el e

Acquisitions and

Bibliothéque nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch des services bibliographiques

395 Wellington Street
Ottawa, Ontano
K1A ON4 K1A ON4

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every eifort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c¢. C-30, and
subsequent amendments.

Canada

395, rue Wellington
Ottawa (Ontario)

Your file Vore rétdrence

Our tile Notre 1étstence

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la thése soumise au
microfiimage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S’il manque des pages, veuillez
communiquer avec luniversité
qui a conféré le grade.

La qualité dimpression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont été
dactylographiées a l'aide d’un
ruban usé ou si l'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, c¢. C-30, et
ses amendements subséquents.

GAP --- A TOOL FOR TRANSFORMING

FROM

VDM SPECIFICATION INTO OBJECT-ORIENTED DESIGN

by

GAO Junming

A Thesis
in
The Department
of

Computer Science

Presented in Partial Fulfillment of the Requirement
for the Degree of Master of Computer Science at

CONCORDIA UNIVERSITY

Montréal, Quebée, Canada

April 1992

© GAO Junming, 1992

Bl e

Acquisitions and

Bibliothéque nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch des services biuliographiques

395 Wellington Street
Ottawa, Ontario
K1A ON4 K1A ON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, Iloan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

395, rue Wellington
Ottawa (Ontano)

Your e Votie iotience

Our e Notre reloen e

L’auteur a accordé une licence
irrévocable et non exclusive
permettant a la Bibliotheque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa thése
de quelque maniére et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
théese a la disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d’auteur qui protége sa
thése. Nila thése ni des extraits
substantiels de celle-ci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-315-80937-X

Canada

TO MY WIFE AND DAUGHTERS

GAP — A Tool For Transforming
FFrom VDM Specification Into Object-Oriented Design

GAO Junming
ABSTRACT

A tool GAP, which supports direct and automatic transformation from
VDM specification of software system into object-oriented design, is presented. The
general transformation methodology and the implementation details are discussed.
Issues of deriving compilable code from OOD are also discussed. GAP is built on a
simplified VDM specification syntax based on LL(1) grammar defined in the thesis.
GAPD serves two purposes: first as a syntax parser and partial semantics checker to
examine the VDM specification for syntactic correctness; second as a translator to
transfori the specification into classes and their components of an object-oriented

design.

The approach endorsed in this study tries to bridge the formal techniques and
object-oriented paradigm. That is to apply formal specification technique at the
first phase of software development, and then to use object-oriented paradigm to

implement the software.
The main outcome of GAP is composed of three parts:

The first part is the class information. It includes designated classes, inheri-
tance relations, client-server relations, member variables and their types, and sug-

gested member funetions and parameters for the classes.

The second part explains how to implement VDM operations within the scope

of classes.

The last part brings out the possible relationships among the member functions

and between member functions and specification functions.

A medium sized sample system is given in Appendices. That shows GAP is

both effective and promising for more complex situations.

To further this study, a supporting tool with an interactive interface and a

knowledge-based code generator is proposed and briefly described.

i1i

[T — T

Acknowledgements

I am grateful to my supervising professor V.S. Alagar. From him I have learned
most of the fundamental concepts and principles of Software Engincering, especially

Formal Methods and Specifications.

I am grateful to my wife Zhang Huiling and daughters Fay and Linda. It would
have been impossible for me to complete the rescarch without their continuing,

encouragement and help.

iv

TABLE OF CONTENTS

Table of Contents ..o e e v
FIntroduction e e e e 1
1.1 Formal Method and VDMo oo oot 2
1.2 Object-Oriented Paradigm oo oo o i i e 4
1.3 Overviewof This Studyo o i}

2 Vienna Development Method oo oo oo 9
2.1 VDM Specification Languageo oo oo o oo i 9
2.1.1 Variables and Type Definitionso . oo, 9

2.1.2 State, Invariant and Operations oL 15

2.2 Syntax of VDM Specification Langnageo o oo oo 18

3 Object-Oriented Design and CH4. . oo oo oo oo oo 25
3.1 Data Abstraction e 25
3.2 Inheritance oo e i e 27
J3Polymorphism . ..o e 28
3.4 Responsibility Driven Design .o oo oo oo oo, 29

Contents vi

3.5 Comparison with Function-oriented Paradigm cee e 30
4 Transformation from VDM Specification into C4+ Classes, 35
41Introduction 35
4.2 Transformation Processin General 0 o L. .36
4.3 Transfering Basic Types .. oo oo o 39
4.4 Transfering User Defined Types ..o oo oL 42
4.4.1 Eumeration Types ..o oo 42
442Rename Types. oo 43
443 Union Types « oo 13
4.4.4 Record Types e e e e e -
4.4.5 Power-set Types, List Types and Mapping Types ..o L L. 47
4.4.6 Undefined Types .o oo o H2

4.5 Mapping Invariants e n3
4.5.1 Invariant Implementationo oo L o oL H3
4.5.2 Handling State Invariant 5o

4.6 Member Function Creation . .o oo oo o o7
4.6.1 Decomposing Pre and Post-Counditions, .. e n8
4.6.2 Creating Member Functions . . . o9
4.6.3 Reorganizing Member Funetions o ... 63
4.6.4 Implementing Operations by Member Funetions o000 . 69

5 GAP — The Transformer o 72
5.1 GAP System Architeeture ..o oo Lo 72
5.2 Some Special Handling Techniques ..o oo 0oL 74
5.2.1 Clause Separation 75
5.2.2 Clause Comparisoll v v ot e e e 75

Contents vii

5.2.3 Member Function Naming oo o oo oo 76

5.3 Desired Style of VDM Specification. oo oo 77
54 System Output Files ... oo o 79
5.5 Comparison With Other Projeetso o oo 82
5.5.1 The VDM Domain Compiler 83

5.5.2 The Larch Projeet .o oo oo oo 84

5.5.3 The Mural Systemo o e i i 86

6 Conclusion and Further Worko oo oo oo 88
G.1Conelusion. ..o e e e e 88
G2Further Work ... o 90
REFERENCES 93
APPENDIX A EBNF of A Simplifiecd VDM-SL Syntax 100
APPENDIX B Modified LL(1) Grammar of the SVDM-SL 103
APPENDIX C Predicat. Set of the SVDM-SL, 109
APPENDIX D Reserved Words and Speeial Symbols ..o o000 00 114
APPENDIX E Sample Input of Source Specificationo o000 116

APPENDIX F Sample Output — ODRFile... 124

Introduction

This thesis discusses the transformation method proposed in [ALPO1] with a
view towards adapting it for implementation in C+-+. The transformation as im-
plemented in the thesis accepts VDM specifications within VDN-SL and generates
classes and their structural relationships in C4+. Morcover, the relationship be-
tween C++ classes and the VDM specifications ave established. This is particularly
useful for an implementer in eusuring that no junk classes ave produced. Thus, the
thesis while addressing general issues in the transformation builds an actual model
of the translator - showing that the transformation process, the eritical link oo

formal software development process, is both feasible and practical.

The layout of the thesis is as follows. The introductory section 1 disensses
the motivation and the background of the study. Section 2 gives a brief outline of
the VDM specification language and introduces a simplificd VDM specification lan-
guage and its extended Backus-Naur form. Section 3 discusses an objeet oriented
paradigm. Ounly issues relating to the transformation are emphasized, and there is
a brief comparison between an object-oriented approach and a traditional function
oriented approach. Section 4 is the central picee of the thesis, which provides a
detailed discussion of the issnes in the transformation process from a VDM specifi-
-ation into object-oriented design. Section 5 illustrates the model translator GAP,

which also serves as a VDM specification syntax parser and semanties checker. A

o

Introduction 2

comparison with other systems is presented too. And finally section 6 concludes

the study and points out, further development directions.

1.1 Formal Methods and VDM

From the carly 80’s, two trends have heen haunting the world of software
engineering. One is formal method and another is object-oriented paradigm. Formal
method in developing large software systems, pioncered by Vienna Development
Method (VDM)[BJo78, BJo82, Jon8G, Jondl), is gaining solid ground among more
and more people in both the academic and industrial commuuity. Formal method is
a term which is used to cover hotlh the use of mathematical notation in the functioual
specifications of systems and the use of justifications which relate designs to their
specifications. Aiming at controlling the ever-growing enormous complexity in the
development of large software systems. formal methods provide precise notations
for eapturing functional specification decisions by their abstract characterizations
of the requirements. VDM specification langnage is used for this purpose. VDM
wits developed in an industrial environment but has evoked considerable academic
research. It offers hoth specification notations and proof obligations which enable
i designer to establish the correctness of design steps. It is a development method
in the sense that it provides unambiguous notation and a framework for recording

and justifying specifications and design steps.

Since its first appearance, VDM has undergone many innovations. New di-
rections have been pursued. One of the develepments is tools for the automation
of formal software development process. During its initial stages of development,
VDM specification language is mainly a handy tool to avoid *“using informal En-
plish mixed with technical jargon”[BJo78] to specify the architecture (or models)
of software. So, in the formative studies of the high level language development,
uo interpreter or compiler was intended for the language. However, recently sev-
eral attempts have been made to build automatic development tools to help write

correet specifications or implement software specified by VDM.

Introduction R}

To name a few, the MULE system is an example of an environment giving
support in the syntactic generation of formal objects such as specifications, and the
IPSE 2.5 system is an attempt to produce an industrial scale system to support the
use of formal methods over the whole life eycle of a software development[Jon8T7).
Oue of its main result is the production of Mural tool which is an interactive math-
cmatical recasoning environment designed to assist the kind of theorem proving tasks
that arise when following a formal methods approach to software engineering[BRi91,
JJL91). A related project is SpecBox[MFr91, FMB89], which is an interactive,
window-based support tool for formal specification with four components: a syntax
checker, a semantic analyser, a I’TENdocument generator and a mural interface,

We have more to say about Mural in Section b.

The first compiler for VDM specification language was reported in [Ha887). 1t
served two purposes: first, it may be cmployed for rapid prototyping; second, it
is a step towards a compiler-compiler system that automatieally transforms VDM

compiler specification into programs.

The RAISE software development method[Pre87, NHWSS, Geo9ll, associated
with its specification language and the supporting tools, enables the stepwise de-
velopment of both sequential and concurrent software from abstract specifieation
through design to implementation. The tool set of RAISE systemn includes a trial

version of the basic syntax directed editor, database facilities, and the proof tools.

It should be pointed out that there is a common feature that prevents the VOM
specification language compilers from practical application. These compilers require
the specification be written in a constructive manner. Such operation specifications
shall indicate ways on how they are computed. To be obligated to do so will greatly

weaken the declarative description power of the VDM specifieation.

A very interesting project, called the VDM dowmain compiler, started in 1988,
is still under development[SHA90, SHA91]. It adopts an approach somewhat similar
to that of ours. However it is based on purely functional programming techniques

— the state model is absent. More discussions are given in Section 5.

Introduction 4

During the later stages of development, it was realized that lack of a standard
syntax and semanties for VDM hindered the development of tools and general ac-
ceptance of VDM as an industrial software development method. Great effort has
heen directed to standardize the VDM specification language[Sen87, And88, BSI89,
BSI91].

Besides Vienna development method, there are a dozen other specification lan-
guages and development methods that cinerged following the VDM, We are not
going to list them and only mention LARCH which is of interest to this study here.
LARCH[GH080, GHo82, GHo91, GHM90] is a two-ticred specification language,
which separates the specification of underlying abstractions from the specification
of state transformations. The first tier is the Larch Shared Language (LSL) and
is used to specify underlying mathematical abstractions while the second tier is
a Larch Interface Language and is used to specify state transformations. Larch
mterface languages ave programming language spec’fic and LSL is programming
language independent. Besides the Larch shared language and interface languages.
a software development methodology and several de-elopment tools are under de-
velopmient to support the systematic application of Larch[Win83, WZa91]. Some

comparison of Larch with our approach will be presented later.

More supporting tools and new methodologies are reported in the fourth inter-
national symposinm of VDM Europe[PTo91].

1.2 Object-Oriented Paradigm

The emergence of object-oriented paradigm for designing and implementing
software systems[Boo86] is a relatively new development in software engineering,.
Object-oriented design leads to software architectures based on the objects every
system or subsystem manipulates. A more precise definition is that object-oriented
design is the construction of software systers as structured collections of abstract
data type implementations. Its major goals are to improve programmer productiv-

ity by increasing software extensibility and reusability and to control the complexity

L TEV TR e

Introduction 5

and cost of software maintenance. When object-oriented paradigm is used, the de-
sign phase of software development is linked more closely to the implementation
phase. It is conjectured that object-oriented paradigm is the solution to the prob-

lems suffered in traditional function-oriented paradigms.

However, the design process for the object-oriented paradigm remains ad hoe,
Scveral efforts have been made to improve the situation. B. Alabiso[Ala88] illus-
trated the transformation of data flow analysis model into object-oriented design,
P.T. Ward[War89] described how to integrate object-orientation with structured
analysis and design. K. Beck and H. Cunningham{BCu89] suggested the use of
index cards to record initial class designs. R. Wirfs-Brock, B. Wilkerson and L.
Wienerl WWW90] presented a detailed example of object-oriented design nsing a
responsibility-driven approacl, in which the index card is used. L.L. Constau-
tine[Con90] discussed an approach to mix conventional function-oriented design
with object-oriented design concepts in a hybrid design strategy. J. Rumbaugh, M.
Blaha and W. Premerlani, in their book[RBP91], covered the entire developent
life cycle — analysis, design, and implementation, using a graphical notation and

methodology developed by the authors.

Another direction of rescarch is towards a formal systematie development of
object-oriented design. Unlike function-oriented paradigm, where formal methad
has been widely accepted and applied, object-oriented approach is still ad-hoe;
some formal approaches that are under development are reported in [AGo91, Bred!,

Dah90].

1.3 Overview of This Study

The major problem for object-oriented design is that existing methods men
tioned above are all inforinal and conscquently critical studies in the development,
process can not be formally verified. All the methods and supporting tools for VDM
are function-oriented. This study tries to bridge the two approaches to enjoy the
advantages of both of themn. Our goal is to build a detailed object-oriented design

from VDM specifications. Thus the modelling methods built for funection-oriented

Introduction 6

approach, which are widely accepted and applied, can be used for object-oriented
design. The result is a supporting tool that supports automatic transformation. To

be specifie; onr tasks are:
e to identify object-class model from the specification,
e to implement the VDM variable types in the framework of O0D,
o to implement the built-in operators associated with the VDM variable types,
e to find the inheritance relationship between the classes,
o to identify operations acting on the classes,
o to determine client and server relationship among the system,

e to create functions that accomplish the operations specified by VDM specifica-

tion,

¢ to build supporting tools to automnatically implement the transformation.

We have selected C4++ as our target object-oriented programming language.
This study is the first comprehensive account of the practicality of the suggested

method in [ALP91]. There are also some major improvements over this method.

That we have made:

1 Implementation of the VDM built-in variable types and built-in operators in

C++,

o

Identifying inheritance relationship among C++ classes,

Creating member functions for classes,

(9%

[t

Determining client-server relationship between classes,

Treating the state invariant in a way consistent with reusability, and

(1§

.!

Introduction T

! 6 Presenting the idea that when comparison is made to find the possible rela-
tionship between two predicates, the variable types shall be used to replace the

variables themselves.

To derive an automatic transformation, we are discussing a simplified version

of VDM specification language and its formal syntax.

GAP system is built to achicve the automatic transformation. It serves two

purposcs:
1 as a VDM specification syntax parser and partial semantics checker; and

2 as a transformer that carries out the actual transformation into object-oriented

design.

The main output of GAP has three parts. The first part shows the class

information. For cach class created by the translator, the following information will

be included:
e class name;
e inhcritance from basc classes;
¢ member variables and their types; and
o suggested member functions and their parameters;
o scrver classes and the associated messages.

The sccond part of the output deals with the operations specified in VDM

operation specifications. The result for each operation displays:
e opcration name;
e class name to which the operation goes;

e what and where are the functions which compose the operation (what client.-

server pairs arc needed to perform the operation).

Introduction 8

The last part reveals the possible relationships between the suggested functions.

Each section in this part contains the following items:
¢ function name;
o client-server pairs; and
o function specification.

The other results of GAP are a listing file, which lists source input and any
syntax error and semantics error ever detected, and a symbol table file, which shows

the symbol table built for the source specification.

To further our study, a new supporting tool is also discussed. The tool reifies
and muplements each member function for classes, generates software source code
ready for compilation. GAP associated with this tool will then provide an inter-
active and integrated software development environment from VDM specification
into final programming language dependent implementation. The two basic compo-
nents of the tool are: an interactive interface which enables a developer to grasp all
information available to implement the member functions and a knowledge-based
code generator which produces compilation ready code and records the classes and

functions for later reuse.

2

Vienna Development Method — A Brief Outline

Vienna Development Mcethod (VDM) is a model based formal software devel-
opment method, which was developed at the IBM Vienna Rescarel Laboratories
during the 1970s. VDM was based on the approach to programming language the-
ory known as denotational semantics[BJoT8]. It was subsequently developed into
a general-purpose software developinent method and applied to a wide variety of

applications.

The objective of VDM is to control the complexity of any complex system by
the construction of a formal definition of the required functions. This specification
is a reference point for subsequent development processes. The feed back from cach

previous step provides a justification of the correctness.

The common carrier of these justifications and proofs is the specification lan-

guage based on Meta-IV.

2.1 VDM Specification Language

Internally, the specification language of VDM is called Meta-I'V. We are not,
going to distinguish the term Meta-IV and VDM hereafter.

I

VDM Outline 10

At the beginning, VDM specification language was mainly a handy tool to
avoid “using informal English mixed with technical jargon”([BJo78] to specify the
architecture (or models) of software. Being a high level specification language,
no interpreter or compiler was intended for the language. In fact, as one author
mentioned: “We wish, as we have doue in the past, and as we intend to continue
doing in the future, to further develop the notation and to express notions in ways

for which no mechanical interpreter system can ever be provided”[BJo78].

In subsequent, years, it was realized that lack of a standard syntax and seman-
ties hindered the development of tools and general acceptance of VDM as an indus-
trial software development method. Great effort was invested to standardize the
VDM specification langnage[Sen87, And88]. Two versions of the VDM specification
language have bheen made public by British Standards Institute[BSI89, BSI91].

To simplify our work in this study, we follow the notation in [CHJ86]. We
have found this notation sufficient to meet most specification requirements of the
systems in which we are interested. What is absent in this subset from the BSI
proto-standard is the notion of Modularization, which is a supplement to the
VDM specification language by BSI. We intend to make the problem simple enough

at this stage of study.

A VDM specification is composed of three parts. The first part is the definition
of a number of abstract variable types. The variables of these type are used to
represent the internal state of the system modelled. The second part is the invariant
definitions. These are predicates which define additional constraints on the values
that variables may assume. These additional constrains are usually not specified in
the type definition part. The last part is the definitions of operations and functions
that act on the variables. Each part of the VDM specification will be discussed in

more detail in the following paragraphs.

2.1.1 Variables and Type Definitions

The Basic notation in VDM specification language is the concept of set. A
set is a collection of similar items, like values and names. Each item is called an

clement.

2 DR

VDM Outline 11

A variable is part of the internal state of the system being modelled. Each
variable has a type, which denotes a set of possible values that the variable ean

take. At any time, the variable must assume one of the values in the set.

Comparing with some high level programming languages, VDM provides more
primitive and few variable types. It is based on the use of mathematical abstractions
such as sets and finite mappings. So it more flexibe and ecasier for developer to grasp

the abstract aspect of a system model.

The basic types in VDM specification are:

Boolean the set of boolean values

Int the set of integers

Nat0 the set of non-negative integers

Nat the set of positive integers

String the set of any composition of letters and digits.

>Example 2.14

Age : Nat) defines a variable Age of type Nat0); that is to say

Age can only assume a non-negative value at any time.

]

One way to create new variable types is to define the set of all possible values
the variable can assume. For example, the built-in type Int is the infinite set, of
integers. It is possible for the user to create a new type by listing all possible values,
if it is a finite sct. One of the best examples of this kind is the built-in Boolean

type, which is defined as
Boolean = {true, falsc}

Note the syntax difference of defining a variable and ereating a new type in

above declarations.

VDM Outline 12

In the case of infinite set, or in the case that all possible values are not known
yet, or the set is defined by some predicates, VDM allows the user to leave the defi-
nition open to later determination. Informal specification in the form of a comment

can be a definition of the new variable type.

From an existing type, user can define a subtype, which can take a subset of

a set as the possibie values of a variable.

It is also allowed to rename a type to have a renamed type, whose name may

he more meaningful to the user.

In set theory, some operations can act on one or more sets to produce new
sets. These operations are union, difference and intersection. They can be
ted to yield new types in VDM, There are also boolean operations defined on a
set. Membership of an clement in a set or relationship between two scts are
defined in VDM too, according to set theory. The cardinality of a set is defined

as the number of clements of the set.

The above types can be considered as primitive types. VDM also provides con-
structs to create composite types to specify more complex models. In a composite
type, a variable can assume a sequence of values of another type(or types) as its

value.

It is possible that even a subset of a set can be the element of another set. This
is the powerset type that is the set of all subset of the base set (type). In VDM,
it is denoted by a suflix '-set’ appended to a type name to create the powerset of
that type. A variable of a powerset type will take a subset of the base set (base

type) as its value.

Siwmilarly, a list type is introduced to specify a variable which takes a sequence
of values from the base type as its value. The suffix '-list' attached to a type name
creates the set of finite lists which can be made from the base set (base type). A

list of values 1s enclosed by the left angle '{' and the right angle 'Y.
A g g g

The operators provided for operating on lists are: hd, tl; len, and elems.

They are unary operators which yield respectively the first element of the list, the

VDM Qutline 13

rest of list after removing the first clement, the number of elements of the list, and
the clement set of the list respectively. Two lists can also be concatenated by o 'f

opcrator.

The record type, like in some programming languages, allows a variable to
assume a fixed length sequence of values drawn from possible different types as its

value. The component parts are called fields of the record.

Two operations are defined for a record type. The construction of an instance
of a record type is done by a make function, which coerces discrete values into a
record structure in a special notation. The ficld selector is used to access individual

fields of records.

>Example 2.2q

A Pixel record type is defined for CGA monitor in color graphic mode
(320200 resolution) as:

Dizel » X : Width

Y : Hight

COLOR : Colorsct
Width={0..319}
Hight={0..199}

Colorset={blue, green, red, brown}.

