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ABSTRACT
Generalized Finite Element Dynamic Modelling And

Simulation For Flexible Robot Manipulators

Zhou Feng

Generalized system modelling wusing finite element
technique is examined in order that the dynamic behaviour of
flexible robot manipulators can be studied. Most of the
dynamic models currently used for robot motion simulation are
restricted to open kinematic chains of rigid body elements.
However, to improve dynamic performance, it 1s essential to
take into account the structural mechanic characteristics of
robot compcenents. This thesis presents a general finite
element model for flexible robots and wvalidates them by
simulation.

The kinematic equations are set up and the system kinetic
and potential energies as well as their derivatives are
obtained. Lagrange's formulation 1is employed and the
generalized system dynamic equations which represent spatial
performance are solved based on finite element analysis.

To validate the generalized equations developed for
flexible robot manipulator, two sample simulations are carried
out for 2-link and single link manipulators without and with

torque. The responses are obtained, compared and discussed.
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T;, T; : the transformation matrix from base ccordinat o syt om
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Ué : the nodal variable vector
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CHAPTER 1

INTRODUCTION

1.1 PRELIMINARIES

Mnst of present analysis and design for industrial robots
are based on the assumption that robot arms are composed of
rigid bodies. This assumption brings a lot of convenience in
hoth analysis and study of these robot manipulators. Control
systems for robot manipulators based on this assumption are
designed so that the end-effector of the robot manipulator
will be 1n a certain position after joints are driven to a
given set of precomputed angular positions. But in fact, the
manipulator links are not absolutely rigid. The rigidity
assumption is, in fact, presumes that if the stiffness of the
object is so large compared to its geometry that the influence
of its flexibility may be neglected and the object could be
considered as rigid. In order to keep the robot arms rigid as
per design when they are performing at high speed and/or
cariying heavy payloads, robot manipulators have to be built
massive, hence will encounter high material cost and large
ener gy consumption.

Noticing these drawbacks of rigid robot arm design, the
concept of flexible robot manipulator is introduced to replace
the analytical premise of rigid robot arm. Compared with the

traditional design of rigid robot manipulators, the flexible



robot manipulators not only are able to carry equally heavy
payloads and can be fast moving without having to desian cadls
link thick and strong, but also possess many advantadgo.: tlhiey
need less material, are more maneuverable, are lighter and
hence consume less power, possess smaller volume and arc mor.c
easily transportable [1-2].

The main obstacle preventing wide use of flexible 1obot
manipvlator 1is due in part to the fact that it 15 often
difficult to obtain a reasonable accuracy of 1esponse
corresponding to the input commands from the control oyvitom,
[(3]. At the same time, the robot model used in the deiign
should be able to describe the identifiable behaviour of the
manipulators with adequate accuracy. An improved dynamic mode)
(i.e., the dynamic equations of motion describing the dynomic
behaviour) of such manipulators with option to o 10 Dod
flexibility is therefore needed for adoption in the desagn aned
simulation of the control scheme to provide appropt ol
control of lightweight manipulators at increancd ospecds ond
heavier payloads. This can be achieved through the deooript 1on
of link flexibility by the finite elemcnt with an appropy rat e
selection of the number of elements.

It is evident that the more finite eleaments adoptod, the
more accurate the model response can be [4]. Howevrer, the foa
of reality 1is, one can not simply take more finite olomernr o,
The reason 1s that the computation of that model will rioe

sharply with the growth of number of  f{inite  elomery



Therefore, as a compromise, a suitable number of finite
clements are employed to yield the necessary design tolerance.
1n many cases, just a few finite elements are found to be

sufficient.

1.2 PROELEM DEFINITION

The dynamic model essentially describes the dynamic
characteristics of flexible manipulators. Based on this model,
the pocitions, velocities and accelerations of the manipulator
links could be determined by the input parameters dictated by
the control system. In other words the dynamic models are to

be prescribed in the form [5])

t= A(Q) *g+ H(qg, q) (1.1)

whetre T is a vector of generalized forces or torques,
q is a vector of variables of the systemn,
A 1s a square mass matrix,
H is a coefficient vector including gravity
effect etc..

In order to achieve this, various approaches have been
developed to conform to such a model. The two main approaches
to the dynamic modelling of flexible robot arms are the
assumed modes method and the finite element method. The
assumed modes method 1s quite general and contains less

3



variables and can lead to efficient computation. Howeve:r, this
method requires the precise assumed mode shape for the links
and hence limits the use of this method only for manipulators
with simple shaped links [6]. The finite element method,
however, could be applied to manipulators when links are of
non-regular cross-sections and include better accuracy a:s well
[(71.

A number of investigations have been carried out
employing finite element approach to derive the dynumic
equations. However, these equations are restricted to only
certain cases. In this thesis, the main contribution i1nvolvewn
derivation of the generalized model equations in a finite
element setting. This approach is found more suitable f[o

design of robot control.

1.3 PRESENT STATE OF THE DYNAMIC MODELLING THROUGH FIHITH

ELEMENT

The methods for dynamic modelling of manipulators by
means of finite element concept were presented by Geradin [#]
and Bricont ([9]). Each flexible link was conosidercd an on
element so that the dynamic equations could be deriverd by the
Lagrangian method. Since these methods did not discuss the
case of a link with several elements, the accuracy could only

be imprcved by choosing an appropriate mode shape of oloment o,



Usorw, lladira and Mahil [10] developed ancther method to
arllvance the dynamic model based on the finite element
approach. With each flexible link of the manipulator being
divided into elements, the accuracy of the response
was achieved by increasing the number of elements of each
flexible link. However, this investigation has application
limitations since the dimension of mass matrix of the
cuations 1s dependent on the number of elements chosen for
cach link and the number of links. With the number of links
Incre-ased and more elements chosen, the mass matrix becomes
tuow bulky to be handled. Therefore, these authors discussed
only the case of a two-1link manipulator with two elements for
cach 1link instead of deriving more generalized equations for
denign purpose.

Book [11] proposed a method of recursive Lagrangian
Jdynamics for flexible manipulator arms. Here [4x4] matrices
@te utilized to represent both the joint and deflection
metions. The computational approach resulting from the
Lagrang2an formulation of the system dynamics, that is reduced
to recursive form, has already been proven as an efficient
method for manipulators with rigid links. To consider the
flexabllity of robot manipulator, the so called assumed modes
meth ~d, which assumes the link’s deformed shape by a certain
Jdescribing function, 1s employed. Since the assumed modes
mwe hod, where a certain mode shape is presumed for each link,

15 adopted 1n this work, this may not be suitable to describe



the manipulators with complex shaped links.

A computer simulation of the control of a flexible 1robot
arm was carried out by Lee and Wang [12]. The dynamic
equations for a single-link flexible robot arm were derived in
a rigorous manner. The flexible beam 1s modeled as n beam
elements and n+l nodes. As the model employs the Nowton and
not Lagrangian formulation, it could only be f1t for simple
manipulator examples. In addition, the calculation of some
coefficients grows very rapidly with an incrzase i tin
number of links. Here, the moment acting on the bean could not
always be considered as zero particularly in case of o multa
link arm. If the moment could not be ignored, 1t will bhe come

difficult to obtain the governing eqguations using  this

approach for a flexible manipulator arin.

Based on the above work, Lee and Wang [13] developod the
dynamic equations for a two-link flexible robot arm. The main
success in this work centres around the determinat ion of the

inverse of matrix A* which links the acceleration vectoyr with

the wvector combining velocity variables and  pooition
variables. However, the inverse of A* can not b cacaly
obtained as well as it is impossible to obtain thin quantaty

for a more general case. With an increase in the by of
links, calculations of wvelocity and accelerat ron alre o
extremely complicated.

Chang and Hamilton ([14] presented o dynamic o s tor

robot manipulators with flexible links by means of the fangte



¢lement method and Lagrange’s formulation. In this work, an
Egquivalent PRigid Link System (ERLS) model was used which
describes the kinematics of robot manipulators with flexible
links by separating the global motion of the flexible
mariipulator into large and small motions. This algorithm was
suggested to simplify the analysis of the flexible robot arms.
However the authors [14] did not consider the case cf
manipulator links having more than one element. They just
considered the equations of links with single element.

Gaultier and Cleghorn [15] use the Hamilton'’s principle
to implement the modelling of both planar and spatial flexible
manipulators by creating a beam finite element. The element
employs torsional, axial, and lateral shape functions to
approximate the 1link deformation vector. The governing
dif ferential equations for an arbitrary spetially translating
and rotating flexible link were finally derived. The
derivati~n was restricted only to links which can adopt to
Euler-Bernoulli beam theory of constant cross sectional area.

Naganathan and Soni [16] presented a finite, element-
based nonlinear model of flexibility effects in certain class
of manipulators. The governing equaticns of motion are derived
inclading the effects of rotary inertia, shear deformation,
and effects of nonlinear motion of each of the links. However,
a uniform cross section of manipulator links is assumed which
limits the application of this method.

It can be realiced from the above literature survey that



the various approaches for flexible manipulator model ling by
the previous researchers can be classified under 0 moo

groups:

1. Use of assumed modes: This approach is recommended by

Book [11], Gordaninejad and Azhdari [17]. However, these
researchers offer discussions and applications that are
limited only to manipulator links with uniform crogss soction.

2. Use of finite element: This approach is recomncndoed by

Geradin [8], Usoro [10}, Naganathan and Soni [l16], Lee and
Wang [12]) [13], Bricout [9]), Jonker [18], Chang and Hamilton

[14] [19]. As mentioned previously, these investiqgations do

not give or lead to a generalized dynamic equations for any
type of flexible robot manipulators. References [10) [12] [1}]
discuss only specific cases with one or, at bhest, two link:..
Investigations [8] [14] derived the dynamic ecquations [on
flexible manipulators with one element in each link. This
certainly reduces the ability of these approaches to obtain o
better accuracy of the manipulator response and behoavioan
which may be needed in certain robotic designgs and contiral. Lo
all the above works are limited to specific manipulators, they
can not be employed for any general type of rohol manipailator:.
making use of finite element method. This ohortocoming i

addressed in this investigation.



1.4 pvrOFILE OF THE THEGSIS

The objective of this thesis is to derive a generalized
rfynamic eruation, which can be employed for any flexible robot
manipulator with r. volute joints. The finite element approach
i employed to model any multi-link flexible manipulators. The
whole work presented in the following chapters of this thesis
may be divided into 3 stages:

The: first stage 1s to analyze the kinematic character of
ttie flexible manipulators by the concept of finite element.
Two types of coordinates (body-fixed system of coordinates
attached to links and coordinates attached to elements of
linke) are utilized so that the points on a beam could ke
capressed in terms  of  these coordinates systems.  Small
do-flection characteristic is assnmed in order to simplify the
analysis to linear relationships and so that the general
transformation matrix can be easily set up. The adoption of
tinite element 1is introduced in the analysis at this stage.

The second stage is to derive the dynamic eqguations for
flesnible robot manipulators. As the position of each point on
the link could be expressed by means of the transformation
mat1ix, the kinetic energy for each element is computed and
summed over all the elements. The potential energy is ccomputed
i the same manner as well. Then the Lagrangian formulation
10 applied to set up the dynamic equations of the system.

r
RS

the third stage, the test, by means of computational



simulations, 1is performed in order to check the validity and
correctness of the derived dynamic equations. This s
important for algorithm development. Certain it an
conditions are applied to the simulation 1n this teuot
procedure. Since the different manipulators deployed in
practice may possess varying characteristics, the choice of
shape functions may greatly influence the results. In order to
compare the present results with those obtained earlier by
other methods, the parameter values of the model used by
Usoro[10] are also employed here using the same 1nitial
conditions and other additional conditions specified in [10].
The validity of the present approach is thus ascertalned by
the above process of comparison. However, it may be ncceassary
to validate further the present method with additional
examples that involve more links and more finite clomenti,

But, there are no published literature giving detuails of such

examples.

In the second simulation, a one-link manipulator with it
link divided into two finite elements is also discunsod using
the same linkage parameters as those given by Usoro[l10]. The

Runge-Kutta method is employed to solve the dynamic equat ion
of which all the joints of flexible manipulators are revolnt e
as shown in Fig 1.1. A torque is introduced in wuch o Manned
that the application potential of the proceduresn developed o

this thesis could be demonstrated.

10



Fig. 1.1 Revolute Joints [20]
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CHAPTER 2
KINEMATIC ANALYSIS FOR A ROBOT WITH

REVOLUTE TYPE JOINT CONFIGURATION

2.1 INTRODUCTION

Kinematic analysis has been established as the tool to
study the spatial configuration of robot «as o function ol
joint angles and other linkage variables. This yields the
relationship between the base coordinate system and spooif ied
local systems. The transformation from the local coordinagt
systems to the base system is very important. f{or the proponed
analysis as the positicons, velocities and accelerat 1onn, in
different systems are to be converted into the same coordinat o
system which will bring some elegance as well as conuvenience
to the analysis such as computation of system potential cnerqy

etc.

2.2 COORDINATE SYSTEM ASSIGMNMENT

A manipulator consists of several lainko  cornageect il
sequentially by actual joints. Consider the manipalator o
described in Fig 2.1, A, is the joint transformation i ris
for joint i, D,, is the link transformation matrix for link
1 Dbetween Jjoints 1-1 and i, B . 15 the ooareglar poge
transformation matrix from origin of base conrdinare ro e

12




Fig. 2.1 Link Relations for Flexible Manipulator
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origin of the local coordinate for link 1. The following
investigations are made under the assumption of stiraiaght link
and small deflections.

Let the coordinate system O,X,Y,Z, be defined on link :
with the origin of the coordinate system coinciding with joint
1 so that the x axis is coincident with the neutral axis  of
the link in its undeformed condition. Thus, the position ot
the points on 1link 1 can be expressed in terms of the
coordinate system 0,X,Y,Z2, , which could be understood fronm
Fig.2.2.

