggestions for the Further Research.

In this work different pruning strategies were compared
on the simulated game trees. It will pe .interesting to
compare-performahce Qf _ihese strategies on real-world games.

v

For such comparison different evaluation functions may be

¢

tested to see how much the pruning depends on the functibn

f
used. When analyzing different games, it may be possible to

find a model of' a game in which the dependencies between

node and its succesors are described by a mathematical

formula. ' o ‘ L

Since the broduct propagation rule was found to be a
re for pathology, it will be worthwhile to develop a
pruning strategy for this approach. Fof'example such a

stratedy may be based on the ‘fact that lower and upper

bounds on the valug.of a ‘hode can be deriveg by examining

[<

one or more of node's sons. These bounds may be calculated

»
- "

L o

162-.

)

' ' -

the upper and lover bounds,,?gr thgy Qd;bé of ' T

R T .) { ‘ '
using

probability (0 and 1). It will be ‘alsa\ worthwhile - to "'

¥ anaiyie the performance of B* procedure on tﬁg pathological '

P

" game trees to see if using'this algorithm we may overcome:

. " pathology. » ' . . oo }/\

vy e
w
[» ' 1
L ° » * L4
1 ®
.
' > 3 o .
P - X . .
. . . L
w . . .
‘ <~
o .«
. \ .
. . - f) }
.
9 ¢)
I “
. . , «) , . . A q
[4 : ’
« . - -
e ‘ °
[. \ ¢
. . ‘ 2 -
- ‘ ’ w * k * v
I +
. »
. ‘
.- of . [}
- R '
. » . te \ - . < P
. a
‘
N i
. -
. R o J ¥ i . .
» [[4
L] - - > ' y -
3 4 . " ' / ’
[B
» hel N ’ - ' ’ *
' / -
- » . ‘ v
oo .\L . , " n 4
.

v f N !
. . -
a - < X | .
?
>, ‘ - a . -
v .

’ © - . \/ ¢ o -

. - . .

. t > “\ L] -
* ' ¢ ‘ [
i s . . 0
Y . [

. ' .
5 ! ’) - N
.), . *, o
- A . [v se t [
. ' “ . ¢ i
\
¥ ’ -
- . B B
. R "
“ -
] a . & - h ~ ¥ i
) X
T L. 4 o - "
» A » B - * B
) » ' i -
-
: i .
' N \ ’ '
. .
N i c4] ! ’ A . ! \ i
.)
- . - !
. N L4 : N . ' g

9

A

v A

53 and uhe,KilIeereurisiic,‘ in Proceeding of tHe 32nd Annual
. . . -

~163- ‘ | S

REFERENCES . L
I ‘_ ' g .

(1) S5.G. Akl, D.T. Barnard and R.J. Doran, ' Design,

Analysis and Implementation of a Parallel Tree Search

& Algorithm,' I1EEE Transactions on Pattern Analysis and :

Machine Intelligence, vol. PAMI-4, no.2, pp 192-203,
- "y ‘ N . . ' .
March 1982.

. .
4 ‘., q
,

/ : . ; o
+ [2] S.G. Akl and R.J. Doran, ' A Comparison of Parallel
) : :

‘Implemenfétion of the Alphabeta and Scout Tree Search
. N . . _ ™) ’
" Algorithms Using therGamedof Checkers,’' Sigart Newsletter,

_ vo1.80, April 1982, pp, 77-83.

F
2 . - >

(3] s.G. Akl and M.M. Newborn, ' The Principal Contifuation
<

Y

_ACM Confe%ence; Seatie Wa§higton, pp 466-473, 1977.
- . ,

| . X

(4] &.M. Baudet, ' On the Branching Factor of the Alphabeta

\

‘ Pruning Algorithm,' Artificial Intelligence, vol.10, no.2,

LN
pp 173-199, 1978.

[5] D.F'Beal, '(An Analysis of Minimax,"Advanées in

v

Computer Chess 2, editor : "MiR.B. Clarké, Edinburgh,

| University Press, pp ld3-‘09,,}980. - .
. | .
- ’\ -)
- - !
t r
i h o ‘ \
S - |

¥

-164~

1

[6] D.F. Beal, - Benefits of Minimax Search,' Advances in
' ' \

Computer Chess 3, editor ; M.R.B. Clarke, Pergamon Press,

"1

New York, pp 17-24, 1982.