One instance of Pixel is created and assigned to the variable onepiizel:

onepizel = mk-Pizcl(100, 80, red)

The field selector is used as:

X(onepixel)=100
Y(onepixel)=80

VDM QOutline 14

COLOR(onepixel)=red
0

The mapping type has a finite domain and provides a flexible alternative way
to define functions. Mappings are special kind of functions which map elements of

the domain set to elements of the range set.

e Example 2.34

One of the explicitly defined mappings is
m = [red — 1,bluc - 2, green — 3,white — 4)

which is a mapping from Colorset to S = {1..4}.

O

To define a mapping type, of which a variable assumes a value of a map, user

shall indicates the domain set and the range set by an arrow between them.

eExample 2.44

Al =Colorsct = §

defines & mapping type. A variable m of type M can take the value as
previously assigned in [Example 2.3].

O

There are several operators defined to operate on mapping or mappings. The
unary operators dom and rng yicld the domain sct and the range set of a mapping.
The binary operator overwrite denoted as 't combines two mappings and yields a
combined mapping, in which the range element in the second operand takes priority.

The restrict by '\’ and the restrict to '/’ operators take a mapping and a set as

VDM Outline 15

their operants, and create a new mapping as result. A mapping may be applied to

an clement of its domain to obtain the corresponding element from the range.

o>Example 2.5«

m(red) =1 (mapping applied to element).
Suppose:
n = red = 1,blue — 2, whitc — 3, ycllow — 5.
Then we have
min=[red = 1,bluc — 2, white — 3, green — 4, ycllow — 5,
n\{red,blue} = [red = 1,blue — 2], and

nf{red,bluc} = [white — 3,ycllow — 5.

[l

Equality operator in VDM can be applied to any two variables of the sine

type.

2.1.2 States, Invariants and Operations

As described in the previous sections that a variable type is an abstraction of a
physical object, a variable of that type is used to represent the internal state of the
object. The first part of the specification is indeed an abstract model of the system

to be specified. In fact, cach variable type is part of the system model,

The heart of this consideration is the concept of the system state. The ob-
jective is to make it casier to specify operations of the system model. The state
of the system is a special record which consists of a set. of variables that are the
key description of the system model. The key deseription here means the highest

level abstraction of the system model. As a matter of fact, state definition is not

ﬁ

VDM Qutline 16

mandatory for a specification, it can be defined when a user feels it will help to

cnhianee the systemn modelling.

Another concept associated with variable types is invariant condition. In-
variants are a set of predicates which define additional constraints on the values
thiat variables may assume. These constraints are not or can not be fully expressed
in the type definition session and are preserved in the life time of a variable of that
type. Invariant condition can be defined for the system state, as well as for other

variable types.

Operations are those which specifies changes to the values of some global
variables (introduced in the state definition). There are two ways to specify an
operation. One is an implicit operation specification, and another is an explicit
operation specification. To illustrate the explicit and implicit specifications, we

take the example of a marriage burcau database[CHJS86].

tExample 2.64

State :: UNMARRIED : Person-sct
MARRIED : Person-set

Person = /* to be defined later */
inv-State:= unmarried N married = {}

REGISTER (P:Person)

ext UNMARRIED :wr Person-sct
MARRIED :rd Person-sct

pre p € unmarried A p ¢ married

post unmarried '=unmarried U {p}

The implicit specification of an operation consists of four parts:

VDM Outline 17

1 the name part, which contains the name of the operation, the input pa-

rameters. and the possible output parameters.

2 the external part, which indicates which part of the state the operation will
need access. The key word ext leads the external part and the keywords
wr, rd are used to speeify the access status, wr means write and read

access(write-aceess) and rd means read only access(read-aceess).

3 the pre-condition part, which is a predicate over the values of the input
parameters and the initial state. It indicates the conditions for which the
operation is defined to have an effect. If the precondition fails, it means

error and the operation is not defined.

4 the post-condition part, which indicates how the values of the variables
are affected by the operation or how the output paraneter is generated.
In the post condition, it is necessary to refer to both values of a variable
before the operation and after the operation. Conventionally, the variables

belonging to the post-state are sufficed with a prime.

As we see, an implicit specification specifies the name, the input and out pa-
rameters, the external part of the state that the operadon will access, and the
logical conditions before the operation and after the operation, as well as what and
how it is affected by the operation. What an implicit specification does not speeify

is how to carry out the operation.

An explicit specification does give a method to compnte the result. That is, an
explicit specification requires that a rule be given to compute the result from the

input parameters. An explicit specification contains two parts.

1 the signature, which indicates the name of the operation, the input pa-

rameter list, and the possible output parameter, and

2 the body, which gives an operational procedure to carry ont the operation.

VDM OQutline 18

vExaumple 2,74

The specification of an operation for computing the distance of two

poiuts in space would be:

distance : Point x Point — NatO

>

post-distance (p, q, d)
a = (X(p)-X(0)2+ X (p)~-Y(@)+(Z(p) - Z(q))?

2.2 Syntax of VDM Specification Language

The VDM specifieation language can be strictly defined by a context-free gram-
mar. It is convenient to use extended Backus Naur form to define a grammar. A
complete syntax of the VDM specification language in cxtended Backus Naur form
can he found in Appendix A. Compared with the suggested standard VDM speci-
fication language[Jon90], the syntax defined in Appendix A is a simplified version.

Since VDM specification language is designed for software designer to specify
the systemn design, it is not a programming langt.age. As mentioned before, it was
intentionally designed to prevent creating any interpreter. Therefore the syntax is

not very suitable for direet processing by computers.

In order to overcome this difficulty, we have made several modifications to the

base language.

1 The language will not distinguish upper cases and lower cases, although it is
conventional to differ the usage of upper cases and lower cases for more readable

specifications.

2 It is supposed that every type used in the specification must be either a primi-
i teoe, or an explicitly defined type. That is to say, an implicit set definition

o .t be used to define a variable or other types.

VDM Qutline 19

>Example 2.84

x : {male, femalc} is not allowed. However,

Sex = {male, female}

x : Sex

is a legal definition.

tl

For very practical reasons, only ASCII symbols are allowed. The rich set of
VDM operators are re-defined by ASCII symbols. The details are also listed

in Appendix D: Keywords and Special Symbols.

There is no particular difference between an operation and a function. Con-
ventionally, an operation and a function differ from their parameters and the
data they have access to. An operation has access to global variables that are

part of the state, while a function only takes local variables as its parameters.

The unspecified built-in functions can be used throughout the specification.
Function name such as abs, sqrt, sin, cos, etc, can be used without specifi-

cation as far as the syntax of the function call being observed.

To make the language unambiguous, an end sign is put at the end of the
if statement. Otherwise, to understand the language correctly, some kind of
convention shall be followed to avoid the ambignity. We have adapted a simple

approach to solve this problem.

To follow the convention developed in the research environment, in which this

study is carried on, a tel sign is put at the end of the let statement.

To simplify the handling of mapping type, the domain type is excluded by a

power-set type, or a list type, or a mapping type.

To reduce the total number of operators, several operators have more than one
semantic meanings in case that they will not lead to ambiguity. These operators

are: '+' for plus and union, '—' for minus, negative and difference, '+’ for times

10

11

VDM OQutline 20

and intersection, ' /! for divide and restrict to, /|’ for or and concatenate. Besides
the meaning of the operators it is also important to ensure that the precedence
of the operators shall not conflict. It is fortunate that the precedence of the

operators do not violate the original precedence.

To allow easy specification, variable name overlapping is allowed. That is some
variable names can he used as components of different type definitions, or as
local variables in operations. However, each variable type shall have a distinct

1name.

To avoid ambiguity in our syntax, operator € is translated to different symbols
in different situations. In quantified expressions, it is translated as in; and in
membership relation, as isamn(is @ member), although they are basically of the

same meaning,

The top-down nature of the VDM specification syntax allows a top-down parser

to be developed to parse the specification. The well developed and relatively simple

recursive descent parsing chnique is used to parse the grammar.,

The problem with recursive descent parsing is that is it not a deterministic

method. When there is more than one production for one nonterminal, especially,

when there is a common prefix among these productions, the parser can not decide

which production to derive. The fact that backtracking becomes necessary in such

a situation will greatly reduce the performance of the technique.

sExample 2.94

Let us look at the productions that generate type definitions in VDM
(Number before the rule indicates the index of the rule in Appendix A):

<state_definition> = <type.defn> { <type_definition> }

<type_definition> = <record_type.def> | <set_type.def> |
<map_type.def> | <rename.type.def> |
<union_type.def> | <undefined_type._def>

VDM Outline 21

4 <record_type.def> = <typemame> ' <reefielddist>

5 <recfieldldist> = <ficldmame> "' <typename plus> { <reefield dist> }
6 <ficldname> = <varname>

7 <typemame.plus>= <typemame> [<type-suffix>]

8§ <typemname> = <Basictype> | <varname>

9 <typesuffix> = -sct | -list

10 <Basic_type> =» boolcan | int | natQ | nat | string

It is obvious that this grammar is not LL(1). In production set 3, more than
one rule begins with a type name. There is no way to determine which one to follow

by just one look-ahead token.

Let us focus on one specific rule. Even after <record_type.def> is selected, it
will not be possible to judge which rule to follow after one ficld of the record type

is defined. There are several possibilities to pursue.

L]

According to the syntax, we can have three cases after any field of a record is

defined:

1 There is more ficld to be defined:

s>Example 2.104

State :: FirstField : FicldType
MoreFicld : MoreType

2 There is no more ficld. The next statement is a new type definition:

>Example 2.114

State :: FirstFicld : FieldType
NewType = ---

VDM Outline 22
or

State FirstField : FieldType

NewType :
U

When the parser comes to the first token of the second line, it is an identifier.

The parser can not decide which case it is without one more look-ahead token.

3 There is no more type definition and the next statement is an invariant defini-
tion statement. This case does not cause any trouble, since the terminal inv-

serves as the predict symbol.

Fortunately, in special cases, the recursive decent parser is very effective. LL(1)
grammar is one of the solutions: the first L in LL(1) means reading the context
to be parsed from left to right; and the second L says deriving from the left-most
and the number 1 in the parentheses indicates that only one lookahead symbol is

needed beyond the current symbol.

An LL(1) class grammar is defined to have disjoint predict sets for productions
that share a common left-hand side. It is possible to rewrite the productions using
equivalent transformations for some grammars and to make them in LL(1) form.
The SVDM syntax can be rewritten into LL(1). We have examined and rewritten
cach rule in Appendix A to climinate common prefixes and left recursion and to

preserve the uniqueness of the predict sets.

The two most important re-write rules that we used to transform the grammar

to LL(1) are the following:

Rule 1. There are two productions or more with the same left-hand side and a

conunon prefix in the right-hand side. Let

S={4d—-af,---,A > al}

VDM Qutline 23
Create a new nonterminal N; Replace S with the new production set
S={4-a N, ,Nog--- N}

Rule 2. Suppose that the following production set occurs in the grammar:

S={44_>"'B“'ﬁ B_-)C’ '..}'

S can be replaced by the new production sct

S’:{‘A—’"'C"‘, .-.}

>Example 2.124

The rewritten production set for the productions in Example 2.9 arve given

below (only necessary productions are listed):

2 <state_definition> = <type.defn> { <state_definition> }
3 <state_definition> = nil

4 <typc-definition>
5
6

= <typcname> <type.defbody>

<type.def body> = ':' <varmame> ':' <typemameplus> <morereeficld
<type.def_.body> = '=' <othertype_body>

16 <morerecficld> = <varmame> <recfieldanore>

17 <morerecficld> = nil

18 <recfield.more> = ':’ <typec.name_plus> <more_reefield>

19 <recfieldmore> = <type-def_body>

20 <typemame.plus>= <typename> <typesuffix>

23 <typesuffix> = -sct

24 <type-suffix> = -list

25 <typesuffix> = nil

VDM Outline 24

Now the predict sets of different production rules for the same non-

terminal are dis-joint; that is to say, the intersection of these predict sets

is empty.

O

The transformation to LL(1) causes one problem in understanding each pro-
duction rule. The semantics is slightly different from the original one, since the
terminals and non-terminals are reorganized. New non-terminals may be created,
and old ones may vanish. Therefore the original boundary of different entities may
disappear. This will result in different meanings among new production rules and

new production rules.,

pExample 2.134

We have <record_type_def> for gencrating record type and have one
production set for generating each variable type in the simplified VDM. In
the LL(1) syntax, there is no such a clear distinct production set for each
type definition. The production rules to gencrate thesc variable types are

mixed. It is difficult to match them with the original ones.

O

The gained advantage, however, is that the grammar can be easily understood
by a recursive descent parser. The complete rewritten LL(1) grammar is listed in

Appendix B.

There is a modification over the grammar in Appendix A besides equivalent
production rewriting. All productions that create valid variable names, constant
strings, and constant integers are ignored, since it is supposed that the scanner can
correctly pick up these tokens, The new tokens Ident, Constring, and ConstInt as

well as < comment > are treated as terminals.

Object-Oriented Design and C++

The term object-oriented design (OOD) is widely used, but it scems that
experts cannot agree on a common definition. However most experts agree that
object-oriented approach involves: 1) defining abstract data types representing
complex rcal world or abstract objects and 2) organizing software around the col-
lection of abstract data types with a view toward exploiting their common features.
Its underlying concepts arc data abstraction, inheritance, and polymorphism.
The term data abstraction refers to the process of defining abstract data types;
inheritance and polymorphism refer to the mechanisins that enable us to take
advantage of the common characteristics of the abstract data types the objects

in OOD.

OOD enables us to remain close to the conceptual, high level model of the real
world problem we are trying to solve. The modularity of objects and the ability to
implement program in relatively independent units that are casy to maintain and

extend are advantages of object-oriented design.

3.1 Data Abstraction

Data abstraction is the process of defining a data type (abstract data type). An

abstract data type is described by its external view: avaiable services and properties

25

Object-Oriented 26

of these serviee, without indicating concrete implementation representations.

An object can be created from an abstract data type. We can think of the
abstraet data type as a template from which specific instances of objects can be
ereated as needed. The variables represent the information contained in the object,

whereas the funcetions define the operations that can be performed on that object.

In C++, class is an implementation of an abstract data type. The interface
part of a class deseribes the services provided and the parameters they need. The
private part is a set of variables used to represent the internal state of the object.

The funections (services) can be immplemented inside or outside the class definition.

The variables are called member variables in C++4. The functions are called

member functions and are known as methods in some QQOD literatures.

In C4++, one can perform an operation by invoking one of the member functions
(methods). In Smalltalk-hased QOD literatures, this mechanism is described as

sending a message to an object and causing it to exccute the specified method.

A class serves two roles, as a lexical scope and as a type. As a lexical scope,
a class defines a set of immutable bindings between names and certain kinds of
entities, which include data declarations and various kinds of literals (types, enu-
merations, and functions). The members of a class have distinct names, except for
wember functions, which must be distinguishable only by their names and their
declared argument types (functions distinguished only by their declared argument
types are called overloaded functions). A class provides lexical context for the defini-
tions(bodies) of its member funetions and for nested class and function definitions;
the enclosed definitions can be of several varicties: ordinary, static, virtual, and

pure virtual. Data declarations can be of two varieties: ordinary and static.

A class also defines a type, which is a pattern for instantiating objects, called
class instances. A class instance is a compound object: it consists of multiple
subobjects, called components. In C++ term, the subobjects are member variables.
The member variables of a class instance are determined by the class. For a simple
class (not defined by derivation), there is one instance member variable for each

declaration, each ordinary member function, and cach virtual member function.

s L e P
ity Lt s e

Object-Oriented 27

Member functions can be viewed as closures unique to the instance: they have
direct access to the member variables of that instance, and can refer to the instanee

itself using the variable this.

Class members can be named directly (in their scope) or using the nota-
tion classnamc :: membername. Members can be aceessed using the notation
instance.member, where instance is an expression denoting a class instance and

member names a class member,

>Example 3.14

A complex example is a.4 2 B 2w, where @ is a member of the elass
that is the B member of class 4, and a is an instance of a class containing

a corresponding x member.

[

Within a member function, member variables of this are accessed using the

name alone.

3.2 Inheritance

Data abstraction docs not cover an important characteristic of objects. Real-
world objects do not exist in isolation. Each object is related to one or more objects
in their world of existence. We can describe a new kind of object by pointing out
how the new object’s characteristics and behavior differ from that of a class of
objects that alrcady exists. This notion of defining a new object(class) in terms of
an old one is an integral part of object-oriented design. Inheritance is a mechanism

to achieve this goal.

Inheritance imposes a hicrarchical relationship among classes in which a child
class inherits data and behavior from its parent. In C++ terminology, the parent,

class is known as the base class, the child is known as the derived class. The

_

Object-Oriented 28

relationship between the parent class and the child class is often called is-a relation.

An object of the derived class is-an object of the base class too.

The effect of derivation on the derived class lexical scope is similar to nested
scopes: the lexical scope of the derived class includes not only the member variables
it. defined explicitly, but also any member of the base class that is neither redefined
in the derived elass nor ambiguous in multiple base classes. The effect of derivation
on instances of a derived elass is composition: an instance of a derived class contains
not only the members corresponding to the members defined directly in the derived
class, but also one unnamed instance member of each base class. These unnamed

members are called base members.

A member function can access only the member variables of the instance of its
defining class. Although redefined base class members are not part of the lexical
scope of the derived class, they can be accessed from the derived class scope using

explicit. qualification,

An implicit type conversion is defined from type ‘pointer to derived class’ to
type ‘pointer to base class’, for cach base class. Its effect is to convert a pointer
to the derived class instance to a pointer to the corresponding base member. This
conversion achieves the effect of inclusion polymorphism: a pointer to a derived
class instance can be passed as an argument to a function expecting a pointer to a

base class istance.

3.3 Polymorphism

In a literal sense, polymorphisin means the feature of having more than one
form. In the context of OOD, polymorphism refers to the fact that a single operation
an have different behavior in different objects. In other words, different objects

react differently to the same message.

Polymorphism helps us to simplify the syntax of performing the same operation

on a collection of objects. In C++, polymorphism is supported in two ways. First,

Object-Oriented 29

overloading enables polymorphic functions (operators) in the same class working

with many different argument types.

Sccond, late binding or dynamic binding simplifies the syntax of performing
the same operation with a hicrarchy of classes. The interface to the classes can be
kept clean, because it does not have to be unique names for similar operations on

cach derived class.

3.4 Responsibility-Driven Design

The discussions so far did not touch the heart of the object-oriented paradigm.
The most important aspect of object-oriented paradigim is that it is to be considered
a design technique driven by delegation of responsibilities. This technique is ealled

responsibility separation.

In the traditional process-state model which deseribes the behavior of a com-
puter exccuting a program, the computer is a data manager, following some pat-
tern of instructions, wandering through memory, pulling values out of various slots,
transforming them in some manner, and pushing the results back into other slots.
By examining the values in the slots, we can determine the state of the machine or

the results produced by a computation.

In contrast, in the object-oriented framework, mmemory addresses or variables
or assignments or any of the conventional programming terms are never mentioned,
Instead they are objects, messages, and responsibility for some action. In D. Ingalls’
memorable phrase, “Instead of a bit-grinding processor...plundering data structures,
we have a universe of well-behaved objects that courteously ask each other to carry

out their various desires”[Ing81].

The basic philosophy in object-oriented design is the delegation of responsibility
for activity. Every object is responsible for its own internal state, and makes changes
to that state according to a few fixed rules of behavior. Alternatively, every activity

must be the responsibility of some object, or it will not be performed.

Object-Oriented 30

In a recent book, Rebecca Wirfs-Brock, Brian Wilkerson, and Lauren Wiener

[WWWD91] present what they call a responsibility-driven design method for object-

oriented software. The authors model the software as a collection of collaborating

objects, each with specific responsibilitics. The objects are modeled by a client-

server relationship, in which a client class makes a request to have a specific task

performed by the server.

o

The responsibility-driven design is broken down into two phases:

Exploratory phase. Here developer discovers the classes required to model
the application, divides up the system’s total responsibility, and delegates the
appropriate responsibilitics to the classes. Developer also needs to identify the

collaboration among the classes.

Analysis phase, The purpose of this phase is to refine the design created during
the exploratory phase. Developer moves the common responsibilities to the
base classes so that code is reused as much as possible. Here developer groups
classes that work closely together. In the analysis phase, developer also derives
complete specifications of the classes and determines the message protocols to

be used by client-server pairs.

3.5 Comparison with Function-Oriented Paradigm

The traditional function-oriented design paradigin is based on the top-down

strategy. There are several problems with the top-down approach so prevalent in

structured techniques. As pointed out by B. Meyer[Mey88], top-down design

e does not allow for evolutionary changes in software.

o characterizes the system as having a single top-level function, which is not

always true (in Meyer’s words: “Real systems have no top”).

gives functions more importance than data, thus ignoring important character-

istics of the data.

Object-Oriented 31

e hampers reusability, since submodules are usually written to satisfy the specific

needs of a higher-level module.

Due to these weaknesses, design flaws arise in the functional-oriented models.

Below we discuss them in some aspects.
Application Dependency

The functional-oriented method will lead to heavy application domain depen-
dent software. Since it assnmes that functions are on the top of concern, the system
is characteriscd by one top function. The data structure aspect is neglected. The
data structure is scattered among the functions that use it. Any modification in
function specification usually requires changes both in function construction and

data structure. Thercfore enhancement and maintenance become very expensive.

On the contrary, in object-oriented method, the conceptual entities in the prob-
lem domain are potential objects in the software. It is casy and natural to identify
physical entities and conceptual entitics in the problem domain in analysis. The
functions and opcrations arc secen as natural associations to the objects and thus
more close to the object than that of functional approach. Software produced in
object-oriented method will he less application domain dependent than in funetional

approach.
Reusable Modules

Another quality that suffers from heavy application domain dependencey is
reusability. Different point of view will have different understandings over the fune-
tions. Therefore, different software systems will have quite different data structure
even their domain objects are somewhat similar or the same. Thus reusing any data
structure or program module may require major re-writing. Usually the cost is so

high that no one tries to reuse programs written by others.