Suppose all the manipulator links are made up i many
finite elements, the deflection of a spatially defined oloment
can be described in the three directions U, V' and W', a:.
shown in Fig.2.3. For each node of finite elemcnts, thoroe are
a total of 6 deflections composed of 3 angular defleoction:
(U, V'., W'.; U',, V'y, W,) and 3 linear deflections( U’,,
V', W'y; U’,, V', W'')). These are indicated in the figqure fon

a given element.

2.3 THE KINEMATIC EQUATIOMNS

Let the following quantities be defined for net o ang .

the kinematic equations of the manipulator linkco:

i . . . .

riy(x,;) : the deflection in terms of position Zariahle
» ©0f the jth element of link 21 in terms of ooy o
O0.XY,Z, where superscript 1 denotes the relerencc ot

14




elem.ent

]

Y element
j—1

Fig. 2.2 Configuration of Local Coordinate System
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Fig. 2.3 Nodal Displacements
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coordinate system 0,X Y, 2.

ry(x,,): the deflection in position variable x,. of the
jth element of link I in terms of the base coordinate. The
neglection of superscript denotes reference to the base

coordinate system.

T{ : the transformation matrix for operation from base
coordinat« system to local system O0X,Y,Z, in terms of base
coordinate.,

T,: the simplified form of T{
Thus, the 1instantaneous position of a point in Jjth
element on link i1 in terms of the base coordinate system is

given as

Ty (x;) =TPrfy(xg;) = Tyerdy(xg;) (2.1)

The relationship between r;; and rﬁ, is also shown in

F1g.2.4. The point expressed in terms of ith coordinate system
has to be transformed by matrix T, into the base coordinate
system,

The transformation matrix from the base coordinate system

to the local system O,X,Y,Z, is expressed as:

Therefcre, the position of the point in terms of

17
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coordinate OX Y Z, is given as:

(j—l)‘zij+ Xij] ¢1JX iy )
0 iy \ X144 t)
riix,) - X . 4’:” 3 (2.3)
¢.ijz(x_ijr t)
! 0

where
l,,: jth element length of ith link

x,,: position of the point in the jth element measured
from O,, ,and

0,.X

1

.Y, : Body-fixed coordinates attached to the jth
element of link iI with O, fixed to the junction

between the jth and (7-1)th elements.

In the expression for ;é(xiﬂ , the first part describes

the position of the point when the link is undeformed and the
second part shows the deformation position of the point. The
latter part has to be expanded using element property.

The second part of ré(xﬁ) can then be described in

terms of shape function in the following manner.

bin (X5 €)= fv-: sixk (Xi3) U500 () (2.4da)

¢JJV 1_,1 t) ? ij}\ uijyk(t) (2.4b)

19



4
iy (X5 €) =f‘: Nijor (Xg5) % Uiz (0) (o)
=1

and

4
b1jp (X450 ) Jf.:l Nijp (%5) * U5, (€) (2L ad)

where

$ijx» ¢ijy and oi;; are the link deflections along x, 3 and

z axes respectively; dijp is the torsional angulua:
displacement; N,,., N,,, and N,,, respectively are the shuapc

functions about the x, y and z axes and u,,.. Uu and 1,

TN
respectively are finite elements nodal variables about the x,
y and z axes.

Since the deformation of link causes both tranclat ron anld
rotation of the coordinate system, the link transtormat ion
matrix D, from joint i-1 to i can be obtained in teerms of 1he

nodal vector of the last finite element on the link 1 arwd the

total number n of the elements in this link.

100 nl;

Di;o l 0 0 + Pj (:)A.{l}
6001 O
000 1

The former part of D, describes the transformat inn et v/

20




alonyg the » axis when link 1

the additional matrix

18

deformation the link takes.

s in its undeformed situation. P,

indicating how much elastic

Since small deflections have been

assumed, it can be shown

u u

“Ujy3 Uiy Ujxg
p Ujys 0 U5 Uy, (2.6)
i
_Uix3 uin 0 ui24
0 0 0 0
Here wu,,,, wu,.. and u,,; respectively are the nodal

deformation variables which describe the flexural slopes at

tip of link 1 about axes y, z and Xx. u,,, u and u,.,

1y4

respectively are the nodal deformation variables which

describe the flexural deflections at the tip of link i along
axes x, y and z.
Taking the time derivative of the expression for the

position given by equation(2.1),

dt

= Ti*ri-'j(xij) + Ti*fi's(xij) (2.7)
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The  expression for i'fj can be obtained by

differentiating equation (2.3). Since the first part ot rfj
is not dependent on time, the differentiation ot this part

gives =zero. Therefore, the result of the differentiation

becomes,

F4 ' ']
E-Nijxk(xij)*uiljxk(c)
k=1
4 ]
. N AX2) 20 ()
riij(xij) = g; ijyk Vi) T Hijyk (2.8)
4 3
Yo Voo (55) #0050 (€)
k=1
L 0 )

By differentiating (2.2), one can obtain

T;= By, *A;* B; ,*4; (o)

and
Tf éi-l*Ai+ 231_1*Aj* Bi-l*/'ij (2.10)
where
. O0A. - ) ‘
Ai ="‘aﬁf*ej (2,111
and
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l

Here 0O; is the joint variable.

i

B, can be expressed as:

By= T;*D; (2.12)

B, and E?i can be also computed by performing the

1

differentiation of equation (2.12):

Bi=Ti*Di+Ti*Di (2.13a)
and

Bj=Ti*Di+2Ti*Di+Ti*ﬁi (2.13b)

From the expression in equation (2.5), it 1s easy to

obtain the following results:

D.=P, (2.14a)

and



These equations will ke applied when the transformation
matrices have to be developed for use, especially in the
simulation and discussion regarding further extension of this

method.
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CHAPTER 3
DYNAMIC ANALYSIS AND MODELLING

FOR FLEXIBLE MANIPULATORS

INTRODUCTION

Lo
—

Based on a kinematic analysis, one can obtain the
expression for the manipulator system’s kinetic energy and
potential energy which are reguired for use in developing the
system Lagrange'’'s equations. The system wvotential energy
comprises two parts: the potential energy due to gravity ana
the elastic potential energy(or the strain energy). As
explained in the previcus chapter, all the different element
potential energies due to gravity have to be expressed with
reference to the unified coordinate system, which is the base
courdinate. & summation over all the manipulator elements will
provide the total system potential energy due to gravity. The
same strategy 1s used to sum up the elastic potential energy
and kinetic energy over all the elements of the system.

After the above procedure, the equations of motion can be
derived using Lagrange’s principle. The degrees of freedom of
the system can be separated into two groups, i.e., the rigid

body dearces of freedom and the elastic degrees of freedom.



3.2 THE SYSTEM KINETIC ENERGY AND ITS DERIVATIVEX

In order to develop the manipulator tinite  ciomen?
formulation in a generalized manner, all the expressions are
managed to result in the form of multiplications ot [HUwi]
transformation matrices. The absolute velocity of one point on
the element i1s given by expression (2.7) and 1t 1o now
possible to develop an expression for the kinctic ceneray of a

point on the jth element of 1th link

ck;y= 2 Tr {2y (%) +Ef (x, ) T
= %Tr[fij(xij) v 25(x,) Dpdy, (11
where pdx;; is the difrerentzal maon of  thee P
under consideration.
Since Tr (ab')=Tx (ba’) an-i subiot rtut vy
Iyy(X;5) =Ti*fiij(xij) +Ti*rfj(xij) from  egqiation (2073, the
expanded form of equation (3.1) car be writton an (1],

_ 1 : 1 iT A
dk-j" EdeIJTI[Tl*rij(XlJ) *rij (}{l_]) *Tj 1’27"1
1 s IT T . 4 . IT ol ‘o
*rij(_xij) *Iig (xij) T, +Ti4ru(xu.) ) (x";) 7)) LI
By integrating the above exprocoion oorer vt ot e LLrr,



racn density of the link and the integration limits over
are from O to I . Summing over all the m links, the system

tortal kinetic energy is obtained from:

1y

K=ii{dkij (3.3)

I=1 7=1

where n is the number of elements in each link. This is
unrer the assumption that each link can be separated into n
t(mal elements.

Noting that the deflection of a component is a collection
of multiplication of shape functions and nodal variables, the
expression for it in terms of two matrices multiplication 1is

now 1nrroduced:
1 1,7
‘bu: U!jNij (3.4)

Heore ¢fj 1s the deflection vector of the jth element of

link ; with respect to coordinate system OX.Y,Z . The
superscraipt 1 denotes reference to the coordinat. system

caploved and here it is 0X,Y,Z,. Further,

¢§j= [d)fjx("{jjl t) [ d)‘:i[.]y(xljl t) ' ¢ij2(xijl C) ' O] <3 -5)



1 : . -
U;j; 1s the nodal variable vector of the jth element ot
link 1 with respect to coordinate O,XY,l,, the quantatiocs with

respect to which are referred by the superscript 1. Then,

Uiij: [uifjx‘l uiijyr u.iijx] 1x12 (3.0)
where
ufjf [uiinJ, u;'sz, Uiijle Uiine (3.74)
uiys lud, Uiz Uiy Uind (3.7h)
and
uzi_-;f [Uijj”, Uszz, usz,, ufj‘,,,] (4.7

.Né is the shape function matrix of the Jth cloment of

link 1 and 1is given by,




whore

Niix: Nijxz Nijxs Nijxa
Nn.=| 0 0 0 0 (3.9a)
1o 0 0 0
0 0 ¢] 0
0 0 0 0
N ANy Nigyz Nijys Nijye (3.9b)
Wl 0 0 0
0 0 0 0
and
0 0 0 0
y. 0 0o 0o 0 (3.9¢
72 \Nijz1 Nijzz Nijzs Nijze

0 0 0 0

rI“ll(—:‘ S}'mbOlS Nl'\f’ N:7\:/ Nx].\?' N1_7‘\4, Nljy" N}]}’:/ NIJ},Q’ N}])’G’
N. , N. , N _., and N,,.;, are the cecrresponding coefficients

1 equation (2.4), the symbol u,.,;, U, U, Uiy, Uipr, Upepn,

W, u, ., U,,., U,.., u,., and u,,; are the corresponding

variables 1in equation (2.4).

<.

The differentiation of equation (3.4) results in:
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$i= ULNT (3.10)

Defining Cy as:

Cyy= [x;+(F-1)1;; 0 0 1) (3.11)

then equation (2.3) can be arranged in the foim:

1 1T iT .
rij(xlj) = C}; +¢_{j= Ci!_; "NijU.lj ( 3. l.)

Similarly, the differentiation of equation (3.12) reoult s

in

. s qT
ri{j(xjj) = ijUifj (3.13%)

By introducing matrices F,,;, F,, and F,,. in the
following manner,
1y 1y

Fi= [rd(x)ed( ix. .= [u(ck+N, UL
ij2= f 13 (x;;) £y (x,;)pdx; ;= | p(Ciy+N, Uy
0 [0}
1”
1
(Cyy*UizN5) dix ;= fP [C43Cs5+ CLHULN,
0

iT 1Tyl 0T .
+ Nl]U-ij Cij+ NJ.JUIj UileJ} d}{)] {s.14,




1y 1y
' 1 . 17 T 1% &4, T
0 0

.I”
’y 17,
= fp(cj’_;UIijNigi' NijUij Uith}';) dxlj (315)
0
arnd
1” 111
= s 1 s 1T _ s 4T e 4 T
Fiys° frij(xij)rij (X;;) dm= priqu UfNGdx, (3.16)
0 0

then, equation (3.3) becomes:

m n

1

k= 32 3 Trl [F,F T+ 2T, F 5, T+ T,F;;,T) (3.17)
I=1 J=1

Before constructing the Lagrange’s equations, 1t may be

noted that there exists following relations [11}:

9T, _ 9Ty (3.18)

E

d aT oT;
dt %_ 00,
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lo3]
3

Q)
(<3
[e¥)
<

.
w

and

d ((i’i'i)_ ot (
dt - Juy

(U9
te

du;
It is also helpful in simplifying the result by not icing
Tr (A)=Tr (A°) for any square matrix A.

After some simplification and cancellations of some Lot

like:
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t
OUzs _ (3.25)

3, °
1]
t
Wza (3.26)
auj

the part of Lagrange’s equation relative to the system kinetic

enerqgy corresponding to the rigid body variables results in

d 0K 0K _\~ ¢ 0T, . . r
T TS T Tr {2 (F,,, 77 + F,..TT +F. . T; (3.27)
dt a@SA ﬂk 1;_7=1 [aek( ije+i ijsti ij6 i) ]
Here
1,
’ . 1"-
Fijo= [ (2CHULNG+ 2N U ULNT) dx, (3.28)
0
Fiis= Fijy (3.29)
and
1,
- rY 1T -
Fije= fu(c,’}uijzvfﬁ N Uiy UANG) dxy (32.30)
0
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Similarly, the part of Lagrange's equation ¢orrenioiiding

to the elastic body variables is:

d 0K _ 0K _1 T .
dt 9u, du '321 Trl ZTJFUMT + T F T
T m'r A.
T FJ.JRJT +T1Fljkd [ 1-“ JJ.‘
+F; ;) TI4F T (FUJ“”UJ) 7771 (3.11)
Here
= 72 - T 11 ir ij .
Fijki= 65:' f“(c“a N+ Ny Uy — N Pydx,, (4.
[}
1,
GLQ . 1730iy ¢ = 90} .
Fijke™ fzp it JN 2N 0y I N U i i NTyax, (o
t ot oul
- 1 47 C ij
Fijes™ fP(C'u Ju, INTi+ N,;Usy B N,
o]
9uiy o0y WY
-Nij auk C.ij Nl] a Ulelj)d}{ )
and
13 LI | 1T
Uy g .7, Uiy 2yq 7
Fiike f sz( oy, Ug4N,; 30 Ui
» 4
.1raU1 T anj .
Uij aU: 1] Uij a N )_LU ,




ks the part of Lagrange’s equations with respect to the
system kinetic energy has been presented, another part refers
to osystem potential energy is about to be developed to

colmplete the Lagrange’s equation.