.
L}
]

[7] H. Berliner, ' The B* Tree Search Algorithm :

A Best-First Proof Procedure, ' Artific:al Intelligence,

volil2, no.l, pp 23-40, 1979. Co

A

{8] 1. Bratko and M. Gams, ' Error Analysis of the Minimax

Principle,' Advances in, Computer Chess 3,
| .
Clarke, Pergamon Press, Nev. York, pp 1-15, 1982, e (

Ltgr. : M.R.B.

[9] M.S. Campbell and T.A. Marsland, ' Comparison of Minimax '

Searching Algorithms,' Artificial Intelligence, vol.20,

no.4, pp 347-367, 1983.

" ¢

[10] N.M. Darwish, ' A Quantitive Analysis¢of‘A1pha—Beta
(‘ = 1
Pruming Algorithm,' Artificial Intelligence, vol.2l, no.5, e

pp 405-433, 1983,

—

(11] R.A.}fiﬁkgz and J.P. Fishburn, ' Parallelism in

Alpha-Beta Search,' Artificial Ingelligence, vol.1l9, no.l,

" pp 89-106, 1982. "

1975. °

3 3

[12]\EKE. Knuth.and R.W. Moore, ' An Analysis of Alpha-Beta
! 4

Pruning,’ Artificial Yinteélligence, vol.6,* no.9, pp 293-326,
, | :

'
f .
M - . ' ’
. . Vo .
» . ' o
1 4 . N

Y - s o bt 3 e 3§ s v ot e S tae ¥y iy porabers oo M -

. . . ¢ 4. .

. - N

- ~165-

b

.

{13] v. Kumar and L.N:. Kanal, ' A General Branch and Bou?d
Formulation for Understanding and ‘Synthesizing And/Or Tree _..

Search Procedures,' Artificial Intelligence, vol.21, no.2,

pp 179-198, 1983.

[14] v. Kumar and L.N; Kanal, ' Parallel Branch-and-Bound

Formulation for AND/OR Tree Search,' I1EEE Transactions on

Pattern Analysis and Machine Intelligence, vol. PAMI-4,
no.6, pp. 768-778, November 1984.

. . {
(15] T.A. Marsland an;Q.Campbell, ' A Survey on
Enhancements to the Alpha-Beta Algorithm,' in Proceeding

of the 36th Annual ACM Conference, Los Angeles, California;

1981. (. : .

{16] Téi. Marsland,’ ' Relative Efficiency of the Alpha-Beta

" Implementations, ' fﬁ“Pro;peding'of the 8th .Internatiaonal

Joint Conference on Artificial Intelligence, August 1983,

Karlsruhe, West Germany, pp 763-766.

~

. [(17] D.S. Nau, ' Thg Last Player Theorem,' Artificial
S@, no.2, pp 53-65, 1982. &

Intellfgence, vol.

\ .
(18] D.S. Nau, ' An Investigation of the Causes of Pathology

.in Games,' Artifigial Intelligence, vol. 19, no.2,
pp‘257-278ﬂ 1982.
1

3 .

-

LA P)

ot wr Cimea mesmmbnn A oy ety e [ke s S

-166-

(19] D.s. Nau, ' Pathology in Game Trees Revisited and an '

Alternative to Minimaxing,' Artificial Intelligence,'

vol. 21,-n0.2, pp 221-244, 1983.

[20])-M.M. Newborn, ' The Efficiency of the Alpha-Beta Search

‘on Trees with Branch-dependent Terminal Node Scores,’

Artificial Intelligence,-vol.8, no.2, pp-137-153, 1977,

. B 1

[(21] N.J. Nilsson, Principles of Artificial Intelligence,

Paolo Alto, California: TIOGA, 1980. -
[22]'A.J. -Palay, ' An Experimental Analysis of the B* Tree
Search Algorithm,' Department of Computer Science, .
Carnegia-Mellon Universityt Pittsburgh, Repory
cMU-cs-%0-106, 1980. *

“a .]
(23] J. Peaiy, ' Asymptotic Properties of MinimaS;Wrees and

Game-seafching Procedures,' Artificigl Intelligence, vol.l4,
no.l, pp.113-138, 1980.

3

LR

[24] g. Pearlﬂ ' The Solution for,the Branching Factor of

the Alphébeta{' Communication of the ACM, vol.25, no.8,
Il

4

pp 559-564, August 1982.