In case of object-oriented design, rcusability can be enhanced in many ways.
The generalization provided by inheritance allows the capturing of commonalities
within a group of implementations. This becomes a higher level abstraction to

be reused later. Also the use of inheritance for specialization helps to reuse the

Object-Oriented 32

already developed behaviour of a class, making the class derivation an important
programming tool. The coneept of generies or parameterized types are very useful

for reusability in strongly typed systems.
Design Process

The functional design method takes a top-down step wise refinement approach.
The initially defined top level function is refined to simple functions. The process
is not iterative, This may be quite casy and natural for some systems, but may not

be for others.

The object-oriented design process is bottom up to a great extent. The po-
tential objects are initially identified. Then the knowledge of each object and their
responsibilities are defined, which takes a major part of the cffort. During this
process, objects having large amounnts of responsibilities are decomposed resulting
in new simple objects. Thus the design as such is an iterative process. Finally,
the objects are connected by figuring out the relationship between them. This final
step gives the solution to the problem, whereas the initial steps are all focused on
the modelling of the problem domain. Apart from this, the object-oriented devel-
opment process is iterative. This has the advantage of avoiding early binding of any
critical decision. This also tightens the coupling between the specificati a and the

implementation and helps to reduce the inconsistency between them.
Other Issues

One of the assets of object-oriented paradigm is that, in each phase of software
development(i.e., analysis, design and implementation) the focus is on a common
set of items - objects. This brings out coherence and integrity in the development
process and makes objeet-oriented approach an unified paradigm. The combina-
tion of object-oriented analysis, design and programming allows the capture and

encapsulating of abstraction directly into code.

A modelling poiut of view is taken in object-oriented approach. Analysis and
design phase work together to depict a model of problem domain. The information
developed in analysis phase forms an integral part in the design phase. The main

component of the solution to a problem is derived from the message interaction

Object-Oriented 33

among the independently implemented classes. This is different from the traditional
approach where there is a shift from problem domain in analysis phase ~olution

domain in design phasec.

An important requirement in effective software project management is confor-
mance to the open-closed principle[Mecy88]. That is, a module should be both
open and closed. A closed module is one that is ready for use by its clients. An
open module is one that is still subject to extension. This is not supported by cou-
ventional programming. But the object-oriented methodology solves this problem
with an effective tool ic. inheritance. The use of inheritance coupled with poly-
morphism and dynamic binding in object-oriented approach, facilitates extensibility

and evolutionary development.

Also, if we look at the variation of cost with the software development expe-
rience, there will be a major gain in object-oriented approach. The gain in con-
ventional approach could only he due to improved design decisions. But. in object-
oriented approach, apart from the improvement in design decisions, the reusability
will play a major role in reducing the cost as development experience inereases. The
object-oriented paradigm provides good support for design issues such as modular-
ity, information hiding, weak coupling, abstraction, strong cohesion, extensibility

and composability.

One of the disadvantages of object-oriented paradigm is that it is difficult to
understand the overall goal of the software. This may be due to the extensive
decentralized style of object-oriented paradigm. Each class may be understood
independently; but collectively, the function provided by a set of elasses is difficult
to make out. But proper high level documentation (not associated with any class)
and features in the compiler to display the client view, heir view ete., will help to
solve this problem. The presence of the condensed ‘top level function’ of a software

1s necessary, at least in documentation.

Unlike function-oriented paradigm, where formal methods have been widely
accepted and applied, formal approach to OOD is only at the beginning of the
development[AGo91, Bre91, Dah90)]. In fact, some techniques in VDM specification
have been adopted by object-oriented languages like Eiffel[Mey88).

——-i _

Object-Oriented 34

Finally, due to the high initial costs, object-oriented paradigm doesn’t fare well
for systemns which are small and those which have fixed solutions. For example, to
implement an algorithm or for a computation intensive problem the conventional
approach is better than object-oriented paradigm. Also an object-oriented approach

relies heavily on supporting tools and development environment.

In favor of functional-oriented approach we remark that there are a number of
analysis methods, supporting tools, and implementation experiences which may be

used in software development.

4

Transforming VDM Specification into C++

This chapter describes the details of transforming a VDM specification into an
abject-oriented design. Both methodology and implementation issues are addressed.
The discussion is basically programming language independent, although we use
C++ as an idea carrier. To begin the chapter, we first state the goals of the
transformation; general transformation issues are discussed in the second seetion,
and then the subsequent sections illustrate the handling of cach element of VDM

specification.

4.1 Introduction

It is our thesis that we can combine the virtues of objec* oriented approach and
formal method (VDM specification). This makes it possible to use the modelling
methods built for function-criented approach, which are widely accepted and ap-
plied, for object-oriented design. In fact, with the result of function-based analysis
technique VDM, the tasks accomplished in the steps of the responsibility-driven
software design can be achicved from VDM specifications with additional analysis

and effort.

Transforming 36

The basic task of this study is to implement the transformation of a piece of
VDM specification into an object-oriented implementation design. The result of

this transformation will achieve the following goals:

1 Determine the classes that are necessary to model the physical objects. Provide

rules to implement the variable types by means of classes.
2 Provide guidelines to implement the built-in operations for VDM variable types.

3 Identify the member functions needed to perform the operations that VDM

specification indicated.

4 Provide gridelines to make use of inheritance, polymorphism, and other con-

cepts,

4.2 Transformation Process in General

There are many ways to transferring a specification into an object-oriented
design. The approach presented here is a straightforward method, which is a cook-
Look to transfer the data types, operations and functions into the classes and mem-

ber functions according to their relationships.

In most cases only a guideline for creating classes and member functions is
provided. More detailed issues are open to the implementer to fill in. The results

we obtain may be a mixture of analysis, design, and implementation.

The emerging object-oriented design techniques also lead to similar results. The
steps of analysis, design, and implementation are still necessary, but the separation

between them is blurred.

The basic feature of object-oriented design goes around the class concept.
There are two interpretations of the class concept{Bud91]. Here we use the ex-
planation given by [Str01], that considers a class is a user defined type. Ideally, a

user-defined type should not differ from built-in types in the way it is used, except

Transforming 37

in the way it is created[Str91]. We will not distinguish the terms of a class and a

type.

In VDM specification, variable and its type are abstractions of the physical
object. The relation between a variable and its variable type is the same as that
of an object and its class in object-oriented programming languages. Variables in
VDM specification can be transferred to objects of the classes that are obtained

from the variable type transformations.

However, in object-oriented design, a class is more than merely an abstraction
of a physical object. The access to data of a class is restricted to a specific set of
access functions known as member functions. Member functions shall be contained
as part of a class declaration. A class as a basic unit of the system, in an ohject-
oriented point of view is an abstraction of a physical object and its connection to

the outside world is only through its member functions.

Designing, in object-oriented view, is a process of establishing classes, data
ficlds and member functions. Qur central task in this study is to create classes, to
identify their data ficlds and member functions from an established VDM specifi-
cation. The whole process can be seen as a transformation from VDM specification

into object-oriented design.

Any variable type in VDM specification can be implemented or simulated in
programming languages such as C++. It is not necessary to implement a variable
type in C++ in the saine way as it is defined in VDM. There are ways to implement
any variable type of VDM according to developer’s choice. However, in this thesis we
arc going to provide a straightforward way to transform cach of VDM variable types
into a correspondent class in C++. We try to provide as many details as possible
according to the known features of the VDM specification and the language C++
which supports many suitable features to impletent the data types and the built-in

operations in VDM specification language.
First, each variable type can be transferred into a class in C44.

A class is a representation of a data type. Although some basic variable types in

VDM specification can be implemented in C data types, transferring them into C ++

Transforming 38

classes will ensure the features defined in VDM specification by using initialization
checking to avoid accident violation of value. For example, transferring nat0 into
unsigned int will be all right, but transferring nat into unsigned int will not prevent
a variable of type unsigned int to be assigned value zero. On the other hand, a
class nat with initialization checking and member function checking will effectively

eliminate this possibility.

The relationship between variable types in VDM specification can provide help-

ful information about the relationship between the corresponding classes.

The so-called is-a and part-of relations can be detected and found in the

original variable type definitions in VDM specification.

Second, the invariant checking of VDM specification can be implemented or
partly implemented by C++ initialization mechanisms, though basically invariant

conditions are design issues rather than implementation issues.

Third, even the operation and function specifications can reveal the relation-

ships between classes in an object-oriented design from VDM specification.

Analyzing the operation sp~cification is necessary to identify the member func-
tions of the classes. The input paraimneters and the external parameters of an oper-

ation determine the classes with which it is involved.

In an object-oriented paradigm, the classes arc the center of the design. Oper-
ations allowed on the data types are implemented by member functions of the class.
The correspondence between operation and member function may not be one to
one. The member functions may be fundamental operations permitted on a class.

Of course, the operations specified in VDM will be among the member functions of

classes.

In VDM, an operation specification states the constraints it is subjected to,
but it does not restrict how these constraints are illustrated. Two operations may
have the same complex expression as part of their pre-conditions or post-conditions.
We call this specification redundancy. Specification redundancy is not uncommon

among VDM specifications. In function-oriented approach it is expected to divide

o
J
J

B it A

PRV

e ot

Transforming 39

complex operations into smaller and more basic operations. We hope that the
specification redundancy can be eliminated or at least reduced in the design stage

as much as possible.

The transformation is not a static process. Each step can interact with each
other. Each step will form a part of the whole object-oriented design. Each step
will supply certain information to different aspecets of a complete design. Until the

whole process finishes, the components will not be clear.

If a variable type A in VDM specification is transformed into a class 4, we say
that A is a transformation of A and A is the pre image of A. We can also call A the
image of A. We may ignore these different faces of an abstract object in case that
no confusion could occur. In fact, variable type in VDM specification and class in
C++ are both models of abstract objects.

In the followinz scctions, we will discuss the details of transferring of each
clement in VDM specification into object-oriented features in C4+. The impor-
tant topics of object-oriented design such as inheritance, data abstraction, cte., are

discussed. Some implementation design issues are also considered.

4.3 Transferring Basic Types

Let us look at five basic types in VDM specification: boolcan, int, nat, nat(,
and string. There are many ways to implement them in C++4. We have adapted a
simple but natural approach. Of these types, int and natQ can be represented by
C data types int and unsigned int in full observation of the original requirements,
except conceptual differences(for example, int of VDM is an infinite set and int of
C++ is a finite sct).

The type nat has one more restriction compared with reat(), it can not assume
value zero. Other features and operations are identical. So, we can define nat as
a derived class from base class nut0. The non-zero restriction can be ensured by

initialization and member function implementations. Or, this invariant condition

Transforming 40

can be created as a member function to check if it is obeyed or not. In Section 4.5,

we have detailed discussion about invariant conditions.

The most straight forward way to transfer boolean is to define an enumeration

type with the same name and with the same definition as

enum boolean { false, true};

In practice, typedef is used to declare a boolean type as an equivalent type
to integer type in C, and define false as zero and true as one. The reasons are
1) C treats an enumeration type as an integer type; 2) in the above enumeration
definition, false aud truc also assume value zero and one respectively; 3) the i f
statement will treai all non-zero valued expression as true in C and this fact is
handled by the integer definition of boolcan type very well. 4) the enumeration

definition only contains two values and does not match the i f statement completely.

The string type can simply be transferred to a string class. The common
operators such as =, [}, ==, and != (assignment, element, equality, and inequality
respectively) can be defined as member functions. Different assignment situations

should be considered to make it both flexible and convenient for usage.
A possible implementation is shown in [Listing 4.1].

bListing 4.19 Implementation of Class String in C+-+

class String {
char *cptr; // pointer to string contents

int length; // length of string in characters
public:
// three different constructors
String(char *text) ; // constructor for existing string
String(int size = 80); // creates default empty string
String(String& s); // for assignment from another
// object of this class
“String() {delete cptr; }; // inline destructor

int len (void);
String operator+ (String& Arg); // concatenation operator
char& operator(](int i); // index operator

Transforming 41

friend int operator==(const String &x, const char *s)
{ return stremp(x.cptr, s)==0; }

friend int operator==(const String &x, const String &y)
{ return stremp(x.cptr, y.cptr)==0; }

friend int operator!=(const String &x, const char *s)
{ return stremp(x.cptr, s)!=0; }

friend int operator!=(const String &x, const String &y)
{ return stremp(x.cptr, y.cptr)!=0; }

}s

String::String (char *text)

{
length = strlen(text); // get length of text
cptr = new char(length + 1];
strepy(cptr, text);

}s

String::String (int size)

{
length = size;
cptr = new char[length+1];
*cptr = '\0’;

.
)

String::String (String& s)

{

length = s.length; // length of other string
cptr = new char [length + 1]; // allocate the memory
strcpy (cptr, s.cptr); // copy the text

}s

String String: :operator+ (String& Arg)
{
String Temp(length + Arg.length);
strcpy(Temp.cptr, cptr);
strcat(Temp.cptr, Arg.cptr);
return Temp;

Transforming 42

int String::len(void)

{

return (length);

}i

void error(const char* p)

ceer << p << ’\n?;
exit(1);

}

char% String::operator[](int i)

{

if(i<0 || length<i) error("index out of range");
return cptrli]l;

Please note the concatenation operation “47.

4.4 Transferring User Defined Types

We have cight kinds of user defined variable types in VDM specification: enu-
meration type, rename type, union type. record type, power-set type, list type,

mapping type, as well as undefined type.

4.4.1 Enumeration Types

It is natural to use an ecnumeration type in C to represent an enumeration type
in VDM specification. There is no difference in the definition. The range form of
the enumeration type in VDM specification is also transferred into an enumeration

type in C.

o R DM J T S

Transforming 43
4.4.2 Rename Types

Rename type usually comes with two possibilities: 1) the new type is exactly
the same as the original type, and 2) the new type is slightly different and is usually
a subset of the original type. The difference is not big enough to demand the

introduction of a different type.

In these two cases, transferring the rename type as a derived class from the

base type can mect the requireiments.

4.4.3 Union Types

Union type means that a broader set comes from two or more sets. That is
to say the component sets are a subset of the union type. This is exactly the js-«

relationship extensively discussed in object-oriented design[Bud91].

So transferring the union type as a base class and the components type as
derived class is a sound choice. The base type only contains the fundamental data
and member functions common to all component types. Each derived elass can have
more data and more member functions, even new definitions for member functions

already defined in the base class (function overloading).

pExample 4.14

The type borrower in [ALP91] is defined as:

Borrower = Faculty | Student

In the design, a borrower class can he created and the necessary data

fields and member functions established to associate with it as shown below:

enum borrower_status {F, S};

class borrower{
char * name;
unsigned ID;

Transforming 44

borrower_status type;

b
class faculty : public borrower{
public:
faculty(char* n, unsigned id) : borrower(n, id, F);
};
class student : public borrower{

public:
student (char* n, unsigned id) : borrower(n, id, S);

The classes faculty and student will inherit data fields and member
functions of the basc class borrower. The initializations will ensure the
status being correct. The member functions are to be determined and

filled in the later stages of design.

4.4.4 Record Types

The definition of a record type is very similar to that of a class definition in
C++ except without member functions involved in record type definition. It is easy

to transfer a record type in VDM specification into a class in C++.

The components of a record type are transferred to the corresponding com-
ponents of the class. Between the class and the component classes, the so-called

part-of relation holds obviously.

It is also possible to make use of the concept of multiple inheritance, a feature
provided by C++ to support deriving a class from more than one different base

class.

Transforming

>Example 4.2q

Suppose there is a record type MCIRCLE.

MCIRCLE :: CIRKLE : CIRCLE
MESSAGE : GMESSAGE

An implementation in C++ will create first two classes: the Cirele
class which defines an abstract circle, and the GMessage class which de-
fines an abstract type to display a message on the sereen. Both classes
have a member function show: Circle :: show displays the cirele, and

GMessage :: show displays the message.

Using multiple inheritance, a MCirele class is derived from both base

classes and inherits all variables and functions from both classes.

Without multiple inheritance, M Circle type can only be created by
part-of relation. In that case, two component variables shall be defined.

One shall be of type Circle and another GMessage.

One object of MCircle can be created aud show function called like:

MCircle Large(250, 250, 225, GOTHIC_FONT, "Universe") ;
Large.Show();

Note that both base classes have a common member function show()

with different actions though.

Listing 4.2 shows how this picce of design is implemented and multiple

inheritance is used.

>Listing 4.24 Multiple Inheritance in C4++

class Circle : public Point // Derived from class Point and
{ // ultimately from class Location
protected:

Transforming 46

int Radius; // other component
public:
Circle(int InitX, int InitY, int InitRadius);
void Show(void);
b

// implementation of constructor and function show

class GMessage : public Location
{ // display a message on graphics screen
char *msg; // message to be displayed
int Font; // font to use
int Field; // size of field for text scaling
public:

// Initialize message
GMessage(int msgX, int msgY, int MsgFont, int FieldSize,
char *text);
void Show(void); // show message
}i

// implementation of constructor and function show

class MCircle : Circle, GMessage // multiple inheritance
{
public:
MCircle(int mcircX, int mcircY, int mcircRadius, int Font,
char *msg) ;
void Show(void); // show circle with message

)i
//Member functions for MCircle class

//MCircle constructor
MCircle::MCircle(int mcircX, int mcircY, int mcircRadius,
int Font, char *msg) : Circle (mcircX, mcircy,
mcircRadius), GMessage(mcircX,mcircY,Font,
2*mcircRadius,msg)
{
}

void MCircle: :Show(void) //MCircle Show function
{

Circle::Show();

Transforning 47

GMessage: : Show() ;

]

However, not every record type can be transferred to elass with multiple inheri-
tance definition. Only those record types whose component variables are of different

types can be implemented in a class of multiple inheritance.

Because, if a record type with two variables have the same type, it is not
possible to distinguish which member is for which variable, if the class is to inherit

from this class twice.

>Example 4.3«

Suppose that a class DCIRCLE has two circles instead one: One
external circle and one internal circle. If DCIRCLE is allowed to inherit
from CIRCLTI, it will not be clear whether deirele. Radius means the

radius for the external circle or the internal circle.

[

When multipleinheritance is properly used, a subtle but nevertheless important
change in the view of inheritance takes place. The is-a interpretation of inheritanee,
used in single inheritance views a subclass as a more specialized form of another
category, represented by the parent class. When multiple inheritance is used, a
class is viewed as a combination or collection of several different components, each
providing a different protocol and some basic behavior, which is then specialized to

the case at hand{Bud91].

4.4.5 Power-set Types, List Types and Mapping Types

The variable types in VDM are not supposed to impose any restriction by any
means on how they will be actually implemented in a programming language. There

are many ways to implement composite type of VDM in C++. Different emphasis,

e

Transforming 48

like efficiency, easy for reuse, flexibility, can lead to quite different implementations.

For example, a set can be implemented as an array, or a linked list.

What we have presented here is a straightforward implementation according to
the definition. The advantage is that the implementation allows maximum flexibility
and requires minimmun modification to a particular system. The disadvantage is
that efficiency may (not necessarily) be damaged. However, we believe that the
flexibility could compensate the overall achievable cfficiency. In fact, efficiency can

he attempted at later stages of design.

There are two ways to build classes in C++ to implement power-set types, list
types, and mapping types. These classes are usually known as container classes,

sinee these data structures are all used to maintain collections of clements.

One way is to make use of subelass coupling to create general-purpose classes
even in the presence of strong typing. The static typing of C++4 implies that
container classes can not hold arbitrary objects, since the type of the values held in
the class must be known at, compile time. To overcome this difficulty, a basic class

shall be defined. It will be a parent class for any value held in a container.

A very important advantage of this approach is that there are several commer-
cial class libraries ready for use. Container classes for different base type can be
formed easily although more class names will be ereated. Built-in operators in VDM
specitication for power-set type, list type and mapping type all can be implemented

by container classes.

Another way to implement is to use the ability to parameterize class descrip-
tions, which is currently supported by C++. Using parameterized classes, class
temiplate in C++4 term, the user declares a class template in which the types of
varions ficlds are left unfilled. A parameterized class can be thought of as a family
of classes, where the parameter value is used to generate specific qualified versions

of the class. Specifie instances can then be created from the qualified classes.

By making use of the template concept, power-set types and list types can
casily be transferred into container classes in C 4. A template allows container

classes to be simply defined and implemented without loss of static type checking

Transforming 49

or run-time efficiency. It also allows generic functions, such as sort(), to be detined

once for a family of types.

Built-in functions in VDM specification such as dom, rng. card, hd, tl, len,
cte, can be transferred into member operator functions of the template. They ean

still be used as prefix operators.
Listing 4.3 shows the definition of a template stack in C4+.

>Listing 4.39 A Template Class stack in C++

template<class T>
class stack {

T* v;

T* p;

int sz;

public:

stack(int s) { v = p

= new T[sz=s];}
“stack() { delete[] v;}

void push(T a) { *p++ = a; }
T pop() { return *--p; }

int size() const { return p-v; }

>Example 4.44

To declare a variable of type stack for integer stack, one writes

stack<int> si(100); // stack of integer of size 100
(]

The common operators are also haudy to be defined as member funetions.

W

Transforming 50

Since friend functions allow more flexibilities especially when implicit type con-
vention is involved, for practical considerations, some built-in functions can also be

defined as friend functions instead of member functions.

The interfaces for the power-sct template, the list template, and the mapping
template as well as their associated functions are given in Listing 4.4, 4.5,and 4.6.
The interface, in object-oriented tertninology, is the view that the user of object
sces how the object is interfaced to the world at large. It is preciscly the class
definition part, which provides the intended user with all the information needed
to manipulate an instance of the class correctly, and with nothing more. Complete
listing of the source code can be found in many commercial C++ compilers, such
as Borland C++ 3.0.

First is the interface for the list type. There are many ways to implement a
list. Here a single linked list is defined. [Listing 4.4] shows what its interface looks

like.
bListing 4.49 Interface of Class Template Slist

template<class T>
class Slist : private slist_base {

public:
void insert(T& a); // insert an element at head
void append(T& a); // insert an element at tail
T get(); // get first and remove from list
T operator hd(); // get first element
Slist operator tl1(); // remove first element
int operator len(); // length of list

T operator[](const int& index) // index operator

Boolean includes(T& a); // check if a is in list

Boolean ==(Slist<T>& a);// equality operator

Boolean !=(Slist<T>%& a);// inequality operator

Set<T> operator elems(); // obtain a set of elements

Transforming 01

The base class slist_base is an auxiliary class to implement Slist. Slist inherits
all the member functions of slist_base. The implementation details of slist_base are

omitted here.