7.3 THE SYSTEM POTENTIAL ENERGY AND ITS DERIVATIVES

The system’s potential energy consists of two parts: the
clastic potential energy and the gravitational potential
Cneray.

The strain energy of element 7 on link i1 can be written

an [26]):

1y i 2
- i [tmr a"’m) er, (2% ax,
1
2 0 .1_7 ] aij 7
1 i
1 a(b.uﬂ a¢1jx ,
E_([ ) dx;] 2 fEA Xi] dxij {3.36)

where  EA and GI, are the structural rigidities of the link

due to extension and torsion. EI

, and EI, are the bending

stiffness of the 1link in y,z directions. 1,, 1s a length
mtegration domain and dx,, is a differential length of
clement . ¢fjx, (bj:jy and ¢§jz are the linear displacements
m x, y, and z directions and ¢§jﬁ is the twist deflection
along x axis.

The 7ravitational potential energy for element 7 on link
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1 1s given by

<V1_»):1= f“g*T;*ri‘J(Xxj)d‘\':' (3.3

The gravitational acceleration g is a vector which can
have components along x, y, =z direction. If the Dhasc
coordinate is set such that the z axis 1is polnting vertaically
up from the ground, then

g=[0, 0, 9.8, 0] (m/s")
Thus, the system potential energy is obtained by sumning

the potential energy expressed in equation (3.36) and (3.4

over all the elements in the system. That ig,

VY Y UV ¢ (V) ) (3.0

M=

From the expression for the system’s potential cnergy, it
is clear that no velocity components have been involved,
Hence, the derivatives of the system potential enerqgy with

respect to joint velocity variables are zero. That 13,

oV _

'é‘é— 0 (2.4,
k

It may be noticed that 1in the expression for oyoter
potential energy, only the gravitational componeet  of
potential energy contains rigid body wvariables. Therelore, '

derivatives cf the elastic potential encrgy with recpoect '

(W8]
N




rigid body variables vanished and the following eguation 1is

ohtained:

_%K=Zm:ifpg* aﬁl;rij(xij)d){ij (3.40)
0

where 6, 1s the kth joint variable

Before evaluating the derivatives of the potential energy
with respect to elastic variables, the system’s potential
encrgy is rearranged into a more compact form. In order to
achieve this, the matrices K,, K,, K., Kz are introduced into

the following derivations. Let

T
EAf aN”" aN dxl.j (3.41a)
iJ 2ar T 2
K,= EI, d NlJy J Nuydx (3.41b)

___ﬂfdx. (3.41c)

and
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As a consequence, the following expressions can now be

rewritten:
144 i
1 a¢ijx _1..14 ir
3 Ay, ) ey g i
0 13
111 PV
1 EI (a~ jjy 2d}{ — l 1 iT
"2'f y =) dx T S Uiy K Uiy
0 aXij
1y .
0%
2 [E1.0 d”;z)zdxu— Lud Kk ud
2 ox?;
Q ij
and
14 1
1 918\, 1.4 1
-z-lGIx( I )idx; = SUiypKyUigp

Let a stiffness matrix K' be constructed such

K, 0 0 0
i 0 K 00
0 0 K, 0
00 0 K

Further, let the system’'s potential encrogy he

(3.4.20)

(3,420

(3.4.00¢)

(3.4244)

thiat

(4.4

rezgr oot e,




(]
O

J the i

144
[(fl»l[gx' gy, 9z 0] *Ti(c;l’_’j"' NijUi{'Ir) dxij) +
! 0

m 1l
V—E:
1=1 j=

1 iT 1 17 4 17 1 47y 4 _
* (uU,KxuU,+ ui_.,,.Kyu,jy+ uu,Kzuij,i- uijp}{ﬂuup)] =

3

,.
IngE
e o)

I=1 7=

1,]
[ (f“ (9,0 Gyr G50 0 * T (CHy+ NijUff) dx,,) +._§.U,‘1K/U,§T] (3.44)
0

Then, the differentiation of system’s potential energy

with respect to an arbitrary elastic variable is given by

1y iT
W = Uy
= [ [ wlgx gy 9.0 0] *(TN;
Uy 121_721 [ o 7 du,
a i L d 1!' —1 /aEiijr
+m(cij*NijUij))dxij+Uin auk] (3.45)

whotre

U= [ uiye Uiyy uiye ujpp) (3.46)

With the above, all the required parts for Lagrange’s
tormulation have been prepared, and now the entire Lagrange’s

cguation can be simply obtained by assembling the different

oxpressions derived earlier.
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3.4 LAGRANGE'’S FORMULATION

As a result of eguations (3.27) and (3..40), the

Lagrangian equations for rigid body variables are exprecaod

the form
d 0K _ 0K, AV _x~ w a7,
g or_ox, 9vV. (Tr(—=<(F, ., T
dc b, 3, b, &&= 06, T
1,
+ F_ij5Tl‘T+F1'j5TjT)] *f}l[gxl Qy: g_gl 0]
0
oT;
ae‘rfj(xlj)ciwjj] =T, k=1,-um (4.9
k
The generalized force for manipulato: riagred beads

variables can be recognized according to the difterent Uype o

joint the manipulator possesses. If the joint 16 rexzolute, i
generalized force 1n Lagrange’s equation 15 é Lorople cxe ptodd
by the actuator. When the joint is prismatic, the generol v
force in Lagrange’'s equation 1s the force axertoed ey tl
actuator. As mentioned in the earlier chapters, the rocre
joint 1is adopted 1in this thesis in oarder to complify s
analysis for application to flexible robot monpoboar oo,

Therefore the generalized forces in euuation (9.47) are tis

joint torqgues. The subscript k indicates Lhie kth o
From equations (3.321) and (3.4%5,, the dynas e oo o

corresponding to the elastic variables cun e o agecd .




tro_re. arc no esternal forces or moment exerted on the jcints
Lot waeeer, the: finite elements, the gzneralized force in this

Cplat lon 15 ZAro.

d 0K 06K _av _ 1 " r

I - + = = 2TF T; T4 T F T;

dt du, du, du, 221 Zl ijk1 ijk2
T

8 .
¢ T T TR T 42 aul[(FIjJ—F FJJZ)T +F I
k
m n 11] 11’
+<F112 FJJJ) T‘T]]+Ez [fpg*(TlNJ 0 Z
1=1 J=1 0
o, -, Ul
+ aul (C1§+NijUiijT) ) dx;;+ U3k’ a:j 1=0 (3.48)
k k

From these Lagrange’s equations, a flexible robot
manaipulator with revolute joints can be modelled for any
dyvniamic analycis no matter how many links it possesses. One
call also galn the required accuracy by choosing a proper
numbetr of finite elements to represent the link flexibility.
An 1deal procedure would be to solve the partial c.fferential
Ciiat 10ns representing the distributed parameter all
cont inuous dynamic system by certain numerical method.
However, even if such methods are available, they may not be
sultable for adoption in a PC based facility. Further, if one
has to colve such a continuous system by an approximation to
a4 dincrete system with large number of elements, it will again
o to the szame type of heavy computational reguirements.
The oo make a PC based software difficult to implement. That

whn i most manipulator dynamic modelling an
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optimal number of discrete elements are emploved. This o done

here also.

3.5 THE DEVELOPMENT OF FINITE ELEMENT ALGORTITHM

Before a robot manipulator system desian is carriod out,
the range of responses of the manipulator links duc to certain
design input have to be figured ou%: to check 1f the designed
system meets all the expected requirements. Then adjustiment:
to the design can be carried out by varying the values of the
System parameters until the system response sataotien the
expected performance requirements.

The algorithm that is developed for use in the proce:: of
design may be outlined through a flow chart detaaled 110 g
3.1. The step by step procedure can be restated an fol lows:

step l: The system is initialized by trancferraing the
initial conditions and system paramcters to  the dynoane
modelling and analysis program.

step 2: For each finite element, the quantitie;, [, 1.,

Pl;»r fr: 1 F

»

+ Fivoo Fopyr K7 are obtained through inteqgrat ion

15

and partial differentiation as set out earlier, while T, 7

are gained through differentiation.

step 3: The required expressions for all the olomernt oo
assenrbled as given 1in eqguations (3.47) and (%.4%#; .

step 4: The proposed numerical method 1o g loyged oo

that the eguations arranged in step 3 are onolued,
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steep, 50 1f the loop 1s not ended, it will go to step 2 tc
repeat. the procedure for the response corresponding to tne
ne st poraiod.

step 6: When the analysis time has reached the prescribed

end time, the program is terminated.

43



start
1
input initial condilions
and system parameters
l

L=

=1

( -
partial differeniiation
and integration differentiation
fimss Bz, Ripes Pk, oA
F‘l‘u Flb: Piiﬂ L

L

=it

=i+l

A set of equations obtained by eq. 3.47 and 7 48 with the
number of unknown variables the same as the number of
these equations

!
1

solutions of the
unknown vanables

' No d t=en
t=ttst ——
testep ﬁ<<:;;;i>>

3.1 The Flow Chart Based on the

te Element Approach

(¥R

Fin

da
o



CHAPTER 4
DYNAMIC SIMULATION FOR

FLEXIBLE ROBOT MANIPULATOR VALIDATION

4.1 INTRODUCTION

Before a certain mathematical model can be relied upon in
the design process, some procedures must be carried out to
check 1ts validity and reliability. A dynamic simulation,
which imitates the behaviour of flexible robot manipulator by
means ot the given mathematical model, is one of these
procedures that are often used before experimentation.
Therefore, the following simulations will be performed to
chieck the validity of the proposed model.

As the first step, a two-link system hanging freely under
gravity 1s simulated. This is the same example that was used
Iy Usoro [10). A small initial deflection from its balance or
cuquilibrium positicen, which corresponds to 0, =-20 degrees and
0. =5 degrees 1is given. The initial conditions and all the
parameter values of the model used in this simulaticn are
chosen to be the same as those in the simulation presented by
Usoro [10). The reason is that it will be easy to compare the
1esults between two models with the same parameter values in
order to establish the applicability of the procedure
developed in this thesis.

Ar the fiist simulation described above is discussed
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without the presence of any joint torque (as presentod by
Usoro [10]}) in the 1links, a second simulation, which takes
into account joint torgue on a one-link system is al: o
examined in order to establish the procedure developed in this
thesis for other applications. By these two simulations that
can be extended to represent general type of manipulator
applications, one can conclude the propesed procedurce has
merit.

Generally speaking, the primary shape of the responae
fluctuations in the simulation should be in agreement with
that of the real system that was designed. However, some
factors from both simulation and design may affect the
results. They are:

(1) The dynamic model is set up by finite elcment wmet hod.
The different number of finite elements chosen will lead to
different magnitudes of accuracy of the response.

(i1} The different numerical integration scheme adopt el
is another source that could affect the response. In tihas
thesis, the Runge-Kutta method is chosen to solve the dynamie
equations due to its self-starting property as pointed ot o
many applications [21][22]. It is believed that this numerical
integration procedure will also give sufficicnl accuracy 1o
the results.

(1ii) In order to implement the control ccheme for o real
robot system, the control aspects may bhe designed 1n tern: o

engineering and eccnomic viakbility. Henze, oone key factor:,
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influencing manipulator dynamic performance may get neglectex.
(i) The parameter values of the actual system may ke
5lightly different from those used in the design process.
Only through simulations, the correctness and validity of
the dynamic model presented in this thesis can be assessed.
he real usystem can then be designed relying on the simulation

roecults presented later in this chapter.

4.2 THE SIMULATION OF TWO-LINK MANIPULATOR

In order to be identical with Usoro’s[10] example for
comparison  purposes, the same two-link flexible robot
manipulator is investigated in this simulation. As shcwn in
Fig. 4.1, the first link is initially freely hanging under
gravity without any payload at the tip. The properties for the
two-link manipulator are listed in Table 4.1 by Usoro(10].

Consider the two-link manipulator as depicted in Fig.
4.2. The manipulator consists of link 1 and link 2 which are
divided into two finite elements of equal length I for sake of
hoth computational efficiency and response accuracy needed in
design applications. In this manner, a total number of 18
varilables will be utilized ( 16 elastic variables and 2 rigid
body variables) while planar or two dimensional motion 1is
under discussion. However, by certain simplification
procedures, the number of variables for such 2-link devices

cait be reduced to 10 for efficient computational algorithm
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Fig. 4.1 1Initial Conditions for a Two-link

Manipulator Simulation




Table 4.1 Two-link manipulator properties
| =] =1 1m

1 2

I =1 sx16™° m*

1 T2

"x="z S kg/m

E =E, 2x10'! N/m?
'rl=1:2 0 Nm

91(0) ~90 deg

92(0) 5 deg
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Fig. 4.2 Schematic of a Two-~link Flexible Manipulator
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development.

In the study of a linkage system as the one shown in Fig.
4.3, the elastic variables at the end of one element should
describe the same elastic configuration as those corresponding
to the starting point of the following element. Therefore, u,
u, in the Fig. 4.3 could be replaced by u;, u,. In this
simulation, a net number of 10 variables are employved after
such simplification steps through elimination of 2 mid-1link
variables in each link.

Considering the fact that the joint 1 is fixed to the
base with link 1 being fixed to joint 1, the joint 1 is
constrained to have zero translational displacement and only
an angular displacement of 6, with respect to the axis OX.
This constrains elastic variables u,, u, to be zero, 1i.e.,
u,(t)=0, u.(t)=0. The joint 2 has also the same features. It
is constrained to have only the angular displacement of 6,
relative to the first and constrains the elastic variables w,,
w., of the second link to be zero, i.e., w;(t)=0, wy(t)=0.
According to these constraints, uy, u,, Uus, ur of link 1 and w,,
w., w., w of link 2 could be eliminated in the simulation
withcut affecting the results.