! o .
[ES] J. Pea?l, ' On the Nature of Pathology in Game

Searching,' Artificial Intelligence, vol. 20, no.3, pp'u27£ .

453, 1983,

s

-167-

. a N ‘

(26] J. Pearl, ' Some Recent Results in Heuristic Search

’

Theory,' IEEE Transaction on Pattern Analysis and Machine

‘.
]

Intelligence, .vol. PAMI-6, no.l, pp 1-12, Jandary 1984.

[27) J. Pearl, Heuristics. Reading, MA: Addison-Wesley,
1984, © -~

i ‘ 1 . N

{28] 1. Roizeh and J. Pearl, ' A Minimax Algorithm Bgtter

§

I

4 .
than Al;Egbeta ? Yes and No,' Artificial Intelligence,
o *)

vol.21, 2, pp 199-220, 1983.

[29) J. Slagle and J. Dixon, ' Experiments with Some

Programs that Search Game Trees,' Journal of th€ Association

— . i }
rMachine(y, vol.1l6, no.2, pp 198-207, April

for Computing

1969.

-

+

1

[30] G. Stockman, ' A Minimax Algorithm Better than

Alpha-Beta ?,° Artificial Intelligence, vol.12, pp 179-196,
1979. “ '

P

(31] M. Tarsi, ' Optimal Searching of Some Game Trees,'

' o ‘. ? . . !
Journal of the Association for Computing Machinery, vol.30,

no.3, pp 384-396, 1983. - 8

[y
»

~168~

* APPENDIX 1.
COMPARISON OF DIFFERENT VERSIONS
" OF SCOUT ALGORITHM.

As we have mentioned in séc:ionf'2.§, we haQe, alsd
compared three different versions of the écou; algorithm :
minimax, negamax and the Campbell-Marsland version. In
sec£ion 2.5 'the algori%hmic formulation of the Scout under
the negamax framework -was presented. Below the algOrithmic\

]

formulation of the "Scout undéer ‘the minimax framework is
. v

presented, as given by Pearl in [2ﬁ'f The function is
invoked by calling scout (root). .
o™ -

l.FUNétION scout (p : TREENODE) : NUMERIC’;
‘2. VAR i,f : INTEGFR ; m : NUMERIC ; op : BOOLEAN ;
3. BEGIN v . ‘ «//
4. f:=gengrate(p); /* generate sons Py 'Pgr +eor Py
of node p */ .
5.- IF f=0 THEN return(staticvalue(g)): /*p is leaf node */

6. ‘m:=scout(p1); S

-7, FOR i:=2 TO f DO

8. IF p is MAX node THEN op:=FAhS§;
/* op is a pa%ameter uéeé to compare nodes in
'~ function test invoked by scout *é '
9. IF (NOT test(pi,m,op)) THEN m:=scout(p,); '
/* if function tesﬁ retyrns false, scout evaluates néaé;fl;

&

else it is not evaluated */

v

'

10. ELSE /* p, is MIN node */

s

-169-

11, .op:=TRUE;
. ~
12, IF test(p‘,m,op) THEN m:=scout(pi):
/* if function test returns true, scout evaluates node P,
else it is not evaluated */

13, return{m); /* return value of m as the function value */

14.END. , t

1.FUNCTION test (p :TREENODE ; v :INTEGER; op :BOOLEAN)
: BOOLEAN; \
/* if op is true nodes to be compared are at same level
of the tree, else at different levels */
2. VAR i,f : INTEGER ; .
3. PEGIN

4. f:=generate(p); /* generate sons p%,,pz, <ees P

of.node p ‘!/;‘

5. IF £=0 THEN /* p fs a leaf nédé */

6. IF ((staticvalue(p) > ‘v) AND (not op 2) OR

7. ((staticvalue(p) > v) AND (op)) THEN'

8, return TRUE /* node p can not be the best son */

9. ELSE return FALSE; /* node p may become the best son *7
10. FOR i:=l TO f DO e |

11, BEGIN)

12. IF (p,I is MAX node) AND (test(p‘,v,op)) THEN

13. L return TRUE; /* node p, can not become

the besé son */
" 14, IF (p, is MIN node) AND (NOT test(p, ,v,0p)), THEN

15, . return FALSE;

[N

<, -

i6. ~ END; b

17. IF (p‘ is MAX node) THEN return TRUE
18. ELSE return FALSE;

19.END. \ . o

The bampbell-uar;land [9) version of Scout uses Alphabeta
instead of Test for inequality checking, and it is very -
similar to the Scout presented "in section 2.5, the only
difference is that line 9 becomes :
t:a—alphabeta(p:,-m—l,‘m); if (t>m) then m:=—scout(p.).