The set class template is similar to the list class template, In fact the set elass
template can be implemented in the same way as the list class template although
they are quite different objects mathematically. The only thing needed to be modi-
fied is that each time an object is inserted, it shall be checked if the object is already
in the list; If it is found then nothing is done; otherwise it is inserted. Listing 4.5 is

the interface for set template.

bListing 4.54 Interface of Class Template Set

template<class T>
class Set : private Slist {

public:
void insert(T& a); // insert an element
void remove(T& a); // remove an element
int operator card(); // length of set
Boolean isam(T& a); // check membership
Boolean ==(Set<T>& a); // equality operator
Boolean !=(Set<T>& a); // inequality operator
Boolean <<=(Set<T>& a); // subset or equal operator
Boolean >>=(Set<T>& a); // supset or equal operator
Set +(Set<T>& t); // union with a set of same type

O

The mapping class template uses an anxiliary template Link to implement it.

Listing 4.6 shows the interface of the template.

>Listing 4.64 Interface of Class Template Map

template<class K, class V> class Map {
Link<K,V>* head;
Link<K,V>* current;
V def_val;
K def key;
int sz;

Transforming 52

void find(const K&);
void init() { sz = 0; head = 0; current = 0; }

public:
Map() ; // constructor
Map(const K& k, const V& d); // constructor
“Map(); // delete all links

Map(const Map&);
Map& operator= (const Map&);

V& operator[] (const K&) // map applied to element

int size(); // size of the pair

void remove(const K& k); /! remove pair

Set<K> operator dom(); // domain set

Set<V> operator rng(); // range set

Map ++(Map<K, V>%& m); // over write a map of same type
Map operator\ (K& k); // strict by operator

Map operator/(K& k); // strict to operator

BOOLEAN ==(Map<K,V>& m); // equality operator

BOOLEAN !=(Map<K,V>& m); // inequality operator

4.4.6 Undefined Types

Undefined types are open to the later design considerations as the components

to surface. A class without data can be created from an undefined type.

!

Transforming 53

4.5 Mapping Invariants

Invariants stated in the specifications should be carried over to the design in
order to ensure consistency and correctness of the design{ALP91]. Invariants assert
the static relationships among certain global variables. Although many software
design methods do not include a separate section for invariants checking, we insist
that the invariants be distributed among the classes in order to assert the validity
of every operation in the design. Fortunately, C+4 provides facilities that easily

lead us to implement the invariants.

Invariants are expressed in VDM specification by conjunctive clauses. An in-
variant may also involve many components of a class. However, an invariant is an
organic whole. And the predicate condition is meaningful only in the level of that

class.

4.5.1 Invariant Implementation

Since each class will take responsibility for its own data consistency and validity
in C++4, we can have the spirit of invariants carried over to the initializations and
member functions of the class. Or a separate member function can be defined to

check the invariant conditions.

In fact, “the purpose of initialization is to establish the invariance for an object”
[Str91]. Each operation on a class can assume that it will find the invariant true on

entry and must leave the invariant true on exit.

Let us see an example of the nat class, which corresponds to VDM bailt-in
type nat. The invariant is that the value of an object shall be greater than 0. The
operators that are possible to break the invariaut are '--'(difference) and ' /'(divide).
The code in Listing 4.7 checks the invariant condition where these operations are

carried out implicitly.
>Listing 4.7« Implementation of Class nat
#define inv.err printf("invariant violation")

class nat

Transforming 54

{

private:
int val;

public: // interface
nat();
nat(int a);
nat (const nat0% b);

boolean inv();

int value();

friend nat operator+(nat&, nat&);
friend nat operator+(natO&, nat&);
friend nat operator+(int&, nat&);
friend nat operator-(nat&, nat&);
friend nat operator-(natO%, nat&);
friend nat operator-(int&, nat&);

friend nat operator/(nat&, nat);
friend nat operator/(natO%, nat&);
friend nat operator/(int&, nat&);

}
// implementation
nat::nat() { val = 1; } // default initial value 1
nat::nat(int a) { it(a>0) then val=a; else inv._err; }
// initialize an integer into a nat
nat::nat(const nat0& b) { if(b.value()>0) then val=b.value();
else inv_err; } // initialize a nat0 object into a nat

’A
¢
2
T’i
3
{
i

N

ema Do ot

boolean nat::inv(){if(val>0) then return true; else return false;}
// invariant checking

int value() return val; // return value, user can’t change it

nat operator+(nat&, nat&)

;
e
:$
&
:
:
A
H
H
;
!

nat operator-(nat& a, nat& b) return a.val-b.val;
nat operator-(nat0& a, nat& b) return a.value()-b.val;
nat operator-(int a, nat& b) return a-b.val;

nat operator/(nat& a, nat& b) return a.val/b.val;
nat operator/(natO& a, nat& b) return a.value()/b.val;
nat operator/(int a, nat& b) return a/b.val;

fain]

Transforming)

O

Class nat has three constructors: the first initializes an object without param-
cter and the default value is 1; the second initializes an object with an integer and
the invariant is checked; and the third initializes an object from an object of type

nat0 and the invariant is also checked.

For invariant checking, an inv function is created. It shall be called by any

function (other than =’ and ’/') whose actions may lead to the invariant breaking,

Note that the operator '—~' does not escape from invariant checking. The return
value is of the type int. In fact it will be converted to the type nat from the type

int by the second constructor, which has a checking mechanism.

4.5.2 Handling State Invariant

As to the state invariant in VDM specification, there are two ways to deal with
it. The first approach is to treat the state as a special object in VDM and distribute
the invariant among the post images of the global variables[ALP91]. The second

way is to handle the state as a record type.

The way to distribute the state invariant is to divide the invariant according

to the conjunctive assumptions.

The state invariant is composed of several predicate clanses linked by “and”
symbol A (& in our machine symbol). Each clause states a constraint over the
values that the global variables can assume. Each clause involves some variables of

some variable types.

The best case is when a clause involves only one variable type. We can consider
the clause as an additional invariant condition over the variable type besides its
own invariant condition imposed by its structure. In this case the final invariant
condition for the class (the post image of the type:) will be composed of two parts:

one comes from the state invariant, and the other comes from its original invaiiant.

Transforming 56

In the case when more than one variable type is involved in a clause, the least
super class of the elasses involved shall be found, under whom the clause is placed

as an additional invariant condition.

The advantage of this approach is that consistency of the system is preserved
by each class member function. No other explicit invariant checking is needed for

the state and the checking operation is optimized.

The disadvantage of distributing state invariant to classes in the design is that
the additional invariant condition for a class which comes from the state invariant
prevents further reuse of the class. Since that part of the invariant is not common
among different systems while the original invariant condition which comes from
the modelling of the class itsclf, is a characteristic of the class and is reusable to

other systems.

>Example 4.54

A school type is composed of faculty type, student type, and staff
type. A student type is composed of name type, age type, sex type, and
ID type. Suppose our system is about a school for continuing education.
One of the constraints in the state invariant is that student should be at
least 18 years old. If we distribute this condition and create an invariant
in class student, then class student can not be reused by a high school,

where the constraint is different.

0l

The other approach, which treats the state as a usual record type, improves
reusability. From the syntax point of view, the state is just a record type with
a name which appears in all the VDM specifications. A corresponding class can
be obtained from the procedure introduced in the previous section. Not only the
member variables, but also the invariant function and other member functions can
be created for the class. (Member function creation will be discussed in the next

seetion). An explicit invariant checking function can be built in the same way as

4]
-1

Transforming

discussed in the previous section. To investigate the system consisteney, a message

is sent to the object of class state, i.e., a function call like Stat.ine() in C++.

The disadvantage of this approach is that an explicit call to the invariant
function of the state class is required to keep the system consistent, and the state
invariant checking function takes more calculations than its counter part in the first

approach.

4.6 Member Function Creation

A class without member function has no value in practice. The classes created
from variable types in VDM specification are not complete unless their member
functions are identified and created. This is by far the most difficult task in this
study. The member functions are used to implement the operations specified in
VDM specification.

Remember that the member functions define possible operations affecting the
object. We believe that the operation specification in VDM contains sufficient
information of the kind of operations that are required to act on an abstract data

type, namely a class (in design).

Analyzing the predicate clauses in pre-conditions and post-conditions of an
operation specification will reveal the member functions reguired to implement the

operations.
The concrete measures arc:

1 dividing the pre- and the post-conditions into separate clauses,

o

categorizing cach clause into different classes according to the variables they
affect, and using these clauses as specifications to define member functions in

the classes,

3 reorganizing member functions generated so far to eliminate any possible du-

plication, and

——-_—

Transforming 58

4 implementing operations by member functions created during the previous

steps.

It is important to note that we are dealing with operation specification in-
stead of an operation procedure itself. What we can obtain is member function

specification from an operation specification.

In the following, we will detail cach step and discuss problems that may occur.

4.6.1 Decomposing Pre- and Post-Conditions

The task is simple here. We assume that the pre- and post-conditions of the
operation specification are in conjunctive normal form. This assumption is vital. If
the specification is written in a form that sub-operations can not be distinguished
in the syntax analysis phase, 1.e., if the predicate is not in the form of AA B A
-+ W, the member function creation process described in this study will generate
condensed functions which contain too many fundamental operations and can not

reveal sufficient clues to implement them.

The clauses appearing in the pre-conditions are assumptions about the status
of arguments before an operation can be validly taken. When the pre-condition of

a specification fail to hold, the operations will be meaningless.

The clauses in post-condition describe the status of arguments after the opera-
tion and define how the output is related to other parameters. Sometimes values of

argnments both before the operation and after operation may occur in the clause.

Each clause appearing in a pre-condition or in a post-condition states the re-

lation between its variables.

An operation is usually a composition of a series of sub-operations. We can as-
sume cach sub-operation only accomplishes a fundamental task. The specifications
of these sub-operation will be much simpler than that of the composite. Conversely,
if we have the specification of sub-operations, we can implement them just like that

in a composite operation.

!

13

Transforming 59

Each clause can be considered as a specification of a basic operation or funetion,

no matter where the clause comes from.

The difference of an operation and a function in VDM lies in the access to the
external variables in a VDM specification. We do not see any difference in a C4++

implementation. So we will ignore this difference as we did before.

4.6.2 Creating Member Functions

The basic operations are taken as the basis to define member functions of the
classes. The reason we say as the basis of defining member functions instead of as
member function directly is that as to the member functions, these basic operations
may still be a composite operation themselves. Even more fundamental operations
may have to be performed by member functions. However from the VDM operation
specifications, we can not determine how to divide them. The clauses we obtained
from dismantling pre-conditions and post-conditions will be our smallest elements.

So at this moment, we will create member functions according to the elauses,

The member functions created this way are still far from perfeet. In fact, one

of the biggest problems is their implementation.

>Example 4.6«

Clause A is defined as @' = a+ 5, where a is complex. Now a function
Aiscreated as A(a) : «' = a+5 and one can interpret it as a function which
increases a by 5. This may not be complete and adequate. More specific
functions arc needed. At least three operatious are required. First, there
is a need for plus operation for comnplex numbers. Sinee complex is not a
built-in type in C++, it shall be implemented by developer. Second, a type
conversion function is needed to convert integer 5 to complex. Otherwise,
it is still not able to compute a + 5 using plus operator. Or an additional
function for plus opecration that can take a comnplex and an integer as

operants. And third, since the clause may be understood as a predicate

Transforming 60

stating that the value of o' shall be equal to that of a + 5, an equality

operator is needed for two complex numbers.,

O

Mechanieal transformation can not provide these kinds of information. Member
functions shall be implemented by developer after transformation. More functions
may be ereated in later stages of design. However, transformation result shall give

specifications for these member functions, which serve as basis of implementation.

Another problem is the naming of member functions. Since each clause has
its own semantic meaning, a mechanical convention is difficult to establish to name
these member functions according to their meanings. Fortunately, at the very be-
ginning of creating member functions, the names are not of great importance. Well

sounding names can be obtained after human interventions.

A clause may access one or more parameters and external variables of the
operation. According to the variable or variables accessed by a clause, member
function is created for the class (post-image of the variable type). Hercafter, when
we talk about the classes, we are talking about the classes whose pre-image variables

appeared in the clause.

sExample 4.7

A clause C(a, b) may appear somewhere in a predicate, where variable
a is of type A, bis of B. The post-imeses of 4 and B are A and B
respectively, In discussion, we refer @ and b as variables of C(a,b), A and
B as variable types, and 4 and B as classes.

O

For each variable that is affected in the clause, one member function is created
in the post-image elass of the variable. The components of a variable are also
accounted as a variable (of the class the components are) if the components are

involved in the clause too. If the component is a power-set type, or list type, or

Transforming

mapping type, since the functions of these classes are defined already in their elass

templates, they can be ignored. Assuming that operations acting on a built-in elass

(or type) have already been defined, we omit the process to ereate member funetions

for them.

>Example 4.84

Consider BORROW _BOOK operation of the library system{ALP91]. The

pre- and post-conditions as stated in [ALP91] are not in conjunctive normal

form, and we rewrite them as follows:

BORROW_BOOK(ID : IDtype; CN : CNtype)
/* User with ID number ID borrows book with call number CN =/

ext lib_system.: wr Library
pre
/* borrower must be eligible to borrow */
(3'uEREG_USERS(lib_system) . (IDNUMBER(u)=id) A
(id€ dom LOANS(lib_system)=>
(USTATUS(u)="F"=>card dom LOANS(lib_system)(id)<20) A
USTATUS(u)="S"=>card dom LOANS(1lib.system)(id)<10)))) A
/* book shall be eligible to be borrowed */
(3'be COLLECTION(lib._system).(CALLNUMBER (b)=cn)A
(BSTATUS(b)="inshelf")A
(~ (Jul€USERS(1ib_system).cn € dom LOANS(lib_system)(u1)))) A
/* borrower must be 1st on reserve queue */
(cn€ dom RESERVED(lib_system)=> +d RESERVED(lib_system)(cn)=id)

post

/+ mark tie book loaned out */
(31b€ COLLECTION(ib_system).
(CALLNUMBER(b) =cn) A(BSTATUS (b)="1oanout")) A
/* update borrower’s record */
(3'ueREG.USERS(1ib_system) . (IDNUMBER(u)=id) A
(LOANS(1ib.system)(id) ’=LOANS(lib_system) (id)++[cn—today])) A
/* borrower moved from reserve queue */

Transforming 62

(cné dom RESERVED(lib_system)=>id¢ elems RESERVED(lib.system)(cn))

There are three clauses in cach of the pre-condition and the post-

condition,

The parameters are ID:IDtype, CN:CNtype, and Lib_System:Library.
The post-image classes are idtype, entype, and library. Some components
of ibrary and even their components are also involved in the pre- and post-
conditions. They shall be considered as variables too. Their corresponding
classes are lib_books, borrowcer, borrower_status, book _status, loanmap,
and qucue. The powerset and list classes as well as mapping classes are
considered as container class, and the corresponding operators are defined
already. They will not be taken into account here. borrower_status and
book _status are of enumeration type, which is also considered as built-in

type of C++. Therefore, we do not include them in our discussion.
The classes oceuring in each clause are listed in Listing 4.8.

eListing 4.84 Class and Clause Relationship

clause classes
pre 1 library, idtype, borrower
pre 2 library, entype, lib_book, borrower
pre 3 library, idtype, cutype
post 1 library, cutype, lib_book
post 2 library, entype, lib_book, borrower, idtype
post 1 library, idtype, entype

A member function shall be ereated for each class listed above.

Transforming 63
4.6.3 Reorganizing and Implementing Member Functions

The member functions created so far are far from perfect. A member function
of a class is supposed to define an operation acting on the object of the class, i.e.,

on some member variables, The clean up phase consists of the following steps:

First step climinates duplicate functions caused by repeated clanses. Same
clauses may appear in different operation specifications and certainly will cause

duplicate member functions.

Second step redefines the member function according to the role that the vari-
able plays in the clause. Different member functions ereated in different classes due
to the same clause (from pre- or post-conditions) shall be redefined to accomplish

(uite different actions.

One principle of object-oriented design is that cach class shall take care of
the data consistence of its own and ensure only its member funetions and friend
functions have access to its data. If a class component is an object of another elass,
the access to the components of the object shall be carried out though the member

functions of the component class.

The principle here in redefining a function in a class is that the funetion shall

only act on the class itself.

>Example 4.94

In the clause pre_1 of BORROW __BOOI, the objects involved are
lib_system, id, u, ustatus, and loans. The post-image classes ave Library,
IDtype, borrower, enumeration type borrowcr_status, and container elass

loanmap.

e For class IDtype, a function which returns the idnunber of its objeet

shall be created by this clause.

o For class borrower, two functions may he ereated:

Transforming 64

1. Idnumber checking functions,
2. the status of user (whether USTATUS is “F” or “S").

o For class Library, a function to implement the specification of the

clause 1s needed.

e Since borrowcer_status is an enumeration type and loanmap is a map-
ping class, the built-in functions are supposed to exist already, we need

not cousider them again.

O

It is possible that even for a single variable in the clause, different operations
may be included in the clause. In Example 4.9, there are two member functions

created for class borrower,

In fact, to split the clause into more basic operations is the main target here.
Of course there may be further duplications. This further duplication elimination
can ouly be performed by human interaction and is left to the developer in later

implementation.

As stated above, one clanse will lead to different member functions in different
classes. The actual operation performed by these functions will be quite different
from the original actions specified by the clause. However there will be one function
which will perform the operation specified by the clause. We call the function as
primary function for the clause and the class in which the function is defined as the

primary class of the clanse.

rExample 4.104

Class library is the primary class of all the clauses in Example 4.8.

O

Here we give the rule to determine the primary class for a clause.

Trausforming 65

Rule 1. The primary class is determined from the role of the corresponding variable

in the clause:

1 If there is a write-access external variable, the corresponding class will be pri-

mary class.

2 If there is a read-access external variable and no write-access variable, the

corresponding class will be primary class.

3 If there is no external variable, this is a function specification. We have two

different situations.
3.1 If there is only one variable, the class will be primary class.

3.2 There exists a containing relation (to be defined in the next paragraph)

among onc paramecter type and the rest of parameter types, The class

which contains others is the primary class.

3.3 No such relation exists. One global function shall be created from the

clause as the primary function.

Definition 1. Typc A is said to contain type B, if
1 Ais B;

2 A is a power-sct type or a list type. The element type of A is type C. Aud C

contains B;
3 A is a rename type, the original type C of A coutains B;
4 A is a mapping type, the domain type C of A contains B; and

5 A is a record type, onuc of the component types C contains B,
In a pre-condition clause, there will be no write-aceess variable, so the first Rule

will not be applied. However, a write-access external variable for the operation is

of priority to be a primary class if it occurs in a pre-condition clanse,

yF

Transforming 66

tExample 4.114

In MAIL system[CHIS6], function is_.in_list is specified as:
isan list : Uid x Name_list x Nmap — Boolcan
is_in list(user,names, directory)=
uscr € {directory(n)| n € clemsnames}

Among three variable types: Uid, Name_ list and Nmap, there is no
type which contains the other two types. So function is.in_list shall be

defined as global function.

O

The role that played by a primary class is like that of a coordinator. The
classes involved in a elause are like team members. However, the team is so loosely
organized that a hierarchy may not exist. In case there is a hicrarchy, the primary
class will he at top of the hierarchy, which is ensured by the selecting rule. The
primary class will take the responsibility to coordinate the involved classes and

achieve the operation specified by the clause.

The consideration to implement the clause specified in an operation by primary
function in primary class is that although the other classes are involved in the
operation which is not expected according to the principle of lmiting the operation
within the scope of a class itself, the degree of violation is to be reduced to the
minimum by implementing it in the primary class. Note that this violation is
necessary and permitted. It is done by sending a message to the server class. Since,
in case of 1) in Rule 1 it will not change objects of other classes; in case of 2) only
parameter classes are requested to report some thing. Note parameter variables are
less important than external variable or they are in lower level of classes hierarchy;
in case of 3.1). non-primary class is clement class, or base class, or component
class of primary class, or the same class as primary class. So non-primary class is

considered reasonably effected by primary class.

Transforming 67

This approach is different from a similar handling in {ALP91], where a least
super class is used to replace primary class. The key reason for our approach is to

provide reusability.

>Example 4.124

There is no primary class in Example 4.11, so the function will be
crcated as a global function and can be reused by other systems. If the
function is implemented as a member function of the least super elass
state, its usage will be limited inside the MAIL system. The meaning
of the function is obviously not limited inside the mail system. However,
in order to reuse is_in_list, class state shall be reused and this may not
be reasonable in some situations, because stafe is strictly for the MAIL

system. However, a global function can be reused without concerning the

MAIL system.
]

According to the responsibility separation principle, if a member function re-
quests action on an object of another class, it can not have direet aceess to that
object. Instead it sends a message to the object. In other words, it performs that
part of action by calling one of the member functions of that class. At least the
primary function is required to call funetions of non-primary classes to perform op-
erations involving other objects. By calling a function of other classes to perform
certain operations, a function can be simplified indeed. If all the possible mem-
ber functions were simplificd this way, we have advanced one step more toward

responsibility separation.

That is to say, between the primary class and non-primary classes, elient-server

relation exists. The primary class will be elient and non-primary class be serocr.

Transforming 68
vEximnple 4.134

The member function library :: borrow_book pre_1 created from op-
eration BORROW _BOOK, can be implemented by calling the member

functions in class IDtype and borrower created from the same clause.

O

If one part of a clanse is the same as an existing clanse, or the entire clause
is the same, no new functions shall be created and the existing functions shall be
used throngh client-server relations (calling the primary function created by that

clause).

There is a very important issue in judging if two clauses are the same or one
is part of another. That is, the clauses as they are shall not be compared without
semanties consideration. The variable names shall be replaced by their type names
and the resulting clauses would be compared, since for any variable appearing in a
clause, ealy the objeet which represents is significant in comparison and its name

is not.

>Example 4.144q

In the mail system[CHI86), operations ADDUSER and DELUSER
both check whether the object user is in the list or not. However, the
variable name for the user in ADDUSER is newuser, and in DELUSER
it is olduser. It would be very difficult to tell the two clauses have a relation

only by symbolic comparison of them.

Transforming 69
In summary, there are two rules at this stage:

1 Implementing non-primary functions at the beginning., The first functions to
implement shall be those that perform very fundamental operations. The rela-
tive complex ones are implemented later. The primary function is implemented

at the end.