The transformation matrices T;, D,, A, given in chapter 2

for the first link in this system take the form:
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10021 {0 -y, 00
o010 of fu 0 0y
1001 0f 0o 0 00
000 1] fo o 00
1 -u, 021
|y 0 ug
B 0 0 1 0] (4.2)
0 0 01

The corresponding transformation matrices for link 2 are:

c, -5, 00

A= 2 00 (4.3)
0 0 10
0 0 01
1 -w, 0 21

="t 0% (4.4)
0 0 10
0 0 0 1
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and

c, -5, 0 0|1 -u, 0 21
s, ¢ 0O0ffu, 1 0 u
T,= A,D,A,= |+ * ’ 8
0 0 10(|0 0 1 O
0 0 01j]0 0 ¢ 1
C; =S; 0 0 &y, &y, O &y
S, ¢ 0 0| [t b, 0 tgy Chn)
0 0 10 0 0 1 0
[o 0 01 o 0o 0 1
where
;7 Cio™ S0y (d.na)
€127 "S127 Cpply R
t14= 21Cy- su, (4.60)
£217 812t Cpply Y

t22% Ciz™ Sppth 1 fey

In the above equations, the following campliiiert Lo o

expressions have been

employed:



Thie

mat rax

o~
e

first

order

c,= cosf, (4.7D)
s,= sinf, (d1.72)
s,= sinf, (4.7d)
s,,= sin(6,+ 6,) (4.72)
c,,= cos (0,+ 0,) (4.7f)

and second order differentiataion cf

are o given by

1218t order

-5, —¢; 00

o O 790 O (4.8)
0 0 00
O 0 00

s, 00 -5, ~¢; 0 0

-, 0 0lga |6y =S, 0 0 (5o

1
0 00 c 0 0 o'
0 00 O 0 00

differentiation of matrix T 1is:

t/11 5/12 0 t/14

= tlzl t/zz 0 t/z4 (
0 0 0 O
o o0 0 0|

fIaN
ey
)

T’?

<
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where

t',= (-8,8,- c,u,8, -s,1,) ;- (c,- s,u,) 8.0,
“(Cyup+sy) 68, (cyU, - 5,u,0,+ ¢,0,) &
= _(61+ ) [812+u 0y, -8, (-

t/gz _Clz (é1+62).+312 (él+62) Ul_cl?.u7
(
1

I O _ o oy -
t',=-218,0,-5,05- c,ub,

=-0, (21s,+cyuy) -5, Uy (]

515012 (0,48;) - 5., 10,40,) u, 40y,
=0, (cp-s,u) + B, (cypms,u,) voL, (4

th.=-5,;(0,+6,) - ¢, (0,+68,) u,- 5,11,

= :61(512+ Cy2ly;) ~ 0, (sS40, u,) - 5,50, (4.

and

I = q _ I
t'h= 21c,8, slu561+fv1‘uu
= 0, (21c,- s,u,) +c U, ‘4

Trz second order differentiataisn of 77 1o

" 7 /"
t 11 t 12 O t 14
1" 7 /"
'j~2; th, 7 0 t7, ‘4
0 0 0
O 6 ¢
“4

515Uy~ Cyp) 40, (8,1, - ¢ ,) -0y 0, (..

L1

$



jraere

t”u: 2 ¥ Cpp) - (6 +6 ) [clz( + 6 )
* u7C1 . 512U7 6+6) = U; 85~ U7C12( 9 )
8 (512”17012) 6, (814U Cy5) - U7sl?.
-(0,+ 6,)% (cypn Slzu'l) -2(8,+8,) U, ¢y,
t”12"6 (812U~ Cyp) * 62(512U7’?12)
+(6,+0,) [y 1y (61+.62).+512u7+512(61+é2)]
. + 81,1 (0,46;) -cy U
= 0, (55,u,-¢y,) +é2 (812U, 7Cp) ~U; Cp
+(0,40,) 2 (CppUy+51,) +2(0,40,) 5., 1y
t”, = -iys,-6%(21c, -5, uq) -28,c, 1,
7,28, (Cra-8y, )+é (cl, S,,U,)
V(B B.) [-8,, (B,+ R

+Cy, U0, slzu7 (é +6 )

= 61((:_12 s12U7) e (CIZ SIZU7) . .
"U—,Cm+ (61*62)2('312—C12u7) —28121:17(61*62)

t’,.=
- *émcm(ﬁ &)

2Uy) = e (2% Ciply)

=S15U, (8,40;) + )0, ]

= 8,0 clﬂuli(ﬁ 2)
= -0, (s2* cpy)
-U,8,,- \6 +0,)2 (Cy,-5,,U,) —2Cy, U, (6, +6,)

wn

~J

-8, (512 tC,uy)

188

.138)

—~

. osoam



5" 61(21C1'S§Us)+ph(_2%5161'cluuel
-S,U,) + cUg-5,1,0,= 0, (21,
"S1Ue)*ﬁecl_ei(2151+cxua)'25191uu (1.
The Hermitian polynomials are emploved for the ohape

function N, As the simulation restricts the motion in the

e
plane 0OXY, the shape function describing the displacement
aliong axis z need not be considered. Since there 1s no torgque
acting about the link, the effect of the torsion obout <« awr:
is so0 insignificant compared to that due to bending and
therefore can be neglected. It 1s also suggestoed that the

deflection in the axial direction can be conoidered to be of

iittle significance in relation to the magnitudes of lateral

deflections [15], stating that there is very lIittle coupling
effect. Hence, an assumption of axial rigidity 1o cnployed in
the present simulation. As a result, the chape funct ronn are

now given by:

2 3
_ Cun X X .
Nyi= Nyjyu= X250+ S5 (1 o)
X2 X
= R -3 2 V!
Nyo= Nyjyo= 173554 255 ‘
N,= N, = -2 o
y3 13y3° Y Peantd
and
2 3
~ L. Xx? L x ,

N
O



Lecording to the definition of equation (3.11), the
vieotors Cyy for element 1 and 2 of link 1 are given

reLprectively by the following:

C,= [x 0 0 1] (4.25)

and

C= [x+1 0 0 1] (4.26)

Similarly, the vectors for element 1 and 2 of link 2 are

revpectively given by following expressions:

Cu= [x 0 0 1] (4.27)

andd

Cpp= [x+1 0 0 1] (4.28)

As mentioned in section 4.2, for element 1 on the first

1
ik, ©w, w are zero. So Ir;; becomes:

ri= o+ N U= [x, Nou+N,u, 0, 117 (4.29)



Let u,, u, replace u., u., then rb for the element 0oon

the first link is:

3 _ T 1T _ .
Iip= Cia* NpUsa= [x+1, N,,u+N,u +N ;u,+Nu,, 0, 11! (e

A} )

Similar to the link 1, element 1 and element 2 ot link .

have following equations respectively:

1 T 27, -
r21_‘ C21+ N21U21 - [X, NYJWJ+NV4W‘1I 0 1 1] ! \ l . )'l )
and
ri=cr+N UT= [x+1, N, w,+N, w,+N, w,+N, w, 0, 1] (1.4
22 2274V Va2 / y1 M3 TNy oWy TV, Wy TNy g Wy e ‘ C
Because only simulation of a two-link manipnulator o
presented, the new symbols have been introduccd instoad of

those in the derivations. The variables u are the varyablen of
first link and the w indicates the variahles of et Tinn
Following the strateqgy developed in emuat ronn f5. 07/ o
(3.48), the system’'s kinetic energy and poteont vl gy oot
now ke obtained. After arranging the Ladgrancg«’': opia' oon inh
the form of eguation (1.1), appropriate numerial e ool

utilized to solve the dynamic equatinno.



The numerical method used in this simulation is the 4th-
wrder FRunge-¥utta method, and the strategy of the method is
1llustrated 1n  Table 4.2. The Runge-Kutta method of
computation is popular since it is self-starting and results
in good accuracy [21]. In the method, the second-order
differential equation 1is first reduced to two first-order
differential equations. Here a differential equation of the

form
X= f{x, X%, t) (4.33)

13 1ewritten as first order sets:

and then the computation is performed as described in Table
d.2.
The quantities in Table 4.2 are used in the following

recurreonce formula {227

X

=xg—€[g+2g+2%+¥ﬂ (4.36)

Yin® ¥it DR+ 2F¢ 2Fy+ (4.37)
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Table 4.2 4th order Runge-kutta method

t x y=Xx f=y=x
T =t X =x Y =y F =f((T ,X,Y)
1ot 1 1 7 1 S
h h h . ,
Tz—t1+ 2 X —x|+Yx 2 Yz y1+F1 2 Fz_” rz'xz’\z)
h h h
Ta—t|+ > X —>~:l+Y2 > Yj-yl+F2 > F3—f(T3.X3.Y3)
T =t+ h X =x +Y_h Y =y +F_h F =f(T ,X,Y)
4 13 5 71 3 4 4'7g' g




where: h 1s step length.

The sampling frequency is chosen according to the system
under discussion. When the sampling frequency is smaller than
4 critical frequency, singularity occurs. At the same time, if
the sampling frequency is much larger than the critical
trequency, the accumulating errors grow with increasing
computational time. Therefore, a proper sampling frequency
should be chosen to off-set the above disadvantages and to
obtain the correct response of the system. By certain amount
of trial and error calculations, starting from larger time
steps, the step interval in the program loop of the simulation
is chosen as 0.0005 seconds. Under such a sampling rate, a set
of plots for positions 6,,0., u;, u,, u,, uz w; Ww,;, w, and w;
with their velocities 0., 0,, U, U, U,, U, Wy, W,, W, and w,
are obtaired as illustrated in Fig. 4.4 to 4.23.

From plots of 6, and 0., it seems that both of them are
undergoing a vibrating or oscillating motion. Both motions do
not keep a constant amplitude simply because of the coupling
¢tfects between link 1 and link 2.

The flexural responses are featured in the two modes of
oscillations are: one being a relatively fast vibration mode
with high frequency(result of presence of large stiffness) and
the other a relatively slow vibration mode. The slow vibration
mode  shows the similar oscillation shape as that of

corresponding joint deflection. When compared with the results
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rt Uuore’'s work [10], all the responses in this simulation
coineide with thoce of Usoro’s except for four of them,
rizgely, wu,, u,, u,, u.. The differences can be seen from Fig.
4.6 to Fig., 4.9 and in Fig. 4.24, Fig 4.25. Fig. 4.6 to Fig.
4.% illustrate the responses obtained from the procedures
cdexveloped in this thesis while Fig. 4.24 and 4.25 shows the
correspornding responses given in Usoro’s work. Although they
are ¢uite different, there is no adegquate evidence to judge
whiich 13 right . However, it may be observed that the shape of
slow vibration mode of flexural deflection follows the shape
nf 1ts corresponding joint deflection (Fig. 4.4, Fig. 4.6 to
4.9). These are already shown in the responses of the second
link obtained from this investigation as well as from Usoro’s
work (Fig. 4.5, Fig. 4.10 to 4.13; Fig. 4.24, Fig. 4.25).
Further, Fig. 4.6 to Fig. 4.9 have been obtained for a more

generalilzed unrestricted dynamic model and hence the results

Preosented i1n the thesis are believed to be valaid.

4 3 THE SIMULATION OF ONE-LINK MANIPULATOR WITH TORQUE

In order to check validity of the model developed for the
more common case when external torques have to be taken into
account and also as well to reassure the applicability and
validility of the model, a simple one-link system with
revolute  bhase  joint is  introduced. In this one-link

manipulator simulation, the torque is exerted on the first
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joint. The oint input torgues are show 1n Fig 1.2 ¢ and ore

specified as follows:

t= 35 NM, O0stls (1.380)
t= -35 N'M, 1<t<2s (4.38h)
tT= 0 NM, t22s (d4.38¢)

Other properties for the one-link manipulator are liotoed
in Table 4.3 and are taken from [10]. The 1nitial
configuration of the one-link manipulator 1is also shown n
Fig. 4.27.

By using the same shape functions as employed 1n the two
link manipulator simulation and following the same proceduic
as mentioned 1in the first simulation, the gsystem’s cnergy
(potential energy and kinetic energy ) as well as the dynamico
equations for this system can be obtained.

By arranging the dynamic eguations 1into the form ol
equation (1.1), the following matrices corresponding to thone

in equation (1.1) are obtained:

a, 0.0417 -0.0833 1.25 1.0625]

0.0417 0.0119 -0.0045 0 0.0387
A=|-0.0833 -0.0045 0.006 -0.0387 -0.0655| (4-27)
1.25 0 -0.0387 1.8571 0.3214

[ 1.0625 0.0387 -0.0655 0.3214 0.9286 ;

g7
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Fig. 4.26 Joint Actuator Torque for the Simulation
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Table 4.3 One-link manipulator properties

11 1 m

I 5x10”° m*
M ' 5 kg/m
E 2x10*! N/m?
91(0) 0 deg
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™
2

Y

tn
]
RIS

(d.40)
4
£l
and
2]
0
=0 (4.41)
0
[ 0]
where
a,,= 0.5p(5.3313+0.03813%u+0.01913%u’+1.481u]
+0.741ud-0.02861%u,u,+0.1241%u,u,
-0.211%u,u,-0.1241%u,u,+0.514u,u, (4.472.0)

h1=pg(212cosﬂl+0.08312u7sin61—luqsin01néL%sinOQ

+pf, (0.0381%0,u,+0.0191%0,u,+1.48610,u,+0.74 1i,u,
-0.01413%(u,u,+u,u,) +0.06212% (U u,+uyti,) -0.10476.1°7
(U7U8+U—,l:la) _0-06212 (1:17U4+u71_'14) +0.257.Z (Udua*uauu) (4 -/;'/‘!”
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h,=-pB2(0.0191%u,-0.007141%y,

8 2 6 (4.42c¢)
+0.031.1%uy) +EI(—l-u3+.f u7—T2-ua)

h,=0.5p6%(0.0141%u,+0.10512u,+0.061%u,-0.01913u,)

4 2 6 6 3
—0.083uglzcosel+EI(—1-u7+7u3+-1—5u4——i—2ua) (4.424)

h,=-p6,(0.741u,-0.0311%u,+0.12851u,)

24 . 6 12 (4.42e)
+pglcosel+EI(—i—3- u4+?u7—_l_3u8)
hy=-u0%(0.371u,+0.03112u,~0.05251%u,+0.12851y,)
6, _ 6, _12 (4.42f)

+0. 5pglcos61+EI(£ Ug~

TER S TR TR El

T, in equation (4.41) 1is specified in eqguation set
(4.38).