Campbell and Marsland [9) have also presented the neéaqu
version of Test. Their version is different than the one
described in section 2.5. Below their version of Test .
algorithm is presented. It may be invoked by the Scout' as

described in section 2.5, Scout which uses Test for

“inequality checking.

1. FUNCTION testm (p : TREENODE ;' v : ENTEGER)
: BOOLEAN; .
2. VAR i,f : INTEGER;
. BEGIN
4. f:=generate(p); /* gene/;te SONS P, Pyr +e+0 B
of' node p *) ‘
5. IF f=0 THEN /* p is a leaf node */

6. IF (staticvalue(p) > v) THEN
s 3

7. return TRUE /* node p can not be ‘the best son */ i

8. ELSE return FALSE; /* node p may become the best son */

»

9, FOR i:=1 to f DO

10. IF NOT(testm(p, ,-v) THEN e~

-
o

11. return TRUE; /* node p, can not become
- . \ - .

e [PUIPURIEpU U e R R]

M

- 171 - ‘ _ -

the best son */

12. return FALSE;

13,END..
6

As we' see testm doe€s not.use two kinds of ,operators (> or
J ' >) for nodes at different levels of a tree. Because of
. ¢

this Scout algorithm which invokes testm function will prune

less nodes. In Figure 57 an example of such a situation 'is

shown.

. Under the criterion of nodes created (all or only leaf)

the three tested versions of Scout algorithm alwdy%

. performed identically. Under the criterion of node-visits

for all, sixteen cases -’ except for nonu&iform trees with
real-dependent static<vaiues assignment ,they have also
pérformed ide%tlcally.'s For Bonunxform ’trees with
real-depéndent static-values assignment the twd' versions
which call Test algorithm, outperform the Campbell-Marsland
version, one which calls Alphabeta for inequality checking.
*For example for N(3,5) witﬁ real—dépendent s¥atic-value
5 assignment minimax and negamax versions,visited on average
;8.54 nodes, ¢l1.26 leaf nodes. 'The' Caﬁpbeli—Marsland
version of Scout visited on average 79.30 nodes, ¢2.06 leaf
nodes. Undéf the' criterion of CPU time taken the negamax
and the Campbell—Marslénd versions of Scout performed very

similary. and the minimax versicn was the slowest. As an

example, for wuniform trees with 0.4-ordergd-independent

) \

&

-172- -

S

r
76 56 4 5 56 6 5 6 7 67 8 7

i .
FIGURE 57.

An examwle to show that Scout whlch uses the Canpbell—-Marsland [9]
version of Test will examine more, nodes than Scout which invokes
Test presented in section 2.5. .

Since value of node p,, is 6, and the prglisional value of node
P;o is 6, the node p does not have to be examined. Because the
Carpbell-Marsland Zunction testm uses oillv > operator, then Scout
which invokes such a Test procedure examines nodes p,)z,,, p""Zl'

and p2222

t

7

static-values

taken by tHese

- 173 - ' .

N

~it

assignment ' in Figure 58 the average CPU time

three different versions of Scout algorithm

_versus the width of tree has been,plgt;ed.‘

2%

"

»

1) o
‘ f
/
) .
!
{
- i
1
»
« ° "
L\ i
1 il
M ‘f t
.
* \ :
o
3
2
LN
-
%
)
[}
r 4 o
- t
-
by
“
o
¢ L4
,
L
-
- » ¥
a
g ® .
4"
i
. : \
i ~ ‘
e . .
L
v v W'
, i
4 -’
.)
)
) !

e,

430

+174-
P

FIGURE 58
Plot of average CPU time taken by three different

. versions of Scout algorithm against width of a

uniform tree of depth 4. Static-values were .assigned.
to leaf nodes by 0.4-ordered~independent schemne.

L}

— — —— Campbell-Mdrsland version
~———4 . minimax version

o neganax version - ' .
’ ¢ . ‘ . v ¥