2 In implementing any functions, always trying to make use of existing functions

by message sending and avoiding any function duplications.

4.6.4 Implementing Operations by Member Functions

After obtaining member functions for classes from cach elause, we can imple-
ment the operations specificd in VDM operation specifications by making use of

primary functions.

As to the other operations in object-oriented design, VDM specified operations
arc also defined as member functions of some elasses according to the parameters
and the external variables accessed by these operations. In some cases they are
defined as global functions because of similar reasons discussed above for elanse

created functions.

We have created many member functions for each class, which perform certain
fundamental operations specified in the clauses of the pre-conditions and the post-
conditions. Each primary function will performn the operations specified by that
particular clause. By calling these primary functions (or in object-oriented design’s
term, sending messages to objects of these primary classes) in a sequence, the actions
specified in the operations shall be performed. We call the process of determining

the sequence and the messages as implementing the operations,
We suminarize the steps to implement VDM operations as:

1 Creating member functions from clauses. This is desceribed in the previons
section. The detailed implementation of these member functions are achieved
by human interaction. In the transforming stage, only specifications of these

member functions are provided.

—

Transforming 70

2 Limplementing operations by primary functions. This can be done by collecting
the primary functions of ecach clause appearing in one operation’s pre- and

post-condition,

The implemented operations are also subject to be categorized into classes
according to the parameters to which they request the access. The Rule is similar
to that of the primary functions with an extension to deal with the case that more
than one external variable is in consideration. The following Rules shall be applied
in the order of write-aceess external variable, read-access external variable, and
non-external variables. That is: apply them for write-access external variables first;

if no one Rule is applicable, apply for read-access external variable next, and so on.

Rule 2.

1 If there is one and ouly one variable in write-access, or read-access, or param-

cter, the operation will be assigned to the corresponding class;

2 There exists a containing relation among one variable class and the rest of

variable classes. The class which contains others is the primary class;

3 No such relation exists among the variables. One global function shall be
created for the operation and it shall be declared as friend in each class with

which it involved,

sExample 4.154

Operation BORROVW _BOOK will be created in class library from
its six primary functions. Since library is a write-access external variable

type.

O]

Transforming

>Example 4.164

The following operations are specified in MAIL system (see Appen-
dices E and F).

Operation PPOST is created in class UMAP. Since it is the only
external access class.

Operation 7s.in_list is created as global function, since there is no
external access variable and no class contains other classes. This is the
same result as discussed in member function implemencation for clauses,

because there is only one clause in this operation.

Operation ADDUSER is created as global function, since there are

two writc-access classes and none of them contains another class.

GAP — The Transtormer

GAP systemn is built to implement the transformation method discussed in the
previous sections. This section first introduces the system architecture and some
system techniques unique to the transformation process. Then we discuss how the
specification may be written for better transformation. The system output files are

deseribed in detail. The last part is a brief comparison with other existing systems.

5.1 GAP System Architecture

GAP serves two purposes as stated before: first as a syntax parser and partial
semantics checker for the underlying VDM specifications, second as an automatic
transformer to generate C++ classes. Although the syntactic checking process and
the transforming process are both syntax-driven and there is no visible boundary

between the two processes, we still can describe GAP architecture as in Figure 5.1.
b

The input to the system is a VDM specification file. One sample file is shown

in Appendix E.

The system output is composed of three files. The most important one is the
object-oriented design. These files are described later. One sample object-oriented

design output file is given in Appendix F.

GAP - The Transformer

Input:
VDM Specifications
Scanner
MURAL
$ E System
Parser

Syntax | Checker
Y

Class
Generator

I

A4

Clause
Separator

v

Member Function
Generator

v

Operation
implementer

Invariant and | Operation Handler .

Qutput:
Object Criented Design

Figure 5.1 System Architecture of GAP

3

GAP - The Transformer 74

The syntax checker is composed of the scanner and the parser. The scanner
reads the inpnt of source specifications and generates internal tokens to feed the
parser. The parser checks the input of specification for syntactic correctness, rec-
ognizes the variables, operators and key words The symbol table generating is the

most important task of the parser.

The transformer consists of the elass generator and the invariant and operation

handler.,

The elass generator takes the information from the symbol table and generates
classes for each VDM variable types. Any relationship between classes is detected

by the elass generator.,

The invariant and operation handler can also be divided into three functional
parts: 1) the elause separator; 2) the member function generator; and 3) the opera-
tion implementer. The clause separator divides predicate into clauses according to
the syntactic analysis. Che if-then-else structure is also divided to if-clause, then-
clanse, and else-clause. The member function generator determines the primary
classes and generates member functions for each clause, It also checks the possible
relationship between different elauses. The operation implementer determines the
primary class for the VDM speeified operations and invariants, and implements the

operation or invariant by calling the primary function of each clause.

H.2 Some Special Handling Techniques

In many ways, GAP resembles a compiler without code generation for the tar-
get language. Based on the LL(1) grammar for a simplified VDM specification
language, an one-pass approach for analysis and synthesis is adopted in the imple-
mentation. Due to the nature of the transformation, the information nceded in the

transformation is not totally the same as a conventional compiler.

Here we discuss and introduce some special techniques used in GAP. These
techniques may not be seen in conventional compilers and may only arise in this

transformation.

GAP The Transforiuer T

(1]

5.2.1 Clause Separation

It is hoped that the predicates oe divided into fundamental clauses, Each
clause only specifies a basic operationn. The member functions of the classes are
created from these clauses, It is also expected that each elause form a basie unit

and preserve sonle semantic meanings.

The basic strategy in dividing a predicate is according to the conjunctive as-
sumption. That is to find the highest level ands(&s) in a predicate and divide the

predicate.

However, in the 7 f-expression and the let-expression special measures ave taken
to further divide a predicate, althongh an i f-expression or a let-expression can be

scen as a complete elause.

For the if-expression, we divide it to i f-clause, then-clanse and olse-clanse.

These clauses are also subject to further separation as an usual predicate.

For the let-cxpression, the let-part is first analyzed and put in a special tens-
plate, and then the in-part is treated like an usual predicate and divided according
to its syntax. Information about the temporary variables defined in the lef-part are

kept for cach clause.

5.2.2 Clause Comparison

It is important to find whether the underlying clause is identical to or is part
of an existing clause. While a complete analysis according to the semanties may be

impossible to carry out, GAP performs the task by strict symbolie comparison.

The clauses to be compared are first cleaned by internal representation of to-
kens. Then the variable names in the clauses are replaced by their class nanes(type

names). This unifies the clause to a standard expression.

5.2.3 Temporary Variable Handling

There are temporary variables in VDM specification in addition to the external

variables and the local variables (the parameters of operation). They appear in the

—’

GAP - The Transformer 76

quantified expression and the let expression.

The temporary variables themselves are not important in the transformation.
However, the temporary variables in the let expression can be seen as a condensed
variable which contains information about the presence of the external variables
and the local variables. This is important in determining the associated classes and

in determiniug the primary classes.

So, the temporary variables and the variables that compute the temporary

variables are kept for each elauses of the let expression.

5.2.4 Member Function Namning

For each clause obtained from predicate, a sounding name is important to help
nser understand the funetion meaning. However, in this stage of transformation,
it is impossible to determine the semantic meaning of a member function without
human interaction. So, a mechanical procedure is developed to name the member
functions (clauses). Since the member function is ereated from a clause. GAD gives
the elause and the member functions it ereated the same name, even more than one

funection may be ereated for different classes.

The clause is named by combining the operation name, string ”pre” or ”post”

according to the predicate and the clause index in that predicate.
sExample 5.14
The clauses in Listing 4.8 are naimned as
BORROW BOOK_pre_1, BORROW.BOOK post.1

BORROW BOOK _pre.2, BORROW._BOOK _post.2
BORROW BOOK _pre.3, BORROW_BOOK post.3.

r

GAP_ The Transformer T
5.3 Desired Style of VDM Specification

Due to the loose structure and the abstract nature of a VDM specitication, some
information about the variable types or functions used in an operation specification
may be very difficult to obtain on the fly with an one pass compiler. For example,
it is a common practice to let the implementation dependent element to be decided
later at implementation stages, and only use a commentary in the place during
specification. The undefined type is an example in state definition, and the comment
predicate is an example in operation specification. This feature is considered an

advantage for abstract specification.

Another example is that any function can be used in an operation specification
before its definition. It is absolutely normal that developer is thinking about appli
cation domain functions at time of specification. The idea that some functions are
needed to specify an operation comes first and thus they are used in specification,

Then after the operation specification, the detailed consideration and specification

about the functions are taken up at the end. If these features are restiicted, the ab
straction and deseription power of VDM specification will be jeopardized. However,
these features prevent an one pass compiler from obtaining, complete information

about the system specified or request complex structure of the compiler.

There are two solutions to the problem. One is a multiple pass compiler. At
least one pass for analysis and one pass for synthesis. Another way is to write VDM

specification in a favorite style for better understanding,.

The sccond approach is suggested for GAP. This comes with the desited spee
ification style. The desired style is the style that enables GADP to obtain more
information, thus leading to hetter result than other specification styles. The con-
dition is that the style will not weaken the specification capability and will not

greatly effect the way that developer writes the specification.
The following are the desired features for GADP:

1 Functions are defined (specified) before they are used in operation specification,
This will help GAP to build compact symbol tables and reduce the time spent

on symbol table scarches,

GAP - The Transformer 78

2 Predicates are written in a conjunctive manner as much as possible. This may
be too abstract. The spirit is that independent clauses shall be separated by
and conneetive, and different clauses shall he syntactically distincet. Here are

the details:
2.1 Quantified expressions are used as locally as possible.

2.2 Temporary variables used in let, quantified, and set expressions are

used as elose to its first oceurrence as possible.

rExample 5.24

The predicates in BORROW _BOOK operation[ALP91) are rewritten
to he recognized that there are three clauses for each predicate according
to syntax analysis. Original pre-condition and post-condition are both

cmbedded, thus to separate them needs more analysis in deeper layers.

]

3 Negation operator not is used in a way to allow greater similarity between the
() i y
positive clause and tie negative clause. This will allow similar functions to be

detected and avoid ereating duplicated member functions.

>Example 5.34

Instead of writing
1)
user! € UserSet,

a better expression for the translator will be

Wuser € UserSet).

GADP The Transformer 79

It should be pointed that these desired features are not mandatory. Not doing

so will not lead to any error and not necessarily lead to worse design.

5.4 System Output Files

Though we carry our discussion with programming language C++, the result
obtained by GAP transformation remains programming language independent. The

output is purely generic for object-oriented design.
There are three output files generated for each VDM specification input.

o Listing file (with extension .Ist): The original source of input is listed with line
numbers. All syntax errors and semantics errors are indicated by pointing to

where they occur. At the end of file, there will be a short sunumary of errors.

e Symbol table file (with extension .tab): The symbol table built by GAT' for

the underlying source input is displayed in this file,

o Object-orient design report file (with extension .odr): The ODR file is com-

posed of three parts of result.

To explain cach of the three parts of an ODR file, Example 5.3 lists some picces

of output taken from Appendix F.

>Example 5.34

Part I

Class MDIR of MAPPING type
Domain set :: Class UID
Range set :: Class NMAP
(Inheritance information if any comment)

y

The suggested member functions are

- > - . W O W - S S e e 4 . e

13

N

Prim

Prim

Prim

Prim

identifiers

102 ADDNAME

inv-STATE.1

inv-STATE.2

ADDNAME _pre_1
Server (Class

UlD
ADDNAME _pre.2
Server Class

uID
ADDNAME _post._1
Server Class

UID

ADDNAME
Server Class

UID
DELNAME_pre.2
Server (Class

INIT post._2

Part II

operation

ADDNAME _pre._1
ADDNAME _pre_.2
ADDNAME _post_1

GAP - The Transformer

MDIR
MDIR
MDIR
Parameter Name

INVOKER
MDIR
Parameter Name

- —— - - - U . - - D S A e GG T - -

INVOKER
MDIR
Parameter Name

- - - - ——— - D WE WP WD TR W = . G G e . D R A A P R A A e A . -

INVOKER
MDIR
Parameter Name

- — - - o ——— " e Y G . e G R S N . R R . . .

INVOKER

N

U

MDIR
Parameter Name

INVOKER

MDIR

MDIR
MDIR
MDIR

80

GAP The Transformer St

This Op shall be implemented in Class MDIR

Part III

18 ADDNAME_ pre._i MDIR
Specification:
UID ISAM DOM MDIR

20 ADDNAME_post_1 MDIR

Specification:
LET OLDDIR = MDIR (UID) IN MDIR ’= MDIR ++[UID ->(OLD
DIR ++[N -> U 1]

21 DELNAME pre_1 MDIR
Contains function (Server and Client relation)
Server Message
Identical to MDIR : : ADDNAME _pre_1
Specification:

UID ISAM DOM MDIR

[}
As shown in Example 5.3, the first part shows the class information. It ineludes
the following information for cach class GAP created:
o class name;
¢ inheritance from base classes;
¢ member variables and their types; and
¢ suggested member functions and their parameters;

o client classes and the associated messages.

GAP - The Transformer 82

In fact there is no listing for the last information listed above, 't is obtained
from the suggested member functions and their parameters. The client classes are
the classes of the parameters and the messages are with the same names as the

underlying function.

The second part is about the operations specified in VDM operation specifica-

tions. The result for each operation displays:
e operation naine;
o name of elass to which the operation is transformed;

o what and where are the functions which compose the operation (what client-
server pairs are needed to perform the operation), that is the primary classes

and the primary functions for each clause.

The last part reveals the possible relationship between the suggested functions.
The function names are generated from where they appear. In fact, the clause

names are used as function names. Each section in this part contains the following

Hems:
o clause name;
o client-server pairs; and

o clause specification.

5.5 Comparison with Other Projects

The approach discussed in this thesis is unique in itself. To our knowledge, no

other system exists with which this work can be compared.

However, some systems (projects) are similar to GAP in one aspect or the other.

We are going to discuss and partially compare them with GAP in this section.

GADP The Transformer 33

5.5.1 The VDM Domain Compiler

The VDM domain compiler[SH90, SHA91] is a tool for supporting the de-
velopment of programs written in traditional programming languages from VDM
specifications. It works with a source code database. For every VDM domain
constructor the database contains a collection of different implementations with

different runtime and space characteristics.

The user is forced to select a suitable implementation for every domain equa-
tion. The functional specification must still be translated by hand into the program-
ming language in an casy line by line transformation. All data types and associated
operations from the specification are directly available in the programming, language
via the generated library. Now the libraries are available for PASCAL and C. An
interface for C++ is planned to be ready in spring, 1992 without mentioning, whether

object-oriented paradigm is involved or not.

The approach is somewhat similar as what we discussed in the third and fourth
subsections of section 4: transferring basic types and transferring user defined types,
where we discussed how to find possible C++4 correspondence to VDM variable
types. In their approach, these correspondences are found through a libravy. Along
with these data types, the associated operators also shall be found in the library if

possible. If there is not, a hand translation is done line by line.

However, quite different from ours, domain compiler’s approach is in traditional
programming paradigm in Pascal and C. Both of them are strongly typed language
and function-oriented. That make it impossible to provide a unique transformation
for VDM type like set type or mapping type. If array is selected to implement the
sct type, at least an array of integer, an array of floating points, and an array of
characters are needed to cope with different situations in VDM, not mentioning the
differences between the possible operators upon them. So, as reported in [SHAO1],
there are 40 different implementations for the domain constructors for sets, maps,

and ete.in Pascal and C.

In our approach, the paramcterized class (class template) makes it possible to
Lave a unique implementation for cach VDM type like scts, mapping types, and

ete.. Their operators are unique no matter how the actual type would be. This

|y 9

GAP - The Transformer 84

greatly reduces the total number of types and operators (operations) in a system.
Therefore the corresponding task to identify the classes from VDM specification
hecomes relatively easier. That is why our focus is not concentrated on finding

data types.

As to implementing functions, since domain compiler does not provide a mech-
anisin to decompose the specification, the underlying function reinains difficult to
implement by hand if the specification is big. In GAP, the basic implementation
unit is the clause of the pre- and post-conditions, which is apparently casier to

implement.

5.5.2 The Larch Project

The Larch[GHM90, GHo91] family of languages is uscd to specify program
interfaces in a two-tiered definitional style. Each Larch specification has components
written in two languages: one that is designed for a specific programming language
and another that is independent of any programming language. The former are the

Larch interface langnages, and the latter is the Larch Shared Language(LSL).

Modularity is the key to controlling overall system organization and compo-
nents in building systems. Specifications are essential for achieving program mod-
ularity. A Larch interface specification describes the interface that a program com-
ponent, provides to clients(programs that use it). Each interface specification is
written in Larch interface language. It relies on definitions from an auxiliary spec-

thication, written in LSL.

Each Larch interface language deals with what can be observed about the
behavior of system components. It incorporates programming-specific notations
for features such as side affeet, exception handling, iterators and concurrency. To
understand a specification written in such as Larch/C interface language(LCL), it
is necessary to know both the meanings of the interface language constructors and
the meanings of operators appearing in expressions. LSL specifications are used to
provide a semantics for the primitive terms. Specifier are not limited to a fixed set
of primitive terms, but can use LSL to define specialized vocabularies suitable for

particular interface specifications.

<

GAP The Trausformer 8

In short, Larch’s two-tiered approach attempts to minimize the gap between
specification and implementation by a purely mathematical specification (carried
by LSL) with an implementation via a programming language dependent Larch

interface language.
Larch also provides tools supporting sy utax checking, head file generating, ete..

In the sense of filling the gap br tween specification and implementation, GAP

shares some common features with Larch while they are quite different approaches.

GAP’s main aim is also to fill the gap between the specification and the imple-
mentation. However, GADP attempts to make a direet link between VDM specifi-
cation and object-oriented implementation. We try to provide as many implemen-
tation details as possible from specification. Information provided for classes and
functions are based on implementation-minded languages and terms. As indicated
in [PHG91}, to implement. formal specification, a programmer must not only switch
notations, but also “shift gears” mentally from the abstract mathematical world of
sets, sequences, and predicates, to the concrete operational world of arrays, point-
crs, and statements. In the words of the authors, “The absence of intermediate

stages to smooth this transition entails a major semantic gap”.

GAP’s strategy to overcome this difficulty is to transform the entities of VDM
specification into entities of implementation. Although GAP can not completely fill
the gap and developer still need to understand conerete predicate clause, however,
this requirement is minimized. Unlike Larch, GAP does ot have an intermediate
language (like LCL). Larch’s approach requires developer to master three level lan-
guages — LSL used in abstraction; LCL used in interface specification and C (or
other programming languages) in implementation. This requirement hurdens the
task of developer. The fact that to understand an iuterface one need to know three
level of definitions certainly does not benefit the maintenanee and reusability of o

software module.

One of Larch tools provides the ability to form header files for developer. It
helps to avoid repeating the same job., It is achicved by doelete unrelated lines in
the interface specification file. It shall be pointed out that It does not generate new

information.

—

GAP - The Transformer 86

Larch is also based on function-oriented approach. LSL is a algebraic specifi-
cation language. Although it has a similar structure as object in object-oriented

paradigm, it does not support inheritance.

5.5.3 The Mural System

The Mural systemn is a totally different system compared to GAP. To compare
them is perhaps not appropriate at first glance, since they aim and accomplish
different things. However, in many ways they are complementary to each other in

their missions towards formal software development.

The Mural system[BRi91, JJL91, MFr91] is primarily concerned with provid-
ing generie support for construction of fully formal mathematical proofs to VDM
specifications. It can be used to verify the internal consistency of a specification
by discharging the appropriate proof obligations. It can also be used to validate a
formal specification against an informal description of the system being specified by
stating and proving properties of the system which its designer believes it should

oxhibit,

The main component of Mural is a proof assistant. It consists of a hierarchy
of theories, cach theory containing a set of declarations of the symbols which can
be used to build valid mathematical expressions in that theory (e.g. : for type
assignment, + for arithmetic addition, V for universal quantification, efc.), a sct
of axioms stating those properties of these symbols which are assumed to hold
without proof(e.g. substitutivity of equals, that the union of two sets is a set), and
a set of rules stating other propertics of the symbols(e.g. associativity of set union,
distribution of multiplication over addition). Properties expressed by rules may be
proved using axioms and other rules. The reasoning power of Mural can be extended
simply, cither by adding new theories or by adding new rules to existing theories.
A tactic language is also provided which allows the user to code and parameterize

commnonly used proof strategies.

In addition to the proof assistant, Mural contains a VDM support tool - VST.

VST allows the user to construct specification in a subset of VDM, either by using

GAP - The Transformer ST

the built-in structure editor or by directly reading a specification file. VST also

allows a specification to be designated as a refinement of another specification.

Besides, Mural provides a window-based environment with excellent user in-

terface.

In summary, Mural is a system that supports writing correct. VDM specifien-

tion.

What Mural does not provide for formal software system development process,
GAP tries to accomplish. First GAP is a syntactic checker (in Mural’s approach,
it is supported by an interface to SpecBox[MFr91], which is a syntactic checker).
GAP will check the syntactic consistency of the input specification, point out all
errors and their possible reasons. GAP’s semantic checking ability is partial. At this
stage Mural can interface with our tool to ensure correction of specifications. Second
GAP provide an automatic transformation from VDM specification into an object-
oriented design. And third, the discussions in this thesis provide an implementation
strategy based on the design obtained from GAP. However GAP does not guarantee
the correctness of the results, since it replies heavily on the correctness of the VDM

specification. This is achieved by Mural system interface.

What we arc hoping is that GAP system can be enlianced by making use of

Mural system, if possible, in an integrated environment.

This will provide a systematic software development environment from formal
specification to object-oriented design. Associating with other suggested enhance-
ment to GAP (will be discussed in the next subscection), it will extend the envirou-

ment scrvice all the way to implementation.

Conclusion and Further Work

This section concludes the thesis and points to further development directions.

6.1 Conclusion

The automatic transformation from VDM to C++ design, which is supported
by GAP system, is both feasible and practical. VDM specification provides not
only formal language to support data abstraction and system modelling, but also
clues to implementations. In this thesis, a systematic view on how to extract this
information is presented. It also discusses an implementation strategy on how to
implement software with the obtained information. GAP is implemented to realize

the automatic transformation.

GAP supports object-oriented design paradigin and provides design details
classes and their member functions as well as relations among classes, direetly from
VDM specification. The sample results shows our approach is both effeetive and

promising for more complex situations.