The variables vector @ is [0, ,u,, u,;, u,, u.l".

With the step of 0.0005 seconds, the simulation is
implemented by the Runge-Kutta method computation procedure.
The angular displacement of joint 1 is illustrated in Fig.
1.28. The joint angle increases till the time reaches certain

point between 1 and 2 s2conds. After this setting time, the
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Fig. 4.28 The Angular deflection of Joint 1 in
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link performs with a free vibration response under the
gravitational force.

"lg. 4.29 to Fig. 4.32 are responses for flexural
de-flention of the system. Each of the links undergoes 3
diotinct periods of vibration response: from 0 to 1 second,
the deflections are negative; from 1 to 2 seconds, they rise
and most part of the deflection reaches positive values; after
2 seconds, they undergo free vibration. Fig. 4.33 is the
angular velocity response of joint 1. This also can be
1ddentified 1n terms of 3 distinct periods: from 0 to 1 second,
the velocity increases with the response oscillations; betwesn
1 tao 2 seconds, the velocity decreases with oscillations;
atter 2 seconds, they undergo free vibration with high
frequency of oscillations. Fig. 4.34 to Fig. 4.37 are the
flexural deflection velocities of link 1. The above mentioned
3 periods corresponding to each plot show a similar shape but
with the different amplitude levels. These results are in
contormance with the expected behaviour of the revolute
jointed manipulator links with torque input , and hence the

dynamic model developed can be said to have general

application for design of flexible manipulators.
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CHAPTER 5

CONCLUSIONS AND FUTURE EXTENSION

5.1 INTRODUCTION

In this chapter, a summary of the work achieved and the
limitations in its applications are presented. Further, ideas
are given for extension of the present method to obtain more
explicit expressions for the system variables. The expected
challenges for any future extension of this analysis technique

are also presented in this chapter.

5.2 SUMMARY OF THE INVESTIGATION

In this thesis, a generalized dynamic model for flexible
robot manipulator 1s set up by finite element approach. As
mentioned earlier, some previous works on dynamic modelling
for flexible robot manipulator have been carried out by using
finite element modelling. However, all these discussions are
restticted to certain number of links or finite elements in
each link. In order to develop the application of finite
element approach to dynamic modelling of flexible robot
manipulators, a more generalized formulation representing the
dynamic characteristics of flexible robot manipulator with
tevolute joints and straight 1links is presented in this

thesis. Unl ke those works mentioned earlier, the methed
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presented in this thesis provides a solution for the dynamic
model for a flexible robot manipulator with any number ot
revolute links and finite elements in each link, although n
the simulation examples described here included only
manipulators with fewer number of links and a small number ot
finite elements to simplify computation and for ccmparison. 1n
order to simplify the derivations without loss of accuracy,
small deflection is assumed when the manipulator contains more
than one 1link so that the elements of matrix P, can be
linearized.

Through the present study of dynamic modelling of
flexible robot manipulator, wherein the model properly
describes more closely the real manipulator system, it may'bo
possible to implement a control system as per the dusi&n
requirement. By considering the torgue on each joint as stated
in this dynamic model, the position, velocity and acceleration
at any location can be obtained. Two examples of simulations
are given in this thesis. The first simulation investigates a
two-link manipulator system without any torque present at the
joints. The responses shown in Fig. 4.4 and 4.5 represent the
coupling between two links. Both responses do not maintain a
constant amplitude due to the coupling effects between the
links.

In the second simulation, one-link revolute Jjoint
manipulator is discussed. Here, unlike the first simulation,

a torque is exerted at the joint. Because one-link manipnlator
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is a simple system, it 1s chosen for the simulation so that
the response can be easily understood. The link starts to
oscillate under the gravitational force when the torque is
relieved.

The work present :d in this thesis provides useful
information on computer based solution of manipulatér dynamic
model using Runge-Kutta procedure. The flow chart shown in
Fig. 3.1 describes how to simulate the manipulator system. As
the transformation matrix are expressed in the recursive form,
any transformation matrix can be easily obtained by using
equations (2.9) to (2.14). A set of second-order differential
equations obtained from dynamic equations (3.47) and (3.48)
can be solved by applying appropriate numerical integration.
The Runge-Kutta procedure is preferred method in many earlier
investigations [7] due to its self-starting property as well

as for its reasonable level of accuracy.
5.3 LIMITATION OF PRESENT WORK

Although equations (3.47) and (3.48) represent the
general dynamic equation for flexible robot manipulator, they
are not arranged into the form as equation (1.1). In equations
(3.47) and (3.48), the variables do not explicitly appear.
This will bring difficulties to either simulation or control
design since it may not be possible to compare the orders of

magnitudes of different terms.
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The challenge in any future extension will be to deal
with the problem how to separate the variables firom the

dynamic equations.

5.4 BRIEF DESCRIPTION OF FUTURE EXTENSION

The work can comprise of two parts. One is the task of
separating the joint wvariables, and another is question of
separating the elastic wvariables.

First of all, the differential translation and rotation
should be expressed in terms of the given coordinate frame.
That is, given a coordinate frame A4,, there will exist the

following expressions:

At dA = AgRot (dO,) (5.

\.f-
—
~—

where Rot/df,) is a transformation relation representing o
differential rotation dB, about axis z in the given coordirate
frame A,.

Therefore, dA, can be given as:

where

A,= Rot(d,) -1 (%.73)
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Let

A= Ar (5.4)
k

Then the equation (5.2) could be rearranged in the

following form:

So the derivative of A, with respect to time may be

casily obtained:

da — .
— = A8y (5.6)

The following equation 1is also obtained based on the

previous results:

dza - — \
t2k= A A0+ A AW (5.7)

From equation (5.1) to (5.7), one may find that the joint
variables have been separated from the joint transformation
matrix A..

As the link transformation matrix has more than one
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variable, the differentiation of it is different trom what e
for joint matrix A,. By separating the elastic variables trom

the expression of link transformation matrix M, one ¢an have.

= p/ Oow

Dk' D'+ qukz.?+ Qyukx3+ Qzukyj+ Qluk.\4+ Qzu}\yd' QJUI\:J (h.xd
Here D’ is the first part in eguation (2.5),u.... w. ., u, .,
Uy, W,; and u,,; are the elastic variables, and O, v, O, ',

Q. and Q. are matrices which are defined below.

00 0 0
00-10
= (l).(‘ll)
Ox 01 0 O
00 0 O
0 010
Q = O O 0 ((/.(J}A)
Y |-1 000
0 000
0 -1 00
1 0 00 .
= (t. 20y
0. 0 0 00
0 0 0O
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0001
p-0000 (5.9d)
17100 0 0

0 00O

0000

0001

= {(5.9e)
210000

0000

00 0 0]
0.=10000 (5.9f)
310001

0000

Therefore, the differentiation of equation (5.8) becomes:

_ de_ dpk_ . )
Dk‘ _a't—_ —Et—_ qukz.3+ QyukXJ (5.10)

v 03t QUpt QpUpyet Q3Us,,

and
Dk= Qzuky3+ Qyﬁkx3+ quk23+ Qluk.xd+ Q2ukyd+ Q3ukz4 (5.11)
As the variables have been separated from c¢he Jjoint
transformation matrix A, and link transiormation matrix D,, the

transformation matrix T, which is made up of A, and D, could
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also be expressed by the separated variables. Attao
substituting 7T, and its differentiations into dynamic
equations (3.47) and (3.48), the dynamic equotions can be
arranged in the form of eguation (1.1).

As a result of the above arrangement, the whole dynamic
equations will become too massive to be handled. Therefore,
further simplification have to be introduced. However, this
procedure needs far more work and is beyond the scope of this
thesis. Also it can be mentioned that a careful experimental
verification of the responses may be required to establish a
complete validation of the generalized dynamic modelling

attempted in this investigation.
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APPENDIX

The programs for the two simulations are listed in the
following pages. They follow the 4th order Runge-kutta
procedure which already was shown in Table 4.2. The
coefficients for variables are obtained from equation (3.47)
and (3.48) and arranged in the corresponding matrices as given
in equation (1.1). Since the simulations are just for cases of
robot manipulators with few members only, all the elements of
matrices in equation (1.1) are simply carried out by hand
instead of constructing another program. In other words, the
listed programs execute the task of solving the differential
equations which are in the form of equation (1.1). The 1nitial

conditions are also specified in the programs.
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PROGRAM FOR SIMULATION 1 IN MATLAB

4=9.8;

1=0.5;

1=5/1079;

mu=5%;

E=2*10"11;
%x(1,1)=-1.570796;
y(1,1)=0;
x(2,1)=0;
y(2,1)=0;
%(3,1)=0;
y(3,1)=0;
x(4,1)=0;
vi4,1)=0;
x(5,1)=0;
y(5,1)=0;
X(6,1)=0.0872664;
y(6,1)=0;
x{7,1)=0;

v({7,1)=0;

x(10,1)=0;
yi(10,1)=0;
t=0;

h=0.0005%;

ter i=1:8000,
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Xl=x;

Y1l=y;

zl;

function;

Fl=s;

Bl=B;

Al=A;
X2=x+¥1*h/2;
Y2=y+F1*h/2;
22;
function;
F2=s;
A2:z=A;
B2=B;

X3=x+Y2*h/2;

Y3=y+F2*h/2;

z3;
function;
F3=s;
A3=A;

B3=B;

X4=x+¥Y3*h;

Y4=y+F3*h;
z4;
function;
Fé4=s;
Ad=A;

B4=B;

t=t+h;

X=X+h/E6*(Y1+2*Y2+2*Y3+7Y4);
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v=y+h/6* (F1+2*F2+2*F3+F4) ;

fprintf(' datl.dat’,’'%g $g’/,t,x(1));
fprintf(’ dat2.dat’,’'%g %g’,t,x(2));
fprintf(’dat3.dat’,’'%g $g’,t,x(3));
fprintf('datd.dat’, '%g %g’,t,x(4));
fprintf(’dat5.dat’, '%g %g’,t,x(5));
fprintf(’daté6.dat’, '%g $g’,t,x(6));
fprintf(‘dat?.dat’, '%¢ $g’',t,x{(7));
fprintf(‘dat8.dat’, '%g $g’.,t,x(8));
fprintf(‘dat9.dat’, '%g $g’,t,x(9));
fprintf(‘datlil.dat’, '%g $g’,t,x(10));
end
FUNCTION

al=15.2/3*1"34+2*%(-2*1*sin(z(16))+cos(z(16))*2(15))*(-0.25/3*172*z(18)+..

1*2{(19)+0.5*1*2(20))+4*172*(2*1*cos(2(16))+sin(z(16))*2(15));

al=16/420*1"3*%=z(17)"2+8/420*173*2(18) ~2+624/420*1*2(19)"2+312/420*1* ..

z(20)"°2-12/420*173*2(17) *2(18)+52/420*172*2(17)*2(20) -88/420*1"2*..

=(18)*=(20)-%2/420*1"2*z(18)*2(19)+216/420*21*2(19)*2(20);

al3=(z2(1)*(-2*1*sin(z2(16))+cos(z(16))*2(15))-sin(z(16))*z(5))*2*(~0.25/3*

1°2%2(8)+1*z(9)+0.5*1*z(10) )+ (Z2(1)*2(6)*(-2*1*cos(z(16))-sin(z(16))*..

S(1S) )+ (1) *z(5) *cos{(z(16))-cos(z(16))*2(5)*z(6))*2*(~-0.25/371"2*2(18)+.

1*2(19)40.5*%1*=(20));
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ad=4*1"2* (z(1)*(-2*1*sin(2(16))*z2(6)+sin(z(16))*z(5)+cos(=(16))*..2(15)*

2{(6))-sin(z(16))*z(5)*z(6));

a5=(16/420*173%z(7)*2(17)+8/420*173*%2(8) *2(18)+624/420*1*=(9)*=(19)+ ..
312/420*1*2(10)*2(20)-6/420*1"3*(2(7)*z(18)+2(17)*2(8))+26/420*1 2+, .
(z(7)*2(20)+z(17)*2(10))~-44/420*172*(=2(8)*z(20)+2(18)*z=(10))-..

26/420*17°2*(2(18)*2(9)+2(8)*2(19))+108/420*1*(2(9)*2(20)+z={19)*= (10} ))*.

2*(2(3)+z(1)+2(6));

a6=8/420*173*2(7)*2{17)+4/420*1"3*2(18)*2(8)+312/420*1*2(19)*2(9)+..
156/420*1*2(10)*2(20)-3/420*1"3*(2(17)*2{(8)+2(7)*2(18))+13/420*1"2* ..
(2(7)*2(20)+2(17)*2(10))-22/420*17°2*(2(8)*z(20)+2(18)*=(10))-13/420*..

1°2*(2(18)*=(9)+2(8)*2(19))+54/420*1* (2 (9)*2(20)+2(19)*=(10));

a7=2(13)*(8/420*173*z(7)"2+4/420*173%2(8)"2+312/420*1*z2(9)"2+..
156/420*1*2(10)"2-..
6/420*173*z(7)*2(8)+26/420*17°2*2(7)*2(10)-44/420*1"2*..

2(8)*z(10)-26/420*172*2(8)*z2(9)+108/420*1*z(9)*2(10));

a8=z(1)"2*(8/420*173*%2(13)-6/420%173%2(12)-44/420*1%2*2(15)-..