GAP contributes to both formal development methods and object-oriented

paradigm.

88

Conclusion 89

Input:
VDM Specifications

Y

Scanner
MURAL
¢ System

Parser

Syntax | Checker
Y

Class
Generator

........... I
| Y

Clause
Separator

Y

Member Function
Generator

¢ Interactive
Interface

A

Operation
Implementer

Invarniant and | Operation Handler

GAP output:
Object Oriented Design

Y

Source Code Knowledge
Generator Domain

Output of Intergrated System:
1. Compilable System Codes
2. Documnent

tigure 6.1 System Architecture of the Integrated Development System

Conclusion 90

GAP provides a direct development method from formal specification to im-
plementation. It is always an aunoying problem for researchers as to how links
between formal specification and programming language implementation e made,
GAP provides a solution to this problem. Besides, GADP's solution also supports
many features that traditional technique does not provide, such as object-orientness,

and reusability.

GAP provides a bridge between formal methods and object-oriented paradigm.
This means that in order to develop an object-oriented software system one can
make use of formal methods to ensure the correetness of the software and then the

tool GAP implemented here.

6.2 Further Work

There are two major directions in which further work can be done to improve

the scope of the transformer, besides interface to Mural.

First, GAP’s ability can be cnhanced by a multiple-pass compiler as mentioned

previously.

Sccond, further tools can be built interactively to support human interaction
in the implementation of member functions suggested and specified by GAP. The
tools can be programming language specific, and generate code which is ready for

compilation.
The structure of this development is deseribed in Figure 6.1,

The core of this kind of tool will be an interactive interface and a knowledge-

based code gencrator.

Interactive interface will enable developers to grasp the class information easily,
and generate member functions as well as their specification. One of the important
tasks is to rename the member functions, and all related parties shall be informed

about the new names.

Conclusion 91

Knowledge-hased code generator will synthesize the results obtained from GAP
and the interactive interface about classes and its components (member variables
and member functions), access the library of gencric classes and generic functions,
and fnally generate the code of software system. The library is a collection of
generie classes and built-in member functions as well as generic functions, which is

supported by OOD techniqgue.

Both interface and code generator will be programming language dependent.
However many parts will remain the same under different object-oriented program-

ming languages.

Another possible non-technical development is a document generator. Since the
whole derivation process from VDM specifications to classes and their components
are well recorded, it had already been organized to documentation. It will not be a

difficult job, but an important one indeed.

Here we have more suggestions on building an interactive interface. Window-
based interactive interface shall be adapted. Multiple windows at the same screen
cnables developer to see different aspects of the needed information to implement
member functions for classes, Similar Window-based systems, such as Mural, Ann-
alyzer[LSTI1)(used for Anna specification and development environment for Ada),

are very successful sample systems for us to model the further development of GAP.

For example, Class Window may show a list of classes. One of them is used
as current class aund is highlighted. Perhaps a mechanisin remnembers the last

un-finished class as default.

Member Window displays the member variables and functions of current
class. The types of member variables and functions, the parameters of member
functions are all displayed. A current member is also highlighted and rememn-

bered.

Client Window lists all other classes which have at least one member function
sending message to current class and requests service from current member. If

current member is a variable member, this window will be empty.

Conclusion 92

A Fellow Window prints the possible relations among current member (fune-
tion) and other fellow functions in the same class. If current member is a member

variable. this window is emipty.

Then a Implementation Window gives developer freedom to implement
the function. It will display the full specification of this function and whether it
is primary or not. Developer has the choice to choose from two options. First
developer can actually input a string of characters that forms the function in input
arca, which may make use of other functions listed in Fellow Window (a funetion
call instead of repeating the same code). Or developer use a mouse to select a
function in Fellow Window that shall be indicated as identical in Fellow Window
to replace this (current) member function. In both case, a ve-cheek shall allow

developer to re-consider the decision.

A template can be used to record all the changes for each elass, which enables
developer to re-install the original information before saving the results of this

execution.

In case of implementing current member function, developer also has the op-
tion to rename current function — giving current member function a new nae to
replace the old one, not changing current member. As soon as the implementation is
accepted, all the related windows shall be renewed. If the name of current member
is changed, Member Window shall be renewed. In the second case of implementa-
tion, the highlight bar shall go to the sclected function, it hecomes current, member,
and old current member shall disappear from the window. More importantly, all

other classes in Client Window shall be informed about the modifieation.

All the windows mentioned above are not necessarily opened at the same time,

It is up to developer to open them with a mouse.

It should be pointed out that all the items to be displayed in these windows are
already presented in the output files of GAP. The implementation of this window-

based interface is not particularly difficult within the current, architecture of GAP.

References

[ALPO1]
Alagar, V.S. and Periyasamy, K., A Mecthodology for Deriving an Object-
Oriented Design from Functional Specifications, 1991, to appear in Software

Engincering Journal.

[AG091]
Alencar, J.A. and Goguen, A.J., OOZE: An Object Oriented Z Environment,
In ECOOP'91 European Conference on Object-Oriented Programming, edited
by Picrre America, Springer- Verlag, pp. 180-199, 1991.

[Ala8S]
Alabiso, B., Transformation of Data Flow Analysis Models to Object-Oriented
Design, ACM SIGPLAN Notices, 23, 11, pp. 335-353, 1988.

[And8S§]
Andrews, D., Report from the BSI Panel for the Standardisation of VDM
(IST/5/50), In VDAI'88 VDM - The Way Ahead, edited by Bloomfield, R.,
Marshall, L. and Jones, R., Springer- Verlug, pp.74-78, 1988.

[Bai89)
Bailin, S.C., An Object-Oriented Requirements Specification Method, Com-
munzcations of the ACM, 32, 5, pp.608-623, 1989.

93

o S

References 94

[Bar01]
Barkakati, N., Object-Oricuted Programming in C++. SAMS, 1991.

[BCu89)
Beck, K. and Cunningham, H., A Laboratory for Teaching. Object-Oriented
Thinking, In Proceedings of OOPSLA 1989, New Orleans, pp.1-6, 1989,

[BJo78]

Bjorner, D. and Jones, C.B., The Vienna Development Method: The Meta
Language, Lecture Notes in Computer Science 61, Springer-Verlag, 1978.

[BJo82]

Bjorner, D. and Jones, C.B., Formal Specification and Software Development,
Prentice-Hall Intl. Inc., 1982

[B()OSG]

Booch, G., Object-Oricented Development, IEEE Transactions on Software
Engincering, SE-12, 2, pp.211-221, 1986.

[Boo90]

Booch, G., Software Engincering in Ada, 3ud Edt., Benjoman/Cumanings
Publishing Company, 1990.

[BRi91]
Bicarregui, J.C. and Ritchie, B., Reasoning about VDM Developments using
The VDM Support Tool in Mural, In VDM'91 Formal Software Development

Methods, volume 1, Lecture Notes in Computer Science 551, Springer- Verlay,

pp. 371-388, 1991.

[Bre9l]
Breu, R., Algebraic Specification Techuiques in Object Oriented Program-
ming Environments, Lecture Notes in Computer Science 562, Springer- Verlag,
1991.

[BSI89)
BSI, VDM Specification Langnage: Proto-Standard, IST/5/50, 1989.

References 95

[13S191]
BSI, VDM Specification Langnage: Proto-Standard, IST/5/50, 1991.

[Bud91]
Budd, T., An Introduction to Object-Oriented Programming. Addison- Wesley
Publishing Company, 1991.

[Cha91]
Champeaux, D., Object-Oriented Analysis and Top-Town Software Develop-
ment, In ECOOP91 European Conference en Qbject-Oriented Programminyg,
edited by Pierre America, Springer- Verlog, pp. 360-376, 1991.

[CHJSG)
Cohen, B., Harwood, W.T., and Jackson, M.1., The Specification of Complex
Svstems, Addison- Wesley Publishing Company, 1986.

[Con90)
Constantine, L.L., Objects, Functions, and Programn Extensiblity, Computer
Language, 7, 1, pp.34-54, 1990.

[Cox90]
Cox, B., Object-Oriented Programming - An Evolutionary Approach, Read-
ings: Addison- Wesley Publishing Company, 1986.

[Dah90)]
Dall, 0.J., Object Orientation and Formal Techniques, In VDM’90 VDM and
Z Formal Methods in Software Development, Bjoner, D., Hoare, C.A.R.
and Langmaack, H. (Eds.), Springer- Verlag, pp.1-11, 1990.

Ref[DDRSY] Duke, D., Duke, R., Rose, G., and Smith, G., Object-Z: An
object-oriented extension to Z, In Proceedings of Formal Description Tech-

niques (FORTE'89), North Holland, 1989.

[Gen91]
George, C., The RAISE Specification Language: A Tutorial, In VDM 91 For-
mal Software Development Methods, wvolume 2, Lecture Notes in Computer
Science 551, Springer-Verlag, pp. 238-319, 1991.

References 96

[GHAI90)
Guttag, J.V.. Horning. J.J. and Modct, A., Report on the Larch Shared
Language: Version 2.3, Technical Report 58. System Rescarch Center, Digital

Equipment Corpoeration, 1990.

[GHo80]
Guttag, J.V. and Horning, J.J.. Formal Specifications as a Design Tool, In
proceedings of the Tth Annual Symposivm on Prineiples of Programmang Lau-
guages, ACM. pp. 251-261, 1980.

[GHo82]
Guttag, J.V. and Horning. J.J., Sowe Remarks on Putting Formal Speci
fications to Productive Use, In Science of Computer programmang, North-
Holland, Vol. 2, No. 1. pp.53-G8, 1082.

[GHoO1]
Guttag, J.V. and Horning, J.J., Introduction to LCL, A Larch/C Interface
Language, Technical Report 74, System Rescarch Center, Digital Equapment

Corporation, 1991.

[HaB87]
HaB, M., Development and Application of a META IV Compiler, In VDM-
Europe Symposium 1987, VDM A Formal Mcthod at Work, edited by 1.
Bjerner, C.B. Jones, M. Mac an Airchinnigh and E.J. Neuhold, Spranger-
Verlag, pp. 118-140, 1987.

[HEd90]
Henderson, B. and Edwards, J.M., The Object-Oriented Systems Life-Cyele,
Communications ef the ACM, 33, 9, 1990.

[Ing81]
Ingalls, D., Design Priuciples Behind Smalltalk, Byte, August, 1981.

[JILO1]
Jones, C.B., Jones, K.D., Lindsay, P.A. and Moore, R., mral : A Formal
Development Support System, Springer- Verlag, 1991,

References 97

[.]nllf)()]
Jones, C.B., Systematic Software Development using VDM, 2nd version,

Prentice-Hall Intl, Inec.. 1990.

[Jon8T]
Jones, K.D., Supporting Envirouments for VDM, In VDM-Europe Symposium
1987, VDM A Formal Mcthod at Work, edited by D. Bjgrner, C.B. Jones,
M. Mace an Airchinnigh and E.J. Neuhold, Springer- Verlag, pp. 110-117, 1987.

[LSTI1]
Luckliam, D., Sankar, S. and Takahashi, S., Two-Dimensional Pinpointing:
Debugging with Formal Specifications, IEEE SOFTWARE, pp.74-84, Jan-
uary, 1991

[I\’("\'SS]
Meyer, B., Object-Oriented Software Coustruction, Prentice-Hall Intl. Inc.,
1088.

[NFr91]
Moore, R. and Froome, P., mural and SpecBox, In VDM’91 Formal Soft-
ware Devclopment Methods, vol 1, Lecture Notes in Computer Science 551,

Springer-Verlag, pp.672-674, 1991.

[NHWSS]
Niclsen, M., Havelund, K., Wagner, K.R., and George, C., The RAISE lan-
mage, Method and Tools, In VDM'88 VDM - The Way Ahead, cdited by
Bloomfield, R.. Marshall, L. and Jones, R., Springer- Verlag, pp.376-405, 1988.

[PHGI1]
Penny, D.A.. Holt, R.C. and Godfrey, M.W., Formal Specification in Meta-
morphic Programming, In VDM 91 Formal Software Development Methods,
vol 1. Lecture Notes in Computer Science 551, Springer-Verlag, pp. 11-30,
1991.

[77]

References 9

[Pre87)
Prebn, S.. From VDM to RAISE, In VDM-Europe Symposium 1987, VDM
~ A Formal Method at Work, edited by D. Bjorner, C.B. Jones, M. Mae an
Airchinnigh and E.J. Neuhold, Springer- Verlag, pp. 141-150, 1987.

[PTo91]
Prehn, S. and Toetenel, W.J., VDM'91 Formal Software Development Neth-
ods, vols. 1 and 2, Lecture Notes in Computer Science 551, Springer-Verlay,

1991.

[RBP91]
Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Lorensen, W,
Object-Oriented Modelling and Design, Prentice-Hall Ine., 1991,

[Sen8T]
Sen, D., Objectives of the British Standardisation of a langnage to support
the Vienna Developiment Method, In VDM-Europe Sympostum 1987, VDM
A Formal Method at Work, edited by D. Bjorner, C.B. Jones, M. Mac an
Airchinnigh and E.J. Neuhold, Springer- Verlag, pp. 321 323, 1987.

[SHA90]
Schmidt, U. and Hocher, H M., Programuming with VDM Domains, In VDM®
90 VDM and Z -- Formal Mecthods in Software Development, Bjoner, D,
Hoare, C.A.R. and Langmaack, H. (Eds.), Springer- Verlag, pp. 122-134, 1990).

[SH91]
Schmidt, U. and Hdocher, HM., The VDM Domnain Compiler A VDM Class
Library Generator, In Proccedings of the VDM 91 Conference, Lecture Notes
in Computer Science, Springer- Verlag, pp. 675-676, 1991.

[Suy91]
Snyder, A., Modelling the C++ Object Model, In ECOOP’91 European. Con-
ference on Object-Oriented Programmaing, edited by Pierre Ameriea, Springer-

Verlag, pp. 1-19, 1991.

References 99

[Str01]
Stroustrup, B., The C++ Programming Language, 2nd Edition, Addison-
Wesley Publishing Company, 1991.

[\’VHI‘BO]
Ward, P.T., How to Integrate Object-Orientation with Structured Analysis
and Design, IEEE Software, pp. 74-82, 1989.

[Win83|
Wing, J.M., A Two Ticred Approach to Specifying Programs, Technical Re-
port MIT-LCS-TR-299, MIT Laboratory for Computer Science, 1983.

[WWW90)
Wirfs-Brock, R., Wilkerson, B. and Wiener, L., Designing Object Oricnted
Software, Prentice- Hall, 1990.

[WZa91]
Wing, J.M. and Zarcmski, A.M., Unintrusive Ways to Integrate Formal Speci-
fications in Practice, In Proceedings of the VDM '91 Conference, Lecture Notes
in Computer Seience, Springer- Verlag, pp. 545-570, 1991.

TORRPT e

Appendix A

EBNF of A Simplified VDM-SL Syntax

-] O Ot

Nlo R e o]

<vdm_specification> =

<state.definition>

<type.definition>

<record_type-def>

<rec ficld list>
<field name>

<type_name.plus>

<type-name>
<typesuffix>
<basic_type>
<var_name>
<constant >
<letter>
<digit>
<single_digit>
<set_type.def>
<set_definition>
<itemlist>
<item>

4 44

44 484

$ 44 ¢4 4L

<state_definition> <invariant_definition>
<operationspecifs>

<typc_definition> { <typedefinition> }
<record_type.def> | <sct_type_def> |
<map_type-def> | <renametypedef> |
<union_type_def> | <undefined_type_def>

<typeamame> ' it <reefielddist>
<fieldname> ': ' <typename_plus> { <vee field list> }
<var_name>

<typemame> [<type_suffix>]
<basic.type> | <varaame>

-set | -list

boolean | int | natQ | nat | string

<letter> { <letter> | <singledigit> | '}
true | false | 'nil’ | <digit> | <string>
alb|..|2

<singledigit> { <singledigit> }
1]12)..[9]0

' =" «set _definition>

<type-naue>
"' <itemdist>]} | ' <" <digit> ..<digit> ' =
<item> { ') <itemlist> }

<varname> | <constant>

!

100

[Q- A (V]
W N -

37
38
39
40

11

42
43

<string> =
<wgptype.def> =
<renamed_type_def> =
<union_type.def> =

<undefined type.def>=
<comment > =

<invariant _definition >
<inv_def_statement> =
< expression> =
<arith.expression> =
<simple_expression>

<sign>

R

<relation>

<term>
<add.op>
<mul.op>
<factor>

4+ 44

<unary._op> =
<func._call_exp> =
<let.expression> =

=

<assign_expression>

4

<if_expression>

<set_expression> =

<set.comprehension >=

EBNF Of SVDM-SL 101

! Any letter and digit combination '™’

<typename> ' =' <typename> '—>' <type_name>
<typename> ' =' <type_name>
<type.name>> ' =' <typename> '|' <typename>

{']' <typcname> }
<typename> ' =' <comment>

/* Any string and digit combinations */

<inv.def_statement> { <inv.def_statement> }

':=' <expression>

inv-<type.name>
<comment> | <arithmetic_cxpression>
<simple.expression> [<relation> <simple_expression>]
[<sign> | <term> { <add.op> <term> }

'yt l 1_t

R R R R R S R
r<<=ll I>>=I| I_)ll in

<factor> { <mul.op> <factor> }

"t I 1_1 , Ill

f*l l I/l I I\I I mOdI I&l

<constant> | <varname> [<func_call.exp> |
<unary.op> <faclor> | (' <expression> ')’ |
<.let_expression> | <if_expression> |

<set_expression> | <list_definition>

<map-cxpression> | <quantified_exp> |
<record_expression>

"W card | dom | rng | elems | len

' <itemldist> ') | "7

let <assign.expressions> in <expression> tel
<varmame> ' =' <expression>

{') <assign_cxpression> }

if <cexpression> then <expression>

'I' else <expression> ']’ end

<set.definition> | <set.comprehension >

'} <expression> |' <bind.var> isam <expression>

59
60
61
62
63
64

66
67
68
69
70
71

<bind_var>
<list_definition>
<map.expression>
<map-_definition>

<mapitem.list>

<apply-map_to_cle>

<quantified_exp>

<quantifier>

<record.expression>

<mk_expression>

<select_expression>

<func_call_exp>

<operation_spccifs>

<operation_specif>

<implicit_specif>

<namec_part>
<func.name>
<paralist>
<out_para>
<ext_part>
<ext.var list>

<access>
<pre_condition>
<post_condition>
<implicit_specif>
<signature>
<func_paralist>
<function_body>

4

R TR 4444 48

4 ¢

I

$ L 4

4L 4884l

EBNF Of SVDM-SL

<varamame> { ' <bind.var> }

I [<itemdist> ')

<mapdefinition> | <apply map_to_cle>

[[<mapdtemdist>]

<item> '—>' <item> {')) <mapitem_list> }

<varamame> (! <item> ')

"(" <quantifier> <bind.var> in <expression>

! <expression> ')

forall | exists | existsone

<mk.expression> | <scleet_expression>

mk-<typename> ‘(' <itemlist> ')

<varname> (! <varname> ')

<varname> (! <itemlist> ')

<operationspecif> { <operationspecif>)

<implicitspeci™s | <explicitspecif>

102

<name-part> [<ext_part> | [<pre_condition> |

<post_condition>

<funcmame> ([<paradist>] ') [<out_para> |

<varname>
<varname> '/

<varname> ;!

ext <ext_var_ list>

<varmame> ': ! <access> <typemame_plus>

{ <ext_varlist> }
wr | vd
pre <expression>

post <expression>

<typename plus>

<signature> <function_body>

<varmame> ;' [<func_paralist> | '=>' <varanaines

<varaame> { 'x' <varmame> }

":=" <expression>

<typename plus> {1 <paralist> |}

Appendix B

LL(1) Grammar of SVDM-SL

20

<vdmspecification>

<state_definition>
<state_definition>
<type_defun>
<type._def_body>

<type-def_body>

<other_type_body>
<other_type_body>
<other_type_body>

<comment>

<map_union_rename>

<map-to>
<map_to>
<uaionnil>
<unionnil>
<more_ree field>
<more_ree_field>
<ree field .more>
<ree field_more>

<typeaame_plus>

4 448

$ 44 e el

LR R N N

<state_definition> <invariant_de..nition>
<operation_specifs>

<type.defnn> <state_definition>

nil

<type.name> <type_def-body>

!

"' <varmame> ': ' <typename_plus>

<more.recfield>

' =' <other_type_body>

<set_definition>

<comment>

<map_union.rename>

'/+#' Any letter and digital combination '/#'
<typemame> <map._to>

'—>' <typename>

<union.nil>

"' <typc_name> <unionil>
nil

<var.name> <rccfield_-more>
nil
"' <type_name.plus> <morerecfield>
<type.def_body>

<typemame> <type_suffix>

103

“1
b v,

<typename>
<typemame>
<typeswiix>
<type.suffix>
<type.suffix>
<basic_type>
<basic_type>
<basic_type>
<basic_type>
<basic_type>
<var.name>
<constant>
<constant>
<constant>
<constant>
<constant>
<set_definition>
<set._definition>
<item.ist>
<item_list>
<item_list nonempty >
<item_list follow>
<itemlist_follow>
<item>
<invariant_definition>
<invariant_definition>
<inv_def_statement >
<expression>
<expression>
<arith_expression>
<simple_expression>
<simple_expression>
<simple_expression>

<rel_expression>

R R R I N L e

S T O e (| R | S S N (A R . N

LL(1) Grammar

<basic_type>

<var_name>

-set

-list

nil

bhoolecan

it

nat(

nat

string

[dent

true

false

nil’

<Constring>

<ConstInt>

"' <itemdist> '}’

"< <digit> L <digit> ! >!
<itemist_nonempty>

nil

<item> <itemlist_follow>
1 <itemdist_nonempty >
nil

<varaname> | <constant>
<inv_def_statement > <invariant_definition>
nil

"=" <expression>

iv-<typename>
<comment >
<arith_expression>
<simple_expression> <rel_expression>
‘4 ¢ <termoor_add _term>

¢ — ¢ <termoor.add_term>
<term_or_add_term >

<relation> <simple_expression>

70

CO % D U N DO OGN =] =] =] =] =1 =]
=1 OO d WY =T O 0 . St

(v 7]
[# 7]

<rel_expression>
<term.or_add_term>
<add_terin>
<add_term>
<rclation>
<relation>
<relation>
<relation>
<relation>
<rclation>
<relation>
<relation>
<relation>
<relation>
<relation>
<relation>
<unary_op>
<unary_op>
<unary_op>
<unary_op>
<unary.op>
<unary_op>
<add_op>
<add_op>
<add.op>
<term>
<mul factor>
<mul factor>
<mulop>
<mulop>
<mul.op>
<mul.op>
<mulop>
<imulop>

LA A 0 T A A N N N

LL(1) Grammar

nil
<term> <add_term>
<add.op> <term>

nil

in

I!I

card

dom

rng

elems

len

I+I

1

Ill

<factor> <mul factor>
<mul.op> <factor> <mul_factor>
nil

I*I

I/I
I\I
mod
I&I
I++I

105

89
90
91

93

94

95

96

97

98

99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

121

<factor>
<factor>
<factor>
<factor>
<factor>
<factor>
<factor>
<factor>
<factor>
<factor>>

LR R IR N

¢ ¢

<let_expression>
<assign_cxpression >
<more_assignments>
<more_assignments >
<if_expression>
<clse_part>
<elscpart>
<set_expression>
<set.expression>
<set_rest>
<sct_rest>
<sct_rest>
<list_definition>

LR R R R R R R e

<map.definition>

<mapitem_list>

4 444

<mapitem list>
<mapitem _nonempty>=
<map.item follow> =
<mapitem follow> =
<mk_expression> =
<paren_expression> =

<paren_follow >

U

<paren_follow> =

LL(1) Grammar 106

<constant>

<varmame> <fune_call.exp>
<unary.op> <factor>
<let_expression>
<if_expression>
<sct_expression >
<list-definition>
<map_lefinition>
<mk_expression>

< parcn_expression>

let <assign_expressions> in <expression> tel

"=t <expression> <inoreassigiients s

<var_name>
') <assignment_expression> <more_assigniments>
nil

if <expression> then <expression> <else.part>
clse <expression> end

end

<! <digit> L <digit> >

! <expression> <set_rest>

I}I

" o<itemdist> '}

1" <bind_var> isam <expression> '}

"< <itemdist> ' >

'I" <mapitemdist> ')

<mapitem list_nonempty >

nil

<item> '=>' <item> <mapitem follow
) <map.item nonempty >

nil

mk-<typename> (! <itemdist> ')

(' <parenfollow> ')

<quantifier> <biud_var> in <expression >
') <expression>

<expression>

L —
o N2
[o]

<bind_var>
<more_bind >
<more_bind>
<quantifier>
<quantifier>
<guantifier>
<fune_call.exp>
<func._call_exp>
<fune_cal. oxp>
<aperationspecifs>
<operation.specifs>
<operation specif>
<fune follow>
<func follow>
<implicit_part>

<implicit_part>

<paraldist>
<paralist>

~paraldist nonempry>

< paradist follow>
<paradist follow>
<out_para>
<out_para>
<ext.part>
<ext_part>
<extovar list>
<ACCORS>
<ACCeSED>
<pre_condition>
<precondition>
<post _condition>

<explicit_part >

L O | [A I

LR R O N S T [A (A

LL(1) Grammar

<var.name> <more._bind>

'’ <bind.var>

nil

forall

exists

existsone

(" <itemlist> ')

nim

nil

<operationspecif> <operation_specifs>
nil

<func_name> <func_follow>

(" <implicit_part>

"1 <explicit_part>

<paralist> ')’ <out_para> <ext_part>
<pre_condition> <post_condition>

'Y <out_para> <ext_part>
<pre_condition> <post_condition>
<para_list_ nonempty>

nil
<varmname> ': ' <typemame> <paralist_follow>
' <para_list_noncmpty>

nil

' <typemame_plus>

<varmame> '
nil

ext <ext_varlist>
nil

<varname> '@/’

<access> <typename>
wr

rd

pre <expression>

nil

post <expression>

!

<expfunc_paralist> '—>' <var-name>

<expfunc_paralist>
<expfunc.paralist>
<paralistx>
<paralistx>

<function_body>

A AR

LL(1) Grammar

<function_body>
<varmame> <paradistx>

nil

'x! <varmame> <paralistx>
nil

':=" <expression>

108

Appendix C
Predict Set of the SVDM-SL

Only the predict sets of those productions that have the same prefix are listed.
To make the listing more readable, some non-terminals appear in the predict scts

where no confusion can be created.

2 <statedefinition> Ident }

3 <statedefinition> inv- }

fah)
="}

5 <typedefbody>

~

{
{
{
6 <type.defbody> {
T <othertype.body> |
8§ <othertype_body> {
9 <othertype-body> {1
12 <map_to> {'—>' }
13 <map_to> {'I', Ident, inv- }
14 <umionmnil> {1}
15 <unionmil> { Ident, inv- }
16 <morerxee field> {
{i
{
{
{
{

17T <moreree ficld>

Ident }

inv- }

I, }

' '}

l)oolmn int, nat, nat0, string }

Ident }

18 <receficldmore>
12 <receficld.more>
21 <typename>

22 <typename>

109

40

43
45
46
48
49

<typesuffix>
<typesufix>
<typesuffix>
<basic_type>
<basic_type>
<basic_type>
<basic_type>
<basic.type>
<constant>
<counstant>
<constant>
<constant>
<constant>
<sct_definition>
<set.definition>
<itemist>

<item.list>

<item.list follow>
<item list follow>
<invariant definition>
<invariant definition>
<expression>

<expression>

<simple_expression>
<simple_expression>
<simple_expression>
<rel_expression>
<rel_expression>
<add_term>
<add_term>

<relation>

clems, len, let, if, '{’,

Predict Set

{ -set }
{ -list }
{ Ident, inv- }
{ boolean }
{ int }
{ nat0 }
{ nat }
{ string }
{ truc }
{ false }
{ 'nil" }
{ <Constring> }
{ <Constlnt> }
{{"}
{"<"}
{1/« let, if, '{, ' <,
<constant> , '+','-'}
(7,757)
{ t1 }
1.0

I, mk, '(, Ident,

¥ }
{ <constant> , Ident, 'Y, card, dom, rng,
! <I’ I[I, mk, I(I}
{‘+°}
{‘-*}
{ <constant >
{ <relation> }
{tel, then, else,
{I+I r_t Il’}

] b

{<r('lati0u> tel, then, else, end, '), Ident,
l]l, l}' ! ' l)l}
{'="}

"
, Ident, 'V,

end, ') Ident,)", 'Y,

110

card, dom, rng, elems, len, ‘(" }

! I)I}

6()
61
62
63
64
65

<relation>
<relation>
<relation>
<relation>
<relation>
<relation>
<relation>
<relation>
<relation>
<relation>
<relation>
<unary.op>
<unary_op>
<unary.op>
<unary.op>
<unary.op>
unary_op>
<add_op>
<add_op>
<add_op>

<mul factor>
<mul factor>

<mul_op>
<mul_op>
<mul.op>
<mul_op>
<mul_op>
<mul_op>
<factor>
<factor>
<factor>
<factor>
<factor>

Predict Set

n

H
——

-~
~

- -
-
L

V AN ANV V AV A

I
-
Vgt Nt Nmgpd Nmmgnd

- -~
-

-
-~

i
—— N

-

SV A AV

>
in }
"y
card }

dom }

[Sy—

{
{
{
{
{
{
{
{
{
{
{i
{"
{
{

{ g }

{ elems }

{ len }

('+)

{'-"}

{'n"}

{"+', "', '\!, maod, '&'}

{ <add.op> , <relation>

tel, then, clse, end, ', Ident, '},
{'+}

{'/"}

{"\"}

{ mod }

{'&}

{"++"}

{ <constant> }

{ Ident }

{ 'V, card, dom, rng, elems, len }
{ let }

(if)

1! 1 []
|

111

I)I}

94

96

97

98

101
102
104
105
106
107
108
109
110
113

114
116
117
120
121

131
132
134

<factor>

<factor>

<factor>

<factor>

<factor>
<more.assignments>
<imore.assignments>
<clse_part>
<clse_part>

<set cexpression>
<sct_expression>
<set_rest>
<set.rest>
<sct_rest>

<map.item list>

<map.itemlist>
<map.item_follow>
<map_item follow>
<parenfollow>
<paren follow>

<more_bind>
<more bind>
<quantifier>
<quantifier>
<quantifier>
<func_call_exp>
<func_call_exp>

<funic_call_exp>

<operation specifs >
<operation_specifs>

<func_follow>

Predict Set

{"{"}

{'<'}

{'l'}

{ mk }

{'("}

{')

{in }

{ clse }

{ end }

{'<"}

{"{"}

{'}

{'}Y}

{'"}

{ ']+, let, if, "{', ' <’ 'k, () Tdent,
<constant> ,'+/,'-'}

{'"}

{1}

{"N"}

{ forall, exists, existsone }

{ /%', Tet, if, "', " <!, ', mk, (', Tdent,
<constant> '/ ="}

{1}

{in}

{ forall }

{ exists }

{ existsone }

{'C"}

{ A N AL }

{<mulop> |, <addoop> , <relation>
tel, else, end, '), Ident, |, }, >, ", ')}
{ Ident }

{ EOF }

{'"}

12

<fune follow>
<implieit_part>
<implieit _part>
<paradist>

< para list>

< para list follow>
<paralist _follow>
<out_para>
<out.para>
<ext_part>
<ext_part>
<ACCesS>

<ACCess>

< precondition>

< precondition>
<expfune_paralist>
<expfune_paradist>
< paraJistx>

< paralistx>

{":"}

{ Ident }
{')}

{ Ident }
{1}

{1

{ Ident, pre, post }
{ Ilent }

{ pre, post }
{ ext)

{ pre, post }
{ wr}
{rd}

{ pre)

{ post }

{ Ident }
{'=>"}
{1x')

{ nil }

Predict Set

113

Appendix D

Reserved Words and Special Symbols

Reserved Words in Internal Names
Specification used in GAP
card cardsy
domn domsy
clems clemsy
clse clsesy
end cudsy
exists oxistsy
existsl oxistlsy
oxt extsy
forall forallsy
hd hdsy
if ifsy
in sy
v invsy
isam 15018y
let letsy
post postsy
pre presy
rd rdsy
rng rugsy
tel telsy
then thensy
tl tlsy
wr wrsy

114

Special Symbols in
Specification

Special Symbols 115

Internal Names

used in GAP

'+ (plus, union)

'~! (iinus, negative, difference)
‘+' (times, intersection)

"+ +' (power)

' (divide, strict to)

\" (strict by)

I' (not)

"/ (comma)

" (of type)

"1t (variable definitionsymbol)
'] (range)

‘&' (and)

"+ +' (overwrite)

" (or, concatenate)

‘= >' (map to)

"i=" (define as)

"=>' (implies)

"= (equal to)

=" (not equal to)

"<' (less)

' >! (greater)

"<=' (less or equal)

>=' (greater or equal)

"' <<=' (subset)

''>>=' (supsct)

"{' (lcurly)

"V (reurly)

(' (Iparent)

Y (rparent)

I' (Ibrack)

I (tbrack)

cop (end of file)

" (used in quantified expression)
'/¥' (begin symbol for conment)
"+ /' (end symbol for comment)
'(*" (begin symbol for comment)
'+)' (end symbol for comment)

!

plusy
minusy
timesy
powersy
divsy
strictbysy
notsy
commasy
oftypesy
vardcfsy
rangesy
andsy
OVWISY
orsy
mapsy
definesy
implysy
eqsy
neqsy
ltsy

gtsy
leqsy
geqsy
subsctsy
supsetsy
leurly
rcurly
lparent
rparent
Ibrack
rbrack
cof

dot
bcomn
ccom
becom
ccom

Appendix E

Sample Input of Source Specification

The example MAIL sysicmn takes from [CHISG]. Several missing brackets were

founnd by GAP and are cori. cted here. They are:

e In the specification of function is_well_formed, the last component seleet,

operator missing the parameter and the brackets;

e In the specification of the COLLECT operation, there is a missing bracket

in the end of the specification;

e In the specification of the DELNAME operation, udir scems a function

without definition anywhere through it is allowed in GAP; and

e In the specification of the CLE AR operation, there are two missing brack-

ets, one after REPLY _REQ(m), and one after REFN O(z).

There are several minor modifications in the specification due to key word

collisions. We renamed the variable names in collision by doubling their first letter,

State :: deskof : Umap (* for access to users desks *)
direct : Mdir (* for access to users directories *)

116

Sample Source

117

Mdir = Uid -> Nmap
Nmap = Name-> Uid
Umap = Uid -> Trays
Trays :: tin Mailitem-set
tout Mailitem-set
pend Mailitem-set
Mailitem to Name-list
cc Name-list
from Name
subject string
reply.req boolean
refs Ref-set
whensent Datetime
refno Ref
body string
Sumrec :: subject string
from : Name
vhensent Datetime (* used for outputing *)
refno : Ref (* mailbox summaries *)
Name = (*x a set of distinct names *)
Ref = (* a set of distinct —efence numbers *)
Uid = (* a set of distinct user identification codes *)
Datetime = (* a suitable representation of time and date *)
inv-State := (dom deskof & dom direct) &

(* every user has a desk and a directory *)

(exists u in dom deskof.rng direct (u) <<= dom deskof) &
(* all user ids in directories must be of registered users *)

let allmailitems = union({tin(d)+pend(d)| d in rng deskof})
in (forall rt m2 in allmailitems.
(refnc(mi)=refno(m2)) ==> (m1 = m2))

(* reference numbers are unique throughout the system *)

ppost (invoker :Uid, M :mailitem)

Sample Source

(* takes a mail-item from invoker and puts it in out-tray *)
ext deskof:wr Umap
pre is_well formed(m) & invoker isam dom deskof

post let olddesk = deskof(invoker)
in deskof’= deskof + [invoker ->
mk-Trays(tin(olddesk),
tout (olddesk)+ {m},
pend(olddesk))]

is_well _formed:Mailitem -> boolean

is_well_formed(m) :=
to(m)!=<> &
subject(m)t="" & (* ""represents the null string *)
body(m) !="" &
whensent (m)=nil &
refno(m) = nil

collect(invoker:uid, r:ref) m:mailitem

(* returns a mail item identified by its refernece number and

deletes it from the in-tray *)
ext deskof:wr umap

pre if invoker isam dom deskof
then (existsone m in tin(deskof (invoker)) .refno(m)=r)
else false
endif

post let olddesk = deskof (invoker)
in (existsone item in tin(olddesk).
(refno(item)=r) &
(m’=item) &
(deskof’=deskof++
[invoker->mk~Tray(tin(olddesk)-item,
tout (olddesk),

Sample Source 119

pend(olddesk))]))

read (invoker:uid, r:ref) m:mailitem
(* returns a selected mail item from the pending tray, but does
not delete it *)

ext deskof :rd umap

pre if invoker isam dom deskof
then !(existsone m in PEND(deskof (invoker)) .REFNO(m)=r)
else false
endif

post let olddesk = deskof (invoker)
in !(existsone item in PEND(olddesk).
(REFNO(item)=r) & (m’=item))

addname (invoker:Uid, n:name, u:uid)
(* adds a new name for a given user identity code to the
invoker- directory *)

ext direct:wr mdir

pre if invoker isam dom direct
then !(n isam dom direct(invoker)) & u isam dom direct
else false
endif

post let olddir = direct(invoker)

in direct’ = direct ++ [invoker ->(olddir++[n->u])]

delname(invoker:Uid, n:name, u:uid)
(* deletes a name for a particular user identity code from the
invokers directory *)

ext direct:wr mdir

pre if invoker isam dom direct
then if n isam dom direct(invoker)

; Sample Source 120

then udir (n)=u
else false
endif

endif

post let olddir = direct(invoker)
in direct’= direct++[invoker->(olddir\{n})]

1list(invoker:uid) s:sumrec-set
(* returns a non-selective summary of the contents of the
invokers in-tray as a set of summary records *)

ext deskof:rd umap
pre invoker isam dom deskof

post let intray = tin(deskof(invoker))
in (card s=card intray) &
(forall j in intray.(exists k in s.k=summaryof(j)))

summaryof : mailitem -> sumrec

summaryof(m) := mk-sumrec(subject(m),from(m),vhensent(m),refno(m))

clear(invoker:uid)

ext deskof :wr umap
direct :rd mdir

pre if invoker isam dom deskof
then tout (deskof(invoker))/=
else false
endif

post let directory = direct(invoker)
in (forall u in dom deskof-{invoker}.
(tin(deskof’ (u))=tin(deskof (u))+
{(franked(m)| m isam tout(deskof(invoker)) &
is_in_list(u,to(m)+cc(m),directory))} &

Sample Source 121

pend (deskof’ (u))=pend(deskof (u))+
{(franked(m)| m isam tout(deskof(invoker)) &
is_in_list(u,to(m),directory) &
reply req(m))} &
tout (deskof’ (u))=tout (deskof(u)))) &
(* finish the 1st let expression *)

deskof’(invoker) =
let olddesk = deskof(invoker)
in mk-trays(tin(olddesk), ,
pend(olddesk)-{(m| m isam pend(olddesk) &
(exists i in tout(olddesk).refno(m)=refno(i)))})

franked: mailitem->mailitem

franked(m) :=
mk-mailitem(to(m),
cc(m),
from(m),

subject(m),
reply_req(m),
refs(m),
now(),
nextref(),
body(m))

now:->datetime

now:=

(* a system provided function which returns the date and time *)
nextref:->ref

nextref :=

(* a system wide function to supply a unique reference unmber *)

is_in.list:uid x name-list x nmap -> boolean

Sample Source 122

is_in_list(user,names,directory) :=

user isam {directory(n) | n isam elems names}
has_manage_priv:uid->boolean
has_manage_priv(u):=
(* a system function not defined here *)
adduser(invoker:uid, newuser:uid)

ext deskof : wr umap
direct : wr mdir

pre has_manage_priv(invoker) &
! (newuser isam dom deskof)

post deskof’=deskof ++ [newuser->mk-trays(,,)] &
direct’=direct ++ [newuser->[]]
deluser(invoker:uid, exuser:uid)

ext deskof : wr umap
direct : wr mdir

pre has_manage._priv(invoker) &
exuser isam dom deskof

post deskof’=deskof\{exuser} &
direct’=direct\{exuser}

is_logged_in: uid->boolean

is_logged_in(u) :=

(* a system wide function, not defined here *)

init(invoker:uid) suc:boolean

Sample Source 123

ext deskof : wr umap
direct : wr mdir

pre has manage_priv(invoker)

post deskof’=[] & direct’=[]

Appendix F

Sample Output — ODR File

- —— - — . - - -y = = A " A - — -

NOW_1

NOW
NEXTREF_1
NEXTREF
IS_IN_LIST-1
IS_IN_LIST
ADDUSER
DELUSER
INIT

© 0~ O v WA -

Class STATE of RECORD type

Member Variable DESKOF : Class UMAP
Member Variable DIRECT : Class MDIR

124

Sample OQutput

Class MDIR of MAPPING type
Domain set :: Class UID
Range set :: Class NMAP

The suggested member functions are

1 inv-STATE_1 MDIR

2 inv-STATE_2 MDIR

3 Prim ADDNAME _pre.1 MDIR
Server Class and Parameter Name
UID INVOKER

4 Prim ADDNAME_pre.2 MDIR
Server Class and Parameter Name
NAME N
UID INVOKER

5 Prim ADDNAME_post.1 MDIR
Server Class and Parameter Name
UID INVOKER

6 Prim ADDNAME MDIR
Server Class and Parameter Name
UIiD INVOKER
NAME N
UID U

7 Prim DELNAME_pre_2 MDIR
Server Class and Parameter Name
NAME N
UID INVOKER

8 Prim DELNAME_ post.1 MDIR

Server Class and Parameter Name

i
%
|

Sample Output 126

UID INVOKER
NAME N
9 Prim DELNAME MDIR
Server Class and Parameter Name
UID INVOKER
NAME N
UID U
10 CLEAR_post_1 MDIR
11 ADDUSER_post_2 MDIR
12 Prim DELUSER_post_2 MDIR
Server Class and Parameter Name
UID EXUSER
13 INIT post_2 MDIR
Class NMAP of MAPPING type
Domain set :: Class NAME
Range set :: Class UID

The suggested member functions are

1 IS_IN_LIST-1 NMAP
Class UMAP of MAPPING type

Domain set :: Class UID

Range set :: Class TRAYS

The suggested member functions are

1 inv-STATE_1 UMAP

Sample Output

UMAP

T T T T T T T T T rrrrr v r rreer 1+ v 11
13- it 11ttt 3ttt 2ttt b 2

- - - - - W D Ep S P R S S M T G W S Y SR R D S R A S -

- o —— - - —— — 02 T T T —— T A S D e Gy e e WS Yt m— — o
1+t 3 1 - i 2 2 2]

- - . - o . - B e e D L L ek S S G G G e e - e R D Em e e

TIN

o - —— " " — e o S M e S v St e e S vt T S S TES gt S v e e St D S S e s S0 S S o TR
1 3 it 2t P i 2 T