26/420*%17°2%2(14))+8/3*1°3*(2*2(13)*(z(1)+2(6))"2);

a9=(-0.5/3*172%2(18)+2*1*2(19)+1*2(20} ) *(-(2(1)"2+2(1)*z2(6))*(2*1*..
cos(z(16})) ..
+s8in(z(16))*z(15))-{(z(1)+2(6) ) *cos(z(16))*2(5))+4*1°2*((z(1)"2+..
z{(6)*2(1))*(-2*1*sin(z(16))+cos(z(1h))*z(15))-(2(1)+z(6}) *s1n..

(z(16))*2(5));

al0=(8/420*173*2(17)"2+4/420*173*2(18)72+312/420*1*%z2(19," 2+ ..

156/420*1*z(20)"2-6/420*1"3*2(17)*..
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2{(18)+26/420*172%2(17)*2(20)-44/420*172*2(18)*2(20)-26/420*1"2~..
z{18)*z{(19)+108/420*1*2(19)*2(20))*2*..

(z(1l)+2(6)) 2*2(13);

all=(0,2/3*173*2(7)-0.4/3*173*2(8)+1"2*2(9)+0.85*1"2*2(10))}*2*..

(z(1)+2(6))*2(13)+(-0.25/3*1"2*2(8)+1*2(9)+0.5*1*2(10))*(2(1)*(-2*1*sin(

2(16))+cos(z2(16))*2(15))~-sin(z(16))*z2(5)};

al2=-mu*z(13)*(8/420*173*2(7)"2+4/420*1"3*2(8)"2+312/420*1*..
2{9)"2+4156/420*1*z (10} "2-..
6£/420%173%*z2(7)*2(8)+26/420*17°2*2(7)*2(10)~-44/420*172*2(8)*2(10)~..

26/420%172*z(8)*2(9)+108/420*1*2(9)*2(10)};

all=mu*g*{-0.25/3*1"2*cos(z(11))+2*1"2*cos (z(11l)+z(16))-sin(z(11)+z(16))

*(-0.25/3*17"2*%2(18)+1*2(19)+0.5*1*2(20)))+E*I*(4/1*2(13)+2/1*2(12)+6/1"2

*

z(14)-6/172*=z(15));

ald=(-0.25/3*1"2*%2(8)+1*2(9)+0.5*1*2(10))*(-(z(1)+2(6)) *(sin(z(16))+..

cos{z(16))*z(13))-sin(z(16))*z(3));

alb=(-0.25/3*1"2*2(18)+1*2(19)+0.5*1*2(20) ) *(-(2(1)+2(6))*(cos(z(16))*..
z(6)-s1n(z(16))Y*z(13)*z2(6)+cos(z(16))*2(3))-cos(z(16))*z(3)*z(6))..
+2*%17° 2% ((z(1)+2(6) ) *(-sin(z(1l6))*z(6)~-cos(z(16))*2(13)*2(6)-..

sin{z(16))*z2(3))-sin(z(16))*z3)*z2(6));

alé=(-0.25/3*1"2*2(8)+1*2(9)+0.5*1*2(10))*(~cos{z(1l6))*2(13)*z(6)-sin..

2(le))*z(3)-sin(z(16))*z(6));
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al7=z(1)"2*(312/420*1*2(15)+26/420*17°2*2(12)-44/420%1"2*=(23)+..

108/420*1%2(14));

al8=(-0.5/3*172*2(18)+2*1*2(18)+1*2(20))*(-(2(1) "2+z(1)*z=(6))*(-cos..

(z(16))+sin(z(16))*2(13))+z{(1)*cos(z(16))*2(3));

al9=4*172*((z(1)"2+z(1)*z(6))*(sin(z(16)r+cos(z=(16))*=z(13))+=(1)..
*sin(z(16))*z(3));

a20=-(1+mu*1l} *z(1)~2*2(15)-mu*(-0.25/3*172*2(8)+1*z2(9)+0.5*1*=(10))*..

(z(1l)*(sin(z(1l6))+cos(z(16))*2(13)));

a2l=1.5*mu*g*l*cos(z(11))+E*I*(12/173*%2(15)-6/1"2*z2(12)~-6/1"2*%=(11)-.

12/173*2(14));

a22=0.2/3*173*((2(1)+2(6))*2*2(13)*2(3))+(8/420*1"3*z(7)-..

3/420*173*%2(8)+13/420*172*2(10))*2(3)*=(13);

a23=(8/420*1"3*2(17)-3/420*1"3*2(18)+13/420*172*2(20))*2(3)"2;

a24d=mu*z(13)*z(3)*(16/420*1"3*2(7)-6/420*1"3*2(B)+26/420*172*=2(10)),

a25=-mu/2*((16/420*173*2(17)-6/420*1"3*%2(18)+26/420*172*2(20))*..

{((z(1)+z2(6))"2*..

(142(13)72)+z(3)"2+2*(2(1)+2(6))*2(3)));

a26=-mu*((8/420*17°3*2(7)-3/420*173*2(8)+12/420*172*2(10))*..

z(3)*2(13));

a27=E*I*(8/1*z(17)+2/1*2(18)~6/1"2*2(20));
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a28a=-0.8/3*173*(z2(1)+2(6))*2(13)*z(3);

al8h=-0.25/3*1"2;

a2dc=z{(1)*(-2*1*sin(z(16))*z(6) ..
+cos(2(16))*2(15)*z(€)+sin(z(16) ) *2(5)~2*1*cos(z(16))*2(13)*2(6)-2*1*..
sin{z(16))*2(2)-sin(z2(16))*2(13)*2(15)*z(6)+cos(2({16))*(z(3)*2(15)+z(13)
2(5)));
a28d=-¢c2s5(z(16))*2(5)*2(13)*z({6)-sin(z2(16))*2(5)*z(3)-sin(z({16))*z(5)*z(
€);

ac8=a2Ba+al28b* (a28c+a28d);

129=(4/420*173*2(8)-3/420*173*%2(7)-22/420*172*2(10)-13/420*..

172*2(9))*2(3) *z(13);

a30=(4/420*173*2(18)-3/420*173*2(17)-22/420*1°2*2(20)-..

13/420*172%2(19))*z(3)"2;

a3l=mu*z(13)*z(3)*(8/420*173*2(8)-6/420*1°3*2(7)-44/420*172*z(10)-..

26/420*%172*2(9));

a32a=-(z(1)"2+z2(6)*2(1))*(2*1*cos{z2(16))*z(13)+2*1*sin(z(16))-cos{z(16))

*2(15)+sin(z(16))*2(13)*2(15));
a3lb=z(1)*(-2*1*sin(z(16))*z(3)+cos(z(16))*z(15)*z2(3))..

=(z{l)+2(6))*(=(5S)*sin(z2(16) )+cos(2(16))*z(13)*2z(5))~-sin(z(16))*z(3)*z(5

a33=(8/420*1"°3*2(18)-6/420*1"3*2(17)-44/420*1°2%2(20)-26/420*. .
P2 (19 )Y ((z(1)+=(6)..

YOIl (13) "2 4z (3242 (2(1)+2(B) ) *2(3));



a34=-mu*(4/420*17°3*2(8)-3/420*1"3*z(7)~22/420*1 " 2*z(10 -

137420*1°2*z(92))*z2(3)*=(13);

a35=~0.25/3*1"2*%(cos(z(16)+z(11))-sin(z(11)+(l8))*=(13 )y *murg 1%,

(4/1*2(18)+2/1*=(17)+6/172*2(19)~-6/1"2*=2(20)};
al36=2*2(3)*z(13)*172*(z(1l)+z2(6))+1*z2 (1) *(-2*1*san(c (1Y y*o{u)se oy,
z{16))*z(15)*z(6)+sin(z(l6))*2(5)-2*]1*cos(=2(16))*=(13)*(G) 2*1*an(. (1
)) .
*z(3)-sin(z(16))*2(13)*z(1S5)*z(8)+cos(z(16))*z(3)*z(1%rvcon{otloryro(l o

*2(5));

a37=(-cos(z(16))*2(5)*2(13)*z(6)~-sin(z(16))*2(S)*u () ~san(z(le)y)y*oih)*

z(6))*1;

a38=(312/420*1*2(9)-13/420*172*z(8)+54/420*1*=(10))*=(3)*v (1,

a39=(312/420*1*2(19)-13/420*172*2(18)+54/420*1*z(20))*z(%) .,

ad0=mu*c(3)*z(13)*(624/420*1*2(9)-26/420*172*(8)+108/ 4201 (1)),

adl=-(z2(1)"2+2(1)*2(6))*(2*1*cos(z(16))*z(13)+2*1*san ({16 bty

*2(15)+s1n(z(16))*2(13)*z(15));

ad2=z(1)*{(-2*1*sin(z{16))*z(3)+cos(z(16) ) *2 (1) *z(s))y-(at Y s té )i,

z(S)*sin(z(16) )+cos(z2(1€) p*z2(13)*2(5) )~saniz/10, 2l 2ty

ad43=101.485714*1*2(19)~0.0619047*172*2(18)+108/420 1 rat2b,yrttotipvate 7
2* ..

(1+2(13)"2)+2(3) ..

=
o
(@S]



TZa2rtztlyazih))yrz(3));

add--mu* ((212/420*1*%2(9)-13/420*172*2(8)+54/420*1*2(10))*2(3)*z(13));

A4Comurg* 1 (cos(z2{11)+2(16) ) ~sin{z{11)+2{(16))*2(13))+E*I*(24/173*2(19)+.

6/172%2018) ..

-12/173*2(20));

ad6=1.7*172*z2(3)*z(13)*(z(1)+2(6));

ad7-z (1) *(-2*1*s1n(z(16))*z(6)+cos(z{16))*z(15)*z(6)+sin(z(16))..
*2(5)-2*1*cos(z(16))*2(13)*2(6)-2*1*sin(z(16))*z(3)-san(z(16))*2(13}~

2(15)*z2(6)+cos(2(16))*2(3)*2(15)+cos(z(16))*2(13)*2(S));

adBz-cos(z(16))*2(5)*2(13)*z{6)~sin(z(16))*z(5)*2(3)-8in(z(16))*=(5)*=(6

)
ad9=(156G/420*1*2(10)~13/420*172*2(7)-22/420*%1"2*z(8)+54/420*..
1*2(9)) ..

*z(3)*z(13);

a50=(156/420*1*z(20)+13,/420*17°2*2(17)-22/42C*1"2*2(18)+..

S47420%1* 2 (19))y*2(3)"2;

abl=murz (3Y*2(13)*{312/420%1*2(10)+26/420*172*2(7)-44/420*1"2*2(8)+..

108, 420*1*z(9));

AaS2=-(z2(1) "2+ (1)*z(6) ) *(2*1*cos(z2(16) ) *z(13)+2*1*sin(z(16) ) -cos(z(16) ).

oISV aanczlevyrz(18)y L,



2(13))+z () *{-2*1*san(z(16))*2(3)+cos{z(16))*z(15)*z(3));

aS3=-(z(1}+z(6))*(z(S)*sin{z(16))+cos(z(16))*z(13)*z(S))-san{z(lerv?

a54=(312/420*1*2(20)+26/420*172*2(17)-44/420*1"2*2(18)+108/420~..
I*2(19))*((z(l)+=(6))"2*..

(1+z(13)72)+2(3)"2+2*(2(1)+z(6))*z(3));

a55=-mu* (156/420*1*2(10)+13/420*172*2(7)-22/420*1"2*=(8)+..

54/420%1*2(9))*2(3)*z(13);

ab6=0.5*mu*g*1*(cos(z(11)+2(16))-sin(z(11)+z(16))*z(13))+..
E*I*(12/173=2z(20)-6/172* ..

2(17)~-6/172*2(18)-12/1"3*2{19));

a57=16/3*1"3+16/420*173*2(12)72+8/420*173*2(13)724624/420*..
1*2(14)72+312/420*1*z(15) ~2-..

12/420~173*z(12)*2(13);

a58=52/420*172*z(12)*2(15)-88/420*172*2(13)*2(15)-52/420*1"2*z2(134)*.

2(14)+216/420%1*2(14)*z(15);

aS59=16/3*1"3*(1+2(13)72)-4*(-0.25/3*1"2*2(18)+1*2(19)+0.5*1+,
2(20))*(2*1*cos{(z(16))*z2(13)+..

2*1*sin(z(16))-cos(z2(16)) *2(15)+s1n{z(16))*z(13)*2(15));

ac0=8/420*173*2(17)72+4/420*172*2(18)"2+312/420*1*2(19) " 24156/420*.

1*2(20)"2-6/420*173*2(17) *2(18)+26/420172*2(17)*2(20) - ..

44/4207172*2(18)*2(20)-2€/420%172*2(18)*z(19)+108/420*1*2(19) 2tz
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afl=8*172*(2*1*cos(z(16))-2*1*sin(z{16))*2(13}+sin(z(16)) *z(1l5)+cos(z(lc

bt

2(13)*z(15));

a62:16/3*173*(1+2(13)72)-2*(-0.25/3*%172*2(18)+1*2(19)+0.5*1*..
2(20))*(2*1*cos(2(16))*2(13)+2*1*..

sin(z(16))-cos(z(16))*z(15)+sin(z(16))*2(13)*z(15));

a63=4*172*(2*1*cos(2(16))-2*1*sin(2(16))*2(13)+sin(z(16))*2(15)+..

cos(z(16))*z(13)*2(15));

abd=(-0.5/3*172*2(18)+2*1*2(19)+1*2z(20))*(~-2*1*sin(z(16))+cos(z(16})*..
z(15))+4*172*(2>..

l*cos(z(16))+sin(z(16))*2(15));

a65=16/420*1"3*2(2)*2(12)+8/420*%1"3*2(3)*2(13)+624/420*1*z(4)*2(14)+..
312/420*1*2(5)*=(1%)~..
6/420%17°3*(2(2)*2(13)+2(12)*2(3))+26/420*172*(2(2)*2(15)+z(12)*2(5));

a66=-44/420*172*(2(3)*2(15)+2(13)*2(5))-26/420*172*(z2(3)*2(14)+..
2(13)*=(4))+108/420*1*(z(4) ~..

Z(153+z (1) *=(5));

a6 l=-0.5/3*1"2*2(8)+2*1*2(9)+1*2(10);

A68=-(2*z(1)+z(6) ) *(2*1*cos(z(16) ) *z (13)+2*1*sin(z(16))-cos(z(16))*z(15)
4.

sin(z(lée))*c(13)*2(15))-2*1*sin(z(16))*2(3)+cos(z(16))*..
z(1f)*2(3)-2(5) *sin(z(16))~-..

cos(e(le))*z(13)*=(5);



a69=-0.5/3*1"2*z(18)+2*1*2(19)+1*2(20);

a70=-(2*z(1)+z(6))*(2*1*cos(2(16))*z(3)-2*1*s1n(z(16)}*=(13)*z(u)+..
2*1*cos (z(16))*z(6)-cos(2(16))*z(5)+sin(z=(16))*z(15)*z(6)+sin(z(16)) ..

z(13)*2(5)+sin(z(16))*z2(3)*2(15)+cos(z(16))*z(13)*=(15)*z=(6)};

a7l=-2*1*cos(z(16))*2(3)*z(6)+cos{(z(16))*z(S)*z2(3)-s1n(z=(16))*=(15)*u(3)
*n .
Z(6)-2(5)*cos(z(16))*z2(6)-cos(z(16))*2(3)*z(S)+sin(z(16))*c(13)*z(5)*..

z(6);

a72=-2*1*sin(z(16))*z(6)-2*1*sin(z(16))*z(3)-2*1*cos (= {lo) ) *z(13)*z{u)+

sin(z (16))*z(5)+cos(z(16))*2(15)*z(6)+cos(z(1l6))*=(13)*..
z(S)+cos(z2(16))*z(3)*..
2(15)-sin(2(16);*2(13)*z(15)*z(6);

a73a=-sin(z(16))*z(S)*z(6)-sin(z(16))*2(3)*z(5)-cos(z{l6) ) *z(13)*(H)"
z(6)-2*1*sin(z(16))*z2(3)*z(6) ;
a73b=sin(z(16))*z(3)*z(S)+cos(z(16))*z(3)*2(15)*z2(6);

a73=a73a+a73b;

a74=16/420*173*z(17)*z(7)+8/420*173*2(8)*2(18)+624/420*1*=(9)*=(19)+..
312/420*1*%z(10)*z(20)-..

6/420*173"(2(7)*z(18)+2(17)*z(8));

a75=26/420*172*(z(7)*2(20)+2(17)*2(10))-44/420*172* (z(R)*z(20).

z(18)*z(12))-26/420*1"2*.,

(2(8)*2(19)+2(18)*2(9))+108/420*1*(z2(9)*2(20)+2(19)*2(10);

a76=2*(z(1)+2(8) ) *(1+2(13)"2)+2*2(3);
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al7l=4*(z(1)+2(6))*2(13)*2(3);

a78=4*mu*l*z{1)*z(15)*z(5);

a79=(06.2/3*173*2(7)-0.4/3*1"3*z(8)+..

172*2(9)+0.85*172*2(10))*2*z(3)*2(13);

aB80=-0.25/3*172*2(8)+1*2(9)+0.5*1*2(10);

aB8l=-2*1*sin(z(16))*z(6)+cos(z(16))*2(15)*z(6)+sin{(z(16))*z(5)-2*1*(..
sin(z(16))*z(3)+cos{z{16))*2{13)*z(6) )+cos(2(16))*z(3)*z(15)+..
cos(z(16))*z2(13)*z2(5) ..

~s1in(z(16))*z(13)*z(15)*z(6);

aB2=0.25/3*1"2*sin(z(11))*z(13)-1*sin(2(11))*2(14)-1.5*1*..
sin(z(11))*z(15)+6*1"2*..

cosf{z(11));

a83=2%172*(cos(z(11)+2(16))-sin(z(11)+2(16))*2(13))-(sin(z{11)+2(16))+..

cos(2{11)+2(16))*2(13))*(-0.25/3*1"2*2(18)+1*2(19)+0.5*1*2(20));
a84=16/3*173*(1+2(13)72)-(~0.5/3*172*2(18)+2*2*z2(19)+..
1*2(20))*(2*1*cos(=(16))*z(13)+2*1*..

s1n(z(16))-cos(z(16))*z(15)+sin(z(16))*z(13)*z(15));

aBS5=4*172* (2*1*cos(z2(16))-2*1*sin(z(16))*2(13)+sin(z2(16))*z(15)+..

cos(z(16))*z(13)*z2(15));

aBo=(-0.5/3*1°2*2(18)+2*1*z(19)+1*2(20)) *(~-sin(z(16))~-cos(z(16))*z(13))+

4*1 Y 2*(cos(z(16) ..
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J-sain(z(16))*z(13));

aB7=32/3*1"3*(z(1)+z(6))*2(13)*z(3);

aB8=-0.5/3*1"2*z(8)+2*1*z (9)+1*=(10);

a89=-z(1)*(2*1l*cos (2(16)) *2(13)+2*1*sin{z=(16))~-cos(z(lo))*z(lS)+van(otlin

..

2(13)*2(15))~2(5)*sin(z(16))-cos(=z=(16))*=(13)*z(5):

a90=-0.5/3*1"2*2(18)+2*1*z2(19)+1*=(20);

ad9l=-2z(1)*(2*1*cos(2(16)) *2(3)-2*1*sin(z2(16))*2(13)*z2(6)+2*1*cos (u(l6))?

z(6)+sin(z(16))*z(15)*z(6)-cos(z(16))*z(B)+cos(z(16))*z(12)*z (1) = (b)..

+sin(z(16))*z2(3)*2(15)+sin(7{(10))*2(13)*=(5));

92=-cos(z2{16))*z(5)*2(6)+sin(z(16))*z(13)*z(5)*z(6)-cos(=z(l6)) u(d)*..

ol

(5);

8]

ad93=z(1)*(-2*1*sin{(z(16))*z(6)-2*1*cos(z(16))*z2(13)*2(6)~-2*1*u1n..
(z{(16))*z(3)+cos (z(16))*z(15)*z(6)+sin(z2(16))*2(S)-s1in{z(16))*=2(1%)*a(Lh
y*.

z(6)+cos(z(16))*z(3)*2(15)+cos(z(16))*z(13)*2(5));

a8d=-sin{z(16))*z{5)*z(6) -cos(z(16))*z{13)*z(5)*z{(6)-nanlz(l6)y*zts)*..

2(5);

a95=16/420*1"3*2(7)*2(17)+8/420*173%*2(8) *2(18)+624/420*1*2(9*21U)

312/7420*1*2(10)*z2(20);
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a96==-6/420*173*(2(7)*2(18)+2(17)*2(8))+26/420*172* (2 (7)*2(20)+..
2(17)*2(10),-44/420*172* ..
(2(8)*2(20)+2(18)*2(10))~26/420*172*(2(8)*z(19)+2(18)*2(9))+108/420*..

1*(z2(9)*2(20)+2(19)*z(10));

a97=2*(z(1)+2(6))*(1+2(13)"2)+2*z(3);

a98=4*(z{1)+2{6))*z{13)*z(3);

a99=0.2/3*%1"3*2(7)-0.4/3*173*z(8)+172*2(9)+0.85*1"2*z(10};

al00=-0.5/3*172*z(18)+2*1*z(19}+1*2(20);

alll=-(z(1)"2+2(1)*2(6) ) *{-2*1*sin(z2(16))*2(13)+2*1*cos(2(16))+..

sin(z2(16))*z2(15)+cos{(z(16))*z(13)*2(15))+2(1)*(-2*1*cos(z(1l6)}™*..

z(3)-san(z(l6))*..

219y 23~ (z(y+2(B8))*(2(5)*cos{2(16))-sin(z(16))*=z(13)*2(5))-cos(z(1l6

).

YY2(3)y*z(5);

al02=(z(l) " 2+2(1)*z(6) ) *(-2*1*sin(z2(16))-2*1*cos(z(16))*z(13)+cos{..

Z{16}) *2(15)-sin(z(16))*2(13)*z(15));

al03=(z(l)+z(6))*(~s1n(z(16))*2(5)-cos(z(16)..

L3y (S r4z(1y*(-2*1*sin(z(16))*z(3)+cos(z(16))*z(3)*z(15))~-sin(z!lé&

yyv..

al0d=-0.25/3%172%2(8)+1*2(9)+0.5*1*2(10);

aldbzc (I)*(-2*1*s1u{(z(16))+cos(z2(16))*2(15)-2*1*cos(z(16))*z(15)-sin(z(1
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6))*..

z{13)*2(15))-cos(z2(16)) *2(S5)*=(13)-sin(z(16) ) *=(5)};

all06=mu*g*(2*172*(cos(z(11)+z2 (16))-san(z{11l) +z(16)) * = (13)) (s (L)

2(16))Y+cos(z{11)+2{(1h) ) *2(13))*(-0.25/3*172*=(18)+41*=(19)+0.5*1* (20 )},

A(l,1)=0.5*mu*(a57+a58+a59+2* (1+2(13)72)*a60+ab6l)+2*mu*l* (4* 12+ (151>
A(1,2)=0.2/3*mu*1"3;

A(1,3)=0.5*mu*(15.2/3*1"3+a64+a60*2) ;

A{l,4)=mu*l1"2;
A(1,5)=mu/2*(1.7*172+(-0.5/3*17°2*2(18)+2*1*=2(19)+1*=(20})*..
(-sin(z(16))-cos(z2(16)) ..

*2(13))+4*172* (cos(2(16) ) -sin(2{16) ) *2(13))) +2*1*2*mu*l;

A(l,6)=mu/2* (a62+a63+2* (1+2(13)"2)*a60);
A(l,7)=0.2/3*mu*1"2*(1+2(13})  2);
A(1l,8)=mu*(-0.4/3*17"3*(1+2(13)72)-0.25/3*1"2*(2*1*..
cos(z(186))+sin(z(16))}*z(15)~-..

2*1*san{z(18) )y *z(l3)+cos(z(16) )y *2 (13 ) *=(i5)) ) ;

A(l,9)=mu*(1°2*(1+2(13)"2)+1*(2*1*cos(z2(16))+sin(z(16))*z(15)-2*1* (!l

16))* .. 2{13)+cos{z{16)) *z(13)*2(15)));

A(l,10)=mu*(0.85*172*(1+2(13)72)+0.5*1*(2*1*cos(2(16) )+sin(z(l6))“=tlh)-
2*1..

*sin(z(16))*z(13)+cos(z(16))*2(13)*2(15)));

(2,1)=0.2/3*mu*1"3;
{2,2)=8/420*mu*1"3;

Alz,3)=-3/420*mu*1"3;
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A(2,5)=13/420"mu*1”2;

hi2,4)=0;

K{2,1)=mu/2*lal+a2) ;
h{3,2)=-3/7420*mu*1" 3,
A(3,3)=mu/2*((16/3+8/420)*1"3+a2);

A(3,4)=-13/420*mu*1"2;

A(3,5)=mu/2*(-44/420*1°2-2*sin(z(16))*(-0.25/3*172*z(18)+1*z2(19)+.

0.5*1*2(20) )+..

4*172*cos(z2(16)));

A(3,6)=mu/2*(16/3*1"3+a2);
A3, 7)=mu*(0.2/3*173+(8/420*1°3*2(17)-3/420*1"3* .
2(18)+413/420*172*. .

2(20))*z(13));

A(3,8)=mu*(~0.4/3%173+42(13)*(4/420*173*%2(18)-3/420*1"3*..
2(17)-22/420*172*2(20)-13/420*..

122*2(19)) ) ;

A(3,9)=mu* (1°2+2(13)*(312/420*1*%2(19)-13/420*172*2(18)+54/420*1*2(20)}));

A(3,10)=mu*(0.85*1"2+2(13)* {156/420*1*2(20)+13/420*1"2*2(17)-..

22/420%172*2(18)+..

S4/320*1*2(19)));

A{d, 1)=mu*l"2;
A(d,2)=0;
A(d,31=-13/420*"mu*1"2;
A(d,d4)=312"420*mu*1;

Ard, 5)r=54,420*mu*l;



A(4,6)=0;
A(S,1)=mu/2*(1.7*172+({-0.5/3*1"2*2(18)+2*1*z(19)+1*z(20))~..
(-sin(z(16))-cos(z(16)..

)*2(13))+4*1%2*(cos(z(16))~-sin(z(16))*=(13)))+2*1*2*mu*l;

A(5,2)=13/420*mu*1"2;
A(5,3)=mu/2*(-44/420*172-2*sin(z(16))*(-0.25/3*1"2*z(18)+..
1*2(19)+0.5%1*2(20) ) +4*1"2* ..

cos{(z(16)));

A(5,4)=54/420*mu*1;

A(5,5)=0.5*mu*312/420*1+2*mu*1;

A(5,6)=mu/2* ((-0.5/3*172*z(18)+2*1*z(19)+1*2(20) ) *(-s1n{z=(16})-..
cos(z(16))*z(13))+4*1"2*..
{cos(z(16))-sin(z(16))*2(13)));

A(5,7)=0;
A(5,8)=-0.25/3*mu*1"2*(-sin(z(16))*z2(13)+cos{z(16)));
A({5,9)=mu*l*(~-sin(z=(16)}*z(13)+cos(z(1l6)));
A(5,10)=0.5*mu*1*(~-sin(z{(16) ) *2(13)+cos(z(16)));
A(6,1)=mu/2*(a84+a85+2*(1+2(13)"2) *a60) ;

A(6,2)=0;

A(6,3)=(8/3*1"3+a60) *mu;

A(6,4)=0;

A(6,5)=mu/2*a8s;
A(6,6)=mu/2*(16/3*173*(1+2(13)72)+2*(21+2(13)"2)*ab0);
A(6,7)=0.2/3*mu*1"3*(1+2(13)"2);
A(6,8)=-0.4/3*mu*1"3*(1+2(13)"2);
A(6,9)=mu*1"2*(1+2(13)"2);
A(6,10)=0.85*mu*172*(1+2(13)72);
A(7,1)=0.2/3*mu*1"3*{1+2(13)"2);

A(7,2)=0;

A(7,3)=mu*(0.2/3*173+2(12)*(3/420%173*2(17)-3/420*1"s*2/ 1~ )+..