=me== ==== EEEEEsSESmCE s S==ms===Ss=====S=EE=s

- e A - e e P S M AR s G = e AR T) e - - - - - - - . -

-

TIN

REFNO

o o e e B VR S S S P A e T S e A M e S S S T > T S A S s e o e S S S e et S
3+t -+ i+ 1ttt i+t -+ttt -+t -ttt 1

e e o wh S . . > . P W = G s W Gy - T T WS v e G S - . A AR G G = - e - -

INVOKER
TIN
REFNO

o o et T o T T D S S B T S TR S S S D S T A S St o e S S Y S T P S A i e ur S S S e e S
-+t 32t i+t 1t 1+ - 3 -+ -+ttt -t -t -+ 1+t 1

s o - — - " G P S S = e S - - - - -

o e e e e T e e o T T T S T S 2 S VD S o S S SUD Te EE s g S SR e e A s s S S S S S S AT S S e T
E2 3 3 3+ 23 3+t 1 1 3+t it ¢ 3t 3 3 3 L i 232 2 ¢

inv-STATE.2
inv-STATE_3

Prim PPOST_pre.2
Server Class and
UID

Prim PPOST_post._1
Server Class and
UID
MAILITEM

Prim PPOST
Server Class and
UID
MAILITEM

Prim COLLECT_pre.2
Server Class and
MAILITEM
UlD

REF

Prim COLLECT_post._1
Server Class and
UlD

MAILITEM

REF

Prim COLLECT
Server Class and
UIlD

REF

Prim READ_pre.2
Server Class and

Parameter

127

MAILITEM
UID
REF

11 Prim READ_post_1

i+ 2 23 43 3+ 1+ -+ 1

UID
MAILITEM
REF
12 Prim READ

e 32 1 1+ 41+ 3+

REF
13 Prim LLIST post_1

- - - G o - - ——

MAILITEM
UID
SUMREC

14 Prim LLIST_post.2

MAILITEM
UID
SUMREC
15 Prim LLIST

UID

16 Prim CLEAR_pre.2

0 ot 0 St =t o S e et e ST S S o ot Sy i S S e e S T e s i

MAILITEM
UID

SESsSS==as

PEND

REFNO

222 22 2 3 2 4 ¢ 3 111

PEND
REFNO

TIN

- - — - - . s me - .= w

TIN

TOUT
INVOKER

17

Prim CLEAR_post._1i

UID
MAILITEM
NAME
BOOLEAN
Prim CLEAR_post.2

L L e T T e e e e Y T T ¢ T %
P R e 2 e

UID
MAILITEM
REF
Prim CLEAR

I T T T T e Tt T T T Y T+ Tt TP P P+ F T F T 1T T+ ¥ 1

MDIR
Prim ADDUSER_pre_2

ADDUSER_post_1
Prim DELUSER_post_1

o —— —— " fh1r o o o — o i - S T 8 A e T S S e s S SN S SN A S S S SN SN S TS S S S e S

INIT post_1

Class TRAYS
Member Variable TIN
Member Variable TOUT
Member Variable PEND

Sample Output 129

UMAP
Parameter Name
DIRECT
INVOKER
TIN
TO
REPLY_REQ

UMAP
Parameter Name
INVOKER
TIN
REFNO

UMAP
Parameter Name
INVOKER
DIRECT

UMAP
Parameter Name
NEWUSER

UMAP

UMAP
Parameter Name
EXUSER

UMAP

: POWER SET 0f Class
: POWER SET 0f Class
: POWER SET Of Class

MAILITEM
MAILITEM
MAILITEM

Class MAILITEM

Member
Member
Member
Member
Member
Member
Member
Member
Member

Variable TO
Variable CC
Variable FROM
Variable SUBJECT
Variable REPLY_REQ
Variable REFS
Variable WHENSENT
Variable REFNO
Variable BODY

Sample Output

of RECORD type

: LIST 0f Class
: LIST Of Class
: Class NAME

: Class STRING
: Class BOOLEAN

: POR:R SET 0Of Class

: Class DATETIME

: Class REF
: Class STRING

The suggested member functions are

A A - e S > -y > ——— -

inv-STATE.3
PPOST_pre_1
PPOST_post_1

Prim IS_WELL_FORMED_1

MAILITEM
MAILITEM
MAILITEM
MAILITEM

2223322+ 2t 1t 2 2t 2 F 2 P 2t 3 2222 4 2 2 A E 3 F 2

o - - — - a - N e S5 S e W W R R L G e o e - -

———— — " S St o o Y S e o S D it e e S At o S g S T A R e S M S S S SR G e St S WS S o
3ttt i+ttt it -ttt -t -t 3+ 4 2 2 41

6 Prim

- o o - — T - - . A W G T S S S W S G e G S WS AN G S

7 Prim

—— — S o o P S S S o S M S8 T S o SO S P S i S S S e dum T A S s S S S S S sar 2 Gt S S
2ttt ittt 1 2 2 A 2 2 4 31 24 3 1 44 4

-—— - - " - - - D . - W . A 4D D = - Y e W e G W W R A - M e o

DATETIME

8 Prim

IS_WELL.FORMED_5

WHENSENT

MAILITEM

REF

130

sS=sERs=Es

Sample Output

— o — - — AR S a7 > S T e s P Y S S D S A S A S S S v T A SR SUF WY TW TR M M S S A mm e A s 2 me w W
43 3 1ttt g

- ™ M AP WD e - A G e . P D G S W S D WD W WP TP e D G S G W A A S e

Server Class and
REF
9 Prim IS_WELL_FORMED
10 COLLECT.pre.2
11 COLLECT_post._1
12 READ_pre_2
13 READ_post._1
14 LLIST_post.1
15 LLIST post_2

16 Prim SUMMARYOF_1

MAILITEM
MAILITEM
MAILITEM
MAILITEM
MAILITEM
MAILITEM
MAILITEM
MAILITEM

————— - - — . S S - A W — o — A D G W G G YV S WS W Y w8

STRING
NAME
DATETIME
REF

17 Prim SUMMARYOF
18 CLEAR_pre_2
19 CLEAR_post_1
20 CLEAR_post_2
21 Prim FRANKED_1

>t 4+ 3+ 3+ 1+ 2 5 2 7

SUBJECT

FROM

WHENSENT

REFNO

MAILITEM

MAILITEM
MAILITEM
MAILITEM
MAILITEM

—— o e = T . S Gt G e B S S S W T I WD WD WS W G S G e @n e e

NAME
STRING
BOOLEAN
REF

22 Prim FRANKED

Class SUMREC

3ttt 4+t PPt E P F - -+ 1+ 2 R i 2 e

Member Variable
Member Variable
Member Variable
Member Variable

SUBJECT
FROM
WHENSENT
REFNO

TO
SUBJECT
REPLY_REQ
REFS
MAILITEM

of RECORD type

: Class STRING
: Class NAME

: Class DATETIME

: Class REF

131

The suggested member functions are

1 LLIST_post.-1

2 LLIST_ post_2
Class NAME of
The suggested member functions are

1 IS_WELL_FORMED_1

2 ADDNAME pre_2

3 DELNAME.pre_2

4 DELNAME post_1

5 SUMMARYOF _1

6 CLEAR_post_1

7 FRANKED_1

8 IS_IN_LIST_1
Class REF of

W 00 N O C W W N =

inv-STATE_3
IS_WELL_FORMED.5
COLLECT pre_2
COLLECT_post._1
READ_pre_2

READ _post_1
SUMMARYOF_1
CLEAR_post_2
FRANKED_1

Sample Output

SUMREC
SUMREC

UNDEFINED type

NAME
NAME
NAME
NAME
NAME
NAME
NAME
NAME

UNDEFINED type

e > et e i S S S > > 250 B YUY S e e e S e Smm A W S Y ke S e s e S E um T e
I+ttt 3+ i+ttt 3+ttt -+t 1ttt -t 1 R]

REF
REF

REF
REF
RLEF
REF

REF
REF
REF

132

Class UID

T Y Y L T T T T T e T T T e v Y 13
i3t 1 13ttt 1+ 1ttt 131ttt 1ttt 1+ttt 3ttt 1ttt 2 2

OO0 ~NOO;MDd WN -

[O T R o S Sy SO TN
O ~NO D WN =0

Prim

NN NN
W N = O

24 Prim

PPOST_pre_2
PPOST_post_1
COLLECT _pre.2
COLLECT _post._1
READ_pre.2
READ_post._1
ADDNAME pre_1
ADDNAME pre_2
ADDNAME post_1
DELNAME pre._2
DELNAME post_1
LLIST post_1
LLIST post.2
CLEAR_pre_2
CLEAR_post_1
CLEAR_post.2
IS_IN_LIST.1

HAS_MANAGE_PRIV_1
HAS MANAGE_PRIV

ADDUSER_pre_2
DELUSER_post_1
DELUSER_post_2
IS_LOGGED_IN_1
IS_LOGGED.IN

Class DATETIME

o o g v o e o e e e T S im VP W S A A e S e T o S S e S e e e ST SN S S St Y S SR T ks e S S S SV G W Sw e o s S
M3t i3+t -ttt 12ttt 1t 1+ 313 - P 2 2 -t s 1 2t 2 2 222

IS_WELL_FORMED_4

SUMMARYOF -1

Sample Output

of UNDEFINED type

UID
UID
UID
UID
UID
UID
UID
UID
UID
UID
UID
UID
UID
UID
UID
UID
UID
UID
UID
UID
UID
UiD
UID
UID

of UNDEFINED type

DATETIME
DATETIME

133

PART II
identifiers obj
53 STATE invariant
i inv-STATE_1
2 inv-STATE_2
3 inv-STATE_3

This Op shall be implemented in Class

identifiers obj
63 PPOST operation
1 PPOST_pre.1
2 PPOST_pre.2
3 PPOST_post_1

This Op shall be implemented in Class UMAP

identifiers obj

- Ee s G A A - - - - — - - - — — " - o —

72 IS_WELL_FORMED operation

1 IS_WELL_FORMED-1
2 IS _WELL_FORMED_2
3 IS_WELL_FORMED_.3
4 IS_WELL_FORMED_4
5 IS_WELL_FORMED_5

Sample Output

STATE
STATE
STATE

MAILITEM
UMAP
UMAP

MAILITEM
MAILITEM
MAILITEM
MAILITEM
MAILITEM

This Op shall be implemented in Class MAILITEM

identifiers obj

80 COLLECT operation

134

Sample Output 135

1 COLLECT.pre-1 UMAP
2 COLLECT.pre_2 UMAP
3 COLLECT.post.1 UMAP

This Op shall be implemented in Class UMAP

identifiers obj
92 READ operation
1 READ_pre_1 UMAP
2 READ_pre_2 UMAP
3 READ_post_1 UMAP

This Op shall be implemented in Class UMAP

identifiers obj

102 ADDNAME operation
1 ADDNAME_pre_1 MDIR
2 ADDNAME_pre_2 MDIR
3 ADDNAME_ post._1 MDIR

This Op shall be implemented in Class MDIR

identifiers obj

108 DELNAME operation
1 DELNAME pre_1 MDIR
2 DELNAME_ pre._2 MDIR
3 DELNAME post._1 MDIR

This Op shall be implemented in Class MDIR

identifiers obj

115 LLIST operation

-

LLIST pre_1 UMAP
2 LLIST post_1 UMAP

.. |

Sample Qutput

3 LLIST_post.2 UMAP
This Op shall be implemented in Class UMAP

identifiers obj

—— - — - " v - S e Ee G M MR . -

124 SUMMARYOF operation

1 SUMMARYOF_1 MAILITEM
This Op shall be implemented in Class MAILITEM

identifiers obj

131 CLEAR operation
1 CLEAR_pre_1 UMAP
2 CLEAR_pre._2 UMAP
3 CLEAR_post_1 UMAP
4 CLEAR_post.2 UMAP

This Op shall be implemented in Class UMAP

identifiers obj

149 FRANKED operation

1 FRANKED_1 MAILITEM
This Op shall be implemented in Class MAILITEM

identifiers obj

- 0 - -y - > - S —p - - -

161 NOW operation

1 NOW_1
This Op shall be implemented as Global Function

identifiers obj

- —— - - = e e - - P S WS s am WS S Gm G5 W WD Gm e

163 NEXTREF operation

136

Sample Output

1 NEXTREF_1
This Op shall be implemented as Global Function

identifiers obj

165 IS_IN_LIST operation

1 IS_IN_LIST-1
This Op shall be implemented as Global Function

identifiers obj
171 HAS_MANAGE_PRIV operation
1 HAS_MANAGE_PRIV_1 UID

This Op shall be implemented in Class UID

identifiers obj

174 ADDUSER operation
1 ADDUSER_pre.1 UID
2 ADDUSER pre.2 UMAP
3 ADDUSER_post_1 UMAP
4 ADDUSER_post_2 MDIR

This Op shall be implemented as Global Function

identifiers obj

180 DELUSER operation
1 DELUSER_pre_1 UID
2 DELUSER_pre.2 UMAP
3 DELUSER_post_1 UMAP
4 DELUSER_post.2 MDIR

This Op shall be implemented as Global Function

137

Sample Output

identifiers obj
186 IS_LOGGED.IN operation
i IS_LOGGED_IN_1 UID

This Op shall be implemented in Class UID

identifiers obj

189 INIT operation
1 INIT pre_1 UID
2 INIT post_1 UMAP
3 INIT_post.2 MDIR

This Op shall be implemented as Global Function

PART III

Total Clause Printout

Clause Name Be Creating for Class

- - - A A . TS AR SR T S SR S G = e M e - e S S e M Y TR ED @D WR S S W e S T T S am e e

- . - - . Y EE A e Gme G S G S S em W A SR G T WS N W S W PN T SR R W Ve AR e .

Specification:

(DOM UMAP & DOM MDIR)

2 inv-STATE.2

- - S P D e T G S S 5 T - D R WS e e WS R G W -

Specification:

138

(EXISTS U IN DOM DESKOF . RNG DIRECT (U)<<= DOM DES

KOF)

Sample Output 139

3 inv-STATE_3

Specification:

LET ALLMAILITEMS = TIN (RNG DESKOF)+ PENG (RNG DESKOF
) IN (FORALL M1 , M2 IN ALLMAILITEMS .(REFNO (Mi)= R
EFNO (M2))==>(M1 = M2))

4 PPOST_pre._1 MAILITEM

—— - . " T . . e W e . G e T G A M S W6 W M e A

Specification:

IS_WELL_FORMED (MAILITEM)

5 PPOST_pre.2 UMAP

—— o - ——— o L > o oy T B " - A A T P S W Tt e G M L S e e —

Specification:

UID ISAM DOM UMAP

6 PPOST_post_1 UMAP

Specification:

LET OLDDESK = UMAP (UID) IN UMAP ’= UMAP +[UID -> MK -
TRAYS (TIN (OLDDESK), TOUT (ULDDESK)+{ M }, PEND (OLD
DESK))]

7 IS_WELL_FORMED.1 MAILITEM

Specification:

TO (MAILITEM)!=<>

8 IS_.WELL_FORMED_2 MAILITEM

Specification:

Sample Output

SUBJECT (MAILITEM)t= nv

9 IS_WELL.FORMED_3 MAILITEM

- e . - - e - - S T D W TP G e - - . —

Specification:

BODY (MAILITEM)!= "»

10 IS_WELL_FORMED_4 MAILITEM

—— e S — — - A - - T - - TR T S e -

Specification:

WHENSENT (MAILITEM)= NIL

11 IS_WELL_FORMED.5 MAILITEM

- - - T - A - 8 - — — = P T W - - B G — " - ——

Specification:

REFNO (MAILITEM)= NIL

12 COLLECT_pre_1 UMAP
Contains function (Server and Client relation)
Server Message
Identical to UMAP : :PPOST_pre.2
Specification:

UID ISAM DOM UMAP

13 COLLECT_pre_2 UMAP

Specification:

(EXISTSONE M IN TIN (UMAP (UID)). REFNO (M)= R)

1-40

Sample OQutput 141

14 COLLECT-post._1 UMAP

- ——— — - o G " A W W D - P S - e . - G G e S G S A M R G . . - .

Specification:

LET OLDDESK = UMAP (UID) IN (EXISTSONE ITEM IN TIN (

OLDDESK).(REFNO (ITEM)= R)&(M ’= ITEM)&(UMAP ’= UMA
P ++[UID -> MK - TRAY (TIN (OLDDESK)- ITEM , TOUT (OLDD
ESK), PEND (OLDDESK))]))

15 READ_pre_1 UMAP
Contains function (Server and Client relation)
Server Message
Identical to UMAP : :PPOST_pre.2
Specification:

UID ISAM DOM UMAP

16 READ.pre_2 UMAP

v S v e - AR - e . . S AL R S T D D GG - S S S e N e G G S e e W - -

Specification:

'(EXISTSONE M IN PEND (UMAP (UID)). REFNO (M)= R)

17 READ_post._1 UMAP

Specification:

LET OLDDESK = UMAP (UID) IN !(EXISTSONE ITEM IN PEND
(OLDDESK).(REFNO (ITEM)= R)&(M ’= ITEM))

18 ADDNAME_pre_1 MDIR

Specification:

UID ISAM DOM MDIR

Sample Output 142

19 ADDNAME_pre._2 MDIR

Specification:

!(NAME ISAM DOM MDIR (UID))& U ISAM DOM MDIR

20 ADDNAME_post.1 MDIR

—— - — - - - - - . - - - . S G G - g S - — -

Specification:

LET OLDDIR = MDIR (UID) IN MDIR ’= MDIR ++[UID ->(OLD
DIR ++[N -> U 1)]

21 DELNAME_ pre_1 MDIR
Contains function (Server and Client relation)
Server Message
Identical to MDIR : :ADDNAME_pre_1
Specification:

UID ISAM DOM MDIR

22 DELNAME_pre._2 MDIR

A > O > —— e " - A - — - - —— - - ———— - —

Specification:

IF NAME ISAM DOM MDIR (UID) THEN UDIR (NAME)= U E
LSE FALSE ENDIF

23 DELNAME_post._1 MDIR

Specification:

LET OLDDIR = MDIR (UID) IN MDIR ’= MDIR ++[UID ->(OLD
DIR \{ NAME })]

Sample Output

24 LLIST.pre_1 UMAP
Contains function (Server and Client relation)
Server Message
Identical to UMAP : :PPOST_pre.2
Specification:

UID ISAM DOM UMAP

25 LLIST post._1 UMAP

Specifications
LET INTRAY = TIN (UMAP (UID)) IN (CARD S = CARD INTR
AY)

26 LLIST post_2 UMAP

specification:
(FORALL J 1IN INTRAY .(EXISTS K IN S . K = SUMMARYOF
(IO

27 SUMMARYOF_1 MAILITEM

specification:

MK - SUMREC (SUBJECT (MAILITEM), FROM (MAILITEM), WHEN
SENT (MAILITEM), REFNO (M))

28 CLEAR pre.1 UMAP
Contains function (Server and Client relation)
Server Message

Identical to UMAP : :PPOST_pre.2

143

Sample Output 144

—— o - - N TS Ew e WP D G WD S b G D G S MR G W D S G G WS W -

Specification:

UID TISAM DOM UMAP

29 CLEAR_pre.2 UMAP

Specification:

TOUT (UMAP (UID))/={}

30 CLEAR_post_1 UMAP

- o - - - — Y - - G e S S S A S SR T S G G G WS M e 4D MG G W= T W e e

Specification:

LET DIRECTORY = MDIR (UID) IN (FORALL U 1IN DOM UMAP
-{ UID }.(TIN (UMAP *(U))= TIN (UMAP (U))+{(FRANKED
(M)IM ISAM TOUT (UMAP (UID))& IS_IN.LIST (U , TO (
M)+ CC (M), DIRECTORY))}& PEND (UMAP *(U))= PEND (U
MAP (U))+{(FRANKED (M)| M TISAM TOUT (UMAP (UID))&

IS.IN.LIST (U, TO (M), DIRECTORY)& REPLY.REQ (M))}& T
OUT (UMAP ’(U))= TOUT (UMAP (U))))

31 CLEAR_pos .2 UMAP

i ——— - - - Y N S W T W D R R GRS R VS G wm A R WD A e -

Specification:

UMAP ’(UID)= LET OLDDESK = UMAP (UID) IN MK - TRAYS (
TIN (OLDDESK),{}, PEND (OLDDESK)-{(M | M ISAM PEND (
OLDDESK)&(EXISTS I 1IN TOUT (OLDDESK). REFNO (M)= R
EFNO (I))})

32 FRANKED.1 MAILITEM
Contains function (Server and Client relation)
Server Message
::NOW_1

: :NEXTREF.1

Sample Output 145

Specification:

MK - MAILITEM (TO (MAILITEM), CC (MAILITEM), FROM (MA
ILITEM), SUBJECT (MAILITEM), REPLY_REQ (MAILITEM), REFS
(M), Now (), NEXTREF (), BODY (M))

33 NOW_1

- . - - ——— - AR " - . G D TR WD T WA PGP TE T D En WD e e S ew e

Specification:

NOW ()

34 NEXTREF_1

- —— - — " = = = e A T S S G G GBS WS S S R D P I GD D WD R e e -

Specification:

NEXTREF ()

35 IS_IN.LIST.1

Specification:

UID ISAM { NMAP (N)| N ISAM ELEMS NAME }

36 HAS_MANAGE_PRIV._1 UIb

Specification:

HAS MANAGE_PRIV (UID)

37 ADDUSER_pre.1 UID
Contains function (Server and Client relation)
Server Message

o —— - - - A S S e e S - S T G R N D e D D e e @ e e =

LI e .

T

¢
i
£
3
%
v
H
b
¢
g‘
3

Sample OQutput

Specification:

HAS_MANAGE_PRIV (UID)

38 ADDUSER_pre.2 UMAP

Contains function (Server and Client relation)
Server Message
UMAP ::PPOST.pre_2
UMAP : :COLLECT pre.1
UMAP ::READ_pre_1
UMAP ::LLIST pre.1
UMAP : :CLEAR_pre_1

Specification:

1(UID ISAM DOM UMAP)

39 ADDUSER_post_1 UMAP

Specification:

UMAP ’= UMAP ++[NEWUSER -> MK - TRAYS ({},{}.{D]

40 ADDUSER_post._2 MDIR

- - - - - - R P - G D S D G e e M S o S T - A - - - -

Specification:

MDIR ’= MDIR ++[NEWUSER ->[]]

41 DELUSER_pre.i UID
Contains function (Server and Client relation)
Server Message
Identical to UID ::HAS _MANAGE_PRIV_1

Specification:

140

Sample Output

HAS MANAGE_PRIV (UID)

42 DELUSER_pre.2 UMAP
Contains function (Server and Client relation)
Server Message
Identical to UMAP ::PPOST_pre_2

Specification:

UID ISAM DOM UMAP

43 DELUSER_post_1 UMAP

—— i -y - . e S - L - G) G P S S D G G . S WP R S T A T s G A S o

Specification:

UMAP ’= UMAP \{ UID }

44 DELUSER_post_2 MDIR

Specification:

MDIR ’= MDIR \{ UID }

45 IS_LOGGED.IN_1 UID

- e e - —— - -0 e e e . - - - —— -) - — - - G5 Wm G v - am - -

Specification:

IS_LOGGED_IN (UID)

46 INIT pre.1 UID
Contains function (Server and Client relation)
Server Message
Identical to UID : tHAS_MANAGE_PRIV_1

Specification:

147

Saniple Output 148

HAS _MANAGE_PRIV (UID)

47 INIT_post_1 UMAP
Specification:
UMAP =[]
48 INIT_post.2 MDIR
Specification:

MDIR ’=[]