13/7420%172*2(20) ) );

Al7,6)=0.2/3*1u*1"3*(1+2(13)72);

A(7,7)=8/420"mu*(1+2(13)"2)*1"3;

AlT,81=-3/420*mu*1"3*(1+2(13)"2);

Al(T7,9)=0;

A(7,10)=13/420*mu*172*(1+2(13)"2);
A(8,1)=mu*(-0.4/3*1"3*(1+2(13)72)-0.25/3*172*(2*1*cos(2(16))+..
sint(z(l16))*z(15)-..

2*1*s1n(z(16) ) *2(13)+cos(z(16))*2z(13)*2(15)));
A(8,3)=mu*(-0.4/3*173+2(13)*(4/420*1°3*2(18)~3/420*1"2*2(17)~-22/420~..
172*2(20) -13/420%172*2(19)));
A(8,5)=-0.25/3*mu*1"2*(-sin(z(16))*2(13)+cos{z(16)));
A(8,6)=-0.4/3*mu*1"3*(1+2(13)"°2);

A{8,7)=-3/420*mu*1"3*(1+2(13)"2);

A(8,8)=4/420*mu*1"3*(1+2(13)"2);

A(8,9)=-13/420*"mu*1"2*(1+2(13)"2);

A(8,10)=-22/420*mu*1"2* (1+2(13) 2} ;

A9, 1)=mu*(172*(1+2(13)72)+1*(2*1*cos(z(16))+sin(z{(16))*z(15)-2*1*.,
sin{z(16))*2(13)+..

cos{(z(16) )*z(13)*2(15)));
A(9,3)=mu*(172+(312/420*1*2(19)-13/420*172*2(18)+54/420*1*2(20))*z(13));
A(9,5)=mu*(l*cos(z(16))-1*sin(=(16))*z(13));

A(9,6)=mu*1"2* (1+2(13)"2);

A(9,8)=mu*(-13/420*1"2*(1+2(13)"2));

A(9,9)=312/420*mu*1*(1+z=(13)°2);

A9, 1) =54/7420* mu*1*(1+2(13)°2) ;

AC10, I)=mu*(0.85*1°2*(1+2(13)"2)+0.5*1*(2*1*cos(z{16))+s1n(=2(16))*z(15)-
21,

*sanio(le) ol scos(2(16))*=(13)*2(15)));

ALLO, 3 =m0 85172+ (15674201 *2(29)+13/420%1°2%2(17)~-22/420*%1"2*.,

TU18Ye5d 200119 * 2 (13));
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A(10,5)=0.5*mu*1*(-sin(z(16))*z=(13)+cos(=(16)));
A(10,6)=0.85*mu*1"2*(1+=(13}"2);
A(10,7)=mu*(1+2(13)"2)*13/420*1"2;

A(10,8)=-22/420*mu*1"2* (1+2(13)"2);
A(10,9)=54/420*mu*1*(1l+=2(13)"2);
A(10,10)=156/420*mu*1*(1+2(13)"2);

C=[0;0;0;0;0;0;0;0;0:;0];
B(1l,1)=mu/2*(2*2(1)*(a65+a66)+32/3*1"3*(z(l)+z(6))*z=(3)*z(l13)y..
a67*a68+a69*(a70+a71)+4*17°2*((2*z(1l)+z(6))*a72+a73}+ (a74+a75) uuy

a60*a77)+a78+mu* (a79+a80*a8l)+mu*g* (a82+a8l) ;

B(2,1)=-mu*z(1)"2*(8/420%1%3*2(12)-3/420*1"3*..

2(13)+13/420*172*2(15))+E*I*(8/1*z(12)..

+2*2(13)/1-6/172*2(15));

B(3,1)=mu/2*{a3+ad+aS)+mu*(z(3) *a6+a7)-mu/2* (aB8+a%+al10)-mu* (allran* (1))

+al2+al3;

B(d,1)=-mu*(z{1)"2*(312/420*1*=2(14)-13/420*172*2(13)+54/420*1*u (1))}

mu*g*l*cos(z(11))..

+E*I*(24/173*2(14)+6/17°2*2(13)-12/1"3*z(15));

B(5,1)=mu*(ald4+alS)+mu*alé-mu/2*(al7+al8d8+al9)+a20+421;

B(6,1)=mu/2*(a87+a88*a89+a90* (a%91+a92)+4*172*(a%93+a94 )+ (a%5+a446) "'/

ag98*as0)+2*mu*z(3)*z(13) *a99-mu/2*(al00*alfNl+4*1"2*(al02+al0%)) mu*aing”

al05+alle6;

B(7,1)=mu*(a22+a23)+a24+a25+a26+a27;

BE(8,1)=mu*(a28+a29%+a30)+a3l-mu/2*(-0.5/2*1" Z*alz+a ) +uldsasl;



El5,1)=mu*(a2€+a37+a38+al9)+adl-ra/2*(2*1*(adl+ad2)+adld) +add+ads;

E(1G, 1;=mu*(adb+0.5*1*(a47+a48)+a49+a50)+a5l-mu/2*(1*(a52+a53)+a54)+a5%+

&
(G
(o)

s=1nv (k) *(C-B);

z1
z(1)y=Y1(1);
2(2)=Y1(2);
2(3)=Y1(3);
z(4)=Y1(4);
z(5)=Y1(5);
z(6)=Y1(C);
2 (M) =Y1(T);
z{8)=Y1(8);
2(9)=Y1(9};
=(10)=Y1(10);
= (11)=xX1(1);
z(12)=X1(2);
=(13)=X1(3);
o (la)y=x1(4);
2 (15)=X1(5);
2(16)=N1(6);
S (17) =X1(7);
o (18)=Xx1(8);
z{19) =X1(9);
(20 =X1(10)
zZ2
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z(1)=Y1(1);
z(2)=Y1(2};
z(3)=Y1(3);
z(4)=Y1(4);
z(5)=Y1(5);
z(6)=Y1(6);
z(7)=Y1(7);
z(8)=Y1(8};
z(9)=¥1(9);
z(10)=Y1(10);
z(11)=X1(1);
z(12)=X1(2);
z(13)=X1(3);
z{14)=X1(4);
z(15)=X1(5);
Z(16)=X1(6);
2(17)y=x1(7);
z(18)=X1(8});
= (19)=X1(9);

2{20)=X1(10);

z(1)=Y3(1):
z(2)=Y3(2);
z(3)=Y3(3);
z{4)=Y3(4);
z(5)=Y3(5);
Z(6)=Y3(6);
z(7)=¥3(7);
z(8)=Y3(8);

Z(9)=Y2(9);

Z3

(=]

()



el 1043020y,
Z2(11)y=/3(1);
2 012y=03(2);
MU SN R

z2014y.2304y,

z2(19)=X3(9);

2(20)=X3(10),

24

2(1)=Y4(1) ;

2(1)=v4(4);
2(5)=Y4(5) ;
S(6)=Y4(6) ;
=7 =vd(T) ;
=(8)=Y1(8);
Z{9)=Y4(9);
2(iI0)=yY4(10);

=(11)=Xd41(1);

2{13)=X4(3);
Zeld)=Xd (4
{15y =X4(5) ;
Tl =Xd(6)

(1T NG (T
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=(18)=x4(8);
2(19)=X4(9);

2(20)=X4(10) ;

PROGRAM FOR SIMULATION 2 IN MATLAB

g=9.8;
1=0.5;
I=5/10"9;
mu=5;
E=2*10"11;
x(1,1)=0;
¥i{1,1)=0;
x(2,1)=0;
yi{2,1)=0;

x(3,1)=0;

yi(3,1)=0;

*(4,1)=0;

v{4,1)=0;

u

®(5,1)=0;
y(5,1)=0;
t=0;
h=0.00045;
tcrque=35;

for 3=1:10000,

1f £>=1 & t<=2,
torgue=-35;
end

if t-2,

(€8]
O



torques0
end
Xl=x;
Tl=y;
tl;

wl;

Fl=p;

I

FA2=x+¥1*h/2;
Y2=y+F1*h/2;

t2;

wl;

P B
X3=x+Y2*h/2;
Y3=y+F2*h/2;
t3;
wl;

Fi=p:
Xd=x+Y3*h;
Y4=y+F3*h;
td;
wl;

Fi=p;

t=t+h;

x=x+h/6* (Y1+42*Y2+2*Y3+Y4);

vey+h/6* (F142*F2+2*F3+F4) ;

fprintf ('
frrantf(’
fprantf (’
fprantf ('
fprintf (’

fprraintt ('

out0.dat’,*

outl.
out2.
out3.
outd.

ouths,

dat ',
dat ',
dat',
dat’,

dat’,

’

1

.

%g
tg
%9
%9
ig

%9
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%g
%g
%g

%g

%g



fprintf(’ outsd.dat’,’ g g, ot vidY)
frrantf(’ out7.dat’,’' %g g 1, t,y(3)),
fprintf(’ out8.dat’, ' g g ‘, t,y ) ;
fprintf(’ out%.dat’, ' %g g ', T,y
end
WIX
a57=5.333333*1"3+0.038094*1"3*q(7)"24+0.0190476*1 3*q(8) vl .dnr "1l

q(9)72+40.742857*1*q(10)"2-0.0285714*1"3*g(7)*q(8);

a58=0.1233094*1"2*q(7)*q(10)-0.2095238*1°2*q(8)*q(10) -..

0.1238094*1"2*g(8)*q(9)+0.5142856*1*q(9)*q(10) ;

a65=0.0380952%1"3*g(2) *q(7)+0.0190476*173%¢(8) *qj(3)+ . .
1.485714*1%q(9) *q(4)+0.742857*1*((5)*q(10)-0.0142857*1 34 (q(2)*(4)+..
g(7)*q(3))+0.0619047*1°2* (q{2) *q(10)+q (7) *q(5) ) ;

a66=-0.1047619*1"2*(g(3)*q(10)+g(8)*g(5))-0.0619047*1"2*(q{ )*..

q(9)y+g(8) *(d))+0.2571428*1*(g(4)*q(10)+q(9)*q(5)):

A(l,1)=0.5*mu*(a57+a58);

A(1,2)=0.06666666667*mu*1"3;

A(1,3)=-0.1333333333*1"3*mu;
A(l,4)=mu*1"2;
A(l,S)=mu/2*(1.7*1°2);
A(2,1)=0.066666666€667*mu*1"3;
A(2,2)=0.0190476*mu*l"3;
A(2,3)=-0.00714285*mu*1"3;

A(2,5)=0.0309%23*mu*1"2;
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hi2,4)=0;

A3, 1)=mu/2% (-0 .26E66666T7*%173);
Al3,2)=-0.00714225%*m1*1"3;
A{3,3)=mu/2*(0.0190"7€6*1"3);
A(3,4)=-0.0309523*mu>*1"2;
A(2,5)=mu/2*(-0.1047619*1"2};
A(d,1)=mu*l"2;

Ai4,2)=0;

A(4,3)=-0.0309523 mu*1"2;
A{d,4)=0.742857*mu*1;
A(4,5)=0.1285714*mu*1;
A(D,1)=mu/2*(1.7*172);
A(5,2)=0.0309523*mu*1"2;
A(5,3)=mu/2*(-0.1047€18*1"2);
A{5,4)=0.1285714*mu*1;

Al5,5)=0.5*mu*0.742857*1;

B(1,1)=0;
B(2,1)=-mu*q(1)"2%(0.0190476*1°3*q(7)-0.00714285*1°3*q(8) ..
+0.0309523%1°2*q(10)) ;
B(3,1)=-0.5*mu*q(1)"2*(0.0190476%1°3*q(8)-0.0142857*1°3*q(7)..
-0.1047618%1°2+ .,

q(10)-0.0619046*12%q(9));

B(d, 1) =-mu*q(1)"2%(0.742857*1*q(9)~0.0309523*172*(8)+..
0.1285%1%q(10));

B(5,1) =-mu*q(1)"2%(0.37*1%q(10)40.031*1%2*q(7)-0.0525*..
1°2°q(8)+..

0.1285714*1*¢qq(9));

Sl D =mutgr (2*1 0 2Ycos (q(6) ) +0.083*172*sin (g (6)) *q(8)-1*..

SIN{e Y *qe9) -1/2%san(q(6) )Y *q(l0)) ;
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C(2,1)=E*I*(8/1*q(7)+2*q(8)/1-6/1"2*q(10));
C(3,1)=-0.083*mu*g*1"2*cos(q(6) )+E*I* (4/1*q(8)+2*qa(7)/ ..
146/172% .,

g(9)-6/172*q(10));
C(4,1)=murg*l*cos(q(6) )+E*I* (24/1°3*q(9)+6/1°2*q(8)-..
12/1%3%q(10)) ;

C(5,1)=mu*g*1l*cos(q(6)) /2+E*I*(12/1°3*q(10) -6/1"2*q(7)-. .
6/1°2% ..

q(8)-12/173*q(9));

D(1,1)=mu*qg(l) *(a65+a66);
D(5,1)=0;

G(l,1)=torque;
G(5,1)=0;

p=inv(A) *(G-B-7-D);

T1

q(l, D=y (1,1);
ql2,1)=y(2,1);
q(3,1)=y(3,1);
q({4,l)=y(4,1);
a(5,1)=y(5,1);
q(6,1)=x(1,1);
q(7,1)=x(2,1);
q(8,1)=x(3,1);
qa(9,1)=x(4,1);

g(l10,1)=x(5,1);





